Inverted Three-Junction Tandem Thermophotovoltaic Modules
NASA Technical Reports Server (NTRS)
Wojtczuk, Steven
2012-01-01
An InGaAs-based three-junction (3J) tandem thermophotovoltaic (TPV) cell has been investigated to utilize more of the blackbody spectrum (from a 1,100 C general purpose heat source GPHS) efficiently. The tandem consists of three vertically stacked subcells, a 0.74-eV InGaAs cell, a 0.6- eV InGaAs cell, and a 0.55-eV InGaAs cell, as well as two interconnecting tunnel junctions. A greater than 20% TPV system efficiency was achieved by another group with a 1,040 C blackbody using a single-bandgap 0.6- eV InGaAs cell MIM (monolithic interconnected module) (30 lateral junctions) that delivered about 12 V/30 or 0.4 V/junction. It is expected that a three-bandgap tandem MIM will eventually have about 3 this voltage (1.15 V) and about half the current. A 4 A/cm2 would be generated by a single-bandgap 0.6-V InGaAs MIM, as opposed to the 2 A/cm2 available from the same spectrum when split among the three series-connected junctions in the tandem stack. This would then be about a 50% increase (3xVoc, 0.5xIsc) in output power if the proposed tandem replaced the single- bandgap MIM. The advantage of the innovation, if successful, would be a 50% increase in power conversion efficiency from radioisotope heat sources using existing thermophotovoltaics. Up to 50% more power would be generated for radioisotope GPHS deep space missions. This type of InGaAs multijunction stack could be used with terrestrial concentrator solar cells to increase efficiency from 41 to 45% or more.
NASA Technical Reports Server (NTRS)
Sinharoy, Samar; Patton, Martin O.; Valko, Thomas M., Sr.; Weizer, Victor G.
2002-01-01
Theoretical calculations have shown that highest efficiency III-V multi-junction solar cells require alloy structures that cannot be grown on a lattice-matched substrate. Ever since the first demonstration of high efficiency metamorphic single junction 1.1 eV and 1.2 eV InGaAs solar cells by Essential Research Incorporated (ERI), interest has grown in the development of multi-junction cells of this type using graded buffer layer technology. ERI is currently developing a dual-junction 1.6 eV InGaP/1.1 eV InGaAs tandem cell (projected practical air-mass zero (AM0), one-sun efficiency of 28%, and 100-sun efficiency of 37.5%) under a Ballistic Missile Defense Command (BMDO) SBIR Phase II program. A second ongoing research effort at ERI involves the development of a 2.1 eV AlGaInP/1.6 eV InGaAsP/1.2 eV InGaAs triple-junction concentrator tandem cell (projected practical AM0 efficiency of 36.5% under 100 suns) under a SBIR Phase II program funded by the Air Force. We are in the process of optimizing the dual-junction cell performance. In case of the triple-junction cell, we have developed the bottom and the middle cell, and are in the process of developing the layer structures needed for the top cell. A progress report is presented in this paper.
NASA Technical Reports Server (NTRS)
Wilt, David M.; Fatemi, Navid S.; Jenkins, Phillip P.; Weizer, Victor G.; Hoffman, Richard W., Jr.; Jain, Raj K.; Murray, Christopher S.; Riley, David R.
1997-01-01
There has been a traditional trade-off in thermophotovoltaic (TPV) energy conversion development between system efficiency and power density. This trade-off originates from the use of front surface spectral controls such as selective emitters and various types of filters. A monolithic interconnected module (MIM) structure has been developed which allows for both high power densities and high system efficiencies. The MIM device consists of many individual indium gallium arsenide (InGaAs) cells series-connected on a single semi-insulating indium phosphide (InP) substrate. The MIM is exposed to the entire emitter output, thereby maximizing output power density. An infrared (IR) reflector placed on the rear surface of the substrate returns the unused portion of the emitter output spectrum back to the emitter for recycling, thereby providing for high system efficiencies. Initial MIM development has focused on a 1 sq cm device consisting of eight (8) series interconnected cells. MIM devices, produced from 0.74-eV InGaAs, have demonstrated V(sub oc) = 3.2 volts, J(sub sc) = 70 mA/sq cm, and a fill factor of 66% under flashlamp testing. Infrared (IR) reflectance measurements (greater than 2 micron) of these devices indicate a reflectivity of greater than 82%. MIM devices produced from 0.55-eV InGaAs have also been demonstrated. In addition, conventional p/n InGaAs devices with record efficiencies (11.7% AM0) have been demonstrated.
Buffer Layer Effects on Tandem InGaAs TPV Devices
NASA Technical Reports Server (NTRS)
Wilt, David M.; Wehrer, Rebecca J.; Maurer, William F.
2004-01-01
Single junction indium gallium arsenide (InGaAs) based TPV devices have demonstrated efficiencies in excess of 20% at radiator temperatures of 1058 C. Modeling suggests that efficiency improvements in single bandgap devices should continue although they will eventually plateau. One approach for extending efficiencies beyond the single bandgap limit is to follow the technique taken in the solar cell field, namely tandem TPV cells. Tandem photovoltaic devices are traditionally composed of cells of decreasing bandgap, connected electrically and optically in series. The incident light impinges upon the highest bandgap first. This device acts as a sieve, absorbing the high-energy photons, while allowing the remainder to pass through to the underlying cell(s), and so on. Tandem devices reduce the energy lost to overexcitation as well as reducing the current density (Jsc). Reduced Jsc results in lower resistive losses and enables the use of thinner and lower doped lateral current conducting layers as well as a higher pitch grid design. Fabricating TPV tandem devices utilizing InGaAs for all of the component cells in a two cell tandem necessitates the inclusion of a buffer layer in-between the high bandgap device (In0.53 Ga0.47As - 0.74eV) and the low bandgap device (In0.66Ga0.34As - 0.63eV) to accommodate the approximately 1% lattice strain generated due to the change in InGaAs composition. To incorporate only a single buffer layer structure, we have investigated the use of the indium phosphide (InP) substrate as a superstrate. Thus the high-bandgap, lattice- matched device is deposited first, followed by the buffer structure and the low-bandgap cell. The near perfect transparency of the high bandgap (1.35eV) iron-doped InP permits the device to be oriented such that the light enters through the substrate. In this paper we examine the impact of the buffer layer on the underlying lattice-matched InGaAs device. 0.74eV InGaAs devices were produced in a variety of configurations both with and without buffer layers. All structures were characterized by reciprocal space x-ray diffraction to determine epilayer composition and residual strain. Electrical characterization of the devices was performed to examine the effect of the buffer on the device performance. The effect of the buffer structure depends upon where it is positioned. When near the emitter region, a 2.6x increase in dark current was measured, whereas no change in dark current was observed when it was near the base region.
NASA Technical Reports Server (NTRS)
Partain, L. D.; Chung, B.-C.; Virshup, G. F.; Schultz, J. C.; Macmillan, H. F.; Ristow, M. Ladle; Kuryla, M. S.; Bertness, K. A.
1991-01-01
Component efficiencies of 0.2/sq cm cells at approximately 100x AMO light concentration and 80 C temperatures are not at 15.3 percent for a 1.9 eV AlGaAs top cell, 9.9 percent for a 1.4 eV GaAs middle cell under a 1.9 eV AlGaAs filter, and 2.4 percent for a bottom 1.0 eV InGaAs cell under a GaAs substrate. The goal is to continue improvement in these performance levels and to sequentially grow these devices on a single substrate to give 30 percent efficient, monolithic, two-terminal, three-junction space concentrator cells. The broad objective is a 30 percent efficient monolithic two-terminal cell that can operate under 25 to 100x AMO light concentrations and at 75 to 100 C cell temperatures. Detailed modeling predicts that this requires three junctions. Two options are being pursued, and both use a 1.9 eV AlGaAs top junction and a 1.4 eV GaAs middle junction grown by a 1 atm OMVPE on a lattice matched substrate. Option 1 uses a low-doped GaAs substrate with a lattice mismatched 1.0 eV InGaAs cell formed on the back of the substrate. Option 2 uses a Ge substrate to which the AlGaAs and GaAs top junctions are lattice matched, with a bottom 0.7 eV Ge junction formed near the substrate interface with the GaAs growth. The projected efficiency contributions are near 16, 11, and 3 percent, respectively, from the top, middle, and bottom junctions.
Modeling of defect tolerance of IMM multijunction photovoltaics for space application
NASA Astrophysics Data System (ADS)
Mehrotra, Akhil; Freundlich, Alex
2013-03-01
Reduction of defects by use of thick sophisticated graded metamorphic buffers in inverted metamorphic solar cells has been a requirement to obtain high efficiency devices. With increase in number of metamorphic junctions to obtain higher efficiencies, these graded buffers constitute a significant part of growth time and cost for manufacturer of the solar cells. It's been shown that ultrathin 3 and 4 junction IMM devices perform better in presence of dislocations or/and radiation harsh environment compared to conventional thick IMM devices. Thickness optimization of the device would result in better defect and radiation tolerant behavior of 0.7ev and 1.0ev InGaAs sub-cells which would in turn require thinner buffers with higher efficiencies, hence reducing the total device thickness. It is also shown that for 3 and 4 junc. IMM, with an equivalent 1015 cm-2 1 MeV electron fluence radiation, very high EOL efficiencies can be afforded with substantially higher dislocation densities (<2×107 cm-2) than those commonly perceived as acceptable for IMM devices with remaining power factor as high as 0.85. The irregular radiation degradation behavior in 4-junc IMM is also explained by back photon reflection from gold contacts and reduced by using thickness optimization of 0.7ev and 1.0ev InGaAs sub-cells.
Indium Phosphide Window Layers for Indium Gallium Arsenide Solar Cells
NASA Technical Reports Server (NTRS)
Jain, Raj K.
2005-01-01
Window layers help in reducing the surface recombination at the emitter surface of the solar cells resulting in significant improvement in energy conversion efficiency. Indium gallium arsenide (In(x)Ga(1-x)As) and related materials based solar cells are quite promising for photovoltaic and thermophotovoltaic applications. The flexibility of the change in the bandgap energy and the growth of InGaAs on different substrates make this material very attractive for multi-bandgap energy, multi-junction solar cell approaches. The high efficiency and better radiation performance of the solar cell structures based on InGaAs make them suitable for space power applications. This work investigates the suitability of indium phosphide (InP) window layers for lattice-matched In(0.53)Ga(0.47)As (bandgap energy 0.74 eV) solar cells. We present the first data on the effects of the p-type InP window layer on p-on-n lattice-matched InGaAs solar cells. The modeled quantum efficiency results show a significant improvement in the blue region with the InP window. The bare InGaAs solar cell performance suffers due to high surface recombination velocity (10(exp 7) cm/s). The large band discontinuity at the InP/InGaAs heterojunction offers a great potential barrier to minority carriers. The calculated results demonstrate that the InP window layer effectively passivates the solar cell front surface, hence resulting in reduced surface recombination and therefore, significantly improving the performance of the InGaAs solar cell.
Multijunction InGaAs thermophotovoltaic devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fatemi, N.S.; Jenkins, P.P.; Weizer, V.G.
1998-12-31
A monolithic interconnected module (MIM) structure has been developed for thermophotovoltaic (TPV) applications. The MIM consists of many individual InGaAs cells series-connected on a single semi-insulating (S.I.) InP substrate. An infrared (IR) back surface reflector (BSR), placed on the rear surface of the substrate, returns the unused portion of the TPV radiator output spectrum back to the radiator for recuperation, thereby providing for high system efficiencies. MIMs were fabricated with an active area of 0.9 {times} 1 cm, and with 15 cells monolithically connected in series. Both lattice-matched and lattice-mismatched InGaAs/InP devices were fabricated, with bandgaps of 0.74 and 0.55more » eV, respectively. The 0.74 eV MIMs demonstrated an open-circuit voltage (Voc) of 6.16 V and a fill factor of 74.2% at a short-circuit current (Jsc) of 0.84 A/cm{sup 2}, under flashlamp testing. The 0.55 eV MIMs demonstrated a Voc of 4.85 V and a fill factor of 57.8% at a Jsc of 3.87 A/cm{sup 2}. Electrical performance results for these MIMs are presented.« less
High-performance, lattice-mismatched InGaAs/InP monolithic interconnected modules (MIMs)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fatemi, Navid S.; Wilt, David M.; Hoffman, Richard W., Jr.
1998-10-01
High performance, lattice-mismatched p/n InGaAs/lnP monolithic interconnected module (MIM) structures were developed for thermophotovoltaic (TPV) applications. A MIM device consists of several individual InGaAs photovoltaic (PV) cells series-connected on a single semi-insulating (S.I.) InP substrate. Both interdigitated and conventional (i.e., non-interdigitated) MIMs were fabricated. The energy bandgap (Eg) for these devices was 0.60 eV. A compositionally step-graded InPAs buffer was used to accommodate a lattice mismatch of 1.1% between the active InGaAs cell structure and the InP substrate. 1x1-cm, 15-cell, 0.60-eV MIMs demonstrated an open-circuit voltage (Voc) of 5.2 V (347 mV per cell) and a fill factor of 68.6%more » at a short-circuit current density (Jsc) of 2.0 A/cm{sup 2}, under flashlamp testing. The reverse saturation current density (Jo) was 1.6x10{sup {minus}6} A/cm{sup 2}. Jo values as low as 4.1x10{sup {minus}7} A/cm{sup 2} were also observed with a conventional planar cell geometry.« less
InGaAs/InP Monolithic Interconnected Modules (MIM) for Thermophotovoltaic Applications
NASA Technical Reports Server (NTRS)
Wilt, David M.; Fatemi, Navid S.; Jenkins, Phillip P.; Weizer, Victor G.; Hoffman, Richard W., Jr.; Scheiman, David A.; Murray, Christopher S.; Riley, David R.
2004-01-01
There has been a traditional trade-off in thermophotovoltaic (TPV) energy conversion development between systems efficiency and power density. This trade-off originates from the use of front surface spectral controls such as selective emitters and various types of filters. A monolithic interconnected module (MIM) structure has been developed which allows for both high power densities and high system efficiencies. The MIM device consists of many individual indium gallium arsenide (InGaAs) devices series -connected on a single semi-insulating indium phosphide (InP) substrate. The MIMs are exposed to the entire emitter output, thereby maximizing output power density. An infrared (IR) reflector placed on the rear surface of the substrate returns the unused portion of the emitter output spectrum back to the emitter for recycling, thereby providing for high system efficiencies. Initial MIM development has focused on a 1 sq cm device consisting of eight series interconnected cells. MIM devices, produced from 0,74 eV InGAAs, have demonstrated V(sub infinity) = 3.23 volts, J(sub sc) = 70 mA/sq cm and a fill factor of 66% under flashlamp testing. Infrared (IR) reflectance measurement (less than 2 microns) of these devices indicate a reflectivity of less than 82%. MIM devices produced from 0.55 eV InGaAs have also been den=monstrated. In addition, conventional p/n InGaAs devices with record efficiencies (11.7% AM1) have been demonstrated.
High-performance, lattice-mismatched InGaAs/InP monolithic interconnected modules (MIMs)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fatemi, Navid S.; Wilt, David M.; Hoffman, Richard W.
1999-03-01
High performance, lattice-mismatched p/n InGaAs/InP monolithic interconnected module (MIM) structures were developed for thermophotovoltaic (TPV) applications. A MIM device consists of several individual InGaAs photovoltaic (PV) cells series-connected on a single semi-insulating (S.I.) InP substrate. Both interdigitated and conventional (i.e., non-interdigitated) MIMs were fabricated. The energy bandgap (Eg) for these devices was 0.60 eV. A compositionally step-graded InPAs buffer was used to accommodate a lattice mismatch of 1.1{percent} between the active InGaAs cell structure and the InP substrate. 1{times}1-cm, 15-cell, 0.60-eV MIMs demonstrated an open-circuit voltage (Voc) of 5.2 V (347 mV per cell) and a fill factor of 68.6{percent}more » at a short-circuit current density (Jsc) of 2.0 A/cm{sup 2}, under flashlamp testing. The reverse saturation current density (Jo) was 1.6{times}10{sup {minus}6}&hthinsp;A/cm{sup 2}. Jo values as low as 4.1{times}10{sup {minus}7}&hthinsp;A/cm{sup 2} were also observed with a conventional planar cell geometry. {copyright} {ital 1999 American Institute of Physics.}« less
Development of a Quantum Dot, 0.6 eV InGaAs Thermophotovoltaic (TPV) Converter
NASA Technical Reports Server (NTRS)
Forbes, David; Sinharoy, Samar; Raffalle, Ryne; Weizer, Victor; Homann, Natalie; Valko, Thomas; Bartos,Nichole; Scheiman, David; Bailey, Sheila
2007-01-01
Thermophotovoltaic (TPV) power conversion has to date demonstrated conversion efficiencies exceeding 20% when coupled to a heat source. Current III-V semiconductor TPV technology makes use of planar devices with bandgaps tailored to the heat source. The efficiency can be improved further by increasing the collection efficiency through the incorporation of InAs quantum dots. The use of these dots can provide sub-gap absorption and thus improve the cell short circuit current without the normal increase in dark current associated with lowering the bandgap. We have developed self-assembled InAs quantum dots using the Stranski-Krastanov growth mode on 0.74 eV In0.53GaAs lattice-matched to InP and also on lattice-mismatched 0.6 eV In0.69GaAs grown on InP through the use of a compositionally graded InPAsx buffer structure, by metalorganic vapor phase epitaxy (MOVPE). Atomic force microscopy (AFM) measurements showed that the most reproducible dot pattern was obtained with 5 monolayers of InAs grown at 450 C. The lattice mismatch between InAs and In0.69GaAs is only 2.1%, compared to 3.2% between InAs and In0.53GaAs. The smaller mismatch results in lower strain, making dot formation somewhat more complicated, resulting in quantum dashes, rather than well defined quantum dots in the lattice-mismatched case. We have fabricated 0.6 eV InGaAs planer TPV cells with and without the quantum dashes
InGaAs monolithic interconnected modules (MIM)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fatemi, N.S.; Jenkins, P.P.; Weizer, V.G.
1997-12-31
A monolithic interconnected module (MIM) structure has been developed for thermophotovoltaic (TPV) applications. The MIM device consists of many individual InGaAs cells series-connected on a single semi-insulating (S.I.) InP substrate. An infrared (IR) back surface reflector (BSR), placed on the rear surface of the substrate, returns the unused portion of the TPV radiator output spectrum back to the emitter for recycling, thereby providing for high system efficiencies. Also, the use of a BSR obviates the need to use a separate filtering element. As a result, MIMs are exposed to the entire emitter output, thereby maximizing output power density. MIMs withmore » an active area of 1 x 1-cm were comprised of 15 cells monolithically connected in series. Both lattice-matched and lattice-mismatched InGaAs/InP devices were produced, with bandgaps of 0.74 and 0.55 eV, respectively. The 0.74-eV modules demonstrated an open-circuit voltage (Voc) of 6.158 V and a fill factor of 74.2% at a short-circuit current (Jsc) of 842 mA/cm{sup 2}, under flashlamp testing. The 0.55-eV modules demonstrated a Voc of 4.849 V and a fill factor of 57.8% at a Jsc of 3.87 A/cm{sup 2}. IR reflectance measurements (i.e., {lambda} > 2 {micro}m) of these devices indicated a reflectivity of {ge} 83%. Latest electrical and optical performance results for the MIMs will be presented.« less
InGaAs monolithic interconnected modules (MIMs)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fatemi, N.S.; Jenkins, P.P.; Weizer, V.G.
1997-12-31
A monolithic interconnected module (MIM) structure has been developed for thermophotovoltaic (TPV) applications. The MIM device consists of many individual InGaAs cells series-connected on a single semi-insulating (S.I.) InP substrate. An infrared (IR) back surface reflector (BSR), placed on the rear surface of the substrate, returns the unused portion of the TPV radiator output spectrum back to the radiator for recuperation, thereby providing for high system efficiencies. Also, the use of a BSR reduces the requirements imposed on a front surface interference filter and may lead to using only an anti-reflection coating. As a result, MIMs are exposed to themore » entire radiator output, and with increasing output power density. MIMs were fabricated with an active area of 0.9 x 1 cm, and with 15 cells monolithically connected in series. Both lattice-matched and lattice-mismatched InGaAs/InP devices were fabricated, with bandgaps of 0.74 and 0.55 eV, respectively. The 0.74 eV MIMs demonstrated an open-circuit voltage (Voc) of 6.16 V and a fill factor of 74.2% at a short-circuit current (Jsc) of 0.84 A/cm{sup 2}, under flashlamp testing. The 0.55 eV modules demonstrated a Voc of 4.85 V and a fill factor of 57.8% at a Jsc of 3.87 A/cm{sup 2}. The near IR reflectance (2--4 {micro}m) for both lattice-matched and lattice-mismatched structures was measured to be in the range of 80--85%. Latest electrical and optical performance results for these MIMs is presented.« less
Triple and Quadruple Junctions Thermophotovoltaic Devices Lattice Matched to InP
NASA Technical Reports Server (NTRS)
Bhusal, L.; Freundlich, A.
2007-01-01
Thermophotovoltaic (TPV) conversion of IR radiation emanating from a radioisotope heat source is under consideration for deep space exploration. Ideally, for radiator temperatures of interest, the TPV cell must convert efficiently photons in the 0.4-0.7 eV spectral range. Best experimental data for single junction cells are obtained for lattice-mismatched 0.55 eV InGaAs based devices. It was suggested, that a tandem InGaAs based TPV cell made by monolithically combining two or more lattice mismatched InGaAs subcells on InP would result in a sizeable efficiency improvement. However, from a practical standpoint the implementation of more than two subcells with lattice mismatch systems will require extremely thick graded layers (defect filtering systems) to accommodate the lattice mismatch between the sub-cells and could detrimentally affect the recycling of the unused IR energy to the emitter. A buffer structure, consisting of various InPAs layers, is incorporated to accommodate the lattice mismatch between the high and low bandgap subcells. There are evidences that the presence of the buffer structure may generate defects, which could extend down to the underlying InGaAs layer. The unusual large band gap lowering observed in GaAs(1-x)N(x) with low nitrogen fraction [1] has sparked a new interest in the development of dilute nitrogen containing III-V semiconductors for long-wavelength optoelectronic devices (e.g. IR lasers, detector, solar cells) [2-7]. Lattice matched Ga1-yInyNxAs1-x on InP has recently been investigated for the potential use in the mid-infrared device applications [8], and it could be a strong candidate for the applications in TPV devices. This novel quaternary alloy allows the tuning of the band gap from 1.42 eV to below 1 eV on GaAs and band gap as low as 0.6eV when strained to InP, but it has its own limitations. To achieve such a low band gap using the quaternary Ga1-yInyNxAs1-x, either it needs to be strained on InP, which creates further complications due to the creation of defects and short life of the device or to introduce high content of indium, which again is found problematic due to the difficulties in diluting nitrogen in the presence of high indium [9]. An availability of material of proper band gap and lattice matching on InP are important issues for the development of TPV devices to perform better. To address those issues, recently we have shown that by adjusting the thickness of individual sublayers and the nitrogen composition, strain balanced GaAs(1-x)N(x)/InAs(1-y)N(y) superlattice can be designed to be both lattice matched to InP and have an effective bandgap in the desirable 0.4- 0.7eV range [10,11]. Theoretically the already reduced band gap of GaAs(1-x)N(x), due to the nitrogen effects, can be further reduced by subjecting it to a biaxial tensile strain, for example, by fabricating pseudomorphically strained layers on commonly available InP substrates. While such an approach in principle could allow access to smaller band gap (longer wavelength), only a few atomic monolayers of the material can be grown due to the large lattice mismatch between GaAs(1-x)N(x) and InP (approx.3.8-4.8 % for x<0.05, 300K). This limitation can be avoided using the principle of strain balancing [12], by introducing the alternating layers of InAs(1-y)N(y) with opposite strain (approx.2.4-3.1% for x<0.05, 300K) in combination with GaAs(1-x)N(x). Therefore, even an infinite pseudomorphically strained superlattice thickness can be realized from a sequence of GaAs(1-x)N(x) and InAs(1-y)N(y) layers if the thickness of each layer is kept below the threshold for its lattice relaxation
Growth of indium gallium arsenide thin film on silicon substrate by MOCVD technique
NASA Astrophysics Data System (ADS)
Chowdhury, Sisir; Das, Anish; Banerji, Pallab
2018-05-01
Indium gallium arsenide (InGaAs) thin film with indium phosphide (InP) buffer has been grown on p-type silicon (100) by Metal Organic Chemical Vapor Deposition (MOCVD) technique. To get a lattice matched substrate an Indium Phosphide buffer thin film is deposited onto Si substrate prior to InGaAs growth. The grown films have been investigated by UV-Vis-NIR reflectance spectroscopy. The band gap energy of the grown InGaAs thin films determined to be 0.82 eV from reflectance spectrum and the films are found to have same thickness for growth between 600 °C and 650 °C. Crystalline quality of the grown films has been studied by grazing incidence X-ray diffractometry (GIXRD).
Life test of the InGaAs focal plane arrays detector for space applications
NASA Astrophysics Data System (ADS)
Zhu, Xian-Liang; Zhang, Hai-Yan; Li, Xue; Huang, Zhang-Cheng; Gong, Hai-Mei
2017-08-01
The short-wavelength infrared (SWIR) InGaAs focal plane array (FPA) detector consists of infrared detector chip, readout integrated circuit (ROIC), and flip-chip bonding interconnection by Indium bump. In order to satisfy space application requirements for failure rates or Mean Time to Failure (MTTF), which can only be demonstrated with the large number of detectors manufactured, the single pixel in InGaAs FPAs was chosen as the research object in this paper. The constant-stress accelerated life tests were carried out at 70°C 80°C 90°C and100°C. The failed pixels increased gradually during more than 14000 hours at each elevated temperatures. From the random failure data the activation energy was estimated to be 0.46eV, and the average lifetime of a single pixel in InGaAs FPAs was estimated to be longer than 1E+7h at the practical operating temperature (5°C).
Characterization and Analysis of Multi-Quantum Well Solar Cells
NASA Astrophysics Data System (ADS)
Bradshaw, Geoffrey Keith
Multijunction (MJ) photovoltaics are the most efficient solar cells today. Under sufficient solar concentration, these devices can achieve over 44% efficiency, roughly twenty percentage points higher than single crystal silicon based solar cells. Current records for triple junction (3J) multijunction cells are being challenged and broken regularly. However, it is unclear at this time which method of device growth will ultimately produce an efficiency that approaches the Shockley-Queisser limit. Lattice-matched (LM) MJ cells offer benefits over metamorphic and/or inverted metamorphic cells in that the device can be grown continuously, require no extra fabrication steps, and will ultimate produce the highest material quality throughout all junctions. The efficiency of current 3JMJ cells composed of GaInP(1.8eV)/(In)GaAs(1.4eV)/Ge(0.7eV) is limited by the bandgap combination used in the structure. The low energy bandgap bottom Ge cell produces roughly twice as much current as the middle GaAs cell and results in a current mismatch that limits the total current and thus total efficiency. By replacing the middle GaAs subcell with a 1-1.2eV subcell, the current mismatch could be alleviated and the efficiency enhanced. Unfortunately, there are no semiconductors lattice-matched to GaAs/Ge with this bandgap. InGaAs, which has a larger lattice constant than GaAs/Ge, can be grown with the appropriate bandgap, but due to compressive stresses introduced during growth the thickness that can be grown is limited to tens of nanometers, thus limiting absorption and current production. However, by growing layers of tensile strained GaAsP with appropriate thickness and composition, the stresses introduced by the InGaAs can be balanced. By repeating this process and inserting these layers into the intrinsic region of the GaAs middle subcell, a low bandgap material with an effective lattice constant equal to that of GaAs is introduced while maintaining lattice-matching conditions. The InGaAs layers form quantum well capable of absorbing lower energy wavelengths than GaAs which leads to an increase in current. Absorption due to quantum wells is proportional to the number of quantum wells in the intrinsic region. Therefore, in order to grow the maximum number of the absorbing quantum wells within the background doping limited intrinsic region, it is necessary to reduce the width of the non-absorbing GaAsP barriers to as thin as possible. The research presented within shows this concept by exploring the fabrication and electrical characterization of these quantum well devices when balanced with ultra-thin GaAsP layers with very high phosphorus content (˜75-80%). By reducing the width of the barriers to approximately 30 A, tunneling of carriers dominates carrier transport across the structure as opposed to the traditional quantum well approach with very thick, low phosphorus GaAsP barriers that rely on thermionic emission of carriers to escape the InGaAs quantum wells. This research shows the strong effect and sensitivity to not only the thickness the GaAsP barriers, but also to the polarity of the device and the dependence of electric field. As well widths are decreased, quantum confinement of carriers within the InGaAs quantum wells increases. This leads to a blue-shift in the wavelengths of light absorbed and limits the current gain potential of the quantum well structure. To combat this blue-shift, the staggered MQW is introduced. The staggering technique can be use to not only improve wavelength absorption extension, but also lead to an enhancement in the absorption coefficient. These structures were also included into a GaInP/GaAs(MQW) tandem device to see the effects of the structure on the GaInP top cell.
NASA Astrophysics Data System (ADS)
Krylov, Igor; Kornblum, Lior; Gavrilov, Arkady; Ritter, Dan; Eizenberg, Moshe
2012-04-01
Temperature dependent capacitance-voltage (C-V) and conductance-voltage (G-V) measurements were performed to obtain activation energies (EA) for weak inversion C-V humps and parallel conductance peaks in Al2O3/InGaAs and Si3N4/InGaAs gate stacks. Values of 0.48 eV (slightly more than half of the band gap of the studied In0.53Ga0.47As) were obtained for EA of both phenomena for both gate dielectrics studied. This indicates an universal InGaAs behavior and shows that both phenomena are due to generation-recombination of minority carriers through near midgap located interface states. The C-V hump correlates with the interface states density (Dit) and can be used as a characterization tool for dielectric/InGaAs systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zahari, Suhaila Mohd; Norizan, Mohd Natashah; Mohamad, Ili Salwani
2015-05-15
The work presented in this paper is about the development of single and multilayer solar cells using GaAs and InGaAs in AM1.5 condition. The study includes the modeling structure and simulation of the device using Silvaco applications. The performance in term of efficiency of Indium Gallium Arsenide (InGaAs) and GaAs material was studied by modification of the doping concentration and thickness of material in solar cells. The efficiency of the GaAs solar cell was higher than InGaAs solar cell for single layer solar cell. Single layer GaAs achieved an efficiency about 25% compared to InGaAs which is only 2.65% ofmore » efficiency. For multilayer which includes both GaAs and InGaAs, the output power, P{sub max} was 8.91nW/cm² with the efficiency only 8.51%. GaAs is one of the best materials to be used in solar cell as a based compared to InGaAs.« less
NASA Astrophysics Data System (ADS)
Wang, L. S.; Xu, J. P.; Liu, L.; Lu, H. H.; Lai, P. T.; Tang, W. M.
2015-03-01
InGaAs metal-oxide-semiconductor (MOS) capacitors with composite gate dielectric consisting of Ti-based oxynitride (TiON)/Ta-based oxynitride (TaON) multilayer are fabricated by RF sputtering. The interfacial and electrical properties of the TiON/TaON/InGaAs and TaON/TiON/InGaAs MOS structures are investigated and compared. Experimental results show that the former exhibits lower interface-state density (1.0 × 1012 cm-2 eV-1 at midgap), smaller gate leakage current (9.5 × 10-5 A/cm2 at a gate voltage of 2 V), larger equivalent dielectric constant (19.8), and higher reliability under electrical stress than the latter. The involved mechanism lies in the fact that the ultrathin TaON interlayer deposited on the sulfur-passivated InGaAs surface can effectively reduce the defective states and thus unpin the Femi level at the TaON/InGaAs interface, improving the electrical properties of the device.
Dielectric function of InGaAs in the visible
NASA Technical Reports Server (NTRS)
Alterovitz, S. A.; Sieg, R. E.; Yao, H. D.; Snyder, P. G.; Woollam, J. A.; Pamulapati, J.; Bhattacharya, P. K.; Sekula-Moise, P. A.
1990-01-01
Measurements are reported of the dielectric function of thermodynamically stable In(x)Ga(1-x)As in the composition range 0.3 equal to or less than X = to or less than 0.7. The optically thick samples of InGaAs were made by molecular beam epitaxy (MBE) in the range 0.4 = to or less than X = to or less than 0.7 and by metal-organic chemical vapor deposition (MOCVD) for X = 0.3. The MBE made samples, usually 1 micron thick, were grown on semi-insulating InP and included a strain release structure. The MOCVD sample was grown on GaAs and was 2 microns thick. The dielectric functions were measured by variable angle spectroscopic ellipsometry in the range 1.55 to 4.4 eV. The data was analyzed assuming an optically thick InGaAs material with an oxide layer on top. The thickness of this layer was estimated by comparing the results for the InP lattice matched material, i.e., X = 0.53, with results published in the literature. The top oxide layer mathematically for X = 0.3 and X = 0.53 was removed to get the dielectric function of the bare InGaAs. In addition, the dielectric function of GaAs in vacuum, after a protective arsenic layer was removed. The dielectric functions for X = 0, 0.3, and 0.53 together with the X = 1 result from the literature to evaluate an algorithm for calculating the dielectric function of InGaAs for an arbitrary value of X(0 = to or less than X = to or less than 1) were used. Results of the dielectric function calculated using the algorithm were compared with experimental data.
Dielectric function of InGaAs in the visible
NASA Technical Reports Server (NTRS)
Alterovitz, S. A.; Yao, H. D.; Snyder, P. G.; Woolam, J. A.; Pamulapati, J.; Bhattacharya, P. K.; Sekula-Moise, P. A.; Sieg, R. E.
1990-01-01
Measurements are reported of the dielectric function of thermodynamically stable In(x)Ga(1-x)As in the composition range 0.3 equal to or less than X = to or less than 0.7. The optically thick samples of InGaAs were made by molecular beam epitaxy (MBE) in the range 0.4 = to or less than X = to or less than 0.7 and by metal-organic chemical vapor deposition (MOCVD) for X = 0.3. The MBE made samples, usually 1 micron thick, were grown on semi-insulating InP and included a strain release structure. The MOCVD sample was grown on GaAs and was 2 microns thick. The dielectric functions were measured by variable angle spectroscopic ellipsometry in the range 1.55 to 4.4 eV. The data was analyzed assuming an optically thick InGaAs material with an oxide layer on top. The thickness of this layer was estimated by comparing the results for the InP lattice matched material, i.e., X = 0.53, with results published in the literature. The top oxide layer mathematically for X = 0.3 and X = 0.53 was removed to get the dielectric function of the bare InGaAs. In addition, the dielectric function of GaAs in vacuum, after a protective arsenic layer was removed. The dielectric functions for X = 0, 0.3, and 0.53 together with the X = 1 result from the literature to evaluate an algorithm for calculating the dielectric function of InGaAs for an arbitrary value of X (0 = to or less than X = to or less than 1) were used. Results of the dielectric function calculated using the algorithm were compared with experimental data.
InGaAs concentrator cells for laser power converters and tandem cells
NASA Technical Reports Server (NTRS)
Wojtczuk, S.; Vernon, S.; Gagnon, E.
1993-01-01
In(0.53)Ga(0.47)As N-on-P concentrator cells were made as part of an effort to develop 1.315 micron laser power converters. The 1.315 micron laser power conversion efficiency was estimated as 29.4 percent (at 5.57 W/cm(sup 2)) based on an 86 percent measured external quantum efficiency at 1.315 microns, and a measured open circuit voltage (484 mV), and fill-factor (67 percent) at the equivalent AM0 short-circuit photocurrent (5.07 A/cm(sup 2)). A 13.5 percent percent AMO efficiency was achieved at 89 suns and 25 C. Measured one-sun and 100-sun AMO efficiency, log I-V analysis, and quantum efficiency are presented for InGaAs cells with and without InP windows to passivate the front surface. Windowed cells performed better at concentration than windowless cells. Lattice mismatch between InGaAs epilayers and InP substrate was less than 800 ppm. Theoretical efficiency is estimated for 1.315 microns laser power converters versus the bandgap energy. Adding aluminum to InGaAs to form In(x)Al(y)Ga(1-x-y)As is presented as a way to achieve an optimal bandgap for 1.315 microns laser power conversion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao, M.-H., E-mail: mhliaoa@ntu.edu.tw; Lien, C.
2015-05-15
Five different kinds of insulators including BaTiO{sub 3}, TiO{sub 2}, Al{sub 2}O{sub 3}, CdO and ZnO on the n-type InGaAs metal-insulator-semiconductor (M-I-S) ohmic contact structure are studied. The effect for the dielectric constant (ε) of inserted insulator and the conduction band offset (CBO) between an insulator and semiconductor substrate is analyzed by a unified M-I-S contact model. Based on the theoretical model and experimental data, we demonstrates that the inserted ZnO insulator with the high electron affinity and the low CBO (∼0.1 eV) to the InGaAs substrate results in ∼10 times contact resistivity reduction, even the ε of ZnO ismore » not pretty high (∼10)« less
Multi-Quantum Well Structures to Improve the Performance of Multijunction Solar Cells
NASA Astrophysics Data System (ADS)
Samberg, Joshua Paul
Current, lattice matched triple junction solar cell efficiency is approximately 44% at a solar concentration of 942x. Higher efficiency for such cells can be realized with the development of a 1eV bandgap material lattice matched to Ge. One of the more promising materials for this application is that of the InGaAs/GaAsP multi-quantum well (MQW) structure. By inserting a stress/strain-balanced InGaAs/GaAsP MQW structure into the iregion of a GaAs p-i-n diode, the absorption edge of the p-i-n diode can be red shifted with respect to that of a standard GaAs p-n diode. Compressive stress in the InGaAs wells are balanced via GaAsP barriers subjected to tensile stress. Individually, the InGaAs and GaAsP layers are grown below their critical layer thickness to prevent the formation of misfit and threading dislocations. Until recently InGaAs/GaAsP MQWs have been somewhat hindered by their usage of low phosphorus-GaAsP barriers. Presented within is the development of a high-P composition GaAsP and the merits for using such a high composition of phosphorus are discussed. It is believed that these barriers represent the highest phosphorus content to date in such a structure. By using high composition GaAsP the carriers are collected via tunneling (for barriers .30A) as opposed to thermionic emission. Thus, by utilizing thin, high content GaAsP barriers one can increase the percentage of the intrinsic region in a p-i-n structure that is comprised of the InGaAs well in addition to increasing the number of periods that can be grown for a given depletion width. However, standard MQWs of this type inherently possess undesirable compressive strain and quantum size effects (QSE) that cause the optical absorption of the InGaAs wells to blue shift. To circumvent these deleterious QSEs stress balanced, pseudomorphic InGaAs/GaAsP staggered MQWs were developed. Tunneling is still a viable mode for carrier transport in the staggered MQW structures. GaAs interfacial layers within the multi-quantum well have been found to be critical in producing quality multi-quantum well structures. The effect of the GaAs interfacial layers has been investigated. It was determined that a phosphorus carry-over had a profound effect on the absorption edge of the InGaAs wells. It was shown that the phosphorus carry-over can be prevented with sufficiently thick GaAs transition layers. Preliminary results for GaAs p-in solar cells utilizing the improved MQWs are presented. In addition to investigating the utilization of quantum wells in the i-region of a GaAs p-i-n diode to improve the efficiency of multijunction solar cells, an investigation into the effect a single GaAs:Te doped quantum well has on the performance of high bandgap InxGa1- xP:Te/Al0.6Ga 0.4As:C tunnel junctions was investigated. The insertion of 30A of GaAs:Te at the junction interface resulted in a peak current of 1000A/cm2 and a voltage drop of ~3mV for 30A/cm2 (2000x concentration). The presence of this GaAs interfacial layer also improved the uniformity across the wafer. This architecture could be used within multijunction solar cells to extend the range of usable solar concentration with minimal voltage drop.
Shape dependent electronic structure and exciton dynamics in small In(Ga)As quantum dots
NASA Astrophysics Data System (ADS)
Gomis, J.; Martínez-Pastor, J.; Alén, B.; Granados, D.; García, J. M.; Roussignol, P.
2006-12-01
We present a study of the primary optical transitions and recombination dynamics in InGaAs self-assembled quantum nanostructures with different shape. Starting from the same quantum dot seeding layer, and depending on the overgrowth conditions, these new nanostructures can be tailored in shape and are characterized by heights lower than 2 nm and base lengths around 100 nm. The geometrical shape strongly influences the electronic and optical properties of these nanostructuctures. We measure for them ground state optical transitions in the range 1.25 1.35 eV and varying energy splitting between their excited states. The temperature dependence of the exciton recombination dynamics is reported focusing on the intermediate temperature regime (before thermal escape begins to be important). In this range, an important increase of the effective photoluminescence decay time is observed and attributed to the state filling and exciton thermalization between excited and ground states. A rate equation model is also developed reproducing quite well the observed exciton dynamics.
Electron and proton damage on InGaAs solar cells having an InP window layer
NASA Technical Reports Server (NTRS)
Messenger, Scott R.; Cotal, Hector L.; Walters, Robert J.; Summers, Geoffrey P.
1995-01-01
As part of a continuing program to determine the space radiation resistance of InP/ln(0.53)Ga(0.47)As tandem solar cells, n/p In(0.53)Ga(0. 47)As solar cells fabricated by RTI were irradiated with 1 MeV electrons and with 3 MeV protons. The cells were grown with a 3 micron n-lnP window layer to mimic the top cell in the tandem cell configuration for both AMO solar absorption and radiation effects. The results have been plotted against 'displacement damage dose' which is the product of the nonionizing energy loss (NIEL) and the particle fluence. A characteristic radiation damage curve can then be obtained for predicting the effect of all particles and energies. AMO, 1 sun solar illumination IV measurements were performed on the irradiated InGaAs solar cells and a characteristic radiation degradation curve was obtained using the solar cell conversion efficiency as the model parameter. Also presented are data comparing the radiation response of both n/p and p/n (fabricated by NREL) InGaAs solar cells as a function of base doping concentration. For the solar cell efficiency, the radiation degradation was found to be independent of the sample polarity for the same base doping concentration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, S.; Yan, F.; Li, J.
2011-01-01
Photoluminescence (PL) imaging is used to detect areas in multi-crystalline silicon that appear dark in band-to-band imaging due to high recombination. Steady-state PL intensity can be correlated to effective minority-carrier lifetime, and its temperature dependence can provide additional lifetime-limiting defect information. An area of high defect density has been laser cut from a multi-crystalline silicon solar cell. Both band-to-band and defect-band PL imaging have been collected as a function of temperature from {approx}85 to 350 K. Band-to-band luminescence is collected by an InGaAs camera using a 1200-nm short-pass filter, while defect band luminescence is collected using a 1350-nm long passmore » filter. The defect band luminescence is characterized by cathodoluminescence. Small pieces from adjacent areas within the same wafer are measured by deep-level transient spectroscopy (DLTS). DLTS detects a minority-carrier electron trap level with an activation energy of 0.45 eV on the sample that contained defects as seen by imaging.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, S.; Yan, F.; Li, J.
2011-07-01
Photoluminescence (PL) imaging is used to detect areas in multi-crystalline silicon that appear dark in band-to-band imaging due to high recombination. Steady-state PL intensity can be correlated to effective minority-carrier lifetime, and its temperature dependence can provide additional lifetime-limiting defect information. An area of high defect density has been laser cut from a multi-crystalline silicon solar cell. Both band-to-band and defect-band PL imaging have been collected as a function of temperature from ~85 to 350 K. Band-to-band luminescence is collected by an InGaAs camera using a 1200-nm short-pass filter, while defect band luminescence is collected using a 1350-nm long passmore » filter. The defect band luminescence is characterized by cathodo-luminescence. Small pieces from adjacent areas within the same wafer are measured by deep-level transient spectroscopy (DLTS). DLTS detects a minority-carrier electron trap level with an activation energy of 0.45 eV on the sample that contained defects as seen by imaging.« less
Light-trapping for room temperature Bose-Einstein condensation in InGaAs quantum wells.
Vasudev, Pranai; Jiang, Jian-Hua; John, Sajeev
2016-06-27
We demonstrate the possibility of room-temperature, thermal equilibrium Bose-Einstein condensation (BEC) of exciton-polaritons in a multiple quantum well (QW) system composed of InGaAs quantum wells surrounded by InP barriers, allowing for the emission of light near telecommunication wavelengths. The QWs are embedded in a cavity consisting of double slanted pore (SP2) photonic crystals composed of InP. We consider exciton-polaritons that result from the strong coupling between the multiple quantum well excitons and photons in the lowest planar guided mode within the photonic band gap (PBG) of the photonic crystal cavity. The collective coupling of three QWs results in a vacuum Rabi splitting of 3% of the bare exciton recombination energy. Due to the full three-dimensional PBG exhibited by the SP2 photonic crystal (16% gap to mid-gap frequency ratio), the radiative decay of polaritons is eliminated in all directions. Due to the short exciton-phonon scattering time in InGaAs quantum wells of 0.5 ps and the exciton non-radiative decay time of 200 ps at room temperature, polaritons can achieve thermal equilibrium with the host lattice to form an equilibrium BEC. Using a SP2 photonic crystal with a lattice constant of a = 516 nm, a unit cell height of 2a=730nm and a pore radius of 0.305a = 157 nm, light in the lowest planar guided mode is strongly localized in the central slab layer. The central slab layer consists of 3 nm InGaAs quantum wells with 7 nm InP barriers, in which excitons have a recombination energy of 0.944 eV, a binding energy of 7 meV and a Bohr radius of aB = 10 nm. We take the exciton recombination energy to be detuned 35 meV above the lowest guided photonic mode so that an exciton-polariton has a photonic fraction of approximately 97% per QW. This increases the energy range of small-effective-mass photonlike states and increases the critical temperature for the onset of a Bose-Einstein condensate. With three quantum wells in the central slab layer, the strong light confinement results in light-matter coupling strength of ℏΩ = 13.7 meV. Assuming an exciton density per QW of (15aB)-2, well below the saturation density, in a 2-D box-trap with a side length of 10 to 500 µm, we predict thermal equilibrium Bose-Einstein condensation well above room temperature.
2012-01-01
We have investigated the structural and optical properties of type-II GaSb/InGaAs quantum dots [QDs] grown on InP (100) substrate by molecular beam epitaxy. Rectangular-shaped GaSb QDs were well developed and no nanodash-like structures which could be easily found in the InAs/InP QD system were formed. Low-temperature photoluminescence spectra show there are two peaks centered at 0.75eV and 0.76ev. The low-energy peak blueshifted with increasing excitation power is identified as the indirect transition from the InGaAs conduction band to the GaSb hole level (type-II), and the high-energy peak is identified as the direct transition (type-I) of GaSb QDs. This material system shows a promising application on quantum-dot infrared detectors and quantum-dot field-effect transistor. PMID:22277096
NASA Astrophysics Data System (ADS)
Kajikawa, Y.; Nishigaichi, M.; Tenma, S.; Kato, K.; Katsube, S.
2018-04-01
InGaAs layers were grown by molecular-beam epitaxy on nominal and vicinal Ge(111) substrates with inserting GaSb buffer layers. High-resolution X-ray diffraction using symmetric 333 and asymmetric 224 reflections was employed to analyze the crystallographic properties of the grown layers. By using the two reflections, we determined the lattice constants (the unit cell length a and the angle α between axes) of the grown layers with taking into account the rhombohedral distortion of the lattices of the grown layers. This allowed us the independent determination of the strain components (perpendicular and parallel components to the substrate surface, ε⊥ and ε//) and the composition x of the InxGa1-xAs layers by assuming the distortion coefficient D, which is defined as the ratio of ε⊥ against ε//. Furthermore, the twin ratios were determined for the GaSb and the InGaAs layers by comparing asymmetric 224 reflections from the twin domain with that from the normal domain of the layers. As a result, it has been shown that the twin ratio in the InGaAs layer can be decreased to be less than 0.1% by the use of the vicinal substrate together with annealing the GaSb buffer layer during the growth interruption before the InGaAs overgrowth.
Low-Cost High-Efficiency Solar Cells with Wafer Bonding and Plasmonic Technologies
NASA Astrophysics Data System (ADS)
Tanake, Katsuaki
We fabricated a direct-bond interconnected multijunction solar cell, a two-terminal monolithic GaAs/InGaAs dual-junction cell, to demonstrate a proof-of-principle for the viability of direct wafer bonding for solar cell applications. The bonded interface is a metal-free n+GaAs/n +InP tunnel junction with highly conductive Ohmic contact suitable for solar cell applications overcoming the 4% lattice mismatch. The quantum efficiency spectrum for the bonded cell was quite similar to that for each of unbonded GaAs and InGaAs subcells. The bonded dual-junction cell open-circuit voltage was equal to the sum of the unbonded subcell open-circuit voltages, which indicates that the bonding process does not degrade the cell material quality since any generated crystal defects that act as recombination centers would reduce the open-circuit voltage. Also, the bonded interface has no significant carrier recombination rate to reduce the open circuit voltage. Engineered substrates consisting of thin films of InP on Si handle substrates (InP/Si substrates or epitaxial templates) have the potential to significantly reduce the cost and weight of compound semiconductor solar cells relative to those fabricated on bulk InP substrates. InGaAs solar cells on InP have superior performance to Ge cells at photon energies greater than 0.7 eV and the current record efficiency cell for 1 sun illumination was achieved using an InGaP/GaAs/InGaAs triple junction cell design with an InGaAs bottom cell. Thermophotovoltaic (TPV) cells from the InGaAsP-family of III-V materials grown epitaxially on InP substrates would also benefit from such an InP/Si substrate. Additionally, a proposed four-junction solar cell fabricated by joining subcells of InGaAs and InGaAsP grown on InP with subcells of GaAs and AlInGaP grown on GaAs through a wafer-bonded interconnect would enable the independent selection of the subcell band gaps from well developed materials grown on lattice matched substrates. Substitution of InP/Si substrates for bulk InP in the fabrication of such a four-junction solar cell could significantly reduce the substrate cost since the current prices for commercial InP substrates are much higher than those for Si substrates by two orders of magnitude. Direct heteroepitaxial growth of InP thin films on Si substrates has not produced the low dislocation-density high quality layers required for active InGaAs/InP in optoelectronic devices due to the ˜8% lattice mismatch between InP and Si. We successfully fabricated InP/Si substrates by He implantation of InP prior to bonding to a thermally oxidized Si substrate and annealing to exfoliate an InP thin film. The thickness of the exfoliated InP films was only 900 nm, which means hundreds of the InP/Si substrates could be prepared from a single InP wafer in principle. The photovoltaic current-voltage characteristics of the In0.53Ga0.47As cells fabricated on the wafer-bonded InP/Si substrates were comparable to those synthesized on commercially available epi-ready InP substrates, and had a ˜20% higher short-circuit current which we attribute to the high reflectivity of the InP/SiO2/Si bonding interface. This work provides an initial demonstration of wafer-bonded InP/Si substrates as an alternative to bulk InP substrates for solar cell applications. We have observed photocurrent enhancements up to 260% at 900 nm for a GaAs cell with a dense array of Ag nanoparticles with 150 nm diameter and 20 nm height deposited through porous alumina membranes by thermal evaporation on top of the cell, relative to reference GaAs cells with no metal nanoparticle array. This dramatic photocurrent enhancement is attributed to the effect of metal nanoparticles to scatter the incident light into photovoltaic layers with a wide range of angles to increase the optical path length in the absorber layer. GaAs solar cells with metallic structures at the bottom of the photovoltaic active layers, not only at the top, using semiconductor-metal direct bonding have been fabricated. These metallic back structures could incouple the incident light into surface plasmon mode propagating at the semiconductor/metal interface to increase the optical path, as well as simply act as back reflector, and we have observed significantly increased short-circuit current relative to reference cells without these metal components. (Abstract shortened by UMI.)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, C.-Y., E-mail: cychang@mosfet.t.u-tokyo.ac.jp; Takenaka, M.; Takagi, S.
We examine the electrical properties of atomic layer deposition (ALD) La{sub 2}O{sub 3}/InGaAs and Al{sub 2}O{sub 3}/La{sub 2}O{sub 3}/InGaAs metal-oxide-semiconductor (MOS) capacitors. It is found that the thick ALD La{sub 2}O{sub 3}/InGaAs interface provides low interface state density (D{sub it}) with the minimum value of ∼3 × 10{sup 11} cm{sup −2} eV{sup −1}, which is attributable to the excellent La{sub 2}O{sub 3} passivation effect for InGaAs surfaces. It is observed, on the other hand, that there are a large amount of slow traps and border traps in La{sub 2}O{sub 3}. In order to simultaneously satisfy low D{sub it} and small hysteresis, the effectivenessmore » of Al{sub 2}O{sub 3}/La{sub 2}O{sub 3}/InGaAs gate stacks with ultrathin La{sub 2}O{sub 3} interfacial layers is in addition evaluated. The reduction of the La{sub 2}O{sub 3} thickness to 0.4 nm in Al{sub 2}O{sub 3}/La{sub 2}O{sub 3}/InGaAs gate stacks leads to the decrease in hysteresis. On the other hand, D{sub it} of the Al{sub 2}O{sub 3}/La{sub 2}O{sub 3}/InGaAs interfaces becomes higher than that of the La{sub 2}O{sub 3}/InGaAs ones, attributable to the diffusion of Al{sub 2}O{sub 3} through La{sub 2}O{sub 3} into InGaAs and resulting modification of the La{sub 2}O{sub 3}/InGaAs interface structure. As a result of the effective passivation effect of La{sub 2}O{sub 3} on InGaAs, however, the Al{sub 2}O{sub 3}/10 cycle (0.4 nm) La{sub 2}O{sub 3}/InGaAs gate stacks can realize still lower D{sub it} with maintaining small hysteresis and low leakage current than the conventional Al{sub 2}O{sub 3}/InGaAs MOS interfaces.« less
NASA Astrophysics Data System (ADS)
Li, Guangji; Zhang, Hongchao; Zhou, Guanglong; Lu, Jian; Zhou, Dayong
2017-06-01
InGaAs solar cells were irradiated by 1060-1080nm continuous wave (CW) laser, and studied the laser-electrical conversion and damage experiment with the power density as 97mW/cm2 and 507W/cm2 respectively. The result indicated that there is no obvious damage phenomenon but air layer appeared in the damaged region, and there is no direct relationship between the area and the extent of damage. Moreover, the p-n junction in the damage zone was destroyed, lost the ability of photoelectric conversion. The region acts as a resistance between the two electrodes, resulting in an increase in the leakage current of the solar cells and a decrease in the parallel resistance, which is the main reason leading to the decline of open circuit voltage, short circuit current and conversion efficiency. This paper would provide a reference for wireless energy transmission and the subsequent laser damage of solar cells.
NASA Astrophysics Data System (ADS)
Kim, Youngjo; Kim, Kangho; Jung, Sang Hyun; Kim, Chang Zoo; Shin, Hyun-Beom; Choi, JeHyuk; Kang, Ho Kwan
2017-12-01
Flexible thin film (In)GaAs solar cells are grown by metalorganic chemical vapor deposition on GaAs substrates and transferred to 30 μm thick Au foil by internal stress-assisted epitaxial lift-off processes. The internal stress is induced by replacing the solar cell epi-layers from GaAs to In0.015Ga0.985As, which has a slightly larger lattice constant. The compressive strained layer thickness was varied from 0 to 4.5 μm to investigate the influence of the internal stress on the epitaxial lift-off time. The etching time in the epitaxial lift-off process was reduced from 36 to 4 h by employing a GaAs/In0.015Ga0.985As heterojunction structure that has a compressive film stress of -59.0 MPa. We found that the partially strained epi-structure contributed to the much faster lateral etching rate with spontaneous bending. Although an efficiency degradation problem occurred in the strained solar cell, it was solved by optimizing the epitaxial growth conditions.
Smura, Teemu; Ylipaasto, Petri; Klemola, Päivi; Kaijalainen, Svetlana; Kyllönen, Lauri; Sordi, Valeria; Piemonti, Lorenzo; Roivainen, Merja
2010-11-01
Enterovirus 94 (EV-94) is an enterovirus serotype described recently which, together with EV-68 and EV-70, forms human enterovirus D species. This study investigates the seroprevalences of these three serotypes and their abilities to infect, replicate, and damage cell types considered to be essential for enterovirus-induced diseases. The cell types studied included human leukocyte cell lines, primary endothelial cells, and pancreatic islets. High prevalence of neutralizing antibodies against EV-68 and EV-94 was found in the Finnish population. The virus strains studied had wide leukocyte tropism. EV-94 and EV-68 were able to produce infectious progeny in leukocyte cell lines with monocytic, granulocytic, T-cell, or B-cell characteristics. EV-94 and EV-70 were capable of infecting primary human umbilical vein endothelial cells, whereas EV-68 had only marginal progeny production and did not induce cytopathic effects in these cells. Intriguingly, EV-94 was able to damage pancreatic islet β-cells, to infect, replicate, and cause necrosis in human pancreatic islets, and to induce proinflammatory and chemoattractive cytokine expression in endothelial cells. These results suggest that HEV-D viruses may be more prevalent than has been thought previously, and they provide in vitro evidence that EV-94 may be a potent pathogen and should be considered a potentially diabetogenic enterovirus type. © 2010 Wiley-Liss, Inc.
Comparative study on stained InGaAs quantum wells for high-speed optical-interconnect VCSELs
NASA Astrophysics Data System (ADS)
Li, Hui; Jia, Xiaowei
2018-05-01
The gain-carrier characteristics of InGaAs quantum well for 980 nm high-speed, energy-efficient vertical-cavity surface-emitting lasers are investigated. We specially studied the potentially InGaAs quantum well designs can be used for the active region of energy-efficient, temperature-stable 980-nm VCSEL, which introduced a quantum well gain peak wavelength-to-cavity resonance wavelength offset to improve the dynamic performance at high operation temperature. Several candidate quantum wells are being compared in theory and measurement. We found that ∼5 nm InGaAs QW with ∼6 nm barrier thickness is suitable for the active region of high-speed optical interconnect 980 nm VCSELs, and no significant improvement in the 20% range of In content of InGaAs QWs. The results are useful for next generation green photonic device design.
Low dark current InGaAs detector arrays for night vision and astronomy
NASA Astrophysics Data System (ADS)
MacDougal, Michael; Geske, Jon; Wang, Chad; Liao, Shirong; Getty, Jonathan; Holmes, Alan
2009-05-01
Aerius Photonics has developed large InGaAs arrays (1K x 1K and greater) with low dark currents for use in night vision applications in the SWIR regime. Aerius will present results of experiments to reduce the dark current density of their InGaAs detector arrays. By varying device designs and passivations, Aerius has achieved a dark current density below 1.0 nA/cm2 at 280K on small-pixel, detector arrays. Data is shown for both test structures and focal plane arrays. In addition, data from cryogenically cooled InGaAs arrays will be shown for astronomy applications.
Saari, Heikki; Lázaro-Ibáñez, Elisa; Viitala, Tapani; Vuorimaa-Laukkanen, Elina; Siljander, Pia; Yliperttula, Marjo
2015-12-28
Extracellular vesicles (EVs) are naturally occurring membrane particles that mediate intercellular communication by delivering molecular information between cells. In this study, we investigated the effectiveness of two different populations of EVs (microvesicle- and exosome-enriched) as carriers of Paclitaxel to autologous prostate cancer cells. EVs were isolated from LNCaP- and PC-3 prostate cancer cell cultures using differential centrifugation and characterized by electron microscopy, nanoparticle tracking analysis, and Western blot. The uptake of microvesicles and exosomes by the autologous prostate cancer cells was assessed by flow cytometry and confocal microscopy. The EVs were loaded with Paclitaxel and the effectiveness of EV-mediated drug delivery was assessed with viability assays. The distribution of EVs and EV-delivered Paclitaxel in cells was inspected by confocal microscopy. Our main finding was that the loading of Paclitaxel to autologous prostate cancer cell-derived EVs increased its cytotoxic effect. This capacity was independent of the EV population and the cell line tested. Although the EVs without the drug increased cancer cell viability, the net effect of enhanced cytotoxicity remained. Both EV populations delivered Paclitaxel to the recipient cells through endocytosis, leading to the release of the drug from within the cells. The removal of EV surface proteins did not affect exosomes, while the drug delivery mediated by microvesicles was partially inhibited. Cancer cell-derived EVs can be used as effective carriers of Paclitaxel to their parental cells, bringing the drug into the cells through an endocytic pathway and increasing its cytotoxicity. However, due to the increased cell viability, the use of cancer cell-derived EVs must be further investigated before any clinical applications can be designed. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Can hi-jacking hypoxia inhibit extracellular vesicles in cancer?
Lowry, Michelle C; O'Driscoll, Lorraine
2018-06-01
Increasing evidence indicates that extracellular vesicles (EVs) are key players in undesirable cell-cell communication in cancer. However, the release of EVs is not unique to cancer cells; normal cells release EVs to perform physiological roles. Thus, selective inhibition of EV release from cancer cells is desirable. Hypoxia contributes to tumour development and aggressiveness. EV quantities and thus undesirable communications are substantially increased in hypoxia. Targeting hypoxia could selectively inhibit EV release from tumour cells without disturbing physiologically relevant EVs. The unfavourable association between hypoxia and EV release is evident in multiple tumour types; therefore, targeting hypoxia could have a broad therapeutic benefit. Copyright © 2018 Elsevier Ltd. All rights reserved.
In vitro immunotoxicity assessment of culture-derived extracellular vesicles in human monocytes
Rosas, Lucia E.; Elgamal, Ola A.; Mo, Xiaokui; Phelps, Mitch A.; Schmittgen, Thomas D.; Papenfuss, Tracey L.
2016-01-01
The potential to engineer extracellular vesicles (EV) that target specific cells and deliver a therapeutic payload has propelled a growing interest in their development as promising therapeutics. These EV are often produced from cultured cells. Very little is known about the interaction of cell culture-derived EV with cells of the immune system and their potential immunomodulatory effects. The present study evaluated potential immunotoxic effects of HEK293T-derived EV on the human monocytic cell lines THP-1 and U937. Incubation of cells with different doses of EV for 16–24 h was followed by assessment of cytotoxicity and cell function by flow cytometry. Changes in cell functionality were evaluated by the capacity of cells to phagocytize fluorescent microspheres. In addition, the internalization of labeled EV in THP-1 and U937 cells was evaluated. Exposure to EV did not affect the viability of THP-1 or U937 cells. Although lower doses of the EV increased phagocytic capacity in both cell lines, phagocytic efficiency of individual cells was not affected by EV exposure at any of the doses evaluated. This study also demonstrated that THP-1 and U937 monocytic cells are highly permissive to EV entry in a dose-response manner. These results suggest that, although HEK293T-derived EV are efficiently internalized by human monocytic cells, they do not exert a cytotoxic effect or alter phagocytic efficiency on the cell lines evaluated. PMID:27075513
Kooijmans, S A A; Fliervoet, L A L; van der Meel, R; Fens, M H A M; Heijnen, H F G; van Bergen En Henegouwen, P M P; Vader, P; Schiffelers, R M
2016-02-28
Extracellular vesicles (EVs) are increasingly being recognized as candidate drug delivery systems due to their ability to functionally transfer biological cargo between cells. However, the therapeutic applicability of EVs may be limited due to a lack of cell-targeting specificity and rapid clearance of exogenous EVs from the circulation. In order to improve EV characteristics for drug delivery to tumor cells, we have developed a novel method for decorating EVs with targeting ligands conjugated to polyethylene glycol (PEG). Nanobodies specific for the epidermal growth factor receptor (EGFR) were conjugated to phospholipid (DMPE)-PEG derivatives to prepare nanobody-PEG-micelles. When micelles were mixed with EVs derived from Neuro2A cells or platelets, a temperature-dependent transfer of nanobody-PEG-lipids to the EV membranes was observed, indicative of a 'post-insertion' mechanism. This process did not affect EV morphology, size distribution, or protein composition. After introduction of PEG-conjugated control nanobodies to EVs, cellular binding was compromised due to the shielding properties of PEG. However, specific binding to EGFR-overexpressing tumor cells was dramatically increased when EGFR-specific nanobodies were employed. Moreover, whereas unmodified EVs were rapidly cleared from the circulation within 10min after intravenous injection in mice, EVs modified with nanobody-PEG-lipids were still detectable in plasma for longer than 60min post-injection. In conclusion, we propose post-insertion as a novel technique to confer targeting capacity to isolated EVs, circumventing the requirement to modify EV-secreting cells. Importantly, insertion of ligand-conjugated PEG-derivatized phospholipids in EV membranes equips EVs with improved cell specificity and prolonged circulation times, potentially increasing EV accumulation in targeted tissues and improving cargo delivery. Copyright © 2015. Published by Elsevier B.V.
Exosome and microvesicle mediated phene transfer in mammalian cells.
Christianson, Helena C; Svensson, Katrin J; Belting, Mattias
2014-10-01
Extracellular vesicles (EVs), e.g. exosomes and microvesicles, emerge as new signaling organelles in the exchange of information between cells at the paracrine and systemic level. It is clear that these virus like particles carry complex biological information that can elicit a pleiotropic response in recipient cells with potential relevance in physiology as well as in cancer and other pathological conditions. Numerous studies convincingly show that the molecular composition of EVs closely reflects their cell or tissue of origin. Thus, the signaling status of donor cells, more specifically their endosomal compartments, may largely determine the biological output in recipient cells, a process that we then may conceptualize as vesicle mediated phene transfer. Whereas more conventional modes of cell-cell communication mostly depend on extracellular ligand concentration and cell-surface receptor availability, the magnitude of the EV signaling response relies on the capture and uptake by target cells, allowing release of the EV content. Numerous reports point at the intriguing possibility that, among thousands of mRNAs, miRNAs, and proteins, single EV constituents effectuate the biological response, e.g. stimulation of angiogenesis and cancer cell metastasis, in recipient cells; however, we find it conceivable that strategies targeted at general mechanisms of EV function should provide more rational avenues for therapeutic intervention directed at the EV system. Such strategies include manipulation of EV formation in the endolysosomal system, EV stability in the extracellular milieu, and EV entry into target cells. Here, we provide important insights into potential mechanisms of EV transport in mammalian cells and how these may be targeted. Copyright © 2014 Elsevier Ltd. All rights reserved.
Efficient ultrafiltration-based protocol to deplete extracellular vesicles from fetal bovine serum
Kornilov, Roman; Puhka, Maija; Mannerström, Bettina; Hiidenmaa, Hanna; Peltoniemi, Hilkka; Siljander, Pia; Seppänen-Kaijansinkko, Riitta; Kaur, Sippy
2018-01-01
ABSTRACT Fetal bovine serum (FBS) is the most commonly used supplement in studies involving cell-culture experiments. However, FBS contains large numbers of bovine extracellular vesicles (EVs), which hamper the analyses of secreted EVs from the cell type of preference and, thus, also the downstream analyses. Therefore, a prior elimination of EVs from FBS is crucial. However, the current methods of EV depletion by ultracentrifugation are cumbersome and the commercial alternatives expensive. In this study, our aim was to develop a protocol to completely deplete EVs from FBS, which may have wide applicability in cell-culture applications. We investigated different EV-depleted FBS prepared by our novel ultrafiltration-based protocol, by conventionally used overnight ultracentrifugation, or commercially available depleted FBS, and compared them with regular FBS. All sera were characterized by nanoparticle tracking analysis, electron microscopy, Western blotting and RNA quantification. Next, adipose-tissue mesenchymal stem cells (AT-MSCs) and cancer cells were grown in the media supplemented with the three different EV-depleted FBS and compared with cells grown in regular FBS media to assess the effects on cell proliferation, stress, differentiation and EV production. The novel ultrafiltration-based protocol depleted EVs from FBS clearly more efficiently than ultracentrifugation and commercial methods. Cell proliferation, stress, differentiation and EV production of AT-MSCs and cancer cell lines were similarly maintained in all three EV-depleted FBS media up to 96 h. In summary, our ultrafiltration protocol efficiently depletes EVs, is easy to use and maintains cell growth and metabolism. Since the method is also cost-effective and easy to standardize, it could be used in a wide range of cell-culture applications helping to increase comparability of EV research results between laboratories. PMID:29410778
Heparin affinity purification of extracellular vesicles
Balaj, Leonora; Atai, Nadia A.; Chen, Weilin; Mu, Dakai; Tannous, Bakhos A.; Breakefield, Xandra O.; Skog, Johan; Maguire, Casey A.
2015-01-01
Extracellular vesicles (EVs) are lipid membrane vesicles released by cells. They carry active biomolecules including DNA, RNA, and protein which can be transferred to recipient cells. Isolation and purification of EVs from culture cell media and biofluids is still a major challenge. The most widely used isolation method is ultracentrifugation (UC) which requires expensive equipment and only partially purifies EVs. Previously we have shown that heparin blocks EV uptake in cells, supporting a direct EV-heparin interaction. Here we show that EVs can be purified from cell culture media and human plasma using ultrafiltration (UF) followed by heparin-affinity beads. UF/heparin-purified EVs from cell culture displayed the EV marker Alix, contained a diverse RNA profile, had lower levels of protein contamination, and were functional at binding to and uptake into cells. RNA yield was similar for EVs isolated by UC. We were able to detect mRNAs in plasma samples with comparable levels to UC samples. In conclusion, we have discovered a simple, scalable, and effective method to purify EVs taking advantage of their heparin affinity. PMID:25988257
NASA Astrophysics Data System (ADS)
Liang, B. L.; Wang, Zh M.; Mazur, Yu I.; Strelchuck, V. V.; Holmes, K.; Lee, J. H.; Salamo, G. J.
2006-06-01
We systematically investigated the correlation between morphological and optical properties of InGaAs self-assembled quantum dots (QDs) grown by solid-source molecular beam epitaxy on GaAs (n 11)B (n = 9, 8, 7, 5, 3, 2) substrates. Remarkably, all InGaAs QDs on GaAs(n 11)B under investigation show optical properties superior to those for ones on GaAs(100) as regards the photoluminescence (PL) linewidth and intensity. The morphology for growth of InGaAs QDs on GaAs (n 11)B, where n = 9, 8, 7, 5, is observed to have a rounded shape with a higher degree of lateral ordering than that on GaAs(100). The optical property and the lateral ordering are best for QDs grown on a (511)B substrate surface, giving a strong correlation between lateral ordering and PL optical quality. Our results demonstrate the potential for high quality InGaAs QDs on GaAs(n 11)B for optoelectronic applications.
Park, Jin-Kown; Takagi, Shinichi; Takenaka, Mitsuru
2018-02-19
We demonstrated the monolithic integration of a carrier-injection InGaAsP Mach-Zehnder interferometer (MZI) optical modulator and InGaAs metal-oxide-semiconductor field-effect transistor (MOSFET) on a III-V-on-insulator (III-V-OI) wafer. A low-resistivity lateral PIN junction was formed along an InGaAsP rib waveguide by Zn diffusion and Ni-InGaAsP alloy, enabling direct driving of the InGaAsP optical modulator by the InGaAs MOSFET. A π phase shift of the InGaAsP optical modulator was obtained through the injection of a drain current from the InGaAs MOSFET with a gate voltage of approximately 1 V. This proof-of-concept demonstration of the monolithic integration of the InGaAsP optical modulator and InGaAs driver MOSFET will enable us to develop high-performance and low-power electronic-photonic integrated circuits on a III-V CMOS photonics platform.
Extracellular vesicle-mediated transfer of processed and functional RNY5 RNA
Chakrabortty, Sudipto K.; Prakash, Ashwin; Nechooshtan, Gal; Hearn, Stephen; Gingeras, Thomas R.
2015-01-01
Extracellular vesicles (EVs) have been proposed as a means to promote intercellular communication. We show that when human primary cells are exposed to cancer cell EVs, rapid cell death of the primary cells is observed, while cancer cells treated with primary or cancer cell EVs do not display this response. The active agents that trigger cell death are 29- to 31-nucleotide (nt) or 22- to 23-nt processed fragments of an 83-nt primary transcript of the human RNY5 gene that are highly likely to be formed within the EVs. Primary cells treated with either cancer cell EVs, deproteinized total RNA from either primary or cancer cell EVs, or synthetic versions of 31- and 23-nt fragments trigger rapid cell death in a dose-dependent manner. The transfer of processed RNY5 fragments through EVs may reflect a novel strategy used by cancer cells toward the establishment of a favorable microenvironment for their proliferation and invasion. PMID:26392588
Reliability testing of ultra-low noise InGaAs quad photoreceivers
NASA Astrophysics Data System (ADS)
Joshi, Abhay M.; Datta, Shubhashish; Prasad, Narasimha; Sivertz, Michael
2018-02-01
We have developed ultra-low noise quadrant InGaAs photoreceivers for multiple applications ranging from Laser Interferometric Gravitional Wave Detection, to 3D Wind Profiling. Devices with diameters of 0.5 mm, 1mm, and 2 mm were processed, with the nominal capacitance of a single quadrant of a 1 mm quad photodiode being 2.5 pF. The 1 mm diameter InGaAs quad photoreceivers, using a low-noise, bipolar-input OpAmp circuitry exhibit an equivalent input noise per quadrant of <1.7 pA/√Hz in 2 to 20 MHz frequency range. The InGaAs Quad Photoreceivers have undergone the following reliability tests: 30 MeV Proton Radiation up to a Total Ionizing Dose (TID) of 50 krad, Mechanical Shock, and Sinusoidal Vibration.
Indication of Horizontal DNA Gene Transfer by Extracellular Vesicles
Speiseder, Thomas; Badbaran, Anita; Reimer, Rudolph; Indenbirken, Daniela; Grundhoff, Adam; Brunswig-Spickenheier, Bärbel; Alawi, Malik; Lange, Claudia
2016-01-01
The biological relevance of extracellular vesicles (EV) in intercellular communication has been well established. Thus far, proteins and RNA were described as main cargo. Here, we show that EV released from human bone marrow derived mesenchymal stromal cells (BM-hMSC) also carry high-molecular DNA in addition. Extensive EV characterization revealed this DNA mainly associated with the outer EV membrane and to a smaller degree also inside the EV. Our EV purification protocol secured that DNA is not derived from apoptotic or necrotic cells. To analyze the relevance of EV-associated DNA we lentivirally transduced Arabidopsis thaliana-DNA (A.t.-DNA) as indicator into BM-hMSC and generated EV. Using quantitative polymerase chain reaction (qPCR) techniques we detected high copy numbers of A.t.-DNA in EV. In recipient hMSC incubated with tagged EV for two weeks we identified A.t.-DNA transferred to recipient cells. Investigation of recipient cell DNA using quantitative PCR and verification of PCR-products by sequencing suggested stable integration of A.t.-DNA. In conclusion, for the first time our proof-of-principle experiments point to horizontal DNA transfer into recipient cells via EV. Based on our results we assume that eukaryotic cells are able to exchange genetic information in form of DNA extending the known cargo of EV by genomic DNA. This mechanism might be of relevance in cancer but also during cell evolution and development. PMID:27684368
Indication of Horizontal DNA Gene Transfer by Extracellular Vesicles.
Fischer, Stefanie; Cornils, Kerstin; Speiseder, Thomas; Badbaran, Anita; Reimer, Rudolph; Indenbirken, Daniela; Grundhoff, Adam; Brunswig-Spickenheier, Bärbel; Alawi, Malik; Lange, Claudia
The biological relevance of extracellular vesicles (EV) in intercellular communication has been well established. Thus far, proteins and RNA were described as main cargo. Here, we show that EV released from human bone marrow derived mesenchymal stromal cells (BM-hMSC) also carry high-molecular DNA in addition. Extensive EV characterization revealed this DNA mainly associated with the outer EV membrane and to a smaller degree also inside the EV. Our EV purification protocol secured that DNA is not derived from apoptotic or necrotic cells. To analyze the relevance of EV-associated DNA we lentivirally transduced Arabidopsis thaliana-DNA (A.t.-DNA) as indicator into BM-hMSC and generated EV. Using quantitative polymerase chain reaction (qPCR) techniques we detected high copy numbers of A.t.-DNA in EV. In recipient hMSC incubated with tagged EV for two weeks we identified A.t.-DNA transferred to recipient cells. Investigation of recipient cell DNA using quantitative PCR and verification of PCR-products by sequencing suggested stable integration of A.t.-DNA. In conclusion, for the first time our proof-of-principle experiments point to horizontal DNA transfer into recipient cells via EV. Based on our results we assume that eukaryotic cells are able to exchange genetic information in form of DNA extending the known cargo of EV by genomic DNA. This mechanism might be of relevance in cancer but also during cell evolution and development.
Sutaria, Dhruvitkumar S; Badawi, Mohamed; Phelps, Mitch A; Schmittgen, Thomas D
2017-05-01
Extracellular vesicles (EVs) represent a class of cell secreted organelles which naturally contain biomolecular cargo such as miRNA, mRNA and proteins. EVs mediate intercellular communication, enabling the transfer of functional nucleic acids from the cell of origin to the recipient cells. In addition, EVs make an attractive delivery vehicle for therapeutics owing to their increased stability in circulation, biocompatibility, low immunogenicity and toxicity profiles. EVs can also be engineered to display targeting moieties on their surfaces which enables targeting to desired tissues, organs or cells. While much has been learned on the role of EVs as cell communicators, the field of therapeutic EV application is currently under development. Critical to the future success of EV delivery system is the description of methods by which therapeutics can be successfully and efficiently loaded within the EVs. Two methods of loading of EVs with therapeutic cargo exist, endogenous and exogenous loading. We have therefore focused this review on describing the various published approaches for loading EVs with therapeutics.
Nardi, Fabiola da Silva; Michelon, Tatiana Ferreira; Neumann, Jorge; Manvailer, Luis Felipe Santos; Wagner, Bettina; Horn, Peter A; Bicalho, Maria da Graça; Rebmann, Vera
2016-07-01
Extracellular vesicles (EVs) are widely considered important modulators of cell-cell communication and may interact with target cells locally and on a systemic level. Several studies had shown that circulating EVs' levels are increased during pregnancy. However, EVs characteristics, composition and biological functions in pregnancy still need to be clarified. This study aims to determine if circulating EVs during pregnancy are modified regarding levels, markers and cytokine profile as well as their reactivity towards peripheral blood cells. 26 pregnant women (PW) being in the second gestational trimester and 59 non-pregnant women (NPW) were investigated. EVs enrichment was performed by ExoQuick™ or ultracentrifugation; nanoparticle tracking analysis, SDS-PAGE followed by Western Blotting and densitometry, and IFN-γ, IL-10 and TGF-β1 ELISA for EVs characterization; imaging flow cytometry to analyze EVs' uptake by peripheral blood cells and flow cytometry were performed to analyze EVs function regarding induction of caspase-3 activity. Circulating EVs' levels were increased during pregnancy [26.9×10(6)EVs/ml (range: 6.4-46.3); p=0.003] vs NPW [18.9×10(6)EVs/ml (range: 2.5-61.3)]. Importantly, the immunosuppressive TGF-β1 and IL-10 cytokine cargo were increased in EVs of PW even after normalization to 1 million EVs [TGF-β1: 0.25pg/10(6)EVs (range: 0.0-2.0); p<0.0001] and [IL-10: 0.21pg/10(6)EVs (range: 0.0-16.8); p=0.006] vs NPW. Although EVs derived from non-pregnant and pregnant women were taken up by NK cells, the latter exclusively enhanced the caspase-3 activity in CD56(dim) NK cells (8.2±0.9; p=0.02). The qualitative and quantitative pregnancy-related alterations of circulating EVs provide first hints for an immune modulating role of circulating EVs during pregnancy. Copyright © 2016 Elsevier GmbH. All rights reserved.
Extracellular vesicle communication pathways as regulatory targets of oncogenic transformation.
Choi, Dongsic; Lee, Tae Hoon; Spinelli, Cristiana; Chennakrishnaiah, Shilpa; D'Asti, Esterina; Rak, Janusz
2017-07-01
Pathogenesis of human cancers bridges intracellular oncogenic driver events and their impact on intercellular communication. Among multiple mediators of this 'pathological connectivity' the role of extracellular vesicles (EVs) and their subsets (exosomes, ectosomes, oncosomes) is of particular interest for several reasons. The release of EVs from cancer cells represents a unique mechanism of regulated expulsion of bioactive molecules, a process that also mediates cell-to-cell transfer of lipids, proteins, and nucleic acids. Biological effects of these processes have been implicated in several aspects of cancer-related pathology, including tumour growth, invasion, angiogenesis, metastasis, immunity and thrombosis. Notably, the emerging evidence suggests that oncogenic mutations may impact several aspects of EV-mediated cell-cell communication including: (i) EV release rate and protein content; (ii) molecular composition of cancer EVs; (iii) the inclusion of oncogenic and mutant macromolecules in the EV cargo; (iv) EV-mediated release of genomic DNA; (v) deregulation of mechanisms responsible for EV biogenesis (vesiculome) and (vi) mechanisms of EV uptake by cancer cells. Intriguingly, EV-mediated intercellular transfer of mutant and oncogenic molecules between subpopulations of cancer cells, their indolent counterparts and stroma may exert profound biological effects that often resemble (but are not tantamount to) oncogenic transformation, including changes in cell growth, clonogenicity and angiogenic phenotype, or cause cell stress and death. However, several biological barriers likely curtail a permanent horizontal transformation of normal cells through EV-mediated mechanisms. The ongoing analysis and targeting of EV-mediated intercellular communication pathways can be viewed as a new therapeutic paradigm in cancer, while the analysis of oncogenic cargo contained in EVs released from cancer cells into biofluids is being developed for clinical use as a biomarker and companion diagnostics. Indeed, studies are underway to further explore the multiple links between molecular causality in cancer and various aspects of cellular vesiculation. Copyright © 2017 Elsevier Ltd. All rights reserved.
640x512 pixel InGaAs FPAs for short-wave infrared and visible light imaging
NASA Astrophysics Data System (ADS)
Shao, Xiumei; Yang, Bo; Huang, Songlei; Wei, Yang; Li, Xue; Zhu, Xianliang; Li, Tao; Chen, Yu; Gong, Haimei
2017-08-01
The spectral irradiance of moonlight and air glow is mainly in the wavelength region from visible to short-wave infrared (SWIR) band. The imaging over the wavelength range of visible to SWIR is of great significance for applications such as civil safety, night vision, and agricultural sorting. In this paper, 640×512 visible-SWIR InGaAs focal plane arrays (FPAs) were studied for night vision and SWIR imaging. A special epitaxial wafer structure with etch-stop layer was designed and developed. Planar-type 640×512 InGaAs detector arrays were fabricated. The photosensitive arrays were bonded with readout circuit through Indium bumps by flip-chip process. Then, the InP substrate was removed by mechanical thinning and chemical wet etching. The visible irradiance can reach InGaAs absorption layer and then to be detected. As a result, the detection spectrum of the InGaAs FPAs has been extended toward visible spectrum from 0.5μm to 1.7μm. The quantum efficiency is approximately 15% at 0.5μm, 30% at 0.7μm, 50% at 0.8μm, 90% at 1.55μm. The average peak detectivity is higher than 2×1012 cm·Hz1/2/W at room temperature with an integrated time of 10 ms. The Visible-SWIR InGaAs FPAs were applied to an imaging system for SWIR and visible light imaging.
Enterovirus 71 Uses Cell Surface Heparan Sulfate Glycosaminoglycan as an Attachment Receptor
Tan, Chee Wah; Poh, Chit Laa; Sam, I-Ching
2013-01-01
Enterovirus 71 (EV-71) infections are usually associated with mild hand, foot, and mouth disease in young children but have been reported to cause severe neurological complications with high mortality rates. To date, four EV-71 receptors have been identified, but inhibition of these receptors by antagonists did not completely abolish EV-71 infection, implying that there is an as yet undiscovered receptor(s). Since EV-71 has a wide range of tissue tropisms, we hypothesize that EV-71 infections may be facilitated by using receptors that are widely expressed in all cell types, such as heparan sulfate. In this study, heparin, polysulfated dextran sulfate, and suramin were found to significantly prevent EV-71 infection. Heparin inhibited infection by all the EV-71 strains tested, including those with a single-passage history. Neutralization of the cell surface anionic charge by polycationic poly-d-lysine and blockage of heparan sulfate by an anti-heparan sulfate peptide also inhibited EV-71 infection. Interference with heparan sulfate biosynthesis either by sodium chlorate treatment or through transient knockdown of N-deacetylase/N-sulfotransferase-1 and exostosin-1 expression reduced EV-71 infection in RD cells. Enzymatic removal of cell surface heparan sulfate by heparinase I/II/III inhibited EV-71 infection. Furthermore, the level of EV-71 attachment to CHO cell lines that are variably deficient in cell surface glycosaminoglycans was significantly lower than that to wild-type CHO cells. Direct binding of EV-71 particles to heparin-Sepharose columns under physiological salt conditions was demonstrated. We conclude that EV-71 infection requires initial binding to heparan sulfate as an attachment receptor. PMID:23097443
Koniusz, Sylwia; Andrzejewska, Anna; Muraca, Maurizio; Srivastava, Amit K.; Janowski, Miroslaw; Lukomska, Barbara
2016-01-01
Extracellular vesicles (EVs) are membrane-surrounded structures released by most cell types. They are characterized by a specific set of proteins, lipids and nucleic acids. EVs have been recognized as potent vehicles of intercellular communication to transmit biological signals between cells. In addition, pathophysiological roles of EVs in conditions like cancer, infectious diseases and neurodegenerative disorders are well established. In recent years focus has been shifted on therapeutic use of stem cell derived-EVs. Use of stem cell derived-EVs present distinct advantage over the whole stem cells as EVs do not replicate and after intravenous administration, they are less likely to trap inside the lungs. From the therapeutic perspective, the most promising cellular sources of EVs are mesenchymal stem cells (MSCs), which are easy to obtain and maintain. Therapeutic activity of MSCs has been shown in numerous animal models and the beneficial paracrine effect of MSCs may be mediated by EVs. The various components of MSC derived-EVs such as proteins, lipids, and RNA might play a specific therapeutic role. In this review, we characterize the role of EVs in immune and central nervous system (CNS); present evidences for defective signaling of these vesicles in neurodegeneration and therapeutic role of EVs in CNS. PMID:27199663
Lai, Charles P.; Kim, Edward Y.; Badr, Christian E.; Weissleder, Ralph; Mempel, Thorsten R.; Tannous, Bakhos A.; Breakefield, Xandra O.
2015-01-01
Accurate spatiotemporal assessment of extracellular vesicle (EV) delivery and cargo RNA translation requires specific and robust live-cell imaging technologies. Here we engineer optical reporters to label multiple EV populations for visualization and tracking of tumour EV release, uptake and exchange between cell populations both in culture and in vivo. Enhanced green fluorescence protein (EGFP) and tandem dimer Tomato (tdTomato) were fused at NH2-termini with a palmitoylation signal (PalmGFP, PalmtdTomato) for EV membrane labelling. To monitor EV-RNA cargo, transcripts encoding PalmtdTomato were tagged with MS2 RNA binding sequences and detected by co-expression of bacteriophage MS2 coat protein fused with EGFP. By multiplexing fluorescent and bioluminescent EV membrane reporters, we reveal the rapid dynamics of both EV uptake and translation of EV-delivered cargo mRNAs in cancer cells that occurred within 1-hour post-horizontal transfer between cells. These studies confirm that EV-mediated communication is dynamic and multidirectional between cells with delivery of functional mRNA. PMID:25967391
Extracellular Vesicles in Cardiovascular Theranostics
Bei, Yihua; Das, Saumya; Rodosthenous, Rodosthenis S.; Holvoet, Paul; Vanhaverbeke, Maarten; Monteiro, Marta Chagas; Monteiro, Valter Vinicius Silva; Radosinska, Jana; Bartekova, Monika; Jansen, Felix; Li, Qian; Rajasingh, Johnson; Xiao, Junjie
2017-01-01
Extracellular vesicles (EVs) are small bilayer lipid membrane vesicles that can be released by most cell types and detected in most body fluids. EVs exert key functions for intercellular communication via transferring their bioactive cargos to recipient cells or activating signaling pathways in target cells. Increasing evidence has shown the important regulatory effects of EVs in cardiovascular diseases (CVDs). EVs secreted by cardiomyocytes, endothelial cells, fibroblasts, and stem cells play essential roles in pathophysiological processes such as cardiac hypertrophy, cardiomyocyte survival and apoptosis, cardiac fibrosis, and angiogenesis in relation to CVDs. In this review, we will first outline the current knowledge about the physical characteristics, biological contents, and isolation methods of EVs. We will then focus on the functional roles of cardiovascular EVs and their pathophysiological effects in CVDs, as well as summarize the potential of EVs as therapeutic agents and biomarkers for CVDs. Finally, we will discuss the specific application of EVs as a novel drug delivery system and the utility of EVs in the field of regenerative medicine. PMID:29158817
Sutaria, Dhruvitkumar S.; Badawi, Mohamed; Phelps, Mitch A.; Schmittgen, Thomas D.
2017-01-01
Extracellular vesicles (EVs) represent a class of cell secreted organelles which naturally contain biomolecular cargo such as miRNA, mRNA and proteins. EVs mediate intercellular communication, enabling the transfer of functional nucleic acids from the cell of origin to the recipient cells. In addition, EVs make an attractive delivery vehicle for therapeutics owing to their increased stability in circulation, biocompatibility, low immunogenicity and toxicity profiles. EVs can also be engineered to display targeting moieties on their surfaces which enables targeting to desired tissues, organs or cells. While much has been learned on the role of EVs as cell communicators, the field of therapeutic EV application is currently under development. Critical to the future success of EV delivery system is the description of methods by which therapeutics can be successfully and efficiently loaded within the EVs. Two methods of loading of EVs with therapeutic cargo exist, endogenous and exogenous loading. We have therefore focused this review on describing the various published approaches for loading EVs with therapeutics. PMID:28315083
How cancer cells dictate their microenvironment: present roles of extracellular vesicles.
Naito, Yutaka; Yoshioka, Yusuke; Yamamoto, Yusuke; Ochiya, Takahiro
2017-02-01
Intercellular communication plays an important role in cancer initiation and progression through secretory molecules, including growth factors and cytokines. Recent advances have revealed that small membrane vesicles, termed extracellular vesicles (EVs), served as a regulatory agent in the intercellular communication of cancer. EVs enable the transfer of functional molecules, including proteins, mRNA and microRNAs (miRNAs), into recipient cells. Cancer cells utilize EVs to dictate the unique phenotype of surrounding cells, thereby promoting cancer progression. Against such "education" by cancer cells, non-tumoral cells suppress cancer initiation and progression via EVs. Therefore, researchers consider EVs to be important cues to clarify the molecular mechanisms of cancer biology. Understanding the functions of EVs in cancer progression is an important aspect of cancer biology that has not been previously elucidated. In this review, we summarize experimental data that indicate the pivotal roles of EVs in cancer progression.
Weiss, René; Gröger, Marion; Rauscher, Sabine; Fendl, Birgit; Eichhorn, Tanja; Fischer, Michael B; Spittler, Andreas; Weber, Viktoria
2018-04-26
Secretion and exchange of biomolecules via extracellular vesicles (EVs) are crucial mechanisms in intercellular communication, and the roles of EVs in infection, inflammation, or thrombosis have been increasingly recognized. EVs have emerged as central players in immune regulation and can enhance or suppress the immune response, depending on the state of donor and recipient cells. We investigated the interaction of blood cell-derived EVs with leukocyte subpopulations (monocytes and their subsets, granulocytes, B cells, T cells, and NK cells) directly in whole blood using a combination of flow cytometry, imaging flow cytometry, cell sorting, and high resolution confocal microscopy. Platelet-derived EVs constituted the majority of circulating EVs and were preferentially associated with granulocytes and monocytes, while they scarcely interacted with lymphocytes. Further flow cytometric differentiation of monocyte subsets provided clear indications for a preferential association of platelet-derived EVs with intermediate (CD14 ++ CD16 + ) monocytes in whole blood.
Versatile roles of extracellular vesicles in cancer
Kosaka, Nobuyoshi; Yoshioka, Yusuke; Fujita, Yu
2016-01-01
Numerous studies have shown that non–cell-autonomous regulation of cancer cells is an important aspect of tumorigenesis. Cancer cells need to communicate with stromal cells by humoral factors such as VEGF, FGFs, and Wnt in order to survive. Recently, extracellular vesicles (EVs) have also been shown to be involved in cell-cell communication between cancer cells and the surrounding microenvironment and to be important for the development of cancer. In addition, these EVs contain small noncoding RNAs, including microRNAs (miRNAs), which contribute to the malignancy of cancer cells. Here, we provide an overview of current research on EVs, especially miRNAs in EVs. We also propose strategies to treat cancers by targeting EVs around cancer cells. PMID:26974161
Nakase, Ikuhiko; Noguchi, Kosuke; Fujii, Ikuo; Futaki, Shiroh
2016-10-17
Extracellular vesicles (EVs, exosomes) are approximately 30- to 200-nm-long vesicles that have received increased attention due to their role in cell-to-cell communication. Although EVs are highly anticipated to be a next-generation intracellular delivery tool because of their pharmaceutical advantages, including non-immunogenicity, their cellular uptake efficacy is low because of the repulsion of EVs and negatively charged cell membranes and size limitations in endocytosis. Here, we demonstrate a methodology for achieving enhanced cellular EV uptake using arginine-rich cell-penetrating peptides (CPPs) to induce active macropinocytosis. The induction of macropinocytosis via a simple modification to the exosomal membrane using stearylated octaarginine, which is a representative CPP, significantly enhanced the cellular EV uptake efficacy. Consequently, effective EV-based intracellular delivery of an artificially encapsulated ribosome-inactivating protein, saporin, in EVs was attained.
Strained quantum well photovoltaic energy converter
NASA Technical Reports Server (NTRS)
Freundlich, Alexandre (Inventor); Renaud, Philippe (Inventor); Vilela, Mauro Francisco (Inventor); Bensaoula, Abdelhak (Inventor)
1998-01-01
An indium phosphide photovoltaic cell is provided where one or more quantum wells are introduced between the conventional p-conductivity and n-conductivity indium phosphide layer. The approach allows the cell to convert the light over a wider range of wavelengths than a conventional single junction cell and in particular convert efficiently transparency losses of the indium phosphide conventional cell. The approach hence may be used to increase the cell current output. A method of fabrication of photovoltaic devices is provided where ternary InAsP and InGaAs alloys are used as well material in the quantum well region and results in an increase of the cell current output.
Barriers to horizontal cell transformation by extracellular vesicles containing oncogenic H-ras.
Lee, Tae Hoon; Chennakrishnaiah, Shilpa; Meehan, Brian; Montermini, Laura; Garnier, Delphine; D'Asti, Esterina; Hou, Wenyang; Magnus, Nathalie; Gayden, Tenzin; Jabado, Nada; Eppert, Kolja; Majewska, Loydie; Rak, Janusz
2016-08-09
Extracellular vesicles (EVs) enable the exit of regulatory, mutant and oncogenic macromolecules (proteins, RNA and DNA) from their parental tumor cells and uptake of this material by unrelated cellular populations. Among the resulting biological effects of interest is the notion that cancer-derived EVs may mediate horizontal transformation of normal cells through transfer of mutant genes, including mutant ras. Here, we report that H-ras-mediated transformation of intestinal epithelial cells (IEC-18) results in the emission of exosome-like EVs containing genomic DNA, HRAS oncoprotein and transcript. However, EV-mediated horizontal transformation of non-transformed cells (epithelial, astrocytic, fibroblastic and endothelial) is transient, limited or absent due to barrier mechanisms that curtail the uptake, retention and function of oncogenic H-ras in recipient cells. Thus, epithelial cells and astrocytes are resistant to EV uptake, unless they undergo malignant transformation. In contrast, primary and immortalized fibroblasts are susceptible to the EV uptake, retention of H-ras DNA and phenotypic transformation, but these effects are transient and fail to produce a permanent tumorigenic conversion of these cells in vitro and in vivo, even after several months of observation. Increased exposure to EVs isolated from H-ras-transformed cancer cells, but not to those from their indolent counterparts, triggers demise of recipient fibroblasts. Uptake of H-ras-containing EVs stimulates but fails to transform primary endothelial cells. Thus, we suggest that intercellular transfer of oncogenes exerts regulatory rather than transforming influence on recipient cells, while cancer cells may often act as preferential EV recipients.
Barriers to horizontal cell transformation by extracellular vesicles containing oncogenic H-ras
Lee, Tae Hoon; Chennakrishnaiah, Shilpa; Meehan, Brian; Montermini, Laura; Garnier, Delphine; D'Asti, Esterina; Hou, Wenyang; Magnus, Nathalie; Gayden, Tenzin; Jabado, Nada; Eppert, Kolja; Majewska, Loydie; Rak, Janusz
2016-01-01
Extracellular vesicles (EVs) enable the exit of regulatory, mutant and oncogenic macromolecules (proteins, RNA and DNA) from their parental tumor cells and uptake of this material by unrelated cellular populations. Among the resulting biological effects of interest is the notion that cancer-derived EVs may mediate horizontal transformation of normal cells through transfer of mutant genes, including mutant ras. Here, we report that H-ras-mediated transformation of intestinal epithelial cells (IEC-18) results in the emission of exosome-like EVs containing genomic DNA, HRAS oncoprotein and transcript. However, EV-mediated horizontal transformation of non-transformed cells (epithelial, astrocytic, fibroblastic and endothelial) is transient, limited or absent due to barrier mechanisms that curtail the uptake, retention and function of oncogenic H-ras in recipient cells. Thus, epithelial cells and astrocytes are resistant to EV uptake, unless they undergo malignant transformation. In contrast, primary and immortalized fibroblasts are susceptible to the EV uptake, retention of H-ras DNA and phenotypic transformation, but these effects are transient and fail to produce a permanent tumorigenic conversion of these cells in vitro and in vivo, even after several months of observation. Increased exposure to EVs isolated from H-ras-transformed cancer cells, but not to those from their indolent counterparts, triggers demise of recipient fibroblasts. Uptake of H-ras-containing EVs stimulates but fails to transform primary endothelial cells. Thus, we suggest that intercellular transfer of oncogenes exerts regulatory rather than transforming influence on recipient cells, while cancer cells may often act as preferential EV recipients. PMID:27437771
Cai, Jin; Han, Yu; Ren, Hongmei; Chen, Caiyu; He, Duofen; Zhou, Lin; Eisner, Gilbert M.; Asico, Laureano D.; Jose, Pedro A.; Zeng, Chunyu
2013-01-01
Extracellular vesicles (EVs) carry signals within or at their limiting membranes, providing a mechanism by which cells can exchange more complex information than what was previously thought. In addition to mRNAs and microRNAs, there are DNA fragments in EVs. Solexa sequencing indicated the presence of at least 16434 genomic DNA (gDNA) fragments in the EVs from human plasma. Immunofluorescence study showed direct evidence that acridine orange-stained EV DNAs could be transferred into the cells and localize to and inside the nuclear membrane. However, whether the transferred EV DNAs are functional or not is not clear. We found that EV gDNAs could be homologously or heterologously transferred from donor cells to recipient cells, and increase gDNA-coding mRNA, protein expression, and function (e.g. AT1 receptor). An endogenous promoter of the AT1 receptor, NF-κB, could be recruited to the transferred DNAs in the nucleus, and increase the transcription of AT1 receptor in the recipient cells. Moreover, the transferred EV gDNAs have pathophysiological significance. BCR/ABL hybrid gene, involved in the pathogenesis of chronic myeloid leukemia, could be transferred from K562 EVs to HEK293 cells or neutrophils. Our present study shows that the gDNAs transferred from EVs to cells have physiological significance, not only to increase the gDNA-coding mRNA and protein levels, but also to influence function in recipient cells. PMID:23580760
Cosenza, Stella; Ruiz, Maxime; Maumus, Marie; Jorgensen, Christian; Noël, Danièle
2017-01-01
Extracellular vesicles (EVs) are important mediators of cell-to-cell communication pathways via the transport of proteins, mRNA, miRNA and lipids. There are three main types of EVs, exosomes, microparticles and apoptotic bodies, which are classified according to their size and biogenesis. EVs are secreted by all cell types and their function reproduces that of the parental cell. They are involved in many biological processes that regulate tissue homeostasis and physiopathology of diseases. In rheumatic diseases, namely osteoarthritis (OA) and rheumatoid arthritis (RA), EVs have been isolated from synovial fluid and shown to play pathogenic roles contributing to progression of both diseases. By contrast, EVs may have therapeutic effect via the delivery of molecules that may stop disease evolution. In particular, EVs derived from mesenchymal stem cells (MSCs) reproduce the main functions of the parental cells and therefore represent the ideal type of EVs for modulating the course of either disease. The aim of this review is to discuss the role of EVs in OA and RA focusing on their potential pathogenic effect and possible therapeutic options. Special attention is given to MSCs and MSC-derived EVs for modulating OA and RA progression with the perspective of developing innovative therapeutic strategies. PMID:28441721
Minireview: Emerging Roles for Extracellular Vesicles in Diabetes and Related Metabolic Disorders
Lakhter, Alexander J.
2015-01-01
Extracellular vesicles (EVs), membrane-contained vesicles released by most cell types, have attracted a large amount of research interest over the past decade. Because of their ability to transfer cargo via regulated processes, causing functional impacts on recipient cells, these structures may play important roles in cell-cell communication and have implications in the physiology of numerous organ systems. In addition, EVs have been described in most human biofluids and have wide potential as relatively noninvasive biomarkers of various pathologic conditions. Specifically, EVs produced by the pancreatic β-cell have been demonstrated to regulate physiologic and pathologic responses to β-cell stress, including β-cell proliferation and apoptosis. β-Cell EVs are also capable of interacting with immune cells and may contribute to the activation of autoimmune processes that trigger or propagate β-cell inflammation and destruction during the development of diabetes. EVs from adipose tissue have been shown to contribute to the development of the chronic inflammation and insulin resistance associated with obesity and metabolic syndrome via interactions with other adipose, liver, and muscle cells. Circulating EVs may also serve as biomarkers for metabolic derangements and complications associated with diabetes. This minireview describes the properties of EVs in general, followed by a more focused review of the literature describing EVs affecting the β-cell, β-cell autoimmunity, and the development of insulin resistance, which all have the potential to affect development of type 1 or type 2 diabetes. PMID:26393296
NASA Astrophysics Data System (ADS)
Chiba, Kohei; Tomioka, Katsuhiro; Yoshida, Akinobu; Motohisa, Junichi
2017-12-01
Composition controllability of vertical InGaAs nanowires (NWs) on Si integrated by selective area growth was characterized for Si photonics in the optical telecommunication bands. The pitch of pre-patterned holes (NW sites) changed to an In/Ga alloy-composition in the solid phase during the NW growth. The In composition with a nanometer-scaled pitch differed completely from that with a μm-scaled pitch. Accordingly, the growth morphologies of InGaAs NWs show different behavior with respect to the In/Ga ratio.
Characteristics of Monolithically Integrated InGaAs Active Pixel Imager Array
NASA Technical Reports Server (NTRS)
Kim, Q.; Cunningham, T. J.; Pain, B.; Lange, M. J.; Olsen, G. H.
2000-01-01
Switching and amplifying characteristics of a newly developed monolithic InGaAs Active Pixel Imager Array are presented. The sensor array is fabricated from InGaAs material epitaxially deposited on an InP substrate. It consists of an InGaAs photodiode connected to InP depletion-mode junction field effect transistors (JFETs) for low leakage, low power, and fast control of circuit signal amplifying, buffering, selection, and reset. This monolithically integrated active pixel sensor configuration eliminates the need for hybridization with silicon multiplexer. In addition, the configuration allows the sensor to be front illuminated, making it sensitive to visible as well as near infrared signal radiation. Adapting the existing 1.55 micrometer fiber optical communication technology, this integration will be an ideal system of optoelectronic integration for dual band (Visible/IR) applications near room temperature, for use in atmospheric gas sensing in space, and for target identification on earth. In this paper, two different types of small 4 x 1 test arrays will be described. The effectiveness of switching and amplifying circuits will be discussed in terms of circuit effectiveness (leakage, operating frequency, and temperature) in preparation for the second phase demonstration of integrated, two-dimensional monolithic InGaAs active pixel sensor arrays for applications in transportable shipboard surveillance, night vision, and emission spectroscopy.
Yoshimura, Aya; Adachi, Naoki; Matsuno, Hitomi; Kawamata, Masaki; Yoshioka, Yusuke; Kikuchi, Hisae; Odaka, Haruki; Numakawa, Tadahiro; Kunugi, Hiroshi; Ochiya, Takahiro; Tamai, Yoshitaka
2018-01-30
Extracellular vesicles (EVs) can modulate microenvironments by transferring biomolecules, including RNAs and proteins derived from releasing cells, to target cells. To understand the molecular mechanisms maintaining the neural stem cell (NSC) niche through EVs, a new transgenic (Tg) rat strain that can release human CD63-GFP-expressing EVs from the NSCs was established. Human CD63-GFP expression was controlled under the rat Sox2 promoter (Sox2/human CD63-GFP), and it was expressed in undifferentiated fetal brains. GFP signals were specifically observed in in vitro cultured NSCs obtained from embryonic brains of the Tg rats. We also demonstrated that embryonic NSC (eNSC)-derived EVs were labelled by human CD63-GFP. Furthermore, when we examined the transfer of EVs, eNSC-derived EVs were found to be incorporated into astrocytes and eNSCs, thus implying an EV-mediated communication between different cell types around NSCs. This new Sox2/human CD63-GFP Tg rat strain should provide resources to analyse the cell-to-cell communication via EVs in NSC microenvironments. © 2018. Published by The Company of Biologists Ltd.
Human Enterovirus 68 Interferes with the Host Cell Cycle to Facilitate Viral Production
Wang, Zeng-yan; Zhong, Ting; Wang, Yue; Song, Feng-mei; Yu, Xiao-feng; Xing, Li-ping; Zhang, Wen-yan; Yu, Jing-hua; Hua, Shu-cheng; Yu, Xiao-fang
2017-01-01
Enterovirus D68 (EV-D68) is an emerging pathogen that recently caused a large outbreak of severe respiratory disease in the United States and other countries. Little is known about the relationship between EV-D68 virus and host cells. In this study, we assessed the effect of the host cell cycle on EV-D68 viral production, as well as the ability of EV-D68 to manipulate host cell cycle progression. The results suggest that synchronization in G0/G1 phase, but not S phase, promotes viral production, while synchronization in G2/M inhibits viral production. Both an early EV-D68 isolate and currently circulating strains of EV-D68 can manipulate the host cell cycle to arrest cells in the G0/G1 phase, thus providing favorable conditions for virus production. Cell cycle regulation by EV-D68 was associated with corresponding effects on the expression of cyclins and CDKs, which were observed at the level of the protein and/or mRNA. Furthermore, the viral non-structural protein 3D of EV-D68 prevents progression from G0/G1 to S. Interestingly, another member of the Picornaviridae family, EV-A71, differs from EV-D68 in that G0/G1 synchronization inhibits, rather than promotes, EV-A71 viral replication. However, these viruses are similar in that G2/M synchronization inhibits the production and activity of both viruses, which is suggestive of a common therapeutic target for both types of enterovirus. These results further clarify the pathogenic mechanisms of enteroviruses and provide a potential strategy for the treatment and prevention of EV-D68-related disease. PMID:28229049
Takasugi, Masaki; Okada, Ryo; Takahashi, Akiko; Virya Chen, David; Watanabe, Sugiko; Hara, Eiji
2017-01-01
Cellular senescence prevents the proliferation of cells at risk for neoplastic transformation. However, the altered secretome of senescent cells can promote the growth of the surrounding cancer cells. Although extracellular vesicles (EVs) have emerged as new players in intercellular communication, their role in the function of senescent cell secretome has been largely unexplored. Here, we show that exosome-like small EVs (sEVs) are important mediators of the pro-tumorigenic function of senescent cells. sEV-associated EphA2 secreted from senescent cells binds to ephrin-A1, that is, highly expressed in several types of cancer cells and promotes cell proliferation through EphA2/ephrin-A1 reverse signalling. sEV sorting of EphA2 is increased in senescent cells because of its enhanced phosphorylation resulting from oxidative inactivation of PTP1B phosphatase. Our results demonstrate a novel mechanism of reactive oxygen species (ROS)-regulated cargo sorting into sEVs, which is critical for the potentially deleterious growth-promoting effect of the senescent cell secretome. PMID:28585531
Koizume, Shiro; Ito, Shin; Yoshioka, Yusuke; Kanayama, Tomohiko; Nakamura, Yoshiyasu; Yoshihara, Mitsuyo; Yamada, Roppei; Ochiya, Takahiro; Ruf, Wolfram; Miyagi, Etsuko; Hirahara, Fumiki; Miyagi, Yohei
2016-01-01
Thromboembolic events occur frequently in ovarian cancer patients. Tissue factor (TF) is often overexpressed in tumours, including ovarian clear-cell carcinoma (CCC), a subtype with a generally poor prognosis. TF-coagulation factor VII (fVII) complexes on the cell surface activate downstream coagulation mechanisms. Moreover, cancer cells secrete extracellular vesicles (EVs), which act as vehicles for TF. We therefore examined the characteristics of EVs produced by ovarian cancer cells of various histological subtypes. CCC cells secreted high levels of TF within EVs, while the high-TF expressing breast cancer cell line MDA-MB-231 shed fewer TF-positive EVs. We also found that CCC tumours with hypoxic tissue areas synthesised TF and fVII in vivo, rendering the blood of xenograft mice bearing these tumours hypercoagulable compared with mice bearing MDA-MB-231 tumours. Incorporation of TF into EVs and secretion of EVs from CCC cells exposed to hypoxia were both dependent on the actin-binding protein, filamin-A (filA). Furthermore, production of these EVs was dependent on different protease-activated receptors (PARs) on the cell surface. These results show that CCC cells could produce large numbers of TF-positive EVs dependent upon filA and PARs. This phenomenon may be the mechanism underlying the increased incidence of venous thromboembolism in ovarian cancer patients.
Hansen, Hinrich P.; Trad, Ahmad; Dams, Maria; Zigrino, Paola; Moss, Marcia; Tator, Maximilian; Schön, Gisela; Grenzi, Patricia C; Bachurski, Daniel; Aquino, Bruno; Dürkop, Horst; Reiners, Katrin S; von Bergwelt-Baildon, Michael; Hallek, Michael; Grötzinger, Joachim; Engert, Andreas; Leme, Adriana F Paes; von Strandmann, Elke Pogge
2016-01-01
The goal of targeted immunotherapy in cancer is to damage both malignant and tumor-supporting cells of the microenvironment but spare unaffected tissue. The malignant cells in classical Hodgkin lymphoma (cHL) selectively express CD30. They release this receptor on extracellular vesicles (EVs) for the tumor-supporting communication with CD30 ligand (CD30L)-positive bystander cells. Here, we investigated how CD30-positive EVs influence the efficacy of the CD30 antibody drug conjugate (ADC) Brentuximab Vedotin (SGN-35). The malignant cells and the EVs expressed the active sheddase ADAM10. ADAM10 cleaved and released the CD30 ectodomain (sCD30), causing a gradual depletion of SGN-35 binding sites on EVs and creating a soluble competitor of the ADC therapy. In a 3D semi-solid tumor microenvironment model, the EVs were retained in the matrix whereas sCD30 penetrated readily into the surrounding culture medium. This resulted in a lowered ratio of EV-associated CD30 (CD30EV) to sCD30 in the surrounding medium in comparison to non-embedded cultures. A low percentage of CD30EV was also detected in the plasma of cHL patients, supporting the clinical relevance of the model. The adherence of CD30EV but not sCD30 to CD30−/CD30L+ mast cells and eosinophils allowed the indirect binding of SGN-35. Moreover, SGN-35 damaged CD30-negative cells, provided they were loaded with CD30+ EVs. PMID:27105521
Di Trapani, Mariano; Bassi, Giulio; Midolo, Martina; Gatti, Alessandro; Kamga, Paul Takam; Cassaro, Adriana; Carusone, Roberta; Adamo, Annalisa; Krampera, Mauro
2016-01-01
Mesenchymal stromal cells (MSCs) are multipotent cells, immunomodulatory stem cells that are currently used for regenerative medicine and treatment of a number of inflammatory diseases, thanks to their ability to significantly influence tissue microenvironments through the secretion of large variety of soluble factors. Recently, several groups have reported the presence of extracellular vesicles (EVs) within MSC secretoma, showing their beneficial effect in different animal models of disease. Here, we used a standardized methodological approach to dissect the immunomodulatory effects exerted by MSC-derived EVs on unfractionated peripheral blood mononuclear cells and purified T, B and NK cells. We describe here for the first time: i. direct correlation between the degree of EV-mediated immunosuppression and EV uptake by immune effector cells, a phenomenon further amplified following MSC priming with inflammatory cytokines; ii. induction in resting MSCs of immunosuppressive properties towards T cell proliferation through EVs obtained from primed MSCs, without any direct inhibitory effect towards T cell division. Our conclusion is that the use of reproducible and validated assays is not only useful to characterize the mechanisms of action of MSC-derived EVs, but is also capable of justifying EV potential use as alternative cell-free therapy for the treatment of human inflammatory diseases. PMID:27071676
Di Trapani, Mariano; Bassi, Giulio; Midolo, Martina; Gatti, Alessandro; Kamga, Paul Takam; Cassaro, Adriana; Carusone, Roberta; Adamo, Annalisa; Krampera, Mauro
2016-04-13
Mesenchymal stromal cells (MSCs) are multipotent cells, immunomodulatory stem cells that are currently used for regenerative medicine and treatment of a number of inflammatory diseases, thanks to their ability to significantly influence tissue microenvironments through the secretion of large variety of soluble factors. Recently, several groups have reported the presence of extracellular vesicles (EVs) within MSC secretoma, showing their beneficial effect in different animal models of disease. Here, we used a standardized methodological approach to dissect the immunomodulatory effects exerted by MSC-derived EVs on unfractionated peripheral blood mononuclear cells and purified T, B and NK cells. We describe here for the first time: i. direct correlation between the degree of EV-mediated immunosuppression and EV uptake by immune effector cells, a phenomenon further amplified following MSC priming with inflammatory cytokines; ii. induction in resting MSCs of immunosuppressive properties towards T cell proliferation through EVs obtained from primed MSCs, without any direct inhibitory effect towards T cell division. Our conclusion is that the use of reproducible and validated assays is not only useful to characterize the mechanisms of action of MSC-derived EVs, but is also capable of justifying EV potential use as alternative cell-free therapy for the treatment of human inflammatory diseases.
Newt cells secrete extracellular vesicles with therapeutic bioactivity in mammalian cardiomyocytes.
Middleton, Ryan C; Rogers, Russell G; De Couto, Geoffrey; Tseliou, Eleni; Luther, Kristin; Holewinski, Ronald; Soetkamp, Daniel; Van Eyk, Jennifer E; Antes, Travis J; Marbán, Eduardo
2018-01-01
Newts can regenerate amputated limbs and cardiac tissue, unlike mammals which lack broad regenerative capacity. Several signaling pathways involved in cell proliferation, differentiation and survival during newt tissue regeneration have been elucidated, however the factors that coordinate signaling between cells, as well as the conservation of these factors in other animals, are not well defined. Here we report that media conditioned by newt limb explant cells (A1 cells) protect mammalian cardiomyocytes from oxidative stress-induced apoptosis. The cytoprotective effect of A1-conditioned media was negated by exposing A1 cells to GW4869, which suppresses the generation of extracellular vesicles (EVs). A1-EVs are similar in diameter (~100-150 nm), structure, and share several membrane surface and cargo proteins with mammalian exosomes. However, isolated A1-EVs contain significantly higher levels of both RNA and protein per particle than mammalian EVs. Additionally, numerous cargo RNAs and proteins are unique to A1-EVs. Of particular note, A1-EVs contain numerous mRNAs encoding nuclear receptors, membrane ligands, as well as transcription factors. Mammalian cardiomyocytes treated with A1-EVs showed increased expression of genes in the PI3K/AKT pathway, a pivotal player in survival signaling. We conclude that newt cells secrete EVs with diverse, distinctive RNA and protein contents. Despite ~300 million years of evolutionary divergence between newts and mammals, newt EVs confer cytoprotective effects on mammalian cardiomyocytes.
Transmission of HBV DNA Mediated by Ceramide-Triggered Extracellular Vesicles.
Sanada, Takahiro; Hirata, Yuichi; Naito, Yutaka; Yamamoto, Naoki; Kikkawa, Yoshiaki; Ishida, Yuji; Yamasaki, Chihiro; Tateno, Chise; Ochiya, Takahiro; Kohara, Michinori
2017-03-01
An extracellular vesicle (EV) is a nanovesicle that shuttles proteins, nucleic acids, and lipids, thereby influencing cell behavior. A recent crop of reports have shown that EVs are involved in infectious biology, influencing host immunity and playing a role in the viral life cycle. In the present work, we investigated the EV-mediated transmission of hepatitis B virus (HBV) infection. We investigated the EV-mediated transmission of HBV infection by using a HBV infectious culture system that uses primary human hepatocytes derived from humanized chimeric mice (PXB-cells). Purified EVs were isolated by ultracentrifugation. To analyze the EVs and virions, we used stimulated emission depletion microscopy. Purified EVs from HBV-infected PXB-cells were shown to contain HBV DNA and to be capable of transmitting HBV DNA to naive PXB-cells. These HBV-DNA-transmitting EVs were shown to be generated through a ceramide-triggered EV production pathway. Furthermore, we showed that these HBV-DNA-transmitting EVs were resistant to antibody neutralization; stimulated emission depletion microscopy showed that EVs lacked hepatitis B surface antigen, the target of neutralizing antibodies. These findings suggest that EVs harbor a DNA cargo capable of transmitting viral DNA into hepatocytes during HBV infection, representing an additional antibody-neutralization-resistant route of HBV infection.
Human RHOH deficiency causes T cell defects and susceptibility to EV-HPV infections.
Crequer, Amandine; Troeger, Anja; Patin, Etienne; Ma, Cindy S; Picard, Capucine; Pedergnana, Vincent; Fieschi, Claire; Lim, Annick; Abhyankar, Avinash; Gineau, Laure; Mueller-Fleckenstein, Ingrid; Schmidt, Monika; Taieb, Alain; Krueger, James; Abel, Laurent; Tangye, Stuart G; Orth, Gérard; Williams, David A; Casanova, Jean-Laurent; Jouanguy, Emmanuelle
2012-09-01
Epidermodysplasia verruciformis (EV) is a rare genetic disorder characterized by increased susceptibility to specific human papillomaviruses, the betapapillomaviruses. These EV-HPVs cause warts and increase the risk of skin carcinomas in otherwise healthy individuals. Inactivating mutations in epidermodysplasia verruciformis 1 (EVER1) or EVER2 have been identified in most, but not all, patients with autosomal recessive EV. We found that 2 young adult siblings presenting with T cell deficiency and various infectious diseases, including persistent EV-HPV infections, were homozygous for a mutation creating a stop codon in the ras homolog gene family member H (RHOH) gene. RHOH encodes an atypical Rho GTPase expressed predominantly in hematopoietic cells. Patients' circulating T cells contained predominantly effector memory T cells, which displayed impaired TCR signaling. Additionally, very few circulating T cells expressed the β7 integrin subunit, which homes T cells to specific tissues. Similarly, Rhoh-null mice exhibited a severe overall T cell defect and abnormally small numbers of circulating β7-positive cells. Expression of the WT, but not of the mutated RHOH, allele in Rhoh-/- hematopoietic stem cells corrected the T cell lymphopenia in mice after bone marrow transplantation. We conclude that RHOH deficiency leads to T cell defects and persistent EV-HPV infections, suggesting that T cells play a role in the pathogenesis of chronic EV-HPV infections.
The key role of extracellular vesicles in the metastatic process.
Zhao, Hongyun; Achreja, Abhinav; Iessi, Elisabetta; Logozzi, Mariantonia; Mizzoni, Davide; Di Raimo, Rossella; Nagrath, Deepak; Fais, Stefano
2018-01-01
Extracellular vesicles (EVs), including exosomes, have a key role in the paracrine communication between organs and compartments. EVs shuttle virtually all types of biomolecules such as proteins, lipids, nucleic acids, metabolites and even pharmacological compounds. Their ability to transfer their biomolecular cargo into target cells enables EVs to play a key role in intercellular communication that can regulate cellular functions such as proliferation, apoptosis and migration. This has led to the emergence of EVs as a key player in tumor growth and metastasis through the formation of "tumor niches" in target organs. Recent data have also been shown that EVs may transform the microenvironment of primary tumors thus favoring the selection of cancer cells with a metastatic behavior. The release of EVs from resident non-malignant cells may contribute to the metastatic processes as well. However, cancer EVs may induce malignant transformation in resident mesenchymal stem cells, suggesting that the metastatic process is not exclusively due to circulating tumor cells. In this review, we outline and discuss evidence-based roles of EVs in actively regulating multiple steps of the metastatic process and how we can leverage EVs to impair metastasis. Copyright © 2017 Elsevier B.V. All rights reserved.
A platform for actively loading cargo RNA to elucidate limiting steps in EV-mediated delivery.
Hung, Michelle E; Leonard, Joshua N
2016-01-01
Extracellular vesicles (EVs) mediate intercellular communication through transfer of RNA and protein between cells. Thus, understanding how cargo molecules are loaded and delivered by EVs is of central importance for elucidating the biological roles of EVs and developing EV-based therapeutics. While some motifs modulating the loading of biomolecular cargo into EVs have been elucidated, the general rules governing cargo loading and delivery remain poorly understood. To investigate how general biophysical properties impact loading and delivery of RNA by EVs, we developed a platform for actively loading engineered cargo RNAs into EVs. In our system, the MS2 bacteriophage coat protein was fused to EV-associated proteins, and the cognate MS2 stem loop was engineered into cargo RNAs. Using this Targeted and Modular EV Loading (TAMEL) approach, we identified a configuration that substantially enhanced cargo RNA loading (up to 6-fold) into EVs. When applied to vesicles expressing the vesicular stomatitis virus glycoprotein (VSVG) - gesicles - we observed a 40-fold enrichment in cargo RNA loading. While active loading of mRNA-length (>1.5 kb) cargo molecules was possible, active loading was much more efficient for smaller (~0.5 kb) RNA molecules. We next leveraged the TAMEL platform to elucidate the limiting steps in EV-mediated delivery of mRNA and protein to prostate cancer cells, as a model system. Overall, most cargo was rapidly degraded in recipient cells, despite high EV-loading efficiencies and substantial EV uptake by recipient cells. While gesicles were efficiently internalized via a VSVG-mediated mechanism, most cargo molecules were rapidly degraded. Thus, in this model system, inefficient endosomal fusion or escape likely represents a limiting barrier to EV-mediated transfer. Altogether, the TAMEL platform enabled a comparative analysis elucidating a key opportunity for enhancing EV-mediated delivery to prostate cancer cells, and this technology should be of general utility for investigations and applications of EV-mediated transfer in other systems.
NASA Astrophysics Data System (ADS)
Ozaki, Nobuhiko; Kanehira, Shingo; Hayashi, Yuma; Ohkouchi, Shunsuke; Ikeda, Naoki; Sugimoto, Yoshimasa; Hogg, Richard A.
2017-11-01
We obtained a high-intensity and broadband emission centered at 1 μm from InGaAs quantum three-dimensional (3D) structures grown on a GaAs substrate using molecular beam epitaxy. An InGaAs thin layer grown on GaAs with a thickness close to the critical layer thickness is normally affected by strain as a result of the lattice mismatch and introduced misfit dislocations. However, under certain growth conditions for the In concentration and growth temperature, the growth mode of the InGaAs layer can be transformed from two-dimensional to 3D growth. We found the optimal conditions to obtain a broadband emission from 3D structures with a high intensity and controlled center wavelength at 1 μm. This method offers an alternative approach for fabricating a broadband near-infrared light source for telecommunication and medical imaging systems such as for optical coherence tomography.
NASA Astrophysics Data System (ADS)
Demir, Ilkay; Altuntas, Ismail; Bulut, Baris; Ezzedini, Maher; Ergun, Yuksel; Elagoz, Sezai
2018-05-01
We present growth and characterization studies of highly n-doped InGaAs epilayers on InP substrate by metal organic vapor phase epitaxy to use as an n-contact layer in quantum cascade laser applications. We have introduced quasi two-dimensional electrons between 10 s pulsed growth n-doped InGaAs epilayers to improve both carrier concentration and mobility of structure by applying pulsed growth and doping methods towards increasing the Si dopant concentration in InGaAs. Additionally, the V/III ratio optimization under fixed group III source flow has been investigated with this new method to understand the effects on both crystalline quality and electrical properties of n-InGaAs epilayers. Finally, we have obtained high crystalline quality of n-InGaAs epilayers grown by 10 s pulsed as a contact layer with 2.8 × 1019 cm‑3 carrier concentration and 1530 cm2 V‑1 s‑1 mobility.
Soleti, Raffaella; Andriantsitohaina, Ramaroson; Martinez, M Carmen
2018-04-15
Polyphenols are found in plant-derived foods and beverages and display numerous protective effects against cancers, cardiovascular, metabolic and neurodegenerative diseases. Extracellular vesicles (EVs), microparticles, exosomes, and apoptotic bodies, originated by different cell types are emerging as a novel mean of cell-to-cell communication in physiology and pathology and represent a new way to convey fundamental information between cells. Polyphenols can act on signaling pathways that interfere with the biogenesis of EVs. Thus, they are able to control EV release from cells and their content and therefore their functional properties. Both EVs and polyphenols are therapeutic tools that can be used against several diseases. In this context, the combination of both tools can increase their therapeutic potential. Three types of strategies can be used: (i) plants are able to produce EVs that encapsulate natural components from vegetables, polyphenols for instance, (ii) mammalian cells can be treated with polyphenols and the subsequent EVs produced are enriched in these components, and (iii) EVs from mammalian cells can be uploaded with polyphenols. We review the novel aspects of the interplay between polyphenols and EVs that could trigger and improve the health benefits in cancer, cardiovascular, metabolic and neurodegenerative diseases. Copyright © 2018 Elsevier Inc. All rights reserved.
Frank-Bertoncelj, Mojca; Pisetsky, David S.; Kolling, Christoph; Michel, Beat A.; Gay, Renate E.; Jüngel, Astrid; Gay, Steffen
2018-01-01
Extracellular vesicles (EV) can modulate the responses of cells to toll-like receptor (TLR) ligation; conversely, TLR ligands such as double-stranded RNA (dsRNA) can enhance the release of EV and influence of the composition and functions of EV cargos. Inflamed synovial joints in rheumatoid arthritis (RA) are rich in EV and extracellular RNA; besides, RNA released from necrotic synovial fluid cells can activate the TLR3 signaling in synovial fibroblasts (SFs) from patients with RA. Since EV occur prominently in synovial joints in RA and may contribute to the pathogenesis, we questioned whether EV can interact with dsRNA, a TLR3 ligand, and modify its actions in arthritis. We have used as model the effects on RA SFs, of EV released from monocyte U937 cells and peripheral blood mononuclear cells upon stimulation with Poly(I:C), a synthetic analog of dsRNA. We show that EV released from unstimulated cells and Poly(I:C)-stimulated U937 cells [Poly(I:C) EV] differ in size but bind similar amounts of Annexin V and express comparable levels of MAC-1, the receptor for dsRNA, on the vesicular membranes. Specifically, Poly(I:C) EV contain or associate with Poly(I:C) and at least partially protect Poly(I:C) from RNAse III degradation. Poly(I:C) EV shuttle Poly(I:C) to SFs and reproduce the proinflammatory and antiviral gene responses of SFs to direct stimulation with Poly(I:C). Poly(I:C) EV, however, halt the death receptor-induced apoptosis in SFs, thereby inverting the proapoptotic nature of Poly(I:C). These prosurvival effects sharply contrast with the high toxicity of cationic liposome-delivered Poly(I:C) and may reflect the route of Poly(I:C) delivery via EV or the fine-tuning of Poly(I:C) actions by molecular cargo in EV. The demonstration that EV may safeguard extracellular dsRNA and allow dsRNA to exert antiapoptotic effects on SFs highlights the potential of EV to amplify the pathogenicity of dsRNA in arthritis beyond inflammation (by concurrently enhancing the expansion of the invasive synovial stroma). PMID:29434584
Potential Role of Extracellular Vesicles in the Pathophysiology of Drug Addiction.
Rao, P S S; O'Connell, Kelly; Finnerty, Thomas Kyle
2018-01-23
Extracellular vesicles (EVs) are small vesicles secreted by cells and are known to carry sub-cellular components including microRNA, proteins, and lipids. Due to their ability to transport cargo between cells, EVs have been identified as important regulators of various pathophysiological conditions and can therefore influence treatment outcomes. In particular, the significance of microRNAs in EV-mediated cell-cell communication is well-documented. While the influence of EVs and the cargo delivered by EVs has been extensively reviewed in other neurological disorders, the available literature on the potential role of EVs in the pathophysiology of drug addiction has not been reviewed. Hence, in this article, the known effects of commonly abused drugs (ethanol, nicotine, opiates, cocaine, and cannabinoids) on EV secretion have been reviewed. In addition, the potential role of drugs of abuse in affecting the delivery of EV-packaged microRNAs, and the subsequent impact on neuronal health and continued drug dependence, has been discussed.
Extracellular vesicles at the cross-line between basic science and clinical needs.
Sasso, Luana; Hosamuddin, Huma; Emanueli, Costanza
2017-01-01
MiRNAs are small noncoding RNAs vital for protein regulation and gene expression. Since their discovery in the early nineties, many of their intracellular roles have been characterized. However, it is only recently that EVs loaded with miRNAs and other molecular types have started to be appreciated for their substantial involvement in cell-to-cell communication and signaling in physiological and pathological processes. EVs cell-to-cell signaling functions are complex and largely unknown, which still hampers the direct use of endogenous engineered EVs as therapeutics. However, ad hoc engineered synthetic EVs could represent new therapeutics. The potential of EV-inspired delivery carriers has now attracted the interest of the pharmaceutical industry and has challenged drug delivery researchers with new questions. This review will focus on EVs and EV-inspired drug delivery carriers, on their potential and on the challenges involved in the use of EV-inspired drug delivery systems. © 2016 John Wiley & Sons Ltd.
Wiklander, Oscar P B; Bostancioglu, R Beklem; Welsh, Joshua A; Zickler, Antje M; Murke, Florian; Corso, Giulia; Felldin, Ulrika; Hagey, Daniel W; Evertsson, Björn; Liang, Xiu-Ming; Gustafsson, Manuela O; Mohammad, Dara K; Wiek, Constanze; Hanenberg, Helmut; Bremer, Michel; Gupta, Dhanu; Björnstedt, Mikael; Giebel, Bernd; Nordin, Joel Z; Jones, Jennifer C; El Andaloussi, Samir; Görgens, André
2018-01-01
Extracellular vesicles (EVs) can be harvested from cell culture supernatants and from all body fluids. EVs can be conceptually classified based on their size and biogenesis as exosomes and microvesicles. Nowadays, it is however commonly accepted in the field that there is a much higher degree of heterogeneity within these two subgroups than previously thought. For instance, the surface marker profile of EVs is likely dependent on the cell source, the cell's activation status, and multiple other parameters. Within recent years, several new methods and assays to study EV heterogeneity in terms of surface markers have been described; most of them are being based on flow cytometry. Unfortunately, such methods generally require dedicated instrumentation, are time-consuming and demand extensive operator expertise for sample preparation, acquisition, and data analysis. In this study, we have systematically evaluated and explored the use of a multiplex bead-based flow cytometric assay which is compatible with most standard flow cytometers and facilitates a robust semi-quantitative detection of 37 different potential EV surface markers in one sample simultaneously. First, assay variability, sample stability over time, and dynamic range were assessed together with the limitations of this assay in terms of EV input quantity required for detection of differently abundant surface markers. Next, the potential effects of EV origin, sample preparation, and quality of the EV sample on the assay were evaluated. The findings indicate that this multiplex bead-based assay is generally suitable to detect, quantify, and compare EV surface signatures in various sample types, including unprocessed cell culture supernatants, cell culture-derived EVs isolated by different methods, and biological fluids. Furthermore, the use and limitations of this assay to assess heterogeneities in EV surface signatures was explored by combining different sets of detection antibodies in EV samples derived from different cell lines and subsets of rare cells. Taken together, this validated multiplex bead-based flow cytometric assay allows robust, sensitive, and reproducible detection of EV surface marker expression in various sample types in a semi-quantitative way and will be highly valuable for many researchers in the EV field in different experimental contexts.
Hwang, John H; Lyes, Matthew; Sladewski, Katherine; Enany, Shymaa; McEachern, Elisa; Mathew, Denzil P; Das, Soumita; Moshensky, Alexander; Bapat, Sagar; Pride, David T; Ongkeko, Weg M; Crotty Alexander, Laura E
2016-06-01
Electronic (e)-cigarette use is rapidly rising, with 20 % of Americans ages 25-44 now using these drug delivery devices. E-cigarette users expose their airways, cells of host defense, and colonizing bacteria to e-cigarette vapor (EV). Here, we report that exposure of human epithelial cells at the air-liquid interface to fresh EV (vaped from an e-cigarette device) resulted in dose-dependent cell death. After exposure to EV, cells of host defense-epithelial cells, alveolar macrophages, and neutrophils-had reduced antimicrobial activity against Staphylococcus aureus (SA). Mouse inhalation of EV for 1 h daily for 4 weeks led to alterations in inflammatory markers within the airways and elevation of an acute phase reactant in serum. Upon exposure to e-cigarette vapor extract (EVE), airway colonizer SA had increased biofilm formation, adherence and invasion of epithelial cells, resistance to human antimicrobial peptide LL-37, and up-regulation of virulence genes. EVE-exposed SA were more virulent in a mouse model of pneumonia. These data suggest that e-cigarettes may be toxic to airway cells, suppress host defenses, and promote inflammation over time, while also promoting virulence of colonizing bacteria. Acute exposure to e-cigarette vapor (EV) is cytotoxic to airway cells in vitro. Acute exposure to EV decreases macrophage and neutrophil antimicrobial function. Inhalation of EV alters immunomodulating cytokines in the airways of mice. Inhalation of EV leads to increased markers of inflammation in BAL and serum. Staphylococcus aureus become more virulent when exposed to EV.
Stem Cell Extracellular Vesicles: Extended Messages of Regeneration
Riazifar, Milad; Pone, Egest J.; Lötvall, Jan; Zhao, Weian
2017-01-01
Stem cells are critical to maintaining steady-state organ homeostasis and regenerating injured tissues. Recent intriguing reports implicate extracellular vesicles (EVs) as carriers for the distribution of morphogens and growth and differentiation factors from tissue parenchymal cells to stem cells, and conversely, stem cell–derived EVs carrying certain proteins and nucleic acids can support healing of injured tissues. We describe approaches to make use of engineered EVs as technology platforms in therapeutics and diagnostics in the context of stem cells. For some regenerative therapies, natural and engineered EVs from stem cells may be superior to single-molecule drugs, biologics, whole cells, and synthetic liposome or nanoparticle formulations because of the ease of bioengineering with multiple factors while retaining superior biocompatibility and biostability and posing fewer risks for abnormal differentiation or neoplastic transformation. Finally, we provide an overview of current challenges and future directions of EVs as potential therapeutic alternatives to cells for clinical applications. PMID:27814025
Cancer-derived extracellular vesicles: friend and foe of tumour immunosurveillance.
Dörsam, Bastian; Reiners, Kathrin S; von Strandmann, Elke Pogge
2018-01-05
Extracellular vesicles (EVs) are important players of intercellular signalling mechanisms, including communication with and among immune cells. EVs can affect the surrounding tissue as well as peripheral cells. Recently, EVs have been identified to be involved in the aetiology of several diseases, including cancer. Tumour cell-released EVs or exosomes have been shown to promote a tumour-supporting environment in non-malignant tissue and, thus, benefit metastasis. The underlying mechanisms are numerous: loss of antigen expression, direct suppression of immune effector cells, exchange of nucleic acids, alteration of the recipient cells' transcription and direct suppression of immune cells. Consequently, tumour cells can subvert the host's immune detection as well as suppress the immune system. On the contrary, recent studies reported the existence of EVs able to activate immune cells, thus promoting the tumour-directed immune response. In this article, the immunosuppressive capabilities of EVs, on the one hand, and their potential use in immunoactivation and therapeutic potential, on the other hand, are discussed.This article is part of the discussion meeting issue 'Extracellular vesicles and the tumour microenvironment'. © 2017 The Authors.
Cossetti, Chiara; Iraci, Nunzio; Mercer, Tim R.; Leonardi, Tommaso; Alpi, Emanuele; Drago, Denise; Alfaro-Cervello, Clara; Saini, Harpreet K.; Davis, Matthew P.; Schaeffer, Julia; Vega, Beatriz; Stefanini, Matilde; Zhao, CongJian; Muller, Werner; Garcia-Verdugo, Jose Manuel; Mathivanan, Suresh; Bachi, Angela; Enright, Anton J.; Mattick, John S.; Pluchino, Stefano
2015-01-01
SUMMARY The idea that stem cell therapies work only via cell replacement is challenged by the observation of consistent intercellular molecule exchange between the graft and the host. Here we defined a mechanism of cellular signaling by which neural stem/precursor cells (NPCs) communicate with the microenvironment via extracellular vesicles (EVs), and we elucidated its molecular signature and function. We observed cytokine-regulated pathways that sort proteins and mRNAs into EVs. We described induction of interferon gamma (IFN-γ) pathway in NPCs exposed to proinflammatory cytokines that is mirrored in EVs. We showed that IFN-γ bound to EVs through Ifngr1 activates Stat1 in target cells. Finally, we demonstrated that endogenous Stat1 and Ifngr1 in target cells are indispensable to sustain the activation of Stat1 signaling by EV-associated IFN-γ/Ifngr1 complexes. Our study identifies a mechanism of cellular signaling regulated by EV-associated IFN-γ/Ifngr1 complexes, which grafted stem cells may use to communicate with the host immune system. PMID:25242146
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petri, Marcelo H.; Tellier, Céline; Michiels, Carine
2013-11-15
Highlights: •EV-077 reduced TNF-α induced inflammation in endothelial cells. •The thromboxane mimetic U69915 enhanced vascular smooth muscle cell proliferation. •EV-077 inhibited smooth muscle cell proliferation. -- Abstract: The prothrombotic mediator thromboxane A{sub 2} is derived from arachidonic acid metabolism through the cyclooxygenase and thromboxane synthase pathways, and transduces its effect through the thromboxane prostanoid (TP) receptor. The aim of this study was to determine the effect of the TP receptor antagonist and thromboxane synthase inhibitor EV-077 on inflammatory markers in human umbilical vein endothelial cells and on human coronary artery smooth muscle cell proliferation. To this end, mRNA levels ofmore » different proinflammatory mediators were studied by real time quantitative PCR, supernatants were analyzed by enzyme immune assay, and cell proliferation was assessed using WST-1. EV-077 significantly decreased mRNA levels of ICAM-1 and PTX3 after TNFα incubation, whereas concentrations of 6-keto PGF1α in supernatants of endothelial cells incubated with TNFα were significantly increased after EV-077 treatment. Although U46619 did not alter coronary artery smooth muscle cell proliferation, this thromboxane mimetic enhanced the proliferation induced by serum, insulin and growth factors, which was significantly inhibited by EV-077. In conclusion, EV-077 inhibited TNFα-induced endothelial inflammation and reduced the enhancement of smooth muscle cell proliferation induced by a thromboxane mimetic, supporting that the thromboxane pathway may be associated with early atherosclerosis in terms of endothelial dysfunction and vascular hypertrophy.« less
Monguió-Tortajada, Marta; Roura, Santiago; Gálvez-Montón, Carolina; Pujal, Josep Maria; Aran, Gemma; Sanjurjo, Lucía; Franquesa, Marcel la; Sarrias, Maria-Rosa; Bayes-Genis, Antoni; Borràs, Francesc E
2017-01-01
Undesired immune responses have drastically hampered outcomes after allogeneic organ transplantation and cell therapy, and also lead to inflammatory diseases and autoimmunity. Umbilical cord mesenchymal stem cells (UCMSCs) have powerful regenerative and immunomodulatory potential, and their secreted extracellular vesicles (EVs) are envisaged as a promising natural source of nanoparticles to increase outcomes in organ transplantation and control inflammatory diseases. However, poor EV preparations containing highly-abundant soluble proteins may mask genuine vesicular-associated functions and provide misleading data. Here, we used Size-Exclusion Chromatography (SEC) to successfully isolate EVs from UCMSCs-conditioned medium. These vesicles were defined as positive for CD9, CD63, CD73 and CD90, and their size and morphology characterized by NTA and cryo-EM. Their immunomodulatory potential was determined in polyclonal T cell proliferation assays, analysis of cytokine profiles and in the skewing of monocyte polarization. In sharp contrast to the non-EV containing fractions, to the complete conditioned medium and to ultracentrifuged pellet, SEC-purified EVs from UCMSCs inhibited T cell proliferation, resembling the effect of parental UCMSCs. Moreover, while SEC-EVs did not induce cytokine response, the non-EV fractions, conditioned medium and ultracentrifuged pellet promoted the secretion of pro-inflammatory cytokines by polyclonally stimulated T cells and supported Th17 polarization. In contrast, EVs did not induce monocyte polarization, but the non-EV fraction induced CD163 and CD206 expression and TNF-α production in monocytes. These findings increase the growing evidence confirming that EVs are an active component of MSC's paracrine immunosuppressive function and affirm their potential for therapeutics in nanomedicine. In addition, our results highlight the importance of well-purified and defined preparations of MSC-derived EVs to achieve the immunosuppressive effect.
Extracellular vesicles have variable dose-dependent effects on cultured draining cells in the eye.
Tabak, Saray; Schreiber-Avissar, Sofia; Beit-Yannai, Elie
2018-03-01
The role of extracellular vesicles (EVs) as signal mediators has been described in many biological fields. How many EVs are needed to deliver the desired physiological signal is yet unclear. Using a normal trabecular meshwork (NTM) cell culture exposed to non-pigmented ciliary epithelium (NPCE)-derived EVs, a relevant model for studying the human ocular drainage system, we addressed the EVs dose-response effects on the Wnt signaling. The objective of the study was to investigate the dosing effects of NPCE-derived EVs on TM Wnt signaling. EVs were isolated by PEG 8000 method from NPCE and RPE cells (used as controls) conditioned media. Concentrations were determined by Tunable Resistive Pulse Sensing method. Various exosomes concentration were incubated with TM cells, for the determination of mRNA (β-Catenin, Axin2 and LEF1) and protein (β-Catenin, GSK-3β) expression using real-time quantitative PCR and Western blot, respectively. Exposure of NTM cells for 8 hrs to low EVs concentrations was associated with a significant decreased expression of β-Catenin, GSK-3β, as opposed to exposure to high exosomal concentrations. Pro-MMP9 and MMP9 activities were significantly enhanced in NTM cells treated with high EV concentrations of (X10) as compared to low EV concentrations of either NPCE- or RPE-derived EVs and to untreated control. Our data support the concept that EVs biological effects are concentration-dependent at their target site. Specifically in the present study, we described a general dose-response at the gene and MMPs activity and a different dose-response regarding key canonical Wnt proteins expression. © 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Willms, Eduard; Cabañas, Carlos; Mäger, Imre; Wood, Matthew J A; Vader, Pieter
2018-01-01
Cells release membrane enclosed nano-sized vesicles termed extracellular vesicles (EVs) that function as mediators of intercellular communication by transferring biological information between cells. Tumor-derived EVs have emerged as important mediators in cancer development and progression, mainly through transfer of their bioactive content which can include oncoproteins, oncogenes, chemokine receptors, as well as soluble factors, transcripts of proteins and miRNAs involved in angiogenesis or inflammation. This transfer has been shown to influence the metastatic behavior of primary tumors. Moreover, tumor-derived EVs have been shown to influence distant cellular niches, establishing favorable microenvironments that support growth of disseminated cancer cells upon their arrival at these pre-metastatic niches. It is generally accepted that cells release a number of major EV populations with distinct biophysical properties and biological functions. Exosomes, microvesicles, and apoptotic bodies are EV populations most widely studied and characterized. They are discriminated based primarily on their intracellular origin. However, increasing evidence suggests that even within these EV populations various subpopulations may exist. This heterogeneity introduces an extra level of complexity in the study of EV biology and function. For example, EV subpopulations could have unique roles in the intricate biological processes underlying cancer biology. Here, we discuss current knowledge regarding the role of subpopulations of EVs in cancer development and progression and highlight the relevance of EV heterogeneity. The position of tetraspanins and integrins therein will be highlighted. Since addressing EV heterogeneity has become essential for the EV field, current and novel techniques for isolating EV subpopulations will also be discussed. Further dissection of EV heterogeneity will advance our understanding of the critical roles of EVs in health and disease.
Decoding the Secret of Cancer by Means of Extracellular Vesicles
Kosaka, Nobuyoshi
2016-01-01
One of the recent outstanding developments in cancer biology is the emergence of extracellular vesicles (EVs). EVs, which are small membrane vesicles that contain proteins, mRNAs, long non-coding RNAs, and microRNAs (miRNAs), are secreted by a variety of cells and have been revealed to play an important role in intercellular communications. These molecules function in the recipient cells; this has brought new insight into cell-cell communication. Recent reports have shown that EVs contribute to cancer cell development, including tumor initiation, angiogenesis, immune surveillance, drug resistance, invasion, metastasis, maintenance of cancer stem cells, and EMT phenotype. In this review, I will summarize recent studies on EV-mediated miRNA transfer in cancer biology. Furthermore, I will also highlight the possibility of novel diagnostics and therapy using miRNAs in EVs against cancer. PMID:26861408
Extracellular Vesicles in Hematological Malignancies: From Biology to Therapy
Caivano, Antonella; La Rocca, Francesco; Laurenzana, Ilaria; Trino, Stefania; De Luca, Luciana; Lamorte, Daniela; Del Vecchio, Luigi; Musto, Pellegrino
2017-01-01
Extracellular vesicles (EVs) are a heterogeneous group of particles, between 15 nanometers and 10 microns in diameter, released by almost all cell types in physiological and pathological conditions, including tumors. EVs have recently emerged as particularly interesting informative vehicles, so that they could be considered a true “cell biopsy”. Indeed, EV cargo, including proteins, lipids, and nucleic acids, generally reflects the nature and status of the origin cells. In some cases, EVs are enriched of peculiar molecular cargo, thus suggesting at least a degree of specific cellular packaging. EVs are identified as important and critical players in intercellular communications in short and long distance interplays. Here, we examine the physiological role of EVs and their activity in cross-talk between bone marrow microenvironment and neoplastic cells in hematological malignancies (HMs). In these diseases, HM EVs can modify tumor and bone marrow microenvironment, making the latter “stronger” in supporting malignancy, inducing drug resistance, and suppressing the immune system. Moreover, EVs are abundant in biologic fluids and protect their molecular cargo against degradation. For these and other “natural” characteristics, EVs could be potential biomarkers in a context of HM liquid biopsy and therapeutic tools. These aspects will be also analyzed in this review. PMID:28574430
Extracellular Vesicles Exploit Viral Entry Routes for Cargo Delivery
van Dongen, Helena M.; Masoumi, Niala
2016-01-01
SUMMARY Extracellular vesicles (EVs) have emerged as crucial mediators of intercellular communication, being involved in a wide array of key biological processes. Eukaryotic cells, and also bacteria, actively release heterogeneous subtypes of EVs into the extracellular space, where their contents reflect their (sub)cellular origin and the physiologic state of the parent cell. Within the past 20 years, presumed subtypes of EVs have been given a rather confusing diversity of names, including exosomes, microvesicles, ectosomes, microparticles, virosomes, virus-like particles, and oncosomes, and these names are variously defined by biogenesis, physical characteristics, or function. The latter category, functions, in particular the transmission of biological signals between cells in vivo and how EVs control biological processes, has garnered much interest. EVs have pathophysiological properties in cancer, neurodegenerative disorders, infectious disease, and cardiovascular disease, highlighting possibilities not only for minimally invasive diagnostic applications but also for therapeutic interventions, like macromolecular drug delivery. Yet, in order to pursue therapies involving EVs and delivering their cargo, a better grasp of EV targeting is needed. Here, we review recent progress in understanding the molecular mechanisms underpinning EV uptake by receptor-ligand interactions with recipient cells, highlighting once again the overlap of EVs and viruses. Despite their highly heterogeneous nature, EVs require common viral entry pathways, and an unanticipated specificity for cargo delivery is being revealed. We discuss the challenges ahead in delineating specific roles for EV-associated ligands and cellular receptors. PMID:26935137
Rappa, Germana; Santos, Mark F; Green, Toni M; Karbanová, Jana; Hassler, Justin; Bai, Yongsheng; Barsky, Sanford H; Corbeil, Denis; Lorico, Aurelio
2017-02-28
Extracellular membrane vesicles (EVs) function as vehicles of intercellular communication, but how the biomaterials they carry reach the target site in recipient cells is an open question. We report that subdomains of Rab7+ late endosomes and nuclear envelope invaginations come together to create a sub-nuclear compartment, where biomaterials associated with CD9+ EVs are delivered. EV-derived biomaterials were also found in the nuclei of host cells. The inhibition of nuclear import and export pathways abrogated the nuclear localization of EV-derived biomaterials or led to their accumulation therein, respectively, suggesting that their translocation is dependent on nuclear pores. Nuclear envelope invagination-associated late endosomes were observed in ex vivo biopsies in both breast carcinoma and associated stromal cells. The transcriptome of stromal cells exposed to cancer cell-derived CD9+ EVs revealed that the regulation of eleven genes, notably those involved in inflammation, relies on the nuclear translocation of EV-derived biomaterials. Our findings uncover a new cellular pathway used by EVs to reach nuclear compartment.
Montermini, Laura; Meehan, Brian; Garnier, Delphine; Lee, Wan Jin; Lee, Tae Hoon; Guha, Abhijit; Al-Nedawi, Khalid; Rak, Janusz
2015-10-02
Cancer cells emit extracellular vesicles (EVs) containing unique molecular signatures. Here, we report that the oncogenic EGF receptor (EGFR) and its inhibitors reprogram phosphoproteomes and cargo of tumor cell-derived EVs. Thus, phosphorylated EGFR (P-EGFR) and several other receptor tyrosine kinases can be detected in EVs purified from plasma of tumor-bearing mice and from conditioned media of cultured cancer cells. Treatment of EGFR-driven tumor cells with second generation EGFR kinase inhibitors (EKIs), including CI-1033 and PF-00299804 but not with anti-EGFR antibody (Cetuximab) or etoposide, triggers a burst in emission of exosome-like EVs containing EGFR, P-EGFR, and genomic DNA (exo-gDNA). The EV release can be attenuated by treatment with inhibitors of exosome biogenesis (GW4869) and caspase pathways (ZVAD). The content of P-EGFR isoforms (Tyr-845, Tyr-1068, and Tyr-1173), ERK, and AKT varies between cells and their corresponding EVs and as a function of EKI treatment. Immunocapture experiments reveal the presence of EGFR and exo-gDNA within the same EV population following EKI treatment. These findings suggest that targeted agents may induce cancer cells to change the EV emission profiles reflective of drug-related therapeutic stress. We suggest that EV-based assays may serve as companion diagnostics for targeted anticancer agents. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Wiklander, Oscar P. B.; Bostancioglu, R. Beklem; Welsh, Joshua A.; Zickler, Antje M.; Murke, Florian; Corso, Giulia; Felldin, Ulrika; Hagey, Daniel W.; Evertsson, Björn; Liang, Xiu-Ming; Gustafsson, Manuela O.; Mohammad, Dara K.; Wiek, Constanze; Hanenberg, Helmut; Bremer, Michel; Gupta, Dhanu; Björnstedt, Mikael; Giebel, Bernd; Nordin, Joel Z.; Jones, Jennifer C.; EL Andaloussi, Samir; Görgens, André
2018-01-01
Extracellular vesicles (EVs) can be harvested from cell culture supernatants and from all body fluids. EVs can be conceptually classified based on their size and biogenesis as exosomes and microvesicles. Nowadays, it is however commonly accepted in the field that there is a much higher degree of heterogeneity within these two subgroups than previously thought. For instance, the surface marker profile of EVs is likely dependent on the cell source, the cell’s activation status, and multiple other parameters. Within recent years, several new methods and assays to study EV heterogeneity in terms of surface markers have been described; most of them are being based on flow cytometry. Unfortunately, such methods generally require dedicated instrumentation, are time-consuming and demand extensive operator expertise for sample preparation, acquisition, and data analysis. In this study, we have systematically evaluated and explored the use of a multiplex bead-based flow cytometric assay which is compatible with most standard flow cytometers and facilitates a robust semi-quantitative detection of 37 different potential EV surface markers in one sample simultaneously. First, assay variability, sample stability over time, and dynamic range were assessed together with the limitations of this assay in terms of EV input quantity required for detection of differently abundant surface markers. Next, the potential effects of EV origin, sample preparation, and quality of the EV sample on the assay were evaluated. The findings indicate that this multiplex bead-based assay is generally suitable to detect, quantify, and compare EV surface signatures in various sample types, including unprocessed cell culture supernatants, cell culture-derived EVs isolated by different methods, and biological fluids. Furthermore, the use and limitations of this assay to assess heterogeneities in EV surface signatures was explored by combining different sets of detection antibodies in EV samples derived from different cell lines and subsets of rare cells. Taken together, this validated multiplex bead-based flow cytometric assay allows robust, sensitive, and reproducible detection of EV surface marker expression in various sample types in a semi-quantitative way and will be highly valuable for many researchers in the EV field in different experimental contexts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cipro, R.; Gorbenko, V.; Univ. Grenoble Alpes, F-38000, France CEA-LETI, MINATEC Campus, F-38054 Grenoble
2014-06-30
Metal organic chemical vapor deposition of GaAs, InGaAs, and AlGaAs on nominal 300 mm Si(100) at temperatures below 550 °C was studied using the selective aspect ratio trapping method. We clearly show that growing directly GaAs on a flat Si surface in a SiO{sub 2} cavity with an aspect ratio as low as 1.3 is efficient to completely annihilate the anti-phase boundary domains. InGaAs quantum wells were grown on a GaAs buffer and exhibit room temperature micro-photoluminescence. Cathodoluminescence reveals the presence of dark spots which could be associated with the presence of emerging dislocation in a direction parallel to the cavity. Themore » InGaAs layers obtained with no antiphase boundaries are perfect candidates for being integrated as channels in n-type metal oxide semiconductor field effect transistor (MOSFET), while the low temperatures used allow the co-integration of p-type MOSFET.« less
MOMBE selective infill growth of InP:Si and InGaAs:Si and large area MOMBE regrowth
NASA Astrophysics Data System (ADS)
Schelhase, S.; Böttcher, J.; Gibis, R.; Künzel, H.; Paraskevopoulos, A.
1996-07-01
MOMBE selective infill growth (SIG) of silicon-doped InP and InGaAs was investigated by variation of the principal growth parameters, i.e. temperature, {V}/{III}- ratio and rate. Excellent surface morphology in conjunction with perfect selectivity and defect-free vertical interfaces between the grown layer and the etched substrate sidewall was achieved by an appropriate optimization of the selective growth conditions for InP as well as, for the first time, InGaAs. In the case of SIG of InP, smooth growth boundaries were obtained in the [01¯1] direction, whereas in the [01¯1¯] direction minor growth perturbations occur, which are related to a strong orientation dependent diffusion behavior of the growth species on the growth front. In the case of SIG of InGaAs, slight perturbations accompanied by facet formation at the edges of the selectively grown windows were observed. In the perspective of device application, homogeneous large area MOMBE InGaAs regrowth of the embedded structures was successfully achieved.
Evaluation of InGaAS array detector suitability to space environment
NASA Astrophysics Data System (ADS)
Tauziede, L.; Beulé, K.; Boutillier, M.; Bernard, F.; Reverchon, J.-L.; Buffaz, A.
2017-11-01
InGaAs material has a natural cutoff wavelength of 1.65µm so it is naturally suitable for detection in Short Wavelength InfraRed (SWIR) spectral range. Regarding Earth Observation Spacecraft missions this spectral range can be used for the CO2 concentration measurements in the atmosphere. CNES (French Space agency) is studying a new mission, Microcarb with a spectral band centered on 1.6µm wavelength. InGaAs detector looks attractive for space application because its low dark current allows high temperature operation, reducing by the way the needed instrument resources. The Alcatel Thales III-VLab group has developed InGaAs arrays technology (320x256 & 640x512) that has been studied by CNES, using internal facilities. Performance tests and technological evaluation were performed on a 320x256 pixels array with a pitch of 30µm. The aim of this evaluation was to assess this new technology suitability for space applications. The carried out test plan includes proton radiations with Random Telegraph Signal (RTS) study, operating lifetest and evolution of performances as a function of the operating temperature.
Tan, Chee Wah; Chan, Yoke Fun; Sim, Kooi Mow; Tan, Eng Lee; Poh, Chit Laa
2012-01-01
Enterovirus 71 (EV-71) is the main causative agent of hand, foot and mouth disease (HFMD). In recent years, EV-71 infections were reported to cause high fatalities and severe neurological complications in Asia. Currently, no effective antiviral or vaccine is available to treat or prevent EV-71 infection. In this study, we have discovered a synthetic peptide which could be developed as a potential antiviral for inhibition of EV-71. Ninety five synthetic peptides (15-mers) overlapping the entire EV-71 capsid protein, VP1, were chemically synthesized and tested for antiviral properties against EV-71 in human Rhabdomyosarcoma (RD) cells. One peptide, SP40, was found to significantly reduce cytopathic effects of all representative EV-71 strains from genotypes A, B and C tested, with IC(50) values ranging from 6-9.3 µM in RD cells. The in vitro inhibitory effect of SP40 exhibited a dose dependent concentration corresponding to a decrease in infectious viral particles, total viral RNA and the levels of VP1 protein. The antiviral activity of SP40 peptide was not restricted to a specific cell line as inhibition of EV-71 was observed in RD, HeLa, HT-29 and Vero cells. Besides inhibition of EV-71, it also had antiviral activities against CV-A16 and poliovirus type 1 in cell culture. Mechanism of action studies suggested that the SP40 peptide was not virucidal but was able to block viral attachment to the RD cells. Substitutions of arginine and lysine residues with alanine in the SP40 peptide at positions R3A, R4A, K5A and R13A were found to significantly decrease antiviral activities, implying the importance of positively charged amino acids for the antiviral activities. The data demonstrated the potential and feasibility of SP40 as a broad spectrum antiviral agent against EV-71.
Kavanagh, E L; Lindsay, S; Halasz, M; Gubbins, L C; Weiner-Gorzel, K; Guang, M H Z; McGoldrick, A; Collins, E; Henry, M; Blanco-Fernández, A; Gorman, P O'; Fitzpatrick, P; Higgins, M J; Dowling, P; McCann, A
2017-01-01
Triple negative breast cancer (TNBC) is an aggressive subtype with relatively poor clinical outcomes and limited treatment options. Chemotherapy, while killing cancer cells, can result in the generation of highly chemoresistant therapeutic induced senescent (TIS) cells that potentially form stem cell niches resulting in metastases. Intriguingly, senescent cells release significantly more extracellular vesicles (EVs) than non-senescent cells. Our aim was to profile EVs harvested from TIS TNBC cells compared with control cells to identify a potential mechanism by which TIS TNBC cells maintain survival in the face of chemotherapy. TIS was induced and confirmed in Cal51 TNBC cells using the chemotherapeutic paclitaxel (PTX) (Taxol). Mass spectrometry (MS) analysis of EVs harvested from TIS compared with control Cal51 cells was performed using Ingenuity Pathway Analysis and InnateDB programs. We demonstrate that TIS Cal51 cells treated with 75 nM PTX for 7 days became senescent (senescence-associated β-galactosidase (SA-β-Gal) positive, Ki67-negative, increased p21 and p16, G2/M cell cycle arrest) and released significantly more EVs (P=0.0002) and exosomes (P=0.0007) than non-senescent control cells. Moreover, TIS cells displayed an increased expression of the multidrug resistance protein 1/p-glycoprotein. MS analysis demonstrated that EVs derived from senescent Cal51 cells contained 142 proteins with a significant increased fold change compared with control EVs. Key proteins included ATPases, annexins, tubulins, integrins, Rabs and insoluble senescence-associated secretory phenotype (SASP) factors. A fluorescent analogue of PTX (Flutax-2) allowed appreciation of the removal of chemotherapy in EVs from senescent cells. Treatment of TIS cells with the exosome biogenesis inhibitor GW4869 resulted in reduced SA-β-Gal staining (P=0.04). In summary, this study demonstrates that TIS cells release significantly more EVs compared with control cells, containing chemotherapy and key proteins involved in cell proliferation, ATP depletion, apoptosis and the SASP. These findings may partially explain why cancer senescent cells remain viable despite chemotherapeutic challenge. PMID:28991260
Edmonds, Mary; Kent, Tyler; Chagarov, Evgueni; Sardashti, Kasra; Droopad, Ravi; Chang, Mei; Kachian, Jessica; Park, Jun Hong; Kummel, Andrew
2015-07-08
A saturated Si-Hx seed layer for gate oxide or contact conductor ALD has been deposited via two separate self-limiting and saturating CVD processes on InGaAs(001)-(2 × 4) at substrate temperatures of 250 and 350 °C. For the first self-limiting process, a single silicon precursor, Si3H8, was dosed at a substrate temperature of 250 °C, and XPS results show the deposited silicon hydride layer saturated at about 4 monolayers of silicon coverage with hydrogen termination. STS results show the surface Fermi level remains unpinned following the deposition of the saturated silicon hydride layer, indicating the InGaAs surface dangling bonds are electrically passivated by Si-Hx. For the second self-limiting process, Si2Cl6 was dosed at a substrate temperature of 350 °C, and XPS results show the deposited silicon chloride layer saturated at about 2.5 monolayers of silicon coverage with chlorine termination. Atomic hydrogen produced by a thermal gas cracker was subsequently dosed at 350 °C to remove the Si-Cl termination by replacing with Si-H termination as confirmed by XPS, and STS results confirm the saturated Si-Hx bilayer leaves the InGaAs(001)-(2 × 4) surface Fermi level unpinned. Density function theory modeling of silicon hydride surface passivation shows an Si-Hx monolayer can remove all the dangling bonds and leave a charge balanced surface on InGaAs.
InGaAs focal plane array developments at III-V Lab
NASA Astrophysics Data System (ADS)
Rouvié, Anne; Reverchon, Jean-Luc; Huet, Odile; Djedidi, Anis; Robo, Jean-Alexandre; Truffer, Jean-Patrick; Bria, Toufiq; Pires, Mauricio; Decobert, Jean; Costard, Eric
2012-06-01
SWIR detection band benefits from natural (sun, night glow, thermal radiation) or artificial (eye safe lasers) photons sources combined to low atmospheric absorption and specific contrast compared to visible wavelengths. It gives the opportunity to address a large spectrum of applications such as defense and security (night vision, active imaging), space (earth observation), transport (automotive safety) or industry (non destructive process control). InGaAs material appears as a good candidate to satisfy SWIR detection needs. The lattice matching with InP constitutes a double advantage to this material: attractive production capacity and uncooled operation thanks to low dark current level induced by high quality material. For few years, III-VLab has been studying InGaAs imagery, gathering expertise in InGaAs material growth and imaging technology respectively from Alcatel-Lucent and Thales, its two mother companies. This work has lead to put quickly on the market a 320x256 InGaAs module, exhibiting high performances in terms of dark current, uniformity and quantum efficiency. In this paper, we present the last developments achieved in our laboratory, mainly focused on increasing the pixels number to VGA format associated to pixel pitch decrease (15μm) and broadening detection spectrum toward visible wavelengths. Depending on targeted applications, different Read Out Integrated Circuits (ROIC) have been used. Low noise ROIC have been developed by CEA LETI to fit the requirements of low light level imaging whereas logarithmic ROIC designed by NIT allows high dynamic imaging adapted for automotive safety.
[Expression of EV71-VP1, PSGL-1 and SCARB2 in Tissues of Infants with Brain Stem Encephalitis].
Li, Ming; Kong, Xiao-ping; Liu, Hong; Cheng, Ling-xi; Huang, Jing-lu; Quan, Li; Wu, Fang-yu; Hao, Bo; Liu, Chao; Luo, Bin
2015-04-01
To understand the correlation of enterovirus 71 (EV71), P-selectin glycoprotein ligand-1 (PSGL-1), and scavenger receptor B2 (SCARB2) and to explore the possible pathway and mechanism of EV71 infection by observing the expression of EV71, PSGL-1 and SCARB2 in tissues of infants with brain stem encephalitis. The organs and tissues of infants with EV71-VP1 positivity in their brain stems were chosen. Expression and distribution of EV71-VP1, PSGL-1, and SCARB2 were detected and compared by immunohistochemistry. Strong staining of EV71 -VP1 was observed in the neuron, glial cells, the inflammatory cells of perivascular cuffing, parietal cells of the gastric fundus gland while alveolar macrophages, intestinal gland epithelium cells, mucosa lymphoid nodule and lymphocyte of palatine tonsil showed moderate staining and weak staining were displayed in mesenteric lymph nodes and lymphocyte of spleen. PSGL-1 expression was detected in parietal cells of the gastric fundus gland, tonsillar crypt squamous epithelium, alveolar macrophages and leukocytes in each tissue. SCARB2 expression was observed in all the above tissues except the intestines and spleen. The distribution of EV71 correlates with SCARB2 expression. SCARB2 plays an important role in virus infection and replication. Stomach may be an important site for EV71 replication.
Rheum emodin inhibits enterovirus 71 viral replication and affects the host cell cycle environment
Zhong, Ting; Zhang, Li-ying; Wang, Zeng-yan; Wang, Yue; Song, Feng-mei; Zhang, Ya-hong; Yu, Jing-hua
2017-01-01
Human enterovirus 71 (EV71) is the primary causative agent of recent large-scale outbreaks of hand, foot, and mouth disease (HFMD) in Asia. Currently, there are no drugs available for the prevention and treatment of HFMD. In this study, we compared the anti-EV71 activities of three natural compounds, rheum emodin, artemisinin and astragaloside extracted from Chinese herbs Chinese rhubarb, Artemisia carvifolia and Astragalus, respectively, which have been traditionally used for the treatment and prevention of epidemic diseases. Human lung fibroblast cell line MRC5 was mock-infected or infected with EV71, and treated with drugs. The cytotoxicity of the drugs was detected with MTT assay. The cytopathic effects such as cell death and condensed nuclei were morphologically observed. The VP1-coding sequence required for EV71 genome replication was assayed with qRT-PCR. Viral protein expression was analyzed with Western blotting. Viral TCID50 was determined to evaluate EV71 virulence. Flow cytometry analysis of propidium iodide staining was performed to analyze the cell cycle distribution of MRC5 cells. Rheum emodin (29.6 μmol/L) effectively protected MRC5 cells from EV71-induced cytopathic effects, which resulted from the inhibiting viral replication: rheum emodin treatment decreased viral genomic levels by 5.34-fold, viral protein expression by less than 30-fold and EV71 virulence by 0.33107-fold. The fact that inhibition of rheum emodin on viral virulence was much stronger than its effects on genomic levels and viral protein expression suggested that rheum emodin inhibited viral maturation. Furthermore, rheum emodin treatment markedly diminished cell cycle arrest at S phase in MRC5 cells, which was induced by EV71 infection and favored the viral replication. In contrast, neither astragaloside (50 μmol/L) nor artemisinin (50 μmol/L) showed similar anti-EV71 activities. Among the three natural compounds tested, rheum emodin effectively suppressed EV71 viral replication, thus is a candidate anti-HFMD drug. PMID:27840410
Rheum emodin inhibits enterovirus 71 viral replication and affects the host cell cycle environment.
Zhong, Ting; Zhang, Li-Ying; Wang, Zeng-Yan; Wang, Yue; Song, Feng-Mei; Zhang, Ya-Hong; Yu, Jing-Hua
2017-03-01
Human enterovirus 71 (EV71) is the primary causative agent of recent large-scale outbreaks of hand, foot, and mouth disease (HFMD) in Asia. Currently, there are no drugs available for the prevention and treatment of HFMD. In this study, we compared the anti-EV71 activities of three natural compounds, rheum emodin, artemisinin and astragaloside extracted from Chinese herbs Chinese rhubarb, Artemisia carvifolia and Astragalus, respectively, which have been traditionally used for the treatment and prevention of epidemic diseases. Human lung fibroblast cell line MRC5 was mock-infected or infected with EV71, and treated with drugs. The cytotoxicity of the drugs was detected with MTT assay. The cytopathic effects such as cell death and condensed nuclei were morphologically observed. The VP1-coding sequence required for EV71 genome replication was assayed with qRT-PCR. Viral protein expression was analyzed with Western blotting. Viral TCID50 was determined to evaluate EV71 virulence. Flow cytometry analysis of propidium iodide staining was performed to analyze the cell cycle distribution of MRC5 cells. Rheum emodin (29.6 μmol/L) effectively protected MRC5 cells from EV71-induced cytopathic effects, which resulted from the inhibiting viral replication: rheum emodin treatment decreased viral genomic levels by 5.34-fold, viral protein expression by less than 30-fold and EV71 virulence by 0.33107-fold. The fact that inhibition of rheum emodin on viral virulence was much stronger than its effects on genomic levels and viral protein expression suggested that rheum emodin inhibited viral maturation. Furthermore, rheum emodin treatment markedly diminished cell cycle arrest at S phase in MRC5 cells, which was induced by EV71 infection and favored the viral replication. In contrast, neither astragaloside (50 μmol/L) nor artemisinin (50 μmol/L) showed similar anti-EV71 activities. Among the three natural compounds tested, rheum emodin effectively suppressed EV71 viral replication, thus is a candidate anti-HFMD drug.
NASA Astrophysics Data System (ADS)
Durry, Georges; Pouchet, Ivan; Amarouche, Nadir; Danguy, Théodore; Megie, Gerard
2000-10-01
A dual-beam detector is used to measure atmospheric trace species by differential absorption spectroscopy with commercial near-infrared InGaAs laser diodes. It is implemented on the Spectrom tre Diodes Laser Accordables, a balloonborne tunable diode laser spectrometer devoted to the in situ monitoring of CH 4 and H 2 O. The dual-beam detector is made of simple analogical subtractor circuits combined with InGaAs photodiodes. The detection strategy consists in taking the balanced analogical difference between the reference and the sample signals detected at the input and the output of an open optical multipass cell to apply the full dynamic range of the measurements (16 digits) to the weak molecular absorption information. The obtained sensitivity approaches the shot-noise limit. With a 56-m optical cell, the detection limit obtained when the spectra is recorded within 8 ms is 10 4 (expressed in absorbance units). The design and performances of both a simple substractor and an upgraded feedback substractor circuit are discussed with regard to atmospheric in situ CH 4 absorption spectra measured in the 1.653- m region. Mixing ratios are obtained from the absorption spectra by application of a nonlinear least-squares fit to the full molecular line shape in conjunction with in situ P and T measurements.
NASA Astrophysics Data System (ADS)
Tsvid, Gene
Semiconductor laser active regions are commonly characterized by photo- and electro-luminescence (PL, EL) and cavity length analysis. However quantitative spectral information is not readily extracted from PL and EL data and comparison of different active region materials can be difficult. More quantifiable spectral information is contained in the optical gain spectra. This work reports on spectral gain studies, using multi-segmented interband devices, of InGaAs quantum well and quantum dot active regions grown by metalorganic chemical vapor deposition (MOCVD). Using the fundamental connection between gain and spontaneous emission spectra, the spontaneous radiative current and spontaneous radiative efficiency is evaluated for these active regions. The spectral gain and spontaneous radiative efficiency measurements of 980 nm emitting InGaAs quantum well (QW) material provides a benchmark comparison to previous results obtained on highly-strained, 1200 nm emitting InGaAs QW material. These studies provide insight into carrier recombination and the role of the current injection efficiency in InGaAs QW lasers. The spectral gain of self-assembled MOCVD grown InGaAs quantum dots (QD) active regions are also investigated, allowing for comparison to InGaAs QW material. The second part of my talk will cover intersubband-transition QW and quantum-box (QB) lasers. Quantum cascade (QC) lasers have emerged as compact and technologically important light sources in the mid-infrared (IR) and far-IR wavelength ranges infringing on the near-IR and terahertz spectral regions respectively. However, the overall power conversion efficiency, so-called wallplug efficiency, of the best QC lasers, emitting around 5 microns, is ˜9% in CW operation and very unlikely to exceed 15%. In order to dramatically improve the wallplug efficiency of mid-IR lasers (i.e., to about 50%), intersubband QB (IQB) lasers have been proposed. The basic idea, the optimal design and the progress towards the fabrication of IQB lasers will be presented.
Continuum modelling of silicon diffusion in indium gallium arsenide
NASA Astrophysics Data System (ADS)
Aldridge, Henry Lee, Jr.
A possible method to overcome the physical limitations experienced by continued transistor scaling and continue improvements in performance and power consumption is integration of III-V semiconductors as alternative channel materials for logic devices. Indium Gallium Arsenide (InGaAs) is such a material from the III-V semiconductor family, which exhibit superior electron mobilities and injection velocities than that of silicon. In order for InGaAs integration to be realized, contact resistances must be minimized through maximizing activation of dopants in this material. Additionally, redistribution of dopants during processing must be clearly understood and ultimately controlled at the nanometer-scale. In this work, the activation and diffusion behavior of silicon, a prominent n-type dopant in InGaAs, has been characterized and subsequently modelled using the Florida Object Oriented Process and Device Simulator (FLOOPS). In contrast to previous reports, silicon exhibits non-negligible diffusion in InGaAs, even for smaller thermal budget rapid thermal anneals (RTAs). Its diffusion is heavily concentration-dependent, with broadening "shoulder-like" profiles when doping levels exceed 1-3x1019cm -3, for both ion-implanted and Molecular Beam Epitaxy (MBE)-grown cases. Likewise a max net-activation value of ˜1.7x1019cm -3 is consistently reached with enough thermal processing, regardless of doping method. In line with experimental results and several ab-initio calculation results, rapid concentration-dependent diffusion of Si in InGaAs and the upper limits of its activation is believed to be governed by cation vacancies that serve as compensating defects in heavily n-type regions of InGaAs. These results are ultimately in line with an amphoteric defect model, where the activation limits of dopants are an intrinsic limitation of the material, rather than governed by individual dopant species or their methods of incorporation. As a result a Fermi level dependent point defect diffusion model and activation limit model were subsequently developed in FLOOPS with outputs in good agreement with experimental results.
Haga, Hiroaki; Yan, Irene K.; Takahashi, Kenji; Matsuda, Akiko
2017-01-01
Abstract Stem cell‐based therapies have potential for treatment of liver injury by contributing to regenerative responses, through functional tissue replacement or paracrine effects. The release of extracellular vesicles (EV) from cells has been implicated in intercellular communication, and may contribute to beneficial paracrine effects of stem cell‐based therapies. Therapeutic effects of bone‐marrow derived mesenchymal stem cells (MSC) and vesicles released by these cells were examined in a lethal murine model of hepatic failure induced by d‐galactosamine/tumor necrosis factor‐α (TNF‐α). Systemically administered EV derived from MSC accumulated within the injured liver following systemic administration, reduced hepatic injury, and modulated cytokine expression. Moreover, survival was dramatically increased by EV derived from either murine or human MSC. Similar results were observed with the use of cryopreserved mMSC‐EV after 3 months. Y‐RNA‐1 was identified as a highly enriched noncoding RNA within hMSC‐EV compared to cells of origin. Moreover, siRNA mediated knockdown of Y‐RNA‐1 reduced the protective effects of MSC‐EV on TNF‐α/ActD‐mediated hepatocyte apoptosis in vitro. These data support a critical role for MSC‐derived EV in mediating reparative responses following hepatic injury, and provide compelling evidence to support the therapeutic use of MSC‐derived EV in fulminant hepatic failure. Stem Cells Translational Medicine 2017;6:1262–1272 PMID:28213967
Yap, May Shin; Tang, Yin Quan; Yeo, Yin; Lim, Wei Ling; Lim, Lee Wei; Tan, Kuan Onn; Richards, Mark; Othman, Iekhsan; Poh, Chit Laa; Heng, Boon Chin
2016-01-06
The incidence of neurological complications and fatalities associated with Hand, Foot & Mouth disease has increased over recent years, due to emergence of newly-evolved strains of Enterovirus 71 (EV71). In the search for new antiviral therapeutics against EV71, accurate and sensitive in vitro cellular models for preliminary studies of EV71 pathogenesis is an essential prerequisite, before progressing to expensive and time-consuming live animal studies and clinical trials. This study thus investigated whether neural lineages derived from pluripotent human embryonic stem cells (hESC) can fulfil this purpose. EV71 infection of hESC-derived neural stem cells (NSC) and mature neurons (MN) was carried out in vitro, in comparison with RD and SH-SY5Y cell lines. Upon assessment of post-infection survivability and EV71 production by the various types, it was observed that NSC were significantly more susceptible to EV71 infection compared to MN, RD (rhabdomyosarcoma) and SH-SY5Y cells, which was consistent with previous studies on mice. The SP81 peptide had significantly greater inhibitory effect on EV71 production by NSC and MN compared to the cancer-derived RD and SH-SY5Y cell lines. Hence, this study demonstrates that hESC-derived neural lineages can be utilized as in vitro models for studying EV71 pathogenesis and for screening of antiviral therapeutics.
Abreu, Soraia C; Weiss, Daniel J; Rocco, Patricia R M
2016-04-14
Extracellular vesicles (EVs) are plasma membrane-bound fragments released from several cell types, including mesenchymal stromal cells (MSCs), constitutively or under stimulation. EVs derived from MSCs and other cell types transfer molecules (such as DNA, proteins/peptides, mRNA, microRNA, and lipids) and/or organelles with reparative and anti-inflammatory properties to recipient cells. The paracrine anti-inflammatory effects promoted by MSC-derived EVs have attracted significant interest in the regenerative medicine field, including for potential use in lung injuries. In the present review, we describe the characteristics, biological activities, and mechanisms of action of MSC-derived EVs. We also review the therapeutic potential of EVs as reported in relevant preclinical models of acute and chronic respiratory diseases, such as pneumonia, acute respiratory distress syndrome, asthma, and pulmonary arterial hypertension. Finally, we discuss possible approaches for potentiating the therapeutic effects of MSC-derived EVs so as to enable use of this therapy in clinical practice.
NASA Technical Reports Server (NTRS)
Gee, James M.; Curtis, Henry B.
1988-01-01
The effect of different module configurations on the performance of multijunction (MJ) solar cells in a radiation environment was investigated. Module configuration refers to the electrical circuit in which the subcells of the multijunction cell are wired. Experimental data for AlCaAs, GaAs, InGaAs, and silicon single-junction concentrator cells subjected to 1 MeV electron irradiation was used to calculate the expected performance of AlGaAs/InGaAs, AlGa/silicon, GaAs/InGaAs, and GaAs/silicon Mj concentrator cells. These calculations included independent, series, and voltage-matched configurations. The module configuration was found to have a significant impact on the radiation tolerance characteristic of the MJ cells.
NASA Astrophysics Data System (ADS)
Hyung, Yoo-Eup; Moon, Seong-In; Yum, Duk-Hyeng; Yun, Seong-Kyu
A total of 100 Ah class lithium ion cells with C/LiCoO 2 cell system for electric vehicles (EVs) was developed. EV-size lithium ion battery was developed by Sony, KERI/STC, SAFT, VARTA, Sanyo and Matsushita. GS battery and Hitachi have developed also stationary type large scale (70-80 Ah) lithium ion batteries. Lithium ion battery module for EVs was demonstrated by Sony/Nissan and KERI/STC in 1996. At present, the performance of developed EV-cells was up to 115 Wh/kg and 286 W/kg of specific power at 80% DOD. We assume our EV cells to have 248 and 242 km driving distance per one charge with DST-120 mode and ECE-15 mode, respectively. Finally, we performed safety/abuse tests of developed lithium ion cell.
Functional transferred DNA within extracellular vesicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Jin; Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Jiangsu Province; Wu, Gengze
Extracellular vesicles (EVs) are small membrane vesicles including exosomes and shedding vesicles that mediated a cell-to-cell communication. EVs are released from almost all cell types under both physiological and pathological conditions and incorporate nuclear and cytoplasmic molecules for intercellular delivery. Besides protein, mRNA, and microRNA of these molecules, as recent studies show, specific DNA are prominently packaged into EVs. It appears likely that some of exosomes or shedding vesicles, bearing nuclear molecules are released upon bubble-like blebs. Specific interaction of EVs with susceptible recipients performs the uptake of EVs into the target cells, discharging their cargo including nuclear and cytoplasmicmore » macromolecules into the cytosol. These findings expand the nucleic acid content of EVs to include increased levels of specific DNA. Thus, EVs contain a repertoire of genetic information available for horizontal gene transfer and potential use as blood biomarkers for cancer and atherosclerosis. In this review, the focus is on the characteristics, biological functions, and roles in diseases of DNA within EVs. - Highlights: • This review is focused on the DNA within EVs including its characteristics, biological functions, and roles in diseases. • It is clear that DNA within EVs might have important physiological and pathological roles in various diseases. • Knowledge in this area may provides us alternative methods for disease diagnosis or therapy in the future.« less
Shih, Chun-Liang; Chong, Kowit-Yu; Hsu, Shih-Che; Chien, Hsin-Jung; Ma, Ching-Ting; Chang, John Wen-Cheng; Yu, Chia-Jung; Chiou, Chiuan-Chian
2016-01-25
Cells release different types of extracellular vesicles (EVs). These EVs contain biomolecules, including proteins and nucleic acids, from their parent cells, which can be useful for diagnostic applications. The aim of this study was to develop a convenient procedure to collect circulating EVs with detectable mRNA or other biomolecules. Magnetic beads coated with annexin A5 (ANX-beads), which bound to phosphatidylserine moieties on the surfaces of most EVs, were tested for their ability to capture induced apoptotic bodies in vitro and other phosphatidylserine-presenting vesicles in body fluids. Our results show that up to 60% of induced apoptotic bodies could be captured by the ANX-beads. The vesicles captured from cultured media or plasma contained amplifiable RNA. Suitable blood samples for EV collection included EDTA-plasma and serum but not heparin-plasma. In addition, EVs in plasma were labile to freeze-and-thaw cycles. In rodents xenografted with human cancer cells, tumor-derived mRNA could be detected in EVs captured from serum samples. Active proteins could be detected in EVs captured from ascites but not from plasma. In conclusion, we have developed a magnetic bead-based procedure for the collection of EVs from body fluids and proved that captured EVs contain biomolecules from their parent cells, and therefore have great potential for disease diagnosis. Copyright © 2015 Elsevier B.V. All rights reserved.
Kim, Namje; Han, Sang-Pil; Ko, Hyunsung; Leem, Young Ahn; Ryu, Han-Cheol; Lee, Chul Wook; Lee, Donghun; Jeon, Min Yong; Noh, Sam Kyu; Park, Kyung Hyun
2011-08-01
We demonstrate a tunable continuous-wave (CW) terahertz (THz) homodyne system with a novel detuned dual-mode laser diode (DML) and low-temperature-grown (LTG) InGaAs photomixers. The optical beat source with the detuned DML showed a beat frequency tuning range of 0.26 to over 1.07 THz. Log-spiral antenna integrated LTG InGaAs photomixers are used as THz wave generators and detectors. The CW THz radiation frequency was continuously tuned to over 1 THz. Our results clearly show the feasibility of a compact and fast scanning CW THz spectrometer consisting of a fiber-coupled detuned DML and photomixers operating in the 1.55-μm range.
Breakdown flash at telecom wavelengths in InGaAs avalanche photodiodes
NASA Astrophysics Data System (ADS)
Shi, Yicheng; Lim, Janet Zheng Jie; Poh, Hou Shun; Tan, Peng Kian; Tan, Peiyu Amelia; Ling, Alexander; Kurtsiefer, Christian
2017-11-01
Quantum key distribution (QKD) at telecom wavelengths (1260-1625nm) has the potential for fast deployment due to existing optical fibre infrastructure and mature telecom technologies. At these wavelengths, indium gallium arsenide (InGaAs) avalanche photodiode (APD) based detectors are the preferred choice for photon detection. Similar to their silicon counterparts used at shorter wavelengths, they exhibit fluorescence from recombination of electron-hole pairs generated in the avalanche breakdown process. This fluorescence may open side channels for attacks on QKD systems. Here, we characterize the breakdown fluorescence from two commercial InGaAs single photon counting modules, and find a spectral distribution between 1000nm and 1600nm. We also show that by spectral filtering, this side channel can be efficiently suppressed.
Breakdown flash at telecom wavelengths in InGaAs avalanche photodiodes.
Shi, Yicheng; Lim, Janet Zheng Jie; Poh, Hou Shun; Tan, Peng Kian; Tan, Peiyu Amelia; Ling, Alexander; Kurtsiefer, Christian
2017-11-27
Quantum key distribution (QKD) at telecom wavelengths (1260 - 1625 nm) has the potential for fast deployment due to existing optical fibre infrastructure and mature telecom technologies. At these wavelengths, Indium Gallium Arsenide (InGaAs) avalanche photodiode (APD) based detectors are the preferred choice for photon detection. Similar to their Silicon counterparts used at shorter wavelengths, they exhibit fluorescence from recombination of electron-hole pairs generated in the avalanche breakdown process. This fluorescence may open side channels for attacks on QKD systems. Here, we characterize the breakdown fluorescence from two commercial InGaAs single photon counting modules, and find a spectral distribution between 1000 nm and 1600 nm. We also show that by spectral filtering, this side channel can be efficiently suppressed.
Goler-Baron, Vicky; Assaraf, Yehuda G.
2012-01-01
Multidrug resistance (MDR) remains a dominant impediment to curative cancer chemotherapy. Efflux transporters of the ATP-binding cassette (ABC) superfamily including ABCG2, ABCB1 and ABCC1 mediate MDR to multiple structurally and functionally distinct antitumor agents. Recently we identified a novel mechanism of MDR in which ABCG2-rich extracellular vesicles (EVs) form in between attached neighbor breast cancer cells and highly concentrate various chemotherapeutics in an ABCG2-dependent manner, thereby sequestering them away from their intracellular targets. Hence, development of novel strategies to overcome MDR modalities is a major goal of cancer research. Towards this end, we here developed a novel approach to selectively target and kill MDR cancer cells. We show that illumination of EVs that accumulated photosensitive cytotoxic drugs including imidazoacridinones (IAs) and topotecan resulted in intravesicular formation of reactive oxygen species (ROS) and severe damage to the EVs membrane that is shared by EVs-forming cells, thereby leading to tumor cell lysis and the overcoming of MDR. Furthermore, consistent with the weak base nature of IAs, MDR cells that are devoid of EVs but contained an increased number of lysosomes, highly accumulated IAs in lysosomes and upon photosensitization were efficiently killed via ROS-dependent lysosomal rupture. Combining targeted lysis of IAs-loaded EVs and lysosomes elicited a synergistic cytotoxic effect resulting in MDR reversal. In contrast, topotecan, a bona fide transport substrate of ABCG2, accumulated exclusively in EVs of MDR cells but was neither detected in lysosomes of normal breast epithelial cells nor in non-MDR breast cancer cells. This exclusive accumulation in EVs enhanced the selectivity of the cytotoxic effect exerted by photodynamic therapy to MDR cells without harming normal cells. Moreover, lysosomal alkalinization with bafilomycin A1 abrogated lysosomal accumulation of IAs, consequently preventing lysosomal photodestruction of normal breast epithelial cells. Thus, MDR modalities including ABCG2-dependent drug sequestration within EVs can be rationally converted to a pharmacologically lethal Trojan horse to selectively eradicate MDR cancer cells. PMID:22530032
EVIR: chimeric receptors that enhance dendritic cell cross-dressing with tumor antigens.
Squadrito, Mario Leonardo; Cianciaruso, Chiara; Hansen, Sarah K; De Palma, Michele
2018-03-01
We describe a lentivirus-encoded chimeric receptor, termed extracellular vesicle (EV)-internalizing receptor (EVIR), which enables the selective uptake of cancer-cell-derived EVs by dendritic cells (DCs). The EVIR enhances DC presentation of EV-associated tumor antigens to CD8 + T cells primarily through MHCI recycling and cross-dressing. EVIRs should facilitate exploring the mechanisms and implications of horizontal transfer of tumor antigens to antigen-presenting cells.
Alvarez-Jiménez, Violeta D.; Leyva-Paredes, Kahiry; García-Martínez, Mariano; Vázquez-Flores, Luis; García-Paredes, Víctor Gabriel; Campillo-Navarro, Marcia; Romo-Cruz, Israel; Rosales-García, Víctor Hugo; Castañeda-Casimiro, Jessica; González-Pozos, Sirenia; Hernández, José Manuel; Wong-Baeza, Carlos; García-Pérez, Blanca Estela; Ortiz-Navarrete, Vianney; Estrada-Parra, Sergio; Serafín-López, Jeanet; Wong-Baeza, Isabel; Chacón-Salinas, Rommel; Estrada-García, Iris
2018-01-01
Tuberculosis is an infectious disease caused by Mycobacterium tuberculosis (Mtb). In the lungs, macrophages and neutrophils are the first immune cells that have contact with the infecting mycobacteria. Neutrophils are phagocytic cells that kill microorganisms through several mechanisms, which include the lytic enzymes and antimicrobial peptides that are found in their lysosomes, and the production of reactive oxygen species. Neutrophils also release extracellular vesicles (EVs) (100–1,000 nm in diameter) to the extracellular milieu; these EVs consist of a lipid bilayer surrounding a hydrophilic core and participate in intercellular communication. We previously demonstrated that human neutrophils infected in vitro with Mtb H37Rv release EVs (EV-TB), but the effect of these EVs on other cells relevant for the control of Mtb infection, such as macrophages, has not been completely analyzed. In this study, we characterized the EVs produced by non-stimulated human neutrophils (EV-NS), and the EVs produced by neutrophils stimulated with an activator (PMA), a peptide derived from bacterial proteins (fMLF) or Mtb, and observed that the four EVs differed in their size. Ligands for toll-like receptor (TLR) 2/6 were detected in EV-TB, and these EVs favored a modest increase in the expression of the co-stimulatory molecules CD80, a higher expression of CD86, and the production of higher amounts of TNF-α and IL-6, and of lower amounts of TGF-β, in autologous human macrophages, compared with the other EVs. EV-TB reduced the amount of intracellular Mtb in macrophages, and increased superoxide anion production in these cells. TLR2/6 ligation and superoxide anion production are known inducers of autophagy; accordingly, we found that EV-TB induced higher expression of the autophagy-related marker LC3-II in macrophages, and the co-localization of LC3-II with Mtb inside infected macrophages. The intracellular mycobacterial load increased when autophagy was inhibited with wortmannin in these cells. In conclusion, our results demonstrate that neutrophils produce different EVs in response to diverse activators, and that EV-TB activate macrophages and promote the clearance of intracellular Mtb through early superoxide anion production and autophagy induction, which is a novel role for neutrophil-derived EVs in the immune response to Mtb. PMID:29520273
Alvarez-Jiménez, Violeta D; Leyva-Paredes, Kahiry; García-Martínez, Mariano; Vázquez-Flores, Luis; García-Paredes, Víctor Gabriel; Campillo-Navarro, Marcia; Romo-Cruz, Israel; Rosales-García, Víctor Hugo; Castañeda-Casimiro, Jessica; González-Pozos, Sirenia; Hernández, José Manuel; Wong-Baeza, Carlos; García-Pérez, Blanca Estela; Ortiz-Navarrete, Vianney; Estrada-Parra, Sergio; Serafín-López, Jeanet; Wong-Baeza, Isabel; Chacón-Salinas, Rommel; Estrada-García, Iris
2018-01-01
Tuberculosis is an infectious disease caused by Mycobacterium tuberculosis (Mtb). In the lungs, macrophages and neutrophils are the first immune cells that have contact with the infecting mycobacteria. Neutrophils are phagocytic cells that kill microorganisms through several mechanisms, which include the lytic enzymes and antimicrobial peptides that are found in their lysosomes, and the production of reactive oxygen species. Neutrophils also release extracellular vesicles (EVs) (100-1,000 nm in diameter) to the extracellular milieu; these EVs consist of a lipid bilayer surrounding a hydrophilic core and participate in intercellular communication. We previously demonstrated that human neutrophils infected in vitro with Mtb H37Rv release EVs (EV-TB), but the effect of these EVs on other cells relevant for the control of Mtb infection, such as macrophages, has not been completely analyzed. In this study, we characterized the EVs produced by non-stimulated human neutrophils (EV-NS), and the EVs produced by neutrophils stimulated with an activator (PMA), a peptide derived from bacterial proteins (fMLF) or Mtb, and observed that the four EVs differed in their size. Ligands for toll-like receptor (TLR) 2/6 were detected in EV-TB, and these EVs favored a modest increase in the expression of the co-stimulatory molecules CD80, a higher expression of CD86, and the production of higher amounts of TNF-α and IL-6, and of lower amounts of TGF-β, in autologous human macrophages, compared with the other EVs. EV-TB reduced the amount of intracellular Mtb in macrophages, and increased superoxide anion production in these cells. TLR2/6 ligation and superoxide anion production are known inducers of autophagy; accordingly, we found that EV-TB induced higher expression of the autophagy-related marker LC3-II in macrophages, and the co-localization of LC3-II with Mtb inside infected macrophages. The intracellular mycobacterial load increased when autophagy was inhibited with wortmannin in these cells. In conclusion, our results demonstrate that neutrophils produce different EVs in response to diverse activators, and that EV-TB activate macrophages and promote the clearance of intracellular Mtb through early superoxide anion production and autophagy induction, which is a novel role for neutrophil-derived EVs in the immune response to Mtb.
Extracellular MicroRNA Signature of Human Helper T Cell Subsets in Health and Autoimmunity.
Torri, Anna; Carpi, Donatella; Bulgheroni, Elisabetta; Crosti, Maria-Cristina; Moro, Monica; Gruarin, Paola; Rossi, Riccardo L; Rossetti, Grazisa; Di Vizio, Dolores; Hoxha, Mirjam; Bollati, Valentina; Gagliani, Cristina; Tacchetti, Carlo; Paroni, Moira; Geginat, Jens; Corti, Laura; Venegoni, Luigia; Berti, Emilio; Pagani, Massimiliano; Matarese, Giuseppe; Abrignani, Sergio; de Candia, Paola
2017-02-17
Upon T cell receptor stimulation, CD4 + T helper (Th) lymphocytes release extracellular vesicles (EVs) containing microRNAs. However, no data are available on whether human CD4 + T cell subsets release EVs containing different pattern of microRNAs. The present work aimed at filling this gap by assessing the microRNA content in EVs released upon in vitro T cell receptor stimulation of Th1, Th17, and T regulatory (Treg) cells. Our results indicate that EVs released by Treg cells are significantly different compared with those released by the other subsets. In particular, miR-146a-5p, miR-150-5p, and miR-21-5p are enriched, whereas miR-106a-5p, miR-155-5p, and miR-19a-3p are depleted in Treg-derived EVs. The in vitro identified EV-associated microRNA signature was increased in serum of autoimmune patients with psoriasis and returned to healthy levels upon effective treatment with etanercept, a biological drug targeting the TNF pathway and suppressing inflammation. Moreover, Gene Set Enrichment Analysis showed an over-representation of genes relevant for T cell activation, such as CD40L, IRAK1, IRAK2, STAT1, and c-Myb in the list of validated targets of Treg-derived EV miRNAs. At functional level, Treg-derived (but not Th1/Th17-derived) EVs inhibited CD4 + T cell proliferation and suppressed two relevant targets of miR-146a-5p: STAT1 and IRAK2. In conclusion, our work identified the miRNAs specifically released by different human CD4 + T cell subsets and started to unveil the potential use of their quantity in human serum to mark the pathological elicitation of these cells in vivo and their biological effect in cell to cell communication during the adaptive immune response. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Extracellular MicroRNA Signature of Human Helper T Cell Subsets in Health and Autoimmunity*
Torri, Anna; Carpi, Donatella; Bulgheroni, Elisabetta; Crosti, Maria-Cristina; Moro, Monica; Gruarin, Paola; Rossi, Riccardo L.; Rossetti, Grazisa; Di Vizio, Dolores; Hoxha, Mirjam; Bollati, Valentina; Gagliani, Cristina; Tacchetti, Carlo; Paroni, Moira; Geginat, Jens; Corti, Laura; Venegoni, Luigia; Berti, Emilio; Pagani, Massimiliano; Matarese, Giuseppe; Abrignani, Sergio; de Candia, Paola
2017-01-01
Upon T cell receptor stimulation, CD4+ T helper (Th) lymphocytes release extracellular vesicles (EVs) containing microRNAs. However, no data are available on whether human CD4+ T cell subsets release EVs containing different pattern of microRNAs. The present work aimed at filling this gap by assessing the microRNA content in EVs released upon in vitro T cell receptor stimulation of Th1, Th17, and T regulatory (Treg) cells. Our results indicate that EVs released by Treg cells are significantly different compared with those released by the other subsets. In particular, miR-146a-5p, miR-150-5p, and miR-21-5p are enriched, whereas miR-106a-5p, miR-155-5p, and miR-19a-3p are depleted in Treg-derived EVs. The in vitro identified EV-associated microRNA signature was increased in serum of autoimmune patients with psoriasis and returned to healthy levels upon effective treatment with etanercept, a biological drug targeting the TNF pathway and suppressing inflammation. Moreover, Gene Set Enrichment Analysis showed an over-representation of genes relevant for T cell activation, such as CD40L, IRAK1, IRAK2, STAT1, and c-Myb in the list of validated targets of Treg-derived EV miRNAs. At functional level, Treg-derived (but not Th1/Th17-derived) EVs inhibited CD4+ T cell proliferation and suppressed two relevant targets of miR-146a-5p: STAT1 and IRAK2. In conclusion, our work identified the miRNAs specifically released by different human CD4+ T cell subsets and started to unveil the potential use of their quantity in human serum to mark the pathological elicitation of these cells in vivo and their biological effect in cell to cell communication during the adaptive immune response. PMID:28077577
FLIM reveals alternative EV-mediated cellular up-take pathways of paclitaxel.
Saari, H; Lisitsyna, E; Rautaniemi, K; Rojalin, T; Niemi, L; Nivaro, O; Laaksonen, T; Yliperttula, M; Vuorimaa-Laukkanen, E
2018-06-15
In response to physiological and artificial stimuli, cells generate nano-scale extracellular vesicles (EVs) by encapsulating biomolecules in plasma membrane-derived phospholipid envelopes. These vesicles are released to bodily fluids, hence acting as powerful endogenous mediators in intercellular signaling. EVs provide a compelling alternative for biomarker discovery and targeted drug delivery, but their kinetics and dynamics while interacting with living cells are poorly understood. Here we introduce a novel method, fluorescence lifetime imaging microscopy (FLIM) to investigate these interaction attributes. By FLIM, we show distinct cellular uptake mechanisms of different EV subtypes, exosomes and microvesicles, loaded with anti-cancer agent, paclitaxel. We demonstrate differences in intracellular behavior and drug release profiles of paclitaxel-containing EVs. Exosomes seem to deliver the drug mostly by endocytosis while microvesicles enter the cells by both endocytosis and fusion with cell membrane. This research offers a new real-time method to investigate EV kinetics with living cells, and it is a potential advancement to complement the existing techniques. The findings of this study improve the current knowledge in exploiting EVs as next-generation targeted drug delivery systems. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Donbraye, Emmanuel; Olasunkanmi, Oluwatayo Israel; Opabode, Babatunde Ayoola; Ishola, Temitayo Rachael; Faleye, Temitope Oluwasegun Cephas; Adewumi, Olubusuyi Moses; Adeniji, Johnson Adekunle
2018-06-01
We recently showed that enteroviruses (EVs) andenterovirus species C (EV-C) in particular were abundant in faecal samples from children who had been diagnosed with acute flaccid paralysis (AFP) in Nigeria but declared to be EV-free by the RD-L20B cell culture-based algorithm. In this study, we investigated whether this observed preponderance of EVs (and EV-Cs) in such samples varies by geographical region. One hundred and eight samples (i.e. 54 paired stool suspensions from 54 AFP cases) that had previously been confirmed to be negative for EVs by the WHO-recommended RD-L20B cell culture-based algorithm were analysed. The 108 samples were made into 54 pools (27 each from North-West and South-South Nigeria). All were subjected to RNA extraction, cDNA synthesis and the WHO-recommended semi-nested PCR assay and its modifications. All of the amplicons were sequenced, and the enteroviruses identified, using the enterovirus genotyping tool and phylogenetic analysis. EVs were detected in 16 (29.63 %) of the 54 samples that were screened and successfully identified in 14 (25.93 %). Of these, 10 were from North-West and 4 were from South-South Nigeria. One (7.14 %), 2 (14.29 %) and 11 (78.57 %) of the strains detected were EV-A, EV-B and EV-C, respectively. The 10 strains from North-West Nigeria included 7 EV types, namely CV-A10, E29, CV-A13, CV-A17, CV-A19, CV-A24 and EV-C99. The four EV types recovered from South-South Nigeria were E31, CV-A1, EV-C99 and EV-C116. The results of this study showed that the presence of EVs and consequently EV-Cs in AFP samples declared to be EV-free by the RD-L20B cell culture-based algorithm varies by geographical region in Nigeria.
Wang, Li; Gu, Zhenyang; Zhao, Xiaoli; Yang, Nan; Wang, Feiyan; Deng, Ailing; Zhao, Shasha; Luo, Lan; Wei, Huaping; Guan, Lixun; Gao, Zhe; Li, Yonghui; Wang, Lili; Liu, Daihong; Gao, Chunji
2016-12-15
Mesenchymal stromal cells (MSCs) are attractive agents for the prophylaxis of acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation (allo-HSCT). However, safety concerns remain about their clinical application. In this study, we explored whether extracellular vesicles released from human umbilical cord-derived MSCs (hUC-MSC-EVs) could prevent aGVHD in a mouse model of allo-HSCT. hUC-MSC-EVs were intravenously administered to recipient mice on days 0 and 7 after allo-HSCT, and the prophylactic effects of hUC-MSC-EVs were assessed by observing the in vivo manifestations of aGVHD, histologic changes in target organs, and recipient mouse survival. We evaluated the effects of hUC-MSC-EVs on immune cells and inflammatory cytokines by flow cytometry and ProcartaPlex™ Multiplex Immunoassays, respectively. The in vitro effects of hUC-MSC-EVs were determined by mitogen-induced proliferation assays. hUC-MSC-EVs alleviated the in vivo manifestations of aGVHD and the associated histologic changes and significantly reduced the mortality of the recipient mice. Recipients treated with hUC-MSC-EVs had significantly lower frequencies and absolute numbers of CD3 + CD8 + T cells; reduced serum levels of IL-2, TNF-α, and IFN-γ; a higher ratio of CD3 + CD4 + and CD3 + CD8 + T cells; and higher serum levels of IL-10. An in vitro experiment demonstrated that hUC-MSC-EVs inhibited the mitogen-induced proliferation of splenocytes in a dose-dependent manner, and the cytokine changes were similar to those observed in vivo. This study indicated that hUC-MSC-EVs can prevent life-threatening aGVHD by modulating immune responses. These data provide the first evidence that hUC-MSC-EVs represent an ideal alternative in the prophylaxis of aGVHD after allo-HSCT.
Ruan, Feng; Tan, Ai-jun; Zhang, Xue-bao; Chen, Xue-qin; Xiao, Song-jian; Ye, Zhong-wen; Wang, Song
2011-07-01
To compare the clinical features of severe hand foot and mouth disease between enterovirus (EV) 71 and other EV to find specific diagnosis index of EV71 severe hand foot and mouth disease. Case definition were adopted from national guideline of hand foot and mouth disease diagnose (Version 2010). Clinical data of severe hand foot and mouth disease came from case history and contents of questionnaire would include the ones between the time of onset and diagnoses being made. EV and EV71, Cox A16 nucleic acid tested were by RT-PCR in stool samples. Clinical features of severe hand foot and mouth disease between EV71 and other EV were compare. There appeared statistical differences between neurologic symptoms such as tremor, myoclonic jerk, listlessness, convulsion and white blood cell counts in CSF (P < 0.05). Results from the step Fisher discriminant analysis showed only tremor and white blood cell had an increase in CSF, with statistically significant differences. The discriminant equation of EV71 was Y = 3.059X(1) + 3.83X(5) - 2.742 and the equation of other EV was Y = 1.634X(1) + 1.623X(5) - 1.693. The specificity of EV71 was 91% and the specificity of other EV was 40%. The increase of clinical features of tremor and white blood cell in CSF could be used as diagnosis index of severe EV71.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osawa, Sho; Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511; Kurachi, Masashi
We previously reported transplantation of brain microvascular endothelial cells (MVECs) into cerebral white matter infarction model improved the animal's behavioral outcome by increasing the number of oligodendrocyte precursor cells (OPCs). We also revealed extracellular vesicles (EVs) derived from MVECs promoted survival and proliferation of OPCs in vitro. In this study, we investigated the mechanism how EVs derived from MVECs contribute to OPC survival and proliferation. Protein mass spectrometry and enzyme-linked immunosorbent assay revealed fibronectin was abundant on the surface of EVs from MVECs. As fibronectin has been reported to promote OPC survival and proliferation via integrin signaling pathway, we blocked themore » binding between fibronectin and integrins using RGD sequence mimics. Blocking the binding, however, did not attenuate the survival and proliferation promoting effect of EVs on OPCs. Flow cytometric and imaging analyses revealed fibronectin on EVs mediates their internalization into OPCs by its binding to heparan sulfate proteoglycan on OPCs. OPC survival and proliferation promoted by EVs were attenuated by blocking the internalization of EVs into OPCs. These lines of evidence suggest that fibronectin on EVs mediates their internalization into OPCs, and the cargo of EVs promotes survival and proliferation of OPCs, independent of integrin signaling pathway. - Highlights: • Fibronectin exists on the surface of extracellular vesicles from endothelial cells. • Integrin signaling is not involved in effects of extracellular vesicles on OPCs. • Fibronectin on the surface of extracellular vesicles mediates their uptake into OPCs.« less
Ophelders, Daan R M G; Wolfs, Tim G A M; Jellema, Reint K; Zwanenburg, Alex; Andriessen, Peter; Delhaas, Tammo; Ludwig, Anna-Kristin; Radtke, Stefan; Peters, Vera; Janssen, Leon; Giebel, Bernd; Kramer, Boris W
2016-06-01
Preterm neonates are susceptible to perinatal hypoxic-ischemic brain injury, for which no treatment is available. In a preclinical animal model of hypoxic-ischemic brain injury in ovine fetuses, we have demonstrated the neuroprotective potential of systemically administered mesenchymal stromal cells (MSCs). The mechanism of MSC treatment is unclear but suggested to be paracrine, through secretion of extracellular vesicles (EVs). Therefore, we investigated in this study the protective effects of mesenchymal stromal cell-derived extracellular vesicles (MSC-EVs) in a preclinical model of preterm hypoxic-ischemic brain injury. Ovine fetuses were subjected to global hypoxia-ischemia by transient umbilical cord occlusion, followed by in utero intravenous administration of MSC-EVs. The therapeutic effects of MSC-EV administration were assessed by analysis of electrophysiological parameters and histology of the brain. Systemic administration of MSC-EVs improved brain function by reducing the total number and duration of seizures, and by preserving baroreceptor reflex sensitivity. These functional protections were accompanied by a tendency to prevent hypomyelination. Cerebral inflammation remained unaffected by the MSC-EV treatment. Our data demonstrate that MSC-EV treatment might provide a novel strategy to reduce the neurological sequelae following hypoxic-ischemic injury of the preterm brain. Our study results suggest that a cell-free preparation comprising neuroprotective MSC-EVs could substitute MSCs in the treatment of preterm neonates with hypoxic-ischemic brain injury, thereby circumventing the potential risks of systemic administration of living cells. Bone marrow-derived mesenchymal stromal cells (MSCs) show promise in treating hypoxic-ischemic injury of the preterm brain. Study results suggest administration of extracellular vesicles, rather than intact MSCs, is sufficient to exert therapeutic effects and avoids potential concerns associated with administration of living cells. The therapeutic efficacy of systemically administered mesenchymal stromal cell-derived extracellular vesicles (MSC-EVs) on hypoxia-ischemia-induced injury was assessed in the preterm ovine brain. Impaired function and structural injury of the fetal brain was improved following global hypoxia-ischemia. A cell-free preparation of MSC-EVs could substitute for the cellular counterpart in the treatment of preterm neonates with hypoxic-ischemic brain injury. This may open new clinical applications for "off-the-shelf" interventions with MSC-EVs. ©AlphaMed Press.
Durcin, Maëva; Fleury, Audrey; Taillebois, Emiliane; Hilairet, Grégory; Krupova, Zuzana; Henry, Céline; Truchet, Sandrine; Trötzmüller, Martin; Köfeler, Harald; Mabilleau, Guillaume; Hue, Olivier; Andriantsitohaina, Ramaroson; Martin, Patrice; Le Lay, Soazig
2017-01-01
ABSTRACT Extracellular vesicles (EVs) are biological vectors that can modulate the metabolism of target cells by conveying signalling proteins and genomic material. The level of EVs in plasma is significantly increased in cardiometabolic diseases associated with obesity, suggesting their possible participation in the development of metabolic dysfunction. With regard to the poor definition of adipocyte-derived EVs, the purpose of this study was to characterise both qualitatively and quantitatively EVs subpopulations secreted by fat cells. Adipocyte-derived EVs were isolated by differential centrifugation of conditioned media collected from 3T3-L1 adipocytes cultured for 24 h in serum-free conditions. Based on morphological and biochemical properties, as well as quantification of secreted EVs, we distinguished two subpopulations of adipocyte-derived EVs, namely small extracellular vesicles (sEVs) and large extracellular vesicles (lEVs). Proteomic analyses revealed that lEVs and sEVs exhibit specific protein signatures, allowing us not only to define novel markers of each population, but also to predict their biological functions. Despite similar phospholipid patterns, the comparative lipidomic analysis performed on these EV subclasses revealed a specific cholesterol enrichment of the sEV population, whereas lEVs were characterised by high amounts of externalised phosphatidylserine. Enhanced secretion of lEVs and sEVs is achievable following exposure to different biological stimuli related to the chronic low-grade inflammation state associated with obesity. Finally, we demonstrate the ability of primary murine adipocytes to secrete sEVs and lEVs, which display physical and biological characteristics similar to those described for 3T3-L1. Our study provides additional information and elements to define EV subtypes based on the characterisation of adipocyte-derived EV populations. It also underscores the need to distinguish EV subpopulations, through a combination of multiple approaches and markers, since their specific composition may cause distinct metabolic responses in recipient cells and tissues. PMID:28473884
A reverse genetics system for enterovirus D68 using human RNA polymerase I.
Pan, Minglei; Gao, Shuai; Zhou, Zhenwei; Zhang, Keke; Liu, Sihua; Wang, Zhiyun; Wang, Tao
2018-05-17
Human enterovirus D68 (EV-D68) is a highly contagious virus, which causes respiratory tract infections. However, no effective vaccines are currently available for controlling EV-D68 infection. Here, we developed a reverse genetics system to recover EV-D68 minireplicons and infectious EV-D68 from transfected plasmids using the RNA polymerase I (Pol I) promoter. The EV-D68 minireplicons contained the luciferase reporter gene, which flanked by the non-coding regions of the EV-D68 RNA. The luciferase signals could be detected in cells after transfection and Pol I promoter-mediated luciferase signal was significantly stronger than that mediated by the T7 promoter. Furthermore, recombinant viruses were generated by transfecting plasmids that contained the genomic RNA segments of EV-D68, under the control of Pol I promoter into 293T cells or RD cells. On plaque morphology and growth kinetics, the rescued virus and parental virus were indistinguishable. In addition, we showed that the G394C mutation disrupts the viral 5'-UTR structure and suppresses the viral cap-independent translation. This reverse genetics system for EV-D68 recovery can greatly facilitate research into EV-D68 biology. Moreover, this system could accelerate the development of EV-D68 vaccines and anti-EV-D68 drugs.
Emerging Roles for Extracellular Vesicles in Tissue Engineering and Regenerative Medicine
Lamichhane, Tek N.; Sokic, Sonja; Schardt, John S.; Raiker, Rahul S.; Lin, Jennifer W.
2015-01-01
Extracellular vesicles (EVs)—comprising a heterogeneous population of cell-derived lipid vesicles including exosomes, microvesicles, and others—have recently emerged as both mediators of intercellular information transfer in numerous biological systems and vehicles for drug delivery. In both roles, EVs have immense potential to impact tissue engineering and regenerative medicine applications. For example, the therapeutic effects of several progenitor and stem cell-based therapies have been attributed primarily to EVs secreted by these cells, and EVs have been recently reported to play direct roles in injury-induced tissue regeneration processes in multiple physiological systems. In addition, EVs have been utilized for targeted drug delivery in regenerative applications and possess unique potential to be harnessed as patient-derived drug delivery vehicles for personalized medicine. This review discusses EVs in the context of tissue repair and regeneration, including their utilization as drug carriers and their crucial role in cell-based therapies. Furthermore, the article highlights the growing need for bioengineers to understand, consider, and ultimately design and specifically control the activity of EVs to maximize the efficacy of tissue engineering and regenerative therapies. PMID:24957510
Morton, Mary C; Neckles, Victoria N; Seluzicki, Caitlin M; Holmberg, Jennie C; Feliciano, David M
2018-04-03
Subventricular zone (SVZ) neural stem cells (NSCs) are the cornerstone of the perinatal neurogenic niche. Microglia are immune cells of the nervous system that are enriched in the neonatal SVZ. Although microglia regulate NSCs, the extent to which this interaction is bi-directional is unclear. Extracellular vesicles (EVs) are cell-derived particles that encase miRNA and proteins. Here, we demonstrate that SVZ NSCs generate and release EVs. Neonatal electroporated fluorescent EV fusion proteins were released by NSCs and subsequently cleared from the SVZ. EVs were preferentially targeted to microglia. Small RNA sequencing identified miRNAs within the EVs that regulate microglia physiology and morphology. EVs induced a transition to a CD11b/Iba1 non-stellate microglial morphology. The transition accompanied a microglial transcriptional state characterized by Let-7-regulated cytokine release and a negative feedback loop that controlled NSC proliferation. These findings implicate an NSC-EV-microglia axis and provide insight to normal and pathophysiological brain development. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Wen, Sicheng; Dooner, Mark; Cheng, Yan; Papa, Elaine; Del Tatto, Michael; Pereira, Mandy; Deng, Yanhui; Goldberg, Laura; Aliotta, Jason; Chatterjee, Devasis; Stewart, Connor; Carpanetto, Andrea; Collino, Federica; Bruno, Stefania; Camussi, Giovanni; Quesenberry, Peter
2016-01-01
Mesenchymal stromal cells (MSC) have been shown to reverse radiation damage to marrow stem cells. We have evaluated the capacity of MSC-derived extracellular vesicles (MSC-EVs) to mitigate radiation injury to marrow stem cells at 4 hours to 7 days after irradiation. Significant restoration of marrow stem cell engraftment at 4, 24 and 168 hours post-irradiation by exposure to MSC-EVs was observed at 3 weeks to 9 months after transplant and further confirmed by secondary engraftment. Intravenous injection of MSC-EVs to 500cGy exposed mice led to partial recovery of peripheral blood counts and restoration of the engraftment of marrow. The murine hematopoietic cell line, FDC-P1 exposed to 500 cGy, showed reversal of growth inhibition, DNA damage and apoptosis on exposure to murine or human MSC-EVs. Both murine and human MSC-EVs reverse radiation damage to murine marrow cells and stimulate normal murine marrow stem cell/progenitors to proliferate. A preparation with both exosomes and microvesicles was found to be superior to either microvesicles or exosomes alone. Biologic activity was seen in freshly isolated vesicles and in vesicles stored for up to 6 months in 10% DMSO at −80°C. These studies indicate that MSC-EVs can reverse radiation damage to bone marrow stem cells. PMID:27150009
Desmoglein 2 modulates extracellular vesicle release from squamous cell carcinoma keratinocytes.
Overmiller, Andrew M; Pierluissi, Jennifer A; Wermuth, Peter J; Sauma, Sami; Martinez-Outschoorn, Ubaldo; Tuluc, Madalina; Luginbuhl, Adam; Curry, Joseph; Harshyne, Larry A; Wahl, James K; South, Andrew P; Mahoney, Mỹ G
2017-08-01
Extracellular vesicles (EVs) are nanoscale membrane-derived vesicles that serve as intercellular messengers carrying lipids, proteins, and genetic material. Substantial evidence has shown that cancer-derived EVs, secreted by tumor cells into the blood and other bodily fluids, play a critical role in modulating the tumor microenvironment and affecting the pathogenesis of cancer. Here we demonstrate for the first time that squamous cell carcinoma (SCC) EVs were enriched with the C-terminal fragment of desmoglein 2 (Dsg2), a desmosomal cadherin often overexpressed in malignancies. Overexpression of Dsg2 increased EV release and mitogenic content including epidermal growth factor receptor and c-Src. Inhibiting ectodomain shedding of Dsg2 with the matrix metalloproteinase inhibitor GM6001 resulted in accumulation of full-length Dsg2 in EVs and reduced EV release. When cocultured with Dsg2/green fluorescence protein-expressing SCC cells, green fluorescence protein signal was detected by fluorescence-activated cell sorting analysis in the CD90 + fibroblasts. Furthermore, SCC EVs activated Erk1/2 and Akt signaling and enhanced fibroblast cell proliferation. In vivo, Dsg2 was highly up-regulated in the head and neck SCCs, and EVs isolated from sera of patients with SCC were enriched in Dsg2 C-terminal fragment and epidermal growth factor receptor. This study defines a mechanism by which Dsg2 expression in cancer cells can modulate the tumor microenvironment, a step critical for tumor progression.-Overmiller, A. M., Pierluissi, J. A., Wermuth, P. J., Sauma, S., Martinez-Outschoorn, U., Tuluc, M., Luginbuhl, A., Curry, J., Harshyne, L. A., Wahl, J. K. III, South, A. P., Mahoney, M. G. Desmoglein 2 modulates extracellular vesicle release from squamous cell carcinoma keratinocytes. © FASEB.
Growing High-Quality InAs Quantum Dots for Infrared Lasers
NASA Technical Reports Server (NTRS)
Qiu, Yueming; Uhl, David
2004-01-01
An improved method of growing high-quality InAs quantum dots embedded in lattice-matched InGaAs quantum wells on InP substrates has been developed. InAs/InGaAs/InP quantum dot semiconductor lasers fabricated by this method are capable of operating at room temperature at wavelengths greater than or equal to 1.8 mm. Previously, InAs quantum dot lasers based on InP substrates have been reported only at low temperature of 77 K at a wavelength of 1.9 micrometers. In the present method, as in the prior method, one utilizes metalorganic vapor phase epitaxy to grow the aforementioned semiconductor structures. The development of the present method was prompted in part by the observation that when InAs quantum dots are deposited on an InGaAs layer, some of the InAs in the InGaAs layer becomes segregated from the layer and contributes to the formation of the InAs quantum dots. As a result, the quantum dots become highly nonuniform; some even exceed a critical thickness, beyond which they relax. In the present method, one covers the InGaAs layer with a thin layer of GaAs before depositing the InAs quantum dots. The purpose and effect of this thin GaAs layer is to suppress the segregation of InAs from the InGaAs layer, thereby enabling the InAs quantum dots to become nearly uniform (see figure). Devices fabricated by this method have shown near-room-temperature performance.
A III-V nanowire channel on silicon for high-performance vertical transistors.
Tomioka, Katsuhiro; Yoshimura, Masatoshi; Fukui, Takashi
2012-08-09
Silicon transistors are expected to have new gate architectures, channel materials and switching mechanisms in ten years' time. The trend in transistor scaling has already led to a change in gate structure from two dimensions to three, used in fin field-effect transistors, to avoid problems inherent in miniaturization such as high off-state leakage current and the short-channel effect. At present, planar and fin architectures using III-V materials, specifically InGaAs, are being explored as alternative fast channels on silicon because of their high electron mobility and high-quality interface with gate dielectrics. The idea of surrounding-gate transistors, in which the gate is wrapped around a nanowire channel to provide the best possible electrostatic gate control, using InGaAs channels on silicon, however, has been less well investigated because of difficulties in integrating free-standing InGaAs nanostructures on silicon. Here we report the position-controlled growth of vertical InGaAs nanowires on silicon without any buffering technique and demonstrate surrounding-gate transistors using InGaAs nanowires and InGaAs/InP/InAlAs/InGaAs core-multishell nanowires as channels. Surrounding-gate transistors using core-multishell nanowire channels with a six-sided, high-electron-mobility transistor structure greatly enhance the on-state current and transconductance while keeping good gate controllability. These devices provide a route to making vertically oriented transistors for the next generation of field-effect transistors and may be useful as building blocks for wireless networks on silicon platforms.
Lombardo, Giusy; Gili, Maddalena; Grange, Cristina; Cavallari, Claudia; Dentelli, Patrizia; Togliatto, Gabriele; Taverna, Daniela; Camussi, Giovanni; Brizzi, Maria Felice
2018-03-01
The proangiogenic cytokine Interleukin-3 (IL-3) is released by inflammatory cells in breast and ovarian cancer tissue microenvironments and also acts as an autocrine factor for human breast and kidney tumor-derived endothelial cells (TECs). We have previously shown that IL-3-treated endothelial cells (ECs) release extracellular vesicles (EVs), which serve as a paracrine mechanism for neighboring ECs, by transferring active molecules. The impact of an anti-IL-3R-alpha blocking antibody on the proangiogenic effect of EVs released from TECs (anti-IL-3R-EVs) has therefore been investigated in this study. We have found that anti-IL-3R-EV treatment prevented neovessel formation and, more importantly, also induced the regression of in vivo TEC-derived neovessels. Two miRs that target the canonical wingless (Wnt)/β-catenin pathway, at different levels, were found to be differentially regulated when comparing the miR-cargo of naive TEC-derived EVs (EVs) and anti-IL-3R-EVs. miR-214-3p, which directly targets β-catenin, was found to be upregulated, whereas miR-24-3p, which targets adenomatous polyposis coli (APC) and glycogen synthase kinase-3β (GSK3β), was found to be downregulated. In fact, upon their transfer into the cell, low β-catenin content and high levels of the two members of the "β-catenin destruction complex" were detected. Moreover, c-myc downregulation was found in TECs treated with anti-IL-3R-EVs, pre-miR-214-3p-EVs and antago-miR-24-3p-EVs, which is consistent with network analyses of miR-214-3p and miR-24-3p gene targeting. Finally, in vivo studies have demonstrated the impaired growth of vessels in pre-miR-214-3p-EV- and antago-miR-24-3p-EV-treated animals. These effects became much more evident when combo treatment was applied. The results of the present study identify the canonical Wnt/β-catenin pathway as a relevant mechanism of TEC-derived EV proangiogenic action. Furthermore, we herein provide evidence that IL-3R blockade may yield some significant advantages, than miR targeting, in inhibiting the proangiogenic effects of naive TEC-derived EVs by changing TEC-EV-miR cargo.
Isolation and Characterization of Extracellular Vesicles from Adult Schistosoma japonicum.
Liu, Juntao; Zhu, Lihui; Wang, Lihui; Chen, Yongjun; Giri, Bikash Ranjan; Li, Jianjun; Cheng, Guofeng
2018-05-22
Extracellular vesicles (EVs) are membranous vesicles released by a variety of cells into the extracellular microenvironment. EVs represent a population of heterogeneous vesicles, whose size range between 40 and 1,000 nm. Accumulated evidence indicated that EVs play important regulatory roles in pathogen-host interactions. A deep understanding of schistosome EVs should provide insights into the mechanisms underlying schistosome-host interactions, enabling development of novel strategies against schistosomiasis. Here, we aim to further study EVs functions in schistosomes by presenting a protocol for the isolation and characterization of EVs from adult Schistosoma japonicum (S. japonicum). EVs were isolated from in vitro culture medium using centrifugation combined with a commercial exosome isolation kit. The isolated S. japonicum EVs (SjEVs) typically possess a diameter of 100 - 400 nm, and are characterized by transmission electronic microscopy and western blotting. The usage of PKH67 dye-labeled SjEVs has demonstrated that SjEVs are internalized by the recipient cells. Overall, our protocol provides an alternative method for isolating EVs from adult schistosomes; the isolated SjEVs may be suitable for functional analysis.
NASA Astrophysics Data System (ADS)
Junno, B.; Paulsson, G.; Miller, M.; Samuelson, L.
1994-03-01
InGaAs quantum wells (QWs) were grown in a chemical beam epitaxy (CBE) machine with trimethylindium (TMI), triethylgallium (TEG) and tertiarybutylarsine (TBA) as precursors. Growth was monitored in-situ by reflectance difference (RD) and reflection high energy electron diffraction (RHEED), on both flat and vicinal (2° off in the <111> A direction) (001)GaAs substrates. The RD was monitored at 632.8 nm. At this wavelength the RD signal from a GaAs surface is primarily related to the absorption by Ga dimers. When InGaAs had been grown, both the average RD signal and the amplitude of the RD oscillations for the subsequent growth of GaAs increased significantly, compared to GaAs growth on GaAs. This In influence was found to persist even after the growth of 20-30 ML of pure GaAs. As a result we were able to monitor growth oscillations with RD and RHEED simultaneously during growth of quantum wells of InGaAs in GaAs. As a conclusion to these observations we suggest that the group III dimer bond concentration, detected in the RD signal, increases.
Extracellular vesicles for liquid biopsy in prostate cancer: where are we and where are we headed?
Minciacchi, V R; Zijlstra, A; Rubin, M A; Di Vizio, D
2017-09-01
Extracellular vesicles (EVs) are a heterogeneous class of lipid bound particles shed by any cell in the body in physiological and pathological conditions. EVs play critical functions in intercellular communication. EVs can actively travel in intercellular matrices and eventually reach the circulation. They can also be released directly in biological fluids where they appear to be stable. Because the molecular content of EVs reflects the composition of the cell of origin, they have recently emerged as a promising source of biomarkers in a number of diseases. EV analysis is particularly attractive in cancer patients that frequently present with increased numbers of circulating EVs. We sought to review the current literature on the molecular profile of prostate cancer-derived EVs in model systems and patient biological fluids in an attempt to draw some practical and universal conclusions on the use of EVs as a tool for liquid biopsy in clinical specimens. We discuss advantages and limitations of EV-based liquid biopsy approaches summarizing salient studies on protein, DNA and RNA. Several candidate biomarkers have been identified so far but these results are difficult to apply to the clinic. However, the field is rapidly moving toward the implementation of novel tools to isolate cancer-specific EVs that are free of benign EVs and extra-vesicular contaminants. This can be achieved by identifying markers that are exquisitely present in tumor cell-derived EVs. An important contribution might also derive from a better understanding of EV types that may play specific functions in tumor progression and that may be a source of cancer-specific markers. EV analysis holds strong promises for the development of non-invasive biomarkers in patients with prostate cancer. Implementation of modern methods for EV isolation and characterization will enable to interrogate circulating EVs in vivo.
Stone, Matthew L; Zhao, Yunge; Robert Smith, J; Weiss, Mark L; Kron, Irving L; Laubach, Victor E; Sharma, Ashish K
2017-12-21
Lung ischemia-reperfusion (IR) injury after transplantation as well as acute shortage of suitable donor lungs are two critical issues impacting lung transplant patients. This study investigates the anti-inflammatory and immunomodulatory role of human mesenchymal stromal cells (MSCs) and MSC-derived extracellular vesicles (EVs) to attenuate lung IR injury and improve of ex-vivo lung perfusion (EVLP)-mediated rehabilitation in donation after circulatory death (DCD) lungs. C57BL/6 wild-type (WT) mice underwent sham surgery or lung IR using an in vivo hilar-ligation model with or without MSCs or EVs. In vitro studies used primary iNKT cells and macrophages (MH-S cells) were exposed to hypoxia/reoxygenation with/without co-cultures with MSCs or EVs. Also, separate groups of WT mice underwent euthanasia and 1 h of warm ischemia and stored at 4 °C for 1 h followed by 1 h of normothermic EVLP using Steen solution or Steen solution containing MSCs or EVs. Lungs from MSCs or EV-treated mice had significant attenuation of lung dysfunction and injury (decreased edema, neutrophil infiltration and myeloperoxidase levels) compared to IR alone. A significant decrease in proinflammatory cytokines (IL-17, TNF-α, CXCL1 and HMGB1) and upregulation of keratinocyte growth factor, prostaglandin E2 and IL-10 occurred in the BAL fluid from MSC or EV-treated mice after IR compared to IR alone. Furthermore, MSCs or EVs significantly downregulated iNKT cell-produced IL-17 and macrophage-produced HMGB1 and TNF-α after hypoxia/reoxygenation. Finally, EVLP of DCD lungs with Steen solution including MSCs or EVs provided significantly enhanced protection versus Steen solution alone. Co-cultures of MSCs or EVs with lung endothelial cells prevents neutrophil transendothelial migration after exposure to hypoxia/reoxygenation and TNF-α/HMGB1 cytomix. These results suggest that MSC-derived EVs can attenuate lung inflammation and injury after IR as well as enhance EVLP-mediated reconditioning of donor lungs. The therapeutic benefits of EVs are in part mediated through anti-inflammatory promoting mechanisms via attenuation of immune cell activation as well as prevention of endothelial barrier integrity to prevent lung edema. Therefore, MSC-derived EVs offer a potential therapeutic strategy to treat post-transplant IR injury as well as rehabilitation of DCD lungs.
NASA Astrophysics Data System (ADS)
Durry, Georges; Megie, Gerard
1999-12-01
The Spectrom tre Diodes Laser Accordables (SDLA), a balloonborne spectrometer devoted to the in situ measurement of CH 4 and H 2 O in the atmosphere that uses commercial distributed-feedback InGaAs laser diodes in combination with differential absorption spectroscopy, is described. Absorption spectra of CH 4 (in the 1.653- m region) and H 2 O (in the 1.393- m region) are simultaneously sampled at 1-s intervals by coupling with optical fibers of two near-infrared laser diodes to a Herriott multipass cell open to the atmosphere. Spectra of methane and water vapor in an altitude range of 1 to 31 km recorded during the recent balloon flights of the SDLA are presented. Mixing ratios with a precision error ranging from 5% to 10% are retrieved from the atmospheric spectra by a nonlinear least-squares fit to the spectral line shape in conjunction with in situ simultaneous pressure and temperature measurements.
Growth and properties of rare-earth arsenide InGaAs nanocomposites for terahertz generation
NASA Astrophysics Data System (ADS)
Salas, R.; Guchhait, S.; Sifferman, S. D.; McNicholas, K. M.; Dasika, V. D.; Krivoy, E. M.; Jung, D.; Lee, M. L.; Bank, S. R.
2015-02-01
We explore the electrical, optical, and structural properties of fast photoconductors of In0.53Ga0.47As containing a number of different rare-earth arsenide nanostructures. The rare-earth species provides a route to tailor the properties of the photoconductive materials. LuAs, GdAs, and LaAs nanostructures were embedded into InGaAs in a superlattice structure and compared to the relatively well-studied ErAs:InGaAs system. LaAs:InGaAs was found to have the highest dark resistivities, while GdAs:InGaAs had the lowest carrier lifetimes and highest carrier mobility at moderate depositions. The quality of the InGaAs overgrowth appears to have the most significant effect on the properties of these candidate fast photoconductors.
NASA Astrophysics Data System (ADS)
Higuchi, Yu; Osaki, Shinji; Sasahata, Yoshifumi; Kitada, Takahiro; Shimomura, Satoshi; Ogura, Mutsuo; Hiyamizu, Satoshi
2007-02-01
We report the first demonstration of room temperature (RT) current injection lasing of vertical-cavity surface-emitting lasers (VCSELs), with self-organized InGaAs/(GaAs)6(AlAs)1 quantum wires (QWRs) in their active region, grown on (775)B-oriented GaAs substrates by molecular beam epitaxy. A (775)B InGaAs QWR-VCSEL with an aperture diameter of 4 μm lased at a wavelength of 829.7 nm and a threshold current of 0.7 mA at RT. The light output was linearly polarized in the direction parallel to the QWRs due to optical anisotropy of the self-organized (775)B InGaAs QWRs.
Antiviral effects of two Ganoderma lucidum triterpenoids against enterovirus 71 infection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Wenjing; Tao, Junyan; Yang, Xiaoping
Highlights: • Triterpenoids GLTA and GLTB display anti-EV71 activities without cytotoxicity. • The compounds prevent EV71 infection by blocking adsorption of the virus to the cells. • GLTA and GLTB bind to EV71 capsid at the hydrophobic pocket to block EV71 uncoating. • The two compounds significantly inhibit the replication of EV71 viral RNA. • GLTA and GLTB may be used as potential therapeutic agents to treat EV71 infection. - Abstract: Enterovirus 71 (EV71) is a major causative agent for hand, foot and mouth disease (HFMD), and fatal neurological and systemic complications in children. However, there is currently no clinicalmore » approved antiviral drug available for the prevention and treatment of the viral infection. Here, we evaluated the antiviral activities of two Ganoderma lucidum triterpenoids (GLTs), Lanosta-7,9(11),24-trien-3-one,15;26-dihydroxy (GLTA) and Ganoderic acid Y (GLTB), against EV71 infection. The results showed that the two natural compounds display significant anti-EV71 activities without cytotoxicity in human rhabdomyosarcoma (RD) cells as evaluated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell proliferation assay. The mechanisms by which the two compounds affect EV71 infection were further elucidated by three action modes using Ribavirin, a common antiviral drug, as a positive control. The results suggested that GLTA and GLTB prevent EV71 infection through interacting with the viral particle to block the adsorption of virus to the cells. In addition, the interactions between EV71 virion and the compounds were predicated by computer molecular docking, which illustrated that GLTA and GLTB may bind to the viral capsid protein at a hydrophobic pocket (F site), and thus may block uncoating of EV71. Moreover, we demonstrated that GLTA and GLTB significantly inhibit the replication of the viral RNA (vRNA) of EV71 replication through blocking EV71 uncoating. Thus, GLTA and GLTB may represent two potential therapeutic agents to control and treat EV71 infection.« less
Extracellular vesicles as shuttles of tumor biomarkers and anti-tumor drugs.
Zocco, Davide; Ferruzzi, Pietro; Cappello, Francesco; Kuo, Winston Patrick; Fais, Stefano
2014-01-01
Extracellular vesicles (EV) include vesicles released by either normal or tumor cells. EV may exceed the nanometric scale (microvesicles), or to be within the nanoscale, also called exosomes. Thus, it appears that only exosomes and larger vesicles may have the size for potential applications in nanomedicine, in either disease diagnosis or therapy. This is of particular interest for research in cancer, also because the vast majority of existing data on EV are coming from pre-clinical and clinical oncology. We know that the microenvironmental features of cancer may favor cell-to-cell paracrine communication through EV, but EV have been purified, characterized, and quantified from plasma of tumor patients as well, thus suggesting that EV may have a role in promoting and maintaining cancer dissemination and progression. These observations are prompting research efforts to evaluate the use of nanovesicles as tumor biomarkers. Moreover, EVs are emerging as natural delivery systems and in particular, exosomes may represent the ideal natural nanoshuttles for new and old anti-tumor drugs. However, much is yet to be understood about the role of EV in oncology and this article aims to discuss the future of EV in cancer on the basis of current knowledge.
Extracellular Vesicles as Shuttles of Tumor Biomarkers and Anti-Tumor Drugs
Zocco, Davide; Ferruzzi, Pietro; Cappello, Francesco; Kuo, Winston Patrick; Fais, Stefano
2014-01-01
Extracellular vesicles (EV) include vesicles released by either normal or tumor cells. EV may exceed the nanometric scale (microvesicles), or to be within the nanoscale, also called exosomes. Thus, it appears that only exosomes and larger vesicles may have the size for potential applications in nanomedicine, in either disease diagnosis or therapy. This is of particular interest for research in cancer, also because the vast majority of existing data on EV are coming from pre-clinical and clinical oncology. We know that the microenvironmental features of cancer may favor cell-to-cell paracrine communication through EV, but EV have been purified, characterized, and quantified from plasma of tumor patients as well, thus suggesting that EV may have a role in promoting and maintaining cancer dissemination and progression. These observations are prompting research efforts to evaluate the use of nanovesicles as tumor biomarkers. Moreover, EVs are emerging as natural delivery systems and in particular, exosomes may represent the ideal natural nanoshuttles for new and old anti-tumor drugs. However, much is yet to be understood about the role of EV in oncology and this article aims to discuss the future of EV in cancer on the basis of current knowledge. PMID:25340037
Applying extracellular vesicles based therapeutics in clinical trials – an ISEV position paper
Lener, Thomas; Gimona, Mario; Aigner, Ludwig; Börger, Verena; Buzas, Edit; Camussi, Giovanni; Chaput, Nathalie; Chatterjee, Devasis; Court, Felipe A.; del Portillo, Hernando A.; O'Driscoll, Lorraine; Fais, Stefano; Falcon-Perez, Juan M.; Felderhoff-Mueser, Ursula; Fraile, Lorenzo; Gho, Yong Song; Görgens, André; Gupta, Ramesh C.; Hendrix, An; Hermann, Dirk M.; Hill, Andrew F.; Hochberg, Fred; Horn, Peter A.; de Kleijn, Dominique; Kordelas, Lambros; Kramer, Boris W.; Krämer-Albers, Eva-Maria; Laner-Plamberger, Sandra; Laitinen, Saara; Leonardi, Tommaso; Lorenowicz, Magdalena J.; Lim, Sai Kiang; Lötvall, Jan; Maguire, Casey A.; Marcilla, Antonio; Nazarenko, Irina; Ochiya, Takahiro; Patel, Tushar; Pedersen, Shona; Pocsfalvi, Gabriella; Pluchino, Stefano; Quesenberry, Peter; Reischl, Ilona G.; Rivera, Francisco J.; Sanzenbacher, Ralf; Schallmoser, Katharina; Slaper-Cortenbach, Ineke; Strunk, Dirk; Tonn, Torsten; Vader, Pieter; van Balkom, Bas W. M.; Wauben, Marca; Andaloussi, Samir El; Théry, Clotilde; Rohde, Eva; Giebel, Bernd
2015-01-01
Extracellular vesicles (EVs), such as exosomes and microvesicles, are released by different cell types and participate in physiological and pathophysiological processes. EVs mediate intercellular communication as cell-derived extracellular signalling organelles that transmit specific information from their cell of origin to their target cells. As a result of these properties, EVs of defined cell types may serve as novel tools for various therapeutic approaches, including (a) anti-tumour therapy, (b) pathogen vaccination, (c) immune-modulatory and regenerative therapies and (d) drug delivery. The translation of EVs into clinical therapies requires the categorization of EV-based therapeutics in compliance with existing regulatory frameworks. As the classification defines subsequent requirements for manufacturing, quality control and clinical investigation, it is of major importance to define whether EVs are considered the active drug components or primarily serve as drug delivery vehicles. For an effective and particularly safe translation of EV-based therapies into clinical practice, a high level of cooperation between researchers, clinicians and competent authorities is essential. In this position statement, basic and clinical scientists, as members of the International Society for Extracellular Vesicles (ISEV) and of the European Cooperation in Science and Technology (COST) program of the European Union, namely European Network on Microvesicles and Exosomes in Health and Disease (ME-HaD), summarize recent developments and the current knowledge of EV-based therapies. Aspects of safety and regulatory requirements that must be considered for pharmaceutical manufacturing and clinical application are highlighted. Production and quality control processes are discussed. Strategies to promote the therapeutic application of EVs in future clinical studies are addressed. PMID:26725829
Applying extracellular vesicles based therapeutics in clinical trials - an ISEV position paper.
Lener, Thomas; Gimona, Mario; Aigner, Ludwig; Börger, Verena; Buzas, Edit; Camussi, Giovanni; Chaput, Nathalie; Chatterjee, Devasis; Court, Felipe A; Del Portillo, Hernando A; O'Driscoll, Lorraine; Fais, Stefano; Falcon-Perez, Juan M; Felderhoff-Mueser, Ursula; Fraile, Lorenzo; Gho, Yong Song; Görgens, André; Gupta, Ramesh C; Hendrix, An; Hermann, Dirk M; Hill, Andrew F; Hochberg, Fred; Horn, Peter A; de Kleijn, Dominique; Kordelas, Lambros; Kramer, Boris W; Krämer-Albers, Eva-Maria; Laner-Plamberger, Sandra; Laitinen, Saara; Leonardi, Tommaso; Lorenowicz, Magdalena J; Lim, Sai Kiang; Lötvall, Jan; Maguire, Casey A; Marcilla, Antonio; Nazarenko, Irina; Ochiya, Takahiro; Patel, Tushar; Pedersen, Shona; Pocsfalvi, Gabriella; Pluchino, Stefano; Quesenberry, Peter; Reischl, Ilona G; Rivera, Francisco J; Sanzenbacher, Ralf; Schallmoser, Katharina; Slaper-Cortenbach, Ineke; Strunk, Dirk; Tonn, Torsten; Vader, Pieter; van Balkom, Bas W M; Wauben, Marca; Andaloussi, Samir El; Théry, Clotilde; Rohde, Eva; Giebel, Bernd
2015-01-01
Extracellular vesicles (EVs), such as exosomes and microvesicles, are released by different cell types and participate in physiological and pathophysiological processes. EVs mediate intercellular communication as cell-derived extracellular signalling organelles that transmit specific information from their cell of origin to their target cells. As a result of these properties, EVs of defined cell types may serve as novel tools for various therapeutic approaches, including (a) anti-tumour therapy, (b) pathogen vaccination, (c) immune-modulatory and regenerative therapies and (d) drug delivery. The translation of EVs into clinical therapies requires the categorization of EV-based therapeutics in compliance with existing regulatory frameworks. As the classification defines subsequent requirements for manufacturing, quality control and clinical investigation, it is of major importance to define whether EVs are considered the active drug components or primarily serve as drug delivery vehicles. For an effective and particularly safe translation of EV-based therapies into clinical practice, a high level of cooperation between researchers, clinicians and competent authorities is essential. In this position statement, basic and clinical scientists, as members of the International Society for Extracellular Vesicles (ISEV) and of the European Cooperation in Science and Technology (COST) program of the European Union, namely European Network on Microvesicles and Exosomes in Health and Disease (ME-HaD), summarize recent developments and the current knowledge of EV-based therapies. Aspects of safety and regulatory requirements that must be considered for pharmaceutical manufacturing and clinical application are highlighted. Production and quality control processes are discussed. Strategies to promote the therapeutic application of EVs in future clinical studies are addressed.
Inherited MST1 deficiency underlies susceptibility to EV-HPV infections.
Crequer, Amandine; Picard, Capucine; Patin, Etienne; D'Amico, Aurelia; Abhyankar, Avinash; Munzer, Martine; Debré, Marianne; Zhang, Shen-Ying; de Saint-Basile, Geneviève; Fischer, Alain; Abel, Laurent; Orth, Gérard; Casanova, Jean-Laurent; Jouanguy, Emmanuelle
2012-01-01
Epidermodysplasia verruciformis (EV) is characterized by persistent cutaneous lesions caused by a specific group of related human papillomavirus genotypes (EV-HPVs) in otherwise healthy individuals. Autosomal recessive (AR) EVER1 and EVER2 deficiencies account for two thirds of known cases of EV. AR RHOH deficiency has recently been described in two siblings with EV-HPV infections as well as other infectious and tumoral manifestations. We report here the whole-exome based discovery of AR MST1 deficiency in a 19-year-old patient with a T-cell deficiency associated with EV-HPV, bacterial and fungal infections. MST1 deficiency has recently been described in seven patients from three unrelated kindreds with profound T-cell deficiency and various viral and bacterial infections. The patient was also homozygous for a rare ERCC3 variation. Our findings broaden the clinical range of infections seen in MST1 deficiency and provide a new genetic etiology of susceptibility to EV-HPV infections. Together with the recent discovery of RHOH deficiency, they suggest that T cells are involved in the control of EV-HPVs, at least in some individuals.
Inherited MST1 Deficiency Underlies Susceptibility to EV-HPV Infections
Crequer, Amandine; Picard, Capucine; Patin, Etienne; D’Amico, Aurelia; Abhyankar, Avinash; Munzer, Martine; Debré, Marianne; Zhang, Shen-Ying; de Saint-Basile, Geneviève; Fischer, Alain
2012-01-01
Epidermodysplasia verruciformis (EV) is characterized by persistent cutaneous lesions caused by a specific group of related human papillomavirus genotypes (EV-HPVs) in otherwise healthy individuals. Autosomal recessive (AR) EVER1 and EVER2 deficiencies account for two thirds of known cases of EV. AR RHOH deficiency has recently been described in two siblings with EV-HPV infections as well as other infectious and tumoral manifestations. We report here the whole-exome based discovery of AR MST1 deficiency in a 19-year-old patient with a T-cell deficiency associated with EV-HPV, bacterial and fungal infections. MST1 deficiency has recently been described in seven patients from three unrelated kindreds with profound T-cell deficiency and various viral and bacterial infections. The patient was also homozygous for a rare ERCC3 variation. Our findings broaden the clinical range of infections seen in MST1 deficiency and provide a new genetic etiology of susceptibility to EV-HPV infections. Together with the recent discovery of RHOH deficiency, they suggest that T cells are involved in the control of EV-HPVs, at least in some individuals. PMID:22952854
MSC secretes at least 3 EV types each with a unique permutation of membrane lipid, protein and RNA.
Lai, Ruenn Chai; Tan, Soon Sim; Yeo, Ronne Wee Yeh; Choo, Andre Boon Hwa; Reiner, Agnes T; Su, Yan; Shen, Yang; Fu, Zhiyan; Alexander, Lezhava; Sze, Siu Kwan; Lim, Sai Kiang
2016-01-01
Mesenchymal stem cell (MSC), a widely used adult stem cell candidate for regenerative medicine, has been shown to exert some of its therapeutic effects through the secretion of extracellular vesicles (EVs). These homogenously sized EVs of 100-150 ηm exhibited many exosome-like biophysical and biochemical properties and carry both proteins and RNAs. Recently, exosome-associated proteins in this MSC EV preparation were found to segregate primarily to those EVs that bind cholera toxin B chain (CTB), a GM1 ganglioside-specific ligand, and pulse-chase experiments demonstrated that these EVs have endosomal origin and carried many of the exosome-associated markers. Here, we report that only a fraction of the MSC EV proteome was found in CTB-bound EVs. Using Annexin V (AV) and Shiga toxin B subunit (ST) with affinities for phosphatidylserine and globotriaosylceramide, respectively, AV- and a ST-binding EV were identified. CTB-, AV- and ST-binding EVs all carried actin. However, the AV-binding EVs carried low or undetectable levels of the exosome-associated proteins. Only the ST-binding EVs carried RNA and EDA-containing fibronectin. Proteins in AV-binding EVs were also different from those released by apoptotic MSCs. CTB- and AV-binding activities were localized to the plasma membrane and cytoplasm of MSCs, while ST-binding activity was localized to the nucleus. Together, this study demonstrates that cells secrete many types of EVs. Specifically, MSCs secrete at least 3 types. They can be differentially isolated based on their affinities for membrane lipid-binding ligands. As the subcellular sites of the binding activities of these ligands and cargo load are different for each EV type, they are likely to have a different biogenesis pathway and possibly different functions.
Hybrid Integration of III-V Solar Microcells for High Efficiency Concentrated Photovoltaic Modules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tauke-Pedretti, Anna; Cederberg, Jeffery; Cruz-Campa, Jose Luis
The design, fabrication and performance of InGaAs and InGaP/GaAs microcells are presented. These cells are integrated with a Si wafer providing a path for insertion in hybrid concentrated photovoltaic modules. Comparisons are made between bonded cells and cells fabricated on their native wafer. The bonded cells showed no evidence of degradation in spite of the integration process which involved significant processing including the removal of the III-V substrate. Results from a number of hybrid cell configurations were reported. These cells employed integration techniques including wafer level bonding of processed cells and solder bonding of the cells. Lastly, the cells themselvesmore » showed evidence of degradation in spite of the integration process, which involved significant processing including the removal of the III-V substrate.« less
Hybrid Integration of III-V Solar Microcells for High Efficiency Concentrated Photovoltaic Modules
Tauke-Pedretti, Anna; Cederberg, Jeffery; Cruz-Campa, Jose Luis; ...
2018-03-09
The design, fabrication and performance of InGaAs and InGaP/GaAs microcells are presented. These cells are integrated with a Si wafer providing a path for insertion in hybrid concentrated photovoltaic modules. Comparisons are made between bonded cells and cells fabricated on their native wafer. The bonded cells showed no evidence of degradation in spite of the integration process which involved significant processing including the removal of the III-V substrate. Results from a number of hybrid cell configurations were reported. These cells employed integration techniques including wafer level bonding of processed cells and solder bonding of the cells. Lastly, the cells themselvesmore » showed evidence of degradation in spite of the integration process, which involved significant processing including the removal of the III-V substrate.« less
Volle, Romain; Archimbaud, Christine; Couraud, Pierre-Olivier; Romero, Ignacio A; Weksler, Babette; Mirand, Audrey; Pereira, Bruno; Henquell, Cécile; Peigue-Lafeuille, Hélène; Bailly, Jean-Luc
2015-07-01
Human cerebral microvascular endothelial cells (hCMEC/D3 cell line) form a steady polarized barrier when cultured in vitro on a permeable membrane. Their susceptibility to enterovirus (EV) strains was analysed to investigate how these viruses may cross the blood-brain barrier. A sample of 88 virus strains was selected on phylogenetic features amongst 43 epidemiologically relevant types of the four EV species A-D. The EV-A71 genome was replicated at substantial rates, whilst the infectious virus was released at extremely low but sustained rates at both barrier sides for at least 4 days. EV-A71 antigens were detected in a limited number of cells. The properties of the endothelial barrier (structure and permeability) remained intact throughout infection. The chronic EV-A71 infection was in sharp contrast to the productive infection of cytolytic EVs (e.g. echoviruses E-6 and E-30). The hCMEC/D3 barriers infected with the latter EVs exhibited elevated proportions of apoptotic and necrotic cells, which resulted in major injuries to the endothelial barriers with a dramatic increase of paracellular permeability and virus crossing to the abluminal side. The following intracellular rearrangements were also seen: early destruction of the actin cytoskeleton, remodelling of intracellular membranes and reorganization of the mitochondrion network in a small cluster near the perinuclear space.
Impact of lysosome status on extracellular vesicle content and release.
Eitan, Erez; Suire, Caitlin; Zhang, Shi; Mattson, Mark P
2016-12-01
Extracellular vesicles (EVs) are nanoscale size bubble-like membranous structures released from cells. EVs contain RNA, lipids and proteins and are thought to serve various roles including intercellular communication and removal of misfolded proteins. The secretion of misfolded and aggregated proteins in EVs may be a cargo disposal alternative to the autophagy-lysosomal and ubiquitin-proteasome pathways. In this review we will discuss the importance of lysosome functionality for the regulation of EV secretion and content. Exosomes are a subtype of EVs that are released by the fusion of multivesicular bodies (MVB) with the plasma membrane. MVBs can also fuse with lysosomes, and the trafficking pathway of MVBs can therefore determine whether or not exosomes are released from cells. Here we summarize data from studies of the effects of lysosome inhibition on the secretion of EVs and on the possibility that cells compensate for lysosome malfunction by disposal of potentially toxic cargos in EVs. A better understanding of the molecular mechanisms that regulate trafficking of MVBs to lysosomes and the plasma membrane may advance an understanding of diseases in which pathogenic proteins, lipids or infectious agents accumulate within or outside of cells. Copyright © 2016. Published by Elsevier B.V.
Impact of Lysosome Status on Extracellular Vesicle Content and Release
Eitan, Erez; Suire, Caitlin; Zhang, Shi; Mattson, Mark P.
2016-01-01
Extracellular vesicles (EVs) are nanoscale size bubble-like membranous structures released from cells. EVs contain RNA, lipids and proteins and are thought to serve various roles including intercellular communication and removal of misfolded proteins. The secretion of misfolded and aggregated proteins in EVs may be a cargo disposal alternative to the autophagy-lysosomal and ubiquitin-proteasome pathways. In this review we will discuss the importance of lysosome functionality for the regulation of EV secretion and content. Exosomes are a subtype of EVs that are released by the fusion of multivesicular bodies (MVB) with the plasma membrane. MVBs can also fuse with lysosomes, and the trafficking pathway of MVBs can therefore determine whether or not exosomes are released from cells. Here we summarize data from studies of the effects of lysosome inhibition on the secretion of EVs and on the possibility that cells compensate for lysosome malfunction by disposal of potentially toxic cargos in EVs. A better understanding of the molecular mechanisms that regulate trafficking of MVBs to lysosomes and the plasma membrane may advance an understanding of diseases in which pathogenic proteins, lipids or infectious agents accumulate within or outside of cells. PMID:27238186
Fukushima, Yoshimi; Okamoto, Masaaki; Ishikawa, Kana; Kouwaki, Takahisa; Tsukamoto, Hirotake; Oshiumi, Hiroyuki
2018-06-07
Pattern-recognition receptors (PRRs) recognizes viral RNAs and trigger the innate immune responses. Toll-like receptor 3 (TLR3), a PRR, recognizes viral double-stranded RNA (dsRNA) in endolysosomes, whereas cytoplasmic dsRNA is sensed by another PRR, MDA5. TLR3 and MDA5 utilize TICAM-1 and MAVS, respectively, to trigger the signal for inducing innate immune responses. Extracellular vesicles (EVs) include the exosomes and microvesicles; an accumulating body of evidence has shown that EVs delivers functional RNA, such as microRNAs (miRNAs), to other cells and thus mediate intercellular communications. Therefore, EVs carrying miRNAs affect innate immune responses in macrophages and dendritic cells. However, the mechanism underlying the regulation of miRNA levels in EVs remains unclear. To elucidate the mechanism, we sought to reveal the pathway that control miRNA expression levels in EVs. Here, we found that TLR3 stimulation increased miR-21 levels in EVs released from various types of human cells. Ectopic expression of the TLR3 adaptor, TICAM-1, increased miR-21 levels in EVs but not intracellular miR-21 levels, suggesting that TICAM-1 augmented sorting of miR-21 to EVs. In contrast, the MDA5 adaptor, MAVS, did not increase miR-21 levels in EVs. The siRNA for TICAM-1 reduced EV miR-21 levels after stimulation of TLR3. Collectively, our data indicate a novel role of the TLR3-TICAM-1 pathway in controlling miR-21 levels in EVs. Copyright © 2018 Elsevier Inc. All rights reserved.
Mateescu, Bogdan; Kowal, Emma J. K.; van Balkom, Bas W. M.; Bartel, Sabine; Bhattacharyya, Suvendra N.; Buzás, Edit I.; Buck, Amy H.; de Candia, Paola; Chow, Franklin W. N.; Das, Saumya; Driedonks, Tom A. P.; Fernández-Messina, Lola; Haderk, Franziska; Hill, Andrew F.; Jones, Jennifer C.; Van Keuren-Jensen, Kendall R.; Lai, Charles P.; Lässer, Cecilia; Liegro, Italia di; Lunavat, Taral R.; Lorenowicz, Magdalena J.; Maas, Sybren L. N.; Mäger, Imre; Mittelbrunn, Maria; Momma, Stefan; Mukherjee, Kamalika; Nawaz, Muhammed; Pegtel, D. Michiel; Pfaffl, Michael W.; Schiffelers, Raymond M.; Tahara, Hidetoshi; Théry, Clotilde; Tosar, Juan Pablo; Wauben, Marca H. M.; Witwer, Kenneth W.; Nolte-‘t Hoen, Esther N. M.
2017-01-01
ABSTRACT The release of RNA-containing extracellular vesicles (EV) into the extracellular milieu has been demonstrated in a multitude of different in vitro cell systems and in a variety of body fluids. RNA-containing EV are in the limelight for their capacity to communicate genetically encoded messages to other cells, their suitability as candidate biomarkers for diseases, and their use as therapeutic agents. Although EV-RNA has attracted enormous interest from basic researchers, clinicians, and industry, we currently have limited knowledge on which mechanisms drive and regulate RNA incorporation into EV and on how RNA-encoded messages affect signalling processes in EV-targeted cells. Moreover, EV-RNA research faces various technical challenges, such as standardisation of EV isolation methods, optimisation of methodologies to isolate and characterise minute quantities of RNA found in EV, and development of approaches to demonstrate functional transfer of EV-RNA in vivo. These topics were discussed at the 2015 EV-RNA workshop of the International Society for Extracellular Vesicles. This position paper was written by the participants of the workshop not only to give an overview of the current state of knowledge in the field, but also to clarify that our incomplete knowledge – of the nature of EV(-RNA)s and of how to effectively and reliably study them – currently prohibits the implementation of gold standards in EV-RNA research. In addition, this paper creates awareness of possibilities and limitations of currently used strategies to investigate EV-RNA and calls for caution in interpretation of the obtained data. PMID:28326170
Mateescu, Bogdan; Kowal, Emma J K; van Balkom, Bas W M; Bartel, Sabine; Bhattacharyya, Suvendra N; Buzás, Edit I; Buck, Amy H; de Candia, Paola; Chow, Franklin W N; Das, Saumya; Driedonks, Tom A P; Fernández-Messina, Lola; Haderk, Franziska; Hill, Andrew F; Jones, Jennifer C; Van Keuren-Jensen, Kendall R; Lai, Charles P; Lässer, Cecilia; Liegro, Italia di; Lunavat, Taral R; Lorenowicz, Magdalena J; Maas, Sybren L N; Mäger, Imre; Mittelbrunn, Maria; Momma, Stefan; Mukherjee, Kamalika; Nawaz, Muhammed; Pegtel, D Michiel; Pfaffl, Michael W; Schiffelers, Raymond M; Tahara, Hidetoshi; Théry, Clotilde; Tosar, Juan Pablo; Wauben, Marca H M; Witwer, Kenneth W; Nolte-'t Hoen, Esther N M
2017-01-01
The release of RNA-containing extracellular vesicles (EV) into the extracellular milieu has been demonstrated in a multitude of different in vitro cell systems and in a variety of body fluids. RNA-containing EV are in the limelight for their capacity to communicate genetically encoded messages to other cells, their suitability as candidate biomarkers for diseases, and their use as therapeutic agents. Although EV-RNA has attracted enormous interest from basic researchers, clinicians, and industry, we currently have limited knowledge on which mechanisms drive and regulate RNA incorporation into EV and on how RNA-encoded messages affect signalling processes in EV-targeted cells. Moreover, EV-RNA research faces various technical challenges, such as standardisation of EV isolation methods, optimisation of methodologies to isolate and characterise minute quantities of RNA found in EV, and development of approaches to demonstrate functional transfer of EV-RNA in vivo . These topics were discussed at the 2015 EV-RNA workshop of the International Society for Extracellular Vesicles. This position paper was written by the participants of the workshop not only to give an overview of the current state of knowledge in the field, but also to clarify that our incomplete knowledge - of the nature of EV(-RNA)s and of how to effectively and reliably study them - currently prohibits the implementation of gold standards in EV-RNA research. In addition, this paper creates awareness of possibilities and limitations of currently used strategies to investigate EV-RNA and calls for caution in interpretation of the obtained data.
Extracellular vesicles from human liver stem cells restore argininosuccinate synthase deficiency.
Herrera Sanchez, Maria Beatriz; Previdi, Sara; Bruno, Stefania; Fonsato, Valentina; Deregibus, Maria Chiara; Kholia, Sharad; Petrillo, Sara; Tolosano, Emanuela; Critelli, Rossana; Spada, Marco; Romagnoli, Renato; Salizzoni, Mauro; Tetta, Ciro; Camussi, Giovanni
2017-07-27
Argininosuccinate synthase (ASS)1 is a urea cycle enzyme that catalyzes the conversion of citrulline and aspartate to argininosuccinate. Mutations in the ASS1 gene cause citrullinemia type I, a rare autosomal recessive disorder characterized by neonatal hyperammonemia, elevated citrulline levels, and early neonatal death. Treatment for this disease is currently restricted to liver transplantation; however, due to limited organ availability, substitute therapies are required. Recently, extracellular vesicles (EVs) have been reported to act as intercellular transporters carrying genetic information responsible for cell reprogramming. In previous studies, we isolated a population of stem cell-like cells known as human liver stem cells (HLSCs) from healthy liver tissue. Moreover, EVs derived from HLSCs were reported to exhibit regenerative effects on the liver parenchyma in models of acute liver injury. The aim of this study was to evaluate whether EVs derived from normal HLSCs restored ASS1 enzymatic activity and urea production in hepatocytes differentiated from HLSCs derived from a patient with type I citrullinemia. HLSCs were isolated from the liver of a patient with type I citrullinemia (ASS1-HLSCs) and characterized by fluorescence-activated cell sorting (FACS), immunofluorescence, and DNA sequencing analysis. Furthermore, their differentiation capabilities in vitro were also assessed. Hepatocytes differentiated from ASS1-HLSCs were evaluated by the production of urea and ASS enzymatic activity. EVs derived from normal HLSCs were purified by differential ultracentrifugation followed by floating density gradient. The EV content was analyzed to identify the presence of ASS1 protein, mRNA, and ASS1 gene. In order to obtain ASS1-depleted EVs, a knockdown of the ASS1 gene in HLSCs was performed followed by EV isolation from these cells. Treating ASS1-HLSCs with EVs from HLSCs restored both ASS1 activity and urea production mainly through the transfer of ASS1 enzyme and mRNA. In fact, EVs from ASS1-knockdown HLSCs contained low amounts of ASS1 mRNA and protein, and were unable to restore urea production in hepatocytes differentiated from ASS1-HLSCs. Collectively, these results suggest that EVs derived from normal HLSCs may compensate the loss of ASS1 enzyme activity in hepatocytes differentiated from ASS1-HLSCs.
Extracellular vesicles are independent metabolic units with asparaginase activity
Leonardi, Tommaso; Costa, Ana S. H.; Cossetti, Chiara; Peruzzotti-Jametti, Luca; Bernstock, Joshua D.; Saini, Harpreet K.; Gelati, Maurizio; Vescovi, Angelo Luigi; Bastos, Carlos; Faria, Nuno; Occhipinti, Luigi G.; Enright, Anton J.; Frezza, Christian; Pluchino, Stefano
2017-01-01
Extracellular vesicles (EVs) are membrane particles involved in the exchange of a broad range of bioactive molecules between cells and the microenvironment. While it has been shown that cells can traffic metabolic enzymes via EVs much remains to be elucidated with regard to their intrinsic metabolic activity. Accordingly, herein we assessed the ability of neural stem/progenitor cell (NSC)-derived EVs to consume and produce metabolites. Both our metabolomics and functional analyses revealed that EVs harbour L-asparaginase activity catalysed by the enzyme Asparaginase-like protein 1 (Asrgl1). Critically, we show that Asrgl1 activity is selective for asparagine and is devoid of glutaminase activity. We found that mouse and human NSC-derived EVs traffic ASRGL1. Our results demonstrate for the first time that NSC EVs function as independent, extracellular metabolic units able to modify the concentrations of critical nutrients, with the potential to affect the physiology of their microenvironment. PMID:28671681
Pellegrini, Kathryn L.; Patil, Dattatraya; Douglas, Kristen J.S.; Lee, Grace; Wehrmeyer, Kathryn; Torlak, Mersiha; Clark, Jeremy; Cooper, Colin S.; Moreno, Carlos S.; Sanda, Martin G.
2018-01-01
Background The measurement of gene expression in post-digital rectal examination (DRE) urine specimens provides a non-invasive method to determine a patient’s risk of prostate cancer. Many currently available assays use whole urine or cell pellets for the analysis of prostate cancer-associated genes, although the use of extracellular vesicles (EVs) has also recently been of interest. We investigated the expression of prostate-, kidney-, and bladder-specific transcripts and known prostate cancer biomarkers in urine EVs. Methods Cell pellets and EVs were recovered from post-DRE urine specimens, with the total RNA yield and quality determined by Bioanalyzer. The levels of prostate, kidney, and bladder-associated transcripts in EVs were assessed by TaqMan qPCR and targeted sequencing. Results RNA was more consistently recovered from the urine EV specimens, with over 80% of the patients demonstrating higher RNA yields in the EV fraction as compared to urine cell pellets. The median EV RNA yield of 36.4 ng was significantly higher than the median urine cell pellet RNA yield of 4.8 ng. Analysis of the post-DRE urine EVs indicated that prostate-specific transcripts were more abundant than kidney- or bladder-specific transcripts. Additionally, patients with prostate cancer had significantly higher levels of the prostate cancer-associated genes PCA3 and ERG. Conclusions Post-DRE urine EVs are a viable source of prostate-derived RNAs for biomarker discovery and prostate cancer status can be distinguished from analysis of these specimens. Continued analysis of urine EVs offers the potential discovery of novel biomarkers for pre-biopsy prostate cancer detection. PMID:28419548
Pellegrini, Kathryn L; Patil, Dattatraya; Douglas, Kristen J S; Lee, Grace; Wehrmeyer, Kathryn; Torlak, Mersiha; Clark, Jeremy; Cooper, Colin S; Moreno, Carlos S; Sanda, Martin G
2017-06-01
The measurement of gene expression in post-digital rectal examination (DRE) urine specimens provides a non-invasive method to determine a patient's risk of prostate cancer. Many currently available assays use whole urine or cell pellets for the analysis of prostate cancer-associated genes, although the use of extracellular vesicles (EVs) has also recently been of interest. We investigated the expression of prostate-, kidney-, and bladder-specific transcripts and known prostate cancer biomarkers in urine EVs. Cell pellets and EVs were recovered from post-DRE urine specimens, with the total RNA yield and quality determined by Bioanalyzer. The levels of prostate, kidney, and bladder-associated transcripts in EVs were assessed by TaqMan qPCR and targeted sequencing. RNA was more consistently recovered from the urine EV specimens, with over 80% of the patients demonstrating higher RNA yields in the EV fraction as compared to urine cell pellets. The median EV RNA yield of 36.4 ng was significantly higher than the median urine cell pellet RNA yield of 4.8 ng. Analysis of the post-DRE urine EVs indicated that prostate-specific transcripts were more abundant than kidney- or bladder-specific transcripts. Additionally, patients with prostate cancer had significantly higher levels of the prostate cancer-associated genes PCA3 and ERG. Post-DRE urine EVs are a viable source of prostate-derived RNAs for biomarker discovery and prostate cancer status can be distinguished from analysis of these specimens. Continued analysis of urine EVs offers the potential discovery of novel biomarkers for pre-biopsy prostate cancer detection. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Wen, Hanqing; Bellotti, Enrico
2016-05-01
Intrinsic carrier lifetime due to radiative and Auger recombination in HgCdTe and strained InGaAs has been computed in the extended short-wavelength infrared (ESWIR) spectrum from 1.7 μm to 2.7 μm. Using the Green's function theory, both direct and phonon-assisted indirect Auger recombination rates as well as the radiative recombination rates are calculated for different cutoff wavelengths at 300 K with full band structures of the materials. In order to properly model the full band structures of strained InGaAs, an empirical pseudo-potential model for the alloy is fitted using the virtual crystal approximation with spin-orbit coupling included. The results showed that for InxGa1-xAs grown on InP substrate, the compressive strain, which presents in the film when the cutoff wavelength is longer than 1.7 μm, leads to decrease of Auger recombination rate and increase of radiative recombination rate. Since the dominant intrinsic recombination mechanism in this spectral range is radiative recombination, the overall intrinsic carrier lifetime in the strained InGaAs alloys is shorter than that in the relaxed material. When compared to the relaxed HgCdTe, both relaxed and compressively strained InGaAs alloys show shorter intrinsic carrier lifetime at the same cutoff wavelength in room temperature which confirms the potential advantage of HgCdTe as wide-band infrared detector material. While HgCdTe offers superior performance, ultimately the material of choice for ESWIR application will also depend on material quality and cost.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wen, Hanqing; Bellotti, Enrico, E-mail: bellotti@bu.edu
2016-05-28
Intrinsic carrier lifetime due to radiative and Auger recombination in HgCdTe and strained InGaAs has been computed in the extended short-wavelength infrared (ESWIR) spectrum from 1.7 μm to 2.7 μm. Using the Green's function theory, both direct and phonon-assisted indirect Auger recombination rates as well as the radiative recombination rates are calculated for different cutoff wavelengths at 300 K with full band structures of the materials. In order to properly model the full band structures of strained InGaAs, an empirical pseudo-potential model for the alloy is fitted using the virtual crystal approximation with spin-orbit coupling included. The results showed that for In{sub x}Ga{submore » 1−x}As grown on InP substrate, the compressive strain, which presents in the film when the cutoff wavelength is longer than 1.7 μm, leads to decrease of Auger recombination rate and increase of radiative recombination rate. Since the dominant intrinsic recombination mechanism in this spectral range is radiative recombination, the overall intrinsic carrier lifetime in the strained InGaAs alloys is shorter than that in the relaxed material. When compared to the relaxed HgCdTe, both relaxed and compressively strained InGaAs alloys show shorter intrinsic carrier lifetime at the same cutoff wavelength in room temperature which confirms the potential advantage of HgCdTe as wide-band infrared detector material. While HgCdTe offers superior performance, ultimately the material of choice for ESWIR application will also depend on material quality and cost.« less
Sialic acid-dependent cell entry of human enterovirus D68
Liu, Yue; Sheng, Ju; Baggen, Jim; ...
2015-11-13
Human enterovirus D68 (EV-D68) is a causative agent of childhood respiratory diseases and has now emerged as a global public health threat. Nevertheless, knowledge of the tissue tropism and pathogenesis of EV-D68 has been hindered by a lack of studies on the receptor-mediated EV-D68 entry into host cells. Here we demonstrate that cell surface sialic acid is essential for EV-D68 to bind to and infect susceptible cells. Crystal structures of EV-D68 in complex with sialylated glycan receptor analogues show that they bind into the ‘canyon’ on the virus surface. The sialic acid receptor induces a cascade of conformational changes inmore » the virus to eject a fatty-acid-like molecule that regulates the stability of the virus. Furthermore, virus binding to a sialic acid receptor and to immunoglobulin-like receptors used by most other enteroviruses share a conserved mechanism for priming viral uncoating and facilitating cell entry.« less
Sialic acid-dependent cell entry of human enterovirus D68
Liu, Yue; Sheng, Ju; Baggen, Jim; Meng, Geng; Xiao, Chuan; Thibaut, Hendrik J.; van Kuppeveld, Frank J. M.; Rossmann, Michael G.
2015-01-01
Human enterovirus D68 (EV-D68) is a causative agent of childhood respiratory diseases and has now emerged as a global public health threat. Nevertheless, knowledge of the tissue tropism and pathogenesis of EV-D68 has been hindered by a lack of studies on the receptor-mediated EV-D68 entry into host cells. Here we demonstrate that cell surface sialic acid is essential for EV-D68 to bind to and infect susceptible cells. Crystal structures of EV-D68 in complex with sialylated glycan receptor analogues show that they bind into the ‘canyon' on the virus surface. The sialic acid receptor induces a cascade of conformational changes in the virus to eject a fatty-acid-like molecule that regulates the stability of the virus. Thus, virus binding to a sialic acid receptor and to immunoglobulin-like receptors used by most other enteroviruses share a conserved mechanism for priming viral uncoating and facilitating cell entry. PMID:26563423
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yue; Sheng, Ju; Baggen, Jim
Human enterovirus D68 (EV-D68) is a causative agent of childhood respiratory diseases and has now emerged as a global public health threat. Nevertheless, knowledge of the tissue tropism and pathogenesis of EV-D68 has been hindered by a lack of studies on the receptor-mediated EV-D68 entry into host cells. Here we demonstrate that cell surface sialic acid is essential for EV-D68 to bind to and infect susceptible cells. Crystal structures of EV-D68 in complex with sialylated glycan receptor analogues show that they bind into the ‘canyon’ on the virus surface. The sialic acid receptor induces a cascade of conformational changes inmore » the virus to eject a fatty-acid-like molecule that regulates the stability of the virus. Furthermore, virus binding to a sialic acid receptor and to immunoglobulin-like receptors used by most other enteroviruses share a conserved mechanism for priming viral uncoating and facilitating cell entry.« less
Fiore, Esteban Juan; Domínguez, Luciana María; Bayo, Juan; García, Mariana Gabriela; Mazzolini, Guillermo Daniel
2018-01-01
Cell-based therapies for acute and chronic liver diseases are under continuous progress. Mesenchymal stem/stromal cells (MSCs) are multipotent cells able to migrate selectively to damaged tissue and contribute to its healing and regeneration. The MSC pro-regenerative effect occurs due to their immunomodulatory capacity and their ability to produce factors that promote cell protection and survival. Likewise, it has been observed that part of their paracrine effect is mediated by MSC-derived extracellular vesicles (EVs). EVs contain proteins, lipids and nucleic acids (DNA, mRNA, miRNA, lncRNA) from the cell of origin, allowing for intercellular communication. Recently, different studies have demonstrated that MSC-derived EVs could reproduce, at least in part, the biological effects obtained by MSC-based therapies. Moreover, due to EVs’ stability for long periods of time and easy isolation methods they have become a therapeutic option to MSCs treatments. This review summarizes the latest results achieved in clinical trials using MSCs as cell therapy for liver regeneration, the role of EVs in liver physiopathology and the potential of MSCderived EVs as intercellular mediators and therapeutic tools in liver diseases. PMID:29930465
El Harane, Nadia; Kervadec, Anaïs; Bellamy, Valérie; Pidial, Laetitia; Neametalla, Hany J; Perier, Marie-Cécile; Lima Correa, Bruna; Thiébault, Léa; Cagnard, Nicolas; Duché, Angéline; Brunaud, Camille; Lemitre, Mathilde; Gauthier, Jeanne; Bourdillon, Alexandra T; Renault, Marc P; Hovhannisyan, Yeranuhi; Paiva, Solenne; Colas, Alexandre R; Agbulut, Onnik; Hagège, Albert; Silvestre, Jean-Sébastien; Menasché, Philippe; Renault, Nisa K E
2018-05-21
We have shown that extracellular vesicles (EVs) secreted by embryonic stem cell-derived cardiovascular progenitor cells (Pg) recapitulate the therapeutic effects of their parent cells in a mouse model of chronic heart failure (CHF). Our objectives are to investigate whether EV released by more readily available cell sources are therapeutic, whether their effectiveness is influenced by the differentiation state of the secreting cell, and through which mechanisms they act. The total EV secreted by human induced pluripotent stem cell-derived cardiovascular progenitors (iPSC-Pg) and human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM) were isolated by ultracentrifugation and characterized by Nanoparticle Tracking Analysis, western blot, and cryo-electron microscopy. In vitro bioactivity assays were used to evaluate their cellular effects. Cell and EV microRNA (miRNA) content were assessed by miRNA array. Myocardial infarction was induced in 199 nude mice. Three weeks later, mice with left ventricular ejection fraction (LVEF) ≤ 45% received transcutaneous echo-guided injections of iPSC-CM (1.4 × 106, n = 19), iPSC-Pg (1.4 × 106, n = 17), total EV secreted by 1.4 × 106 iPSC-Pg (n = 19), or phosphate-buffered saline (control, n = 17) into the peri-infarct myocardium. Seven weeks later, hearts were evaluated by echocardiography, histology, and gene expression profiling, blinded to treatment group. In vitro, EV were internalized by target cells, increased cell survival, cell proliferation, and endothelial cell migration in a dose-dependent manner and stimulated tube formation. Extracellular vesicles were rich in miRNAs and most of the 16 highly abundant, evolutionarily conserved miRNAs are associated with tissue-repair pathways. In vivo, EV outperformed cell injections, significantly improving cardiac function through decreased left ventricular volumes (left ventricular end systolic volume: -11%, P < 0.001; left ventricular end diastolic volume: -4%, P = 0.002), and increased LVEF (+14%, P < 0.0001) relative to baseline values. Gene profiling revealed that EV-treated hearts were enriched for tissue reparative pathways. Extracellular vesicles secreted by iPSC-Pg are effective in the treatment of CHF, possibly, in part, through their specific miRNA signature and the associated stimulation of distinct cardioprotective pathways. The processing and regulatory advantages of EV could make them effective substitutes for cell transplantation.
Harnessing extracellular vesicles to direct endochondral repair of large bone defects
Ferreira, E.
2018-01-01
Large bone defects remain a tremendous clinical challenge. There is growing evidence in support of treatment strategies that direct defect repair through an endochondral route, involving a cartilage intermediate. While culture-expanded stem/progenitor cells are being evaluated for this purpose, these cells would compete with endogenous repair cells for limited oxygen and nutrients within ischaemic defects. Alternatively, it may be possible to employ extracellular vesicles (EVs) secreted by culture-expanded cells for overcoming key bottlenecks to endochondral repair, such as defect vascularization, chondrogenesis, and osseous remodelling. While mesenchymal stromal/stem cells are a promising source of therapeutic EVs, other donor cells should also be considered. The efficacy of an EV-based therapeutic will likely depend on the design of companion scaffolds for controlled delivery to specific target cells. Ultimately, the knowledge gained from studies of EVs could one day inform the long-term development of synthetic, engineered nanovesicles. In the meantime, EVs harnessed from in vitro cell culture have near-term promise for use in bone regenerative medicine. This narrative review presents a rationale for using EVs to improve the repair of large bone defects, highlights promising cell sources and likely therapeutic targets for directing repair through an endochondral pathway, and discusses current barriers to clinical translation. Cite this article: E. Ferreira, R. M. Porter. Harnessing extracellular vesicles to direct endochondral repair of large bone defects. Bone Joint Res 2018;7:263–273. DOI: 10.1302/2046-3758.74.BJR-2018-0006. PMID:29922444
Water Splitting with Series-Connected Polymer Solar Cells.
Esiner, Serkan; van Eersel, Harm; van Pruissen, Gijs W P; Turbiez, Mathieu; Wienk, Martijn M; Janssen, René A J
2016-10-12
We investigate light-driven electrochemical water splitting with series-connected polymer solar cells using a combined experimental and modeling approach. The expected maximum solar-to-hydrogen conversion efficiency (η STH ) for light-driven water splitting is modeled for two, three, and four series-connected polymer solar cells. In the modeling, we assume an electrochemical water splitting potential of 1.50 V and a polymer solar cell for which the external quantum efficiency and fill factor are both 0.65. The minimum photon energy loss (E loss ), defined as the energy difference between the optical band gap (E g ) and the open-circuit voltage (V oc ), is set to 0.8 eV, which we consider a realistic value for polymer solar cells. Within these approximations, two series-connected single junction cells with E g = 1.73 eV or three series-connected cells with E g = 1.44 eV are both expected to give an η STH of 6.9%. For four series-connected cells, the maximum η STH is slightly less at 6.2% at an optimal E g = 1.33 eV. Water splitting was performed with series-connected polymer solar cells using polymers with different band gaps. PTPTIBDT-OD (E g = 1.89 eV), PTB7-Th (E g = 1.56 eV), and PDPP5T-2 (E g = 1.44 eV) were blended with [70]PCBM as absorber layer for two, three, and four series-connected configurations, respectively, and provide η STH values of 4.1, 6.1, and 4.9% when using a retroreflective foil on top of the cell to enhance light absorption. The reasons for deviations with experiments are analyzed and found to be due to differences in E g and E loss . Light-driven electrochemical water splitting was also modeled for multijunction polymer solar cells with vertically stacked photoactive layers. Under identical assumptions, an η STH of 10.0% is predicted for multijunction cells.
NASA Astrophysics Data System (ADS)
Yeon, Seongjin; Seo, Kwangseok
2008-04-01
We fabricated 50 nm InAlAs/InGaAs metamorphic high electron mobility transistors (HEMTs) with a very thin barrier. Through the reduction of the gate-channel distance (dGC) in the epitaxial structure, a channel aspect ratio (ARC) of over three was achieved when Lg was 50 nm. We inserted a thin InGaAs layer as a protective layer, and tested various gate structures to reduce surface problems induced by barrier shrinkage and to optimize the device characteristics. Through the optimization of the gate structure with the thin InGaAs layer, the fabricated 50 nm metamorphic HEMT exhibited high DC and RF characteristics, Gm of 1.5 S/mm, and fT of 490 GHz.
Bond-strength inversion in (In,Ga)As semiconductor alloys
NASA Astrophysics Data System (ADS)
Eckner, Stefanie; Ritter, Konrad; Schöppe, Philipp; Haubold, Erik; Eckner, Erich; Rensberg, Jura; Röder, Robert; Ridgway, Mark C.; Schnohr, Claudia S.
2018-05-01
The atomic-scale structure and vibrational properties of semiconductor alloys are determined by the energy required for stretching and bending the individual bonds. Using temperature-dependent extended x-ray absorption fine-structure spectroscopy, we have determined the element-specific In-As and Ga-As effective bond-stretching force constants in (In,Ga)As as a function of the alloy composition. The results reveal a striking inversion of the bond strength where the originally stiffer bond in the parent materials becomes the softer bond in the alloy and vice versa. Our findings clearly demonstrate that changes of both the individual bond length and the surrounding matrix affect the bond-stretching force constants. We thus show that the previously used common assumptions about the element-specific force constants in semiconductor alloys do not reproduce the composition dependence determined experimentally for (In,Ga)As.
Jayachandran, Muthuvel; Lugo, Ghiara; Heiling, Hillary; Miller, Virginia M; Rule, Andrew D; Lieske, John C
2015-01-01
The lifetime incidence of kidney stones is about two times greater in men compared to women. Extracellular vesicles (EVs) shed from activated cells are present in the urine and may reflect or even mediate renal physiology and/or pathology. This study was designed to standardize methodology to characterize urinary EVs by digital flow cytometry and to identify possible sex differences in EVs in persons with and without their first symptomatic kidney stones. Twenty-four-hour urine collections were obtained from persons presenting with their first kidney stone episode (n = 50 women, 60 men; age 19-76 years) and sex- and age-matched controls from the general population (n = 24 women, 36 men). Standardization: Size of EV was variable within all groups. EV positivity was verified with two fluorophores for surface phosphatidylserine and/or using two different protein markers specific for renal-specific cells. The number of phosphatidylserine- and exosome marker-positive EVs did not correlate with urine osmolality and were similar in fresh vs. frozen and between two sequential urine collections from the same individual. Sex differences: Urine from women controls contained greater (P < 0.05) numbers of EVs positive for phosphatidylserine, exosomes, inflammatory factors and adhesion molecules, and cell-specific markers from different segments of the nephron, renal pelvis, and bladder compared to control men. In contrast, urine from women with kidney stones contained significantly (P < 0.05) lower numbers of EVs derived from podocytes, parietal cells, proximal convoluted tubule, thin and thick loop of Henle, distal tubule, collecting duct, renal pelvis, and bladder compared to control women and contained similar quantities of these types of EVs in men with and without kidney stones. There were also no sex differences in EVs positive for cell adhesion (E-cadherin and inter-cellular adhesion molecule-1 [ICAM-1]) molecules. Unlike women who do not have kidney stones, EVs in urine from women with nephrolithiasis are similar to men with and without kidney stones. Thus, EVs may mediate or reflect aspects of kidney stone pathogenesis and perhaps provide clues regarding sex differences in kidney stone incidence rates.
Prohibitin plays a critical role in Enterovirus 71 neuropathogenesis
Too, Issac Horng Khit; Bonne, Isabelle; Tan, Eng Lee; Chu, Justin Jang Hann; Alonso, Sylvie
2018-01-01
A close relative of poliovirus, enterovirus 71 (EV71) is regarded as an important neurotropic virus of serious public health concern. EV71 causes Hand, Foot and Mouth Disease and has been associated with neurological complications in young children. Our limited understanding of the mechanisms involved in its neuropathogenesis has hampered the development of effective therapeutic options. Here, using a two-dimensional proteomics approach combined with mass spectrometry, we have identified a unique panel of host proteins that were differentially and dynamically modulated during EV71 infection of motor-neuron NSC-34 cells, which are found at the neuromuscular junctions where EV71 is believed to enter the central nervous system. Meta-analysis with previously published proteomics studies in neuroblastoma or muscle cell lines revealed minimal overlapping which suggests unique host-pathogen interactions in NSC-34 cells. Among the candidate proteins, we focused our attention on prohibitin (PHB), a protein that is involved in multiple cellular functions and the target of anti-cancer drug Rocaglamide (Roc-A). We demonstrated that cell surface-expressed PHB is involved in EV71 entry into neuronal cells specifically, while membrane-bound mitochondrial PHB associates with the virus replication complex and facilitates viral replication. Furthermore, Roc-A treatment of EV71-infected neuronal cells reduced significantly virus yields. However, the inhibitory effect of Roc-A on PHB in NSC-34 cells was not through blocking the CRAF/MEK/ERK pathway as previously reported. Instead, Roc-A treated NSC-34 cells had lower mitochondria-associated PHB and lower ATP levels that correlated with impaired mitochondria integrity. In vivo, EV71-infected mice treated with Roc-A survived longer than the vehicle-treated animals and had significantly lower virus loads in their spinal cord and brain, whereas virus titers in their limb muscles were comparable to controls. Together, this study uncovers PHB as the first host factor that is specifically involved in EV71 neuropathogenesis and a potential drug target to limit neurological complications. PMID:29324904
Cancer cells copy migratory behavior and exchange signaling networks via extracellular vesicles.
Steenbeek, Sander C; Pham, Thang V; de Ligt, Joep; Zomer, Anoek; Knol, Jaco C; Piersma, Sander R; Schelfhorst, Tim; Huisjes, Rick; Schiffelers, Raymond M; Cuppen, Edwin; Jimenez, Connie R; van Rheenen, Jacco
2018-06-14
Recent data showed that cancer cells from different tumor subtypes with distinct metastatic potential influence each other's metastatic behavior by exchanging biomolecules through extracellular vesicles (EVs). However, it is debated how small amounts of cargo can mediate this effect, especially in tumors where all cells are from one subtype, and only subtle molecular differences drive metastatic heterogeneity. To study this, we have characterized the content of EVs shed in vivo by two clones of melanoma (B16) tumors with distinct metastatic potential. Using the Cre-LoxP system and intravital microscopy, we show that cells from these distinct clones phenocopy their migratory behavior through EV exchange. By tandem mass spectrometry and RNA sequencing, we show that EVs shed by these clones into the tumor microenvironment contain thousands of different proteins and RNAs, and many of these biomolecules are from interconnected signaling networks involved in cellular processes such as migration. Thus, EVs contain numerous proteins and RNAs and act on recipient cells by invoking a multi-faceted biological response including cell migration. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.
Petri, Marcelo H; Tellier, Céline; Michiels, Carine; Ellertsen, Ingvill; Dogné, Jean-Michel; Bäck, Magnus
2013-11-15
The prothrombotic mediator thromboxane A2 is derived from arachidonic acid metabolism through the cyclooxygenase and thromboxane synthase pathways, and transduces its effect through the thromboxane prostanoid (TP) receptor. The aim of this study was to determine the effect of the TP receptor antagonist and thromboxane synthase inhibitor EV-077 on inflammatory markers in human umbilical vein endothelial cells and on human coronary artery smooth muscle cell proliferation. To this end, mRNA levels of different proinflammatory mediators were studied by real time quantitative PCR, supernatants were analyzed by enzyme immune assay, and cell proliferation was assessed using WST-1. EV-077 significantly decreased mRNA levels of ICAM-1 and PTX3 after TNFα incubation, whereas concentrations of 6-keto PGF1α in supernatants of endothelial cells incubated with TNFα were significantly increased after EV-077 treatment. Although U46619 did not alter coronary artery smooth muscle cell proliferation, this thromboxane mimetic enhanced the proliferation induced by serum, insulin and growth factors, which was significantly inhibited by EV-077. In conclusion, EV-077 inhibited TNFα-induced endothelial inflammation and reduced the enhancement of smooth muscle cell proliferation induced by a thromboxane mimetic, supporting that the thromboxane pathway may be associated with early atherosclerosis in terms of endothelial dysfunction and vascular hypertrophy. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Soekmadji, Carolina; Riches, James D.; Russell, Pamela J.; Ruelcke, Jayde E.; McPherson, Stephen; Wang, Chenwei; Hovens, Chris M.; Corcoran, Niall M.; Hill, Michelle M.; Nelson, Colleen C.
2017-01-01
Proliferation and maintenance of both normal and prostate cancer (PCa) cells is highly regulated by steroid hormones, particularly androgens, and the extracellular environment. Herein, we identify the secretion of CD9 positive extracellular vesicles (EV) by LNCaP and DUCaP PCa cells in response to dihydrotestosterone (DHT) and use nano-LC–MS/MS to identify the proteins present in these EV. Subsequent bioinformatic and pathway analyses of the mass spectrometry data identified pathologically relevant pathways that may be altered by EV contents. Western blot and CD9 EV TR-FIA assay confirmed a specific increase in the amount of CD9 positive EV in DHT-treated LNCaP and DUCaP cells and treatment of cells with EV enriched with CD9 after DHT exposure can induce proliferation in androgen-deprived conditions. siRNA knockdown of endogenous CD9 in LNCaPs reduced cellular proliferation and expression of AR and prostate specific antigen (PSA) however knockdown of AR did not alter CD9 expression, also implicating CD9 as an upstream regulator of AR. Moreover CD9 positive EV were also found to be significantly higher in plasma from prostate cancer patients in comparison with benign prostatic hyperplasia patients. We conclude that CD9 positive EV are involved in mediating paracrine signalling and contributing toward prostate cancer progression. PMID:28881726
Kim, Hyunseok; Farrell, Alan C; Senanayake, Pradeep; Lee, Wook-Jae; Huffaker, Diana L
2016-03-09
Monolithically integrated III-V semiconductors on a silicon-on-insulator (SOI) platform can be used as a building block for energy-efficient on-chip optical links. Epitaxial growth of III-V semiconductors on silicon, however, has been challenged by the large mismatches in lattice constants and thermal expansion coefficients between epitaxial layers and silicon substrates. Here, we demonstrate for the first time the monolithic integration of InGaAs nanowires on the SOI platform and its feasibility for photonics and optoelectronic applications. InGaAs nanowires are grown not only on a planar SOI layer but also on a 3D structured SOI layer by catalyst-free metal-organic chemical vapor deposition. The precise positioning of nanowires on 3D structures, including waveguides and gratings, reveals the versatility and practicality of the proposed platform. Photoluminescence measurements exhibit that the composition of ternary InGaAs nanowires grown on the SOI layer has wide tunability covering all telecommunication wavelengths from 1.2 to 1.8 μm. We also show that the emission from an optically pumped single nanowire is effectively coupled and transmitted through an SOI waveguide, explicitly showing that this work lays the foundation for a new platform toward energy-efficient optical links.
Metastable growth of pure wurtzite InGaAs microstructures.
Ng, Kar Wei; Ko, Wai Son; Lu, Fanglu; Chang-Hasnain, Connie J
2014-08-13
III-V compound semiconductors can exist in two major crystal phases, namely, zincblende (ZB) and wurtzite (WZ). While ZB is thermodynamically favorable in conventional III-V epitaxy, the pure WZ phase can be stable in nanowires with diameters smaller than certain critical values. However, thin nanowires are more vulnerable to surface recombination, and this can ultimately limit their performances as practical devices. In this work, we study a metastable growth mechanism that can yield purely WZ-phased InGaAs microstructures on silicon. InGaAs nucleates as sharp nanoneedles and expand along both axial and radial directions simultaneously in a core-shell fashion. While the base can scale from tens of nanometers to over a micron, the tip can remain sharp over the entire growth. The sharpness maintains a high local surface-to-volume ratio, favoring hexagonal lattice to grow axially. These unique features lead to the formation of microsized pure WZ InGaAs structures on silicon. To verify that the WZ microstructures are truly metastable, we demonstrate, for the first time, the in situ transformation from WZ to the energy-favorable ZB phase inside a transmission electron microscope. This unconventional core-shell growth mechanism can potentially be applied to other III-V materials systems, enabling the effective utilization of the extraordinary properties of the metastable wurtzite crystals.
Extracellular vesicles for liquid biopsy in prostate cancer: where are we and where are we headed?
Minciacchi, V R; Zijlstra, A; Rubin, M A; Di Vizio, D
2017-01-01
Background: Extracellular vesicles (EVs) are a heterogeneous class of lipid bound particles shed by any cell in the body in physiological and pathological conditions. EVs play critical functions in intercellular communication. EVs can actively travel in intercellular matrices and eventually reach the circulation. They can also be released directly in biological fluids where they appear to be stable. Because the molecular content of EVs reflects the composition of the cell of origin, they have recently emerged as a promising source of biomarkers in a number of diseases. EV analysis is particularly attractive in cancer patients that frequently present with increased numbers of circulating EVs. Methods: We sought to review the current literature on the molecular profile of prostate cancer-derived EVs in model systems and patient biological fluids in an attempt to draw some practical and universal conclusions on the use of EVs as a tool for liquid biopsy in clinical specimens. Results: We discuss advantages and limitations of EV-based liquid biopsy approaches summarizing salient studies on protein, DNA and RNA. Several candidate biomarkers have been identified so far but these results are difficult to apply to the clinic. However, the field is rapidly moving toward the implementation of novel tools to isolate cancer-specific EVs that are free of benign EVs and extra-vesicular contaminants. This can be achieved by identifying markers that are exquisitely present in tumor cell-derived EVs. An important contribution might also derive from a better understanding of EV types that may play specific functions in tumor progression and that may be a source of cancer-specific markers. Conclusions: EV analysis holds strong promises for the development of non-invasive biomarkers in patients with prostate cancer. Implementation of modern methods for EV isolation and characterization will enable to interrogate circulating EVs in vivo. PMID:28374743
Biological properties of extracellular vesicles and their physiological functions
Yáñez-Mó, María; Siljander, Pia R.-M.; Andreu, Zoraida; Zavec, Apolonija Bedina; Borràs, Francesc E.; Buzas, Edit I.; Buzas, Krisztina; Casal, Enriqueta; Cappello, Francesco; Carvalho, Joana; Colás, Eva; Silva, Anabela Cordeiro-da; Fais, Stefano; Falcon-Perez, Juan M.; Ghobrial, Irene M.; Giebel, Bernd; Gimona, Mario; Graner, Michael; Gursel, Ihsan; Gursel, Mayda; Heegaard, Niels H. H.; Hendrix, An; Kierulf, Peter; Kokubun, Katsutoshi; Kosanovic, Maja; Kralj-Iglic, Veronika; Krämer-Albers, Eva-Maria; Laitinen, Saara; Lässer, Cecilia; Lener, Thomas; Ligeti, Erzsébet; Linē, Aija; Lipps, Georg; Llorente, Alicia; Lötvall, Jan; Manček-Keber, Mateja; Marcilla, Antonio; Mittelbrunn, Maria; Nazarenko, Irina; Hoen, Esther N.M. Nolte-‘t; Nyman, Tuula A.; O'Driscoll, Lorraine; Olivan, Mireia; Oliveira, Carla; Pállinger, Éva; del Portillo, Hernando A.; Reventós, Jaume; Rigau, Marina; Rohde, Eva; Sammar, Marei; Sánchez-Madrid, Francisco; Santarém, N.; Schallmoser, Katharina; Ostenfeld, Marie Stampe; Stoorvogel, Willem; Stukelj, Roman; Van der Grein, Susanne G.; Vasconcelos, M. Helena; Wauben, Marca H. M.; De Wever, Olivier
2015-01-01
In the past decade, extracellular vesicles (EVs) have been recognized as potent vehicles of intercellular communication, both in prokaryotes and eukaryotes. This is due to their capacity to transfer proteins, lipids and nucleic acids, thereby influencing various physiological and pathological functions of both recipient and parent cells. While intensive investigation has targeted the role of EVs in different pathological processes, for example, in cancer and autoimmune diseases, the EV-mediated maintenance of homeostasis and the regulation of physiological functions have remained less explored. Here, we provide a comprehensive overview of the current understanding of the physiological roles of EVs, which has been written by crowd-sourcing, drawing on the unique EV expertise of academia-based scientists, clinicians and industry based in 27 European countries, the United States and Australia. This review is intended to be of relevance to both researchers already working on EV biology and to newcomers who will encounter this universal cell biological system. Therefore, here we address the molecular contents and functions of EVs in various tissues and body fluids from cell systems to organs. We also review the physiological mechanisms of EVs in bacteria, lower eukaryotes and plants to highlight the functional uniformity of this emerging communication system. PMID:25979354
Biological properties of extracellular vesicles and their physiological functions.
Yáñez-Mó, María; Siljander, Pia R-M; Andreu, Zoraida; Zavec, Apolonija Bedina; Borràs, Francesc E; Buzas, Edit I; Buzas, Krisztina; Casal, Enriqueta; Cappello, Francesco; Carvalho, Joana; Colás, Eva; Cordeiro-da Silva, Anabela; Fais, Stefano; Falcon-Perez, Juan M; Ghobrial, Irene M; Giebel, Bernd; Gimona, Mario; Graner, Michael; Gursel, Ihsan; Gursel, Mayda; Heegaard, Niels H H; Hendrix, An; Kierulf, Peter; Kokubun, Katsutoshi; Kosanovic, Maja; Kralj-Iglic, Veronika; Krämer-Albers, Eva-Maria; Laitinen, Saara; Lässer, Cecilia; Lener, Thomas; Ligeti, Erzsébet; Linē, Aija; Lipps, Georg; Llorente, Alicia; Lötvall, Jan; Manček-Keber, Mateja; Marcilla, Antonio; Mittelbrunn, Maria; Nazarenko, Irina; Nolte-'t Hoen, Esther N M; Nyman, Tuula A; O'Driscoll, Lorraine; Olivan, Mireia; Oliveira, Carla; Pállinger, Éva; Del Portillo, Hernando A; Reventós, Jaume; Rigau, Marina; Rohde, Eva; Sammar, Marei; Sánchez-Madrid, Francisco; Santarém, N; Schallmoser, Katharina; Ostenfeld, Marie Stampe; Stoorvogel, Willem; Stukelj, Roman; Van der Grein, Susanne G; Vasconcelos, M Helena; Wauben, Marca H M; De Wever, Olivier
2015-01-01
In the past decade, extracellular vesicles (EVs) have been recognized as potent vehicles of intercellular communication, both in prokaryotes and eukaryotes. This is due to their capacity to transfer proteins, lipids and nucleic acids, thereby influencing various physiological and pathological functions of both recipient and parent cells. While intensive investigation has targeted the role of EVs in different pathological processes, for example, in cancer and autoimmune diseases, the EV-mediated maintenance of homeostasis and the regulation of physiological functions have remained less explored. Here, we provide a comprehensive overview of the current understanding of the physiological roles of EVs, which has been written by crowd-sourcing, drawing on the unique EV expertise of academia-based scientists, clinicians and industry based in 27 European countries, the United States and Australia. This review is intended to be of relevance to both researchers already working on EV biology and to newcomers who will encounter this universal cell biological system. Therefore, here we address the molecular contents and functions of EVs in various tissues and body fluids from cell systems to organs. We also review the physiological mechanisms of EVs in bacteria, lower eukaryotes and plants to highlight the functional uniformity of this emerging communication system.
The role of extracellular vesicles when innate meets adaptive.
Groot Kormelink, Tom; Mol, Sanne; de Jong, Esther C; Wauben, Marca H M
2018-04-03
Innate immune cells are recognized for their rapid and critical contribution to the body's first line of defense against invading pathogens and harmful agents. These actions can be further amplified by specific adaptive immune responses adapted to the activating stimulus. Recently, the awareness has grown that virtually all innate immune cells, i.e., mast cells, neutrophils, macrophages, eosinophils, basophils, and NK cells, are able to communicate with dendritic cells (DCs) and/or T and B cells, and thereby significantly contribute to the orchestration of adaptive immune responses. The means of communication that are thus far primarily associated with this function are cell-cell contacts and the release of a broad range of soluble mediators. Moreover, the possible contribution of innate immune cell-derived extracellular vesicles (EVs) to the modulation of adaptive immunity will be outlined in this review. EVs are submicron particles composed of a lipid bilayer, proteins, and nucleic acids released by cells in a regulated fashion. EVs are involved in intercellular communication between multiple cell types, including those of the immune system. A good understanding of the mechanisms by which innate immune cell-derived EVs influence adaptive immune responses, or vice versa, may reveal novel insights in the regulation of the immune system and can open up new possibilities for EVs (or their components) in controlling immune responses, either as a therapy, target, or as an adjuvant in future immune modulating treatments.
Iraci, Nunzio; Leonardi, Tommaso; Gessler, Florian; Vega, Beatriz; Pluchino, Stefano
2016-01-01
Extracellular vesicles (EVs) are a heterogeneous population of secreted membrane vesicles, with distinct biogenesis routes, biophysical properties and different functions both in physiological conditions and in disease. The release of EVs is a widespread biological process, which is conserved across species. In recent years, numerous studies have demonstrated that several bioactive molecules are trafficked with(in) EVs, such as microRNAs, mRNAs, proteins and lipids. The understanding of their final impact on the biology of specific target cells remains matter of intense debate in the field. Also, EVs have attracted great interest as potential novel cell-free therapeutics. Here we describe the proposed physiological and pathological functions of EVs, with a particular focus on their molecular content. Also, we discuss the advances in the knowledge of the mechanisms regulating the secretion of EV-associated molecules and the specific pathways activated upon interaction with the target cell, highlighting the role of EVs in the context of the immune system and as mediators of the intercellular signalling in the brain. PMID:26861302
Therapeutic application of extracellular vesicles in acute and chronic renal injury.
Rovira, Jordi; Diekmann, Fritz; Campistol, Josep M; Ramírez-Bajo, María José
A new cell-to-cell communication system was discovered in the 1990s, which involves the release of vesicles into the extracellular space. These vesicles shuttle bioactive particles, including proteins, mRNA, miRNA, metabolites, etc. This particular communication has been conserved throughout evolution, which explains why most cell types are capable of producing vesicles. Extracellular vesicles (EVs) are involved in the regulation of different physiological processes, as well as in the development and progression of several diseases. EVs have been widely studied over recent years, especially those produced by embryonic and adult stem cells, blood cells, immune system and nervous system cells, as well as tumour cells. EV analysis from bodily fluids has been used as a diagnostic tool for cancer and recently for different renal diseases. However, this review analyses the importance of EVs generated by stem cells, their function and possible clinical application in renal diseases and kidney transplantation. Copyright © 2016. Published by Elsevier España, S.L.U.
Manufacturing of Human Extracellular Vesicle-Based Therapeutics for Clinical Use
Gimona, Mario; Pachler, Karin; Laner-Plamberger, Sandra; Schallmoser, Katharina; Rohde, Eva
2017-01-01
Extracellular vesicles (EVs) derived from stem and progenitor cells may have therapeutic effects comparable to their parental cells and are considered promising agents for the treatment of a variety of diseases. To this end, strategies must be designed to successfully translate EV research and to develop safe and efficacious therapies, whilst taking into account the applicable regulations. Here, we discuss the requirements for manufacturing, safety, and efficacy testing of EVs along their path from the laboratory to the patient. Development of EV-therapeutics is influenced by the source cell types and the target diseases. In this article, we express our view based on our experience in manufacturing biological therapeutics for routine use or clinical testing, and focus on strategies for advancing mesenchymal stromal cell (MSC)-derived EV-based therapies. We also discuss the rationale for testing MSC-EVs in selected diseases with an unmet clinical need such as critical size bone defects, epidermolysis bullosa and spinal cord injury. While the scientific community, pharmaceutical companies and clinicians are at the point of entering into clinical trials for testing the therapeutic potential of various EV-based products, the identification of the mode of action underlying the suggested potency in each therapeutic approach remains a major challenge to the translational path. PMID:28587212
Manufacturing of Human Extracellular Vesicle-Based Therapeutics for Clinical Use.
Gimona, Mario; Pachler, Karin; Laner-Plamberger, Sandra; Schallmoser, Katharina; Rohde, Eva
2017-06-03
Extracellular vesicles (EVs) derived from stem and progenitor cells may have therapeutic effects comparable to their parental cells and are considered promising agents for the treatment of a variety of diseases. To this end, strategies must be designed to successfully translate EV research and to develop safe and efficacious therapies, whilst taking into account the applicable regulations. Here, we discuss the requirements for manufacturing, safety, and efficacy testing of EVs along their path from the laboratory to the patient. Development of EV-therapeutics is influenced by the source cell types and the target diseases. In this article, we express our view based on our experience in manufacturing biological therapeutics for routine use or clinical testing, and focus on strategies for advancing mesenchymal stromal cell (MSC)-derived EV-based therapies. We also discuss the rationale for testing MSC-EVs in selected diseases with an unmet clinical need such as critical size bone defects, epidermolysis bullosa and spinal cord injury. While the scientific community, pharmaceutical companies and clinicians are at the point of entering into clinical trials for testing the therapeutic potential of various EV-based products, the identification of the mode of action underlying the suggested potency in each therapeutic approach remains a major challenge to the translational path.
Lee, Junsung; Lee, Hyoungjin; Goh, Unbyeol; Kim, Jiyoung; Jeong, Moonkyoung; Lee, Jean; Park, Ji-Ho
2016-03-23
Engineering of extracellular vesicles (EVs) without affecting biological functions remains a challenge, limiting the broad applications of EVs in biomedicine. Here, we report a method to equip EVs with various functional agents, including fluorophores, drugs, lipids, and bio-orthogonal chemicals, in an efficient and controlled manner by engineering parental cells with membrane fusogenic liposomes, while keeping the EVs intact. As a demonstration of how this method can be applied, we prepared EVs containing azide-lipids, and conjugated them with targeting peptides using copper-free click chemistry to enhance targeting efficacy to cancer cells. We believe that this liposome-based cellular engineering method will find utility in studying the biological roles of EVs and delivering therapeutic agents through their innate pathway.
Small Business Innovations (Photodetector)
NASA Technical Reports Server (NTRS)
1991-01-01
Epitaxx, Inc. of Princeton, NJ, developed the Epitaxx Near Infrared Room Temperature Indium-Gallium-Arsenide (InGaAs) Photodetector based on their Goddard Space Flight Center Small Business Innovation Research (SBIR) contract work to develop a linear detector array for satellite imaging applications using InGaAs alloys that didn't need to be cooled to (difficult and expensive) cryogenic temperatures. The photodetectors can be used for remote sensing, fiber optic and laser position-sensing applications.
Improved dot size uniformity and luminescense of InAs quantum dots on InP substrate
NASA Technical Reports Server (NTRS)
Qiu, Y.; Uhl, D.
2002-01-01
InAs self-organized quantum dots have been grown in InGaAs quantum well on InP substrates by metalorganic vapor phase epitaxy. Atomic Force Microscopy confirmed of quantum dot formation with dot density of 3X10(sup 10) cm(sup -2). Improved dot size uniformity and strong room temperature photoluminescence up to 2 micron were observed after modifying the InGaAs well.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nedzinskas, Ramūnas; Čechavičius, Bronislovas; Kavaliauskas, Julius
2013-12-04
Photoreflectance and photoluminescence (PL) spectroscopies are used to examine the optical properties and electronic structure of InGaAs quantum rods (QRs), embedded within InGaAs quantum well (QW). The nanostructures studied were grown by molecular beam epitaxy using As{sub 2} or As{sub 4} sources. The impact of As source on spectral features associated with interband optical transitions in the QRs and the surrounding QW are demonstrated. A red shift of the QR- and a blue shift of the QW-related optical transitions, along with a significant increase in PL intensity, have been observed if an As{sub 4} source is used. The changes inmore » optical properties are attributed mainly to carrier confinement effects caused by variation of In content contrast between the QR material and the surrounding well.« less
Fu, Yuxuan; Zhang, Li; Zhang, Fang; Tang, Ting; Zhou, Qi; Feng, Chunhong; Jin, Yu
2017-01-01
Exosomes can transfer genetic materials between cells. Their roles in viral infections are beginning to be appreciated. Researches have shown that exosomes released from virus-infected cells contain a variety of viral and host cellular factors that are able to modulate recipient’s cellular response and result in productive infection of the recipient host. Here, we showed that EV71 infection resulted in upregulated exosome secretion and differential packaging of the viral genomic RNA and miR-146a into exosomes. We provided evidence showing that miR-146a was preferentially enriched in exosomes while the viral RNA was not in infected cells. Moreover, the exosomes contained replication-competent EV71 RNA in complex with miR-146a, Ago2, and GW182 and could mediate EV71 transmission independent of virus-specific receptor. The exosomal viral RNA could be transferred to and replicate in a new target cell while the exosomal miR-146a suppressed type I interferon response in the target cell, thus facilitating the viral replication. Additionally, we found that the IFN-stimulated gene factors (ISGs), BST-2/tetherin, were involved in regulating EV71-induced upregulation of exosome secretion. Importantly, in vivo study showed that exosomal viral RNA exhibited differential tissue accumulation as compared to the free virus particles. Together, our findings provide evidence that exosomes secreted by EV71-infected cells selectively packaged high level miR-146a that can be functionally transferred to and facilitate exosomal EV71 RNA to replicate in the recipient cells by suppressing type I interferon response. PMID:28910400
Somasundaram, Balaji; Chang, Cindy; Fan, Yuan Y; Lim, Pei-Yin; Cardosa, Jane; Lua, Linda
2016-02-15
Enterovirus 71 (EV71) and Coxsackievirus A16 (CVA16) are two viruses commonly responsible for hand, foot and mouth disease (HFMD) in children. The lack of prophylactic or therapeutic measures against HFMD is a major public health concern. Insect cell-based EV71 and CVA16 virus-like particles (VLPs) are promising vaccine candidates against HFMD and are currently under development. In this paper, the influence of insect cell line, incubation temperature, and serial passaging effect and stability of budded virus (BV) stocks on EV71 and CVA16 VLP production was investigated. Enhanced EV71 and CVA16 VLP production was observed in Sf9 cells compared to High Five™ cells. Lowering the incubation temperature from the standard 27°C to 21°C increased the production of both VLPs in Sf9 cells. Serial passaging of CVA16 BV stocks in cell culture had a detrimental effect on the productivity of the structural proteins and the effect was observed with only 5 passages of BV stocks. A 2.7× higher production yield was achieved with EV71 compared to CVA16. High-resolution asymmetric flow field-flow fractionation couple with multi-angle light scattering (AF4-MALS) was used for the first time to characterize EV71 and CVA16 VLPs, displaying an average root mean square radius of 15±1nm and 15.3±5.8 nm respectively. This study highlights the need for different approaches in the design of production process to develop a bivalent EV71 and CVA16 vaccine. Copyright © 2015 Elsevier Inc. All rights reserved.
Inhibition of EV71 by curcumin in intestinal epithelial cells.
Huang, Hsing-I; Chio, Chi-Chong; Lin, Jhao-Yin
2018-01-01
EV71 is a positive-sense single-stranded RNA virus that belongs to the Picornaviridae family. EV71 infection may cause various symptoms ranging from hand-foot-and-mouth disease to neurological pathological conditions such as aseptic meningitis, ataxia, and acute transverse myelitis. There is currently no effective treatment or vaccine available. Various compounds have been examined for their ability to restrict EV71 replication. However, most experiments have been performed in rhabdomyosarcoma or Vero cells. Since the gastrointestinal tract is the entry site for this pathogen, we anticipated that orally ingested agents may exert beneficial effects by decreasing virus replication in intestinal epithelial cells. In this study, curcumin (diferuloylmethane, C21H20O6), an active ingredient of turmeric (Curcuma longa Linn) with anti-cancer properties, was investigated for its anti-enterovirus activity. We demonstrate that curcumin treatment inhibits viral translation and increases host cell viability. Curcumin does not exert its anti-EV71 effects by modulating virus attachment or virus internal ribosome entry site (IRES) activity. Furthermore, curcumin-mediated regulation of mitogen-activated protein kinase (MAPK) signaling pathways is not involved. We found that protein kinase C delta (PKCδ) plays a role in virus translation in EV71-infected intestinal epithelial cells and that curcumin treatment decreases the phosphorylation of this enzyme. In addition, we show evidence that curcumin also limits viral translation in differentiated human intestinal epithelial cells. In summary, our data demonstrate the anti-EV71 properties of curcumin, suggesting that ingestion of this phytochemical may protect against enteroviral infections.
Inhibition of EV71 by curcumin in intestinal epithelial cells
Chio, Chi-Chong; Lin, Jhao-Yin
2018-01-01
EV71 is a positive-sense single-stranded RNA virus that belongs to the Picornaviridae family. EV71 infection may cause various symptoms ranging from hand-foot-and-mouth disease to neurological pathological conditions such as aseptic meningitis, ataxia, and acute transverse myelitis. There is currently no effective treatment or vaccine available. Various compounds have been examined for their ability to restrict EV71 replication. However, most experiments have been performed in rhabdomyosarcoma or Vero cells. Since the gastrointestinal tract is the entry site for this pathogen, we anticipated that orally ingested agents may exert beneficial effects by decreasing virus replication in intestinal epithelial cells. In this study, curcumin (diferuloylmethane, C21H20O6), an active ingredient of turmeric (Curcuma longa Linn) with anti-cancer properties, was investigated for its anti-enterovirus activity. We demonstrate that curcumin treatment inhibits viral translation and increases host cell viability. Curcumin does not exert its anti-EV71 effects by modulating virus attachment or virus internal ribosome entry site (IRES) activity. Furthermore, curcumin-mediated regulation of mitogen-activated protein kinase (MAPK) signaling pathways is not involved. We found that protein kinase C delta (PKCδ) plays a role in virus translation in EV71-infected intestinal epithelial cells and that curcumin treatment decreases the phosphorylation of this enzyme. In addition, we show evidence that curcumin also limits viral translation in differentiated human intestinal epithelial cells. In summary, our data demonstrate the anti-EV71 properties of curcumin, suggesting that ingestion of this phytochemical may protect against enteroviral infections. PMID:29370243
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, Nikhil; Oshima, Ryuji; France, Ryan
To advance the state-of-the-art in III-V multijunction solar cells towards high concentration efficiencies approaching 50%, development of a high-quality ~1.7 eV second junction solar cell is of key interest for integration in five or more junction devices. Quaternary GalnAsP solar cells grown lattice-matched on GaAs allows bandgap tunability in the range from 1.42 to 1.92 eV and offers an attractive Al-free alternative to conventional AlGaAs solar cells. In this work, we investigate the role of growth temperature towards understanding the optimal growth window for realizing high-quality GalnAsP alloys. We demonstrate bandgap tunability from 1.6 to 1.8 eV in GalnAsP alloysmore » for compositions close to the miscibility gap, while still maintaining lattice-matched condition to GaAs. We perform an in-depth investigation to understand the impact of varying base thickness and doping concentration on the carrier collection and performance of these 1.7 eV GalnAsP solar cells. The photo-response of these cells is found to be very sensitive to p-type zinc dopant incorporation in the base layer. We demonstrate prototype 1.7 eV GalnAsP solar cell designs that leverage enhanced depletion width as an effective method to overcome this issue and boost long-wavelength carrier collection. Short-circuit current density (JSC) measured in field-aided devices were as high as 17.25 m A/cm2. The best GalnAsP solar cell in this study achieved an efficiency of 17.2% with a JSC of 17 m A/cm2 and a fill-factor of 86.4%. The corresponding open-circuit voltage (VOC) 1.7 eV measured on this cell represents the highest Voc reported for a 1.7 eV GalnAsP solar cell. These initial cell results are encouraging and highlight the potential of Al-free GalnAsP solar cells for integration in the next generation of III-V multijunction solar cells.« less
Shin, T-S; Kim, J H; Kim, Y-S; Jeon, S G; Zhu, Z; Gho, Yong Song; Kim, Yoon-Keun
2010-10-01
Previous evidence indicates that inhalation of lipopolysaccharide (LPS)-containing with allergens induced mixed Th1 and Th17 cell responses in the airways. Extracellular vesicles (EVs) are nanometer-sized spherical, lipid-bilayered structures and are recently in the public eye as an intercellular communicator in immune responses. To evaluate the role of EVs secreted by LPS inhalation in the development of airway immune dysfunction in response to allergens. Extracellular vesicles in bronchoalveolar lavage fluids of BALB/c mice were isolated and characterized 24 h after applications to the airway of 10 μg of LPS for 3 days. To evaluate the role of LPS-induced EVs on the development of airway immune dysfunction, in vivo and in vitro experiments were performed using the isolated LPS-induced EVs. The inhalation of LPS enhanced EVs release into the BAL fluid, when compared to the application of PBS. Airway sensitization with allergens and LPS-induced EVs resulted in a mixed Th1 and Th17 cell responses, although that with allergens and PBS-induced EVs induced immune tolerance. In addition, LPS-induced EVs enhanced the production of Th1- and Th17-polarizing cytokines (IL-12p70 and IL-6, respectively) by lung dendritic cells. Moreover, the immune responses induced by the LPS-induced EVs were blocked by denaturation of the EV-bearing proteins. These data suggest that EVs (especially, the protein components) secreted by LPS inhalation are a key intercellular communicator in the development of airway immune dysfunction to inhaled LPS-containing allergens.
Shin, T-S; Kim, J H; Kim, Y-S; Jeon, S G; Zhu, Z; Gho, Y S; Kim, Y-K
2010-01-01
Background Previous evidence indicates that inhalation of lipopolysaccharide (LPS)-containing with allergens induced mixed Th1 and Th17 cell responses in the airways. Extracellular vesicles (EVs) are nanometer-sized spherical, lipid-bilayered structures and are recently in the public eye as an intercellular communicator in immune responses. Objective To evaluate the role of EVs secreted by LPS inhalation in the development of airway immune dysfunction in response to allergens. Methods Extracellular vesicles in bronchoalveolar lavage fluids of BALB/c mice were isolated and characterized 24 h after applications to the airway of 10 μg of LPS for 3 days. To evaluate the role of LPS-induced EVs on the development of airway immune dysfunction, in vivo and in vitro experiments were performed using the isolated LPS-induced EVs. Results The inhalation of LPS enhanced EVs release into the BAL fluid, when compared to the application of PBS. Airway sensitization with allergens and LPS-induced EVs resulted in a mixed Th1 and Th17 cell responses, although that with allergens and PBS-induced EVs induced immune tolerance. In addition, LPS-induced EVs enhanced the production of Th1- and Th17-polarizing cytokines (IL-12p70 and IL-6, respectively) by lung dendritic cells. Moreover, the immune responses induced by the LPS-induced EVs were blocked by denaturation of the EV-bearing proteins. Conclusion These data suggest that EVs (especially, the protein components) secreted by LPS inhalation are a key intercellular communicator in the development of airway immune dysfunction to inhaled LPS-containing allergens. PMID:20337607
Zhang, H; Su, L; Müller, S; Tighiouart, M; Xu, Z; Zhang, X; Shin, H J C; Hunt, J; Sun, S-Y; Shin, D M; Chen, Z(G)
2008-01-01
Caveolin-1 (Cav-1) plays an important role in modulating cellular signalling, but its role in metastasis is not well defined. A significant reduction in Cav-1 levels was detected in lymph node metastases as compared with primary tumour of head and neck squamous cell carcinoma (HNSCC) specimens (P<0.0001), confirming the downregulation of Cav-1 observed in a highly metastatic M4 cell lines derived from our orthotopic xenograft model. To investigate the function of Cav-1 in metastasis of HNSCC, we compared stable clones of M4 cells carrying human cav-1 cDNA (CavS) with cells expressing an empty vector (EV) in vitro and in the orthotopic xenograft model. Overexpression of Cav-1 suppressed growth of the CavS tumours compared with the EV tumours. The incidence of lung metastases was significantly lower in animals carrying CavS tumours than those with EV tumours (P=0.03). In vitro, CavS cells displayed reduced cell growth, invasion, and increased anoikis compared with EV cells. In CavS cells, Cav-1 formed complex with integrin β1 and Src. Further application of integrin β1 neutralising antibody or Src inhibitor PP2 to EV cells illustrated similar phenotypes as CavS cells, suggesting that Cav-1 may play an inhibitory role in tumorigenesis and lung metastasis through regulating integrin β1- and Src-mediated cell–cell and cell–matrix interactions. PMID:19002186
Martins-Marques, Tania; Pinho, Maria Joao; Zuzarte, Monica; Oliveira, Carla; Pereira, Paulo; Sluijter, Joost P. G.; Gomes, Celia; Girao, Henrique
2016-01-01
Extracellular vesicles (EVs) are major conveyors of biological information, mediating local and systemic cell-to-cell communication under physiological and pathological conditions. These endogenous vesicles have been recognized as prominent drug delivery vehicles of several therapeutic cargoes, including doxorubicin (dox), presenting major advantages over the classical approaches. Although dox is one of the most effective anti-tumour agents in the clinical practice, its use is very often hindered by its consequent dramatic cardiotoxicity. Despite significant advances witnessed in the past few years, more comprehensive studies, supporting the therapeutic efficacy of EVs, with decreased side effects, are still scarce. The main objective of this study was to evaluate the role of the gap junction protein connexin43 (Cx43) in mediating the release of EV content into tumour cells. Moreover, we investigated whether Cx43 improves the efficiency of dox-based anti-tumour treatment, with a concomitant decrease of cardiotoxicity. In the present report, we demonstrate that the presence of Cx43 in EVs increases the release of luciferin from EVs into tumour cells in vitro and in vivo. In addition, using cell-based approaches and a subcutaneous mouse tumour model, we show that the anti-tumour effect of dox incorporated into EVs is similar to the administration of the free drug, regardless the presence of Cx43. Strikingly, we demonstrate that the presence of Cx43 in dox-loaded EVs reduces the cardiotoxicity of the drug. Altogether, these results bring new insights into the concrete potential of EVs as therapeutic vehicles and open new avenues toward the development of strategies that help to reduce unwanted side effects. PMID:27702427
Effect of low and staggered gap quantum wells inserted in GaAs tunnel junctions
NASA Astrophysics Data System (ADS)
Louarn, K.; Claveau, Y.; Marigo-Lombart, L.; Fontaine, C.; Arnoult, A.; Piquemal, F.; Bounouh, A.; Cavassilas, N.; Almuneau, G.
2018-04-01
In this article, we investigate the impact of the insertion of either a type I InGaAs or a type II InGaAs/GaAsSb quantum well on the performances of MBE-grown GaAs tunnel junctions (TJs). The devices are designed and simulated using a quantum transport model based on the non-equilibrium Green’s function formalism and a 6-band k.p Hamiltonian. We experimentally observe significant improvements of the peak tunneling current density on both heterostructures with a 460-fold increase for a moderately doped GaAs TJ when the InGaAs QW is inserted at the junction interface, and a 3-fold improvement on a highly doped GaAs TJ integrating a type II InGaAs/GaAsSb QW. Thus, the simple insertion of staggered band lineup heterostructures enables us to reach a tunneling current well above the kA cm‑2 range, equivalent to the best achieved results for Si-doped GaAs TJs, implying very interesting potential for TJ-based components, such as multi-junction solar cells, vertical cavity surface emitting lasers and tunnel-field effect transistors.
RF dual-gate-trench LDMOS on InGaAs with improved performance
NASA Astrophysics Data System (ADS)
Payal, M.; Singh, Y.
2018-02-01
A new power dual-gate-trench LDMOSFET (DGTLDMOS) structure implemented on emerging InGaAs material is proposed. The proposed device consists of two gates out of which one gate is placed horizontally on the surface while other gate is located vertically in a trench. The dual-gate structure of DGTLDMOS creates two channels in p-base which carry current simultaneously from drain to source. This not only enhances the drain current (ID) but also reduces specific on-resistance (Ron,sp) and improves the peak transconductance (gm) resulting higher cut-off frequency (fT) and maximum oscillation frequency (fmax). Another trench filled with Al2O3 is placed in the drift region between gate and drain to enhance reduced-surface-field effect leading to higher breakdown voltage (Vbr) even at increased drift region doping. Based on 2D simulations, it is demonstrate that a DGTLDMOS designed for Vbr of 90 V achieves 2.2 times higher ID, 10 times reduction in Ron,sp, 1.8 times improvement in gm, 2.8 times increase in fT, and 1.8 times improvement in fmax with 3.3 times reduction in cell pitch as compared to the conventional LDMOS.
III-V Ultra-Thin-Body InGaAs/InAs MOSFETs for Low Standby Power Logic Applications
NASA Astrophysics Data System (ADS)
Huang, Cheng-Ying
As device scaling continues to sub-10-nm regime, III-V InGaAs/InAs metal- oxide-semiconductor ?eld-e?ect transistors (MOSFETs) are promising candidates for replacing Si-based MOSFETs for future very-large-scale integration (VLSI) logic applications. III-V InGaAs materials have low electron effective mass and high electron velocity, allowing higher on-state current at lower VDD and reducing the switching power consumption. However, III-V InGaAs materials have a narrower band gap and higher permittivity, leading to large band-to-band tunneling (BTBT) leakage or gate-induced drain leakage (GIDL) at the drain end of the channel, and large subthreshold leakage due to worse electrostatic integrity. To utilize III-V MOSFETs in future logic circuits, III-V MOSFETs must have high on-state performance over Si MOSFETs as well as very low leakage current and low standby power consumption. In this dissertation, we will report InGaAs/InAs ultra-thin-body MOSFETs. Three techniques for reducing the leakage currents in InGaAs/InAs MOSFETs are reported as described below. 1) Wide band-gap barriers: We developed AlAs0.44Sb0.56 barriers lattice-match to InP by molecular beam epitaxy (MBE), and studied the electron transport in In0.53Ga0.47As/AlAs 0.44Sb0.56 heterostructures. The InGaAs channel MOSFETs using AlAs0.44Sb0.56 bottom barriers or p-doped In0.52 Al0.48As barriers were demonstrated, showing significant suppression on the back barrier leakage. 2) Ultra-thin channels: We investigated the electron transport in InGaAs and InAs ultra-thin quantum wells and ultra-thin body MOSFETs (t ch ~ 2-4 nm). For high performance logic, InAs channels enable higher on-state current, while for low power logic, InGaAs channels allow lower BTBT leakage current. 3) Source/Drain engineering: We developed raised InGaAs and recessed InP source/drain spacers. The raised InGaAs source/drain spacers improve electrostatics, reducing subthreshold leakage, and smooth the electric field near drain, reducing BTBT leakage. With further replacement of raised InGaAs spacers by recessed, doping-graded InP spacers at high field regions, BTBT leakage can be reduced ~100:1. Using the above-mentioned techniques, record high performance InAs MOSFETs with a 2.7 nm InAs channel and a ZrO2 gate dielectric were demonstrated with Ion = 500 microA/microm at Ioff = 100 nA/microm and VDS =0.5 V, showing the highest on-state performance among all the III-V MOSFETs and comparable performance to 22 nm Si FinFETs. Record low leakage InGaAs MOSFETs with recessed InP source/drain spacers were also demonstrated with minimum I off = 60 pA/microm at 30 nm-Lg , and Ion = 150 microA/microm at I off = 1 nA/microm and VDS =0.5 V. This recessed InP source/drain spacer technique improves device scalability and enables III-V MOSFETs for low standby power logic applications. Furthermore, ultra-thin InAs channel MOSFETs were fabricated on Si substrates, exhibiting high yield and high transconductance gm ~2.0 mS/microm at 20 nm- Lg and VDS =0.5 V. With further scaling of gate lengths, a 12 nm-Lg III-V MOSFET has shown maximum Ion/Ioff ratio ~8.3x105 , confirming that III-V MOSFETs are scalable to sub-10-nm technology nodes.
Implementing a Multiplexed System of Detectors for Higher Photon Counting Rates
2007-01-01
D1 D2 Fig. 3. (a) Setup for testing different arrangements of InGaAs SPAD assemblies; (b) three different InGaAs SPAD assemblies; ( c ) schematic of...presently available, either commercial or prototype, the deadtimes range from ≈50 ns for actively quenched single photon avalanche detectors ( SPADs ...to ≈10 µs for passively quenched SPADs , although even actively quenched SPADs sometimes employ µs deadtimes to avoid excessive afterpulsing rates. In
Large Diameter, High Speed InGaAs Receivers for Free-Space Lasercom
2007-01-01
appropriate transimpedance amplifier and limiting amplifier . Development and testing of the APD receivers will be described below. 15. SUBJECT TERMS 16...available transimpedance amplifiers (TIA) from Maxim of Dallas. There have also been several devices built in house by NRL in 8-pin TO-39 headers...manufacture a large area, high speed InGaAs APD with an effective ionization ratio of < 0.2 and by matching the APD device with an appropriate transimpedance
Three-dimensional whispering gallery modes in InGaAs nanoneedle lasers on silicon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tran, T.-T. D.; Chen, R.; Ng, K. W.
2014-09-15
As-grown InGaAs nanoneedle lasers, synthesized at complementary metal–oxide–semiconductor compatible temperatures on polycrystalline and crystalline silicon substrates, were studied in photoluminescence experiments. Radiation patterns of three-dimensional whispering gallery modes were observed upon optically pumping the needles above the lasing threshold. Using the radiation patterns as well as finite-difference-time-domain simulations and polarization measurements, all modal numbers of the three-dimensional whispering gallery modes could be identified.
Material growth and characterization for solid state devices
NASA Technical Reports Server (NTRS)
Stefanakos, E. K.; Collis, W. J.; Abul-Fadl, A.; Iyer, S.
1984-01-01
During the reporting period, InGaAs was grown on Fe-doped (semi-insulating) (100) InP substrates by current controlled liquid phase epitaxy (CCLPE) at 640 C and current densities of 2.5A sq/cm to 5 A/sq cm for periods from 5 to 30 minutes. Special efforts were made to reduce the background carrier concentration in the grown layers as much as possible. The best layers exhibited carrier concentrations in the mid-10 to the 15th power/cu cm range and up to 10,900 sq cm/V-sec room temperature mobility. InGaAsP quaternary layers of energy gap corresponding to wavelengths of approximately 1.5 microns and 1.3 microns were grown on (100) InP substrates by CCLPE. In the device fabrication area, work was directed toward processing MISFET's using InGaAs. SiO2, Si3N4 and Al2O3 were deposited by ion beam sputtering, electron beam evaporation and chemical vapor reaction on Si, GaAs, and InGaAs substrates. SiO2 and Si3N4 sputtered layers were found to possess a high density of pinhole defects that precluded capacitance-voltage analysis. Chemical vapor deposited Al2O3 layers on Si, GaAs and InGaAs substrates also exhibited a large number of pinhole defects. This prevented achieving good MIS devices over most of the substrate surface area.
Charge carrier relaxation in InGaAs-GaAs quantum wire modulation-doped heterostructures
NASA Astrophysics Data System (ADS)
Kondratenko, S. V.; Iliash, S. A.; Mazur, Yu I.; Kunets, V. P.; Benamara, M.; Salamo, G. J.
2017-09-01
The time dependencies of the carrier relaxation in modulation-doped InGaAs-GaAs low-dimensional structures with quantum wires have been studied as functions of temperature and light excitation levels. The photoconductivity (PC) relaxation follows a stretched exponent with decay constant, which depends on the morphology of InGaAs epitaxial layers, presence of deep traps, and energy disorder due to inhomogeneous distribution of size and composition. A hopping model, where electron tunnels between bands of localized states, gives appropriate interpretation for temperature-independent PC decay across the temperature range 150-290 K. At low temperatures (T < 150 K), multiple trapping-retrapping via 1D states of InGaAs quantum wires (QWRs), sub-bands of two-dimensional electron gas of modulation-doped n-GaAs spacers, as well as defect states in the GaAs environment are the dominant relaxation mechanism. The PC and photoluminescence transients for samples with different morphologies of the InGaAs nanostructures are compared. The relaxation rates are found to be largely dependent on energy disorder due to inhomogeneous distribution of strain, nanostructure size and composition, and piezoelectric fields in and around nanostructures, which have a strong impact on efficiency of carrier exchange between bands of the InGaAs QWRs, GaAs spacers, or wetting layers; presence of local electric fields; and deep traps.
Liu, Qian; Lei, Bing-Li; An, Jing; Shang, Yu; Zhong, Yu-Fang; Kang, Jia; Wen, Yu
2013-08-01
The single toxicity of diethylstilbestrol (DES) and beta-estradiol 17-valerate (EV) and the joint toxicity of their binary mixtures in equiconcentration to the proliferation of MCF-7 cells were investigated, respectively. Additive index (AI) method was adopted to evaluate the joint toxicity effect. At the same time, 3 x 3 factorial experimental design was used to verify the joint toxiciy types derived from equiconcentration of DES and EV. The results show that the EC50 values of single EV and DES for 24, 48 and 72 h are 6.02, 0.40 and 0.33 nmol x L(-1) and 5.90, 6.98 and 2.90 nmol x L(-1), respectively. The EC50 values of the binary mixtures of DES and EV for 24, 48 and 72 h are 2.33, 0.71 and 0.39 nmol x L(-1). The binary joint effects of DES and EV for 24 h were synergistic, and the joint effects of DES and EV for 48 and 72 h were antagonistic. But synergistic and antagonistic effects are not strong; their values can be found close to the values of additive effects. Factorial experiment results show that combined effects of DES and EV to proliferation of MCF-7 cells for 24, 48 and 72 h three exposure periods are additive effect types. The consistent joint combined effect types can be drawn from both factorial experimental design and equiconcentration ratio of DES and EV to the proliferation of MCF-7 cells. However, the factorial experimental design is simpler and more convenient, and can avoid unnecessary mistakes due to the derivation of EC50 values.
Gangadaran, Prakash; Li, Xiu Juan; Lee, Ho Won; Oh, Ji Min; Kalimuthu, Senthilkumar; Rajendran, Ramya Lakshmi; Son, Seung Hyun; Baek, Se Hwan; Singh, Thoudam Debraj; Zhu, Liya; Jeong, Shin Young; Lee, Sang-Woo; Lee, Jaetae; Ahn, Byeong-Cheol
2017-01-01
In vivo biodistribution and fate of extracellular vesicles (EVs) are still largely unknown and require reliable in vivo tracking techniques. In this study, in vivo bioluminescence imaging (BLI) using Renilla luciferase (Rluc) was developed and applied to monitoring of EVs derived from thyroid cancer (CAL-62 cells) and breast cancer (MDA-MB-231) in nude mice after intravenous administration and was compared with a dye-based labeling method for EV derived from CAL-62 cells. The EVs were successfully labeled with Rluc and visualized by BLI in mice. In vivo distribution of the EVs, as measured by BLI, was consistent with the results of ex vivo organ analysis. EV-CAL-62/Rluc showed strong signals at lung followed by liver, spleen & kidney (P < 0.05). EV-MDA-MB-231/Rluc showed strong signals at liver followed by lung, spleen & kidney (P < 0.05). EV-CAL-62/Rluc and EV-MDA-MB-231/Rluc stayed in animal till day 9 and 3, respectively; showed a differential distribution. Spontaneous EV-CAL-62/Rluc shown distributed mostly to lung followed by liver, spleen & kidney. The new BLI system used to show spontaneous distribution of EV-CAL-62/Rluc in subcutaneous CAL-62/Rluc bearing mice. Dye (DiR)-labeled EV-CAL-62/Rluc showed a different distribution in vivo & ex vivo compared to EV-CAL-62/Rluc. Fluorescent signals were predominately detected in the liver (P < 0.05) and spleen (P < 0.05) regions. The bioluminescent EVs developed in this study may be used for monitoring of EVs in vivo. This novel reporter-imaging approach to visualization of EVs in real time is expected to pave the way for monitoring of EVs in EV-based treatments. PMID:29299117
Soekmadji, Carolina; Nelson, Colleen C
2015-01-01
Emerging evidence has shown that the extracellular vesicles (EVs) regulate various biological processes and can control cell proliferation and survival, as well as being involved in normal cell development and diseases such as cancers. In cancer treatment, development of acquired drug resistance phenotype is a serious issue. Recently it has been shown that the presence of multidrug resistance proteins such as Pgp-1 and enrichment of the lipid ceramide in EVs could have a role in mediating drug resistance. EVs could also mediate multidrug resistance through uptake of drugs in vesicles and thus limit the bioavailability of drugs to treat cancer cells. In this review, we discussed the emerging evidence of the role EVs play in mediating drug resistance in cancers and in particular the role of EVs mediating drug resistance in advanced prostate cancer. The role of EV-associated multidrug resistance proteins, miRNA, mRNA, and lipid as well as the potential interaction(s) among these factors was probed. Lastly, we provide an overview of the current available treatments for advanced prostate cancer, considering where EVs may mediate the development of resistance against these drugs.
Lin, Tzou-Yien; Liu, Yi-Chun; Jheng, Jia-Rong; Tsai, Hui-Ping; Jan, Jia-Tsrong; Wong, Wen-Rou; Horng, Jim-Tong
2009-01-01
Antipyretic and toxin-eliminating traditional Chinese herbs are believed to possess antiviral activity. In this study, we screened extracts of 22 herbs for activity against enterovirus 71 (EV71). We found that only extracts of Houttuynia cordata Thunb. could neutralize EV71-induced cytopathic effects in Vero cells. The 50% inhibitory concentration of H. cordata extract for EV71 was 125.92 +/- 27.84 mug/ml. Antiviral screening of herb extracts was also conducted on 3 genotypes of EV71, coxsackievirus A16 and echovirus 9. H. cordata extract had the highest activity against genotype A of EV71. A plaque reduction assay showed that H. cordata extract significantly reduced plaque formation. Viral protein expression, viral RNA synthesis and virus-induced caspase 3 activation were inhibited in the presence of H. cordata extract, suggesting that it affected apoptotic processes in EV71-infected Vero cells by inhibiting viral replication. The antiviral activity of H. cordata extract was greater in cells pretreated with extract than those treated after infection. We conclude that H. cordata extract has antiviral activity, and it offers a potential to develop a new anti-EV71 agent.
Jain, Nikhil; Geisz, John F.; France, Ryan M.; ...
2017-02-08
Quaternary GaInAsP solar cells with a bandgap of ~1.7 eV offer an attractive Al-free alternative to AlGaAs solar cells for integration in next generation of III-V multijunction solar cells with five or more junctions. Development of a high quality 1.7 eV solar cell is also highly sought for III-V/Si tandem solar cells. In this work, we systematically investigate the impact of varying base thicknesses and doping concentrations on the carrier collection and performance of 1.7 eV GaInAsP solar cells. The photoresponse of these cells is found to be very sensitive to p-type zinc doping concentration in the base layer. Prototypemore » 1.7 eV GaInAsP n-i-p solar cell designs are demonstrated that leverage enhanced depletion width as an effective method to achieve peak quantum efficiency exceeding 90%. We also show the importance of optimal i-layer thickness as a critical parameter to reduce the drop in fill-factor (FF) due to field-aided collection. Furthermore, we demonstrate substantial improvement in the cell performance when the GaInAsP base layer is grown at 650 degrees C instead of 600 degrees C. The best GaInAsP solar cell (Eg ~ 1.65 eV) in this study achieved JSC of 21.1 mA/cm 2, VOC of 1.18 V, FF of 83.8%, and an efficiency of 20.8 +/- 1% under AM1.5D spectrum (21.5 +/- 1% under AM1.5G spectrum). Finally, these results highlight the potential of Al-free GaInAsP solar cells for integration in the next generation of III-V multijunction solar cells.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, Nikhil; Geisz, John F.; France, Ryan M.
Quaternary GaInAsP solar cells with a bandgap of ~1.7 eV offer an attractive Al-free alternative to AlGaAs solar cells for integration in next generation of III-V multijunction solar cells with five or more junctions. Development of a high quality 1.7 eV solar cell is also highly sought for III-V/Si tandem solar cells. In this work, we systematically investigate the impact of varying base thicknesses and doping concentrations on the carrier collection and performance of 1.7 eV GaInAsP solar cells. The photoresponse of these cells is found to be very sensitive to p-type zinc doping concentration in the base layer. Prototypemore » 1.7 eV GaInAsP n-i-p solar cell designs are demonstrated that leverage enhanced depletion width as an effective method to achieve peak quantum efficiency exceeding 90%. We also show the importance of optimal i-layer thickness as a critical parameter to reduce the drop in fill-factor (FF) due to field-aided collection. Furthermore, we demonstrate substantial improvement in the cell performance when the GaInAsP base layer is grown at 650 degrees C instead of 600 degrees C. The best GaInAsP solar cell (Eg ~ 1.65 eV) in this study achieved JSC of 21.1 mA/cm 2, VOC of 1.18 V, FF of 83.8%, and an efficiency of 20.8 +/- 1% under AM1.5D spectrum (21.5 +/- 1% under AM1.5G spectrum). Finally, these results highlight the potential of Al-free GaInAsP solar cells for integration in the next generation of III-V multijunction solar cells.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Liping; Zhu, Ji; Zaorsky, Nicholas G.
2014-03-15
Purpose: Ataxia telangiectasia mutated (ATM) protein is important in the DNA damage response because it repairs radiation-induced damage in cancers. We examined the effect of microRNA-223 (miR-223), a regulator of ATM expression, on radiation sensitivity of cancer cells. Methods and Materials: Human embryonic kidney 293 T (293T) cells were infected with pLL3.7-miR-223 plasmid to generate the pLL3.7-miR-223 and -empty virus (EV) lentivirus (miR-223 and EV). A dual luciferase assay in which the reporter contained wild-type 3′ untranslated region (UTR) of ATM was performed. U87MG cells were infected with miR-223 or EV to establish the overexpressed stable cell lines (U87-223 or U87-EV, respectively).more » Cells were irradiated in vitro, and dose enhancement ratios at 2 Gy (DER{sub 2}) were calculated. Hind legs of BALB/c athymic mice were injected with U87-223 or U87-EV cells; after 2 weeks, half of the tumors were irradiated. Tumor volumes were tracked for a total of 5 weeks. Results: The dual luciferase reporter assay showed a significant reduction in luciferase activity of 293T cells cotransfected with miR-223 and the ATM 3′UTR compared to that in EV control. Overexpression of miR-223 in U87MG cells showed that ATM expression was significantly downregulated in the U87-223 cells compared to that in U87-EV (ATM/β-actin mRNA 1.0 vs 1.5, P<.05). U87-223 cells were hypersensitive to radiation compared to U87-EV cells in vitro (DER{sub 2} = 1.32, P<.01). Mice injected with miR-223-expressing tumors had almost the same tumors after 3 weeks (1.5 cm{sup 3} vs 1.7 cm{sup 3}). However, irradiation significantly decreased tumor size in miR-223-expressing tumors compared to those in controls (0.033 cm{sup 3} vs 0.829 cm{sup 3}). Conclusions: miR-223 overexpression downregulates ATM expression and sensitizes U87 cells to radiation in vitro and in vivo. MicroRNA-223 may be a novel cancer-targeting therapy, although its cancer- and patient-specific roles are currently undefined.« less
MicroRNA and extracellular vesicles in glioblastoma – Small but powerful
Rooj, Arun K.; Mineo, Marco; Godlewski, Jakub
2016-01-01
To promote the tumor growth, angiogenesis, metabolism, and invasion, glioblastoma multiforme (GBM) cells subvert the surrounding microenvironment by influencing the endogenous activity of other brain cells including endothelial cells, macrophages, astrocytes, and microglia. Large number of studies indicates that the intracellular communication between the different cell types of the GBM microenvironment occurs through the functional transfer of oncogenic components such as proteins, non-coding RNAs, DNA and lipids via the release and uptake of extracellular vesicles (EVs). Unlike the communication through the secretion of chemokines and cytokines, the transfer and gene silencing activity of microRNAs through EVs is more complex as the biogenesis and proper packaging of microRNAs is crucial for their uptake by recipient cells. Although the specific mechanism of EV-derived microRNA uptake and processing in recipient cells is largely unknown, the screening, identifying and finally targeting of the EV-associated pro-tumorigenic microRNAs are emerging as new therapeutic strategy to combat the GBM. PMID:26968172
Cell emulation and preliminary results.
DOT National Transportation Integrated Search
2016-07-01
This report details preliminary results of the testing plan implemented by the Hawaii Natural Energy Institute to evaluate Electric Vehicle (EV) battery durability and reliability under electric utility grid operations. Commercial EV battery cells ar...
Vonk, Lucienne A.; van Dooremalen, Sanne F. J.; Liv, Nalan; Klumperman, Judith; Coffer, Paul J.; Saris, Daniël B.F.; Lorenowicz, Magdalena J.
2018-01-01
Osteoarthritis (OA) is a rheumatic disease leading to chronic pain and disability with no effective treatment available. Recently, allogeneic human mesenchymal stromal/stem cells (MSC) entered clinical trials as a novel therapy for OA. Increasing evidence suggests that therapeutic efficacy of MSC depends on paracrine signalling. Here we investigated the role of extracellular vesicles (EVs) secreted by human bone marrow derived MSC (BMMSC) in human OA cartilage repair. Methods: To test the effect of BMMSC-EVs on OA cartilage inflammation, TNF-alpha-stimulated OA chondrocyte monolayer cultures were treated with BMMSC-EVs and pro-inflammatory gene expression was measured by qRT-PCR after 48 h. To assess the impact of BMMSC-EVs on cartilage regeneration, BMMSC-EVs were added to the regeneration cultures of human OA chondrocytes, which were analyzed after 4 weeks for glycosaminoglycan content by 1,9-dimethylmethylene blue (DMMB) assay. Furthermore, paraffin sections of the regenerated tissue were stained for proteoglycans (safranin-O) and type II collagen (immunostaining). Results: We show that BMMSC-EVs inhibit the adverse effects of inflammatory mediators on cartilage homeostasis. When co-cultured with OA chondrocytes, BMMSC-EVs abrogated the TNF-alpha-mediated upregulation of COX2 and pro-inflammatory interleukins and inhibited TNF-alpha-induced collagenase activity. BMMSC-EVs also promoted cartilage regeneration in vitro. Addition of BMMSC-EVs to cultures of chondrocytes isolated from OA patients stimulated production of proteoglycans and type II collagen by these cells. Conclusion: Our data demonstrate that BMMSC-EVs can be important mediators of cartilage repair and hold great promise as a novel therapeutic for cartilage regeneration and osteoarthritis. PMID:29463990
Schiera, Gabriella; Di Liegro, Carlo Maria; Puleo, Veronica; Colletta, Oriana; Fricano, Anna; Cancemi, Patrizia; Di Cara, Gianluca; Di Liegro, Italia
2016-11-01
Extracellular vesicles (EVs) are now recognized as a fundamental way for cell-to-cell horizontal transfer of properties, in both physiological and pathological conditions. Most of EV-mediated cross-talk among cells depend on the exchange of proteins, and nucleic acids, among which mRNAs, and non-coding RNAs such as different species of miRNAs. Cancer cells, in particular, use EVs to discard molecules which could be dangerous to them (for example differentiation-inducing proteins such as histone H1.0, or antitumor drugs), to transfer molecules which, after entering the surrounding cells, are able to transform their phenotype, and even to secrete factors, which allow escaping from immune surveillance. Herein we report that melanoma cells not only secrete EVs which contain a modified form of H1.0 histone, but also transport the corresponding mRNA. Given the already known role in tumorigenesis of some RNA binding proteins (RBPs), we also searched for proteins of this class in EVs. This study revealed the presence in A375 melanoma cells of at least three RBPs, with apparent MW of about 65, 45 and 38 kDa, which are able to bind H1.0 mRNA. Moreover, we purified one of these proteins, which by MALDI-TOF mass spectrometry was identified as the already known transcription factor MYEF2.
Temperature dependence of trapping effects in metal gates/Al2O3/InGaAs stacks
NASA Astrophysics Data System (ADS)
Palumbo, F.; Pazos, S.; Aguirre, F.; Winter, R.; Krylov, I.; Eizenberg, M.
2017-06-01
The influence of the temperature on Metal Gate/Al2O3/n-InGaAs stacks has been studied by means of capacitance-voltage (C-V) hysteresis and flat band voltage as function of both negative and positive stress fields. It was found that the de-trapping effect decreases at low-temperature, indicating that the de-trapping of trapped electrons from oxide traps may be performed via Al2O3/InGaAs interface defects. The dependence of the C-V hysteresis on the stress field at different temperatures in our InGaAs stacks can be explained in terms of the defect spatial distribution. An oxide defect distribution can be found very close to the metal gate/Al2O3 interface. On the other side, the Al2O3/InGaAs interface presents defects distributed from the interface into the bulk of the oxide, showing the influence of InGaAs on Al2O3 in terms of the spatial defect distribution. At the present, he is a research staff of the National Council of Science and Technology (CONICET), working in the National Commission of Atomic Energy (CNEA) in Buenos Aires, Argentina, well embedded within international research collaboration. Since 2008, he is Professor at the National Technological University (UTN) in Buenos Aires, Argentina. Dr. Palumbo has received research fellowships from: Marie Curie Fellowship within the 7th European Community Framework Programme, Abdus Salam International Centre for Theoretical Physics (ICTP) Italy, National Council of Science and Technology (CONICET) Argentina, and Consiglio Nazionale delle Ricerche (CNR) Italy. He is also a frequent scientific visitor of academic institutions as IMM-CNR-Italy, Minatec Grenoble-France, the Autonomous University of Barcelona-Spain, and the Israel Institute of Technology-Technion. He has authored and co-authored more than 50 papers in international conferences and journals.
Fatima, Farah; Nawaz, Muhammad
2017-01-01
Extracellular vesicles (EVs) are nanosized vesicles secreted from virtually all cell types and are thought to transport proteins, lipids and nucleic acids including non-coding RNAs (ncRNAs) between cells. Since, ncRNAs are central to transcriptional regulation during developmental processes; eukaryotes might have evolved novel means of post-transcriptional regulation by trans-locating ncRNAs between cells. EV-mediated transportation of regulatory elements provides a novel source of trans-regulation between cells. In the last decade, studies were mainly focused on microRNAs; however, functions of long ncRNA (lncRNA) have been much less studied. Here, we review the regulatory roles of EV-linked ncRNAs, placing a particular focus on lncRNAs, how they can foster dictated patterns of trans-regulation in recipient cells. This refers to envisaging novel mechanisms of epigenetic regulation, cellular reprogramming and genomic instability elicited in recipient cells, ultimately permitting the generation of cancer initiating cell phenotypes, senescence and resistance to chemotherapies. Conversely, such trans-regulation may introduce RNA interference in recipient cancer cells causing the suppression of oncogenes and anti-apoptotic proteins; thus favoring tumor inhibition. Collectively, understanding these mechanisms could be of great value to EV-based RNA therapeutics achieved through gene manipulation within cancer cells, whereas the ncRNA content of EVs from cancer patients could serve as non-invasive source of diagnostic biomarkers and prognostic indicators in response to therapies. PMID:29657282
Extracellular vesicles and their synthetic analogues in aging and age-associated brain diseases.
Smith, J A; Leonardi, T; Huang, B; Iraci, N; Vega, B; Pluchino, S
2015-04-01
Multicellular organisms rely upon diverse and complex intercellular communications networks for a myriad of physiological processes. Disruption of these processes is implicated in the onset and propagation of disease and disorder, including the mechanisms of senescence at both cellular and organismal levels. In recent years, secreted extracellular vesicles (EVs) have been identified as a particularly novel vector by which cell-to-cell communications are enacted. EVs actively and specifically traffic bioactive proteins, nucleic acids, and metabolites between cells at local and systemic levels, modulating cellular responses in a bidirectional manner under both homeostatic and pathological conditions. EVs are being implicated not only in the generic aging process, but also as vehicles of pathology in a number of age-related diseases, including cancer and neurodegenerative and disease. Thus, circulating EVs-or specific EV cargoes-are being utilised as putative biomarkers of disease. On the other hand, EVs, as targeted intercellular shuttles of multipotent bioactive payloads, have demonstrated promising therapeutic properties, which can potentially be modulated and enhanced through cellular engineering. Furthermore, there is considerable interest in employing nanomedicinal approaches to mimic the putative therapeutic properties of EVs by employing synthetic analogues for targeted drug delivery. Herein we describe what is known about the origin and nature of EVs and subsequently review their putative roles in biology and medicine (including the use of synthetic EV analogues), with a particular focus on their role in aging and age-related brain diseases.
Detection and proteomic characterization of extracellular vesicles in human pancreatic juice.
Osteikoetxea, Xabier; Benke, Márton; Rodriguez, Marta; Pálóczi, Krisztina; Sódar, Barbara W; Szvicsek, Zsuzsanna; Szabó-Taylor, Katalin; Vukman, Krisztina V; Kittel, Ágnes; Wiener, Zoltán; Vékey, Károly; Harsányi, László; Szűcs, Ákos; Turiák, Lilla; Buzás, Edit I
2018-04-30
The prognosis of patients with pancreatic cancer has remained virtually unchanged with a high mortality rate compared to other types of cancers. An earlier detection would provide a time window of opportunity for treatment and prevention of deaths. In the present study we investigated extracellular vesicle (EV)-associated potential biomarkers for pancreatic cancer by directly assessing EV size-based subpopulations in pancreatic juice samples of patients with chronic pancreatitis or pancreatic cancer. In addition, we also studied blood plasma and pancreatic cancer cell line-derived EVs. Comparative proteomic analysis was performed of 102 EV preparations from human pancreatic juices, blood, and pancreatic cancer cell lines Capan-1 and MIA PaCa-2. EV preparations were also characterized by electron microscopy, tunable resistive pulse sensing, and flow cytometry. Here we describe the presence of EVs in human pancreatic juice samples. Pancreatic juice EV-associated proteins that we identified as possible candidate markers for pancreatic cancer included mucins, such as MUC1, MUC4, MUC5AC, MUC6 and MUC16, CFTR, and MDR1 proteins. These candidate biomarkers could also be detected by flow cytometry in EVs found in pancreatic juice and those secreted by pancreatic cancer cell lines. Together our data show that detection and characterization of EVs directly in pancreatic juice is feasible and may prove to be a valuable source of potential biomarkers of pancreatic cancer. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Study of strain boundary conditions and GaAs buffer sizes in InGaAs quantum dots
NASA Technical Reports Server (NTRS)
Oyafuso, F.; Klimeck, G.; Boykin, T. B.; Bowen, R. C.; Allmen, P. von
2003-01-01
NEMO 3-D has been developed for the simulation of electronic structure in self-assembled InGaAs quantum dots on GaAs substrates. Typical self-assembled quantum dots in that material system contain about 0.5 to 1 million atoms. Effects of strain by the surrounding GaAs buffer modify the electronic structure inside the quantum dot significantly and a large GaAs buffer must be included in the strain and electronic structure.
N-Face GaN Electronics for Heteroepitaxial and Bonded Structures
2015-08-27
GaN ! ?" InGaAs’Channel’ InAlAs’ !!!!!S! !!!!!!D! !!!!G! Ga (In)N’Dri2 ’Region! Wafer* Bonded! Junc2on! !!!!!S...Gate InGaAs InAlAs (In, Ga )N Source GaN on Sapphire Aperture CBL WBI InGaN n-InGaAs InAlAs n+ GaN S D WBI...about. Polarization effects at the interface may need to be considered. For Ga -polar InGaN- GaN homojunctions,
Dark Current Degradation of Near Infrared Avalanche Photodiodes from Proton Irradiation
NASA Technical Reports Server (NTRS)
Becker, Heidi N.; Johnston, Allan H.
2004-01-01
InGaAs and Ge avalanche photodiodes (APDs) are examined for the effects of 63-MeV protons on dark current. Dark current increases were large and similar to prior results for silicon APDs, despite the smaller size of InGaAs and Ge devices. Bulk dark current increases from displacement damage in the depletion regions appeared to be the dominant contributor to overall dark current degradation. Differences in displacement damage factors are discussed as they relate to structural and material differences between devices.
2002-01-01
emitting lasers operating from 1.0 to 1.3 gim with very low threshold currents have been reported [2,3,9]; in addition, vertical - cavity surface - emitting ...grown by solid source molecular beam epitaxy ( MBE ). By modifying Indium composition profile within quantum well (QW) region, it’s found the... lasers ( VCSELs ) have also been successfully demonstrated [4]. There are currently several approaches to grow 1.3 jim (In,Ga)As quantum dots by MBE
Thermally assisted acoustofluidic separation of extracellular vesicles from cells
NASA Astrophysics Data System (ADS)
Mirtaheri, Elnaz; Dolatmoradi, Ata; Pimentel, Krystine; Bhansali, Shekhar; El-Zahab, Bilal
2018-02-01
Extracellular vesicles (EVs) have been gaining increasing attention given their role in communicating information between cells. Composition-based isolation of EVs is particularly of high significance as the proteomic and lipidomic characterization of their cargo could provide valuable clues to the role of EVs in mediating the biology of various conditions. This has, however, proved to be challenging as EVs, despite their abundance, are very small and difficult to be differentiated from the other constituents of host media. In addition, currently available methods like ultracentrifugation and filtration are cumbersome and capable of achieving mostly size-based separations. In this work, we demonstrate the possibility of separating submicron EV-like vesicles from cancer cells using a thermally-assisted acoustophoretic device. In a system composed of MCF-7 breast cancer cells spiked with two different types of same-size vesicles, composition-based isolation of vesicles was shown to be realizable through opposite focusing of the system's components at the node and antinodes of the overlaid ultrasonic standing wave. By proper choice of temperature in the microchannel, we were able to achieve separations with purities exceeding 93%. Furthermore, cells recovered from the channel were shown to be viable after the separation.
Extracellular Vesicles as Therapeutic Tools in Cardiovascular Diseases
Fleury, Audrey; Martinez, Maria Carmen; Le Lay, Soazig
2014-01-01
Extracellular vesicles (EVs), including microvesicles (MVs) and exosomes, are small vesicles secreted from a wide variety of cells. Whereas MVs are particles released by the outward budding of the plasma membrane, exosomes are derived from endocytic compartments. Secretion of EVs can be enhanced by specific stimuli, and increased plasma circulating levels of EVs have been correlated with pathophysiological situations. MVs, already present in the blood of healthy individuals, are considerably elevated in several cardiovascular diseases associated with inflammation, suggesting that they can mediate deleterious effects such as endothelial dysfunction or thrombosis. Nonetheless, very recent studies also demonstrate that MVs may act as biological information vectors transferring proteins or genetic material to maintain cell homeostasis, favor cell repair, or even promote angiogenesis. Additionally, exosomes have also been shown to have pro-angiogenic and cardio-protective properties. These beneficial effects, therefore, reveal the potential therapeutical use of EVs in the field of cardiovascular medicine and regenerative therapy. In this review, we will provide an update of cellular processes modulated by EVs of specific interest in the treatment of cardiovascular pathologies. A special focus will be made on the morphogen sonic hedgehog (Shh) associated with EVs (EVsShh+), which have been shown to mediate many pro-angiogenic effects. In addition to offer a potential source of cardiovascular markers, therapeutical potential of EVs reveal exciting opportunities to deliver specific agents by non-immunogenic means to cardiovascular system. PMID:25136343
Extracellular vesicles: their role in cancer biology and epithelial-mesenchymal transition.
Gopal, Shashi K; Greening, David W; Rai, Alin; Chen, Maoshan; Xu, Rong; Shafiq, Adnan; Mathias, Rommel A; Zhu, Hong-Jian; Simpson, Richard J
2017-01-01
Cell-cell communication is critical across an assortment of physiological and pathological processes. Extracellular vesicles (EVs) represent an integral facet of intercellular communication largely through the transfer of functional cargo such as proteins, messenger RNAs (mRNAs), microRNA (miRNAs), DNAs and lipids. EVs, especially exosomes and shed microvesicles, represent an important delivery medium in the tumour micro-environment through the reciprocal dissemination of signals between cancer and resident stromal cells to facilitate tumorigenesis and metastasis. An important step of the metastatic cascade is the reprogramming of cancer cells from an epithelial to mesenchymal phenotype (epithelial-mesenchymal transition, EMT), which is associated with increased aggressiveness, invasiveness and metastatic potential. There is now increasing evidence demonstrating that EVs released by cells undergoing EMT are reprogrammed (protein and RNA content) during this process. This review summarises current knowledge of EV-mediated functional transfer of proteins and RNA species (mRNA, miRNA, long non-coding RNA) between cells in cancer biology and the EMT process. An in-depth understanding of EVs associated with EMT, with emphasis on molecular composition (proteins and RNA species), will provide fundamental insights into cancer biology. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.
EPR and transient capacitance studies on electron-irradiated silicon solar cells
NASA Technical Reports Server (NTRS)
Lee, Y. H.; Cheng, L. J.; Mooney, P. M.; Corbett, J. W.
1977-01-01
One and two ohm-cm solar cells irradiated with 1 MeV electrons at 30 C were studied using both EPR and transient capacitance techniques. In 2 ohm-cm cells, Si-G6 and Si-G15 EPR spectra and majority carrier trapping levels at (E sub V + 0.23) eV and (E sub V + 0.38) eV were observed, each of which corresponded to the divacancy and the carbon-oxygen-vacancy complex, respectively. In addition, a boron-associated defect with a minority carrier trapping level at (E sub C -0.27) eV was observed. In 1 ohm-cm cells, the G15 spectrum and majority carrier trap at (E sub V + 0.38) eV were absent and an isotropic EPR line appeared at g = 1.9988 (+ or - 0.0003); additionally, a majority carrier trapping center at (E sub V + 0.32) eV, was found which could be associated with impurity lithium. The formation mechanisms of these defects are discussed according to isochronal annealing data in electron-irradiated p-type silicon.
Tosar, Juan Pablo; Cayota, Alfonso; Eitan, Erez; Halushka, Marc K; Witwer, Kenneth W
2017-01-01
In a recently published study, Anna Krichevsky and colleagues raise the important question of whether results of in vitro extracellular RNA (exRNA) studies, including extracellular vesicle (EV) investigations, are confounded by the presence of RNA in cell culture medium components such as foetal bovine serum (FBS). The answer, according to their data, is a resounding "yes". Even after lengthy ultracentrifugation to remove bovine EVs from FBS, the majority of exRNA in FBS remained. Although technical factors may affect the degree of depletion, residual EVs and exRNA in FBS could influence the conclusions of in vitro studies: certainly, for secreted RNA, and possibly also for cell-associated RNA. In this commentary, we critically examine some of the literature in this field, including a recent study from some of the authors of this piece, in light of the Wei et al. study and explore how cell culture-derived RNAs may affect what we think we know about EV RNAs. These findings hold particular consequence as the field moves towards a deeper understanding of EV-RNA associations and potential functions.
Inflammatory Stroke Extracellular Vesicles Induce Macrophage Activation.
Couch, Yvonne; Akbar, Naveed; Davis, Simon; Fischer, Roman; Dickens, Alex M; Neuhaus, Ain A; Burgess, Annette I; Rothwell, Peter M; Buchan, Alastair M
2017-08-01
Extracellular vesicles (EVs) are protein-lipid complexes released from cells, as well as actively exocytosed, as part of normal physiology, but also during pathological processes such as those occurring during a stroke. Our aim was to determine the inflammatory potential of stroke EVs. EVs were quantified and analyzed in the sera of patients after an acute stroke (<24 hours; OXVASC [Oxford Vascular Study]). Isolated EV fractions were subjected to untargeted proteomic analysis by liquid chromatography mass-spectrometry/mass-spectrometry and then applied to macrophages in culture to investigate inflammatory gene expression. EV number, but not size, is significantly increased in stroke patients when compared to age-matched controls. Proteomic analysis reveals an overall increase in acute phase proteins, including C-reactive protein. EV fractions applied to monocyte-differentiated macrophage cultures induced inflammatory gene expression. Together these data show that EVs from stroke patients are proinflammatory in nature and are capable of inducing inflammation in immune cells. © 2017 American Heart Association, Inc.
High-efficiency inverted metamorphic 1.7/1.1 eV GaInAsP/GaInAs dual-junction solar cells
NASA Astrophysics Data System (ADS)
Jain, Nikhil; Schulte, Kevin L.; Geisz, John F.; Friedman, Daniel J.; France, Ryan M.; Perl, Emmett E.; Norman, Andrew G.; Guthrey, Harvey L.; Steiner, Myles A.
2018-01-01
Photovoltaic conversion efficiencies of 32.6 ± 1.4% under the AM1.5 G173 global spectrum, and 35.5% ± 1.2% at 38-suns concentration under the direct spectrum, are demonstrated for a monolithic, dual-junction 1.7/1.1 eV solar cell. The tandem cell consists of a 1.7 eV GaInAsP top-junction grown lattice-matched to a GaAs substrate, followed by a metamorphic 1.1 eV GaInAs junction grown on a transparent, compositionally graded metamorphic AlGaInAs buffer. This bandgap combination is much closer to the dual-junction optimum and offers headroom for absolute 3% improvement in efficiency, in comparison to the incumbent lattice-matched GaInP/GaAs (˜1.86/1.41 eV) solar cells. The challenge of growing a high-quality 1.7 eV GaInAsP solar cell is the propensity for phase separation in the GaInAsP alloy. The challenge of lattice-mismatched GaInAs solar cell growth is that it requires minimizing the residual dislocation density during the growth of a transparent compositionally graded buffer to enable efficient metamorphic tandem cell integration. Transmission electron microscopy reveals relatively weak composition fluctuation present in the 1.7 eV GaInAsP alloy, attained through growth control. The threading dislocation density of the GaInAs junction is ˜1 × 106 cm-2, as determined from cathodoluminescence measurements, highlighting the quality of the graded buffer. These material advances have enabled the performance of both junctions to reach over 80% of their Shockley-Queisser limiting efficiencies, with both the subcells demonstrating a bandgap-voltage offset, WOC (=Eg/q-VOC), of ˜0.39 V.
High-efficiency inverted metamorphic 1.7/1.1 eV GaInAsP/GaInAs dual-junction solar cells
Jain, Nikhil; Schulte, Kevin L.; Geisz, John F.; ...
2018-01-29
Photovoltaic conversion efficiencies of 32.6 +/- 1.4% under the AM1.5 G173 global spectrum, and 35.5 +/- 1.2% at 38-suns concentration under the direct spectrum, are demonstrated for a monolithic, dual-junction 1.7/1.1 eV solar cell. The tandem cell consists of a 1.7 eV GaInAsP top-junction grown lattice-matched to a GaAs substrate, followed by a metamorphic 1.1 eV GaInAs junction grown on a transparent, compositionally graded metamorphic AlGaInAs buffer. This bandgap combination is much closer to the dual-junction optimum and offers headroom for absolute 3% improvement in efficiency, in comparison to the incumbent lattice-matched GaInP/GaAs (~1.86/1.41 eV) solar cells. The challenge ofmore » growing a high-quality 1.7 eV GaInAsP solar cell is the propensity for phase separation in the GaInAsP alloy. The challenge of lattice-mismatched GaInAs solar cell growth is that it requires minimizing the residual dislocation density during the growth of a transparent compositionally graded buffer to enable efficient metamorphic tandem cell integration. Transmission electron microscopy reveals relatively weak composition fluctuation present in the 1.7 eV GaInAsP alloy, attained through growth control. The threading dislocation density of the GaInAs junction is ~1 x 10^6 cm-2, as determined from cathodoluminescence measurements, highlighting the quality of the graded buffer. These material advances have enabled the performance of both junctions to reach over 80% of their Shockley-Queisser limiting efficiencies, with both the subcells demonstrating a bandgap-voltage offset, WOC (=Eg/q-VOC), of ~0.39 V.« less
High-efficiency inverted metamorphic 1.7/1.1 eV GaInAsP/GaInAs dual-junction solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, Nikhil; Schulte, Kevin L.; Geisz, John F.
Photovoltaic conversion efficiencies of 32.6 +/- 1.4% under the AM1.5 G173 global spectrum, and 35.5 +/- 1.2% at 38-suns concentration under the direct spectrum, are demonstrated for a monolithic, dual-junction 1.7/1.1 eV solar cell. The tandem cell consists of a 1.7 eV GaInAsP top-junction grown lattice-matched to a GaAs substrate, followed by a metamorphic 1.1 eV GaInAs junction grown on a transparent, compositionally graded metamorphic AlGaInAs buffer. This bandgap combination is much closer to the dual-junction optimum and offers headroom for absolute 3% improvement in efficiency, in comparison to the incumbent lattice-matched GaInP/GaAs (~1.86/1.41 eV) solar cells. The challenge ofmore » growing a high-quality 1.7 eV GaInAsP solar cell is the propensity for phase separation in the GaInAsP alloy. The challenge of lattice-mismatched GaInAs solar cell growth is that it requires minimizing the residual dislocation density during the growth of a transparent compositionally graded buffer to enable efficient metamorphic tandem cell integration. Transmission electron microscopy reveals relatively weak composition fluctuation present in the 1.7 eV GaInAsP alloy, attained through growth control. The threading dislocation density of the GaInAs junction is ~1 x 10^6 cm-2, as determined from cathodoluminescence measurements, highlighting the quality of the graded buffer. These material advances have enabled the performance of both junctions to reach over 80% of their Shockley-Queisser limiting efficiencies, with both the subcells demonstrating a bandgap-voltage offset, WOC (=Eg/q-VOC), of ~0.39 V.« less
Laitinen, Olli H; Svedin, Emma; Kapell, Sebastian; Hankaniemi, Minna M; Larsson, Pär G; Domsgen, Erna; Stone, Virginia M; Määttä, Juha A E; Hyöty, Heikki; Hytönen, Vesa P; Flodström-Tullberg, Malin
2018-05-01
Enteroviruses (EVs), such as the Coxsackie B-viruses (CVBs), are common human pathogens, which can cause severe diseases including meningitis, myocarditis and neonatal sepsis. EVs encode two proteases (2A pro and 3C pro ), which perform the proteolytic cleavage of the CVB polyprotein and also cleave host cell proteins to facilitate viral replication. The 2A pro cause direct damage to the infected heart and tools to investigate 2A pro and 3C pro expression may contribute new knowledge on virus-induced pathologies. Here, we developed new antibodies to CVB-encoded 2A pro and 3C pro ; Two monoclonal 2A pro antibodies and one 3C pro antibody were produced. Using cells infected with selected viruses belonging to the EV A, B and C species and immunocytochemistry, we demonstrate that the 3C pro antibody detects all of the EV species B (EV-B) viruses tested and that the 2A pro antibody detects all EV-B viruses apart from Echovirus 9. We furthermore show that the new antibodies work in Western blotting, immunocyto- and immunohistochemistry, and flow cytometry to detect CVBs. Confocal microscopy demonstrated the expression kinetics of 2A pro and 3C pro , and revealed a preferential cytosolic localization of the proteases in CVB3 infected cells. In summary, the new antibodies detect proteases that belong to EV species B in cells and tissue using multiple applications. Copyright © 2018 Elsevier B.V. All rights reserved.
Dabrowska, Sylwia; Del Fattore, Andrea; Karnas, Elzbieta; Frontczak-Baniewicz, Malgorzata; Kozlowska, Hanna; Muraca, Maurizio; Janowski, Miroslaw; Lukomska, Barbara
2018-01-01
Mesenchymal stem cells have been shown therapeutic in various neurological disorders. Recent studies support the notion that the predominant mechanism by which MSCs act is through the release of extracellular vesicles (EVs). EVs seem to have similar therapeutic activity as their cellular counterparts and may represent an interesting alternative standalone therapy for various diseases. The aim of the study was to optimize the method of EV imaging to better understand therapeutic effects mediated by EVs. The fluorescent lipophilic stain PKH26 and superparamagnetic iron oxide nanoparticles conjugated with rhodamine (Molday ION Rhodamine B™) were used for the labeling of vesicles in human bone marrow MSCs (hBM-MSCs). The entire cycle from intracellular vesicles to EVs followed by their uptake by hBM-MSCs has been studied. The identity of vesicles has been proven by antibodies against: anti-CD9, -CD63, and -CD81 (tetraspanins). NanoSight particle tracking analysis (NTA), high-resolution flow cytometric analysis, transmission electron microscopy (TEM), ELYRA PS.1 super-resolution microscopy, and magnetic resonance imaging (MRI) were used for the characterization of vesicles. The PKH26 and Molday ION were exclusively localized in intracellular vesicles positively stained for EV markers: CD9, CD63, and CD81. The isolated EVs represent heterogeneous population of various sizes as confirmed by NTA. The TEM and MRI were capable to show successful labeling of EVs using ION. Co-culture of EVs with hBM-MSCs revealed their uptake by cells in vitro, as visualized by the co-localization of PKH26 or Molday ION with tetraspanins inside hBM-MSCs. PKH26 and Molday ION seem to be biocompatible with EVs, and the labeling did not interfere with the capability of EVs to re-enter hBM-MSCs during co-culture in vitro. Magnetic properties of IONs provide an additional advantage for the imaging of EV using TEM and MRI.
NASA Astrophysics Data System (ADS)
Salas, R.; Guchhait, S.; McNicholas, K. M.; Sifferman, S. D.; Dasika, V. D.; Jung, D.; Krivoy, E. M.; Lee, M. L.; Bank, S. R.
2016-05-01
We explore the effects of surfactant-mediated epitaxy on the structural, electrical, and optical properties of fast metal-semiconductor superlattice photoconductors. Specifically, application of a bismuth flux during growth was found to significantly improve the properties of superlattices of LuAs nanoparticles embedded in In0.53Ga0.47As. These improvements are attributed to the enhanced structural quality of the overgrown InGaAs over the LuAs nanoparticles. The use of bismuth enabled a 30% increase in the number of monolayers of LuAs that could be deposited before the InGaAs overgrowth degraded. Dark resistivity increased by up to ˜15× while carrier mobility remained over 2300 cm2/V-s and carrier lifetimes were reduced by >2× at comparable levels of LuAs deposition. These findings demonstrate that surfactant-mediated epitaxy is a promising approach to enhance the properties of ultrafast photoconductors for terahert generation.
Kumar, Annie; Lee, Shuh-Ying; Yadav, Sachin; Tan, Kian Hua; Loke, Wan Khai; Dong, Yuan; Lee, Kwang Hong; Wicaksono, Satrio; Liang, Gengchiau; Yoon, Soon-Fatt; Antoniadis, Dimitri; Yeo, Yee-Chia; Gong, Xiao
2017-12-11
Lasers monolithically integrated with high speed MOSFETs on the silicon (Si) substrate could be a key to realize low cost, low power, and high speed opto-electronic integrated circuits (OEICs). In this paper, we report the monolithic integration of InGaAs channel transistors with electrically pumped GaAs/AlGaAs lasers on the Si substrate for future advanced OEICs. The laser and transistor layers were grown on the Si substrate by molecular beam epitaxy (MBE) using direct epitaxial growth. InGaAs n-FETs with an I ON /I OFF ratio of more than 10 6 with very low off-state leakage and a low subthreshold swing with a minimum of 82 mV/decade were realized. Electrically pumped GaAs/AlGaAs quantum well (QW) lasers with a lasing wavelength of 795 nm at room temperature were demonstrated. The overall fabrication process has a low thermal budget of no more than 400 °C.
Neven, Kristof Y; Nawrot, Tim S; Bollati, Valentina
2017-03-01
To summarize the scientific evidence regarding the effects of environmental exposures on extracellular vesicle (EV) release and their contents. As environmental exposures might influence the aging phenotype in a very strict way, we will also report the role of EVs in the biological aging process. EV research is a new and quickly developing field. With many investigations conducted so far, only a limited number of studies have explored the potential role EVs play in the response and adaptation to environmental stimuli. The investigations available to date have identified several exposures or lifestyle factors able to modify EV trafficking including air pollutants, cigarette smoke, alcohol, obesity, nutrition, physical exercise, and oxidative stress. EVs are a very promising tool, as biological fluids are easily obtainable biological media that, if successful in identifying early alterations induced by the environment and predictive of disease, would be amenable to use for potential future preventive and diagnostic applications.
Therapeutic Applications of Extracellular Vesicles: Clinical Promise and Open Questions
Breakefield, Xandra O.; Leonard, Joshua N.
2015-01-01
This review provides an updated perspective on rapidly proliferating efforts to harness extracellular vesicles (EVs) for therapeutic applications. We summarize current knowledge, emerging strategies, and open questions pertaining to clinical potential and translation. Potentially useful EVs comprise diverse products of various cell types and species. EV components may also be combined with liposomes and nanoparticles to facilitate manufacturing as well as product safety and evaluation. Potential therapeutic cargoes include RNA, proteins, and drugs. Strategic issues considered herein include choice of therapeutic agent, means of loading cargoes into EVs, promotion of EV stability, tissue targeting, and functional delivery of cargo to recipient cells. Some applications may harness natural EV properties, such as immune modulation, regeneration promotion, and pathogen suppression. These properties can be enhanced or customized to enable a wide range of therapeutic applications, including vaccination, improvement of pregnancy outcome, and treatment of autoimmune disease, cancer, and tissue injury. PMID:25292428
Ribeiro, Kleber Silva; Vasconcellos, Camilla Ioshida; Soares, Rodrigo Pedro; Mendes, Maria Tays; Ellis, Cameron C; Aguilera-Flores, Marcela; de Almeida, Igor Correia; Schenkman, Sergio; Iwai, Leo Kei; Torrecilhas, Ana Claudia
2018-01-01
Trypanosoma cruzi , the aetiologic agent of Chagas disease, releases vesicles containing a wide range of surface molecules known to affect the host immunological responses and the cellular infectivity. Here, we compared the secretome of two distinct strains (Y and YuYu) of T. cruzi , which were previously shown to differentially modulate host innate and acquired immune responses. Tissue culture-derived trypomastigotes of both strains secreted extracellular vesicles (EVs), as demonstrated by electron scanning microscopy. EVs were purified by exclusion chromatography or ultracentrifugation and quantitated using nanoparticle tracking analysis. Trypomastigotes from YuYu strain released higher number of EVs than those from Y strain, enriched with virulence factors trans -sialidase (TS) and cruzipain. Proteomic analysis confirmed the increased abundance of proteins coded by the TS gene family, mucin-like glycoproteins, and some typical exosomal proteins in the YuYu strain, which also showed considerable differences between purified EVs and vesicle-free fraction as compared to the Y strain. To evaluate whether such differences were related to parasite infectivity, J774 macrophages and LLC-MK2 kidney cells were preincubated with purified EVs from both strains and then infected with Y strain trypomastigotes. EVs released by YuYu strain caused a lower infection but higher intracellular proliferation in J774 macrophages than EVs from Y strain. In contrast, YuYu strain-derived EVs caused higher infection of LLC-MK2 cells than Y strain-derived EVs. In conclusion, quantitative and qualitative differences in EVs and secreted proteins from different T. cruzi strains may correlate with infectivity/virulence during the host-parasite interaction.
Ribeiro, Kleber Silva; Vasconcellos, Camilla Ioshida; Soares, Rodrigo Pedro; Ellis, Cameron C.; Aguilera-Flores, Marcela; de Almeida, Igor Correia
2018-01-01
ABSTRACT Trypanosoma cruzi, the aetiologic agent of Chagas disease, releases vesicles containing a wide range of surface molecules known to affect the host immunological responses and the cellular infectivity. Here, we compared the secretome of two distinct strains (Y and YuYu) of T. cruzi, which were previously shown to differentially modulate host innate and acquired immune responses. Tissue culture-derived trypomastigotes of both strains secreted extracellular vesicles (EVs), as demonstrated by electron scanning microscopy. EVs were purified by exclusion chromatography or ultracentrifugation and quantitated using nanoparticle tracking analysis. Trypomastigotes from YuYu strain released higher number of EVs than those from Y strain, enriched with virulence factors trans-sialidase (TS) and cruzipain. Proteomic analysis confirmed the increased abundance of proteins coded by the TS gene family, mucin-like glycoproteins, and some typical exosomal proteins in the YuYu strain, which also showed considerable differences between purified EVs and vesicle-free fraction as compared to the Y strain. To evaluate whether such differences were related to parasite infectivity, J774 macrophages and LLC-MK2 kidney cells were preincubated with purified EVs from both strains and then infected with Y strain trypomastigotes. EVs released by YuYu strain caused a lower infection but higher intracellular proliferation in J774 macrophages than EVs from Y strain. In contrast, YuYu strain-derived EVs caused higher infection of LLC-MK2 cells than Y strain-derived EVs. In conclusion, quantitative and qualitative differences in EVs and secreted proteins from different T. cruzi strains may correlate with infectivity/virulence during the host–parasite interaction. PMID:29696081
Otsuru, Satoru; Desbourdes, Laura; Guess, Adam J; Hofmann, Ted J; Relation, Theresa; Kaito, Takashi; Dominici, Massimo; Iwamoto, Masahiro; Horwitz, Edwin M
2018-01-01
Systemic infusion of mesenchymal stromal cells (MSCs) has been shown to induce acute acceleration of growth velocity in children with osteogenesis imperfecta (OI) despite minimal engraftment of infused MSCs in bones. Using an animal model of OI we have previously shown that MSC infusion stimulates chondrocyte proliferation in the growth plate and that this enhanced proliferation is also observed with infusion of MSC conditioned medium in lieu of MSCs, suggesting that bone growth is due to trophic effects of MSCs. Here we sought to identify the trophic factor secreted by MSCs that mediates this therapeutic activity. To examine whether extracellular vesicles (EVs) released from MSCs have therapeutic activity, EVs were isolated from MSC conditioned medium by ultracentrifugation. To further characterize the trophic factor, RNA or microRNA (miRNA) within EVs was depleted by either ribonuclease (RNase) treatment or suppressing miRNA biogenesis in MSCs. The functional activity of these modified EVs was evaluated using an in vitro chondrocyte proliferation assay. Finally, bone growth was evaluated in an animal model of OI treated with EVs. We found that infusion of MSC-derived EVs stimulated chondrocyte proliferation in the growth plate, resulting in improved bone growth in a mouse model of OI. However, infusion of neither RNase-treated EVs nor miRNA-depleted EVs enhanced chondrocyte proliferation. MSCs exert therapeutic effects in OI by secreting EVs containing miRNA, and EV therapy has the potential to become a novel cell-free therapy for OI that will overcome some of the current limitations in MSC therapy. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
A novel multiplex bead-based platform highlights the diversity of extracellular vesicles
Koliha, Nina; Wiencek, Yvonne; Heider, Ute; Jüngst, Christian; Kladt, Nikolay; Krauthäuser, Susanne; Johnston, Ian C. D.; Bosio, Andreas; Schauss, Astrid; Wild, Stefan
2016-01-01
The surface protein composition of extracellular vesicles (EVs) is related to the originating cell and may play a role in vesicle function. Knowledge of the protein content of individual EVs is still limited because of the technical challenges to analyse small vesicles. Here, we introduce a novel multiplex bead-based platform to investigate up to 39 different surface markers in one sample. The combination of capture antibody beads with fluorescently labelled detection antibodies allows the analysis of EVs that carry surface markers recognized by both antibodies. This new method enables an easy screening of surface markers on populations of EVs. By combining different capture and detection antibodies, additional information on relative expression levels and potential vesicle subpopulations is gained. We also established a protocol to visualize individual EVs by stimulated emission depletion (STED) microscopy. Thereby, markers on single EVs can be detected by fluorophore-conjugated antibodies. We used the multiplex platform and STED microscopy to show for the first time that NK cell–derived EVs and platelet-derived EVs are devoid of CD9 or CD81, respectively, and that EVs isolated from activated B cells comprise different EV subpopulations. We speculate that, according to our STED data, tetraspanins might not be homogenously distributed but may mostly appear as clusters on EV subpopulations. Finally, we demonstrate that EV mixtures can be separated by magnetic beads and analysed subsequently with the multiplex platform. Both the multiplex bead-based platform and STED microscopy revealed subpopulations of EVs that have been indistinguishable by most analysis tools used so far. We expect that an in-depth view on EV heterogeneity will contribute to our understanding of different EVs and functions. PMID:26901056
Periodic Two-Dimensional GaAs and InGaAs Quantum Rings Grown on GaAs (001) by Droplet Epitaxy.
Tung, Kar Hoo Patrick; Huang, Jian; Danner, Aaron
2016-06-01
Growth of ordered GaAs and InGaAs quantum rings (QRs) in a patterned SiO2 nanohole template by molecular beam epitaxy (MBE) using droplet epitaxy (DE) process is demonstrated. DE is an MBE growth technique used to fabricate quantum nanostructures of high crystal quality by supplying group III and group V elements in separate phases. In this work, ordered QRs grown on an ordered nanohole template are compared to self-assembled QRs grown with the same DE technique without the nanohole template. This study allows us to understand and compare the surface kinetics of Ga and InGa droplets when a template is present. It is found that template-grown GaAs QRs form clustered rings which can be attributed to low mobility of Ga droplets resulting in multiple nucleation sites for QR formation when As is supplied. However, the case of template-grown InGaAs QRs only one ring is formed per nanohole; no clustering is observed. The outer QR diameter is a close match to the nanohole template diameter. This can be attributed to more mobile InGa droplets, which coalesce from an Ostwald ripening to form a single large droplet before As is supplied. Thus, well-patterned InGaAs QRs are demonstrated and the kinetics of their growth are better understood which could potentially lead to improvements in the future devices that require the unique properties of patterned QRs.
Towards automated spectroscopic tissue classification in thyroid and parathyroid surgery.
Schols, Rutger M; Alic, Lejla; Wieringa, Fokko P; Bouvy, Nicole D; Stassen, Laurents P S
2017-03-01
In (para-)thyroid surgery iatrogenic parathyroid injury should be prevented. To aid the surgeons' eye, a camera system enabling parathyroid-specific image enhancement would be useful. Hyperspectral camera technology might work, provided that the spectral signature of parathyroid tissue offers enough specific features to be reliably and automatically distinguished from surrounding tissues. As a first step to investigate this, we examined the feasibility of wide band diffuse reflectance spectroscopy (DRS) for automated spectroscopic tissue classification, using silicon (Si) and indium-gallium-arsenide (InGaAs) sensors. DRS (350-1830 nm) was performed during (para-)thyroid resections. From the acquired spectra 36 features at predefined wavelengths were extracted. The best features for classification of parathyroid from adipose or thyroid were assessed by binary logistic regression for Si- and InGaAs-sensor ranges. Classification performance was evaluated by leave-one-out cross-validation. In 19 patients 299 spectra were recorded (62 tissue sites: thyroid = 23, parathyroid = 21, adipose = 18). Classification accuracy of parathyroid-adipose was, respectively, 79% (Si), 82% (InGaAs) and 97% (Si/InGaAs combined). Parathyroid-thyroid classification accuracies were 80% (Si), 75% (InGaAs), 82% (Si/InGaAs combined). Si and InGaAs sensors are fairly accurate for automated spectroscopic classification of parathyroid, adipose and thyroid tissues. Combination of both sensor technologies improves accuracy. Follow-up research, aimed towards hyperspectral imaging seems justified. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Unified mechanism of the surface Fermi level pinning in III-As nanowires.
Alekseev, Prokhor A; Dunaevskiy, Mikhail S; Cirlin, George E; Reznik, Rodion R; Smirnov, Alexander N; Kirilenko, Demid A; Davydov, Valery Yu; Berkovits, Vladimir L
2018-08-03
Fermi level pinning at the oxidized (110) surfaces of III-As nanowires (GaAs, InAs, InGaAs, AlGaAs) is studied. Using scanning gradient Kelvin probe microscopy, we show that the Fermi level at oxidized cleavage surfaces of ternary Al x Ga 1-x As (0 ≤ x ≤ 0.45) and Ga x In 1-x As (0 ≤ x ≤ 1) alloys is pinned at the same position of 4.8 ± 0.1 eV with regard to the vacuum level. The finding implies a unified mechanism of the Fermi level pinning for such surfaces. Further investigation, performed by Raman scattering and photoluminescence spectroscopy, shows that photooxidation of the Al x Ga 1-x As and Ga x In 1-x As nanowires leads to the accumulation of an excess of arsenic on their crystal surfaces which is accompanied by a strong decrease of the band-edge photoluminescence intensity. We conclude that the surface excess arsenic in crystalline or amorphous forms is responsible for the Fermi level pinning at oxidized (110) surfaces of III-As nanowires.
Ropagnol, X; Khorasaninejad, M; Raeiszadeh, M; Safavi-Naeini, S; Bouvier, M; Côté, C Y; Laramée, A; Reid, M; Gauthier, M A; Ozaki, T
2016-05-30
We report the generation of free space terahertz (THz) pulses with energy up to 8.3 ± 0.2 µJ from an encapsulated interdigitated ZnSe Large Aperture Photo-Conductive Antenna (LAPCA). An aperture of 12.2 cm2 is illuminated using a 400 nm pump laser with multi-mJ energies at 10 Hz repetition rate. The calculated THz peak electric field is 331 ± 4 kV/cm with a spectrum characterized by a median frequency of 0.28 THz. Given its relatively low frequency, this THz field will accelerate charged particles efficiently having very large ponderomotive energy of 15 ± 1 eV for electrons in vacuum. The scaling of the emission is studied with respect to the dimensions of the antenna, and it is observed that the capacitance of the LAPCA leads to a severe decrease in and distortion of the biasing voltage pulse, fundamentally limiting the maximum applied bias field and consequently the maximum energy of the radiated THz pulses. In order to demonstrate the advantages of this source in the strong field regime, an open-aperture Z-scan experiment was performed on n-doped InGaAs, which showed significant absorption bleaching.
Balbi, Carolina; Piccoli, Martina; Barile, Lucio; Papait, Andrea; Armirotti, Andrea; Principi, Elisa; Reverberi, Daniele; Pascucci, Luisa; Becherini, Pamela; Varesio, Luigi; Mogni, Massimo; Coviello, Domenico; Bandiera, Tiziano; Pozzobon, Michela; Cancedda, Ranieri; Bollini, Sveva
2017-05-01
Human amniotic fluid stem cells (hAFS) have shown a distinct secretory profile and significant regenerative potential in several preclinical models of disease. Nevertheless, little is known about the detailed characterization of their secretome. Herein we show for the first time that hAFS actively release extracellular vesicles (EV) endowed with significant paracrine potential and regenerative effect. c-KIT + hAFS were isolated from leftover samples of amniotic fluid from prenatal screening and stimulated to enhance EV release (24 hours 20% O 2 versus 1% O 2 preconditioning). The capacity of the c-KIT + hAFS-derived EV (hAFS-EV) to induce proliferation, survival, immunomodulation, and angiogenesis were investigated in vitro and in vivo. The hAFS-EV regenerative potential was also assessed in a model of skeletal muscle atrophy (HSA-Cre, Smn F7/F7 mice), in which mouse AFS transplantation was previously shown to enhance muscle strength and survival. hAFS secreted EV ranged from 50 up to 1,000 nm in size. In vitro analysis defined their role as biological mediators of regenerative, paracrine effects while their modulatory role in decreasing skeletal muscle inflammation in vivo was shown for the first time. Hypoxic preconditioning significantly induced the enrichment of exosomes endowed with regenerative microRNAs within the hAFS-EV. In conclusion, this is the first study showing that c-KIT + hAFS dynamically release EV endowed with remarkable paracrine potential, thus representing an appealing tool for future regenerative therapy. Stem Cells Translational Medicine 2017;6:1340-1355. © 2017 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.
van der Vos, Kristan E.; Abels, Erik R.; Zhang, Xuan; Lai, Charles; Carrizosa, Esteban; Oakley, Derek; Prabhakar, Shilpa; Mardini, Osama; Crommentuijn, Matheus H. W.; Skog, Johan; Krichevsky, Anna M.; Stemmer-Rachamimov, Anat; Mempel, Thorsten R.; El Khoury, Joseph; Hickman, Suzanne E.; Breakefield, Xandra O.
2016-01-01
Background To understand the ability of gliomas to manipulate their microenvironment, we visualized the transfer of vesicles and the effects of tumor-released extracellular RNA on the phenotype of microglia in culture and in vivo. Methods Extracellular vesicles (EVs) released from primary human glioblastoma (GBM) cells were isolated and microRNAs (miRNAs) were analyzed. Primary mouse microglia were exposed to GBM-EVs, and their uptake and effect on proliferation and levels of specific miRNAs, mRNAs, and proteins were analyzed. For in vivo analysis, mouse glioma cells were implanted in the brains of mice, and EV release and uptake by microglia and monocytes/macrophages were monitored by intravital 2-photon microscopy, immunohistochemistry, and fluorescence activated cell sorting analysis, as well as RNA and protein levels. Results Microglia avidly took up GBM-EVs, leading to increased proliferation and shifting of their cytokine profile toward immune suppression. High levels of miR-451/miR-21 in GBM-EVs were transferred to microglia with a decrease in the miR-451/miR-21 target c-Myc mRNA. In in vivo analysis, we directly visualized release of EVs from glioma cells and their uptake by microglia and monocytes/macrophages in brain. Dissociated microglia and monocytes/macrophages from tumor-bearing brains revealed increased levels of miR-21 and reduced levels of c-Myc mRNA. Conclusions Intravital microscopy confirms the release of EVs from gliomas and their uptake into microglia and monocytes/macrophages within the brain. Our studies also support functional effects of GBM-released EVs following uptake into microglia, associated in part with increased miRNA levels, decreased target mRNAs, and encoded proteins, presumably as a means for the tumor to manipulate its environs. PMID:26433199
Franquesa, Marcella; Hoogduijn, Martin J.; Ripoll, Elia; Luk, Franka; Salih, Mahdi; Betjes, Michiel G. H.; Torras, Juan; Baan, Carla C.; Grinyó, Josep M.; Merino, Ana Maria
2014-01-01
The research field on extracellular vesicles (EV) has rapidly expanded in recent years due to the therapeutic potential of EV. Adipose tissue human mesenchymal stem cells (ASC) may be a suitable source for therapeutic EV. A major limitation in the field is the lack of standardization of the challenging techniques to isolate and characterize EV. The aim of our study was to incorporate new controls for the detection and quantification of EV derived from ASC and to analyze the applicability and limitations of the available techniques. ASC were cultured in medium supplemented with 5% of vesicles-free fetal bovine serum. The EV were isolated from conditioned medium by differential centrifugation with size filtration (0.2 μm). As a control, non-conditioned culture medium was used (control medium). To detect EV, electron microscopy, conventional flow cytometry, and western blot were used. The quantification of the EV was by total protein quantification, ExoELISA immunoassay, and Nanosight. Cytokines and growth factors in the EV samples were measured by multiplex bead array kit. The EV were detected by electron microscope. Total protein measurement was not useful to quantify EV as the control medium showed similar protein contents as the EV samples. The ExoELISA kits had technical troubles and it was not possible to quantify the concentration of exosomes in the samples. The use of Nanosight enabled quantification and size determination of the EV. It is, however, not possible to distinguish protein aggregates from EV with this method. The technologies for quantification and characterization of the EV need to be improved. In addition, we detected protein contaminants in the EV samples, which make it difficult to determine the real effect of EV in experimental models. It will be crucial in the future to optimize design novel methods for purification and characterization of EV. PMID:25374572
Park, Jinjoo; Shin, Chonghoon; Park, Hyeongsik; Jung, Junhee; Lee, Youn-Jung; Bong, Sungjae; Dao, Vinh Ai; Balaji, Nagarajan; Yi, Junsin
2015-03-01
We investigated thin film silicon solar cells with boron doped hydrogenated nanocrystalline silicon/ hydrogenated amorphous silicon oxide [p-type nc-Si:H/a-SiOx:H] layer. First, we researched the bandgap engineering of diborane (B2H6) doped wide bandgap hydrogenated nanocryslline silicon (p-type nc-Si:H) films, which have excellent electrical properties of high dark conductivity, and low activation energy. The films prepared with lower doping ratio and higher hydrogen dilution ratio had higher optical gap (Eg), with higher dark conductivity (σ(d)), and lower activation energy (Ea). We controlled Eg from 2.10 eV to 1.75 eV, with σ(d) from 1.1 S/cm to 7.59 x 10(-3) S/cm, and Ea from 0.040 eV to 0.128 eV. Next, we focused on the fabrication of thin film silicon solar cells. By inserting p-type nc-Si:H film into the thin film silicon solar cells, we achieved a remarkable increase in the built-in potential from 0.803 eV to 0.901 eV. By forming p-type nc-Si:H film between SnO2:F/ZnO:Al (30 nm) and p-type a-SiOx:H layer, the solar cell properties of open circuit voltage (Voc), short circuit current density (Jsc), and efficiency (η) were improved by 3.7%, 9.2%, and 9.8%, respectively.
Berardocco, Martina; Radeghieri, Annalisa; Busatto, Sara; Gallorini, Marialucia; Raggi, Chiara; Gissi, Clarissa; D'Agnano, Igea; Bergese, Paolo; Felsani, Armando; Berardi, Anna C
2017-10-10
Liver cancer (LC) is one of the most common cancers and represents the third highest cause of cancer-related deaths worldwide. Extracellular vesicle (EVs) cargoes, which are selectively enriched in RNA, offer great promise for the diagnosis, prognosis and treatment of LC. Our study analyzed the RNA cargoes of EVs derived from 4 liver-cancer cell lines: HuH7, Hep3B, HepG2 (hepato-cellular carcinoma) and HuH6 (hepatoblastoma), generating two different sets of sequencing libraries for each. One library was size-selected for small RNAs and the other targeted the whole transcriptome. Here are reported genome wide data of the expression level of coding and non-coding transcripts, microRNAs, isomiRs and snoRNAs providing the first comprehensive overview of the extracellular-vesicle RNA cargo released from LC cell lines. The EV-RNA expression profiles of the four liver cancer cell lines share a similar background, but cell-specific features clearly emerge showing the marked heterogeneity of the EV-cargo among the individual cell lines, evident both for the coding and non-coding RNA species.
Surface Glycosylation Profiles of Urine Extracellular Vesicles
Gerlach, Jared Q.; Krüger, Anja; Gallogly, Susan; Hanley, Shirley A.; Hogan, Marie C.; Ward, Christopher J.
2013-01-01
Urinary extracellular vesicles (uEVs) are released by cells throughout the nephron and contain biomolecules from their cells of origin. Although uEV-associated proteins and RNA have been studied in detail, little information exists regarding uEV glycosylation characteristics. Surface glycosylation profiling by flow cytometry and lectin microarray was applied to uEVs enriched from urine of healthy adults by ultracentrifugation and centrifugal filtration. The carbohydrate specificity of lectin microarray profiles was confirmed by competitive sugar inhibition and carbohydrate-specific enzyme hydrolysis. Glycosylation profiles of uEVs and purified Tamm Horsfall protein were compared. In both flow cytometry and lectin microarray assays, uEVs demonstrated surface binding, at low to moderate intensities, of a broad range of lectins whether prepared by ultracentrifugation or centrifugal filtration. In general, ultracentrifugation-prepared uEVs demonstrated higher lectin binding intensities than centrifugal filtration-prepared uEVs consistent with lesser amounts of co-purified non-vesicular proteins. The surface glycosylation profiles of uEVs showed little inter-individual variation and were distinct from those of Tamm Horsfall protein, which bound a limited number of lectins. In a pilot study, lectin microarray was used to compare uEVs from individuals with autosomal dominant polycystic kidney disease to those of age-matched controls. The lectin microarray profiles of polycystic kidney disease and healthy uEVs showed differences in binding intensity of 6/43 lectins. Our results reveal a complex surface glycosylation profile of uEVs that is accessible to lectin-based analysis following multiple uEV enrichment techniques, is distinct from co-purified Tamm Horsfall protein and may demonstrate disease-specific modifications. PMID:24069349
Yan, Ting; Mizutani, Akifumi; Chen, Ling; Takaki, Mai; Hiramoto, Yuki; Matsuda, Shuichi; Shigehiro, Tsukasa; Kasai, Tomonari; Kudoh, Takayuki; Murakami, Hiroshi; Masuda, Junko; Hendrix, Mary J. C.; Strizzi, Luigi; Salomon, David S.; Fu, Li; Seno, Masaharu
2014-01-01
Several studies have shown that cancer niche can perform an active role in the regulation of tumor cell maintenance and progression through extracellular vesicles-based intercellular communication. However, it has not been reported whether this vesicle-mediated communication affects the malignant transformation of normal stem cells/progenitors. We have previously reported that the conditioned medium derived from the mouse Lewis Lung Carcinoma (LLC) cell line can convert mouse induced pluripotent stem cells (miPSCs) into cancer stem cells (CSCs), indicating that normal stem cells when placed in an aberrant microenvironment can give rise to functionally active CSCs. Here, we focused on the contribution of tumor-derived extracellular vesicles (tEVs) that are secreted from LLC cells to induce the transformation of miPSCs into CSCs. We isolated tEVs from the conditioned medium of LLC cells, and then the differentiating miPSCs were exposed to tEVs for 4 weeks. The resultant tEV treated cells (miPS-LLCev) expressed Nanog and Oct3/4 proteins comparable to miPSCs. The frequency of sphere formation of the miPS-LLCev cells in suspension culture indicated that the self-renewal capacity of the miPS-LLCev cells was significant. When the miPS-LLCev cells were subcutaneously transplanted into Balb/c nude mice, malignant liposarcomas with extensive angiogenesis developed. miPS-LLCevPT and miPS-LLCevDT, the cells established from primary site and disseminated liposarcomas, respectively, showed their capacities to self-renew and differentiate into adipocytes and endothelial cells. Moreover, we confirmed the secondary liposarcoma development when these cells were transplanted. Taken together, these results indicate that miPS-LLCev cells possess CSC properties. Thus, our current study provides the first evidence that tEVs have the potential to induce CSC properties in normal tissue stem cells/progenitors. PMID:25057308
Enhancing enterovirus A71 vaccine production yield by microcarrier profusion bioreactor culture.
Liu, Chia-Chyi; Wu, Suh-Chin; Wu, Shang-Rung; Lin, Hsiao-Yu; Guo, Meng-Shin; Yung-Chih Hu, Alan; Chow, Yen-Hung; Chiang, Jen-Ron; Shieh, Dar-Bin; Chong, Pele
2018-05-24
Hand, foot and mouth diseases (HFMD) are mainly caused by Enterovirus A71 (EV-A71) infections. Clinical trials in Asia conducted with formalin-inactivated EV-A71 vaccine candidates produced from serum-free Vero cell culture using either roller bottle or cell factory technology, are found to be safe and highly efficacious. To increase vaccine yields and reduce the production costs, the bioprocess improvement for EV-A71 vaccine manufacturing is currently being investigated. The parameters that could affect and enhance the production yields of EV-A71 virus growth in the microcarrier bioreactor were investigated. The medium replacement culture strategy included a multi-harvested semi-batch process and perfusion technology and was found to increase the production yields more than 7-14 folds. Based on the western blot and cryo-EM analyses of the EV-A71 virus particles produced from either the multi-harvested semi-batch (MHSBC) or perfusion cultures were found to be similar to those virus particles obtained from the single batch culture. Mouse immunogenicity studies indicate that the EV-A71 vaccine candidates produced from the perfusion culture have similar potency to those obtained from single batch bioprocess. The physical structures of the EV-A71 particles revealed by the cryo-EM analysis were found to be spherical capsid particles. These results provide feasible technical bioprocesses for increasing virus yields and the scale up of EV-A71 vaccine manufacturing using the bioreactor cell culture methods. Copyright © 2017 Elsevier Ltd. All rights reserved.
Extracellular vesicles and their synthetic analogues in aging and age-associated brain diseases
Smith, J. A.; Leonardi, T.; Huang, B.; Iraci, N.; Vega, B.; Pluchino, S.
2015-01-01
Multicellular organisms rely upon diverse and complex intercellular communications networks for a myriad of physiological processes. Disruption of these processes is implicated in the onset and propagation of disease and disorder, including the mechanisms of senescence at both cellular and organismal levels. In recent years, secreted extracellular vesicles (EVs) have been identified as a particularly novel vector by which cell-to-cell communications are enacted. EVs actively and specifically traffic bioactive proteins, nucleic acids, and metabolites between cells at local and systemic levels, modulating cellular responses in a bidirectional manner under both homeostatic and pathological conditions. EVs are being implicated not only in the generic aging process, but also as vehicles of pathology in a number of age-related diseases, including cancer and neurodegenerative and disease. Thus, circulating EVs—or specific EV cargoes—are being utilised as putative biomarkers of disease. On the other hand, EVs, as targeted intercellular shuttles of multipotent bioactive payloads, have demonstrated promising therapeutic properties, which can potentially be modulated and enhanced through cellular engineering. Furthermore, there is considerable interest in employing nanomedicinal approaches to mimic the putative therapeutic properties of EVs by employing synthetic analogues for targeted drug delivery. Herein we describe what is known about the origin and nature of EVs and subsequently review their putative roles in biology and medicine (including the use of synthetic EV analogues), with a particular focus on their role in aging and age-related brain diseases. PMID:24973266
Liu, Shu; Hossinger, André; Göbbels, Sarah; Vorberg, Ina M
2017-03-04
Extracellular vesicles (EVs) are actively secreted, membrane-bound communication vehicles that exchange biomolecules between cells. EVs also serve as dissemination vehicles for pathogens, including prions, proteinaceous infectious agents that cause transmissible spongiform encephalopathies (TSEs) in mammals. Increasing evidence accumulates that diverse protein aggregates associated with common neurodegenerative diseases are packaged into EVs as well. Vesicle-mediated intercellular transmission of protein aggregates can induce aggregation of homotypic proteins in acceptor cells and might thereby contribute to disease progression. Our knowledge of how protein aggregates are sorted into EVs and how these vesicles adhere to and fuse with target cells is limited. Here we review how TSE prions exploit EVs for intercellular transmission and compare this to the transmission behavior of self-templating cytosolic protein aggregates derived from the yeast prion domain Sup 35 NM. Artificial NM prions are non-toxic to mammalian cell cultures and do not cause loss-of-function phenotypes. Importantly, NM particles are also secreted in association with exosomes that horizontally transmit the prion phenotype to naive bystander cells, a process that can be monitored with high accuracy by automated high throughput confocal microscopy. The high abundance of mammalian proteins with amino acid stretches compositionally similar to yeast prion domains makes the NM cell model an attractive model to study self-templating and dissemination properties of proteins with prion-like domains in the mammalian context.
Changes in the pattern of plasma extracellular vesicles after severe trauma
Kuravi, Sahithi J.; Yates, Clara M.; Foster, Mark; Hampson, Peter; Watson, Chris; Midwinter, Mark
2017-01-01
Background Extracellular vesicles (EV) released into the circulation after traumatic injury may influence complications. We thus evaluated the numbers of EV in plasma over 28 days after trauma and evaluated their pro-coagulant and inflammatory effects. Methods and findings 37 patients suffering trauma with an injury severity score >15 were studied along with 24 healthy controls. Plasma samples were isolated by double centrifugation (2000g 20min; 13000g 2min) from blood collected from within an hour up to 28 days after injury. Plasma EV were counted and sized using nanoparticle tracking analysis (NTA); counts and cellular origins were also determined by flow cytometry (FC) using cell-specific markers. Functional effects were tested in a procoagulant phospholipid assay and in flow-based, leukocyte adhesion assay after endothelial cells (EC) were treated with EV. We found that EV concentrations measured by NTA were significantly increased in trauma patients compared to healthy controls, and remained elevated over days. In addition, or FC showed that patients with trauma had higher numbers of EV derived from platelets (CD41+), leukocytes (CD45+) and endothelial EC (CD144+). The increases were evident throughout the 28-day follow-up. However, the FC count represented <1% of the count detected by NTA, and only 1–2% of EV identified using NTA had a diameter >400nm. The procoagulant phospholipid activity assay showed that patient plasma accelerated coagulation on day 1 and day 3 after trauma, with coagulation times correlated with EV counts. Furthermore, treatment of EC for 24 hours with plasma containing EV tended to increase the recruitment of peripheral flowing blood mononuclear cells. Conclusions EV counted by FC represent a small sub-population of the total load detected by NTA. Both methods however indicate a significant increase in plasma EV after severe traumatic injury that have pro-coagulant and pro-inflammatory effects that may influence outcomes. PMID:28837705
Shchurova, L Yu; Kulbachinskii, V A
2011-03-01
We investigate energy levels, thermodynamic, transport and magnetotransport properties of holes in GaAs structure with quantum well InGaAs delta-doped by C and Mn. We present self-consistent calculations for energy levels in the quantum well for different degrees of ionization of Mn impurity. The magnetoresistance of holes in the quantum well is calculated. We explain observed negative magnetoresistance by the reduction of spin-flip scattering on magnetic ions due to aligning of spins with magnetic field.
Polarization-dependent Rabi oscillations in single InGaAs quantum dots
NASA Astrophysics Data System (ADS)
Besombes, L.; Baumberg, J. J.; Motohisa, J.
2004-04-01
Measurements of optical Rabi oscillations in the excited states of individual InGaAs are presented. Under pulsed resonant excitation we observe Rabi oscillations with increasing pulse area, which are damped after the first maximum and minimum. We show that the observed damping comes from an additional non-resonant generation of carriers in the quantum dot. The observation of Rabi oscillations provides an efficient way of directly measuring the excitonic transitions' dipole moments. A polarization anisotropy of the dipole moment is resolved in some of the quantum dots.
Large-format InGaAs focal plane arrays for SWIR imaging
NASA Astrophysics Data System (ADS)
Hood, Andrew D.; MacDougal, Michael H.; Manzo, Juan; Follman, David; Geske, Jonathan C.
2012-06-01
FLIR Electro Optical Components will present our latest developments in large InGaAs focal plane arrays, which are used for low light level imaging in the short wavelength infrared (SWIR) regime. FLIR will present imaging from their latest small pitch (15 μm) focal plane arrays in VGA and High Definition (HD) formats. FLIR will present characterization of the FPA including dark current measurements as well as the use of correlated double sampling to reduce read noise. FLIR will show imagery as well as FPA-level characterization data.
Limits to Maximum Absorption Length in Waveguide Photodiodes
2011-04-13
InGaAsP to InGaAs graded layer (35 nm), a very thin undoped InGaAs absorber layer (20 nm), a p- InP cla~din~ layer (1 J.Lm, Zn = 1x1018 em·\\ a p- InP ...expected excess opticall_oss results from non-ideal coupling, excess waveguide scattering, Zn diffusion from the p-doped InP , larger than...waveguide scattering, Zn diffusion from the p-doped InP , n-doped region absorption, or a combination of the above. The SCOWPD has demonst:r:ated an
Laurén, Eva; Tigistu-Sahle, Feven; Valkonen, Sami; Westberg, Melissa; Valkeajärvi, Anne; Eronen, Juha; Siljander, Pia; Pettilä, Ville; Käkelä, Reijo; Laitinen, Saara; Kerkelä, Erja
2018-01-01
Red blood cells (RBCs) are stored up to 35-42days at 2-6°C in blood banks. During storage, the RBC membrane is challenged by energy depletion, decreasing pH, altered cation homeostasis, and oxidative stress, leading to several biochemical and morphological changes in RBCs and to shedding of extracellular vesicles (EVs) into the storage medium. These changes are collectively known as RBC storage lesions. EVs accumulate in stored RBC concentrates and are, thus, transfused into patients. The potency of EVs as bioactive effectors is largely acknowledged, and EVs in RBC concentrates are suspected to mediate some adverse effects of transfusion. Several studies have shown accumulation of lipid raft-associated proteins in RBC EVs during storage, whereas a comprehensive phospholipidomic study on RBCs and corresponding EVs during the clinical storage period is lacking. Our mass spectrometric and chromatographic study shows that RBCs maintain their major phospholipid (PL) content well during storage despite abundant vesiculation. The phospholipidomes were largely similar between RBCs and EVs. No accumulation of raft lipids in EVs was seen, suggesting that the primary mechanism of RBC vesiculation during storage might not be raft -based. Nonetheless, a slight tendency of EV PLs for shorter acyl chains was observed. Copyright © 2017 Elsevier B.V. All rights reserved.
Kervadec, Anaïs; Bellamy, Valérie; El Harane, Nadia; Arakélian, Lousineh; Vanneaux, Valérie; Cacciapuoti, Isabelle; Nemetalla, Hany; Périer, Marie-Cécile; Toeg, Hadi D; Richart, Adèle; Lemitre, Mathilde; Yin, Min; Loyer, Xavier; Larghero, Jérôme; Hagège, Albert; Ruel, Marc; Boulanger, Chantal M; Silvestre, Jean-Sébastien; Menasché, Philippe; Renault, Nisa K E
2016-06-01
Cell-based therapies are being explored as a therapeutic option for patients with chronic heart failure following myocardial infarction. Extracellular vesicles (EV), including exosomes and microparticles, secreted by transplanted cells may orchestrate their paracrine therapeutic effects. We assessed whether post-infarction administration of EV released by human embryonic stem cell-derived cardiovascular progenitors (hESC-Pg) can provide equivalent benefits to administered hESC-Pg and whether hESC-Pg and EV treatments activate similar endogenous pathways. Mice underwent surgical occlusion of their left coronary arteries. After 2-3 weeks, 95 mice included in the study were treated with hESC-Pg, EV, or Minimal Essential Medium Alpha Medium (alpha-MEM; vehicle control) delivered by percutaneous injections under echocardiographic guidance into the peri-infarct myocardium. functional and histologic end-points were blindly assessed 6 weeks later, and hearts were processed for gene profiling. Genes differentially expressed between control hearts and hESC-Pg-treated and EV-treated hearts were clustered into functionally relevant pathways. At 6 weeks after hESC-Pg administration, treated mice had significantly reduced left ventricular end-systolic (-4.20 ± 0.96 µl or -7.5%, p = 0.0007) and end-diastolic (-4.48 ± 1.47 µl or -4.4%, p = 0.009) volumes compared with baseline values despite the absence of any transplanted hESC-Pg or human embryonic stem cell-derived cardiomyocytes in the treated mouse hearts. Equal benefits were seen with the injection of hESC-Pg-derived EV, whereas animals injected with alpha-MEM (vehicle control) did not improve significantly. Histologic examination suggested a slight reduction in infarct size in hESC-Pg-treated animals and EV-treated animals compared with alpha-MEM-treated control animals. In the hESC-Pg-treated and EV-treated groups, heart gene profiling identified 927 genes that were similarly upregulated compared with the control group. Among the 49 enriched pathways associated with these up-regulated genes that could be related to cardiac function or regeneration, 78% were predicted to improve cardiac function through increased cell survival and/or proliferation or DNA repair as well as pathways related to decreased fibrosis and heart failure. In this post-infarct heart failure model, either hESC-Pg or their secreted EV enhance recovery of cardiac function and similarly affect cardiac gene expression patterns that could be related to this recovery. Although the mechanisms by which EV improve cardiac function remain to be determined, these results support the idea that a paracrine mechanism is sufficient to effect functional recovery in cell-based therapies for post-infarction-related chronic heart failure. Copyright © 2016 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.
Chi, Jing; He, Yaqing; Yu, Guangqing; Lei, Lei
2016-03-01
To investigate the expression of Toll-like receptor (TLR) mRNA in enterovirus 71(EV-A71) infected human Jurkat T cells and clarify the role of TLRs in the pathogenesis of EV-A71 infection-induced inflammation. EV-A71 strains were isolated from feces of children patients with hand, foot and mouth disease in 2014 by Shenzhen Center for Disease Control and Prevention. Human Jurkat T cells were infected with 200 μl EV-A71 at 10(3) cell culture infective dose 50%(CCID50)/ml. The expression of TLR1-TLR10 mRNA in human Jurkat T cells was assessed at different exposure time by RT-PCR. Levels of TLR7 mRNA expression were detected by real-time PCR, and levels of myeloid differentiation factor 88 (MyD88) by western blot. The cytokine secretion of interleukin (IL)-6, IL-8 and Tumor Necrosis Factor α (TNF-α) was analyzed by ELISA assay. The relative expression level of TLR7 mRNA in human Jurkat T cells were 1.26 ± 0.15, 1.75 ± 0.20, 2.26 ± 0.23 and 3.74 ± 0.62 in 6, 12, 24 and 48 h after EV-A71 infection, which the differences were significant with mock-infected group(t values were -2.96, -6.38, -9.57, -7.71; P<0.05). Western blot showed that the protein expression levels of MyD88 had increased 1.34 times and 2.17 times in 24 h and 48 h after EV-A71 infection compared with mock-infected group. After infected for 24 h and 48 h, the levels of IL-6 were (302.86 ± 38.11), (179.70 ± 14.50) pg/ml, which were significantly higher than mock-infected group (176.42 ± 9.60), (179.70 ± 14.50) pg/ml (t values were -5.57, -18.54, P<0.05). The levels of TNF-α in EV-A71 infected group (100.81 ± 9.81) pg/ml was higher than that in mock-infected group (56.19 ± 6.94) pg/ml, and the difference was significant (t=-6.43, P=0.003). TLR7 is the main pattern recognition receptor responsible for EV-A71 recognition in immune cells, which then leads to the activation of TLR7 downstream signaling and the production of proinflammatory cytokines.
Hao, Bo; Gao, Di; Tang, Da-Wei; Wang, Xiao-Guang; Liu, Shui-Ping; Kong, Xiao-Ping; Liu, Chao; Huang, Jing-Lu; Bi, Qi-Ming; Quan, Li; Luo, Bin
2012-04-01
To explore the mechanism that how human enterovirus 71 (EV71) invades the brainstem and how intercellular adhesion molecules-1 (ICAM-1) participates by analyzing the expression and distribution of human EV71, and ICAM-1 in brainstem of infants with brain stem encephalitis. Twenty-two brainstem of infants with brain stem encephalitis were collected as the experimental group and 10 brainstems of fatal congenital heart disease were selected as the control group. The sections with perivascular cuffings were selected to observe EV71-VP1 expression by immunohistochemistry method and ICAM-1 expression was detected for the sections with EV71-VP1 positive expression. The staining image analysis and statistics analysis were performed. The experiment and control groups were compared. (1) EV71-VP1 positive cells in the experimental group were mainly astrocytes in brainstem with nigger-brown particles, and the control group was negative. (2) ICAM-1 positive cells showed nigger-brown. The expression in inflammatory cells (around blood vessels of brain stem and in glial nodules) and gliocytes increased. The results showed statistical difference comparing with control group (P < 0.05). The brainstem encephalitis can be used to diagnose fatal EV71 infection in infants. EV71 can invade the brainstem via hematogenous route. ICAM-1 may play an important role in the pathogenic process.
Yuan, Xiaodong; Li, Dawei; Chen, Xiaosong; Han, Conghui; Xu, Longmei; Huang, Tao; Dong, Zhen; Zhang, Ming
2017-12-11
Renal ischemia-reperfusion is a main cause of acute kidney injury (AKI), which is associated with high mortality. Here we show that extracellular vesicles (EVs) secreted from hiPSC-MSCs play a critical role in protection against renal I/R injury. hiPSC-MSCs-EVs can fuse with renal cells and deliver SP1 into target cells, subsequently active SK1 expression and increase S1P formation. Chromatin immunoprecipitation (ChIP) analyses and luciferase assay were used to confirm SP1 binds directly to the SK1 promoter region and promote promoter activity. Moreover, SP1 inhibition (MIT) or SK1 inhibition (SKI-II) completely abolished the renal protective effect of hiPSC-MSCs-EVs in rat I/R injury mode. However, pre-treatment of necroptosis inhibitor Nec-1 showed no difference with the administration of hiPSC-MSCs-EVs only. We then generated an SP1 knockout hiPSC-MSC cell line by CRISPR/Cas9 system and found that SP1 knockout failed to show the protective effect of hiPSC-MSCs-EVs unless restoring the level of SP1 by Ad-SP1 in vitro and in vivo. In conclusion, this study describes an anti-necroptosis effect of hiPSC-MSCs-EVs against renal I/R injury via delivering SP1 into target renal cells and intracellular activating the expression of SK1 and the generation of S1P. These findings suggest a novel mechanism for renal protection against I/R injury, and indicate a potential therapeutic approach for a variety of renal diseases and renal transplantation.
HSP-enriched properties of extracellular vesicles involve survival of metastatic oral cancer cells.
Ono, Kisho; Eguchi, Takanori; Sogawa, Chiharu; Calderwood, Stuart K; Futagawa, Junya; Kasai, Tomonari; Seno, Masaharu; Okamoto, Kuniaki; Sasaki, Akira; Kozaki, Ken-Ichi
2018-05-16
Cancer cells often secrete extracellular vesicles (EVs) that carry heat shock proteins (HSPs) with roles in tumor progression. Oral squamous cell carcinoma (OSCC) belongs to head and neck cancers (HNC) whose lymph-node-metastases often lead to poor prognosis. We have examined the EV proteome of OSCC cells and found abundant secretion of HSP90-enriched EVs in lymph-node-metastatic OSCC cells. Double knockdown of HSP90α and HSP90β, using small interfering RNA significantly reduced the survival of the metastatic OSCC cells, although single knockdown of each HSP90 was ineffective. Elevated expression of these HSP90 family members was found to correlate with poor prognosis of HNC cases. Thus, elevated HSP90 levels in secreted vesicles are potential prognostic biomarkers and therapeutic targets in metastatic OSCC. © 2018 Wiley Periodicals, Inc.
Enterovirus 71 induces anti-viral stress granule-like structures in RD cells.
Zhu, Yuanmei; Wang, Bei; Huang, He; Zhao, Zhendong
2016-08-05
Stress granules (SGs) are dynamic cytoplasmic granules formed in response to a variety of stresses, including viral infection. Several viruses can modulate the formation of SG with different effects, but the relationship between SG formation and EV71 infection is poorly understood. In this study, we report that EV71 inhibits canonical SGs formation in infected cells and induces the formation of novel RNA granules that were distinguished from canonical SGs in composition and morphology, which we termed 'SG like structures'. Our results also demonstrated that EV71 triggered formation of SG-like structures is dependent on PKR and eIF2α phosphorylation and requires ongoing cellular mRNA synthesis. Finally, we found that SG-like structures are antiviral RNA granules that promote cellular apoptosis and suppress EV71 propagation. Taken together, our findings explain the formation mechanism of SG-like structures induced by EV71 and shed light on virus-host interaction and molecular mechanism underlying EV71 pathogenesis. Copyright © 2016. Published by Elsevier Inc.
Spitting out the demons: Extracellular vesicles in glioblastoma.
André-Grégoire, Gwennan; Gavard, Julie
2017-03-04
Discovered decades ago, extracellular vesicles (EVs) emerge as dedicated organelles, able to deliver protected, specific cellular cues throughout the organism. While virtually every cell can release EVs, cancer cells co-opted this feature and efficiently unleashed them both in the tumor microenvironment and toward healthy tissues. This might contribute to tumor aggressiveness and spreading. Cancer-derived EVs that contain DNA, mRNA, miRNA, and packed and transmembrane proteins can operate locally or at distance. This review will focus on the high-grade brain tumor (i.e. glioblastoma)-derived EVs, discussing recent reports on i) their phenotype and content, ii) their putative functions, and iii) their clinical potential for improving diagnosis and therapeutics.
Collino, Federica; Pomatto, Margherita; Bruno, Stefania; Lindoso, Rafael Soares; Tapparo, Marta; Sicheng, Wen; Quesenberry, Peter; Camussi, Giovanni
2017-04-01
Several studies have suggested that extracellular vesicles (EVs) released from mesenchymal stem cells (MSCs) may mediate MSC paracrine action on kidney regeneration. This activity has been, at least in part, ascribed to the transfer of proteins/transcription factors and different RNA species. Information on the RNA/protein content of different MSC EV subpopulations and the correlation with their biological activity is currently incomplete. The aim of this study was to evaluate the molecular composition and the functional properties on renal target cells of MSC EV sub-populations separated by gradient floatation. The results demonstrated heterogeneity in quantity and composition of MSC EVs. Two peaks of diameter were observed (90-110 and 170-190 nm). The distribution of exosomal markers and miRNAs evaluated in the twelve gradient fractions showed an enrichment in fractions with a flotation density of 1.08-1.14 g/mL. Based on this observation, we evaluated the biological activity on renal cell proliferation and apoptosis resistance of low (CF1), medium (CF2) and high (CF3) floatation density fractions. EVs derived from all fractions, were internalized by renal cells, CF1 and CF2 but not CF3 fraction stimulated significant cell proliferation. CF2 also inhibited apoptosis on renal tubular cells submitted to ischemia-reperfusion injury. Comparative miRNomic and proteomic profiles reveal a cluster of miRNAs and proteins common to all three fractions and an enrichment of selected molecules related to renal regeneration in CF2 fraction. In conclusion, the CF2 fraction enriched in exosomal markers was the most active on renal tubular cell proliferation and protection from apoptosis.
van Herwijnen, Martijn J.C.; Zonneveld, Marijke I.; Goerdayal, Soenita; Nolte – 't Hoen, Esther N.M.; Garssen, Johan; Stahl, Bernd; Maarten Altelaar, A.F.; Redegeld, Frank A.; Wauben, Marca H.M.
2016-01-01
Breast milk contains several macromolecular components with distinctive functions, whereby milk fat globules and casein micelles mainly provide nutrition to the newborn, and whey contains molecules that can stimulate the newborn's developing immune system and gastrointestinal tract. Although extracellular vesicles (EV) have been identified in breast milk, their physiological function and composition has not been addressed in detail. EV are submicron sized vehicles released by cells for intercellular communication via selectively incorporated lipids, nucleic acids, and proteins. Because of the difficulty in separating EV from other milk components, an in-depth analysis of the proteome of human milk-derived EV is lacking. In this study, an extensive LC-MS/MS proteomic analysis was performed of EV that had been purified from breast milk of seven individual donors using a recently established, optimized density-gradient-based EV isolation protocol. A total of 1963 proteins were identified in milk-derived EV, including EV-associated proteins like CD9, Annexin A5, and Flotillin-1, with a remarkable overlap between the different donors. Interestingly, 198 of the identified proteins are not present in the human EV database Vesiclepedia, indicating that milk-derived EV harbor proteins not yet identified in EV of different origin. Similarly, the proteome of milk-derived EV was compared with that of other milk components. For this, data from 38 published milk proteomic studies were combined in order to construct the total milk proteome, which consists of 2698 unique proteins. Remarkably, 633 proteins identified in milk-derived EV have not yet been identified in human milk to date. Interestingly, these novel proteins include proteins involved in regulation of cell growth and controlling inflammatory signaling pathways, suggesting that milk-derived EVs could support the newborn's developing gastrointestinal tract and immune system. Overall, this study provides an expansion of the whole milk proteome and illustrates that milk-derived EV are macromolecular components with a unique functional proteome. PMID:27601599
Kouass Sahbani, S; Cloutier, P; Bass, A D; Hunting, D J; Sanche, L
2015-10-01
Transient negative ions (TNIs) are ubiquitous in electron-molecule scattering at low electron impact energies (0-20 eV) and are particularly effective in damaging large biomolecules. Because ionizing radiation generates mostly 0-20 eV electrons, TNIs are expected to play important roles in cell mutagenesis and death during radiotherapeutic cancer treatment, although this hypothesis has never been directly verified. Here, we measure the efficiency of transforming E. coli bacteria by inserting into the cells, pGEM-3ZfL(-) plasmid DNA that confers resistance to the antibiotic ampicillin. Before transformation, plasmids are irradiated with electrons of specific energies between 0.5 and 18 eV. The loss of transformation efficiency plotted as a function of irradiation energy reveals TNIs at 5.5 and 9.5 eV, corresponding to similar states observed in the yields of DNA double strand breaks. We show that TNIs are detectable in the electron-energy dependence of a biological process and can decrease cell viability.
Si-Ge-Sn alloys with 1.0 eV gap for CPV multijunction solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roucka, Radek, E-mail: radek@translucentinc.com; Clark, Andrew; Landini, Barbara
2015-09-28
Si-Ge-Sn ternary group IV alloys offer an alternative to currently used 1.0 eV gap materials utilized in multijunction solar cells. The advantage of Si-Ge-Sn is the ability to vary both the bandgap and lattice parameter independently. We present current development in fabrication of Si-Ge-Sn alloys with gaps in the 1.0 eV range. Produced material exhibits excellent structural properties, which allow for integration with existing III-V photovoltaic cell concepts. Time dependent room temperature photoluminescence data demonstrate that these materials have long carrier lifetimes. Absorption tunable by compositional changes is observed. As a prototype device set utilizing the 1 eV Si-Ge-Sn junction,more » single junction Si-Ge-Sn device and triple junction device with Si-Ge-Sn subcell have been fabricated. The resulting I-V and external quantum efficiency data show that the Si-Ge-Sn junction is fully functional and the performance is comparable to other 1.0 eV gap materials currently used.« less
Simulation of lithium ion battery replacement in a battery pack for application in electric vehicles
NASA Astrophysics Data System (ADS)
Mathew, M.; Kong, Q. H.; McGrory, J.; Fowler, M.
2017-05-01
The design and optimization of the battery pack in an electric vehicle (EV) is essential for continued integration of EVs into the global market. Reconfigurable battery packs are of significant interest lately as they allow for damaged cells to be removed from the circuit, limiting their impact on the entire pack. This paper provides a simulation framework that models a battery pack and examines the effect of replacing damaged cells with new ones. The cells within the battery pack vary stochastically and the performance of the entire pack is evaluated under different conditions. The results show that by changing out cells in the battery pack, the state of health of the pack can be consistently maintained above a certain threshold value selected by the user. In situations where the cells are checked for replacement at discrete intervals, referred to as maintenance event intervals, it is found that the length of the interval is dependent on the mean time to failure of the individual cells. The simulation framework as well as the results from this paper can be utilized to better optimize lithium ion battery pack design in EVs and make long term deployment of EVs more economically feasible.
Berardocco, Martina; Radeghieri, Annalisa; Busatto, Sara; Gallorini, Marialucia; Raggi, Chiara; Gissi, Clarissa; D’Agnano, Igea; Bergese, Paolo; Felsani, Armando; Berardi, Anna C.
2017-01-01
Liver cancer (LC) is one of the most common cancers and represents the third highest cause of cancer-related deaths worldwide. Extracellular vesicle (EVs) cargoes, which are selectively enriched in RNA, offer great promise for the diagnosis, prognosis and treatment of LC. Our study analyzed the RNA cargoes of EVs derived from 4 liver-cancer cell lines: HuH7, Hep3B, HepG2 (hepato-cellular carcinoma) and HuH6 (hepatoblastoma), generating two different sets of sequencing libraries for each. One library was size-selected for small RNAs and the other targeted the whole transcriptome. Here are reported genome wide data of the expression level of coding and non-coding transcripts, microRNAs, isomiRs and snoRNAs providing the first comprehensive overview of the extracellular-vesicle RNA cargo released from LC cell lines. The EV-RNA expression profiles of the four liver cancer cell lines share a similar background, but cell-specific features clearly emerge showing the marked heterogeneity of the EV-cargo among the individual cell lines, evident both for the coding and non-coding RNA species. PMID:29137313
NASA Astrophysics Data System (ADS)
Salas, R.; Guchhait, S.; Sifferman, S. D.; McNicholas, K. M.; Dasika, V. D.; Jung, D.; Krivoy, E. M.; Lee, M. L.; Bank, S. R.
2017-09-01
We report the effects of the growth rate on the properties of iii-v nanocomposites containing rare-earth-monopnictide nanoparticles. In particular, the beneficial effects of surfactant-assisted growth of LuAs:In0.53Ga0.47As nanocomposites were found to be most profound at reduced LuAs growth rates. Substantial enhancement in the electrical and optical properties that are beneficial for ultrafast photoconductors was observed and is attributed to the higher structural quality of the InGaAs matrix in this new growth regime. The combined enhancements enabled a >50% increase in the amount of LuAs that could be grown without degrading the quality of the InGaAs overgrowth. Dark resistivity increased by ˜25× while maintaining carrier mobilities over 3000 cm2/V s; carrier lifetimes were reduced by >2×, even at high depositions of LuAs. The combined growth rate and surfactant enhancements offer a previously unexplored regime to enable high-performance fast photoconductors that may be integrated with telecom components for compact, broadly tunable, heterodyne THz source and detectors.
NASA Astrophysics Data System (ADS)
Hoke, W. E.; Lyman, P. S.; Mosca, J. J.; McTaggart, R. A.; Lemonias, P. J.; Beaudoin, R. M.; Torabi, A.; Bonner, W. A.; Lent, B.; Chou, L.-J.; Hsieh, K. C.
1997-10-01
Double pulse doped AlGaAs/InGaAs/AlGaAs pseudomorphic high electron mobility transistor (PHEMT) structures have been grown on InxGa1-xAs (x=0.025-0.07) substrates using molecular beam epitaxy. A strain compensated, AlGaInAs/GaAs superlattice was used for improved resistivity and breakdown. Excellent electrical and optical properties were obtained for 110-Å-thick InGaAs channel layers with indium concentrations up to 31%. A room temperature mobility of 6860 cm2/V s with 77 K sheet density of 4.0×1012cm-2 was achieved. The InGaAs channel photoluminescence intensity was equivalent to an analogous structure on a GaAs substrate. To reduce strain PHEMT structures with a composite InGaP/AlGaAs Schottky layer were also grown. The structures also exhibited excellent electrical and optical properties. Transmission electron micrographs showed planar channel interfaces for highly strained In0.30Ga0.70As channel layers.
Saha, Banishree; Momen-Heravi, Fatemeh; Furi, Istvan; Kodys, Karen; Catalano, Donna; Gangopadhyay, Anwesha; Haraszti, Reka; Satishchandran, Abhishek; Iracheta-Vellve, Arvin; Adejumo, Adeyinka; Shaffer, Scott A; Szabo, Gyongyi
2018-05-01
A salient feature of alcoholic liver disease (ALD) is Kupffer cell (KC) activation and recruitment of inflammatory monocytes and macrophages (MØs). These key cellular events of ALD pathogenesis may be mediated by extracellular vesicles (EVs). EVs transfer biomaterials, including proteins and microRNAs, and have recently emerged as important effectors of intercellular communication. We hypothesized that circulating EVs from mice with ALD have a protein cargo characteristic of the disease and mediate biological effects by activating immune cells. The total number of circulating EVs was increased in mice with ALD compared to pair-fed controls. Mass spectrometric analysis of circulating EVs revealed a distinct signature for proteins involved in inflammatory responses, cellular development, and cellular movement between ALD EVs and control EVs. We also identified uniquely important proteins in ALD EVs that were not present in control EVs. When ALD EVs were injected intravenously into alcohol-naive mice, we found evidence of uptake of ALD EVs in recipient livers in hepatocytes and MØs. Hepatocytes isolated from mice after transfer of ALD EVs, but not control EVs, showed increased monocyte chemoattractant protein 1 mRNA and protein expression, suggesting a biological effect of ALD EVs. Compared to control EV recipient mice, ALD EV recipient mice had increased numbers of F4/80 hi cluster of differentiation 11b (CD11b) lo KCs and increased percentages of tumor necrosis factor alpha-positive/interleukin 12/23-positive (inflammatory/M1) KCs and infiltrating monocytes (F4/80 int CD11b hi ), while the percentage of CD206 + CD163 + (anti-inflammatory/M2) KCs was decreased. In vitro, ALD EVs increased tumor necrosis factor alpha and interleukin-1β production in MØs and reduced CD163 and CD206 expression. We identified heat shock protein 90 in ALD EVs as the mediator of ALD-EV-induced MØ activation. Our study indicates a specific protein signature of ALD EVs and demonstrates a functional role of circulating EVs containing heat shock protein 90 in mediating KC/MØ activation in the liver. (Hepatology 2018;67:1986-2000). © 2017 by the American Association for the Study of Liver Diseases.
NASA Astrophysics Data System (ADS)
Li, Xiaohan; Dasika, Vaishno D.; Li, Ping-Chun; Ji, Li; Bank, Seth R.; Yu, Edward T.
2014-09-01
The use of InGaAs quantum wells with composition graded across the intrinsic region to increase open-circuit voltage in p-i-n GaAs/InGaAs quantum well solar cells is demonstrated and analyzed. By engineering the band-edge energy profile to reduce photo-generated carrier concentration in the quantum wells at high forward bias, simultaneous increases in both open-circuit voltage and short-circuit current density are achieved, compared to those for a structure with the same average In concentration, but constant rather than graded quantum well composition across the intrinsic region. This approach is combined with light trapping to further increase short-circuit current density.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baltazar, Ludmila Matos; Zamith-Miranda, Daniel; Burnet, Meagan C.
Here, diverse pathogenic fungi secrete extracellular vesicles (EV) that contain macromolecules, including virulence factors that can modulate the host immune response. We recently demonstrated that the binding of monoclonal antibodies (mAb) modulates how Histoplasma capsulatum load and releases its extracellular vesicles (EV). In the present paper, we addressed a concentration-dependent impact on the fungus’ EV loading and release with different mAb, as well as the pathophysiological role of these EV during the host-pathogen interaction. We found that the mAbs differentially regulate EV content in concentration-dependent and independent manners. Enzymatic assays demonstrated that laccase activity in EV from H. capsulatum opsonizedmore » with 6B7 was reduced, but urease activity was not altered. The uptake of H. capsulatum by macrophages pre-treated with EV, presented an antibody concentration-dependent phenotype. The intracellular killing of yeast cells was potently inhibited in macrophages pre-treated with EV from 7B6 (non-protective) mAb-opsonized H. capsulatum and this inhibition was associated with a decrease in the reactive-oxygen species generated by these macrophages. In summary, our findings show that opsonization quantitatively and qualitatively modifies H. capsulatum EV load and secretion leading to distinct effects on the host’s immune effector mechanisms, supporting the hypothesis that EV sorting and secretion are dynamic mechanisms for a fine-tuned response by fungal cells.« less
Baltazar, Ludmila Matos; Zamith-Miranda, Daniel; Burnet, Meagan C.; ...
2018-05-23
Here, diverse pathogenic fungi secrete extracellular vesicles (EV) that contain macromolecules, including virulence factors that can modulate the host immune response. We recently demonstrated that the binding of monoclonal antibodies (mAb) modulates how Histoplasma capsulatum load and releases its extracellular vesicles (EV). In the present paper, we addressed a concentration-dependent impact on the fungus’ EV loading and release with different mAb, as well as the pathophysiological role of these EV during the host-pathogen interaction. We found that the mAbs differentially regulate EV content in concentration-dependent and independent manners. Enzymatic assays demonstrated that laccase activity in EV from H. capsulatum opsonizedmore » with 6B7 was reduced, but urease activity was not altered. The uptake of H. capsulatum by macrophages pre-treated with EV, presented an antibody concentration-dependent phenotype. The intracellular killing of yeast cells was potently inhibited in macrophages pre-treated with EV from 7B6 (non-protective) mAb-opsonized H. capsulatum and this inhibition was associated with a decrease in the reactive-oxygen species generated by these macrophages. In summary, our findings show that opsonization quantitatively and qualitatively modifies H. capsulatum EV load and secretion leading to distinct effects on the host’s immune effector mechanisms, supporting the hypothesis that EV sorting and secretion are dynamic mechanisms for a fine-tuned response by fungal cells.« less
Evidence-Based Clinical Use of Nanoscale Extracellular Vesicles in Nanomedicine.
Fais, Stefano; O'Driscoll, Lorraine; Borras, Francesc E; Buzas, Edit; Camussi, Giovanni; Cappello, Francesco; Carvalho, Joana; Cordeiro da Silva, Anabela; Del Portillo, Hernando; El Andaloussi, Samir; Ficko Trček, Tanja; Furlan, Roberto; Hendrix, An; Gursel, Ihsan; Kralj-Iglic, Veronika; Kaeffer, Bertrand; Kosanovic, Maja; Lekka, Marilena E; Lipps, Georg; Logozzi, Mariantonia; Marcilla, Antonio; Sammar, Marei; Llorente, Alicia; Nazarenko, Irina; Oliveira, Carla; Pocsfalvi, Gabriella; Rajendran, Lawrence; Raposo, Graça; Rohde, Eva; Siljander, Pia; van Niel, Guillaume; Vasconcelos, M Helena; Yáñez-Mó, María; Yliperttula, Marjo L; Zarovni, Natasa; Zavec, Apolonija Bedina; Giebel, Bernd
2016-04-26
Recent research has demonstrated that all body fluids assessed contain substantial amounts of vesicles that range in size from 30 to 1000 nm and that are surrounded by phospholipid membranes containing different membrane microdomains such as lipid rafts and caveolae. The most prominent representatives of these so-called extracellular vesicles (EVs) are nanosized exosomes (70-150 nm), which are derivatives of the endosomal system, and microvesicles (100-1000 nm), which are produced by outward budding of the plasma membrane. Nanosized EVs are released by almost all cell types and mediate targeted intercellular communication under physiological and pathophysiological conditions. Containing cell-type-specific signatures, EVs have been proposed as biomarkers in a variety of diseases. Furthermore, according to their physical functions, EVs of selected cell types have been used as therapeutic agents in immune therapy, vaccination trials, regenerative medicine, and drug delivery. Undoubtedly, the rapidly emerging field of basic and applied EV research will significantly influence the biomedicinal landscape in the future. In this Perspective, we, a network of European scientists from clinical, academic, and industry settings collaborating through the H2020 European Cooperation in Science and Technology (COST) program European Network on Microvesicles and Exosomes in Health and Disease (ME-HAD), demonstrate the high potential of nanosized EVs for both diagnostic and therapeutic (i.e., theranostic) areas of nanomedicine.
Mechanism for degradation of Nafion in PEM fuel cells from quantum mechanics calculations.
Yu, Ted H; Sha, Yao; Liu, Wei-Guang; Merinov, Boris V; Shirvanian, Pezhman; Goddard, William A
2011-12-14
We report results of quantum mechanics (QM) mechanistic studies of Nafion membrane degradation in a polymer electrolyte membrane (PEM) fuel cell. Experiments suggest that Nafion degradation is caused by generation of trace radical species (such as OH(●), H(●)) only when in the presence of H(2), O(2), and Pt. We use density functional theory (DFT) to construct the potential energy surfaces for various plausible reactions involving intermediates that might be formed when Nafion is exposed to H(2) (or H(+)) and O(2) in the presence of the Pt catalyst. We find a barrier of 0.53 eV for OH radical formation from HOOH chemisorbed on Pt(111) and of 0.76 eV from chemisorbed OOH(ad), suggesting that OH might be present during the ORR, particularly when the fuel cell is turned on and off. Based on the QM, we propose two chemical mechanisms for OH radical attack on the Nafion polymer: (1) OH attack on the S-C bond to form H(2)SO(4) plus a carbon radical (barrier: 0.96 eV) followed by decomposition of the carbon radical to form an epoxide (barrier: 1.40 eV). (2) OH attack on H(2) crossover gas to form hydrogen radical (barrier: 0.04 eV), which subsequently attacks a C-F bond to form HF plus carbon radicals (barrier as low as 1.00 eV). This carbon radical can then decompose to form a ketone plus a carbon radical with a barrier of 0.86 eV. The products (HF, OCF(2), SCF(2)) of these proposed mechanisms have all been observed by F NMR in the fuel cell exit gases along with the decrease in pH expected from our mechanism. © 2011 American Chemical Society
Seghatchian, Jerard; Amiral, Jean
2016-08-01
Blood cells generate heterogeneous populations of vesicles that are delivered, as small-specialized packages of highly active cell fragments in blood circulation, having almost similar functional activities, as the mother cells. These so called extracellular vesicles are the essential part of an energy-dependent natural apoptotic process; hence their beneficial and harmful biological functions cannot be ignored. Evidence is accumulating, that cellular derived vesicles, originate from all viable cells including: megakaryocytes, platelets, red blood cells, white blood cells and endothelial cells, the highest in proportions from platelets. Shedding can also be triggered by pathological activation of inflammatory processes and activation of coagulation or complement pathways, or even by shear stress in the circulation. Structurally, so called MV/EV appear to be, sometimes inside-out and sometimes outside-in cell fragments having a bilayered phospholipid structure exposing coagulant-active phosphatidylserine, expressing various membrane receptors, and they serve as cell-to-cell shuttles for bioactive molecules such as lipids, growth factors, microRNAs, and mitochondria. Ex vivo processing of blood into its components, embodying centrifugation, processing by various apheresis procedures, leukoreduction, pathogen reduction, and finally storage in different media and different types of blood bags, also have major impacts on the generation and retention of MV content. These artificially generated small, but highly liable packages, together with the original pool of MVs collected from the donor, do exhibit differing biological activities, and are not inert elements and should be considered as a parameter of blood safety in haemovigilance programmes. Harmonization and consensus in sampling protocols, sample handling, processing, and assessment methods, in particular converting to full automation, are needed to achieve consensual interpretations. This review focuses on some of our past personal studies on the role of MV/EV focusing on characterization of platelet storage lesion and platelet therapy that shows the highest transfusion hazards [up to 25%], and loss of 25% platelet efficacy after various leukoreduction and validated platelet pathogen reduction treatments. The planned paths for the future of EV/MV involvement in immunological and viral/ non-viral transfusion hazards are also discussed. Whilst considerable advances made on the characterization of EV/MV, but disparity still exists between various surrogate markers, showing some subtle differences in the levels of MV/ EV & BRMs in platelet preparations, and the clinical outcome showing platelets derived by all current technologies are equivalents in vivo. One possible reason for such a disparity may be relatedto the fact that MVs, being the end products of apoptotic cells, have little specificity and clear rapidly from circulation [<6 h in thrombocytopoenia]. This makes their clinical usefulness rather short lived. The recent findings that pegylating smaller subsets of EV increases its circulatory life from <15 minutes to approximately about one hour is highly promising, in particular, for drug delivery on specific sides. Hence a promising clinical utility of EV/MV continues, as a journey without end, indeed. This manuscript is based mainly on the selected key readings listed below. Copyright © 2016. Published by Elsevier Ltd.
Diefenbacher, Melanie; Greve, Katrine B. V.; Brianza, Federico; Folly, Christophe; Heider, Harald; Lone, Museer A.; Long, Lisa; Meyer, Jean-Philippe; Roussel, Patrick; Ghannoum, Mahmoud A.; Schneiter, Roger; Sorensen, Alexandra S.
2014-01-01
Human fungal infections represent a therapeutic challenge. Although effective strategies for treatment are available, resistance is spreading, and many therapies have unacceptable side effects. A clear need for novel antifungal targets and molecules is thus emerging. Here, we present the identification and characterization of the plant-derived diyne-furan fatty acid EV-086 as a novel antifungal compound. EV-086 has potent and broad-spectrum activity in vitro against Candida, Aspergillus, and Trichophyton spp., whereas activities against bacteria and human cell lines are very low. Chemical-genetic profiling of Saccharomyces cerevisiae deletion mutants identified lipid metabolic processes and organelle organization and biogenesis as targets of EV-086. Pathway modeling suggested that EV-086 inhibits delta-9 fatty acid desaturation, an essential process in S. cerevisiae, depending on the delta-9 fatty acid desaturase OLE1. Delta-9 unsaturated fatty acids—but not saturated fatty acids—antagonized the EV-086-mediated growth inhibition, and transcription of the OLE1 gene was strongly upregulated in the presence of EV-086. EV-086 increased the ratio of saturated to unsaturated free fatty acids and phosphatidylethanolamine fatty acyl chains, respectively. Furthermore, EV-086 was rapidly taken up into the lipid fraction of the cell and incorporated into phospholipids. Together, these findings demonstrate that EV-086 is an inhibitor of delta-9 fatty acid desaturation and that the mechanism of inhibition might involve an EV-086–phospholipid. Finally, EV-086 showed efficacy in a guinea pig skin dermatophytosis model of topical Trichophyton infection, which demonstrates that delta-9 fatty acid desaturation is a valid antifungal target, at least for dermatophytoses. PMID:24189258
Knechtle, Philipp; Diefenbacher, Melanie; Greve, Katrine B V; Brianza, Federico; Folly, Christophe; Heider, Harald; Lone, Museer A; Long, Lisa; Meyer, Jean-Philippe; Roussel, Patrick; Ghannoum, Mahmoud A; Schneiter, Roger; Sorensen, Alexandra S
2014-01-01
Human fungal infections represent a therapeutic challenge. Although effective strategies for treatment are available, resistance is spreading, and many therapies have unacceptable side effects. A clear need for novel antifungal targets and molecules is thus emerging. Here, we present the identification and characterization of the plant-derived diyne-furan fatty acid EV-086 as a novel antifungal compound. EV-086 has potent and broad-spectrum activity in vitro against Candida, Aspergillus, and Trichophyton spp., whereas activities against bacteria and human cell lines are very low. Chemical-genetic profiling of Saccharomyces cerevisiae deletion mutants identified lipid metabolic processes and organelle organization and biogenesis as targets of EV-086. Pathway modeling suggested that EV-086 inhibits delta-9 fatty acid desaturation, an essential process in S. cerevisiae, depending on the delta-9 fatty acid desaturase OLE1. Delta-9 unsaturated fatty acids-but not saturated fatty acids-antagonized the EV-086-mediated growth inhibition, and transcription of the OLE1 gene was strongly upregulated in the presence of EV-086. EV-086 increased the ratio of saturated to unsaturated free fatty acids and phosphatidylethanolamine fatty acyl chains, respectively. Furthermore, EV-086 was rapidly taken up into the lipid fraction of the cell and incorporated into phospholipids. Together, these findings demonstrate that EV-086 is an inhibitor of delta-9 fatty acid desaturation and that the mechanism of inhibition might involve an EV-086-phospholipid. Finally, EV-086 showed efficacy in a guinea pig skin dermatophytosis model of topical Trichophyton infection, which demonstrates that delta-9 fatty acid desaturation is a valid antifungal target, at least for dermatophytoses.
Andersson, Eva-Marie; Heath, Nikki; Persson-kry, Anette; Collins, Richard; Hicks, Ryan; Dekker, Niek; Forslöw, Anna
2017-01-01
It has been suggested that extracellular vesicles (EVs) can mediate crosstalk between hormones and metabolites within pancreatic tissue. However, the possible effect of pancreatic EVs on stem cell differentiation into pancreatic lineages remains unknown. Herein, human islet-derived EVs (h-Islet-EVs) were isolated, characterized and subsequently added to human induced pluripotent stem cell (iPSC) clusters during pancreatic differentiation. The h-islet-EVs had a mean size of 117±7 nm and showed positive expression of CD63 and CD81 EV markers as measured by ELISA. The presence of key pancreatic transcription factor mRNA, such as NGN3, MAFA and PDX1, and pancreatic hormone proteins such as C-peptide and glucagon, were confirmed in h-Islet-EVs. iPSC clusters were differentiated in suspension and at the end stages of the differentiation protocol, the mRNA expression of the main pancreatic transcription factors and pancreatic hormones was increased. H-Islet-EVs were supplemented to the iPSC clusters in the later stages of differentiation. It was observed that h-Islet-EVs were able to up-regulate the intracellular levels of C-peptide in iPSC clusters in a concentration-dependent manner. The effect of h-Islet-EVs on the differentiation of iPSC clusters cultured in 3D-collagen hydrogels was also assessed. Although increased mRNA expression for pancreatic markers was observed when culturing the iPSC clusters in 3D-collagen hydrogels, delivery of EVs did not affect the insulin or C-peptide intracellular content. Our results provide new information on the role of h-Islet-EVs in the regulation of insulin expression in differentiating iPSC clusters, and are highly relevant for pancreatic tissue engineering applications. PMID:29117231
de la Cuesta, F; Baldan-Martin, M; Mourino-Alvarez, L; Sastre-Oliva, T; Alvarez-Llamas, G; Gonzalez-Calero, L; Ruiz-Hurtado, G; Segura, J; Vivanco, F; Ruilope, L M; Barderas, M G
2016-01-01
Extracellular vesicles (EVs) are released to the bloodstream by certain cell types due to transport, activation and cell death processes. Blood count of EVs from platelet and endothelial origin has been proved to be a cardiovascular risk biomarker. Thus, EVs proteome might reflect the underlying cellular processes in hypertensive patients with albuminuria. Protein content of circulating EVs was analyzed by liquid chromatography coupled to mass spectrometry. EVs were isolated by an ultracentrifugation protocol optimized in order to avoid contamination by blood plasma proteins. Purity of the isolated fraction was verified by electronic and confocal microscopy, and by flow cytometry. We hereby show a method to isolate circulating EVs from hypertensive patients with/without albuminuria with high yield and purity. Besides, we provide a reference proteome of the EVs of these patients, composed of 2,463 proteins, and prove that the proteins carried by these vesicles are associated with crucial processes involved in the inherent cardiovascular risk. The proteome of circulating EVs is an interesting source of indicators in the evaluation of cardiovascular risk in hypertensive patients with renin-angiotensin system blockage. Copyright © 2015 SEHLELHA. Published by Elsevier España, S.L.U. All rights reserved.
Pilot scale production of highly efficacious and stable enterovirus 71 vaccine candidates.
Chou, Ai-Hsiang; Liu, Chia-Chyi; Chang, Cheng-Peng; Guo, Meng-Shin; Hsieh, Shih-Yang; Yang, Wen-Hsueh; Chao, Hsin-Ju; Wu, Chien-Long; Huang, Ju-Lan; Lee, Min-Shi; Hu, Alan Yung-Chi; Lin, Sue-Chen; Huang, Yu-Yun; Hu, Mei-Hua; Chow, Yen-Hung; Chiang, Jen-Ron; Chang, Jui-Yuan; Chong, Pele
2012-01-01
Enterovirus 71 (EV71) has caused several epidemics of hand, foot and mouth diseases (HFMD) in Asia and now is being recognized as an important neurotropic virus. Effective medications and prophylactic vaccine against EV71 infection are urgently needed. Based on the success of inactivated poliovirus vaccine, a prototype chemically inactivated EV71 vaccine candidate has been developed and currently in human phase 1 clinical trial. In this report, we present the development of a serum-free cell-based EV71 vaccine. The optimization at each step of the manufacturing process was investigated, characterized and quantified. In the up-stream process development, different commercially available cell culture media either containing serum or serum-free was screened for cell growth and virus yield using the roller-bottle technology. VP-SFM serum-free medium was selected based on the Vero cell growth profile and EV71 virus production. After the up-stream processes (virus harvest, diafiltration and concentration), a combination of gel-filtration liquid chromatography and/or sucrose-gradient ultracentrifugation down-stream purification processes were investigated at a pilot scale of 40 liters each. Although the combination of chromatography and sucrose-gradient ultracentrifugation produced extremely pure EV71 infectious virus particles, the overall yield of vaccine was 7-10% as determined by a VP2-based quantitative ELISA. Using chromatography as the downstream purification, the virus yield was 30-43%. To retain the integrity of virus neutralization epitopes and the stability of the vaccine product, the best virus inactivation was found to be 0.025% formalin-treatment at 37 °C for 3 to 6 days. Furthermore, the formalin-inactivated virion vaccine candidate was found to be stable for >18 months at 4 °C and a microgram of viral proteins formulated with alum adjuvant could induce strong virus-neutralizing antibody responses in mice, rats, rabbits, and non-human primates. These results provide valuable information supporting the current cell-based serum-free EV71 vaccine candidate going into human Phase I clinical trials.
Radeghieri, Annalisa; Savio, Giulia; Zendrini, Andrea; Di Noto, Giuseppe; Salvi, Alessandro; Bergese, Paolo; Piovani, Giovanna
2017-01-29
An increasing number of studies on stem cells suggests that the therapeutic effect they exert is primarily mediated by a paracrine regulation through extracellular vesicles (EVs) giving solid grounds for stem cell EVs to be exploited as agents for treating diseases or for restoring damaged tissues and organs. Due to their capacity to differentiate in all embryonic germ layers, amniotic fluid stem cells (AFCs), represent a highly promising cell type for tissue regeneration, which however is still poorly studied and in turn underutilized. In view of this, we conducted a first investigation on the expression of human hTERT gene - known to be among the key triggers of organ regeneration - in AFCs and in the EVs they secrete. Isolated AFCs were evaluated by RT-qPCR for hTERT expression. The clones expressing the highest levels of transcript, were analyzed by Immunofluorescence imaging and Nuclear/cytoplasmic fractionation in order to evaluate hTERT subcellular localization. We then separated EVs from FBS depleted culture medium by serial (ultra) centrifugations steps and characterized them using Western blotting, Atomic force Microscopy and Nanoplasmonic assay. We first demonstrated that primary cultures of AFCs express the gene hTERT at different levels. Then we evidenced that in AFCs with the higher transcript levels, the hTERT protein is present in the nuclear and cytoplasmic compartment. Finally, we found that cytosolic hTERT is embodied in the EVs that AFCs secrete in the extracellular milieu. Our study demonstrates for the first time the expression of the full protein hTERT by AFCs and its release outside the cell mediated by EVs, indicating a new extra telomeric role for this protein. This finding represents an initial but crucial evidence for considering AFCs derived EVs as new potential sources for tissue regeneration. Copyright © 2016 Elsevier Inc. All rights reserved.
InGaAs focal plane arrays for low-light-level SWIR imaging
NASA Astrophysics Data System (ADS)
MacDougal, Michael; Hood, Andrew; Geske, Jon; Wang, Jim; Patel, Falgun; Follman, David; Manzo, Juan; Getty, Jonathan
2011-06-01
Aerius Photonics will present their latest developments in large InGaAs focal plane arrays, which are used for low light level imaging in the short wavelength infrared (SWIR) regime. Aerius will present imaging in both 1280x1024 and 640x512 formats. Aerius will present characterization of the FPA including dark current measurements. Aerius will also show the results of development of SWIR FPAs for high temperaures, including imagery and dark current data. Finally, Aerius will show results of using the SWIR camera with Aerius' SWIR illuminators using VCSEL technology.
InP and InGaAs Submicron Gate Microwave Power Transistors for 20 GHz Applications
1991-06-01
APLIC ( ATIO NS I:F ( 6 AUTHORiSI VI )N4Wh 7 ERFORMLNG ORGANIZATION NAME(IS) AND ADORE SCISI S Naval Ocean Systems Center San DiegEE, CA 92152-5300(0 9...electronic material for high frequency applications. In0 .5 3Ga. 4 7 As lattice matched to semi-insulating (SI) InP has higher low field mobility , peak...lattice parameter was < ±5 x 10- 4 . The InGaAs mobility at 300 K was 5500 cm 2/V sec. For the device fabrication, the samples were initially cleaned
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Dewei; Wang, Changlei; Song, Zhaoning
We report on fabrication of 4-terminal all-perovskite tandem solar cells with power conversion efficiencies exceeding 23% by mechanically stacking semitransparent 1.75 eV wide-bandgap FA 0.8Cs 0.2Pb(I 0.7Br 0.3) 3 perovskite top cells with 1.25 eV low-bandgap (FASnI 3) 0.6(MAPbI 3) 0.4 bottom cells. The top cells use MoOx/ITO transparent electrodes and achieve transmittance up to 70% beyond 700 nm.
Zhao, Dewei; Wang, Changlei; Song, Zhaoning; ...
2018-01-04
We report on fabrication of 4-terminal all-perovskite tandem solar cells with power conversion efficiencies exceeding 23% by mechanically stacking semitransparent 1.75 eV wide-bandgap FA 0.8Cs 0.2Pb(I 0.7Br 0.3) 3 perovskite top cells with 1.25 eV low-bandgap (FASnI 3) 0.6(MAPbI 3) 0.4 bottom cells. The top cells use MoOx/ITO transparent electrodes and achieve transmittance up to 70% beyond 700 nm.
Methods to isolate extracellular vesicles for diagnosis
NASA Astrophysics Data System (ADS)
Kang, Hyejin; Kim, Jiyoon; Park, Jaesung
2017-12-01
Extracellular vesicles (EVs) are small membrane-bound bodies that are released into extracellular space by diverse cells, and are found in body fluids like blood, urine and saliva. EVs contain RNA, DNA and proteins, which can be biomarkers for diagnosis. EVs can be obtained by minimally-invasive biopsy, so they are useful in disease diagnosis. High yield and purity contribute to precise diagnosis of disease, but damaged EVs and impurities can cause confu sed results. However, EV isolation methods have different yields and purities. Furthermore, the isolation method that is most suitable to maximize EV recovery efficiency depends on the experimental conditions. This review focuses on merits and demerits of several types of EV isolation methods, and provides examples of how to diagnose disease by exploiting information obtained by analysis of EVs.
Soekmadji, Carolina; Corcoran, Niall M; Oleinikova, Irina; Jovanovic, Lidija; Ramm, Grant A; Nelson, Colleen C; Jenster, Guido; Russell, Pamela J
2017-10-01
The use of circulating tumor cells (CTCs) and circulating extracellular vesicles (EVs), such as exosomes, as liquid biopsy-derived biomarkers for cancers have been investigated. CTC enumeration using the CellSearch based platform provides an accurate insight on overall survival where higher CTC counts indicate poor prognosis for patients with advanced metastatic cancer. EVs provide information based on their lipid, protein, and nucleic acid content and can be isolated from biofluids and analyzed from a relatively small volume, providing a routine and non-invasive modality to monitor disease progression. Our pilot experiment by assessing the level of two subpopulations of small EVs, the CD9 positive and CD63 positive EVs, showed that the CD9 positive EV level is higher in plasma from patients with advanced metastatic prostate cancer with detectable CTCs. These data show the potential utility of a particular EV subpopulation to serve as biomarkers for advanced metastatic prostate cancer. EVs can potentially be utilized as biomarkers to provide accurate genotypic and phenotypic information for advanced prostate cancer, where new strategies to design a more personalized therapy is currently the focus of considerable investigation. © 2017 Wiley Periodicals, Inc.
Paper-based Devices for Isolation and Characterization of Extracellular Vesicles
Chen, Chihchen; Lin, Bo-Ren; Hsu, Min-Yen; Cheng, Chao-Min
2015-01-01
Extracellular vesicles (EVs), membranous particles released from various types of cells, hold a great potential for clinical applications. They contain nucleic acid and protein cargo and are increasingly recognized as a means of intercellular communication utilized by both eukaryote and prokaryote cells. However, due to their small size, current protocols for isolation of EVs are often time consuming, cumbersome, and require large sample volumes and expensive equipment, such as an ultracentrifuge. To address these limitations, we developed a paper-based immunoaffinity platform for separating subgroups of EVs that is easy, efficient, and requires sample volumes as low as 10 μl. Biological samples can be pipetted directly onto paper test zones that have been chemically modified with capture molecules that have high affinity to specific EV surface markers. We validate the assay by using scanning electron microscopy (SEM), paper-based enzyme-linked immunosorbent assays (P-ELISA), and transcriptome analysis. These paper-based devices will enable the study of EVs in the clinic and the research setting to help advance our understanding of EV functions in health and disease. PMID:25867034
Size distribution of extracellular vesicles by optical correlation techniques.
Montis, Costanza; Zendrini, Andrea; Valle, Francesco; Busatto, Sara; Paolini, Lucia; Radeghieri, Annalisa; Salvatore, Annalisa; Berti, Debora; Bergese, Paolo
2017-10-01
Understanding the colloidal properties of extracellular vesicles (EVs) is key to advance fundamental knowledge in this field and to develop effective EV-based diagnostics, therapeutics and devices. Determination of size distribution and of colloidal stability of purified EVs resuspended in buffered media is a complex and challenging issue - because of the wide range of EV diameters (from 30 to 2000nm), concentrations of interest and membrane properties, and the possible presence of co-isolated contaminants with similar size and densities, such as protein aggregates and fat globules - which is still waiting to be fully addressed. We report here a fully detailed protocol for accurate and robust determination of the size distribution and stability of EV samples which leverages a dedicated combination of Fluorescence Correlation Spectroscopy (FCS) and Dynamic Light Scattering (DLS). The theoretical background, critical experimental steps and data analysis procedures are thoroughly presented and finally illustrated through the representative case study of EV formulations obtained from culture media of B16 melanoma cells, a murine tumor cell line used as a model for human skin cancers. Copyright © 2017 Elsevier B.V. All rights reserved.
Colorimetric nanoplasmonic assay to determine purity and titrate extracellular vesicles.
Maiolo, Daniele; Paolini, Lucia; Di Noto, Giuseppe; Zendrini, Andrea; Berti, Debora; Bergese, Paolo; Ricotta, Doris
2015-04-21
Extracellular Vesicles (EVs) - cell secreted vesicles that carry rich molecular information of the parental cell and constitute an important mode of intercellular communication - are becoming a primary topic in translational medicine. EVs (that comprise exosomes and microvesicles/microparticles) have a size ranging from 40 nm to 1 μm and share several physicochemical proprieties, including size, density, surface charge, and light interaction, with other nano-objects present in body fluids, such as single and aggregated proteins. This makes separation, titration, and characterization of EVs challenging and time-consuming. Here we present a cost-effective and fast colorimetric assay for probing by eye protein contaminants and determine the concentration of EV preparations, which exploits the synergy between colloidal gold nanoplasmonics, nanoparticle-protein corona, and nanoparticle-membrane interaction. The assay hits a limit of detection of protein contaminants of 5 ng/μL and has a dynamic range of EV concentration ranging from 35 fM to 35 pM, which matches the typical range of EV concentration in body fluids. This work provides the first example of the exploitation of the nanoparticle-protein corona in analytical chemistry.
Haga, Hiroaki; Yan, Irene K; Borrelli, David A; Matsuda, Akiko; Parasramka, Mansi; Shukla, Neha; Lee, David D; Patel, Tushar
2017-06-01
Hepatic ischemia/reperfusion injury (IRI) and associated inflammation contributes to liver dysfunction and complications after liver surgery and transplantation. Mesenchymal stem cells (MSCs) have been reported to reduce hepatic IRI because of their reparative immunomodulatory effects in injured tissues. Recent studies have highlighted beneficial effects of extracellular vesicles from mesenchymal stem cells (MSC-EV) on tissue injury. The effects of systemically administered mouse bone marrow-derived MSC-EV were evaluated in an experimental murine model of hepatic IRI induced by cross-clamping the hepatic artery and portal vein for 90 minutes followed by reperfusion for periods of up to 6 hours. Compared with controls, intravenous administration of MSC-EV 30 minutes prior to IRI dramatically reduced the extent of tissue necrosis, decreased caspase 3-positive and apoptotic cells, and reduced serum aminotransferase levels. MSC-EV increased hepatic messenger RNA (mRNA) expression of NACHT, LRR, and PYD domains-containing protein 12, and the chemokine (C-X-C motif) ligand 1, and reduced mRNA expression of several inflammatory cytokines such as interleukin 6 during IRI. MSC-EV increased cell viability and suppressed both oxidative injury and nuclear factor kappa B activity in murine hepatocytes in vitro. In conclusion, the administration of extracellular vesicles derived from bone marrow-derived MSCs may ameliorate hepatic IRI by reducing hepatic injury through modulation of the inflammatory response.Liver Transplantation 23 791-803 2017 AASLD. © 2017 by the American Association for the Study of Liver Diseases.
Enterovirus 71 Inhibits Pyroptosis through Cleavage of Gasdermin D
Lei, Xiaobo; Zhang, Zhenzhen; Xiao, Xia; Qi, Jianli
2017-01-01
ABSTRACT Enterovirus 71 (EV71) can cause hand-foot-and-mouth disease (HFMD) in young children. Severe infection with EV71 can lead to neurological complications and even death. However, the molecular basis of viral pathogenesis remains poorly understood. Here, we report that EV71 induces degradation of gasdermin D (GSDMD), an essential component of pyroptosis. Remarkably, the viral protease 3C directly targets GSDMD and induces its cleavage, which is dependent on the protease activity. Further analyses show that the Q193-G194 pair within GSDMD is the cleavage site of 3C. This cleavage produces a shorter N-terminal fragment spanning amino acids 1 to 193 (GSDMD1–193). However, unlike the N-terminal fragment produced by caspase-1 cleavage, this fragment fails to trigger cell death or inhibit EV71 replication. Importantly, a T239D or F240D substitution abrogates the activity of GSDMD consisting of amino acids 1 to 275 (GSDMD1–275). This is correlated with the lack of pyroptosis or inhibition of viral replication. These results reveal a previously unrecognized strategy for EV71 to evade the antiviral response. IMPORTANCE Recently, it has been reported that GSDMD plays a critical role in regulating lipopolysaccharide and NLRP3-mediated interleukin-1β (IL-1β) secretion. In this process, the N-terminal domain of p30 released from GSDMD acts as an effector in cell pyroptosis. We show that EV71 infection downregulates GSDMD. EV71 3C cleaves GSDMD at the Q193-G194 pair, resulting in a truncated N-terminal fragment disrupted for inducing cell pyroptosis. Notably, GSDMD1–275 (p30) inhibits EV71 replication whereas GSDMD1–193 does not. These results reveal a new strategy for EV71 to evade the antiviral response. PMID:28679757
Enterovirus 71 Inhibits Pyroptosis through Cleavage of Gasdermin D.
Lei, Xiaobo; Zhang, Zhenzhen; Xiao, Xia; Qi, Jianli; He, Bin; Wang, Jianwei
2017-09-15
Enterovirus 71 (EV71) can cause hand-foot-and-mouth disease (HFMD) in young children. Severe infection with EV71 can lead to neurological complications and even death. However, the molecular basis of viral pathogenesis remains poorly understood. Here, we report that EV71 induces degradation of gasdermin D (GSDMD), an essential component of pyroptosis. Remarkably, the viral protease 3C directly targets GSDMD and induces its cleavage, which is dependent on the protease activity. Further analyses show that the Q193-G194 pair within GSDMD is the cleavage site of 3C. This cleavage produces a shorter N-terminal fragment spanning amino acids 1 to 193 (GSDMD 1-193 ). However, unlike the N-terminal fragment produced by caspase-1 cleavage, this fragment fails to trigger cell death or inhibit EV71 replication. Importantly, a T239D or F240D substitution abrogates the activity of GSDMD consisting of amino acids 1 to 275 (GSDMD 1-275 ). This is correlated with the lack of pyroptosis or inhibition of viral replication. These results reveal a previously unrecognized strategy for EV71 to evade the antiviral response. IMPORTANCE Recently, it has been reported that GSDMD plays a critical role in regulating lipopolysaccharide and NLRP3-mediated interleukin-1β (IL-1β) secretion. In this process, the N-terminal domain of p30 released from GSDMD acts as an effector in cell pyroptosis. We show that EV71 infection downregulates GSDMD. EV71 3C cleaves GSDMD at the Q193-G194 pair, resulting in a truncated N-terminal fragment disrupted for inducing cell pyroptosis. Notably, GSDMD 1-275 (p30) inhibits EV71 replication whereas GSDMD 1-193 does not. These results reveal a new strategy for EV71 to evade the antiviral response. Copyright © 2017 American Society for Microbiology.
de Castro, Ligia Lins; Xisto, Debora Gonçalves; Kitoko, Jamil Zola; Cruz, Fernanda Ferreira; Olsen, Priscilla Christina; Redondo, Patricia Albuquerque Garcia; Ferreira, Tatiana Paula Teixeira; Weiss, Daniel Jay; Martins, Marco Aurélio; Morales, Marcelo Marcos; Rocco, Patricia Rieken Macedo
2017-06-24
Asthma is a chronic inflammatory disease that can be difficult to treat due to its complex pathophysiology. Most current drugs focus on controlling the inflammatory process, but are unable to revert the changes of tissue remodeling. Human mesenchymal stromal cells (MSCs) are effective at reducing inflammation and tissue remodeling; nevertheless, no study has evaluated the therapeutic effects of extracellular vesicles (EVs) obtained from human adipose tissue-derived MSCs (AD-MSC) on established airway remodeling in experimental allergic asthma. C57BL/6 female mice were sensitized and challenged with ovalbumin (OVA). Control (CTRL) animals received saline solution using the same protocol. One day after the last challenge, each group received saline, 10 5 human AD-MSCs, or EVs (released by 10 5 AD-MSCs). Seven days after treatment, animals were anesthetized for lung function assessment and subsequently euthanized. Bronchoalveolar lavage fluid (BALF), lungs, thymus, and mediastinal lymph nodes were harvested for analysis of inflammation. Collagen fiber content of airways and lung parenchyma were also evaluated. In OVA animals, AD-MSCs and EVs acted differently on static lung elastance and on BALF regulatory T cells, CD3 + CD4 + T cells, and pro-inflammatory mediators (interleukin [IL]-4, IL-5, IL-13, and eotaxin), but similarly reduced eosinophils in lung tissue, collagen fiber content in airways and lung parenchyma, levels of transforming growth factor-β in lung tissue, and CD3 + CD4 + T cell counts in the thymus. No significant changes were observed in total cell count or percentage of CD3 + CD4 + T cells in the mediastinal lymph nodes. In this immunocompetent mouse model of allergic asthma, human AD-MSCs and EVs effectively reduced eosinophil counts in lung tissue and BALF and modulated airway remodeling, but their effects on T cells differed in lung and thymus. EVs may hold promise for asthma; however, further studies are required to elucidate the different mechanisms of action of AD-MSCs versus their EVs.
Pathway to 50% efficient inverted metamorphic concentrator solar cells
NASA Astrophysics Data System (ADS)
Geisz, John F.; Steiner, Myles A.; Jain, Nikhil; Schulte, Kevin L.; France, Ryan M.; McMahon, William E.; Perl, Emmett E.; Horowitz, Kelsey A. W.; Friedman, Daniel J.
2017-09-01
Series-connected five (5J) and six junction (6J) concentrator solar cell strategies have the realistic potential to exceed 50% efficiency to enable low-cost CPV systems. We propose three strategies for developing a practical 6J device. We have overcome many of the challenges required to build such concentrator solar cell devices: We have developed 2.1 eV AlGaInP, 1.7 eV AlGaAs, and 1.7 eV GaInAsP junctions with external radiative efficiency greater than 0.1%. We have developed a transparent tunnel junction that absorbs minimal light intended for the second junction yet resists degradation under thermal load. We have developed metamorphic grades from the GaAs to the InP lattice constant that are transparent to sub-GaAs bandgap light. We have grown and compared low bandgap junctions (0.7eV - 1.2 eV) using metamorphic GaInAs, metamorphic GaInAsP, and GaInAsP lattice-matched to InP. And finally, we have demonstrated excellent performance in a high voltage, low current 4 junction inverted metamorphic device using 2.1, 1.7, 1.4, and 1.1 eV junctions with over 8.7 mA/cm2 one-sun current density that operates up to 1000 suns without tunnel junction failure.
Pathway to 50% Efficient Inverted Metamorphic Concentrator Solar Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geisz, John F; Steiner, Myles A; Jain, Nikhil
Series-connected five (5J) and six junction (6J) concentrator solar cell strategies have the realistic potential to exceed 50% efficiency to enable low-cost CPV systems. We propose three strategies for developing a practical 6J device. We have overcome many of the challenges required to build such concentrator solar cell devices: We have developed 2.1 eV AlGaInP, 1.7 eV AlGaAs, and 1.7 eV GaInAsP junctions with external radiative efficiency greater than 0.1%. We have developed a transparent tunnel junction that absorbs minimal light intended for the second junction yet resists degradation under thermal load. We have developed metamorphic grades from the GaAsmore » to the InP lattice constant that are transparent to sub-GaAs bandgap light. We have grown and compared low bandgap junctions (0.7eV - 1.2 eV) using metamorphic GaInAs, metamorphic GaInAsP, and GaInAsP lattice-matched to InP. And finally, we have demonstrated excellent performance in a high voltage, low current 4 junction inverted metamorphic device using 2.1, 1.7, 1.4, and 1.1 eV junctions with over 8.7 mA/cm2 one-sun current density that operates up to 1000 suns without tunnel junction failure.« less
da Silva, Roberta Peres; Heiss, Christian; Black, Ian; ...
2015-09-21
Extracellular vesicles (EVs) mediate non-conventional transport of molecules across the fungal cell wall. We aimed at describing the carbohydrate composition and surface carbohydrate epitopes of EVs isolated from the pathogenic fungi Paracoccidioides brasiliensis and P. lutzii using standard procedures. Total EV carbohydrates were ethanol-precipitated from preparations depleted of lipids and proteins, then analyzed by chemical degradation, gas chromatography-mass spectrometry, nuclear magnetic resonance and size-exclusion chromatography. EV glycosyl residues of Glc, Man, and Gal comprised most probably two major components: a high molecular mass 4,6-α-glucan and a galactofuranosylmannan, possibly an oligomer, bearing a 2-α-Manp main chain linked to β-Galf (1,3) andmore » α-Manp (1,6) end units. The results also suggested the presence of small amounts of a (1→6)- Manp polymer, (1→3)-glucan and (1→6)-glucan. Glycan microarrays allowed identification of EV surface lectin(s), while plant lectin microarray profiling revealed terminal Man and GlcNAc residues exposed at the EVs surface. Mammalian lectin microarray profiling showed that DC-SIGN receptors recognized surface carbohydrate in Paracoccidioides EVs. Our results suggest that oligosaccharides, cytoplasmic storage, and cell wall polysaccharides can be exported in fungal EVs, which also expose surface PAMPs and lectins. As a result, the role of these newly identified components in the interaction with the host remains to be unraveled.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
da Silva, Roberta Peres; Heiss, Christian; Black, Ian
Extracellular vesicles (EVs) mediate non-conventional transport of molecules across the fungal cell wall. We aimed at describing the carbohydrate composition and surface carbohydrate epitopes of EVs isolated from the pathogenic fungi Paracoccidioides brasiliensis and P. lutzii using standard procedures. Total EV carbohydrates were ethanol-precipitated from preparations depleted of lipids and proteins, then analyzed by chemical degradation, gas chromatography-mass spectrometry, nuclear magnetic resonance and size-exclusion chromatography. EV glycosyl residues of Glc, Man, and Gal comprised most probably two major components: a high molecular mass 4,6-α-glucan and a galactofuranosylmannan, possibly an oligomer, bearing a 2-α-Manp main chain linked to β-Galf (1,3) andmore » α-Manp (1,6) end units. The results also suggested the presence of small amounts of a (1→6)- Manp polymer, (1→3)-glucan and (1→6)-glucan. Glycan microarrays allowed identification of EV surface lectin(s), while plant lectin microarray profiling revealed terminal Man and GlcNAc residues exposed at the EVs surface. Mammalian lectin microarray profiling showed that DC-SIGN receptors recognized surface carbohydrate in Paracoccidioides EVs. Our results suggest that oligosaccharides, cytoplasmic storage, and cell wall polysaccharides can be exported in fungal EVs, which also expose surface PAMPs and lectins. As a result, the role of these newly identified components in the interaction with the host remains to be unraveled.« less
van Herwijnen, Martijn J C; Zonneveld, Marijke I; Goerdayal, Soenita; Nolte-'t Hoen, Esther N M; Garssen, Johan; Stahl, Bernd; Maarten Altelaar, A F; Redegeld, Frank A; Wauben, Marca H M
2016-11-01
Breast milk contains several macromolecular components with distinctive functions, whereby milk fat globules and casein micelles mainly provide nutrition to the newborn, and whey contains molecules that can stimulate the newborn's developing immune system and gastrointestinal tract. Although extracellular vesicles (EV) have been identified in breast milk, their physiological function and composition has not been addressed in detail. EV are submicron sized vehicles released by cells for intercellular communication via selectively incorporated lipids, nucleic acids, and proteins. Because of the difficulty in separating EV from other milk components, an in-depth analysis of the proteome of human milk-derived EV is lacking. In this study, an extensive LC-MS/MS proteomic analysis was performed of EV that had been purified from breast milk of seven individual donors using a recently established, optimized density-gradient-based EV isolation protocol. A total of 1963 proteins were identified in milk-derived EV, including EV-associated proteins like CD9, Annexin A5, and Flotillin-1, with a remarkable overlap between the different donors. Interestingly, 198 of the identified proteins are not present in the human EV database Vesiclepedia, indicating that milk-derived EV harbor proteins not yet identified in EV of different origin. Similarly, the proteome of milk-derived EV was compared with that of other milk components. For this, data from 38 published milk proteomic studies were combined in order to construct the total milk proteome, which consists of 2698 unique proteins. Remarkably, 633 proteins identified in milk-derived EV have not yet been identified in human milk to date. Interestingly, these novel proteins include proteins involved in regulation of cell growth and controlling inflammatory signaling pathways, suggesting that milk-derived EVs could support the newborn's developing gastrointestinal tract and immune system. Overall, this study provides an expansion of the whole milk proteome and illustrates that milk-derived EV are macromolecular components with a unique functional proteome. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Dimerization of sortilin regulates its trafficking to extracellular vesicles
Itoh, Shinsuke; Mizuno, Ken; Aikawa, Masanori; Aikawa, Elena
2018-01-01
Extracellular vesicles (EVs) play a critical role in intercellular communication by transferring microRNAs, lipids, and proteins to neighboring cells. Sortilin, a sorting receptor that directs target proteins to the secretory or endocytic compartments of cells, is found in both EVs and cells. In many human diseases, including cancer and cardiovascular disorders, sortilin expression levels are atypically high. To elucidate the relationship between cardiovascular disease, particularly vascular calcification, and sortilin expression levels, we explored the trafficking of sortilin in both the intracellular and extracellular milieu. We previously demonstrated that sortilin promotes vascular calcification via its trafficking of tissue-nonspecific alkaline phosphatase to EVs. Although recent reports have noted that sortilin is regulated by multiple post-translational modifications, the precise mechanisms of sortilin trafficking still need to be determined. Here, we show that sortilin forms homodimers with an intermolecular disulfide bond at the cysteine 783 (Cys783) residue, and because Cys783 can be palmitoylated, it could be shared via palmitoylation and an intermolecular disulfide bond. Formation of this intermolecular disulfide bond leads to trafficking of sortilin to EVs by preventing palmitoylation, which further promotes sortilin trafficking to the Golgi apparatus. Moreover, we found that sortilin-derived propeptide decreased sortilin homodimers within EVs. In conclusion, sortilin is transported to EVs via the formation of homodimers with an intermolecular disulfide bond, which is endogenously regulated by its own propeptide. Therefore, we propose that inhibiting dimerization of sortilin acts as a new therapeutic strategy for the treatment of EV-associated diseases, including vascular calcification and cancer. PMID:29382723
Dimerization of sortilin regulates its trafficking to extracellular vesicles.
Itoh, Shinsuke; Mizuno, Ken; Aikawa, Masanori; Aikawa, Elena
2018-03-23
Extracellular vesicles (EVs) play a critical role in intercellular communication by transferring microRNAs, lipids, and proteins to neighboring cells. Sortilin, a sorting receptor that directs target proteins to the secretory or endocytic compartments of cells, is found in both EVs and cells. In many human diseases, including cancer and cardiovascular disorders, sortilin expression levels are atypically high. To elucidate the relationship between cardiovascular disease, particularly vascular calcification, and sortilin expression levels, we explored the trafficking of sortilin in both the intracellular and extracellular milieu. We previously demonstrated that sortilin promotes vascular calcification via its trafficking of tissue-nonspecific alkaline phosphatase to EVs. Although recent reports have noted that sortilin is regulated by multiple post-translational modifications, the precise mechanisms of sortilin trafficking still need to be determined. Here, we show that sortilin forms homodimers with an intermolecular disulfide bond at the cysteine 783 (Cys 783 ) residue, and because Cys 783 can be palmitoylated, it could be shared via palmitoylation and an intermolecular disulfide bond. Formation of this intermolecular disulfide bond leads to trafficking of sortilin to EVs by preventing palmitoylation, which further promotes sortilin trafficking to the Golgi apparatus. Moreover, we found that sortilin-derived propeptide decreased sortilin homodimers within EVs. In conclusion, sortilin is transported to EVs via the formation of homodimers with an intermolecular disulfide bond, which is endogenously regulated by its own propeptide. Therefore, we propose that inhibiting dimerization of sortilin acts as a new therapeutic strategy for the treatment of EV-associated diseases, including vascular calcification and cancer. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
NASA Technical Reports Server (NTRS)
Harris, R.D.; Imaizumi, M.; Walters, R.J.; Lorentzen, J.R.; Messenger, S.R.; Tischler, J.G.; Ohshima, T.; Sato, S.; Sharps, P.R.; Fatemi, N.S.
2008-01-01
The performance of triple junction InGaP/(In)GaAs/Ge space solar cells was studied following high energy electron irradiation at low temperature. Cell characterization was carried out in situ at the irradiation temperature while using low intensity illumination, and, as such, these conditions reflect those found for deep space, solar powered missions that are far from the sun. Cell characterization consisted of I-V measurements and quantum efficiency measurements. The low temperature irradiations caused substantial degradation that differs in some ways from that seen after room temperature irradiations. The short circuit current degrades more at low temperature while the open circuit voltage degrades more at room temperature. A room temperature anneal after the low temperature irradiation produced a substantial recovery in the degradation. Following irradiation at both temperatures and an extended room temperature anneal, quantum efficiency measurement suggests that the bulk of the remaining damage is in the (In)GaAs sub-cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Tae Hoon; Chennakrishnaiah, Shilpa; Audemard, Eric
2014-08-22
Highlights: • Oncogenic H-ras stimulates emission of extracellular vesicles containing double-stranded DNA. • Vesicle-associated extracellular DNA contains mutant N-ras sequences. • Vesicles mediate intercellular transfer of mutant H-ras DNA to normal fibroblasts where it remains for several weeks. • Fibroblasts exposed to vesicles containing H-ras DNA exhibit increased proliferation. - Abstract: Cell free DNA is often regarded as a source of genetic cancer biomarkers, but the related mechanisms of DNA release, composition and biological activity remain unclear. Here we show that rat epithelial cell transformation by the human H-ras oncogene leads to an increase in production of small, exosomal-like extracellularmore » vesicles by viable cancer cells. These EVs contain chromatin-associated double-stranded DNA fragments covering the entire host genome, including full-length H-ras. Oncogenic N-ras and SV40LT sequences were also found in EVs emitted from spontaneous mouse brain tumor cells. Disruption of acidic sphingomyelinase and the p53/Rb pathway did not block emission of EV-related oncogenic DNA. Exposure of non-transformed RAT-1 cells to EVs containing mutant H-ras DNA led to the uptake and retention of this material for an extended (30 days) but transient period of time, and stimulated cell proliferation. Thus, our study suggests that H-ras-mediated transformation stimulates vesicular emission of this histone-bound oncogene, which may interact with non-transformed cells.« less
Time-resolved SERS for characterizing extracellular vesicles
NASA Astrophysics Data System (ADS)
Rojalin, Tatu; Saari, Heikki; Somersalo, Petter; Laitinen, Saara; Turunen, Mikko; Viitala, Tapani; Wachsmann-Hogiu, Sebastian; Smith, Zachary J.; Yliperttula, Marjo
2017-02-01
The aim of this work is to develop a platform for characterizing extracellular vesicles (EV) by using gold-polymer nanopillar SERS arrays simultaneously circumventing the photoluminescence-related disadvantages of Raman with a time-resolved approach. EVs are rich of biochemical information reporting of, for example, diseased state of the biological system. Currently, straightforward, label-free and fast EV characterization methods with low sample consumption are warranted. In this study, SERS spectra of red blood cell and platelet derived EVs were successfully measured and their biochemical contents analyzed using multivariate data analysis techniques. The developed platform could be conveniently used for EV analytics in general.
Mellows, Ben; Mitchell, Robert; Antonioli, Manuela; Kretz, Oliver; Chambers, David; Zeuner, Marie-Theres; Denecke, Bernd; Musante, Luca; Ramachandra, Durrgah L; Debacq-Chainiaux, Florence; Holthofer, Harry; Joch, Barbara; Ray, Steve; Widera, Darius; David, Anna L; Huber, Tobias B; Dengjel, Joern; De Coppi, Paolo; Patel, Ketan
2017-09-15
The secretome of human amniotic fluid stem cells (AFSCs) has great potential as a therapeutic agent in regenerative medicine. However, it must be produced in a clinically compliant manner before it can be used in humans. In this study, we developed a means of producing a biologically active secretome from AFSCs that is free of all exogenous molecules. We demonstrate that the full secretome is capable of promoting stem cell proliferation, migration, and protection of cells against senescence. Furthermore, it has significant anti-inflammatory properties. Most importantly, we show that it promotes tissue regeneration in a model of muscle damage. We then demonstrate that the secretome contains extracellular vesicles (EVs) that harbor much, but not all, of the biological activity of the whole secretome. Proteomic characterization of the EV and free secretome fraction shows the presence of numerous molecules specific to each fraction that could be key regulators of tissue regeneration. Intriguingly, we show that the EVs only contain miRNA and not mRNA. This suggests that tissue regeneration in the host is mediated by the action of EVs modifying existing, rather than imposing new, signaling pathways. The EVs harbor significant anti-inflammatory activity as well as promote angiogenesis, the latter may be the mechanistic explanation for their ability to promote muscle regeneration after cardiotoxin injury.
Leca, Julie; Martinez, Sébastien; Lac, Sophie; Nigri, Jérémy; Secq, Véronique; Rubis, Marion; Bressy, Christian; Lavaut, Marie-Noelle; Dusetti, Nelson; Loncle, Céline; Roques, Julie; Pietrasz, Daniel; Bousquet, Corinne; Garcia, Stéphane; Granjeaud, Samuel; Ouaissi, Mehdi; Bachet, Jean Baptiste; Iovanna, Juan L.; Zimmermann, Pascale; Vasseur, Sophie
2016-01-01
The intratumoral microenvironment, or stroma, is of major importance in the pathobiology of pancreatic ductal adenocarcinoma (PDA), and specific conditions in the stroma may promote increased cancer aggressiveness. We hypothesized that this heterogeneous and evolving compartment drastically influences tumor cell abilities, which in turn influences PDA aggressiveness through crosstalk that is mediated by extracellular vesicles (EVs). Here, we have analyzed the PDA proteomic stromal signature and identified a contribution of the annexin A6/LDL receptor-related protein 1/thrombospondin 1 (ANXA6/LRP1/TSP1) complex in tumor cell crosstalk. Formation of the ANXA6/LRP1/TSP1 complex was restricted to cancer-associated fibroblasts (CAFs) and required physiopathologic culture conditions that improved tumor cell survival and migration. Increased PDA aggressiveness was dependent on tumor cell–mediated uptake of CAF-derived ANXA6+ EVs carrying the ANXA6/LRP1/TSP1 complex. Depletion of ANXA6 in CAFs impaired complex formation and subsequently impaired PDA and metastasis occurrence, while injection of CAF-derived ANXA6+ EVs enhanced tumorigenesis. We found that the presence of ANXA6+ EVs in serum was restricted to PDA patients and represents a potential biomarker for PDA grade. These findings suggest that CAF–tumor cell crosstalk supported by ANXA6+ EVs is predictive of PDA aggressiveness, highlighting a therapeutic target and potential biomarker for PDA. PMID:27701147
Efficient RNA drug delivery using red blood cell extracellular vesicles.
Usman, Waqas Muhammad; Pham, Tin Chanh; Kwok, Yuk Yan; Vu, Luyen Tien; Ma, Victor; Peng, Boya; Chan, Yuen San; Wei, Likun; Chin, Siew Mei; Azad, Ajijur; He, Alex Bai-Liang; Leung, Anskar Y H; Yang, Mengsu; Shyh-Chang, Ng; Cho, William C; Shi, Jiahai; Le, Minh T N
2018-06-15
Most of the current methods for programmable RNA drug therapies are unsuitable for the clinic due to low uptake efficiency and high cytotoxicity. Extracellular vesicles (EVs) could solve these problems because they represent a natural mode of intercellular communication. However, current cellular sources for EV production are limited in availability and safety in terms of horizontal gene transfer. One potentially ideal source could be human red blood cells (RBCs). Group O-RBCs can be used as universal donors for large-scale EV production since they are readily available in blood banks and they are devoid of DNA. Here, we describe and validate a new strategy to generate large-scale amounts of RBC-derived EVs for the delivery of RNA drugs, including antisense oligonucleotides, Cas9 mRNA, and guide RNAs. RNA drug delivery with RBCEVs shows highly robust microRNA inhibition and CRISPR-Cas9 genome editing in both human cells and xenograft mouse models, with no observable cytotoxicity.
Integrated Kidney Exosome Analysis for the Detection of Kidney Transplant Rejection.
Park, Jongmin; Lin, Hsing-Ying; Assaker, Jean Pierre; Jeong, Sangmoo; Huang, Chen-Han; Kurdi, A; Lee, Kyungheon; Fraser, Kyle; Min, Changwook; Eskandari, Siawosh; Routray, Sujit; Tannous, Bakhos; Abdi, Reza; Riella, Leonardo; Chandraker, Anil; Castro, Cesar M; Weissleder, Ralph; Lee, Hakho; Azzi, Jamil R
2017-11-28
Kidney transplant patients require life-long surveillance to detect allograft rejection. Repeated biopsy, albeit the clinical gold standard, is an invasive procedure with the risk of complications and comparatively high cost. Conversely, serum creatinine or urinary proteins are noninvasive alternatives but are late markers with low specificity. We report a urine-based platform to detect kidney transplant rejection. Termed iKEA (integrated kidney exosome analysis), the approach detects extracellular vesicles (EVs) released by immune cells into urine; we reasoned that T cells, attacking kidney allografts, would shed EVs, which in turn can be used as a surrogate marker for inflammation. We optimized iKEA to detect T-cell-derived EVs and implemented a portable sensing system. When applied to clinical urine samples, iKEA revealed high level of CD3-positive EVs in kidney rejection patients and achieved high detection accuracy (91.1%). Fast, noninvasive, and cost-effective, iKEA could offer new opportunities in managing transplant recipients, perhaps even in a home setting.
Near-infrared photodetector with reduced dark current
Klem, John F; Kim, Jin K
2012-10-30
A photodetector is disclosed for the detection of near-infrared light with a wavelength in the range of about 0.9-1.7 microns. The photodetector, which can be formed as either an nBp device or a pBn device on an InP substrate, includes an InGaAs light-absorbing layer, an InAlGaAs graded layer, an InAlAs or InP barrier layer, and an InGaAs contact layer. The photodetector can detect near-infrared light with or without the use of an applied reverse-bias voltage and is useful as an individual photodetector, or to form a focal plane array.
Low temperature performance of a commercially available InGaAs image sensor
NASA Astrophysics Data System (ADS)
Nakaya, Hidehiko; Komiyama, Yutaka; Kashikawa, Nobunari; Uchida, Tomohisa; Nagayama, Takahiro; Yoshida, Michitoshi
2016-08-01
We report the evaluation results of a commercially available InGaAs image sensor manufactured by Hamamatsu Photonics K. K., which has sensitivity between 0.95μm and 1.7μm at a room temperature. The sensor format was 128×128 pixels with 20 μm pitch. It was tested with our original readout electronics and cooled down to 80 K by a mechanical cooler to minimize the dark current. Although the readout noise and dark current were 200 e- and 20 e- /sec/pixel, respectively, we found no serious problems for the linearity, wavelength response, and intra-pixel response.
Contact reflectivity effects on thin p-clad InGaAs single quantum-well lasers
NASA Astrophysics Data System (ADS)
Wu, C. H.; Zory, P. S.; Emanuel, M. A.
1994-12-01
Thin p-clad InGaAs quantum-well (QW) lasers with either Au or Ni as the p-contact metal have been fabricated. Due to reduced contact reflectivity, the Ni contact lasers have significantly higher threshold currents and lower slope efficiencies than the Au contact lasers. In addition, operating wavelength differences greater than 50 nm are observed for cavity lengths between 250 and 700 microns, with large wavelength jumps occurring at shorter and longer cavity lengths. The measured wavelength effects are explained by incorporating the optical mode loss difference between the two laser types into quantum-well laser theory.
Rhodium doped InGaAs: A superior ultrafast photoconductor
NASA Astrophysics Data System (ADS)
Kohlhaas, R. B.; Globisch, B.; Nellen, S.; Liebermeister, L.; Schell, M.; Richter, P.; Koch, M.; Semtsiv, M. P.; Masselink, W. T.
2018-03-01
The properties of rhodium (Rh) as a deep-level dopant in InGaAs lattice matched to InP grown by molecular beam epitaxy are investigated. When InGaAs:Rh is used as an ultrafast photoconductor, carrier lifetimes as short as 100 fs for optically excited electrons are measured. Rh doping compensates free carriers so that a near intrinsic carrier concentration can be achieved. At the same time, InGaAs:Rh exhibits a large electron mobility of 1000 cm2/V s. Therefore, this material is a very promising candidate for application as a semi-insulating layer, THz antenna, or semiconductor saturable absorber mirror.
Quantum dots for GaAs-based surface emitting lasers at 1300 nm
NASA Astrophysics Data System (ADS)
Grundmann, M.; Ledentsov, N. N.; Hopfer, F.; Heinrichsdorff, F.; Guffarth, F.; Bimberg, D.; Ustinov, V. M.; Zhukov, A. E.; Kovsh, A. R.; Maximov, M. V.; Musikhin, Yu. G.; Alferov, Zh. I.; Lott, J. A.; Zhakharov, N. D.; Werner, P.
InGaAs quantum dots (QD's) on GaAs substrate have been fabricated using metal-organic chemical vapor deposition (MOCVD) and molecular beam epitaxy (MBE) for the use in vertical cavity surface emitting laser diodes. Similar recombination spectra are obtained by employing the two different approaches of seeding and overgrowth with a quantum well. Despite the shift to larger wavelengths a large separation (=80 meV) between excited states is maintained. The introduction of such QD's into a vertical cavity leads to strong narrowing of the emission spectrum. Lasing from a 1300 nm InGaAs quantum dot VCSEL is reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Yu; Li, Qiang; Lau, Kei May, E-mail: eekmlau@ust.hk
We report InGaAs quasi-quantum wires embedded in planar InP nanowires grown on (001) silicon emitting in the 1550 nm communication band. An array of highly ordered InP nanowire with semi-rhombic cross-section was obtained in pre-defined silicon V-grooves through selective-area hetero-epitaxy. The 8% lattice mismatch between InP and Si was accommodated by an ultra-thin stacking disordered InP/GaAs nucleation layer. X-ray diffraction and transmission electron microscope characterizations suggest excellent crystalline quality of the nanowires. By exploiting the morphological evolution of the InP and a self-limiting growth process in the V-grooves, we grew embedded InGaAs quantum-wells and quasi-quantum-wires with tunable shape and position. Roommore » temperature analysis reveals substantially improved photoluminescence in the quasi-quantum wires as compared to the quantum-well reference, due to the reduced intrusion defects and enhanced quantum confinement. These results show great promise for integration of III-V based long wavelength nanowire lasers on the well-established (001) Si platform.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seravalli, L.; Trevisi, G.; Frigeri, P.
In this work, we calculate the two-dimensional quantum energy system of the In(Ga)As wetting layer that arises in InAs/InGaAs/GaAs metamorphic quantum dot structures. Model calculations were carried on the basis of realistic material parameters taking in consideration their dependence on the strain relaxation of the metamorphic buffer; results of the calculations were validated against available literature data. Model results confirmed previous hypothesis on the extrinsic nature of the disappearance of wetting layer emission in metamorphic structures with high In composition. We also show how, by adjusting InGaAs metamorphic buffer parameters, it could be possible: (i) to spatially separate carriers confinedmore » in quantum dots from wetting layer carriers, (ii) to create an hybrid 0D-2D system, by tuning quantum dot and wetting layer levels. These results are interesting not only for the engineering of quantum dot structures but also for other applications of metamorphic structures, as the two design parameters of the metamorphic InGaAs buffer (thickness and composition) provide additional degrees of freedom to control properties of interest.« less
Noise characteristics analysis of short wave infrared InGaAs focal plane arrays
NASA Astrophysics Data System (ADS)
Yu, Chunlei; Li, Xue; Yang, Bo; Huang, Songlei; Shao, Xiumei; Zhang, Yaguang; Gong, Haimei
2017-09-01
The increasing application of InGaAs short wave infrared (SWIR) focal plane arrays (FPAs) in low light level imaging requires ultra-low noise FPAs. This paper presents the theoretical analysis of FPA noise, and point out that both dark current and detector capacitance strongly affect the FPA noise. The impact of dark current and detector capacitance on FPA noise is compared in different situations. In order to obtain low noise performance FPAs, the demand for reducing detector capacitance is higher especially when pixel pitch is smaller, integration time is shorter, and integration capacitance is larger. Several InGaAs FPAs were measured and analyzed, the experiments' results could be well fitted to the calculated results. The study found that the major contributor of FPA noise is coupled noise with shorter integration time. The influence of detector capacitance on FPA noise is more significant than that of dark current. To investigate the effect of detector performance on FPA noise, two kinds of photodiodes with different concentration of the absorption layer were fabricated. The detectors' performance and noise characteristics were measured and analyzed, the results are consistent with that of theoretical analysis.
Minciacchi, Valentina R.; You, Sungyong; Spinelli, Cristiana; Morley, Samantha; Zandian, Mandana; Aspuria, Paul-Joseph; Cavallini, Lorenzo; Ciardiello, Chiara; Sobreiro, Mariana Reis; Morello, Matteo; Kharmate, Geetanjali; Jang, Su Chul; Kim, Dae-Kyum; Hosseini-Beheshti, Elham; Guns, Emma Tomlinson; Gleave, Martin; Gho, Yong Song; Mathivanan, Suresh; Yang, Wei; Freeman, Michael R.; Di Vizio, Dolores
2015-01-01
Large oncosomes (LO) are atypically large (1-10μm diameter) cancer-derived extracellular vesicles (EVs), originating from the shedding of membrane blebs and associated with advanced disease. We report that 25% of the proteins, identified by a quantitative proteomics analysis, are differentially represented in large and nano-sized EVs from prostate cancer cells. Proteins enriched in large EVs included enzymes involved in glucose, glutamine and amino acid metabolism, all metabolic processes relevant to cancer. Glutamine metabolism was altered in cancer cells exposed to large EVs, an effect that was not observed upon treatment with exosomes. Large EVs exhibited discrete buoyant densities in iodixanol (OptiPrepTM) gradients. Fluorescent microscopy of large EVs revealed an appearance consistent with LO morphology, indicating that these structures can be categorized as LO. Among the proteins enriched in LO, cytokeratin 18 (CK18) was one of the most abundant (within the top 5th percentile) and was used to develop an assay to detect LO in the circulation and tissues of mice and patients with prostate cancer. These observations indicate that LO represent a discrete EV type that may play a distinct role in tumor progression and that may be a source of cancer-specific markers. PMID:25857301
A three solar cell system based on a self-supporting, transparent AlGaAs top solar cell
NASA Technical Reports Server (NTRS)
Negley, Gerald H.; Rhoads, Sandra L.; Terranova, Nancy E.; Mcneely, James B.; Barnett, Allen M.
1989-01-01
Development of a three solar cell stack can lead to practical efficiencies greater than 30 percent (1x,AM0). A theoretical efficiency limitation of 43.7 percent at AM0 and one sun is predicted by this model. Including expected losses, a practical system efficiency of 36.8 percent is anticipated. These calculations are based on a 1.93eV/1.43eV/0.89eV energy band gap combination. AlGaAs/GaAs/GaInAsP materials can be used with a six-terminal wiring configuration. The key issues for multijunction solar cells are the top and middle solar cell performance and the sub-bandgap transparency. AstroPower has developed a technique to fabricate AlGaAs solar cells on rugged, self-supporting, transparent AlGaAs substrates. Top solar cell efficiencies greater than 11 percent AM0 have been achieved. State-of-the-art GaAs or InP devices will be used for the middle solar cell. GaInAsP will be used to fabricate the bottom solar cell. This material is lattice-matched to InP and offers a wide range of bandgaps for optimization of the three solar cell stack. Liquid phase epitaxy is being used to grow the quaternary material. Initial solar cells have shown open-circuit voltages of 462 mV for a bandgap of 0.92eV. Design rules for the multijunction three solar cell stack are discussed. The progress in the development of the self-supporting AlGaAs top solar cell and the GaInAsP bottom solar cell is presented.
Cytokine Immunopathogenesis of Enterovirus 71 Brain Stem Encephalitis
Wang, Shih-Min; Lei, Huan-Yao; Liu, Ching-Chuan
2012-01-01
Enterovirus 71 (EV71) is one of the most important causes of herpangina and hand, foot, and mouth disease. It can also cause severe complications of the central nervous system (CNS). Brain stem encephalitis with pulmonary edema is the severe complication that can lead to death. EV71 replicates in leukocytes, endothelial cells, and dendritic cells resulting in the production of immune and inflammatory mediators that shape innate and acquired immune responses and the complications of disease. Cytokines, as a part of innate immunity, favor the development of antiviral and Th1 immune responses. Cytokines and chemokines play an important role in the pathogenesis EV71 brain stem encephalitis. Both the CNS and the systemic inflammatory responses to infection play important, but distinctly different, roles in the pathogenesis of EV71 pulmonary edema. Administration of intravenous immunoglobulin and milrinone, a phosphodiesterase inhibitor, has been shown to modulate inflammation, to reduce sympathetic overactivity, and to improve survival in patients with EV71 autonomic nervous system dysregulation and pulmonary edema. PMID:22956971
Nimrichter, Leonardo; de Souza, Marcio M; Del Poeta, Maurizio; Nosanchuk, Joshua D; Joffe, Luna; Tavares, Patricia de M; Rodrigues, Marcio L
2016-01-01
Classic cell wall components of fungi comprise the polysaccharides glucans and chitin, in association with glycoproteins and pigments. During the last decade, however, system biology approaches clearly demonstrated that the composition of fungal cell walls include atypical molecules historically associated with intracellular or membrane locations. Elucidation of mechanisms by which many fungal molecules are exported to the extracellular space suggested that these atypical components are transitorily located to the cell wall. The presence of extracellular vesicles (EVs) at the fungal cell wall and in culture supernatants of distinct pathogenic species suggested a highly functional mechanism of molecular export in these organisms. Thus, the passage of EVs through fungal cell walls suggests remarkable molecular diversity and, consequently, a potentially variable influence on the host antifungal response. On the basis of information derived from the proteomic characterization of fungal EVs from the yeasts Cryptoccocus neoformans and Candida albicans and the dimorphic fungi Histoplasma capsulatum and Paracoccidioides brasiliensis, our manuscript is focused on the clear view that the fungal cell wall is much more complex than previously thought.
Electronic Band Structure Tuning of Highly-Mismatched-Alloys for Energy Conversion Applications
NASA Astrophysics Data System (ADS)
Ting, Min
Highly-mismatched alloys: ZnO1-xTe x and GaN1-xSb x are discussed within the context of finding the suitable material for a cost-effective Si-based tandem solar cell (SBTSC). SBTSC is an attractive concept for breaking through the energy conversion efficiency theoretical limit of a single junction solar cell. Combining with a material of 1.8 eV band gap, SBTSC can theoretically achieve energy conversion efficiency > 45%. ZnO and GaN are wide band gap semiconductors. Alloying Te in ZnO and alloying Sb in GaN result in large band gap reduction to < 2 eV from 3.3 eV and 3.4 eV respectively. The band gap reduction is majorly achieved by the upward shift of valence band (VB). Incorporating Te in ZnO modifies the VB of ZnO through the valence-band anticrossing (VBAC) interaction between localized Te states and ZnO VB delocalized states, which forms a Te-derived VB at 1 eV above the host VB. Similar band structure modification is resulted from alloying Sb in GaN. Zn1-xTex and GaN 1-xSbx thin films are synthesized across the whole composition range by pulsed laser deposition (PLD) and low temperature molecular beam epitaxy (LT-MBE) respectively. The electronic band edges of these alloys are measured by synchrotron X-ray absorption, emission, and the X-ray photoelectron spectroscopies. Modeling the optical absorption coefficient with the band anticrossing (BAC) model revealed that the Te and Sb defect levels to be at 0.99 eV and 1.2 eV above the VB of ZnO and GaN respectively. Electrically, Zn1-xTex is readily n-type conductive and GaN1-xSbx is strongly p-type conductive. A heterojunction device of p-type GaN 0.93Sb0.07 with n-type ZnO0.77Te0.93 upper cell (band gap at 1.8 eV) on Si bottom cell is proposed as a promising SBTSC device.
The role of exosomes and miRNAs in drug-resistance of cancer cells.
Bach, Duc-Hiep; Hong, Ji-Young; Park, Hyen Joo; Lee, Sang Kook
2017-07-15
Chemotherapy, one of the principal approaches for cancer patients, plays a crucial role in controlling tumor progression. Clinically, tumors reveal a satisfactory response following the first exposure to the chemotherapeutic drugs in treatment. However, most tumors sooner or later become resistant to even chemically unrelated anticancer agents after repeated treatment. The reduced drug accumulation in tumor cells is considered one of the significant mechanisms by decreasing drug permeability and/or increasing active efflux (pumping out) of the drugs across the cell membrane. The mechanisms of treatment failure of chemotherapeutic drugs have been investigated, including drug efflux, which is mediated by extracellular vesicles (EVs). Exosomes, a subset of EVs with a size range of 40-150 nm and a lipid bilayer membrane, can be released by all cell types. They mediate specific cell-to-cell interactions and activate signaling pathways in cells they either fuse with or interact with, including cancer cells. Exosomal RNAs are heterogeneous in size but enriched in small RNAs, such as miRNAs. In the primary tumor microenvironment, cancer-secreted exosomes and miRNAs can be internalized by other cell types. MiRNAs loaded in these exosomes might be transferred to recipient niche cells to exert genome-wide regulation of gene expression. How exosomal miRNAs contribute to the development of drug resistance in the context of the tumor microenvironment has not been fully described. In this review, we will highlight recent studies regarding EV-mediated microRNA delivery in formatting drug resistance. We also suggest the use of EVs as an advancing method in antiresistance treatment. © 2017 UICC.
Flow analysis of individual blood extracellular vesicles in acute coronary syndrome.
Vagida, Murad; Arakelyan, Anush; Lebedeva, Anna; Grivel, Jean-Charles; Shpektor, Alexander; Vasilieva, Elena; Margolis, Leonid
2017-03-01
A diverse population of small extracellular vesicles (EVs) that are released by various cells has been characterized predominantly in bulk, a procedure whereby the individual characteristics of EVs are lost. Here, we used a new nanotechnology-based flow cytometric analysis to characterize the antigenic composition of individual EVs in patients with acute coronary syndrome (ACS). Plasma EVs were captured with 15-nm magnetic nanoparticles coupled to antibodies against CD31 (predominantly an endothelial marker), CD41a (a marker for platelets), and CD63 or MHC class I (common EV markers). The total amounts of EVs were higher in the ACS patients than in the controls, predominantly due to the contribution of patients with acute myocardial infarction. For all captured fractions, the differences in the EV amounts were restricted to CD41a + EVs. The increase in the numbers of EVs in the ACS patients, predominantly of platelet origin, probably reflects platelet activation and may indicate disease progression.
Zhou, Wenke; Zhao, Yicheng; Zhou, Xu; Fu, Rui; Li, Qi; Zhao, Yao; Liu, Kaihui; Yu, Dapeng; Zhao, Qing
2017-09-07
Due to light-induced effects in CH 3 NH 3 -based perovskites, such as ion migration, defects formation, and halide segregation, the degradation of CH 3 NH 3 -based perovskite solar cells under maximum power point is generally implicated. Here we demonstrated that the effect of light-enhanced ion migration in CH 3 NH 3 PbI 3 can be eliminated by inorganic Cs substitution, leading to an ultrastable perovskite solar cell. Quantitatively, the ion migration barrier for CH 3 NH 3 PbI 3 is 0.62 eV under dark conditions, larger than that of CsPbI 2 Br (0.45 eV); however, it reduces to 0.07 eV for CH 3 NH 3 PbI 3 under illumination, smaller than that for CsPbI 2 Br (0.43 eV). Meanwhile, photoinduced halide segregation is also suppressed in Cs-based perovskites. Cs-based perovskite solar cells retained >99% of the initial efficiency (10.3%) after 1500 h of maximum power point tracking under AM1.5G illumination, while CH 3 NH 3 PbI 3 solar cells degraded severely after 50 h of operation. Our work reveals an uncovered mechanism for stability improvement by inorganic cation substitution in perovskite-based optoelectronic devices.
Tan, Natalie Woon Hui; Lee, Elis Yuexian; Khoo, Gloria Mei Chin; Tee, Nancy Wen Sim; Krishnamoorthy, Subramania; Choong, Chew Thye
2016-04-01
Non-polio enteroviruses (EV) are the most common viruses causing aseptic meningitis in children. We aim to evaluate the cerebrospinal fluid (CSF) characteristics of neonates and children with EV meningitis with a view to determine whether it could be discriminatory or otherwise in making a positive diagnosis. We performed a 3-year (July 2008-July 2011) retrospective study of children ≤16 years, treated at a tertiary children's hospital, with positive CSF EV polymerase chain reaction (PCR) and negative blood and CSF bacterial cultures. A total of 206 children were studied. The median CSF white cell count was 79 cells/mm(3) (range 0-4608 cells/mm(3)). CSF pleocytosis was observed in 99/150 (66%) aged ≤90 days, 3/4 (75%) aged 90 days-1 year, and 49/52 (94%) children ≥3 years. There was a huge variability in CSF pleocytosis in infants ≤90 days, where 34% of them had no pleocytosis, while in 66%, a wide range of pleocytosis that might even suggest bacterial meningitis was noted. CSF red cells were low, and protein or sugar values were not discriminatory. CSF pleocytosis in relation to increasing age was found to be statistically significant (p < 0.001). Early lumbar puncture within 48 h of symptoms and absence of CSF pleocytosis was also statistically significant (p = 0.039). CSF pleocytosis in EV meningitis is commoner in older children. As there was a huge variability in CSF pleocytosis in infants ≤90 days particularly, CSF analysis including EV PCR could avoid unnecessary antibiotic therapy.
Extracellular vesicles and intercellular communication within the nervous system
Fitzpatrick, Zachary; Maguire, Casey A.; Breakefield, Xandra O.
2016-01-01
Extracellular vesicles (EVs, including exosomes) are implicated in many aspects of nervous system development and function, including regulation of synaptic communication, synaptic strength, and nerve regeneration. They mediate the transfer of packets of information in the form of nonsecreted proteins and DNA/RNA protected within a membrane compartment. EVs are essential for the packaging and transport of many cell-fate proteins during development as well as many neurotoxic misfolded proteins during pathogenesis. This form of communication provides another dimension of cellular crosstalk, with the ability to assemble a “kit” of directional instructions made up of different molecular entities and address it to specific recipient cells. This multidimensional form of communication has special significance in the nervous system. How EVs help to orchestrate the wiring of the brain while allowing for plasticity associated with learning and memory and contribute to regeneration and degeneration are all under investigation. Because they carry specific disease-related RNAs and proteins, practical applications of EVs include potential uses as biomarkers and therapeutics. This Review describes our current understanding of EVs and serves as a springboard for future advances, which may reveal new important mechanisms by which EVs in coordinate brain and body function and dysfunction. PMID:27035811
Development of nickel/metal-hydride batteries for EVs and HEVs
NASA Astrophysics Data System (ADS)
Taniguchi, Akihiro; Fujioka, Noriyuki; Ikoma, Munehisa; Ohta, Akira
This paper is to introduce the nickel/metal-hydride (Ni/MH) batteries for electric vehicles (EVs) and hybrid electric vehicles (HEVs) developed and mass-produced by our company. EV-95 for EVs enables a vehicle to drive approximately 200 km per charge. As the specific power is extremely high, more than 200 W/kg at 80% depth of discharge (DOD), the acceleration performance is equivalent to that of gasoline fuel automobiles. The life characteristic is also superior. This battery gives the satisfactory result of more than 1000 cycles in bench tests and approximately 4-year on-board driving. EV-28 developed for small EVs comprises of a compact and light battery module with high specific power of 300 W/kg at 80% DOD by introducing a new technology for internal cell connection. Meanwhile, our cylindrical battery for the HEV was adopted into the first generation Toyota Prius in 1997 which is the world's first mass-product HEV, and has a high specific power of 600 W/kg. Its life characteristic was found to be equivalent to more than 100,000 km driving. Furthermore, a new prismatic module in which six cells are connected internally was used for the second generation Prius in 2000. The prismatic battery comprises of a compact and light battery pack with a high specific power of 1000 W/kg, which is approximately 1.7 times that of conventional cylindrical batteries, as a consequence of the development of a new internal cell connection and a new current collection structure.
Extracellular Vesicle-Associated RNA as a Carrier of Epigenetic Information
2017-01-01
Post-transcriptional regulation of messenger RNA (mRNA) metabolism and subcellular localization is of the utmost importance both during development and in cell differentiation. Besides carrying genetic information, mRNAs contain cis-acting signals (zip codes), usually present in their 5′- and 3′-untranslated regions (UTRs). By binding to these signals, trans-acting factors, such as RNA-binding proteins (RBPs), and/or non-coding RNAs (ncRNAs), control mRNA localization, translation and stability. RBPs can also form complexes with non-coding RNAs of different sizes. The release of extracellular vesicles (EVs) is a conserved process that allows both normal and cancer cells to horizontally transfer molecules, and hence properties, to neighboring cells. By interacting with proteins that are specifically sorted to EVs, mRNAs as well as ncRNAs can be transferred from cell to cell. In this review, we discuss the mechanisms underlying the sorting to EVs of different classes of molecules, as well as the role of extracellular RNAs and the associated proteins in altering gene expression in the recipient cells. Importantly, if, on the one hand, RBPs play a critical role in transferring RNAs through EVs, RNA itself could, on the other hand, function as a carrier to transfer proteins (i.e., chromatin modifiers, and transcription factors) that, once transferred, can alter the cell’s epigenome. PMID:28937658
Fallen, Shannon; Baxter, David; Wu, Xiaogang; Kim, Taek-Kyun; Shynlova, Oksana; Lee, Min Young; Scherler, Kelsey; Lye, Stephen; Hood, Leroy; Wang, Kai
2018-05-01
Preterm birth (PTB) can lead to lifelong complications and challenges. Identifying and monitoring molecular signals in easily accessible biological samples that can diagnose or predict the risk of preterm labour (PTL) in pregnant women will reduce or prevent PTBs. A number of studies identified putative biomarkers for PTL including protein, miRNA and hormones from various body fluids. However, biomarkers identified from these studies usually lack consistency and reproducibility. Extracellular vesicles (EVs) in circulation have gained significant interest in recent years as these vesicles may be involved in cell-cell communication. We have used an improved small RNA library construction protocol and a newly developed size exclusion chromatography (SEC)-based EV purification method to gain a comprehensive view of circulating RNA in plasma and its distribution by analysing RNAs in whole plasma and EV-associated and EV-depleted plasma. We identified a number of miRNAs in EVs that can be used as biomarkers for PTL, and these miRNAs may reflect the pathological changes of the placenta during the development of PTL. To our knowledge, this is the first study to report a comprehensive picture of circulating RNA, including RNA in whole plasma, EV and EV-depleted plasma, in PTL and reveal the usefulness of EV-associated RNAs in disease diagnosis. © 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Park, Sang June; Jeon, Hyungtaek; Yoo, Seung-Min; Lee, Myung-Shin
2018-05-10
Extracellular vesicles (EVs) are mediators of intercellular communication by transporting cargo containing proteins, lipids, mRNA, and miRNA. There is increasing evidence that EVs have various roles in regulating migration, invasion, stemness, survival, and immune functions. Previously, we have found that EVs from Kaposi's sarcoma-associated herpesvirus (KSHV)-infected human endothelial cells have the potential to activate the complement system. Although many studies have shown that the physical properties of EVs can be changed by their storage condition, there have been few studies for the stability of biological activity of EVs in various storage conditions. In this study, we investigated various conditions to identify the best conditions to store EVs with functional stability for 25 d. Furthermore, the correlation between the function and other characteristics of EVs, including the expression of EV markers, size distribution, and particle number, were also analyzed. Our results demonstrated that storage temperature is an important factor to maintain the activity of EVs and would be useful information for basic research and clinical application using EVs.
Nogueira, Paula M.; Ribeiro, Kleber; Silveira, Amanda C. O.; Campos, João H.; Martins-Filho, Olindo A.; Bela, Samantha R.; Campos, Marco A.; Pessoa, Natalia L.; Colli, Walter; Alves, Maria J. M.; Soares, Rodrigo P.; Torrecilhas, Ana Claudia
2015-01-01
Trypomastigote forms of Trypanosoma cruzi, the causative agent of Chagas Disease, shed extracellular vesicles (EVs) enriched with glycoproteins of the gp85/trans-sialidase (TS) superfamily and other α-galactosyl (α-Gal)-containing glycoconjugates, such as mucins. Here, purified vesicles from T. cruzi strains (Y, Colombiana, CL-14 and YuYu) were quantified according to size, intensity and concentration. Qualitative analysis revealed differences in their protein and α-galactosyl contents. Later, those polymorphisms were evaluated in the modulation of immune responses (innate and in the chronic phase) in C57BL/6 mice. EVs isolated from YuYu and CL-14 strains induced in macrophages higher levels of proinflammatory cytokines (TNF-α and IL-6) and nitric oxide via TLR2. In general, no differences were observed in MAPKs activation (p38, JNK and ERK 1/2) after EVs stimulation. In splenic cells derived from chronically infected mice, a different modulation pattern was observed, where Colombiana (followed by Y strain) EVs were more proinflammatory. This modulation was independent of the T. cruzi strain used in the mice infection. To test the functional importance of this modulation, the expression of intracellular cytokines after in vitro exposure was evaluated using EVs from YuYu and Colombiana strains. Both EVs induced cytokine production with the appearance of IL-10 in the chronically infected mice. A high frequency of IL-10 in CD4+ and CD8+ T lymphocytes was observed. A mixed profile of cytokine induction was observed in B cells with the production of TNF-α and IL-10. Finally, dendritic cells produced TNF-α after stimulation with EVs. Polymorphisms in the vesicles surface may be determinant in the immunopathologic events not only in the early steps of infection but also in the chronic phase. PMID:26613751
Nogueira, Paula M; Ribeiro, Kleber; Silveira, Amanda C O; Campos, João H; Martins-Filho, Olindo A; Bela, Samantha R; Campos, Marco A; Pessoa, Natalia L; Colli, Walter; Alves, Maria J M; Soares, Rodrigo P; Torrecilhas, Ana Claudia
2015-01-01
Trypomastigote forms of Trypanosoma cruzi, the causative agent of Chagas Disease, shed extracellular vesicles (EVs) enriched with glycoproteins of the gp85/trans-sialidase (TS) superfamily and other α-galactosyl (α-Gal)-containing glycoconjugates, such as mucins. Here, purified vesicles from T. cruzi strains (Y, Colombiana, CL-14 and YuYu) were quantified according to size, intensity and concentration. Qualitative analysis revealed differences in their protein and α-galactosyl contents. Later, those polymorphisms were evaluated in the modulation of immune responses (innate and in the chronic phase) in C57BL/6 mice. EVs isolated from YuYu and CL-14 strains induced in macrophages higher levels of proinflammatory cytokines (TNF-α and IL-6) and nitric oxide via TLR2. In general, no differences were observed in MAPKs activation (p38, JNK and ERK 1/2) after EVs stimulation. In splenic cells derived from chronically infected mice, a different modulation pattern was observed, where Colombiana (followed by Y strain) EVs were more proinflammatory. This modulation was independent of the T. cruzi strain used in the mice infection. To test the functional importance of this modulation, the expression of intracellular cytokines after in vitro exposure was evaluated using EVs from YuYu and Colombiana strains. Both EVs induced cytokine production with the appearance of IL-10 in the chronically infected mice. A high frequency of IL-10 in CD4+ and CD8+ T lymphocytes was observed. A mixed profile of cytokine induction was observed in B cells with the production of TNF-α and IL-10. Finally, dendritic cells produced TNF-α after stimulation with EVs. Polymorphisms in the vesicles surface may be determinant in the immunopathologic events not only in the early steps of infection but also in the chronic phase.
Cost Savings for Manufacturing Lithium Batteries in a Flexible Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Paul A.; Ahmed, Shabbir; Gallagher, Kevin G.
2015-06-01
The flexible plant postulated in this study would produces types of batteries for electric-drive vehicles of the types hybrid (HEV), 10-mile range and 40-mile range plug-in hybrids (PHEV) and a 150-mile range battery-electric (EV). The annual production rate of the plant is 235,000 per year (30,000 EV batteries and 100,000 HEV batteries). The unit cost savings as calculated with the Argonne BatPaC model for this flex plant vs. dedicated plants range from 8% for the EV battery packs to 23% for the HEV packs including the battery management systems (BMS). The investment cost savings are even larger, ranging from 21%more » for EVs to 43% for HEVs. The costs of the 1.0-kWh HEV batteries are projected to approach $710 per unit and that of the EV batteries $228 per kWh with the most favorable cell chemistries and including the BMS. The best single indicator of the cost of producing lithium-manganate spinel/graphite batteries in a flex plant is the total cell area of the battery. For the four batteries studied, the price range is $20-24 per m2 of cell area including the cost of the BMS, averaging $21 per m2 for the entire flex plant.« less
Current methods for the isolation of extracellular vesicles.
Momen-Heravi, Fatemeh; Balaj, Leonora; Alian, Sara; Mantel, Pierre-Yves; Halleck, Allison E; Trachtenberg, Alexander J; Soria, Cesar E; Oquin, Shanice; Bonebreak, Christina M; Saracoglu, Elif; Skog, Johan; Kuo, Winston Patrick
2013-10-01
Extracellular vesicles (EVs), including microvesicles and exosomes, are nano- to micron-sized vesicles, which may deliver bioactive cargos that include lipids, growth factors and their receptors, proteases, signaling molecules, as well as mRNA and non-coding RNA, released from the cell of origin, to target cells. EVs are released by all cell types and likely induced by mechanisms involved in oncogenic transformation, environmental stimulation, cellular activation, oxidative stress, or death. Ongoing studies investigate the molecular mechanisms and mediators of EVs-based intercellular communication at physiological and oncogenic conditions with the hope of using this information as a possible source for explaining physiological processes in addition to using them as therapeutic targets and disease biomarkers in a variety of diseases. A major limitation in this evolving discipline is the hardship and the lack of standardization for already challenging techniques to isolate EVs. Technical advances have been accomplished in the field of isolation with improving knowledge and emerging novel technologies, including ultracentrifugation, microfluidics, magnetic beads and filtration-based isolation methods. In this review, we will discuss the latest advances in methods of isolation methods and production of clinical grade EVs as well as their advantages and disadvantages, and the justification for their support and the challenges that they encounter.
Development of a 2.0 eV AlGaInP Solar Cell Grown by OMVPE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perl, Emmett E.; Simon, John; Geisz, John F.
2015-06-14
AlGaInP solar cells with a bandgap (Eg) of ~2.0 eV are developed for use in next-generation multijunction photovoltaic devices. This material system is of great interest for both space and concentrator photovoltaics due to its high bandgap, which enables the development of high-efficiency five-junction and six-junction devices and is also useful for solar cells operated at elevated temperatures. In this work, we explore the conditions for the Organometallic Vapor Phase Epitaxy (OMVPE) growth of AlGaInP and study their effects on cell performance. A ~2.0 eV AlGaInP solar cell is demonstrated with an open circuit voltage (VOC) of 1.59V, a bandgap-voltagemore » offset (WOC) of 420mV, a fill factor (FF) of 88.0%, and an efficiency of 14.8%. These AlGaInP cells have attained a similar FF, WOC and internal quantum efficiency (IQE) to the best upright GaInP cells grown in our lab to date.« less
Zhang, Hua; Song, Lei; Cong, Haolong; Tien, Po
2015-10-01
Enterovirus 71 (EV71) recruits various cellular factors to assist in the replication and translation of its genome. Identification of the host factors involved in the EV71 life cycle not only will enable a better understanding of the infection mechanism but also has the potential to be of use in the development of antiviral therapeutics. In this study, we demonstrated that the cellular factor 68-kDa Src-associated protein in mitosis (Sam68) acts as an internal ribosome entry site (IRES) trans-acting factor (ITAF) that binds specifically to the EV71 5' untranslated region (5'UTR). Interaction sites in both the viral IRES (stem-loops IV and V) and the heterogeneous nuclear ribonucleoprotein K homology (KH) domain of Sam68 protein were further mapped using an electrophoretic mobility shift assay (EMSA) and biotin RNA pulldown assay. More importantly, dual-luciferase (firefly) reporter analysis suggested that overexpression of Sam68 positively regulated IRES-dependent translation of virus proteins. In contrast, both IRES activity and viral protein translation significantly decreased in Sam68 knockdown cells compared with the negative-control cells treated with short hairpin RNA (shRNA). However, downregulation of Sam68 did not have a significant inhibitory effect on the accumulation of the EV71 genome. Moreover, Sam68 was redistributed from the nucleus to the cytoplasm and interacts with cellular factors, such as poly(rC)-binding protein 2 (PCBP2) and poly(A)-binding protein (PABP), during EV71 infection. The cytoplasmic relocalization of Sam68 in EV71-infected cells may be involved in the enhancement of EV71 IRES-mediated translation. Since Sam68 is known to be a RNA-binding protein, these results provide direct evidence that Sam68 is a novel ITAF that interacts with EV71 IRES and positively regulates viral protein translation. The nuclear protein Sam68 is found as an additional new host factor that interacts with the EV71 IRES during infection and could potentially enhance the translation of virus protein. To our knowledge, this is the first report that describes Sam68 actively participating in the life cycle of EV71 at a molecular level. These studies will not only improve our understanding of the replication of EV71 but also have the potential for aiding in developing a therapeutic strategy against EV71 infection. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Lipid-induced Signaling Causes Release of Inflammatory Extracellular Vesicles from Hepatocytes
Hirsova, Petra; Ibrahim, Samar H.; Krishnan, Anuradha; Verma, Vikas K.; Bronk, Steven F.; Werneburg, Nathan W.; Charlton, Michael R.; Shah, Vijay H.; Malhi, Harmeet; Gores, Gregory J.
2016-01-01
BACKGROUND & AIMS Hepatocyte cellular dysfunction and death induced by lipids, and macrophage-associated inflammation are characteristics of nonalcoholic steatohepatitis (NASH). The fatty acid palmitate can activate death receptor 5 (DR5) on hepatocytes, leading to their death, but little is known about how this process contributes to macrophage-associated inflammation. We investigated whether lipid-induced DR5 signaling results in release of extracellular vesicles (EV) from hepatocytes, and whether these can induce an inflammatory macrophage phenotype. METHODS Primary mouse and human hepatocytes and Huh7 cells were incubated with palmitate, its metabolite lysophosphatidylcholine, or diluent (control). The released EV were isolated, characterized, quantified, and applied to macrophages. C57BL/6 mice were placed on chow or a diet high in fat, fructose, and cholesterol to induce NASH. Some mice were also given the ROCK1 inhibitor fasudil; 2 weeks later, serum EVs were isolated and characterized by immunoblot and nanoparticle-tracking analyses. Livers were collected and analyzed by histology, immunohistochemistry, and quantitative PCR. RESULTS Incubation of primary hepatocytes and Huh7 cells with palmitate or lysophosphatidylcholine increased their release of EV, compared with control cells. This release was reduced by inactivating mediators of the DR5 signaling pathway or ROCK1 inhibition. Hepatocyte-derived EV contained TRAIL and induced expression of interleukin-1, beta (Il1b) and Il6 mRNAs in mouse bone marrow-derived macrophages. Activation of macrophages required DR5 and RIP1. Administration of the ROCK1 inhibitor fasudil to mice with NASH reduced serum levels of EV; this reduction was associated with decreased liver injury, inflammation, and fibrosis. CONCLUSIONS Lipids, which stimulate DR5, induce release of hepatocyte EV, which activate an inflammatory phenotype in macrophages. Strategies to inhibit ROCK1-dependent release of EV by hepatocytes might be developed for treatment of patients with NASH. PMID:26764184
Royal Society Scientific Meeting: Extracellular vesicles in the tumour microenvironment.
Pink, Ryan Charles; Elmusrati, Areeg A; Lambert, Daniel; Carter, David Raul Francisco
2018-01-05
Cancer cells do not grow as an isolated homogeneous mass; tumours are, in fact, complex and heterogeneous collections of cancer and surrounding stromal cells, collectively termed the tumour microenvironment. The interaction between cancer cells and stromal cells in the tumour microenvironment has emerged as a key concept in the regulation of cancer progression. Understanding the intercellular dialogue in the tumour microenvironment is therefore an important goal. One aspect of this dialogue that has not been appreciated until recently is the role of extracellular vesicles (EVs). EVs are small vesicles released by cells under both normal and pathological conditions; they can transfer biological molecules between cells leading to changes in phenotype. EVs have emerged as important regulators of biological processes and can be dysregulated in diseases such as cancer; rapidly growing interest in their biology and therapeutic potential led to the Royal Society hosting a Scientific Meeting to explore the roles of EVs in the tumour microenvironment. This cross-disciplinary meeting explored examples of how aberrant crosstalk between tumour and stromal cells can promote cancer progression, and how such signalling can be targeted for diagnostic, prognostic and therapeutic benefit. In this review, and the special edition of Philosophical Transactions of the Royal Society B that follows, we will provide an overview of the content and outcomes of this exciting meeting.This article is part of the discussion meeting issue 'Extracellular vesicles and the tumour microenvironment'. © 2017 The Author(s).
NASA Astrophysics Data System (ADS)
Junling, Wang; Rui, Wu; Tiancheng, Yi; Yong, Zheng; Rong, Wang
2018-01-01
Temperature-dependent photoluminescence (PL) measurements were carried out to investigate the irradiation effects of 1.0 MeV electrons on the n+- p GaInP top cell of GaInP/GaAs/Ge triple-junction solar cells in the 10-300 K temperature range. The PL intensities plotted against inverse temperature in an Arrhenius plot shows a thermal quenching behavior from 10 K to 140 K and an unusual negative thermal quenching (NTQ) behavior from 150 K to 300 K. The appearance of the PL thermal quenching with increasing temperature confirms that there is a nonradiative recombination center, i.e., the H2 hole trap located at Ev + 0.55 eV, in the cell after electron irradiation. The PL negative thermal quenching behavior may tentatively be attributed to the intermediate states at an energy level of 0.05 eV within the band gap in GaInP top cell.
NASA Technical Reports Server (NTRS)
Alterovitz, S. A.; Sieg, R. M.; Yao, H. D.; Snyder, P. G.; Woollam, J. A.; Pamulapati, J.; Bhattacharya, P. K.; Sekula-Moise, P. A.
1991-01-01
Variable-angle spectroscopic ellipsometry was used to estimate the thicknesses of all layers within the optical penetration depth of InGaAs-based modulation doped field effect transistor structures. Strained and unstrained InGaAs channels were made by molecular beam epitaxy (MBE) on InP substrates and by metal-organic chemical vapor deposition on GaAs substrates. In most cases, ellipsometrically determined thicknesses were within 10% of the growth-calibration results. The MBE-made InGaAs strained layers showed large strain effects, indicating a probable shift in the critical points of their dielectric function toward the InP lattice-matched concentration.
Improved performance of high indium InGaAs photodetectors with InAlAs barrier
NASA Astrophysics Data System (ADS)
Du, Ben; Gu, Yi; Chen, Xing-You; Ma, Ying-Jie; Shi, Yan-Hui; Zhang, Jian; Zhang, Yong-Gang
2018-06-01
We report on the demonstration of an InP-based In0.83Ga0.17As photodetector with an In0.83Al0.17As barrier, which is lattice-matched to the absorption layer. According to the comprehensive comparison with the photodetector without the barrier, the dark current is markedly reduced by inserting the InAlAs barrier. Although the photoresponse slightly decreases for the device with the InAlAs barrier, the detectivity remains higher than that of the reference device at room temperature and significantly increases at lower temperatures. These results indicate that InAlAs is a promising barrier layer in high-indium InGaAs photodetectors.
Surface ordering of (In,Ga)As quantum dots controlled by GaAs substrate indexes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zh.M.; Seydmohamadi, Sh.; Lee, J.H.
Self-organized surface ordering of (In,Ga)As quantum dots in a GaAs matrix was investigated using stacked multiple quantum dot layers prepared by molecular-beam epitaxy. While one-dimensional chain-like ordering is formed on singular and slightly misorientated GaAs(100) surfaces, we report on two-dimensional square-like ordering that appears on GaAs(n11)B, where n is 7, 5, 4, and 3. Using a technique to control surface diffusion, the different ordering patterns are found to result from the competition between anisotropic surface diffusion and anisotropic elastic matrix, a similar mechanism suggested before by Solomon [Appl. Phys. Lett. 84, 2073 (2004)].
Mleczko, Justyna; Ortega, Francisco J.; Falcon‐Perez, Juan Manuel; Wabitsch, Martin; Fernandez‐Real, Jose Manuel
2018-01-01
Scope We investigate the effects of extracellular vesicles (EVs) obtained from in vitro adipocyte cell models and from obese subjects on glucose transport and insulin responsiveness. Methods and results EVs are isolated from the culture supernatant of adipocytes cultured under normoxia, hypoxia (1% oxygen), or exposed to macrophage conditioned media (15% v/v). EVs are isolated from the plasma of lean individuals and subjects with obesity. Cultured adipocytes are incubated with EVs and activation of insulin signalling cascades and insulin‐stimulated glucose transport are measured. EVs released from hypoxic adipocytes impair insulin‐stimulated 2‐deoxyglucose uptake and reduce insulin mediated phosphorylation of AKT. Insulin‐mediated phosphorylation of extracellular regulated kinases (ERK1/2) is not affected. EVs from individuals with obesity decrease insulin stimulated 2‐deoxyglucose uptake in adipocytes (p = 0.0159). Conclusion EVs released by stressed adipocytes impair insulin action in neighboring adipocytes. PMID:29292863
Hung, Hui-Chen; Shih, Shin-Ru; Chang, Teng-Yuan; Fang, Ming-Yu; Hsu, John T-A
2014-01-01
Enterovirus 71 (EV-A71) is a neurotropic virus that can cause severe complications involving the central nervous system. No effective antiviral therapeutics are available for treating EV-A71 infection and drug discovery efforts are rarely focused to target this disease. Thus, the main goal of this study was to discover existing drugs with novel indications that may effectively inhibit EV-A71 replication and the inflammatory cytokines elevation. In this study, we showed that LiCl, a GSK3β inhibitor, effectively suppressed EV-A71 replication, apoptosis and inflammatory cytokines production (Interleukin 6, Interleukin-1β) in infected cells. Furthermore, LiCl and an immunomodular agent were shown to strongly synergize with each other in suppressing EV-A71 replication. The results highlighted potential new treatment regimens in suppressing sequelae caused by EV-A71 replication.
The Antiviral Effect of Baicalin on Enterovirus 71 In Vitro
Li, Xiang; Liu, Yuanyuan; Wu, Tingting; Jin, Yue; Cheng, Jianpin; Wan, Changbiao; Qian, Weihe; Xing, Fei; Shi, Weifeng
2015-01-01
Baicalin is a flavonoid compound extracted from Scutellaria roots that has been reported to possess antibacterial, anti-inflammatory, and antiviral activities. However, the antiviral effect of baicalin on enterovirus 71 (EV71) is still unknown. In this study, we found that baicalin showed inhibitory activity on EV71 infection and was independent of direct virucidal or prophylactic effect and inhibitory viral absorption. The expressions of EV71/3D mRNA and polymerase were significantly blocked by baicalin treatment at early stages of EV71 infection. In addition, baicalin could decrease the expressions of FasL and caspase-3, as well as inhibit the apoptosis of EV71-infected human embryonal rhabdomyosarcoma (RD) cells. Altogether, these results indicate that baicalin exhibits potent antiviral effect on EV71 infection, probably through inhibiting EV71/3D polymerase expression and Fas/FasL signaling pathways. PMID:26295407
Extracellular vesicles from parasitic helminths and their potential utility as vaccines.
Mekonnen, Gebeyaw Getnet; Pearson, Mark; Loukas, Alex; Sotillo, Javier
2018-03-01
Helminths are multicellular parasites affecting nearly three billion people worldwide. To orchestrate a parasitic existence, helminths secrete different molecules, either in soluble form or contained within extracellular vesicles (EVs). EVs are secreted by most cell types and organisms, and have varied roles in intercellular communication, including immune modulation and pathogenesis. Areas covered: In this review, we describe the nucleic acid and proteomic composition of EVs from helminths, with a focus on the protein vaccine candidates present on the EV surface membrane, and discuss the potential utility of helminth EVs and their constituent proteins in the fight against helminth infections. Expert commentary: A significant number of proteins present in helminth-secreted EVs are known vaccine candidates. The characterization of helminth EV proteomes will shed light on host-pathogen interactions, facilitate the discovery of new diagnostic biomarkers, and provide a novel approach for the development of new control measures against helminth infections.
Band gap engineering of hydrogenated amorphous carbon thin films for solar cell application
NASA Astrophysics Data System (ADS)
Dwivedi, Neeraj; Kumar, Sushil; Dayal, Saurabh; Rauthan, C. M. S.; Panwar, O. S.; Malik, Hitendra K.
2012-10-01
In this work, self bias variation, nitrogen introduction and oxygen plasma (OP) treatment approaches have been used for tailoring the band gap of hydrogenated amorphous carbon (a-C:H) thin films. The band gap of a-C:H and modified a- C:H films is varied in the range from 1.25 eV to 3.45 eV, which is found to be nearly equal to the full solar spectrum (1 eV- 3.5 eV). Hence, such a-C:H and modified a-C:H films are found to be potential candidate for the development of full spectrum solar cells. Besides this, computer aided simulation with considering variable band gap a-C:H and modified a- C:H films as window layer for amorphous silicon p-i-n solar cells is also performed by AFORS-HET software and maximum efficiency as ~14 % is realized. Since a-C:H is hard material, hence a-C:H and modified a-C:H films as window layer may avoid the use of additional hard and protective coating particularly in n-i-p configuration.
Zhang, Shi; Eitan, Erez; Wu, Tsung-Yu; Mattson, Mark P
2018-01-01
Parkinson's disease (PD) is characterized by accumulations of toxic α-synuclein aggregates in vulnerable neuronal populations in the brainstem, midbrain, and cerebral cortex. Recent findings suggest that α-synuclein pathology can be propagated transneuronally, but the underlying molecular mechanisms are unknown. Advances in the genetics of rare early-onset familial PD indicate that increased production and/or reduced autophagic clearance of α-synuclein can cause PD. The cause of the most common late-onset PD is unclear, but may involve metabolic compromise and oxidative stress upstream of α-synuclein accumulation. As evidence, the lipid peroxidation product 4-hydroxynonenal (HNE) is elevated in the brain during normal aging and moreso in brain regions afflicted with α-synuclein pathology. Here, we report that HNE increases aggregation of endogenous α-synuclein in primary neurons and triggers the secretion of extracellular vesicles (EVs) containing cytotoxic oligomeric α-synuclein species. EVs released from HNE-treated neurons are internalized by healthy neurons which as a consequence degenerate. Levels of endogenously generated HNE are elevated in cultured cells overexpressing human α-synuclein, and EVs released from those cells are toxic to neurons. The EV-associated α-synuclein is located both inside the vesicles and on their surface, where it plays a role in EV internalization by neurons. On internalization, EVs harboring pathogenic α-synuclein are transported both anterogradely and retrogradely within axons. Focal injection of EVs containing α-synuclein into the striatum of wild-type mice results in spread of synuclein pathology to anatomically connected brain regions. Our findings suggest a scenario for late-onset PD in which lipid peroxidation promotes intracellular accumulation and then extrusion of EVs containing toxic α-synuclein species; the EVs are then internalized by adjacent neurons, so propagating the neurodegenerative process. Published by Elsevier Inc.
Formononetin inhibits enterovirus 71 replication by regulating COX- 2/PGE₂ expression.
Wang, Huiqiang; Zhang, Dajun; Ge, Miao; Li, Zhuorong; Jiang, Jiandong; Li, Yuhuan
2015-03-01
The activation of ERK, p38 and JNK signal cascade in host cells has been demonstrated to up-regulate of enterovirus 71 (EV71)-induced cyclooxygenase-2 (COX-2)/ prostaglandins E2 (PGE₂) expression which is essential for viral replication. So, we want to know whether a compound can inhibit EV71 infection by suppressing COX-2/PGE₂ expression. The antiviral effect of formononetin was determined by cytopathic effect (CPE) assay and the time course assays. The influence of formononetin for EV71 replication was determined by immunofluorescence assay, western blotting assay and qRT-PCR assay. The mechanism of the antiviral activity of formononetin was determined by western blotting assay and ELISA assay. Formononetin could reduce EV71 RNA and protein synthesis in a dose-dependent manner. The time course assays showed that formononetin displayed significant antiviral activity both before (24 or 12 h) and after (0-6 h) EV71 inoculation in SK-N-SH cells. Formononetin was also able to prevent EV71-induced cytopathic effect (CPE) and suppress the activation of ERK, p38 and JNK signal pathways. Furthermore, formononetin could suppress the EV71-induced COX-2/PGE₂ expression. Also, formononetin exhibited similar antiviral activities against other members of Picornaviridae including coxsackievirus B2 (CVB2), coxsackievirus B3 (CVB3) and coxsackievirus B6 (CVB6). Formononetin could inhibit EV71-induced COX-2 expression and PGE₂ production via MAPKs pathway including ERK, p38 and JNK. Formononetin exhibited antiviral activities against some members of Picornaviridae. These findings suggest that formononetin could be a potential lead or supplement for the development of new anti-EV71 agents in the future.
EnVision+, a new dextran polymer-based signal enhancement technique for in situ hybridization (ISH).
Wiedorn, K H; Goldmann, T; Henne, C; Kühl, H; Vollmer, E
2001-09-01
Seventy paraffin-embedded cervical biopsy specimens and condylomata were tested for the presence of human papillomavirus (HPV) by conventional in situ hybridization (ISH) and ISH with subsequent signal amplification. Signal amplification was performed either by a commercial biotinyl-tyramide-based detection system [GenPoint (GP)] or by the novel two-layer dextran polymer visualization system EnVision+ (EV), in which both EV-horseradish peroxidase (EV-HRP) and EV-alkaline phosphatase (EV-AP) were applied. We could demonstrate for the first time, that EV in combination with preceding ISH results in a considerable increase in signal intensity and sensitivity without loss of specificity compared to conventional ISH. Compared to GP, EV revealed a somewhat lower sensitivity, as measured by determination of the integrated optical density (IOD) of the positively stained cells. However, EV is easier to perform, requires a shorter assay time, and does not raise the background problems that may be encountered with biotinyl-tyramide-based amplification systems. (J Histochem Cytochem 49:1067-1071, 2001)
Schibler, Manuel; Martinez, Yannick; Gerlach, Daniel; van Belle, Sandra; Turin, Lara; Zdobnov, Evgeny; Kaiser, Laurent; Tapparel, Caroline
2012-01-01
Enterovirus 71 (EV71) is one of the most virulent enteroviruses, but the specific molecular features that enhance its ability to disseminate in humans remain unknown. We analyzed the genomic features of EV71 in an immunocompromised host with disseminated disease according to the different sites of infection. Comparison of five full-length genomes sequenced directly from respiratory, gastrointestinal, nervous system, and blood specimens revealed three nucleotide changes that occurred within a five-day period: a non-conservative amino acid change in VP1 located within the BC loop (L97R), a region considered as an immunogenic site and possibly important in poliovirus host adaptation; a conservative amino acid substitution in protein 2B (A38V); and a silent mutation in protein 3D (L175). Infectious clones were constructed using both BrCr (lineage A) and the clinical strain (lineage C) backgrounds containing either one or both non-synonymous mutations. In vitro cell tropism and competition assays revealed that the VP197 Leu to Arg substitution within the BC loop conferred a replicative advantage in SH-SY5Y cells of neuroblastoma origin. Interestingly, this mutation was frequently associated in vitro with a second non-conservative mutation (E167G or E167A) in the VP1 EF loop in neuroblastoma cells. Comparative models of these EV71 VP1 variants were built to determine how the substitutions might affect VP1 structure and/or interactions with host cells and suggest that, while no significant structural changes were observed, the substitutions may alter interactions with host cell receptors. Taken together, our results show that the VP1 BC loop region of EV71 plays a critical role in cell tropism independent of EV71 lineage and, thus, may have contributed to dissemination and neurotropism in the immunocompromised patient. PMID:22910880
III-V/Active-Silicon Integration for Low-Cost High-Performance Concentrator Photovoltaics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ringel, Steven
This FPACE project was motivated by the need to establish the foundational pathway to achieve concentrator solar cell efficiencies greater than 50%. At such an efficiency, DOE modeling projected that a III-V CPV module cost of $0.50/W or better could be achieved. Therefore, the goal of this project was to investigate, develop and advance a III-V/Si mulitjunction (MJ) CPV technology that can simultaneously address the primary cost barrier for III-V MJ solar cells while enabling nearly ideal MJ bandgap profiles that can yield efficiencies in excess of 50% under concentrated sunlight. The proposed methodology was based on use of ourmore » recently developed GaAsP metamorphic graded buffer as a pathway to integrate unique GaAsP and Ga-rich GaInP middle and top junctions having bandgaps that are adjustable between 1.45 – 1.65 eV and 1.9 – 2.1 eV, respectively, with an underlying, 1.1 eV active Si subcell/substrate. With this design, the Si can be an active component sub-cell due to the semi-transparent nature of the GaAsP buffer with respect to Si as well as a low-cost alternative substrate that is amenable to scaling with existing Si foundry infrastructure, providing a reduction in materials cost and a low cost path to manufacturing at scale. By backside bonding of a SiGe, a path to exceed 50% efficiency is possible. Throughout the course of this effort, an expansive range of new understanding was achieved that has stimulated worldwide efforts in III-V/Si PV R&D that spanned materials development, metamorphic device optimization, and complete III-V/Si monolithic integration. Highlights include the demonstration of the first ideal GaP/Si interfaces grown by industry-standard MOCVD processes, the first high performance metamorphic tunnel junctions designed for III-V/Si integration, record performance of specific metamorphic sub-cell designs, the first fully integrated GaInP/GaAsP/Si double (1.7 eV/1.1 eV) and triple (1.95 eV/1.5 eV/1.1 eV) junction solar cells, the first high performance GaAsP/Si double junction cell, the demonstration of a new method that allow for rapid, quantitative and non-destructive characterization of dislocations (ECCI-electron channeling contrast imaging), the first observation, explanation and solution of the now commonly reported lifetime degradation and recovery phenomena in III-V/Si MOCVD growth, the first demonstration of a high performance SiGe cell with a bandgap of 0.9 eV, amongst other highlights. The impact of the program on the international community has been significant. At the start of our FPACE1 project and for the immediate prior years, 1-2 conference papers/annually were presented at IEEE PVSC. Once FPACE1 commenced in 2011, related efforts sprouted across the US, Europe and Asia and by 2015 there were 26 papers presented on III-V/Si multijunctions in the 2015 PVSC, demonstrating the excitement that was stimulated by the results of this FPACE1 effort.« less
Building a Six-Junction Inverted Metamorphic Concentrator Solar Cell
Geisz, John F.; Steiner, Myles A.; Jain, Nikhil; ...
2017-12-20
We propose practical six-junction (6J) inverted metamorphic multijunction (IMM) concentrator solar cell designs with the potential to exceed 50% efficiency using moderately high quality junction materials. We demonstrate the top three junctions and their monolithic integration lattice matched to GaAs using 2.1-eV AlGaInP, 1.7-eV AlGaAs or GaInAsP, and 1.4-eV GaAs with external radiative efficiencies >0.1%. We demonstrate tunnel junctions with peak tunneling current >400 A/cm 2 that are transparent to <2.1-eV light. We compare the bottom three GaInAs(p) junctions with bandgaps of 1.2, 1.0, and 0.7 eV grown on InP and transparent metamorphic grades with low dislocation densities. The solutionmore » to an integration challenge resulting from Zn diffusion in the GaAs junction is illustrated in a five-junction IMM. Excellent 1-sun performance is demonstrated in a complete 6J IMM device with VOC = 5.15 V, and a promising pathway toward >50% efficiency at high concentrations is presented.« less
Building a Six-Junction Inverted Metamorphic Concentrator Solar Cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geisz, John F.; Steiner, Myles A.; Jain, Nikhil
We propose practical six-junction (6J) inverted metamorphic multijunction (IMM) concentrator solar cell designs with the potential to exceed 50% efficiency using moderately high quality junction materials. We demonstrate the top three junctions and their monolithic integration lattice matched to GaAs using 2.1-eV AlGaInP, 1.7-eV AlGaAs or GaInAsP, and 1.4-eV GaAs with external radiative efficiencies >0.1%. We demonstrate tunnel junctions with peak tunneling current >400 A/cm 2 that are transparent to <2.1-eV light. We compare the bottom three GaInAs(p) junctions with bandgaps of 1.2, 1.0, and 0.7 eV grown on InP and transparent metamorphic grades with low dislocation densities. The solutionmore » to an integration challenge resulting from Zn diffusion in the GaAs junction is illustrated in a five-junction IMM. Excellent 1-sun performance is demonstrated in a complete 6J IMM device with VOC = 5.15 V, and a promising pathway toward >50% efficiency at high concentrations is presented.« less
Pyroptosis induced by enterovirus A71 infection in cultured human neuroblastoma cells.
Zhu, Xiaojuan; Wu, Tao; Chi, Ying; Ge, Yiyue; Wu, Bin; Zhou, Minghao; Zhu, Fengcai; Ji, Minjun; Cui, Lunbiao
2018-06-07
Enterovirus A71 (EV-A71) infection can cause hand, foot and mouth disease (HFMD), and even fatal meningoencephalitis. Unfortunately, there is currently no effective treatment for EV-A71 infection due to the lack of understanding of the mechanism of neurological diseases. In this study, we employed SH-SY5Y human neuroblastoma cells to explore the roles of caspase-1 in neuropathogenesis. The expression and activity of caspase-1 were analyzed. The potential immuneconsequences mediated by caspase-1 including cell death, lysis, DNA degradation, and secretion of pro-inflammatory were also examined. We found the gene expression levels of caspase-1, IL-1β, IL-18 and active caspase-1 were markedly increased in the SH-SY5Y cells at 48 h post EV-A71 infection. The cell death, lysis, and DNA degradation were also increased during infection, which could be significantly alleviated by caspase-1 inhibition. These observations provided additional experimental evidence supporting caspase-1-mediated pyroptosis as a novel pathway of inflammatory programmed cell death. Copyright © 2018 Elsevier Inc. All rights reserved.
Tunneling effects in the current-voltage characteristics of high-efficiency GaAs solar cells
NASA Technical Reports Server (NTRS)
Kachare, R.; Anspaugh, B. E.; Garlick, G. F. J.
1988-01-01
Evidence is that tunneling via states in the forbidden gap is the dominant source of excess current in the dark current-voltage (I-V) characteristics of high-efficiency DMCVD grown Al(x)Ga(1-x)As/GaAs(x is equal to or greater than 0.85) solar cells. The dark forward and reverse I-V measurements were made on several solar cells, for the first time, at temperatures between 193 and 301 K. Low-voltage reverse-bias I-V data of a number of cells give a thermal activation energy for excess current of 0.026 + or - 0.005 eV, which corresponds to the carbon impurity in GaAs. However, other energy levels between 0.02 eV and 0.04 eV were observed in some cells which may correspond to impurity levels introduced by Cu, Si, Ge, or Cd. The forward-bias excess current is mainly due to carrier tunneling between localized levels created in the space-charge layer by impurities such as carbon, which are incorporated during the solar cell growth process. A model is suggested to explain the results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shah, S.; Ghosh, K.; Jejurikar, S.
Graphical abstract: - Highlights: • Investigation of ground state energy in single and multi-layered InAs/GaAs QD. • Strain reducing layer (InGaAs) prevents the formation of non-radiative. • Strain reducing layer (InGaAs) is responsible for high activation energy. • Significant deviation from the Varshni model, E(T) = E − αT{sup 2}/T + β. - Abstract: Vertically coupled, multilayered InAs/GaAs quantum dots (QDs) covered with thin InGaAs strain-reducing layers (SRLs) are in demand for various technological applications. We investigated low temperature photoluminescence of single and multilayered structures in which the SRL thickness was varied. The SRL layer was responsible for high activationmore » energies. Deviation of experimental data from the Varshni (1967) model, E(T) = E − ∞ T{sup 2}/T + β, suggests that the InAs-layered QDs have properties different from those in bulk material. Anomalous ground-state peak linewidths (FWHM), especially for annealed multilayer structures, were observed. A ground-state peak blue-shift with a broadened linewidth was also observed. Loss of intensity was detected in samples annealed at 800 °C. Presence of SRLs prevents formation of non-radiative centers under high temperature annealing. The results indicate the potential importance of such structures in optoelectronic applications.« less
Spinosa, Michael; Lu, Guanyi; Su, Gang; Bontha, Sai Vineela; Gehrau, Ricardo; Salmon, Morgan D; Smith, Joseph R; Weiss, Mark L; Mas, Valeria R; Upchurch, Gilbert R; Sharma, Ashish K
2018-05-29
The formation of an abdominal aortic aneurysm (AAA) is characterized by inflammation, macrophage infiltration, and vascular remodeling. In this study, we tested the hypothesis that mesenchymal stromal cell (MSC)-derived extracellular vesicles (EVs) immunomodulate aortic inflammation, to mitigate AAA formation via modulation of microRNA-147. An elastase-treatment model of AAA was used in male C57BL/6 wild-type (WT) mice. Administration of EVs in elastase-treated WT mice caused a significant attenuation of aortic diameter and mitigated proinflammatory cytokines, inflammatory cell infiltration, an increase in smooth muscle cell α-actin expression, and a decrease in elastic fiber disruption, compared with untreated mice. A 10-fold up-regulation of microRNA (miR)-147, a key mediator of macrophage inflammatory responses, was observed in murine aortic tissue in elastase-treated mice compared with controls on d 14. EVs derived from MSCs transfected with miR-147 mimic, but not with miR-147 inhibitor, attenuated aortic diameter, inflammation, and leukocyte infiltration in elastase-treated mice. In vitro studies of human aortic tissue explants and murine-derived CD11b + macrophages induced proinflammatory cytokines after elastase treatment, and the expression was attenuated by cocultures with EVs transfected with miR-147 mimic, but not with miR-147 inhibitor. Thus, our findings define a critical role of MSC-derived EVs in attenuation of aortic inflammation and macrophage activation via miR-147 during AAA formation.-Spinosa, M., Lu, G., Su, G., Bontha, S. V., Gehrau, R., Salmon, M. D., Smith, J. R., Weiss, M. L., Mas, V. R., Upchurch, G. R., Sharma, A. K. Human mesenchymal stromal cell-derived extracellular vesicles attenuate aortic aneurysm formation and macrophage activation via microRNA-147.
Enterovirus D68 receptor requirements unveiled by haploid genetics
Baggen, Jim; Thibaut, Hendrik Jan; Staring, Jacqueline; Jae, Lucas T.; Liu, Yue; Guo, Hongbo; Slager, Jasper J.; de Bruin, Jost W.; van Vliet, Arno L. W.; Blomen, Vincent A.; Overduin, Pieter; Sheng, Ju; de Haan, Cornelis A. M.; de Vries, Erik; Meijer, Adam; Rossmann, Michael G.; Brummelkamp, Thijn R.; van Kuppeveld, Frank J. M.
2016-01-01
Enterovirus D68 (EV-D68) is an emerging pathogen that can cause severe respiratory disease and is associated with cases of paralysis, especially among children. Heretofore, information on host factor requirements for EV-D68 infection is scarce. Haploid genetic screening is a powerful tool to reveal factors involved in the entry of pathogens. We performed a genome-wide haploid screen with the EV-D68 prototype Fermon strain to obtain a comprehensive overview of cellular factors supporting EV-D68 infection. We identified and confirmed several genes involved in sialic acid (Sia) biosynthesis, transport, and conjugation to be essential for infection. Moreover, by using knockout cell lines and gene reconstitution, we showed that both α2,6- and α2,3-linked Sia can be used as functional cellular EV-D68 receptors. Importantly, the screen did not reveal a specific protein receptor, suggesting that EV-D68 can use multiple redundant sialylated receptors. Upon testing recent clinical strains, we identified strains that showed a similar Sia dependency, whereas others could infect cells lacking surface Sia, indicating they can use an alternative, nonsialylated receptor. Nevertheless, these Sia-independent strains were still able to bind Sia on human erythrocytes, raising the possibility that these viruses can use multiple receptors. Sequence comparison of Sia-dependent and Sia-independent EV-D68 strains showed that many changes occurred near the canyon that might allow alternative receptor binding. Collectively, our findings provide insights into the identity of the EV-D68 receptor and suggest the possible existence of Sia-independent viruses, which are essential for understanding tropism and disease. PMID:26787879
Forward- and reverse-bias tunneling effects in n/+/p silicon solar cells
NASA Technical Reports Server (NTRS)
Garlick, G. F. J.; Kachare, A. H.
1980-01-01
Excess currents due to field-assisted tunneling in both forward and reverse bias directions have been observed in n(+)-p silicon solar cells. These currents arise from the effect of conducting paths produced in the depletion layer by n(+) diffusion and cell processing. Forward-bias data indicate a small potential barrier with height of 0.04 eV at the n(+) end of conducting paths. Under reverse bias, excess tunneling currents involve a potential barrier at the p end of the conducting paths, the longer paths being associated with smaller barrier heights and dominating at the lower temperatures. Low-reverse-bias data give energy levels of 0.11 eV for lower temperatures (253-293 K) and 0.35 eV for higher temperatures (293-380 K). A model is suggested to explain the results.
Isolation of Extracellular Vesicles: General Methodologies and Latest Trends
Konoshenko, Maria Yu.; Laktionov, Pavel P.
2018-01-01
Background Extracellular vesicles (EVs) play an essential role in the communication between cells and transport of diagnostically significant molecules. A wide diversity of approaches utilizing different biochemical properties of EVs and a lack of accepted protocols make data interpretation very challenging. Scope of Review This review consolidates the data on the classical and state-of-the-art methods for isolation of EVs, including exosomes, highlighting the advantages and disadvantages of each method. Various characteristics of individual methods, including isolation efficiency, EV yield, properties of isolated EVs, and labor consumption are compared. Major Conclusions A mixed population of vesicles is obtained in most studies of EVs for all used isolation methods. The properties of an analyzed sample should be taken into account when planning an experiment aimed at studying and using these vesicles. The problem of adequate EVs isolation methods still remains; it might not be possible to develop a universal EV isolation method but the available protocols can be used towards solving particular types of problems. General Significance With the wide use of EVs for diagnosis and therapy of various diseases the evaluation of existing methods for EV isolation is one of the key problems in modern biology and medicine. PMID:29662902
A low-noise 15-μm pixel-pitch 640×512 hybrid InGaAs image sensor for night vision
NASA Astrophysics Data System (ADS)
Guellec, Fabrice; Dubois, Sébastien; de Borniol, Eric; Castelein, Pierre; Martin, Sébastien; Guiguet, Romain; Tchagaspanian, Micha"l.; Rouvié, Anne; Bois, Philippe
2012-03-01
Hybrid InGaAs focal plane arrays are very interesting for night vision because they can benefit from the nightglow emission in the Short Wave Infrared band. Through a collaboration between III-V Lab and CEA-Léti, a 640x512 InGaAs image sensor with 15μm pixel pitch has been developed. The good crystalline quality of the InGaAs detectors opens the door to low dark current (around 20nA/cm2 at room temperature and -0.1V bias) as required for low light level imaging. In addition, the InP substrate can be removed to extend the detection range towards the visible spectrum. A custom readout IC (ROIC) has been designed in a standard CMOS 0.18μm technology. The pixel circuit is based on a capacitive transimpedance amplifier (CTIA) with two selectable charge-to-voltage conversion gains. Relying on a thorough noise analysis, this input stage has been optimized to deliver low-noise performance in high-gain mode with a reasonable concession on dynamic range. The exposure time can be maximized up to the frame period thanks to a rolling shutter approach. The frame rate can be up to 120fps or 60fps if the Correlated Double Sampling (CDS) capability of the circuit is enabled. The first results show that the CDS is effective at removing the very low frequency noise present on the reference voltage in our test setup. In this way, the measured total dark noise is around 90 electrons in high-gain mode for 8.3ms exposure time. It is mainly dominated by the dark shot noise for a detector temperature settling around 30°C when not cooled. The readout noise measured with shorter exposure time is around 30 electrons for a dynamic range of 71dB in high-gain mode and 108 electrons for 79dB in low-gain mode.
InGaAs detectors and FPA's for a large span of applications: design and material considerations
NASA Astrophysics Data System (ADS)
Vermeiren, J. P.; Merken, P.
2017-11-01
Compared with the other Infrared detector materials, such as HgCdTe (or MCT) and lead salts (e.g.: PbS, PbSe, PbSnTe, …), the history of InGaAs FPA's is not that old. Some 25 years ago the first linear detectors were used for space missions [1,2]. During the last 15-20 years InGaAs, grown lattice matched on InP, has become the work horse for the telecommunication industry [3] and later on for passive and active imagery in the SWIR range. For longer wavelengths than 1.7 μm, III-V materials are in strong competition with SWIR MCT and till now the performance of MCT is better than high In-content InGaAs. During the last years some alternatives based on quaternary materials [4] and on Superlattice structures [5] are making gradual progress in such a way that they can yield performing Focal planes in the (near) future. As the SWIR wavelengths range covers a large variety of applications, also the FPA characteristics and mainly the ROIC properties need to be adjusted to fulfil the mission requirements with the requested performance. Additionally one has to bear in mind that the nature of SWIR radiation is completely different from what is usually encountered in IR imaging. Whereas the signal of thermal imagery in the Middle Wavelength (MWIR: [3 - 5 μm]) or Long Wavelength (LWIR: [8 - 10 μm] or [8 - 12 μm]) band is characterized by a large DC pedestal, caused by objects at ambient temperature, and a small AC signal, due to the small temperature or emissivity variations, SWIR range imagery is characterized by a large dynamic range and almost no DC signal. In this sense the SWIR imagery is resembling more the nature of Visible and NIR imaging than that of thermal imagery.
Two-terminal monolithic InP-based tandem solar cells with tunneling intercell ohmic connections
NASA Technical Reports Server (NTRS)
Shen, C. C.; Chang, P. T.; Emery, K. A.
1991-01-01
A monolithic two-terminal InP/InGaAsP tandem solar cell was successfully fabricated. This tandem solar cell consists of a p/n InP homojunction top subcell and a 0.95 eV p/n InGaAsP homojunction bottom subcell. A patterned 0.95 eV n(+)/p(+) InGaAsP tunnel diode was employed as an intercell ohmic connection. The solar cell structure was prepared by two-step liquid phase epitaxial growth. Under one sun, AM1.5 global illumination, the best tandem cell delivered a conversion efficiency of 14.8 pct.
Mapping Enterovirus A71 Antigenic Determinants from Viral Evolution.
Huang, Sheng-Wen; Tai, Ching-Hui; Fonville, Judith M; Lin, Chin-Hui; Wang, Shih-Min; Liu, Ching-Chung; Su, Ih-Jen; Smith, Derek J; Wang, Jen-Ren
2015-11-01
Human enterovirus A71 (EV-A71) belongs to the Enterovirus A species in the Picornaviridae family. Several vaccines against EV-A71, a disease causing severe neurological complications or even death, are currently under development and being tested in clinical trials, and preventative vaccination programs are expected to start soon. To characterize the potential for antigenic change of EV-A71, we compared the sequences of two antigenically diverse genotype B4 and B5 strains of EV-A71 and identified substitutions at residues 98, 145, and 164 in the VP1 capsid protein as antigenic determinants. To examine the effects of these three substitutions on antigenicity, we constructed a series of recombinant viruses containing different mutation combinations at these three residues with a reverse genetics system and then investigated the molecular basis of antigenic changes with antigenic cartography. We found that a novel EV-A71 mutant, containing lysine, glutamine, and glutamic acid at the respective residues 98, 145, and 164 in the VP1 capsid protein, exhibited neutralization reduction against patients' antisera and substantially increased virus binding ability to human cells. These observations indicated that this low-neutralization-reactive EV-A71 VP1-98K/145Q/164E mutant potentially increases viral binding ability and that surveillance studies should look out for these mutants, which could compromise vaccine efficacy. Emerging and reemerging EV-A71 viruses can cause severe neurological etiology, primarily affecting children, especially around Asia-Pacific countries. We identified a set of mutations in EV-A71 that both reduced neutralization activity against humoral immunity in antisera of patients and healthy adults and greatly increased the viral binding ability to cells. These findings provide important insights for EV-A71 antigenic determinants and emphasize the importance of continuous surveillance, especially after EV-A71 vaccination programs begin. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Mapping Enterovirus A71 Antigenic Determinants from Viral Evolution
Huang, Sheng-Wen; Tai, Ching-Hui; Fonville, Judith M.; Lin, Chin-Hui; Wang, Shih-Min; Liu, Ching-Chung; Su, Ih-Jen
2015-01-01
ABSTRACT Human enterovirus A71 (EV-A71) belongs to the Enterovirus A species in the Picornaviridae family. Several vaccines against EV-A71, a disease causing severe neurological complications or even death, are currently under development and being tested in clinical trials, and preventative vaccination programs are expected to start soon. To characterize the potential for antigenic change of EV-A71, we compared the sequences of two antigenically diverse genotype B4 and B5 strains of EV-A71 and identified substitutions at residues 98, 145, and 164 in the VP1 capsid protein as antigenic determinants. To examine the effects of these three substitutions on antigenicity, we constructed a series of recombinant viruses containing different mutation combinations at these three residues with a reverse genetics system and then investigated the molecular basis of antigenic changes with antigenic cartography. We found that a novel EV-A71 mutant, containing lysine, glutamine, and glutamic acid at the respective residues 98, 145, and 164 in the VP1 capsid protein, exhibited neutralization reduction against patients' antisera and substantially increased virus binding ability to human cells. These observations indicated that this low-neutralization-reactive EV-A71 VP1-98K/145Q/164E mutant potentially increases viral binding ability and that surveillance studies should look out for these mutants, which could compromise vaccine efficacy. IMPORTANCE Emerging and reemerging EV-A71 viruses can cause severe neurological etiology, primarily affecting children, especially around Asia-Pacific countries. We identified a set of mutations in EV-A71 that both reduced neutralization activity against humoral immunity in antisera of patients and healthy adults and greatly increased the viral binding ability to cells. These findings provide important insights for EV-A71 antigenic determinants and emphasize the importance of continuous surveillance, especially after EV-A71 vaccination programs begin. PMID:26339057
Huang, He; Feng, Shaoqing; Zhang, Wenjie; Li, Wei; Xu, Peng; Wang, Xiangsheng; Ai, Ai
2017-01-01
Autologous fat grafting is a promising surgical technique for soft tissue augmentation, reconstruction and rejuvenation. However, it is limited by the low survival rate of the transplanted fat, due to the slow revascularization of such grafts. Previous studies have demonstrated that bone marrow mesenchymal stem cell-derived extracellular vesicles (BMSC-EVs) are proangiogenic. The present study aimed to investigate whether BMSC-EVs could improve the survival of transplanted fat grafts. Extracellular vesicles were isolated from the supernatant of cultured rat bone marrow mesenchymal stem cells, and characterized by flow cytometry and scanning electron microscopy. Their proangiogenic potential was measured in vitro using tube formation and cell migration assays. Subsequently, human fat tissue grafts, alongside various concentrations of BMSC-EVs, were subcutaneously injected into nude mice. A total of 12 weeks following transplantation, the mice were sacrificed and the grafts were harvested. The grafts from the experimental group had a higher survival rate and an increased number of vessels compared with grafts from the control group, as demonstrated by tissue volume, weight and histological analyses. Reverse transcription-quantitative polymerase chain reaction analysis indicated that the expression levels of proangiogenic factors were increased in the experimental group compared with in the control group, thus suggesting that BMSC-EVs may promote neovascularization by stimulating the secretion of proangiogenic factors. The present study is the first, to the best of our knowledge, to demonstrate that supplementation of fat grafts with BMSC-EVs improves the long-term retention and quality of transplanted fat. PMID:28713978
Pros and cons of VP1-specific maternal IgG for the protection of Enterovirus 71 infection.
Kim, Young-In; Song, Jae-Hyoung; Kwon, Bo-Eun; Kim, Ha-Neul; Seo, Min-Duk; Park, KwiSung; Lee, SangWon; Yeo, Sang-Gu; Kweon, Mi-Na; Ko, Hyun-Jeong; Chang, Sun-Young
2015-11-27
Enterovirus 71 (EV71) causes hand, foot, and mouth diseases and can result in severe neurological disorders when it infects the central nervous system. Thus, there is a need for the development of effective vaccines against EV71 infection. Here we report that viral capsid protein 1 (VP1), one of the main capsid proteins of EV71, efficiently elicited VP1-specific immunoglobulin G (IgG) in the serum of mice immunized with recombinant VP1. The VP1-specific IgG produced in female mice was efficiently transferred to their offspring, conferring protection against EV71 infection immediately after birth. VP1-specific antibody can neutralize EV71 infection and protect host cells. VP1-specific maternal IgG in offspring was maintained for over 6 months. However, the pre-existence of VP1-specific maternal IgG interfered with the production of VP1-specific IgG antibody secreting cells by active immunization in offspring. Therefore, although our results showed the potential for VP1-specific maternal IgG protection against EV71 in neonatal mice, other strategies must be developed to overcome the hindrance of maternal IgG in active immunization. In this study, we developed an effective and feasible animal model to evaluate the protective efficacy of humoral immunity against EV71 infection using a maternal immunity concept. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zhang, Yong; Sun, Qiang; Cui, Hui; Yan, Dongmei; Fan, Qin; Song, Yang; Zhu, Shuangli; Li, Xiaolei; Huang, Guohong; Ji, Tianjiao; Hu, Lan; Wang, Dongyan; Yang, Qian; Xu, Wenbo
2016-01-01
Poliomyelitis associated with circulating vaccine-derived polioviruses (cVDPVs) is a serious public health issue in the post-eradication era, and the occurrence of recombinant cVDPVs emphasizes the need to elucidate enterovirus C (EV-C) epidemiology. Stool samples were collected from 826 healthy children in Southern Xinjiang in 2011 to investigate EV-C circulation and epidemiology. Thirty-six EV-Cs were isolated and assigned to eight EV-C serotypes by molecular serotyping, suggesting the circulation of diverse EV-Cs in Xinjiang. Phylogenetic analysis showed that the Xinjiang EV-C strains had larger variation compared to the prototype and other modern strains. Additionally, the results showed unique characteristics of Xinjiang EV-Cs, such as the cytopathicity of CV-A1 strains to RD cells; the high divergence in CV-A11, CV-A13, CV-A17, and CV-A20 strains; the divergence of Xinjiang CV-A24 from AHC-related CV-A24 variant stains distributed worldwide; and the circulation of two novel EV-C serotypes (EV-C96 and EV-C99). Evaluations of this dense and diverse EV-C ecosystem will help elucidate the processes shaping enteroviral biodiversity. This study will improve our understanding of the evolution of enteroviruses and the recombination potential between polioviruses and other EV-Cs. PMID:27642136
NASA Astrophysics Data System (ADS)
Sasaki, Takuo; Takahasi, Masamitu
2017-06-01
In this study, we analyzed the influence of indium supply on the growth dynamics of gold-catalyzed InGaAs nanowires by in situ synchrotron X-ray diffraction. A high In/Ga supply ratio results in strong size inhomogeneity of Au particles and interrupts the nanowire growth at a certain point of time. Based on the experimental results, we discussed the state of Au catalysts with high indium content during the nanowire growth. We found that a growth temperature below the eutectic temperature is essential to avoid the growth interruption and maintain the nanowire growth. The high In/Ga ratio necessitates accurate size control of Au particles before growth for further improvement of the nanowire growth.
Impact of vacuum anneal at low temperature on Al2O3/In-based III-V interfaces
NASA Astrophysics Data System (ADS)
Martinez, E.; Grampeix, H.; Desplats, O.; Herrera-Gomez, A.; Ceballos-Sanchez, O.; Guerrero, J.; Yckache, K.; Martin, F.
2012-06-01
We report on the effect of vacuum anneal on interfacial oxides formed between Al2O3 and III-V semiconductors. On InGaAs, no interfacial oxide is detected after annealing at 600 °C under UHV whereas annealing under secondary vacuum favours the regrowth of thin InGaOx interfacial oxide. Lowering the temperature at 400 °C highlights the effect of III-V substrates since In-OH bonds are only formed on InAs by OH release from TMA/H2O deposited alumina. On InGaAs, regrowth of InGaOx is observed, as a result of preferential oxidation of Ga. On InP, a transition from InPOx to POx is highlighted.
NASA Astrophysics Data System (ADS)
Althowibi, Fahad A.; Ayers, John E.
2018-02-01
In this work we investigated the dislocation-dependent behavior of Pendellösung fringes from two types of semiconductor heterostructures: a uniform-composition InGaAs epitaxial layer grown on a GaAs (001) substrate with an intermediate step-graded InGaAs buffer, and an InGaAs/InAlAs high electron mobility transistor grown on an InP (001) substrate. Dynamical x-ray diffraction simulations were carried out in the 004, 115,135, and 117 geometry, assuming Cu kα1 incident radiation, for both structures. The dislocation density strongly affects the intensities and widths of Pendellösung fringes, and we have established quantitative relationships which will allow characterization of the dislocation density.
Anisotropic electro-optic effect on InGaAs quantum dot chain modulators.
Liu, Wei; Liang, Baolai; Huffaker, Diana; Fetterman, Harold
2013-10-15
We investigated the anisotropic electro-optic (EO) effect on InGaAs quantum dot (QD) chain modulators. The linear EO coefficients were determined as 24.3 pm/V (33.8 pm/V) along the [011] direction and 30.6 pm/V (40.3 pm/V) along the [011¯] direction at 1.55 μm (1.32 μm) operational wavelength. The corresponding half-wave voltages (Vπs) were measured to be 5.35 V (4.35 V) and 4.65 V (3.86 V) at 1.55 μm (1.32 μm) wavelength. This is the first report on the anisotropic EO effect on QD chain structures. These modulators have 3 dB bandwidths larger than 10 GHz.
Radiation damage annealing mechanisms and possible low temperature annealing in silicon solar cells
NASA Technical Reports Server (NTRS)
Weinberg, I.; Swartz, C. K.
1980-01-01
Deep level transient spectroscopy and the Shockley-Read-Hall recombination theory are used to identify the defect responsible for reverse annealing in 2 ohm-cm n+/p silicon solar cells. This defect, with energy level at Ev + 0.30 eV, has been tentatively identified as a boron-oxygen-vacancy complex. It has been also determined by calculation that the removal of this defect could result in significant annealing at temperatures as low as 200 C for 2 ohm-cm and lower resistivity cells.
Arraud, Nicolas; Gounou, Céline; Turpin, Delphine; Brisson, Alain R
2016-02-01
Plasma contains cell-derived extracellular vesicles (EVs) which participate in various physiopathological processes and have potential biomedical applications. Despite intense research activity, knowledge on EVs is limited mainly due to the difficulty of isolating and characterizing sub-micrometer particles like EVs. We have recently reported that a simple flow cytometry (FCM) approach based on triggering the detection on a fluorescence signal enabled the detection of 50× more Annexin-A5 binding EVs (Anx5+ EVs) in plasma than the conventional FCM approach based on light scattering triggering. Here, we present the application of the fluorescence triggering approach to the enumeration and phenotyping of EVs from platelet free plasma (PFP), focusing on CD41+ and CD235a+ EVs, as well as their sub-populations which bind or do not bind Anx5. Higher EV concentrations were detected by fluorescence triggering as compared to light scattering triggering, namely 40× for Anx5+ EVs, 75× for CD41+ EVs, and 15× for CD235a+ EVs. We found that about 30% of Anx5+ EVs were of platelet origin while only 3% of them were of erythrocyte origin. In addition, a majority of EVs from platelet and erythrocyte origin do not expose PS, in contrast to the classical theory of EV formation. Furthermore, the same PFP samples were analyzed fresh and after freeze-thawing, showing that freeze-thawing processes induce an increase, of about 35%, in the amount of Anx5+ EVs, while the other EV phenotypes remain unchanged. The method of EV detection and phenotyping by fluorescence triggering is simple, sensitive and reliable. We foresee that its application to EV studies will improve our understanding on the formation mechanisms and functions of EVs in health and disease and help the development of EV-based biomarkers. © 2015 International Society for Advancement of Cytometry.
Recent advancements in monolithic AlGaAs/GaAs solar cells for space applications
NASA Technical Reports Server (NTRS)
Wickham, K. R.; Chung, B.-C.; Klausmeier-Brown, M.; Kuryla, M. S.; Ristow, M. Ladle; Virshup, G. F.; Werthen, J. G.
1991-01-01
High efficiency, two terminal, multijunction AlGaAs/GaAs solar cells were reproducibly made with areas of 0.5 sq cm. The multiple layers in the cells were grown by Organo Metallic Vapor Phase Epitaxy (OMVPE) on GaAs substrates in the n-p configuration. The upper AlGaAs cell has a bandgap of 1.93 eV and is connected in series to the lower GaAs cell (1.4 eV) via a metal interconnect deposited during post-growth processing. A prismatic coverglass is installed on top of the cell to reduce obscuration caused by the gridlines. The best 0.5 sq cm cell has a two terminal efficiency of 23.0 pct. at 1 sun, air mass zero (AM0) and 25 C. To date, over 300 of these cells were grown and processed for a manufacturing demonstration. Yield and efficiency data for this demonstration are presented. As a first step toward the goal of a 30 pct. efficient cell, a mechanical stack of the 0.5 sq cm cells described above, and InGaAsP (0.95 eV) solar cells was made. The best two terminal measurement to date yields an efficiency of 25.2 pct. AM0. This is the highest reported efficiency of any two terminal, 1 sun space solar cell.
Tominaga, Naoomi; Kosaka, Nobuyoshi; Ono, Makiko; Katsuda, Takeshi; Yoshioka, Yusuke; Tamura, Kenji; Lötvall, Jan; Nakagama, Hitoshi; Ochiya, Takahiro
2015-01-01
Brain metastasis is an important cause of mortality in breast cancer patients. A key event during brain metastasis is the migration of cancer cells through blood–brain barrier (BBB). However, the molecular mechanism behind the passage through this natural barrier remains unclear. Here we show that cancer-derived extracellular vesicles (EVs), mediators of cell–cell communication via delivery of proteins and microRNAs (miRNAs), trigger the breakdown of BBB. Importantly, miR-181c promotes the destruction of BBB through the abnormal localization of actin via the downregulation of its target gene, PDPK1. PDPK1 degradation by miR-181c leads to the downregulation of phosphorylated cofilin and the resultant activated cofilin-induced modulation of actin dynamics. Furthermore, we demonstrate that systemic injection of brain metastatic cancer cell-derived EVs promoted brain metastasis of breast cancer cell lines and are preferentially incorporated into the brain in vivo. Taken together, these results indicate a novel mechanism of brain metastasis mediated by EVs that triggers the destruction of BBB. PMID:25828099
Kelleher, Raymond J.; Balu-Iyer, Sathy; Loyall, Jenni; Sacca, Anthony J.; Shenoy, Gautam N.; Peng, Peng; Iyer, Vandana; Fathallah, Anas M.; Berenson, Charles S.; Wallace, Paul K.; Tario, Joseph; Odunsi, Kunle; Bankert, Richard B.
2015-01-01
The identification of immunosuppressive factors within human tumor microenvironments, and the ability to block these factors, would be expected to enhance patients’ anti-tumor immune responses. We previously established that an unidentified factor, or factors, present in ovarian tumor ascites fluids reversibly inhibited the activation of T cells by arresting the T cell signaling cascade. Ultracentrifugation of the tumor ascites fluid has now revealed a pellet that contains small extracellular vesicles (EV) with an average diameter of 80nm. The T cell arrest was determined to be causally linked to phosphatidylserine (PS) that is present on the outer leaflet of the vesicle bilayer, as a depletion of PS expressing EV or a blockade of PS with anti-PS antibody significantly inhibits the vesicle induced signaling arrest. The inhibitory EV were also isolated from solid tumor tissues. The presence of immune suppressive vesicles in the microenvironments of ovarian tumors and our ability to block their inhibition of T cell function represent a potential therapeutic target for patients with ovarian cancer. PMID:26112921
Gao, Ke; Li, Lisheng; Lai, Tianqi; Xiao, Liangang; Huang, Yuan; Huang, Fei; Peng, Junbiao; Cao, Yong; Liu, Feng; Russell, Thomas P; Janssen, René A J; Peng, Xiaobin
2015-06-17
We designed and synthesized the DPPEZnP-TEH molecule, with a porphyrin ring linked to two diketopyrrolopyrrole units by ethynylene bridges. The resulting material exhibits a very low energy band gap of 1.37 eV and a broad light absorption to 907 nm. An open-circuit voltage of 0.78 V was obtained in bulk heterojunction (BHJ) organic solar cells, showing a low energy loss of only 0.59 eV, which is the first report that small molecule solar cells show energy losses <0.6 eV. The optimized solar cells show remarkable external quantum efficiency, short circuit current, and power conversion efficiency up to 65%, 16.76 mA/cm(2), and 8.08%, respectively, which are the best values for BHJ solar cells with very low energy losses. Additionally, the morphology of DPPEZnP-TEH neat and blend films with PC61BM was studied thoroughly by grazing incidence X-ray diffraction, resonant soft X-ray scattering, and transmission electron microscopy under different fabrication conditions.
Kataoka, Chikako; Suzuki, Tadaki; Kotani, Osamu; Iwata-Yoshikawa, Naoko; Nagata, Noriyo; Ami, Yasushi; Wakita, Takaji; Nishimura, Yorihiro; Shimizu, Hiroyuki
2015-01-01
Enterovirus 71 (EV71), a major causative agent of hand, foot, and mouth disease, occasionally causes severe neurological symptoms. We identified P-selectin glycoprotein ligand-1 (PSGL-1) as an EV71 receptor and found that an amino acid residue 145 in the capsid protein VP1 (VP1-145) defined PSGL-1-binding (PB) and PSGL-1-nonbinding (non-PB) phenotypes of EV71. However, the role of PSGL-1-dependent EV71 replication in neuropathogenesis remains poorly understood. In this study, we investigated viral replication, genetic stability, and the pathogenicity of PB and non-PB strains of EV71 in a cynomolgus monkey model. Monkeys were intravenously inoculated with cDNA-derived PB and non-PB strains of EV71, EV71-02363-EG and EV71-02363-KE strains, respectively, with two amino acid differences at VP1-98 and VP1-145. Mild neurological symptoms, transient lymphocytopenia, and inflammatory cytokine responses, were found predominantly in the 02363-KE-inoculated monkeys. During the early stage of infection, viruses were frequently detected in clinical samples from 02363-KE-inoculated monkeys but rarely in samples from 02363-EG-inoculated monkeys. Histopathological analysis of central nervous system (CNS) tissues at 10 days postinfection revealed that 02363-KE induced neuropathogenesis more efficiently than that induced by 02363-EG. After inoculation with 02363-EG, almost all EV71 variants detected in clinical samples, CNS, and non-CNS tissues, possessed a G to E amino acid substitution at VP1-145, suggesting a strong in vivo selection of VP1-145E variants and CNS spread presumably in a PSGL-1-independent manner. EV71 variants with VP1-145G were identified only in peripheral blood mononuclear cells in two out of four 02363-EG-inoculated monkeys. Thus, VP1-145E variants are mainly responsible for the development of viremia and neuropathogenesis in a non-human primate model, further suggesting the in vivo involvement of amino acid polymorphism at VP1-145 in cell-specific viral replication, in vivo fitness, and pathogenesis in EV71-infected individuals. PMID:26181772
NASA Astrophysics Data System (ADS)
Lipman, Timothy E.
2011-11-01
Electric vehicles (EVs) of various types are experiencing a commercial renaissance but of uncertain ultimate success. Many new electric-drive models are being introduced by different automakers with significant technical improvements from earlier models, particularly with regard to further refinement of drivetrain systems and important improvements in battery and fuel cell systems. The various types of hybrid and all-electric vehicles can offer significant greenhouse gas (GHG) reductions when compared to conventional vehicles on a full fuel-cycle basis. In fact, most EVs used under most condition are expected to significantly reduce lifecycle GHG emissions. This paper reviews the current technology status of EVs and compares various estimates of their potential to reduce GHGs on a fuel cycle basis. In general, various studies show that battery powered EVs reduce GHGs by a widely disparate amount depending on the type of powerplant used and the particular region involved, among other factors. Reductions typical of the United States would be on the order of 20-50%, depending on the relative level of coal versus natural gas and renewables in the powerplant feedstock mix. However, much deeper reductions of over 90% are possible for battery EVs running on renewable or nuclear power sources. Plug-in hybrid vehicles running on gasoline can reduce emissions by 20-60%, and fuel cell EV reduce GHGs by 30-50% when running on natural gas-derived hydrogen and up to 95% or more when the hydrogen is made (and potentially compressed) using renewable feedstocks. These are all in comparison to what is usually assumed to be a more advanced gasoline vehicle "baseline" of comparison, with some incremental improvements by 2020 or 2030. Thus, the emissions from all of these EV types are highly variable depending on the details of how the electric fuel or hydrogen is produced.
Iacovelli, Roberto; Cartenì, Giacomo; Milella, Michele; Berardi, Rossana; Di Lorenzo, Giuseppe; Verzoni, Elena; Rizzo, Mimma; Santoni, Matteo; Procopio, Giuseppe
2014-01-01
Introduction: There are little data on the clinical activity of temsirolimus (TM) and everolimus (EV) when used as second-line therapy after sunitinib (SU) in patients with metastatic renal cell carcinoma (mRCC). Methods: Patients with mRCC treated with EV or TM after SU were included in this retrospective analysis. Progression-free survival (PFS), time to sequence failure (TTSF) from the start of SU to disease progression with EV/TM and overall survival (OS) were estimated using Kaplan-Meier method and compared across groups using the log-rank test. Cox proportional hazards models were applied to investigate predictors of TTSF and OS. Results: In total, 89 patients (median age 60.0 years) were included. At baseline 43% were classified as MSKCC good-risk, 43% as intermediate-risk and 14% as poor-risk. Median OS was 36.3 months and median TTSF was 17.2 months. Sixty-five patients received SU-EV and 24 patients SU-TM. Median PFS after the second-line treatment was 4.3 months in the EV group and 3.5 months in the TM group (p = 0.63). Median TTSF was 17.0 and 18.9 months (p = 0.32) and the OS was 35.8 and 38.3 months (p = 0.73) with SU-EV and SU-TM, respectively. The prognostic role of initial MSKCC was confirmed by multivariable analysis (hazard ratio 1.76, 95% confidence interval 1.08–2.85. p = 0.023). Conclusions: This study did not show significant differences in terms of disease control and OS between EV and TM in the second-line setting. EV remains the preferred mTOR inhibitor for the treatment of mRCC patients resistant to prior tyrosine kinase inhibitor treatment. PMID:24678349
Association between Antioxidant Enzyme Activities and Enterovirus-Infected Type 1 Diabetic Children.
Abdel-Moneim, Adel; El-Senousy, Waled M; Abdel-Latif, Mahmoud; Khalil, Rehab G
2018-01-01
To examine the effect of infection with Enterovirus (EV) in children with type 1 diabetes (T1D) on the activities of serum antioxidant enzymes in diabetic and nondiabetic controls. Three hundred and eighty-two diabetic and 100 nondiabetic children were tested for EV RNA using reverse transcriptase (RT)-PCR. The activities of serum superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) were also estimated in diabetic patients infected with EV (T1D-EV+), those not infected with EV (T1D-EV-), and in nondiabetic controls. The frequency of EV was higher in diabetic children (100/382; 26.2%) than in healthy controls (0/100). Levels of fasting blood glucose (FBG), glycosylated hemoglobin (HbA1c) and C-reactive protein (CRP) were significantly higher but C-peptide was significantly lower in diabetic children than in controls. CRP levels were higher in the T1D-EV+ group than in the T1D-EV- group, and higher in all diabetic children than in nondiabetic controls. The activities of the antioxidant enzymes GPx, SOD, and CAT decreased significantly in diabetic children compared to in controls. Moreover, the activities of the enzymes tested were significantly reduced in the T1D-EV+ group compared to in the T1D-EV- group. Our data indicate that EV infection correlated with a decrease in the activity of antioxidant enzymes in the T1D-EV+ group compared to in the T1D-EV- group; this may contribute to β cell damage and increased inflammation. © 2018 The Author(s) Published by S. Karger AG, Basel.
Beer, Katharina B; Wehman, Ann Marie
2017-03-04
Cells from bacteria to man release extracellular vesicles (EVs) that contain signaling molecules like proteins, lipids, and nucleic acids. The content, formation, and signaling roles of these conserved vesicles are diverse, but the physiological relevance of EV signaling in vivo is still debated. Studies in classical genetic model organisms like C. elegans and Drosophila have begun to reveal the developmental and behavioral roles for EVs. In this review, we discuss the emerging evidence for the in vivo signaling roles of EVs. Significant effort has also been made to understand the mechanisms behind the formation and release of EVs, specifically of exosomes derived from exocytosis of multivesicular bodies and of microvesicles derived from plasma membrane budding called ectocytosis. In this review, we detail the impact of flies and worms on understanding the proteins and lipids involved in EV biogenesis and highlight the open questions in the field.
NASA Technical Reports Server (NTRS)
Dinetta, L. C.; Hannon, M. H.; Cummings, J. R.; Mcneeley, J. B.; Barnett, Allen M.
1990-01-01
Free-standing, transparent, tunable bandgap AlxGa1-xAs top solar cells have been fabricated for mechanical attachment in a four terminal tandem stack solar cell. Evaluation of the device results has demonstrated 1.80 eV top solar cells with efficiencies of 18 percent (100 X, and AM0) which would yield stack efficiencies of 31 percent (100 X, AM0) with a silicon bottom cell. When fully developed, the AlxGa1-xAs/Si mechanically-stacked two-junction solar cell concentrator system can provide efficiencies of 36 percent (AM0, 100 X). AlxGa1-xAs top solar cells with bandgaps from 1.66 eV to 2.08 eV have been fabricated. Liquid phase epitaxy (LPE) growth techniques have been used and LPE has been found to yield superior AlxGa1-xAs material when compared to molecular beam epitaxy and metal-organic chemical vapor deposition. It is projected that stack assembly technology will be readily applicable to any mechanically stacked multijunction (MSMJ) system. Development of a wide bandgap top solar cell is the only feasible method for obtaining stack efficiencies greater than 40 percent at AM0. System efficiencies of greater than 40 percent can be realized when the AlGaAs top solar cell is used in a three solar cell mechanical stack.
NASA Astrophysics Data System (ADS)
Antonelli, M.; Di Fraia, M.; Carrato, S.; Cautero, G.; Menk, R. H.; Jark, W. H.; Ganbold, T.; Biasiol, G.; Callegari, C.; Coreno, M.; De Sio, A.; Pace, E.
2013-12-01
Simultaneous photon-beam position and intensity monitoring is becoming of increasing importance for new-generation synchrotron radiation sources and free-electron lasers (FEL). Thus, novel concepts of beam diagnostics are required in order to keep such beams under control. From this perspective diamond is a promising material for the production of semitransparent in situ photon beam monitors, which can withstand the high dose rates occurring in such radiation facilities. Here, we report on the development of freestanding, single-crystal chemical-vapor-deposited diamond detectors with segmented electrodes. Due to their direct, low-energy band gap, InGaAs quantum well devices operated at room temperature may also be used as fast detectors for photons ranging from visible to X-ray. These features are valuable in low-energy and time-resolved FEL applications. In particular, a novel segmented InGaAs/InAlAs device has been developed and will be discussed. Dedicated measurements carried out on both these devices at the Elettra Synchrotron show their capability to monitor the position and the intensity of the photon beam with bunch-by-bunch temporal performances. Furthermore, preliminary tests have been performed on diamond detectors at the Fermi FEL, extracting quantitative intensity and position information for 100-fs-wide FEL pulses with a photon energy of 28.8 eV.
Kumar, Rahul; Dhar, Deepanshi; Agarwal, Chapla; Bergman, Bryan; Graner, Michael; Maroni, Paul; Singh, Rana P.; Agarwal, Rajesh; Deep, Gagan
2015-01-01
Hypoxia is an independent prognostic indicator of poor outcome in several malignancies. However, precise mechanism through which hypoxia promotes disease aggressiveness is still unclear. Here, we report that under hypoxia (1% O2), human prostate cancer (PCA) cells, and extracellular vesicles (EVs) released by these cells, are significantly enriched in triglycerides due to the activation of lipogenesis-related enzymes and signaling molecules. This is likely a survival response to hypoxic stress as accumulated lipids could support growth following reoxygenation. Consistent with this, significantly higher proliferation was observed in hypoxic PCA cells following reoxygenation associated with rapid use of accumulated lipids. Importantly, lipid utilization inhibition by CPT1 inhibitor etomoxir and shRNA-mediated CPT1-knockdown significantly compromised hypoxic PCA cell proliferation following reoxygenation. Furthermore, COX2 inhibitor celecoxib strongly reduced growth and invasiveness following hypoxic PCA cells reoxygenation, and inhibited invasiveness induced by hypoxic PCA EVs. This establishes a role for COX2 enzymatic products in the enhanced PCA growth and invasiveness. Importantly, concentration and loading of EVs secreted by PCA cells were significantly compromised under delipidized serum condition and by lipogenesis inhibitors (fatostatin and silibinin). Overall, present study highlights the biological significance of lipid accumulation in hypoxic PCA cells and its therapeutic relevance in PCA. PMID:26087400
Extracellular vesicle-mediated export of fungal RNA
Peres da Silva, Roberta; Puccia, Rosana; Rodrigues, Marcio L.; Oliveira, Débora L.; Joffe, Luna S.; César, Gabriele V.; Nimrichter, Leonardo; Goldenberg, Samuel; Alves, Lysangela R.
2015-01-01
Extracellular vesicles (EVs) play an important role in the biology of various organisms, including fungi, in which they are required for the trafficking of molecules across the cell wall. Fungal EVs contain a complex combination of macromolecules, including proteins, lipids and glycans. In this work, we aimed to describe and characterize RNA in EV preparations from the human pathogens Cryptococcus neoformans, Paracoccidiodes brasiliensis and Candida albicans, and from the model yeast Saccharomyces cerevisiae. The EV RNA content consisted mostly of molecules less than 250 nt long and the reads obtained aligned with intergenic and intronic regions or specific positions within the mRNA. We identified 114 ncRNAs, among them, six small nucleolar (snoRNA), two small nuclear (snRNA), two ribosomal (rRNA) and one transfer (tRNA) common to all the species considered, together with 20 sequences with features consistent with miRNAs. We also observed some copurified mRNAs, as suggested by reads covering entire transcripts, including those involved in vesicle-mediated transport and metabolic pathways. We characterized for the first time RNA molecules present in EVs produced by fungi. Our results suggest that RNA-containing vesicles may be determinant for various biological processes, including cell communication and pathogenesis. PMID:25586039
Schneider, Daniel J; Speth, Jennifer M; Peters-Golden, Marc
2016-01-01
Unconventional secretion and subsequent uptake of molecular cargo via extracellular vesicles (EVs) is an important mechanism by which cells can exert paracrine effects. While this phenomenon has been widely characterized in the context of their ability to promote inflammation, less is known about the ability of EVs to transfer immunosuppressive cargo. Maintenance of normal physiology in the lung requires suppression of potentially damaging inflammatory responses to the myriad of insults to which it is continually exposed. Recently, our laboratory has reported the ability of alveolar macrophages (AMs) to secrete suppressors of cytokine signaling (SOCS) proteins within microvesicles (MVs) and exosomes (Exos). Uptake of these EVs by alveolar epithelial cells (AECs) resulted in inhibition of pro-inflammatory STAT activation in response to cytokines. Moreover, AM packaging of SOCS within EVs could be rapidly tuned in response to exogenous or AEC-derived substances. In this article we will highlight gaps in knowledge regarding microenvironmental modulation of cargo packaging and utilization as well as EV secretion and uptake. Advances in these areas are critical for improving understanding of intercellular communication in the immune system and for therapeutic application of artificial vesicles aimed at treatment of diseases characterized by dysregulated inflammation.
Schneider, Daniel J.; Speth, Jennifer M.; Peters-Golden, Marc
2016-01-01
Unconventional secretion and subsequent uptake of molecular cargo via extracellular vesicles (EVs) is an important mechanism by which cells can exert paracrine effects. While this phenomenon has been widely characterized in the context of their ability to promote inflammation, less is known about the ability of EVs to transfer immunosuppressive cargo. Maintenance of normal physiology in the lung requires suppression of potentially damaging inflammatory responses to the myriad of insults to which it is continually exposed. Recently, our laboratory has reported the ability of alveolar macrophages (AMs) to secrete suppressors of cytokine signaling (SOCS) proteins within microvesicles (MVs) and exosomes (Exos). Uptake of these EVs by alveolar epithelial cells (AECs) resulted in inhibition of pro-inflammatory STAT activation in response to cytokines. Moreover, AM packaging of SOCS within EVs could be rapidly tuned in response to exogenous or AEC-derived substances. In this article we will highlight gaps in knowledge regarding microenvironmental modulation of cargo packaging and utilization as well as EV secretion and uptake. Advances in these areas are critical for improving understanding of intercellular communication in the immune system and for therapeutic application of artificial vesicles aimed at treatment of diseases characterized by dysregulated inflammation. PMID:27626032
The Mechanical Response of Multifunctional Battery Systems
NASA Astrophysics Data System (ADS)
Tsutsui, Waterloo
The current state of the art in the field of the mechanical behavior of electric vehicle (EV) battery cells is limited to quasi-static analysis. The lack of published data in the dynamic mechanical behavior of EV battery cells blinds engineers and scientists with the uncertainty of what to expect when EVs experience such unexpected events as intrusions to their battery systems. To this end, the recent occurrences of several EVs catching fire after hitting road debris even make this topic timelier. In order to ensure the safety of EV battery, it is critical to develop quantitative understanding of battery cell mechanical behavior under dynamic compressive loadings. Specifically, the research focuses on the dynamic mechanical loading effect on the standard "18650" cylindrical lithium-ion battery cells. In the study, the force-displacement and voltage-displacement behavior of the battery cells were analyzed experimentally at two strain rates, two state-of-charges, and two unit-cell configurations. The results revealed the strain rate sensitivity of their mechanical responses with the solid sacrificial elements. When the hollow sacrificial cells are used, on the other hand, effect was negligible up to the point of densification strength. Also, the high state-of-charge appeared to increase the stiffness of the battery cells. The research also revealed the effectiveness of the sacrificial elements on the mechanical behavior of a unit cell that consists of one battery cell and six sacrificial elements. The use of the sacrificial elements resulted in the delayed initiation of electric short circuit. Based on the analysis of battery behavior at the cell level, granular battery assembly, a battery pack, was designed and fabricated. The behavior of the granular battery assembly was analyzed both quasistatically and dynamically. Building on the results of the research, various research plans were proposed. Through conducting the research, we sought to answer the following research questions: Could we use battery cells and packs as a part of vehicle structures? Could we use battery cells and packs as a part of vehicle impact energy absorption structure? Based on the research results, the answer to the first question is "yes." However, the granular battery assembly configuration is not suitable as a load-bearing battery structure since the main purpose of granular battery assembly, apart from energy storage for vehicle propulsion, is to work as a kinetic energy dissipation device. The answer to the second question is also "yes." However, the kinetic energy dissipation is mainly performed by the sacrificial elements surrounding the battery cells.
The Role of Exosomes in Breast Cancer.
Lowry, Michelle C; Gallagher, William M; O'Driscoll, Lorraine
2015-12-01
Although it has been long realized that eukaryotic cells release complex vesicular structures into their environment, only in recent years has it been established that these entities are not merely junk or debris, but that they are tailor-made specialized minimaps of their cell of origin and of both physiological and pathological relevance. These exosomes and microvesicles (ectosomes), collectively termed extracellular vesicles (EVs), are often defined and subgrouped first and foremost according to size and proposed origin (exosomes approximately 30-120 nm, endosomal origin; microvesicles 120-1000 nm, from the cell membrane). There is growing interest in elucidating the relevance and roles of EVs in cancer. Much of the pioneering work on EVs in cancer has focused on breast cancer, possibly because breast cancer is a leading cause of cancer-related deaths worldwide. This review provides an in-depth summary of such studies, supporting key roles for exosomes and other EVs in breast cancer cell invasion and metastasis, stem cell stimulation, apoptosis, immune system modulation, and anti-cancer drug resistance. Exosomes as diagnostic, prognostic, and/or predictive biomarkers and their potential use in the development of therapeutics are discussed. Although not fully elucidated, the involvement of exosomes in breast cancer development, progression, and resistance is becoming increasingly apparent from preclinical and clinical studies, with mounting interest in the potential exploitation of these vesicles for breast cancer biomarkers, as drug delivery systems, and in the development of future novel breast cancer therapies. © 2015 American Association for Clinical Chemistry.
Leishmania infantum Exoproducts Inhibit Human Invariant NKT Cell Expansion and Activation.
Belo, Renata; Santarém, Nuno; Pereira, Cátia; Pérez-Cabezas, Begoña; Macedo, Fátima; Leite-de-Moraes, Maria; Cordeiro-da-Silva, Anabela
2017-01-01
Leishmania infantum is one of the major parasite species associated with visceral leishmaniasis, a severe form of the disease that can become lethal if untreated. This obligate intracellular parasite has developed diverse strategies to escape the host immune response, such as exoproducts (Exo) carrying a wide range of molecules, including parasite virulence factors, which are potentially implicated in early stages of infection. Herein, we report that L. infantum Exo and its two fractions composed of extracellular vesicles (EVs) and vesicle-depleted-exoproducts (VDEs) inhibit human peripheral blood invariant natural killer T (iNKT) cell expansion in response to their specific ligand, the glycolipid α-GalactosylCeramide (α-GalCer), as well as their capacity to promptly produce IL-4 and IFNγ. Using plate-bound CD1d and α-GalCer, we found that Exo, EV, and VDE fractions reduced iNKT cell activation in a dose-dependent manner, suggesting that they prevented α-GalCer presentation by CD1d molecules. This direct effect on CD1d was confirmed by the observation that CD1d:α-GalCer complex formation was impaired in the presence of Exo, EV, and VDE fractions. Furthermore, lipid extracts from the three compounds mimicked the inhibition of iNKT cell activation. These lipid components of L. infantum exoproducts, including EV and VDE fractions, might compete for CD1-binding sites, thus blocking iNKT cell activation. Overall, our results provide evidence for a novel strategy through which L. infantum can evade immune responses of mammalian host cells by preventing iNKT lymphocytes from recognizing glycolipids in a TCR-dependent manner.
High Efficiency Quantum Well Waveguide Solar Cells and Methods for Constructing the Same
NASA Technical Reports Server (NTRS)
Sood, Ashok K. (Inventor); Welser, Roger E. (Inventor)
2014-01-01
Photon absorption, and thus current generation, is hindered in conventional thin-film solar cell designs, including quantum well structures, by the limited path length of incident light passing vertically through the device. Optical scattering into lateral waveguide structures provides a physical mechanism to increase photocurrent generation through in-plane light trapping. However, the insertion of wells of high refractive index material with lower energy gap into the device structure often results in lower voltage operation, and hence lower photovoltaic power conversion efficiency. The voltage output of an InGaAs quantum well waveguide photovoltaic device can be increased by employing a III-V material structure with an extended wide band gap emitter heterojunction. Analysis of the light IV characteristics reveals that non-radiative recombination components of the underlying dark diode current have been reduced, exposing the limiting radiative recombination component and providing a pathway for realizing solar-electric conversion efficiency of 30% or more in single junction cells.
EV-3, an endogenous human erythropoietin isoform with distinct functional relevance.
Bonnas, Christel; Wüstefeld, Liane; Winkler, Daniela; Kronstein-Wiedemann, Romy; Dere, Ekrem; Specht, Katja; Boxberg, Melanie; Tonn, Torsten; Ehrenreich, Hannelore; Stadler, Herbert; Sillaber, Inge
2017-06-16
Generation of multiple mRNAs by alternative splicing is well known in the group of cytokines and has recently been reported for the human erythropoietin (EPO) gene. Here, we focus on the alternatively spliced EPO transcript characterized by deletion of exon 3 (hEPOΔ3). We show co-regulation of EPO and hEPOΔ3 in human diseased tissue. The expression of hEPOΔ3 in various human samples was low under normal conditions, and distinctly increased in pathological states. Concomitant up-regulation of hEPOΔ3 and EPO in response to hypoxic conditions was also observed in HepG2 cell cultures. Using LC-ESI-MS/MS, we provide first evidence for the existence of hEPOΔ3 derived protein EV-3 in human serum from healthy donors. Contrary to EPO, recombinant EV-3 did not promote early erythroid progenitors in cultures of human CD34+ haematopoietic stem cells. Repeated intraperitoneal administration of EV-3 in mice did not affect the haematocrit. Similar to EPO, EV-3 acted anti-apoptotic in rat hippocampal neurons exposed to oxygen-glucose deprivation. Employing the touch-screen paradigm of long-term visual discrimination learning, we obtained first in vivo evidence of beneficial effects of EV-3 on cognition. This is the first report on the presence of a naturally occurring EPO protein isoform in human serum sharing non-erythropoietic functions with EPO.
Measurements of Positronium Formation Cross Sections for Positron-Kr, Xe Scattering
NASA Astrophysics Data System (ADS)
Kauppila, W. E.; Kwan, C. K.; Li, H.; Stein, T. S.; Zhou, S.
1997-04-01
Our experimental approach(S. Zhou et al., Phys. Rev. Lett. 73, 236 (1994).) for measuring Ps formation cross sections (Q_Ps) involves passing a variable energy positron beam through a gas scattering cell and detecting the 511 keV annihilation gamma rays resulting from the decay of para-Ps and from the interaction of ortho-Ps with the walls of the scattering cell. It is found that the Q_Ps curves for both Kr and Xe rise rapidly from their formation threshold energies of 7.2 and 5.3 eV, reach maxima within about 10 eV of their thresholds and then decrease to become rather small (less than 10% of the peak heights) above 100 eV. At the maxima Q_Ps accounts for more than 50% of the total scattering cross sections. There is some evidence of possible small scale structure in the Q_Ps curves between 10 and 100 eV. The present results are consistent with the prior measurements of Diana et al.( L.M. Diana et al., in "Atomic Physics with Positrons", edited by J.W. Humberston and E.A.G. Armour (Plenum, New York and London, 1987), p. 55; and in "Positron Annihilation", edited by L. Dorikens-Vanpraet et al. (World Scientific, Singapore, 1989), p. 311.) from near threshold to 70 eV for Kr and from 15 to 100 eV for Xe.
Cwiklinski, Krystyna; de la Torre-Escudero, Eduardo; Trelis, Maria; Bernal, Dolores; Dufresne, Philippe J.; Brennan, Gerard P.; O'Neill, Sandra; Tort, Jose; Paterson, Steve; Marcilla, Antonio; Dalton, John P.; Robinson, Mark W.
2015-01-01
Extracellular vesicles (EVs) released by parasites have important roles in establishing and maintaining infection. Analysis of the soluble and vesicular secretions of adult Fasciola hepatica has established a definitive characterization of the total secretome of this zoonotic parasite. Fasciola secretes at least two subpopulations of EVs that differ according to size, cargo molecules and site of release from the parasite. The larger EVs are released from the specialized cells that line the parasite gastrodermus and contain the zymogen of the 37 kDa cathepsin L peptidase that performs a digestive function. The smaller exosome-like vesicle population originate from multivesicular bodies within the tegumental syncytium and carry many previously described immunomodulatory molecules that could be delivered into host cells. By integrating our proteomics data with recently available transcriptomic data sets we have detailed the pathways involved with EV biogenesis in F. hepatica and propose that the small exosome biogenesis occurs via ESCRT-dependent MVB formation in the tegumental syncytium before being shed from the apical plasma membrane. Furthermore, we found that the molecular “machinery” required for EV biogenesis is constitutively expressed across the intramammalian development stages of the parasite. By contrast, the cargo molecules packaged within the EVs are developmentally regulated, most likely to facilitate the parasites migration through host tissue and to counteract host immune attack. PMID:26486420
NASA Astrophysics Data System (ADS)
Joshi, Abhay M.; Wang, Xinde; Mohr, Dan; Becker, Donald; Patil, Ravikiran
2004-08-01
We have developed 20 mA or higher photocurrent handling InGaAs photodiodes with 20 GHz bandwidth, and 10 mA or higher photocurrent handling InGaAs photodiodes with >40 GHz bandwidth. These photodiodes have been thoroughly tested for reliability including Bellcore GR 468 standard and are built to ISO 9001:2000 Quality Management System. These Dual-depletion InGaAs/InP photodiodes are surface illuminated and yet handle such large photocurrent due to advanced band-gap engineering. They have broad wavelength coverage from 800 nm to 1700 nm, and thus can be used at several wavelengths such as 850 nm, 1064 nm, 1310 nm, 1550 nm, and 1620 nm. Furthermore, they exhibit very low Polarization Dependence Loss of 0.05dB typical to 0.1dB maximum. Using above high current handling photodiodes, we have developed classical Push-Pull pair balanced photoreceivers for the 2 to 18 GHz EW system. These balanced photoreceivers boost the Spurious Free Dynamic Range (SFDR) by almost 3 dB by eliminating the laser RIN noise. Future research calls for designing an Avalanche Photodiode Balanced Pair to boost the SFDR even further by additional 3 dB. These devices are a key enabling technology in meeting the SFDR requirements for several DoD systems.
Ultralow Surface Recombination Velocity in Passivated InGaAs/InP Nanopillars
2017-01-01
The III–V semiconductor InGaAs is a key material for photonics because it provides optical emission and absorption in the 1.55 μm telecommunication wavelength window. However, InGaAs suffers from pronounced nonradiative effects associated with its surface states, which affect the performance of nanophotonic devices for optical interconnects, namely nanolasers and nanodetectors. This work reports the strong suppression of surface recombination of undoped InGaAs/InP nanostructured semiconductor pillars using a combination of ammonium sulfide, (NH4)2S, chemical treatment and silicon oxide, SiOx, coating. An 80-fold enhancement in the photoluminescence (PL) intensity of submicrometer pillars at a wavelength of 1550 nm is observed as compared with the unpassivated nanopillars. The PL decay time of ∼0.3 μm wide square nanopillars is dramatically increased from ∼100 ps to ∼25 ns after sulfur treatment and SiOx coating. The extremely long lifetimes reported here, to our knowledge the highest reported to date for undoped InGaAs nanostructures, are associated with a record-low surface recombination velocity of ∼260 cm/s. We also conclusively show that the SiOx capping layer plays an active role in the passivation. These results are crucial for the future development of high-performance nanoscale optoelectronic devices for applications in energy-efficient data optical links, single-photon sensing, and photovoltaics. PMID:28340296
High and low energy proton radiation damage in p/n InP MOCVD solar cells
NASA Technical Reports Server (NTRS)
Rybicki, George; Weinberg, Irving; Scheiman, Dave; Vargas-Aburto, Carlos
1995-01-01
InP p(+)nn(+) MOCVD solar cells were irradiated with 0.2 MeV and 10 MeV protons to a fluence of 10(exp 13)/sq cm. The degradation of power output, IV behavior, carrier concentration and defect concentration were observed at intermediate points throughout the irradiations. The 0.2 MeV proton irradiated solar cells suffered much greater and more rapid degradation in power output than those irradiated with 10 meV protons. The efficiency losses were accompanied by larger increases in the recombination currents in the 0.2 MeV proton irradiated solar cells. The low energy proton irradiations also had a larger impact on the series resistance of the solar cells. Despite the radiation induced damage, the carrier concentration in the base of the solar cells showed no reduction after 10 MeV or 0.2 MeV proton irradiations and even increased during irradiation with 0.2 MeV protons. In a DLTS study of the irradiated samples, the minority carrier defects H4 and H5 at E(v) + 0.33 and E(v) + 0.52 eV and the majority carrier defects E7 and E10 at E(c)- 0.39 and E(c)-0.74 eV, were observed. The defect introduction rates for the 0.2 MeV proton irradiations were about 20 times higher than for the 10 MeV proton irradiations. The defect E10, observed here after irradiation, has been shown to act as a donor in irradiated n-type InP and may be responsible for obscuring carrier removal. The results of this study are consistent with the much greater damage produced by low energy protons whose limited range causes them to stop in the active region of the solar cell.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin Seo, Hyok; Hee Lee, Mi; Kwon, Byeong-Ju
2013-08-21
Advanced biomaterials should also be bioactive with regard to desirable cellular responses, such as selective protein adsorption and cell attachment, proliferation, and differentiation. To enhance cell-material interactions, surface modifications have commonly been performed. Among the various surface modification approaches, atmospheric pressure glow discharge plasma has been used to change a hydrophobic polymer surface to a hydrophilic surface. Poly(L-lactic acid) (PLLA)-derived scaffolds lack cell recognition signals and the hydrophobic nature of PLLA hinders cell seeding. To make PLLA surfaces more conducive to cell attachment and spreading, surface modifications may be used to create cell-biomaterial interfaces that elicit controlled cell adhesion andmore » maintain differentiated phenotypes. In this study, (He) gaseous atmospheric plasma glow discharge was used to change the characteristics of a 3D-type polymeric scaffold from hydrophobic to hydrophilic on both the outer and inner surfaces of the scaffold and the penetration efficiency with fibronectin was investigated. Field-emission scanning electron microscope images showed that some grooves were formed on the PLLA fibers after plasma treatment. X-ray photoelectron spectroscopy data also showed chemical changes in the PLLA structure. After plasma treatment, -CN (285.76 eV) was increased in C1s and -NH{sub 2} (399.70 eV) was increased significantly and –N=CH (400.80 eV) and –NH{sub 3}{sup +} (402.05 eV) were newly appeared in N1s. These changes allowed fibronectin to penetrate into the PLLA scaffold; this could be observed by confocal microscopy. In conclusion, helium atmospheric pressure plasma treatment was effective in modifying the polymeric scaffold, making it hydrophilic, and this treatment can also be used in tissue engineering research as needed to make polymers hydrophilic.« less
Low temperature Zn diffusion for GaSb solar cell structures fabrication
NASA Technical Reports Server (NTRS)
Sulima, Oleg V.; Faleev, Nikolai N.; Kazantsev, Andrej B.; Mintairov, Alexander M.; Namazov, Ali
1995-01-01
Low temperature Zn diffusion in GaSb, where the minimum temperature was 450 C, was studied. The pseudo-closed box (PCB) method was used for Zn diffusion into GaAs, AlGaAs, InP, InGaAs and InGaAsP. The PCB method avoids the inconvenience of sealed ampoules and proved to be simple and reproducible. The special design of the boat for Zn diffusion ensured the uniformality of Zn vapor pressure across the wafer surface, and thus the uniformity of the p-GaSb layer depth. The p-GaSb layers were studied using Raman scattering spectroscopy and the x-ray rocking curve method. As for the postdiffusion processing, an anodic oxidation was used for a precise thinning of the diffused GaSb layers. The results show the applicability of the PCB method for the large-scale production of the GaSb structures for solar cells.
Human HLA-Ev (147) Expression in Transgenic Animals.
Matsuura, R; Maeda, A; Sakai, R; Eguchi, H; Lo, P-C; Hasuwa, H; Ikawa, M; Nakahata, K; Zenitani, M; Yamamichi, T; Umeda, S; Deguchi, K; Okuyama, H; Miyagawa, S
2016-05-01
In our previous study, we reported on the development of substituting S147C for HLA-E as a useful gene tool for xenotransplantation. In this study we exchanged the codon of HLA-Ev (147), checked its function, and established a line of transgenic mice. A new construct, a codon exchanging human HLA-Ev (147) + IRES + human beta 2-microgloblin, was established. The construct was subcloned into pCXN2 (the chick beta-actin promoter and cytomegalovirus enhancer) vector. Natural killer cell- and macrophage-mediated cytotoxicities were performed using the established the pig endothelial cell (PEC) line with the new gene. Transgenic mice with it were next produced using a micro-injection method. The expression of the molecule on PECs was confirmed by the transfection of the plasmid. The established molecules on PECs functioned well in regulating natural killer cell-mediated cytotoxicity and macrophage-mediated cytotoxicity. We have also successfully generated several lines of transgenic mice with this plasmid. The expression of HLA-Ev (147) in each mouse organ was confirmed by assessing the mRNA. The chick beta-actin promoter and cytomegalovirus enhancer resulted in a relatively broad expression of the gene in each organ, and a strong expression in the cases of the heart and lung. A synthetic HLA-Ev (147) gene with a codon usage optimized to a mammalian system represents a critical factor in the development of transgenic animals for xenotransplantation. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Sharps, P. R.; Timmons, M. L.; Venkatasubramanian, R.; Hills, J. S.; O'Quinn, B.; Hutchby, J. A.; Iles, P. A.; Chu, C. L.
1995-01-01
Most current emphasis is on GaInAs alloys or GaSb for thermal photovoltaic converters operating in a band gap range between about 0.50 to 0.75 eV. In this paper the growth and fabrication of GaInAs devices with nominal band gaps of 0.6 eV are described. Yield statistics are presented for the growth of a large number of devices, and I-V data are presented. Alternative cell structures are also described, and manufacturing issues are discussed.
Development of high-performance GaInAsP solar cells for tandem solar cell applications
NASA Technical Reports Server (NTRS)
Wanlass, M. W.; Ward, J. S.; Gessert, T. A.; Emery, K. A.; Horner, G. S.
1990-01-01
Recent results in the development of high-efficiency, low-bandgap GaInAsP solar cells epitaxially grown and lattice matched on InP substrates are presented. Such cells are intended to be used as optimum bottom cell components in tandem solar cells. Assuming that a GaAs-based top cell is used, computer simulation of the potential bottom cell performance as a function of the cell bandgap and incident spectrum indicates that two particular alloys are desirable: Ga0.47In0.53As (Eg = 0.75 eV) for space applications and Ga0.25In0.75As0.54P0.46 (Eg = 0.95 eV) for terrestrial applications. In each of these materials, solar cells with new record-level efficiencies have been fabricated. The efficiency boost available to tandem configurations from these low-bandgap cells is discussed.
Fast charging of lithium-ion batteries at all temperatures.
Yang, Xiao-Guang; Zhang, Guangsheng; Ge, Shanhai; Wang, Chao-Yang
2018-06-25
Fast charging is a key enabler of mainstream adoption of electric vehicles (EVs). None of today's EVs can withstand fast charging in cold or even cool temperatures due to the risk of lithium plating. Efforts to enable fast charging are hampered by the trade-off nature of a lithium-ion battery: Improving low-temperature fast charging capability usually comes with sacrificing cell durability. Here, we present a controllable cell structure to break this trade-off and enable lithium plating-free (LPF) fast charging. Further, the LPF cell gives rise to a unified charging practice independent of ambient temperature, offering a platform for the development of battery materials without temperature restrictions. We demonstrate a 9.5 Ah 170 Wh/kg LPF cell that can be charged to 80% state of charge in 15 min even at -50 °C (beyond cell operation limit). Further, the LPF cell sustains 4,500 cycles of 3.5-C charging in 0 °C with <20% capacity loss, which is a 90× boost of life compared with a baseline conventional cell, and equivalent to >12 y and >280,000 miles of EV lifetime under this extreme usage condition, i.e., 3.5-C or 15-min fast charging at freezing temperatures.
Metamorphic III–V Solar Cells: Recent Progress and Potential
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia, Ivan; France, Ryan M.; Geisz, John F.
Inverted metamorphic multijunction solar cells have been demonstrated to be a pathway to achieve the highest photovoltaic (PV) conversion efficiencies. Attaining high-quality lattice-mismatched (metamorphic) semiconductor devices is challenging. However, recent improvements to compositionally graded buffer epitaxy and junction structures have led to the achievement of high-quality metamorphic solar cells exhibiting internal luminescence efficiencies over 90%. For this high material quality, photon recycling is significant, and therefore, the optical environment of the solar cell becomes important. In this paper, we first present recent progress and performance results for 1- and 0.7-eV GaInAs solar cells grown on GaAs substrates. Then, an electroopticalmore » model is used to assess the potential performance improvements in current metamorphic solar cells under different realizable design scenarios. The results show that the quality of 1-eV subcells is such that further improving its electronic quality does not produce significant Voc increases in the four-junction inverted metamorphic subcells, unless a back reflector is used to enhance photon recycling, which would significantly complicate the structure. Conversely, improving the electronic quality of the 0.7-eV subcell would lead to significant Voc boosts, driving the progress of four-junction inverted metamorphic solar cells.« less
Junctionless tri-gate InGaAs MOSFETs
NASA Astrophysics Data System (ADS)
Zota, Cezar B.; Borg, Mattias; Wernersson, Lars-Erik; Lind, Erik
2017-12-01
We demonstrate and characterize junctionless tri-gate InGaAs MOSFETs, fabricated using a simplified process with gate lengths down to L g = 25 nm at a nanowire dimension of 7 × 16 nm2. These devices use a single 7-nm-thick In0.80Ga0.20As (N D = 1 × 1019 cm-3) layer as both channel and contacts. The devices show SSsat = 76 mV/dec, peak g m = 1.6 mS/µm and I ON = 160 µA/µm (at I OFF = 100 nA/µm and V DD = 0.5 V), the latter which is the highest reported value for a junctionless FET. We also show that device performance is mainly limited by high parasitic access resistance due to the narrow and thin contact layer.
Polariton condensation in a strain-compensated planar microcavity with InGaAs quantum wells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cilibrizzi, Pasquale; Askitopoulos, Alexis, E-mail: Alexis.Askitopoulos@soton.ac.uk; Silva, Matteo
2014-11-10
The investigation of intrinsic interactions in polariton condensates is currently limited by the photonic disorder of semiconductor microcavity structures. Here, we use a strain compensated planar GaAs/AlAs{sub 0.98}P{sub 0.02} microcavity with embedded InGaAs quantum wells having a reduced cross-hatch disorder to overcome this issue. Using real and reciprocal space spectroscopic imaging under non-resonant optical excitation, we observe polariton condensation and a second threshold marking the onset of photon lasing, i.e., the transition from the strong to the weak-coupling regime. Condensation in a structure with suppressed photonic disorder is a necessary step towards the implementation of periodic lattices of interacting condensates,more » providing a platform for on chip quantum simulations.« less
2010-12-24
nano-thick Al2O3, HfO2, and Ga2O3 (Gd2O3)/ InGaAs (and GaN) using high-resolution x-ray reflectivity using in-situ/ex-situ high-resolution synchrotron...aligned inversion-channel In0.75Ga0.25As MOSFETs using MBE- grown Al2O3/ Ga2O3 (Gd2O3) Chips integrating high κ’s/InGaAs and /Ge onto Si substrates have...using molecular beam epitaxy (MBE)-Al2O3/ Ga2O3 (Gd2O3) [GGO] and atomic layer deposited (ALD)-Al2O3, with gate lengths (LG) of 1 μm and 0.4 μm
2011-04-20
ALD-Al2O3 and in-situ MBE-Al2O3/ Ga2O3 (Gd2O3) [GGO] as the gate dielectrics. The advances of the InGaAs MOSFETs achieved will enable future CMOS...and GaN MOSFETs: High-performance self-aligned inversion-channel In0.53Ga0.47As and In0.75Ga0.25As MOSFET’s with Al2O3/ Ga2O3 (Gd2O3) as gate... Ga2O3 (Gd2O3) as gate dielectrics Key accomplishments in devices of 1m gate length: High drain current of 1.23 mA/m High transcoductance of 714
2010-02-19
UHV- deposited Al2O3(3nm)/ Ga2O3 (Gd2O3)(8.5nm) on n- and p-In0.2Ga0.8As/GaAs. The results exhibit very high-quality interface and free-moving Fermi...κ Ga2O3 (Gd2O3) [GGO] and Gd2O3 on InGaAs, without an interfacial layer. InxGa1−xAs MOSFETs have been successfully demonstrated with excellent device... Ga2O3 (Gd2O3)/In0.2Ga0.8As and high temperature (850°C) stability Scaling high κ oxides to nanometer range as well as unpinning surface Fermi level
High band gap 2-6 and 3-5 tunneling junctions for silicon multijunction solar cells
NASA Technical Reports Server (NTRS)
Daud, Taher (Inventor); Kachare, Akaram H. (Inventor)
1986-01-01
A multijunction silicon solar cell of high efficiency is provided by providing a tunnel junction between the solar cell junctions to connect them in series. The tunnel junction is comprised of p+ and n+ layers of high band gap 3-5 or 2-6 semiconductor materials that match the lattice structure of silicon, such as GaP (band gap 2.24 eV) or ZnS (band gap 3.6 eV). Each of which has a perfect lattice match with silicon to avoid defects normally associated with lattice mismatch.
In0.53Ga0.47As/InP conventional and inverted thermophotovoltaic cells with back surface reflector
NASA Astrophysics Data System (ADS)
Karlina, L. B.; Kulagina, M. M.; Timoshina, N. Kh.; Vlasov, A. S.; Andreev, V. M.
2007-02-01
Characteristics of conventional and inverted InGaAs/InP thermophotovoltaic (TPV) cells with a back surface reflector (BSR) fabricated on electrically active n-type InP substrates are presented. Thermophotovoltaic cells based on lattice matched InP-In0.53Ga0.47As heterostructures were fabricated with the use of LPE and Zn,P diffusion technologies. In the p-n TPV cells (conventional type, spectral range 600÷1800 nm) with a frontal p-InGaAs layer, BSR was made on a n-InP substrate. In the n-p structure (inverted type, spectral range1000-1800 nm) with a frontal bulk n-InP-window-substrate, BSR was formed on a p-InGaAs layer. Antireflection coating (ARC) on the frontal cell surface consists of ZnS/MgF2 layers. Results of investigation of sub-bangap photons reflection from InP substrates with a backside MgF2/Au mirror in the range of 1800÷2000nm are described. The reflection of BSR for InP samples with the doping level in the range of 1×1017÷6×1018cm-3 evidenced a weak dependence on their thickness and doping level. A reflection of 86÷90% has been measured for substrates 100μm thick and 80% for ones 400μm thick with ARC. Study of sub-bandgap photon reflection of p-InGaAs (Zn,P) layers with surface concentration of 1÷3×1019cm-3 has been also carried out. A reflection of 68÷77% for 2÷4μm layers with "hybrid" (ohmic contact plus mirror) back-surface reflector consisted of deposited Cr/Au layers was measured. It was found, that p-n and n-p thermophotovoltaic 1×1cm2 cells with identical grid design reveal similar parameters for up to 1A/cm2 current density (VOC=465mV and FF=64%) and the 76÷80% reflection of the sub-bandgap photons for wavelengths longer than 1.86μm. The developed inverted InGaAs TPV cells have been tested under illumination of silicon carbide high temperature emitter. The photocurrent density Jsc=7A/cm2, open circuit voltage Voc=0.476V and fill factor FF=0.691 have been measured in the inverted (without BSR) InGaAs cell under SiC emitter heated to the temperature of about 1550°C. Both types of devices can successfully be used as TPV cells for conversion of radiation in the range of 1500-1900K, with 14-15% efficiency.
Computer analysis of microcrystalline silicon hetero-junction solar cell with lumerical FDTD/DEVICE
NASA Astrophysics Data System (ADS)
Riaz, Muhammad; Earles, S. K.; Kadhim, Ahmed; Azzahrani, Ahmad
The computer analysis of tandem solar cell, c-Si/a-Si:H/μc-SiGe, is studied within Lumerical FDTD/Device 4.6. The optical characterization is performed in FDTD and then total generation rate is transported into DEVICE for electrical characterization. The electrical characterization of the solar cell is carried out in DEVICE. The design is implemented by staking three sub cells with band gap of 1.12eV, 1.50eV and 1.70eV, respectively. First, single junction solar cell with both a-Si and μc-SiGe absorbing layers are designed and compared. The thickness for both layers are kept the same. In a single junction, solar cell with a-Si absorbing layer, the fill factor and the efficiency are noticed as FF = 78.98%, and η = 6.03%. For μc-SiGe absorbing layer, the efficiency and fill factor are increased as η = 7.06% and FF = 84.27%, respectively. Second, for tandem thin film solar cell c-Si/a-Si:H/μc-SiGe, the fill factor FF = 81.91% and efficiency η = 9.84% have been noticed. The maximum efficiency for both single junction thin film solar cell c-Si/μc-SiGe and tandem solar cell c-Si/a-Si:H/μc-SiGe are improved with check board surface design for light trapping.
Ultra-Thin, Triple-Bandgap GaInP/GaAs/GaInAs Monolithic Tandem Solar Cells
NASA Technical Reports Server (NTRS)
Wanlass, M. W.; Ahrenkiel, S. P.; Albin, D. S.; Carapella, J. J.; Duda, A.; Emery, K.; Geisz, J. F.; Jones, K.; Kurtz, Sarah; Moriarty, T.;
2007-01-01
The performance of state-of-the-art, series-connected, lattice-matched (LM), triple-junction (TJ), III-V tandem solar cells could be improved substantially (10-12%) by replacing the Ge bottom subcell with a subcell having a bandgap of approx.1 eV. For the last several years, research has been conducted by a number of organizations to develop approx.1-eV, LM GaInAsN to provide such a subcell, but, so far, the approach has proven unsuccessful. Thus, the need for a high-performance, monolithically integrable, 1-eV subcell for TJ tandems has remained. In this paper, we present a new TJ tandem cell design that addresses the above-mentioned problem. Our approach involves inverted epitaxial growth to allow the monolithic integration of a lattice-mismatched (LMM) approx.1- eV GaInAs/GaInP double-heterostructure (DH) bottom subcell with LM GaAs (middle) and GaInP (top) upper subcells. A transparent GaInP compositionally graded layer facilitates the integration of the LM and LMM components. Handle-mounted, ultra-thin device fabrication is a natural consequence of the inverted-structure approach, which results in a number of advantages, including robustness, potential low cost, improved thermal management, incorporation of back-surface reflectors, and possible reclamation/reuse of the parent crystalline substrate for further cost reduction. Our initial work has concerned GaInP/GaAs/GaInAs tandem cells grown on GaAs substrates. In this case, the 1- eV GaInAs experiences 2.2% compressive LMM with respect to the substrate. Specially designed GaInP graded layers are used to produce 1-eV subcells with performance parameters nearly equaling those of LM devices with the same bandgap (e.g., LM, 1-eV GaInAsP grown on InP). Previously, we reported preliminary ultra-thin tandem devices (0.237 cm2) with NREL-confirmed efficiencies of 31.3% (global spectrum, one sun) (1), 29.7% (AM0 spectrum, one sun) (2), and 37.9% (low-AOD direct spectrum, 10.1 suns) (3), all at 25 C. Here, we include recent results of testing similar devices under the concentrated AMO spectrum, and also present the first demonstration of a high-efficiency, ultra-thin GaInP/GaAs/GaInAs tandem cell processed on a flexible kapton handle.
Perovskite Solar Cells with Large-Area CVD-Graphene for Tandem Solar Cells.
Lang, Felix; Gluba, Marc A; Albrecht, Steve; Rappich, Jörg; Korte, Lars; Rech, Bernd; Nickel, Norbert H
2015-07-16
Perovskite solar cells with transparent contacts may be used to compensate for thermalization losses of silicon solar cells in tandem devices. This offers a way to outreach stagnating efficiencies. However, perovskite top cells in tandem structures require contact layers with high electrical conductivity and optimal transparency. We address this challenge by implementing large-area graphene grown by chemical vapor deposition as a highly transparent electrode in perovskite solar cells, leading to identical charge collection efficiencies. Electrical performance of solar cells with a graphene-based contact reached those of solar cells with standard gold contacts. The optical transmission by far exceeds that of reference devices and amounts to 64.3% below the perovskite band gap. Finally, we demonstrate a four-terminal tandem device combining a high band gap graphene-contacted perovskite top solar cell (Eg = 1.6 eV) with an amorphous/crystalline silicon bottom solar cell (Eg = 1.12 eV).
Acoustic Enrichment of Extracellular Vesicles from Biological Fluids.
Ku, Anson; Lim, Hooi Ching; Evander, Mikael; Lilja, Hans; Laurell, Thomas; Scheding, Stefan; Ceder, Yvonne
2018-06-11
Extracellular vesicles (EVs) have emerged as a rich source of biomarkers providing diagnostic and prognostic information in diseases such as cancer. Large-scale investigations into the contents of EVs in clinical cohorts are warranted, but a major obstacle is the lack of a rapid, reproducible, efficient, and low-cost methodology to enrich EVs. Here, we demonstrate the applicability of an automated acoustic-based technique to enrich EVs, termed acoustic trapping. Using this technology, we have successfully enriched EVs from cell culture conditioned media and urine and blood plasma from healthy volunteers. The acoustically trapped samples contained EVs ranging from exosomes to microvesicles in size and contained detectable levels of intravesicular microRNAs. Importantly, this method showed high reproducibility and yielded sufficient quantities of vesicles for downstream analysis. The enrichment could be obtained from a sample volume of 300 μL or less, an equivalent to 30 min of enrichment time, depending on the sensitivity of downstream analysis. Taken together, acoustic trapping provides a rapid, automated, low-volume compatible, and robust method to enrich EVs from biofluids. Thus, it may serve as a novel tool for EV enrichment from large number of samples in a clinical setting with minimum sample preparation.
Bei, Yihua; Xu, Tianzhao; Lv, Dongchao; Yu, Pujiao; Xu, Jiahong; Che, Lin; Das, Avash; Tigges, John; Toxavidis, Vassilios; Ghiran, Ionita; Shah, Ravi; Li, Yongqin; Zhang, Yuhui; Das, Saumya; Xiao, Junjie
2017-07-01
Extracellular vesicles (EVs) serve an important function as mediators of intercellular communication. Exercise is protective for the heart, although the signaling mechanisms that mediate this cardioprotection have not been fully elucidated. Here using nano-flow cytometry, we found a rapid increase in plasma EVs in human subjects undergoing exercise stress testing. We subsequently identified that serum EVs were increased by ~1.85-fold in mice after 3-week swimming. Intramyocardial injection of equivalent quantities of EVs from exercised mice and non-exercised controls provided similar protective effects against acute ischemia/reperfusion (I/R) injury in mice. However, injection of exercise-induced EVs in a quantity equivalent to the increase seen with exercise (1.85 swim group) significantly enhanced the protective effect. Similarly, treatment with exercise-induced increased EVs provided additional anti-apoptotic effect in H 2 O 2 -treated H9C2 cardiomyocytes mediated by the activation of ERK1/2 and HSP27 signaling. Finally, by treating H9C2 cells with insulin-like growth factor-1 to mimic exercise stimulus in vitro, we found an increased release of EVs from cardiomyocytes associated with ALIX and RAB35 activation. Collectively, our results show that exercise-induced increase in circulating EVs enhances the protective effects of endogenous EVs against cardiac I/R injury. Exercise-derived EVs might serve as a potent therapy for myocardial injury in the future.
Royston, Léna; Essaidi-Laziosi, Manel; Piuz, Isabelle; Geiser, Johan; Huang, Song; Kaiser, Laurent; Garcin, Dominique
2018-01-01
Despite their genetic similarities, enteric and respiratory enteroviruses (EVs) have highly heterogeneous biophysical properties and cause a vast diversity of human pathologies. In vitro differences include acid sensitivity, optimal growth temperature and tissue tropism, which reflect a preferential in vivo replication in the respiratory or gastrointestinal tract and are thus key determinants of EV virulence. To investigate the underlying cause of these differences, we generated chimeras at the capsid-level between EV-D68 (a respiratory EV) and EV-D94 (an enteric EV). Although some chimeras were nonfunctional, EV-D94 with both the capsid and 2A protease or the capsid only of EV-D68 were both viable. Using this latter construct, we performed several functional assays, which indicated that capsid proteins determine acid sensitivity and tropism in cell lines and in respiratory, intestinal and neural tissues. Additionally, capsid genes were shown to also participate in determining the optimal growth temperature, since EV-D94 temperature adaptation relied on single mutations in VP1, while constructs with EV-D68 capsid could not adapt to higher temperatures. Finally, we demonstrate that EV-D68 maintains residual binding-capacity after acid-treatment despite a loss of infectivity. In contrast, non-structural rather than capsid proteins modulate the innate immune response in tissues. These unique biophysical insights expose another layer in the phenotypic diversity of one of world’s most prevalent pathogens and could aid target selection for vaccine or antiviral development. PMID:29630666
Lithium-ion batteries for electric vehicles: performances of 100 Ah cells
NASA Astrophysics Data System (ADS)
Broussely, M.; Planchat, J. P.; Rigobert, G.; Virey, D.; Sarre, G.
Among the new electrochemical systems, lithium ion using a liquid electrolyte appears to be one of the most promising technologies for the mid-term requirements of electric vehicles (EVs). Thanks to a dedicated research program over the past five years, SAFT is developing a complete EV battery system, including thermal management and electronic control system. Electrochemical cells of about 100 Ah, using LiNiO 2 and graphite, have been built and tested. They show performances of 125 Wh/kg and 265 Wh/l at the 1-h rate, at the beginning of life. Specific power obtained along the complete discharge fulfill the requirements for EV application. A 20 kWh 220 V assembly was built, including the associated electronic control equipment and air thermal regulation.
Horton, Jaime S; Stokes, Alexander J
2014-01-01
Epidermodysplasia verruciformis (EV) is a rare genodermatosis characterized by increased sensitivity to infection by the β-subtype of human papillomaviruses (β-HPVs), causing persistent, tinea versicolor-like dermal lesions. In a majority of affected individuals, these macular lesions progress to invasive cutaneous squamous cell carcinoma (CSCC) in sun-exposed areas. While mutations in transmembrane channel-like 6 ( TMC6 / EVER1 ) and 8 ( TMC8 / EVER2 ) have been causally linked to EV, their molecular functions are unclear. It is likely that their protective effects involve regulation of the β-HPV life cycle, host keratinocyte apoptosis vs. survival balance and/or T-cell interaction with infected host cells.
Han, Dong; Wu, Cuncun; Zhao, Yunbiao; Chen, Yi; Xiao, Lixin; Zhao, Ziqiang
2017-12-06
In recent years, perovskite solar cells have drawn a widespread attention. As an electrode material, fluorine-doped tin oxide (FTO) is widely used in various kinds of solar cells. However, the relatively low work function (WF) (∼4.6 eV) limits its application. The potential barrier between the transparent conductive oxide electrode and the hole transport layer (HTL) in inverted perovskite solar cells results in a decrease in device performance. In this paper, we propose a method to adjust WF of FTO by implanting zirconium ions into the FTO surface. The WF of FTO can be precisely and continuously tuned between 4.59 and 5.55 eV through different dopant concentration of zirconium. In the meantime, the modified FTO, which had a WF of 5.1 eV to match well the highest occupied molecular orbital energy level of poly(3,4-ethylenedioxylenethiophene):polystyrene sulfonate, was used as the HTL in inverted planar perovskite solar cells. Compared with the pristine FTO electrode-based device, the open circuit voltage increased from 0.82 to 0.91 V, and the power conversion efficiency increased from 11.6 to 14.0%.
Leishmania infantum Exoproducts Inhibit Human Invariant NKT Cell Expansion and Activation
Belo, Renata; Santarém, Nuno; Pereira, Cátia; Pérez-Cabezas, Begoña; Macedo, Fátima; Leite-de-Moraes, Maria; Cordeiro-da-Silva, Anabela
2017-01-01
Leishmania infantum is one of the major parasite species associated with visceral leishmaniasis, a severe form of the disease that can become lethal if untreated. This obligate intracellular parasite has developed diverse strategies to escape the host immune response, such as exoproducts (Exo) carrying a wide range of molecules, including parasite virulence factors, which are potentially implicated in early stages of infection. Herein, we report that L. infantum Exo and its two fractions composed of extracellular vesicles (EVs) and vesicle-depleted-exoproducts (VDEs) inhibit human peripheral blood invariant natural killer T (iNKT) cell expansion in response to their specific ligand, the glycolipid α-GalactosylCeramide (α-GalCer), as well as their capacity to promptly produce IL-4 and IFNγ. Using plate-bound CD1d and α-GalCer, we found that Exo, EV, and VDE fractions reduced iNKT cell activation in a dose-dependent manner, suggesting that they prevented α-GalCer presentation by CD1d molecules. This direct effect on CD1d was confirmed by the observation that CD1d:α-GalCer complex formation was impaired in the presence of Exo, EV, and VDE fractions. Furthermore, lipid extracts from the three compounds mimicked the inhibition of iNKT cell activation. These lipid components of L. infantum exoproducts, including EV and VDE fractions, might compete for CD1-binding sites, thus blocking iNKT cell activation. Overall, our results provide evidence for a novel strategy through which L. infantum can evade immune responses of mammalian host cells by preventing iNKT lymphocytes from recognizing glycolipids in a TCR-dependent manner. PMID:28674535
Extracellular Vesicles, Tunneling Nanotubes, and Cellular Interplay: Synergies and Missing Links
Nawaz, Muhammad; Fatima, Farah
2017-01-01
The process of intercellular communication seems to have been a highly conserved evolutionary process. Higher eukaryotes use several means of intercellular communication to address both the changing physiological demands of the body and to fight against diseases. In recent years, there has been an increasing interest in understanding how cell-derived nanovesicles, known as extracellular vesicles (EVs), can function as normal paracrine mediators of intercellular communication, but can also elicit disease progression and may be used for innovative therapies. Over the last decade, a large body of evidence has accumulated to show that cells use cytoplasmic extensions comprising open-ended channels called tunneling nanotubes (TNTs) to connect cells at a long distance and facilitate the exchange of cytoplasmic material. TNTs are a different means of communication to classical gap junctions or cell fusions; since they are characterized by long distance bridging that transfers cytoplasmic organelles and intracellular vesicles between cells and represent the process of heteroplasmy. The role of EVs in cell communication is relatively well-understood, but how TNTs fit into this process is just emerging. The aim of this review is to describe the relationship between TNTs and EVs, and to discuss the synergies between these two crucial processes in the context of normal cellular cross-talk, physiological roles, modulation of immune responses, development of diseases, and their combinatory effects in tissue repair. At the present time this review appears to be the first summary of the implications of the overlapping roles of TNTs and EVs. We believe that a better appreciation of these parallel processes will improve our understanding on how these nanoscale conduits can be utilized as novel tools for targeted therapies. PMID:28770210
NASA Astrophysics Data System (ADS)
Al Hassan, Ali; Lewis, R. B.; Küpers, H.; Lin, W.-H.; Bahrami, D.; Krause, T.; Salomon, D.; Tahraoui, A.; Hanke, M.; Geelhaar, L.; Pietsch, U.
2018-01-01
We present two complementary approaches to investigate the In content in GaAs/(In,Ga)As/(GaAs) core-shell-(shell) nanowire (NW) heterostructures using synchrotron radiation. The key advantage of our methodology is that NWs are characterized in their as-grown configuration, i.e., perpendicularly standing on a substrate. First, we determine the mean In content of the (In,Ga)As shell by high-resolution x-ray diffraction (XRD) from NW ensembles. In particular, we disentangle the influence of In content and shell thickness on XRD by measuring and analyzing two reflections with diffraction vector parallel and perpendicular to the growth axis, respectively. Second, we study the In distribution within individual NWs by nano x-ray fluorescence. Both the NW (111) basal plane, that is parallel to the surface of the substrate, and the {10-1} sidewall plane were scanned with an incident nanobeam of 50 nm width. We investigate three samples with different nominal In content of the (In,Ga)As shell. In all samples, the average In content of the shell determined by XRD is in good agreement with the nominal value. For a nominal In content of 15%, the In distribution is fairly uniform between all six sidewall facets. In contrast, in NWs with nominally 25% In content, different sidewall facets of the same NW exhibit different In contents. This effect is attributed to shadowing during growth by molecular beam epitaxy. At the same time, along the NW axis the In distribution is still fairly homogeneous. In NWs with 60% nominal In content and no outer GaAs shell, the In content varies significantly both between different sidewall facets and along the NW axis. This fluctuation is explained by the formation of (In,Ga)As mounds that grow simultaneously with a thinner (In,Ga)As shell. The methodology presented here may be applied also to other core-shell NWs with a ternary shell and paves the way to correlating NW structure with functional properties that depend on the as-grown configuration of the NWs.
Garris, Rebekah L.; Johnston, Steven; Li, Jian V.; ...
2017-08-31
In a previous study, we reported on Cu(In,Ga)Se2-based (CIGS) solar cell samples collected from different research laboratories and industrial companies with the purpose of understanding the range of CIGS materials that can lead to high-quality and high-efficiency solar panels. Here, we report on electrical measurements of those same samples. Electron-beam induced current and time-resolved photoluminescence (TRPL) gave insights about the collection probability and the lifetime of carriers generated in each absorber. Capacitance and drive-level capacitance profiling revealed nonuniformity in carrier-density profiles. Admittance spectroscopy revealed small activation energies (= 0.03 eV) indicative of the inversion strength, larger activation energies (> 0.1more » eV) reflective of thermal activation of absorber conductivity and a deeper defect level. Deep-level transient spectroscopy (DLTS) probed deep hole-trapping defects and showed that all samples in this study had a majority-carrier defect with activation energy between 0.3 eV and 0.9 eV. Optical-DLTS revealed deep electron-trapping defects in several of the CIGS samples. This work focused on revealing similarities and differences between high-quality CIGS solar cells made with various structures and fabrication techniques.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garris, Rebekah L.; Johnston, Steven; Li, Jian V.
In a previous study, we reported on Cu(In,Ga)Se2-based (CIGS) solar cell samples collected from different research laboratories and industrial companies with the purpose of understanding the range of CIGS materials that can lead to high-quality and high-efficiency solar panels. Here, we report on electrical measurements of those same samples. Electron-beam induced current and time-resolved photoluminescence (TRPL) gave insights about the collection probability and the lifetime of carriers generated in each absorber. Capacitance and drive-level capacitance profiling revealed nonuniformity in carrier-density profiles. Admittance spectroscopy revealed small activation energies (= 0.03 eV) indicative of the inversion strength, larger activation energies (> 0.1more » eV) reflective of thermal activation of absorber conductivity and a deeper defect level. Deep-level transient spectroscopy (DLTS) probed deep hole-trapping defects and showed that all samples in this study had a majority-carrier defect with activation energy between 0.3 eV and 0.9 eV. Optical-DLTS revealed deep electron-trapping defects in several of the CIGS samples. This work focused on revealing similarities and differences between high-quality CIGS solar cells made with various structures and fabrication techniques.« less
NASA Astrophysics Data System (ADS)
1990-03-01
Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. These concepts are discussed.
Zahoor, Muhammad; Westhrin, Marita; Aass, Kristin Roseth; Moen, Siv Helen; Misund, Kristine; Psonka-Antonczyk, Katarzyna Maria; Giliberto, Mariaserena; Buene, Glenn; Sundan, Anders; Waage, Anders; Sponaas, Anne-Marit; Standal, Therese
2017-12-26
Multiple myeloma (MM) is a hematologic cancer characterized by expansion of malignant plasma cells in the bone marrow. Most patients develop an osteolytic bone disease, largely caused by increased osteoclastogenesis. The myeloma bone marrow is hypoxic, and hypoxia may contribute to MM disease progression, including bone loss. Here we identified interleukin-32 (IL-32) as a novel inflammatory cytokine expressed by a subset of primary MM cells and MM cell lines. We found that high IL-32 gene expression in plasma cells correlated with inferior survival in MM and that IL-32 gene expression was higher in patients with bone disease compared with those without. IL-32 was secreted from MM cells in extracellular vesicles (EVs), and those EVs, as well as recombinant human IL-32, promoted osteoclast differentiation both in vitro and in vivo. The osteoclast-promoting activity of the EVs was IL-32 dependent. Hypoxia increased plasma-cell IL-32 messenger RNA and protein levels in a hypoxia-inducible factor 1α-dependent manner, and high expression of IL-32 was associated with a hypoxic signature in patient samples, suggesting that hypoxia may promote expression of IL-32 in MM cells. Taken together, our results indicate that targeting IL-32 might be beneficial in the treatment of MM bone disease in a subset of patients.
Zahoor, Muhammad; Aass, Kristin Roseth; Moen, Siv Helen; Misund, Kristine; Psonka-Antonczyk, Katarzyna Maria; Giliberto, Mariaserena; Buene, Glenn; Sundan, Anders; Waage, Anders; Sponaas, Anne-Marit
2017-01-01
Multiple myeloma (MM) is a hematologic cancer characterized by expansion of malignant plasma cells in the bone marrow. Most patients develop an osteolytic bone disease, largely caused by increased osteoclastogenesis. The myeloma bone marrow is hypoxic, and hypoxia may contribute to MM disease progression, including bone loss. Here we identified interleukin-32 (IL-32) as a novel inflammatory cytokine expressed by a subset of primary MM cells and MM cell lines. We found that high IL-32 gene expression in plasma cells correlated with inferior survival in MM and that IL-32 gene expression was higher in patients with bone disease compared with those without. IL-32 was secreted from MM cells in extracellular vesicles (EVs), and those EVs, as well as recombinant human IL-32, promoted osteoclast differentiation both in vitro and in vivo. The osteoclast-promoting activity of the EVs was IL-32 dependent. Hypoxia increased plasma-cell IL-32 messenger RNA and protein levels in a hypoxia-inducible factor 1α–dependent manner, and high expression of IL-32 was associated with a hypoxic signature in patient samples, suggesting that hypoxia may promote expression of IL-32 in MM cells. Taken together, our results indicate that targeting IL-32 might be beneficial in the treatment of MM bone disease in a subset of patients. PMID:29296919
3C Protease of Enterovirus D68 Inhibits Cellular Defense Mediated by Interferon Regulatory Factor 7
Xiang, Zichun; Liu, Lulu; Lei, Xiaobo; Zhou, Zhuo
2015-01-01
ABSTRACT Human enterovirus 68 (EV-D68) is a member of the EV-D species, which belongs to the EV genus of the Picornaviridae family. Over the past several years, clusters of EV-D68 infections have occurred worldwide. A recent outbreak in the United States is the largest one associated with severe respiratory illness and neurological complication. Although clinical symptoms are recognized, the virus remains poorly understood. Here we report that EV-D68 inhibits innate antiviral immunity by downregulation of interferon regulatory factor 7 (IRF7), an immune factor with a pivotal role in viral pathogenesis. This process depends on 3Cpro, an EV-D68-encoded protease, to mediate IRF7 cleavage. When expressed in host cells, 3Cpro targets Q167 and Q189 within the constitutive activation domain, resulting in cleavage of IRF7. Accordingly, wild-type IRF7 is fully active. However, IRF7 cleavage abrogated its capacity to activate type I interferon expression and limit replication of EV-D68. Notably, IRF7 cleavage strictly requires the protease activity of 3Cpro. Together, these results suggest that a dynamic interplay between 3Cpro and IRF7 may determine the outcome of EV-D68 infection. IMPORTANCE EV-D68 is a globally emerging pathogen, but the molecular basis of EV-D68 pathogenesis is unclear. Here we report that EV-D68 inhibits innate immune responses by targeting an immune factor, IRF7. This involves the 3C protease encoded by EV-D68, which mediates the cleavage of IRF7. These observations suggest that the 3Cpro-IRF7 interaction may represent an interface that dictates EV-D68 infection. PMID:26608321
Heat shock protein-90-beta facilitates enterovirus 71 viral particles assembly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Robert Y.L., E-mail: yuwang@mail.cgu.edu.tw; Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 333 Taiwan; Kuo, Rei-Lin
2013-09-01
Molecular chaperones are reported to be crucial for virus propagation, but are not yet addressed in Human Enterovirus 71 (EV71). Here we describe the specific association of heat shock protein-90-beta (Hsp90β), but not alpha form (Hsp90α), with EV71 viral particles by the co-purification with virions using sucrose density gradient ultracentrifugation, and by the colocalization with viral particles, as assessed by immunogold electron microscopy. The reduction of the Hsp90β protein using RNA interference decreased the correct assembly of viral particles, without affecting EV71 replication levels. Tracking ectopically expressed Hsp90β protein associated with EV71 virions revealed that Hsp90β protein was transmitted tomore » new host cells through its direct association with infectious viral particles. Our findings suggest a new antiviral strategy in which extracellular Hsp90β protein is targeted to decrease the infectivity of EV71 and other enteroviruses, without affecting the broader functions of this constitutively expressed molecular chaperone. - Highlights: • Hsp90β is associated with EV71 virion and is secreted with the release virus. • Hsp90β effects on the correct assembly of viral particles. • Viral titer of cultured medium was reduced in the presence of geldanamycin. • Viral titer was also reduced when Hsp90β was suppressed by siRNA treatment. • The extracellular Hsp90β was also observed in other RNA viruses-infected cells.« less
La Marca, Valeria; Fierabracci, Alessandra
2017-09-14
Extracellular vesicles (EVs) represent a heterogeneous population of small vesicles, consisting of a phospholipidic bilayer surrounding a soluble interior cargo. Almost all cell types release EVs, thus they are naturally present in all body fluids. Among the several potential applications, EVs could be used as drug delivery vehicles in disease treatment, in immune therapy because of their immunomodulatory properties and in regenerative medicine. In addition to general markers, EVs are characterized by the presence of specific biomarkers (proteins and miRNAs) that allow the identification of their cell or tissue origin. For these features, they represent a potential powerful diagnostic tool to monitor state and progression of specific diseases. A large body of studies supports the idea that endothelial derived (EMPs) together with platelet-derived microparticles (PMPs) are deeply involved in the pathogenesis of diseases characterized by micro- and macrovascular damages, including diabetes. Existing literature suggests that the detection of circulating EMPs and PMPs and their specific miRNA profile may represent a very useful non-invasive signature to achieve information on the onset of peculiar disease manifestations. In this review, we discuss the possible utility of EVs in the early diagnosis of diabetes-associated microvascular complications, specifically related to kidney.
Emitter Choice for Epitaxial CdTe Solar Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Tao; Kanevce, Ana; Sites, James R.
2016-11-21
High-quality epitaxial CdTe layers with low defect density and high carrier concentration have been demonstrated by several research groups. Nevertheless, one primary challenge for high-performance epitaxial CdTe solar cells is how to choose a suitable emitter partner for the junction formation. The numerical simulations show that a type I heterojunction with small conduction band offset (0.1 eV = ..delta..Ec = 0.3 eV) is necessary to maintain a good cell efficiency even with large interface recombination. Otherwise, a small 'cliff' can assist interface recombination causing smaller Voc, and a large 'spike' (..delta..Ec = 0.4 eV) can impede the photo current andmore » lead to a reduction of JSC and FF. Among the three possible emitters, CdS, CdMgTe, and MgZnO, CdMgTe (with ~30% Mg) and MgZnO (with ~ 20% Mg) are likely to be a better choice since their type-I junction can tolerate a larger density of interface defects.« less
Exosomes and their role in the micro-/macro-environment: a comprehensive review
Javeed, Naureen; Mukhopadhyay, Debabrata
2017-01-01
The importance of extracellular vesicles (EVs) in cell-cell communication has long been recognized due to their ability to transfer important cellular cargoes such as DNA, mRNA, miRNAs, and proteins to target cells. Compelling evidence supports the role of EVs in the horizontal transfer of cellular material which has the potential to influence normal cellular physiology and promote various disease states. Of the different types of EVs, exosomes have garnered much attention in the past decade due to their abundance in various biological fluids and ability to affect multiple organ systems. The main focus of this review will be on cancer and how cancer-derived exosomes are important mediators of metastasis, angiogenesis, immune modulation, and the tumor macro-/microenvironment. We will also discuss exosomes as potential biomarkers for cancers due to their abundance in biological fluids, ease of uptake, and cellular content. Exosome use in diagnosis, prognosis, and in establishing treatment regimens has enormous potential to revolutionize patient care. PMID:28290182
Exosomes and their role in the micro-/macro-environment: a comprehensive review.
Javeed, Naureen; Mukhopadhyay, Debabrata
2017-09-26
The importance of extracellular vesicles (EVs) in cell-cell communication has long been recognized due to their ability to transfer important cellular cargoes such as DNA, mRNA, miRNAs, and proteins to target cells. Compelling evidence supports the role of EVs in the horizontal transfer of cellular material which has the potential to influence normal cellular physiology and promote various disease states. Of the different types of EVs, exosomes have garnered much attention in the past decade due to their abundance in various biological fluids and ability to affect multiple organ systems. The main focus of this review will be on cancer and how cancer-derived exosomes are important mediators of metastasis, angiogenesis, immune modulation, and the tumor macro-/microenvironment. We will also discuss exosomes as potential biomarkers for cancers due to their abundance in biological fluids, ease of uptake, and cellular content. Exosome use in diagnosis, prognosis, and in establishing treatment regimens has enormous potential to revolutionize patient care.
Size-exclusion chromatography-based enrichment of extracellular vesicles from urine samples
Lozano-Ramos, Inés; Bancu, Ioana; Oliveira-Tercero, Anna; Armengol, María Pilar; Menezes-Neto, Armando; Del Portillo, Hernando A.; Lauzurica-Valdemoros, Ricardo; Borràs, Francesc E.
2015-01-01
Renal biopsy is the gold-standard procedure to diagnose most of renal pathologies. However, this invasive method is of limited repeatability and often describes an irreversible renal damage. Urine is an easily accessible fluid and urinary extracellular vesicles (EVs) may be ideal to describe new biomarkers associated with renal pathologies. Several methods to enrich EVs have been described. Most of them contain a mixture of proteins, lipoproteins and cell debris that may be masking relevant biomarkers. Here, we evaluated size-exclusion chromatography (SEC) as a suitable method to isolate urinary EVs. Following a conventional centrifugation to eliminate cell debris and apoptotic bodies, urine samples were concentrated using ultrafiltration and loaded on a SEC column. Collected fractions were analysed by protein content and flow cytometry to determine the presence of tetraspanin markers (CD63 and CD9). The highest tetraspanin content was routinely detected in fractions well before the bulk of proteins eluted. These tetraspanin-peak fractions were analysed by cryo-electron microscopy (cryo-EM) and nanoparticle tracking analysis revealing the presence of EVs. When analysed by sodium dodecyl sulphate–polyacrylamide gel electrophoresis, tetraspanin-peak fractions from urine concentrated samples contained multiple bands but the main urine proteins (such as Tamm–Horsfall protein) were absent. Furthermore, a preliminary proteomic study of these fractions revealed the presence of EV-related proteins, suggesting their enrichment in concentrated samples. In addition, RNA profiling also showed the presence of vesicular small RNA species. To summarize, our results demonstrated that concentrated urine followed by SEC is a suitable option to isolate EVs with low presence of soluble contaminants. This methodology could permit more accurate analyses of EV-related biomarkers when further characterized by -omics technologies compared with other approaches. PMID:26025625
Gao, Meng; Duan, Hao; Liu, Jing; Zhang, Hao; Wang, Xin; Zhu, Meng; Guo, Jitao; Zhao, Zhenlong; Meng, Lirong; Peng, Yihong
2014-06-01
The activation of ERK and p38 signal cascade in host cells has been demonstrated to be essential for picornavirus enterovirus 71 (EV71) replication and up-regulation of virus-induced cyclooxygenase-2 (COX-2)/prostaglandins E2 (PGE2) expression. The aim of this study was to examine the effects of sorafenib, a clinically approved anti-cancer multi-targeted kinase inhibitor, on the propagation and pathogenesis of EV71, with a view to its possible mechanism and potential use in the design of therapy regimes for Hand foot and mouth disease (HFMD) patients with life threatening neurological complications. In this study, non-toxic concentrations of sorafenib were shown to inhibit the yield of infectious progeny EV71 (clinical BC08 strain) by about 90% in three different cell types. A similar inhibitory effect of sorafenib was observed on the synthesis of both viral genomic RNA and the VP1 protein. Interestingly, sorafenib exerted obvious inhibition of the EV71 internal ribosomal entry site (IRES)-mediated translation, the first step in picornavirus replication, by linking it to a firefly luciferase reporter gene. Sorafenib was also able to prevent both EV71-induced CPE and the activation of ERK and p38, which contributes to up-regulation COX-2/PGE2 expression induced by the virus. Overall, this study shows that sorafenib strongly inhibits EV71 replication at least in part by regulating viral IRES-dependent translation of viral proteins, indicating a novel potential strategy for the treatment of HFMD patients with severe neurological complications. To our knowledge, this is the first report that investigates the mechanism by which sorafenib inhibits EV71 replication. Copyright © 2014 Elsevier B.V. All rights reserved.
Keup, Corinna; Mach, Pawel; Aktas, Bahriye; Tewes, Mitra; Kolberg, Hans-Christian; Hauch, Siegfried; Sprenger-Haussels, Markus; Kimmig, Rainer; Kasimir-Bauer, Sabine
2018-05-16
Liquid biopsies are discussed to provide surrogate markers for therapy stratification and monitoring. We compared messenger RNA (mRNA) profiles of circulating tumor cells (CTCs) and extracellular vesicles (EVs) in patients with metastatic breast cancer (MBC) to estimate their utility in therapy management. Blood was collected from 35 hormone receptor-positive/HER2-negative patients with MBC at the time of disease progression and at 2 consecutive staging time points. CTCs were isolated from 5 mL of blood by positive immunomagnetic selection, and EVs from 4 mL of plasma by a membrane affinity-based procedure. mRNA was reverse transcribed, preamplified, and analyzed for 18 genes by multimarker quantitative polymerase chain reaction (qPCR) assays. RNA profiles were normalized to healthy donor controls (n = 20), and results were correlated with therapy outcome. There were great differences in mRNA profiles of EVs and CTCs, with only 5% (21/403) of positive signals identical in both fractions. Transcripts involved in the PI3K signaling pathway were frequently overexpressed in CTCs, and AURKA , PARP1 , and SRC signals appeared more often in EVs. Of all patients, 40% and 34% showed ERBB2 and ERBB3 signals, respectively, in CTCs, which was significantly associated with disease progression ( P = 0.007). Whereas MTOR signals in CTCs significantly correlated with response ( P = 0.046), signals in EVs indicated therapy failure ( P = 0.011). The presence of AURKA signals in EVs seemed to be a marker for the indication of unsuccessful treatment of bone metastasis. These results emphasize the potential of CTCs and EVs for therapy monitoring and the need for critical evaluation of the implementation of any liquid biopsy in clinical practice. © 2018 American Association for Clinical Chemistry.
Diomede, Francesca; Gugliandolo, Agnese; Cardelli, Paolo; Merciaro, Ilaria; Ettorre, Valeria; Traini, Tonino; Bedini, Rossella; Scionti, Domenico; Bramanti, Alessia; Nanci, Antonio; Caputi, Sergio; Fontana, Antonella; Mazzon, Emanuela; Trubiani, Oriana
2018-04-13
The role of bone tissue engineering in the field of regenerative medicine has been a main research topic over the past few years. There has been much interest in the use of three-dimensional (3D) engineered scaffolds (PLA) complexed with human gingival mesenchymal stem cells (hGMSCs) as a new therapeutic strategy to improve bone tissue regeneration. These devices can mimic a more favorable endogenous microenvironment for cells in vivo by providing 3D substrates which are able to support cell survival, proliferation and differentiation. The present study evaluated the in vitro and in vivo capability of bone defect regeneration of 3D PLA, hGMSCs, extracellular vesicles (EVs), or polyethyleneimine (PEI)-engineered EVs (PEI-EVs) in the following experimental groups: 3D-PLA, 3D-PLA + hGMSCs, 3D-PLA + EVs, 3D-PLA + EVs + hGMSCs, 3D-PLA + PEI-EVs, 3D-PLA + PEI-EVs + hGMSCs. The structural parameters of the scaffold were evaluated using both scanning electron microscopy and nondestructive microcomputed tomography. Nanotopographic surface features were investigated by means of atomic force microscopy. Scaffolds showed a statistically significant mass loss along the 112-day evaluation. Our in vitro results revealed that both 3D-PLA + EVs + hGMSCs and 3D-PLA + PEI-EVs + hGMSCs showed no cytotoxicity. However, 3D-PLA + PEI-EVs + hGMSCs exhibited greater osteogenic inductivity as revealed by morphological evaluation and transcriptomic analysis performed by next-generation sequencing (NGS). In addition, in vivo results showed that 3D-PLA + PEI-EVs + hGMSCs and 3D-PLA + PEI-EVs scaffolds implanted in rats subjected to cortical calvaria bone tissue damage were able to improve bone healing by showing better osteogenic properties. These results were supported also by computed tomography evaluation that revealed the repair of bone calvaria damage. The re-establishing of the integrity of the bone lesions could be a promising strategy in the treatment of accidental or surgery trauma, especially for cranial bones.
Puhka, Maija; Takatalo, Maarit; Nordberg, Maria-Elisa; Valkonen, Sami; Nandania, Jatin; Aatonen, Maria; Yliperttula, Marjo; Laitinen, Saara; Velagapudi, Vidya; Mirtti, Tuomas; Kallioniemi, Olli; Rannikko, Antti; Siljander, Pia R-M; af Hällström, Taija Maria
2017-01-01
Body fluids are a rich source of extracellular vesicles (EVs), which carry cargo derived from the secreting cells. So far, biomarkers for pathological conditions have been mainly searched from their protein, (mi)RNA, DNA and lipid cargo. Here, we explored the small molecule metabolites from urinary and platelet EVs relative to their matched source samples. As a proof-of-concept study of intra-EV metabolites, we compared alternative normalization methods to profile urinary EVs from prostate cancer patients before and after prostatectomy and from healthy controls. Methods: We employed targeted ultra-performance liquid chromatography-tandem mass spectrometry to profile over 100 metabolites in the isolated EVs, original urine samples and platelets. We determined the enrichment of the metabolites in the EVs and analyzed their subcellular origin, pathways and relevant enzymes or transporters through data base searches. EV- and urine-derived factors and ratios between metabolites were tested for normalization of the metabolomics data. Results: Approximately 1 x 1010 EVs were sufficient for detection of metabolite profiles from EVs. The profiles of the urinary and platelet EVs overlapped with each other and with those of the source materials, but they also contained unique metabolites. The EVs enriched a selection of cytosolic metabolites including members from the nucleotide and spermidine pathways, which linked to a number of EV-resident enzymes or transporters. Analysis of the urinary EVs from the patients indicated that the levels of glucuronate, D-ribose 5-phosphate and isobutyryl-L-carnitine were 2-26-fold lower in all pre-prostatectomy samples compared to the healthy control and post-prostatectomy samples (p < 0.05). These changes were only detected from EVs by normalization to EV-derived factors or with metabolite ratios, and not from the original urine samples. Conclusions: Our results suggest that metabolite analysis of EVs from different samples is feasible using a high-throughput platform and relatively small amount of sample material. With the knowledge about the specific enrichment of metabolites and normalization methods, EV metabolomics could be used to gain novel biomarker data not revealed by the analysis of the original EV source materials. PMID:29109780
Rodrigues, Marcio L; Nakayasu, Ernesto S; Almeida, Igor C; Nimrichter, Leonardo
2014-01-31
Several microbial molecules are released to the extracellular space in vesicle-like structures. In pathogenic fungi, these molecules include pigments, polysaccharides, lipids, and proteins, which traverse the cell wall in vesicles that accumulate in the extracellular space. The diverse composition of fungal extracellular vesicles (EV) is indicative of multiple mechanisms of cellular biogenesis, a hypothesis that was supported by EV proteomic studies in a set of Saccharomyces cerevisiae strains with defects in both conventional and unconventional secretory pathways. In the human pathogens Cryptococcus neoformans, Histoplasma capsulatum, and Paracoccidioides brasiliensis, extracellular vesicle proteomics revealed the presence of proteins with both immunological and pathogenic activities. In fact, fungal EV have been demonstrated to interfere with the activity of immune effector cells and to increase fungal pathogenesis. In this review, we discuss the impact of proteomics on the understanding of functions and biogenesis of fungal EV, as well as the potential role of these structures in fungal pathogenesis. This article is part of a Special Issue entitled: Trends in Microbial Proteomics. Copyright © 2013 Elsevier B.V. All rights reserved.
Low-Temperature epitaxial growth of InGaAs films on InP(100) and InP(411) A substrates
NASA Astrophysics Data System (ADS)
Galiev, G. B.; Klimova, E. A.; Pushkarev, S. S.; Klochkov, A. N.; Trunkin, I. N.; Vasiliev, A. L.; Maltsev, P. P.
2017-07-01
The structural and electrical characteristics of In0.53Ga0.47As epitaxial films, grown in the low-temperature mode on InP substrates with (100) and (411) A crystallographic orientations at flow ratios of As4 molecules and In and Ga atoms of γ = 29 and 90, have been comprehensively studied. The use of InP(411) A substrates is shown to increase the probability of forming two-dimensional defects (twins, stacking faults, dislocations, and grain boundaries), thus reducing the mobility of free electrons, and AsGa point defects, which act as donors and increase the free-electron concentration. An increase in γ from 29 to 90 leads to transformation of single-crystal InGaAs films grown on (100) and (411) A substrates into polycrystalline ones.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul, Matthias, E-mail: m.paul@ihfg.uni-stuttgart.de; Kettler, Jan; Zeuner, Katharina
By metal-organic vapor-phase epitaxy, we have fabricated InGaAs quantum dots on GaAs substrate with an ultra-low lateral density (<10{sup 7} cm{sup −2}). The photoluminescence emission from the quantum dots is shifted to the telecom O-band at 1.31 μm by an InGaAs strain reducing layer. In time-resolved measurements, we find fast decay times for exciton (∼600 ps) and biexciton (∼300 ps). We demonstrate triggered single-photon emission (g{sup (2)}(0)=0.08) as well as cascaded emission from the biexciton decay. Our results suggest that these quantum dots can compete with their counterparts grown by state-of-the-art molecular beam epitaxy.
Nozaki, Kengo; Matsuo, Shinji; Takeda, Koji; Sato, Tomonari; Kuramochi, Eiichi; Notomi, Masaya
2013-08-12
Ultrasmall InGaAs photodetectors based on a photonic crystal waveguide with a buried heterostructure (BH) were demonstrated for the first time. A sufficiently high DC responsivity of ~1 A/W was achieved for the 3.4-μm-long detector. The dynamic response revealed a 3-dB bandwidth of 6 GHz and a 10-Gb/s eye pattern. These results were thanks to the strong confinement of both photons and carriers in a small BH and will pave the way for unprecedented nano-photodetectors with a high quantum efficiency and small capacitance. Our device potentially has an ultrasmall junction capacitance of much less than 1 fF and may enable us to eliminate electrical amplifiers for future optical receivers and subsequent ultralow-power optical links on a chip.
Subwavelength Gold Grating as Polarizers Integrated with InP-Based InGaAs Sensors.
Wang, Rui; Li, Tao; Shao, Xiumei; Li, Xue; Huang, Xiaqi; Shao, Jinhai; Chen, Yifang; Gong, Haimei
2015-07-08
There are currently growing needs for polarimetric imaging in infrared wavelengths for broad applications in bioscience, communications and agriculture, etc. Subwavelength metallic gratings are capable of separating transverse magnetic (TM) mode from transverse electric (TE) mode to form polarized light, offering a reliable approach for the detection in polarization way. This work aims to design and fabricate subwavelength gold gratings as polarizers for InP-based InGaAs sensors in 1.0-1.6 μm. The polarization capability of gold gratings on InP substrate with pitches in the range of 200-1200 nm (fixed duty cycle of 0.5) has been systematically studied by both theoretical modeling with a finite-difference time-domain (FDTD) simulator and spectral measurements. Gratings with 200 nm lines/space in 100-nm-thick gold have been fabricated by electron beam lithography (EBL). It was found that subwavelength gold gratings directly integrated on InP cannot be applied as good polarizers, because of the existence of SPP modes in the detection wavelengths. An effective solution has been found by sandwiching the Au/InP bilayer using a 200 nm SiO2 layer, leading to significant improvement in both TM transmission and extinction ratio. At 1.35 μm, the improvement factors are 8 and 10, respectively. Therefore, it is concluded that the Au/SiO2/InP trilayer should be a promising candidate of near-infrared polarizers for the InP-based InGaAs sensors.
Singlemode 1.1 μm InGaAs quantum well microstructured photonic crystal VCSEL
NASA Astrophysics Data System (ADS)
Stevens, Renaud; Gilet, Philippe; Larrue, Alexandre; Grenouillet, Laurent; Olivier, Nicolas; Grosse, Philippe; Gilbert, Karen; Teysseyre, Raphael; Chelnokov, Alexei
2008-02-01
In this article, we present our results on long wavelength (1.1 μm) single-mode micro-structured photonic crystal strained InGaAs quantum wells VCSELs for optical interconnection applications. Single fundamental mode roomtemperature continuous-wave lasing operation was demonstrated for devices designed and processed with a number of different two-dimensional etched patterns. The conventional epitaxial structure was grown by Molecular Beam Epitaxy (MBE) and contains fully doped GaAs/AlGaAs DBRs, one oxidation layer and three strained InGaAs quantum wells. The holes were etched half-way through the top-mirror following various designs (triangular and square lattices) and with varying hole's diameters and pitches. At room temperature and in continuous wave operation, micro-structured 50 µm diameter mesa VCSELs with 10 μm oxidation aperture exhibited more than 1 mW optical power, 2 to 5 mA threshold currents and more than 30 dB side mode suppression ratio at a wavelength of 1090 nm. These structures show slight power reduction but similar electrical performances than unstructured devices. Systematic static electrical, optical and spectral characterization was performed on wafer using an automated probe station. Numerical modeling using the MIT Photonic-Bands (MPB [1]) package of the transverse modal behaviors in the photonic crystal was performed using the plane wave method in order to understand the index-guiding effects of the chosen patterns, and to further optimize the design structures for mode selection at extended wavelength range.
Advanced Rainbow Solar Photovoltaic Arrays
NASA Technical Reports Server (NTRS)
Mardesich, Nick; Shields, Virgil
2003-01-01
Photovoltaic arrays of the rainbow type, equipped with light-concentrator and spectral-beam-splitter optics, have been investigated in a continuing effort to develop lightweight, high-efficiency solar electric power sources. This investigation has contributed to a revival of the concept of the rainbow photovoltaic array, which originated in the 1950s but proved unrealistic at that time because the selection of solar photovoltaic cells was too limited. Advances in the art of photovoltaic cells since that time have rendered the concept more realistic, thereby prompting the present development effort. A rainbow photovoltaic array comprises side-by-side strings of series-connected photovoltaic cells. The cells in each string have the same bandgap, which differs from the bandgaps of the other strings. Hence, each string operates most efficiently in a unique wavelength band determined by its bandgap. To obtain maximum energy-conversion efficiency and to minimize the size and weight of the array for a given sunlight input aperture, the sunlight incident on the aperture is concentrated, then spectrally dispersed onto the photovoltaic array plane, whereon each string of cells is positioned to intercept the light in its wavelength band of most efficient operation. The number of cells in each string is chosen so that the output potentials of all the strings are the same; this makes it possible to connect the strings together in parallel to maximize the output current of the array. According to the original rainbow photovoltaic concept, the concentrated sunlight was to be split into multiple beams by use of an array of dichroic filters designed so that each beam would contain light in one of the desired wavelength bands. The concept has since been modified to provide for dispersion of the spectrum by use of adjacent prisms. A proposal for an advanced version calls for a unitary concentrator/ spectral-beam-splitter optic in the form of a parabolic curved Fresnel-like prism array with panels of photovoltaic cells on two sides (see figure). The surface supporting the solar cells can be adjusted in length or angle to accommodate the incident spectral pattern. An unoptimized prototype assembly containing ten adjacent prisms and three photovoltaic cells with different bandgaps (InGaP2, GaAs, and InGaAs) was constructed to demonstrate feasibility. The actual array will consist of a lightweight thin-film silicon layer of prisms curved into a parabolic shape. In an initial test under illumination of 1 sun at zero airmass, the energy-conversion efficiency of the assembly was found to be 20 percent. Further analysis of the data from this test led to a projected energy conversion efficiency as high as 41 percent for an array of 6 cells or strings (GaP, AlGaAs, InGaP2, GaAs, and two different InGaAs cells or strings).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guha, S.
This report describes the research program intended to expand, enhance, and accelerate knowledge and capabilities for developing high-performance, two-terminal multijunction amorphous silicon (a-Si) alloy cells, and modules with low manufacturing cost and high reliability. United Solar uses a spectrum-splitting, triple-junction cell structure. The top cell uses an amorphous silicon alloy of {approx}1.8-eV bandgap to absorb blue photons. The middle cell uses an amorphous silicon germanium alloy ({approx}20% germanium) of {approx}1.6-eV bandgap to capture green photons. The bottom cell has {approx}40% germanium to reduce the bandgap to {approx}1.4-eV to capture red photons. The cells are deposited on a stainless-steel substrate withmore » a predeposited silver/zinc oxide back reflector to facilitate light-trapping. A thin layer of antireflection coating is applied to the top of the cell to reduce reflection loss. The major research activities conducted under this program were: (1) Fundamental studies to improve our understanding of materials and devices; the work included developing and analyzing a-Si alloy and a-SiGe alloy materials prepared near the threshold of amorphous-to-microcrystalline transition and studying solar cells fabricated using these materials. (2) Deposition of small-area cells using a radio-frequency technique to obtain higher deposition rates. (3) Deposition of small-area cells using a modified very high frequency technique to obtain higher deposition rates. (4) Large-area cell research to obtain the highest module efficiency. (5) Optimization of solar cells and modules fabricated using production parameters in a large-area reactor.« less
Exacerbation of Acute Traumatic Brain Injury by Circulating Extracellular Vesicles.
Hazelton, Isla; Yates, Abi; Dale, Ashley; Roodselaar, Jay; Akbar, Naveed; Ruitenberg, Marc J; Anthony, Daniel C; Couch, Yvonne
2018-02-15
Inflammatory lesions in the brain activate a systemic acute-phase response (APR), which is dependent on the release of extracellular vesicles (EVs) into the circulation. The resulting APR is responsible for regulating leukocyte mobilization and subsequent recruitment to the brain. Factors that either exacerbate or inhibit the APR will also exacerbate or inhibit central nervous system (CNS) inflammation as a consequence and have the potential to influence ongoing secondary damage. Here, we were interested to discover how the circulating EV population changes after traumatic brain injury (TBI) and how manipulation of the circulating EV pool impacts on the outcome of TBI. We found the number of circulating EVs increased rapidly post-TBI, and this was accompanied by an increase in CNS and hepatic leukocyte recruitment. In an adoptive transfer study, we then evaluated the outcomes of TBI after administering EVs derived from either in vitro macrophage or endothelial cell lines stimulated with lipopolysaccharide (LPS), or from murine plasma from an LPS challenge using the air-pouch model. By manipulating the circulating EV population, we were able to demonstrate that each population of transferred EVs increased the APR. However, the characteristics of the response were dependent on the nature of the EVs; specifically, it was significantly increased when animals were challenged with macrophage-derived EVs, suggesting that the cellular origins of EVs may determine their function. Selectively targeting EVs from macrophage/monocyte populations is likely to be of value in reducing the impact of the systemic inflammatory response on the outcome of traumatic CNS injury.
de la Cuesta, Fernando; Baldan-Martin, Montserrat; Moreno-Luna, Rafael; Alvarez-Llamas, Gloria; Gonzalez-Calero, Laura; Mourino-Alvarez, Laura; Sastre-Oliva, Tamara; López, Juan A.; Vázquez, Jesús; Ruiz-Hurtado, Gema; Segura, Julian; Vivanco, Fernando; Ruilope, Luis M.; Barderas, Maria G.
2017-01-01
Despite of the great advances in anti-hypertensive therapies, many patients under Renin-Angiotensin- System (RAS) suppression develop albuminuria, which is a clear indicator of therapeutic inefficiency. Hence, indicators of vascular function are needed to assess patients’ condition and help deciding future therapies. Proteomic analysis of circulating extracellular vesicles (EVs) showed two proteins, kalirin and chromodomain-helicase-DNA-binding protein 7 (CHD7), increased in albuminuric patients. A positive correlation of both with the expression of the endothelial activation marker E-selectin was found in EVs. In vitro analysis using TNFα-treated adult human endothelial cells proved their involvement in endothelial cell activation. Hence, we propose protein levels of kalirin and CHD7 in circulating EVs as novel endothelial dysfunction markers to monitor vascular condition in hypertensive patients with albuminuria. PMID:28152519
Silicon Detector System for High Rate EXAFS Applications.
Pullia, A; Kraner, H W; Siddons, D P; Furenlid, L R; Bertuccio, G
1995-08-01
A multichannel silicon pad detector for EXAFS (Extended X-ray Absorption Fine Structure) applications has been designed and built. The X-ray spectroscopic measurements demonstrate that an adequate energy resolution of 230 eV FWHM (corresponding to 27 rms electrons in silicon) can be achieved reliably at -35 °C. A resolution of 190 eV FWHM (corresponding to 22 rms electrons) has been obtained from individual pads at -35 °C. At room temperature (25 °C) an average energy resolution of 380 eV FWHM is achieved and a resolution of 350 eV FWHM (41 rms electrons) is the best performance. A simple cooling system constituted of Peltier cells is sufficient to reduce the reverse currents of the pads and their related shot noise contribution, in order to achieve resolutions better than 300 eV FWHM which is adequate for the EXAFS applications.
Silicon Detector System for High Rate EXAFS Applications
Pullia, A.; Kraner, H. W.; Siddons, D. P.; Furenlid, L. R.; Bertuccio, G.
2015-01-01
A multichannel silicon pad detector for EXAFS (Extended X-ray Absorption Fine Structure) applications has been designed and built. The X-ray spectroscopic measurements demonstrate that an adequate energy resolution of 230 eV FWHM (corresponding to 27 rms electrons in silicon) can be achieved reliably at −35 °C. A resolution of 190 eV FWHM (corresponding to 22 rms electrons) has been obtained from individual pads at −35 °C. At room temperature (25 °C) an average energy resolution of 380 eV FWHM is achieved and a resolution of 350 eV FWHM (41 rms electrons) is the best performance. A simple cooling system constituted of Peltier cells is sufficient to reduce the reverse currents of the pads and their related shot noise contribution, in order to achieve resolutions better than 300 eV FWHM which is adequate for the EXAFS applications. PMID:26538683
Blans, Kristine; Hansen, Maria S; Sørensen, Laila V; Hvam, Michael L; Howard, Kenneth A; Möller, Arne; Wiking, Lars; Larsen, Lotte B; Rasmussen, Jan T
2017-01-01
Studies have suggested that nanoscale extracellular vesicles (EV) in human and bovine milk carry immune modulatory properties which could provide beneficial health effects to infants. In order to assess the possible health effects of milk EV, it is essential to use isolates of high purity from other more abundant milk structures with well-documented bioactive properties. Furthermore, gentle isolation procedures are important for reducing the risk of generating vesicle artefacts, particularly when EV subpopulations are investigated. In this study, we present two isolation approaches accomplished in three steps based on size-exclusion chromatography (SEC) resulting in effective and reproducible EV isolation from raw milk. The approaches do not require any EV pelleting and can be applied to both human and bovine milk. We show that SEC effectively separates phospholipid membrane vesicles from the primary casein and whey protein components in two differently obtained casein reduced milk fractions, with one of the fractions obtained without the use of ultracentrifugation. Milk EV isolates were enriched in lactadherin, CD9, CD63 and CD81 compared to minimal levels of the EV-marker proteins in other relevant milk fractions such as milk fat globules. Nanoparticle tracking analysis and electron microscopy reveals the presence of heterogeneous sized vesicle structures in milk EV isolates. Lipid analysis by thin layer chromatography shows that EV isolates are devoid of triacylglycerides and presents a phospholipid profile differing from milk fat globules surrounded by epithelial cell plasma membrane. Moreover, the milk EV fractions are enriched in RNA with distinct and diverging profiles from milk fat globules. Collectively, our data supports that successful milk EV isolation can be accomplished in few steps without the use of ultracentrifugation, as the presented isolation approaches based on SEC effectively isolates EV in both human and bovine milk.
Blans, Kristine; Hansen, Maria S.; Sørensen, Laila V.; Hvam, Michael L.; Howard, Kenneth A.; Möller, Arne; Wiking, Lars; Larsen, Lotte B.; Rasmussen, Jan T.
2017-01-01
ABSTRACT Studies have suggested that nanoscale extracellular vesicles (EV) in human and bovine milk carry immune modulatory properties which could provide beneficial health effects to infants. In order to assess the possible health effects of milk EV, it is essential to use isolates of high purity from other more abundant milk structures with well-documented bioactive properties. Furthermore, gentle isolation procedures are important for reducing the risk of generating vesicle artefacts, particularly when EV subpopulations are investigated. In this study, we present two isolation approaches accomplished in three steps based on size-exclusion chromatography (SEC) resulting in effective and reproducible EV isolation from raw milk. The approaches do not require any EV pelleting and can be applied to both human and bovine milk. We show that SEC effectively separates phospholipid membrane vesicles from the primary casein and whey protein components in two differently obtained casein reduced milk fractions, with one of the fractions obtained without the use of ultracentrifugation. Milk EV isolates were enriched in lactadherin, CD9, CD63 and CD81 compared to minimal levels of the EV-marker proteins in other relevant milk fractions such as milk fat globules. Nanoparticle tracking analysis and electron microscopy reveals the presence of heterogeneous sized vesicle structures in milk EV isolates. Lipid analysis by thin layer chromatography shows that EV isolates are devoid of triacylglycerides and presents a phospholipid profile differing from milk fat globules surrounded by epithelial cell plasma membrane. Moreover, the milk EV fractions are enriched in RNA with distinct and diverging profiles from milk fat globules. Collectively, our data supports that successful milk EV isolation can be accomplished in few steps without the use of ultracentrifugation, as the presented isolation approaches based on SEC effectively isolates EV in both human and bovine milk. PMID:28386391
Shah, Trushil; Qin, Shanshan; Vashi, Mona; Predescu, Dan N; Jeganathan, Niranjan; Bardita, Cristina; Ganesh, Balaji; diBartolo, Salvatore; Fogg, Louis F; Balk, Robert A; Predescu, Sanda A
2018-06-22
Pulmonary endothelial cells' (ECs) injury and apoptotic death are necessary and sufficient for the pathogenesis of the acute respiratory distress syndrome (ARDS), regardless of epithelial damage. Interaction of dysfunctional ECs with circulatory extracellular vesicles (EVs) holds therapeutic promise in ARDS. However, the presence in the blood of long-term ARDS survivors of EVs with a distinct phenotype compared to the EVs of non-surviving patients is not reported. With a multidisciplinary translational approach, we studied EVs from the blood of 33 patients with moderate-to-severe ARDS. The EVs were isolated from the blood of ARDS and control subjects. Immunoblotting and magnetic beads immunoisolation complemented by standardized flow cytometry and nanoparticles tracking analyses identified in the ARDS patients a subset of EVs with mesenchymal stem cell (MSC) origin (CD73 + CD105 + Cd34 - CD45 - ). These EVs have 4.7-fold greater counts compared to controls and comprise the transforming growth factor-beta receptor I (TβRI)/Alk5 and the Runx1 transcription factor. Time course analyses showed that the expression pattern of two Runx1 isoforms is critical for ARDS outcome: the p52 isoform shows a continuous expression, while the p66 is short-lived. A high ratio Runx1p66/p52 provided a survival advantage, regardless of age, sex, disease severity or length of stay in the intensive care unit. Moreover, the Runx1p66 isoform is transiently expressed by cultured human bone marrow-derived MSCs, it is released in the EVs recoverable from the conditioned media and stimulates the proliferation of lipopolysaccharide (LPS)-treated ECs. The findings are consistent with a causal effect of Runx1p66 expression on EC proliferation. Furthermore, morphological and functional assays showed that the EVs bearing the Runx1p66 enhanced junctional integrity of LPS-injured ECs and decreased lung histological severity in the LPS-treated mice. The expression pattern of Runx1 isoforms might be a reliable circulatory biomarker of ARDS activity and a novel determinant of the molecular mechanism for lung vascular/tissue repair and recovery after severe injury.
Origin of Open-Circuit Voltage Loss in Polymer Solar Cells and Perovskite Solar Cells.
Kim, Hyung Do; Yanagawa, Nayu; Shimazaki, Ai; Endo, Masaru; Wakamiya, Atsushi; Ohkita, Hideo; Benten, Hiroaki; Ito, Shinzaburo
2017-06-14
Herein, the open-circuit voltage (V OC ) loss in both polymer solar cells and perovskite solar cells is quantitatively analyzed by measuring the temperature dependence of V OC to discuss the difference in the primary loss mechanism of V OC between them. As a result, the photon energy loss for polymer solar cells is in the range of about 0.7-1.4 eV, which is ascribed to temperature-independent and -dependent loss mechanisms, while that for perovskite solar cells is as small as about 0.5 eV, which is ascribed to a temperature-dependent loss mechanism. This difference is attributed to the different charge generation and recombination mechanisms between the two devices. The potential strategies for the improvement of V OC in both solar cells are further discussed on the basis of the experimental data.
Extracellular Vesicle Biogenesis in Helminths: More than One Route to the Surface?
de la Torre-Escudero, Eduardo; Bennett, Adam P S; Clarke, Alexzandra; Brennan, Gerard P; Robinson, Mark W
2016-12-01
The recent discovery that parasites release extracellular vesicles (EVs) that can transfer a range of effector molecules to host cells has made us re-think our understanding of the host-parasite interface. In this opinion article we consider how recent proteomics and transcriptomics studies, together with ultrastructural observations, suggest that more than one mechanism of EV biogenesis can occur in helminths. We propose that distinct EV subtypes have roles in immune modulation and repair of drug-induced damage, and put forward the case for targeting EV biogenesis pathways to achieve parasite control. In doing so we raise a number of outstanding research questions that must be addressed before this can happen. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lai, Jeffrey K F; Sam, I-Ching; Verlhac, Pauline; Baguet, Joël; Eskelinen, Eeva-Liisa; Faure, Mathias; Chan, Yoke Fun
2017-07-04
Viruses have evolved unique strategies to evade or subvert autophagy machinery. Enterovirus A71 (EV-A71) induces autophagy during infection in vitro and in vivo. In this study, we report that EV-A71 triggers autolysosome formation during infection in human rhabdomyosarcoma (RD) cells to facilitate its replication. Blocking autophagosome-lysosome fusion with chloroquine inhibited virus RNA replication, resulting in lower viral titres, viral RNA copies and viral proteins. Overexpression of the non-structural protein 2BC of EV-A71 induced autolysosome formation. Yeast 2-hybrid and co-affinity purification assays showed that 2BC physically and specifically interacted with a N -ethylmaleimide-sensitive factor attachment receptor (SNARE) protein, syntaxin-17 (STX17). Co-immunoprecipitation assay further showed that 2BC binds to SNARE proteins, STX17 and synaptosome associated protein 29 (SNAP29). Transient knockdown of STX17, SNAP29, and microtubule-associated protein 1 light chain 3B (LC3B), crucial proteins in the fusion between autophagosomes and lysosomes) as well as the lysosomal-associated membrane protein 1 (LAMP1) impaired production of infectious EV-A71 in RD cells. Collectively, these results demonstrate that the generation of autolysosomes triggered by the 2BC non-structural protein is important for EV-A71 replication, revealing a potential molecular pathway targeted by the virus to exploit autophagy. This study opens the possibility for the development of novel antivirals that specifically target 2BC to inhibit formation of autolysosomes during EV-A71 infection.
Eichenberger, Ramon M.; Talukder, Md Hasanuzzaman; Field, Matthew A.; Wangchuk, Phurpa; Giacomin, Paul; Loukas, Alex; Sotillo, Javier
2018-01-01
ABSTRACT Whipworms are parasitic nematodes that live in the gut of more than 500 million people worldwide. Owing to the difficulty in obtaining parasite material, the mouse whipworm Trichuris muris has been extensively used as a model to study human whipworm infections. These nematodes secrete a multitude of compounds that interact with host tissues where they orchestrate a parasitic existence. Herein we provide the first comprehensive characterization of the excretory/secretory products of T. muris. We identify 148 proteins secreted by T. muris and show for the first time that the mouse whipworm secretes exosome-like extracellular vesicles (EVs) that can interact with host cells. We use an Optiprep® gradient to purify the EVs, highlighting the suitability of this method for purifying EVs secreted by a parasitic nematode. We also characterize the proteomic and genomic content of the EVs, identifying >350 proteins, 56 miRNAs (22 novel) and 475 full-length mRNA transcripts mapping to T. muris gene models. Many of the miRNAs putatively mapped to mouse genes are involved in regulation of inflammation, implying a role in parasite-driven immunomodulation. In addition, for the first time to our knowledge, colonic organoids have been used to demonstrate the internalization of parasite EVs by host cells. Understanding how parasites interact with their host is crucial to develop new control measures. This first characterization of the proteins and EVs secreted by T. muris provides important information on whipworm–host communication and forms the basis for future studies. PMID:29410780
Lai, Jeffrey K. F.; Sam, I-Ching; Verlhac, Pauline; Baguet, Joël; Faure, Mathias
2017-01-01
Viruses have evolved unique strategies to evade or subvert autophagy machinery. Enterovirus A71 (EV-A71) induces autophagy during infection in vitro and in vivo. In this study, we report that EV-A71 triggers autolysosome formation during infection in human rhabdomyosarcoma (RD) cells to facilitate its replication. Blocking autophagosome-lysosome fusion with chloroquine inhibited virus RNA replication, resulting in lower viral titres, viral RNA copies and viral proteins. Overexpression of the non-structural protein 2BC of EV-A71 induced autolysosome formation. Yeast 2-hybrid and co-affinity purification assays showed that 2BC physically and specifically interacted with a N-ethylmaleimide-sensitive factor attachment receptor (SNARE) protein, syntaxin-17 (STX17). Co-immunoprecipitation assay further showed that 2BC binds to SNARE proteins, STX17 and synaptosome associated protein 29 (SNAP29). Transient knockdown of STX17, SNAP29, and microtubule-associated protein 1 light chain 3B (LC3B), crucial proteins in the fusion between autophagosomes and lysosomes) as well as the lysosomal-associated membrane protein 1 (LAMP1) impaired production of infectious EV-A71 in RD cells. Collectively, these results demonstrate that the generation of autolysosomes triggered by the 2BC non-structural protein is important for EV-A71 replication, revealing a potential molecular pathway targeted by the virus to exploit autophagy. This study opens the possibility for the development of novel antivirals that specifically target 2BC to inhibit formation of autolysosomes during EV-A71 infection. PMID:28677644
Cao, Y; Brown, S L; Knight, R A; Fenstermacher, J D; Ewing, J R
2005-02-01
Water exchange across capillary walls couples intra- and extravascular (IV-EV) protons and their magnetization. A bolus i.v. injection of an extracellular MRI contrast agent (MRCA) causes a large increase in the spin-lattice relaxation rate, R1, of water protons in the plasma and blood cells within the capillaries and changes the effective relaxation rate R1eff in tissue via IV-EV water exchange. An analysis of the effect of plasma-red cell and IV-EV water exchange on the MRI-measured influx and permeability of capillaries to the MRCA is presented and focused on the brain and the blood-brain barrier. The effect of arrival of a bolus of an MRCA in the capillary on the relaxation rate R1eff in tissue via IV-EV water exchange occurs more rapidly than the MRCA uptake in tissue and can dominate the initial time curve of the R1eff change before the MRCA uptake in tissue becomes significant. This raises the possibility that (tissue dependent) IV-EV rate of exchange of water molecules can affect estimates of MRCA transfer constant. We demonstrate that an approach that considers IV-EV water exchange and uses the theoretical model of blood-brain tracer distribution developed by Patlak et al. (J Cereb Blood Flow Metab 1983;3:1-7) can lead to an accurate estimate of the MRI-determined influx rate constant of the MRCA and to an underestimation of the tissue blood volume.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cobb, Corie Lynn
The development of mass markets for large-format batteries, including electric vehicles (EVs) and grid support, depends on both cost reductions and performance enhancements to improve their economic viability. Palo Alto Research Center (PARC) has developed a multi-material, advanced manufacturing process called co-extrusion (CoEx) to remove multiple steps in a conventional battery coating process with the potential to simultaneously increase battery energy and power density. CoEx can revolutionize battery manufacturing across most chemistries, significantly lowering end-product cost and shifting the underlying economics to make EVs and other battery applications a reality. PARC’s scale-up of CoEx for electric vehicle (EV) batteries buildsmore » on a solid base of experience in applying CoEx to solar cell manufacturing, deposition of viscous ceramic pastes, and Li-ion battery chemistries. In the solar application, CoEx has been deployed commercially at production scale where multi-channel CoEx printheads are used to print viscous silver gridline pastes at full production speeds (>40 ft/min). This operational scale-up provided invaluable experience with the nuances of speed, yield, and maintenance inherent in taking a new technology to the factory floor. PARC has leveraged this experience, adapting the CoEx process for Lithium-ion (Li-ion) battery manufacturing. To date, PARC has worked with Li-ion battery materials and structured cathodes with high-density Li-ion regions and low-density conduction regions, documenting both energy and power performance. Modeling results for a CoEx cathode show a path towards a 10-20% improvement in capacity for an EV pouch cell. Experimentally, we have realized a co-extruded battery structure with a Lithium Nickel Manganese Cobalt (NMC) cathode at print speeds equivalent to conventional roll coating processes. The heterogeneous CoEx cathode enables improved capacity in thick electrodes at higher C-rates. The proof-of-principle coin cells demonstrate the feasibility of the CoEx technology and a path towards higher energy and higher power EV pouch cells.« less
Khalyfa, Abdelnaby; Khalyfa, Ahamed A; Akbarpour, Mahzad; Connes, Phillippe; Romana, Marc; Lapping-Carr, Gabrielle; Zhang, Chunling; Andrade, Jorge; Gozal, David
2016-09-01
Sickle cell anaemia (SCA) is the most frequent genetic haemoglobinopathy, which exhibits a highly variable clinical course characterized by hyper-coagulable and pro-inflammatory states, as well as endothelial dysfunction. Extracellular microvesicles are released into biological fluids and play a role in modifying the functional phenotype of target cells. We hypothesized that potential differences in plasma-derived extracellular microvesicles (EV) function and cargo from SCA patients may underlie divergent clinical trajectories. Plasma EV from SCA patients with mild, intermediate and severe clinical disease course were isolated, and primary endothelial cell cultures were exposed. Endothelial cell activation, monocyte adhesion, barrier disruption and exosome cargo (microRNA microarrays) were assessed. EV disrupted the endothelial barrier and induced expression of adhesion molecules and monocyte adhesion in a SCA severity-dependent manner compared to healthy children. Microarray approaches identified a restricted signature of exosomal microRNAs that readily distinguished severe from mild SCA, as well as from healthy children. The microRNA candidates were further validated using quantitative real time polymerase chain reaction assays, and revealed putative gene targets. Circulating exosomal microRNAs may play important roles in predicting the clinical course of SCA, and in delineation of individually tailored, mechanistically-based clinical treatment approaches of SCA patients in the near future. © 2016 John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
Li, S. S.; Chiu, T. T.; Loo, R. Y.
1981-01-01
The GaAs solar cell has shown good potential for space applications. However, degradation in performance occurred when the cells were irradiated by high energy electrons and protons in the space environment. The considered investigation is concerned with the effect of periodic thermal annealing on the deep-level defects induced by the 200 keV protons in the AlGaAs-GaAs solar cells. Protons at a fluence of 10 to the 11th P/sq cm were used in the irradiation cycle, while annealing temperatures of 200 C (for 24 hours), 300 C (six hours), and 400 C (six hours) were employed. The most likely candidate for the E(c) -0.71 eV electron trap observed in the 200 keV proton irradiated samples may be due to GaAs antisite, while the observed E(v) +0.18 eV hole trap has been attributed to the gallium vacancy related defect. The obtained results show that periodic annealing in the considered case does not offer any advantages over the one time annealing process.
NASA Astrophysics Data System (ADS)
Erickson, S. D.; Smith, T. J.; Moses, L. M.; Watt, R. K.; Colton, J. S.
2015-01-01
Quantum dot solar cells seek to surpass the solar energy conversion efficiencies achieved by bulk semiconductors. This new field requires a broad selection of materials to achieve its full potential. The 12 nm spherical protein ferritin can be used as a template for uniform and controlled nanocrystal growth, and to then house the nanocrystals for use in solar energy conversion. In this study, precise band gaps of titanium, cobalt, and manganese oxyhydroxide nanocrystals within ferritin were measured, and a change in band gap due to quantum confinement effects was observed. The range of band gaps obtainable from these three types of nanocrystals is 2.19-2.29 eV, 1.93-2.15 eV, and 1.60-1.65 eV respectively. From these measured band gaps, theoretical efficiency limits for a multi-junction solar cell using these ferritin-enclosed nanocrystals are calculated and found to be 38.0% for unconcentrated sunlight and 44.9% for maximally concentrated sunlight. If a ferritin-based nanocrystal with a band gap similar to silicon can be found (i.e. 1.12 eV), the theoretical efficiency limits are raised to 51.3% and 63.1%, respectively. For a current matched cell, these latter efficiencies become 41.6% (with an operating voltage of 5.49 V), and 50.0% (with an operating voltage of 6.59 V), for unconcentrated and maximally concentrated sunlight respectively.
Quesenberry, Peter J.; Aliotta, Jason; Camussi, Giovanni; Abdel-Mageed, Asim B.; Wen, Sicheng; Goldberg, Laura; Zhang, Huang-Ge; Tetta, Ciro; Franklin, Jeffrey; Coffey, Robert J.; Danielson, Kirsty; Subramanya, Vinita; Ghiran, Ionita; Das, Saumya; Chen, Clark C.; Pusic, Kae M.; Pusic, Aya D.; Chatterjee, Devasis; Kraig, Richard P.; Balaj, Leonora; Dooner, Mark
2015-01-01
The NIH Extracellular RNA Communication Program's initiative on clinical utility of extracellular RNAs and therapeutic agents and developing scalable technologies is reviewed here. Background information and details of the projects are presented. The work has focused on modulation of target cell fate by extracellular vesicles (EVs) and RNA. Work on plant-derived vesicles is of intense interest, and non-mammalian sources of vesicles may represent a very promising source for different therapeutic approaches. Retro-viral-like particles are intriguing. Clearly, EVs share pathways with the assembly machinery of several other viruses, including human endogenous retrovirals (HERVs), and this convergence may explain the observation of viral-like particles containing viral proteins and nucleic acid in EVs. Dramatic effect on regeneration of damaged bone marrow, renal, pulmonary and cardiovascular tissue is demonstrated and discussed. These studies show restoration of injured cell function and the importance of heterogeneity of different vesicle populations. The potential for neural regeneration is explored, and the capacity to promote and reverse neoplasia by EV exposure is described. The tremendous clinical potential of EVs underlies many of these projects, and the importance of regulatory issues and the necessity of general manufacturing production (GMP) studies for eventual clinical trials are emphasized. Clinical trials are already being pursued and should expand dramatically in the near future. PMID:26320942
Smad7 mediates inhibition of Saos2 osteosarcoma cell differentiation by NF{kappa}B
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eliseev, Roman A.; Schwarz, Edward M.; Zuscik, Michael J.
2006-01-01
The transcription factor NF{kappa}B is constitutively activated in various tumor cells where it promotes proliferation and represses apoptosis. The bone morphogenetic proteins (BMPs) delay cell proliferation and promote differentiation and apoptosis of bone cells through activation of Smad downstream effectors and via Smad-independent mechanisms. Thus, NF{kappa}B and BMP pathways play opposing roles in regulating osteoblastic cell fate. Here, we show that in osteosarcoma Saos2 osteoblasts, NF{kappa}B regulates the activity of the BMP/Smad signaling. Inhibition of NF{kappa}B by overexpression of mI{kappa}B leads to the induction of osteoblast differentiation. Saos2 cells overexpressing mI{kappa}B (Saos2-mI{kappa}B) exhibit higher expression of osteoblast phenotypic genes suchmore » as alkaline phosphatase, Runx2 and osteocalcin and are more responsive to BMP2 in comparison to wild-type cells (Saos2-wt) or empty vector infected controls (Saos2-EV). Furthermore, BMP-2 signaling and Smad phosphorylation are significantly increased in Saos2-mI{kappa}B cells in comparison to Saos2-EV cells. Inhibition of NF{kappa}B signaling in Saos2-mI{kappa}B cells is associated with decreased expression of the BMP signaling inhibitor Smad7. While gain of Smad7 function in Saos2-mI{kappa}B cells results in inhibition of BMP signaling, anti-sense knockdown of Smad7 in Saos2-EV cells leads to upregulation of BMP signaling. We therefore conclude that in osteosarcoma Saos2 cells, NF{kappa}B represses BMP/Smad signaling and BMP2-induced differentiation through Smad7.« less
EV, Microvesicles/MicroRNAs and Stem Cells in Cancer.
Tickner, Jacob A; Richard, Derek J; O'Byrne, Kenneth J
2018-01-01
The role of extracellular vesicles (EV) in carcinogenesis has become the focus of much research. These microscopic messengers have been found to regulate immune system function, particularly in tumorigenesis, as well as conditioning future metastatic sites for the attachment and growth of tumor tissue. Through an interaction with a range of host tissues, EVs are able to generate a pro-tumor environment that is essential for tumorigenesis. These small nanovesicles are an ideal candidate for a non-invasive indicator of pathogenesis and/or disease progression as they can display individualized nucleic acid, protein, and lipid expression profiles that are often reflective of disease state, and can be easily detected in bodily fluids, even after extended cryo-storage. Furthermore, the ability of EVs to securely transport signaling molecules and localize to distant tissues suggests these particles may greatly improve the delivery of therapeutic treatments, particularly in cancer. In this chapter, we discuss the role of EV in the identification of new diagnostic and prognostic cancer biomarkers, as well as the development of novel EV-based cancer therapies.