Sample records for ev electron temperature

  1. Electron heated target temperature measurements in petawatt laser experiments based on extreme ultraviolet imaging and spectroscopy.

    PubMed

    Ma, T; Beg, F N; MacPhee, A G; Chung, H-K; Key, M H; Mackinnon, A J; Patel, P K; Hatchett, S; Akli, K U; Stephens, R B; Chen, C D; Freeman, R R; Link, A; Offermann, D T; Ovchinnikov, V; Van Woerkom, L D

    2008-10-01

    Three independent methods (extreme ultraviolet spectroscopy, imaging at 68 and 256 eV) have been used to measure planar target rear surface plasma temperature due to heating by hot electrons. The hot electrons are produced by ultraintense laser-plasma interactions using the 150 J, 0.5 ps Titan laser. Soft x-ray spectroscopy in the 50-400 eV region and imaging at the 68 and 256 eV photon energies give a planar deuterated carbon target rear surface pre-expansion temperature in the 125-150 eV range, with the rear plasma plume averaging a temperature approximately 74 eV.

  2. Observation of the effects of stronger magnetic fields on warm, higher energy electrons and ion beams transiting a double layer in a helicon plasma

    NASA Astrophysics Data System (ADS)

    Scharer, John; Sung, Yung-Ta; Li, Yan

    2017-10-01

    Fast, two-temperature electrons (>80 eV, Te =13 eV tail, 4 eV bulk) with substantial tail density fractions are created at low (< = 1.7 mtorr) Ar pressure @ 340 G in the antenna region with nozzle mirror ratio of 1.4 on MadHeX @ 900W. These distributions including a fast tail are observed upstream of a double layer. The fast, untrapped tail electrons measured downstream of the double layer have a higher temperature of 13 eV than the trapped, upstream electrons of 4 eV temperature. Upstream plasma potential fluctuations of + - 30 percent are observed. An RF-compensated Langmuir probe is used to measure the electron temperatures and densities and OES, mm wave IF and an RPA for the IEDF are also utilized. As the magnetic field is increased to 1020 G, an increase in the electron temperature and density upstream of the double layer is observed with Te= 15-25 eV with a primarily single temperature mode. Accelerated ion beam energies in the range of 65-120 eV are observed as the magnetic field is increased from 340 to 850 G. The role of the nozzle, plasma double layer and helicon wave coupling on the EEDF and ion acceleration will be discussed. Research supported in part by the University of Wisconsin.

  3. Low dimensional CH3NH3PbBr3 cubes for persistent luminescence: Energy variation of electron excitation

    NASA Astrophysics Data System (ADS)

    Besral, N.; Paul, T.; Thakur, S.; Sarkar, S.; Sardar, K.; Chanda, K.; Das, A.; Chattopadhyay, K. K.

    2018-04-01

    The impact of varying electron beam voltage upon room temperature CL (cathodoluminescence) properties of crystalline organic-inorganic lead halide perovskite CH3NH3PbBr3 (Methylammonium lead tribromide) microcubes have been studied. CH3NH3PbBr3 microcubes were synthesized at room temperature by a very straight forward wet chemical route. After preliminary characterizations like XRD (X-ray diffraction), FESEM (Field emission scanning electron microscopy), UV-Vis spectroscopy, CL study at three different beam voltages i.e. 5 kV, 10 kV and 15 kV respectively was performed at room temperature. Prominent emission signals were obtained with emission peaks at 2.190 eV (FWHM 0.120 eV), 2.222 eV (FWHM 0.108 eV) and 2.242 eV (FWHM 0.095 eV) for electron beam voltages 5 kV, 10 kV and 15 kV respectively.

  4. Mode Transitions in Hall Effect Thrusters

    DTIC Science & Technology

    2013-07-01

    bM = number of pixels per bin m = spoke order 0m = spoke order m = 0 em = electron mass, 9.1110 -31 kg im = Xe ion mass, 2.18×10 -25...periodogram spectral estimate, Arb Hz -1 eT = electron temperature eT = electron temperature parallel to magnetic field, eV eT  = electron ...Fourier transform of x(t)  = inverse angle from 2D DFT, deg-1  = mean electron energy, eV * = material dependent cross-over energy, eV xy

  5. Statistical analysis of suprathermal electron drivers at 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Broiles, Thomas W.; Burch, J. L.; Chae, K.; Clark, G.; Cravens, T. E.; Eriksson, A.; Fuselier, S. A.; Frahm, R. A.; Gasc, S.; Goldstein, R.; Henri, P.; Koenders, C.; Livadiotis, G.; Mandt, K. E.; Mokashi, P.; Nemeth, Z.; Odelstad, E.; Rubin, M.; Samara, M.

    2016-11-01

    We use observations from the Ion and Electron Sensor (IES) on board the Rosetta spacecraft to study the relationship between the cometary suprathermal electrons and the drivers that affect their density and temperature. We fit the IES electron observations with the summation of two kappa distributions, which we characterize as a dense and warm population (˜10 cm-3 and ˜16 eV) and a rarefied and hot population (˜0.01 cm-3 and ˜43 eV). The parameters of our fitting technique determine the populations' density, temperature, and invariant kappa index. We focus our analysis on the warm population to determine its origin by comparing the density and temperature with the neutral density and magnetic field strength. We find that the warm electron population is actually two separate sub-populations: electron distributions with temperatures above 8.6 eV and electron distributions with temperatures below 8.6 eV. The two sub-populations have different relationships between their density and temperature. Moreover, the two sub-populations are affected by different drivers. The hotter sub-population temperature is strongly correlated with neutral density, while the cooler sub-population is unaffected by neutral density and is only weakly correlated with magnetic field strength. We suggest that the population with temperatures above 8.6 eV is being heated by lower hybrid waves driven by counterstreaming solar wind protons and newly formed, cometary ions created in localized, dense neutral streams. To the best of our knowledge, this represents the first observations of cometary electrons heated through wave-particle interactions.

  6. Electron temperature diagnostics of aluminium plasma in a z-pinch experiment at the “QiangGuang-1" facility

    NASA Astrophysics Data System (ADS)

    Li, Mo; Wu, Jian; Wang, Liang-Ping; Wu, Gang; Han, Juan-Juan; Guo, Ning; Qiu, Meng-Tong

    2012-12-01

    Two curved crystal spectrometers are set up on the “QiangGuang-1" generator to measure the z-pinch plasma spectra emitted from planar aluminum wire array loads. Kodak Biomax-MS film and an IRD AXUVHS5# array are employed to record time-integrated and time-resolved free-bound radiation, respectively. The photon energy recorded by each detector is ascertained by using the L-shell lines of molybdenum plasma. Based on the exponential relation between the continuum power and photon energies, the aluminum plasma electron temperatures are measured. For the time-integrated diagnosis, several “bright spots" indicate electron temperatures between (450 eV ~ 520 eV) ± 35%. And for the time-resolved ones, the result shows that the electron temperature reaches about 800 eV ± 30% at peak power. The system satisfies the demand of z-pinch plasma electron temperature diagnosis on a ~ 1 MA facility.

  7. Measurement of non-Maxwellian electron velocity distributions in a reflex discharge

    NASA Technical Reports Server (NTRS)

    Phipps, C. R., Jr.; Bershader, D.

    1978-01-01

    The results of a ruby laser Thomson scattering study of the space and time-resolved electron velocity distributions in a pulsed Penning discharge in hydrogen are presented. Electron densities were to the order of 10 to the 13th/cu cm and temperatures were roughly 3 eV. This point is just prior to the cessation of the discharge ohmic heating pulse. For magnetic strengths less than 200 G, Maxwellian distributions were found over an energy range six times thermal energy. Temperatures agreed with Langmuir probe data. For fields of 450 G, chaotic plasma potentials were observed to be unstable and the Thomson scattering showed that the electron velocity distributions had central temperatures of 2 eV and wing temperatures of 15-12 eV.

  8. Ion acceleration and non-Maxwellian electron distributions in a low collisionality, high power helicon plasma source

    NASA Astrophysics Data System (ADS)

    Li, Yan; Sung, Yung-Ta; Scharer, John

    2015-11-01

    Ion acceleration through plasma double layer and non-Maxwellian two temperature electron distributions have been observed in Madison Helicon Experiment (MadHeX) operated in high RF power (>1000 W) and low Ar pressure (0.17 mtorr) inductive mode. By applying Optical Emission Spectroscopy (OES) cross-checked with an RF-compensated Langmuir probe (at 13.56 MHz and its second and third harmonics), the fast (>80 eV), untrapped electrons downstream of the double layer have a higher temperature of 13 eV than the trapped bulk electrons upstream with a temperature of 4 eV. The reduction of plasma potential and density observed in the double layer region require an upstream temperature ten times the measured 4 eV if occurring via Boltzmann ambipolar expansion. The hot tail electrons of the non-Maxwellian electron distribution affect the formation and the potential drop of the double layer region. The mechanism behind this has been explored via several non-invasive plasma diagnostics tools. The OES measured electron temperatures and densities are also cross-checked with Atomic Data and Analysis Structure (ADAS) and a millimeter wave interferometer respectively. The IEDF is measured by a four-grid RPA and also cross-checked with argon 668 nm Laser Induced Fluorescence (LIF). An emissive probe has been used to measure the plasma potential.

  9. Cold and warm electrons at comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Eriksson, A. I.; Engelhardt, I. A. D.; André, M.; Boström, R.; Edberg, N. J. T.; Johansson, F. L.; Odelstad, E.; Vigren, E.; Wahlund, J.-E.; Henri, P.; Lebreton, J.-P.; Miloch, W. J.; Paulsson, J. J. P.; Simon Wedlund, C.; Yang, L.; Karlsson, T.; Jarvinen, R.; Broiles, T.; Mandt, K.; Carr, C. M.; Galand, M.; Nilsson, H.; Norberg, C.

    2017-09-01

    Context. Strong electron cooling on the neutral gas in cometary comae has been predicted for a long time, but actual measurements of low electron temperature are scarce. Aims: Our aim is to demonstrate the existence of cold electrons in the inner coma of comet 67P/Churyumov-Gerasimenko and show filamentation of this plasma. Methods: In situ measurements of plasma density, electron temperature and spacecraft potential were carried out by the Rosetta Langmuir probe instrument, LAP. We also performed analytical modelling of the expanding two-temperature electron gas. Results: LAP data acquired within a few hundred km from the nucleus are dominated by a warm component with electron temperature typically 5-10 eV at all heliocentric distances covered (1.25 to 3.83 AU). A cold component, with temperature no higher than about 0.1 eV, appears in the data as short (few to few tens of seconds) pulses of high probe current, indicating local enhancement of plasma density as well as a decrease in electron temperature. These pulses first appeared around 3 AU and were seen for longer periods close to perihelion. The general pattern of pulse appearance follows that of neutral gas and plasma density. We have not identified any periods with only cold electrons present. The electron flux to Rosetta was always dominated by higher energies, driving the spacecraft potential to order - 10 V. Conclusions: The warm (5-10 eV) electron population observed throughout the mission is interpreted as electrons retaining the energy they obtained when released in the ionisation process. The sometimes observed cold populations with electron temperatures below 0.1 eV verify collisional cooling in the coma. The cold electrons were only observed together with the warm population. The general appearance of the cold population appears to be consistent with a Haser-like model, implicitly supporting also the coupling of ions to the neutral gas. The expanding cold plasma is unstable, forming filaments that we observe as pulses.

  10. Coulomb thermal properties and stability of the Io plasma torus

    NASA Technical Reports Server (NTRS)

    Barbosa, D. D.; Coroniti, F. V.; Eviatar, A.

    1983-01-01

    Coulomb collisional energy exchange rates are computed for a model of the Io plasma torus consisting of newly created pickup ions, a background of thermally degraded intermediary ions, and a population of cooler electrons. The electrons are collisionally heated by both the pickup ions and background ions and are cooled by electron impact excitation of plasma ions which radiate in the EUV. It is found that a relative concentration of S III pickup ions forbidden S III/electrons = 0.1 with a temperature of 340 eV can deliver energy to the electrons at a rate of 3 x 10 to the -13th erg/cu cm per sec, sufficient to power the EUV emissions in the Io torus. The model predicts a background ion temperature Ti of about 53 eV and an electron temperature Te of about 5.5 eV on the basis of steady-state energy balance relations at Coulomb rates. The model also predicts electron temperature fluctuations at the 30 percent level on a time scale of less than 11 hours, consistent with recent observations of this phenomenon.

  11. Decomposition of carbon dioxide by recombining hydrogen plasma with ultralow electron temperature

    NASA Astrophysics Data System (ADS)

    Yamazaki, Masahiro; Nishiyama, Shusuke; Sasaki, Koichi

    2018-06-01

    We examined the rate coefficient for the decomposition of CO2 in low-pressure recombining hydrogen plasmas with electron temperatures between 0.15 and 0.45 eV, where the electron-impact dissociation was negligible. By using this ultralow-temperature plasma, we clearly observed decomposition processes via vibrational excited states. The rate coefficient of the overall reaction, CO2 + e → products, was 1.5 × 10‑17 m3/s in the ultralow-temperature plasma, which was 10 times larger than the decomposition rate coefficient of 2 × 10‑18 m3/s in an ionizing plasma with an electron temperature of 4 eV.

  12. Electron energy distribution function in the divertor region of the COMPASS tokamak during neutral beam injection heating

    NASA Astrophysics Data System (ADS)

    Hasan, E.; Dimitrova, M.; Havlicek, J.; Mitošinková, K.; Stöckel, J.; Varju, J.; Popov, Tsv K.; Komm, M.; Dejarnac, R.; Hacek, P.; Panek, R.; the COMPASS Team

    2018-02-01

    This paper presents the results from swept probe measurements in the divertor region of the COMPASS tokamak in D-shaped, L-mode discharges, with toroidal magnetic field BT = 1.15 T, plasma current Ip = 180 kA and line-average electron densities varying from 2 to 8×1019 m-3. Using neutral beam injection heating, the electron energy distribution function is studied before and during the application of the beam. The current-voltage characteristics data are processed using the first-derivative probe technique. This technique allows one to evaluate the plasma potential and the real electron energy distribution function (respectively, the electron temperatures and densities). At the low average electron density of 2×1019 m-3, the electron energy distribution function is bi-Maxwellian with a low-energy electron population with temperatures 4-6 eV and a high-energy electron group 12-25 eV. As the line-average electron density is increased, the electron temperatures decrease. At line-average electron densities above 7×1019 m-3, the electron energy distribution function is found to be Maxwellian with a temperature of 6-8.5 eV. The effect of the neutral beam injection heating power in the divertor region is also studied.

  13. Determination of electron temperature in a penning discharge by the helium line ratio method

    NASA Technical Reports Server (NTRS)

    Richardson, R. W.

    1975-01-01

    The helium line ratio technique was used to determine electron temperatures in a toroidal steady-state Penning discharge operating in helium. Due to the low background pressure, less than .0001 torr, and the low electron density, the corona model is expected to provide a good description of the excitation processes in this discharge. In addition, by varying the Penning discharge anode voltage and background pressure, it is possible to vary the electron temperature as measured by the line ratio technique over a wide range (10 to 100+ eV). These discharge characteristics allow a detailed comparison of electron temperatures measured from different possible line ratios over a wide range of temperatures and under reproducible steady-state conditions. Good agreement is found between temperatures determined from different neutral line ratios, but use of the helium ion line results in a temperature systematically 10 eV high compared to that from the neutral lines.

  14. Measurement of electron density and electron temperature of a cascaded arc plasma using laser Thomson scattering compared to an optical emission spectroscopic approach

    NASA Astrophysics Data System (ADS)

    Yong, WANG; Cong, LI; Jielin, SHI; Xingwei, WU; Hongbin, DING

    2017-11-01

    As advanced linear plasma sources, cascaded arc plasma devices have been used to generate steady plasma with high electron density, high particle flux and low electron temperature. To measure electron density and electron temperature of the plasma device accurately, a laser Thomson scattering (LTS) system, which is generally recognized as the most precise plasma diagnostic method, has been established in our lab in Dalian University of Technology. The electron density has been measured successfully in the region of 4.5 × 1019 m-3 to 7.1 × 1020 m-3 and electron temperature in the region of 0.18 eV to 0.58 eV. For comparison, an optical emission spectroscopy (OES) system was established as well. The results showed that the electron excitation temperature (configuration temperature) measured by OES is significantly higher than the electron temperature (kinetic electron temperature) measured by LTS by up to 40% in the given discharge conditions. The results indicate that the cascaded arc plasma is recombining plasma and it is not in local thermodynamic equilibrium (LTE). This leads to significant error using OES when characterizing the electron temperature in a non-LTE plasma.

  15. A Hybrid Model for Multiscale Laser Plasma Simulations with Detailed Collisional Physics

    DTIC Science & Technology

    2016-11-29

    quantum calculations with corrections for low temperature NIST Cutoff • Starts with LANL and assumes higher excited states are ionized • Cutoff... NIST Grouping • Boltzmann or Uniform grouping • Saves 20-30% over Electron Splitting • Case by case basis 11Distribution A – Approved for public release...Temperature: 0.035 eV • Atomic Density: 1020 1/m3 • Ionization fraction: 10-13 • Electron Temperature: 10 & 100 eV • t = [0,106] seconds Groupings • NIST

  16. High temperature annealing of minority carrier traps in irradiated MOCVD n(+)p InP solar cell junctions

    NASA Technical Reports Server (NTRS)

    Messenger, S. R.; Walters, R. J.; Summers, G. P.

    1993-01-01

    Deep level transient spectroscopy was used to monitor thermal annealing of trapping centers in electron irradiated n(+)p InP junctions grown by metalorganic chemical vapor deposition, at temperatures ranging from 500 up to 650K. Special emphasis is given to the behavior of the minority carrier (electron) traps EA (0.24 eV), EC (0.12 eV), and ED (0.31 eV) which have received considerably less attention than the majority carrier (hole) traps H3, H4, and H5, although this work does extend the annealing behavior of the hole traps to higher temperatures than previously reported. It is found that H5 begins to anneal above 500K and is completely removed by 630K. The electron traps begin to anneal above 540K and are reduced to about half intensity by 630K. Although they each have slightly different annealing temperatures, EA, EC, and ED are all removed by 650K. A new hole trap called H3'(0.33 eV) grows as the other traps anneal and is the only trap remaining at 650K. This annealing behavior is much different than that reported for diffused junctions.

  17. Anhydrous crystals of DNA bases are wide gap semiconductors.

    PubMed

    Maia, F F; Freire, V N; Caetano, E W S; Azevedo, D L; Sales, F A M; Albuquerque, E L

    2011-05-07

    We present the structural, electronic, and optical properties of anhydrous crystals of DNA nucleobases (guanine, adenine, cytosine, and thymine) found after DFT (Density Functional Theory) calculations within the local density approximation, as well as experimental measurements of optical absorption for powders of these crystals. Guanine and cytosine (adenine and thymine) anhydrous crystals are predicted from the DFT simulations to be direct (indirect) band gap semiconductors, with values 2.68 eV and 3.30 eV (2.83 eV and 3.22 eV), respectively, while the experimentally estimated band gaps we have measured are 3.83 eV and 3.84 eV (3.89 eV and 4.07 eV), in the same order. The electronic effective masses we have obtained at band extremes show that, at low temperatures, these crystals behave like wide gap semiconductors for electrons moving along the nucleobases stacking direction, while the hole transport are somewhat limited. Lastly, the calculated electronic dielectric functions of DNA nucleobases crystals in the parallel and perpendicular directions to the stacking planes exhibit a high degree of anisotropy (except cytosine), in agreement with published experimental results.

  18. Thermal electron attachment to chlorinated alkenes in the gas phase

    NASA Astrophysics Data System (ADS)

    Wnorowski, K.; Wnorowska, J.; Michalczuk, B.; Jówko, A.; Barszczewska, W.

    2017-01-01

    This paper reports the measurements of the rate coefficients and the activation energies of the electron capture processes with various chlorinated alkenes. The electron attachment processes in the mixtures of chlorinated alkenes with carbon dioxide have been investigated using a Pulsed Townsend technique. This study has been performed in the temperature range (298-378) K. The obtained rate coefficients more or less depended on temperature in accordance to Arrhenius equation. The activation energies (Ea's) were determined from the fit to the experimental data points with function ln(k) = ln(A) - Ea/kBT. The rate coefficients at 298 K were equal to 1.0 × 10-10 cm3 s-1, 2.2 × 10-11 cm3 s-1, 1.6 × 10-9 cm3 s-1, 4.4 × 10-8 cm3 s-1, 2.9 × 10-12 cm3 s-1 and 7.3 × 10-12 cm3 s-1 and activation energies were: 0.27 eV, 0.26 eV, 0.25 eV, 0.21 eV, 0.55 eV and 0.42 eV, for trans-1,2-dichloroethylene, cis-1,2-dichloroethylene, trichloroethylene, tetrachloroethylene, 2-chloropropene, 3-chloropropene respectively.

  19. Vibrational renormalisation of the electronic band gap in hexagonal and cubic ice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engel, Edgar A., E-mail: eae32@cam.ac.uk; Needs, Richard J.; Monserrat, Bartomeu

    2015-12-28

    Electron-phonon coupling in hexagonal and cubic water ice is studied using first-principles quantum mechanical methods. We consider 29 distinct hexagonal and cubic ice proton-orderings with up to 192 molecules in the simulation cell to account for proton-disorder. We find quantum zero-point vibrational corrections to the minimum electronic band gaps ranging from −1.5 to −1.7 eV, which leads to improved agreement between calculated and experimental band gaps. Anharmonic nuclear vibrations play a negligible role in determining the gaps. Deuterated ice has a smaller band-gap correction at zero-temperature of −1.2 to −1.4 eV. Vibrations reduce the differences between the electronic band gapsmore » of different proton-orderings from around 0.17 eV to less than 0.05 eV, so that the electronic band gaps of hexagonal and cubic ice are almost independent of the proton-ordering when quantum nuclear vibrations are taken into account. The comparatively small reduction in the band gap over the temperature range 0 − 240 K of around 0.1 eV does not depend on the proton ordering, or whether the ice is protiated or deuterated, or hexagonal, or cubic. We explain this in terms of the atomistic origin of the strong electron-phonon coupling in ice.« less

  20. Carrier-Specific Femtosecond XUV Transient Absorption of PbI 2 Reveals Ultrafast Nonradiative Recombination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Ming-Fu; Verkamp, Max A.; Leveillee, Joshua

    Femtosecond carrier recombination in PbI 2 is measured using tabletop high-harmonic extreme ultraviolet (XUV) transient absorption spectroscopy and ultrafast electron diffraction. XUV absorption from 45 eV to 62 eV measures transitions from the iodine 4d core level to the conduction band density of states. Photoexcitation at 400 nm creates separate and distinct transient absorption signals for holes and electrons, separated in energy by the 2.4 eV band gap of the semiconductor. The shape of the conduction band and therefore the XUV absorption spectrum is temperature dependent, and nonradiative recombination converts the initial electronic excitation to thermal excitation within picoseconds. Ultrafastmore » electron diffraction (UED) is used to measure the lattice temperature and confirm the recombination mechanism. Lastly, the XUV and UED results support a 2nd-order recombination model with a rate constant of 2.5x10 -9 cm 3/s.« less

  1. Carrier-Specific Femtosecond XUV Transient Absorption of PbI 2 Reveals Ultrafast Nonradiative Recombination

    DOE PAGES

    Lin, Ming-Fu; Verkamp, Max A.; Leveillee, Joshua; ...

    2017-11-30

    Femtosecond carrier recombination in PbI 2 is measured using tabletop high-harmonic extreme ultraviolet (XUV) transient absorption spectroscopy and ultrafast electron diffraction. XUV absorption from 45 eV to 62 eV measures transitions from the iodine 4d core level to the conduction band density of states. Photoexcitation at 400 nm creates separate and distinct transient absorption signals for holes and electrons, separated in energy by the 2.4 eV band gap of the semiconductor. The shape of the conduction band and therefore the XUV absorption spectrum is temperature dependent, and nonradiative recombination converts the initial electronic excitation to thermal excitation within picoseconds. Ultrafastmore » electron diffraction (UED) is used to measure the lattice temperature and confirm the recombination mechanism. Lastly, the XUV and UED results support a 2nd-order recombination model with a rate constant of 2.5x10 -9 cm 3/s.« less

  2. Auger electron spectroscopy study of initial stages of oxidation in a copper - 19.6-atomic-percent-aluminum alloy

    NASA Technical Reports Server (NTRS)

    Ferrante, J.

    1973-01-01

    Auger electron spectroscopy was used to examine the initial stages of oxidation of a polycrystalline copper - 19.6 a/o-aluminum alloy. The growth of the 55-eV aluminum oxide peak and the decay of the 59-, 62-, and 937-eV copper peaks were examined as functions of temperature, exposure, and pressure. Pressures ranged from 1x10 to the minus 7th power to 0.0005 torr of O2. Temperatures ranged from room temperature to 700 C. A completely aluminum oxide surface layer was obtained in all cases. Complete disappearance of the underlying 937-eV copper peak was obtained by heating at 700 C in O2 at 0.0005 torr for 1 hr. Temperature studies indicated that thermally activated diffusion was important to the oxidation studies. The initial stages of oxidation followed a logarithmic growth curve.

  3. Effect of crystal orientation on conductivity and electron mobility in single-crystal alumina

    NASA Technical Reports Server (NTRS)

    Will, Fritz G.; Delorenzi, Horst G.; Janora, Kevin H.

    1992-01-01

    The electrical conductivity of high-purity, single-crystal alumina is determined parallel to and perpendicular to the c-axis. The mean conductivity of four samples of each orientation is a factor 3.3 higher parallel to the c-axis than perpendicular to it. The conductivity as a function of temperature is attributed to extrinsic electron conduction at temperatures from 400 to 900 C, and intrinsic semiconduction at temperatures from 900 to 1300 C. In the high-temperature regime, the slope on all eight specimens is 4.7 +/- 0.1 eV. Hence, the thermal bandgap at O K is 9.4 +/- 0.2 eV.

  4. Negative thermal quenching of the defects in GaInP top cell with temperature-dependent photoluminescence analysis

    NASA Astrophysics Data System (ADS)

    Junling, Wang; Rui, Wu; Tiancheng, Yi; Yong, Zheng; Rong, Wang

    2018-01-01

    Temperature-dependent photoluminescence (PL) measurements were carried out to investigate the irradiation effects of 1.0 MeV electrons on the n+- p GaInP top cell of GaInP/GaAs/Ge triple-junction solar cells in the 10-300 K temperature range. The PL intensities plotted against inverse temperature in an Arrhenius plot shows a thermal quenching behavior from 10 K to 140 K and an unusual negative thermal quenching (NTQ) behavior from 150 K to 300 K. The appearance of the PL thermal quenching with increasing temperature confirms that there is a nonradiative recombination center, i.e., the H2 hole trap located at Ev + 0.55 eV, in the cell after electron irradiation. The PL negative thermal quenching behavior may tentatively be attributed to the intermediate states at an energy level of 0.05 eV within the band gap in GaInP top cell.

  5. Role of oxygen vacancies on light emission mechanisms in SrTiO 3 induced by high-energy particles

    DOE PAGES

    Crespillo, M. L.; Graham, J. T.; Agulló-López, F.; ...

    2017-02-23

    Light emission under MeV hydrogen and oxygen ions in stoichiometric SrTiO 3 are identified at temperatures of 100 K, 170 K and room-temperature. MeV ions predominately deposit their energies to electrons in SrTiO 3 with energy densities orders of magnitude higher than from UV or x-ray sources but comparable to femtosecond lasers. The ionoluminescence (IL) spectra can be resolved into three main Gaussian bands at 2.0 eV, 2.5 eV and 2.8 eV, whose relative contributions strongly depend on irradiation temperature, electronic energy loss and irradiation fluence. Two main bands, observed at 2.5 eV and 2.8 eV, are intrinsic and associatedmore » with electron–hole recombination in the perfect SrTiO 3 lattice. The 2.8 eV band is attributed to recombination of free (conduction) electrons with an in-gap level, possibly related to self-trapped holes. Self-trapped excitons (STEs) are considered suitable candidates for the 2.5 eV emission band, which implies a large energy relaxation in comparison to the intrinsic edge transition. The dynamics of electronic excitation, governs a rapid initial rise of the intensity; whereas, accumulated irradiation damage (competing non-radiative recombination channels) accounts for a subsequent intensity decrease. The previously invoked role of isolated oxygen vacancies for the blue luminescence (2.8 eV) does not appear consistent with the data. An increasing well-resolved band at 2.0 eV dominates at 170 K and below. It has been only previously observed in heavily strained and amorphous SrTiO 3, and is, here, attributed to transitions from d(t 2g) conduction band levels to d(e g) levels below the gap. In accordance with ab initio theoretical calculations they are associated to trapped electron states in relaxed Ti 3+ centers at an oxygen vacancy within distorted TiO 6 octahedra. The mechanism of defect evolution monitored during real-time IL experiments is presented. In conclusion, the light emission data confirm that IL is a useful tool to investigate lattice disorder in irradiated SrTiO 3.« less

  6. First-Principles Estimation of Electronic Temperature from X-Ray Thomson Scattering Spectrum of Isochorically Heated Warm Dense Matter

    NASA Astrophysics Data System (ADS)

    Mo, Chongjie; Fu, Zhenguo; Kang, Wei; Zhang, Ping; He, X. T.

    2018-05-01

    Through the perturbation formula of time-dependent density functional theory broadly employed in the calculation of solids, we provide a first-principles calculation of x-ray Thomson scattering spectrum of isochorically heated aluminum foil, as considered in the experiments of Sperling et al. [Phys. Rev. Lett. 115, 115001 (2015), 10.1103/PhysRevLett.115.115001], where ions were constrained near their lattice positions. From the calculated spectra, we find that the electronic temperature cannot exceed 2 eV, much smaller than the previous estimation of 6 eV via the detailed balance relation. Our results may well be an indication of unique electronic properties of warm dense matter, which can be further illustrated by future experiments. The lower electronic temperature predicted partially relieves the concern on the heating of x-ray free electron laser to the sample when used in structure measurement.

  7. Low-temperature anneal of the divacancy in p-type silicon: A transformation from V2 to VxOy complexes?

    NASA Astrophysics Data System (ADS)

    Trauwaert, M.-A.; Vanhellemont, J.; Maes, H. E.; Van Bavel, A.-M.; Langouche, G.; Clauws, P.

    1995-05-01

    Deep level transient spectroscopy of electron irradiated p-type silicon reveals a defect level at Ev+0.19 eV, which during anneal treatments at 200 °C gradually transforms into a band with Ev+0.24 eV. Both energy levels however, are reported in literature to be the donor level of the divacancy. In the present study it is proposed that during the low-temperature anneal the divacancy interacts with oxygen, forming a V2O complex. During heat treatments at temperatures in the range between 250 and 450 °C a further shift of the deep level to higher energy positions is observed which might be related with other vacancy-oxygen complexes.

  8. Ab-initio calculations of electronic, transport, and structural properties of boron phosphide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ejembi, J. I.; Nwigboji, I. H.; Franklin, L.

    2014-09-14

    We present results from ab-initio, self-consistent density functional theory calculations of electronic and related properties of zinc blende boron phosphide (zb-BP). We employed a local density approximation potential and implemented the linear combination of atomic orbitals formalism. This technique follows the Bagayoko, Zhao, and Williams method, as enhanced by the work of Ekuma and Franklin. The results include electronic energy bands, densities of states, and effective masses. The calculated band gap of 2.02 eV, for the room temperature lattice constant of a=4.5383 Å, is in excellent agreement with the experimental value of 2.02±0.05 eV. Our result for the bulk modulus,more » 155.7 GPa, agrees with experiment (152–155 GPa). Our predictions for the equilibrium lattice constant and the corresponding band gap, for very low temperatures, are 4.5269 Å and 2.01 eV, respectively.« less

  9. Silicon Detector System for High Rate EXAFS Applications.

    PubMed

    Pullia, A; Kraner, H W; Siddons, D P; Furenlid, L R; Bertuccio, G

    1995-08-01

    A multichannel silicon pad detector for EXAFS (Extended X-ray Absorption Fine Structure) applications has been designed and built. The X-ray spectroscopic measurements demonstrate that an adequate energy resolution of 230 eV FWHM (corresponding to 27 rms electrons in silicon) can be achieved reliably at -35 °C. A resolution of 190 eV FWHM (corresponding to 22 rms electrons) has been obtained from individual pads at -35 °C. At room temperature (25 °C) an average energy resolution of 380 eV FWHM is achieved and a resolution of 350 eV FWHM (41 rms electrons) is the best performance. A simple cooling system constituted of Peltier cells is sufficient to reduce the reverse currents of the pads and their related shot noise contribution, in order to achieve resolutions better than 300 eV FWHM which is adequate for the EXAFS applications.

  10. Silicon Detector System for High Rate EXAFS Applications

    PubMed Central

    Pullia, A.; Kraner, H. W.; Siddons, D. P.; Furenlid, L. R.; Bertuccio, G.

    2015-01-01

    A multichannel silicon pad detector for EXAFS (Extended X-ray Absorption Fine Structure) applications has been designed and built. The X-ray spectroscopic measurements demonstrate that an adequate energy resolution of 230 eV FWHM (corresponding to 27 rms electrons in silicon) can be achieved reliably at −35 °C. A resolution of 190 eV FWHM (corresponding to 22 rms electrons) has been obtained from individual pads at −35 °C. At room temperature (25 °C) an average energy resolution of 380 eV FWHM is achieved and a resolution of 350 eV FWHM (41 rms electrons) is the best performance. A simple cooling system constituted of Peltier cells is sufficient to reduce the reverse currents of the pads and their related shot noise contribution, in order to achieve resolutions better than 300 eV FWHM which is adequate for the EXAFS applications. PMID:26538683

  11. Band gap and electronic structure of MgSiN2

    NASA Astrophysics Data System (ADS)

    Quirk, J. B.; Râsander, M.; McGilvery, C. M.; Palgrave, R.; Moram, M. A.

    2014-09-01

    Density functional theory calculations and electron energy loss spectroscopy indicate that the electronic structure of ordered orthorhombic MgSiN2 is similar to that of wurtzite AlN. A band gap of 5.7 eV was calculated for both MgSiN2 (indirect) and AlN (direct) using the Heyd-Scuseria-Ernzerhof approximation. Correction with respect to the experimental room-temperature band gap of AlN indicates that the true band gap of MgSiN2 is 6.2 eV. MgSiN2 has an additional direct gap of 6.3 eV at the Γ point.

  12. Temperature dependence of dissociative electron attachment to bromo-chlorotoluene isomers: Competition between detachment of Cl- and Br-

    NASA Astrophysics Data System (ADS)

    Mahmoodi-Darian, Masoomeh; Huber, Stefan E.; Mauracher, Andreas; Probst, Michael; Denifl, Stephan; Scheier, Paul; Märk, Tilmann D.

    2018-02-01

    Dissociative electron attachment to three isomers of bromo-chlorotoluene was investigated in the electron energy range from 0 to 2 eV for gas temperatures in the range of 392-520 K using a crossed electron-molecular beam apparatus with a temperature regulated effusive molecular beam source. For all three molecules, both Cl- and Br- are formed. The ion yields of both halogenides show a pronounced temperature effect. In the case of Cl- and Br-, the influence of the gas temperature can be observed at the threshold peak close to 0 eV. The population of molecules that have some of their out-of-plane modes excited varies strongly in the temperature range investigated, indicating that such vibrations might play a role in the energy transfer towards bond breaking. Potential energy curves for the abstraction of Cl- and Br- were calculated and extrapolated into the metastable domain. The barriers in the diabatic curves approximated in this way agree well with the ones derived from the temperature dependence observed in the experiments.

  13. Strain effect on the photoluminescence property of gold nanoclusters

    NASA Astrophysics Data System (ADS)

    Saravanan, K.; David, C.; Jayalakshmi, G.; Panigrahi, B. K.; Avasthi, D. K.

    2018-02-01

    Herein, we report the temperature-dependent photoluminescence (PL) properties of Au nanoclusters (NCs) embedded in a Si matrix. Gold NCs have been synthesized in Si by a multistep procedure that involves ion implantation and gold decoration by drive in annealing. Transmission electron microscopic studies reveal profuse nucleation of Au NCs, with mean sizes of ˜8 nm in the near-surface region. PL measurements in the range of 2 eV to 3.65 eV were carried out in the temperature range of 5 K to 300 K. The Au NCs exhibit PL emissions at 3 eV and 2.5 eV; these are attributed to the recombination of sp-band electrons with the holes of a deep lying d-band below the Fermi level in the vicinity of the L symmetry point of the Brillouin zone and the recombination of sp band electrons with the holes of the first d band below the Fermi level in the vicinity of the X symmetry point of the Brillouin zone, respectively. Temperature-dependent PL measurements show that the PL intensity of Au NCs initially decreases with the increase of temperature up to 50 K, and, thereafter, the intensity starts to increase and reaches a maximum at 150 K. A further increase in temperature causes the intensity to decrease. However, the PL intensity of Au NCs embedded in a sapphire matrix monotonically decreases with the increase of temperature. The present work discusses the plausible mechanism behind this unusual PL behaviour by invoking the role of strain at the NC-matrix interface.

  14. Compensation and persistent photocapacitance in homoepitaxial Sn-doped β-Ga2O3

    NASA Astrophysics Data System (ADS)

    Polyakov, A. Y.; Smirnov, N. B.; Shchemerov, I. V.; Gogova, D.; Tarelkin, S. A.; Pearton, S. J.

    2018-03-01

    The electrical properties of epitaxial β-Ga2O3 doped with Sn (1016-9 × 1018 cm-3) and grown by metalorganic chemical vapor deposition on semi-insulating β-Ga2O3 substrates are reported. Shallow donors attributable to Sn were observed only in a narrow region near the film/substrate interface and with a much lower concentration than the total Sn density. For heavily Sn doped films (Sn concentration, 9 × 1018 cm-3), the electrical properties in the top portion of the layer were determined by deep centers with a level at Ec-0.21 eV not described previously. In more lightly doped layers, the Ec-0.21 eV centers and deeper traps at Ec-0.8 eV were present, with the latter pinning the Fermi level. Low temperature photocapacitance and capacitance voltage measurements of illuminated samples indicated the presence of high densities (1017-1018 cm-3) of deep acceptors with an optical ionization threshold of 2.3 eV. Optical deep level transient spectroscopy (ODLTS) and photoinduced current transient spectroscopy (PICTS) detected electron traps at Ec-0.8 eV and Ec-1.1 eV. For lightly doped layers, the compensation of film conductivity was mostly provided by the Ec-2.3 eV acceptors. For heavily Sn doped films, deep acceptor centers possibly related to Ga vacancies were significant. The photocapacitance and the photocurrent caused by illumination at low temperatures were persistent, with an optical threshold of 1.9 eV and vanished only at temperatures of ˜400 K. The capture barrier for electrons causing the persistent photocapacitance effect was estimated from ODLTS and PICTS to be 0.25-0.35 eV.

  15. Low-energy (<20 eV) and high-energy (1000 eV) electron-induced methanol radiolysis of astrochemical interest

    NASA Astrophysics Data System (ADS)

    Sullivan, Kristal K.; Boamah, Mavis D.; Shulenberger, Katie E.; Chapman, Sitara; Atkinson, Karen E.; Boyer, Michael C.; Arumainayagam, Christopher R.

    2016-07-01

    We report the first infrared study of the low-energy (<20 eV) electron-induced reactions of condensed methanol. Our goal is to simulate processes which occur when high-energy cosmic rays interact with interstellar and cometary ices, where methanol, a precursor of several prebiotic species, is relatively abundant. The interactions of high-energy radiation, such as cosmic rays (Emax ˜ 1020 eV), with matter produce large numbers of low-energy secondary electrons, which are known to initiate radiolysis reactions in the condensed phase. Using temperature programmed desorption (TPD) and infrared reflection absorption spectroscopy (IRAS), we have investigated low-energy (5-20 eV) and high-energy (˜1000 eV) electron-induced reactions in condensed methanol (CH3OH). IRAS has the benefit that it does not require thermal processing prior to product detection. Using IRAS, we have found evidence for the formation of ethylene glycol (HOCH2CH2OH), formaldehyde (CH2O), dimethyl ether (CH3OCH3), methane (CH4), carbon dioxide (CO2), carbon monoxide (CO), and the hydroxyl methyl radical (·CH2OH) upon both low-energy and high-energy electron irradiation of condensed methanol at ˜85 K. Additionally, TPD results, presented herein, are similar for methanol films irradiated with both 1000 eV and 20 eV electrons. These IRAS and TPD findings are qualitatively consistent with the hypothesis that high-energy condensed phase radiolysis is mediated by low-energy electron-induced reactions. Moreover, methoxymethanol (CH3OCH2OH) could serve as a tracer molecule for electron-induced reactions in the interstellar medium. The results of experiments such as ours may provide a fundamental understanding of how complex organic molecules are synthesized in cosmic ices.

  16. Time-resolved study of the electron temperature and number density of argon metastable atoms in argon-based dielectric barrier discharges

    NASA Astrophysics Data System (ADS)

    Desjardins, E.; Laurent, M.; Durocher-Jean, A.; Laroche, G.; Gherardi, N.; Naudé, N.; Stafford, L.

    2018-01-01

    A combination of optical emission spectroscopy and collisional-radiative modelling is used to determine the time-resolved electron temperature (assuming Maxwellian electron energy distribution function) and number density of Ar 1s states in atmospheric pressure Ar-based dielectric barrier discharges in presence of either NH3 or ethyl lactate. In both cases, T e values were higher early in the discharge cycle (around 0.8 eV), decreased down to about 0.35 eV with the rise of the discharge current, and then remained fairly constant during discharge extinction. The opposite behaviour was observed for Ar 1s states, with cycle-averaged values in the 1017 m-3 range. Based on these findings, a link was established between the discharge ionization kinetics (and thus the electron temperature) and the number density of Ar 1s state.

  17. Thermal Improvement and Stability of Si3N4/GeNx/p- and n-Ge Structures Prepared by Electron-Cyclotron-Resonance Plasma Nitridation and Sputtering at Room Temperature

    NASA Astrophysics Data System (ADS)

    Fukuda, Yukio; Okamoto, Hiroshi; Iwasaki, Takuro; Izumi, Kohei; Otani, Yohei; Ishizaki, Hiroki; Ono, Toshiro

    2012-09-01

    This paper reports on the thermal improvement of Si3N4/GeNx/Ge structures. After the Si3N4 (5 nm)/GeNx (2 nm) stacks were prepared on Ge substrates by electron-cyclotron-resonance plasma nitridation and sputtering at room temperature, they were thermally annealed in atmospheric N2 + 10% H2 ambient at temperatures from 400 to 600 °C. It was demonstrated that the electronic properties of the GeNx/Ge interfaces were thermally improved at temperatures of up to 500 °C with a minimum interface trap density (Dit) of ˜1×1011 cm-2 eV-1 near the Ge midgap, whereas the interface properties were slightly degraded after annealing at 600 °C with a minimum Dit value of ˜4×1011 cm-2 eV-1.

  18. Temperature, stress, and annealing effects on the luminescence from electron-irradiated silicon

    NASA Technical Reports Server (NTRS)

    Jones, C. E.; Johnson, E. S.; Compton, W. D.; Noonan, J. R.; Streetman, B. G.

    1973-01-01

    Low-temperature photoluminescence spectra are presented for Si crystals which have been irradiated with high-energy electrons. Studies of isochronal annealing, stress effects, and the temperature dependences of the luminescence are used to discuss the nature of the luminescent transitions and the properties of defects. Two dominant bands present after room-temperature anneal of irradiated material are discussed, and correlations of the properties of these bands are made with known Si defects. A band between 0.8 and 1.0 eV has properties which are related to those of the divacancy, and a band between 0.6 and 0.8 eV has properties related to those of the Si-G15(K) center. Additional peaks appear in the luminescence after high-temperature anneal; the influence of impurities and the effects of annealing of these lines are discussed.

  19. Absolute vibrational cross sections for 1-19 eV electron scattering from condensed tetrahydrofuran (THF).

    PubMed

    Lemelin, V; Bass, A D; Cloutier, P; Sanche, L

    2016-02-21

    Absolute cross sections (CSs) for vibrational excitation by 1-19 eV electrons impacting on condensed tetrahydrofuran (THF) were measured with a high-resolution electron energy loss spectrometer. Experiments were performed under ultra-high vacuum (3 × 10(-11) Torr) at a temperature of about 20 K. The magnitudes of the vibrational CSs lie within the 10(-17) cm(2) range. Features observed near 4.5, 9.5, and 12.5 eV in the incident energy dependence of the CSs were compared to the results of theoretical calculations and other experiments on gas and solid-phase THF. These three resonances are attributed to the formation of shape or core-excited shape resonances. Another maximum observed around 2.5 eV is not found in the calculations but has been observed in gas-phase studies; it is attributed to the formation of a shape resonance.

  20. Thermoluminescence study of X-ray and UV irradiated natural calcite and analysis of its trap and recombination level.

    PubMed

    Kalita, J M; Wary, G

    2014-05-05

    Thermoluminescence (TL) of natural light-orange color calcite (CaCO3) mineral in micro-grain powder form was studied at room temperature X-ray and UV irradiation under various irradiation times. TL was recorded in linear heating rate (2 K/s) from room temperature (300 K) to 523 K. Trapping parameters such as activation energy, order of kinetics, frequency factor have been evaluated by Computerized Glow Curve Deconvolution technique. Three electron trap centers had been estimated at depth 0.70, 1.30 and 1.49 eV from the conduction band. Investigation of emission spectra recorded at various temperatures showed single recombination center at depth 2.74 eV from the conduction band. Due to thermally assisted tunneling of electron and subsequent center-to-center recombination, a distinct peak of lower activation energy (0.60 eV) was observed at relatively higher temperature (~360 K) for X-ray irradiated sample. In UV excitation, there was an indication of photo-transfer phenomenon, where low TL intensity might have been observed; but due to simultaneous excitation of electrons from valence band to the trap level, TL intensity was found to increase with UV irradiation time. The results obtained within temperature range 300-523 K were explained by considering a band diagram. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Simplified Numerical Description of SPT Operations

    NASA Technical Reports Server (NTRS)

    Manzella, David H.

    1995-01-01

    A simplified numerical model of the plasma discharge within the SPT-100 stationary plasma thruster was developed to aid in understanding thruster operation. A one dimensional description was used. Non-axial velocities were neglected except for the azimuthal electron velocity. A nominal operating condition of 4.5 mg/s of xenon anode flow was considered with 4.5 Amperes of discharge current, and a peak radial magnetic field strength of 130 Gauss. For these conditions, the calculated results indicated ionization fractions of 0.99 near the thruster exit with a potential drop across the discharge of approximately 250 Volts. Peak calculated electron temperatures were found to be sensitive to the choice of total ionization cross section for ionization of atomic xenon by electron bombardment and ranged from 51 eV to 60 eV. The calculated ionization fraction, potential drop, and electron number density agree favorably with previous experiments. Calculated electron temperatures are higher than previously measured.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biewer, Theodore M.; Bigelow, Tim S.; Caneses Marin, Juan F.

    The Prototype Material Plasma Exposure Experiment at the Oak Ridge National Laboratory utilizes a variety of power systems to generate and deliver a high heat flux plasma onto the surface of material targets. In the experiments described here, a deuterium plasma is produced via a ~100 kW, 13.56 MHz RF helicon source, to which ~20 kW of 28 GHz microwave power is applied. The electron density and temperature profiles are measured using a Thomson scattering (TS) diagnostic, and indicate that the electron density is centrally peaked. In the core of the plasma column, the electron density is higher than themore » cut-off density (~0.9 × 1019 m -3) for the launched mixture of X- and O-mode electron cyclotron heating waves to propagate. TS measurements indicate electron temperature increases from ~5 eV to ~20 eV during 28 GHz power application when the neutral deuterium pressure is reduced below 0.13 Pa (~1 mTorr.).« less

  3. Electron impact study of potassium hydroxide

    NASA Technical Reports Server (NTRS)

    Vuskovic, L.; Trajmar, S.

    1979-01-01

    An attempt is made to measure the sum of the elastic, rotational and vibrational scattering of electrons by KOH at low impact energies (5 to 20 eV) at angles from 10 to 120 deg. Energy loss spectra taken in the 0 to 18 eV range using an electron impact spectrometer are used to identify the species contributing to electric scattering. At temperatures between 300 and 500 C, only inelastic spectral features belonging to water are detected, while at temperatures from 500 to 800 C strong atomic K lines, indicative of molecular dissociation, and H2 energy loss features become prominent. No features attributable to KOH, the KOH dimer, O2 or potassium oxides were observed, due to the effects of the dissociation products, and it is concluded that another technique will have to be developed in order to measure electron scattering by KOH.

  4. Temperature dependent dispersion and electron-phonon coupling surface states on Be(1010)

    NASA Astrophysics Data System (ADS)

    Tang, Shu-Jung; Ismail; Sprunger, Philip; Plummer, Ward

    2002-03-01

    Temperature dependent dispersion and electron-phonon coupling surface states on Be(10-10) S.-J Tang*, Ismail* , P.T . Sprunger#, E. W. Plummer* * Department of Physics and Astronomy, University of Tennessee, Knoxville, TN37996 , # Center for Advanced Microstructures and Devices (CAMD), Louisiana State University The surface states dispersing in a large band gap from -A to -Γ in Be(10-10) were studied with high-resolution, angle-resolved photoemission. Spectra reveal that the two zone-boundary surface states, S1 and S2, behave significantly different with respect to band dispersion, the temperature dependence of binding energies, and the electron-phonon coupling. The band dispersion of S1 is purely free-electron like with the maximum binding energy of 0.37+-0.05 eV at -A and effective mass m*/m =0835. However, the maximum binding energy 2.74+-0.05 eV of the S2 is located 0.2Åaway from -A and disperses into the bulk band edge at a binding energy of 1.75+-0.05 eV. Temperature dependent data reveal that the binding energies of S1 and S2 at -A shift in opposite directions at the rate of (-0.61+-0.3)+- 10E-4 eV/K and (1.71+-0.8)+-10E-4 eV/K, respectively. Moreover, from the temperature-dependent spectral widths of the surface states S1 and S2 at , the electron-phonon coupling parameters,λ, have been determined. Unusually different, the coupling strength λ for S1 and S2 are 0.67+-0.03 and 0.51+-0.04, respectively. The differences between the electron-phonon coupling, temperature dependent binding energies, and dispersions between these two zone-centered surface states will be discussed in light unique bonding at the surface and localization.

  5. Low-temperature creation of Frenkel defects via hot electron-hole recombination in highly pure NaCl single crystals

    NASA Astrophysics Data System (ADS)

    Lushchik, A.; Lushchik, Ch.; Nagirnyi, V.; Shablonin, E.; Vasil'chenko, E.

    2016-07-01

    The creation spectrum of stable F centres (being part of F-H pairs of Frenkel defects) by synchrotron radiation of 7-40 eV has been measured for highly pure NaCl single crystals at 12 K using a highly sensitive luminescent method. It is shown that the efficiency of F centre creation in a closely packed NaCl is low at the decay of anion or cation excitons (7.8-8.4 and 33.4 eV, respectively) or at the recombination of relaxed conduction electrons and valence holes. Only the recombination of nonrelaxed (hot) electrons with holes provides the energy exceeding threshold value EFD, which is sufficient for the creation of Frenkel defects at low temperature.

  6. Spectroscopic method to study low charge state ion and cold electron population in ECRIS plasma

    NASA Astrophysics Data System (ADS)

    Kronholm, R.; Kalvas, T.; Koivisto, H.; Tarvainen, O.

    2018-04-01

    The results of optical emission spectroscopy experiments probing the cold electron population of a 14 GHz Electron Cyclotron Resonance Ion Source (ECRIS) are reported. The study has been conducted with a high resolution spectrometer and data acquisition setup developed specifically for the diagnostics of weak emission line characteristic to ECRIS plasmas. The optical emission lines of low charge state ions and neutral atoms of neon have been measured and analyzed with the line-ratio method. The aforementioned electron population temperature of the cold electron population (Te < 100 eV) is determined for Maxwell-Boltzmann and Druyvesteyn energy distributions to demonstrate the applicability of the method. The temperature was found to change significantly when the extraction voltage of the ion source is turned on/off. In the case of the Maxwellian distribution, the temperature of the cold electron population is 20 ± 10 eV when the extraction voltage is off and 40 ± 10 eV when it is on. The optical emission measurements revealed that the extraction voltage also affects both neutral and ion densities. Based on the rate coefficient analysis with the aforementioned temperatures, switching the extraction voltage off decreases the rate coefficient of neutral to 1+ ionization to 42% and 1+ to 2+ ionization to 24% of the original. This suggests that switching the extraction voltage on favors ionization to charge states ≥2+ and, thus, the charge state distributions of ECRIS plasmas are probably different with the extraction voltage on/off. It is therefore concluded that diagnostics results of ECRIS plasmas obtained without the extraction voltage are not depicting the plasma conditions in normal ECRIS operation.

  7. Thermoelectric properties of 2H-CuGaO2 for device applications: A first principle TB-mBJ potential study

    NASA Astrophysics Data System (ADS)

    Bhamu, K. C.; Praveen, C. S.

    2017-12-01

    Here we report the structural, electronic, optical, and thermoelectric properties of delafossite type 2H-CuGaO2 using first principles calculations. The present calculation predict an indirect band gap of 1.20 eV and a direct band gap of 3.48 eV. A detailed analysis of the electronic structure is provided based on atom and orbital projected density of states. Frequency dependent dielectric functions, refractive index, and absorption coefficient as a function of photon energy are discussed. The thermoelectric properties with power factor, and the figure of merit are reported as a function of chemical potential in the region ± 0.195 (μ -EF) eV at constant temperature of 300 and 800 K. The thermoelectric properties shows that 2H-CuGaO2 could be potential candidate for engineering devises operating at high temperature for the chemical potential in the range of ± 0.055 (μ -EF) eV and beyond this range the thermoelectric performance of 2H-CuGaO2 get reduced.

  8. Investigation of deep-level defects in Cu(In,Ga)Se2 thin films by two-wavelength excitation photo-capacitance spectroscopy

    NASA Astrophysics Data System (ADS)

    Hu, Xiaobo; Gupta, Amit; Sakurai, Takeaki; Yamada, Akimasa; Ishizuka, Shogo; Niki, Shigeru; Akimoto, Katsuhiro

    2013-10-01

    The properties of the defect level located 0.8 eV above the valence band in Cu(In1-x,Gax)Se2 thin films were investigated by a photo-capacitance method using a monochromatic probe light with an energy of 0.7 to 1.8 eV. In addition to the probe light, laser light with a wavelength of 1.55 μm, corresponding to 0.8 eV, was also used to study the saturation effect of the defect level at 0.8 eV. A suppression of electron-hole recombination due to saturation of the defect level was observed at room temperature while no saturation effect was observed at 140 K. The results suggest that the defect level at 0.8 eV acts as a recombination center at least at room temperature.

  9. Tangential System of Thomson Scattering for Tokamak T-15

    NASA Astrophysics Data System (ADS)

    Asadulin, G. M.; Bel'bas, I. S.; Gorshkov, A. V.

    2017-12-01

    Two systems of Thomson scattering diagnostics, with vertical and tangential probing, are used in the D-shaped plasma cross section in tokamak T-15. The tangential system allows measuring plasma temperature and density profiles along the major radius of the tokamak. This paper presents the tangential system project. The system is based on a Nd:YAG laser with wavelength of 1064 nm, pulse energy of 3 J, pulse duration of 10 ns, and repetition rate of 100 Hz. The chosen geometry allows collecting light from ten uniformly spaced points. Optimization of the registration system has been accomplished. The collected light will be transmitted through an optical fiber bundle with diameter of 3 mm and quartz fibers (numerical aperture is 0.22). Six-channel polychromators based on high-contrast interference filters have been chosen as spectral equipment. The radiation will be registered by avalanche photodiodes. The technique of electron temperature and density measurement is described, and estimation of its accuracy is carried out. The proposed system allows measuring the electron temperature with accuracy not worse than 10% within the range of 50 eV to 10 keV on the pinch edge over the internal contour, from 20 eV to 9 keV in the plasma central region, and from 2 eV to 400 eV on the pinch edge over the outer contour. The estimation is made for electron density of not less than 2.6 × 1013 cm-3.

  10. Low substrate temperature fabrication of high-performance metal oxide thin-film by magnetron sputtering with target self-heating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, W. F.; Institute of Materials Research and Engineering, Agency for Science, Technology and Research; Liu, Z. G.

    2013-03-18

    Al-doped ZnO (AZO) films with high transmittance and low resistivity were achieved on low temperature substrates by radio frequency magnetron sputtering using a high temperature target. By investigating the effect of target temperature (T{sub G}) on electrical and optical properties, the origin of electrical conduction is verified as the effect of the high T{sub G}, which enhances crystal quality that provides higher mobility of electrons as well as more effective activation for the Al dopants. The optical bandgap increases from 3.30 eV for insulating ZnO to 3.77 eV for conducting AZO grown at high T{sub G}, and is associated withmore » conduction-band filling up to 1.13 eV due to the Burstein-Moss effect.« less

  11. Observations of electron heating during 28 GHz microwave power application in proto-MPEX

    DOE PAGES

    Biewer, Theodore M.; Bigelow, Tim S.; Caneses Marin, Juan F.; ...

    2018-02-01

    The Prototype Material Plasma Exposure Experiment at the Oak Ridge National Laboratory utilizes a variety of power systems to generate and deliver a high heat flux plasma onto the surface of material targets. In the experiments described here, a deuterium plasma is produced via a ~100 kW, 13.56 MHz RF helicon source, to which ~20 kW of 28 GHz microwave power is applied. The electron density and temperature profiles are measured using a Thomson scattering (TS) diagnostic, and indicate that the electron density is centrally peaked. In the core of the plasma column, the electron density is higher than themore » cut-off density (~0.9 × 1019 m -3) for the launched mixture of X- and O-mode electron cyclotron heating waves to propagate. TS measurements indicate electron temperature increases from ~5 eV to ~20 eV during 28 GHz power application when the neutral deuterium pressure is reduced below 0.13 Pa (~1 mTorr.).« less

  12. Observations of electron heating during 28 GHz microwave power application in proto-MPEX

    NASA Astrophysics Data System (ADS)

    Biewer, T. M.; Bigelow, T. S.; Caneses, J. F.; Diem, S. J.; Green, D. L.; Kafle, N.; Rapp, J.; Proto-MPEX Team

    2018-02-01

    The Prototype Material Plasma Exposure Experiment at the Oak Ridge National Laboratory utilizes a variety of power systems to generate and deliver a high heat flux plasma onto the surface of material targets. In the experiments described here, a deuterium plasma is produced via a ˜100 kW, 13.56 MHz RF helicon source, to which ˜20 kW of 28 GHz microwave power is applied. The electron density and temperature profiles are measured using a Thomson scattering (TS) diagnostic, and indicate that the electron density is centrally peaked. In the core of the plasma column, the electron density is higher than the cut-off density (˜0.9 × 1019 m-3) for the launched mixture of X- and O-mode electron cyclotron heating waves to propagate. TS measurements indicate electron temperature increases from ˜5 eV to ˜20 eV during 28 GHz power application when the neutral deuterium pressure is reduced below 0.13 Pa (˜1 mTorr.).

  13. Accurate calibration for the quantification of the Al content in AlGaN epitaxial layers by energy-dispersive X-ray spectroscopy in a Transmission Electron Microscope

    NASA Astrophysics Data System (ADS)

    Amari, H.; Lari, L.; Zhang, H. Y.; Geelhaar, L.; Chèze, C.; Kappers, M. J.; McAleese, C.; Humphreys, C. J.; Walther, T.

    2011-11-01

    Since the band structure of group III- nitrides presents a direct electronic transition with a band-gap energy covering the range from 3.4 eV for (GaN) to 6.2 eV (for AlN) at room temperature as well as a high thermal conductivity, aluminium gallium nitride (AlGaN) is a strong candidate for high-power and high-temperature electronic devices and short-wavelength (visible and ultraviolet) optoelectronic devices. We report here a study by energy-filtered transmission electron microscopy (EFTEM) and energy-dispersive X-ray spectroscopy (EDXS) of the micro structure and elemental distribution in different aluminium gallium nitride epitaxial layers grown by different research groups. A calibration procedure is out-lined that yields the Al content from EDXS to within ~1 at % precision.

  14. Influence of excitation frequency on the metastable atoms and electron energy distribution function in a capacitively coupled argon discharge

    NASA Astrophysics Data System (ADS)

    Sharma, S.; Sirse, N.; Turner, M. M.; Ellingboe, A. R.

    2018-06-01

    One-dimensional particle-in-cell simulation is used to simulate the capacitively coupled argon plasma for a range of excitation frequency from 13.56 MHz to 100 MHz. The argon chemistry set can, selectively, include two metastable levels enabling multi-step ionization and metastable pooling. The results show that the plasma density decreases when metastable atoms are included with higher discrepancy at a higher excitation frequency. The contribution of multistep ionization to the overall density increases with the excitation frequency. The electron temperature increases with the inclusion of metastable atoms and decreases with the excitation frequency. At a lower excitation frequency, the density of Ar** (3p5 4p, 13.1 eV) is higher than that of Ar* (3p5 4s, 11.6 eV), whereas at higher excitation frequencies, the Ar* (3p5 4s, 11.6 eV) is the dominant metastable atom. The metastable and electron temperature profile evolve from a parabolic profile at a lower excitation frequency to a saddle type profile at a higher excitation frequency. With metastable, the electron energy distribution function (EEDF) changes its shape from Druyvesteyn type, at a low excitation frequency, to bi-Maxwellian, at a high frequency plasma excitation; however, a three-temperature EEDF is observed without metastable atoms.

  15. IV INTERNATIONAL CONFERENCE ON ATOM AND MOLECULAR PULSED LASERS (AMPL'99): Critical electron density in a self-contained copper vapour laser in the restricted pulse repetition rate

    NASA Astrophysics Data System (ADS)

    Yakovlenko, Sergei I.

    2000-06-01

    One of the mechanisms of the inversion breaking in copper vapour lasers caused by a high prepulse electron density is considered. Inversion breaking occurs at a critical electron density Ne cr. If the prepulse electron density exceeds Ne cr, the electron temperature Te cr cannot reach, during a plasma heating pulse, the temperature of ~2eV required for lasing. A simple estimate of Ne cr is made.

  16. Photo electron emission microscopy of polarity-patterned materials

    NASA Astrophysics Data System (ADS)

    Yang, W.-C.; Rodriguez, B. J.; Gruverman, A.; Nemanich, R. J.

    2005-04-01

    This study presents variable photon energy photo electron emission microscopy (PEEM) of polarity-patterned epitaxial GaN films, and ferroelectric LiNbO3 (LNO) single crystals and PbZrTiO3 (PZT) thin films. The photo electrons were excited with spontaneous emission from the tunable UV free electron laser (FEL) at Duke University. We report PEEM observation of polarity contrast and measurement of the photothreshold of each polar region of the materials. For a cleaned GaN film with laterally patterned Ga- and N-face polarities, we found a higher photoelectric yield from the N-face regions compared with the Ga-face regions. Through the photon energy dependent contrast in the PEEM images of the surfaces, we can deduce that the threshold of the N-face region is less than ~4.9 eV while that of the Ga-face regions is greater than 6.3 eV. In both LNO and PZT, bright emission was detected from the negatively poled domains, indicating that the emission threshold of the negative domain is lower than that of the positive domain. For LNO, the measured photothreshold was ~4.6 eV at the negative domain and ~6.2 eV at the positive domain, while for PZT, the threshold of the negative domain was less than 4.3 eV. Moreover, PEEM observation of the PZT surface at elevated temperatures displayed that the domain contrast disappeared near the Curie temperature of ~300 °C. The PEEM polarity contrast of the polar materials is discussed in terms of internal screening from free carriers and defects and the external screening due to adsorbed ions.

  17. Scattering of positrons and electrons by alkali atoms

    NASA Technical Reports Server (NTRS)

    Stein, T. S.; Kauppila, W. E.; Kwan, C. K.; Lukaszew, R. A.; Parikh, S. P.; Wan, Y. J.; Zhou, S.; Dababneh, M. S.

    1990-01-01

    Absolute total scattering cross sections (Q sub T's) were measured for positrons and electrons colliding with sodium, potassium, and rubidium in the 1 to 102 eV range, using the same apparatus and experimental approach (a beam transmission technique) for both projectiles. The present results for positron-sodium and -rubidium collisions represent the first Q sub T measurements reported for these collision systems. Features which distinguish the present comparisons between positron- and electron-alkali atom Q sub T's from those for other atoms and molecules (room-temperature gases) which have been used as targets for positrons and electrons are the proximity of the corresponding positron- and electron-alkali atom Q sub T's over the entire energy range of overlap, with an indication of a merging or near-merging of the corresponding positron and electron Q sub T's near (and above) the relatively low energy of about 40 eV, and a general tendency for the positron-alkali atom Q sub T's to be higher than the corresponding electron values as the projectile energy is decreased below about 40 eV.

  18. Current-Driven Hydrogen Desorption from Graphene: Experiment and Theory.

    PubMed

    Gao, Li; Pal, Partha Pratim; Seideman, Tamar; Guisinger, Nathan P; Guest, Jeffrey R

    2016-02-04

    Electron-stimulated desorption of hydrogen from the graphene/SiC(0001) surface at room temperature was investigated with ultrahigh vacuum scanning tunneling microscopy and ab initio calculations in order to elucidate the desorption mechanisms and pathways. Two different desorption processes were observed. In the high electron energy regime (4-8 eV), the desorption yield is independent of both voltage and current, which is attributed to the direct electronic excitation of the C-H bond. In the low electron energy regime (2-4 eV), however, the desorption yield exhibits a threshold dependence on voltage, which is explained by the vibrational excitation of the C-H bond via transient ionization induced by inelastic tunneling electrons. The observed current independence of the desorption yield suggests that the vibrational excitation is a single-electron process. We also observed that the curvature of graphene dramatically affects hydrogen desorption. Desorption from concave regions was measured to be much more probable than desorption from convex regions in the low electron energy regime (∼2 eV), as would be expected from the identified desorption mechanism.

  19. Laboratory Experimentation Model of the 270 Degree Electron Tophat Analyzer

    NASA Technical Reports Server (NTRS)

    Frahm, R. A.; Sharber, J. R.; Link, R.; Winningham, J. D.

    2002-01-01

    One of the most important space plasma measurements is that of a well-resolved low-energy (approx.1 eV to 1 keV) electron spectrum. This range includes the regime where photoelectron and Auger processes are important [Winningham et at., 1989] as well as the very low-energy range (down to 1 eV) where electron distributions of temperature 11,000 K are measurable. Knowledge of the structure (approx. eV scale) of the photoelectron spectrum can provide information on the composition of a planetary or cometary atmosphere. As evidence, scientists developing the Analyzer of Space Plasma and Energetic Atoms (ASPERA-3) Electron Spectrometer (ELS) flying on the European Space Agency (ESA) Mars Express Mission have adapted their electron instrument to increase energy resolution in the photoelectron energy region as a means of remotely sensing the Martian atmosphere; the idea being that the Martian magnetic field is so weak that electron interaction between the source and point of detection is nonexistent; the measured electrons are therefore reflective of the processes occurring in the Martian atmosphere.

  20. Low temperature tungsten spectroscopy on a Penning Ionization Discharge

    NASA Astrophysics Data System (ADS)

    Kumar, Deepak; Englesbe, Alexander; Stutman, Dan; Finkenthal, Michael

    2011-10-01

    Complete Tungsten divertor operation is being planned on many tokamaks including Tore Supra and ITER. Thus, low temperature tungsten spectroscopy is important for aiding the divertor diagnostics on larger machines. A Penning Ionization Discharge (PID) at the Johns Hopkins University produces steady state plasmas with Te ~ 2 eV, ne ~1013 cm-3 and a fast electron fraction at ~ 10 s eV. Similar bi-Maxwellian distributions, but with slightly higher electron temperatures, are found in the divertor plasmas of tokamaks. The two significant populating mechanisms for higher charge states in the PID are: (a) collisional excitation from bulk electrons, and (b) inner shell ionization from the fast electrons. The PID is diagnosed in a wide wavelength range - XUV, VUV and visible, to differentiate the two populating mechanisms. W is introduced in the PID by the sputtering of cathodes made of CuW alloy. Spectral emission from significantly higher charge states of W (up to W IV) has been observed in the experiment. This poster will describe results indicating the populating mechanism of W ions and also describe plans on upgrading the experiment to achieve higher temperatures which are closer to the divertor conditions. Supported by USDOE.

  1. Spatial nonuniformity of electron energy in a microwave atmospheric-pressure microplasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu Liguo; Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan 621900; Zhang Zhibo

    The characteristics of the electron energy in a microwave atmospheric-pressure argon microplasma are investigated by a spatially resolved optical emission spectroscopy. By adding tiny amount of xenon (<1 ppm) as tracer gas into the argon discharge, it is found that the spatial distribution of the electrons with energy >8.3 eV is quite different from that of the electrons with energy >11.5 eV. Spatial distribution of the population ratio between 4p and 5p levels of Ar atom is also determined. Furthermore, with a collisional-radiative model, it is found that the spatial variation of this population ratio is mainly attributed to themore » spatial nonuniformity of the effective electron temperature.« less

  2. Deep levels in as-grown and Si-implanted In(0.2)Ga(0.8)As-GaAs strained-layer superlattice optical guiding structures

    NASA Technical Reports Server (NTRS)

    Dhar, S.; Das, U.; Bhattacharya, P. K.

    1986-01-01

    Trap levels in about 2-micron In(0.2)Ga(0.8)As(94 A)/GaAs(25 A) strained-layer superlattices, suitable for optical waveguides, have been identified and characterized by deep-level transient spectroscopy and optical deep-level transient spectroscopy measurements. Several dominant electron and hole traps with concentrations of approximately 10 to the 14th/cu cm, and thermal ionization energies Delta-E(T) varying from 0.20 to 0.75 eV have been detected. Except for a 0.20-eV electron trap, which might be present in the In(0.2)Ga(0.8)As well regions, all the other traps have characteristics similar to those identified in molecular-beam epitaxial GaAs. Of these, a 0.42-eV hole trap is believed to originate from Cu impurities, and the others are probably related to native defects. Upon Si implantation and halogen lamp annealing, new deep centers are created. These are electron traps with Delta-E(T) = 0.81 eV and hole traps with Delta-E(T) = 0.46 eV. Traps occurring at room temperature may present limitations for optical devices.

  3. Optical properties of InN thin films

    NASA Astrophysics Data System (ADS)

    Malakhov, Vladislav Y.

    2000-04-01

    The basic optical properties of low temperature plasma enhanced chemical reactionary sputtered (PECRS) InN thin films are presented. Optical absorption and reflectance spectra of InN polycrystalline films at room temperature in visible and near infrared (NIR) regions were taken to determine direct band gap energy (2.03 eV), electron plasma resonances energy (0.6 eV), damping constant (0.18 eV), and optical effective mass of electrons (0.11). In addition the UV and visible reflectance spectra have been used to reproduce accurately dielectric function of wurtzite InN for assignments of the peak structures to interband transitions (1.5 - 12.0 eV) as well as to determine dielectric constant (9.3) and refractive index (>3.0). The revealed reflectance peaks at 485 and 590 cm-1 respectively in IR spectra are connected with TO and LO optical vibration modes of InN films. Some TO (485 cm-1) and LO (585 cm-1) phonon features of indium nitride polycrystalline films on ceramics were observed in Raman spectra and also discussed. The excellent possibilities of InN polycrystalline layers for potential application in optoelectronic devices such as LEDs based InGaAlN and high efficiency solar cells are confirmed.

  4. High-resolution grazing-incidence grating spectrometer for temperature measurements of low-Z ions emitting in the 100-300 Å spectral banda)

    NASA Astrophysics Data System (ADS)

    Widmann, K.; Beiersdorfer, P.; Magee, E. W.; Boyle, D. P.; Kaita, R.; Majeski, R.

    2014-11-01

    We have constructed a high-resolution grazing-incidence spectrometer designed for measuring the ion temperature of low-Z elements, such as Li+ or Li2 +, which radiate near 199 Å and 135 Å, respectively. Based on measurements at the Livermore Electron Beam Ion Trap we have shown that the instrumental resolution is better than 48 mÅ at the 200 Å setting and better than 40 mÅ for the 135-Å range. Such a high spectral resolution corresponds to an instrumental limit for line-width based temperature measurements of about 45 eV for the 199 Å Li+ and 65 eV for the 135 Å Li2 + lines. Recently obtained survey spectra from the Lithium Tokamak Experiment at the Princeton Plasma Physics Laboratory show the presence of these lithium emission lines and the expected core ion temperature of approximately 70 eV is sufficiently high to demonstrate the feasibility of utilizing our high-resolution spectrometer as an ion-temperature diagnostic.

  5. Current-Driven Hydrogen Desorption from Graphene: Experiment and Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, L.; Pal, Partha P.; Seideman, Tamar

    2016-02-04

    Electron-stimulated desorption of hydrogen from the graphene/SiC(0001) surface at room temperature was investigated with ultrahigh vacuum scanning tunneling microscopy and ab initio calculations in order to elucidate the desorption mechanisms and pathways. Two different desorption processes were observed. In the high electron energy regime (4-8 eV), the desorption yield is independent of both voltage and current, which is attributed to the direct electronic excitation of the C-H bond. In the low electron energy regime (2-4 eV), however, the desorption yield exhibits a threshold dependence on voltage, which is explained by the vibrational excitation of the C-H bond via transient ionizationmore » induced by inelastic tunneling electrons. The observed current-independence of the desorption yield suggests that the vibrational excitation is a singleelectron process. We also observed that the curvature of graphene dramatically affects hydrogen desorption. Desorption from concave regions was measured to be much more probable than desorption from convex regions in the low electron energy regime (~ 2 eV), as would be expected from the identified desorption mechanism« less

  6. Electronic excitations and self-trapping of electrons and holes in CaSO4

    NASA Astrophysics Data System (ADS)

    Kudryavtseva, I.; Klopov, M.; Lushchik, A.; Lushchik, Ch; Maaroos, A.; Pishtshev, A.

    2014-04-01

    A first-principles study of the electronic properties of a CaSO4 anhydrite structural phase has been performed. A theoretical estimation for the fundamental band gap (p → s transitions) is Eg = 9.6 eV and a proper threshold for p → d transitions is Epd = 10.8 eV. These values agree with the data obtained for a set of CaSO4 doped with Gd3+, Dy3+, Tm3+ and Tb3+ ions using the methods of low-temperature highly sensitive luminescence and thermoactivation spectroscopy. The results are consistent with theoretical predictions of a possible low-temperature self-trapping of oxygen p-holes. The hopping diffusion of hole polarons starts above ˜40 K and is accompanied by a ˜50-60 K peak of thermally stimulated luminescence of RE3+ ions caused due to the recombination of hole polarons with the electrons localized at RE3+. There is no direct evidence of the self-trapping of heavy d-electrons, however, one can argue that their motion rather differs from that of conduction s-electrons.

  7. On the crystallization of amorphous germanium films

    NASA Astrophysics Data System (ADS)

    Edelman, F.; Komem, Y.; Bendayan, M.; Beserman, R.

    1993-06-01

    The incubation time for crystallization of amorphous Ge (a-Ge) films, deposited by e-gun, was studied as a function of temperature between 150 and 500°C by means of both in situ transmission electron microscopy and Raman scattering spectroscopy. The temperature dependence of t0 follows an Arrhenius curve with an activation energy of 2.0 eV for free-sustained a-Ge films. In the case where the a-Ge films were on Si 3N 4 substrate, the activation energy of the incubation process was 1.3 eV.

  8. A search for chemical laser action in low pressure metal vapor flames. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Zwillenberg, M. L.

    1975-01-01

    Optical emissions were studied from low pressure (approximately 1 torr) dilute diffusion flames of Ca and Mg vapor with O2, N2O and mixtures of CCl4 and O2. The Ca flames with O2 and N2O revealed high vibrational excitation of the product CaO molecule (up to v=30). The flames with CCl4 revealed extreme nonequilibrium metal atom electronic excitation, up to the metal atom ionization limit (6.1 eV for Ca, 7.6 eV for Mg). The metal atom excited electronic state populations did not follow a Boltzmann distribution, but the excitation rates ('pumping rate') were found to obey an Arrhenius-type expression, with the electronic excitation energy playing the role of activation energy and a temperature of about 5000 K for triplet excited states and 2500 K for singlets (vs. approximately 500 K translational temperature).

  9. Theoretical study of thermopower behavior of LaFeO3 compound in high temperature region

    NASA Astrophysics Data System (ADS)

    Singh, Saurabh; Shastri, Shivprasad S.; Pandey, Sudhir K.

    2018-04-01

    The electronic structure and thermopower (α) behavior of LaFeO3 compound were investigated by combining the ab-initio electronic structures and Boltzmann transport calculations. LSDA plus Hubbard U (U = 5 eV) calculation on G-type anti-ferromagnetic (AFM) configuration gives an energy gap of ˜2 eV, which is very close to the experimentally reported energy gap. The calculated values of effective mass of holes (mh*) in valance band (VB) are found ˜4 times that of the effective mass of electrons (me*) in conduction band (CB). The large effective masses of holes are responsible for the large and positive thermopower exhibited by this compound. The calculated values of α using BoltzTraP code are found to be large and positive in the 300-1200 K temperature range, which is in agreement with the experimentally reported data.

  10. PAES study of the positron thermal desorption from a Ge(100) surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soininen, E.; Schwab, A.; Lynn, K.G.

    1991-02-01

    Positron induced Auger electron spectroscopy (PAES) from a clean Ge(100) surface was studied as a function of temperature. Three low-energy Auger peaks were detected at 50 eV, 90 eV and 100--150 eV, attributed to M{sub 2,3}M{sub 4}M{sub 4}, M{sub 2,3}M{sub 4}V and M{sub 1}M{sub 4}M{sub 4} Auger transitions, respectively. An estimated 4({plus minus}1)% of the surface trapped positrons annihilate with Ge 3p level electrons. The PAES yield from a Ge(100) surface is reduced at elevated temperatures, in accordance with an activation process found earlier in several Ps fraction experiments. A desorption model adopted from these studies does not accurately describemore » the PAES intensity at higher temperatures ({gt}500 {degree}C), which levels off at 5% of the room temperature value. Possible sources for the discrepancy are discussed. On a Ge(100) surface, an upper limit for the Ps emission near the melting point is 97%. The error in calibration parameters due to the earlier assumption of 100% Ps emission from Ge surfaces seems to induce only small errors to the Ps fraction measurements.« less

  11. First-principles studies of electronic, transport and bulk properties of pyrite FeS2

    NASA Astrophysics Data System (ADS)

    Banjara, Dipendra; Malozovsky, Yuriy; Franklin, LaShounda; Bagayoko, Diola

    2018-02-01

    We present results from first principle, local density approximation (LDA) calculations of electronic, transport, and bulk properties of iron pyrite (FeS2). Our non-relativistic computations employed the Ceperley and Alder LDA potential and the linear combination of atomic orbitals (LCAO) formalism. The implementation of the LCAO formalism followed the Bagayoko, Zhao, and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF). We discuss the electronic energy bands, total and partial densities of states, electron effective masses, and the bulk modulus. Our calculated indirect band gap of 0.959 eV (0.96), using an experimental lattice constant of 5.4166 Å, at room temperature, is in agreement with the measured indirect values, for bulk samples, ranging from 0.84 eV to 1.03 ± 0.05 eV. Our calculated bulk modulus of 147 GPa is practically in agreement with the experimental value of 145 GPa. The calculated, partial densities of states reproduced the splitting of the Fe d bands to constitute the dominant upper most valence and lower most conduction bands, separated by the generally accepted, indirect, experimental band gap of 0.95 eV.

  12. Role of electron-phonon coupling and thermal expansion on band gaps, carrier mobility, and interfacial offsets in kesterite thin-film solar cells

    NASA Astrophysics Data System (ADS)

    Monserrat, Bartomeu; Park, Ji-Sang; Kim, Sunghyun; Walsh, Aron

    2018-05-01

    The efficiencies of solar cells based on kesterite Cu2ZnSnS4 (CZTS) and Cu2ZnSnSe4 (CZTSe) are limited by a low open-circuit voltage due to high rates of non-radiative electron-hole recombination. To probe the origin of this bottleneck, we calculate the band offset of CZTS(Se) with CdS, confirming a weak spike of 0.1 eV for CZTS/wurtzite-CdS and a strong spike of 0.4 eV for CZTSe/wurtzite-CdS. We also consider the effects of temperature on the band alignment, finding that increasing temperature significantly enhances the spike-type offset. We further resolve an outstanding discrepancy between the measured and calculated phonon frequencies for the kesterites, and use these to estimate the upper limit of electron and hole mobilities based on optic phonon Fröhlich scattering, which uncovers an intrinsic asymmetry with faster (minority carrier) electron mobility.

  13. Streaked Thomson Scattering on Laboratory Plasma Jets

    NASA Astrophysics Data System (ADS)

    Banasek, Jacob; Byvank, Tom; Rocco, Sophia; Kusse, Bruce; Hammer, David

    2017-10-01

    Streaked Thomson scattering measurements have been performed on plasma jets created from a 15 μm thick radial Al or Ti foil load on COBRA, a 1 MA pulsed power machine. The goal was to measure the electron temperatures inside the center of the plasma jet created by the radial foil. The laser used for these measurements had a maximum energy of 10 J at 526.5 nm in a 3 ns duration pulse. Early experiments showed using the full energy significantly heats the 5 ×1018 cm-3 jet by inverse bremsstrahlung radiation. Here we used a streak camera to record the scattered spectrum and measure the evolving electron temperature of this laser heated jet. Analysis of the streak camera image showed that the electron temperature of the Al jet was increased from about 25 eV to 80-100 eV within about 2 ns. The Ti jets showed even stronger interaction with the laser, being heated to over 150 eV, and showed some heating even when only 1 J of laser energy was used. Also, the ion-acoustic peaks in the scattered spectrum from the Ti jets were significantly narrower than those from Al jets. Initial results will also be presented with scattered spectra taken at two different times within a single experiment by splitting the probe beam. This research is supported by the NNSA Stewardship Sciences Academic Programs under DOE Cooperative Agreement DE-NA0001836.

  14. Electrons In The Low Density Solar Wind

    NASA Technical Reports Server (NTRS)

    Ogilvie, Keith W.; Desch, Michael; Fitzenreiter, Richard; Vondrak, Richard R. (Technical Monitor)

    2000-01-01

    The recent occurrence of an interval (May 9th to May 12th, 1999) of abnormally low density solar wind has drawn attention to such events. The SWE instrument on the Wind spacecraft observed nine similar events between launch (November 1994) and August 1999: one in 1997, three in 1998, and five in January-August 1999. No such events were observed in 1996, the year of solar minimum. This already suggests a strong dependence upon solar activity. In this paper we discuss observations of the electron strahl, a strong anisotropy in the solar wind electrons above 60 eV directed along the magnetic field and observed continuously during the periods of low density in 1998 and 1999. When the solar wind density was less than 2/cc, the angular width of the strahl was below 3.5 degrees and the temperature deduced from the slope of the electron strahl phase density (as a function of energy in the energy range 200 to 800 eV) was 100 to 150 eV, equivalent to a typical coronal electron temperature. Three examples of this phenomenon, observed on Feb. 20- 22, April 26-27 and May 9-12, 1999, are discussed to show their similarity to one another. These electron observations are interpreted to show that the strahl occurs as a result of the conservation of the first adiabatic invariant, combined with the lack of coulomb collisions as suggested by Fairfield and Scudder, 1985.

  15. Investigation of a combined platinum and electron lifetime control treatment for silicon

    NASA Astrophysics Data System (ADS)

    Jia, Yunpeng; Cui, Zhihang; Yang, Fei; Zhao, Bao; Zou, Shikai; Liang, Yongsheng

    2017-02-01

    In silicon, the effect of Combined Lifetime Treatment (CLT) involving platinum diffusion and subsequent electron irradiation is different from the separate treatments of platinum diffusion and electron irradiation, even the treatment of electron irradiation followed by platinum diffusion. In this paper, we investigated the experimental behavior of different kinds of lifetime treated samples. We found that the reverse leakage current (Irr) increases with the increasing platinum diffusion temperature or electron irradiation dose in the separate treatments. Conversely, Irr of the CLT samples decreased with rising platinum diffusion temperature at the same dose of subsequent electron irradiation. By deep-level transient spectroscopy (DLTS), a new energy level E7 (Ec -0.376 eV) was found in our CLT samples. The new level E7 suppresses the dominance of the deeper level E8 (Ec -0.476 eV), which is caused by electron irradiation directly and results in Irr's increase. The formation of the level E7 comes from the complex defect-combined effect between platinum atoms and silicon vacancies, and it affects device's characteristics finally. These research will be helpful to the development of platinum-diffused devices used in intense electron irradiation environments.

  16. Adsorption and Electronic Structure of Sr and Ag Atoms on Graphite Surfaces: a First-Principles Study

    NASA Astrophysics Data System (ADS)

    Luo, Xiao-Feng; Fang, Chao; Li, Xin; Lai, Wen-Sheng; Sun, Li-Feng; Liang, Tong-Xiang

    2013-06-01

    The adsorption behaviors of radioactive strontium and silver nuclides on the graphite surface in a high-temperature gas-cooled reactor are studied by first-principles theory using generalized gradient approximation (GGA) and local density approximation (LDA) pseudo-potentials. It turns out that Sr prefers to be absorbed at the hollow of the carbon hexagonal cell by 0.54 eV (GGA), while Ag likes to sit right above the carbon atom with an adsorption energy of almost zero (GGA) and 0.45 eV (LDA). Electronic structure analysis reveals that Sr donates its partial electrons of the 4p and 5s states to the graphite substrate, while Ag on graphite is a physical adsorption without any electron transfer.

  17. Defects and Transport in Lithium Niobium Trioxide

    NASA Astrophysics Data System (ADS)

    Mehta, Apurva

    1990-01-01

    This dissertation presents work done on characterizing the defects and transport properties of congruent LiNbO _3. The focus of the study is the high temperature (800^circC to 1000^circC) equilibrium defect structure. The majority defects are described in terms of the 'LiNbO_3-ilmenite' defect model previously presented (26). Here the emphasis is placed on quantifying the defect concentrations. Congruent LiNbO_3 is highly nonstoichiometric. The large concentration of ionic defects present are mobile and contribute to electrical conduction. The ionic conduction was separated from the total conduction using defect chemistry and the transference number thus obtained was checked against the transference number obtained in a galvanic cell measurement. LiNbO_3 is an insulator (band gap = 4 eV). Hence one assumes that almost all of the conduction electrons are created by reduction. The degree of oxygen nonstoichiometry, a measure of the extent of chemical reduction, and the electron concentrations, were quantified as a function of oxygen partial pressure and the temperature by coulometric titration. The nonstoichiometry thus obtained was compared with nonstoichiometry obtained by TGA measurements. By fixing the phase composition of the sample in a buffered system, a set of constant composition measurements could be undertaken. These constant composition measurements were used to obtain the enthalpy of formation of conduction electrons, 1.95 eV, and the hopping energy for their motion at elevated temperatures, 0.55 eV, independently. The sum of the two energies was obtained by measuring the temperature dependence of the electronic conduction. The sum of the energies was found to be in excellent agreement with the energy obtained from equilibrium conduction. In conclusion, a quantitative and self-consistent picture of defects and their migration in LiNbO _3 was obtained.

  18. Hot ion plasma production in HIP-1 using water-cooled hollow cathodes

    NASA Technical Reports Server (NTRS)

    Reinmann, J. J.; Lauver, M. R.; Patch, R. W.; Layman, R. W.; Snyder, A.

    1975-01-01

    The paper reports on hot-ion plasma experiments conducted in a magnetic mirror facility. A steady-state E x B plasma was formed by applying a strong radially inward dc electric field near the mirror throats. Most of the results were for hydrogen, but deuterium and helium plasmas were also studied. Three water-cooled hollow cathodes were operated in the hot-ion plasma mode with the following results: (1) thermally emitting cathodes were not required to achieve the hot-ion mode; (2) steady-state operation (several minutes) was attained; (3) input powers greater than 40 kW were achieved; (4) cathode outside diameters were increased from 1.2 cm (uncooled) to 4.4 cm (water-cooled); (5) steady-state hydrogen plasmas with ion temperatures from 185 to 770 eV and electron temperatures from 5 to 21 eV were produced. Scaling relations were empirically obtained for discharge current, ion temperature, electron temperature, and relative ion density as a function of hydrogen gas feed rate, magnetic field, and cathode voltage.

  19. Localized excitons in fluoroperovskite LiBaF3 crystals

    NASA Astrophysics Data System (ADS)

    Springis, Maris; Trukhin, Anatoly N.; Tale, Ivar

    2003-08-01

    Two radiating processes in LiBaF3 crystals, fast valence-core transitions (5.4 - 6.5 eV) and slow, so called self-trapped exciton luminescence (about 4.3 eV), are important for practical application. Here we present a study of 4.3 eV luminescence under X-ray excitation and photoexcitation as well as under photostimulation after X-irradiation of undoped and Ag-doped LiBaF3 crystals at various temperatures. It is shown that 4.3 eV luminescence appears under X-ray excitation at least from 85 K to 400 K in both undoped and doped crystals. In all samples studied the excitation spectra of 4.3 eV luminescence contain both the main exciton like band at the edge of fundamental absorption at about 10 eV and weaker band in 7.8 - 8.6 eV region. Luminescence spectrum in the 3.8 - 4.8 eV region under 7.8 - 8.6 eV excitation differs slightly from that under 10 eV excitation. Several luminescence bands in 3.8 - 4.8 eV region arises in the temperature range 85 - 230 K under photostimulation in absorption band of F-type center at 2.9 eV created previously under X-irradiation. We propose the luminescence of LiBaF3 crystals in the 3.8 - 4.8 eV region may be caused by localized excitons formed not only under excitation near the fundamental absorption but also in result of electron recombination with localized holes thermally destroyed above 230 K.

  20. Change in resonance parameters of a linear molecule as it bends: Evidence in electron-impact vibrational transitions of hot COS and CO2 molecules*

    NASA Astrophysics Data System (ADS)

    Hoshino, Masamitsu; Ishijima, Yohei; Kato, Hidetoshi; Mogi, Daisuke; Takahashi, Yoshinao; Fukae, Katsuya; Limão-Vieira, Paulo; Tanaka, Hiroshi; Shimamura, Isao

    2016-04-01

    Inelastic and superelastic electron-impact vibrational excitation functions of hot carbonyl sulphide COS (and hot CO2) are measured for electron energies from 0.5 to 3.0 eV (1.5 to 6.0 eV) and at a scattering angle of 90°. Based on the vibrational populations and the principle of detailed balance, these excitation functions are decomposed into contributions from state-to-state vibrational transitions involving up to the second bending overtone (030) in the electronically ground state. Both the 2Π resonance for COS around 1.2 eV and the 2Πu resonance for CO2 around 3.8 eV are shifted to lower energies as the initial vibrational state is excited in the bending mode. The width of the resonance hump for COS changes only little as the molecule bends, whereas that of the overall boomerang resonance for CO2 becomes narrower. The angular distribution of the electrons resonantly scattered by hot COS and hot CO2 is also measured. The different shapes depending on the vibrational transitions and gas temperatures are discussed in terms of the symmetry of the vibrational wave functions. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.

  1. Xenon-plasma-light low-energy ultrahigh-resolution photoemission study of Co(S1-xSex)2 (x=0.075)

    NASA Astrophysics Data System (ADS)

    Sato, Takafumi; Souma, Seigo; Sugawara, Katsuaki; Nakayama, Kosuke; Raj, Satyabrata; Hiraka, Haruhiro; Takahashi, Takashi

    2007-09-01

    We have performed low-energy ultrahigh-resolution photoemission spectroscopy on Co(S1-xSex)2 (x=0.075) to elucidate the bulk electronic states responsible for the ferromagnetic transition. By using a newly developed plasma-driven low-energy xenon (Xe) discharge lamp (hν=8.436eV) , we clearly observed a sharp quasiparticle peak at the Fermi level together with the remarkable temperature dependence of the electron density of states across the transition temperature. Comparison with the experimental result by the HeIα resonance line (hν=21.218eV) indicates that the sharp quasiparticle is of bulk origin and is produced by the Fermi-level crossing of the Co 3d eg↓ subband.

  2. Electron and phonon transport in Co-doped FeV0.6Nb0.4Sb half-Heusler thermoelectric materials

    NASA Astrophysics Data System (ADS)

    Fu, Chenguang; Liu, Yintu; Xie, Hanhui; Liu, Xiaohua; Zhao, Xinbing; Jeffrey Snyder, G.; Xie, Jian; Zhu, Tiejun

    2013-10-01

    The electron and phonon transport characteristics of n-type Fe1-xCoxV0.6Nb0.4Sb half-Heusler thermoelectric compounds is analyzed. The acoustic phonon scattering is dominant in the carrier transport. The deformation potential of Edef = 14.1 eV and the density of state effective mass m* ≈ 2.0 me are derived under a single parabolic band assumption. The band gap is calculated to be ˜0.3 eV. Electron and phonon mean free paths are estimated based on the low and high temperature measurements. The electron mean free path is higher than the phonon one above room temperature, which is consistent with the experimental result that the electron mobility decreases more than the lattice thermal conductivity by grain refinement to enhance boundary scattering. A maximum ZT value of ˜0.33 is obtained at 650 K for x = 0.015, an increase by ˜60% compared with FeVSb. The optimal doping level is found to be ˜3.0 × 1020 cm-3 at 600 K.

  3. Thermodynamic and electrical properties of laser-shocked liquid deuterium

    NASA Astrophysics Data System (ADS)

    He, Zhiyu; Jia, Guo; Zhang, Fan; Luo, Kui; Huang, Xiuguang; Shu, Hua; Fang, Zhiheng; Ye, Junjian; Xie, Zhiyong; Xia, Miao; Fu, Sizu

    2018-01-01

    Liquid deuterium at high pressure and temperature has been observed to undergo significant electronic structural changes. Reflectivity and temperature measurements of liquid deuterium up to around 70 GPa were obtained using a quartz standard. The observed specific heat of liquid deuterium approaches the Dulong-Petit limit above 1 eV. Discussions on specific heat indicate a molecular dissociation below 1 eV and fully dissociated above 1.5 eV. Also, the electrical conductivity of deuterium estimated from reflectivity reaches 1.3 × 105 (Ωṡm)-1, proving that deuterium in this condition is a conducting degenerate liquid metal and undergo an insulator-metal transition. The results from specific heat, carrier density and conductivity agreed well with each other, which might be a reinforcement of the insulator-metal transition and the molecular dissociation. In addition, a new correction method of reflectivity in temperature calculation was proposed to improve the accuracy of temperature results. A new "dynamic calibration" was introduced in this work to make the experiments simpler and more accurate.

  4. Observations of temperature rise during electron cyclotron heating application in Proto-MPEX

    NASA Astrophysics Data System (ADS)

    Biewer, T. M.; Bigelow, T.; Caneses, J. F.; Diem, S. J.; Rapp, J.; Reinke, M.; Kafle, N.; Ray, H. B.; Showers, M.

    2017-10-01

    The Prototype Material Plasma Exposure eXperiment (Proto-MPEX) at ORNL utilizes a variety of power systems to generate and deliver a high heat flux plasma (1 MW/m2 for these discharges) onto the surface of material targets. In the experiments described here, up to 120 kW of 13.56 MHz ``helicon'' waves are combined with 20 kW of 28 GHz microwaves to produce Deuterium plasma discharges. The 28 GHz waves are launched in a region of the device where the magnetic field is axially varying near 0.8 T, resulting in the presence of a 2nd harmonic electron cyclotron heating (ECH) resonance layer that transects the plasma column. The electron density and temperature profiles are measured using a Thomson scattering (TS) diagnostic, and indicate that the electron density is radially peaked. In the core of the plasma column the electron density is higher than the cut-off density (0.9x1019 m-3) for ECH waves to propagate and O-X-B mode conversion into electron Bernstien waves (EBW) is expected. TS measurements indicate electron temperature increases during 28 GHz wave application, rising (from 5 eV to 20 eV) as the neutral Deuterium pressure is reduced below 1 mTorr. This work was supported by the US. D.O.E. contract DE-AC05-00OR22725.

  5. Defect induced electronic states and magnetism in ball-milled graphite.

    PubMed

    Milev, Adriyan; Dissanayake, D M A S; Kannangara, G S K; Kumarasinghe, A R

    2013-10-14

    The electronic structure and magnetism of nanocrystalline graphite prepared by ball milling of graphite in an inert atmosphere have been investigated using valence band spectroscopy (VB), core level near-edge X-ray absorption fine structure (NEXAFS) spectroscopy and magnetic measurements as a function of the milling time. The NEXAFS spectroscopy of graphite milled for 30 hours shows simultaneous evolution of new states at ~284.0 eV and at ~290.5 eV superimposed upon the characteristic transitions at 285.4 eV and 291.6 eV, respectively. The modulation of the density of states is explained by evolution of discontinuities within the sheets and along the fracture lines in the milled graphite. The magnetic measurements in the temperature interval 2-300-2 K at constant magnetic field strength show a correlation between magnetic properties and evolution of the new electronic states. With the reduction of the crystallite sizes of the graphite fragments, the milled material progressively changes its magnetic properties from diamagnetic to paramagnetic with contributions from both Pauli and Curie paramagnetism due to the evolution of new states at ~284 and ~290.5 eV, respectively. These results indicate that the magnetic behaviour of ball-milled graphite can be manipulated by changing the milling conditions.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Starrett, C. E.; Saumon, D.

    Here, we present an approximation for calculating the equation of state (EOS) of warm and hot dense matter that is built on the previously published pseudoatom molecular dynamics (PAMD) model of dense plasmas [Starrett et al., Phys. Rev. E 91, 013104 (2015)]. And while the EOS calculation with PAMD was previously limited to orbital-free density functional theory (DFT), the new approximation presented here allows a Kohn-Sham DFT treatment of the electrons. The resulting EOS thus includes a quantum mechanical treatment of the electrons with a self-consistent model of the ionic structure, while remaining tractable at high temperatures. The method ismore » validated by comparisons with pressures from ab initio simulations of Be, Al, Si, and Fe. The EOS in the Thomas-Fermi approximation shows remarkable thermodynamic consistency over a wide range of temperatures for aluminum. We also calculate the principal Hugoniots of aluminum and silicon up to 500 eV. We find that the ionic structure of the plasma has a modest effect that peaks at temperatures of a few eV and that the features arising from the electronic structure agree well with ab initio simulations.« less

  7. Electron Thermionic Emission from Graphene and a Thermionic Energy Converter

    NASA Astrophysics Data System (ADS)

    Liang, Shi-Jun; Ang, L. K.

    2015-01-01

    In this paper, we propose a model to investigate the electron thermionic emission from single-layer graphene (ignoring the effects of the substrate) and to explore its application as the emitter of a thermionic energy converter (TIC). An analytical formula is derived, which is a function of the temperature, work function, and Fermi energy level. The formula is significantly different from the traditional Richardson-Dushman (RD) law for which it is independent of mass to account for the supply function of the electrons in the graphene behaving like massless fermion quasiparticles. By comparing with a recent experiment [K. Jiang et al., Nano Res. 7, 553 (2014)] measuring electron thermionic emission from suspended single-layer graphene, our model predicts that the intrinsic work function of single-layer graphene is about 4.514 eV with a Fermi energy level of 0.083 eV. For a given work function, a scaling of T3 is predicted, which is different from the traditional RD scaling of T2. If the work function of the graphene is lowered to 2.5-3 eV and the Fermi energy level is increased to 0.8-0.9 eV, it is possible to design a graphene-cathode-based TIC operating at around 900 K or lower, as compared with the metal-based cathode TIC (operating at about 1500 K). With a graphene-based cathode (work function=4.514 eV ) at 900 K and a metallic-based anode (work function=2.5 eV ) like LaB6 at 425 K, the efficiency of our proposed TIC is about 45%.

  8. Origin of visible and near-infrared photoluminescence from chemically etched Si nanowires decorated with arbitrarily shaped Si nanocrystals.

    PubMed

    Ghosh, Ramesh; Giri, P K; Imakita, Kenji; Fujii, Minoru

    2014-01-31

    Arrays of vertically aligned single crystalline Si nanowires (NWs) decorated with arbitrarily shaped Si nanocrystals (NCs) have been fabricated by a silver assisted wet chemical etching method. Scanning electron microscopy and transmission electron microscopy are performed to measure the dimensions of the Si NWs as well as the Si NCs. A strong broad band and tunable visible (2.2 eV) to near-infrared (1.5 eV) photoluminescence (PL) is observed from these Si NWs at room temperature (RT). Our studies reveal that the Si NCs are primarily responsible for the 1.5-2.2 eV emission depending on the cross-sectional area of the Si NCs, while the large diameter Si/SiOx NWs yield distinct NIR PL consisting of peaks at 1.07, 1.10 and 1.12 eV. The latter NIR peaks are attributed to TO/LO phonon assisted radiative recombination of free carriers condensed in the electron-hole plasma in etched Si NWs observed at RT for the first time. Since the shape of the Si NCs is arbitrary, an analytical model is proposed to correlate the measured PL peak position with the cross-sectional area (A) of the Si NCs, and the bandgap (E(g)) of nanostructured Si varies as E(g) = E(g) (bulk) + 3.58 A(-0.52). Low temperature PL studies reveal the contribution of non-radiative defects in the evolution of PL spectra at different temperatures. The enhancement of PL intensity and red-shift of the PL peak at low temperatures are explained based on the interplay of radiative and non-radiative recombinations at the Si NCs and Si/SiO(x) interface. Time resolved PL studies reveal bi-exponential decay with size correlated lifetimes in the range of a few microseconds. Our results help to resolve a long standing debate on the origin of visible-NIR PL from Si NWs and allow quantitative analysis of PL from arbitrarily shaped Si NCs.

  9. Helicon plasma ion temperature measurements and observed ion cyclotron heating in proto-MPEX

    NASA Astrophysics Data System (ADS)

    Beers, C. J.; Goulding, R. H.; Isler, R. C.; Martin, E. H.; Biewer, T. M.; Caneses, J. F.; Caughman, J. B. O.; Kafle, N.; Rapp, J.

    2018-01-01

    The Prototype-Material Plasma Exposure eXperiment (Proto-MPEX) linear plasma device is a test bed for exploring and developing plasma source concepts to be employed in the future steady-state linear device Material Plasma Exposure eXperiment (MPEX) that will study plasma-material interactions for the nuclear fusion program. The concept foresees using a helicon plasma source supplemented with electron and ion heating systems to reach necessary plasma conditions. In this paper, we discuss ion temperature measurements obtained from Doppler broadening of spectral lines from argon ion test particles. Plasmas produced with helicon heating alone have average ion temperatures downstream of the Helicon antenna in the range of 3 ± 1 eV; ion temperature increases to 10 ± 3 eV are observed with the addition of ion cyclotron heating (ICH). The temperatures are higher at the edge than the center of the plasma either with or without ICH. This type of profile is observed with electrons as well. A one-dimensional RF antenna model is used to show where heating of the plasma is expected.

  10. Artificial optical emissions in the thermosphere induced by powerful radio waves: A review

    NASA Astrophysics Data System (ADS)

    Kosch, M.; Senior, A.; Gustavsson, B.; Grach, S.; Pedersen, T.; Rietveld, M.

    High-power high-frequency radio waves beamed into the ionosphere with O-mode polarization cause plasma turbulence which can accelerate electrons These electrons collide with the F-layer neutrals causing artificial optical emissions identical to natural aurora The brightest optical emissions are O 1D 630 nm with a threshold of 2 eV and O 1S 557 7 nm with a threshold of 4 2 eV The optical emissions give direct evidence of electron acceleration by plasma turbulence as well as their non-Maxwellian energy spectrum HF pumping of the ionosphere also causes electron temperature enhancements but these alone are not sufficient to explain the optical emissions EISCAT plasma-line measurements indicate that the enhanced electron temperatures are consistent with the bulk of the electrons having a Maxwellian energy spectrum Novel discoveries include 1 Very large electron temperature enhancements of several 1000 K which maximise along the magnetic field line direction 2 Ion temperature enhancements of a few 100 K 3 Large ion outflows exceeding 200 m s 4 The F-layer optical emission maximizes sharply near the magnetic zenith with clear evidence of self-focusing 5 The optical emission generally appears below the HF pump reflection altitude as well as the upper-hybrid resonance height 6 The optical emission and HF coherent radar backscatter generally minimize when pumping on the third or higher electron gyro-harmonic frequency suggesting upper-hybrid waves as the primary mechanism 7 The optical emissions and HF coherent backscatter are enhanced on the

  11. Room temperature luminescence and ferromagnetism of AlN:Fe

    NASA Astrophysics Data System (ADS)

    Li, H.; Cai, G. M.; Wang, W. J.

    2016-06-01

    AlN:Fe polycrystalline powders were synthesized by a modified solid state reaction (MSSR) method. Powder X-ray diffraction and transmission electron microscopy results reveal the single phase nature of the doped samples. In the doped AlN samples, Fe is in Fe2+ state. Room temperature ferromagnetic behavior is observed in AlN:Fe samples. Two photoluminescence peaks located at about 592 nm (2.09 eV) and 598 nm (2.07 eV) are observed in AlN:Fe samples. Our results suggest that AlN:Fe is a potential material for applications in spintronics and high power laser devices.

  12. High-resolution grazing-incidence grating spectrometer for temperature measurements of low-Z ions emitting in the 100–300 Å spectral band

    DOE PAGES

    Widmann, K.; Beiersdorfer, P.; Magee, E. W.; ...

    2014-09-19

    In this paper, we have constructed a high-resolution grazing-incidence spectrometer designed for measuring the ion temperature of low-Z elements, such as Li + or Li 2 +, which radiate near 199 Å and 135 Å, respectively. Based on measurements at the Livermore Electron Beam Ion Trap we have shown that the instrumental resolution is better than 48 mÅ at the 200 Å setting and better than 40 mÅ for the 135-Å range. Such a high spectral resolution corresponds to an instrumental limit for line-width based temperature measurements of about 45 eV for the 199 Å Li+ and 65 eV formore » the 135 Å Li 2 + lines. Finally, recently obtained survey spectra from the Lithium Tokamak Experiment at the Princeton Plasma Physics Laboratory show the presence of these lithium emission lines and the expected core ion temperature of approximately 70 eV is sufficiently high to demonstrate the feasibility of utilizing our high-resolution spectrometer as an ion-temperature diagnostic.« less

  13. Development of a Method for Local Electron Temperature and Density Measurements in the Divertor of the JET Tokamak

    NASA Technical Reports Server (NTRS)

    Jupen, C.; Meigs, A.; Bhatia, A. K.; Brezinsek, S.; OMullane, M.

    2004-01-01

    Plasma volume recombination in the divertor, a process in which charged particles recombine to neutral atoms, contributes to plasma detachment and hence cooling at the divertor target region. Detachment has been observed at JET and other tokamaks and is known to occur at low electron temperatures (T(sub e)<1 eV) and at high electron density (n(sub e)>10(exp 20)/m(exp 3)). The ability to measure such low temperatures is therefore of interest for modelling the divertor. In present work we report development of a new spectroscopic technique for investigation of local electron density (n(sub e)) and temperature (T,) in the outer divertor at JET.

  14. Spectroscopic results in helium from the NASA Lewis Bumpy Torus plasma. [ion heating by Penning discharge in confinement geometry

    NASA Technical Reports Server (NTRS)

    Richardson, R. W.

    1974-01-01

    Spectroscopic measurements were carried out on the NASA Lewis Bumpy Torus experiment in which a steady state ion heating method based on the modified Penning discharge is applied in a bumpy torus confinement geometry. Electron temperatures in pure helium are measured from the ratio of spectral line intensities. Measured electron temperatures range from 10 to 100 eV. Relative electron densities are also measured over the range of operating conditions. Radial profiles of temperature and relative density are measured in the two basic modes of operation of the device called the low and high pressure modes. The electron temperatures are used to estimate particle confinement times based on a steady state particle balance.

  15. DFT study of structural and electronic properties of MoS2(1-x)Se2x alloy (x = 0.25)

    NASA Astrophysics Data System (ADS)

    Gusakova, Julia; Gusakov, Vasilii; Tay, Beng Kang

    2018-04-01

    First-principles calculations have been performed to study the structural features of the monolayer MoS2(1-x)Se2x (x = 0.25) alloy and its electronic properties. We studied the effects of the relative positions of Se atoms in a real monolayer alloy. It was demonstrated that the distribution of the Se atoms between the top and bottom chalcogen planes was most energetically favorable. For a more probable distribution of Se atoms, a MoS2(1-x)Se2x (x = 0.25) monolayer alloy is a direct semiconductor with a fundamental band gap equal to 2.35 eV (calculated with the GVJ-2e method). We also evaluated the optical band gap of the alloy at 77 K (1.86 eV) and at room temperature (1.80 eV), which was in good agreement with the experimentally measured band gap of 1.79 eV.

  16. Atomic precision etch using a low-electron temperature plasma

    NASA Astrophysics Data System (ADS)

    Dorf, L.; Wang, J.-C.; Rauf, S.; Zhang, Y.; Agarwal, A.; Kenney, J.; Ramaswamy, K.; Collins, K.

    2016-03-01

    Sub-nm precision is increasingly being required of many critical plasma etching processes in the semiconductor industry. Accurate control over ion energy and ion/radical composition is needed during plasma processing to meet these stringent requirements. Described in this work is a new plasma etch system which has been designed with the requirements of atomic precision plasma processing in mind. In this system, an electron sheet beam parallel to the substrate surface produces a plasma with an order of magnitude lower electron temperature Te (~ 0.3 eV) and ion energy Ei (< 3 eV without applied bias) compared to conventional radio-frequency (RF) plasma technologies. Electron beam plasmas are characterized by higher ion-to-radical fraction compared to RF plasmas, so a separate radical source is used to provide accurate control over relative ion and radical concentrations. Another important element in this plasma system is low frequency RF bias capability which allows control of ion energy in the 2-50 eV range. Presented in this work are the results of etching of a variety of materials and structures performed in this system. In addition to high selectivity and low controllable etch rate, an important requirement of atomic precision etch processes is no (or minimal) damage to the remaining material surface. It has traditionally not been possible to avoid damage in RF plasma processing systems, even during atomic layer etch. The experiments for Si etch in Cl2 based plasmas in the aforementioned etch system show that damage can be minimized if the ion energy is kept below 10 eV. Layer-by-layer etch of Si is also demonstrated in this etch system using electrical and gas pulsing.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goto, Tetsuya; Matsuoka, Takaaki; Ohmi, Tadahiro

    Novel magnetron-sputtering equipment, called rotation magnet sputtering (ROT-MS), was developed to overcome various disadvantages of current magnetron-sputtering equipment. Disadvantages include (1) very low target utilization of less than 20%, (2) difficulty in obtaining uniform deposition on the substrate, and (3) charge-up damages and ion-bombardment-induced damages resulting from very high electron temperature (>3 eV) and that the substrate is set at the plasma excitation region. In ROT-MS, a number of moving high-density plasma loops are excited on the target surface by rotating helical magnets, resulting in very high target utilization with uniform target erosion and uniform deposition on the substrate. Thismore » excellent performance can be principally maintained even if equipment size increases for very large-substrate deposition. Because strong horizontal magnetic fields (>0.05 T) are produced within a very limited region just at the target surface, very low electron-temperature plasmas (<2.5 eV for Ar plasma and <1 eV for direct-current-excited Xe plasma) are excited at the very limited region adjacent to the target surface with a combination of grounded plate closely mounted on the strong magnetic field region. Consequently, the authors can establish charge-up damage-free and ion-bombardment-induced damage-free processes. ROT-MS has been applied for thin-film formation of LaB{sub 6}, which is well known as a stable, low-work-function bulk-crystal material for electron emissions. The work function of the LaB{sub 6} film decreased to 2.8 eV due to enhanced (100)-orientation crystallinity and reduced resistivity realized by adjusting the flux of low-energy bombarding ions impinging on the depositing surface, which work very efficiently, improving the performance of the electron emission devices.« less

  18. Electron gyroharmonic effects in ionization and electron acceleration during high-frequency pumping in the ionosphere.

    PubMed

    Gustavsson, B; Leyser, T B; Kosch, M; Rietveld, M T; Steen, A; Brändström, B U E; Aso, T

    2006-11-10

    Optical emissions and incoherent scatter radar data obtained during high-frequency electromagnetic pumping of the ionospheric plasma from the ground give data on electron energization in an energy range from 2 to 100 eV. Optical emissions at 4278 A from N2+ that require electrons with energies above the 18 eV ionization energy give the first images ever of pump-induced ionization of the thermosphere. The intensity at 4278 A is asymmetric around the ionospheric electron gyroharmonic, being stronger above the gyroresonance. This contrasts with emissions at 6300 A from O(1D) and of electron temperature enhancements, which have minima at the gyroharmonic but have no apparent asymmetry. This direct evidence of pump-induced ionization contradicts previous indirect evidence, which indicated that ionization is most efficiently produced when the pump frequency was below the gyroharmonic.

  19. Exciton Resonances in Novel Silicon Carbide Polymers

    NASA Astrophysics Data System (ADS)

    Burggraf, Larry; Duan, Xiaofeng

    2015-05-01

    A revolutionary technology transformation from electronics to excitionics for faster signal processing and computing will be advantaged by coherent exciton transfer at room temperature. The key feature required of exciton components for this technology is efficient and coherent transfer of long-lived excitons. We report theoretical investigations of optical properties of SiC materials having potential for high-temperature excitonics. Using Car-Parinello simulated annealing and DFT we identified low-energy SiC molecular structures. The closo-Si12C12 isomer, the most stable 12-12 isomer below 1100 C, has potential to make self-assembled chains and 2-D nanostructures to construct exciton components. Using TDDFT, we calculated the optical properties of the isomer as well as oligomers and 2-D crystal formed from the isomer as the monomer unit. This molecule has large optical oscillator strength in the visible. Its high-energy and low-energy transitions (1.15 eV and 2.56 eV) are nearly pure one-electron silicon-to-carbon transitions, while an intermediate energy transition (1.28 eV) is a nearly pure carbon-to-silicon one-electron charge transfer. These results are useful to describe resonant, coherent transfer of dark excitons in the nanostructures. Research supported by the Air Force Office of Scientific Research.

  20. Optical and Structural Properties of Ion-implanted InGaZnO Thin Films Studied with Spectroscopic Ellipsometry and Transmission Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Park, Jun Woo; Jeong, Pil Seong; Choi, Suk-Ho; Lee, Hosun; Kong, Bo Hyun; Koun Cho, Hyung

    2009-11-01

    Amorphous InGaZnO (IGZO) thin films were grown using RF sputtering deposition at room temperature and their corresponding dielectric functions were measured. In order to reduce defects and increase carrier concentrations, we examined the effect of forming gas annealing and ion implantation. The band gap energy increased with increasing forming gas annealing temperature. We implanted the IGZO thin films with F- ions in order to decrease oxygen vacancies. For comparison, we also implanted InO- ions. Transmission electron microscopy showed that the amorphous phase undergoes transformation to a nanocrystalline phase due to annealing. We also observed InGaZnO4 nanocrystals having an In-(Ga/Zn) superlattice structure. As the annealing temperature increased, the optical gap energy increased due to crystallization. After annealing, we observed an oxygen-vacancy-related 1.9 eV peak for both unimplanted and InO-implanted samples. However, F- ion implantation substantially reduced the amplitude of the 1.9 eV peak, which disappeared completely at a F fluence of 5×1015 cm-2. We observed other defect-related peaks at 3.6 and 4.2 eV after annealing, which also disappeared after F implantation.

  1. Energy spectrum of extragalactic gamma-ray sources

    NASA Technical Reports Server (NTRS)

    Protheroe, R. J.

    1985-01-01

    The result of Monte Carlo electron photon cascade calculations for propagation of gamma rays through regions of extragalactic space containing no magnetic field are given. These calculations then provide upper limits to the expected flux from extragalactic sources. Since gamma rays in the 10 to the 14th power eV to 10 to the 17th power eV energy range are of interest, interactions of electrons and photons with the 3 K microwave background radiation are considered. To obtain an upper limit to the expected gamma ray flux from sources, the intergalactic field is assumed to be so low that it can be ignored. Interactions with photons of the near-infrared background radiation are not considered here although these will have important implications for gamma rays below 10 to the 14th power eV if the near infrared background radiation is universal. Interaction lengths of electrons and photons in the microwave background radiation at a temperature of 2.96 K were calculated and are given.

  2. Phase transformation in multiferroic Bi5Ti3FeO15 ceramics by temperature-dependent ellipsometric and Raman spectra: An interband electronic transition evidence

    NASA Astrophysics Data System (ADS)

    Jiang, P. P.; Duan, Z. H.; Xu, L. P.; Zhang, X. L.; Li, Y. W.; Hu, Z. G.; Chu, J. H.

    2014-02-01

    Thermal evolution and an intermediate phase between ferroelectric orthorhombic and paraelectric tetragonal phase of multiferroic Bi5Ti3FeO15 ceramic have been investigated by temperature-dependent spectroscopic ellipsometry and Raman scattering. Dielectric functions and interband transitions extracted from the standard critical-point model show two dramatic anomalies in the temperature range of 200-873 K. It was found that the anomalous temperature dependence of electronic transition energies and Raman mode frequencies around 800 K can be ascribed to intermediate phase transformation. Moreover, the disappearance of electronic transition around 3 eV at 590 K is associated with the conductive property.

  3. Spatially and temporally resolved measurements of a dense copper plasma heated by intense relativistic electrons

    NASA Astrophysics Data System (ADS)

    Coleman, J. E.; Colgan, J.

    2017-08-01

    A 100-μm-thick Cu foil is isochorically heated by a ˜100-ns-long electron bunch with an energy of 19.8 MeV and current of 1.7 kA to Te > 1 eV. After 100 ns of heating and 20 ns of expansion, the plasma exhibits a stable, quiescent temperature and density distribution for >200 ns. Several intense Cu-I emission lines are observed after ˜20 J of electron beam energy is deposited. These lines have well known Stark widths providing a direct measurement of ne. The Los Alamos ATOMIC code [Magee et al., AIP Conf. Proc. 2004, 168-179 and Hakel et al., J. Quant. Spectrosc. Radiat. Transfer 99, 265 (2006)] was run in local-thermodynamic-equilibrium mode to estimate Te and ne. Spatially and temporally resolved measurements are presented in both the vertical and horizontal directions adjacent to the foil indicating temperatures >1 eV and densities ranging from 1-3 × 1017 cm-3 after expansion and cooling.

  4. Plume characteristics of MPD thrusters: A preliminary examination

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.

    1989-01-01

    A diagnostics facility for MPD thruster plume measurements was built and is currently undergoing testing. The facility includes electrostatic probes for electron temperature and density measurements, Hall probes for magnetic field and current distribution mapping, and an imaging system to establish the global distribution of plasma species. Preliminary results for MPD thrusters operated at power levels between 30 and 60 kW with solenoidal applied magnetic fields show that the electron density decreases exponentially from 1x10(2) to 2x10(18)/cu m over the first 30 cm of the expansion, while the electron temperature distribution is relatively uniform, decreasing from approximately 2.5 eV to 1.5 eV over the same distance. The radiant intensity of the ArII 4879 A line emission also decays exponentially. Current distribution measurements indicate that a significant fraction of the discharge current is blown into the plume region, and that its distribution depends on the magnitudes of both the discharge current and the applied magnetic field.

  5. Electronic and transport properties of fluorite structure of La2Ce2O7

    NASA Astrophysics Data System (ADS)

    Mahida, H. R.; Singh, Deobrat; Gupta, Sanjeev K.; Sonvane, Yogesh; Thakor, P. B.

    2017-05-01

    In this paper, we have symmetrically investigated the structural, electronic and transport properties of fluorite structure of lanthanum cerate oxide (La2Ce2O7) using density functional theory (DFT). The electronic band structure of La2Ce2O7 show semiconducting in nature with band gap of 1.54 eV (indirect at R-X points) and 1.71 eV (direct at R points). We have also calculated the susceptibility, hall resistance, electrical, and thermal conductivity by using Boltztrap equation. The electrical conductivity decreases where as thermal conductivity increases with increase in the temperature. Our result shows that La2Ce2O7 has application in Proton exchange membrane (PEM) fuel cells applications.

  6. A potential half-Heusler thermoelectric material ScAuSn: A first principle study

    NASA Astrophysics Data System (ADS)

    Joshi, H.; Rai, D. P.; Thapa, R. K.

    2018-04-01

    Density Functional Theory along with semi classical Boltzmann transport theory have been applied to study the electronic and thermoelectric property of the Heusler alloy ScAuSn. It has been found that ScAuSn is an indirect band gap semiconductor with a gap of 0.344 eV. The thermoelectric properties such as electrical conductivity (σ), Seebeck coefficient (S), electronic thermal conductivity (κ) etc. are reported as a function of chemical potential in the region ± 2.0 eV, with respect to constant temperature. The calculated ZT value is almost equal to 1, thus making ScAuSn a potential thermoelectric candidate.

  7. Hot ion plasma production in HIP-1 using water-cooled hollow cathodes

    NASA Technical Reports Server (NTRS)

    Reinmann, J. J.; Lauver, M. R.; Patch, R. W.; Layman, R. W.; Snyder, A.

    1975-01-01

    A steady-state ExB plasma was formed by applying a strong radially inward dc electric field near the mirror throats. Most of the results were for hydrogen, but deuterium and helium plasmas were also studied. Three water-cooled hollow cathodes were operated in the hot-ion plasma mode with the following results: (1) thermally emitting cathodes were not required to achieve the hot-ion mode; (2) steady-state operation (several minutes) was attained; (3) input powers greater than 40 kW were achieved; (4) cathode outside diameters were increased from 1.2 cm (uncooled) to 4.4 cm (water-cooled); (5) steady-state hydrogen plasma with ion temperatures from 185 to 770 eV and electron temperatures from 5 to 21 eV were produced. Scaling relations were empirically obtained for discharge current, ion temperature, electron temperature, and relative ion density as a function of hydrogen gas feed rate, magnetic field, and cathode voltage. Neutrons were produced from deuterium plasma, but it was not established whether thay came from the plasma volume or from the electrode surfaces.

  8. Changes to Electrical Conductivity in Irradiated Carbon-Nickel Nanocomposites

    DTIC Science & Technology

    2010-03-01

    fluxes that geosynchronous satellites must withstand as established by MIL-STD-1809... Voltage keV Kilo Electron Volt [10 3 eV] LSU Louisiana State University LTAPCVD Low Temperature Atmospheric Pressure Chemical Vapor Decomposition...geosynchronous altitude energetic electron fluxes range up to 5 x 10 6 cm -2 sec -1 for electrons with energies 2 of 0.5 MeV or greater, while proton

  9. Elevated temperature dependence of the anisotropic visible-to-ultraviolet dielectric function of monoclinic β-Ga2O3

    NASA Astrophysics Data System (ADS)

    Mock, A.; VanDerslice, J.; Korlacki, R.; Woollam, J. A.; Schubert, M.

    2018-01-01

    We report on the temperature dependence of the dielectric tensor elements of n-type conductive β-Ga2O3 from 22 °C to 550 °C in the spectral range of 1.5 eV-6.4 eV. We present the temperature dependence of the excitonic and band-to-band transition energy parameters using a previously described eigendielectric summation approach [A. Mock et al., Phys. Rev. B 96, 245205 (2017)]. We utilize a Bose-Einstein analysis of the temperature dependence of the observed transition energies and reveal electron coupling with average phonon temperature in excellent agreement with the average over all longitudinal phonon plasmon coupled modes reported previously [M. Schubert et al., Phys. Rev. B 93, 125209 (2016)]. We also report a linear temperature dependence of the wavelength independent Cauchy expansion coefficient for the anisotropic below-band-gap monoclinic dielectric tensor elements.

  10. Low-energy electron scattering from atomic hydrogen. II. Elastic and inelastic scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James, K.E. Jr.; Childers, J.G.; Khakoo, M.A.

    2004-02-01

    We present measurements of differential cross sections for elastic electron scattering from atomic hydrogen at 20 eV and 40 eV incident electron energies and ratios of differential cross sections for electron-impact excitation of atomic hydrogen to the n=2, 3, and 4 levels at incident electron energies of 14.6 eV, 15.6 eV, 17.6 eV, 20 eV, 25 eV, and 40 eV with scattering angles ranging from 10 deg. to 130 deg. We compare our results to available experimental measurements and recent convergent close-coupling calculations. Our results resolve significant discrepancies that existed between theory and past experiments.

  11. Rocket measurements of conjugate photoelectrons during the total solar eclipse of 7 March 1970 over Wallops Island.

    NASA Technical Reports Server (NTRS)

    Maier, E. J.; Narasinga Rao, B. C.

    1972-01-01

    Results of measurements made with a retarding potential analyzer on a Nike-Tomahawk rocket during the totality of the solar eclipse, showing definite evidence for the existence of photoelectrons from the conjugate hemisphere. Photoelectrons are observed in the altitude range from 120 to 260 km. The observed flux in the energy range from 2 to 30 eV is relatively constant above about 200 km, but decreased below that altitude. The flux of 5-eV energy electrons above 200 km altitude is about 10 to the 7th power electrons/cm/sec/eV. Higher-energy electrons were also observed, and it is possible that the energy content of these observed fluxes of conjugate-point photoelectrons is sufficient to maintain the observed electron densities and temperatures during the total eclipse.

  12. Room temperature luminescence and ferromagnetism of AlN:Fe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, H., E-mail: lihui@mail.iee.ac.cn, E-mail: wjwang@aphy.iphy.ac.cn; Cai, G. M.; Wang, W. J., E-mail: lihui@mail.iee.ac.cn, E-mail: wjwang@aphy.iphy.ac.cn

    2016-06-15

    AlN:Fe polycrystalline powders were synthesized by a modified solid state reaction (MSSR) method. Powder X-ray diffraction and transmission electron microscopy results reveal the single phase nature of the doped samples. In the doped AlN samples, Fe is in Fe{sup 2+} state. Room temperature ferromagnetic behavior is observed in AlN:Fe samples. Two photoluminescence peaks located at about 592 nm (2.09 eV) and 598 nm (2.07 eV) are observed in AlN:Fe samples. Our results suggest that AlN:Fe is a potential material for applications in spintronics and high power laser devices.

  13. Diagnosing the Fine Structure of Electron Energy Within the ECRIT Ion Source

    NASA Astrophysics Data System (ADS)

    Jin, Yizhou; Yang, Juan; Tang, Mingjie; Luo, Litao; Feng, Bingbing

    2016-07-01

    The ion source of the electron cyclotron resonance ion thruster (ECRIT) extracts ions from its ECR plasma to generate thrust, and has the property of low gas consumption (2 sccm, standard-state cubic centimeter per minute) and high durability. Due to the indispensable effects of the primary electron in gas discharge, it is important to experimentally clarify the electron energy structure within the ion source of the ECRIT through analyzing the electron energy distribution function (EEDF) of the plasma inside the thruster. In this article the Langmuir probe diagnosing method was used to diagnose the EEDF, from which the effective electron temperature, plasma density and the electron energy probability function (EEPF) were deduced. The experimental results show that the magnetic field influences the curves of EEDF and EEPF and make the effective plasma parameter nonuniform. The diagnosed electron temperature and density from sample points increased from 4 eV/2×1016 m-3 to 10 eV/4×1016 m-3 with increasing distances from both the axis and the screen grid of the ion source. Electron temperature and density peaking near the wall coincided with the discharge process. However, a double Maxwellian electron distribution was unexpectedly observed at the position near the axis of the ion source and about 30 mm from the screen grid. Besides, the double Maxwellian electron distribution was more likely to emerge at high power and a low gas flow rate. These phenomena were believed to relate to the arrangements of the gas inlets and the magnetic field where the double Maxwellian electron distribution exits. The results of this research may enhance the understanding of the plasma generation process in the ion source of this type and help to improve its performance. supported by National Natural Science Foundation of China (No. 11475137)

  14. Plasma distribution and spacecraft charging modeling near Jupiter

    NASA Technical Reports Server (NTRS)

    Goldstein, R.; Divine, N.

    1977-01-01

    To assess the role of spacecraft charging near Jupiter, the plasma distribution in Jupiter's magnetosphere was modeled using data from the plasma analyzer experiments on Pioneer 10 (published results) and on Pioneer 11 (preliminary results). In the model, electron temperatures are kT = 4 eV throughout, whereas proton temperatures range over 100 or equal to kT or equal to 400 eV. The model fluxes and concentrations vary over three orders of magnitude among several corotating regions, including, in order to increasing distance from Jupiter, a plasma void, plasma sphere, sporadic zone, ring current, current sheet, high latitude plasma and magnetosheath. Intermediate and high energy electrons and protons (to 100 MeV) are modeled as well. The models supply the information for calculating particle fluxes to a spacecraft in the Jovian environment. The particle balance equations (including effects of secondary and photoemission) then determine the spacecraft potential.

  15. Equation of state of dense plasmas with pseudoatom molecular dynamics

    DOE PAGES

    Starrett, C. E.; Saumon, D.

    2016-06-14

    Here, we present an approximation for calculating the equation of state (EOS) of warm and hot dense matter that is built on the previously published pseudoatom molecular dynamics (PAMD) model of dense plasmas [Starrett et al., Phys. Rev. E 91, 013104 (2015)]. And while the EOS calculation with PAMD was previously limited to orbital-free density functional theory (DFT), the new approximation presented here allows a Kohn-Sham DFT treatment of the electrons. The resulting EOS thus includes a quantum mechanical treatment of the electrons with a self-consistent model of the ionic structure, while remaining tractable at high temperatures. The method ismore » validated by comparisons with pressures from ab initio simulations of Be, Al, Si, and Fe. The EOS in the Thomas-Fermi approximation shows remarkable thermodynamic consistency over a wide range of temperatures for aluminum. We also calculate the principal Hugoniots of aluminum and silicon up to 500 eV. We find that the ionic structure of the plasma has a modest effect that peaks at temperatures of a few eV and that the features arising from the electronic structure agree well with ab initio simulations.« less

  16. Effect of secondary electron emission on the plasma sheath

    NASA Astrophysics Data System (ADS)

    Langendorf, S.; Walker, M.

    2015-03-01

    In this experiment, plasma sheath potential profiles are measured over boron nitride walls in argon plasma and the effect of secondary electron emission is observed. Results are compared to a kinetic model. Plasmas are generated with a number density of 3 × 1012 m-3 at a pressure of 10-4 Torr-Ar, with a 1%-16% fraction of energetic primary electrons. The sheath potential profile at the surface of each sample is measured with emissive probes. The electron number densities and temperatures are measured in the bulk plasma with a planar Langmuir probe. The plasma is non-Maxwellian, with isotropic and directed energetic electron populations from 50 to 200 eV and hot and cold Maxwellian populations from 3.6 to 6.4 eV and 0.3 to 1.3 eV, respectively. Plasma Debye lengths range from 4 to 7 mm and the ion-neutral mean free path is 0.8 m. Sheath thicknesses range from 20 to 50 mm, with the smaller thickness occurring near the critical secondary electron emission yield of the wall material. Measured floating potentials are within 16% of model predictions. Measured sheath potential profiles agree with model predictions within 5 V (˜1 Te), and in four out of six cases deviate less than the measurement uncertainty of 1 V.

  17. Unified first principles description from warm dense matter to ideal ionized gas plasma: electron-ion collisions induced friction.

    PubMed

    Dai, Jiayu; Hou, Yong; Yuan, Jianmin

    2010-06-18

    Electron-ion interactions are central to numerous phenomena in the warm dense matter (WDM) regime and at higher temperature. The electron-ion collisions induced friction at high temperature is introduced in the procedure of ab initio molecular dynamics using the Langevin equation based on density functional theory. In this framework, as a test for Fe and H up to 1000 eV, the equation of state and the transition of electronic structures of the materials with very wide density and temperature can be described, which covers a full range of WDM up to high energy density physics. A unified first principles description from condensed matter to ideal ionized gas plasma is constructed.

  18. An Exceptionally Narrow Band-Gap (∼4 eV) Silicate Predicted in the Cubic Perovskite Structure: BaSiO3.

    PubMed

    Hiramatsu, Hidenori; Yusa, Hitoshi; Igarashi, Ryo; Ohishi, Yasuo; Kamiya, Toshio; Hosono, Hideo

    2017-09-05

    The electronic structures of 35 A 2+ B 4+ O 3 ternary cubic perovskite oxides, including their hypothetical chemical compositions, were calculated by a hybrid functional method with the expectation that peculiar electronic structures and unique carrier transport properties suitable for semiconductor applications would be hidden in high-symmetry cubic perovskite oxides. We found unique electronic structures of Si-based oxides (A = Mg, Ca, Sr, and Ba, and B = Si). In particular, the unreported cubic BaSiO 3 has a very narrow band gap (4.1 eV) compared with conventional nontransition-metal silicates (e.g., ∼9 eV for SiO 2 and the calculated value of 7.3 eV for orthorhombic BaSiO 3 ) and a small electron effective mass (0.3m 0 , where m 0 is the free electron rest mass). The narrow band gap is ascribed to the nonbonding state of Si 3s and the weakened Madelung potential. The existence of the predicted cubic perovskite structure of BaSiO 3 was experimentally verified by applying a high pressure of 141 GPa. The present finding indicates that it could be possible to develop a new transparent oxide semiconductor of earth abundant silicates if the symmetry of its crystal structure is appropriately chosen. Cubic BaSiO 3 is a candidate for high-performance oxide semiconductors if this phase can be stabilized at room temperature and ambient pressure.

  19. Pathways for tailoring the magnetostructural behavior of FeRh-based systems

    NASA Astrophysics Data System (ADS)

    Barua, Radhika

    2014-03-01

    The prediction of phase transition temperatures in functional materials provides dual benefits of supplying insight into fundamental drivers underlying the phase transition, as well as enabling new and improved technological applications that employ the material. In this work, studies focused on understanding the magnetostructural phase transition of FeRh as a function of elemental substitution, provides guidance for tailoring phase transitions in this compound, with possible extensions to other intermetallic-based magnetostructural compounds. Clear trends in the magnetostructural temperatures (Tt) of alloys of composition Fe(Rh1-xMx) or (Fe1-xMx) Rh (M = 3 d, 4 d or 5 d transition metals), as reported in literature since 1961, were identified and confirmed as a function of the valence band electron concentration ((s + d) electrons/atom) of the system. It is observed that substitution of 3 dor 4 delements (x <= 6.5 at%) into B2-ordered FeRh compounds causes Ttto increase to a maximum around a critical valence band electron concentration (ev *) of 8.50 electrons/atom and then decrease. Substitution of 5 delements echoes this trend but with an overall increase in Ttand a shift in ev * to 8.52 electrons/atom. For ev>8.65 electrons/atom, FeRh-based alloys cease to adopt the B2-ordered crystallographic structure in favor of the chemically disordered A1-type structure or the ordered L10-type structure. This phenomenological model has been confirmed through synthesis and characterization of FeRh alloys with Cu, Ni and Au additions. The success of this model in confirming existing data trends in chemically-substituted FeRh and predicting new composition-transition temperature correlations emphasizes the strong interplay between the electronic spin configuration, the electronic band structure, and crystal lattice of this system. Further these results provide pathways for tailoring the magnetostructural behavior and the associated functional response of FeRh-based systems for potential technological applications. Research was performed under the auspices of the U.S. Department of Energy (Contract No. DE-SC0005250).

  20. Lifetime of excess electrons in Cu–Zn–Sn–Se powders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novikov, G. F., E-mail: ngf@icp.ac.ru; Gapanovich, M. V.; Gremenok, V. F.

    2017-01-15

    The method of time-resolved microwave photoconductivity at a frequency of 36 GHz in the range of temperatures of 200–300 K is used to study the kinetics of the annihilation of charge carriers in Cu–Zn–Sn–Se powders obtained by the solid-phase method of synthesis in cells. The lifetime of excess electrons at room temperature is found to be shorter than 5 ns. The activation energy for the process of recombination amounted to E{sub a} ~ 0.054 eV.

  1. Growth kinetics of indium metal atoms on Si(1 1 2) surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raj, Vidur; Chauhan, Amit Kumar Singh; Gupta, Govind, E-mail: govind@nplindia.org

    Graphical abstract: Controlled growth of indium atoms on Si(1 1 2) surface has been carried out systematically and the influence of substrate temperature on the kinetics is analysed under various growth conditions. Temperature induced anomalous layer-to-clusters transformation during thermal desorption has also been reported. - Highlights: • Controlled growth of indium atoms on Si(1 1 2) surface & their thermal stability. • Influence of substrate temperature on the kinetics under various growth conditions. • Temperature induced layer-to-clusters transformation during thermal desorption. - Abstract: The growth kinetics and desorption behavior of indium (In) atoms grown on high index Si(1 1 2)more » surface at different substrate temperatures has been studied. Auger electron spectroscopy analysis revealed that In growth at room temperature (RT) and high substrate temperature (HT) ∼250 °C follows Frank–van der Merve growth mode whereas at temperatures ≥450 °C, In growth evolves through Volmer–Weber growth mode. Thermal desorption studies of RT and 250 °C grown In/Si(1 1 2) systems show temperature induced rearrangement of In atoms over Si(1 1 2) surface leading to clusters to layer transformation. The monolayer and bilayer desorption energies for RT grown In/Si(1 1 2) system are calculated to be 2.5 eV and 1.52 eV, while for HT-250 °C the values are found to be 1.6 eV and 1.3 eV, respectively. This study demonstrates the effect of temperature on growth kinetics as well as on the multilayer/monolayer desorption pathway of In on Si(1 1 2) surface.« less

  2. Defect annealing in electron-irradiated boron-doped silicon

    NASA Astrophysics Data System (ADS)

    Awadelkarim, O. O.; Chen, W. M.; Weman, H.; Monemar, B.

    1990-01-01

    Defects introduced by room-temperature electron irradiation and subsequent annealing in boron-doped silicon are studied by means of deep-level transient spectroscopy, photoluminescence, and optical detection of magnetic resonance (ODMR) techniques. ODMR reveals a thermally induced paramagnetic (S=(1/2) defect center that is produced following annealing at 400 °C. The center possesses a C3v point-group symmetry with the trigonal axis along <111>. Detailed analysis of the ODMR line shapes indicates the involvement of a silicon atom in the defect center. It appears from the results that boron is either another possible defect component or an essential catalyst for the defect formation. The occurrence of the ODMR signal together with a luminescence band peaking at 0.80 eV is independent of oxygen or carbon contents in the samples. The band does not belong to the center observed by ODMR; however, a decrease in its intensity, under resonance conditions in the ODMR center, is explained in terms of carrier recombination, capture, or energy-transfer processes involving this center. Annealing studies on a metastable hole trap observed at Ev+0.12 eV (Ev being the top of the valence band) establish the trap assignment to a carbon-interstitial-carbon-substitutional pair. The introduction of postannealing traps observed at Ev+0.07 eV, Ev+0.45 eV, and Ec-0.59 eV (Ec being the conduction-band edge) is found to be boron dependent. Isothermal formation of the centers responsible for these traps are observed, and none of the traps appears to be related to either the center observed by ODMR or the 0.80-eV band.

  3. Cryogenic scintillation properties of n-type GaAs for the direct detection of MeV/c2 dark matter

    NASA Astrophysics Data System (ADS)

    Derenzo, S.; Bourret, E.; Hanrahan, S.; Bizarri, G.

    2018-03-01

    This paper is the first report of n-type GaAs as a cryogenic scintillation radiation detector for the detection of electron recoils from interacting dark matter (DM) particles in the poorly explored MeV/c2 mass range. Seven GaAs samples from two commercial suppliers and with different silicon and boron concentrations were studied for their low temperature optical and scintillation properties. All samples are n-type even at low temperatures and exhibit emission between silicon donors and boron acceptors that peaks at 1.33 eV (930 nm). The lowest excitation band peaks at 1.44 eV (860 nm), and the overlap between the emission and excitation bands is small. The X-ray excited luminosities range from 7 to 43 photons/keV. Thermally stimulated luminescence measurements show that n-type GaAs does not accumulate metastable radiative states that could cause afterglow. Further development and use with cryogenic photodetectors promises a remarkable combination of large target size, ultra-low backgrounds, and a sensitivity to electron recoils of a few eV that would be produced by DM particles as light as a few MeV/c2.

  4. Effects of low temperature periodic annealing on the deep-level defects in 200 keV proton irradiated AlGaAs-GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Li, S. S.; Chiu, T. T.; Loo, R. Y.

    1981-01-01

    The GaAs solar cell has shown good potential for space applications. However, degradation in performance occurred when the cells were irradiated by high energy electrons and protons in the space environment. The considered investigation is concerned with the effect of periodic thermal annealing on the deep-level defects induced by the 200 keV protons in the AlGaAs-GaAs solar cells. Protons at a fluence of 10 to the 11th P/sq cm were used in the irradiation cycle, while annealing temperatures of 200 C (for 24 hours), 300 C (six hours), and 400 C (six hours) were employed. The most likely candidate for the E(c) -0.71 eV electron trap observed in the 200 keV proton irradiated samples may be due to GaAs antisite, while the observed E(v) +0.18 eV hole trap has been attributed to the gallium vacancy related defect. The obtained results show that periodic annealing in the considered case does not offer any advantages over the one time annealing process.

  5. Room temperature chemical synthesis of lead selenide thin films with preferred orientation

    NASA Astrophysics Data System (ADS)

    Kale, R. B.; Sartale, S. D.; Ganesan, V.; Lokhande, C. D.; Lin, Yi-Feng; Lu, Shih-Yuan

    2006-11-01

    Room temperature chemical synthesis of PbSe thin films was carried out from aqueous ammoniacal solution using Pb(CH3COO)2 as Pb2+ and Na2SeSO3 as Se2- ion sources. The films were characterized by a various techniques including, X-ray diffraction (XRD), energy dispersive X-ray analysis (EDAX), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HR-TEM), selected area electron diffraction (SAED), Fast Fourier transform (FFT) and UV-vis-NIR techniques. The study revealed that the PbSe thin film consists of preferentially oriented nanocubes with energy band gap of 0.5 eV.

  6. Properties of the Io plasma torus inferred from Voyager EUV data

    NASA Technical Reports Server (NTRS)

    Strobel, D. F.; Davis, J.

    1980-01-01

    A physical model for the Io plasma torus is constructed to explain the EUV radiative emission observed by the Voyager UV spectrometer. Electron impact excitation rate coefficients for electronic transitions of S III, S IV, O II and O III are calculated by the method of distorted waves (Davis, Kepple, and Blaha, 1976); these coefficients account for the asymmetric shape of the 686 A feature. It is concluded that the electron gas must have a distribution function with a non-Maxwellian tail. An approximate representation of the distribution function as two temperature components requires a cold component of 3.5-4 eV and density of 2000 per cu cm and a hot component of about 100 eV and density of 50-100 per cu cm to satisfy observational constraints.

  7. An in situ investigation of electromigration in Cu nanowires.

    PubMed

    Huang, Qiaojian; Lilley, Carmen M; Divan, Ralu

    2009-02-18

    Electromigration in copper (Cu) nanowires deposited by electron beam evaporation has been investigated using both resistance measurement and the in situ scanning electron microscopy technique. During electromigration, voids formed at the cathode end while hillocks (or extrusions) grew close to the anode end. The failure lifetimes were measured for various applied current densities and the mean temperature in the wire was estimated. Electromigration activation energies of 1.06 eV and 0.94 eV were found for the wire widths of 90 nm and 141 nm, respectively. These results suggest that the mass transport of Cu during electromigration mainly occurs along the wire surfaces. Further investigations of the Auger electron spectrum show that both Cu atoms and the surface contaminants of carbon and oxygen migrate from cathode to anode under the electrical stressing.

  8. A luminescence-optical spectroscopy study of Rb2KTiOF5 single crystals

    NASA Astrophysics Data System (ADS)

    Pustovarov, V. A.; Ogorodnikov, I. N.; Kozlov, A. V.; Isaenko, L. I.

    2018-06-01

    Large single crystals of Rb2KTiOF5 (RKTF), grown by slow solidification method, were studied (7-400 K) for various types of optical and radiation effects. The optical absorption spectra, the parameters of the Urbach rule at 293 K (σ = 0.24 and EU = 105 meV), the low-temperature reflection spectra (T = 7 K, E = 3.7-22 eV) were determined. The luminescence spectra (1.2-6.2 eV) and luminescence decay kinetics are studied upon excitation by a nanosecond electron beam (PCL), ultraviolet and vacuum ultraviolet light (PL), or X-rays radiation (XRL). PL excitation spectra under selective photoexcitation by synchrotron radiation (E = 3.7-22 eV, T = 7 K), temperature dependences of the intensity of steady-state XRL in different emission bands, as well as thermoluminescence (7-400 K) are studied. In the visible spectral region, we detected three luminescence bands that were attributed to radiative annihilation of intrinsic excitons (2.25 eV), recombination-type luminescence (2.1 eV) and luminescence of higher TiOF5 complexes (1.9 eV). The exponential component with lifetime of about 19 μs was revealed in the PCL decay kinetics at 2.25 eV. The low-energy onset of the intrinsic host absorption Ec = 3.55 eV was determined on the basis of the experimental data obtained. Spectra of optical constants were calculated by the Kramers-Krönig method, the energy of the onset of the interband transitions Eg = 4.2 eV was determined, and the main peaks of the optical spectra were identified.

  9. Decay of the electron number density in the nitrogen afterglow using a hairpin resonator probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siefert, Nicholas S.; Ganguly, Biswa N.; Sands, Brian L.

    A hairpin resonator was used to measure the electron number density in the afterglow of a nitrogen glow discharge (p=0.25-0.75 Torr). Electron number densities were measured using a time-dependent approach similar to the approach used by Spencer et al. [J. Phys. D 20, 923 (1987)]. The decay time of the electron number density was used to determine the electron temperature in the afterglow, assuming a loss of electrons via ambipolar diffusion to the walls. The electron temperature in the near afterglow remained between 0.4 and 0.6 eV, depending on pressure. This confirms the work by Guerra et al. [IEEE Trans.more » Plasma. Sci. 31, 542 (2003)], who demonstrated experimentally and numerically that the electron temperature stays significantly above room temperature via superelastic collisions with highly vibrationally excited ground state molecules and metastables, such as A {sup 3}{sigma}{sub u}{sup +}.« less

  10. Optical Absorption and Electric Resistivity of an l-Cysteine Film

    NASA Astrophysics Data System (ADS)

    Kamada, Masao; Hideshima, Takuya; Azuma, Junpei; Yamamoto, Isamu; Imamura, Masaki; Takahashi, Kazutoshi

    2016-12-01

    The optical and electric properties of an l-cysteine film have been investigated to understand its applicability to bioelectronics. The fundamental absorption is the allowed transition having the threshold at 5.8 eV and the absorption is due to the charge-transfer type transition from sulfur-3sp to oxygen-2p and/or carbon-2p states, while absorptions more than 9 eV can be explained with intra-atomic transitions in the functional groups. The electric resistivity is 2.0 × 104 Ω m at room temperature and increases as the sample temperature decreases. The results indicate that the l-cysteine film is a p-type semiconductor showing the hole conduction caused by the sulfur-3sp occupied states and unknown impurity or defect states as acceptors. The electron affinity of the l-cysteine film is derived as ≦-0.3 eV.

  11. Turbulent resistive heating of solar coronal arches

    NASA Technical Reports Server (NTRS)

    Benford, G.

    1983-01-01

    The possibility that coronal heating occurs by means of anomalous Joule heating by electrostatic ion cyclotron waves is examined, with consideration given to currents running from foot of a loop to the other. It is assumed that self-fields generated by the currents are absent and currents follow the direction of the magnetic field, allowing the plasma cylinder to expand radially. Ion and electron heating rates are defined within the cylinder, together with longitudinal conduction and convection, radiation and cross-field transport, all in terms of Coulomb and turbulent effects. The dominant force is identified as electrostatic ion cyclotron instability, while ion acoustic modes remain stable. Rapid heating from an initial temperature of 10 eV to 100-1000 eV levels is calculated, with plasma reaching and maintaining a temperature in the 100 eV range. Strong heating is also possible according to the turbulent Ohm's law and by resistive heating.

  12. Glycine formation in CO2:CH4:NH3 ices induced by 0-70 eV electrons

    NASA Astrophysics Data System (ADS)

    Esmaili, Sasan; Bass, Andrew D.; Cloutier, Pierre; Sanche, Léon; Huels, Michael A.

    2018-04-01

    Glycine (Gly), the simplest amino-acid building-block of proteins, has been identified on icy dust grains in the interstellar medium, icy comets, and ice covered meteorites. These astrophysical ices contain simple molecules (e.g., CO2, H2O, CH4, HCN, and NH3) and are exposed to complex radiation fields, e.g., UV, γ, or X-rays, stellar/solar wind particles, or cosmic rays. While much current effort is focused on understanding the radiochemistry induced in these ices by high energy radiation, the effects of the abundant secondary low energy electrons (LEEs) it produces have been mostly assumed rather than studied. Here we present the results for the exposure of multilayer CO2:CH4:NH3 ice mixtures to 0-70 eV electrons under simulated astrophysical conditions. Mass selected temperature programmed desorption (TPD) of our electron irradiated films reveals multiple products, most notably intact glycine, which is supported by control measurements of both irradiated or un-irradiated binary mixture films, and un-irradiated CO2:CH4:NH3 ices spiked with Gly. The threshold of Gly formation by LEEs is near 9 eV, while the TPD analysis of Gly film growth allows us to determine the "quantum" yield for 70 eV electrons to be about 0.004 Gly per incident electron. Our results show that simple amino acids can be formed directly from simple molecular ingredients, none of which possess preformed C—C or C—N bonds, by the copious secondary LEEs that are generated by ionizing radiation in astrophysical ices.

  13. Glycine formation in CO2:CH4:NH3 ices induced by 0-70 eV electrons.

    PubMed

    Esmaili, Sasan; Bass, Andrew D; Cloutier, Pierre; Sanche, Léon; Huels, Michael A

    2018-04-28

    Glycine (Gly), the simplest amino-acid building-block of proteins, has been identified on icy dust grains in the interstellar medium, icy comets, and ice covered meteorites. These astrophysical ices contain simple molecules (e.g., CO 2 , H 2 O, CH 4 , HCN, and NH 3 ) and are exposed to complex radiation fields, e.g., UV, γ, or X-rays, stellar/solar wind particles, or cosmic rays. While much current effort is focused on understanding the radiochemistry induced in these ices by high energy radiation, the effects of the abundant secondary low energy electrons (LEEs) it produces have been mostly assumed rather than studied. Here we present the results for the exposure of multilayer CO 2 :CH 4 :NH 3 ice mixtures to 0-70 eV electrons under simulated astrophysical conditions. Mass selected temperature programmed desorption (TPD) of our electron irradiated films reveals multiple products, most notably intact glycine, which is supported by control measurements of both irradiated or un-irradiated binary mixture films, and un-irradiated CO 2 :CH 4 :NH 3 ices spiked with Gly. The threshold of Gly formation by LEEs is near 9 eV, while the TPD analysis of Gly film growth allows us to determine the "quantum" yield for 70 eV electrons to be about 0.004 Gly per incident electron. Our results show that simple amino acids can be formed directly from simple molecular ingredients, none of which possess preformed C-C or C-N bonds, by the copious secondary LEEs that are generated by ionizing radiation in astrophysical ices.

  14. Temperature peaking at beginning of breakdown in 2.45 GHz pulsed off-resonance electron cyclotron resonance ion source hydrogen plasma

    NASA Astrophysics Data System (ADS)

    Cortázar, O. D.; Megía-Macías, A.; Vizcaíno-de-Julián, A.

    2012-10-01

    An experimental study of temperature and density evolution during breakdown in off-resonance ECR hydrogen plasma is presented. Under square 2.45 GHz microwave excitation pulses with a frequency of 50 Hz and relative high microwave power, unexpected transient temperature peaks that reach 18 eV during 20 μs are reported at very beginning of plasma breakdown. Decays of such peaks reach final stable temperatures of 5 eV at flat top microwave excitation pulse. Evidence of interplay between incoming power and duty cycle giving different kind of plasma parameters evolutions engaged to microwave coupling times is observed. Under relative high power conditions where short microwave coupling times are recorded, high temperature peaks are measured. However, for lower incoming powers and longer coupling times, temperature evolves gradually to a higher final temperature without peaking. On the other hand, the early instant where temperature peaks are observed also suggest a possible connection with preglow processes during breakdown in ECRIS plasmas.

  15. Heat Capacity and Thermal Conductance Measurements of a Superconducting-Normal Mixed State by Detection of Single 3 eV Photons in a Magnetic Penetration Thermometer

    NASA Technical Reports Server (NTRS)

    Stevenson, T. R.; Balvin, M. A.; Bandler, S. R.; Denis, K. L.; Lee, S.-J.; Nagler, P. C.; Smith, S. J.

    2015-01-01

    We report on measurements of the detected signal pulses in a molybdenum-gold Magnetic Penetration Thermometer (MPT) in response to absorption of one or more 3 eV photons. We designed and used this MPT sensor for x-ray microcalorimetry. In this device, the diamagnetic response of a superconducting MoAu bilayer is used to sense temperature changes in response to absorbed photons, and responsivity is enhanced by a Meissner transition in which the magnetic flux penetrating the sensor changes rapidly to minimize free energy in a mixed superconducting normal state. We have previously reported on use of our MPT to study a thermal phonon energy loss to the substrate when absorbing x-rays. We now describe results of extracting heat capacity C and thermal conductance G values from pulse height and decay time of MPT pulses generated by 3 eV photons. The variation in C and G at temperatures near the Meissner transition temperature (set by an internal magnetic bias field) allow us to probe the behavior in superconducting normal mixed state of the condensation energy and the electron cooling power resulting from quasi-particle recombination and phonon emission. The information gained on electron cooling power is also relevant to the operation of other superconducting detectors, such as Microwave Kinetic Inductance Detectors.

  16. Ion beam sputter deposited zinc telluride films

    NASA Technical Reports Server (NTRS)

    Gulino, D. A.

    1986-01-01

    Zinc telluride is of interest as a potential electronic device material, particularly as one component in an amorphous superlattice, which is a new class of interesting and potentially useful materials. Some structural and electronic properties of ZnTe films deposited by argon ion beam sputter deposition are described. Films (up to 3000 angstroms thick) were deposited from a ZnTe target. A beam energy of 1000 eV and a current density of 4 mA/sq cm resulted in deposition rates of approximately 70 angstroms/min. The optical band gap was found to be approximately 1.1 eV, indicating an amorphous structure, as compared to a literature value of 2.26 eV for crystalline material. Intrinsic stress measurements showed a thickness dependence, varying from tensile for thicknesses below 850 angstroms to compressive for larger thicknesses. Room temperature conductivity measurement also showed a thickness dependence, with values ranging from 1.86 x 10 to the -6th/ohm cm for 300 angstrom film to 2.56 x 10 to the -1/ohm cm for a 2600 angstrom film. Measurement of the temperature dependence of the conductivity for these films showed complicated behavior which was thickness dependent. Thinner films showed at least two distinct temperature dependent conductivity mechanisms, as described by a Mott-type model. Thicker films showed only one principal conductivity mechanism, similar to what might be expected for a material with more crystalline character.

  17. Ion beam sputter deposited zinc telluride films

    NASA Technical Reports Server (NTRS)

    Gulino, D. A.

    1985-01-01

    Zinc telluride is of interest as a potential electronic device material, particularly as one component in an amorphous superlattice, which is a new class of interesting and potentially useful materials. Some structural and electronic properties of ZnTe films deposited by argon ion beam sputter depoairion are described. Films (up to 3000 angstroms thick) were deposited from a ZnTe target. A beam energy of 1000 eV and a current density of 4 mA/sq. cm. resulted in deposition rates of approximately 70 angstroms/min. The optical band gap was found to be approximately 1.1 eV, indicating an amorphous structure, as compared to a literature value of 2.26 eV for crystalline material. Intrinsic stress measurements showed a thickness dependence, varying from tensile for thicknesses below 850 angstroms to compressive for larger thicknesses. Room temperature conductivity measurement also showed a thickness dependence, with values ranging from 1.86 x to to the -6/ohm. cm. for 300 angstrom film to 2.56 x 10 to the -1/ohm. cm. for a 2600 angstrom film. Measurement of the temperature dependence of the conductivity for these films showed complicated behavior which was thickness dependent. Thinner films showed at least two distinct temperature dependent conductivity mechanisms, as described by a Mott-type model. Thicker films showed only one principal conductivity mechanism, similar to what might be expected for a material with more crystalline character.

  18. Experimental characterization of hollow-cathode plasma sources at Frascati

    NASA Technical Reports Server (NTRS)

    Vannaroni, G.; Cosmovici, C. B.; Bonifazi, C.; Mccoy, J.

    1988-01-01

    An experimental characterization has been conducted for hollow cathodes applicable as plasma contactors on Space Shuttle-based experiments. The diagnostics tests were conducted in an 0.5 cu m vacuum chamber by means of Langmuir probes at various distances from the source. Two electron populations are noted, one in the 0.3-1 eV and the other in the 7-11 eV temperature range. Current developments in the design of plasma chambers incorporating magnetic field compensation are noted.

  19. The Statistical Properties of Solar Wind Temperature Parameters Near 1 au

    NASA Astrophysics Data System (ADS)

    Wilson, Lynn B., III; Stevens, Michael L.; Kasper, Justin C.; Klein, Kristopher G.; Maruca, Bennett A.; Bale, Stuart D.; Bowen, Trevor A.; Pulupa, Marc P.; Salem, Chadi S.

    2018-06-01

    We present a long-duration (∼10 yr) statistical analysis of the temperatures, plasma betas, and temperature ratios for the electron, proton, and alpha-particle populations observed by the Wind spacecraft near 1 au. The mean(median) scalar temperatures are T e,tot = 12.2(11.9) eV, T p,tot = 12.7(8.6) eV, and T α,tot = 23.9(10.8) eV. The mean(median) total plasma betas are β e,tot = 2.31(1.09), β p,tot = 1.79(1.05), and β α,tot = 0.17(0.05). The mean(median) temperature ratios are (T e /T p )tot = 1.64(1.27), (T e /T α )tot = 1.24(0.82), and (T α /T p )tot = 2.50(1.94). We also examined these parameters during time intervals that exclude interplanetary (IP) shocks, times within the magnetic obstacles (MOs) of interplanetary coronal mass ejections (ICMEs), and times that exclude MOs. The only times that show significant alterations to any of the parameters examined are those during MOs. In fact, the only parameter that does not show a significant change during MOs is the electron temperature. Although each parameter shows a broad range of values, the vast majority are near the median. We also compute particle–particle collision rates and compare to effective wave–particle collision rates. We find that, for reasonable assumptions of wave amplitude and occurrence rates, the effect of wave–particle interactions on the plasma is equal to or greater than the effect of Coulomb collisions. Thus, wave–particle interactions should not be neglected when modeling the solar wind.

  20. Magnetism and electronic structure of CoFeCrX (X = Si, Ge) Heusler alloys

    NASA Astrophysics Data System (ADS)

    Jin, Y.; Kharel, P.; Lukashev, P.; Valloppilly, S.; Staten, B.; Herran, J.; Tutic, I.; Mitrakumar, M.; Bhusal, B.; O'Connell, A.; Yang, K.; Huh, Y.; Skomski, R.; Sellmyer, D. J.

    2016-08-01

    The structural, electronic, and magnetic properties of CoFeCrX (X = Si, Ge) Heusler alloys have been investigated. Experimentally, the alloys were synthesized in the cubic L21 structure with small disorder. The cubic phase of CoFeCrSi was found to be highly stable against heat treatment, but CoFeCrGe disintegrated into other new compounds when the temperature reached 402 °C (675 K). Although the first-principle calculation predicted the possibility of tetragonal phase in CoFeCrGe, the tetragonal phase could not be stabilized experimentally. Both CoFeCrSi and CoFeCrGe compounds showed ferrimagnetic spin order at room temperature and have Curie temperatures (TC) significantly above room temperature. The measured TC for CoFeCrSi is 790 K but that of CoFeCrGe could not be measured due to its dissociation into new compounds at 675 K. The saturation magnetizations of CoFeCrSi and CoFeCrGe are 2.82 μB/f.u. and 2.78 μB/f.u., respectively, which are close to the theoretically predicted value of 3 μB/f.u. for their half-metallic phases. The calculated band gaps for CoFeCrSi and CoFeCrGe are, respectively, 1 eV and 0.5 eV. These materials have potential for spintronic device applications, as they exhibit half-metallic electronic structures with large band gaps, and Curie temperatures significantly above room temperature.

  1. Scale Factor and Noise Performance Tests of the Bendix Corporation Rate Gyro Assembly (RGA).

    DTIC Science & Technology

    1980-08-01

    tiltmeters , seismometers, and an ambient temperature monitor. 3.2 Test Support Equipment Bendix supplied all necessary test support equipment and...001A 2-Axis Tiltmeter Electrotechnical Lab EV22C Portable Seismic Mon- itor (PRM) Sensors USAF Sieler Laboratory PSM Electronics Rockland 816...acquisition system recorded the tiltmeter , seismometer, and temperature data on magnetic tape. The seismic, tilt, and temperature information was filtered

  2. Modelling Photoelectron Production in the Enceladus Plume and Comparison with Observations by CAPS-ELS

    NASA Astrophysics Data System (ADS)

    Taylor, S. A.; Coates, A. J.; Jones, G.; Wellbrock, A.; Waite, J. H., Jr.

    2016-12-01

    The Electron Spectrometer (ELS) of the Cassini Plasma Spectrometer (CAPS) measures electrons in the energy range 0.6-28,000 eV with an energy resolution of 16.7%. ELS has observed photoelectrons produced in the plume of Enceladus. These photoelectrons are found during Enceladus encounters in the energetic particle shadow where the spacecraft is shielded from penetrating radiation by the moon [Coates et al, 2013]. Observable is a population of photoelectrons at 20-30eV, which are seen at other bodies in the solar system and are usually associated with ionisation by the strong solar He II (30.4 nm) line. We have identified secondary peaks at 40-50eV detected by ELS which are also interpreted as a warmer population of photoelectrons created through the ionisation of neutrals in the Enceladus torus. We have constructed a model of photoelectron production in the plume and compared it with ELS Enceladus flyby data using automated fitting procedures. This has yielded estimates for electron temperature and density as well as a spacecraft potential estimate which is corrected for.

  3. Structural, Electronic, and Thermodynamic Properties of Tetragonal t-SixGe3−xN4

    PubMed Central

    Han, Chenxi; Chai, Changchun; Fan, Qingyang; Yang, Jionghao; Yang, Yintang

    2018-01-01

    The structural, mechanical, anisotropic, electronic, and thermal properties of t-Si3N4, t-Si2GeN4, t-SiGe2N4, and t-Ge3N4 in the tetragonal phase are systematically investigated in the present work. The mechanical stability is proved by the elastic constants of t-Si3N4, t-Si2GeN4, t-SiGe2N4, and t-Ge3N4. Moreover, they all demonstrate brittleness, because B/G < 1.75, and v < 0.26. The elastic anisotropy of t-Si3N4, t-Si2GeN4, t-SiGe2N4, and t-Ge3N4 is characterized by Poisson’s ratio, Young’s modulus, the percentage of elastic anisotropy for bulk modulus AB, the percentage of elastic anisotropy for shear modulus AG, and the universal anisotropic index AU. The electronic structures of t-Si3N4, t-Si2GeN4, t-SiGe2N4, and t-Ge3N4 are all wide band gap semiconductor materials, with band gaps of 4.26 eV, 3.94 eV, 3.83 eV, and 3.25 eV, respectively, when using the Heyd-Scuseria-Ernzerhof (HSE06) hybrid functional. Moreover, t-Ge3N4 is a quasi-direct gap semiconductor material. The thermodynamic properties of t-Si3N4, t-Si2GeN4, t-SiGe2N4, and t-Ge3N4 are investigated utilizing the quasi-harmonic Debye model. The effects of temperature and pressure on the thermal expansion coefficient, heat capacity, Debye temperature, and Grüneisen parameters are discussed in detail. PMID:29518943

  4. Supercharging of the Lunar Surface by Solar Wind Halo Electrons

    NASA Astrophysics Data System (ADS)

    Stubbs, T. J.; Farrell, W. M.; Collier, M. R.; Halekas, J. S.; Delory, G. T.; Holland, M. P.; Vondrak, R. R.

    2007-12-01

    Lunar surface potentials can reach several kilovolts negative during Solar Energetic Particle (SEPs) events, as indicated by recent analysis of data from the Lunar Prospector Electron Reflectometer (LP/ER). The lunar surface- plasma interactions that result in such extreme surface potentials are poorly characterized and understood. Extreme lunar surface charging, and the associated electrostatic discharges and transport of charged dust, will likely present significant hazards to future human explorers. This is of particular concern near the terminator and polar regions, such as the South Pole/Aiken Basin site planned for NASA's manned outpost. It is the flux of electrons from the ambient plasma that charges the surface of the Moon to negative potentials. In the solar wind, the electron temperature is typically ~10 eV which tends to charge the lunar surface to ~100 V negative in shadow. However, during space weather events the solar wind electrons are often better described by the sum of two Maxwellian distributions, referred to as the "core" and "halo" components. The core electrons are relatively cool and dense (e.g., ~10 eV and ~10/cc), whereas the halo electrons are hot and tenuous (e.g., ~100 eV and ~0.1/cc). Despite, the tenuous nature of the halo electrons, our surface charging model - using core and halo electron data derived from the Solar Wind Experiment (SWE) aboard the Wind spacrcraft - predicts that they are capable of "supercharging" the lunar surface to kilovolt potentials during space weather events, which could explain the LP/ER observations.

  5. Effect of the lattice dynamics on the electronic structure of paramagnetic NiO within the disordered local moment picture

    NASA Astrophysics Data System (ADS)

    Mozafari, Elham; Alling, Björn; Belov, Maxim P.; Abrikosov, Igor A.

    2018-01-01

    Using the disordered local moments approach in combination with the ab initio molecular dynamics method, we simulate the behavior of a paramagnetic phase of NiO at finite temperatures to investigate the effect of magnetic disorder, thermal expansion, and lattice vibrations on its electronic structure. In addition, we study its lattice dynamics. We verify the reliability of our theoretical scheme via comparison of our results with available experiment and earlier theoretical studies carried out within static approximations. We present the phonon dispersion relations for the paramagnetic rock-salt (B1) phase of NiO and demonstrate that it is dynamically stable. We observe that including the magnetic disorder to simulate the paramagnetic phase has a small yet visible effect on the band gap. The amplitude of the local magnetic moment of Ni ions from our calculations for both antiferromagnetic and paramagnetic phases agree well with other theoretical and experimental values. We demonstrate that the increase of temperature up to 1000 K does not affect the electronic structure strongly. Taking into account the lattice vibrations and thermal expansion at higher temperatures have a major impact on the electronic structure, reducing the band gap from ˜3.5 eV at 600 K to ˜2.5 eV at 2000 K. We conclude that static lattice approximations can be safely employed in simulations of the paramagnetic state of NiO up to relatively high temperatures (˜1000 K), but as we get closer to the melting temperature vibrational effects become quite large and therefore should be included in the calculations.

  6. Population kinetics on K alpha lines of partially ionized Cl atoms.

    PubMed

    Kawamura, Tohru; Nishimura, Hiroaki; Koike, Fumihiro; Ochi, Yoshihiro; Matsui, Ryoji; Miao, Wen Yong; Okihara, Shinichiro; Sakabe, Shuji; Uschmann, Ingo; Förster, Eckhart; Mima, Kunioki

    2002-07-01

    A population kinetics code was developed to analyze K alpha emission from partially ionized chlorine atoms in hydrocarbon plasmas. Atomic processes are solved under collisional-radiative equilibrium for two-temperature plasmas. It is shown that the fast electrons dominantly contribute to ionize the K-shell bound electrons (i.e., inner-shell ionization) and the cold electrons to the outer-shell bound ones. Ratios of K alpha lines of partially ionized atoms are presented as a function of cold-electron temperature. The model was validated by observation of the K alpha lines from a chlorinated plastic target irradiated with 1 TW Ti:sapphire laser pulses at 1.5 x 10(17) W/cm(2), inferring a plasma temperature of about 100 eV on the target surface.

  7. Phase transformation from cubic ZnS to hexagonal ZnO by thermal annealing

    NASA Astrophysics Data System (ADS)

    Mahmood, K.; Asghar, M.; Amin, N.; Ali, Adnan

    2015-03-01

    We have investigated the mechanism of phase transformation from ZnS to hexagonal ZnO by high-temperature thermal annealing. The ZnS thin films were grown on Si (001) substrate by thermal evaporation system using ZnS powder as source material. The grown films were annealed at different temperatures and characterized by X-ray diffraction (XRD), photoluminescence (PL), four-point probe, scanning electron microscope (SEM) and energy dispersive X-ray diffraction (EDX). The results demonstrated that as-deposited ZnS film has mixed phases but high-temperature annealing leads to transition from ZnS to ZnO. The observed result can be explained as a two-step process: (1) high-energy O atoms replaced S atoms in lattice during annealing process, and (2) S atoms diffused into substrate and/or diffused out of the sample. The dissociation energy of ZnS calculated from the Arrhenius plot of 1000/T versus log (resistivity) was found to be 3.1 eV. PL spectra of as-grown sample exhibits a characteristic green emission at 2.4 eV of ZnS but annealed samples consist of band-to-band and defect emission of ZnO at 3.29 eV and 2.5 eV respectively. SEM and EDX measurements were additionally performed to strengthen the argument.

  8. High-temperature electronic structure with the Korringa-Kohn-Rostoker Green's function method

    NASA Astrophysics Data System (ADS)

    Starrett, C. E.

    2018-05-01

    Modeling high-temperature (tens or hundreds of eV), dense plasmas is challenging due to the multitude of non-negligible physical effects including significant partial ionization and multisite effects. These effects cause the breakdown or intractability of common methods and approximations used at low temperatures, such as pseudopotentials or plane-wave basis sets. Here we explore the Korringa-Kohn-Rostoker Green's function method at these high-temperature conditions. The method is all electron, does not rely on pseudopotentials, and uses a spherical harmonic basis set, and so avoids the aforementioned limitations. It is found to be accurate for solid density aluminum and iron plasmas when compared to a plane-wave method at low temperature, while being able to access high temperatures.

  9. Suprathermal plasma analyzer for the measurement of low-energy electron distribution in the ionosphere.

    PubMed

    Shimoyama, M; Oyama, K-I; Abe, T; Yau, A W

    2011-07-01

    It is commonly believed that an energy transfer from thermal to suprathermal electrons (

  10. A comparison between detailed and configuration-averaged collisional-radiative codes applied to nonlocal thermal equilibrium plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poirier, M.; Gaufridy de Dortan, F. de

    A collisional-radiative model describing nonlocal-thermodynamic-equilibrium plasmas is developed. It is based on the HULLAC (Hebrew University Lawrence Livermore Atomic Code) suite for the transitions rates, in the zero-temperature radiation field hypothesis. Two variants of the model are presented: the first one is configuration averaged, while the second one is a detailed level version. Comparisons are made between them in the case of a carbon plasma; they show that the configuration-averaged code gives correct results for an electronic temperature T{sub e}=10 eV (or higher) but fails at lower temperatures such as T{sub e}=1 eV. The validity of the configuration-averaged approximation ismore » discussed: the intuitive criterion requiring that the average configuration-energy dispersion must be less than the electron thermal energy turns out to be a necessary but far from sufficient condition. Another condition based on the resolution of a modified rate-equation system is proposed. Its efficiency is emphasized in the case of low-temperature plasmas. Finally, it is shown that near-threshold autoionization cascade processes may induce a severe failure of the configuration-average formalism.« less

  11. X-ray scattering study of pyrochlore iridates: Crystal structure, electronic, and magnetic excitations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clancy, J. P.; Gretarsson, H.; Lee, E. K. H.

    2016-07-06

    We have investigated the structural, electronic, and magnetic properties of the pyrochlore iridates Eu 2Ir 2O 7 and Pr 2Ir 2O 7 using a combination of resonant elastic x-ray scattering, x-ray powder diffraction, and resonant inelastic x-ray scattering (RIXS). The structural parameters of Eu 2Ir 2O 7 have been examined as a function of temperature and applied pressure, with a particular emphasis on regions of the phase diagram where electronic and magnetic phase transitions have been reported. We find no evidence of crystal symmetry change over the range of temperatures (~6 to 300 K) and pressures (~0.1 to 17 GPa)more » studied. We have also investigated the electronic and magnetic excitations in single-crystal samples of Eu 2Ir 2O 7 and Pr 2Ir 2O 7 using high-resolution Ir L- 3-edge RIXS. In spite of very different ground state properties, we find that these materials exhibit qualitatively similar excitation spectra, with crystal field excitations at ~3-5 eV, spin-orbit excitations at ~ 0.5-1 eV, and broad low-lying excitations below ~0.15 eV. In single-crystal samples of "Eu-rich" Eu 2Ir 2O 7 (found to possess an actual stoichiometry of Eu 2.18Ir 1.82O 7.06) we observe highly damped magnetic excitations at ~45 meV, which display significant momentum dependence. Here, we compare these results with recent dynamical structure factor calculations« less

  12. A compact new incoherent Thomson scattering diagnostic for low-temperature plasma studies

    NASA Astrophysics Data System (ADS)

    Vincent, Benjamin; Tsikata, Sedina; Mazouffre, Stéphane; Minea, Tiberiu; Fils, Jérôme

    2018-05-01

    Incoherent Thomson scattering (ITS) has a long history of application for the determination of electron density and temperature in dense fusion plasmas, and in recent years, has been increasingly extended to studies in low-temperature plasma environments. In this work, the design and preliminary implementation of a new, sensitive and uniquely compact ITS platform known as Thomson scattering experiments for low temperature ion sources are described. Measurements have been performed on a hollow cathode plasma source, providing access to electron densities as low as 1016 m‑3 and electron temperatures of a few eV and below. This achievement has been made possible by the implementation of a narrow volume Bragg grating notch filter for the attenuation of stray light, a feature which guarantees compactness and reduced transmission losses in comparison to standard ITS platforms.

  13. Electronic structure study of wide band gap magnetic semiconductor (La0.6Pr0.4)0.65Ca0.35MnO3 nanocrystals in paramagnetic and ferromagnetic phases

    NASA Astrophysics Data System (ADS)

    Dwivedi, G. D.; Joshi, Amish G.; Kumar, Shiv; Chou, H.; Yang, K. S.; Jhong, D. J.; Chan, W. L.; Ghosh, A. K.; Chatterjee, Sandip

    2016-04-01

    X-ray circular magnetic dichroism (XMCD), X-ray photoemission spectroscopy (XPS), and ultraviolet photoemission spectroscopy (UPS) techniques were used to study the electronic structure of nanocrystalline (La0.6Pr0.4)0.65Ca0.35MnO3 near Fermi-level. XMCD results indicate that Mn3+ and Mn4+ spins are aligned parallel to each other at 20 K. The low M-H hysteresis curve measured at 5 K confirms ferromagnetic ordering in the (La0.6Pr0.4)0.65Ca0.35MnO3 system. The low temperature valence band XPS indicates that coupling between Mn3d and O2p is enhanced and the electronic states near Fermi-level have been suppressed below TC. The valence band UPS also confirms the suppression of electronic states near Fermi-level below Curie temperature. UPS near Fermi-edge shows that the electronic states are almost absent below 0.5 eV (at 300 K) and 1 eV (at 115 K). This absence clearly demonstrates the existence of a wide band-gap in the system since, for hole-doped semiconductors, the Fermi-level resides just above the valence band maximum.

  14. Peculiar enhancement of the excitonic emission of CdSe/ZnSe quantum wells at ˜ 90 K when excited with a HeCd laser

    NASA Astrophysics Data System (ADS)

    Alfaro-Martínez, Adrián; Hernández-Calderón, Isaac

    2018-02-01

    The close coincidence at low temperatures of the HeCd blue laser line (442 nm, Elaser = 2.808 eV) with the ZnSe bandgap, Eg = 2.821 eV, and with the excitonic emission at ˜2.80 eV, allows the observation of peculiar effects during photoluminescence studies of CdSe/ZnSe quantum wells with a typical experimental setup. One effect is the enhancement of the excitonic emission at ˜ 90 - 100 K; the second effect is the presence of strong longitudinal optical (LO) phonon lines (in a broad temperature range) due to resonant Raman scattering. Here, we will show that the enhancement of the excitonic emission, that can be misinterpreted as caused by an intrinsic temperature dependent behavior of the quantum wells, is due to the high absorption of the blue laser light by the barriers when the ZnSe bandgap coincides with Elaser at ˜ 90 K, electron and holes produced in the barriers diffuse to the quantum wells enhancing their excitonic emission.

  15. Degradation of Leakage Currents and Reliability Prediction for Tantalum Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2016-01-01

    Two types of failures in solid tantalum capacitors, catastrophic and parametric, and their mechanisms are described. Analysis of voltage and temperature reliability acceleration factors reported in literature shows a wide spread of results and requires more investigation. In this work, leakage currents in two types of chip tantalum capacitors were monitored during highly accelerated life testing (HALT) at different temperatures and voltages. Distributions of degradation rates were approximated using a general log-linear Weibull model and yielded voltage acceleration constants B = 9.8 +/- 0.5 and 5.5. The activation energies were Ea = 1.65 eV and 1.42 eV. The model allows for conservative estimations of times to failure and was validated by long-term life test data. Parametric degradation and failures are reversible and can be annealed at high temperatures. The process is attributed to migration of charged oxygen vacancies that reduce the barrier height at the MnO2/Ta2O5 interface and increase injection of electrons from the MnO2 cathode. Analysis showed that the activation energy of the vacancies' migration is 1.1 eV.

  16. Room temperature ammonia and VOC sensing properties of CuO nanorods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhuvaneshwari, S.; Gopalakrishnan, N., E-mail: ngk@nitt.edu

    Here, we report a NH{sub 3} and Volatile Organic Compounds (VOCs) sensing prototype of CuO nanorods with peculiar sensing characteristics at room temperature. High quality polycrystalline nanorods were synthesized by a low temperature hydrothermal method. The rods are well oriented with an aspect ratio of 5.71. Luminescence spectrum of CuO nanorods exhibited a strong UV-emission around 415 nm (2.98 eV) which arises from the electron-hole recombination phenomenon. The absence of further deep level emissions establishes the lack of defects such as oxygen vacancies and Cu interstitials. At room temperature, the sensor response was recorded over a range of gas concentrations frommore » 100-600 ppm of ammonia, ethanol and methanol. The sensor response showed power law dependence with the gas concentration. This low temperature sensing can be validated by the lower value of calculated activation energy of 1.65 eV observed from the temperature dependent conductivity measurement.« less

  17. Doping of Ga in antiferromagnetic semiconductor α-Cr2O3 and its effects on magnetic and electronic properties

    NASA Astrophysics Data System (ADS)

    Bhowmik, R. N.; Venkata Siva, K.; Ranganathan, R.; Mazumdar, Chandan

    2017-06-01

    The samples of Ga-doped Cr2O3 have been prepared using chemical co-precipitation route. X-ray diffraction pattern and Raman spectra have indicated rhombohedral crystal structure with space group R 3 bar C. Magnetic measurements indicated diluted antiferromagnetic (AFM) spin order in Ga-doped α-Cr2O3 and ferrimagnetic ordering of spins at about 50-60 K is confirmed from the analysis of the temperature dependence of dc magnetization and ac susceptibility data. Apart from magnetic dilution effect, the samples have shown superparamagnetic behavior below 50 K due to frustrated surface spins of the nano-sized grains. The samples have shown non-linear electronic properties. The current-voltage (I-V) characteristics of the Ga-doped α-Cr2O3 samples are remarkably different from α-Cr2O3 sample. The bi-stable electronic states and negative differential resistance are some of the unique non-linear electronic properties that the I-V curves of Ga-doped samples have exhibited. Optical study revealed three electronic transitions in the samples associated with band gap energy at about 2.67-2.81 eV, 1.91-2.11 eV, 1.28-1.35 eV, respectively. The results indicated multi-level electronic structure in Ga-doped α-Cr2O3 system.

  18. Refractory clad transient internal probe for magnetic field measurements in high temperature plasmas

    NASA Astrophysics Data System (ADS)

    Kim, Hyundae; Cellamare, Vincent; Jarboe, Thomas R.; Mattick, Arthur T.

    2005-05-01

    The transient internal probe (TIP) is a diagnostic for local internal field measurements in high temperature plasmas. A verdet material, which rotates the polarization angle of the laser light under magnetic fields, is launched into a plasma at about 1.8km/s. A linearly polarized Ar+ laser illuminates the probe in transit and the light retroreflected from the probe is analyzed to determine the local magnetic field profiles. The TIP has been used for magnetic field measurements on the helicity injected torus where electron temperature Te⩽80eV. In order to apply the TIP in higher temperature plasmas, refractory clad probes have been developed utilizing a sapphire tube, rear disc, and a MgO window on the front. The high melting points of these refractory materials should allow probe operation at plasma electron temperatures up to Te˜300eV. A retroreflecting probe has also been developed using "catseye" optics. The front window is replaced with a plano-convex MgO lens, and the back surface of the probe is aluminized. This approach reduces spurious polarization effects and provides refractory cladding for the probe entrance face. In-flight measurements of a static magnetic field demonstrate the ability of the clad probes to withstand gun-launch acceleration, and provide high accuracy measurements of magnetic field.

  19. Crystal and electronic structure of copper sulfides

    NASA Astrophysics Data System (ADS)

    Lukashev, Pavel

    Copper sulfides with different copper concentration exist in mineral form ranging from CuS to Cu2S. Among these, chalcosite Cu 2S, and digenite Cu1.8S were the subject of extensive research for decades mainly because of their use as the absorber in photovoltaic cells. Yet; their electronic structure is poorly understood because their crystal structure is complex. Most of the results published so far report the semiconducting nature of these compounds with the energy band gap being in the range of 0.84 to 1.9 eV. The crystal structure consists of a close-packed lattice of S with mobile Cu occupying various types of interstitial sites with a statistical distribution depending on temperature. In this thesis we present the first computational study of their electronic band structure. Initially, we investigated the simpler antifluorite structure. Both local density approximation (LDA) and self-consistent quasiparticle GW calculations with the full-potential linearized muffin-tin orbital method give a semimetallic band structure. Inspection of the nature of the bands shows that the lowest conduction band is mainly Cu-s-like except right near the center of the Brillouin zone where a Cu-s-like state lies about 1 eV below the valence band maximum. Significantly, in GW calculations, this state shifts up by several 0.1 eV but not sufficiently to open a gap. A random distortion of the Cu atoms from the perfect antifluorite positions is found to break the degeneracy of the d state at the Gamma-point and thus opens up a small gap of about 0.1 eV in LDA. As our next step we constructed supercell models for the cubic and hexagonal phases with the Cu positions determined by a weighted random number generator. The low temperature monoclinic phase was also studied. The computed total energies of these structures follow the same order as the reported phases with increasing temperatures. All these models gave similar small band gaps of order 0.1-0.2 eV. However, their conduction band is now mainly s-like and addition of an expected Cu-s level shift opens the gap to about 0.5 eV. Some simpler hexagonal model structures gave slightly larger band gap but were found to be unrealistic. The optical absorption data all show a strong intraband absorption with a minimum in absorption at about 1 eV. Our calculations suggest a significantly lower gap of order 0.5 eV with low absorption cross section, the true nature of which is masked by the free carrier absorption. As part of our study of the related Cu-compounds, we analyzed the quasiparticle effects beyond LDA obtained from a GW calculation on the effective masses and Kohn-Luttinger hamiltonian parameters for CuBr.

  20. Electron beam irradiated ITO films as highly transparent p-type electrodes for GaN-based LEDs.

    PubMed

    Hong, C H; Wie, S M; Park, M J; Kwak, J S

    2013-08-01

    We have investigated the effect of electron beam irradiation on the electrical and optical properties of ITO film prepared by magnetron sputtering method at room temperature. Electron beam irradiation to the ITO films resulted in a significant decrease in sheet resistance from 1.28 x 10(-3) omega cm to 2.55 x 10(-4) omega cm and in a great increase in optical band gap from 3.72 eV to 4.16 eV, followed by improved crystallization and high transparency of 97.1% at a wavelength of 485 nm. The overall change in electrical, optical and structural properties of ITO films is related to annealing effect and energy transfer of electron by electron beam irradiation. We also fabricated GaN-based light-emitting diodes (LEDs) by using the ITO p-type electrode with/without electron beam irradiation. The results show that the LEDs having ITO p-electrode with electron beam irradiation produced higher output power due to the low absorption of light in the p-type electrode.

  1. Influence of carrier density on the electronic cooling channels of bilayer graphene

    NASA Astrophysics Data System (ADS)

    Limmer, T.; Houtepen, A. J.; Niggebaum, A.; Tautz, R.; Da Como, E.

    2011-09-01

    We study the electronic cooling dynamics in a single flake of bilayer graphene by femtosecond transient absorption probing the photon-energy range 0.25-1.3 eV. From the transients, we extract the carrier cooling curves for different initial temperatures and densities of the photoexcited electrons and holes. Two regimes of carrier cooling, dominated by optical and acoustic phonons emission, are clearly identified. For increasing carrier density, the crossover between the two regimes occurs at larger carrier temperatures, since cooling via optical phonons experiences a bottleneck. Acoustic phonons, which are less sensitive to saturation, show an increasing contribution at high density.

  2. Inner magnetospheric electron temperature and spacecraft potential estimated from concurrent Polar upper hybrid frequency and relative potential measurements

    NASA Astrophysics Data System (ADS)

    Boardsen, S. A.; Adrian, M. L.; Pfaff, R.; Menietti, J. D.

    2014-10-01

    Direct measurement of low < 1 eV electron temperature is difficult to make in the Earth's inner magnetosphere for electron densities (Ne) < 3 × 102 cm-3. We compute these quantities by solving current balance equations in low-density regions. Concurrent measurements from the Polar spacecraft of the relative potential (VS - VP), between the spacecraft body and the electric field probe, and the electron density (Ne), derived from upper hybrid frequency (fUHR), were used in the current balance equations to solve for the electron temperature (Te), Vs, and Vp. Where VP is the probe potential and VS is the spacecraft potential relative to the nearby plasma. The assumption that the bulk plasma electrons are Maxwellian is used in the computations. Our data set covered 1.5 years of measurements when fUHR was detectable (L < 10). The following "averaged" Te versus L relation for 3 < L < 5 was obtained: Te = 0.58 + 0.49 (L - 3) eV. This expression is in reasonable agreement with extrapolations of ionospheric Te measurements by Akebono at lower altitudes. However, the solution is sensitive to the photoemission coefficients, substituting those of Scudder et al. (2000) with those of Escoubet et al. (1997), the Te curve shifted upward by ~1 eV. Also, the solution is sensitive to measurement error of VS - VP, applying a voltage shift of ±0.1 and ±0.2 V to VS - VP, the relative median error for our data set was computed to be 0.27 and 1.04, respectively. We believe that our Te values computed outside the plasmasphere are unrealistically low. We conclude that this method shows promise inside the plasmasphere but should be used with caution. We also quantified the Ne versus VS - VP relationship. The running median Ne versus VS - VP curve shows no significant variation over the 1.5 year period of the data set, suggesting that the photoemission coefficients did not change significantly over this time span. The Scudder et al. (2000) Ne model, based on only one Polar orbit, is in reasonable agreement (within a factor of 2) with our results.

  3. Electronic and transformation properties of a metastable defect introduced in epitaxially grown boron-doped p-type Si by alpha particle irradiation

    NASA Astrophysics Data System (ADS)

    Mamor, M.; Auret, F. D.; Goodman, S. A.; Meyer, W. E.; Myburg, G.

    1998-06-01

    Titanium (Ti) Schottky barrier diodes on epitaxially grown boron-doped p-type Si films with a free carrier density of 6-8×1016cm-3 were irradiated with alpha particles at room temperature using an americium-241 (Am-241) radio nuclide. We report the electronic and transformation characteristics of an α-particle irradiation-induced defect Hα2 in epitaxially grown p-Si with metastable properties. The energy level and apparent capture cross section, as determined by deep-level transient spectroscopy, are Ev+0.43 eV and 1.4×10-15 cm2, respectively. This defect can be removed and re-introduced using a conventional bias-on/off cooling technique.

  4. Electron emission from deep level defects EL2 and EL6 in semi-insulating GaAs observed by positron drift velocity transient measurements

    NASA Astrophysics Data System (ADS)

    Tsia, J. M.; Ling, C. C.; Beling, C. D.; Fung, S.

    2002-09-01

    A plus-or-minus100 V square wave applied to a Au/semi-insulating SI-GaAs interface was used to bring about electron emission from and capture into deep level defects in the region adjacent to the interface. The electric field transient resulting from deep level emission was studied by monitoring the positron drift velocity in the region. A deep level transient spectrum was obtained by computing the trap emission rate as a function of temperature and two peaks corresponding to EL2 (Ea=0.81plus-or-minus0.15 eV) and EL6 (Ea=0.30plus-or-minus0.12 eV) have been identified.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forme, F.R.E.; Fontaine, D.; Wahlund, J.E.

    UHF and VHF data for the EISCAT incoherent scatter radar facility in northern Scandinavia is presented. Electron and ion temperatures, electron density, and ion drift velocity were measured from heights of 280 to 1500 km. Enhanced ion acoustic fluctuations are more observable with VHF than UHF radar due to wavelength effects. The fluctuations are usually associated with a large flux of precipitating electrons with energies from 100 ev to 10 kev. The spatial extent of the turbulent regions are determined. 23 refs., 6 figs.

  6. Structural defects and recombination behavior of excited carriers in Cu(In,Ga)Se2 solar cells

    NASA Astrophysics Data System (ADS)

    Yang, J.; Du, H. W.; Li, Y.; Gao, M.; Wan, Y. Z.; Xu, F.; Ma, Z. Q.

    2016-08-01

    The carriers' behavior in neutral region (NTR) and space charged region (SCR) of Cu(In,Ga)Se2 thin film based solar cells has been investigated by temperature dependent photoluminescence (PL-T), electroluminescence (EL-T) and current-voltage (IV-T) from 10 to 300 K. PL-T spectra show that three kinds of defects, namely VSe, InCu and (InCu+VCu), are localized within the band gap of NTR and SCR of CIGS layer, corresponding to the energy levels of EC-0.08, EC-0.20 and EC-0.25 eV, respectively. The InCu and (InCu+VCu) deep level defects are non-radiative recombination centers at room temperature. The IV-T and EL-T analysis reveals that the injection modes of electrons from ZnO conduction band into Cu(In,Ga)Se2 layer are tunneling, thermally-excited tunneling and thermionic emission under 10-40, 60-160, and 180-300 K, respectively. At 10-160 K, the electrons tunnel into (InCu+VCu) and Vse defect levels in band gap of SCR and the drifting is involved in the emission bands at 0.96 and 1.07 eV, which is the direct evidence for a tunneling assisted recombination. At 180-300 K, the electrons are directly injected into the Cu(In,Ga)Se2 conduction band, and the emission of 1.13 eV are ascribed to the transitions from the conduction band to the valence band.

  7. Effect of multinary substitution on electronic and transport properties of TiCoSb based half-Heusler alloys

    NASA Astrophysics Data System (ADS)

    Choudhary, Mukesh K.; Ravindran, P.

    2018-05-01

    The electronic structures of TixZrx/2CoPbxTex, TixZrx/2Hfx/2CoPbxTex (x = 0.5), and the parent compound TiCoSb were investigated using the full potential linearized augmented plane wave method. The thermoelectric transport properties of these alloys are calculated on the basis of semi-classical Boltzmann transport theory. From the band structure calculations we show that the substitution of Zr,Hf in the Ti site and Pb and Te in the Sb site lower the band gap value and also change the indirect band (IB) gap of TiCoSb to the direct band (DB) gap. The calculated band gap of TiCoSb, TixZrx/2CoPbxTex, and TixZrx/2Hfx/2CoPbxTex are 1.04 eV (IB), 0.92 eV (DB), and 0.93 eV (DB), respectively. All these alloys follow the empirical rule of 18 valence-electron content which is essential for bringing semiconductivity in half Heusler alloys. It is shown that the substitution of Hf at the Ti site improve the ZT value (˜1.05) at room temperature, whereas there is no significant difference in ZT is found at higher temperature. Based on the calculated thermoelectric transport properties, we conclude that the appropriate concentration of Hf substitution can further improve the thermoelectric performance of TixZrx/2Hfx/2CoPbxTex.

  8. The crossover between tunnel and hopping conductivity in granulated films of noble metals

    NASA Astrophysics Data System (ADS)

    Kavokin, Alexey; Kutrovskaya, Stella; Kucherik, Alexey; Osipov, Anton; Vartanyan, Tigran; Arakelyan, Sergey

    2017-11-01

    The conductivity of thin films composed by clusters of gold and silver nanoparticles has been studies in a wide range of temperatures. The switch from a temperature independence to an exponential thermal dependence of the conductivity manifests the crossover between the tunnel and thermally activated hopping regimes of the electronic transport at the temperature of 60 °C. The characteristic thermal activation energy that governs hopping of electrons between nanoparticles is estimated as 1.3 eV. We have achieved a good control of the composition and thicknesses of nano-cluster films by use of the laser ablation method in colloidal solutions.

  9. Structural and optical properties of electron beam evaporated yttria stabilized zirconia thin films

    NASA Astrophysics Data System (ADS)

    Kirubaharan, A. Kamalan; Kuppusami, P.; Singh, Akash; Dharini, T.; Ramachandran, D.; Mohandas, E.

    2015-06-01

    Yttria stabilized zirconia (10 mole % Y2O3) thin films were deposited on quartz substrates using electron beam physical vapor deposition at the substrate temperatures in the range 300 - 973 K. XRD analysis showed cubic crystalline phase of YSZ films with preferred orientation along (111). The surface roughness was found to increase with the increase of deposition temperatures. The optical band gap of ˜5.7 eV was calculated from transmittance curves. The variation in the optical properties is correlated with the changes in the microstructural features of the films prepared as a function of substrate temperature.

  10. Injection of a coaxial-gun-produced magnetized plasma into a background helicon plasma

    NASA Astrophysics Data System (ADS)

    Zhang, Yue; Lynn, Alan; Gilmore, Mark; Hsu, Scott

    2014-10-01

    A compact coaxial plasma gun is employed for experimental investigation of plasma bubble relaxation into a lower density background plasma. Experiments are being conducted in the linear device HelCat at UNM. The gun is powered by a 120-uF ignitron-switched capacitor bank, which is operated in a range of 5 to 10 kV and 100 kA. Multiple diagnostics are employed to investigate the plasma relaxation process. Magnetized argon plasma bubbles with velocities 1.2Cs, densities 1020 m-3 and electron temperature 13eV have been achieved. The background helicon plasma has density 1013 m-3, magnetic field from 200 to 500 Gauss and electron temperature 1eV. Several distinct operational regimes with qualitatively different dynamics are identified by fast CCD camera images. Additionally a B-dot probe array has been employed to measure the spatial toroidal and poloidal magnetic flux evolution to identify plasma bubble configurations. Experimental data and analysis will be presented.

  11. Zero-phonon line and fine structure of the yellow luminescence band in GaN

    NASA Astrophysics Data System (ADS)

    Reshchikov, M. A.; McNamara, J. D.; Zhang, F.; Monavarian, M.; Usikov, A.; Helava, H.; Makarov, Yu.; Morkoç, H.

    2016-07-01

    The yellow luminescence band was studied in undoped and Si-doped GaN samples by steady-state and time-resolved photoluminescence. At low temperature (18 K), the zero-phonon line (ZPL) for the yellow band is observed at 2.57 eV and attributed to electron transitions from a shallow donor to a deep-level defect. At higher temperatures, the ZPL at 2.59 eV emerges, which is attributed to electron transitions from the conduction band to the same defect. In addition to the ZPL, a set of phonon replicas is observed, which is caused by the emission of phonons with energies of 39.5 meV and 91.5 meV. The defect is called the YL1 center. The possible identity of the YL1 center is discussed. The results indicate that the same defect is responsible for the strong YL1 band in undoped and Si-doped GaN samples.

  12. Secondary electron emission from lithium and lithium compounds

    DOE PAGES

    Capece, A. M.; Patino, M. I.; Raitses, Y.; ...

    2016-07-06

    In this work, measurements of electron-induced secondary electron emission ( SEE) yields of lithium as a function of composition are presented. The results are particularly relevant for magnetic fusion devices such as tokamaks, field-reversed configurations, and stellarators that consider Li as a plasma-facing material for improved plasma confinement. SEE can reduce the sheath potential at the wall and cool electrons at the plasma edge, resulting in large power losses. These effects become significant as the SEE coefficient, γ e, approaches one, making it imperative to maintain a low yield surface. This work demonstrates that the yield from Li strongly dependsmore » on chemical composition and substantially increases after exposure to oxygen and water vapor. The total yield was measured using a retarding field analyzer in ultrahigh vacuum for primary electron energies of 20-600 eV. The effect of Li composition was determined by introducing controlled amounts of O 2 and H 2O vapor while monitoring film composition with Auger electron spectroscopy and temperature programmed desorption. The results show that the energy at which γ e = 1 decreases with oxygen content and is 145 eV for a Li film that is 17% oxidized and drops to less than 25 eV for a fully oxidized film. This work has important implications for laboratory plasmas operating under realistic vacuum conditions in which oxidation significantly alters the electron emission properties of Li walls. Published by AIP Publishing.« less

  13. Theoretical Study of Electronic Structure and Thermoelectric Properties of Doped CuAlO2

    NASA Astrophysics Data System (ADS)

    Poopanya, P.; Yangthaisong, A.; Rattanapun, C.; Wichainchai, A.

    2011-05-01

    The doping level dependence of thermoelectric properties of delafossite CuAlO2 has been investigated in the constant scattering time ( τ) approximation, starting from the first principles of electronic structure. In particular, the lattice parameters and the energy band structure were calculated using the total energy plane-wave pseudopotential method. It was found that the lattice parameters of CuAlO2 are a = 2.802 Å and c = 16.704 Å, and the internal parameter is u = 0.1097. CuAlO2 has an indirect band gap of 2.17 eV and a direct gap of 3.31 eV. The calculated energy band structures were then used to calculate the electrical transport coefficients of CuAlO2. By considering the effects of doping level and temperature, it was found that the Seebeck coefficient S( T) increases with increasing acceptor doping ( A d) level. The values of S( T) in our experiments correspond to an A d level at 0.262 eV, which is identified as the Fermi level of CuAlO2. Based on our experimental Seebeck coefficient and the electrical conductivity, the constant relaxation time is estimated to be 1 × 10-16 s. The power factor is large for a low A d level and increases with temperature. It is suggested that delafossite CuAlO2 can be considered as a promising thermoelectric oxide material at high doping and high temperature.

  14. Stacking fault related luminescence in GaN nanorods.

    PubMed

    Forsberg, M; Serban, A; Poenaru, I; Hsiao, C-L; Junaid, M; Birch, J; Pozina, G

    2015-09-04

    Optical and structural properties are presented for GaN nanorods (NRs) grown in the [0001] direction on Si(111) substrates by direct-current reactive magnetron sputter epitaxy. Transmission electron microscopy (TEM) reveals clusters of dense stacking faults (SFs) regularly distributed along the c-axis. A strong emission line at ∼3.42 eV associated with the basal-plane SFs has been observed in luminescence spectra. The optical signature of SFs is stable up to room temperatures with the activation energy of ∼20 meV. Temperature-dependent time-resolved photoluminescence properties suggest that the recombination mechanism of the 3.42 eV emission can be understood in terms of multiple quantum wells self-organized along the growth axis of NRs.

  15. Adsorption and desorption of hydrogen at nonpolar GaN (1 1 ¯ 00 ) surfaces: Kinetics and impact on surface vibrational and electronic properties

    NASA Astrophysics Data System (ADS)

    Lymperakis, L.; Neugebauer, J.; Himmerlich, M.; Krischok, S.; Rink, M.; Kröger, J.; Polyakov, V. M.

    2017-05-01

    The adsorption of hydrogen at nonpolar GaN (1 1 ¯00 ) surfaces and its impact on the electronic and vibrational properties is investigated using surface electron spectroscopy in combination with density functional theory (DFT) calculations. For the surface mediated dissociation of H2 and the subsequent adsorption of H, an energy barrier of 0.55 eV has to be overcome. The calculated kinetic surface phase diagram indicates that the reaction is kinetically hindered at low pressures and low temperatures. At higher temperatures ab initio thermodynamics show, that the H-free surface is energetically favored. To validate these theoretical predictions experiments at room temperature and under ultrahigh vacuum conditions were performed. They reveal that molecular hydrogen does not dissociatively adsorb at the GaN (1 1 ¯00 ) surface. Only activated atomic hydrogen atoms attach to the surface. At temperatures above 820 K, the attached hydrogen gets desorbed. The adsorbed hydrogen atoms saturate the dangling bonds of the gallium and nitrogen surface atoms and result in an inversion of the Ga-N surface dimer buckling. The signatures of the Ga-H and N-H vibrational modes on the H-covered surface have experimentally been identified and are in good agreement with the DFT calculations of the surface phonon modes. Both theory and experiment show that H adsorption results in a removal of occupied and unoccupied intragap electron states of the clean GaN (1 1 ¯00 ) surface and a reduction of the surface upward band bending by 0.4 eV. The latter mechanism largely reduces surface electron depletion.

  16. An automated design process for short pulse laser driven opacity experiments

    DOE PAGES

    Martin, M. E.; London, R. A.; Goluoglu, S.; ...

    2017-12-21

    Stellar-relevant conditions can be reached by heating a buried layer target with a short pulse laser. Previous design studies of iron buried layer targets found that plasma conditions are dominantly controlled by the laser energy while the accuracy of the inferred opacity is limited by tamper emission and optical depth effects. In this paper, we developed a process to simultaneously optimize laser and target parameters to meet a variety of design goals. We explored two sets of design cases: a set focused on conditions relevant to the upper radiative zone of the sun (electron temperatures of 200 to 400 eVmore » and densities greater than 1/10 of solid density) and a set focused on reaching temperatures consistent with deep within the radiative zone of the sun (500 to 1000 eV) at a fixed density. We found optimized designs for iron targets and determined that the appropriate dopant, for inferring plasma conditions, depends on the goal temperature: magnesium for up to 300 eV, aluminum for 300 to 500 eV, and sulfur for 500 to 1000 eV. The optimal laser energy and buried layer thickness increase with goal temperature. The accuracy of the inferred opacity is limited to between 11% and 31%, depending on the design. Finally, overall, short pulse laser heated iron experiments reaching stellar-relevant conditions have been designed with consideration of minimizing tamper emission and optical depth effects while meeting plasma condition and x-ray emission goals.« less

  17. Room temperature large-scale synthesis of layered frameworks as low-cost 4 V cathode materials for lithium ion batteries.

    PubMed

    Hameed, A Shahul; Reddy, M V; Nagarathinam, M; Runčevski, Tomče; Dinnebier, Robert E; Adams, Stefan; Chowdari, B V R; Vittal, Jagadese J

    2015-11-23

    Li-ion batteries (LIBs) are considered as the best available technology to push forward the production of eco-friendly electric vehicles (EVs) and for the efficient utilization of renewable energy sources. Transformation from conventional vehicles to EVs are hindered by the high upfront price of the EVs and are mainly due to the high cost of LIBs. Hence, cost reduction of LIBs is one of the major strategies to bring forth the EVs to compete in the market with their gasoline counterparts. In our attempt to produce cheaper high-performance cathode materials for LIBs, an rGO/MOPOF (reduced graphene oxide/Metal-Organic Phosphate Open Framework) nanocomposite with ~4 V of operation has been developed by a cost effective room temperature synthesis that eliminates any expensive post-synthetic treatments at high temperature under Ar/Ar-H2. Firstly, an hydrated nanocomposite, rGO/K2[(VO)2(HPO4)2(C2O4)]·4.5H2O has been prepared by simple magnetic stirring at room temperature which releases water to form the anhydrous cathode material while drying at 90 °C during routine electrode fabrication procedure. The pristine MOPOF material undergoes highly reversible lithium storage, however with capacity fading. Enhanced lithium cycling has been witnessed with rGO/MOPOF nanocomposite which exhibits minimal capacity fading thanks to increased electronic conductivity and enhanced Li diffusivity.

  18. Room temperature large-scale synthesis of layered frameworks as low-cost 4 V cathode materials for lithium ion batteries

    PubMed Central

    Hameed, A. Shahul; Reddy, M. V.; Nagarathinam, M.; Runčevski, Tomče; Dinnebier, Robert E; Adams, Stefan; Chowdari, B. V. R.; Vittal, Jagadese J.

    2015-01-01

    Li-ion batteries (LIBs) are considered as the best available technology to push forward the production of eco-friendly electric vehicles (EVs) and for the efficient utilization of renewable energy sources. Transformation from conventional vehicles to EVs are hindered by the high upfront price of the EVs and are mainly due to the high cost of LIBs. Hence, cost reduction of LIBs is one of the major strategies to bring forth the EVs to compete in the market with their gasoline counterparts. In our attempt to produce cheaper high-performance cathode materials for LIBs, an rGO/MOPOF (reduced graphene oxide/Metal-Organic Phosphate Open Framework) nanocomposite with ~4 V of operation has been developed by a cost effective room temperature synthesis that eliminates any expensive post-synthetic treatments at high temperature under Ar/Ar-H2. Firstly, an hydrated nanocomposite, rGO/K2[(VO)2(HPO4)2(C2O4)]·4.5H2O has been prepared by simple magnetic stirring at room temperature which releases water to form the anhydrous cathode material while drying at 90 °C during routine electrode fabrication procedure. The pristine MOPOF material undergoes highly reversible lithium storage, however with capacity fading. Enhanced lithium cycling has been witnessed with rGO/MOPOF nanocomposite which exhibits minimal capacity fading thanks to increased electronic conductivity and enhanced Li diffusivity. PMID:26593096

  19. An automated design process for short pulse laser driven opacity experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, M. E.; London, R. A.; Goluoglu, S.

    Stellar-relevant conditions can be reached by heating a buried layer target with a short pulse laser. Previous design studies of iron buried layer targets found that plasma conditions are dominantly controlled by the laser energy while the accuracy of the inferred opacity is limited by tamper emission and optical depth effects. In this paper, we developed a process to simultaneously optimize laser and target parameters to meet a variety of design goals. We explored two sets of design cases: a set focused on conditions relevant to the upper radiative zone of the sun (electron temperatures of 200 to 400 eVmore » and densities greater than 1/10 of solid density) and a set focused on reaching temperatures consistent with deep within the radiative zone of the sun (500 to 1000 eV) at a fixed density. We found optimized designs for iron targets and determined that the appropriate dopant, for inferring plasma conditions, depends on the goal temperature: magnesium for up to 300 eV, aluminum for 300 to 500 eV, and sulfur for 500 to 1000 eV. The optimal laser energy and buried layer thickness increase with goal temperature. The accuracy of the inferred opacity is limited to between 11% and 31%, depending on the design. Finally, overall, short pulse laser heated iron experiments reaching stellar-relevant conditions have been designed with consideration of minimizing tamper emission and optical depth effects while meeting plasma condition and x-ray emission goals.« less

  20. Room temperature large-scale synthesis of layered frameworks as low-cost 4 V cathode materials for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Hameed, A. Shahul; Reddy, M. V.; Nagarathinam, M.; Runčevski, Tomče; Dinnebier, Robert E.; Adams, Stefan; Chowdari, B. V. R.; Vittal, Jagadese J.

    2015-11-01

    Li-ion batteries (LIBs) are considered as the best available technology to push forward the production of eco-friendly electric vehicles (EVs) and for the efficient utilization of renewable energy sources. Transformation from conventional vehicles to EVs are hindered by the high upfront price of the EVs and are mainly due to the high cost of LIBs. Hence, cost reduction of LIBs is one of the major strategies to bring forth the EVs to compete in the market with their gasoline counterparts. In our attempt to produce cheaper high-performance cathode materials for LIBs, an rGO/MOPOF (reduced graphene oxide/Metal-Organic Phosphate Open Framework) nanocomposite with ~4 V of operation has been developed by a cost effective room temperature synthesis that eliminates any expensive post-synthetic treatments at high temperature under Ar/Ar-H2. Firstly, an hydrated nanocomposite, rGO/K2[(VO)2(HPO4)2(C2O4)]·4.5H2O has been prepared by simple magnetic stirring at room temperature which releases water to form the anhydrous cathode material while drying at 90 °C during routine electrode fabrication procedure. The pristine MOPOF material undergoes highly reversible lithium storage, however with capacity fading. Enhanced lithium cycling has been witnessed with rGO/MOPOF nanocomposite which exhibits minimal capacity fading thanks to increased electronic conductivity and enhanced Li diffusivity.

  1. Deep-level traps in lightly Si-doped n-GaN on free-standing m-oriented GaN substrates

    NASA Astrophysics Data System (ADS)

    Yamada, H.; Chonan, H.; Takahashi, T.; Yamada, T.; Shimizu, M.

    2018-04-01

    In this study, we investigated the deep-level traps in Si-doped GaN epitaxial layers by metal-organic chemical vapor deposition on c-oriented and m-oriented free-standing GaN substrates. The c-oriented and m-oriented epitaxial layers, grown at a temperature of 1000 °C and V/III ratio of 1000, contained carbon atomic concentrations of 1.7×1016 and 4.0×1015 cm-3, respectively. A hole trap was observed at about 0.89 eV above the valence band maximum by minority carrier transient spectroscopy. The trap concentrations in the c-oriented and m-oriented GaN epitaxial layers were consistent with the carbon atomic concentrations from secondary ion mass spectroscopy and the yellow luminescence intensity at 2.21 eV from photoluminescence. The trap concentrations in the m-oriented GaN epitaxial layers were lower than those in the c-oriented GaN. Two electron traps, 0.24 and 0.61 eV below the conduction band (EC) minimum, were observed in the c-oriented GaN epitaxial layer. In contrast, the m-oriented GaN epitaxial layer was free from the electron trap at EC - 0.24 eV, and the trap concentration at EC - 0.61 eV in the m-oriented GaN epitaxial layer was lower than that in the c-oriented GaN epitaxial layer. The m-oriented GaN epitaxial layer exhibited fewer hole and electron traps compared to the c-oriented GaN epitaxial layers.

  2. First-principles study of electronic, optical and thermoelectric properties in cubic perovskite materials AgMO3 (M = V, Nb, Ta)

    NASA Astrophysics Data System (ADS)

    Mahmood, Asif; Ramay, Shahid M.; Rafique, Hafiz Muhammad; Al-Zaghayer, Yousef; Khan, Salah Ud-Din

    2014-05-01

    In this paper, first-principles calculations of structural, electronic, optical and thermoelectric properties of AgMO3 (M = V, Nb and Ta) have been carried out using full potential linearized augmented plane wave plus local orbitals method (FP - LAPW + lo) and BoltzTraP code within the framework of density functional theory (DFT). The calculated structural parameters are found to agree well with the experimental data, while the electronic band structure indicates that AgNbO3 and AgTaO3 are semiconductors with indirect bandgaps of 1.60 eV and 1.64 eV, respectively, between the occupied O 2p and unoccupied d states of Nb and Ta. On the other hand, AgVO3 is found metallic due to the overlapping behavior of states across the Fermi level. Furthermore, optical properties, such as dielectric function, absorption coefficient, optical reflectivity, refractive index and extinction coefficient of AgNbO3 and AgTaO3, are calculated for incident photon energy up to 50 eV. Finally, we calculate thermo power for AgNbO3 and AgTaO3 at fixed doping 1019 cm-3. Electron doped thermo power of AgNbO3 shows significant increase over AgTaO3 with temperature.

  3. Grain boundary-dominated electrical conduction and anomalous optical-phonon behaviour near the Neel temperature in YFeO3 ceramics

    NASA Astrophysics Data System (ADS)

    Raut, Subhajit; Babu, P. D.; Sharma, R. K.; Pattanayak, Ranjit; Panigrahi, Simanchalo

    2018-05-01

    We investigated the anomalous behaviour in the dielectric properties, occurring nearly at room temperature and at elevated temperatures (near the Neel temperature TN) of the polycrystalline samples of YFeO3 (YFO) ceramics. On the prepared YFO ceramics, the magnetic measurements showed the Neel temperature of YFO to be 650 K, below which the compound exhibited the weak ferromagnetic behaviour. X-ray photoelectron spectroscopy (XPS) shows the presence of Fe ions (Fe2+ and Fe3+ states) and also revealed the formation of the oxygen vacancies. The frequency dependence of the complex dielectric constant within the frequency domain of 100 Hz-1 MHz shows the presence of grain dominated dielectric relaxation over the thermal window of 300-373 K. The activation energy Eact.ɛ=0.611 eV extracted from the imaginary permittivity spectrum indicates the involvement of oxygen vacancies in the relaxation process. Above 493 K, the ac conductivity, complex impedance, and modulus studies revealed appreciable conduction and relaxation processes occurring in YFO ceramics with respective activation energies Eac t . σ=1.362 eV and Eac t . Z=1.345 eV , which suggests that the oxygen vacancies are also involved for the anomalous behaviour of the dielectric constant at elevated temperatures. The temperature dependent Raman spectroscopic measurements within the thermal window of 298-698 K showed anomalous variations of the line widths and frequencies of several Raman active modes above 473 K up to the vicinity of TN pointing towards the presence of admixtures of the electron-phonon and spin-phonon coupling in the system. A further study on the thermal variation of the B2g(4) mode frequency with [M(T)/MS]2 shows the occurrence of strong spin-phonon (s-p) coupling, while the line shape shows the presence of the Fano asymmetry, suggesting spin dependent electron-phonon (e-p) coupling in the system below TN.

  4. Gallium Oxide Nanostructures for High Temperature Sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chintalapalle, Ramana V.

    Gallium oxide (Ga 2O 3) thin films were produced by sputter deposition by varying the substrate temperature (T s) in a wide range (T s=25-800 °C). The structural characteristics and electronic properties of Ga 2O 3 films were evaluated using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDS), Rutherford backscattering spectrometry (RBS) and spectrophotometric measurements. The effect of growth temperature is significant on the chemistry, crystal structure and morphology of Ga 2O 3 films. XRD and SEM analyses indicate that the Ga 2O 3 films grown at lower temperatures were amorphous while those grown at T s≥500more » oC were nanocrystalline. RBS measurements indicate the well-maintained stoichiometry of Ga 2O 3 films at T s=300-800 °C. The electronic structure determination indicated that the nanocrystalline Ga 2O 3films exhibit a band gap of ~5 eV. Tungsten (W) incorporated Ga 2O 3 films were produced by co-sputter deposition. W-concentration was varied by the applied sputtering-power. No secondary phase formation was observed in W-incorporated Ga 2O 3 films. W-induced effects were significant on the structure and electronic properties of Ga2O3 films. The band gap of Ga 2O 3 films without W-incorporation was ~5 eV. Oxygen sensor characteristics evaluated using optical and electrical methods indicate a faster response in W-doped Ga 2O 3 films compared to intrinsic Ga 2O 3 films. The results demonstrate the applicability of both intrinsic and W-doped Ga-oxide films for oxygen sensor application at temperatures ≥700 °C.« less

  5. Thomson-scattering measurements in the collective and noncollective regimes in laser produced plasmas (invited).

    PubMed

    Ross, J S; Glenzer, S H; Palastro, J P; Pollock, B B; Price, D; Tynan, G R; Froula, D H

    2010-10-01

    We present simultaneous Thomson-scattering measurements of light scattered from ion-acoustic and electron-plasma fluctuations in a N(2) gas jet plasma. By varying the plasma density from 1.5×10(18) to 4.0×10(19) cm(-3) and the temperature from 100 to 600 eV, we observe the transition from the collective regime to the noncollective regime in the high-frequency Thomson-scattering spectrum. These measurements allow an accurate local measurement of fundamental plasma parameters: electron temperature, density, and ion temperature. Furthermore, experiments performed in the high densities typically found in laser produced plasmas result in scattering from electrons moving near the phase velocity of the relativistic plasma waves. Therefore, it is shown that even at low temperatures relativistic corrections to the scattered power must be included.

  6. VizieR Online Data Catalog: Radiative recombination electron energy loss data (Mao+, 2017)

    NASA Astrophysics Data System (ADS)

    Mao, J.; Kaastra, J.; Badnell, N. R.

    2016-11-01

    The weighted electron energy loss factors (dimensionless) are defined by weighting the electron energy loss rate coefficients (per ion) with respect to the total radiative recombination rates. Both the unparameterized and parameterized weighted electron energy-loss factors for H-like to Ne-like ions from H (z=1) up to and including Zn (z=30), in a wide temperature range, are available here. For the unparameterized data set, the temperatures are set to the conventional ADAS temperature grid, i.e. c2*(10,20,50,100,200,...,2*106,5*106,107)K, where c is the ionic charge of the recombined ion. For the fitting parameters, the temperature should be in units of eV. We refer to the recombined ion when we speak of the radiative recombination of a certain ion, for example, for a bare oxygen ion capturing a free electron via radiative recombination to form H-like oxygen (O VIII, s=1, z=8). The fitting accuracies are better than 4%. (2 data files).

  7. Plasma electron analysis: Voyager plasma science experiment

    NASA Technical Reports Server (NTRS)

    Sittler, E. C., Jr.

    1983-01-01

    The Plasma Science Experiment (PLS) on the Voyager spacecraft provide data on the plasma ions and electrons in the interplanetary medium and the magnetospheres of the giant planets Jupiter and Saturn. A description of the analysis used to obtain electron parameters (density, temperature, etc.) from the plasma science experiment PLS electron measurements which cover the energy range from 10 eV to 5950 eV is presented. The electron sensor (D cup) and its transmission characteristics are described. A derivation of the fundamental analytical expression of the reduced distribution function F(e) is given. The electron distribution function F(e), used in the moment integrations, can be derived from F(e). Positive ions produce a correction current (ion feedthrough) to the measured electron current, which can be important to the measurements of the suprathermal electron component. In the case of Saturn, this correction current, which can either add to or subtract from the measured electron current, is less than 20% of the measured signal at all times. Comments about the corrections introduced by spacecraft charging to the Saturn encounter data, which can be important in regions of high density and shadow when the spacecraft can become negatively charged are introduced.

  8. The effect of substrate temperature on the microstructural, electrical and optical properties of Sn-doped indium oxide thin films

    NASA Astrophysics Data System (ADS)

    Raoufi, Davood; Taherniya, Atefeh

    2015-06-01

    In this work, Sn doping In2O3 (ITO) thin films with a thickness of 200 nm were deposited on glass substrates by electron beam evaporation (EBE) method at different substrate temperatures. The crystal structure of these films was studied by X-ray diffraction technique. The sheet resistance was measured by a four-point probe. Van der Pauw method was used to measure carrier density and mobility of ITO films. The optical transmittance spectra were recorded in the wavelength region of 300-800 nm. Scanning electron microscope (SEM) has been used for the surface morphology analysis. The prepared ITO films exhibited body-centered cubic (BCC) structure with preferred orientation of growth along the (2 2 2) crystalline plane. The grain size of the films increases by rising the substrate temperature. Transparency of the films, over the visible light region, is increased with increasing the substrate temperature. It is found that the electrical properties of ITO films are significantly affected by substrate temperature. The electrical resistivity decreases with increasing substrate temperature, whereas the carrier density and mobility are enhanced with an increase in substrate temperature. The evaluated values of energy band gap Eg for ITO films were increase from 3.84 eV to 3.91 eV with increasing the substrate temperatures from 200 °C to 500 °C. The SEM micrographs of the films revealed a homogeneous growth without perceptible cracks with particles which are well covered on the substrate.

  9. Disruption of Membranes of Extracellular Vesicles Is Necessary for ELISA Determination of Urine AQP2: Proof of Disruption and Epitopes of AQP2 Antibodies

    PubMed Central

    Nameta, Masaaki; Saijo, Yoko; Ohmoto, Yasukazu; Katsuragi, Kiyonori; Yamamoto, Keiko; Yamamoto, Tadashi; Ishibashi, Kenichi; Sasaki, Sei

    2016-01-01

    Aquaporin-2 (AQP2) is present in urine extracellular vesicles (EVs) and is a useful biomarker for water balance disorders. We previously found that pre-treatment of urine with alkali/detergent or storage at −25 °C is required for enzyme-linked immunosorbent assay (ELISA) measurement. We speculated that disruptions of EVs membranes are necessary to allow for the direct contact of antibodies with their epitopes. Human urine EVs were prepared using an ultracentrifugation method. Urine EV samples were stored at different temperatures for a week. Electron microscopy showed abundant EVs with diameters of 20–100 nm, consistent with those of exosomes, in normal urine, whereas samples from alkali/detergent pre-treated urine showed fewer EVs with large swollen shapes and frequent membrane disruptions. The abundance and structures of EVs were maintained during storage at −80 °C, but were severely damaged at −25 °C. Binding and competitive inhibition assays showed that epitopes of monoclonal antibody and polyclonal antibody were the hydrophilic Loop D and C-terminus of AQP2, respectively, both of which are present on the inner surface of EVs. Thus, urine storage at −25 °C or pre-treatment with alkali/detergent disrupt EVs membranes and allow AQP2 antibodies to bind to their epitopes located inside EVs. PMID:27681727

  10. Investigation of a Plasma Edge Cathode Under High Current Density Electron Extraction

    DTIC Science & Technology

    1991-12-05

    simu- lation using the MAGIC code confirmed the expected features of the scheme. SLTMMARY .. . . . . . . . . . .. . . . . . . . . . . 1 I...description. An electron temperature of 1 eV was mea- sured in the extraction region without extraction turned on. The plasma from the plasma gun was...jet is reduced if the time between shots is reduced to below I min. The numerical simulation with MAGIC gave confirming results. The simulated current

  11. Self-interaction corrected LDA + U investigations of BiFeO3 properties: plane-wave pseudopotential method

    NASA Astrophysics Data System (ADS)

    Yaakob, M. K.; Taib, M. F. M.; Lu, L.; Hassan, O. H.; Yahya, M. Z. A.

    2015-11-01

    The structural, electronic, elastic, and optical properties of BiFeO3 were investigated using the first-principles calculation based on the local density approximation plus U (LDA + U) method in the frame of plane-wave pseudopotential density functional theory. The application of self-interaction corrected LDA + U method improved the accuracy of the calculated properties. Results of structural, electronic, elastic, and optical properties of BiFeO3, calculated using the LDA + U method were in good agreement with other calculation and experimental data; the optimized choice of on-site Coulomb repulsion U was 3 eV for the treatment of strong electronic localized Fe 3d electrons. Based on the calculated band structure and density of states, the on-site Coulomb repulsion U had a significant effect on the hybridized O 2p and Fe 3d states at the valence and the conduction band. Moreover, the elastic stiffness tensor, the longitudinal and shear wave velocities, bulk modulus, Poisson’s ratio, and the Debye temperature were calculated for U = 0, 3, and 6 eV. The elastic stiffness tensor, bulk modulus, sound velocities, and Debye temperature of BiFeO3 consistently decreased with the increase of the U value.

  12. Photo-Hall-effect study of excitation and recombination in Fe-doped GaN

    NASA Astrophysics Data System (ADS)

    Look, David C.; Leach, Jacob H.; Metzger, Robert

    2017-02-01

    The photo-Hall-effect was applied to the study of electron dynamics in semi-insulating Fe-doped GaN. High-powered light-emitting diodes of wavelengths λ = 940, 536, 449, 402, and 365 nm were used to excite steady-state free-electron volume concentrations Δn = 105-108 cm-3, depending on λ and intensity I0. Electron lifetime τ was determined from the energy E dependence of the excited sheet electron concentration Δns through the relationship Δns = I0τA(E), where the absorbance A(E) is a known function of sample thickness d and absorption coefficient α, and the energy dependence of α is taken from a theory of deep-center photoionization. The major sample impurities were Fe, Si, and C, with [Fe] ≫ [Si] and [C]. Fitted lifetimes τ ranged from 15 to 170 ps, depending on [Fe]. It was found that Δns ∝ I0 for [Si] > [C] and ∝ I01/2 for [Si] < [C]; the latter dependence arises possibly from self-compensation of neutral C impurities by N-vacancy donors. For [Si] > [C], some of the neutral Fe3+ is converted to Fe2+ with ground state Fe2+(5E) and excited state Fe2+(5T2); a fit of n vs. temperature T over the range of 290-325 K in the dark establishes E5E with respect to the conduction band: ECB - E5E = 0.564 eV - β5ET, where β5E = 3.6 × 10-4 eV/K. At room temperature, 294 K, ECB - E5E = 0.46 eV and ECB - E5T2 = 0.07 eV.

  13. Electron density profile measurements at a self-focusing ion beam with high current density and low energy extracted through concave electrodes.

    PubMed

    Fujiwara, Y; Hirano, Y; Kiyama, S; Nakamiya, A; Koguchi, H; Sakakita, H

    2014-02-01

    The self-focusing phenomenon has been observed in a high current density and low energy ion beam. In order to study the mechanism of this phenomenon, a special designed double probe to measure the electron density and temperature is installed into the chamber where the high current density ion beam is injected. Electron density profile is successfully measured without the influence of the ion beam components. Estimated electron temperature and density are ∼0.9 eV and ∼8 × 10(8) cm(-3) at the center of ion beam cross section, respectively. It was found that a large amount of electrons are spontaneously accumulated in the ion beam line in the case of self-forcing state.

  14. Directly calculated electrical conductivity of hot dense hydrogen from molecular dynamics simulation beyond Kubo-Greenwood formula

    NASA Astrophysics Data System (ADS)

    Ma, Qian; Kang, Dongdong; Zhao, Zengxiu; Dai, Jiayu

    2018-01-01

    Electrical conductivity of hot dense hydrogen is directly calculated by molecular dynamics simulation with a reduced electron force field method, in which the electrons are represented as Gaussian wave packets with fixed sizes. Here, the temperature is higher than electron Fermi temperature ( T > 300 eV , ρ = 40 g / cc ). The present method can avoid the Coulomb catastrophe and give the limit of electrical conductivity based on the Coulomb interaction. We investigate the effect of ion-electron coupled movements, which is lost in the static method such as density functional theory based Kubo-Greenwood framework. It is found that the ionic dynamics, which contributes to the dynamical electrical microfield and electron-ion collisions, will reduce the conductivity significantly compared with the fixed ion configuration calculations.

  15. Comment on: Negative ions, molecular electron affinity and orbital structure of cata-condensed polycyclic aromatic hydrocarbons by Rustem V. Khatymov, Mars V. Muftakhov and Pavel V. Shchukin.

    PubMed

    Chen, Edward S; Chen, Edward C M

    2018-02-15

    The anion mass spectral lifetimes for several aromatic hydrocarbons reported in the subject article were related to significantly different electron affinities. The different values are rationalized using negative ion mass spectral data. Electron affinities for polycyclic aromatic hydrocarbons are reported from the temperature dependence of unpublished electron capture detector data. These are compared with published values and the largest values are assigned to the ground state. The ground state adiabatic electron affinities: (eV) pentacene, 1.41 (3); tetracene, 1.058 (5); benz(a)pyrene, 0.82 (4); benz(a) anthracene, 0.69 (2) anthracene, 0.68 (2); and pyrene, 0.59 (1) are used to assign excited state adiabatic electron affinities: (eV) tetracene: 0.88 (4); anthracene 0.53 (1); pyrene, 0.41 (1); benz(a)anthracene, 0.39 (10); chrysene, 0.32 (1); and phenanthrene, 0.12 (2) and ground state adiabatic electron affinities: (eV) dibenz(a,j)anthracene, 0.69 (3); dibenz(a,h)anthracene, 0.68 (3); benz(e)pyrene, 0.60 (3); and picene, 0.59 (3) from experimental data. The lifetime of benz(a)pyrene is predicted to be larger than 150 μs and for benzo(c)phenanthrene and picene about 40 μs, from ground state adiabatic electron affinities. The assignments of adiabatic electron affinities of aromatic hydrocarbons determined from electron capture detector and mass spectrometric data to ground and excited states are supported by constant electronegativities. A set of consistent ground state adiabatic electron affinities for 15 polycyclic aromatic hydrocarbons is related to lifetimes from the subject article. Copyright © 2017 John Wiley & Sons, Ltd.

  16. Unraveling the excitation mechanisms of highly oblique lower-band chorus waves

    DOE PAGES

    Li, Wen; Mourenas, D.; Artemyev, A. V.; ...

    2016-08-17

    Excitation mechanisms of highly oblique, quasi-electrostatic lower band chorus waves are investigated using Van Allen Probes observations near the equator of the Earth's magnetosphere. Linear growth rates are evaluated based on in situ, measured electron velocity distributions and plasma conditions and compared with simultaneously observed wave frequency spectra and wave normal angles. Accordingly, two distinct excitation mechanisms of highly oblique lower band chorus have been clearly identified for the first time. The first mechanism relies on cyclotron resonance with electrons possessing both a realistic temperature anisotropy at keV energies and a plateau at 100–500 eV in the parallel velocity distribution.more » The second mechanism corresponds to Landau resonance with a 100–500 eV beam. In both cases, a small low-energy beam-like component is necessary for suppressing an otherwise dominating Landau damping. In conclusion, our new findings suggest that small variations in the electron distribution could have important impacts on energetic electron dynamics.« less

  17. Fabrication and electrical characterizations of graphene nanocomposite thin film based heterojunction diode

    NASA Astrophysics Data System (ADS)

    Rahim, Ishrat; Shah, Mutabar; Iqbal, Mahmood; Wahab, Fazal; Khan, Afzal; Khan, Shah Haider

    2017-11-01

    The use of graphene in electronic devices is becoming attractive due to its inherent scalability and is thus well suited for flexible electronic devices. Here we present the electrical characterization of heterojunction diode, based on the nanocomposite of graphene (G) with silver nanoparticles (Ag NPs), at room temperature. The diode was fabricated by depositing nanocomposite on the n-Si substrate. The current - voltage (I - V) characteristic of the fabricated junction shows rectifying behavior similar to a Schottky junction. The junction parameters such as ideality factor (n), series resistance (Rs), and barrier height (ϕb) has been extracted, using various methods, from the experimentally obtained I - V data. The measured values of n, Rs and ϕb are 3.86, 45 Ω and 0.367 eV, respectively, as calculated from the I - V curve. The numerical values of these parameters calculated by different methods are in good agreement with each other showing the consistency of the applied calculating techniques. The conduction mechanism of the fabricated diode seems to have been dominated by the Trap Charge Limited Conduction (TCLC) behavior. The energy distribution of interface states density determined from forward bias I - V characteristic shows an exponential decrease with bias from 27 × 1013 cm-2 eV-1 at (Ec - 0.345) eV to 3 × 1013 cm-2 eV-1at (Ec - 0.398) eV.

  18. Observation of room-temperature high-energy resonant excitonic effects in graphene

    NASA Astrophysics Data System (ADS)

    Santoso, I.; Gogoi, P. K.; Su, H. B.; Huang, H.; Lu, Y.; Qi, D.; Chen, W.; Majidi, M. A.; Feng, Y. P.; Wee, A. T. S.; Loh, K. P.; Venkatesan, T.; Saichu, R. P.; Goos, A.; Kotlov, A.; Rübhausen, M.; Rusydi, A.

    2011-08-01

    Using a combination of ultraviolet-vacuum ultraviolet reflectivity and spectroscopic ellipsometry, we observe a resonant exciton at an unusually high energy of 6.3 eV in epitaxial graphene. Surprisingly, the resonant exciton occurs at room temperature and for a very large number of graphene layers N≈75, thus suggesting a poor screening in graphene. The optical conductivity (σ1) of a resonant exciton scales linearly with the number of graphene layers (up to at least 8 layers), implying the quantum character of electrons in graphene. Furthermore, a prominent excitation at 5.4 eV, which is a mixture of interband transitions from π to π* at the M point and a π plasmonic excitation, is observed. In contrast, for graphite the resonant exciton is not observable but strong interband transitions are seen instead. Supported by theoretical calculations, for N⩽ 28 the σ1 is dominated by the resonant exciton, while for N> 28 it is a mixture between exitonic and interband transitions. The latter is characteristic for graphite, indicating a crossover in the electronic structure. Our study shows that important elementary excitations in graphene occur at high binding energies and elucidate the differences in the way electrons interact in graphene and graphite.

  19. Temperature Evolution of Excitonic Absorptions in Cd(1-x)Zn(x)Te Materials

    NASA Technical Reports Server (NTRS)

    Quijada, Manuel A.; Henry, Ross

    2007-01-01

    The studies consist of measuring the frequency dependent transmittance (T) and reflectance (R) above and below the optical band-gap in the UV/Visible and infrared frequency ranges for Cd(l-x),Zn(x),Te materials for x=0 and x=0.04. Measurements were also done in the temperature range from 5 to 300 K. The results show that the optical gap near 1.49 eV at 300 K increases to 1.62 eV at 5 K. Finally, we observe sharp absorption peaks near this gap energy at low temperatures. The close proximity of these peaks to the optical transition threshold suggests that they originate from the creation of bound electron-hole pairs or excitons. The decay of these excitonic absorptions may contribute to a photoluminescence and transient background response of these back-illuminated HgCdTe CCD detectors.

  20. Electrical characterization of n/p-type nickel silicide/silicon junctions by Sb segregation.

    PubMed

    Jun, Myungsim; Park, Youngsam; Hyun, Younghoon; Choi, Sung-Jin; Zyung, Taehyung; Jang, Moongyu

    2011-08-01

    In this paper, n/p-type nickel-silicided Schottky diodes were fabricated by incorporating antimony atoms near the nickel silicide/Si junction interface and the electrical characteristics were studied through measurements and simulations. The effective Schottky barrier height (SBH) for electron, extracted from the thermionic emission model, drastically decreased from 0.68 to less than 0.1 eV while that for hole slightly increased from 0.43 to 0.53 eV. In order to identify the current conduction mechanisms, the experimental current-temperature-voltage characteristics for the n-type diode were fitted based on various models for transport of charge carrier in Schottky diodes. As the result, the large change in effective SBH for electron is ascribed to trap-assisted tunneling rather than barrier height inhomogeneity.

  1. Recombination luminescence from electron-irradiated Li-diffused Si

    NASA Technical Reports Server (NTRS)

    Johnson, E. S.; Compton, W. D.; Noonan, J. R.; Streetman, B. G.

    1973-01-01

    Lithium doping has a dramatic effect on the low-temperature photoluminescence of electron-irradiated Si. In oxigen-lean Si with Li doping, a new irradiation-dependent luminescence band between 0.75 and 1.05 eV is observed, which is dominated by a zero-phonon peak at 1.045 eV. This band is believed to be due to radiative transitions involving a Li-modified divacancy. This band is present also in oxygen-rich, Li-diffused Si and is accompanied by bands previously related to the Si-G15(K) center and the divacancy. The intensities of the Li-modified divacancy and Si-G15(K) center bands are relatively weak in the oxygen-rich material, apparently due to the formation of lithium-oxygen complexes which reduce the concentration of unassociated interstitial Li and O.

  2. Temporal survey of electron number density and electron temperature in the exhaust of a megawatt MPD-Arc thruster

    NASA Technical Reports Server (NTRS)

    Michels, C. J.; Rose, J. R.; Sigman, D. R.

    1971-01-01

    Temporal and radial profiles are obtained 30 cm downstream from the anode for two peak arc currents (11.2 kA and 20 kA) and for various auxiliary magnetic fields (0, 1.0 T, and 2.0T) using the Thomson scattering technique. Average density and temperature are relatively constant for over 100 microseconds with significant fluctuations. Radial profiles obtained are relatively flat for 4 cm from the axis. Compared to earlier 20 cm data, the exhaust density has decreased significantly, the average temperature (4.6 eV) has not changed, and the density hole with an auxiliary magnetic field has enlarged.

  3. Dissociation of CH4 by electron impact: Production of metastable hydrogen and carbon fragments

    NASA Technical Reports Server (NTRS)

    Finn, T. G.; Carnahan, B. L.; Zipf, E. C.

    1974-01-01

    Metastable fragments produced by electron impact excitation of CH4 have been investigated for incident electron energies from threshold to 300 eV. Only metastable hydrogen and carbon atoms were observed. Onset energies for the production of metastable hydrogen atoms were observed at electron impact energies of 22.0 + or - .5 eV, 25.5 + or - .6 eV, 36.7 + or - .6 eV and 66 + or - 3 eV, and at 26.6 + or - .6 eV for the production of metastable carbon atoms. Most of the fragments appear to have been formed in high-lying Rydberg states. The total metastable hydrogen cross section reaches a maximum value of approximately 1 X 10 to the minus 18th power sq cm at 100 eV. At the same energy, the metastable carbon cross section is 2 x 10 to the minus 19th power sq cm.

  4. Auger electron diffraction study of Fe 1- xNi x alloys epitaxially grown on Cu(100)

    NASA Astrophysics Data System (ADS)

    Martin, M. G.; Foy, E.; Chevrier, F.; Krill, G.; Asensio, M. C.

    1999-08-01

    We have combined Auger electron diffraction (AED), low-energy electron diffraction (LEED) and high-energy electron diffraction (RHEED) to examine the structure of Fe xNi 1- x alloys when the Fe content approaches 65%. At this concentration, the 'invar effect' takes place, so the magnetization falls to zero, and the thermal expansion coefficient is very small. The Fe xNi 1- x alloys, grown as metastable thin films by molecular-beam epitaxy on Cu(100) substrates, were studied as a function of the x stoichiometry. In contrast to the related bulk alloy compounds, we observe the collapse of the fcc-to-bcc structural transition in the Fe-rich films. Furthermore, the local atomic structure around Fe and Ni in the alloy has been simultaneously determined by the angular intensity distributions of Fe L 3VV (703 eV) and Ni L 3VV (848 eV) Auger electrons measured as a function of polar and azimuthal angles. For the films deposited at room temperature, we have confirmed the pseudomorphic growth morphology and the uniformity of the alloys.

  5. Plasma physics analysis of SERT-2 operation

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.

    1980-01-01

    An analysis of the major plasma processes involved in the SERT 2 spacecraft experiments was conducted to aid in the interpretation of recent data. A plume penetration model was developed for neutralization electron conduction to the ion beam and showed qualitative agreement with flight data. In the SERT 2 configuration conduction of neutralization electrons between thrusters was experimentally demonstrated in space. The analysis of this configuration suggests that the relative orientation of the two magnetic fields was an important factor in the observed results. Specifically, the opposed field orientation appeared to provide a high conductivity channel between thrusters and a barrier to the ambient low energy electrons in space. The SERT 2 neutralizer currents with negative neutralizer biases were up to about twice the theoretical prediction for electron collection by the ground screen. An explanation for the higher experimental values was a possible conductive path from the neutralizer plume to a nearby part of the ground screen. Plasma probe measurements of SERT 2 gave the clearest indication of plasma electron temperature, with normal operation being near 5 eV and discharge only operation near 2 eV.

  6. Mechanisms of H{sub 2}O desorption from amorphous solid water by 157-nm irradiation: An experimental and theoretical study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeSimone, Alice J.; Crowell, Vernon D.; Sherrill, C. David

    2013-10-28

    The photodesorption of water molecules from amorphous solid water (ASW) by 157-nm irradiation has been examined using resonance-enhanced multiphoton ionization. The rotational temperature has been determined, by comparison with simulations, to be 425 ± 75 K. The time-of-flight spectrum of H{sub 2}O (v= 0) has been fit with a Maxwell-Boltzmann distribution with a translational temperature of 700 ± 200 K (0.12 ± 0.03 eV). H{sup +} and OH{sup +} fragment ions have been detected with non-resonant multiphoton ionization, indicating vibrationally excited parent water molecules with translational energies of 0.24 ± 0.08 eV. The cross section for water removal from ASWmore » by 7.9-eV photons near 100 K is (6.9 ± 1.8) × 10{sup −20} cm{sup 2} for >10 L H{sub 2}O exposure. Electronic structure computations have also probed the excited states of water and the mechanisms of desorption. Calculated electron attachment and detachment densities show that exciton delocalization leads to a dipole reversal state in the first singlet excited state of a model system of hexagonal water ice. Ab Initio Molecular Dynamics simulations show possible desorption of a photo-excited water molecule from this cluster, though the non-hydrogen bonded OH bond is stretched significantly before desorption. Potential energy curves of this OH stretch in the electronic excited state show a barrier to dissociation, lending credence to the dipole reversal mechanism.« less

  7. Stoichiometric and Oxygen-Deficient VO2 as Versatile Hole Injection Electrode for Organic Semiconductors.

    PubMed

    Fu, Keke; Wang, Rongbin; Katase, Takayoshi; Ohta, Hiromichi; Koch, Norbert; Duhm, Steffen

    2018-03-28

    Using photoemission spectroscopy, we show that the surface electronic structure of VO 2 is determined by the temperature-dependent metal-insulator phase transition and the density of oxygen vacancies, which depends on the temperature and ultrahigh vacuum (UHV) conditions. The atomically clean and stoichiometric VO 2 surface is insulating at room temperature and features an ultrahigh work function of up to 6.7 eV. Heating in UHV just above the phase transition temperature induces the expected metallic phase, which goes in hand with the formation of oxygen defects (up to 6% in this study), but a high work function >6 eV is maintained. To demonstrate the suitability of VO 2 as hole injection contact for organic semiconductors, we investigated the energy-level alignment with the prototypical organic hole transport material N, N'-di(1-naphthyl)- N, N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine (NPB). Evidence for strong Fermi-level pinning and the associated energy-level bending in NPB is found, rendering an Ohmic contact for holes.

  8. Dielectric relaxation study of amorphous TiTaO thin films in a large operating temperature range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rouahi, A.; Kahouli, A.; Laboratoire Materiaux, Organisation et Proprietes

    2012-11-01

    Two relaxation processes have been identified in amorphous TiTaO thin films deposited by reactive magnetron sputtering. The parallel angle resolved x-ray photoelectron spectroscopy and field emission scanning electron microscopy analyses have shown that this material is composed of an agglomerates mixture of TiO{sub 2}, Ta{sub 2}O{sub 5}, and Ti-Ta bonds. The first relaxation process appears at low temperature with activation energy of about 0.26 eV and is related to the first ionisation of oxygen vacancies and/or the reduction of Ti{sup 4+} to Ti{sup 3+}. The second relaxation process occurs at high temperature with activation energy of 0.95 eV. This lastmore » peak is associated to the diffusion of the doubly ionized oxygen vacancies V{sub O}e. The dispersion phenomena observed at high temperature can be attributed to the development of complex defect such as (V{sub O}e - 2Ti{sup 3+}).« less

  9. Observation of Flat Electron Temperature Profiles in the Lithium Tokamak Experiment

    DOE PAGES

    Boyle, D. P.; Majeski, R.; Schmitt, J. C.; ...

    2017-07-05

    It has been predicted for over a decade that low-recycling plasma-facing components in fusion devices would allow high edge temperatures and flat or nearly flat temperature profiles. In recent experiments with lithium wall coatings in the Lithium Tokamak Experiment (LTX), a hot edge ( > 200 eV ) and flat electron temperature profiles have been measured following the termination of external fueling. In this work, reduced recycling was demonstrated by retention of ~ 60% of the injected hydrogen in the walls following the discharge. Electron energy confinement followed typical Ohmic confinement scaling during fueling, but did not decrease with densitymore » after fueling terminated, ultimately exceeding the scaling by ~ 200% . Lastly, achievement of the low-recycling, hot edge regime has been an important goal of LTX and lithium plasma-facing component research in general, as it has potentially significant implications for the operation, design, and cost of fusion devices.« less

  10. Observation of Flat Electron Temperature Profiles in the Lithium Tokamak Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyle, D. P.; Majeski, R.; Schmitt, J. C.

    It has been predicted for over a decade that low-recycling plasma-facing components in fusion devices would allow high edge temperatures and flat or nearly flat temperature profiles. In recent experiments with lithium wall coatings in the Lithium Tokamak Experiment (LTX), a hot edge ( > 200 eV ) and flat electron temperature profiles have been measured following the termination of external fueling. In this work, reduced recycling was demonstrated by retention of ~ 60% of the injected hydrogen in the walls following the discharge. Electron energy confinement followed typical Ohmic confinement scaling during fueling, but did not decrease with densitymore » after fueling terminated, ultimately exceeding the scaling by ~ 200% . Lastly, achievement of the low-recycling, hot edge regime has been an important goal of LTX and lithium plasma-facing component research in general, as it has potentially significant implications for the operation, design, and cost of fusion devices.« less

  11. Electrical transport in AZO nanorods

    NASA Astrophysics Data System (ADS)

    Yildiz, A.; Cansizoglu, H.; Karabacak, T.

    2015-10-01

    Al-doped ZnO (AZO) nanorods (NRs) with different lengths were deposited by utilizing glancing angle deposition (GLAD) technique in a DC sputter system at room temperature. The structural and optical characteristics of the NRs were investigated by the X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV-vis-NIR spectroscopy measurements. A band gap of about 3.5 eV was observed for the NRs. A novel capping process utilizing varying deposition angles was used to introduce a blanket metal top contact for the electrical characterization of NRs. Current-voltage (I-V) measurements were used to properly evaluate the approximate resistivity of a single NR. The electrical conduction was found to be governed by the thermally activated transport mechanism. Activation energy was determined as 0.14 eV from temperature dependent resistivity data.

  12. Electron-impact coherence parameters for 41 P 1 excitation of zinc

    NASA Astrophysics Data System (ADS)

    Piwiński, Mariusz; Kłosowski, Łukasz; Chwirot, Stanisław; Fursa, Dmitry V.; Bray, Igor; Das, Tapasi; Srivastava, Rajesh

    2018-04-01

    We present electron-impact coherence parameters (EICP) for electron-impact excitation of 41 P 1 state of zinc atoms for collision energies 40 eV and 60 eV. The experimental results are presented together with convergent close-coupling and relativistic distorted-wave approximation theoretical predictions. The results are compared and discussed with EICP data for collision energies 80 eV and 100 eV.

  13. Influence of organic ions on DNA damage induced by 1 eV to 60 keV electrons.

    PubMed

    Zheng, Yi; Sanche, Léon

    2010-10-21

    We report the results of a study on the influence of organic salts on the induction of single strand breaks (SSBs) and double strand breaks (DSBs) in DNA by electrons of 1 eV to 60 keV. Plasmid DNA films are prepared with two different concentrations of organic salts, by varying the amount of the TE buffer (Tris-HCl and EDTA) in the films with ratio of 1:1 and 6:1 Tris ions to DNA nucleotide. The films are bombarded with electrons of 1, 10, 100, and 60 000 eV under vacuum. The damage to the 3197 base-pair plasmid is analyzed ex vacuo by agarose gel electrophoresis. The highest yields are reached at 100 eV and the lowest ones at 60 keV. The ratios of SSB to DSB are surprisingly low at 10 eV (∼4.3) at both salt concentrations, and comparable to the ratios measured with 100 eV electrons. At all characteristic electron energies, the yields of SSB and DSB are found to be higher for the DNA having the lowest salt concentration. However, the organic salts are more efficient at protecting DNA against the damage induced by 1 and 10 eV electrons. DNA damage and protection by organic ions are discussed in terms of mechanisms operative at each electron energy. It is suggested that these ions create additional electric fields within the groove of DNA, which modify the resonance parameter of 1 and 10 eV electrons, namely, by reducing the electron capture cross-section of basic DNA units and the lifetime of corresponding transient anions. An interstrand electron transfer mechanism is proposed to explain the low ratios for the yields of SSB to those of DSB produced by 10 eV electrons.

  14. Influence of organic ions on DNA damage induced by 1 eV to 60 keV electrons

    PubMed Central

    Zheng, Yi; Sanche, Léon

    2011-01-01

    We report the results of a study on the influence of organic salts on the induction of single strand breaks (SSBs) and double strand breaks (DSBs) in DNA by electrons of 1 eV to 60 keV. Plasmid DNA films are prepared with two different concentrations of organic salts, by varying the amount of the TE buffer (Tris-HCl and EDTA) in the films with ratio of 1:1 and 6:1 Tris ions to DNA nucleotide. The films are bombarded with electrons of 1, 10, 100, and 60 000 eV under vacuum. The damage to the 3197 base-pair plasmid is analyzed ex vacuo by agarose gel electrophoresis. The highest yields are reached at 100 eV and the lowest ones at 60 keV. The ratios of SSB to DSB are surprisingly low at 10 eV (~4.3) at both salt concentrations, and comparable to the ratios measured with 100 eV electrons. At all characteristic electron energies, the yields of SSB and DSB are found to be higher for the DNA having the lowest salt concentration. However, the organic salts are more efficient at protecting DNA against the damage induced by 1 and 10 eV electrons. DNA damage and protection by organic ions are discussed in terms of mechanisms operative at each electron energy. It is suggested that these ions create additional electric fields within the groove of DNA, which modify the resonance parameter of 1 and 10 eV electrons, namely, by reducing the electron capture cross-section of basic DNA units and the lifetime of corresponding transient anions. An interstrand electron transfer mechanism is proposed to explain the low ratios for the yields of SSB to those of DSB produced by 10 eV electrons. PMID:20969428

  15. Optical spectroscopy and band gap analysis of hybrid improper ferroelectric Ca3Ti2O7

    NASA Astrophysics Data System (ADS)

    Musfeldt, Janice; Cherian, Judy; Birol, Turan; Harms, Nathan; Gao, Bin; Cheong, Sang; Vanderbilt, David

    We bring together optical absorption spectroscopy, photoconductivity, and first principles calculations to reveal the electronic structure of the room temperature ferroelectric Ca3Ti2O7. The 3.94 eV direct gap in Ca3Ti2O7 is charge transfer in nature and noticeably higher than that in CaTiO3 (3.4 eV), a finding that we attribute to dimensional confinement in the n = 2 member of the Ruddlesden-Popper series. While Sr substitution introduces disorder and broadens the gap edge slightly, oxygen deficiency reduces the gap to 3.7 eV and gives rise to a broad tail that persists to much lower energies. MSD, BES, U. S. DoE and DMREF, NSF.

  16. Physical properties of FePt nanocomposite doped with Ag atoms: First-principles study

    NASA Astrophysics Data System (ADS)

    Jia, Yong-Fei; Shu, Xiao-Lin; Xie, Yong; Chen, Zi-Yu

    2014-07-01

    L10 FePt nanocomposite with high magnetocrystalline anisotropy energy has been extensively investigated in the fields of ultra-high density magnetic recording media. However, the order—disorder transition temperature of the nanocomposite is higher than 600 °C, which is a disadvantage for the use of the material due to the sustained growth of FePt grain under the temperature. To address the problem, addition of Ag atoms has been proposed, but the magnetic properties of the doped system are still unclear so far. Here in this paper, we use first-principles method to study the lattice parameters, formation energy, electronic structure, atomic magnetic moment and order—disorder transition temperature of L10 FePt with Ag atom doping. The results show that the formation energy of a Ag atom substituting for a Pt site is 1.309 eV, which is lower than that of substituting for an Fe site 1.346 eV. The formation energy of substituting for the two nearest Pt sites is 2.560 eV lower than that of substituting for the further sites 2.621 eV, which indicates that Ag dopants tend to segregate L10 FePt. The special quasirandom structures (SQSs) for the pure FePt and the FePt doped with two Ag atoms at the stable Pt sites show that the order—disorder transition temperatures are 1377 °C and 600 °C, respectively, suggesting that the transition temperature can be reduced with Ag atom, and therefore the FePt grain growth is suppressed. The saturation magnetizations of the pure FePt and the two Ag atoms doped FePt are 1083 emu/cc and 1062 emu/cc, respectively, indicating that the magnetic property of the doped system is almost unchanged.

  17. Optical emission spectroscopy of carbon laser plasma ion source

    NASA Astrophysics Data System (ADS)

    Balki, Oguzhan; Rahman, Md. Mahmudur; Elsayed-Ali, Hani E.

    2018-04-01

    Carbon laser plasma generated by an Nd:YAG laser (wavelength 1064 nm, pulse width 7 ns, fluence 4-52 J cm-2) is studied by optical emission spectroscopy and ion time-of-flight. Up to C4+ ions are detected with the ion flux strongly dependent on the laser fluence. The increase in ion charge with the laser fluence is accompanied by observation of multicharged ion lines in the optical spectra. The time-integrated electron temperature Te is calculated from the Boltzmann plot using the C II lines at 392.0, 426.7, and 588.9 nm. Te is found to increase from ∼0.83 eV for a laser fluence of 22 J cm-2 to ∼0.90 eV for 40 J cm-2. The electron density ne is obtained from the Stark broadened profiles of the C II line at 392 nm and is found to increase from ∼ 2 . 1 × 1017cm-3 for 4 J cm-2 to ∼ 3 . 5 × 1017cm-3 for 40 J cm-2. Applying an external electric field parallel to the expanding plume shows no effect on the line emission intensities. Deconvolution of ion time-of-flight signal with a shifted Maxwell-Boltzmann distribution for each charge state results in an ion temperature Ti ∼4.7 and ∼6.0 eV for 20 and 36 J cm-2, respectively.

  18. Ultra-micro analysis of liquids and suspensions based on laser-induced plasma emissions

    NASA Astrophysics Data System (ADS)

    Cheung, N. H.; Ng, C. W.; Ho, W. F.; Yeung, E. S.

    1998-05-01

    Spectrochemical analysis of liquids and suspensions using laser-induced plasma emissions was investigated. Nd:YAG pulsed-laser (532-nm) ablation of aqueous samples produced plasmas that were hot (few eV) and extensively ionized, with electron density in the 10 18 cm -3 range. Analyte line signals were initially masked by intense plasma continuum emissions, and would only emerge briefly above the background when the plume temperature dropped below 1 eV during the course of its very rapid cooling. In contrast, 193-nm laser ablation at similar fluence generated plasmas of much lower (<1 eV) temperature but comparable electron density. The plasma continuum emissions were relatively weak and the signal-to-background ratio was a thousand times better. This `cold' plasma was ideal for sampling trace amounts of biologically important elements such as sodium and potassium. By ablating hydrodynamically focused jets in a sheath-flow, and with acoustic normalization for improved precision, the single-shot detection limits of sodium and potassium were 8 and 50 fg, respectively. Using the sheath-flow arrangement, the amounts of sodium and potassium inside single human red blood cells were simultaneously determined for the first time. The intracellular contents for a given blood donor were found to vary significantly, with only very weak correlation between the amounts of sodium and potassium in individual cells.

  19. Theoretical formulation of optical conductivity of La0.7Ca0.3MnO3 exhibiting paramagnetic insulator - ferromagnetic metal transition

    NASA Astrophysics Data System (ADS)

    Satiawati, L.; Majidi, M. A.

    2017-07-01

    A theory of high-energy optical conductivity of La0.7Ca0.3MnO3 has been proposed previously. The proposed theory works to explain the temperature-dependence of the optical conductivity for the photon energy region above ˜0.5 eV for up to ˜22 eV, but fails to capture the correct physics close to the dc limit in which metal-insulator transition occurs. The missing physics at the low energy has been acknowledged as mainly due to not incorporating phonon degree of freedom and electron-phonon interactions. In this study, we aim to complete the above theory by proposing a more complete Hamiltonian incorporating additional terms such as crystal field, two modes of Jahn-Teller vibrations, and coupling between electrons and the two Jahn-Teller vibrational modes. We solve the model by means of dynamical mean-field theory. At this stage, we aim to derive the analytical formulae involved in the calculation, and formulate the algorithmic implementation for the self-consistent calculation process. Our final goal is to compute the density of states and the optical conductivity for the complete photon energy range from 0 to 22 eV at various temperatures, and compare them with the experimental data. We expect that the improved model preserves the correct temperature-dependent physics at high photon energies, as already captured by the previous model, while it would also reveal ferromagnetic metal - paramagnetic insulator transition at the dc limit.

  20. Mechanistic analysis of temperature-dependent current conduction through thin tunnel oxide in n+-polySi/SiO2/n+-Si structures

    NASA Astrophysics Data System (ADS)

    Samanta, Piyas

    2017-09-01

    We present a detailed investigation on temperature-dependent current conduction through thin tunnel oxides grown on degenerately doped n-type silicon (n+-Si) under positive bias ( VG ) on heavily doped n-type polycrystalline silicon (n+-polySi) gate in metal-oxide-semiconductor devices. The leakage current measured between 298 and 573 K and at oxide fields ranging from 6 to 10 MV/cm is primarily attributed to Poole-Frenkel (PF) emission of trapped electrons from the neutral electron traps located in the silicon dioxide (SiO2) band gap in addition to Fowler-Nordheim (FN) tunneling of electrons from n+-Si acting as the drain node in FLOating gate Tunnel OXide Electrically Erasable Programmable Read-Only Memory devices. Process-induced neutral electron traps are located at 0.18 eV and 0.9 eV below the SiO2 conduction band. Throughout the temperature range studied here, PF emission current IPF dominates FN electron tunneling current IFN at oxide electric fields Eox between 6 and 10 MV/cm. A physics based new analytical formula has been developed for FN tunneling of electrons from the accumulation layer of degenerate semiconductors at a wide range of temperatures incorporating the image force barrier rounding effect. FN tunneling has been formulated in the framework of Wentzel-Kramers-Brilloiun taking into account the correction factor due to abrupt variation of the energy barrier at the cathode/oxide interface. The effect of interfacial and near-interfacial trapped-oxide charges on FN tunneling has also been investigated in detail at positive VG . The mechanism of leakage current conduction through SiO2 films plays a crucial role in simulation of time-dependent dielectric breakdown of the memory devices and to precisely predict the normal operating field or applied floating gate (FG) voltage for lifetime projection of the devices. In addition, we present theoretical results showing the effect of drain doping concentration on the FG leakage current.

  1. Gapped electronic structure of epitaxial stanene on InSb(111)

    DOE PAGES

    Xu, Cai-Zhi; Chan, Yang-Hao; Chen, Peng; ...

    2018-01-11

    We report that stanene (single-layer gray tin), with an electronic structure akin to that of graphene but exhibiting a much larger spin-orbit gap, offers a promising platform for room-temperature electronics based on the quantum spin Hall (QSH) effect. This material has received much theoretical attention, but a suitable substrate for stanene growth that results in an overall gapped electronic structure has been elusive; a sizable gap is necessary for room-temperature applications. Here, we report a study of stanene, epitaxially grown on the (111)B-face of indium antimonide (InSb). Angle-resolved photoemission spectroscopy measurements reveal a gap of 0.44 eV, in agreement withmore » our first-principles calculations. Lastly, the results indicate that stanene on InSb(111) is a strong contender for electronic QSH applications.« less

  2. Gapped electronic structure of epitaxial stanene on InSb(111)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Cai-Zhi; Chan, Yang-Hao; Chen, Peng

    We report that stanene (single-layer gray tin), with an electronic structure akin to that of graphene but exhibiting a much larger spin-orbit gap, offers a promising platform for room-temperature electronics based on the quantum spin Hall (QSH) effect. This material has received much theoretical attention, but a suitable substrate for stanene growth that results in an overall gapped electronic structure has been elusive; a sizable gap is necessary for room-temperature applications. Here, we report a study of stanene, epitaxially grown on the (111)B-face of indium antimonide (InSb). Angle-resolved photoemission spectroscopy measurements reveal a gap of 0.44 eV, in agreement withmore » our first-principles calculations. Lastly, the results indicate that stanene on InSb(111) is a strong contender for electronic QSH applications.« less

  3. First incoherent scatter radar observations of radio wave pumping in the ionosphere around the second electron gyroharmonic

    NASA Astrophysics Data System (ADS)

    Kosch, Michael; Bristow, Bill; Gustavsson, Bjorn; Heinselman, Craig; Hughes, John; Isham, Brett; Mutiso, Charles; Nielsen, Kim; Pedersen, Todd; Wang, Weiyuan; Wong, Alfred

    We report results from a unique experiment performed at the HIPAS ionospheric modification facility in Alaska. High power radio waves at 2.85 MHz, which corresponds to the second electron gyroharmonic at 240 km altitude, were transmitted into the nighttime ionosphere. Diagnostics included optical equipment at HIPAS and HAARP, 288 km to the south-east, the PFISR radar at Poker Flat, 32 km to the north-west, and the Kodiak SuperDARN radar, 856 km to the south-west. Camera observations of the stimulated optical emissions at 557.7 nm (O1S, threshold 4.2 eV) and 630 nm (O1D, threshold 2 eV) were made, allowing tomographic reconstruction of the volume emission. The first observations of pump-induced 732 nm (O+, threshold 18.6 eV) emissions are reported. Kodiak radar backscatter, which is a proxy for upper-hybrid resonance, shows strong production of striations without a minimum on the second gyroharmonic, confirming previous results. PFISR analysis shows clear evidence of electron temperature enhancements, consistent with previous EISCAT results, maximizing when the pump frequency matches the second gyroharmonic and when double resonance occurs, i.e. the upper-hybrid resonance frequency matches the second gyroharmonic. This is consistent with the optical observations. From the above data, we are able to infer the efficiency of different groups of electron-accelerating mechanisms.

  4. Electrical Transport Mechanisms and Photoconduction in Undoped Crystalline Flash-Evaporated Lead Iodide Thin Films

    NASA Astrophysics Data System (ADS)

    Al-Daraghmeh, Tariq M.; Saleh, Mahmoud H.; Ahmad, Mais Jamil A.; Bulos, Basim N.; Shehadeh, Khawla M.; Jafar, Mousa M. Abdul-Gader

    2018-03-01

    The flash-evaporation technique was utilized to fabricate undoped 1.35-μm and 1.2-μm thick lead iodide films at substrate temperatures T_{{s}} = 150 °C and 200°C, respectively. The films were deposited onto a coplanar comb-like copper (Cu-) electrode pattern, previously coated on glass substrates to form lateral metal-semiconductor-metal (MSM-) structures. The as-measured constant- temperature direct-current (dc)-voltage ( I( {V;T} ) - V ) curves of the obtained lateral coplanar Cu-PbI2-Cu samples (film plus electrode) displayed remarkable ohmic behavior at all temperatures ( T = 18 - 90°C). Their dc electrical resistance R_{{dc}} (T ) revealed a single thermally-activated conduction mechanism over the temperature range with activation energy E_{{act}} ≈ 0.90 - 0.98 {eV} , slightly less than half of room-temperature bandgap energy E_{{g}} ( ≈ 2.3 {eV} ) of undoped 2H-polytype PbI2 single crystals. The undoped flash-evaporated {PbI}_{{x}} thin films were homogeneous and almost stoichiometric ( x ≈ 1.87 ), in contrast to findings on lead iodide films prepared by other methods, and were highly crystalline hexagonal 2H-polytypic structure with c-axis perpendicular to the surface of substrates maintained at T_{s} ≳ 150°C. Photoconductivity measurements made on these lateral Cu-PbI2-Cu-structures under on-off visible-light illumination reveal a feeble photoresponse for long wavelengths ( λ > 570 {nm} ), but a strong response to blue light of photon energy E_{{ph}} ≈ 2.73 {eV} ( > E_{{g}} ), due to photogenerated electron-hole (e-h) pairs via direct band-to-band electronic transitions. The constant-temperature/dc voltage current-time I( {T,V} ) - t curves of the studied lateral PbI2 MSM-structures at low ambient temperatures ( T < 50°C), after cutting off the blue-light illumination, exhibit two trapping mechanisms with different relaxation times. These strongly depend on V and T , with thermally generated charge carriers in the PbI2 mask photogenerated (e-h) pairs at higher temperatures.

  5. Radial Profiles of the Plasma Electron Characteristics in a 30 kW Arc Jet

    NASA Technical Reports Server (NTRS)

    Codron, Douglas A.; Nawaz, Anuscheh

    2013-01-01

    The present effort aims to strengthen modeling work conducted at the NASA Ames Research Center by measuring the critical plasma electron characteristics within and slightly outside of an arc jet plasma column. These characteristics are intended to give physical insights while assisting in the formulation of boundary conditions to validate full scale simulations. Single and triple Langmuir probes have been used to achieve estimates of the electron temperature (T(sub e)), electron number density (n(sub e)) and plasma potential (outside of the plasma column) as probing location is varied radially from the flow centerline. Both the electron temperature and electron number density measurements show a large dependence on radial distance from the plasma column centerline with T(sub e) approx. = (3 - 12 eV and n(sub e) approx. = 10(exp 12) - 10(exp 14)/cu cm.

  6. DIFFUSE AURORA ON GANYMEDE DRIVEN BY ELECTROSTATIC WAVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singhal, R. P.; Tripathi, A. K.; Halder, S.

    The role of electrostatic electron cyclotron harmonic (ECH) waves in producing diffuse auroral emission O i 1356 Å on Ganymede is investigated. Electron precipitation flux entering the atmosphere of Ganymede due to pitch-angle diffusion by ECH waves into the atmospheric loss-cone is calculated. The analytical yield spectrum approach for electron energy degradation in gases is used for calculating diffuse auroral intensities. It is found that calculated O i 1356 Å intensity resulting from the precipitation of magnetospheric electrons observed near Ganymede is insufficient to account for the observed diffuse auroral intensity. This is in agreement with estimates made in earliermore » works. Heating and acceleration of ambient electrons by ECH wave turbulence near the magnetic equator on the field line connecting Ganymede and Jupiter are considered. Two electron distribution functions are used to simulate the heating effect by ECH waves. Use of a Maxwellian distribution with temperature 100 eV can produce about 50–70 Rayleigh O i 1356 Å intensities, and the kappa distribution with characteristic energy 50 eV also gives rise to intensities with similar magnitude. Numerical experiments are performed to study the effect of ECH wave spectral intensity profile, ECH wave amplitude, and temperature/characteristic energy of electron distribution functions on the calculated diffuse auroral intensities. The proposed missions, joint NASA/ESA Jupiter Icy Moon Explorer and the present JUNO mission to Jupiter, would provide new data to constrain the ECH wave and other physical parameters near Ganymede. These should help confirm the findings of the present study.« less

  7. Performance of room temperature mercuric iodide /HgI2/ detectors in the ultralow-energy X-ray region

    NASA Technical Reports Server (NTRS)

    Dabrowski, A. J.; Barton, J. B.; Huth, G. C.; Whited, R.; Ortale, C.; Economou, T. E.; Turkevich, A. L.; Iwanczyk, J. S.

    1981-01-01

    Experiments have been done to study the performance of mercuric iodide (HgI2) detectors in the ultralow-energy X-ray region. Energy resolution values of 245 eV (FWHM) for the Mg K-alpha X-ray line at 1.25 keV and 225 eV (FWHM) for the electronic noise linewidth have been obtained for an HgI2 detector with painted carbon contacts using a pulsed-light feedback preamplifier; the whole system was operated at room temperature. The resolution values in the ultralow-energy region are still limited by electronic noise of the system. In an attempt to minimize X-ray attenuation in the front contact, detectors were prepared with thin evaporated Pd contacts. These detectors show a pronounced low-energy tailing of the photopeak below a few keV, in contrast to the spectra obtained by detectors with carbon contact. An attempt has been made to explain the tailing effect starting with models wich have been proposed to describe similar effects in Ge detectors.

  8. Electrostatic emissions between electron gyroharmonics in the outer magnetosphere

    NASA Technical Reports Server (NTRS)

    Hubbard, R. F.; Birmingham, T. J.

    1977-01-01

    A scheme was constructed and a theoretical model was developed to classify electrostatic emissions. All of the emissions appear to be generated by the same basic mechanism: an unstable electron plasma distribution consisting of cold electrons (less than 100 eV) and hot loss cone electrons (about 1 keV). Each emission class is associated with a particular range of model parameters; the wide band electric field data can thus be used to infer the density and temperature of the cold plasma component. The model predicts that gyroharmonic emissions near the plasma frequency require large cold plasma densities.

  9. The Role of Low-Energy (less than 20 eV) Electrons in Astrochemistry: A Tale of Two Molecules

    NASA Astrophysics Data System (ADS)

    Arumainayagam, Chris

    2016-07-01

    In the interstellar medium, UV photolysis of ice mantles encasing dust grains is thought to be the mechanism that drives the synthesis of "complex" molecules. The source of this reaction-initiating UV light is assumed to be local because externally-sourced UV radiation cannot pass through the ice-containing dark, dense molecular clouds. Externally sourced cosmic rays (E_{max} ˜10^{20} eV), in addition to producing UV light within these clouds, also produce large numbers of low-energy (≤ 20 eV) secondary electrons. The goal of our studies is to understand the low-energy electron-induced processes that occur when high-energy cosmic rays interact with interstellar ices. Using electron stimulated desorption (ESD), post-irradiation temperature-programmed desorption (TPD), and infrared reflection absorption spectroscopy (IRAS), we have investigated the radiolysis initiated by electrons in condensed methanol and ammonia at ˜90K under ultrahigh vacuum (1 × 10^{-9} Torr) conditions. We have identified fifteen low-energy electron-induced methanol radiolysis products, many of which have been previously identified as being formed by methanol UV photolysis in the interstellar medium. We have also found evidence for the electron-induced formation from ammonia of hydrazine (N_2 H_4), diazene (N_2 H_2), cyclotriazane/triazene (N_3 H_3) and triazane (N_3 H_5). We have investigated the reaction yields' dependence on film thickness, irradiation time, incident current, electron energy, and metal substrate. These results provide a basis from which we can begin to understand the mechanisms by which methanol and ammonia can form more complex species in cosmic ices. Studies such as ours may ultimately help us better understand the initial stages of the genesis of life.

  10. The Role of Low-Energy Electrons in Astrochemistry: A Tale of Two Molecules

    NASA Astrophysics Data System (ADS)

    Arumainayagam, Chris; Cambell, Jyoti; Leon Sanche, Michael Boyer, and Petra Swiderek.

    2016-06-01

    In the interstellar medium, UV photolysis of ice mantles encasing dust grains is thought to be the mechanism that drives the synthesis of “complex” molecules. The source of this reaction-initiating UV light is assumed to be local because externally-sourced UV radiation cannot pass through the ice-containing dark, dense molecular clouds. Externally sourced cosmic rays (Emax ~ 1020 eV), in addition to producing UV light within these clouds, also produce large numbers of low-energy (≤ 20 eV) secondary electrons. The goal of our studies is to understand the low-energy electron-induced processes that occur when high-energy cosmic rays interact with interstellar ices. Using electron stimulated desorption (ESD), post-irradiation temperature-programmed desorption (TPD), and infrared reflection absorption spectroscopy (IRAS), we have investigated the radiolysis initiated by electrons in condensed methanol and ammonia at ~ 90 K under ultrahigh vacuum (1×10-9 Torr) conditions. We have identified fifteen low-energy (≤ 20 eV) electron-induced methanol radiolysis products, many of which have been previously identified as being formed by methanol UV photolysis in the interstellar medium. We have also found evidence for the electron-induced formation from ammonia of hydrazine (N2H4), diazene (N2H2), cyclotriazane/triazene (N3H3) and triazane (N3H5). We have investigated the reaction yields’ dependence on film thickness, irradiation time, incident current, electron energy, and metal substrate. These results provide a basis from which we can begin to understand the mechanisms by which methanol and ammonia can form more complex species in cosmic ices. Studies such as ours may ultimately help us better understand the initial stages of the genesis of life.

  11. Surface passivation of p-type Ge substrate with high-quality GeNx layer formed by electron-cyclotron-resonance plasma nitridation at low temperature

    NASA Astrophysics Data System (ADS)

    Fukuda, Yukio; Okamoto, Hiroshi; Iwasaki, Takuro; Otani, Yohei; Ono, Toshiro

    2011-09-01

    We have investigated the effects of the formation temperature and postmetallization annealing (PMA) on the interface properties of GeNx/p-Ge fabricated by the plasma nitridation of Ge substrates using an electron-cyclotron-resonance-generated nitrogen plasma. The nitridation temperature is found to be a critical parameter in improving the finally obtained GeNx/Ge interface properties. The GeNx/Ge formed at room temperature and treated by PMA at 400 °C exhibits the best interface properties with an interface trap density of 1 × 1011 cm-2 eV-1. The GeNx/Ge interface is unpinned and the Fermi level at the Ge surface can move from the valence band edge to the conduction band edge.

  12. In situ transmission electron microscopy study on the epitaxial growth of CoSi2 on Si(111) at temperatures below 150 C

    NASA Technical Reports Server (NTRS)

    Nieh, C. W.; Lin, T. L.

    1989-01-01

    This paper reports an in situ transmission electron microscopy study on the epitaxial growth of CoSi2 on Si(111) from a 10-nm-thick amorphous mixture of Co and Si in the ratio 1:2, which was formed by codeposition of Co and Si near room temperature. Nuclei of CoSi2 are observed in the as-deposited film. These nuclei are epitaxial and extend through the whole film thickness. Upon annealing, these columnar epitaxial CoSi2 grains grow laterally at temperatures as low as 50 C. The kinetics of this lateral epitaxial growth was studied at temperatures between 50 and 150 C. The activation energy of the growth process is 0.8 + or - 0.1 eV.

  13. Unusual temperature dependence of the dissociative electron attachment cross section of 2-thiouracil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kopyra, Janina; Abdoul-Carime, Hassan; Université Lyon 1, Villeurbanne

    At low energies (<3 eV), molecular dissociation is controlled by dissociative electron attachment for which the initial step, i.e., the formation of the transient negative ion, can be initiated by shape resonance or vibrational Feshbach resonance (VFR) mediated by the formation of a dipole bound anion. The temperature dependence for shape-resonances is well established; however, no experimental information is available yet on the second mechanism. Here, we show that the dissociation cross section for VFRs mediated by the formation of a dipole bound anion decreases as a function of a temperature. The change remains, however, relatively small in the temperaturemore » range of 370-440 K but it might be more pronounced at the extended temperature range.« less

  14. Adsorption study of copper phthalocyanine on Si(111)(√3 × √3)R30°Ag surface

    NASA Astrophysics Data System (ADS)

    Menzli, S.; Ben Hamada, B.; Arbi, I.; Souissi, A.; Laribi, A.; Akremi, A.; Chefi, C.

    2016-04-01

    The adsorption of copper phthalocyanine (CuPc) molecules on Si(111)(√3 × √3)R30°Ag surface is studied at room temperature under ultra high vacuum. Crystallographic, chemical and electronic properties of the interface are investigated by low energy electron diffraction (LEED), ultraviolet and X-ray photoemission spectroscopies (UPS, XPS) and X-ray photoemission diffraction (XPD). LEED and XPD results indicate that after one monolayer deposition the molecular layer is highly ordered with a flat lying adsorption configuration. The corresponding pattern reveals the coexistence of three symmetrically equivalent orientations of molecules with respect to the substrate. XPS core level spectra of the substrate reveal that there is no discernible chemical interaction between molecules and substrate; however there is evidence of Fermi level movement. During the growth, the work function was found to decrease from 4.90 eV for the clean substrate to 4.35 eV for the highest coverage (60 monolayers). Within a thickness of two monolayer deposition an interface dipole of 0.35 eV and a band bending of 0.2 eV have been found. UPS spectra indicate the existence of a band bending of the highest occupied molecular orbital (HOMO) of 0.55 eV. The changes in the work function, in the Fermi level position and in the HOMO state have been used to determine the energy level alignment at the interface.

  15. Initial results from the NASA Lewis Bumpy Torus experiment. [of steady-state ion heating method based on modified Penning discharge

    NASA Technical Reports Server (NTRS)

    Roth, J. R.; Richardson, R. W.; Gerdin, G. A.

    1973-01-01

    Initial results were obtained from low power operation of the NASA Lewis Bumpy Torus experiment, in which a steady-state ion heating method based on the modified Penning discharge is applied in a bumpy torus confinement geometry. The magnet facility consists of 12 superconducting coils, each 19 cm i.d. and capable of 3.0 T, equally spaced in a toroidal array 1.52 m in major diameter. A 18 cm i.d. anode ring is located at each of the 12 midplanes and is maintained at high positive potentials by a dc power supply. Initial observations indicate electron temperatures from 10 to 150 eV, and ion kinetic temperatures from 200 eV to 1200 eV. Two modes of operation were observed, which depend on background pressure, and have different radial density profiles. Steady state neutron production was observed. The ion heating process in the bumpy torus appears to parallel closely the mechanism observed when the modified Penning discharge was operated in a simple magnetic mirror field.

  16. Engel-Vosko GGA calculations of the structural, electronic and optical properties of LiYO2

    NASA Astrophysics Data System (ADS)

    Muhammad, Nisar; Khan, Afzal; Haidar Khan, Shah; Sajjaj Siraj, Muhammad; Shah, Syed Sarmad Ali; Murtaza, Ghulam

    2017-09-01

    Structural, electronic and optical properties of lithium yttrium oxide (LiYO2) are investigated using density functional theory (DFT). These calculations are based on full potential linearized augmented plane wave (FP-LAPW) method implemented by WIEN2k. The generalized gradient approximation (GGA) is used as an exchange correlation potential with Perdew-Burk-Ernzerhof (PBE) and Engel-Vosko (EV) as exchange correlation functional. The structural properties are calculated with PBE-GGA as it gives the equilibrium lattice constants very close to the experimental values. While, the band structure and optical properties are calculated with EV-GGA obtain much closer results to their experimental values. Our calculations confirm LiYO2 as large indirect band gap semiconductor having band gap of 5.23 eV exhibiting the characteristics of ultrawide band gap materials showing the properties like higher critical breakdown field, higher temperature operation and higher radiation tolerance. In this article, we report the density of states (DOS) in terms of contribution from s, p, and d-states of the constituent atoms, the band structure, the electronic structure, and the frequency-dependent optical properties of LiYO2. The optical properties presented in this article reveal LiYO2 a suitable candidate for the field of optoelectronic and optical devices.

  17. Low-energy electron collisions with proline and pyrrolidine: A comparative study

    NASA Astrophysics Data System (ADS)

    Barbosa, Alessandra Souza; Freitas, Thiago Corrêa; Bettega, M. H. F.

    2018-02-01

    We present a comparative study on the calculated cross sections obtained for the elastic collisions of low-energy electrons with the amino acid proline (C5H9NO2) and its building block pyrrolidine (C4H9N). We employed the Schwinger multichannel method implemented with pseudopotentials to compute integral, differential, and momentum transfer cross sections in the static-exchange plus polarization approximation, for energies up to 15 eV. We report three shape resonances for proline at around 1.7 eV, 6.8 eV, and 10 eV and two shape resonances for pyrrolidine centered at 7 eV and 10.2 eV. The present resonance energies are compared with available experimental data on vertical attachment energies and dissociative electron attachment, where a good agreement is found. From the comparison of the present results with available calculated cross sections for the simplest carboxylic acid, formic acid (HCOOH), and from electronic structure calculations, we found that the first resonance of proline, at 1.7 eV, is due the presence of the carboxylic group, whereas the other two structures, at 6.8 eV and 10 eV, clearly arise from the pyrrolidine ring. A comparison between the differential cross sections for proline and pyrrolidine at some selected energies of the incident electron is also reported in this paper.

  18. Near-Surface Plasma Characterization of the 12.5-kW NASA TDU1 Hall Thruster

    NASA Technical Reports Server (NTRS)

    Shastry, Rohit; Huang, Wensheng; Kamhawi, Hani

    2015-01-01

    To advance the state-of-the-art in Hall thruster technology, NASA is developing a 12.5-kW, high-specific-impulse, high-throughput thruster for the Solar Electric Propulsion Technology Demonstration Mission. In order to meet the demanding lifetime requirements of potential missions such as the Asteroid Redirect Robotic Mission, magnetic shielding was incorporated into the thruster design. Two units of the resulting thruster, called the Hall Effect Rocket with Magnetic Shielding (HERMeS), were fabricated and are presently being characterized. The first of these units, designated the Technology Development Unit 1 (TDU1), has undergone extensive performance and thermal characterization at NASA Glenn Research Center. A preliminary lifetime assessment was conducted by characterizing the degree of magnetic shielding within the thruster. This characterization was accomplished by placing eight flush-mounted Langmuir probes within each discharge channel wall and measuring the local plasma potential and electron temperature at various axial locations. Measured properties indicate a high degree of magnetic shielding across the throttle table, with plasma potential variations along each channel wall being less than or equal to 5 eV and electron temperatures being maintained at less than or equal to 5 eV, even at 800 V discharge voltage near the thruster exit plane. These properties indicate that ion impact energies within the HERMeS will not exceed 26 eV, which is below the expected sputtering threshold energy for boron nitride. Parametric studies that varied the facility backpressure and magnetic field strength at 300 V, 9.4 kW, illustrate that the plasma potential and electron temperature are insensitive to these parameters, with shielding being maintained at facility pressures 3X higher and magnetic field strengths 2.5X higher than nominal conditions. Overall, the preliminary lifetime assessment indicates a high degree of shielding within the HERMeS TDU1, effectively mitigating discharge channel erosion as a life-limiting mechanism.

  19. Exploration on anion ordering, optical properties and electronic structure in K3WO3F3 elpasolite

    NASA Astrophysics Data System (ADS)

    Atuchin, V. V.; Isaenko, L. I.; Kesler, V. G.; Lin, Z. S.; Molokeev, M. S.; Yelisseyev, A. P.; Zhurkov, S. A.

    2012-03-01

    Room-temperature modification of potassium oxyfluorotungstate, G2-K3WO3F3, has been prepared by low-temperature chemical route and single crystal growth. Wide optical transparency range of 0.3-9.4 μm and forbidden band gap Eg=4.32 eV have been obtained for G2-K3WO3F3 crystal. Meanwhile, its electronic structure has been calculated with the first-principles calculations. The good agreement between the theorectical and experimental results have been achieved. Furthermore, G2-K3WO3F3 is predicted to possess the relatively large nonlinear optical coefficients.

  20. VizieR Online Data Catalog: Parameterization of level-resolved RR data fro SPEX (Mao+, 2016)

    NASA Astrophysics Data System (ADS)

    Mao, J.; Kaastra, J.

    2016-02-01

    The fitting parameters for the level-resolved radiative recombination rate coefficients for H-like to Na-like ions from H (z=1) up to and including (z=30), in a wide temperature range. The electron temperature should be in units of eV. We refer to the recombined ion when we speak of the radiative recombination of a certain ion, e.g. for a bare oxygen ion capturing a free electron via radiative recombination to form H-like oxygen (O VIII, s=1, z=8). The fitting accuracies are better than 5% for ~99% of the levels considered here. (1 data file).

  1. Slowing down of alpha particles in ICF DT plasmas

    NASA Astrophysics Data System (ADS)

    He, Bin; Wang, Zhi-Gang; Wang, Jian-Guo

    2018-01-01

    With the effects of the projectile recoil and plasma polarization considered, the slowing down of 3.54 MeV alpha particles is studied in inertial confinement fusion DT plasmas within the plasma density range from 1024 to 1026 cm-3 and the temperature range from 100 eV to 200 keV. It includes the rate of the energy change and range of the projectile, and the partition fraction of its energy deposition to the deuteron and triton. The comparison with other models is made and the reason for their difference is explored. It is found that the plasmas will not be heated by the alpha particle in its slowing down the process once the projectile energy becomes close to or less than the temperature of the electron or the deuteron and triton in the plasmas. This leads to less energy deposition to the deuteron and triton than that if the recoil of the projectile is neglected when the temperature is close to or higher than 100 keV. Our model is found to be able to provide relevant, reliable data in the large range of the density and temperature mentioned above, even if the density is around 1026 cm-3 while the deuteron and triton temperature is below 500 eV. Meanwhile, the two important models [Phys. Rev. 126, 1 (1962) and Phys. Rev. E 86, 016406 (2012)] are found not to work in this case. Some unreliable data are found in the last model, which include the range of alpha particles and the electron-ion energy partition fraction when the electron is much hotter than the deuteron and triton in the plasmas.

  2. Absolute rate coefficients for photorecombination of beryllium-like and boron-like silicon ions

    NASA Astrophysics Data System (ADS)

    Bernhardt, D.; Becker, A.; Brandau, C.; Grieser, M.; Hahn, M.; Krantz, C.; Lestinsky, M.; Novotný, O.; Repnow, R.; Savin, D. W.; Spruck, K.; Wolf, A.; Müller, A.; Schippers, S.

    2016-04-01

    We report measured rate coefficients for electron-ion recombination of Si10+ forming Si9+ and of Si9+ forming Si8+, respectively. The measurements were performed using the electron-ion merged-beams technique at a heavy-ion storage ring. Electron-ion collision energies ranged from 0 to 50 eV for Si9+ and from 0 to 2000 eV for Si10+, thus, extending previous measurements for Si10+ (Orban et al 2010 Astrophys. J. 721 1603) to much higher energies. Experimentally derived rate coefficients for the recombination of Si9+ and Si10+ ions in a plasma are presented along with simple parameterizations. These rate coefficients are useful for the modeling of the charge balance of silicon in photoionized plasmas (Si9+ and Si10+) and in collisionally ionized plasmas (Si10+ only). In the corresponding temperature ranges, the experimentally derived rate coefficients agree with the latest corresponding theoretical results within the experimental uncertainties.

  3. Auger electron diffraction study of V/Fe(100) interface formation

    NASA Astrophysics Data System (ADS)

    Huttel, Y.; Avila, J.; Asensio, M. C.; Bencok, P.; Richter, C.; Ilakovac, V.; Heckmann, O.; Hricovini, K.

    1998-05-01

    Vanadium atoms present a magnetic moment different to zero when they are part of a thin film deposited on Fe or as a bimetallic Fe-V alloy. The understanding of this phenomenon can only be achieved with a correct structural description of these types of systems. We report an Auger electron diffraction investigation of V films grown on body cubic centred (b.c.c.) Fe(100) substrates. Angular-scanned Auger electron diffraction (AED) patterns of V L 23M 23M 4 (473 eV) and Fe L 3VV (703 eV) show the formation of a well-ordered V/Fe interface even at room temperature. The AED patterns of V films in the range of vanadium submonolayer provide evidence of an isotropic Auger emission, indicating the absence of interdiffusion of V atoms into the Fe substrate and absence of cluster growth of the V film. The annealing of these films up to 400°C does not activate the substitution of the topmost Fe surface layers by V atoms.

  4. Momentum microscopy of ? single crystals with detailed surface characterisation

    NASA Astrophysics Data System (ADS)

    Ellguth, M.; Tusche, C.; Iga, F.; Suga, S.

    2016-11-01

    We report the in situ preparation of surfaces of the proposed topological Kondo insulator SmB? by controlled cycles of Ar ion sputtering and annealing. The procedure provides a reproducible way for the preparation of Sm- or B-rich surface terminations by low (?1080 ?C) or high (?1200 ?C) temperature annealing. The surface quality and termination were checked by low energy electron diffraction and Auger electron spectroscopy. Photoemission studies were carried out using momentum microscopy and two laboratory light sources providing polarised radiation with an energy of 6 eV (fourth harmonic of a pulsed Ti:Sapphire laser) and unpolarised radiation with an energy of 21.2 eV (He-I line of a gas discharge lamp). Full dispersions of electronic states in a wide two-dimensional momentum space were obtained by momentum microscopy from the in situ prepared Sm-terminated surface. The shape of the Fermi surface is discussed based on the sections through the bulk Brillouin zone sampled by the different photon energies.

  5. Electron Dynamics Within the Electron Diffusion Region of Asymmetric Reconnection

    NASA Astrophysics Data System (ADS)

    Argall, M. R.; Paulson, K.; Alm, L.; Rager, A.; Dorelli, J.; Shuster, J.; Wang, S.; Torbert, R. B.; Vaith, H.; Dors, I.; Chutter, M.; Farrugia, C.; Burch, J.; Pollock, C.; Giles, B.; Gershman, D.; Lavraud, B.; Russell, C. T.; Strangeway, R.; Magnes, W.; Lindqvist, P.-A.; Khotyaintsev, Yu. V.; Ergun, R. E.; Ahmadi, N.

    2018-01-01

    We investigate the agyrotropic nature of electron distribution functions and their substructure to illuminate electron dynamics in a previously reported electron diffusion region (EDR) event. In particular, agyrotropy is examined as a function of energy to reveal detailed finite Larmor radius effects for the first time. It is shown that the previously reported ˜66 eV agyrotropic "crescent" population that has been accelerated as a result of reconnection is evanescent in nature because it mixes with a denser, gyrotopic background. Meanwhile, accelerated agyrotropic populations at 250 and 500 eV are more prominent because the background plasma at those energies is more tenuous. Agyrotropy at 250 and 500 eV is also more persistent than at 66 eV because of finite Larmor radius effects; agyrotropy is observed 2.5 ion inertial lengths from the EDR at 500 eV, but only in close proximity to the EDR at 66 eV. We also observe linearly polarized electrostatic waves leading up to and within the EDR. They have wave normal angles near 90°, and their occurrence and intensity correlate with agyrotropy. Within the EDR, they modulate the flux of 500 eV electrons travelling along the current layer. The net electric field intensifies the reconnection current, resulting in a flow of energy from the fields into the plasma.

  6. Schottky barrier diode based on β-Ga2O3 (100) single crystal substrate and its temperature-dependent electrical characteristics

    NASA Astrophysics Data System (ADS)

    He, Qiming; Mu, Wenxiang; Dong, Hang; Long, Shibing; Jia, Zhitai; Lv, Hangbing; Liu, Qi; Tang, Minghua; Tao, Xutang; Liu, Ming

    2017-02-01

    The Pt/β-Ga2O3 Schottky barrier diode and its temperature-dependent current-voltage characteristics were investigated for power device application. The edge-defined film-fed growth (EFG) technique was utilized to grow the (100)-oriented β-Ga2O3 single crystal substrate that shows good crystal quality characterized by X-ray diffraction and high resolution transmission electron microscope. Ohmic and Schottky electrodes were fabricated by depositing Ti and Pt metals on the two surfaces, respectively. Through the current-voltage (I-V) measurement under different temperature and the thermionic emission modeling, the fabricated Pt/β-Ga2O3 Schottky diode was found to show good performances at room temperature, including rectification ratio of 1010, ideality factor (n) of 1.1, Schottky barrier height (ΦB) of 1.39 eV, threshold voltage (Vbi) of 1.07 V, ON-resistance (RON) of 12.5 mΩ.cm2, forward current density at 2 V (J@2V) of 56 A/cm2, and saturation current density (J0) of 2 × 10-16 A/cm2. The effective donor concentration Nd - Na was calculated to be about 2.3 × 1014 cm3. Good temperature dependent performance was also found in the device. The Schottky barrier height was estimated to be about 1.3 eV-1.39 eV at temperatures ranging from room temperature to 150 °C. With increasing temperature, parameters such as RON and J@2V become better, proving that the diode can work well at high temperature. The EFG grown β-Ga2O3 single crystal is a promising material to be used in the power devices.

  7. Computational materials design of attractive Fermion system with large negative effective Ueff in the hole-doped Delafossite of CuAlO2, AgAlO2 and AuAlO2: Charge-excitation induced Ueff < 0

    NASA Astrophysics Data System (ADS)

    Nakanishi, A.; Fukushima, T.; Uede, H.; Katayama-Yoshida, H.

    2015-12-01

    On the basis of general design rules for negative effective U(Ueff) systems by controlling purely-electronic and attractive Fermion mechanisms, we perform computational materials design (CMD®) for the negative Ueff system in hole-doped two-dimensional (2D) Delafossite CuAlO2, AgAlO2 and AuAlO2 by ab initio calculations with local density approximation (LDA) and self-interaction corrected-LDA (SIC-LDA). It is found that the large negative Ueff in the hole-doped attractive Fermion systems for CuAlO2 (UeffLDA = - 4.53 eV and UeffSIC-LDA = - 4.20 eV), AgAlO2 (UeffLDA = - 4.88 eV and UeffSIC-LDA = - 4.55 eV) and AuAlO2 (UeffLDA = - 4.14 eV and UeffSIC-LDA = - 3.55 eV). These values are 10 times larger than that in hole-doped three-dimensional (3D) CuFeS2 (Ueff = - 0.44 eV). For future calculations of Tc and phase diagram by quantum Monte Carlo simulations, we propose the negative Ueff Hubbard model with the anti-bonding single π-band model for CuAlO2, AgAlO2 and AuAlO2 using the mapped parameters obtained from ab initio electronic structure calculations. Based on the theory of negative Ueff Hubbard model (Noziéres and Schmitt-Rink, 1985), we discuss |Ueff| dependence of superconducting critical temperature (Tc) in the 2D Delafossite of CuAlO2, AgAlO2 and AuAlO2 and 3D Chalcopyrite of CuFeS2, which shows the interesting chemical trend, i.e., Tc increases exponentially (Tc ∝ exp [ - 1 / | Ueff | ]) in the weak coupling regime | Ueff(- 0.44 eV) | < W(∼ 2 eV) (where W is the band width of the negative Ueff Hubbard model) for the hole-doped CuFeS2, and then Tc goes through a maximum when | Ueff(- 4.88 eV , - 4.14 eV) | ∼ W(2.8 eV , 3.5 eV) for the hole-doped AgAlO2 and AuAlO2, and finally Tc decreases with increasing |Ueff| in the strong coupling regime, where | Ueff(- 4.53 eV) | > W(1.7 eV) , for the hole-doped CuAlO2.

  8. Electronic properties of the Cu2ZnSn(Se,S)4 absorber layer in solar cells as revealed by admittance spectroscopy and related methods

    NASA Astrophysics Data System (ADS)

    Gunawan, Oki; Gokmen, Tayfun; Warren, Charles W.; Cohen, J. David; Todorov, Teodor K.; Barkhouse, D. Aaron R.; Bag, Santanu; Tang, Jiang; Shin, Byungha; Mitzi, David B.

    2012-06-01

    Admittance spectra and drive-level-capacitance profiles of several high performance Cu2ZnSn(Se,S)4 (CZTSSe) solar cells with bandgap ˜1.0-1.5 eV are reported. In contrast to the case for Cu(In,Ga)(S,Se)2, the CZTSSe capacitance spectra exhibit a dielectric freeze out to the geometric capacitance plateau at moderately low frequencies and intermediate temperatures (120-200 K). These spectra reveal important information regarding the bulk properties of the CZTSSe films, such as the dielectric constant and a dominant acceptor with energy level of 0.13-0.2 eV depending on the bandgap. This deep acceptor leads to a carrier freeze out effect that quenches the CZTSSe fill factor and efficiency at low temperatures.

  9. Carbon diffusion in molten uranium: an ab initio molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Garrett, Kerry E.; Abrecht, David G.; Kessler, Sean H.; Henson, Neil J.; Devanathan, Ram; Schwantes, Jon M.; Reilly, Dallas D.

    2018-04-01

    In this work we used ab initio molecular dynamics within the framework of density functional theory and the projector-augmented wave method to study carbon diffusion in liquid uranium at temperatures above 1600 K. The electronic interactions of carbon and uranium were described using the local density approximation (LDA). The self-diffusion of uranium based on this approach is compared with literature computational and experimental results for liquid uranium. The temperature dependence of carbon and uranium diffusion in the melt was evaluated by fitting the resulting diffusion coefficients to an Arrhenius relationship. We found that the LDA calculated activation energy for carbon was nearly twice that of uranium: 0.55 ± 0.03 eV for carbon compared to 0.32 ± 0.04 eV for uranium. Structural analysis of the liquid uranium-carbon system is also discussed.

  10. Influence of annealing temperature on the structural, optical and electrical properties of amorphous Zinc Sulfide thin films

    NASA Astrophysics Data System (ADS)

    Göde, F.; Güneri, E.; Kariper, A.; Ulutaş, C.; Kirmizigül, F.; Gümüş, C.

    2011-11-01

    Zinc sulfide films have been deposited on glass substrates at room temperature by the chemical bath deposition technique. The growth mechanism is studied using X-ray diffraction, scanning electron microscopy, optical absorption spectra and electrical measurements. The as-deposited film was given thermal annealing treatment in air atmosphere at various temperatures (100, 200, 300 400 and 500 °C) for 1 h. The annealed film was also characterized by structural, optical and electrical studies. The structural analyses revealed that the as-deposited film was amorphous, but after being annealed at 500 °C, it changed to polycrystalline. The optical band gap is direct with a value of 4.01 eV, but this value decreased to 3.74 eV with annealing temperature, except for the 500 °C anneal where it only decreased to 3.82 eV. The refractive index (n), extinction coefficient (k), and real (ɛ1) and imaginary (ɛ2) parts of the dielectric constant are evaluated. Raman peaks appearing at ~478 cm-1, ~546 cm-1, ~778 cm-1 and ~1082 cm-1 for the annealed film (500 °C) were attributed to [TOl+LAΣ, 2TOΓ, 2LO, 3LO phonons of ZnS. The electrical conductivities of both as-deposited and annealed films have been calculated to be of the order of ~10-10 (Ω cm)-1 .

  11. Statistical Physics of Electron Temperature of Low-Pressure Discharge Nitrogen Plasma with Non-Maxwellian EEDF

    NASA Astrophysics Data System (ADS)

    Akatsuka, Hiroshi; Tanaka, Yoshinori

    2016-09-01

    We reconsider electron temperature of non-equilibrium plasmas on the basis of thermodynamics and statistical physics. Following our previous study on the oxygen plasma in GEC 2015, we discuss the common issue for the nitrogen plasma. First, we solve the Boltzmann equation to obtain the electron energy distribution function (EEDF) F(ɛ) of the nitrogen plasma as a function of the reduced electric field E / N . We also simultaneously solve the chemical kinetic equations of some essential excite species of nitrogen molecules and atoms, including vibrational distribution function (VDF). Next, we calculate the electron mean energy as U = < ɛ > =∫0∞ɛF(ɛ) dɛ and entropy S = - k∫0∞F(ɛ) ln [ F(ɛ) ] dɛ for each value of E / N . Then, we can obtain the electron temperature as Testat =[ ∂S / ∂U ] - 1 . After that, we discuss the difference between Testat and the kinetic temperature Tekin ≡(2 / 3) < ɛ > , as well as the temperature given as a slope of the calculated EEDF for each value of E / N . We found Testat is close to the slope at ɛ 4 eV in the EEPF.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, J.Y.; Zhao, G.; Zhang, J.

    energy levels, spontaneous radiative decay rates, and electron impact collision strengths are calculated for La XXX. The data refer to 107 fine-structure levels belonging to the configurations (1s{sup 2}2s{sup 2}2p{sup 6})3s{sup 2}3p{sup 6}3d{sup 10}, 3s{sup 2}3p{sup 6}3d{sup 9}4l, 3s{sup 2}3p{sup 5}3d{sup 10}4l, and 3s3p{sup 6}3d{sup 10}4l (l = s, p, d, f). The collision strengths are calculated with a 20-collision-energy grid in terms of the energy of the scattered electron between 10 and 10,000 eV by using the distorted-wave approximation. Effective collision strengths are obtained at seven electron temperatures: T {sub e} (eV) = 10, 100, 300, 500, 800, 1000,more » and 1500 by integrating the collision strengths over a Maxwellian electron distribution. Coupled with these atomic data, a hydrodynamic code MED103 can be used to simulate the Ni-like La X-ray laser at 8.8 nm.« less

  13. Characterization of low-pressure microwave and radio frequency discharges in oxygen applying optical emission spectroscopy and multipole resonance probe

    NASA Astrophysics Data System (ADS)

    Steves, Simon; Styrnoll, Tim; Mitschker, Felix; Bienholz, Stefan; Nikita, Bibinov; Awakowicz, Peter

    2013-11-01

    Optical emission spectroscopy (OES) and multipole resonance probe (MRP) are adopted to characterize low-pressure microwave (MW) and radio frequency (RF) discharges in oxygen. In this context, both discharges are usually applied for the deposition of permeation barrier SiOx films on plastic foils or the inner surface of plastic bottles. For technological reasons the MW excitation is modulated and a continuous wave (cw) RF bias is used. The RF voltage produces a stationary low-density plasma, whereas the high-density MW discharge is pulsed. For the optimization of deposition process and the quality of the deposited barrier films, plasma conditions are characterized using OES and MRP. To simplify the comparison of applied diagnostics, both MW and RF discharges are studied separately in cw mode. The OES and MRP diagnostic methods complement each other and provide reliable information about electron density and electron temperature. In the MW case, electron density amounts to ne = (1.25 ± 0.26) × 1017 m-3, and kTe to 1.93 ± 0.20 eV, in the RF case ne = (6.8 ± 1.8)×1015 m-3 and kTe = 2.6 ± 0.35 eV. The corresponding gas temperatures are 760±40 K and 440±20 K.

  14. Absolute laser-intensity measurement and online monitor calibration using a calorimeter at a soft X-ray free-electron laser beamline in SACLA

    NASA Astrophysics Data System (ADS)

    Tanaka, Takahiro; Kato, Masahiro; Saito, Norio; Owada, Shigeki; Tono, Kensuke; Yabashi, Makina; Ishikawa, Tetsuya

    2018-06-01

    This paper reports measurement of the absolute intensity of free-electron laser (FEL) and calibration of online intensity monitors for a brand-new FEL beamline BL1 at SPring-8 Angstrom Compact free-electron LAser (SACLA) in Japan. To measure the absolute intensity of FEL, we used a room-temperature calorimeter originally developed for FELs in the hard X-ray range. By using the calorimeter, we calibrated online intensity monitors of BL1, gas monitors (GMs), based on the photoionization of argon gas, in the photon energy range from 25 eV to 150 eV. A good correlation between signals obtained from the calorimeter and GMs was observed in the pulse energy range from 1 μJ to 100 μJ, where the upper limit is nearly equal to the maximum pulse energy at BL1. Moreover, the calibration result of the GMs, measured in terms of the spectral responsivity, demonstrates a characteristic photon-energy dependence owing to the occurrence of the Cooper minimum in the total ionization cross-section of argon gas. These results validate the feasibility of employing the room-temperature calorimeter in the measurement of absolute intensity of FELs over the specified photon energy range.

  15. Temperature Dependent Surface Structures and Electronic Properties of Organic-Inorganic Hybrid Perovskite Single Crystals

    NASA Astrophysics Data System (ADS)

    Jao, M.-H.; Teague, M. L.; Huang, J.-S.; Tseng, W.-S.; Yeh, N.-C.

    Organic-inorganic hybrid perovskites, arising from research of low-cost high performance photovoltaics, have become promising materials not only for solar cells but also for various optoelectronic and spintronic applications. An interesting aspect of the hybrid perovskites is that their material properties, such as the band gap, can be easily tuned by varying the composition, temperature, and the crystalline phases. Additionally, the surface structure is critically important for their optoelectronic applications. It is speculated that different crystalline facets could show different trap densities, thus resulting in microscopically inhomogeneous performance. Here we report direct studies of the surface structures and electronic properties of hybrid perovskite CH3NH3PbI3 single crystals by scanning tunneling microscopy and spectroscopy (STM/STS). We found long-range spatially homogeneous tunneling conductance spectra with a well-defined energy gap of (1.55 +/- 0.1) eV at 300 K in the tetragonal phase, suggesting high quality of the single crystals. The energy gap increased to (1.81 +/- 0.1) eV in the orthorhombic phase, below the tetragonal-to-orthorhombic phase transition temperature at 150 K. Detailed studies of the temperature evolution in the spatially resolved surface structures and local density of states will be discussed to elucidate how these properties may influence the optoelectronic performance of the hybrid perovskites. We thank the support from NTU in Taiwan and from NSF in the US.

  16. Synthesis and characterization of InNbO₄ nanopowder for gas sensors.

    PubMed

    Balamurugan, C; Vijayakumar, E; Subramania, A

    2012-01-15

    Indium niobate (InNbO(4)) nanopowder was prepared by a comparatively low temperature niobium citrate complex process. The prepared InNbO(4) was characterized by thermal analysis, X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy, diffuse reflectance spectroscopy (DRS), and impedance studies. It revealed that the well crystalline monoclinic InNbO(4) nanopowder was obtained at the calcination temperature of 600°C. The average particle diameter was 22nm. The optical band gap was found to be 2.66eV. The temperature dependent conductivity obeyed Arrhenius relation. The activation energy of the conductivity process was calculated to be 0.43eV. The gas sensing behaviour of the prepared InNbO(4) was studied by measuring the change in resistance of the sensor material as a function of various concentrations of the test gases such as liquid petroleum gas (LPG), ammonia (NH(3)) and ethanol (C(2)H(5)OH) at their optimized operating temperature. InNbO(4) had a better sensitivity to LPG (0.97) and NH(3) (0.70) gas than ethanol (0.46). The sensor responses of InNbO(4) as a function of gas concentrations and with recovery time were also studied in detail. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Diagnosing pure-electron plasmas with internal particle flux probes.

    PubMed

    Kremer, J P; Pedersen, T Sunn; Marksteiner, Q; Lefrancois, R G; Hahn, M

    2007-01-01

    Techniques for measuring local plasma potential, density, and temperature of pure-electron plasmas using emissive and Langmuir probes are described. The plasma potential is measured as the least negative potential at which a hot tungsten filament emits electrons. Temperature is measured, as is commonly done in quasineutral plasmas, through the interpretation of a Langmuir probe current-voltage characteristic. Due to the lack of ion-saturation current, the density must also be measured through the interpretation of this characteristic thereby greatly complicating the measurement. Measurements are further complicated by low densities, low cross field transport rates, and large flows typical of pure-electron plasmas. This article describes the use of these techniques on pure-electron plasmas in the Columbia Non-neutral Torus (CNT) stellarator. Measured values for present baseline experimental parameters in CNT are phi(p)=-200+/-2 V, T(e)=4+/-1 eV, and n(e) on the order of 10(12) m(-3) in the interior.

  18. First-Principles Prediction of Electronic, Magnetic, and Optical Properties of Co2MnAs Full-Heusler Half-Metallic Compound

    NASA Astrophysics Data System (ADS)

    Bakhshayeshi, A.; Sarmazdeh, M. Majidiyan; Mendi, R. Taghavi; Boochani, A.

    2017-04-01

    Electronic, magnetic, and optical properties of Co2MnAs full-Heusler compound have been calculated using a first-principles approach with the full-potential linearized augmented plane-wave (FP-LAPW) method and generalized gradient approximation plus U (GGA + U). The results are compared with various properties of Co2Mn Z ( Z = Si, Ge, Al, Ga, Sn) full-Heusler compounds. The results of our calculations show that Co2MnAs is a half-metallic ferromagnetic compound with 100% spin polarization at the Fermi level. The total magnetic moment and half-metallic gap of Co2MnAs compound are found to be 6.00 μ B and 0.43 eV, respectively. It is also predicted that the spin-wave stiffness constant and Curie temperature of Co2MnAs compound are about 3.99 meV nm2 and 1109 K, respectively. The optical results show that the dominant behavior, at energy below 2 eV, is due to interactions of free electrons in the system. Interband optical transitions have been calculated based on the imaginary part of the dielectric function and analysis of critical points in the second energy derivative of the dielectric function. The results show that there is more than one plasmon energy for Co2MnAs compound, with the highest occurring at 25 eV. Also, the refractive index variations and optical reflectivity for radiation at normal incidence are calculated for Co2MnAs. Because of its high magnetic moment, high Curie temperature, and 100% spin polarization at the Fermi level as well as its optical properties, Co2MnAs is a good candidate for use in spintronic components and magnetooptical devices.

  19. Structural defects and recombination behavior of excited carriers in Cu(In,Ga)Se{sub 2} solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, J.; Du, H. W.; Li, Y.

    2016-08-15

    The carriers’ behavior in neutral region (NTR) and space charged region (SCR) of Cu(In,Ga)Se{sub 2} thin film based solar cells has been investigated by temperature dependent photoluminescence (PL-T), electroluminescence (EL-T) and current-voltage (IV-T) from 10 to 300 K. PL-T spectra show that three kinds of defects, namely V{sub Se}, In{sub Cu} and (In{sub Cu}+V{sub Cu}), are localized within the band gap of NTR and SCR of CIGS layer, corresponding to the energy levels of E{sub C}-0.08, E{sub C}-0.20 and E{sub C}-0.25 eV, respectively. The In{sub Cu} and (In{sub Cu}+V{sub Cu}) deep level defects are non-radiative recombination centers at room temperature.more » The IV-T and EL-T analysis reveals that the injection modes of electrons from ZnO conduction band into Cu(In,Ga)Se{sub 2} layer are tunneling, thermally-excited tunneling and thermionic emission under 10-40, 60-160, and 180-300 K, respectively. At 10-160 K, the electrons tunnel into (In{sub Cu}+V{sub Cu}) and V{sub se} defect levels in band gap of SCR and the drifting is involved in the emission bands at 0.96 and 1.07 eV, which is the direct evidence for a tunneling assisted recombination. At 180-300 K, the electrons are directly injected into the Cu(In,Ga)Se{sub 2} conduction band, and the emission of 1.13 eV are ascribed to the transitions from the conduction band to the valence band.« less

  20. Electron impact excitation of the electronic states of N2. III - Transitions in the 12.5-14.2-eV energy-loss region at incident energies of 40 and 60 eV

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Trajmar, S.; Cartwright, D. C.

    1977-01-01

    Analysis of electron energy-loss data at incident electron energies of 40 and 60 eV has led to the determination of normalized absolute differential cross sections for electron-impact excitation of five optically-allowed singlet states, two known triplet states, and two unknown triplet-like states of N2, lying in the energy-loss range 12.5-14.2 eV. The range of scattering angles was 5 to 138 deg. The optically allowed transitions and the known triplet excitations are identified. Cross sections for excitation to two unidentified triplet-like states at 13.155 and 13.395 eV were also obtained. The relationship of the generalized oscillator strength for the dipole-allowed states obtained from the described data to known optical oscillator strengths is discussed.

  1. Sodium doping in ZnO crystals

    NASA Astrophysics Data System (ADS)

    Parmar, N. S.; Lynn, K. G.

    2015-01-01

    ZnO bulk single crystals were doped with sodium by thermal diffusion. Positron annihilations spectroscopy confirms the filling of zinc vacancies, to >6 μm deep in the bulk. Secondary-ion mass spectrometry measurement shows the diffusion of sodium up to 8 μm with concentration (1-3.5) × 1017 cm-3. Broad photoluminescence excitation peak at 3.1 eV, with onset appearance at 3.15 eV in Na:ZnO, is attributed to an electronic transition from a NaZn level at ˜(220-270) meV to the conduction band. Resistivity in Na doped ZnO crystals increases up to (4-5) orders of magnitude at room temperature.

  2. Note: Enhancement of the extreme ultraviolet emission from a potassium plasma by dual laser irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higashiguchi, Takeshi, E-mail: higashi@cc.utsunomiya-u.ac.jp; Yamaguchi, Mami; Otsuka, Takamitsu

    2014-09-15

    Emission spectra from multiply charged potassium ions ranging from K{sup 3+} to K{sup 5+} have been obtained in the extreme ultraviolet (EUV) spectral region. A strong emission feature peaking around 38 nm, corresponding to a photon energy of 32.6 eV, is the dominant spectral feature at time-averaged electron temperatures in the range of 8−12 eV. The variation of this emission with laser intensity and the effects of pre-pulses on the relative conversion efficiency (CE) have been explored experimentally and indicate that an enhancement of about 30% in EUV CE is readily attainable.

  3. Whistler anisotropy instabilities as the source of banded chorus: Van Allen Probes observations and particle-in-cell simulations

    DOE PAGES

    Fu, Xiangrong; Cowee, Misa M.; Friedel, Reinhard H.; ...

    2014-10-22

    Magnetospheric banded chorus is enhanced whistler waves with frequencies ω r < Ω e, where Ω e is the electron cyclotron frequency, and a characteristic spectral gap at ω r ≃ Ω e/2. This paper uses spacecraft observations and two-dimensional particle-in-cell simulations in a magnetized, homogeneous, collisionless plasma to test the hypothesis that banded chorus is due to local linear growth of two branches of the whistler anisotropy instability excited by two distinct, anisotropic electron components of significantly different temperatures. The electron densities and temperatures are derived from Helium, Oxygen, Proton, and Electron instrument measurements on the Van Allen Probesmore » A satellite during a banded chorus event on 1 November 2012. The observations are consistent with a three-component electron model consisting of a cold (a few tens of eV) population, a warm (a few hundred eV) anisotropic population, and a hot (a few keV) anisotropic population. The simulations use plasma and field parameters as measured from the satellite during this event except for two numbers: the anisotropies of the warm and the hot electron components are enhanced over the measured values in order to obtain relatively rapid instability growth. The simulations show that the warm component drives the quasi-electrostatic upper band chorus and that the hot component drives the electromagnetic lower band chorus; the gap at ~Ω e/2 is a natural consequence of the growth of two whistler modes with different properties.« less

  4. Relativistic quasiparticle band structures of Mg2Si, Mg2Ge, and Mg2Sn: Consistent parameterization and prediction of Seebeck coefficients

    NASA Astrophysics Data System (ADS)

    Shi, Guangsha; Kioupakis, Emmanouil

    2018-02-01

    We apply density functional and many-body perturbation theory calculations to consistently determine and parameterize the relativistic quasiparticle band structures of Mg2Si, Mg2Ge, and Mg2Sn, and predict the Seebeck coefficient as a function of doping and temperature. The quasiparticle band gaps, including spin-orbit coupling effects, are determined to be 0.728 eV, 0.555 eV, and 0.142 eV for Mg2Si, Mg2Ge, and Mg2Sn, respectively. The inclusion of the semicore electrons of Mg, Ge, and Sn in the valence is found to be important for the accurate determination of the band gaps of Mg2Ge and Mg2Sn. We also developed a Luttinger-Kohn Hamiltonian and determined a set of band parameters to model the near-edge relativistic quasiparticle band structure consistently for all three compounds that can be applied for thermoelectric device simulations. Our calculated values for the Seebeck coefficient of all three compounds are in good agreement with the available experimental data for a broad range of temperatures and carrier concentrations. Our results indicate that quasiparticle corrections are necessary for the accurate determination of Seebeck coefficients at high temperatures at which bipolar transport becomes important.

  5. Studies of Copper, Silver, and Gold Cluster Anions: Evidence of Electronic Shell Structure.

    NASA Astrophysics Data System (ADS)

    Pettiette, Claire Lynn

    A new Ultraviolet Magnetic Time-of-Flight Photoelectron Spectrometer (MTOFPES) has been developed for the study of the electronic structure of clusters produced in a pulsed supersonic molecular beam. This is the first technique which has been successful in probing the valence electronic states of metal clusters. The ultraviolet photoelectron spectra of negative cluster ions of the noble metals have been taken at several different photon energies. These are presented along with the electron affinity and HOMO-LUMO gap measurements for Cu_6^- to Cu_ {41}^-, using 4.66 eV and 6.42 eV detachment energies; Ag_3^- to Ag_{21}^-, using 6.42 eV detachment energy; and Au_3^ - to Au_{21}^-, using 6.42 eV and 7.89 eV detachment energies. The spectra provide the first detailed probes of the s valence electrons of the noble metal clusters. In addition, the 6.42 eV and 7.89 eV spectra probe the first one to two electron volts of the molecular orbitals of the d valence electrons of copper and gold clusters. The electron affinity and HOMO-LUMO gap measurements of the noble metal clusters agree with the predictions of the ellipsoidal shell model for mono-valent metal clusters. In particular, cluster numbers 8, 20, and 40--which correspond to the spherical shell closings of this model--have low electron affinities and large HOMO-LUMO gaps. The spectra of the gold cluster ions indicate that the molecular orbital energies of the cluster valence electrons are more widely spaced for gold than for copper or silver. This is to be expected for the heavy atom clusters when relativistic effects are taken into account.

  6. Parametric dependence of ion temperature and electron density in the SUMMA hot-ion plasma using laser light scattering and emission spectroscopy

    NASA Technical Reports Server (NTRS)

    Snyder, A.; Patch, R. W.; Lauver, M. R.

    1980-01-01

    Hot-ion plasma experiments were conducted in the NASA Lewis SUMMA facility. A steady-state modified Penning discharge was formed by applying a radially inward dc electric field of several kilovolts near the magnetic mirror maxima. Results are reported for a hydrogen plasma covering a wide range in midplane magnetic flux densities from 0.5 to 3.37 T. Input power greater than 45 kW was obtained with water-cooled cathodes. Steady-state plasmas with ion kinetic temperatures from 18 to 830 eV were produced and measured spectroscopically. These ion temperatures were correlated with current, voltage, and magnetic flux density as the independent variables. Electron density measurements were made using an unusually sensitive Thomson scattering apparatus. The measured electron densities range from 2.1 x 10 to the 11th to 6.8 x 10 to the 12th per cu cm.

  7. Contrast between the mechanisms for dissociative electron attachment to CH3SCN and CH3NCS.

    PubMed

    Miller, Thomas M; Viggiano, Albert A; Shuman, Nicholas S

    2018-05-14

    The kinetics of thermal electron attachment to methyl thiocyanate (CH 3 SCN), methyl isothiocyanate (CH 3 NCS), and ethyl thiocyanate (C 2 H 5 SCN) were measured using flowing afterglow-Langmuir probe apparatuses at temperatures between 300 and 1000 K. CH 3 SCN and C 2 H 5 SCN undergo inefficient dissociative attachment to yield primarily SCN - at 300 K (k = 2 × 10 -10 cm 3 s -1 ), with increasing efficiency as temperature increases. The increase is well described by activation energies of 0.17 eV (CH 3 SCN) and 0.14 eV (C 2 H 5 SCN). CN - product is formed at <1% branching at 300 K, increasing to ∼30% branching at 1000 K. Attachment to CH 3 NCS yields exclusively SCN - ionic product but at a rate at 300 K that is below our detection threshold (k < 10 -12 cm 3 s -1 ). The rate coefficient increases rapidly with increasing temperature (k = 6 × 10 -11 cm 3 s -1 at 600 K), in a manner well described by an activation energy of 0.51 eV. Calculations at the B3LYP/def2-TZVPPD level suggest that attachment to CH 3 SCN proceeds through a dissociative state of CH 3 SCN - , while attachment to CH 3 NCS initially forms a weakly bound transient anion CH 3 NCS -* that isomerizes over an energetic barrier to yield SCN - . Kinetic modeling of the two systems is performed in an attempt to identify a kinetic signature differentiating the two mechanisms. The kinetic modeling reproduces the CH 3 NCS data only if dissociation through the transient anion is considered.

  8. Contrast between the mechanisms for dissociative electron attachment to CH3SCN and CH3NCS

    NASA Astrophysics Data System (ADS)

    Miller, Thomas M.; Viggiano, Albert A.; Shuman, Nicholas S.

    2018-05-01

    The kinetics of thermal electron attachment to methyl thiocyanate (CH3SCN), methyl isothiocyanate (CH3NCS), and ethyl thiocyanate (C2H5SCN) were measured using flowing afterglow-Langmuir probe apparatuses at temperatures between 300 and 1000 K. CH3SCN and C2H5SCN undergo inefficient dissociative attachment to yield primarily SCN- at 300 K (k = 2 × 10-10 cm3 s-1), with increasing efficiency as temperature increases. The increase is well described by activation energies of 0.17 eV (CH3SCN) and 0.14 eV (C2H5SCN). CN- product is formed at <1% branching at 300 K, increasing to ˜30% branching at 1000 K. Attachment to CH3NCS yields exclusively SCN- ionic product but at a rate at 300 K that is below our detection threshold (k < 10-12 cm3 s-1). The rate coefficient increases rapidly with increasing temperature (k = 6 × 10-11 cm3 s-1 at 600 K), in a manner well described by an activation energy of 0.51 eV. Calculations at the B3LYP/def2-TZVPPD level suggest that attachment to CH3SCN proceeds through a dissociative state of CH3SCN-, while attachment to CH3NCS initially forms a weakly bound transient anion CH3NCS-* that isomerizes over an energetic barrier to yield SCN-. Kinetic modeling of the two systems is performed in an attempt to identify a kinetic signature differentiating the two mechanisms. The kinetic modeling reproduces the CH3NCS data only if dissociation through the transient anion is considered.

  9. Three-dimensionality of the bulk electronic structure in WTe 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yun; Jo, Na Hyun; Mou, Daixiang

    Inmore » this paper, we use temperature- and field-dependent resistivity measurements (Shubnikov–de Haas quantum oscillations) and ultrahigh-resolution, tunable, vacuum ultraviolet laser-based angle-resolved photoemission spectroscopy (ARPES) to study the three-dimensionality (3D) of the bulk electronic structure in WTe 2 , a type II Weyl semimetal. The bulk Fermi surface (FS) consists of two pairs of electron pockets and two pairs of hole pockets along the Χ–Γ–Χ direction as detected by using an incident photon energy of 6.7 eV, which is consistent with the previously reported data. However, if using an incident photon energy of 6.36 eV, another pair of tiny electron pockets is detected on both sides of the Γ point, which is in agreement with the small quantum oscillation frequency peak observed in the magnetoresistance. Therefore, the bulk, 3D FS consists of three pairs of electron pockets and two pairs of hole pockets in total. With the ability of fine tuning the incident photon energy, we demonstrate the strong three-dimensionality of the bulk electronic structure in WTe 2 . Finally, the combination of resistivity and ARPES measurements reveals the complete, and consistent, picture of the bulk electronic structure of this material.« less

  10. Three-dimensionality of the bulk electronic structure in WTe 2

    DOE PAGES

    Wu, Yun; Jo, Na Hyun; Mou, Daixiang; ...

    2017-05-18

    Inmore » this paper, we use temperature- and field-dependent resistivity measurements (Shubnikov–de Haas quantum oscillations) and ultrahigh-resolution, tunable, vacuum ultraviolet laser-based angle-resolved photoemission spectroscopy (ARPES) to study the three-dimensionality (3D) of the bulk electronic structure in WTe 2 , a type II Weyl semimetal. The bulk Fermi surface (FS) consists of two pairs of electron pockets and two pairs of hole pockets along the Χ–Γ–Χ direction as detected by using an incident photon energy of 6.7 eV, which is consistent with the previously reported data. However, if using an incident photon energy of 6.36 eV, another pair of tiny electron pockets is detected on both sides of the Γ point, which is in agreement with the small quantum oscillation frequency peak observed in the magnetoresistance. Therefore, the bulk, 3D FS consists of three pairs of electron pockets and two pairs of hole pockets in total. With the ability of fine tuning the incident photon energy, we demonstrate the strong three-dimensionality of the bulk electronic structure in WTe 2 . Finally, the combination of resistivity and ARPES measurements reveals the complete, and consistent, picture of the bulk electronic structure of this material.« less

  11. Electron Resonance Decay into a Biological Function: Decrease in Viability of E. coli Transformed by Plasmid DNA Irradiated with 0.5-18 eV Electrons.

    PubMed

    Kouass Sahbani, S; Cloutier, P; Bass, A D; Hunting, D J; Sanche, L

    2015-10-01

    Transient negative ions (TNIs) are ubiquitous in electron-molecule scattering at low electron impact energies (0-20 eV) and are particularly effective in damaging large biomolecules. Because ionizing radiation generates mostly 0-20 eV electrons, TNIs are expected to play important roles in cell mutagenesis and death during radiotherapeutic cancer treatment, although this hypothesis has never been directly verified. Here, we measure the efficiency of transforming E. coli bacteria by inserting into the cells, pGEM-3ZfL(-) plasmid DNA that confers resistance to the antibiotic ampicillin. Before transformation, plasmids are irradiated with electrons of specific energies between 0.5 and 18 eV. The loss of transformation efficiency plotted as a function of irradiation energy reveals TNIs at 5.5 and 9.5 eV, corresponding to similar states observed in the yields of DNA double strand breaks. We show that TNIs are detectable in the electron-energy dependence of a biological process and can decrease cell viability.

  12. Viral chimeras decrypt the role of enterovirus capsid proteins in viral tropism, acid sensitivity and optimal growth temperature

    PubMed Central

    Royston, Léna; Essaidi-Laziosi, Manel; Piuz, Isabelle; Geiser, Johan; Huang, Song; Kaiser, Laurent; Garcin, Dominique

    2018-01-01

    Despite their genetic similarities, enteric and respiratory enteroviruses (EVs) have highly heterogeneous biophysical properties and cause a vast diversity of human pathologies. In vitro differences include acid sensitivity, optimal growth temperature and tissue tropism, which reflect a preferential in vivo replication in the respiratory or gastrointestinal tract and are thus key determinants of EV virulence. To investigate the underlying cause of these differences, we generated chimeras at the capsid-level between EV-D68 (a respiratory EV) and EV-D94 (an enteric EV). Although some chimeras were nonfunctional, EV-D94 with both the capsid and 2A protease or the capsid only of EV-D68 were both viable. Using this latter construct, we performed several functional assays, which indicated that capsid proteins determine acid sensitivity and tropism in cell lines and in respiratory, intestinal and neural tissues. Additionally, capsid genes were shown to also participate in determining the optimal growth temperature, since EV-D94 temperature adaptation relied on single mutations in VP1, while constructs with EV-D68 capsid could not adapt to higher temperatures. Finally, we demonstrate that EV-D68 maintains residual binding-capacity after acid-treatment despite a loss of infectivity. In contrast, non-structural rather than capsid proteins modulate the innate immune response in tissues. These unique biophysical insights expose another layer in the phenotypic diversity of one of world’s most prevalent pathogens and could aid target selection for vaccine or antiviral development. PMID:29630666

  13. Molecular cascade Auger decays following Si KL23L23 Auger transitions in SiCl4

    NASA Astrophysics Data System (ADS)

    Suzuki, I. H.; Bandoh, Y.; Mochizuki, T.; Fukuzawa, H.; Tachibana, T.; Yamada, S.; Takanashi, T.; Ueda, K.; Tamenori, Y.; Nagaoka, S.

    2016-08-01

    Cascade Si LVV Auger electron spectra at the photoexcitation of the Si 1s electron in a SiCl4 molecule have been measured using an electron spectrometer combined with monochromatized undulator radiation. In the instance of the resonant excitation of the Si 1s electron into the vacant molecular orbital a peak with high yield is observed at about 106 eV, an energy considerably higher than the energies of the normal LVV Auger electron. This peak is presumed to originate from the participator decay from the state with two 2p holes and one excited electron into the state with one 2p hole and one valence hole. Following the normal KL23L23 Auger transition, the cascade spectrum shows several peak structures, e.g. 63 eV, 76 eV and 91 eV. The peak at 91 eV is probably assigned to the second step Auger decay into states having a 2p hole together with two valence holes. These findings are similar to experimental results of SiF4. The former two peaks (63 eV and 76 eV) are ascribed to Auger transitions of Si atomic ions produced through molecular ion dissociation after the first step cascade decays, although the peak heights of atomic ions are lower than those of SiF4.

  14. Ion and electron sheath characteristics in a low density and low temperature plasma

    NASA Astrophysics Data System (ADS)

    Borgohain, Binita; Bailung, H.

    2017-11-01

    Ion and electron sheath characteristics in a low electron temperature (Te ˜ 0.25-0.40 eV) and density (ne ˜ 106-107 cm-3) plasma are described. The plasma is produced in the experimental volume through diffusion from a hot cathode discharge plasma source by using a magnetic filter. The electron energy distribution function in the experimental plasma volume is measured to be a narrow Maxwellian distribution indicating the absence of primary and energetic electrons which are decoupled in the source side by the cusp magnetic field near the filter. An emissive probe is used to measure the sheath potential profiles in front of a metal plate biased negative and positive with respect to the plasma potential. For a positive plate bias, the electron density decreases considerably and the electron sheath expands with a longer presheath region compared to the ion sheath. The sheath potential structures are found to follow the Debye sheath model.

  15. Semiconducting-metallic transition of singlecrystalline ferromagnetic Hf-doped CuCr2Se4 spinels

    NASA Astrophysics Data System (ADS)

    Maciążek, E.; Malicka, E.; Gągor, A.; Stokłosa, Z.; Groń, T.; Sawicki, B.; Duda, H.; Gudwański, A.

    2017-09-01

    Chalcogenide spinels show a variety of physical properties and are very good candidates for electronic and high-frequency applications. We report the measurements of magnetic susceptibility, magnetic isotherm, electrical conductivity, thermoelectric power and calculations of the superexchange and double-exchange integrals made for singlecrystalline Cu[CrxHfy]Se4 spinels. The results showed a ferromagnetic order of magnetic moments below the Curie temperatures of 390 K and, an increase in the splitting of the zero-field cooled and field cooled susceptibilities with increasing Hf-content below the room temperature suggesting a slight spin-frustration and a rapid transition from semiconducting to metallic state at room temperature. A quantitative evaluation of the exchange Hamiltonian showed that the total hopping integral rapidly decreased and the bandwidth of the 3d t2g band due to Cr3+ and Cr4+ ions strongly narrowed from 0.76 eV for y = 0 to 0.28 eV for y = 0.14. The narrowing of this band appears to be responsible for semiconducting properties of the Hf-doped CuCr2Se4 spinels below the room temperature.

  16. Quantum molecular dynamics study on the structures and dc conductivity of warm dense silane

    NASA Astrophysics Data System (ADS)

    Sun, Huayang; Kang, Dongdong; Dai, Jiayu; Zeng, Jiaolong; Yuan, Jianmin

    2014-02-01

    The ionic and electronic structures of warm dense silane at the densities of 1.795, 2.260, 3.382, and 3.844 g/cm3 have been studied with temperatures from 1000 K to 3 eV using quantum molecular dynamics simulations. At all densities, the structures are melted above 1000 K. The matter states are characterized as polymeric from 1000 to 4000 K and become dense plasma states with further increasing temperature to 1 eV. At two lower densities of 1.795 and 2.260 g/cm3, silane first dissociates and then becomes the polymeric state via a chain state from the initial crystalline structure. At higher densities, however, no dissociation stage was found. These findings can help us understand how the warm dense matter forms. A rise is found for the direct current electric conductivity at T ˜1000 K, indicating the nonmetal-to-metal transition. The conductivity decreases slightly with the increase of temperature, which is due to the more disordered structures at higher temperatures.

  17. Structure, Morphology, and Optical Properties of Amorphous and Nanocrystalline Gallium Oxide Thin Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, S. Sampath; Rubio, E. J.; Noor-A-Alam, M.

    Ga2O3 thin films were produced by sputter deposition by varying the substrate temperature (Ts) in a wide range (Ts=25-800 oC). The structural characteristics and optical properties of Ga2O3 films were evaluated using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDS), Rutherford backscattering spectrometry (RBS) and spectrophotometric measurements. The effect of growth temperature is significant on the chemistry, crystal structure and morphology of Ga2O3 films. XRD and SEM analyses indicate that the Ga2O3 films grown at lower temperatures were amorphous while those grown at Ts≥500 oC were nanocrystalline. RBS measurements indicate the well-maintained stoichiometry of Ga2O3 films atmore » Ts=300-700 oC. The spectral transmission of the films increased with increasing temperature. The band gap of the films varied from 4.96 eV to 5.17 eV for a variation in Ts in the range 25-800 oC. A relationship between microstructure and optical property is discussed.« less

  18. The Pioneer 10 plasma analyzer results at Jupiter

    NASA Technical Reports Server (NTRS)

    Wolfe, J. H.

    1975-01-01

    Results are reported for the Pioneer 10 plasma-analyzer experiment at Jupiter. The analyzer system consisted of dual 90-deg quadrispherical electrostatic analyzers, multiple charged-particle detectors, and attendant electronics; it was capable of determining the incident plasma-distribution parameters over the energy range from 100 to 18,000 eV for protons and from approximately 1 to 500 eV for electrons. Data are presented on the interaction between the solar wind and the Jovian magnetosphere, the interplanetary ion flux, observations of the magnetosheath plasma, and traversals of the bow shock and magnetopause. Values are estimated for the proton isotropic temperature, number density, and bulk velocity within the magnetosheath flow field as well as for the beta parameter, ion number density, and magnetic-energy density of the magnetospheric plasma. It is argued that Jupiter has a reasonably thick magnetosphere somewhat similar to earth's except for the vastly different scale sizes involved.

  19. Study of behaviors of aluminum overlayers deposited on uranium via AES, EELS, and XPS

    NASA Astrophysics Data System (ADS)

    Liu, Kezhao; Luo, Lizhu; Zhou, Wei; Yang, Jiangrong; Xiao, Hong; Hong, Zhanglian; Yang, Hui

    2013-04-01

    Aluminum overlayers on uranium were prepared by sputtering at room temperature in an ultra-high vacuum chamber. The growth mode of aluminum overlayers and behaviors of the Al/U interface reaction were studied in situ by auger electron spectroscopy, electron energy loss spectroscopy, and X-ray photoelectron spectroscopy. The results suggested that the interdiffusion took place at the Al/U interface during the initial stage of deposition. The U4f spectra of the Al/U interface showed strong correlation satellites at binding energies of 380.4 and 392.7 eV and plasma loss features at 404.2 eV, respectively. The interactions between aluminum and uranium yielded the intermetallic compound of UAlx, inducing the shift to a low binding energy for Al2p peaks. The results indicated that aluminum overlayers were formed on the uranium by sputtering in an island growth mode.

  20. Intensity-dependent resonant transmission of x-rays in solid-density aluminum plasma

    NASA Astrophysics Data System (ADS)

    Cho, M. S.; Chung, H.-K.; Cho, B. I.

    2018-05-01

    X-ray free-electron lasers (XFELs) provide unique opportunities to generate and investigate dense plasmas. The absorption and transmission properties of x-ray photons in dense plasmas are important in characterizing the state of the plasmas. Experimental evidence shows that the transmission of x-ray photons through dense plasmas depends greatly on the incident XFEL intensity. Here, we present a detailed analysis of intensity-dependent x-ray transmission in solid-density aluminum using collisional-radiative population kinetics calculations. Reverse saturable absorption (RSA), i.e., an increase in x-ray absorption with intensity has been observed for photon energies below the K-absorption edge and in the intensity range of 1016-1017 W/cm2 for XFEL photons with 1487 eV. At higher intensities, a transition from RSA to saturable absorption (SA) is predicted; thus, the x-ray absorption decreases with intensity above a threshold value. For XFEL photon energies of 1501 eV and 1515 eV, the transition from RSA to SA occurs at XFEL intensities between 1017-1018 W/cm2. Electron temperatures are predicted to be in the range of 30-50 eV for the given experimental conditions. Detailed population kinetics of the charge states explains the intensity-dependent absorption of x-ray photons and the fast modulation of XFEL pulses for both RSA and SA.

  1. Viking 2 electron observations at Mars

    NASA Technical Reports Server (NTRS)

    Johnson, Francis S.; Hanson, William B.

    1992-01-01

    An analysis of the electron mode sweeps made in Viking 2 above the ionosphere is presented. An observation of the electron energy spectrum over the range 0 to 78 eV was recorded in 1 s and observations were made at intervals of 4 or 8 s. The concentrations and temperatures were highly variable in the altitude range 14,000 to 9000 km. Evidence for two Maxwellian components were present in most of the records. The general trend of concentration and temperature for the predominant component was from 2/cu cm and 100,000 K at 15,600 km to 5/cu cm at 220,000 K and 900 km, in good agreement with the Mars 3 observations of Gringauz et al. (1974). The higher-temperature component was generally characterized by a temperature near 400,000 K and concentrations near 0.1/cu cm. The electron plasma pressures near 800 km were about a factor of 20 lower than those obtained from Viking 1, the difference being much greater than expected from the normal distribution around the stagnation point in the shocked solar wind.

  2. Pioneer Venus Orbiter planar retarding potential analyzer plasma experiment

    NASA Technical Reports Server (NTRS)

    Knudsen, W. C.; Bakke, J.; Spenner, K.; Novak, V.

    1980-01-01

    The retarding potential analyzer (RPA) on the Pioneer Venus Orbiter Mission measures most of the thermal plasma parameters within and near the Venusian ionosphere. Parameters include total ion concentration, concentrations of the more abundant ions, ion temperatures, ion drift velocity, electron temperature, and low-energy (0-50 eV) electron distribution function. Several functions not previously used in RPA's were developed and incorporated into this instrument to accomplish these measurements on a spinning spacecraft with a small bit rate. The more significant functions include automatic electrometer ranging with background current compensation; digital, quadratic retarding potential step generation for the ion and low-energy electron scans; a current sampling interval of 2 ms throughout all scans; digital logic inflection point detection and data selection; and automatic ram direction detection.

  3. The electronic states of cyclopropane studied by VUV absorption and electron energy-loss spectroscopies

    NASA Astrophysics Data System (ADS)

    Gingell, M.; Mason, N. J.; Walker, I. C.; Marston, G.; Zhao, H.; Siggel, M. R. F.

    1999-06-01

    Absolute optical (VUV) absorption cross sections for cyclopropane have been measured from 5.0 to 11.2 and 20-40 eV using synchrotron radiation. Also, electron energy-loss (EEL) spectra have been obtained using incident electrons of (a) 150 eV energy scattered through small angles (energy loss 5.0-15 eV) and (b) near-threshold energies scattered through large angles (energy loss 0-10.5 eV). Taken together these confirm that the low-lying excited electronic states of cyclopropane are of Rydberg type and, although spectral bands are diffuse, a known Rydberg series has been extended. Recent computations (Galasso V 1996 Chem. Phys. 206 289) appear to give a good account of the experimental spectrum from threshold to about 11 eV, but these must be extended if valence-excited states are to be characterized. Particular attention has been directed at the evaluation of absolute optical cross sections. These are now believed to be established over the energy ranges 5-15 and 20-40 eV. In the gap region (15-20 eV) second-order radiation may affect the optical measurements. From consideration of second-order effects, and comparison of the present studies with earlier measurements, we propose a best-estimate cross section in this energy region also.

  4. Energy distributions of H{sup +} fragments ejected by fast proton and electron projectiles in collision with H{sub 2}O molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barros, A. L. F. de; Lecointre, J.; Luna, H.

    Experimental measurements of the kinetic energy distribution spectra of H{sup +} fragment ions released during radiolysis of water molecules in collision with 20, 50, and 100 keV proton projectiles and 35, 200, 400, and 1000 eV electron projectiles are reported using a pulsed beam and drift tube time-of-flight based velocity measuring technique. The spectra show that H{sup +} fragments carrying a substantial amount of energy are released, some having energies well in excess of 20 eV. The majority of the ions lie within the 0-5 eV energy range with the proton spectra showing an almost constant profile between 1.5 andmore » 5 eV and, below this, increasing gradually with decreasing ejection energy up to the near zero energy value while the electron spectra, in contrast, show a broad maximum between 1 and 3 eV and a pronounced dip around 0.25 eV. Beyond 5 eV, both projectile spectra show a decreasing profile with the electron spectra decreasing far more rapidly than the proton spectra. Our measured spectra thus indicate that major differences are present in the collision dynamics between the proton and the electron projectiles interacting with gas phase water molecules.« less

  5. Sounding rocket study of auroral electron precipitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McFadden, J.P.

    1985-01-01

    Measurement of energetic electrons in the auroral zone have proved to be one of the most useful tools in investigating the phenomena of auroral arc formation. This dissertation presents a detailed analysis of the electron data from two sounding rocket campaigns and interprets the measurements in terms of existing auroral models. The Polar Cusp campaign consisted of a single rocket launched from Cape Parry, Canada into the afternoon auroral zone at 1:31:13 UT on January 21, 1982. The results include the measurement of a narrow, magnetic field aligned electron flux at the edge of an arc. This electron precipitation wasmore » found to have a remarkably constant 1.2 eV temperature perpendicular to the magnetic field over a 200 to 900 eV energy range. The payload also made simultaneous measurements of both energetic electrons and 3-MHz plasma waves in an auroral arc. Analysis has shown that the waves are propagating in the upper hybrid band and should be generated by a positive slope in the parallel electron distribution. A correlation was found between the 3-MHz waves and small positive slopes in the parallel electron distribution but experimental uncertainties in the electron measurement were large enough to influence the analysis. The BIDARCA campaign consisted of two sounding rockets launched from Poker Flat and Fort Yukon, Alaska at 9:09:00 UT and 9:10:40 UT on February 7, 1984.« less

  6. Spatiotemporal temperature and density characterization of high-power atmospheric flashover discharges over inert poly(methyl methacrylate) and energetic pentaerythritol tetranitrate dielectric surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, V.; Grant, C. D.; McCarrick, J. F.

    2012-03-01

    A flashover arc source that delivered up to 200 mJ on the 100s-of-ns time-scale to the arc and a user-selected dielectric surface was characterized for studying high-explosive kinetics under plasma conditions. The flashover was driven over thin pentaerythritol tetranitrate (PETN) and poly(methyl methacrylate) (PMMA) dielectric films and the resultant plasma was characterized in detail. Time- and space-resolved temperatures and electron densities of the plasma were obtained using atomic emission spectroscopy. The hydrodynamics of the plasma was captured through fast, visible imaging. Fourier transform infrared spectroscopy (FTIR) was used to characterize the films pre- and post-shot for any chemical alterations. Time-resolvedmore » infrared spectroscopy (TRIR) provided PETN depletion data during the plasma discharge. For both types of films, temperatures of 1.6-1.7 eV and electron densities of {approx}7-8 x 10{sup 17}/cm{sup 3}{approx}570 ns after the start of the discharge were observed with temperatures of 0.6-0.7 eV persisting out to 15 {mu}s. At 1.2 {mu}s, spatial characterization showed flat temperature and density profiles of 1.1-1.3 eV and 2-2.8 x 10{sup 17}/cm{sup 3} for PETN and PMMA films, respectively. Images of the plasma showed an expanding hot kernel starting from radii of {approx}0.2 mm at {approx}50 ns and reaching {approx}1.1 mm at {approx}600 ns. The thin films ablated or reacted several hundred nm of material in response to the discharge. First TRIR data showing the in situ reaction or depletion of PETN in response to the flashover arc were successfully obtained, and a 2-{mu}s, 1/e decay constant was measured. Preliminary 1 D simulations compared reasonably well with the experimentally determined plasma radii and temperatures. These results complete the first steps to resolving arc-driven PETN reaction pathways and their associated kinetic rates using in situ spectroscopy techniques.« less

  7. The influence of the Ar/O2 ratio on the electron density and electron temperature in microwave discharges

    NASA Astrophysics Data System (ADS)

    Espinho, S.; Hofmann, S.; Palomares, J. M.; Nijdam, S.

    2017-10-01

    The aim of this work is to study the properties of Ar-O2 microwave driven surfatron plasmas as a function of the Ar/O2 ratio in the gas mixture. The key parameters are the plasma electron density and electron temperature, which are estimated with Thomson scattering (TS) for O2 contents up to 50% of the total gas flow. A sharp drop in the electron density from {10}20 {{{m}}}-3 to approximately {10}18 {{{m}}}-3 is estimated as the O2 content in the gas mixture is increased up to 15%. For percentages of O2 lower than 10%, the electron temperature is estimated to be about 2-3 times higher than in the case of a pure argon discharge in the same conditions ({T}{{e}}≈ 1 eV) and gradually decreases as the O2 percentage is raised to 50%. However, for O2 percentages above 30%, the scattering spectra become Raman dominated, resulting in large uncertainties in the estimated electron densities and temperatures. The influence of photo-detached electrons from negative ions caused by the typical TS laser fluences is also likely to contribute to the uncertainty in the measured electron densities for high O2 percentages. Moreover, the detection limit of the system is reached for percentages of O2 higher than 25%. Additionally, both the electron density and temperature of microwave discharges with large Ar/O2 ratios are more sensitive to gas pressure variations.

  8. Kinetics of copper nanoparticle precipitation in phosphate glass: an isothermal plasmonic approach.

    PubMed

    Sendova, Mariana; Jiménez, José A; Smith, Robert; Rudawski, Nicholas

    2015-01-14

    The kinetics of copper nanoparticle (NP) precipitation in melt-quenched barium-phosphate glass has been studied by in situ isothermal optical micro-spectroscopy. A spectroscopically based approximation technique is proposed to obtain information about the activation energies of nucleation and growth in a narrow temperature range (530-570 °C). Pre-plasmonic and plasmonic NP precipitation stages are identified separated in time. The process as a whole is discussed employing classical nucleation/growth theory and the Kolmogorov-Johnson-Mehl-Avrami phase change model. Activation energies of 3.9(7) eV and 2.6(5) eV have been estimated for the pre-plasmonic and plasmonic spectroscopically assessed stages, respectively. High resolution transmission electron microscopy, differential scanning calorimetry, and Raman spectroscopy were used as complementary techniques for studying the nanoparticulate phase and glass host structure. An empirical linear dependence of the diffusion activation energy on the glass transition temperature with broad applicability is suggested.

  9. Carbon diffusion in molten uranium: an ab initio molecular dynamics study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garrett, Kerry E.; Abrecht, David G.; Kessler, Sean H.

    In this work we used ab initio molecular dynamics (AIMD) within the framework of density functional theory (DFT) and the projector-augmented wave (PAW) method to study carbon diffusion in liquid uranium at temperatures above 1600 K. The electronic interactions of carbon and uranium were described using the local density approximation (LDA). The self-diffusion of uranium based on this approach is compared with literature computational and experimental results for liquid uranium. The temperature dependence of carbon and uranium diffusion in the melt was evaluated by fitting the resulting diffusion coefficients to an Arrhenius relationship. We found that the LDA calculated activationmore » energy for carbon was nearly twice that of uranium: 0.55±0.03 eV for carbon compared to 0.32±0.04 eV for uranium. Structural analysis of the liquid uranium-carbon system is also discussed.« less

  10. Optical characteristics of particles produced using electroerosion dispersion of titanium in hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Pyachin, S. A.; Burkov, A. A.; Makarevich, K. S.; Zaitsev, A. V.; Karpovich, N. F.; Ermakov, M. A.

    2016-07-01

    Titanium oxide particles are produced using electric-discharge dispersion of titanium in aqueous solution of hydrogen peroxide. Electron vacuum microscopy, X-ray diffraction, and diffuse reflection spectroscopy are used to study the morphology, composition, and optical characteristics of the erosion particles. It has been demonstrated that the particles consist of titanium and titanium oxides with different valences. The edge of the optical absorption is located in the UV spectral range. The band gap is 3.35 eV for indirect transitions and 3.87 eV for direct allowed transitions. The band gap decreases due to the relatively long heating in air at a temperature of 480-550°C, so that powder oxide compositions can be obtained, the optical characteristics of which are similar to optical characteristics of anatase. The erosion products are completely oxidized to rutile after annealing in air at a temperature of 1000°C.

  11. Development of a long-slot microwave plasma source.

    PubMed

    Kuwata, Y; Kasuya, T; Miyamoto, N; Wada, M

    2016-02-01

    A 20 cm long 10 cm wide microwave plasma source was realized by inserting two 20 cm long 1.5 mm diameter rod antennas into the plasma. Plasma luminous distributions around the antennas were changed by magnetic field arrangement created by permanent magnets attached to the source. The distributions appeared homogeneous in one direction along the antenna when the spacing between the antenna and the source wall was 7.5 mm for the input microwave frequency of 2.45 GHz. Plasma density and temperature at a plane 20 cm downstream from the microwave shield were measured by a Langmuir probe array at 150 W microwave power input. The measured electron density and temperature varied over space from 3.0 × 10(9) cm(-3) to 5.8 × 10(9) cm(-3), and from 1.1 eV to 2.1 eV, respectively.

  12. Band Alignment in MoS2/WS2 Transition Metal Dichalcogenide Heterostructures Probed by Scanning Tunneling Microscopy and Spectroscopy.

    PubMed

    Hill, Heather M; Rigosi, Albert F; Rim, Kwang Taeg; Flynn, George W; Heinz, Tony F

    2016-08-10

    Using scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS), we examine the electronic structure of transition metal dichalcogenide heterostructures (TMDCHs) composed of monolayers of MoS2 and WS2. STS data are obtained for heterostructures of varying stacking configuration as well as the individual monolayers. Analysis of the tunneling spectra includes the influence of finite sample temperature, yield information about the quasi-particle bandgaps, and the band alignment of MoS2 and WS2. We report the band gaps of MoS2 (2.16 ± 0.04 eV) and WS2 (2.38 ± 0.06 eV) in the materials as measured on the heterostructure regions and the general type II band alignment for the heterostructure, which shows an interfacial band gap of 1.45 ± 0.06 eV.

  13. Can a Penning ionization discharge simulate the tokamak scrape-off plasma conditions?

    NASA Technical Reports Server (NTRS)

    Finkenthal, M.; Littman, A.; Stutman, D.; Kovnovich, S.; Mandelbaum, P.; Schwob, J. L.; Bhatia, A. K.

    1990-01-01

    The tokamak scrape-off (the region between the vacuum vessel wall and the magnetically confined fusion plasma edge), represents a source/sink for the hot fusion plasma. The electron densities and temperatures are in the ranges 10 to the 11th - 10 to the 13th/cu cm and 1-40 eV, respectively (depending on the size, magnetic field intensity and configuration, plasma current, etc). In the work reported, the electron temperature and density have been estimated in a Penning ionization discharge by comparing its spectroscopic emission in the VUV with that predicted by a collisional radiative model. An attempt to directly compare this emission with that of the tokamak edge is briefly described.

  14. Development of microwave-multiplexed superconductive detectors for the HOLMES experiment

    NASA Astrophysics Data System (ADS)

    Giachero, A.; Becker, D.; Bennett, D. A.; Faverzani, M.; Ferri, E.; Fowler, J. W.; Gard, J. D.; Hays-Wehle, J. P.; Hilton, G. C.; Maino, M.; Mates, J. A. B.; Puiu, A.; Nucciotti, A.; Reintsema, C. D.; Swetz, D. S.; Ullom, J. N.; Vale, L. R.

    2016-05-01

    In recent years, the progress on low temperature detector technologies has allowed design of large scale experiments aiming at pushing down the sensitivity on the neutrino mass below 1 eV. Even with outstanding performances in both energy (~eV on keV) and time resolution (~ 1 μs) on the single channel, a large number of detectors working in parallel is required to reach a sub-eV sensitivity. HOLMES is a new experiment to directly measure the neutrino mass with a sensitivity as low as 2eV. HOLMES will perform a calorimetric measurement of the energy released in the electron capture (EC) decay of 163 Ho. In its final configuration, HOLMES will deploy 1000 detectors of low temperature microcalorimeters with implanted 163 Ho nuclei. The baseline sensors for HOLMES are Mo/Cu TESs (Transition Edge Sensors) on SiNx membrane with gold absorbers. The readout is based on the use of rf-SQUIDs as input devices with flux ramp modulation for linearization purposes; the rf-SQUID is then coupled to a superconducting lambda/4-wave resonator in the GHz range, and the modulated signal is finally read out using the homodyne technique. The TES detectors have been designed with the aim of achieving an energy resolution of a few eV at the spectrum endpoint and a time resolution of a few micro-seconds, in order to minimize pile-up artifacts.

  15. An investigation into the role of metastable states on excited populations of weakly ionized argon plasmas, with applications for optical diagnostics

    NASA Astrophysics Data System (ADS)

    Arnold, Nicholas; Loch, Stuart; Ballance, Connor; Thomas, Ed

    2017-10-01

    Low temperature plasmas (Te < 10 eV) are ubiquitous in the medical, industrial, basic, and dusty plasma communities, and offer an opportunity for researchers to gain a better understanding of atomic processes in plasmas. Here, we report on a new atomic dataset for neutral and low charge states of argon, from which rate coefficients and cross-sections for the electron-impact excitation of neutral argon are determined. We benchmark by comparing with electron impact excitation cross-sections available in the literature, with very good agreement. We have used the Atomic Data and Analysis Structure (ADAS) code suite to calculate a level-resolved, generalized collisional-radiative (GCR) model for line emission in low temperature argon plasmas. By combining our theoretical model with experimental electron temperature, density, and spectral measurements from the Auburn Linear eXperiment for Instability Studies (ALEXIS), we have developed diagnostic techniques to measure metastable fraction, electron temperature, and electron density. In the future we hope to refine our methods, and extend our model to plasmas other than ALEXIS. Supported by the U.S. Department of Energy. Grant Number: DE-FG02-00ER54476.

  16. Ion Temperature Measurements in an electron beam ion trap (EBIT)

    NASA Astrophysics Data System (ADS)

    Beiersdorfer, P.; Decaux, V.; Widmann, K.

    1997-11-01

    An electron beam ion trap consists of a Penning-type cylindrical trap traversed by a high-energy (<= 200 keV), high-density (Ne <= 10^13 cm-3) electron beam. Ions are trapped by the space charge potential of the electron beam, a static potential on the end electrodes, and a 3-T axial magnetic field [1]. The ions are heated by the electron beam and leave the trap once their kinetic energy suffices to overcome the potential barriers. Using high-resolution x-ray spectroscopy, we have made systematic measurements of the temperature of Ti^20+ and Cs^45+ ions in the trap [2]. The dependence of the ion temperature on operating parameters, such as trapping potential, beam current, and neutral gas pressure, will be presented. Temperatures as low as 15.4 ± 4.4 eV and as high as 2 keV were observed. *Work performed under the auspices of the U.S.D.o.E. by Lawrence Livermore National Laboratory under contract No. W-7405-ENG-48. [1] M. Levine et al., Phys. Scripta T22, 157 (1989). [2]P. Beiersdorfer et al., PRL 77, 5356 (1996); P. Beiersdorfer, in AIP Conf. Proc. No. 389, p. 121 (1997).

  17. Excitation of lowest electronic states of the uracil molecule by slow electrons

    NASA Astrophysics Data System (ADS)

    Chernyshova, I. V.; Kontros, J. E.; Markush, P. P.; Shpenik, O. B.

    2012-07-01

    The excitation of lowest electronic states of the uracil molecule in the gas phase has been studied by electron energy loss spectroscopy. Along with excitation of lowest singlet states, excitation of two lowest triplet states at 3.75 and 4.76 eV (±0.05 eV) and vibrational excitation of the molecule in two resonant ranges (1-2 and 3-4 eV) have been observed for the first time. The peak of the excitation band related to the lowest singlet state (5.50 eV) is found to be blueshifted by 0.4 eV in comparison with the optical absorption spectroscopy data. The threshold excitation spectra have been measured for the first time, with detection of electrons inelastically scattered by an angle of 180°. These spectra exhibit clear separation of the 5.50-eV-wide band into two bands, which are due to the excitation of the triplet 13 A″ and singlet 11 A' states.

  18. Experimental and theoretical electron-scattering cross-section data for dichloromethane

    NASA Astrophysics Data System (ADS)

    Krupa, K.; Lange, E.; Blanco, F.; Barbosa, A. S.; Pastega, D. F.; Sanchez, S. d'A.; Bettega, M. H. F.; García, G.; Limão-Vieira, P.; Ferreira da Silva, F.

    2018-04-01

    We report on a combination of experimental and theoretical investigations into the elastic differential cross sections (DCSs) and integral cross sections for electron interactions with dichloromethane, C H2C l2 , in the incident electron energy over the 7.0-30 eV range. Elastic electron-scattering cross-section calculations have been performed within the framework of the Schwinger multichannel method implemented with pseudopotentials (SMCPP), and the independent-atom model with screening-corrected additivity rule including interference-effects correction (IAM-SCAR+I). The present elastic DCSs have been found to agree reasonably well with the results of IAM-SCAR+I calculations above 20 eV and also with the SMC calculations below 30 eV. Although some discrepancies were found for 7 eV, the agreement between the two theoretical methodologies is remarkable as the electron-impact energy increases. Calculated elastic DCSs are also reported up to 10000 eV for scattering angles from 0° to 180° together with total cross section within the IAM-SCAR+I framework.

  19. Thermionic Properties of Carbon Based Nanomaterials Produced by Microhollow Cathode PECVD

    NASA Technical Reports Server (NTRS)

    Haase, John R.; Wolinksy, Jason J.; Bailey, Paul S.; George, Jeffrey A.; Go, David B.

    2015-01-01

    Thermionic emission is the process in which materials at sufficiently high temperature spontaneously emit electrons. This process occurs when electrons in a material gain sufficient thermal energy from heating to overcome the material's potential barrier, referred to as the work function. For most bulk materials very high temperatures (greater than 1500 K) are needed to produce appreciable emission. Carbon-based nanomaterials have shown significant promise as emission materials because of their low work functions, nanoscale geometry, and negative electron affinity. One method of producing these materials is through the process known as microhollow cathode PECVD. In a microhollow cathode plasma, high energy electrons oscillate at very high energies through the Pendel effect. These high energy electrons create numerous radical species and the technique has been shown to be an effective method of growing carbon based nanomaterials. In this work, we explore the thermionic emission properties of carbon based nanomaterials produced by microhollow cathode PECVD under a variety of synthesis conditions. Initial studies demonstrate measureable current at low temperatures (approximately 800 K) and work functions (approximately 3.3 eV) for these materials.

  20. Transient thermoelectric effect with tunable pulsed laser: Experiment and computer simulations for p-GaAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasaki, M.; Ueda, T.; Tanioka, M.

    A photoinduced {open_quotes}transient thermoelectric effect{close_quotes} (TTE) has been measured for a p-GaAs crystal using a tunable pulsed laser, over the laser energy range 0.93{endash}1.80 eV, laser intensity 0.2{endash}130mJ/cm{sup 2}, time range 1 ns{endash}1 ms, and temperature range 4.2{endash}50 K, with special attention to native defects of EL2 centers, whose ground state (EL2{sup 0}) and excited state (EL2{sup ex}) are located, respectively, at 0.76 and 1.80 eV above the top of the valence band (their energy difference {sigma}{sup ex}=1.04eV). After laser irradiation at one end of the sample, a TTE voltage is induced within a rising time {tau}{sub r} (1.0{endash}1.5 {mu}s)more » due to hole diffusion, followed by exponential decay with multiple decay times {tau}{sub 1}{endash}{tau}{sub 5} that depend on the laser energy, its intensity, and the temperature. The decay time {tau}{sub 1} is assigned to relate to photoexcited electron diffusion in the conduction band and others {tau}{sub 2}{endash}{tau}{sub 5} with electron recombinations with photogenerated holes in the valence band via EL2 centers in p-GaAs, for which a rough evaluation of the capture cross section is made. Based on the experimental data, we have discussed the photoinduced carrier generation/recombination processes in three laser energy ranges with the two boundaries {sigma}{sup ex} and the band-gap energy E{sub g} (=1.50 eV); regions I (E{lt}{sigma}{sup ex}), II ({sigma}{sup ex}{le}E{lt}E{sub g}), and III (E{ge}E{sub g}). For these three energy regions, we have carried out computer simulations for the photoinduced TTE voltage profiles by solving one-dimensional transport equations for photogenerated electrons and holes, in qualitative agreement with the observations. {copyright} {ital 1997 American Institute of Physics.}« less

  1. Low-energy electron-induced chemistry of condensed methanol: implications for the interstellar synthesis of prebiotic molecules.

    PubMed

    Boamah, Mavis D; Sullivan, Kristal K; Shulenberger, Katie E; Soe, ChanMyae M; Jacob, Lisa M; Yhee, Farrah C; Atkinson, Karen E; Boyer, Michael C; Haines, David R; Arumainayagam, Christopher R

    2014-01-01

    In the interstellar medium, UV photolysis of condensed methanol (CH3OH), contained in ice mantles surrounding dust grains, is thought to be the mechanism that drives the formation of "complex" molecules, such as methyl formate (HCOOCH3), dimethyl ether (CH3OCH3), acetic acid (CH3COOH), and glycolaldehyde (HOCH2CHO). The source of this reaction-initiating UV light is assumed to be local because externally sourced UV radiation cannot penetrate the ice-containing dark, dense molecular clouds. Specifically, exceedingly penetrative high-energy cosmic rays generate secondary electrons within the clouds through molecular ionizations. Hydrogen molecules, present within these dense molecular clouds, are excited in collisions with these secondary electrons. It is the UV light, emitted by these electronically excited hydrogen molecules, that is generally thought to photoprocess interstellar icy grain mantles to generate "complex" molecules. In addition to producing UV light, the large numbers of low-energy (< 20 eV) secondary electrons, produced by cosmic rays, can also directly initiate radiolysis reactions in the condensed phase. The goal of our studies is to understand the low-energy, electron-induced processes that occur when high-energy cosmic rays interact with interstellar ices, in which methanol, a precursor of several prebiotic species, is the most abundant organic species. Using post-irradiation temperature-programmed desorption, we have investigated the radiolysis initiated by low-energy (7 eV and 20 eV) electrons in condensed methanol at - 85 K under ultrahigh vacuum (5 x 10(-10) Torr) conditions. We have identified eleven electron-induced methanol radiolysis products, which include many that have been previously identified as being formed by methanol UV photolysis in the interstellar medium. These experimental results suggest that low-energy, electron-induced condensed phase reactions may contribute to the interstellar synthesis of "complex" molecules previously thought to form exclusively via UV photons.

  2. Experimental Determination of the Ionization Energy in TlBr

    NASA Astrophysics Data System (ADS)

    Hitomi, Keitaro; Onodera, Toshiyuki; Kim, Seong-Yun; Shoji, Tadayoshi; Ishii, Keizo

    2015-06-01

    The average ionization energy required to excite an electron-hole pair in TlBr was estimated to be 5.50 ± 0.05 eV by comparing the peak position of 59.5-keV gamma rays obtained from four pixels of a pixelated TlBr detector to the peak position obtained from a Si PIN photodiode at room temperature.

  3. Electron Temperature Measurements in an Argon/Cesium Plasma Diode.

    DTIC Science & Technology

    1987-12-01

    treatment , Q~xC (E) is modeled as a linear function. Upon viewing the cesium cross section data, one notes that Qmx is reached within only 1 eV of...metal sealIC where the electrode leads enter the cell. Due to the shape of this seal, portions of the glass are exposed to the air, despite the aluminum

  4. Role of RuO2(100) in surface oxidation and CO oxidation catalysis on Ru(0001).

    PubMed

    Flege, Jan Ingo; Lachnitt, Jan; Mazur, Daniel; Sutter, Peter; Falta, Jens

    2016-01-07

    We have studied the oxidation of the Ru(0001) surface by in situ microscopy during exposure to NO2, an efficient source of atomic oxygen, at elevated temperatures. In a previous investigation [Flege et al., Phys. Rev. B: Condens. Matter Mater. Phys., 2008, 78, 165407], at O coverages exceeding 1 monolayer, using the combination of intensity-voltage (I(V)) low-energy electron microscopy (LEEM) and multiple scattering calculations for the (00) beam in the very-low-energy range (E≤ 50 eV) we identified three surface components during the initial Ru oxidation: a (1 × 1)-O chemisorption phase, the RuO2(110) oxide phase, and a surface oxide structure characterized by a trilayer O-Ru-O stacking. Here, we use dark-field LEEM imaging and micro-illumination low-energy electron diffraction in the range of 100 to 400 eV to show that this trilayer phase is actually a RuO2(100)-(1 × 1) phase with possibly mixed O and Ru surface terminations. This identification rationalizes the thermodynamic stability of this phase at elevated temperatures and is consistent with the observation of catalytic activity of the phase in CO oxidation.

  5. Growth, stability and decomposition of Mg2Si ultra-thin films on Si (100)

    NASA Astrophysics Data System (ADS)

    Sarpi, B.; Zirmi, R.; Putero, M.; Bouslama, M.; Hemeryck, A.; Vizzini, S.

    2018-01-01

    Using Auger Electron Spectroscopy (AES), Scanning Tunneling Microscopy/Spectroscopy (STM/STS) and Low Energy Electron Diffraction (LEED), we report an in-situ study of amorphous magnesium silicide (Mg2Si) ultra-thin films grown by thermally enhanced solid-phase reaction of few Mg monolayers deposited at room temperature (RT) on a Si(100) surface. Silicidation of magnesium films can be achieved in the nanometric thickness range with high chemical purity and a high thermal stability after annealing at 150 °C, before reaching a regime of magnesium desorption for temperatures higher than 350 °C. The thermally enhanced reaction of one Mg monolayer (ML) results in the appearance of Mg2Si nanometric crystallites leaving the silicon surface partially uncovered. For thicker Mg deposition nevertheless, continuous 2D silicide films are formed with a volcano shape surface topography characteristic up to 4 Mg MLs. Due to high reactivity between magnesium and oxygen species, the thermal oxidation process in which a thin Mg2Si film is fully decomposed (0.75 eV band gap) into a magnesium oxide layer (6-8 eV band gap) is also reported.

  6. On Floating Potential of Emissive Probes in a Partially-Magnetized Plasma

    NASA Astrophysics Data System (ADS)

    Raitses, Yevgeny; Kraus, Brian

    2016-10-01

    We compare measurements of plasma potential in a cross-field Penning discharge from two probes: swept biased Langmuir probe and floating emissive probe. The plasma potential was deduced from the first derivative of the Langmuir probe characteristic. In previous studies, the emissive and swept biased probes were placed at the channel exit of a Hall thruster (HT). Measurements showed that the emissive probe floats below the plasma potential, in agreement with conventional theories. However, recent measurements in the Penning discharge indicate a floating potential of a strongly-emitting hot probe above the plasma potential. In both probe applications, xenon plasmas have magnetized electrons and non-magnetized ions with similar plasma densities (1010 - 1011 cm-3) . Though their electron temperatures differ by an order of magnitude (Penning 5 eV, HT 50 eV), this difference cannot explain the difference in measurement values of the hot floating potential because both temperatures are much higher than the emitting wire. In this work, we investigate how the ion velocity and other plasma parameters affect this discrepancy between probe measurements of the plasma potential. This work was supported by DOE contract DE-AC02-09CH11466.

  7. Electron spin relaxation in two polymorphic structures of GaN

    NASA Astrophysics Data System (ADS)

    Kang, Nam Lyong

    2015-03-01

    The relaxation process of electron spin in systems of electrons interacting with piezoelectric deformation phonons that are mediated through spin-orbit interactions was interpreted from a microscopic point of view using the formula for the electron spin relaxation times derived by a projection-reduction method. The electron spin relaxation times in two polymorphic structures of GaN were calculated. The piezoelectric material constant for the wurtzite structure obtained by a comparison with a previously reported experimental result was {{P}pe}=1.5 × {{10}29} eV {{m}-1}. The temperature and magnetic field dependence of the relaxation times for both wurtzite and zinc-blende structures were similar, but the relaxation times in zinc-blende GaN were smaller and decreased more rapidly with increasing temperature and magnetic field than that in wurtzite GaN. This study also showed that the electron spin relaxation for wurtzite GaN at low density could be explained by the Elliot-Yafet process but not for zinc-blende GaN in the metallic regime.

  8. On electron heating in a low pressure capacitively coupled oxygen discharge

    NASA Astrophysics Data System (ADS)

    Gudmundsson, J. T.; Snorrason, D. I.

    2017-11-01

    We use the one-dimensional object-oriented particle-in-cell Monte Carlo collision code oopd1 to explore the charged particle densities, the electronegativity, the electron energy probability function, and the electron heating mechanism in a single frequency capacitively coupled oxygen discharge, when the applied voltage amplitude is varied. We explore discharges operated at 10 mTorr, where electron heating within the plasma bulk (the electronegative core) dominates, and at 50 mTorr, where sheath heating dominates. At 10 mTorr, the discharge is operated in a combined drift-ambipolar and α-mode, and at 50 mTorr, it is operated in the pure α-mode. At 10 mTorr, the effective electron temperature is high and increases with increased driving voltage amplitude, while at 50 mTorr, the effective electron temperature is much lower, in particular, within the electronegative core, where it is roughly 0.2-0.3 eV, and varies only a little with the voltage amplitude.

  9. Reactions in 1,1,1-trifluoroacetone triggered by low energy electrons (0-10 eV): from simple bond cleavages to complex unimolecular reactions.

    PubMed

    Illenberger, Eugen; Meinke, Martina C

    2014-08-21

    The impact of low energy electrons (0-10 eV) to 1,1,1-trifluoroacetone yields a variety of fragment anions which are formed via dissociative electron attachment (DEA) through three pronounced resonances located at 0.8 eV, near 4 eV, and in the energy range 8-9 eV. The fragment ions arise from different reactions ranging from the direct cleavage of one single or double bond (formation of F(-), CF3(-), O(-), (M-H)(-), and M-F)(-)) to remarkably complex unimolecular reactions associated with substantial geometric and electronic rearrangement in the transitory intermediate (formation of OH(-), FHF(-), (M-HF)(-), CCH(-), and HCCO(-). The ion CCH(-), for example, is formed by an excision of unit from the target molecule through the concerted cleavage of four bonds and recombination to H2O within the neutral component of the reaction.

  10. Optical studies of the charge localization and delocalization in conducting polymers

    NASA Astrophysics Data System (ADS)

    Kim, Youngmin

    A systematic charge transport study on the thermochromism of polyaniline (PAN) doped with a plasticizing dopant, and on a field effect device using conducting poly (3,4-ethylenedioxythiophene) (PEDOT) as its active material, was made at optical (20--45,000 cm-1) frequencies to probe the charge localization and delocalization phenomena and the insulator to metal transition (IMT) in the inhomogeneous conducting polymer system. Temperature dependent reflectance [20--8000 cm -1 (2.5 meV--1eV)] of the PAN sample, together with absorbance and do transport study done by Dr. Pron at the Laboratoire de Physique des Metaux Synthetiques in Grenoble, France, shows spectral weight loss in the infrared region but the reflectance in the very low frequency (below 100 cm-1) remains unaffected. There are two localization transitions. The origin of the 200 K localization transition that affect >˜15% of the electrons is the glass transition emanating from the dopants. The transition principally affects the IR response in the range of 200--8000 cm -1. The low temperature (<75K) localization transition affects the few electrons that provide the high conductivity. It is suggested that these electrons are localized by disorder at the lowest temperature and become delocalized through phonon induced delocalization as the temperature increases to 75K. It is noted that this temperature is typical of a Debye temperature in many organic materials. The thermocromism is attributed to the weak localization to strong localization transition through the glass transition temperature. Below the glass transition temperature (Tg), the lattice is "frozen" in configuration that reduces the charge delocalization and lead to cause increase of strongly localized polarons. Time variation of source-drain current, real-time IR reflectance [20--8000 cm-1 (2.5 meV--1eV)] modulation, and real-time UV/VIS/NIR absorbance [380--2400 nm (0.5--3.3 eV)] modulation were measured to investigate the field induced charge localization of PEDOT field effect device. Layer by layer thin film analysis showed strong localization of free carriers. The temperature dependence of the do conductivity changes with application of the gate voltage demonstrating that the electric field effect has changed bulk charge transport in the active channel despite the expected screening due to mobile charge carriers. Mid IR (500--8000 cm-1) reflectance showed little change in the vibrational modes, which distinguish this phenomenon from the doping-dedoping induced electrochemical MIT. UV/Vis/NIR absorbance modulation clearly showed that the increase of the strong localization of charges with the pi-pi* bandgap transition unchanged. It is proposed that conducting polymer is near the metal to insulator transition and that the applied gate voltage leads to this transition through field induced ion motion.

  11. Surface electronic states of low-temperature H-plasma-exposed Ge(100)

    NASA Astrophysics Data System (ADS)

    Cho, Jaewon; Nemanich, R. J.

    1992-11-01

    The surface of low-temperature H-plasma-cleaned Ge(100) was studied by angle-resolved UV-photoemission spectroscopy and low-energy electron diffraction (LEED). The surface was prepared by an ex situ preclean followed by an in situ H-plasma exposure at a substrate temperature of 150-300 °C. Auger-electron spectroscopy indicated that the in situ H-plasma clean removed the surface contaminants (carbon and oxygen) from the Ge(100) surface. The LEED pattern varied from a 1×1 to a sharp 2×1, as the substrate temperature was increased. The H-induced surface state was identified at ~5.6 eV below EF, which was believed to be mainly due to the ordered or disordered monohydride phases. The annealing dependence of the spectra showed that the hydride started to dissociate at a temperature of 190 °C, and the dangling-bond surface state was identified. A spectral shift upon annealing indicated that the H-terminated surfaces were unpinned. After the H-plasma clean at 300 °C the dangling-bond surface state was also observed directly with no evidence of H-induced states.

  12. Narrow Radiative Recombination Continua: A Signature of Ions Crossing the Contact Discontinuity of Astrophysical Shocks

    NASA Technical Reports Server (NTRS)

    Behar, Ehud; Nordon, Raanan; Soker, Noam; Kastner, Joel H.; Yu, Young Sam

    2009-01-01

    X-rays from planetary nebulae (PNs) are believed to originate from a shock driven into the fast stellar wind (v 1000 kilometers per second) as it collides with an earlier circumstellar slow wind (v 10 kilometers per second). In theory, the shocked fast wind (hot hubble) and the ambient cold nebula can remain separated by magnetic fields along a surface referred to as the contact discontinuity (CD) that inhibits diffusion and heat conduction. The CD region is extremely difficult to probe directly owing to its small size and faint emission. This has largely left the study of CDs, stellar-shocks, and the associated micro-physics in the realm of theory. This paper presents spectroscopic evidence for ions from the hot bubble (kT approximately equal to 100 eV) crossing the CD and penetrating the cold nebular gas (kT approximately equal to 1 eV). Specifically, a narrow radiative recombination continuum (RRC) emission feature is identified in the high resolution X-ray spectrum of the PN BD+30degree3639 indicating bare C VII ions are recombining with cool electrons at kT(sub e) = 1.7 plus or minus 1.3 eV. An upper limit to the flux of the narrow RRC of H-like C VI is obtained as well. The RRCs are interpreted as due to C ions from the hot bubble of BD+30degree3639 crossing the CD into the cold nebula, where they ultimately recombine with its cool electrons. The RRC flux ratio of C VII to C VI constrains the temperature jump across the CD to deltakT greater than 80 eV, providing for the first time direct evidence for the stark temperature disparity between the two sides of an astrophysical CD, and constraining the role of magnetic fields and heat conduction accordingly. Two colliding-wind binaries are noted to have similar RRCs suggesting a temperature jump and CD crossing by ions may be common feature of stellar wind shocks.

  13. Nanoscale Electronic Structure of Cuprate Superconductors Investigated with Scanning Tunneling Spectroscopy

    NASA Astrophysics Data System (ADS)

    Williams, Tess Lawanna

    Despite 25 years of intense research activity, high-temperature superconductors remain poorly understood, with the underlying pairing mechanism still unidentified. Efforts are complicated by the remarkably complex phase diagram, rich in energy-dependent charge and spin orders. In this thesis I describe the use of a Scanning Tunneling Microscope (STM) to study energy-dependent charge orders in Bi2-- yPbySr2CuO6+delta , a cuprate high-temperature superconductor. STM, a surface-sensitive probe used to map electronic structure with sub-meV energy resolution and sub-A spatial resolution, has contributed greatly to our current understanding of the cuprate high-temperature superconductors. However, STM data is acquired with a constant-current normalization condition. The measured differential conductance, g(x, y, V), is often taken to be proportional to the density of states at energy eV (where V is the voltage applied between tip and sample). In fact, due to the normalization condition, the measured g(x, y, V) is actually the quotient of the density of states at energy eV and the integrated density of states from the Fermi energy to eV. This unavoidable quotient may fold electronic structure from its true energy range into other energies. I discuss a new method to correct STM differential conductance spectra to remove the constant-current normalization condition. Using local work function measurements and the constant-current topograph, I create a map which does not suffer from the setpoint effect and contains a mixture of topographic information and properly normalized spectroscopic information. I apply this method to the extraction of the incommensurate charge modulation at q⃗˜34 2pa0 . I also extend the study of electronic nematic order, an atomic-lattice-periodic C4 → C2 symmetry breaking, from highly underdoped Bi2 Sr2CaCu2O 8+delta [28] to overdoped Bi2--yPb ySr2CuO6+/-delta. I find that the electronic nematic order parameter is robust to change of scan angle. I define and contrast three different electronic nematic orders with different phases with respect to the crystal. I discuss the effect of the choice of normalization and possible alternate explanations for the source of the calculated nematic order. Finally, I discuss a drift-correction technique, which removes picometer scale drift that is introduced into a spectral map by experimental imperfections, and characterize the optimal algorithm and potential artifacts that drift-correction may introduce.

  14. Design and performance of an instrument for electron impact tandem mass spectrometry and action spectroscopy of mass/charge selected macromolecular ions stored in RF ion trap*

    NASA Astrophysics Data System (ADS)

    Ranković, Milos Lj.; Giuliani, Alexandre; Milosavljević, Aleksandar R.

    2016-06-01

    A new apparatus was designed, coupling an electron gun with a linear quadrupole ion trap mass spectrometer, to perform m/ z (mass over charge) selected ion activation by electron impact for tandem mass spectrometry and action spectroscopy. We present in detail electron tracing simulations of a 300 eV electron beam inside the ion trap, design of the mechanical parts, electron optics and electronic circuits used in the experiment. We also report examples of electron impact activation tandem mass spectra for Ubiquitin protein, Substance P and Melittin peptides, at incident electron energies in the range from 280 eV to 300 eV.

  15. Fabrication and electrical characterization of Al/diazo compound containing polyoxy chain/p-Si device structure

    NASA Astrophysics Data System (ADS)

    Birel, Ozgul; Kavasoglu, Nese; Kavasoglu, A. Sertap; Dincalp, Haluk; Metin, Bengul

    2013-03-01

    Diazo-compounds are important class of chemical compounds in terms of optical and electronic properties which make them potentially attractive for device applications. Diazo compound containing polyoxy chain has been deposited on p-Si. Current-voltage characteristics of Al/diazo compound containing polyoxy chain/p-Si structure present rectifying behaviour. The Schottky barrier height (SBH), diode factor (n), reverse saturation current (Io), interface state density (Nss) of Al/diazo compound containing polyoxy chain/p-Si structure have been calculated from experimental forward bias current-voltage data measured in the temperature range 100-320 K and capacitance-voltage data measured at room temperature and 1 MHz. The calculated values of SBH have ranged from 0.041 and 0.151 eV for the high and low temperature regions. Diode factor values fluctuate between the values 14 and 18 with temperature. Such a high diode factors stem from disordered interface layer in a junction structure as stated by Brötzmann et al. [M. Brötzmann, U. Vetter, H. Hofsäss, J. Appl. Phys. 106 (2009) 063704]. The calculated values of saturation current have ranged from 3×10-11 A to 2.79×10-7 A and interface state density have ranged from 5×1011 eV-1 cm-2 and 4×1013 eV-1 cm-2 as temperature increases. Results show that Al/diazo compound containing polyoxy chain/p-Si structure is a valuable candidate for device applications in terms of low reverse saturation current and low interface state density.

  16. Effect of quantum correction on nonlinear thermal wave of electrons driven by laser heating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nafari, F.; Ghoranneviss, M., E-mail: ghoranneviss@gmail.com

    2016-08-15

    In thermal interaction of laser pulse with a deuterium-tritium (DT) plane, the thermal waves of electrons are generated instantly. Since the thermal conductivity of electron is a nonlinear function of temperature, a nonlinear heat conduction equation is used to investigate the propagation of waves in solid DT. This paper presents a self-similar analytic solution for the nonlinear heat conduction equation in a planar geometry. The thickness of the target material is finite in numerical computation, and it is assumed that the laser energy is deposited at a finite initial thickness at the initial time which results in a finite temperaturemore » for electrons at initial time. Since the required temperature range for solid DT ignition is higher than the critical temperature which equals 35.9 eV, the effects of quantum correction in thermal conductivity should be considered. This letter investigates the effects of quantum correction on characteristic features of nonlinear thermal wave, including temperature, penetration depth, velocity, heat flux, and heating and cooling domains. Although this effect increases electron temperature and thermal flux, penetration depth and propagation velocity are smaller. This effect is also applied to re-evaluate the side-on laser ignition of uncompressed DT.« less

  17. Thermal stability of isolated and complexed Ga vacancies in GaN bulk crystals

    NASA Astrophysics Data System (ADS)

    Saarinen, K.; Suski, T.; Grzegory, I.; Look, D. C.

    2001-12-01

    We have applied positron annihilation spectroscopy to show that 2-MeV electron irradiation at 300 K creates primary Ga vacancies in GaN with an introduction rate of 1 cm-1. The Ga vacancies recover in long-range migration processes at 500-600 K with an estimated migration energy of 1.5 (2) eV. Since the native Ga vacancies in as-grown GaN survive up to much higher temperatures (1300-1500 K), we conclude that they are stabilized by forming complexes with oxygen impurities. The estimated binding energy of 2.2 (4) eV of such complexes is in good agreement with the results of theoretical calculations.

  18. Dielectric properties and electrical conductivity of the hybrid organic-inorganic polyvanadates (H{sub 3}N(CH{sub 2}){sub 4}NH{sub 3})[V{sub 6}O{sub 14}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nefzi, H.; Sediri, F., E-mail: faouzi.sediri@ipeit.rnu.tn; Faculte des Sciences de Tunis, Universite Tunis El Manar, 2092 El Manar, BP 94 CEDEX 1068, Cite Rommana Tunis

    2012-06-15

    Plate-like crystals of the polyvanadate (H{sub 3}N(CH{sub 2}){sub 4}NH{sub 3})[V{sub 6}O{sub 14}] have been synthesized via an hydrothermal treatment. X-ray powder diffraction, scanning electron microscope, Fourier transform infrared spectroscopy, electron spin resonance and complex impedance spectroscopy were used to analyze the hybrid material. The frequency dependence of AC conductivity at different temperatures indicates that the CBH model is the probable mechanism for the AC conduction behavior. The conductivity was measured by complex impedance spectroscopy which is equal to 31.10{sup -3} {Omega}{sup -1} m{sup -1} at 443 K. The Arrhenius diagram is not linear, it presents a rupture situated at 357more » K and the activation energies' average values are 0.22 eV and 0.14 eV, deduced from the Arrhenius relation. - Graphical abstract: At high temperature {epsilon} Double-Prime increases more rapidly which is due to the increasing conduction loss which rises with the increment in the DC conductivity. Highlights: Black-Right-Pointing-Pointer Rectangular plate-like crystals (H{sub 3}N(CH{sub 2}){sub 4}NH{sub 3})[V{sub 6}O{sub 14}] were synthesized. Black-Right-Pointing-Pointer frequency and temperature dependence of AC conductivity indicate CBH model. Black-Right-Pointing-Pointer The temperature dependence of DC conductivity exhibits two conduction mechanisms.« less

  19. Temperature dependence of the cross section for the fragmentation of thymine via dissociative electron attachment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kopyra, Janina; Abdoul-Carime, Hassan, E-mail: hcarime@ipnl.in2p3.fr

    Providing experimental values for absolute Dissociative Electron Attachment (DEA) cross sections for nucleobases at realistic biological conditions is a considerable challenge. In this work, we provide the temperature dependence of the cross section, σ, of the dehydrogenated thymine anion (T − H){sup −} produced via DEA. Within the 393-443 K temperature range, it is observed that σ varies by one order of magnitude. By extrapolating to a temperature of 313 K, the relative DEA cross section for the production of the dehydrogenated thymine anion at an incident energy of 1 eV decreases by 2 orders of magnitude and the absolutemore » value reaches approximately 6 × 10{sup −19} cm{sup 2}. These quantitative measurements provide a benchmark for theoretical prediction and also a contribution to a more accurate description of the effects of ionizing radiation on molecular medium.« less

  20. Diagnostics of Particles emitted from a Laser generated Plasma: Experimental Data and Simulations

    NASA Astrophysics Data System (ADS)

    Costa, Giuseppe; Torrisi, Lorenzo

    2018-01-01

    The charge particle emission form laser-generated plasma was studied experimentally and theoretically using the COMSOL simulation code. The particle acceleration was investigated using two lasers at two different regimes. A Nd:YAG laser, with 3 ns pulse duration and 1010 W/cm2 intensity, when focused on solid target produces a non-equilibrium plasma with average temperature of about 30-50 eV. An Iodine laser with 300 ps pulse duration and 1016 W/cm2 intensity produces plasmas with average temperatures of the order of tens keV. In both cases charge separation occurs and ions and electrons are accelerated at energies of the order of 200 eV and 1 MeV per charge state in the two cases, respectively. The simulation program permits to plot the charge particle trajectories from plasma source in vacuum indicating how they can be deflected by magnetic and electrical fields. The simulation code can be employed to realize suitable permanent magnets and solenoids to deflect ions toward a secondary target or detectors, to focalize ions and electrons, to realize electron traps able to provide significant ion acceleration and to realize efficient spectrometers. In particular it was applied to the study two Thomson parabola spectrometers able to detect ions at low and at high laser intensities. The comparisons between measurements and simulation is presented and discussed.

  1. Thermally-assisted optically stimulated luminescence from deep electron traps in α-Al2O3:C,Mg

    NASA Astrophysics Data System (ADS)

    Kalita, J. M.; Chithambo, M. L.; Polymeris, G. S.

    2017-07-01

    We report thermally-assisted optically stimulated luminescence (TA-OSL) in α-Al2O3:C,Mg. The OSL was measured at elevated temperatures between 50 and 240 °C from a sample preheated to 500 °C after irradiation to 100 Gy. That OSL could be measured even after the preheating is direct evidence of the existence of deep electron traps in α-Al2O3:C,Mg. The TA-OSL intensity goes through a peak with measurement temperature. The initial increase is ascribed to thermal assistance to optical stimulation whereas the subsequent decrease in intensity is deduced to reflect increasing incidences of non-radiative recombination, that is, thermal quenching. The activation energy for thermal assistance corresponding to a deep electron trap was estimated as 0.667 ± 0.006 eV whereas the activation energy for thermal quenching was calculated as 0.90 ± 0.04 eV. The intensity of the TA-OSL was also found to increase with irradiation dose. The dose response is sublinear from 25 to 150 Gy but saturates with further increase of dose. The TA-OSL dose response has been discussed by considering the competition for charges at the deep traps. This study incidentally shows that TA-OSL can be effectively used in dosimetry involving large doses.

  2. On the Ground Electronic States of TiF and TiCl

    NASA Astrophysics Data System (ADS)

    Boldyrev, Alexander I.; Simons, Jack

    1998-04-01

    The low-lying electronic states of TiF and TiCl have been studied using high levelab initiotechniques. Both are found to have two low-lying excited electronic states,4Σ-(0.080 eV (TiF) and 0.236 eV (TiCl)) and2Δ (0.266 eV (TiF) and 0.348 eV (TiCl)), and4Φ ground states at the highest CCSD(T)/6-311++G(2d,2f) level of theory. Our theoretical predictions of4Φ ground electronic states for TiF and TiCl support recent experimental findings by Ram and Bernath, and our calculated bond lengths and vibrational frequencies are in reasonable agreement with their experimental data.

  3. Laser photoelectron spectroscopy of MnH - 2, FeH - 2, CoH - 2, and NiH - 2: Determination of the electron affinities for the metal dihydrides

    NASA Astrophysics Data System (ADS)

    Miller, Amy E. S.; Feigerle, C. S.; Lineberger, W. C.

    1986-04-01

    The laser photoelectron spectra of MnH-2, FeH-2, CoH-2, and NiH-2 and the analogous deuterides are reported. Lack of vibrational structure in the spectra suggests that all of the dihydrides and their negative ions have linear geometries, and that the transitions observed in the spectra are due to the loss of nonbonding d electrons. The electron affinities for the metal dihydrides are determined to be 0.444±0.016 eV for MnH2, 1.049±0.014 eV for FeH2, 1.450±0.014 eV for CoH2, and 1.934±0.008 eV for NiH2. Electronic excitation energies are provided for excited states of FeH2, CoH2, and NiH2. Electron affinities and electronic excitation energies for the dideuterides are also reported. A limit on the electron affinity of CrH2 of ≥2.5 eV is determined. The electron affinities of the dihydrides directly correlate with the electron affinities of the high-spin states of the monohydrides, and with the electron affinities of the metal atoms. These results are in agreement with a qualitative model developed for bonding in the monohydrides.

  4. Electronic Band Structure Tuning of Highly-Mismatched-Alloys for Energy Conversion Applications

    NASA Astrophysics Data System (ADS)

    Ting, Min

    Highly-mismatched alloys: ZnO1-xTe x and GaN1-xSb x are discussed within the context of finding the suitable material for a cost-effective Si-based tandem solar cell (SBTSC). SBTSC is an attractive concept for breaking through the energy conversion efficiency theoretical limit of a single junction solar cell. Combining with a material of 1.8 eV band gap, SBTSC can theoretically achieve energy conversion efficiency > 45%. ZnO and GaN are wide band gap semiconductors. Alloying Te in ZnO and alloying Sb in GaN result in large band gap reduction to < 2 eV from 3.3 eV and 3.4 eV respectively. The band gap reduction is majorly achieved by the upward shift of valence band (VB). Incorporating Te in ZnO modifies the VB of ZnO through the valence-band anticrossing (VBAC) interaction between localized Te states and ZnO VB delocalized states, which forms a Te-derived VB at 1 eV above the host VB. Similar band structure modification is resulted from alloying Sb in GaN. Zn1-xTex and GaN 1-xSbx thin films are synthesized across the whole composition range by pulsed laser deposition (PLD) and low temperature molecular beam epitaxy (LT-MBE) respectively. The electronic band edges of these alloys are measured by synchrotron X-ray absorption, emission, and the X-ray photoelectron spectroscopies. Modeling the optical absorption coefficient with the band anticrossing (BAC) model revealed that the Te and Sb defect levels to be at 0.99 eV and 1.2 eV above the VB of ZnO and GaN respectively. Electrically, Zn1-xTex is readily n-type conductive and GaN1-xSbx is strongly p-type conductive. A heterojunction device of p-type GaN 0.93Sb0.07 with n-type ZnO0.77Te0.93 upper cell (band gap at 1.8 eV) on Si bottom cell is proposed as a promising SBTSC device.

  5. Unified model of plasma formation, bubble generation and shock wave emission in water for fs to ns laser pulses (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Liang, Xiao-Xuan; Freidank, Sebastian; Linz, Norbert; Paltauf, Günther; Zhang, Zhenxi; Vogel, Alfred

    2017-03-01

    We developed modeling tools for optical breakdown events in water that span various phases reaching from breakdown initiation via solvated electron generation, through laser induced-plasma formation and temperature evolution in the focal spot to the later phases of cavitation bubble dynamics and shock wave emission and applied them to a large parameter space of pulse durations, wavelengths, and pulse energies. The rate equation model considers the interplay of linear absorption, photoionization, avalanche ionization and recombination, traces thermalization and temperature evolution during the laser pulse, and portrays the role of thermal ionization that becomes relevant for T > 3000 K. Modeling of free-electron generation includes recent insights on breakdown initiation in water via multiphoton excitation of valence band electrons into a solvated state at Eini = 6.6 eV followed by up-conversion into the conduction band level that is located at 9.5 eV. The ability of tracing the temperature evolution enabled us to link the model of laser-induced plasma formation with a hydrodynamic model of plasma-induced pressure evolution and phase transitions that, in turn, traces bubble generation and dynamics as well as shock wave emission. This way, the amount of nonlinear energy deposition in transparent dielectrics and the resulting material modifications can be assessed as a function of incident laser energy. The unified model of plasma formation and bubble dynamics yields an excellent agreement with experimental results over the entire range of investigated pulse durations (femtosecond to nanosecond), wavelengths (UV to IR) and pulse energies.

  6. Robust red-emission spectra and yields in firefly bioluminescence against temperature changes

    NASA Astrophysics Data System (ADS)

    Mochizuki, Toshimitsu; Wang, Yu; Hiyama, Miyabi; Akiyama, Hidefumi

    2014-05-01

    We measured the quantitative spectra of firefly (Photinus pyralis) bioluminescence at various temperatures to investigate the temperature dependence of the luciferin-luciferase reaction at 15-34 °C. The quantitative spectra were decomposed very well into red (1.9 eV), orange (2.0 eV), and green (2.2 eV) Gaussian components. The intensity of the green component was the only temperature sensitive quantity that linearly decreased as the temperature increased at pH 7 and 8. We found the quantitative bioluminescence spectra to be robust below 2.0 eV against temperature and other experimental conditions. The revealed robustness of the red emissions should be useful for quantitative applications such as adenosine-5'-triphosphate detection.

  7. Pressure-Dependent Electronic and Transport Properties of Bulk Platinum Oxide by Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Kansara, Shivam; Gupta, Sanjeev K.; Sonvane, Yogesh; Nekrasov, Kirill A.; Kichigina, Natalia V.

    2018-02-01

    The structural, electronic, and vibrational properties of bulk platinum oxide (PtO) at compressive pressures in the interval from 0 GPa to 35 GPa are investigated using the density functional theory. The calculated electronic band structure of PtO shows poor metallicity at very low density of states on the Fermi level. However, the hybrid pseudopotential calculation yielded 0.78 eV and 1.30 eV direct band and indirect gap, respectively. Importantly, our results predict that PtO has a direct band gap within the framework of HSE06, and it prefers equally zero magnetic order at different pressures. In the Raman spectra, peaks are slightly shifted towards higher frequency with the decrease in pressure. We have also calculated the thermoelectric properties, namely the electronic thermal conductivity and electrical conductivity, with respect to temperature and thermodynamic properties such as entropy, specific heat at constant volume, enthalpy and Gibbs free energy with respect to pressure. The result shows that PtO is a promising candidate for use as a catalyst, in sensors, as a photo-cathode in water electrolysis, for thermal decomposition of inorganic salt and fuel cells.

  8. First-principles calculation of electronic and optical properties of graphene like ZnO (G-ZnO)

    NASA Astrophysics Data System (ADS)

    Farooq, Rabia; Mahmood, Tariq; Anwar, Abdul Waheed; Abbasi, Ghadah Niaz

    2016-02-01

    Semiconductor metal oxides are favorable for their exotic properties like wide band gap, transparency, enhanced charge mobility, and strong luminescence at room temperature. These properties have put metal oxides under limelight, especially ZnO has earned a renowned position in emanate industry for transparent electrodes, electronics, super-capacitors, photo-voltaic cells, gas-sensors, and many more. ZnO is not only environmental friendly but also a highly stable and cheap photo catalytic source naturally available in high abundance. First principles calculation is performed to study optoelectronic properties of ZnO. Geometry optimization of graphene like ZnO (G-ZnO) is preformed using generalized gradient approximation along with hybrid functional (GGA-PBE and GGA-PBE + U) to calculate various structural and electronic parameters of G-ZnO. Employing Hubbard (U) parameter improved band gap and c/a ratio calculation as 1.245 eV and 1.613 respectively; also dielectric constant is calculated as 4.58 (U = 15 eV) which is in accordance with the available experimental data.

  9. Energy of atomic shakeoff electrons from positron decay of 37K

    NASA Astrophysics Data System (ADS)

    Behr, John; Fenker, Benjamin; Gorelov, Alexandre; Anholm, Melissa; Behling, Spencer; Mehlman, Michael; Melconian, Dan; Ashery, Danny; Gwinner, Gerald

    2015-10-01

    We have measured the low-energy atomic shakeoff electron spectrum from the β+ decay of 37K. We collect atomic electrons emitted from laser-cooled 37K using a nearly uniform electric field at low magnetic field into a position-sensitive microchannel plate. A coincidence with energetic β+s removes background. The differential position information translates to a differential electron energy spectrum. The energy spectrum from 1-100 eV is reproduced well by an analytic calculation for hydrogenic wavefunctions [Levinger PR 90 11 (1953)] using potassium quantum defects. Less than one percent of the electrons have energies higher than the 25 eV threshold for double DNA strand breaks, so relative biological effectiveness would not be altered by including these electrons. The average energy carried off by these electrons (a few eV) is smaller than expected from simple Thomas-Fermi estimates (65eV). Supported by NSERC, NRC through TRIUMF, U.S. D.O.E., State of Texas, Israel Science Foundation

  10. Generalized Lenard-Balescu calculations of electron-ion temperature relaxation in beryllium plasma.

    PubMed

    Fu, Zhen-Guo; Wang, Zhigang; Li, Da-Fang; Kang, Wei; Zhang, Ping

    2015-09-01

    The problem of electron-ion temperature relaxation in beryllium plasma at various densities (0.185-18.5g/cm^{3}) and temperatures [(1.0-8)×10^{3} eV] is investigated by using the generalized Lenard-Balescu theory. We consider the correlation effects between electrons and ions via classical and quantum static local field corrections. The numerical results show that the electron-ion pair distribution function at the origin approaches the maximum when the electron-electron coupling parameter equals unity. The classical result of the Coulomb logarithm is in agreement with the quantum result in both the weak (Γ_{ee}<10^{-2}) and strong (Γ_{ee}>1) electron-electron coupling ranges, whereas it deviates from the quantum result at intermediate values of the coupling parameter (10^{-2}<Γ_{ee}<1). We find that with increasing density of Be, the Coulomb logarithm will decrease and the corresponding relaxation rate ν_{ie} will increase. In addition, a simple fitting law ν_{ie}/ν_{ie}^{(0)}=a(ρ_{Be}/ρ_{0})^{b} is determined, where ν_{ie}^{(0)} is the relaxation rate corresponding to the normal metal density of Be and ρ_{0}, a, and b are the fitting parameters related to the temperature and the degree of ionization 〈Z〉 of the system. Our results are expected to be useful for future inertial confinement fusion experiments involving Be plasma.

  11. Wide range scaling laws for radiation driven shock speed, wall albedo and ablation parameters for high-Z materials

    NASA Astrophysics Data System (ADS)

    Mishra, Gaurav; Ghosh, Karabi; Ray, Aditi; Gupta, N. K.

    2018-06-01

    Radiation hydrodynamic (RHD) simulations for four different potential high-Z hohlraum materials, namely Tungsten (W), Gold (Au), Lead (Pb), and Uranium (U) are performed in order to investigate their performance with respect to x-ray absorption, re-emission and ablation properties, when irradiated by constant temperature drives. A universal functional form is derived for estimating time dependent wall albedo for high-Z materials. Among the high-Z materials studied, it is observed that for a fixed simulation time the albedo is maximum for Au below 250 eV, whereas it is maximum for U above 250 eV. New scaling laws for shock speed vs drive temperature, applicable over a wide temperature range of 100 eV to 500 eV, are proposed based on the physics of x-ray driven stationary ablation. The resulting scaling relation for a reference material Aluminium (Al), shows good agreement with that of Kauffman's power law for temperatures ranging from 100 eV to 275 eV. New scaling relations are also obtained for temperature dependent mass ablation rate and ablation pressure, through RHD simulation. Finally, our study reveals that for temperatures above 250 eV, U serves as a better hohlraum material since it offers maximum re-emission for x-rays along with comparable mass ablation rate. Nevertheless, traditional choice, Au works well for temperatures below 250 eV. Besides inertial confinement fusion (ICF), the new scaling relations may find its application in view-factor codes, which generally ignore atomic physics calculations of opacities and emissivities, details of laser-plasma interaction and hydrodynamic motions.

  12. Systematic investigation of structural, electronic, optical and thermal properties of ternary MoAlB; an ab initio approach

    NASA Astrophysics Data System (ADS)

    Rajpoot, Priyanka; Rastogi, Anugya; Verma, U. P.

    2018-02-01

    Structural, electronic, optical and thermal properties of molybdenum aluminum boride (MoAlB) have been analyzed systematically using the full potential linearized augmented plane wave method based on density functional theory at ambient condition as well as high pressure and high temperature. Density of states and band structure calculation reflect the metallic character of MoAlB. In addition to this, the electron charge density calculation reveals the strong covalent bonding, in between ‘B’ atoms as well as ‘Mo’ and ‘B’ atoms. Optical parameters exhibit anisotropic nature and MoAlB become transparent in ultraviolet region for the radiation of energy above 25 eV. The thermal properties were investigated by using the quasi-harmonic Debye model at high temperature and high pressure.

  13. Broadband dielectric response of CaCu3Ti4O12 : From dc to the electronic transition regime

    NASA Astrophysics Data System (ADS)

    Kant, Ch.; Rudolf, T.; Mayr, F.; Krohns, S.; Lunkenheimer, P.; Ebbinghaus, S. G.; Loidl, A.

    2008-01-01

    We report on phonon properties and electronic transitions in CaCu3Ti4O12 , a material which reveals a colossal dielectric constant at room temperature without any ferroelectric transition. The results of far- and midinfrared measurements are compared to those obtained by broadband dielectric and millimeter-wave spectroscopy on the same single crystal. The unusual temperature dependence of phonon eigenfrequencies, dampings, and ionic plasma frequencies of low-lying phonon modes is analyzed and discussed in detail. Electronic excitations below 4eV are identified as transitions between full and empty hybridized oxygen-copper bands and between oxygen-copper and unoccupied Ti3d bands. The unusually small band gap determined from the dc conductivity (˜200meV) compares well with the optical results.

  14. Controlled growth-reversal of catalytic carbon nanotubes under electron-beam irradiation.

    PubMed

    Stolojan, Vlad; Tison, Yann; Chen, Guan Yow; Silva, Ravi

    2006-09-01

    The growth of carbon nanotubes from Ni catalysts is reversed and observed in real time in a transmission electron microscope, at room temperature. The Ni catalyst is found to be Ni3C and remains attached to the nanotube throughout the irradiation sequence, indicating that C most likely diffuses on the surface of the catalyst to form nanotubes. We calculate the energy barrier for saturating the Ni3C (2-13) surface with C to be 0.14 eV, thus providing a low-energy surface for the formation of graphene planes.

  15. Electron trapping and transport by supersonic solitons in one-dimensional systems

    NASA Technical Reports Server (NTRS)

    Zmuidzinas, J. S.

    1978-01-01

    A one-dimensional chain of ions or molecules and electrons described by a Froehlich-type Hamiltonian with quartic phonon anharmonicities is investigated. It is shown that the anharmonic lattice supports supersonic solitons which under favorable circumstances may trap electrons and transport them along the lattice. For a lattice constant/soliton spatial extent quotient of the order of 0.1, rough estimates give electron trapping energies in the meV range. They imply a useful temperature range, up to tens of degrees K, for observing the new effect. The activation energy of a lattice soliton is proportional to the molecular mass and is therefore quite high (about 1 eV) for typical quasi-one-dimensional organic systems.

  16. Extreme ultraviolet probing of nonequilibrium dynamics in high energy density germanium

    NASA Astrophysics Data System (ADS)

    Principi, E.; Giangrisostomi, E.; Mincigrucci, R.; Beye, M.; Kurdi, G.; Cucini, R.; Gessini, A.; Bencivenga, F.; Masciovecchio, C.

    2018-05-01

    Intense femtosecond infrared laser pulses induce a nonequilibrium between thousands of Kelvin hot valence electrons and room-temperature ions in a germanium sample foil. The evolution of this exotic state of matter is monitored with time-resolved extreme ultraviolet absorption spectroscopy across the Ge M2 ,3 edge (≃30 eV ) using the FERMI free-electron laser. We analyze two distinct regimes in the ultrafast dynamics in laser-excited Ge: First, on a subpicosecond time scale, the electron energy distribution thermalizes to an extreme temperature unreachable in equilibrium solid germanium; then, during the following picoseconds, the lattice reacts strongly altering the electronic structure and resulting in melting to a metallic state alongside a breakdown of the local atomic order. Data analysis, based on a hybrid approach including both numerical and analytical calculations, provides an estimation of the electron and ion temperatures, the electron density of states, the carrier-phonon relaxation time, as well as the carrier density and lattice heat capacity under those extreme nonequilibrium conditions. Related structural anomalies, such as the occurrence of a transient low-density liquid phase and the possible drop in lattice heat capacity are discussed.

  17. Electron density and temperature in an atmospheric-pressure helium diffuse dielectric barrier discharge from kHz to MHz

    NASA Astrophysics Data System (ADS)

    Boisvert, J.-S.; Stafford, L.; Naudé, N.; Margot, J.; Massines, F.

    2018-03-01

    Diffuse dielectric barrier discharges are generated over a very wide range of frequencies. According to the targeted frequency, the glow, Townsend-like, hybrid, Ω and RF-α modes are sustained. In this paper, the electrical characterization of the discharge cell together with an electrical model are used to estimate the electron density from current and voltage measurements for excitation frequencies ranging from 50 kHz to 15 MHz. The electron density is found to vary from 1014 to 1017 m-3 over this frequency range. In addition, a collisional-radiative model coupled with optical emission spectroscopy is used to evaluate the electron temperature (assuming Maxwellian electron energy distribution function) in the same conditions. The time and space-averaged electron temperature is found to be about 0.3 eV in both the low-frequency and high-frequency ranges. However, in the medium-frequency range, it reaches almost twice this value as the discharge is in the hybrid mode. The hybrid mode is similar to the atmospheric-pressure glow discharge usually observed in helium DBDs at low frequency with the major difference being that the plasma is continuously sustained and is characterized by a higher power density.

  18. Gallium Arsenide detectors for X-ray and electron (beta particle) spectroscopy

    NASA Astrophysics Data System (ADS)

    Lioliou, G.; Barnett, A. M.

    2016-11-01

    Results characterizing GaAs p+-i-n+ mesa photodiodes with a 10 μm i layer for their spectral response under illumination of X-rays and beta particles are presented. A total of 22 devices, having diameters of 200 μm and 400 μm, were electrically characterized at room temperature. All devices showed comparable characteristics with a measured leakage current ranging from 4 nA/cm2 to 67 nA/cm2 at an internal electric field of 50 kV/cm. Their unintentionally doped i layers were found to be almost fully depleted at 0 V due to their low doping density. 55Fe X-ray spectra were obtained using one 200 μm diameter device and one 400 μm diameter device. The best energy resolution (FWHM at 5.9 keV) achieved was 625 eV using the 200 μm and 740 eV using the 400 μm diameter device, respectively. Noise analysis showed that the limiting factor for the energy resolution of the system was the dielectric noise; if this noise was eliminated by better design of the front end of the readout electronics, the achievable resolution would be 250 eV. 63Ni beta particle spectra obtained using the 200 μm diameter device showed the potential utility of these detectors for electron and beta particle detection. The development of semiconductor electron spectrometers is important particularly for space plasma physics; such devices may find use in future space missions to study the plasma environment of Jupiter and Europa and the predicted electron impact excitation of water vapor plumes from Europa hypothesized as a result of recent Hubble Space Telescope (HST) UV observations.

  19. Accelerated aggregation of donor nitrogen in diamond containing NV centers

    NASA Astrophysics Data System (ADS)

    Lobanov, Sergey; Vins, Victor; Yelisseev, Alexander; Afonin, Dmitry; Blinkov, Alexander; Maximov, Yuriy

    2010-05-01

    The aggregation of donor nitrogen (C centers) into nitrogen pairs (A centers) is considered to be a second-order chemical reaction and the kinetics of this reaction can be written as follows: Kt = 1-- -1- Ct C0 where K is the aggregation rate constant that depends exponentially on temperature and activation energy K = Aexp (- Ea-kT ) and C0 and CT are C center concentrations before and after the aggregation. The activation energy Ea in natural diamonds is equal to 5±0.3 eV. However, it was shown by Vins (2004) that Ea varied in synthetic diamonds depending on Ni concentration from 3 to 6 eV; and in synthetic diamonds containing cobalt the activation energy exceeded 4 eV. The aggregation rate of C centers also increased dramatically in diamonds irradiated with high-energy electrons (Collins, 1980). An HPHT diamond single crystal grown in the Fe-Co-C system using the TGG method was studied. The initial C center concentration determined from the intensity of the 1130 cm-1 IR absorption band was equal to 118 ppm. In order to determine the influence of NV centers on the activation energy of aggregation, the crystal was at first irradiated with high-energy electrons (3MeV, 2×1018cm-2) and annealed in a quartz ampoule in vacuum (8000C, 2 hrs). This led to the formation of over 5 ppm of NV centers. After that the sample was annealed at high temperatures in the argon flow (15300C, 30 minutes). The IR absorption spectra revealed an

  20. Size resolved infrared spectroscopy of Na(CH3OH)n (n = 4-7) clusters in the OH stretching region: unravelling the interaction of methanol clusters with a sodium atom and the emergence of the solvated electron.

    PubMed

    Forck, Richard M; Pradzynski, Christoph C; Wolff, Sabine; Ončák, Milan; Slavíček, Petr; Zeuch, Thomas

    2012-03-07

    Size resolved IR action spectra of neutral sodium doped methanol clusters have been measured using IR excitation modulated photoionisation mass spectroscopy. The Na(CH(3)OH)(n) clusters were generated in a supersonic He seeded expansion of methanol by subsequent Na doping in a pick-up cell. A combined analysis of IR action spectra, IP evolutions and harmonic predictions of IR spectra (using density functional theory) of the most stable structures revealed that for n = 4, 5 structures with an exterior Na atom showing high ionisation potentials (IPs) of ~4 eV dominate, while for n = 6, 7 clusters with lower IPs (~3.2 eV) featuring fully solvated Na atoms and solvated electrons emerge and dominate the IR action spectra. For n = 4 simulations of photoionisation spectra using an ab initio MD approach confirm the dominance of exterior structures and explain the previously reported appearance IP of 3.48 eV by small fractions of clusters with partly solvated Na atoms. Only for this cluster size a shift in the isomer composition with cluster temperature has been observed, which may be related to kinetic stabilisation of less Na solvated clusters at low temperatures. Features of slow fragmentation dynamics of cationic Na(+)(CH(3)OH)(6) clusters have been observed for the photoionisation near the adiabatic limit. This finding points to the relevance of previously proposed non-vertical photoionisation dynamics of this system.

  1. Modeling of life limiting phenomena in the discharge chamber of an electron bombardment ion thruster

    NASA Technical Reports Server (NTRS)

    Handoo, Arvind K.; Ray, Pradosh K.

    1991-01-01

    An experimental facility to study the low energy sputtering of metal surfaces with ions produced by an ion gun is described. The energy of the ions ranged from 10 to 500 eV. Cesium ions with energies from 100 to 500 eV were used initially to characterize the operation of the ion gun. Next, argon and xenon ions were used to measure the sputtering yields of cobalt (Co), Cadmium (Cd), and Chromium (Cr) at an operating temperature of 2x10(exp -5) Torr. The ion current ranged from 0.0135 micro-A at 500 eV. The targets were electroplated on a copper substrate. The surface density of the electroplated material was approx. 50 micro-g/sq cm. The sputtered atoms were collected on an aluminum foil surrounding the target. Radioactive tracers were used to measure the sputtering yields. The sputtering yields of Cr were found to be much higher than those of Co and Cd. The yields of Co and Cd were comparable, with Co providing the higher yields. Co and Cd targets were observed to sputter at energies as low as 10 eV for both argon and xenon ions. The Cr yields could not be measured below 20 eV for argon ions and 15 eV for xenon ions. On a linear scale the yield energy curves near the threshold energies exhibit a concave nature.

  2. Correlation between energy deposition and molecular damage from Auger electrons: A case study of ultra-low energy (5-18 eV) electron interactions with DNA.

    PubMed

    Rezaee, Mohammad; Hunting, Darel J; Sanche, Léon

    2014-07-01

    The present study introduces a new method to establish a direct correlation between biologically related physical parameters (i.e., stopping and damaging cross sections, respectively) for an Auger-electron emitting radionuclide decaying within a target molecule (e.g., DNA), so as to evaluate the efficacy of the radionuclide at the molecular level. These parameters can be applied to the dosimetry of Auger electrons and the quantification of their biological effects, which are the main criteria to assess the therapeutic efficacy of Auger-electron emitting radionuclides. Absorbed dose and stopping cross section for the Auger electrons of 5-18 eV emitted by(125)I within DNA were determined by developing a nanodosimetric model. The molecular damages induced by these Auger electrons were investigated by measuring damaging cross section, including that for the formation of DNA single- and double-strand breaks. Nanoscale films of pure plasmid DNA were prepared via the freeze-drying technique and subsequently irradiated with low-energy electrons at various fluences. The damaging cross sections were determined by employing a molecular survival model to the measured exposure-response curves for induction of DNA strand breaks. For a single decay of(125)I within DNA, the Auger electrons of 5-18 eV deposit the energies of 12.1 and 9.1 eV within a 4.2-nm(3) volume of a hydrated or dry DNA, which results in the absorbed doses of 270 and 210 kGy, respectively. DNA bases have a major contribution to the deposited energies. Ten-electronvolt and high linear energy transfer 100-eV electrons have a similar cross section for the formation of DNA double-strand break, while 100-eV electrons are twice as efficient as 10 eV in the induction of single-strand break. Ultra-low-energy electrons (<18 eV) substantially contribute to the absorbed dose and to the molecular damage from Auger-electron emitting radionuclides; hence, they should be considered in the dosimetry calculation of such radionuclides. Moreover, absorbed dose is not an appropriate physical parameter for nanodosimetry. Instead, stopping cross section, which describes the probability of energy deposition in a target molecule can be an appropriate nanodosimetric parameter. The stopping cross section is correlated with a damaging cross section (e.g., cross section for the double-strand break formation) to quantify the number of each specific lesion in a target molecule for each nuclear decay of a single Auger-electron emitting radionuclide.

  3. Single-Photon, Double Photodetachment of Nickel Phthalocyanine Tetrasulfonic Acid 4- Anions.

    PubMed

    Daly, Steven; Girod, Marion; Vojkovic, Marin; Giuliani, Alexandre; Antoine, Rodolphe; Nahon, Laurent; O'Hair, Richard A J; Dugourd, Philippe

    2016-07-07

    Single-photon, two-electron photodetachment from nickel phthalocyanine tetrasulfonic acid tetra anions, [NiPc](4-), was examined in the gas-phase using a linear ion trap coupled to the DESIRS VUV beamline of the SOLEIL Synchrotron. This system was chosen since it has a low detachment energy, known charge localization, and well-defined geometrical and electronic structures. A threshold for two-electron loss is observed at 10.2 eV, around 1 eV lower than previously observed double detachment thresholds on multiple charged protein anions. The photodetachment energy of [NiPc](4-) has been previously determined to be 3.5 eV and the photodetachment energy of [NiPc](3-•) is determined in this work to be 4.3 eV. The observed single photon double electron detachment threshold is hence 5.9 eV higher than the energy required for sequential single electron loss. Possible mechanisms are for double photodetachment are discussed. These observations pave the way toward new, exciting experiments for probing double photodetachment at relatively low energies, including correlation measurements on emitted photoelectrons.

  4. Damage induced to DNA by low-energy (0-30 eV) electrons under vacuum and atmospheric conditions.

    PubMed

    Brun, Emilie; Cloutier, Pierre; Sicard-Roselli, Cécile; Fromm, Michel; Sanche, Léon

    2009-07-23

    In this study, we show that it is possible to obtain data on DNA damage induced by low-energy (0-30 eV) electrons under atmospheric conditions. Five monolayer films of plasmid DNA (3197 base pairs) deposited on glass and gold substrates are irradiated with 1.5 keV X-rays in ultrahigh vacuum and under atmospheric conditions. The total damage is analyzed by agarose gel electrophoresis. The damage produced on the glass substrate is attributed to energy absorption from X-rays, whereas that produced on the gold substrate arises from energy absorption from both the X-ray beam and secondary electrons emitted from the gold surface. By analysis of the energy of these secondary electrons, 96% are found to have energies below 30 eV with a distribution peaking at 1.4 eV. The differences in damage yields recorded with the gold and glass substrates is therefore essentially attributed to the interaction of low-energy electrons with DNA under vacuum and hydrated conditions. From these results, the G values for low-energy electrons are determined to be four and six strand breaks per 100 eV, respectively.

  5. Continuous, edge localized ion heating during non-solenoidal plasma startup and sustainment in a low aspect ratio tokamak

    DOE PAGES

    Burke, Marcus G.; Barr, Jayson L.; Bongard, Michael W.; ...

    2017-05-16

    Plasmas in the Pegasus spherical tokamak are initiated and grown by the non-solenoidal local helicity injection (LHI) current drive technique. The LHI system consists of three adjacent electron current sources that inject multiple helical current filaments that can reconnect with each other. Anomalously high impurity ion temperatures are observed during LHI with T i,OV ≤ 650 eV, which is in contrast to T i,OV ≤ 70 eV from Ohmic heating alone. Spatial profiles of T i,OV indicate an edge localized heating source, with T i,OV ~ 650 eV near the outboard major radius of the injectors and dropping to ~150 eV near the plasma magnetic axis. Experiments without a background tokamak plasma indicate the ion heating results from magnetic reconnection between adjacent injected current filaments. In these experiments, the HeII T i perpendicular to the magnetic field is found to scale with the reconnecting field strength, local density, and guide field, whilemore » $${{T}_{\\text{i},\\parallel}}$$ experiences little change, in agreement with two-fluid reconnection theory. In conclusion, this ion heating is not expected to significantly impact the LHI plasma performance in Pegasus, as it does not contribute significantly to the electron heating. However, estimates of the power transfer to the bulk ion are quite large, and thus LHI current drive provides an auxiliary ion heating mechanism to the tokamak plasma.« less

  6. The main types of electron energy distribution determined by model fitting to optical emissions during HF wave ionospheric modification experiments

    NASA Astrophysics Data System (ADS)

    Vlasov, M. N.; Kelley, M. C.; Hysell, D. L.

    2013-06-01

    Enhanced optical emissions observed during HF pumping are induced by electrons accelerated by high-power electromagnetic waves. Using measured emission intensities, the energy distribution of accelerated electrons can be inferred. Energy loss from the excitation of molecular nitrogen vibrational levels (the vibrational barrier) strongly influences the electron energy distribution (EED). In airglow calculations, compensation for electron depletion within the 2-3 eV energy range, induced by the vibrational barrier, can be achieved via electrons with an EED similar to a Gaussian distribution and energies higher than 3 eV. This EED has a peak within the 5-10 eV energy range. We show that the main EED features depend strongly on altitude and solar activity. An EED similar to a power law distribution can occur above 270-300 km altitude. Below 270 km altitude, a Gaussian distribution for energies between 3 eV and 10 eV, together with a power law distribution for energies higher than 10 eV, is indicated. A Gaussian distribution combined with an exponential function is needed below 230 km altitude. The transition altitude from Gaussian to power law distribution depends strongly on solar activity, increasing for high solar activity. Electrons accelerated during the initial collisionless stage can inhibit the depletion of fast electrons within the vibrational barrier range, an effect that strongly depends on altitude and solar activity. The approach, based on the effective root square electric field, enables EED calculation, providing the observed red-line intensities for low and high solar activities.

  7. Highly mismatched GaN1-x Sb x alloys: synthesis, structure and electronic properties

    NASA Astrophysics Data System (ADS)

    Yu, K. M.; Sarney, W. L.; Novikov, S. V.; Segercrantz, N.; Ting, M.; Shaw, M.; Svensson, S. P.; Martin, R. W.; Walukiewicz, W.; Foxon, C. T.

    2016-08-01

    Highly mismatched alloys (HMAs) is a class of semiconductor alloys whose constituents are distinctly different in terms of size, ionicity and/or electronegativity. Electronic properties of the alloys deviate significantly from an interpolation scheme based on small deviations from the virtual crystal approximation. Most of the HMAs were only studied in a dilute composition limit. Recent advances in understanding of the semiconductor synthesis processes allowed growth of thin films of HMAs under non-equilibrium conditions. Thus reducing the growth temperature allowed synthesis of group III-N-V HMAs over almost the entire composition range. This paper focuses on the GaN x Sb1-x HMA which has been suggested as a potential material for solar water dissociation devices. Here we review our recent work on the synthesis, structural and optical characterization of GaN1-x Sb x HMA. Theoretical modeling studies on its electronic structure based on the band anticrossing (BAC) model are also reviewed. In particular we discuss the effects of growth temperature, Ga flux and Sb flux on the incorporation of Sb, film microstructure and optical properties of the alloys. Results obtained from two separate MBE growths are directly compared. Our work demonstrates that a large range of direct bandgap energies from 3.4 eV to below 1.0 eV can be achieved for this alloy grown at low temperature. We show that the electronic band structure of GaN1-x Sb x HMA over the entire composition range is well described by a modified BAC model which includes the dependence of the host matrix band edges as well as the BAC model coupling parameters on composition. We emphasize that the modified BAC model of the electronic band structure developed for the full composition of GaN x Sb1-x is general and is applicable to any HMA.

  8. Photoelectron spectroscopic studies of ultra-thin CuPc layers on a Si(111)-(√3 × √3)R30°-B surface

    NASA Astrophysics Data System (ADS)

    Menzli, S.; Laribi, A.; Mrezguia, H.; Arbi, I.; Akremi, A.; Chefi, C.; Chérioux, F.; Palmino, F.

    2016-12-01

    The adsorption of copper phthalocyanine (CuPc) molecules on Si(111)-(√3 × √3)R30°-B surface is investigated at room temperature under ultra-high vacuum. Crystallographic, chemical and electronic properties of the interface are investigated by low energy electron diffraction (LEED), ultraviolet and X-ray photoemission spectroscopies (UPS, XPS) and X-ray photoemission diffraction (XPD). LEED and XPD results shed light on the growth mechanism of CuPc on this substrate. At one monolayer coverage the growth mode was characterized by the formation of crystalline 3D nanoislands. The molecular packing deduced from this study appears very close to the one of the bulk CuPc α phase. The 3D islands are formed by molecules aligned in a standing manner. XPS core level spectra of the substrate reveal that there is no discernible chemical interaction between molecules and substrate. However there is charge transfer from molecules to the substrate. During the growth, the work function (WF) was found to decrease from 4.50 eV for the clean substrate to 3.70 eV for the highest coverage (30 monolayers). Within a thickness of two monolayers deposition, an interface dipole of 0.50 eV was found. A substrate band bending of 0.25 eV was deduced over all the range of exposure. UPS spectra indicate the existence of a band bending of the highest occupied molecular orbital (HOMO) of 0.30 eV. The changes in the work function, in the Fermi level position and in the onset of the molecular HOMO state have been used to determine the energy level alignment at the interface.

  9. High Energy Research and Applications (HERA) Pulsed Power and Pulsed Power Systems R&D for Magnetized Target Fusion Using Field Reversed Configurations (MTF-FRC)

    DTIC Science & Technology

    2013-03-12

    electron collision frequency, given, in cgs units, by [17] ( ) 4 23 4 3 en kTm ee e λπ τ = . (2) Here, Te is the electron temperature, in eV, k = 1.6x10...acceleration, in the absence of collisions, is given by - eE /me. To take electron-neutral collisions into account20, we note that the average time between...time being, the continuity equation is 298 Approved for public release; distribution is unlimited. eee nDt n 2∇= ∂ ∂ , (21) which is the

  10. On the Ground Electronic States of TiF and TiCl

    PubMed

    Boldyrev; Simons

    1998-04-01

    The low-lying electronic states of TiF and TiCl have been studied using high level ab initio techniques. Both are found to have two low-lying excited electronic states, 4Sigma- (0.080 eV (TiF) and 0.236 eV (TiCl)) and 2Delta (0.266 eV (TiF) and 0.348 eV (TiCl)), and 4Phi ground states at the highest CCSD(T)/6-311++G(2d,2f) level of theory. Our theoretical predictions of 4Phi ground electronic states for TiF and TiCl support recent experimental findings by Ram and Bernath, and our calculated bond lengths and vibrational frequencies are in reasonable agreement with their experimental data. Copyright 1998 Academic Press.

  11. Low energy electron attenuation lengths in core–shell nanoparticles

    DOE PAGES

    Jacobs, Michael I.; Kostko, Oleg; Ahmed, Musahid; ...

    2017-05-05

    Here, a velocity map imaging spectrometer is used to measure photoemission from free core–shell nanoparticles, where a salt core is coated with a liquid hydrocarbon shell (i.e. squalane). By varying the radial thickness of the hydrocarbon shell, electron attenuation lengths (EALs) are determined by measuring the decay in photoemission intensity from the salt core. In squalane, electrons with kinetic energy (KE) above 2 eV are found to have EALs of 3–5 nm, whereas electrons with smaller KE (<2 eV) have significantly larger EALs of >15 nm. These results (in the context of other energy-resolved EAL measurements) suggest that the energymore » dependent behavior of low energy electrons is similar in dielectrics when KE > 2 eV. At this energy the EALs do not appear to exhibit strong energy dependence. However, at very low KE (<2 eV), the EALs diverge and appear to be extremely material dependent.« less

  12. Study of optical and electronic properties of nickel from reflection electron energy loss spectra

    NASA Astrophysics Data System (ADS)

    Xu, H.; Yang, L. H.; Da, B.; Tóth, J.; Tőkési, K.; Ding, Z. J.

    2017-09-01

    We use the classical Monte Carlo transport model of electrons moving near the surface and inside solids to reproduce the measured reflection electron energy-loss spectroscopy (REELS) spectra. With the combination of the classical transport model and the Markov chain Monte Carlo (MCMC) sampling of oscillator parameters the so-called reverse Monte Carlo (RMC) method was developed, and used to obtain optical constants of Ni in this work. A systematic study of the electronic and optical properties of Ni has been performed in an energy loss range of 0-200 eV from the measured REELS spectra at primary energies of 1000 eV, 2000 eV and 3000 eV. The reliability of our method was tested by comparing our results with the previous data. Moreover, the accuracy of our optical data has been confirmed by applying oscillator strength-sum rule and perfect-screening-sum rule.

  13. Modeling, Analysis, and Interpretation of Photoelectron Energy Spectra at Enceladus Observed by Cassini

    NASA Astrophysics Data System (ADS)

    Taylor, S. A.; Coates, A. J.; Jones, G. H.; Wellbrock, A.; Fazakerley, A. N.; Desai, R. T.; Caro-Carretero, R.; Michiko, M. W.; Schippers, P.; Waite, J. H.

    2018-01-01

    The Electron Spectrometer (ELS) of the Cassini Plasma Spectrometer has observed photoelectrons produced in the plume of Enceladus. These photoelectrons are observed during Enceladus encounters in the energetic particle shadow where the spacecraft is largely shielded from penetrating radiation by the moon. We present a complex electron spectrum at Enceladus including evidence of two previously unidentified electron populations at 6-10 eV and 10-16 eV. We estimate that the proportion of "hot" (>15 eV) to "cold" (<15 eV) electrons during the Enceladus flybys is ≈ 0.1-0.5%. We have constructed a model of photoelectron production in the plume and compared it with ELS Enceladus flyby data by scaling and energy shifting according to spacecraft potential. We suggest that the complex structure of the electron spectrum observed can be explained entirely by photoelectron production in the plume ionosphere.

  14. Ultrafast Plasmon-Enhanced Hot Electron Generation at Ag Nanocluster/Graphite Heterojunctions.

    PubMed

    Tan, Shijing; Liu, Liming; Dai, Yanan; Ren, Jindong; Zhao, Jin; Petek, Hrvoje

    2017-05-03

    Hot electron processes at metallic heterojunctions are central to optical-to-chemical or electrical energy transduction. Ultrafast nonlinear photoexcitation of graphite (Gr) has been shown to create hot thermalized electrons at temperatures corresponding to the solar photosphere in less than 25 fs. Plasmonic resonances in metallic nanoparticles are also known to efficiently generate hot electrons. Here we deposit Ag nanoclusters (NC) on Gr to study the ultrafast hot electron generation and dynamics in their plasmonic heterojunctions by means of time-resolved two-photon photoemission (2PP) spectroscopy. By tuning the wavelength of p-polarized femtosecond excitation pulses, we find an enhancement of 2PP yields by 2 orders of magnitude, which we attribute to excitation of a surface-normal Mie plasmon mode of Ag/Gr heterojunctions at 3.6 eV. The 2PP spectra include contributions from (i) coherent two-photon absorption of an occupied interface state (IFS) 0.2 eV below the Fermi level, which electronic structure calculations assign to chemisorption-induced charge transfer, and (ii) hot electrons in the π*-band of Gr, which are excited through the coherent screening response of the substrate. Ultrafast pump-probe measurements show that the IFS photoemission occurs via virtual intermediate states, whereas the characteristic lifetimes attribute the hot electrons to population of the π*-band of Gr via the plasmon dephasing. Our study directly probes the mechanisms for enhanced hot electron generation and decay in a model plasmonic heterojunction.

  15. Rare earth chalcogenide Ce3Te4 as high efficiency high temperature thermoelectric material

    NASA Astrophysics Data System (ADS)

    Wang, Xiaochun; Yang, Ronggui; Zhang, Yong; Zhang, Peihong; Xue, Yu

    2011-05-01

    The electronic band structures of Ce3Te4 have been studied using the first-principles density-functional theory calculations. It is found that the density of states of Ce3Te4 has a very high delta-shaped peak appearing 0.21 eV above the Fermi level, which mainly comes from the f orbital electrons of the rare-earth element Ce. Using the simple theory proposed by Mahan and Sofo, [Proc. Natl. Acad. Sci. U.S.A. 93, 7436 (1996)], we obtain an ideal value of zT=13.5 for Ce3Te4 at T=1200 K, suggesting that the rare-earth chalcogenide Ce3Te4 could be a promising high efficiency high temperature thermoelectric material.

  16. Dissociative attachment of electrons to N2O

    NASA Technical Reports Server (NTRS)

    Krishnakumar, E.; Srivastava, S. K.

    1990-01-01

    Cross sections for the production of O(-) from N2O by the process of dissociative electron attachment have been measured for electron-impact energies ranging from 0 to 50 eV. Three new O(-) peaks are observed. The present data above 5-eV electron-impact energy differ considerably from the previous measurements.

  17. Logarithmic detrapping response for holes injected into SiO2 and the influence of thermal activation and electric fields

    NASA Astrophysics Data System (ADS)

    Lakshmanna, V.; Vengurlekar, A. S.

    1988-05-01

    Relaxation of trapped holes that are introduced into silicon dioxide from silicon by the avalanche injection method is studied under various conditions of thermal activation and external electric fields. It is found that the flat band voltage recovery in time follows a universal behavior in that the response at high temperatures is a time scaled extension of the response at low temperatures. Similar universality exists in the detrapping response at different external bias fields. The recovery characteristics show a logarithmic time dependence in the time regime studied (up to 6000 s). We find that the recovery is thermally activated with the activation energy varying from 0.5 eV for a field of 2 MV/cm to 1.0 eV for a field of -1 MV/cm. There is little discharge in 3000 s at room temperature for negative fields beyond -4 MV/cm. The results suggest that the recovery is due to tunneling of electrons in the silicon conduction band into the oxide either to compensate or to remove the charge of trapped holes.

  18. Effect of combined platinum and electron on the temperature dependence of forward voltage in fast recovery diode

    NASA Astrophysics Data System (ADS)

    Jia, Yun-Peng; Zhao, Bao; Yang, Fei; Wu, Yu; Zhou, Xuan; Li, Zhe; Tan, Jian

    2015-12-01

    The temperature dependences of forward voltage drop (VF) of the fast recovery diodes (FRDs) are remarkably influenced by different lifetime controlled treatments. In this paper the results of an experimental study are presented, which are the lifetime controls of platinum treatment, electron irradiation treatment, and the combined treatment of the above ones. Based on deep level transient spectroscopy (DLTS) measurements, a new level E6 (EC-0.376 eV) is found in the combined lifetime treated (CLT) sample, which is different from the levels of the individual platinum and electron irradiation ones. Comparing the tested VF results of CLT samples with the others, the level E6 is responsible for the degradation of temperature dependence of the forward voltage drop in the FRD. Project supported by the Doctoral Fund of Ministry of Education of China (Grant No. 20111103120016) and the State Grid Corporation of China Program of Science and Technology, China (Grant No. 5455DW140003).

  19. Revision of the experimental electron affinity of BO

    NASA Astrophysics Data System (ADS)

    Rienstra, Jonathan C.; Schaefer, Henry F., III

    1997-05-01

    The experimental electron affinity of BO has proven questionable. We obtained the electron affinity of BO using the large aug-cc-pVQZ basis with SCF, CISD, CISD+Q, CCSD, and CCSD(T) methods and predict a value of 2.57 eV, or 0.55 eV smaller than the latest experimental value. The 2∑+ to 2Π excitation energy of BO has also been obtained with the CCSD(T) method and found to be 2.82 eV.

  20. Structural and Optical Properties of Ag Nanoparticles Synthesized by Thermal Treatment Method.

    PubMed

    Gharibshahi, Leila; Saion, Elias; Gharibshahi, Elham; Shaari, Abdul Halim; Matori, Khamirul Amin

    2017-04-12

    The modified thermal treatment method via alternate oxygen and nitrogen flow was successfully employed to synthesize very narrow and pure Ag nanoparticles. The structural and optical properties of the obtained metal nanoparticles at different calcination temperatures between 400 and 800 °C were studied using various techniques. The FTIR and EDX confirmed the formation of Ag nanoparticles without a trace of impurities. The XRD spectra revealed that the amorphous sample at 30 °C had transformed into the cubic crystalline nanostructures at the calcination temperature of 400 °C and higher. The TEM images showed the formation of spherical Ag nanoparticles in which the average particle size decreased with increasing calcination temperature from 7.88 nm at 400 °C to 3.29 nm at 800 °C. The optical properties were determined by UV-vis absorption spectrophotometer, which showed an increase in the conduction band of Ag nanoparticles with increasing calcination temperature from 2.75 eV at 400 °C to 3.04 eV at 800 °C. This was due to less attraction between conduction electrons and metal ions as the particle size decreases in corresponding to fewer numbers of atoms that made up the metal nanoparticles.

  1. Structural and Optical Properties of Ag Nanoparticles Synthesized by Thermal Treatment Method

    PubMed Central

    Gharibshahi, Leila; Saion, Elias; Gharibshahi, Elham; Shaari, Abdul Halim; Matori, Khamirul Amin

    2017-01-01

    The modified thermal treatment method via alternate oxygen and nitrogen flow was successfully employed to synthesize very narrow and pure Ag nanoparticles. The structural and optical properties of the obtained metal nanoparticles at different calcination temperatures between 400 and 800 °C were studied using various techniques. The FTIR and EDX confirmed the formation of Ag nanoparticles without a trace of impurities. The XRD spectra revealed that the amorphous sample at 30 °C had transformed into the cubic crystalline nanostructures at the calcination temperature of 400 °C and higher. The TEM images showed the formation of spherical Ag nanoparticles in which the average particle size decreased with increasing calcination temperature from 7.88 nm at 400 °C to 3.29 nm at 800 °C. The optical properties were determined by UV-vis absorption spectrophotometer, which showed an increase in the conduction band of Ag nanoparticles with increasing calcination temperature from 2.75 eV at 400 °C to 3.04 eV at 800 °C. This was due to less attraction between conduction electrons and metal ions as the particle size decreases in corresponding to fewer numbers of atoms that made up the metal nanoparticles. PMID:28772762

  2. Pressure dependence of thermal physical properties of A-type R2O3 (R=Y, La): A first-principles study

    NASA Astrophysics Data System (ADS)

    Li, Y. F.; Xiao, B.; Sun, L.; Gao, Y. M.; Ma, S. Q.; Yi, D. W.

    2017-04-01

    The mechanical, electronic and thermal physical properties of A-type R2O3 (R=Y, La) under hydrostatic pressure are studied by first-principles calculations. The calculated band gap is 6.3 eV (5.9 eV) for Y2O3 (La2O3). Under hydrostatic pressure, both phases show anisotropic elasticity in different crystallographic directions. The isothermal bulk modulus of R2O3 decreases monotonically with the increasing of temperature from 300 K to 1500 K. The intrinsic ductile nature of both phases is confirmed by the obtained B/G ratio. The temperature dependence of linear TECs of La2O3 is stronger than that of Y2O3, and the linear TECs in [001] direction show larger values in both phases than those in [010] direction. At room temperature, the average linear TECs for Y2O3 and La2O3 are 8.40×10-6 K-1 and 8.42×10-6 K-1, respectively. Other thermal physical properties such as specific heats (CV, and CP), entropy (S), sound velocity and Debye temperature are also obtained.

  3. Isochoric, isobaric, and ultrafast conductivities of aluminum, lithium, and carbon in the warm dense matter regime

    NASA Astrophysics Data System (ADS)

    Dharma-wardana, M. W. C.; Klug, D. D.; Harbour, L.; Lewis, Laurent J.

    2017-11-01

    We study the conductivities σ of (i) the equilibrium isochoric state σis, (ii) the equilibrium isobaric state σib, and also the (iii) nonequilibrium ultrafast matter state σuf with the ion temperature Ti less than the electron temperature Te. Aluminum, lithium, and carbon are considered, being increasingly complex warm dense matter systems, with carbon having transient covalent bonds. First-principles calculations, i.e., neutral-pseudoatom (NPA) calculations and density-functional theory (DFT) with molecular-dynamics (MD) simulations, are compared where possible with experimental data to characterize σic, σib, and σuf. The NPA σib is closest to the available experimental data when compared to results from DFT with MD simulations, where simulations of about 64-125 atoms are typically used. The published conductivities for Li are reviewed and the value at a temperature of 4.5 eV is examined using supporting x-ray Thomson-scattering calculations. A physical picture of the variations of σ with temperature and density applicable to these materials is given. The insensitivity of σ to Te below 10 eV for carbon, compared to Al and Li, is clarified.

  4. Cross-field electron transport inside an insulating cylinder of a baffled probe

    NASA Astrophysics Data System (ADS)

    Raitses, Yevgeny; Alt, Andrew

    2017-10-01

    Plasma-immersed wall experiments have been performed in a magnetized xenon plasma in a cross-field Penning configuration with density around 1012 cm-3 and an electron temperature around a few eV. A cylinder with an open end and diameter of 1.4 mm was placed across field lines so that electrons were blocked from reaching a wire recessed behind the shield while ions were unimpeded. The reduction of electron current to the wire causes it to float closer to the plasma potential, possibly making a device that can passively measure plasma potential. However, the measured electron current was much higher than expected even when the wire was recessed several electron gyroradii behind the baffle. Possible mechanisms for this electron conduction causing the short circuiting to the bulk plasma have been studied with numerical approaches and with a dedicated experiment designed to isolate this short circuit effect. The obtained results may be important for cross-field transport in a variety of other configurations in magnetized, low-temperature plasmas. This work was supported by DOE contract DE-AC02-09CH11466.

  5. Comparative study on microstructure and martensitic transformation of aged Ni-rich NiTi and NiTiCo shape memory alloys

    NASA Astrophysics Data System (ADS)

    El-Bagoury, Nader

    2016-05-01

    In this article the influence of aging heat treatment conditions of 250, 350, 450 and 550 °C for 3 h on the microstructure, martensitic transformation temperatures and mechanical properties of Ni51Ti49Co0 and Ni47 Ti49Co4 shape memory alloys was investigated. This comparative study was carried out using X-ray diffraction analysis, scanning electron microscope, energy dispersive spectrometer, differential scanning calorimeter and Vickers hardness tester. The results show that the microstructure of both aged alloys contains martensite phase and Ti2Ni in addition to some other precipitates. The martensitic transformation temperature was increased steadily by increasing the ageing temperature and lowering the value of valence electron number (ev/a) and concentration. Moreover, the hardness measurements were gradually increased at first by increasing the aging temperature from 250 to 350 °C. Further elevating in aging temperature to 450 and 550 °C decreases the hardness value.

  6. DNA strand breaks and crosslinks induced by transient anions in the range 2-20 eV.

    PubMed

    Luo, Xinglan; Zheng, Yi; Sanche, Léon

    2014-04-15

    The energy dependence of the yields of single and double strand breaks (SSB and DSB) and crosslinks induced by electron impact on plasmid DNA films is measured in the 2-20 eV range. The yield functions exhibit two strong maxima, which are interpreted to result from the formation of core-excited resonances (i.e., transient anions) of the bases, and their decay into the autoionization channel, resulting in π → π * electronic transitions of the bases followed by electron transfer to the C-O σ * bond in the phosphate group. Occupancy of the σ * orbital ruptures the C-O bond of the backbone via dissociative electron attachment, producing a SSB. From a comparison of our results with those of other works, including theoretical calculations and electron-energy-loss spectra of the bases, the 4.6 eV peak in the SSB yield function is attributed to the resonance decay into the lowest electronically excited states of the bases; in particular, those resulting from the transitions 1 3 A'( π 2 → π 3 *) and 1 3 A″(n 2 → π 3 *) of thymine and 1 3 A'( π → π *) of cytosine. The strongest peak at 9.6 eV in the SSB yield function is also associated with electron captured by excited states of the bases, resulting mostly from a multitude of higher-energy π → π * transitions. The DSB yield function exhibits strong maxima at 6.1 and 9.6 eV. The peak at 9.6 eV is probably related to the same resonance manifold as that leading to SSB, but the other at 6.1 eV may be more restricted to decay into the electronic state 1 3 A' ( π → π *) of cytosine via autoionization. The yield function of crosslinks is dominated by a broad peak extending over the 3.6-11.6 eV range with a sharper one at 17.6 eV. The different line shape of the latter function, compared to that of SSB and DSB, appears to be due to the formation of reactive radical sites in the initial supercoiled configuration of the plasmid, which react with the circular form (i.e., DNA with a SSB) to produce a crosslink.

  7. Understanding the role of Si doping on surface charge and optical properties: Photoluminescence study of intrinsic and Si-doped InN nanowires

    NASA Astrophysics Data System (ADS)

    Zhao, S.; Mi, Z.; Kibria, M. G.; Li, Q.; Wang, G. T.

    2012-06-01

    In the present work, the photoluminescence (PL) characteristics of intrinsic and Si-doped InN nanowires are studied in detail. For intrinsic InN nanowires, the emission is due to band-to-band carrier recombination with the peak energy at ˜0.64 eV (at 300 K) and may involve free-exciton emission at low temperatures. The PL spectra exhibit a strong dependence on optical excitation power and temperature, which can be well characterized by the presence of very low residual electron density and the absence or a negligible level of surface electron accumulation. In comparison, the emission of Si-doped InN nanowires is characterized by the presence of two distinct peaks located at ˜0.65 and ˜0.73-0.75 eV (at 300 K). Detailed studies further suggest that these low-energy and high-energy peaks can be ascribed to band-to-band carrier recombination in the relatively low-doped nanowire bulk region and Mahan exciton emission in the high-doped nanowire near-surface region, respectively; this is a natural consequence of dopant surface segregation. The resulting surface electron accumulation and Fermi-level pinning, due to the enhanced surface doping, are confirmed by angle-resolved x-ray photoelectron spectroscopy measurements on Si-doped InN nanowires, which is in direct contrast to the absence or a negligible level of surface electron accumulation in intrinsic InN nanowires. This work elucidates the role of charge-carrier concentration and distribution on the optical properties of InN nanowires.

  8. Diffraction of electrons at intermediate energies

    NASA Astrophysics Data System (ADS)

    Ascolani, H.; Barrachina, R. O.; Guraya, M. M.; Zampieri, G.

    1992-08-01

    We present a theory of the elastic scattering of electrons from crystalline surfaces that contains both low-energy-electron-diffraction (LEED) effects at low energies and x-ray-photoelectron- and Auger-electron-diffraction (XPD/AED) effects at intermediate energies. The theory is based on a cluster-type approach to the scattering problem and includes temperature effects. The transition from one regime to the other may be explained as follows: At low energies all the scattered waves add coherently, and the intensity is dominated by LEED effects. At intermediate energies the thermal vibration of the atoms destroys the long-range coherency responsible for the LEED peaks, but affects little the interference of those waves that share parts of their paths inside the solid. Thus, the interference of these waves comes to dominate the intensity, giving rise to structures similar to those observed in XPD/AED experiments. We perform a calculation of the elastic reflection of electrons from Cu(001) that is in good agreement with the experiment in the range 200-1500 eV. At low energies the intensity is dominated by LEED peaks; at 400 eV LEED peaks and XPD/AED structures coexist; and above this energy the intensity is dominated by the latter. We analyze the contributions to the intensity at intermediate energies of the interferences in the incoming and outgoing parts of the electron path.

  9. Possibility to Use Hydrothermally Synthesized CuFeS2 Nanocomposite as an Acceptor in Hybrid Solar Cell

    NASA Astrophysics Data System (ADS)

    Sil, Sayantan; Dey, Arka; Halder, Soumi; Datta, Joydeep; Ray, Partha Pratim

    2018-01-01

    Here we have approached the plausible use of CuFeS2 nanocomposite as an acceptor in organic-inorganic hybrid solar cell. To produce CuFeS2 nanocomposite, hydrothermal strategy was employed. The room-temperature XRD pattern approves the synthesized material as CuFeS2 with no phase impurity (JCPDS Card no: 37-0471). The elemental composition of the material was analyzed from the TEM-EDX data. The obtained selected area electron diffraction (SAED) planes harmonized with the XRD pattern of the synthesized product. Optical band gap (4.14 eV) of the composite from UV-Vis analysis depicts that the synthesized material is belonging to wide band gap semiconductor family. The HOMO (- 6.97 eV) and LUMO (- 2.93 eV) positions from electrochemical study reveal that there is a possibility of electron transfer from MEH-PPV to CuFeS2. The optical absorption and photoluminescence spectra of MEH-PPV:CuFeS2 (donor:acceptor) composite were recorded sequentially by varying weight ratios. The monotonic blue shifting of the absorption peak position indicated the interaction between donor and acceptor materials. The possibility of electron transfer from donor (MEH-PPV) to acceptor (CuFeS2) was approved with photoluminescence analysis. Subsequently, we have fabricated a hybrid solar cell by incorporating CuFeS2 nanocomposite with MEH-PPV in open atmosphere and obtained 0.3% power conversion efficiency.

  10. Theoretical investigation of stabilities and optical properties of Si12C12 clusters

    NASA Astrophysics Data System (ADS)

    Duan, Xiaofeng F.; Burggraf, Larry W.

    2015-01-01

    By sorting through hundreds of globally stable Si12C12 isomers using a potential surface search and using simulated annealing, we have identified low-energy structures. Unlike isomers knit together by Si-C bonds, the lowest energy isomers have segregated carbon and silicon regions that maximize stronger C-C bonding. Positing that charge separation between the carbon and silicon regions would produce interesting optical absorption in these cluster molecules, we used time-dependent density functional theory to compare the calculated optical properties of four isomers representing structural classes having different types of silicon and carbon segregation regions. Absorptions involving charge transfer between segregated carbon and silicon regions produce lower excitation energies than do structures having alternating Si-C bonding for which frontier orbital charge transfer is exclusively from separated carbon atoms to silicon atoms. The most stable Si12C12 isomer at temperatures below 1100 K is unique as regards its high symmetry and large optical oscillator strength in the visible blue. Its high-energy and low-energy visible transitions (1.15 eV and 2.56 eV) are nearly pure one-electron silicon-to-carbon transitions, while an intermediate energy transition (1.28 eV) is a nearly pure carbon-to-silicon one-electron charge transfer.

  11. Comparative analysis of the H 2 passivation of interface defects at the {(100) Si}/{SiO 2} interface using electron spin resonance

    NASA Astrophysics Data System (ADS)

    Stesmans, A.

    1996-01-01

    The passivation with molecular hydrogen in the range 213-234°C of the interfacial Pb0 and Pb1 defects in {(100) Si}/{SiO 2}, thermally grown at low temperature (<750°C), has been analyzed by K-band electron spin resonance. The passivation kinetics are found to be well described by the same defect-H 2 reaction limited model applying to the interfacial Pb defect (∘SiSi 3) in {(111) Si}/{SiO 2} grown at 850°C. However, unlike Pb, that was typified by a single-valued activation energy for passivation Ea = 1.66 eV, both Pb0 and Pb1 are found to exhibit a Gaussian spread σEa ˜ 0.15 eV around their respective meanEa values, deduced as 1.51 and 1.57 ± 0.3 eV. The similar passivation kinetics are in line with assigning the Pb0 and Pb1 defects, like Pb, to an interfacial unpaired sp3 Si hybrid. However, as there is no fundamental difference between Pb0 and Pb1 regarding passivation in H 2, more specfic identification of Pb with either Pb0 or Pb1 , if any, cannot be concluded.

  12. Multiple relaxations of the cluster surface diffusion in a homoepitaxial SrTiO3 layer

    NASA Astrophysics Data System (ADS)

    Woo, Chang-Su; Chu, Kanghyun; Song, Jong-Hyun; Yang, Chan-Ho

    2018-03-01

    We examine the surface diffusion process of adatomic clusters on a (001)-oriented SrTiO3 single crystal using reflection high energy electron diffraction (RHEED). We find that the recovery curve of the RHEED intensity acquired after a homoepitaxial half-layer growth can be accurately fit into a double exponential function, indicating the existence of two dominant relaxation mechanisms. The characteristic relaxation times at selected growth temperatures are investigated to determine the diffusion activation barriers of 0.67 eV and 0.91 eV, respectively. The Monte Carlo simulation of the cluster hopping model suggests that the decrease in the number of dimeric and trimeric clusters during surface diffusion is the origin of the observed relaxation phenomena.

  13. First-principles study of direct and indirect optical absorption in BaSnO3

    NASA Astrophysics Data System (ADS)

    Kang, Youngho; Peelaers, Hartwin; Krishnaswamy, Karthik; Van de Walle, Chris G.

    2018-02-01

    We report first-principles results for the electronic structure and the optical absorption of perovskite BaSnO3 (BSO). BSO has an indirect fundamental gap, and hence, both direct and indirect transitions need to be examined. We assess direct absorption by calculations of the dipole matrix elements. The phonon-assisted indirect absorption spectrum at room temperature is calculated using a quasiclassical approach. Our analysis provides important insights into the optical properties of BSO and addresses several inconsistencies in the results of optical absorption experiments. We shed light on the variety of bandgap values that have been previously reported, concluding that the indirect gap is 2.98 eV and the direct gap is 3.46 eV.

  14. Role of doping and CuO segregation in improving the giant permittivity of CaCu{sub 3}Ti{sub 4}O{sub 12}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capsoni, D.; CNR-IENI, Sezione di Pavia, viale Taramelli 16, 27100 Pavia; Bini, M.

    2004-12-01

    The dopant role on the electric and dielectric properties of the perovskite-type CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) compound is evidenced. Impedance spectroscopy measurements show that the relevant permittivity value attributed to sintered CCTO is due to grain boundary (g.b.) effects. The g.b. permittivity value of the pure CCTO can be increased of 1-2 orders of magnitude by cation substitution on Ti site and/or segregation of CuO phase, while the bulk permittivity keeps values 90{epsilon}r180. Bulk and g.b. conductivity contributions are discussed: electrons are responsible for the charge transport and a mean bulk activation energy of 0.07eV is obtained at roommore » temperature for all the examined samples. The g.b. activation energy ranges between 0.54 and 0.76eV. Defect models related to the transport properties are proposed, supported by electron paramagnetic resonance measurements.« less

  15. Transport Gap Opening and High On-Off Current Ratio in Trilayer Graphene with Self-Aligned Nanodomain Boundaries.

    PubMed

    Wu, Han-Chun; Chaika, Alexander N; Huang, Tsung-Wei; Syrlybekov, Askar; Abid, Mourad; Aristov, Victor Yu; Molodtsova, Olga V; Babenkov, Sergey V; Marchenko, D; Sánchez-Barriga, Jaime; Mandal, Partha Sarathi; Varykhalov, Andrei Yu; Niu, Yuran; Murphy, Barry E; Krasnikov, Sergey A; Lübben, Olaf; Wang, Jing Jing; Liu, Huajun; Yang, Li; Zhang, Hongzhou; Abid, Mohamed; Janabi, Yahya T; Molotkov, Sergei N; Chang, Ching-Ray; Shvets, Igor

    2015-09-22

    Trilayer graphene exhibits exceptional electronic properties that are of interest both for fundamental science and for technological applications. The ability to achieve a high on-off current ratio is the central question in this field. Here, we propose a simple method to achieve a current on-off ratio of 10(4) by opening a transport gap in Bernal-stacked trilayer graphene. We synthesized Bernal-stacked trilayer graphene with self-aligned periodic nanodomain boundaries (NBs) on the technologically relevant vicinal cubic-SiC(001) substrate and performed electrical measurements. Our low-temperature transport measurements clearly demonstrate that the self-aligned periodic NBs can induce a charge transport gap greater than 1.3 eV. More remarkably, the transport gap of ∼0.4 eV persists even at 100 K. Our results show the feasibility of creating new electronic nanostructures with high on-off current ratios using graphene on cubic-SiC.

  16. Methane fluxes show consistent temperature dependence across microbial to ecosystem scales.

    PubMed

    Yvon-Durocher, Gabriel; Allen, Andrew P; Bastviken, David; Conrad, Ralf; Gudasz, Cristian; St-Pierre, Annick; Thanh-Duc, Nguyen; del Giorgio, Paul A

    2014-03-27

    Methane (CH4) is an important greenhouse gas because it has 25 times the global warming potential of carbon dioxide (CO2) by mass over a century. Recent calculations suggest that atmospheric CH4 emissions have been responsible for approximately 20% of Earth's warming since pre-industrial times. Understanding how CH4 emissions from ecosystems will respond to expected increases in global temperature is therefore fundamental to predicting whether the carbon cycle will mitigate or accelerate climate change. Methanogenesis is the terminal step in the remineralization of organic matter and is carried out by strictly anaerobic Archaea. Like most other forms of metabolism, methanogenesis is temperature-dependent. However, it is not yet known how this physiological response combines with other biotic processes (for example, methanotrophy, substrate supply, microbial community composition) and abiotic processes (for example, water-table depth) to determine the temperature dependence of ecosystem-level CH4 emissions. It is also not known whether CH4 emissions at the ecosystem level have a fundamentally different temperature dependence than other key fluxes in the carbon cycle, such as photosynthesis and respiration. Here we use meta-analyses to show that seasonal variations in CH4 emissions from a wide range of ecosystems exhibit an average temperature dependence similar to that of CH4 production derived from pure cultures of methanogens and anaerobic microbial communities. This average temperature dependence (0.96 electron volts (eV)), which corresponds to a 57-fold increase between 0 and 30°C, is considerably higher than previously observed for respiration (approximately 0.65 eV) and photosynthesis (approximately 0.3 eV). As a result, we show that both the emission of CH4 and the ratio of CH4 to CO2 emissions increase markedly with seasonal increases in temperature. Our findings suggest that global warming may have a large impact on the relative contributions of CO2 and CH4 to total greenhouse gas emissions from aquatic ecosystems, terrestrial wetlands and rice paddies.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCall, Kyle M.; Stoumpos, Constantinos C.; Kostina, Svetlana S.

    The optical and electronic properties of Bridgman grown single crystals of the wide-bandgap semiconducting defect halide perovskites A3M2I9 (A = Cs, Rb; M = Bi, Sb) have been investigated. Intense Raman scattering was observed at room temperature for each compound, indicating high polarizability and strong electron–phonon coupling. Both low-temperature and room-temperature photoluminescence (PL) were measured for each compound. Cs3Sb2I9 and Rb3Sb2I9 have broad PL emission bands between 1.75 and 2.05 eV with peaks at 1.96 and 1.92 eV, respectively. The Cs3Bi2I9 PL spectra showed broad emission consisting of several overlapping bands in the 1.65–2.2 eV range. Evidence of strong electron–phononmore » coupling comparable to that of the alkali halides was observed in phonon broadening of the PL emission. Effective phonon energies obtained from temperature-dependent PL measurements were in agreement with the Raman peak energies. A model is proposed whereby electron–phonon interactions in Cs3Sb2I9, Rb3Sb2I9, and Cs3Bi2I9 induce small polarons, resulting in trapping of excitons by the lattice. The recombination of these self-trapped excitons is responsible for the broad PL emission. Rb3Bi2I9, Rb3Sb2I9, and Cs3Bi2I9 exhibit high resistivity and photoconductivity response under laser photoexcitation, indicating that these compounds possess potential as semiconductor hard radiation detector materials.« less

  18. [Study of cubic boron nitride crystal UV absorption spectroscopy].

    PubMed

    Liu, Hai-Bo; Jia, Gang; Chen, Gang; Meng, Qing-Ju; Zhang, Tie-Chen

    2008-07-01

    UV absorption spectroscopy of artificial cubic boron nitride (cBN) single crystal flake, synthesized under high-temperature and high-pressure, was studied in the present paper. UV WINLAB spectrometer was used in the experiments, and MOLECULAR SPECTROSCOPY software was used for data analysis. The UV-cBN limit of 198 nm was showed in this test by a special fixture quartz sample. We calculated the energy gap by virtue of the formula: lambda0 = 1.24/E(g) (microm). The energy gap is 6. 26 eV. There are many viewpoints about the gap of cBN. By using the first-principles theory to calculate energy band structure and density of electronic states of cBN, an indirect transition due to electronics in valence band jumping into conduction band by absorbing photon can be confirmed. That leads to UV absorption. The method of calculation was based on the quantum mechanics of CASTEP in the commercial software package of Cerius2 in the Co. Accerlrys in the United States. The theory of CASTEP is based on local density approximation or gradient corrected LDA. The crystal parameter of cBN was input to the quantum mechanics of CASTEP in order to construct the crystal parameter model of cBN. We calculated the energy gap of cBN by the method of gradient corrected LDA. The method underestimates the value of nonconductor by about 1 to 2 eV. We gaot some opinions as follows: cBN is indirect band semiconductor. The energy gap is 4.76 eV, less than our experiment. The reason may be defect that we ignored in calculating process. It was reported that the results by first principles method of calculation of the band generally was less than the experimental results. This paper shows good UV characteristics of cBN because of the good agreement of experimental results with the cBN band width. That is a kind of development prospect of UV photo-electronic devices and high-temperature semiconductor devices.

  19. Deuterium desorption from ion-irradiated tantalum and effects on surface morphology

    NASA Astrophysics Data System (ADS)

    Novakowski, T. J.; Sundaram, A.; Tripathi, J. K.; Gonderman, S.; Hassanein, A.

    2018-06-01

    Compared to tungsten (W), tantalum (Ta) has shown superior resistance to helium (He)-induced surface morphology changes under fusion-relevant irradiation conditions. However, Ta is also expected to have a stronger interaction with hydrogen isotopes, potentially limiting its use as a plasma-facing material. Despite these concerns, detailed investigations on hydrogen irradiation effects on Ta are scarce. In this study, pristine and fuzzy (He+ ion-irradiated) Ta samples are irradiated with 120 eV deuterium (D) ions at various temperatures and examined with a combination of thermal desorption spectroscopy (TDS), scanning electron microscopy (SEM), and optical reflectivity. TDS reveals discrete D desorption temperatures at 660 and 760 K, corresponding to trapping energies of 1.82 and 2.11 eV, respectively. Although D is retained in Ta both in higher quantities and at higher temperatures compared to W, extreme surface temperatures expected in tokamak divertors may exceed these desorption temperatures and counteract retention. Furthermore, this study indicates that Ta is relatively resistant to adverse surface structuring under D+ ion irradiation. In fact, D+ is shown to prevent and suppress Ta fuzz formation in sequential D+/He+ ion irradiation experiments. While further investigations are needed to elucidate this behavior, these initial investigations show a strong potential for the use of Ta as a PFC material.

  20. Wide bandgap BaSnO 3 films with room temperature conductivity exceeding 10 4 S cm -1

    DOE PAGES

    Prakash, Abhinav; Xu, Peng; Faghaninia, Alireza; ...

    2017-05-05

    Wide bandgap perovskite oxides with high room temperature conductivities and structural compatibility with a diverse family of organic/inorganic perovskite materials are of sign ificant interest as transparent conductors and as active components in power electronics. Such materials must also possess high room temperature mobility to minimize power consumption and to enable high-frequency applications. Here, we report n-type BaSnO 3 films grown using hybrid molecular beam epitaxy with room temperature conductivity exceeding 10 4 S cm -1 . Significantly, these films show room temperature mobilities up to 120 cm 2 V -1 s -1 even at carrier concentrations abovemore » 3 × 10 20 cm -3 together with a wide bandgap (3 eV). We examine the mobility-limiting scattering mechanisms by calculating temperature-dependent mobility, and Seebeck coefficient using the Boltzmann transport framework and ab-initio calculations. These results place perovskite oxide semiconductors for the first time on par with the highly successful III-N system, thereby bringing all-transparent, high-power oxide electronics operating at room temperature a step closer to reality.« less

  1. Absolute cross sections for electronic excitation of condensed tetrahydrofuran (THF) by 11-16 eV electrons.

    PubMed

    Lemelin, V; Bass, A D; Cloutier, P; Sanche, L

    2016-11-07

    Absolute cross section (CS) data on the interaction of low energy electrons with DNA and its molecular constituents are required as input parameters in Monte-Carlo type simulations, for several radiobiological applications. Previously [V. Lemelin et al., J. Chem. Phys. 144, 074701 (2016)], we measured absolute vibrational CSs for low-energy electron scattering from condensed tetrahydrofuran, a convenient surrogate for the deoxyribose. Here we report absolute electronic CSs for energy losses of between 6 and 11.5 eV, by electrons with energies between 11 and 16 eV. The variation of these CSs with incident electron energy shows no evidence of transient anion states, consistent with theoretical and other experimental results, indicating that initial electron capture leading to DNA strand breaks occurs primarily on DNA bases or the phosphate group.

  2. Retarding potential analyzer for the Pioneer-Venus Orbiter Mission

    NASA Technical Reports Server (NTRS)

    Knudsen, W. C.; Bakke, J.; Spenner, K.; Novak, V.

    1979-01-01

    The retarding potential analyzer on the Pioneer-Venus Orbiter Mission has been designed to measure most of the thermal plasma parameters within and near the Venusian ionosphere. Parameters include total ion concentration, concentrations of the more abundant ions, ion temperatures, ion drift velocity, electron temperature, and low-energy (0-50 eV) electron distribution function. To accomplish these measurements on a spinning vehicle with a small telemetry bit rate, several functions, including decision functions not previously used in RPA's, have been developed and incorporated into this instrument. The more significant functions include automatic electrometer ranging with background current compensation; digital, quadratic retarding potential step generation for the ion and low-energy electron scans; a current sampling interval of 2 ms throughout all scans; digital logic inflection point detection and data selection; and automatic ram direction detection. Extensive numerical simulation and plasma chamber tests have been conducted to verify adequacy of the design for the Pioneer Mission.

  3. First-Principles Study of Structural, Electronic, Optical, and Thermal Properties of BeSiSb2 and MgSiSb2

    NASA Astrophysics Data System (ADS)

    Benlamari, S.; Boukhtouta, M.; Taïri, L.; Meradji, H.; Amirouche, L.; Ghemid, S.

    2018-03-01

    Structural, electronic, optical, and thermal properties of ternary II-IV-V2 (BeSiSb2 and MgSiSb2) chalcopyrite semiconductors have been calculated using the full-potential linearized augmented plane wave scheme␣in the generalized gradient approximation. The optimized equilibrium structural parameters ( a, c, and u) are in good agreement with theoretical results obtained using other methods. The band structure and density of states reveal that BeSiSb2 has an indirect (Γ-Z) bandgap of about 0.61 eV, whereas MgSiSb2 has a direct (Γ-Γ) bandgap of 0.80 eV. The dielectric function, refractive index, and extinction coefficient were calculated to investigate the optical properties, revealing that BeSiSb2 and MgSiSb2 present very weak birefringence. The temperature dependence of the volume, bulk modulus, Debye temperature, and heat capacities ( C v and C p) was predicted using the quasiharmonic Debye model at different pressures. Significant differences in properties are observed at high pressure and high temperature. We predict that, at 300 K and 0 GPa, the heat capacity at constant volume C v, heat capacity at constant pressure C P, Debye temperature θ D, and Grüneisen parameter γ will be about 94.91 J/mol K, 98.52 J/mol K, 301.30 K, and 2.11 for BeSiSb2 and about 96.08 J/mol K, 100.47 J/mol K, 261.38 K, and 2.20 for MgSiSb2, respectively.

  4. High-temperature luminescence in an n-GaSb/n-InGaAsSb/p-AlGaAsSb light-emitting heterostructure with a high potential barrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petukhov, A. A., E-mail: andrey-rus29@rambler.ru; Zhurtanov, B. E.; Kalinina, K. V.

    2013-09-15

    The electroluminescent properties of an n-GaSb/n-InGaAsSb/p-AlGaAsSb heterostructure with a high potential barrier in the conduction band (large conduction-band offset) at the n-GaSb/n-InGaAsSb type-II heterointerface ({Delta}E{sub c} = 0.79 eV) are studied. Two bands with peaks at 0.28 and 0.64 eV at 300 K, associated with radiative recombination in n-InGaAsSb and n-GaSb, respectively, are observed in the electroluminescence (EL) spectrum. In the entire temperature range under study, T = 290-480 K, additional electron-hole pairs are formed in the n-InGaAsSb active region by impact ionization with hot electrons heated as a result of the conduction-band offset. These pairs contribute to radiative recombination,more » which leads to a nonlinear increase in the EL intensity and output optical power with increasing pump current. A superlinear increase in the emission power of the long-wavelength band is observed upon heating in the temperature range T = 290-345 K, and a linear increase is observed at T > 345 K. This work for the first time reports an increase in the emission power of a light-emitting diode structure with increasing temperature. It is shown that this rise is caused by a decrease in the threshold energy of the impact ionization due to narrowing of the band gap of the active region.« less

  5. Generation of colour centres in yttria-stabilized zirconia by heavy ion irradiations in the GeV range.

    PubMed

    Costantini, Jean-Marc; Beuneu, François; Schwartz, Kurt; Trautmann, Christina

    2010-08-11

    We have studied the colour centre production in yttria-stabilized zirconia (ZrO(2):Y(3 +)) by heavy ion irradiation in the GeV range using on-line UV-visible optical absorption spectroscopy. Experiments were performed with 11.4 MeV amu(-1) (127)Xe, (197)Au, (208)Pb and (238)U ion irradiations at 8 K or room temperature (RT). A broad and asymmetrical absorption band peaked at a wavelength about 500 nm is recorded regardless of the irradiation parameters, in agreement with previous RT irradiations with heavy ions in the 100 MeV range. This band is de-convoluted into two broad Gaussian-shaped bands centred at photon energies about 2.4 and 3.1 eV that are respectively associated with the F(+)-type centres (involving a singly ionized oxygen vacancy, VO· and T centres (i.e. Zr(3+) in a trigonal symmetry) observed by electron paramagnetic resonance (EPR) spectroscopy. In the case of 8 K Au ion irradiation at low fluences, six bands are used at about 1.9, 2.3, 2.7, 3.1 and 4.0 eV. The three bands near 2.0-2.5 eV can be assigned to oxygen divacancies (i.e. F(2)(+) centres). No significant effect of the irradiation temperature is found on the widths of all absorption bands for the same ion and fluence. This is attributed to the inhomogeneous broadening arising from the static disorder due to the native charge-compensating oxygen vacancies. However, the colour centre production yield is strongly enhanced at 8 K with respect to RT. When heating irradiated samples from 8 K to RT, the extra colour centres produced at low temperature do not recover completely to the level of RT irradiation. The latter results are accounted for by an electronically driven defect recovery process.

  6. Electronic energy gap of molecular hydrogen from electrical conductivity measurements at high shock pressures

    NASA Technical Reports Server (NTRS)

    Nellis, W. J.; Mitchell, A. C.; Mccandless, P. C.; Erskine, D. J.; Weir, S. T.

    1992-01-01

    Electrical conductivities were measured for liquid D2 and H2 shock compressed to pressures of 10-20 GPa (100-200 kbar), molar volumes near 8 cu cm/mol, and calculated temperatures of 2900-4600 K. The semiconducting energy gap derived from the conductivities is 12 eV, in good agreement with recent quasi-particle calculations and with oscillator frequencies measured in diamond-anvil cells.

  7. Materials erosion and redeposition studies at the PISCES-facility: net erosion under redeposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirooka, Y.; Goebel, D.M.; Conn, R.W.

    1986-05-01

    Simultaneous erosion and redeposition of copper and 304 stainless steel under controlled and continuous plasma (D,He,Ar) bombardment has been investigated in the PISCES-facility, which generates typical edge-plasma conditions of magnetic fusion devices. The plasma bombardment conditions are: incident ion flux in the range from 10/sup 17/ to 10/sup 18/ ions/sec/cm/sup 2/, ion bombarding energy of 100 eV, electron temperature in the range from 5 to 15 eV, plasma density in the range from 10/sup 11/ to 10/sup 13/ cm/sup -3/, target temperature in the range from 300 to 900K, and the total ion fluence in the range from 10/sup 20/more » to 10/sup 22/ ions/cm/sup 2/. The net erosion yield under redeposition is found to be significantly smaller than the classical sputtering yield data. A first-order modeling is attempted to interpret the erosion and redeposition behavior of materials under plasma bombardment. It is pointed out both theoretically and experimentally that the mean free path for electron impact ionization of the sputtered material is the key parameter to control the overall mechanism of erosion and redeposition. Strongly modified surface morphologies of bombarded targets are observed and indicate a retrapping effect.« less

  8. Studies of waves and instabilities using increased beta, warm ion plasmas in LAPD

    NASA Astrophysics Data System (ADS)

    Carter, Troy; Dorfman, Seth; Gekelman, Walter; Vincena, Steve; van Compernolle, Bart; Tripathi, Shreekrishna; Pribyl, Pat; Morales, George

    2015-11-01

    A new plasma source based on a Lanthanum Hexaboride (LAB6) emissive cathode has been developed and installed on the LArge Plasma Device (LAPD) at UCLA. The new source provides a much higher discharge current density (compared to the standard LAPD Barium Oxide source) resulting in a factor of ~ 50 increase in plasma density and a factor of ~ 2 - 3 increase in electron temperature. Due to the increased density the ion-electron energy exchange time is shorter in the new plasma, resulting in warm ions (measured spectroscopically to be ~ 5 - 6 eV, up from <~ 1 eV in the standard source plasma). This increased pressure combined with lowered magnetic field provides access to magnetized plasmas with β up to order unity. Topics under investigation include the physics of Alfvén waves in increased β plasmas (dispersion and kinetic damping on ions), electromagnetic effects and magnetic transport in drift-Alfvén wave turbulence, and the excitation of ion-temperature-anisotropy driven modes such as the mirror and firehose instabilities. The capabilities of the new source will be discussed along with initial experimental resuls on electromagnetic drift-Alfvén wave turbulence and Alfvén wave propagation with increased plasma β. Supported by NSF and DOE.

  9. The MARIA Helicon Plasma Experiment at UW Madison: Upgrade, Initial Scientific Goals Mission and First Results

    NASA Astrophysics Data System (ADS)

    Winters, Victoria; Green, Jonathan; Hershkowitz, Noah; Schmitz, Oliver; Severn, Greg

    2015-11-01

    The versatile helicon plasma device, MARIA (Magnetized AnisotRopic Ion-distribution Apparatus), was upgraded with stronger magnetic field B <= 1200G. The main focus is to understand the neutral particle dynamics and ionization mechanism with helicon waves to establish a high-density plasma (10 ∧ 20/m ∧ 3) at substantial electron (Te ~5-15eV) and ion (Ti ~1-3eV) temperature. To achieve this, installation of higher RF Power <= 15kW is planned as well as design of an ion cyclotron-heating antenna. To quantify the plasma characteristics, diagnostics including a Triple Langmuir Probe, Emissive Probe, and Laser Induced Fluorescence were established. We show first results from characterization of the device. The coupling of the helicon mode in the electron temperature and density parameter space in Argon was mapped out with regard to neutral pressure, B-field and RF power. In addition, validity of the Bohm Criterion and of the Chodura model starting in the weakly collisional regime is tested. A key goal in all efforts is to develop methods of quantitative spectroscopy based on cutting-edge models and active laser spectroscopy. This work was funded by Startup funds of the Department of Engineering Physics at UW Madison, the NSF CAREER award PHY-1455210 and NSF grant PHY-1206421.

  10. Spectral Characteristics of Deuterium-, Helium- and Gas-Mixture-Discharges within PF-1000 Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsarenko, A.; Malinowski, K.; Skladnik-Sadowska, E.

    2006-01-15

    The paper reports on spectroscopic studies of high-current plasma discharges performed at different gas fillings within the large PF-1000 facility. To study visible radiation (VR) the use was made of a MECHELLE registered 900-spectrometer equipped with the CCD readout. The observations of a PF pinch column were performed at an angle of about 65 deg. to the z-axis, and the viewing field was at a distance of 40-50 mm from the electrode ends. Optical measurements were carried out at 0.5-{mu}s exposition synchronized with a chosen period of the investigated discharge. Differences in the optical spectra, recorded at various deuterium-helium mixtures,more » were analyzed. Intensities of HeI lines were computed for an assumed electron temperature and compared with the experiment. Estimated plasma concentration in pure-deuterium discharges amounted to 8x1018 cm-3, while that in pure helium shots was (4-7)x1017 cm-3 only. Estimates of the electron temperature, from the ratio of intensities of the chosen spectral lines and the continuum, gave values ranging from 5 eV to 50 eV. The paper presents also some spectra from 'weak shots', which show distinct impurity lines caused by different reasons.« less

  11. Correlation between energy deposition and molecular damage from Auger electrons: A case study of ultra-low energy (5–18 eV) electron interactions with DNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rezaee, Mohammad, E-mail: Mohammad.Rezaee@USherbrooke.ca; Hunting, Darel J.; Sanche, Léon

    2014-07-15

    Purpose: The present study introduces a new method to establish a direct correlation between biologically related physical parameters (i.e., stopping and damaging cross sections, respectively) for an Auger-electron emitting radionuclide decaying within a target molecule (e.g., DNA), so as to evaluate the efficacy of the radionuclide at the molecular level. These parameters can be applied to the dosimetry of Auger electrons and the quantification of their biological effects, which are the main criteria to assess the therapeutic efficacy of Auger-electron emitting radionuclides. Methods: Absorbed dose and stopping cross section for the Auger electrons of 5–18 eV emitted by{sup 125}I withinmore » DNA were determined by developing a nanodosimetric model. The molecular damages induced by these Auger electrons were investigated by measuring damaging cross section, including that for the formation of DNA single- and double-strand breaks. Nanoscale films of pure plasmid DNA were prepared via the freeze-drying technique and subsequently irradiated with low-energy electrons at various fluences. The damaging cross sections were determined by employing a molecular survival model to the measured exposure–response curves for induction of DNA strand breaks. Results: For a single decay of{sup 125}I within DNA, the Auger electrons of 5–18 eV deposit the energies of 12.1 and 9.1 eV within a 4.2-nm{sup 3} volume of a hydrated or dry DNA, which results in the absorbed doses of 270 and 210 kGy, respectively. DNA bases have a major contribution to the deposited energies. Ten-electronvolt and high linear energy transfer 100-eV electrons have a similar cross section for the formation of DNA double-strand break, while 100-eV electrons are twice as efficient as 10 eV in the induction of single-strand break. Conclusions: Ultra-low-energy electrons (<18 eV) substantially contribute to the absorbed dose and to the molecular damage from Auger-electron emitting radionuclides; hence, they should be considered in the dosimetry calculation of such radionuclides. Moreover, absorbed dose is not an appropriate physical parameter for nanodosimetry. Instead, stopping cross section, which describes the probability of energy deposition in a target molecule can be an appropriate nanodosimetric parameter. The stopping cross section is correlated with a damaging cross section (e.g., cross section for the double-strand break formation) to quantify the number of each specific lesion in a target molecule for each nuclear decay of a single Auger-electron emitting radionuclide.« less

  12. Correlation between energy deposition and molecular damage from Auger electrons: A case study of ultra-low energy (5–18 eV) electron interactions with DNA

    PubMed Central

    Rezaee, Mohammad; Hunting, Darel J.; Sanche, Léon

    2015-01-01

    Purpose The present study introduces a new method to establish a direct correlation between biologically related physical parameters (i.e., stopping and damaging cross sections, respectively) for an Auger-electron emitting radionuclide decaying within a target molecule (e.g., DNA), so as to evaluate the efficacy of the radionuclide at the molecular level. These parameters can be applied to the dosimetry of Auger electrons and the quantification of their biological effects, which are the main criteria to assess the therapeutic efficacy of Auger-electron emitting radionuclides. Methods Absorbed dose and stopping cross section for the Auger electrons of 5–18 eV emitted by 125I within DNA were determined by developing a nanodosimetric model. The molecular damages induced by these Auger electrons were investigated by measuring damaging cross section, including that for the formation of DNA single- and double-strand breaks. Nanoscale films of pure plasmid DNA were prepared via the freeze-drying technique and subsequently irradiated with low-energy electrons at various fluences. The damaging cross sections were determined by employing a molecular survival model to the measured exposure–response curves for induction of DNA strand breaks. Results For a single decay of 125I within DNA, the Auger electrons of 5–18 eV deposit the energies of 12.1 and 9.1 eV within a 4.2-nm3 volume of a hydrated or dry DNA, which results in the absorbed doses of 270 and 210 kGy, respectively. DNA bases have a major contribution to the deposited energies. Ten-electronvolt and high linear energy transfer 100-eV electrons have a similar cross section for the formation of DNA double-strand break, while 100-eV electrons are twice as efficient as 10 eV in the induction of single-strand break. Conclusions Ultra-low-energy electrons (<18 eV) substantially contribute to the absorbed dose and to the molecular damage from Auger-electron emitting radionuclides; hence, they should be considered in the dosimetry calculation of such radionuclides. Moreover, absorbed dose is not an appropriate physical parameter for nanodosimetry. Instead, stopping cross section, which describes the probability of energy deposition in a target molecule can be an appropriate nanodosimetric parameter. The stopping cross section is correlated with a damaging cross section (e.g., cross section for the double-strand break formation) to quantify the number of each specific lesion in a target molecule for each nuclear decay of a single Auger-electron emitting radionuclide. PMID:24989405

  13. Electron scattering by molecules. II - Experimental methods and data

    NASA Technical Reports Server (NTRS)

    Trajmar, S.; Chutjian, A.; Register, D. F.

    1983-01-01

    Experimental techniques for measuring electron-molecule collision cross sections are briefly summarized. A survey of the available experimental cross section data is presented. The emphasis here is on elastic scattering, rotational, vibrational and electronic excitations, total electron scattering, and momentum transfer in the few eV to few hundred eV impact energy range. Reference is made to works concerned with high energy electron scattering, innershell and multi-electron excitations, conicidence methods and electron scattering in laser fields.

  14. Time-Resolved K-shell Photoabsorption Edge Measurement in a Strongly Coupled Matter Driven by Laser-converted Radiation

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Yang, Jia-Min; Zhang, Ji-Yan; Yang, Guo-Hong; Xiong, Gang; Wei, Min-Xi; Song, Tian-Ming; Zhang, Zhi-Yu

    2013-06-01

    A time-resolved K edge absorption measurement of warm dense KCl was performed on Shenguang II laser facility. The x-ray radiation driven shocks were adopted to take colliding shocks compression. By using Dog bone hohlraum the CH/KCl/CH sample was shielded from the laser hitting point to suppress the M band preheating and enhance the compressibility. Thus, an unexplored and extreme region of the plasma state with the maximum 5 times solid density and temperature lower than 3 eV (with coupling constant Γii around 100) was first obtained. The photoabsorption spectra of chlorine near the K-shell edge have been measured with a crystal spectrometer using a short x-ray backlighter. The K edge red shift up to 11.7 eV and broadening of 15.2 eV were obtained for the maximum compression. The electron temperature, inferred by Fermi-Dirac fit of the measured K-edge broadening, was consistent with the hydrodynamic predictions. The comparison of the K edge shift with a plasma model, in which the ionization effect, continuum lowering and partial degeneracy are considered, shows that more improvements are desired to describe in details the variation of K edge shift. This work might extend future study of WDM in extreme conditions of high compression.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Yongli; Wang, Xianjie; Sui, Yu

    Here in this article, we investigated the dielectric properties of (In + Nb) co-doped rutile TiO 2 single crystal and polycrystalline ceramics. Both of them showed colossal, up to 10 4, dielectric permittivity at room temperature. The single crystal sample showed one dielectric relaxation process with a large dielectric loss. The voltage-dependence of dielectric permittivity and the impedance spectrum suggest that the high dielectric permittivity of single crystal originated from the surface barrier layer capacitor (SBLC). The impedance spectroscopy at different temperature confirmed that the (In+Nb) co-doped rutile TiO 2 polycrystalline ceramic had semiconductor grains and insulating grain boundaries, andmore » that the activation energies were calculated to be 0.052 eV and 0.35 eV for grain and grain boundary, respectively. The dielectric behavior and impedance spectrum of the polycrystalline ceramic sample indicated that the internal barrier layer capacitor (IBLC) mode made a major contribution to the high ceramic dielectric permittivity, instead of the electron-pinned defect-dipoles.« less

  16. Polycyclic Aromatic Hydrocarbon Ionization Energy Lowering in Water Ices

    NASA Technical Reports Server (NTRS)

    Gudipati, Murthy S.; Allamandola, Louis J.

    2004-01-01

    In studying various interstellar and solar system ice analogs, we have recently found that upon vacuum ultraviolet photolysis, polycyclic aromatic hydrocarbons (PAHs) frozen in water ice at low temperatures are easily ionized and indefinitely stabilized as trapped ions (Gudipati; Gudipati & Allamandola). Here we report the first experimental study that shows that PAH ionization energy is significantly lowered in PAH/H2O ices, in agreement with recent theoretical work (Woon & Park). The ionization energy (IE) of the PAH studied here, quaterrylene (C40H20, IE = 6.11 eV), is lowered by up to 2.11 eV in water ice. PAH ionization energy reduction in low-temperature water ice substantially expands the astronomical regions in which trapped ions and electrons may be important. This reduction in ionization energy should also hold for other types of trapped species in waterrich interstellar, circumstellar, and solar system ices. Subject headings: ISM: clouds - methods: laboratory - molecular processes - radiation mechanisms: nonthermal -ultraviolet: ISM - ultraviolet: solar system

  17. Characteristics of the NASA Lewis bumpy-torus plasma generated with positive applied potentials

    NASA Technical Reports Server (NTRS)

    Roth, J. R.; Gerdin, G. A.; Richardson, R. W.

    1976-01-01

    Experimental observations were made during steady-state operation of a bumpy-torus plasma at input powers up to 150 kW in deuterium and helium gas and with positive potentials applied to the midplane electrodes. In this steady-state ion heating method a modified Penning discharge is operated such that the plasma is acted upon by a combination of strong electric and magnetic fields. Experimental investigation of a deuterium plasma revealed electron temperatures from 14 to 140 eV and ion kinetic temperatures from 160 to 1785 eV. At least two distinct modes of operation exist. Experimental data shows that the average ion residence time in the plasma is virtually independent of the magnetic field strength. Data was taken when all 12 anode rings were at high voltage, and in other symmetric configurations in which the toroidal plasma was generated by applying positive potentials to six anode rings, three anode rings, and a single anode ring.

  18. A Rapid Method for Deposition of Sn-Doped GaN Thin Films on Glass and Polyethylene Terephthalate Substrates

    NASA Astrophysics Data System (ADS)

    Pat, Suat; Özen, Soner; Korkmaz, Şadan

    2018-01-01

    We report the influence of Sn doping on microstructure, surface, and optical properties of GaN thin films deposited on glass and polyethylene terephthalate (PET) substrate. Sn-doped GaN thin films have been deposited by thermionic vacuum arc (TVA) at low temperature. TVA is a rapid deposition technology for thin film growth. Surface and optical properties of the thin films were presented. Grain size, height distribution, roughness values were determined. Grain sizes were calculated as 20 nm and 13 nm for glass and PET substrates, respectively. Nano crystalline forms were shown by field emission scanning electron microscopy. Optical band gap values were determined by optical methods and photoluminescence measurement. The optical band gap values of Sn doped GaN on glass and PET were determined to be approximately ˜3.40 eV and ˜3.47 eV, respectively. As a result, TVA is a rapid and low temperature deposition technology for the Sn doped GaN deposited on glass and PET substrate.

  19. Langmuir probe measurements in a time-fluctuating-highly ionized non-equilibrium cutting arc: analysis of the electron retarding part of the time-averaged current-voltage characteristic of the probe.

    PubMed

    Prevosto, L; Kelly, H; Mancinelli, B

    2013-12-01

    This work describes the application of Langmuir probe diagnostics to the measurement of the electron temperature in a time-fluctuating-highly ionized, non-equilibrium cutting arc. The electron retarding part of the time-averaged current-voltage characteristic of the probe was analysed, assuming that the standard exponential expression describing the electron current to the probe in collision-free plasmas can be applied under the investigated conditions. A procedure is described which allows the determination of the errors introduced in time-averaged probe data due to small-amplitude plasma fluctuations. It was found that the experimental points can be gathered into two well defined groups allowing defining two quite different averaged electron temperature values. In the low-current region the averaged characteristic was not significantly disturbed by the fluctuations and can reliably be used to obtain the actual value of the averaged electron temperature. In particular, an averaged electron temperature of 0.98 ± 0.07 eV (= 11400 ± 800 K) was found for the central core of the arc (30 A) at 3.5 mm downstream from the nozzle exit. This average included not only a time-average over the time fluctuations but also a spatial-average along the probe collecting length. The fitting of the high-current region of the characteristic using such electron temperature value together with the corrections given by the fluctuation analysis showed a relevant departure of local thermal equilibrium in the arc core.

  20. Temporal variations of electron density and temperature in Kr/Ne/H2 photoionized plasma induced by nanosecond pulses from extreme ultraviolet source

    NASA Astrophysics Data System (ADS)

    Saber, I.; Bartnik, A.; Wachulak, P.; Skrzeczanowski, W.; Jarocki, R.; Fiedorowicz, H.

    2017-06-01

    Spectral investigations of low-temperature photoionized plasmas created in a Kr/Ne/H2 gas mixture were performed. The low-temperature plasmas were generated by gas mixture irradiation using extreme ultraviolet pulses from a laser-plasma source. Emission spectra in the ultraviolet/visible range from the photoionized plasmas contained lines that mainly corresponded to neutral atoms and singly charged ions. Temporal variations in the plasma electron temperature and electron density were studied using different characteristic emission lines at various delay times. Results, based on Kr II lines, showed that the electron temperature decreased from 1.7 to 0.9 eV. The electron densities were estimated using different spectral lines at each delay time. In general, except for the Hβ line, in which the electron density decreased from 3.78 × 1016 cm-3 at 200 ns to 5.77 × 1015 cm-3 at 2000 ns, most of the electron density values measured from the different lines were of the order of 1015 cm-3 and decreased slightly while maintaining the same order when the delay time increased. The time dependences of the measured and simulated intensities of a spectral line of interest were also investigated. The validity of the partial or full local thermodynamic equilibrium (LTE) conditions in plasma was explained based on time-resolved electron density measurements. The partial LTE condition was satisfied for delay times in the 200 ns to 1500 ns range. The results are summarized, and the dominant basic atomic processes in the gas mixture photoionized plasma are discussed.

  1. Temperature effect on the structural stabilities and electronic properties of X22H28 (X=C, Si and Ge) nanocrystals: A first-principles study

    NASA Astrophysics Data System (ADS)

    Deng, Xiao-Lin; Zhao, Yu-Jun; Wang, Ya-Ting; Liao, Ji-Hai; Yang, Xiao-Bao

    2016-12-01

    Based on ab initio molecular dynamic simulations, we have theoretically investigated the structural stabilities and electronic properties of X22H28 (X=C, Si, and Ge) nanocrystals, as a function of temperature with consideration of vibrational entropy effects. To compare the relative stabilities of X22H28 isomers, the vibration free energies are obtained according to the calculated phonon spectrum, where the typical modes are shown to be dominant to the structural stabilities. In addition, there is a significant gap reduction as the temperature increases from 0 K to 300 K, where the decrements are 0.2 /0.5 /0.6eV for C/Si/Ge nanocrystals, respectively. The dependence of energy gap on the variance of bond length is also analyzed according to the corresponding atomic attributions to the HOMO and LUMO levels.

  2. Estimation of Electron Temperature on Glass Spherical Tokamak (GLAST)

    NASA Astrophysics Data System (ADS)

    Hussain, S.; Sadiq, M.; Shah, S. I. W.; GLAST Team

    2015-03-01

    Glass Spherical Tokamak (GLAST) is a small spherical tokamak indigenously developed in Pakistan with an insulating vacuum vessel. A commercially available 2.45 GHz magnetron is used as pre-ionization source for plasma current startup. Different diagnostic systems like Rogowski coils, magnetic probes, flux loops, Langmuir probe, fast imaging and emission spectroscopy are installed on the device. The plasma temperature inside of GLAST, at the time of maxima of plasma current, is estimated by taking into account the Spitzer resistivity calculations with some experimentally determined plasma parameters. The plasma resistance is calculated by using Ohm's law with plasma current and loop voltage as experimentally determined inputs. The plasma resistivity is then determined by using length and area of the plasma column. Finally, the average plasma electron temperature is predicted to be 12.65eV for taking neon (Ne) as a working gas.

  3. Correlation of an infrared absorption with carriers in rare-earth monoantimonides

    NASA Astrophysics Data System (ADS)

    Kwon, Y. S.; Jung, M. H.; Lee, K. R.; Kimura, S.; Suzuki, T.

    1997-09-01

    Dielectric constants spectra were obtained in the single crystals LaSb, PrSb, GdSb and DySb at several temperatures. The spectra for these crystals except for LaSb show Drude's behavior with a hump due to an anomalous absorption lying at about 0.25 eV. The inverse of effective electron number ( NIA) of the absorption is linear in temperature, and the NIA at each temperature is dependent on the square of the effective Bohr magneton of each rare-earth ion. The sum of the number of effective electrons due to Drude adsorption and that due to infrared absorption agree well with the number of carriers obtained from their band calculations or their dHvAs. Therefore, this absorption seems to be due to the intraband transition induced by the scattering between the spin of carriers and the localized magnetic moments at each site of rare-earth ion.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchenko, A. V.; Terukov, E. I.; Egorova, A. Yu.

    Impurity iron atoms in vitreous arsenic-selenide As{sub 2}Se{sub 3} films modified by iron form one-electron donor centers with an ionization energy of 0.24 (3) eV (the energy is counted from the conduction-band bottom). The Fermi level is shifted with an increase in the iron concentration from the mid-gap to the donorlevel position of iron due to the filling of one-electron states of the acceptor type lying below the Fermi level. At an iron concentration of ≥3 at %, the electron-exchange process is observed between neutral and ionized iron centers resulting in a change both in the electron density and inmore » the tensor of the electric-field gradient at iron-atom nuclei with increasing temperature above 350 K.« less

  5. Excitation of vibrational quanta in furfural by intermediate-energy electrons

    NASA Astrophysics Data System (ADS)

    Jones, D. B.; Neves, R. F. C.; Lopes, M. C. A.; da Costa, R. F.; Varella, M. T. do N.; Bettega, M. H. F.; Lima, M. A. P.; García, G.; Blanco, F.; Brunger, M. J.

    2015-12-01

    We report cross sections for electron-impact excitation of vibrational quanta in furfural, at intermediate incident electron energies (20, 30, and 40 eV). The present differential cross sections are measured over the scattered electron angular range 10°-90°, with corresponding integral cross sections subsequently being determined. Furfural is a viable plant-derived alternative to petrochemicals, being produced via low-temperature plasma treatment of biomass. Current yields, however, need to be significantly improved, possibly through modelling, with the present cross sections being an important component of such simulations. To the best of our knowledge, there are no other cross sections for vibrational excitation of furfural available in the literature, so the present data are valuable for this important molecule.

  6. Electron attachment to the SF{sub 6} molecule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smirnov, B. M., E-mail: bmsmirnov@gmail.com; Kosarim, A. V.

    Various models for transition between electron and nuclear subsystems are compared in the case of electron attachment to the SF{sub 6} molecule. Experimental data, including the cross section of electron attachment to this molecule as a function of the electron energy and vibrational temperature, the rate constants of this process in swarm experiments, and the rates of the chemionization process involving Rydberg atoms and the SF{sub 6} molecule, are collected and treated. Based on the data and on the resonant character of electron capture into an autodetachment ion state in accordance with the Breit–Wigner formula, we find that intersection ofmore » the molecule and negative ion electron terms proceeds above the potential well bottom of the molecule with the barrier height 0.05–0.1 eV, and the transition between these electron terms has both the tunnel and abovebarrier character. The limit of small electron energies e for the electron attachment cross section at room vibrational temperature takes place at ε ≪ 2 meV, while in the range 2 meV ≪ ε ≪ 80 meV, the cross section is inversely proportional to ε. In considering the attachment process as a result of the interaction between the electron and vibrational degrees of freedom, we find the coupling factor f between them to be f = aT at low vibrational temperatures T with a ≈ 3 × 10{sup −4} K{sup −1}. The coupling factor is independent of the temperature at T > 400 K.« less

  7. Production of negative ions by dissociative electron attachment to SO2

    NASA Technical Reports Server (NTRS)

    Orient, O. J.; Srivastava, S. K.

    1983-01-01

    Dissociative electron attachment cross section measurements for the production of O(-), S(-), and SO(-) have been performed utilizing a crossed target SO2 molecule beam-electron beam geometry. The relative flow technique is employed to determine the absolute values of cross sections. The attachment energies corresponding to various cross section maxima are: 4.30 and 7.1 eV for O(-)/SO2; 4.0, 7.5, and 8.9 eV for S(-)/SO2, and 4.7 and 7.5 eV for SO(-)/SO2.

  8. Electron energy-loss spectra in molecular fluorine

    NASA Technical Reports Server (NTRS)

    Nishimura, H.; Cartwright, D. C.; Trajmar, S.

    1979-01-01

    Electron energy-loss spectra in molecular fluorine, for energy losses from 0 to 17.0 eV, have been taken at incident electron energies of 30, 50, and 90 eV and scattering angles from 5 to 140 deg. Features in the spectra above 11.5 eV energy loss agree well with the assignments recently made from optical spectroscopy. Excitations of many of the eleven repulsive valence excited electronic states are observed and their location correlates reasonably well with recent theoretical results. Several of these excitations have been observed for the first time and four features, for which there are no identifications, appear in the spectra.

  9. Electron Temperature Evolution During Local Helicity Injection on the Pegasus Toroidal Experiment

    NASA Astrophysics Data System (ADS)

    Schlossberg, D. J.; Barr, J. L.; Bodner, G. M.; Bongard, M. W.; Fonck, R. J.; Perry, J. M.; Reusch, J. A.; Rodriguez Sanchez, C.

    2016-10-01

    Understanding the electron temperature (Te) evolution during local helicity injection (LHI) is critical for scaling up this non-solenoidal startup technique to MA-class devices. The first comprehensive Te measurements during LHI reveal centrally-peaked profiles with Te > 100 eV for plasma current Ip > 120 kA, toroidal field 0.15 T, and electron density ne 1019 m-3. Te rises and is sustained from just after magnetic relaxation through the plasma decoupling from edge-localized injectors. Results are presented for two injector edge locations: outboard midplane and inboard divertor. Outboard midplane injection couples LHI with inductive drive from poloidal field ramps and radial compression during inward plasma growth. Comparisons of Te at different LHI-to-inductive drive ratios show some profile flattening for higher LHI drive fraction. The latter, constant-shape discharges were necessarily lower performance, with Ip 50 kA and reduced Te , max. Inboard divertor injection achieves higher Ip using minimal inductive drive and thus isolates effects of LHI drive on Te. Initial results in this configuration show Te rising rapidly at the injector location as the discharge grows, settling to a roughly flat profile 100 eV. Thus far, both scenarios provide relatively stable discharges with moderate ne and high-Te, suitable for coupling to auxiliary current drive. Detailed studies of confinement dynamics and discharge optimization are planned for the near future. Work supported by US DOE Grant DE-FG02-96ER54375.

  10. Room-Temperature-Synthesized High-Mobility Transparent Amorphous CdO-Ga2O3 Alloys with Widely Tunable Electronic Bands.

    PubMed

    Liu, Chao Ping; Ho, Chun Yuen; Dos Reis, Roberto; Foo, Yishu; Guo, Peng Fei; Zapien, Juan Antonio; Walukiewicz, Wladek; Yu, Kin Man

    2018-02-28

    In this work, we have synthesized Cd 1-x Ga x O 1+δ alloy thin films at room temperature over the entire composition range by radio frequency magnetron sputtering. We found that alloy films with high Ga contents of x > 0.3 are amorphous. Amorphous Cd 1-x Ga x O 1+δ alloys in the composition range of 0.3 < x < 0.5 exhibit a high electron mobility of 10-20 cm 2 V -1 s -1 with a resistivity in the range of 10 -2 to high 10 -4 Ω cm range. The resistivity of the amorphous alloys can also be controlled over 5 orders of magnitude from 7 × 10 -4 to 77 Ω cm by controlling the oxygen stoichiometry. Over the entire composition range, these crystalline and amorphous alloys have a large tunable intrinsic band gap range of 2.2-4.8 eV as well as a conduction band minimum range of 5.8-4.5 eV below the vacuum level. Our results suggest that amorphous Cd 1-x Ga x O 1+δ alloy films with 0.3 < x < 0.4 have favorable optoelectronic properties as transparent conductors on flexible and/or organic substrates, whereas the band edges and electrical conductivity of films with 0.3 < x < 0.7 can be manipulated for transparent thin-film transistors as well as electron transport layers.

  11. Temperature-dependent OSL properties of nano-phosphors LiAlO2:C and α-Al2O3:C

    NASA Astrophysics Data System (ADS)

    Agarwal, Mini; Garg, Sandeep K.; Asokan, K.; Kumar, Pratik

    2018-06-01

    The present study focuses on the synthesis and characterization of carbon doped nano-phosphors, LiAlO2 and α-Al2O3 and their temperature-dependent optically stimulated luminescence (TA-OSL) characteristics in the temperature ranges of 25-350 °C. These nano-phosphors with the carbon concentration of 0.01 mol% exhibits high luminescent intensity for LiAlO2:C in the low dose range of 1 mGy-7 Gy and for α-Al2O3:C in the range of 100 mGy-1 kGy. Both these nano-phosphors are of polycrystalline in nature, having grain size 15-50 nm as confirmed by the X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM), respectively. The maximum TA-OSL intensities are observed at 125 °C for LiAlO2:C and 200 °C for Al2O3:C, and reveal the presence of deep defect centres. The Arrhenius analysis shows the activation energies Ea = 0.06 ± 0.02 eV for LiAlO2:C and Ea = 0.04 ± 0.01 eV, & Eb = 0.48 ± 0.07 eV for Al2O3:C. The TA-OSL and OSL characteristics are discussed with special reference to the medical and high radiation dosimetry. These compounds, LiAlO2:C and α-Al2O3:C, are non-toxic, robust and are potential candidates for reusable dosimetry.

  12. Electron Effective-Attenuation-Length Database

    National Institute of Standards and Technology Data Gateway

    SRD 82 NIST Electron Effective-Attenuation-Length Database (PC database, no charge)   This database provides values of electron effective attenuation lengths (EALs) in solid elements and compounds at selected electron energies between 50 eV and 2,000 eV. The database was designed mainly to provide EALs (to account for effects of elastic-eletron scattering) for applications in surface analysis by Auger-electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS).

  13. The electron affinities of C{sub 3}O and C{sub 4}O

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rienstra-Kiracofe, J.C.; Ellison, G.B.; Hoffman, B.C.

    The authors predict the adiabatic electron affinities of C{sub 3}O and C{sub 4}O based on electronic structure calculations, using a large triple-{zeta} basis set with polarization and diffuse functions (TZ2Pf+diff) with the SCF, CCSD, and CCSD(T) methods as well as with the aug-cc-pVDZ and aug-cc-pVTZ basis sets. The results imply electron affinities for C{sub 3}O and C{sub 4}O; EA(C{sub 3}O) = 0.93 eV {+-} 0.10 and EA(C{sub 4}O) = 2.99 {+-} 0.10. The EA(C{sub 3}O) is 0.41 eV lower than the experimental value of 1.34 {+-} 0.15 eV, while the EA(C{sub 4}O) is 0.94 eV higher than the experimental valuemore » of 2.05 {+-} 0.15 eV. Optimized geometries for all species at each level of theory are given, and harmonic vibrational frequencies are reported at the SCF/TZ2Pf+diff and CCSD/aug-cc-pVDZ levels.« less

  14. Electron impact excitation of the merocyanine molecule in the gas phase

    NASA Astrophysics Data System (ADS)

    Kulinich, A. V.; Ishchenko, A. A.; Kukhta, I. N.; Mitryukhin, L. K.; Kazakov, S. M.; Kukhta, A. V.

    2018-03-01

    Electronic transitions in a merocyanine dye were studied in the gas phase using electron energy loss spectroscopy and compared with the optical absorption spectra. It was found that the most intense band of the S1 ← S0 polymethine transition lies at 2.8 eV in vapor and 2.4 eV in n-hexane. Higher electronic transitions in the range of 3.7-7 eV were also analyzed. Besides, the singlet-triplet transition was revealed near 1.8 eV. TDDFT simulation of singlet-singlet transitions in the studied molecule was performed using B97D3, B3LYP, B3PW91 and wB97xD functionals. The calculated energy of the long-wavelength transition is closest to the experimental value with the latter. Other functionals result in the energy 0.2-0.4 eV exceeding experimental. The interpretation of higher transitions/bands is complicated due to their superposition and difference between experimental and calculated data. The excitation anisotropy spectra were measured in glycerol for more reliable determination of higher transitions and comparison with the TDDFT/PCM simulation.

  15. Time of flight spectrometer for background-free positron annihilation induced Auger electron spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukherjee, S.; Shastry, K.; Anto, C. V.

    2016-03-15

    We describe a novel spectrometer designed for positron annihilation induced Auger electron spectroscopy employing a time-of-flight spectrometer. The spectrometer’s new configuration enables us to implant monoenergetic positrons with kinetic energies as low as 1.5 eV on the sample while simultaneously allowing for the detection of electrons emitted from the sample surface at kinetic energies ranging from ∼500 eV to 0 eV. The spectrometer’s unique characteristics made it possible to perform (a) first experiments demonstrating the direct transition of a positron from an unbound scattering state to a bound surface state and (b) the first experiments demonstrating that Auger electron spectramore » can be obtained down to 0 eV without the beam induced secondary electron background obscuring the low energy part of the spectra. Data are presented which show alternative means of estimating positron surface state binding energy and background-free Auger spectra.« less

  16. Analysis of multiple scattering contributions in electron-impact ionization of molecular hydrogen

    NASA Astrophysics Data System (ADS)

    Ren, Xueguang; Hossen, Khokon; Wang, Enliang; Pindzola, M. S.; Dorn, Alexander; Colgan, James

    2017-10-01

    We report a combined experimental and theoretical study on the low-energy (E 0 = 31.5 eV) electron-impact ionization of molecular hydrogen (H2). Triple differential cross sections are measured for a range of fixed emission angles of one outgoing electron between {θ }1=-70^\\circ and -130° covering the full 4π solid angle of the second electron. The energy sharing of the outgoing electrons varies from symmetric ({E}1={E}2=8 eV) to highly asymmetric (E 1 = 1 eV and E 2 = 15 eV). In addition to the binary and recoil lobes, a structure is observed perpendicular to the incoming beam direction which is due to multiple scattering of the projectile inside the molecular potential. The absolutely normalized experimental cross sections are compared with results from the time-dependent close-coupling (TDCC) calculations. Molecular alignment dependent TDCC results demonstrate that these structures are only present if the molecule axis is lying in the scattering plane.

  17. Electron Excitation Cross Sections for the 2s(sup 2)2p(sup 3) (sup 4)S -> 2s(sup 2)2p(sup 3) (sup 2d) ->2s2p(sup 4) (sup 4p) (Resonance) Transitions in Oil

    NASA Technical Reports Server (NTRS)

    Zuo, M.; Smith, S.; Chutjian, A.; Williams, I.; Tayal, S.; McLaughlin, B.

    1994-01-01

    Experimental and theoretical excitation cross sections are reported for the first forbidden transition xxx and the first allowed (resonance) transition xxx in OII. Use is made of electron-energy loss and merged beams methods. The electron energy range covered is 3.33 eV (threshold) to 15 eV for the S->D transition, and 14.9 eV (threshold) to 40 eV for the S->P transition. Care was taken to assess and minimize the metastable fraction of the OII beam. An electron mirror was designed and tested to reflect inelastically back-scattered electrons into the forward direction to account for the full range of polar scattering angles. Comparisons are made between present experiments and 11-state R-Matrix calculations. Calculations are also presented for the xxx transition.

  18. Structural and electronic parameters of ferroelectric KWOF

    NASA Astrophysics Data System (ADS)

    Atuchin, V. V.; Gavrilova, T. A.; Kesler, V. G.; Molokeev, M. S.; Aleksandrov, K. S.

    2010-11-01

    The low-temperature ferroelectric G2 polymorph of K 3WO 3F 3 oxyfluoride is formed by chemical synthesis. The electronic parameters of G2-K 3WO 3F 3 have been measured by X-ray photoelectron spectroscopy under excitation with Al Kα radiation (1486.6 eV). Detailed spectra have been recorded for all element core levels and Auger lines. The chemical bonding effects in the WO 3F 3 and WO 6 octahedrons are considered by using the binding energy difference ΔBE(O-W)=BE(O 1s)-BE(W 4f).

  19. Plasma diagnostics from intensities of resonance line series of He-like ions

    NASA Astrophysics Data System (ADS)

    Ryazantsev, S. N.; Skobelev, I. Yu.; Faenov, A. Ya.; Grum-Grzhimailo, A. N.; Pikuz, T. A.; Pikuz, S. A.

    2017-04-01

    The possibility of using the relative intensities of the 1 snp 1P1-1 s 2 1S0 transitions with n = 3-6 in He-like multicharged ions to diagnose plasma in a nonstationary ionization state is considered. The calculations performed for F VIII ions show that, at electron temperatures of T e = 10-100 eV, the intensity ratios are sensitive to the plasma electron density in the range of N e = 1016-1020 cm-3. The universal calculated dependences can be used to diagnose various kinds of recombining or ionizing plasmas containing such ions.

  20. The 1983 tail-era series. Volume 1: ISEE 3 plasma

    NASA Technical Reports Server (NTRS)

    Fairfield, D. H.; Phillips, J. L.

    1991-01-01

    Observations from the ISEE 3 electron analyzer are presented in plots. Electrons were measured in 15 continuous energy levels between 8.5 and 1140 eV during individual 3-sec spacecraft spins. Times associated with each data point are the beginning time of the 3 sec data collection interval. Moments calculated from the measured distribution function are shown as density, temperature, velocity, and velocity azimuthal angle. Spacecraft ephemeris is shown at the bottom in GSE and GSM coordinates in units of Earth radii, with vertical ticks on the time axis corresponding to the printed positions.

  1. Elastic electron differential cross sections for argon atom in the intermediate energy range from 40 eV to 300 eV

    NASA Astrophysics Data System (ADS)

    Ranković, Miloš Lj.; Maljković, Jelena B.; Tökési, Károly; Marinković, Bratislav P.

    2018-02-01

    Measurements and calculations for electron elastic differential cross sections (DCS) of argon atom in the energy range from 40 to 300 eV are presented. DCS have been measured in the crossed beam arrangement of the electron spectrometer with an energy resolution of 0.5 eV and angular resolution of 1.5∘ in the range of scattering angles from 20∘ to 126∘. Both angular behaviour and energy dependence of DCS are obtained in a separate sets of experiments, while the absolute scale is achieved via relative flow method, using helium as a reference gas. All data is corrected for the energy transmission function, changes of primary electron beam current and target pressure, and effective path length (volume correction). DCSs are calculated in relativistic framework by expressing the Mott's cross sections in partial wave expansion. Our results are compared with other available data.

  2. Monte Carlo simulation of energy deposition by low-energy electrons in molecular hydrogen

    NASA Technical Reports Server (NTRS)

    Heaps, M. G.; Furman, D. R.; Green, A. E. S.

    1975-01-01

    A set of detailed atomic cross sections has been used to obtain the spatial deposition of energy by 1-20-eV electrons in molecular hydrogen by a Monte Carlo simulation of the actual trajectories. The energy deposition curve (energy per distance traversed) is quite peaked in the forward direction about the entry point for electrons with energies above the threshold of the electronic states, but the peak decreases and broadens noticeably as the electron energy decreases below 10 eV (threshold for the lowest excitable electronic state of H2). The curve also assumes a very symmetrical shape for energies below 10 eV, indicating the increasing importance of elastic collisions in determining the shape of the curve, although not the mode of energy deposition.

  3. Laboratory studies on low-energy electron penetration depths into amorphous ice - consequence to astrobiology on icy surfaces

    NASA Astrophysics Data System (ADS)

    Gudipati, M. S.; Li, I.; Lignell, A. A.

    2009-12-01

    Penetration of electrons through icy surfaces plays an important role in radiation processing of solar system icy bodies. However, to date, there is no quantitative data available on the penetration depths of electrons through cryogenic water-ices. Penetration of high-energy incident electrons also results in the in-situ formation of secondary low-energy electrons, such as on the surface of Europa (Herring-Captain et al., 2005; Johnson et al., 2004). Low-energy electrons can also be produced through photoionization process such as on comet surfaces, or through bombardment by solar wind on icy surfaces (Bodewits et al., 2004). Present models use the laboratory penetration data of high-energy (>10 keV) electrons through silicon as a proxy for the ice (Cooper et al., 2001), normalized by the density of the medium. So far no laboratory studies have been conducted that deal with the penetration of electrons through amorphous or crystalline ices. In order to address this issue, we adopted a new experimental strategy by using aromatic molecules as probes. To begin with, we carried out systematic studies on the penetration depths of low-energy electrons (5 eV - 2 keV) through amorphous ice films of defined thickness at cryogenic temperatures (5 - 30 K). The results of these experiments will be analyzed and their relevance to survival of organic material on solar system icy surfaces will be presented. References: Bodewits, D., et al., 2004. X-ray and Far-Ultraviolet emission from comets: Relevant charge exchange processes. Physica Scripta. 70, C17-C20. Cooper, J. F., et al., 2001. Energetic ion and electron irradiation of the icy Galilean satellites. Icarus. 149, 133-159. Herring-Captain, J., et al., 2005. Low-energy (5-250 eV) electron-stimulated desorption of H+, H2+, and H+(H2O)nfrom low-temperature water ice surfaces. Physical Review B. 72, 035431-10. Johnson, R. E., et al., Radiation Effects on the Surfaces of the Galilean Satellites. In: F. Bagenal, et al., Eds.), Jupiter - The Planet, Satellites and Magnetosphere. Cambridge University Press, 2004, pp. 485-512.

  4. Physical requirements and milestones for the HIT-PoP Experiment

    NASA Astrophysics Data System (ADS)

    Jarboe, Thomas

    2011-10-01

    Recent success with HIT-SI demonstrates the viability of steady inductive helicity injection (SIHI) as a spheromak formation and sustainment method. Results include the sustainment of toroidal current of over 50 kA, up to 40 kA of plasma current that is separate from the injectors, toroidal flux up to 6 times the peak injected flux, and j/n > 1014Am. All were achieved with 10MW or less applied power. This paper explores the requirements for a confinement test of the concept using a larger proof of principle experiment. The confinement experiment must not exceed the beta limit, the drift parameter limit, or the wall loading limit, where the drift parameter is (drift of electrons relative to ions to produce current)/(ion thermal speed). It must also exceed a minimum j/n, a minimum n a, and a minimum electron temperature, where a is the minor radius. The drift parameter limit and beta limit appear to play defining roles in spheromak performance leading to a very favorable scaling of wall loading with size. The milestones sequence suggested is the following: 1. Startup at drift parameter and beta limit minimum density. 2. Raise current until j/n exceeds 10-14Am. 3. Raise the current and temperature until T ~ 50 eV for good ionization. 4. Raise the current and density until n a > 2x1019 m-2 for neutral screening. 5. Raise current and temperature until T > 200eV so magnetic confinement can be studied.

  5. Possible origin of photoconductivity in La0.7Ca0.3MnO3

    NASA Astrophysics Data System (ADS)

    Sagdeo, P. R.; Choudhary, R. J.; Phase, D. M.

    2010-01-01

    The effect of photon energy on the density of states near Fermi level of pulsed laser deposited La0.7Ca0.3MnO3 thin film has been studied to investigate the possible origin of change in the conductivity of these manganites upon photon exposure. For this purpose the photoelectron spectroscopy measurements were carried out using CSR beamline (BL-2) on Indus-1 synchrotron radiation source. The valance band spectra were measured at room temperature with photon energy ranging from 40 to 60 eV. We could see huge change in the density of states near Fermi level and this change is observed to be highest at 56 eV which is due to the resonance between Mn 3p to Mn 3d level. Our results suggest that the probability of electron transfer from deep Mn 3p level to Mn 3d-eg level is higher than that of Mn 3d-t2g level. It appears that this transfer of electron from deep Mn level to Mn 3d-eg level not only modifies the density of state near Fermi level but also changes the mobility of electrons by modifying the electron lattice coupling due to presence of Mn+3 Jahn-Teller ion.

  6. Electron concentration in highly resistive GaN substrates co-doped with Si, C, and Fe

    NASA Astrophysics Data System (ADS)

    Tokuda, Hirokuni; Suzuki, Kosuke; Asubar, Joel T.; Kuzuhara, Masaaki

    2018-07-01

    Electron concentration in highly resistive GaN substrates with intentional iron (Fe) dopants as well as unintentionally incorporated silicon (Si) and carbon (C) dopants has been investigated. Si, C, and Fe atomic concentrations were 2 × 1017, 1 × 1016, and 1 × 1019 cm‑3, respectively as measured by secondary ion mass spectroscopy (SIMS). Temperature dependence of current–voltage (I–V) characteristics revealed that the resistivity (ρ) was 3.8 × 109 Ω cm at 300 K and monotonously decreased to 3.1 × 104 Ω cm at 570 K, giving an activation energy of 0.63 eV. Electron concentration (n) was modeled using analytical equation assuming three impurity levels of Si donor, C and Fe acceptors. The n of 5.0 × 107 and 3.1 × 1012 cm‑3 at 300 and 570 K, respectively, with an effective activation energy of 0.60 eV, were derived based on the model. These calculated electron concentration values are in good agreement with the experimental results. In addition, quantitatively analyzed results revealed that around 2 orders of magnitude reduction of n is expected by increasing doping concentration of Fe from 1.0 × 1018 to 1.0 × 1020 cm‑3.

  7. Space plasma research

    NASA Technical Reports Server (NTRS)

    Comfort, R. H.; Horwitz, J. L.

    1986-01-01

    Temperature and density analysis in the Automated Analysis Program (for the global empirical model) were modified to use flow velocities produced by the flow velocity analysis. Revisions were started to construct an interactive version of the technique for temperature and density analysis used in the automated analysis program. A sutdy of ion and electron heating at high altitudes in the outer plasmasphere was initiated. Also the analysis of the electron gun experiments on SCATHA were extended to include eclipse operations in order to test a hypothesis that there are interactions between the 50 to 100 eV beam and spacecraft generated photoelectrons. The MASSCOMP software to be used in taking and displaying data in the two-ion plasma experiment was tested and is now working satisfactorily. Papers published during the report period are listed.

  8. The Majorana Experiment:. a Straightforward Neutrino Mass Experiment Using the Double-Beta Decay of 76GE

    NASA Astrophysics Data System (ADS)

    Miley, H. S.

    2004-04-01

    The Majorana Experiment proposes to measure the effective mass of the electron neutrino to as low as 0.02 eV using well-tested technology. A half-life of about 4E27 y, corresponding to a mass range of [0.02 - 0.07] eV can be reached by operating 500 kg of germanium enriched to 86% in 76Ge deep underground. Radiological backgrounds of cosmogenic or primordial origin will be greatly reduced by ultra-low-background screening of detector, structural, and shielding materials, by chemical processing of materials, and by electronic rejection of multi-site events in the detector. Electronic background reduction is achieved with pulse-shape analysis, detector segmentation, and detector-to-detector coincidence rejection. Sensitivity calculations assuming worst-case germanium cosmogenic activation predict rapid growth in mass sensitivity (T1/2 at 90%CL) after the beginning of detector production: [0.08-0.28] eV at ~1 year, [0.04-0.14] eV at ~2.5 years, [0.03-0.10] eV at ~5 years, and [0.02 - 0.07] eV at ~10 years. The impact of primordial backgrounds in structural and electronic components is being studied at the 1 μBq/kg level, and appears to be controllable to below levels needed to attain these results.

  9. Tunneling effect on double potential barriers GaAs and PbS

    NASA Astrophysics Data System (ADS)

    Prastowo, S. H. B.; Supriadi, B.; Ridlo, Z. R.; Prihandono, T.

    2018-04-01

    A simple model of transport phenomenon tunnelling effect through double barrier structure was developed. In this research we concentrate on the variation of electron energy which entering double potential barriers to transmission coefficient. The barriers using semiconductor materials GaAs (Galium Arsenide) with band-gap energy 1.424 eV, distance of lattice 0.565 nm, and PbS (Lead Sulphide) with band gap energy 0.41 eV distance of lattice is 18 nm. The Analysisof tunnelling effect on double potentials GaAs and PbS using Schrodinger’s equation, continuity, and matrix propagation to get transmission coefficient. The maximum energy of electron that we use is 1.0 eV, and observable from 0.0025 eV- 1.0 eV. The shows the highest transmission coefficient is0.9982 from electron energy 0.5123eV means electron can pass the barriers with probability 99.82%. Semiconductor from materials GaAs and PbS is one of selected material to design semiconductor device because of transmission coefficient directly proportional to bias the voltage of semiconductor device. Application of the theoretical analysis of resonant tunnelling effect on double barriers was used to design and develop new structure and combination of materials for semiconductor device (diode, transistor, and integrated circuit).

  10. High-resolution electron microscopy and electron energy-loss spectroscopy of giant palladium clusters

    NASA Astrophysics Data System (ADS)

    Oleshko, V.; Volkov, V.; Gijbels, R.; Jacob, W.; Vargaftik, M.; Moiseev, I.; van Tendeloo, G.

    1995-12-01

    Combined structural and chemical characterization of cationic polynuclear palladium coordination compounds Pd561L60(OAc)180, where L=1,10-phenantroline or 2,2'-bipyridine has been carried out by high-resolution electron microscopy (HREM) and analytical electron microscopy methods including electron energy-loss spectroscopy (EELS), zero-loss electron spectroscopic imaging, and energy-dispersive X-ray spectroscopy (EDX). The cell structure of the cluster matter with almost completely uniform metal core size distributions centered around 2.3 ±0.5 nm was observed. Zero-loss energy filtering allowed to improve the image contrast and resolution. HREM images showed that most of the palladium clusters had a cubo-octahedral shape. Some of them had a distorted icosahedron structure exhibiting multiple twinning. The selected-area electron diffraction patterns confirmed the face centered cubic structure with lattice parameter close to that of metallic palladium. The energy-loss spectra of the populations of clusters contained several bands, which could be assigned to the delayed Pd M4, 5-edge at 362 eV, the Pd M3-edge at 533 eV and the Pd M2-edge at 561 eV, the NK-edge at about 400 eV, the O K-edge at 532 eV overlapping with the Pd M3-edge and the carbon C K-edge at 284 eV. Background subtraction was applied to reveal the exact positions and fine structure of low intensity elemental peaks. EELS evaluations have been confirmed by EDX. The recorded series of the Pd M-edges and the N K-edge in the spectra of the giant palladium clusters obviously were related to Pd-Pd- and Pd-ligand bonding.

  11. Electron Processing at 50 eV of Terphenylthiol Self-Assembled Monolayers: Contributions of Primary and Secondary Electrons.

    PubMed

    Houplin, Justine; Dablemont, Céline; Sala, Leo; Lafosse, Anne; Amiaud, Lionel

    2015-12-22

    Aromatic self-assembled monolayers (SAMs) can serve as platforms for development of supramolecular assemblies driven by surface templates. For many applications, electron processing is used to locally reinforce the layer. To achieve better control of the irradiation step, chemical transformations induced by electron impact at 50 eV of terphenylthiol SAMs are studied, with these SAMs serving as model aromatic SAMs. High-resolution electron energy loss spectroscopy (HREELS) and electron-stimulated desorption (ESD) of neutral fragment measurements are combined to investigate electron-induced chemical transformation of the layer. The decrease of the CH stretching HREELS signature is mainly attributed to dehydrogenation, without a noticeable hybridization change of the hydrogenated carbon centers. Its evolution as a function of the irradiation dose gives an estimate of the effective hydrogen content loss cross-section, σ = 2.7-4.7 × 10(-17) cm(2). Electron impact ionization is the major primary mechanism involved, with the impact electronic excitation contributing only marginally. Therefore, special attention is given to the contribution of the low-energy secondary electrons to the induced chemistry. The effective cross-section related to dissociative secondary electron attachment at 6 eV is estimated to be 1 order of magnitude smaller. The 1 eV electrons do not induce significant chemical modification for a 2.5 mC cm(-2) dose, excluding their contribution.

  12. Charge ordering in the metal-insulator transition of V-doped CrO2 in the rutile structure.

    PubMed

    Biswas, Sarajit

    2018-04-17

    Electronic, magnetic, and structural properties of pure and V-doped CrO 2 were extensively investigated utilizing density functional theory. Usually, pure CrO 2 is a half-metallic ferromagnet with conductive spin majority species and insulating spin minority species. This system remains in its half-metallic ferromagnetic phase even at 50% V-substitution for Cr within the crystal. The V-substituted compound Cr 0.5 V 0.5 O 2 encounters metal-insulator transition upon the application of on-site Coulomb repulsion U = 7 eV preserving its ferromagnetism in the insulating phase. It is revealed in this study that Cr 3+ -V 5+ charge ordering accompanied by the transfer of the single V-3d electron to the Cr-3dt 2g orbitals triggers metal-insulator transition in Cr 0.5 V 0.5 O 2 . The ferromagnetism of Cr 0.5 V 0.5 O 2 in the insulating phase arises predominantly due to strong Hund's coupling between the occupied electrons in the Cr-t 2g states. Besides this, the ferromagnetic Curie temperature (T c ) decreases significantly due to V-substitution. Interestingly, a structural distortion is observed due to tilting of CrO 6 or VO 6 octahedra across the metal-insulator transition of Cr 0.5 V 0.5 O 2 . Graphical abstract The V-doped compound Cr 0.5 V 0.5 O 2 is found a half-metallic ferromagnet (HMF) in the absence of on-site Coulomb interaction (U). This HMF behavor maintains up to U = 6 eV. Eventually, this system encounters metal-insulator transition (MIT) upon the application of U = 7 eV with a band gap of E g ~ 0.31 eV. Nevertheless, applications of higher U widen the band gaps. In this figure, calculated total (black), Cr-3d (red), V-3d (violet), and O-2p (blue) DOS of Cr 0.5 V 0.5 O 2 for U = 8 eV are illustrated. The system is insulating with a band gap of E g ~ 0.7 eV.

  13. Spacecraft potential control on ISEE-1

    NASA Technical Reports Server (NTRS)

    Gonfalone, A.; Pedersen, A.; Fahleson, U. V.; Faelthammar, C. G.; Mozer, F. S.; Torbert, R. B.

    1979-01-01

    Active control of the potential of the ISEE-1 satellite by the use of electron guns is reviewed. The electron guns contain a special cathode capable of emitting an electron current selectable between 10 to the -8th power and 10 to the -3rd power at energies from approximately .6 to 41 eV. Results obtained during flight show that the satellite potential can be stabilized at a value more positive than the normally positive floating potential. The electron guns also reduce the spin modulation of the spacecraft potential which is due to the aspect dependent photoemission of the long booms. Plasma parameters like electron temperature and density can be deduced from the variation of the spacecraft potential as a function of the gun current. The effects of electron beam emission on other experiments are briefly mentioned.

  14. Growth and characterization of ultra thin vanadium oxide films

    NASA Astrophysics Data System (ADS)

    Song, Fangfang

    This dissertation focuses on the growth and characterization of ultra thin VO2 films on technologically relevant Si/SiO2 substrate. The samples were prepared by magnetron sputtering with varying deposition and post annealing conditions. VO2(M1) films prepared under optimal condition with thickness around 42nm shows a continuous micro-structure and a metal insulator transition with resistivity change of two orders of magnitude. The transition temperature is determined to be 345K with a hysteresis width of approximately 8°C. The activation energy of the low temperature semiconducting VO2 monoclinic phase is determined to be 0.16+/-0.03ev. These properties are found to be fairly stable over time under ambient atmosphere. Temperature dependent hall measurements suggest that the decrease of the resistivity with increasing temperature is mainly caused by the increase of the number density of charge carriers, the energy gap of VO2 film in the semiconducting phase is 0.4ev and phonon scattering is the dominant scattering mechanism in the temperature range from 195K to 340K. Analysis based on composite model suggested that the sample has some untransitional phases with a length that is 1/4 of the grain size. Stress measurements using X-ray diffraction indicate that the ultra thin VO2 film has a large tensile stress of 2.0+/-0.2GPa. This value agrees well with that calculated thermal stress assuming the stress is due to differential thermal expansion between VO2 film and substrate. The stress is expected to lead to a shift of the transition temperature in the film, as observed. Using magnetron sputtering, VO2(B) film was able to obtained on Si substrate. The temperature dependent current voltage measurement on VO2(B) film did not show any abrupt change in the electrical resistivity. W - VO2(B) thin film - W metal semiconductor-metal I-V properties were found to be determined by reverse biased Schottky barrier at the W/VO 2(b) interface. And the Schottky height between VO2(B) and W was determined to be about 0.15ev, which indicate the electron affinity of the VO2(B) is about 4.35ev.

  15. DNA strand breaks and crosslinks induced by transient anions in the range 2-20 eV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Xinglan; Zheng, Yi, E-mail: Yizheng@fzu.edu.cn; Sanche, Léon

    2014-04-21

    The energy dependence of the yields of single and double strand breaks (SSB and DSB) and crosslinks induced by electron impact on plasmid DNA films is measured in the 2-20 eV range. The yield functions exhibit two strong maxima, which are interpreted to result from the formation of core-excited resonances (i.e., transient anions) of the bases, and their decay into the autoionization channel, resulting in π → π{sup *} electronic transitions of the bases followed by electron transfer to the C–O σ{sup *} bond in the phosphate group. Occupancy of the σ{sup *} orbital ruptures the C–O bond of themore » backbone via dissociative electron attachment, producing a SSB. From a comparison of our results with those of other works, including theoretical calculations and electron-energy-loss spectra of the bases, the 4.6 eV peak in the SSB yield function is attributed to the resonance decay into the lowest electronically excited states of the bases; in particular, those resulting from the transitions 1{sup 3}A{sup ′} (π{sub 2} → π{sub 3}{sup *}) and 1{sup 3}A{sup ″} (n{sub 2} → π{sub 3}{sup *}) of thymine and 1{sup 3}A{sup ′} (π → π{sup *}) of cytosine. The strongest peak at 9.6 eV in the SSB yield function is also associated with electron captured by excited states of the bases, resulting mostly from a multitude of higher-energy π → π{sup *} transitions. The DSB yield function exhibits strong maxima at 6.1 and 9.6 eV. The peak at 9.6 eV is probably related to the same resonance manifold as that leading to SSB, but the other at 6.1 eV may be more restricted to decay into the electronic state 1{sup 3}A{sup ′} (π → π{sup *}) of cytosine via autoionization. The yield function of crosslinks is dominated by a broad peak extending over the 3.6-11.6 eV range with a sharper one at 17.6 eV. The different line shape of the latter function, compared to that of SSB and DSB, appears to be due to the formation of reactive radical sites in the initial supercoiled configuration of the plasmid, which react with the circular form (i.e., DNA with a SSB) to produce a crosslink.« less

  16. Ion-bombardment of nickel (110) at elevated temperature

    NASA Astrophysics Data System (ADS)

    Peddinti, Vijay Kumar

    The goal of this thesis is to study the behavior of ion-induced defects at the Y point on the Ni (110) surface at elevated temperatures. The electronic structure of the surface is examined using inverse photoemission spectroscopy (IPES), and the geometric structure is observed using low energy electron diffraction (LEED). These measurements lead to a better understanding of the surface properties. The clean Ni (110) surface exhibits a peak ˜ 2.6 eV above the Fermi level, indicating an unoccupied surface state near the Y point of the surface Brillouin zone (SBZ). Defects are induced by low energy ion bombardment at various temperatures, which result in a decrease of the peak intensity. The surface state eventually disappears when bombarded for longer times. We also observed that the surface heals faster when the crystal is being simultaneously sputtered and annealed at higher versus lower temperature. Finally the data for annealing while sputtering versus annealing after sputtering does not seem to exhibit much difference.

  17. Significant initial results from the environmental measurements experiment on ATS-6

    NASA Technical Reports Server (NTRS)

    Fritz, T. A.; Arthur, C. W.; Blake, J. B.; Coleman, P. J., Jr.; Corrigan, J. P.; Cummings, W. D.; Deforest, S. E.; Erickson, K. N.; Konradi, A.; Lennartsson, W.

    1977-01-01

    The Applications Technology Satellite (ATS-6), launched into synchronous orbit on 30 May 1974, carried a set of six particle detectors and a triaxial fluxgate magnetometer. The particle detectors were able to determine the ion and electron distribution functions from 1 to greater than 10 to the 8th power eV. It was found that the magnetic field is weaker and more tilted than predicted by models which neglect internal plasma and that there is a seasonal dependence to the magnitude and tilt. ATS-6 magnetic field measurements showed the effects of field-aligned currents associated with substorms, and large fluxes of field-aligned particles were observed with the particle detectors. Encounters with the plasmasphere revealed the existence of warm plasma with temperatures up to 30 eV. A variety of correlated waves in both the particles and fields were observed: pulsation continuous oscillations, seen predominantly in the plasmasphere bulge; ultralow frequency (ULF) standing waves; ring current proton ULF waves; and low frequency waves that modulate the energetic electrons. In additon, large scale waves on the energetic-ion-trapping boundary were observed, and the intensity of energetic electrons was modulated in association with the passage of sector boundaries of the interplanetary magnetic field.

  18. Electronic, Optical and Thermoelectric Properties of 2H-CuAlO2: A First Principles Study

    NASA Astrophysics Data System (ADS)

    Bhamu, K. C.; Khenata, R.; Khan, Saleem Ayaz; Singh, Mangej; Priolkar, K. R.

    2016-01-01

    The electronic and optical properties of 2H-CuAlO2, including energy bands, density of states (DOS), optical dielectric behaviour, refractive index, absorption coefficient and optical conductivity, have been investigated within the framework of a full-potential linearized augmented plane wave scheme using different potentials. The direct and indirect band gaps for CuAlO2, computed using the Becke-Johnson potential, are estimated at 3.53 eV and 2.48 eV, respectively, which are in better agreement with the experimentally reported band gaps than those previously computed. The origin of energy bands is elucidated in terms of DOS, while the behaviour of the imaginary part of the dielectric constant is explained in terms of electronic transitions from valence bands to conduction bands. The computed value of the refractive index is 2.25 (1.94) for light perpendicular (parallel) to the c axis, in concordance with the available values. The overall shape of the spectral distribution for absorption coefficient and optical conductivity is also in accord with the reported data. The investigated thermoelectric properties indicate that CuAlO2 is a p-type semiconductor showing high effectiveness at low temperatures.

  19. ELECTRONIC STRUCTURE AND LINEAR OPTICAL PROPERTIES OF MIXED ALKALI-METAL BOROPHOSPHATES (LiK2BP2O8, Li3K2BP4O14): A FIRST-PRINCIPLES STUDY

    NASA Astrophysics Data System (ADS)

    Zhang, Bei; Jing, Qun; Yang, Zhihua; Wang, Ying; Su, Xin; Pan, Shilie; Zhang, Jun

    2013-07-01

    LiK2BP2O8 and Li3K2BP4O14 are synthesized by high-temperature solution method with the same elements, while contain different fundamental building units. Li3K2BP4O14 is a novel P-O-P linking structure which gives a rare example of violation of Pauling's fourth rule. The electronic structures of LiK2BP2O8 and Li3K2BP4O14 are investigated by density functional calculations. Direct gaps of 5.038 eV (LiK2BP2O8) and 5.487 eV (Li3K2BP4O14) are obtained. By analyzing the density of states (DOS) of LiK2BP2O8 and Li3K2BP4O14, the P-O-P linking in fundamental building units of Li3K2BP4O14 crystal is proved theoretically. Based on the electronic properties, the linear optical information is captured.

  20. Relative electron affinity of C{sub 60} and C{sub 70} and the Stokes` law radius of the C{sub 70} radical anion in n-hexane by time-of-flight mobility measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burba, M.E.; Lim, S.K.; Albrecht, A.C.

    The mobility of the C{sub 70} radical anion in n-hexane at room temperature has been measured by the condensed-phase thin-sheet time-of-flight (TOF) technique. The observed value of 5.2 x 10{sup -4} cm{sup 2}/(V s) corresponds to a Stokes radius of 5.4 A, consistent with the molecular geometry of the C{sub 70} molecule as determined by electron diffraction. TOF measurements of anionic mobility in n-hexane, where both C{sub 70} and C{sub 60} are present and compete for photoelectrons, show that the predominant anion changes from C{sub 70}{sup -} to C{sub 60}{sup -} as the C{sub 60} to C{sub 70} concentration ratiomore » is increased from 2 to 20. Quantitative analysis of these `competition experiments` shows that the electron affinity of C{sub 70} exceeds that of C{sub 60} by 0.025 {+-} 0.007 eV in n-hexane and (through a thermodynamic cycle) by 0.073 {+-} 0.019 eV in the gas phase. 18 refs., 4 figs.« less

  1. Vortices for K-shell ionization of carbon by electron impact

    NASA Astrophysics Data System (ADS)

    Ward, S. J.; Macek, J. H.

    2014-05-01

    Using the Coulomb-Born approximation, we obtained a deep minimum in the TDCS for K-shell ionization of carbon by electron impact. The minimum is due to a vortex in the velocity field. We considered the electron to be ejected in the scattering plane, which we took to be the xz -plane. The minimum was obtained for the kinematics of an incident energy Ei = 1801 . 2 eV , scattering angle θf =4° , energy of ejected electron Ek = 5 . 5 eV , and angle of the ejected electron θk =239° . We analyzed the importance of various multipole components in an expansion of the Coulomb-Born T-matrix. We also considered the electron ejected out of the scattering plane for Ei = 1801 . 2 eV and θf =4° and located the positions of vortices for small but nonzero values of ky, the y - component of the momentum of the ejected electron. We constructed the vortex line for the kinematics of Ei = 1801 . 2 eV and θf =4° . S. J. W. and J. H. M. acknowledge support from NSF under grant no. PHYS- 0968638 and from D.O.E. under grant number DE-FG02-02ER15283, respectively.

  2. Electron-impact dissociation of molecular hydrogen into neutral fragments

    NASA Astrophysics Data System (ADS)

    Scarlett, Liam H.; Tapley, Jonathan K.; Fursa, Dmitry V.; Zammit, Mark C.; Savage, Jeremy S.; Bray, Igor

    2018-02-01

    We present convergent close-coupling calculations of electron-impact dissociation of the ground state of molecular hydrogen into neutral fragments over the range of impact energies from 6 to 300 eV. The calculations account for dissociative excitation, excitation radiative decay dissociation, and predissociation through all bound electronic triplet states, and singlet states up to the D' 1 Π u state. An estimate is given for the contribution from the remaining bound electronic singlet states. Our results are in agreement with the recommended data of Yoon et al. [J. Phys. Chem. Ref. Data 37, 913 (2008)] in the low (6-12 eV) and high (60-70 eV) energy regions, but somewhat lower at the intermediate energies.

  3. Theoretical and experimental study on electron interactions with chlorobenzene: Shape resonances and differential cross sections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbosa, Alessandra Souza; Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica; Varella, Márcio T. do N.

    2016-08-28

    In this work, we report theoretical and experimental cross sections for elastic scattering of electrons by chlorobenzene (ClB). The theoretical integral and differential cross sections (DCSs) were obtained with the Schwinger multichannel method implemented with pseudopotentials (SMCPP) and the independent atom method with screening corrected additivity rule (IAM-SCAR). The calculations with the SMCPP method were done in the static-exchange (SE) approximation, for energies above 12 eV, and in the static-exchange plus polarization approximation, for energies up to 12 eV. The calculations with the IAM-SCAR method covered energies up to 500 eV. The experimental differential cross sections were obtained in themore » high resolution electron energy loss spectrometer VG-SEELS 400, in Lisbon, for electron energies from 8.0 eV to 50 eV and angular range from 7{sup ∘} to 110{sup ∘}. From the present theoretical integral cross section (ICS) we discuss the low-energy shape-resonances present in chlorobenzene and compare our computed resonance spectra with available electron transmission spectroscopy data present in the literature. Since there is no other work in the literature reporting differential cross sections for this molecule, we compare our theoretical and experimental DCSs with experimental data available for the parent molecule benzene.« less

  4. Survey of the plasma electron environment of Jupiter: A view from Voyager

    NASA Technical Reports Server (NTRS)

    Scudder, J. D.; Sittler, E. C., Jr.; Bridge, H. S.

    1980-01-01

    The plasma environment within Jupiter's bow shock is considered in terms of the in situ, calibrated electron plasma measurements made between 10 eV and 5.95 keV by the Voyager plasma science experiment (PLS). Measurements were analyzed and corrected for spacecraft potential variations; the data were reduced to nearly model independent macroscopic parameters of the local electron density and temperature. It is tentatively concluded that the radial temperature profile within the plasma sheet is caused by the intermixing of two different electron populations that probably have different temporal histories and spatial paths to their local observation. The cool plasma source of the plasma sheet and spikes is probably the Io plasma torus and arrives in the plasma sheet as a result of flux tube interchange motions or other generalized transport which can be accomplished without diverting the plasma from the centrifugal equator. The hot suprathermal populations in the plasma sheet have most recently come from the sparse, hot mid-latitude "bath" of electrons which were directly observed juxtaposed to the plasma sheet.

  5. Methane chemistry involved in a low-pressure electron cyclotron wave resonant plasma discharge

    NASA Astrophysics Data System (ADS)

    Morrison, N. A.; William, C.; Milne, W. I.

    2003-12-01

    Radio frequency (rf) generated methane plasmas are commonly employed in the deposition of hydrogenated amorphous carbon (a-C:H) thin films. However, very little is known about the rf discharge chemistry and how it relates to the deposition process. Consequently, we have characterized a low-pressure methane plasma and compared the results with those obtained theoretically by considering the steady-state kinetics of the chemical processes present in a low-pressure plasma reactor, in order to elucidate the dominant reaction channels responsible for the generation of the active precursors required for film growth. Mass spectrometry measurements of the gas phase indicated little variation in the plasma chemistry with increasing electron temperature. This was later attributed to the partial saturation of the electron-impact dissociation and ionization rate constants at electron temperatures in excess of ˜4 eV. The ion densities in the plasma were also found to be strongly dependent upon the parent neutral concentration in the gas phase, indicating that direct electron-impact reactions exerted greater influence on the plasma chemistry than secondary ion-neutral reactions.

  6. Temperature characteristics of the radiation detector using TlBr crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shoji, T.; Hitomi, K.; Muroi, O.

    1999-12-01

    The radiation detector was fabricated from the TlBr crystals grown by TMZ (traveling molten zone) method and the FWHM and transit time of electrons and holes were measured as a function of temperature. The TlBr radiation detector shows the best response characteristics at about 313 K (3.19K{sup {sm{underscore}bullet}1}) in cases where holes mainly contributed to the output pulses. However, in the temperatures higher than 300 K (2.22 K{sup {sm{underscore}bullet}1}), the FWHM for {sup 241}Am {alpha}-particles (5.498 MeV) becomes worse. An activation energy of about 0.90eV has been deduced from the resistivity measurement.

  7. The Effect of Background Plasma Temperature on Growth and Damping of Whistler Mode Wave Power in the Earth's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Maxworth, A. S.; Golkowski, M.; Malaspina, D.; Jaynes, A. N.

    2017-12-01

    Whistler mode waves play a dominant role in the energy dynamics of the Earth's magnetosphere. Trajectory of whistler mode waves can be predicted by raytracing. Raytracing is a numerical method which solves the Haselgrove's equations at each time step taking the background plasma parameters in to account. The majority of previous raytracing work was conducted assuming a cold (0 K) background magnetospheric plasma. Here we perform raytracing in a finite temperature plasma with background electron and ion temperatures of a few eV. When encountered with a high energy (>10 keV) electron distribution, whistler mode waves can undergo a power attenuation and/or growth, depending on resonance conditions which are a function of wave frequency, wave normal angle and particle energy. In this work we present the wave power attenuation and growth analysis of whistler mode waves, during the interaction with a high energy electron distribution. We have numerically modelled the high energy electron distribution as an isotropic velocity distribution, as well as an anisotropic bi-Maxwellian distribution. Both cases were analyzed with and without the temperature effects for the background magnetospheric plasma. Finally we compare our results with the whistler mode energy distribution obtained by the EMFISIS instrument hosted at the Van Allen Probe spacecraft.

  8. Fano Resonance of Eu2+ and Eu3+ in (Eu,Gd)Te MBE Layers

    NASA Astrophysics Data System (ADS)

    Orlowski, B. A.; Kowalski, B. J.; Dziawa, P.; Pietrzyk, M.; Mickievicius, S.; Osinniy, V.; Taliashvili, B.; Kowalik, I. A.; Story, T.; Johnson, R. L.

    2006-11-01

    Resonant photoemission spectroscopy, with application of synchrotron radiation, was used to study the valence band electronic structure of clean surface of (EuGd)Te layers. Fano-type resonant photoemission spectra corresponding to the Eu 4d-4f transition were measured to determine the contribution of 4f electrons of Eu2+ and Eu3+ ions to the valence band. The resonant and antiresonant photon energies of Eu2+ ions were found as equal to 141 V and 132 eV, respectively and for Eu3+ ions were found as equal to 146 eV and 132 eV, respectively. Contribution of Eu2+4f electrons was found at the valence band edge while for Eu3+ it was located in the region between 3.5 eV and 8.5 eV below the valence band edge.

  9. Optimal thermionic energy conversion with established electrodes for high-temperature topping and process heating. [coal combustion product environments

    NASA Technical Reports Server (NTRS)

    Morris, J. F.

    1980-01-01

    Applied research-and-technology (ART) work reveals that optimal thermionic energy conversion (TEC) with approximately 1000 K to approximately 1100 K collectors is possible using well established tungsten electrodes. Such TEC with 1800 K emitters could approach 26.6% efficiency at 27.4 W/sq cm with approximately 1000 K collectors and 21.7% at 22.6 W/sq cm with approximately 1100 K collectors. These performances require 1.5 and 1.7 eV collector work functions (not the 1 eV ultimate) with nearly negligible interelectrode losses. Such collectors correspond to tungsten electrode systems in approximately 0.9 to approximately 6 torr cesium pressures with 1600 K to 1900 K emitters. Because higher heat-rejection temperatures for TEC allow greater collector work functions, interelectrode loss reduction becomes an increasingly important target for applications aimed at elevated temperatures. Studies of intragap modifications and new electrodes that will allow better electron emission and collection with lower cesium pressures are among the TEC-ART approaches to reduced interelectrode losses. These solutions will provide very effective TEC to serve directly in coal-combustion products for high-temperature topping and process heating. In turn this will help to use coal and to use it well.

  10. Effect of annealing temperature on optical properties of binary zinc tin oxide nano-composite prepared by sol-gel route using simple precursors: structural and optical studies by DRS, FT-IR, XRD, FESEM investigations.

    PubMed

    Habibi, Mohammad Hossein; Mardani, Maryam

    2015-02-25

    Binary zinc tin oxide nano-composite was synthesized by a facile sol-gel method using simple precursors from the solutions consisting of zinc acetate, tin(IV) chloride and ethanol. Effect of annealing temperature on optical and structural properties was investigated using X-ray diffraction (XRD), diffuse reflectance spectra (DRS), field emission scanning electron microscopy (FESEM) and Fourier transform infrared spectroscopy (FTIR). XRD results revealed the existence of the ZnO and SnO2 phases. FESEM results showed that binary zinc tin oxide nano-composites ranges from 56 to 60 nm in diameter at 400°C and 500°C annealing temperatures respectively. The optical band gap was increased from 2.72 eV to 3.11 eV with the increasing of the annealing temperature. FTIR results confirmed the presence of zinc oxide and tin oxide and the broad absorption peaks at 3426 and 1602 cm(-1) can be ascribed to the vibration of absorptive water, and the absorption peaks at 546, 1038 and 1410 cm(-1) are due to the vibration of Zn-O or Sn-O groups in binary zinc tin oxide. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Rotational Rehybridization and the High Temperature Phase of UC2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wen, Xiaodong; Rudin, Sven P.; Batista, Enrique R.

    2012-12-03

    The screened hybrid approximation (HSE) of density functional theory (DFT) is used to examine the structural, optical, and electronic properties of the high temperature phase, cubic UC(2). This phase contains C(2) units with a computed C-C distance of 1.443 Å which is in the range of a CC double bond; U is formally 4+, C(2) 4-. The closed shell paramagnetic state (NM) was found to lie lowest. Cubic UC(2) is found to be a semiconductor with a narrow gap, 0.4 eV. Interestingly, the C(2) units connecting two uranium sites can rotate freely up to an angle of 30°, indicating amore » hindered rotational solid. Ab-initio molecular dynamic simulations (HSE) show that the rotation of C(2) units in the low temperature phase (tetragonal UC(2)) occurs above 2000 K, in good agreement with experiment. The computed energy barrier for the phase transition from tetragonal UC(2) to cubic UC(2) is around 1.30 eV per UC(2). What is fascinating about this system is that at high temperature, the phase transformation to the cubic phase is associated with a rehybridization of the C atoms from sp to sp(3).« less

  12. Determination of differential cross sections for electron-impact excitation of electronic states of molecular oxygen

    NASA Astrophysics Data System (ADS)

    Campbell, L.; Green, M. A.; Brunger, M. J.; Teubner, P. J.; Cartwright, D. C.

    2000-02-01

    The development and initial results of a method for the determination of differential cross sections for electron scattering by molecular oxygen are described. The method has been incorporated into an existing package of computer programs which, given spectroscopic factors, dissociation energies and an energy-loss spectrum for electron-impact excitation, determine the differential cross sections for each electronic state relative to that of the elastic peak. Enhancements of the original code were made to deal with particular aspects of electron scattering from O2, such as the overlap of vibrational levels of the ground state with transitions to excited states, and transitions to levels close to and above the dissocation energy in the Herzberg and Schumann-Runge continua. The utility of the code is specifically demonstrated for the ``6-eV states'' of O2, where we report absolute differential cross sections for their excitation by 15-eV electrons. In addition an integral cross section, derived from the differential cross section measurements, is also reported for this excitation process and compared against available theoretical results. The present differential and integral cross sections for excitation of the ``6-eV states'' of O2 are the first to be reported in the literature for electron-impact energies below 20 eV.

  13. Cobalt related defect levels in silicon analyzed by temperature- and injection-dependent lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Diez, S.; Rein, S.; Roth, T.; Glunz, S. W.

    2007-02-01

    Temperature- and injection-dependent lifetime spectroscopy (TIDLS) as a method to characterize point defects in silicon with several energy levels is demonstrated. An intentionally cobalt-contaminated p-type wafer was investigated by means of lifetime measurements performed at different temperatures up to 151°C. Two defect energy levels were required to model the lifetime curves on basis of the Shockley-Read-Hall statistics. The detailed analysis is based on the determination of the recently introduced defect parameter solution surface (DPSS) in order to extract the underlying defect parameters. A unique solution has been found for a deep defect level located in the upper band gap half with an energy depth of EC-Et=0.38±0.01eV, with a corresponding ratio of capture cross sections k =σn/σp=0.16 within the interval of uncertainty of 0.06-0.69. Additionally, a deep donor level in the lower band gap half known from the literature could be assigned to a second energy level within the DPSS analysis at Et-EV=0.41±0.02eV with a corresponding ratio of capture cross sections k =σn/σp=16±3. An investigation of the temperature dependence of the capture cross section for electrons suggests that the underlying recombination process of the defect in the lower band gap half is driven by a two stage cascade capture with an activation energy of ΔE =52±2meV. These results show that TIDLS in combination with DPSS analysis is a powerful method to characterize even multiple defect levels that are affecting carrier recombination lifetime in parallel.

  14. Absolute differential cross sections for electron impact excitation of the 10.8-11.5 eV energy-loss states of CO2

    NASA Astrophysics Data System (ADS)

    Green, M. A.; Teubner, P. J. O.; Campbell, L.; Brunger, M. J.; Hoshino, M.; Ishikawa, T.; Kitajima, M.; Tanaka, H.; Itikawa, Y.; Kimura, M.; Buenker, R. J.

    2002-02-01

    Absolute differential cross sections (DCSs) for electron impact excitation of electronic states of CO2 in the 10.8-11.5 eV energy-loss range are reported. These data were obtained at the incident electron energies 20,30,60,100 and 200 eV and over the scattered electron angular range 3.5°-90°. The accuracy of our experimental methods has been established independently by using several different normalization techniques at both Sophia and Flinders Universities. Generalized oscillator strengths were derived from our measured DCSs and then extrapolated to zero momentum transfer, in order to determine the optical oscillator strengths. These optical oscillator strengths, where possible, are compared with the results from previous measurements and calculations.

  15. Dual emissions from MnS clusters confined in the sodalite nanocage of a chalcogenide-based semiconductor zeolite.

    PubMed

    Hu, Dandan; Zhang, Yingying; Lin, Jian; Hou, Yike; Li, Dongsheng; Wu, Tao

    2017-03-21

    A new host-guest hybrid system with MnS clusters confined in a chalcogenide-based semiconductor zeolite was for the first time constructed and its photoluminescence (PL) properties were also investigated. The existence of MnS clusters in the nanopores of the semiconductor zeolite was revealed by UV-Vis absorption spectroscopy, steady-state fluorescence analysis, Raman as well as Fourier transform infrared (FTIR) spectroscopy. The aggregation state of the entrapped MnS clusters at different measurement temperatures was probed by electron paramagnetic resonance (EPR) spectroscopy. Of significant importance is the fact that the entrapped MnS clusters displayed dual emissions at 518 nm (2.39 eV) and 746 nm (1.66 eV), respectively, and the long-wavelength emission has never been observed in other MnS-confined host-guest systems. These two emission peaks displayed tunable PL intensity affected by the loading level and measurement temperature. This can be explained by the different morphologies of MnS clusters with different aggregation states at the corresponding loading level or measurement temperature. The current study opens a new avenue to construct inorganic chalcogenide cluster involved host-guest systems with a semiconductor zeolite as the host matrix.

  16. Electric conductivity analysis and dielectric relaxation behavior of the hybrid polyvanadate (H{sub 3}N(CH{sub 2}){sub 3}NH{sub 3})[V{sub 4}O{sub 10}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nefzi, H.; Sediri, F., E-mail: faouzi.sediri@ipeit.rnu.tn; Faculté des Sciences de Tunis, Université Tunis El Manar, 2092 El Manar, Tunis

    2013-05-15

    Highlights: ► Plate-like crystals (H{sub 3}N(CH{sub 2}){sub 3}NH{sub 3})[V{sub 4}O{sub 10}] were synthesized. ► Frequency and temperature dependence of AC conductivity indicate CBH model. ► The temperature dependence of DC conductivity exhibits two conduction mechanisms. - Abstract: Layered hybrid compound (H{sub 3}N(CH{sub 2}){sub 3}NH{sub 3})[V{sub 4}O{sub 10}] has been synthesized via hydrothermal method. Techniques X-ray powder diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and impedance spectroscopy have been used to characterize the hybrid material. Electrical and dielectric properties dependence on both temperature and frequency of the compound have been reported. The direct current conductivity process is thermally activated andmore » it is found to be 12.67 × 10{sup −4} Ω{sup −1} m{sup −1} at 523 K. The spectra follow the Arrhenius law with two activation energy 0.25 eV for T < 455 K and 0.5 eV for T > 455 K.« less

  17. Epitaxial growth and characterization of CuGa2O4 films by laser molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Wei, Hongling; Chen, Zhengwei; Wu, Zhenping; Cui, Wei; Huang, Yuanqi; Tang, Weihua

    2017-11-01

    Ga2O3 with a wide bandgap of ˜ 4.9 eV can crystalize in five crystalline phases. Among those phases, the most stable monoclinic β-Ga2O3 has been studied most, however, it is hard to find materials lattice matching with β-Ga2O3 to grown epitaxial thin films for optoelectronic applications. In this work, CuGa2O4 bulk were prepared by solid state reaction as target, and the films were deposited on sapphire substrates by laser molecular beam epitaxy (L-MBE) at different substrate temperatures. The influences of substrate temperature on structural and optical properties have been systematically investigated by means of X-ray diffraction, Transmission electron microscope and UV-vis absorption spectra. High quality cubic structure and [111] oriented CuGa2O4 film can be obtained at substrate temperature of 750 °C. It's also demonstrated that the CuGa2O4 film has a bandgap of ˜ 4.4 eV and a best crystal quality at 750 °C, suggesting that CuGa2O4 film is a promising candidate for applications in ultraviolet optoelectronic devices.

  18. Crystal growth and electronic structure of low-temperature phase SrMgF{sub 4}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atuchin, Victor V.; Functional Electronics Laboratory, Tomsk State University, Tomsk 634050; Laboratory of Semiconductor and Dielectric Materials, Novosibirsk State University, Novosibirsk 630090

    2016-04-15

    Using the vertical Bridgman method, the single crystal of low temperature phase SrMgF{sub 4} is obtained. The crystal is in a very good optical quality with the size of 10×7×5 mm{sup 3}. Detailed photoemission spectra of the element core levels are determined by a monochromatic AlKa (1486.6 eV) X-ray source. Moreover, the first-principles calculations are performed to investigate the electronic structure of SrMgF{sub 4}. A good agreement between experimental and calculated results is achieved. It is demonstrated that almost all the electronic orbitals are strongly localized and the hybridization with the others is very small, but the Mg–F bonds covalencymore » is relatively stronger than that of Sr–F bonds. - Graphical abstract: Large size of low-temperature phase SrMgF{sub 4} crystal was obtained (right) and its electronic structure was investigated by X-ray photoelectron spectroscopy and first-principles calculation (left). - Highlights: • Large size single crystal of low-temperature phase SrMgF{sub 4} is obtained. • Electronic structure of SrMgF{sub 4} is measured by X-ray photoelectron spectroscopy. • Partial densities of states are determined by first-principles calculation. • Good agreement between experimental and calculated results is achieved. • Strong ionic characteristics of chemical bonds are exhibited in SrMgF{sub 4}.« less

  19. Improved analysis techniques for cylindrical and spherical double probes.

    PubMed

    Beal, Brian; Johnson, Lee; Brown, Daniel; Blakely, Joseph; Bromaghim, Daron

    2012-07-01

    A versatile double Langmuir probe technique has been developed by incorporating analytical fits to Laframboise's numerical results for ion current collection by biased electrodes of various sizes relative to the local electron Debye length. Application of these fits to the double probe circuit has produced a set of coupled equations that express the potential of each electrode relative to the plasma potential as well as the resulting probe current as a function of applied probe voltage. These equations can be readily solved via standard numerical techniques in order to determine electron temperature and plasma density from probe current and voltage measurements. Because this method self-consistently accounts for the effects of sheath expansion, it can be readily applied to plasmas with a wide range of densities and low ion temperature (T(i)/T(e) ≪ 1) without requiring probe dimensions to be asymptotically large or small with respect to the electron Debye length. The presented approach has been successfully applied to experimental measurements obtained in the plume of a low-power Hall thruster, which produced a quasineutral, flowing xenon plasma during operation at 200 W on xenon. The measured plasma densities and electron temperatures were in the range of 1 × 10(12)-1 × 10(17) m(-3) and 0.5-5.0 eV, respectively. The estimated measurement uncertainty is +6%∕-34% in density and +∕-30% in electron temperature.

  20. The effect of storage temperature on the biological activity of extracellular vesicles for the complement system.

    PubMed

    Park, Sang June; Jeon, Hyungtaek; Yoo, Seung-Min; Lee, Myung-Shin

    2018-05-10

    Extracellular vesicles (EVs) are mediators of intercellular communication by transporting cargo containing proteins, lipids, mRNA, and miRNA. There is increasing evidence that EVs have various roles in regulating migration, invasion, stemness, survival, and immune functions. Previously, we have found that EVs from Kaposi's sarcoma-associated herpesvirus (KSHV)-infected human endothelial cells have the potential to activate the complement system. Although many studies have shown that the physical properties of EVs can be changed by their storage condition, there have been few studies for the stability of biological activity of EVs in various storage conditions. In this study, we investigated various conditions to identify the best conditions to store EVs with functional stability for 25 d. Furthermore, the correlation between the function and other characteristics of EVs, including the expression of EV markers, size distribution, and particle number, were also analyzed. Our results demonstrated that storage temperature is an important factor to maintain the activity of EVs and would be useful information for basic research and clinical application using EVs.

  1. Observation of >400-eV precursor plasmas from low-wire-number copper arrays at the 1-MA zebra facility.

    PubMed

    Coverdale, C A; Safronova, A S; Kantsyrev, V L; Ouart, N D; Esaulov, A A; Deeney, C; Williamson, K M; Osborne, G C; Shrestha, I; Ampleford, D J; Jones, B

    2009-04-17

    Experiments with cylindrical copper wire arrays at the 1-MA Zebra facility show that high temperatures exist in the precursor plasmas formed when ablated wire array material accretes on the axis prior to the stagnation of a z pinch. In these experiments, the precursor radiated approximately 20% of the >1000 eV x-ray output, and time-resolved spectra show substantial emission from Cu L-shell lines. Modeling of the spectra shows an increase in temperature as the precursor forms, up to approximately 450 eV, after which the temperature decreases to approximately 220-320 eV until the main implosion.

  2. Unraveling the role of secondary electrons upon their interaction with photoresist during EUV exposure

    NASA Astrophysics Data System (ADS)

    Pollentier, Ivan; Vesters, Yannick; Jiang, Jing; Vanelderen, Pieter; de Simone, Danilo

    2017-10-01

    The interaction of 91.6eV EUV photons with photoresist is very different to that of optical lithography at DUV wavelength. The latter is understood quite well and it is known that photons interact with the resist in a molecular way through the photoacid generator (PAG) of the chemically amplified resist (CAR). In EUV however, the high energy photons interact with the matter on atomic scale, resulting in the generation of secondary electrons. It is believed that these secondary electrons in their turn are responsible in chemical modification and lead to switching reactions that enable resist local dissolution. However, details of the interaction are still unclear, e.g. which reaction an electron with a given energy can initiate. In this work we have introduced a method to measure the chemical interaction of the secondary electrons with the EUV resist. The method is based on electron gun exposures of low energy electrons (range 1eV to 80eV) in the photoresist. The chemical interaction is then measured by Residual Gas Analysis (RGA), which can analyze out of the outgassing which and how much reaction products are generated. In this way a `chemical yield' can be quantified as function of electron energy. This method has been successfully applied to understand the interaction of secondary electrons on the traditional CAR materials. The understanding was facilitated by testing different compositions of an advanced EUV CAR, where resp. polymer only, polymer+PAG, and polymer+PAG+quencher are tested with the electron gun. It was found that low energy electrons down to 3-4eV can activate PAG dissociation, which can lead to polymer deprotection. However it was observed too that energy electrons of 12eV and higher can do direct deprotection even in absence of the PAG. In addition, testing suggests that electrons can generate also other chemical changes on the polymer chain that could lead to cross-linking.

  3. Wannier-Mott Excitons in Nanoscale Molecular Ices

    NASA Astrophysics Data System (ADS)

    Chen, Y.-J.; Muñoz Caro, G. M.; Aparicio, S.; Jiménez-Escobar, A.; Lasne, J.; Rosu-Finsen, A.; McCoustra, M. R. S.; Cassidy, A. M.; Field, D.

    2017-10-01

    The absorption of light to create Wannier-Mott excitons is a fundamental feature dictating the optical and photovoltaic properties of low band gap, high permittivity semiconductors. Such excitons, with an electron-hole separation an order of magnitude greater than lattice dimensions, are largely limited to these semiconductors but here we find evidence of Wannier-Mott exciton formation in solid carbon monoxide (CO) with a band gap of >8 eV and a low electrical permittivity. This is established through the observation that a change of a few degrees K in deposition temperature can shift the electronic absorption spectra of solid CO by several hundred wave numbers, coupled with the recent discovery that deposition of CO leads to the spontaneous formation of electric fields within the film. These so-called spontelectric fields, here approaching 4 ×107 V m-1 , are strongly temperature dependent. We find that a simple electrostatic model reproduces the observed temperature dependent spectral shifts based on the Stark effect on a hole and electron residing several nm apart, identifying the presence of Wannier-Mott excitons. The spontelectric effect in CO simultaneously explains the long-standing enigma of the sensitivity of vacuum ultraviolet spectra to the deposition temperature.

  4. Progress on FIR interferometry and Thomson Scattering measurements on HIT-SI3

    NASA Astrophysics Data System (ADS)

    Everson, Christopher; Jarboe, Thomas; Morgan, Kyle

    2017-10-01

    Spatially resolved measurements of the electron temperature (Te) and density (ne) will be fundamental in assessing the degree to which HIT-SI3 demonstrates closed magnetic flux and energy confinement. Further, electron temperature measurements have not yet been made on an inductively-driven spheromak. Far infrared (FIR) interferometer and Thomson Scattering (TS) systems have been installed on the HIT-SI3 spheromak. The TS system currently implemented on HIT-SI3 was originally designed for other magnetic confinement experiments, and progress continues toward modifying and optimizing for HIT-SI3 plasmas. Initial results suggest that the electron temperature is of order 10 eV. Plans to modify the TS system to provide more sensitivity and accuracy at low temperatures are presented. The line-integrated ne is measured on one chord by the FIR interferometer, with densities near 5x1019 m-3. Four cylindrical volumes have been added to the HIT-SI3 apparatus to enhance passive pumping. It is hoped that this will allow for more control of the density during the 2 ms discharges. Density measurements from before and after the installation of the passive pumping volumes are presented for comparison.

  5. A model calculation of coherence effects in the elastic backscattering of very low energy electrons (1-20 eV) from amorphous ice.

    PubMed

    Liljequist, David

    2012-01-01

    Backscattering of very low energy electrons in thin layers of amorphous ice is known to provide experimental data for the elastic and inelastic cross sections and indicates values to be expected in liquid water. The extraction of cross sections was based on a transport analysis consistent with Monte Carlo simulation of electron trajectories. However, at electron energies below 20 eV, quantum coherence effects may be important and trajectory-based methods may be in significant error. This possibility is here investigated by calculating quantum multiple elastic scattering of electrons in a simple model of a very small, thin foil of amorphous ice. The average quantum multiple elastic scattering of electrons is calculated for a large number of simulated foils, using a point-scatterer model for the water molecule and taking inelastic absorption into account. The calculation is compared with a corresponding trajectory simulation. The difference between average quantum scattering and trajectory simulation at energies below about 20 eV is large, in particular in the forward scattering direction, and is found to be almost entirely due to coherence effects associated with the short-range order in the amorphous ice. For electrons backscattered at the experimental detection angle (45° relative to the surface normal) the difference is however small except at electron energies below about 10 eV. Although coherence effects are in general found to be strong, the mean free path values derived by trajectory-based analysis may actually be in fair agreement with the result of an analysis based on quantum scattering, at least for electron energies larger than about 10 eV.

  6. Electron scattering from gas phase cis-diamminedichloroplatinum(II): Quantum analysis of resonance dynamics

    NASA Astrophysics Data System (ADS)

    Carey, Ralph; Lucchese, Robert R.; Gianturco, F. A.

    2013-05-01

    We present scattering calculations of electron collisions with the platinum-containing compound cis-diamminedichloroplatinum (CDDP), commonly known as cisplatin, between 0.5 eV and 6 eV, and the corresponding isolated Pt atom from 0.1 eV to 10 eV. We find evidence of resonances in e--CDDP scattering, using an ab initio description of the target. We computed scattering matrix elements from equations incorporating exchange and polarization effects through the use of the static-exchange plus density functional correlation potential. Additionally, we made use of a purely local adiabatic model potential that allows Siegert eigenstates to be calculated, thereby allowing inspection of the possible resonant scattering wave functions. The total cross section for electron scattering from (5d10) 1S Pt displays a large magnitude, monotonic decay from the initial collision energies, with no apparent resonance scattering features in any scattering symmetry. By contrast, the e--CDDP scattering cross section shows a small feature near 3.8 eV, which results from a narrow, well localized resonance of b2 symmetry. These findings are then related to the possible electron-mediated mechanism of the action of CDDP on DNA replication as suggested by recent experiments.

  7. Universal main magnetic focus ion source for production of highly charged ions

    NASA Astrophysics Data System (ADS)

    Ovsyannikov, V. P.; Nefiodov, A. V.; Levin, A. A.

    2017-10-01

    A novel room-temperature compact ion source has been developed for the efficient production of atomic ions by means of an electron beam with energy Ee and current density je controllable within wide ranges (100 eV ≲Ee ≲ 60 keV, 10 A/cm2 ≲je ≲ 20 kA/cm2). In the first experiments, the X-ray emission of Ir64+ ions has been measured. Based on a combination of two different techniques, the device can operate both as conventional Electron Beam Ion Source/Trap and novel Main Magnetic Focus Ion Source. The tunable electron-optical system allows for realizing laminar and turbulent electron flows in a single experimental setup. The device is intended primarily for fundamental and applied research at standard university laboratories.

  8. High Temperature Operation of Al 0.45Ga 0.55N/Al 0.30Ga 0.70 N High Electron Mobility Transistors

    DOE PAGES

    Baca, Albert G.; Armstrong, Andrew M.; Allerman, Andrew A.; ...

    2017-08-01

    AlGaN-channel high electron mobility transistors (HEMTs) are among a class of ultra wide-bandgap transistors that have a bandgap greater than ~3.4 eV, beyond that of GaN and SiC, and are promising candidates for RF and power applications. Long-channel Al xGa 1-xN HEMTs with x = 0.3 in the channel have been built and evaluated across the -50°C to +200°C temperature range. Room temperature drain current of 70 mA/mm, absent of gate leakage, and with a modest -1.3 V threshold voltage was measured. A very large I on/I off current ratio, greater than 10 8 was demonstrated over the entire temperaturemore » range, indicating that off-state leakage is below the measurement limit even at 200°C. Finally, combined with near ideal subthreshold slope factor that is just 1.3× higher than the theoretical limit across the temperature range, the excellent leakage properties are an attractive characteristic for high temperature operation.« less

  9. Ultrafast electron kinetics in short pulse laser-driven dense hydrogen

    DOE PAGES

    Zastrau, U.; Sperling, P.; Fortmann-Grote, C.; ...

    2015-09-25

    Dense cryogenic hydrogen is heated by intense femtosecond infrared laser pulses at intensities ofmore » $${10}^{15}-{10}^{16}\\;$$ W cm–2. Three-dimensional particle-in-cell (PIC) simulations predict that this heating is limited to the skin depth, causing an inhomogeneously heated outer shell with a cold core and two prominent temperatures of about $25$ and $$40\\;\\mathrm{eV}$$ for simulated delay times up to $$+70\\;\\mathrm{fs}$$ after the laser pulse maximum. Experimentally, the time-integrated emitted bremsstrahlung in the spectral range of 8–18 nm was corrected for the wavelength-dependent instrument efficiency. The resulting spectrum cannot be fit with a single temperature bremsstrahlung model, and the best fit is obtained using two temperatures of about 13 and $$30\\;$$eV. The lower temperatures in the experiment can be explained by missing energy-loss channels in the simulations, as well as the inclusion of hot, non-Maxwellian electrons in the temperature calculation. In conclusion, we resolved the time-scale for laser-heating of hydrogen, and PIC results for laser–matter interaction were successfully tested against the experiment data.« less

  10. High Temperature Operation of Al 0.45Ga 0.55N/Al 0.30Ga 0.70 N High Electron Mobility Transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baca, Albert G.; Armstrong, Andrew M.; Allerman, Andrew A.

    AlGaN-channel high electron mobility transistors (HEMTs) are among a class of ultra wide-bandgap transistors that have a bandgap greater than ~3.4 eV, beyond that of GaN and SiC, and are promising candidates for RF and power applications. Long-channel Al xGa 1-xN HEMTs with x = 0.3 in the channel have been built and evaluated across the -50°C to +200°C temperature range. Room temperature drain current of 70 mA/mm, absent of gate leakage, and with a modest -1.3 V threshold voltage was measured. A very large I on/I off current ratio, greater than 10 8 was demonstrated over the entire temperaturemore » range, indicating that off-state leakage is below the measurement limit even at 200°C. Finally, combined with near ideal subthreshold slope factor that is just 1.3× higher than the theoretical limit across the temperature range, the excellent leakage properties are an attractive characteristic for high temperature operation.« less

  11. Low energy electron attachment to cyanamide (NH{sub 2}CN)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanzer, Katrin; Denifl, Stephan, E-mail: Andrzej.Pelc@poczta.umcs.lublin.pl, E-mail: Stephan.Denifl@uibk.ac.at; Pelc, Andrzej, E-mail: Andrzej.Pelc@poczta.umcs.lublin.pl, E-mail: Stephan.Denifl@uibk.ac.at

    Cyanamide (NH{sub 2}CN) is a molecule relevant for interstellar chemistry and the chemical evolution of life. In the present investigation, dissociative electron attachment to NH{sub 2}CN has been studied in a crossed electron–molecular beams experiment in the electron energy range from about 0 eV to 14 eV. The following anionic species were detected: NHCN{sup −}, NCN{sup −}, CN{sup −}, NH{sub 2}{sup −}, NH{sup −}, and CH{sub 2}{sup −}. The anion formation proceeds within two broad electron energy regions, one between about 0.5 and 4.5 eV and a second between 4.5 and 12 eV. A discussion of possible reaction channels formore » all measured negative ions is provided. The experimental results are compared with calculations of the thermochemical thresholds of the anions observed. For the dehydrogenated parent anion, we explain the deviation between the experimental appearance energy of the anion with the calculated corresponding reaction threshold by electron attachment to the isomeric form of NH{sub 2}CN—carbodiimide.« less

  12. A Method for Isolation of Extracellular Vesicles and Characterization of Exosomes from Brain Extracellular Space.

    PubMed

    Pérez-González, Rocío; Gauthier, Sebastien A; Kumar, Asok; Saito, Mitsuo; Saito, Mariko; Levy, Efrat

    2017-01-01

    Extracellular vesicles (EV), including exosomes, secreted vesicles of endocytic origin, and microvesicles derived from the plasma membrane, have been widely isolated and characterized from conditioned culture media and bodily fluids. The difficulty in isolating EV from tissues, however, has hindered their study in vivo. Here, we describe a novel method designed to isolate EV and characterize exosomes from the extracellular space of brain tissues. The purification of EV is achieved by gentle dissociation of the tissue to free the brain extracellular space, followed by sequential low-speed centrifugations, filtration, and ultracentrifugations. To further purify EV from other extracellular components, they are separated on a sucrose step gradient. Characterization of the sucrose step gradient fractions by electron microscopy demonstrates that this method yields pure EV preparations free of large vesicles, subcellular organelles, or debris. The level of EV secretion and content are determined by assays for acetylcholinesterase activity and total protein estimation, and exosomal identification and protein content are analyzed by Western blot and immuno-electron microscopy. Additionally, we present here a method to delipidate EV in order to improve the resolution of downstream electrophoretic analysis of EV proteins.

  13. Collisional Dissociation of CO: ab initio Potential Energy Surfaces and Quasiclassical Trajectory Rate Coefficients

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.; Jaffe, Richard L.; Chaban, Galina M.

    2016-01-01

    We have generated accurate global potential energy surfaces for CO+Ar and CO+O that correlate with atom-diatom pairs in their ground electronic states based on extensive ab initio electronic structure calculations and used these potentials in quasi-classical trajectory nuclear dynamics calculations to predict the thermal dissociation rate coefficients over 5000- 35000 K. Our results are not compatible with the 20-45 year old experimental results. For CO + Ar we obtain fairly good agreement with the experimental rate coefficients of Appleton et al. (1970) and Mick and Roth (1993), but our computed rate coefficients exhibit a stronger temperature dependence. For CO + O our dissociation rate coefficient is in close agreement with the value from the Park model, which is an empirical adjustment of older experimental results. However, we find the rate coefficient for CO + O is only 1.5 to 3.3 times larger than CO + Ar over the temperature range of the shock tube experiments (8000-15,000 K). The previously accepted value for this rate coefficient ratio is 15, independent of temperature. We also computed the rate coefficient for the CO + O ex- change reaction which forms C + O2. We find this reaction is much faster than previously believed and is the dominant process in the removal of CO at temperatures up to 16,000 K. As a result, the dissociation of CO is accomplished in two steps (react to form C+O2 and then O2 dissociates) that are endothermic by 6.1 and 5.1 eV, instead of one step that requires 11.2 eV to break the CO bond.

  14. Electron Collision Processes with Carbon Dioxide: Resolving Long-Standing Paradoxes

    NASA Astrophysics Data System (ADS)

    Rescigno, T. N.; Haxton, D. J.; McCurdy, C. W.

    2012-10-01

    The principal features of low-energy electron-CO2 collisions have been known and studied for over forty years. The scattering is characterized by a rapid rise in the total cross section below 1 eV, anomalous threshold behavior for excitation of symmetric stretch and bending vibrational modes, resonant vibrational excitation near 4 eV with weak ``boomerang'' structure in the excitation cross sections and dissociative electron attachment cross sections leading to CO + O^- which peak near 4 eV and 8 eV and have angular distributions which show large deviations from axial recoil. The nuclear dynamics associated with all these features is intrinsically polyatomic in nature and cannot be described with one-dimensional models. The present study provides a consistent description of all these phenomena and resolves a number long-standing paradoxes and misconceptions found in the extant literature.

  15. Heating and cooling of the multiply charged ion nonequilibrium plasma in a high-current extended low-inductance discharge

    NASA Astrophysics Data System (ADS)

    Burtsev, V. A.; Kalinin, N. V.

    2014-09-01

    Using a radiation magnetohydrodynamics two-temperature model (RMHD model) of a high-current volumetric radiating Z-discharge, the heating and cooling of the nitrogen plasma in a pulsed pinched extended discharge is investigated as applied to the problem of creating a recombination laser based on 3 → 2 transitions of hydrogen-like nitrogen ions (λ = 13.4 nm). It is shown that the power supply of the discharge, which is represented by a dual storage-forming line and a transmission line, makes it possible to raise the power density of the nitrogen plasma to 0.01-1.00 TW/cm3. Accordingly, there arises the possibility of generating a fully ionized (i.e., consisting of bare nuclei and electrons) plasma through the heating (compression) of electrons owing to the self-magnetic field of the plasma current and Joule heat even if the plasma is cooled by its own radiation at this stage. Such a plasma is needed to produce the lasing (active) medium of a recombination laser based on electron transitions in hydrogen-like ions. At the second stage, it is necessary to rapidly and deeply cool the plasma to 20-40 eV for 1-2 ns. Cooling of the fully ionized expanding plasma was numerically simulated with the discharge current switched on and off by means of a switch with a rapidly rising resistance. In both cases, the plasma expansion in the discharge is not adiabatic. Even after the discharge current is fairly rapidly switched off, heating of electrons continues inside the plasma column for a time longer than the switching time. Discharge current switchoff improves the electron cooling efficiency only slightly. Under such conditions, the plasma cools down to 50-60 eV in the former case and to 46-54 eV in the latter case for 2-3 ns.

  16. Effect of Annealing Temperature on Structural and Optical Properties of Sol-Gel-Derived ZnO Thin Films

    NASA Astrophysics Data System (ADS)

    Arif, Mohd.; Sanger, Amit; Vilarinho, Paula M.; Singh, Arun

    2018-04-01

    Nanocrystalline ZnO thin films were deposited on glass substrate via sol-gel dip-coating technique then annealed at 300°C, 400°C, and 500°C for 1 h. Their optical, structural, and morphological properties were studied using ultraviolet-visible (UV-Vis) spectrophotometry, x-ray diffraction (XRD) analysis, and scanning electron microscopy (SEM). XRD diffraction revealed that the crystalline nature of the thin films increased with increasing annealing temperature. The c-axis orientation improved, and the grain size increased, as indicated by increased intensity of the (002) plane peak at 2θ = 34.42° corresponding to hexagonal ZnO crystal. The average crystallite size of the thin films ranged from 13 nm to 23 nm. Increasing the annealing temperature resulted in larger crystallite size and higher crystallinity with increased surface roughness. The grain size according to SEM analysis was in good agreement with the x-ray diffraction data. The optical bandgap of the thin films narrowed with increasing annealing temperature, lying in the range of 3.14 eV to 3.02 eV. The transmission of the thin films was as high as 94% within the visible region. The thickness of the thin films was 400 nm, as measured by ellipsometry, after annealing at the different temperatures of 300°C, 400°C, and 500°C.

  17. Low-temperature irradiation-induced defects in germanium: In situ analysis

    NASA Astrophysics Data System (ADS)

    Mesli, A.; Dobaczewski, L.; Nielsen, K. Bonde; Kolkovsky, Vl.; Petersen, M. Christian; Larsen, A. Nylandsted

    2008-10-01

    The electronic properties of defects resulting from electron irradiation of germanium at low temperatures have been investigated. The recent success in preparing n+p junctions on germanium has opened a new opportunity to address fundamental questions regarding point defects and their related energy levels by allowing an access to the lower half of the band gap. In this work we apply various space-charge capacitance-transient spectroscopy techniques connected on line with the electron-beam facility. In n -type germanium we identify a level at about 0.14 eV below the conduction band whose properties resemble in many respects those of a defect assigned previously to the close vacancy-interstitial or Frenkel pair. This pair seems to annihilate over a small barrier at about 70 K, and its stability is particularly sensitive to the irradiation temperature and energy. We also observe two coupled levels at 0.08 and 0.24 eV below the conduction band stable up to 160 K. Recent independent theoretical work has predicted the existence of the single and double donor of the germanium interstitial with energy levels matching exactly these two values. Given these identifications hold, they mark a major difference with silicon where both the Frenkel pair and self-interstitial have never been caught. In p -type germanium, two levels were found. The shallower one, located at about 0.14 eV above the valence band, is tentatively assigned to the vacancy. It exhibits a field-driven instability at about 80 K making its analysis quite difficult. The application of a reverse bias, required by the space-charge spectroscopy, leads to a strong drift process sweeping this defect out of the observation area without necessarily provoking its annealing. Unlike silicon, in which the vacancy has four charge states, only one vacancy-related level seems to exist in germanium and this level is very likely a double acceptor. Finally, a very peculiar observation is made on a hole midgap trap, which, in many respects, behaves as the boron interstitial in silicon. This has led us to suggest that it may stem from the gallium interstitial, a natural dopant of our germanium materials, whose presence would be the fingerprint of the Watkins replacement mechanism in germanium.

  18. A first-principles density functional theory study of the electronic structural and thermodynamic properties of M2ZrO3 and M2CO3 (M=Na, K) and their capabilities for CO2 capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuhua Duan

    2012-01-01

    Alkali metal zirconates could be used as solid sorbents for CO{sub 2} capture. The structural, electronic, and phonon properties of Na{sub 2}ZrO{sub 3}, K{sub 2}ZrO{sub 3}, Na{sub 2}CO{sub 3}, and K{sub 2}CO{sub 3} are investigated by combining the density functional theory with lattice phonon dynamics. The thermodynamics of CO{sub 2} absorption/desorption reactions of these two zirconates are analyzed. The calculated results show that their optimized structures are in a good agreement with experimental measurements. The calculated band gaps are 4.339 eV (indirect), 3.641 eV (direct), 3.935 eV (indirect), and 3.697 eV (direct) for Na{sub 2}ZrO{sub 3}, K{sub 2}ZrO{sub 3}, Na{submore » 2}CO{sub 3}, and K{sub 2}CO{sub 3}, respectively.The calculated phonon dispersions and phonon density of states for M{sub 2}ZrO{sub 3} and M{sub 2}CO{sub 3} (M = K, Na, Li) revealed that from K to Na to Li, their frequency peaks are shifted to high frequencies due to the molecular weight decreased from K to Li. From the calculated reaction heats and relationships of free energy change versus temperatures and CO{sub 2} pressures of the M{sub 2}ZrO{sub 3} (M = K, Na, Li) reacting with CO{sub 2}, we found that the performance of Na{sub 2}ZrO{sub 3} capturing CO{sub 2} is similar to that of Li{sub 2}ZrO{sub 3} and is better than that of K{sub 2}ZrO{sub 3}. Therefore, Na{sub 2}ZrO{sub 3} and Li{sub 2}ZrO{sub 3} are good candidates of high temperature CO{sub 2} sorbents and could be used for post combustion CO{sub 2} capture technologies.« less

  19. Experimental and theoretical double differential cross sections for electron impact ionization of methane

    NASA Astrophysics Data System (ADS)

    Yavuz, Murat; Ozer, Zehra Nur; Ulu, Melike; Champion, Christophe; Dogan, Mevlut

    2016-04-01

    Experimental and theoretical double differential cross sections (DDCSs) for electron-induced ionization of methane (CH4) are here reported for primary energies ranging from 50 eV to 350 eV and ejection angles between 25° and 130°. Experimental DDCSs are compared with theoretical predictions performed within the first Born approximation Coulomb wave. In this model, the initial molecular state is described by using single center wave functions, the incident (scattered) electron being described by a plane wave, while a Coulomb wave function is used for modeling the secondary ejected electron. A fairly good agreement may be observed between theory and experiment with nevertheless an expected systematic overestimation of the theory at low-ejection energies (<50 eV).

  20. Straight and chopped DC performance data for a reliance EV-250AT motor with a General Electric EV-1 controller

    NASA Technical Reports Server (NTRS)

    Edie, P. C.

    1981-01-01

    Straight and chopped DC motor performances for a Reliance EV-250AT motor with an EV-1 controller were examined. Effects of motor temperature and operating voltage are shown. It is found that the maximum motor efficiency is approximately 85% at low operating temperatures in the straight DC mode. Chopper efficiency is 95% under all operating conditions. For equal speeds, the motor operated in the chopped mode develops slightly more torque and draws more current than it does in the straight DC mode.

  1. Desorption induced by electronic transitions of Na from SiO2: relevance to tenuous planetary atmospheres.

    NASA Astrophysics Data System (ADS)

    Yakshinskiy, B. V.; Madey, T. E.

    2000-04-01

    The authors have studied the desorption induced by electronic transitions (DIET) of Na adsorbed on model mineral surfaces, i.e. amorphous, stoichiometric SiO2 films. They find that electron stimulated desorption (ESD) of atomic Na occurs for electron energy thresholds as low as ≡4 eV, that desorption cross-sections are high (≡1×10-19cm2 at 11 eV), and that desorbing atoms are 'hot', with suprathermal velocities. The estimated Na desorption rate from the lunar surface via ESD by solar wind electrons is a small fraction of the rate needed to sustain the Na atmosphere. However, the solar photon flux at energies ≥5 eV exceeds the solar wind electron flux by orders of magnitude; there are sufficient ultraviolet photons incident on the lunar surface to contribute substantially to the lunar Na atmosphere via PSD of Na from the surface.

  2. Influence of nuclear exchange on nonadiabatic electron processes in H(+)+H2 collisions.

    PubMed

    Errea, L F; Illescas, Clara; Macías, A; Méndez, L; Pons, B; Rabadán, I; Riera, A

    2010-12-28

    H(+)+H(2) collisions are studied by means of a semiclassical approach that explicitly accounts for nuclear rearrangement channels in nonadiabatic electron processes. A set of classical trajectories is used to describe the nuclear motion, while the electronic degrees of freedom are treated quantum mechanically in terms of a three-state expansion of the collision wavefunction. We describe electron capture and vibrational excitation, which can also involve nuclear exchange and dissociation, in the E = 2-1000 eV impact energy range. We compare dynamical results obtained with two parametrizations of the potential energy surface of H(3)(+) ground electronic state. Total cross sections for E > 10 eV agree with previous results using a vibronic close-coupling expansion, and with experimental data for E < 10 eV. Additionally, some prototypical features of both nuclear and electron dynamics at low E are discussed.

  3. Probing royal demolition explosive (1,3,5-trinitro-1,3,5-triazocyclohexane) by low-energy electrons: Strong dissociative electron attachment near 0 eV.

    PubMed

    Sulzer, P; Mauracher, A; Ferreira da Silva, F; Denifl, S; Märk, T D; Probst, M; Limão-Vieira, P; Scheier, P

    2009-10-14

    Low energy electron attachment to gas phase royal demolition explosive (RDX) (and RDX-A3) has been performed by means of a crossed electron-molecular beam experiment in an electron energy range from 0 to 14 eV with an energy resolution of approximately 70 meV. The most intense signals are observed at 102 and 46 amu and assigned to C(2)H(4)N(3)O(2) (-) and NO(2) (-), respectively. Anion efficiency curves of 16 anions have been measured. Product ions are observed mainly in the low energy region, near 0 eV arising from surprisingly complex reactions associated with multiple bond cleavages and structural and electronic rearrangement. The remarkable instability of RDX to electron attachment with virtually thermal electrons reflects the highly explosive nature of this compound. The present results are compared to other explosive aromatic nitrocompounds studied in our laboratory recently.

  4. Electron Impact Ionization: A New Parameterization for 100 eV to 1 MeV Electrons

    NASA Technical Reports Server (NTRS)

    Fang, Xiaohua; Randall, Cora E.; Lummerzheim, Dirk; Solomon, Stanley C.; Mills, Michael J.; Marsh, Daniel; Jackman, Charles H.; Wang, Wenbin; Lu, Gang

    2008-01-01

    Low, medium and high energy electrons can penetrate to the thermosphere (90-400 km; 55-240 miles) and mesosphere (50-90 km; 30-55 miles). These precipitating electrons ionize that region of the atmosphere, creating positively charged atoms and molecules and knocking off other negatively charged electrons. The precipitating electrons also create nitrogen-containing compounds along with other constituents. Since the electron precipitation amounts change within minutes, it is necessary to have a rapid method of computing the ionization and production of nitrogen-containing compounds for inclusion in computationally-demanding global models. A new methodology has been developed, which has parameterized a more detailed model computation of the ionizing impact of precipitating electrons over the very large range of 100 eV up to 1,000,000 eV. This new parameterization method is more accurate than a previous parameterization scheme, when compared with the more detailed model computation. Global models at the National Center for Atmospheric Research will use this new parameterization method in the near future.

  5. Effect of High Pressure and Temperature on Structural, Thermodynamic and Thermoelectric Properties of Quaternary CoFeCrAl Alloy

    NASA Astrophysics Data System (ADS)

    Bhat, Tahir Mohiuddin; Gupta, Dinesh C.

    2018-03-01

    Employing first-principles based on density functional theory we have investigated the structural, magneto-electronic, thermoelectric and thermodynamic properties of quaternary Heusler alloy CoFeCrAl. Electronic band structure displays that CoFeCrAl is an indirect band gap semiconductor in spin-down state with the band gap value of 0.65 eV. Elastic constants reveal CoFeCrAl is a mechanically stable structure having a Debye temperature of 648 K along with a high melting temperature (2130 K). The thermoelectric properties in the temperature range 50-800 K have been calculated. CoFeCrAl possesses a high Seebeck coefficient of - 46 μV/K at room temperature along with the huge power factor of ˜ 4.8 (1012 μW cm-1 K-2 s-1) which maximizes the figure-of-merit up to ˜ 0.75 at 800 K temperature and suggesting CoFeCrAl as potential thermoelectric material. The effect of high pressure and high temperature on the thermal expansion, Grüneisen parameter and heat capacity were also studied by using the quasi-harmonic Debye model.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danno, Katsunori; Kimoto, Tsunenobu

    The authors have investigated deep levels in as-grown and electron-irradiated p-type 4H-SiC epilayers by deep level transient spectroscopy. In as-grown epilayers, the D center and four deep levels are observed. In p-type 4H-SiC, reactive ion etching followed by thermal treatment (at 1150 degree sign C) induces the HK0 (E{sub V}+0.79 eV) and HK2 (E{sub V}+0.84 eV) centers. By the electron irradiation, two deep levels at 0.98 eV (EP1) and 1.44 eV (EP2) are observed in all the samples irradiated at 116-400 keV, while two additional deep levels (EP3 and EP4) are observed only in the samples irradiated at 400 keV.more » After annealing at 950 degree sign C, these centers are annealed out, and the HK4 (E{sub V}+1.44 eV) concentration is increased. By the electron irradiation at more than 160 keV followed by annealing at 950 degree sign C, three deep levels are always observed at 0.30 eV (UK1), 0.58 eV (UK2), and 1.44 eV (HK4). These centers may be defect complexes including carbon displacement-related defects. All the centers except for the D center are reduced to below the detection limit (1-3x10{sup 11} cm{sup -3}) by annealing at 1550 degree sign C for 30 min.« less

  7. The trap states in lightly Mg-doped GaN grown by MOVPE on a freestanding GaN substrate

    NASA Astrophysics Data System (ADS)

    Narita, Tetsuo; Tokuda, Yutaka; Kogiso, Tatsuya; Tomita, Kazuyoshi; Kachi, Tetsu

    2018-04-01

    We investigated traps in lightly Mg-doped (2 × 1017 cm-3) p-GaN fabricated by metalorganic vapor phase epitaxy (MOVPE) on a freestanding GaN substrate and the subsequent post-growth annealing, using deep level transient spectroscopy. We identified four hole traps with energy levels of EV + 0.46, 0.88, 1.0, and 1.3 eV and one electron trap at EC - 0.57 eV in a p-type GaN layer uniformly doped with magnesium (Mg). The Arrhenius plot of hole traps with the highest concentration (˜3 × 1016 cm-3) located at EV + 0.88 eV corresponded to those of hole traps ascribed to carbon on nitrogen sites in n-type GaN samples grown by MOVPE. In fact, the range of the hole trap concentrations at EV + 0.88 eV was close to the carbon concentration detected by secondary ion mass spectroscopy. Moreover, the electron trap at EC - 0.57 eV was also identical to the dominant electron traps commonly observed in n-type GaN. Together, these results suggest that the trap states in the lightly Mg-doped GaN grown by MOVPE show a strong similarity to those in n-type GaN, which can be explained by the Fermi level close to the conduction band minimum in pristine MOVPE grown samples due to existing residual donors and Mg-hydrogen complexes.

  8. Naphthalene bisimides asymmetrically and symmetrically N-substituted with triarylamine--comparison of spectroscopic, electrochemical, electronic and self-assembly properties.

    PubMed

    Rybakiewicz, Renata; Zapala, Joanna; Djurado, David; Nowakowski, Robert; Toman, Petr; Pfleger, Jiri; Verilhac, Jean-Marie; Zagorska, Malgorzata; Pron, Adam

    2013-02-07

    Two semiconducting naphthalene bisimides were comparatively studied: NBI-(TAA)(2), symmetrically N-substituted with triaryl amine and asymmetric NBI-TAA-Oc with triaryl amine and octyl N-substituents. Both compounds show very similar spectroscopic and redox properties but differ in their supramolecular organization. As evidenced by STM, in monolayers on HOPG they form ordered 2D structures, however of different packing patterns. NBI-(TAA)(2) does not form ordered 3D structures, yielding amorphous thin films whereas films of NBI-TAA-Oc are highly crystalline. DFT calculations predict the ionization potential (IP) of 5.22 eV and 5.18 eV for NBI-TAA-Oc and NBI-(TAA)(2), respectively, as well as the electron affinity values (EA) of -3.25 eV and -3.22 eV. These results are consistent with the cyclic voltammetry data which yield similar values of IP (5.20 eV and 5.19 eV) and somehow different values of EA (-3.80 eV and -3.83 eV). As judged from these data, both semiconductors should exhibit ambipolar behavior. Indeed, NBI-TAA-Oc is ambipolar, showing hole and electron mobilities of 4.5 × 10(-5) cm(2)/(V s) and of 2.6 × 10(-4) cm(2)/(V s), respectively, in the field effect transistor configuration. NBI-(TAA)(2) is not ambipolar and yields field effect only in the p-channel configuration. This different behavior is rationalized on the basis of structural factors.

  9. Photon-induced selenium migration in TiSe 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lioi, David B.; Gosztola, David J.; Wiederrecht, Gary P.

    2017-02-20

    TiSe 2 is a member of the transition metal dichalcogenide family of layered van der Waals materials which exhibits some distinct electronic and optical properties. Here, we perform Raman spectroscopy and microscopy studies on single crystal TiSe 2 to investigate thermal and photon-induced defects associated with diffusion of selenium to the surface. Additional phonon peaks near 250 cm -1 are observed in the laser- irradiated regions that are consistent with formation of amorphous and nanocrys- talline selenium on the surface. Temperature dependent studies of the threshold temperature and laser intensity necessary to initiate selenium migration to the surface show anmore » activation barrier for the process of 1.55 eV. The impact of these results on the properties of strongly correlated electron states in TiSe 2 are discussed« less

  10. Simulation of rarefied low pressure RF plasma flow around the sample

    NASA Astrophysics Data System (ADS)

    Zheltukhin, V. S.; Shemakhin, A. Yu

    2017-01-01

    The paper describes a mathematical model of the flow of radio frequency plasma at low pressure. The hybrid mathematical model includes the Boltzmann equation for the neutral component of the RF plasma, the continuity and the thermal equations for the charged component. Initial and boundary conditions for the corresponding equations are described. The electron temperature in the calculations is 1-4 eV, atoms temperature in the plasma clot is (3-4) • 103 K, in the plasma jet is (3.2-10) • 102 K, the degree of ionization is 10-7-10-5, electron density is 1015-1019 m-3. For calculations plasma parameters is developed soft package on C++ program language, that uses the OpenFOAM library package. Simulations for the vacuum chamber in the presence of a sample and the free jet flow were carried out.

  11. Suzuki segregation in a binary Cu-Si alloy.

    PubMed

    Mendis, Budhika G; Jones, Ian P; Smallman, Raymond E

    2004-01-01

    Suzuki segregation to stacking faults and coherent twin boundaries has been investigated in a Cu-7.15 at.% Si alloy, heat-treated at temperatures of 275, 400 and 550 degrees C, using field-emission gun transmission electron microscopy. Silicon enrichment was observed at the stacking fault plane and decreased monotonically with increasing annealing temperature. This increase in the concentration of solute at the fault is due to the stacking fault energy being lowered at higher values of the electron-to-atom ratio of the alloy. From a McLean isotherm, the binding energy for segregation was calculated to be -0.021 +/- 0.019 eV atom(-1). Hardly any segregation was observed to coherent twin boundaries in the same alloy. This is because a twin has a lower interfacial energy than a stacking fault, so that the driving force for segregation is diminished.

  12. On the luminescence of freshly introduced a-screw dislocations in low-resistance GaN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medvedev, O. S., E-mail: o.s.medvedev@spbu.ru; Vyvenko, O. F.; Bondarenko, A. S.

    2015-09-15

    Using scanning electron microscopy in the cathodoluminescence mode, it is shown that straight segments of a-screw dislocations introduced by plastic deformation at room temperature into unintentionally doped low-resistance gallium nitride luminesce in the spectral range 3.1–3.2 eV at 70 K. The spectral composition of dislocation luminescence shows a fine doublet structure with a component width of ∼15 meV and splitting of ∼30 meV, accompanied by LO-phonon replicas. Luminescent screw dislocations move upon exposure to an electron beam and at low temperatures, but retain immobility for a long time without external excitation. Optical transitions involving the quantum-well states of a stackingmore » fault in a split-dislocation core are considered to be the most probable mechanism of the observed phenomenon.« less

  13. What is the surface temperature of a solid irradiated by a Petawatt laser?

    NASA Astrophysics Data System (ADS)

    Kemp, A. J.; Divol, L.

    2016-09-01

    When a solid target is irradiated by a Petawatt laser pulse, its surface is heated to tens of millions of degrees within a few femtoseconds, facilitating a diffusive heat wave and the acceleration of electrons to MeV energies into the target. Using numerically converged collisional particle-in-cell simulations, we observe a competition between two surface heating mechanisms-inverse bremsstrahlung in solid density on the one hand and electron scattering on turbulent electric fields on the other. Collisionless heating effectively dominates above the relativistic intensity threshold. Our numerical results show that a high-contrast 40 fs, f/5 laser pulse with 1 J energy will heat the skin layer to 5 keV, and the inside of the target over several microns deep to bulk temperatures in the range of 10-100 eV at solid density.

  14. Low energy electron-impact study of AlO using the R-matrix method

    NASA Astrophysics Data System (ADS)

    Kaur, Savinder; Baluja, Kasturi L.; Bassi, Monika

    2017-11-01

    This comprehensive study reports the electron-impact on the open shell AlO molecule at low energy (less than 10 eV) using the R-matrix method. We present the elastic (integrated and differential), momentum-transfer, electronic excitation and ionisation cross sections; along with effective collision frequency over a wide electron temperature range (1000-100 000 K). Correlations via a configuration interaction technique are used to represent the target states. Calculations are performed in the static-exchange and 24-target states close-coupling approximation at the experimental bond length of 1.6178 Å. We have used different basis sets 6-311G*, double zeta, polarization (DZP), cc-pCVTZ to represent our target states. We have chosen the Gaussian Type Orbitals (GTOs) basis set DZP to represent the atomic orbitals which gave the best one-electron properties of the molecule. The calculated dipole moment (1.713 au), rotational constant (0.641399 cm-1) and the vertical excitation energies are in concurrence with the best available data. The continuum electron is also represented by GTOs and is placed at the center of mass of the molecule. Resonance analysis is carried out to assign the resonance parameters and the parentage of detected resonances by fitting the eigenphase sums to the Breit-Wigner profile. Our study has detected three core-excited shape resonances in the 24-state model. We detect a stable bound state of AlO- of 1 A 1 symmetry having configuration 1 σ 2 … 7 σ 21 π 42 π 4 with a vertical electronic affinity value of 2.59 eV which is in good accord with the experimental value of 2.6 ± (0.01) eV. The ionisation cross sections are calculated using the Binary-Encounter-Bethe Model in which Hartree-Fock molecular orbitals at self-consistent level are used to calculate kinetic and binding energies of the occupied molecular orbitals. We include partial waves up to g-wave beyond which Born closure method is employed to obtain converged cross sections.

  15. Magnetospheric Whistler Mode Raytracing with the Inclusion of Finite Electron and ion Temperature

    NASA Astrophysics Data System (ADS)

    Maxworth, Ashanthi S.

    Whistler mode waves are a type of a low frequency (100 Hz - 30 kHz) wave, which exists only in a magnetized plasma. These waves play a major role in Earth's magnetosphere. Due to the impact of whistler mode waves in many fields such as space weather, satellite communications and lifetime of space electronics, it is important to accurately predict the propagation path of these waves. The method used to determine the propagation path of whistler waves is called numerical raytracing. Numerical raytracing determines the power flow path of the whistler mode waves by solving a set of equations known as the Haselgrove's equations. In the majority of the previous work, raytracing was implemented assuming a cold background plasma (0 K), but the actual magnetosphere is at a temperature of about 1 eV (11600 K). In this work we have modified the numerical raytracing algorithm to work at finite electron and ion temperatures. The finite temperature effects have also been introduced into the formulations for linear cyclotron resonance wave growth and Landau damping, which are the primary mechanisms for whistler mode growth and attenuation in the magnetosphere. Including temperature increases the complexity of numerical raytracing, but the overall effects are mostly limited to increasing the group velocity of the waves at highly oblique wave normal angles.

  16. Effects of thermal annealing on the structural and optical properties of carbon-implanted SiO2.

    PubMed

    Poudel, P R; Paramo, J A; Poudel, P P; Diercks, D R; Strzhemechny, Y M; Rout, B; McDaniel, F D

    2012-03-01

    Amorphous carbon (a-C) nanoclusters were synthesized by the implantation of carbon ions (C-) into thermally grown silicon dioxide film (-500 nm thick) on a Si (100) wafer and processed by high temperature thermal annealing. The carbon ions were implanted with an energy of 70 keV at a fluence of 5 x 10(17) atoms/cm2. The implanted samples were annealed at 1100 degrees C for different time periods in a gas mixture of 96% Ar+4% H2. Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and High Resolution Transmission Electron Microscopy (HRTEM) were used to study the structural properties of both the as-implanted and annealed samples. HRTEM reveals the formation of nanostructures in the annealed samples. The Raman spectroscopy also confirms the formation of carbon nano-clusters in the samples annealed for 10 min, 30 min, 60 min and 90 min. No Raman features originating from the carbon-clusters are observed for the sample annealed further to 120 min, indicating a complete loss of implanted carbon from the SiO2 layer. The loss of the implanted carbon in the 120 min annealed sample from the SiO2 layer was also observed in the XPS depth profile measurements. Room temperature photoluminescence (PL) spectroscopy revealed visible emissions from the samples pointing to carbon ion induced defects as the origin of a broad 2.0-2.4 eV band, and the intrinsic defects in SiO2 as the possible origin of the -2.9 eV bands. In low temperature photoluminescence spectra, two sharp and intense photoluminescence lines at -3.31 eV and -3.34 eV appear for the samples annealed for 90 min and 120 min, whereas no such bands are observed in the samples annealed for 10 min, 30 min, and 60 min. The Si nano-clusters forming at the Si-SiO2 interface could be the origin of these intense peaks.

  17. Influence of Triply-Charged Ions and Ionization Cross-Sections in a Hybrid-PIC Model of a Hall Thruster Discharge

    NASA Technical Reports Server (NTRS)

    Smith, Brandon D.; Boyd, Iain D.; Kamhawi, Hani

    2014-01-01

    The sensitivity of xenon ionization rates to collision cross-sections is studied within the framework of a hybrid-PIC model of a Hall thruster discharge. A revised curve fit based on the Drawin form is proposed and is shown to better reproduce the measured crosssections at high electron energies, with differences in the integrated rate coefficients being on the order of 10% for electron temperatures between 20 eV and 30 eV. The revised fit is implemented into HPHall and the updated model is used to simulate NASA's HiVHAc EDU2 Hall thruster at discharge voltages of 300, 400, and 500 V. For all three operating points, the revised cross-sections result in an increase in the predicted thrust and anode efficiency, reducing the error relative to experimental performance measurements. Electron temperature and ionization reaction rates are shown to follow the trends expected based on the integrated rate coefficients. The effects of triply-charged xenon are also assessed. The predicted thruster performance is found to have little or no dependence on the presence of triply-charged ions. The fraction of ion current carried by triply-charged ions is found to be on the order of 1% and increases slightly with increasing discharge voltage. The reaction rates for the 0?III, I?III, and II?III ionization reactions are found to be of similar order of magnitude and are about one order of magnitude smaller than the rate of 0?II ionization in the discharge channel.

  18. Structural, optical, magnetic and electrical properties of hematite (α-Fe2O3) nanoparticles synthesized by two methods: polyol and precipitation

    NASA Astrophysics Data System (ADS)

    Mansour, Houda; Letifi, Hanen; Bargougui, Radhouane; De Almeida-Didry, Sonia; Negulescu, Beatrice; Autret-Lambert, Cécile; Gadri, Abdellatif; Ammar, Salah

    2017-12-01

    Hematite (α-Fe2O3) nanoparticles have been successfully synthesized via two methods: (1) polyol and (2) precipitation in water. The influence of synthesis methods on the crystalline structure, morphological, optical, magnetic and electrical properties were investigated using X-ray diffraction, RAMAN spectroscopy, scanning electron microscopy, transmission electron microscopy, UV-visible diffuse reflectance spectroscopy (UV-vis DRS), superconducting quantum interference device and impedance spectroscopy. The structural properties showed that the obtained hematite α-Fe2O3 nanoparticles with two preparation methods exhibit hexagonal phase with high crystallinity and high-phase stability at room temperature. It was found that the average hematite nanoparticle size is estimated to be 36.86 nm for the sample synthesized by precipitation and 54.14 nm for the sample synthesized by polyol. Moreover, the optical properties showed that the band gap energy value of α-Fe2O3 synthesized by precipitation (2.07 eV) was higher than that of α-Fe2O3 synthesized by polyol (1.97 eV) and they showed a red shift to the visible region. Furthermore, the measurements of magnetic properties indicated a magnetization loop typical of ferromagnetic systems at room temperature. Measurements of electrical properties show higher dielectric permittivity (5.64 × 103) and relaxation phenomenon for α-Fe2O3 issued from the precipitation method than the other sample.

  19. Structural and optical modification in 4H-SiC following 30 keV silver ion irradiation

    NASA Astrophysics Data System (ADS)

    Kaushik, Priya Darshni; Aziz, Anver; Siddiqui, Azher M.; Lakshmi, G. B. V. S.; Syväjärvi, Mikael; Yakimova, Rositsa; Yazdi, G. Reza

    2018-05-01

    The market of high power, high frequency and high temperature based electronic devices is captured by SiC due to its superior properties like high thermal conductivity and high sublimation temperature and also due to the limitation of silicon based electronics in this area. There is a need to investigate effect of ion irradiation on SiC due to its application in outer space as outer space is surrounded both by low and high energy ion irradiations. In this work, effect of low energy ion irradiation on structural and optical property of 4H-SiC is investigated. ATR-FTIR is used to study structural modification and UV-Visible spectroscopy is used to study optical modifications in 4H-SiC following 30 keV Ag ion irradiation. FTIR showed decrease in bond density of SiC along the ion path (track) due to the creation of point defects. UV-Visible absorption spectra showed decrease in optical band gap from 3.26 eV to 2.9 eV. The study showed degradation of SiC crystallity and change in optical band gap following low energy ion irradiation and should be addressed while fabricationg devices based on SiC for outer space application. Additionally, this study provides a platform for introducing structural and optical modification in 4H-SiC using ion beam technology in a controlled manner.

  20. Doping induced modifications in the electronic structure and magnetism of ZnO films: Valence band and conduction band studies

    NASA Astrophysics Data System (ADS)

    Katba, Savan; Jethva, Sadaf; Udeshi, Malay; Trivedi, Priyanka; Vagadia, Megha; Shukla, D. K.; Choudhary, R. J.; Phase, D. M.; Kuberkar, D. G.

    2017-11-01

    The electronic structure of Pulsed Laser Deposited (PLD) ZnO, Zn0.95Fe0.05O (ZFO), Zn0.98Al0.02O (ZAO) and Zn0.93Fe0.05Al0.02O (ZFAO) films were investigated by Photoelectron spectroscopy and X-ray absorption spectroscopy. X-ray diffraction and ϕ-scan measurements show epitaxial c-directional growth of the films. Temperature dependent magnetization and M-H loop measurements show the presence of room temperature magnetic ordering in all the films. Fittings of Fe 2p XPS and Fe L3,2 -edge XAS of ZFO and ZFAO films show the presence of Fe, in both, Fe+2 and Fe+3 states in tetrahedral symmetry. Valence band spectra in resonance mode show resonance photon energy at 56 eV showing the presence of Fe2+ state (∼2 eV) near the Fermi level. A significant effect of Fe and Al doping on the spectral shape of O K-edge XAS was observed. Results of the Spectroscopic studies reveal that, ferromagnetism in the films is due to the contribution of oxygen deficiency which increases the number of charge carriers that take part in the exchange interaction. Al co-doping with Fe (in ZFAO) results in the enhancement of saturation magnetization by increase in the carrier-mediated ferromagnetic exchange interaction.

Top