A luminescence-optical spectroscopy study of Rb2KTiOF5 single crystals
NASA Astrophysics Data System (ADS)
Pustovarov, V. A.; Ogorodnikov, I. N.; Kozlov, A. V.; Isaenko, L. I.
2018-06-01
Large single crystals of Rb2KTiOF5 (RKTF), grown by slow solidification method, were studied (7-400 K) for various types of optical and radiation effects. The optical absorption spectra, the parameters of the Urbach rule at 293 K (σ = 0.24 and EU = 105 meV), the low-temperature reflection spectra (T = 7 K, E = 3.7-22 eV) were determined. The luminescence spectra (1.2-6.2 eV) and luminescence decay kinetics are studied upon excitation by a nanosecond electron beam (PCL), ultraviolet and vacuum ultraviolet light (PL), or X-rays radiation (XRL). PL excitation spectra under selective photoexcitation by synchrotron radiation (E = 3.7-22 eV, T = 7 K), temperature dependences of the intensity of steady-state XRL in different emission bands, as well as thermoluminescence (7-400 K) are studied. In the visible spectral region, we detected three luminescence bands that were attributed to radiative annihilation of intrinsic excitons (2.25 eV), recombination-type luminescence (2.1 eV) and luminescence of higher TiOF5 complexes (1.9 eV). The exponential component with lifetime of about 19 μs was revealed in the PCL decay kinetics at 2.25 eV. The low-energy onset of the intrinsic host absorption Ec = 3.55 eV was determined on the basis of the experimental data obtained. Spectra of optical constants were calculated by the Kramers-Krönig method, the energy of the onset of the interband transitions Eg = 4.2 eV was determined, and the main peaks of the optical spectra were identified.
NASA Astrophysics Data System (ADS)
Evans, D. A.; McGlynn, A. G.; Towlson, B. M.; Gunn, M.; Jones, D.; Jenkins, T. E.; Winter, R.; Poolton, N. R. J.
2008-02-01
Using synchrotron-based luminescence excitation spectroscopy in the energy range 4-20 eV at 8 K, the indirect Γ-X optical band-gap transition in cubic boron nitride is determined as 6.36 ± 0.03 eV, and the quasi-direct band-gap energy of hexagonal boron nitride is determined as 5.96 ± 0.04 eV. The composition and structure of the materials are self-consistently established by optically detected x-ray absorption spectroscopy, and both x-ray diffraction and Raman measurements on the same samples give independent confirmation of their chemical and structural purity: together, the results are therefore considered as providing definitive measurements of the optical band-gap energies of the two materials.
First-principles calculations of optical transitions at native defects and impurities in ZnO
NASA Astrophysics Data System (ADS)
Lyons, John L.; Varley, Joel B.; Janotti, Anderson; Van de Walle, Chris G.
2018-02-01
Optical spectroscopy is a powerful approach for detecting defects and impurities in ZnO, an important electronic material. However, knowledge of how common optical signals are linked with defects and impurities is still limited. The Cu-related green luminescence is among the best understood luminescence signals, but theoretical descriptions of Cu-related optical processes have not agreed with experiment. Regarding native defects, assigning observed lines to specific defects has proven very difficult. Using first-principles calculations, we calculate the properties of native defects and impurities in ZnO and their associated optical signals. Oxygen vacancies are predicted to give luminescence peaks lower than 1 eV; while related zinc dangling bonds can lead to luminescence near 2.4 eV. Zinc vacancies lead to luminescence peaks below 2 eV, as do the related oxygen dangling bonds. However, when complexed with hydrogen impurities, zinc vacancies can cause higher-energy transitions, up to 2.3 eV. We also find that the Cu-related green luminescence is related to a (+/0) deep donor transition level.
Properties of Mg and Zn acceptors in MOVPE GaN as studied by optically detected magnetic resonance
NASA Astrophysics Data System (ADS)
Kunzer, M.; Baur, J.; Kaufmann, U.; Schneider, J.; Amano, H.; Akasaki, I.
1997-02-01
We have studied the photoluminescence (PL) and optically detected magnetic resonance (ODMR) of undoped, n-doped and p-doped thin wurtzite GaN layers grown by metal-organic chemical vapor deposition on sapphire substrates. The ODMR data obtained for undoped. Mg-doped and Zn-doped GaN layers provide an insight into the recombination mechanisms responsible for the broad yellow (2.25 eV), the violet (3.15 eV) and the blue (2.8 eV) PL bands, respectively. The ODMR results for Mg and Zn also show that these acceptors do not behave effective mass like and indicate that the acceptor hole is mainly localized in the nearest neighbor shell surrounding the acceptor core. In addition concentration effects in heavily doped GaN:Mg have been studied.
NASA Technical Reports Server (NTRS)
Dhar, S.; Das, U.; Bhattacharya, P. K.
1986-01-01
Trap levels in about 2-micron In(0.2)Ga(0.8)As(94 A)/GaAs(25 A) strained-layer superlattices, suitable for optical waveguides, have been identified and characterized by deep-level transient spectroscopy and optical deep-level transient spectroscopy measurements. Several dominant electron and hole traps with concentrations of approximately 10 to the 14th/cu cm, and thermal ionization energies Delta-E(T) varying from 0.20 to 0.75 eV have been detected. Except for a 0.20-eV electron trap, which might be present in the In(0.2)Ga(0.8)As well regions, all the other traps have characteristics similar to those identified in molecular-beam epitaxial GaAs. Of these, a 0.42-eV hole trap is believed to originate from Cu impurities, and the others are probably related to native defects. Upon Si implantation and halogen lamp annealing, new deep centers are created. These are electron traps with Delta-E(T) = 0.81 eV and hole traps with Delta-E(T) = 0.46 eV. Traps occurring at room temperature may present limitations for optical devices.
Recent measurements concerning uranium hexafluoride-electron collision processes
NASA Technical Reports Server (NTRS)
Trajmar, S.; Chutjian, A.; Srivastava, S.; Williams, W.; Cartwright, D. C.
1976-01-01
Scattering of electrons by UF6 molecules was studied at impact energies ranging from 5 to 100 eV and momentum transfer, elastic and inelastic scattering cross sections were determined. The measurements also yielded spectroscopic information which made possible to extend the optical absorption cross sections from 2000 angstroms to 435 angstroms. It was found that UF6 is a very strong absorber in the vacuum UV region. No transitions were found to lie below the onset of the optically detected 3.0 eV feature.
Compensation and persistent photocapacitance in homoepitaxial Sn-doped β-Ga2O3
NASA Astrophysics Data System (ADS)
Polyakov, A. Y.; Smirnov, N. B.; Shchemerov, I. V.; Gogova, D.; Tarelkin, S. A.; Pearton, S. J.
2018-03-01
The electrical properties of epitaxial β-Ga2O3 doped with Sn (1016-9 × 1018 cm-3) and grown by metalorganic chemical vapor deposition on semi-insulating β-Ga2O3 substrates are reported. Shallow donors attributable to Sn were observed only in a narrow region near the film/substrate interface and with a much lower concentration than the total Sn density. For heavily Sn doped films (Sn concentration, 9 × 1018 cm-3), the electrical properties in the top portion of the layer were determined by deep centers with a level at Ec-0.21 eV not described previously. In more lightly doped layers, the Ec-0.21 eV centers and deeper traps at Ec-0.8 eV were present, with the latter pinning the Fermi level. Low temperature photocapacitance and capacitance voltage measurements of illuminated samples indicated the presence of high densities (1017-1018 cm-3) of deep acceptors with an optical ionization threshold of 2.3 eV. Optical deep level transient spectroscopy (ODLTS) and photoinduced current transient spectroscopy (PICTS) detected electron traps at Ec-0.8 eV and Ec-1.1 eV. For lightly doped layers, the compensation of film conductivity was mostly provided by the Ec-2.3 eV acceptors. For heavily Sn doped films, deep acceptor centers possibly related to Ga vacancies were significant. The photocapacitance and the photocurrent caused by illumination at low temperatures were persistent, with an optical threshold of 1.9 eV and vanished only at temperatures of ˜400 K. The capture barrier for electrons causing the persistent photocapacitance effect was estimated from ODLTS and PICTS to be 0.25-0.35 eV.
Structural and optical properties of CdSe nanosheets
NASA Astrophysics Data System (ADS)
Solanki, Rekha Garg; Rajaram, P.; Arora, Aman
2018-04-01
Nanosheets of CdSe have been synthesized using a solvothermal route using citric acid as an additive. It is found that the citric acid effectively controls the structural and optical properties of CdSe nanostructures. XRD studies confirm the formation of hexagonal wurtzite phase of CdSe. The FESEM micrographs show that the obtained CdSe nanocrystals are in the form of very thin sheets (nanosheets). Optical absorption studies as well as Photoluminescence spectra show that the optical gap is around 1.76 eV which is close to the reported bulk value of 1.74 eV. The prepared CdSe nanosheets because of large surface area may be useful for catalytic activities in medicine, biotechnology and environmental chemistry and in biomedical imaging for in vitro detection of a breast cancer cells.
Exposure of Piglets to Enteroviruses Investigated by an Immunoassay Based on the EV-G1 VP4 Peptide.
Benkahla, Mehdi A; Sane, Famara; Desailloud, Rachel; Hober, Didier
2016-01-01
The aim of this study was to investigate the exposure of piglets to enteroviruses-G (EV-G) through the presence of antibodies in their serum. Serum samples were obtained from the vena cava of 10 piglets at 9 weeks of age and again 39 days later (day 39). They were tested using an immunoassay based on the EV-G1 VP4 peptide, since VP4 is highly conserved among the four Enterovirus capsid proteins, and by using a seroneutralization assay. For each serum collected on day 39 the optical density was high compared to the value obtained in serum collected earlier (p = 0.002). However, the titers of anti-EV-G1 serum neutralizing activity were not different in paired samples (p > 0.999). The sequence alignment of the EV-G1 VP4 peptide, encompassing 50 amino acids, used in the immunoassay showed 88% homology with EV-G, suggesting that antibodies directed toward other EV-G than EV-G1 may be detected. An immunoassay based on EV-G1 VP4 can detect an increased level of EV-G antibodies in piglet serum samples. Further studies are needed to determine whether this immunoassay may be useful for diagnosis and/or epidemiological studies and to monitor EV-G infection in pigs to evaluate strategies aimed to prevent enterovirus infections. © 2016 S. Karger AG, Basel.
Lai, Charles P.; Kim, Edward Y.; Badr, Christian E.; Weissleder, Ralph; Mempel, Thorsten R.; Tannous, Bakhos A.; Breakefield, Xandra O.
2015-01-01
Accurate spatiotemporal assessment of extracellular vesicle (EV) delivery and cargo RNA translation requires specific and robust live-cell imaging technologies. Here we engineer optical reporters to label multiple EV populations for visualization and tracking of tumour EV release, uptake and exchange between cell populations both in culture and in vivo. Enhanced green fluorescence protein (EGFP) and tandem dimer Tomato (tdTomato) were fused at NH2-termini with a palmitoylation signal (PalmGFP, PalmtdTomato) for EV membrane labelling. To monitor EV-RNA cargo, transcripts encoding PalmtdTomato were tagged with MS2 RNA binding sequences and detected by co-expression of bacteriophage MS2 coat protein fused with EGFP. By multiplexing fluorescent and bioluminescent EV membrane reporters, we reveal the rapid dynamics of both EV uptake and translation of EV-delivered cargo mRNAs in cancer cells that occurred within 1-hour post-horizontal transfer between cells. These studies confirm that EV-mediated communication is dynamic and multidirectional between cells with delivery of functional mRNA. PMID:25967391
Optical transitions of the silicon vacancy in 6H-SiC studied by positron annihilation spectroscopy
NASA Astrophysics Data System (ADS)
Arpiainen, S.; Saarinen, K.; Hautojärvi, P.; Henry, L.; Barthe, M.-F.; Corbel, C.
2002-08-01
Positron annihilation spectroscopy has been applied to identify Si and C vacancies as irradiation-induced defects in 6H-SiC. Si vacancies are shown to have ionization levels at EC-0.6 eV and EC-1.1 eV below the conduction-band edge EC by detecting changes of positron trapping under monochromatic illumination. These levels are attributed to (2-/1-) and (1-/0) ionizations of the isolated Si vacancy. In as-grown n-type 6H-SiC, a native defect complex involving VSi is shown to have an ionization level slightly closer to conduction band at roughly EC-0.3 eV. These results are used further to present microscopic interpretations to effects seen in optical-absorption spectra and to electrical levels observed previously by deep-level transient spectroscopy.
EnVision+, a new dextran polymer-based signal enhancement technique for in situ hybridization (ISH).
Wiedorn, K H; Goldmann, T; Henne, C; Kühl, H; Vollmer, E
2001-09-01
Seventy paraffin-embedded cervical biopsy specimens and condylomata were tested for the presence of human papillomavirus (HPV) by conventional in situ hybridization (ISH) and ISH with subsequent signal amplification. Signal amplification was performed either by a commercial biotinyl-tyramide-based detection system [GenPoint (GP)] or by the novel two-layer dextran polymer visualization system EnVision+ (EV), in which both EV-horseradish peroxidase (EV-HRP) and EV-alkaline phosphatase (EV-AP) were applied. We could demonstrate for the first time, that EV in combination with preceding ISH results in a considerable increase in signal intensity and sensitivity without loss of specificity compared to conventional ISH. Compared to GP, EV revealed a somewhat lower sensitivity, as measured by determination of the integrated optical density (IOD) of the positively stained cells. However, EV is easier to perform, requires a shorter assay time, and does not raise the background problems that may be encountered with biotinyl-tyramide-based amplification systems. (J Histochem Cytochem 49:1067-1071, 2001)
Marcasite revisited: Optical absorption gap at room temperature
NASA Astrophysics Data System (ADS)
Sánchez, C.; Flores, E.; Barawi, M.; Clamagirand, J. M.; Ares, J. R.; Ferrer, I. J.
2016-03-01
Jagadeesh and Seehra published in 1980 that the marcasite band gap energy is 0.34 eV. However, recent calculations and experimental approximations accomplished by several research groups point out that the marcasite band gap energy should be quite similar to that of pyrite (of the order of 0.8-1.0 eV). By using diffuse reflectance spectroscopy (DRS) we have determined that marcasite has no optical absorption gap at photon energies 0.06 ≤ hν ≤ 0.75 eV and that it has two well defined optical transitions at ~ 0.9 eV and ~ 2.2 eV quite similar to those of pyrite. Marcasite optical absorption gap appears to be Eg ≅ 0.83 ± 0.02 eV and it is due to an allowed indirect transition.
Identification of the Ga interstitial in Al(x)Ga(1-x)As by optically detected magnetic resonance
NASA Technical Reports Server (NTRS)
Kennedy, T. A.; Spencer, M. G.
1986-01-01
A new optically detected magnetic resonance spectrum in Al(x)Ga(1-x)As is reported and assigned to native Ga interstitials. Luminescence-quenching signals were observed over the energy region from 0.75 to 1.1 eV. The optically detected magnetic resonance is nearly isotropic, with spin-Hamiltonian parameters g = 2.025 + or - 0.006, central hyperfine splitting A(Ga-69) = 0.050 + or - 0.001/cm, and A(Ga-71) = 0.064 + or - 0.001/cm for H near the 001 line. The strong hyperfine coupling denotes an electronic state of A1 symmetry, which current theories predict for the Ga interstitial but not the Ga antisite. The slight anisotropy probably indicates that the Ga(i) is paired with a second, unknown defect.
On the optical band gap of zinc oxide
NASA Astrophysics Data System (ADS)
Srikant, V.; Clarke, D. R.
1998-05-01
Three different values (3.1, 3.2, and 3.3 eV) have been reported for the optical band gap of zinc oxide single crystals at room temperature. By comparing the optical properties of ZnO crystals using a variety of optical techniques it is concluded that the room temperature band gap is 3.3 eV and that the other values are attributable to a valence band-donor transition at ˜3.15 eV that can dominate the optical absorption when the bulk of a single crystal is probed.
Excitation of lowest electronic states of the uracil molecule by slow electrons
NASA Astrophysics Data System (ADS)
Chernyshova, I. V.; Kontros, J. E.; Markush, P. P.; Shpenik, O. B.
2012-07-01
The excitation of lowest electronic states of the uracil molecule in the gas phase has been studied by electron energy loss spectroscopy. Along with excitation of lowest singlet states, excitation of two lowest triplet states at 3.75 and 4.76 eV (±0.05 eV) and vibrational excitation of the molecule in two resonant ranges (1-2 and 3-4 eV) have been observed for the first time. The peak of the excitation band related to the lowest singlet state (5.50 eV) is found to be blueshifted by 0.4 eV in comparison with the optical absorption spectroscopy data. The threshold excitation spectra have been measured for the first time, with detection of electrons inelastically scattered by an angle of 180°. These spectra exhibit clear separation of the 5.50-eV-wide band into two bands, which are due to the excitation of the triplet 13 A″ and singlet 11 A' states.
Combined optical/MCD/ODMR investigations of photochromism in doubly-doped Bi12GeO20
NASA Astrophysics Data System (ADS)
Briat, B.; Borowiec, M. T.; Rjeily, H. B.; Ramaz, F.; Hamri, A.; Szymczak, H.
Electron paramagnetic resonance is detected optically via the change of magnetic circular dichroism under microwaves at 35 GHz. The technique is applied to Bi12GeO20 samples co-doped with vanadium and a second transition metal (Cr, Mn, Co, Cu). The optical and magnetic properties of several paramagnetic defects (V-Ge(4+) and Cr-Ge(4+)) are directly correlated. The basic photochromic processes occuring in samples doped with V, Mn, and Mn+V are explained. The V-Ge(4+/5+) level is positioned roughly 2.2 eV above the valence band.
Properties of the 4.45 eV optical absorption band in LiF:Mg,Ti.
Nail, I; Oster, L; Horowitz, Y S; Biderman, S; Belaish, Y
2006-01-01
The optical absorption (OA) and thermoluminescence (TL) of dosimetric LiF:Mg,Ti (TLD-100) as well as nominally pure LiF single crystal have been studied as a function of irradiation dose, thermal and optical bleaching in order to investigate the role of the 4.45 eV OA band in low temperature TL. Computerised deconvolution was used to resolve the absorption spectrum into individual gaussian bands and the TL glow curve into glow peaks. Although the 4.45 eV OA band shows thermal decay characteristics similar to the 4.0 eV band its dose filling constant and optical bleaching properties suggest that it cannot be associated with the TL of composite peaks 4 or 5. Its presence in optical grade single crystal LiF further suggests that it is an intrinsic defect or possibly associated with chance impurities other than Mg, Ti.
Sensitivity of proposed search for axion-induced magnetic field using optically pumped magnetometers
NASA Astrophysics Data System (ADS)
Chu, P.-H.; Duffy, L. D.; Kim, Y. J.; Savukov, I. M.
2018-04-01
We investigate the sensitivity of a search for the oscillating current induced by axion dark matter in an external magnetic field using optically pumped magnetometers. This experiment is based upon the LC circuit (circuit with inductor and capacitor) axion detection concept of Sikivie et al. [Phys. Rev. Lett. 112, 131301 (2014), 10.1103/PhysRevLett.112.131301]. The modification of Maxwell's equations caused by the axion-photon coupling results in a minute magnetic field oscillating at a frequency equal to the axion mass, in the presence of an external magnetic field. The axion-induced magnetic field could be searched for using a LC circuit amplifier with an optically pumped magnetometer, the most sensitive cryogen-free magnetic-field sensor, in a room-temperature experiment, avoiding the need for a complicated and expensive cryogenic system. We discuss how an existing magnetic resonance imaging experiment can be modified to search for axions in a previously unexplored part of the parameter space. Our existing detection setup, optimized for magnetic resonance imagining, is already sensitive to an axion-photon coupling of 10-7 GeV-1 for an axion mass near 3 ×10-10 eV , which is already limited by astrophysical processes and solar axion searches. We show that realistic modifications, and optimization of the experiment for axion detection, can probe the axion-photon coupling up to 4 orders of magnitude beyond the current best limit, for axion masses between 10-11 and 10-7 eV .
Optical emission spectroscopy of carbon laser plasma ion source
NASA Astrophysics Data System (ADS)
Balki, Oguzhan; Rahman, Md. Mahmudur; Elsayed-Ali, Hani E.
2018-04-01
Carbon laser plasma generated by an Nd:YAG laser (wavelength 1064 nm, pulse width 7 ns, fluence 4-52 J cm-2) is studied by optical emission spectroscopy and ion time-of-flight. Up to C4+ ions are detected with the ion flux strongly dependent on the laser fluence. The increase in ion charge with the laser fluence is accompanied by observation of multicharged ion lines in the optical spectra. The time-integrated electron temperature Te is calculated from the Boltzmann plot using the C II lines at 392.0, 426.7, and 588.9 nm. Te is found to increase from ∼0.83 eV for a laser fluence of 22 J cm-2 to ∼0.90 eV for 40 J cm-2. The electron density ne is obtained from the Stark broadened profiles of the C II line at 392 nm and is found to increase from ∼ 2 . 1 × 1017cm-3 for 4 J cm-2 to ∼ 3 . 5 × 1017cm-3 for 40 J cm-2. Applying an external electric field parallel to the expanding plume shows no effect on the line emission intensities. Deconvolution of ion time-of-flight signal with a shifted Maxwell-Boltzmann distribution for each charge state results in an ion temperature Ti ∼4.7 and ∼6.0 eV for 20 and 36 J cm-2, respectively.
NASA Astrophysics Data System (ADS)
Igweoko, A. E.; Augustine, C.; Idenyi, N. E.; Okorie, B. A.; Anyaegbunam, F. N. C.
2018-03-01
In this paper, we present the influence of post deposition annealing and varying concentration on the optical properties of ZnS thin films fabricated by chemical bath deposition (CBD) at 65 °C from chemical baths comprising NH3/SC(NH2)2/ZnSO4 solutions at pH of about 10. The film samples were annealed at temperatures ranging from 373 K–473 K and the concentration of the film samples vary from 0.1 M–0.7 M. Post deposition annealing and concentration played an important role on the optical parameters investigated which includes absorbance, transmittance, reflectance, absorption coefficient, band gap, refractive index and extinction coefficient. The optical parameters were found to vary with post deposition annealing in one direction and concentration of Zn2+ in the reverse direction. For instance, post deposition annealing increases the band gap from 3.65 eV for as-deposited to 3.70 eV, 3.75 eV and 3.85 eV for annealed at 373 K, 423 K and 473 K respectively whereas concentration of Zn2+ decreases the band gap from 3.95 eV at 0.1 M to 3.90 eV, 3.85 eV and 3.80 eV at 0.3 M, 0.5 M and 0.7 M respectively. The fundamental absorption edge of ZnS thin films shifted toward the highest photon energies (blue shift) after annealing and shifted toward the lowest photon energies (red shift) with increasing Zn ions concentration. A linear relation between band gap energy and Urbach energy was found. After annealing, the Urbach energy increases form 3.10 eV to 3.50 eV and decreases from 3.40 eV to 3.10 eV at varying Zn2+ concentration. The property of wide band gap makes ZnS suitable for buffer layer of film solar cells, permitting more light especially the short wavelength light into absorber layer.
NASA Astrophysics Data System (ADS)
Ouahrani, T.; Reshak, A. H.; de La Roza, A. Otero; Mebrouki, M.; Luaña, V.; Khenata, R.; Amrani, B.
2009-12-01
We report results from first-principles density functional calculations using the full-potential linear augmented plane wave (FP-LAPW) method. The generalized gradient approximation (GGA) and the Engel-Vosko-generalized gradient approximation (EV-GGA) were used for the exchange-correlation energy of the structural, electronic, linear and nonlinear optical properties of the chalcopyrite Ga2PSb compound. The valence band maximum (VBM) is located at the Γv point, and the conduction band minimum (CBM) is located at the Γc point, resulting in a direct band gap of about 0.365 eV for GGA and 0.83 eV for EV-GGA. In comparison with the experimental one (1.2 eV) we found that EV-GGA calculation gives energy gap in reasonable agreement with the experiment. The spin orbit coupling has marginal influence on the optical properties. The ground state quantities such as lattice parameters (a, c and u), bulk modules B and its pressure derivative B^primeare evaluated.
Electronic structure and optical properties of CsI, CsI(Ag), and CsI(Tl)
NASA Astrophysics Data System (ADS)
Zhang, Zheng; Zhao, Qiang; Li, Yang; Ouyang, Xiao-Ping
2016-05-01
The band structure, electronic density of states and optical properties of CsI and of CsI doped with silver or thallium are studied by using a first-principles calculation based on density functional theory (DFT). The exchange and the correlation potentials among the electrons are described by using the generalized gradient approximation (GGA). The results of our study show that the electronic structure changes somewhat when CsI is doped with silver or thallium. The band gaps of CsI(Ag) and CsI(Tl) are smaller than that of CsI, and the width of the conduction band of CsI is increased when CsI is doped with thallium or silver. Two peaks located in the conduction band of CsI(Ag) and CsI(Tl) are observed from their electronic densities of states. The absorption coefficients of CsI, CsI(Ag), and CsI(Tl) are zero when their photon energies are below 3.5 eV, 1.5 eV, and 3.1 eV, respectively. The results show that doping can improve the detection performance of CsI scintillators. Our study can explain why doping can improve the detection performance from a theoretical point of view. The results of our research provide both theoretical support for the luminescent mechanisms at play in scintillator materials when they are exposed to radiation and a reference for CsI doping from the point of view of the electronic structure.
NASA Astrophysics Data System (ADS)
Yangui, A.; Pillet, S.; Mlayah, A.; Lusson, A.; Bouchez, G.; Triki, S.; Abid, Y.; Boukheddaden, K.
2015-12-01
Optical and structural properties of the organic-inorganic hybrid perovskite-type (C6H11NH3)2[PbI4] (abbreviated as C6PbI4) were investigated using optical absorption, photoluminescence (PL), and x-ray diffraction measurements. Room temperature, optical absorption measurements, performed on spin-coated films of C6PbI4, revealed two absorption bands at 2.44 and 3.21 eV. Upon 325 nm (3.815 eV) laser irradiation, strong green PL emission peaks were observed at 2.41 eV (P1) and 2.24 eV (P2) and assigned to free and localized excitons, respectively. The exciton binding energy was estimated at 356 meV. At low temperature, two additional emission bands were detected at 2.366 eV (P3) and a large band (LB) at 1.97 eV. The former appeared only below 40 K and the latter emerged below 130 K. The thermal dependence of the PL spectra revealed an abnormal behavior accompanied by singularities in the peak positions and intensities at 40 and 130 K. X-ray diffraction studies performed on powder and single crystals as a function of temperature evidenced significant changes of the interlayer spacing at 50 K and ˜138 K. Around 138 K, a commensurate to incommensurate structural phase transition occurred on cooling. It involves a symmetry breaking leading to a distortion of the PbI6 octahedron. The resulting incommensurate spatial modulation of the Pb-I distances (and Pb-I-Pb angles) causes a spatial modulation of the band gap, which is at the origin of the emergence of the LB below ˜130 K and the anomalous behavior of the position of P1 below 130 K. The change of the interlayer spacing in the 40-50 K range may in turn be related to the significant decrease of the intensity of P2 and the maximum emission of the LB. These results underline the intricate character of the structural and the PL properties of the hybrid perovskites; understanding such properties should benefit to the design of optoelectronic devices with targeted properties.
Yangui, A; Pillet, S; Mlayah, A; Lusson, A; Bouchez, G; Triki, S; Abid, Y; Boukheddaden, K
2015-12-14
Optical and structural properties of the organic-inorganic hybrid perovskite-type (C6H11NH3)2[PbI4] (abbreviated as C6PbI4) were investigated using optical absorption, photoluminescence (PL), and x-ray diffraction measurements. Room temperature, optical absorption measurements, performed on spin-coated films of C6PbI4, revealed two absorption bands at 2.44 and 3.21 eV. Upon 325 nm (3.815 eV) laser irradiation, strong green PL emission peaks were observed at 2.41 eV (P1) and 2.24 eV (P2) and assigned to free and localized excitons, respectively. The exciton binding energy was estimated at 356 meV. At low temperature, two additional emission bands were detected at 2.366 eV (P3) and a large band (LB) at 1.97 eV. The former appeared only below 40 K and the latter emerged below 130 K. The thermal dependence of the PL spectra revealed an abnormal behavior accompanied by singularities in the peak positions and intensities at 40 and 130 K. X-ray diffraction studies performed on powder and single crystals as a function of temperature evidenced significant changes of the interlayer spacing at 50 K and ∼138 K. Around 138 K, a commensurate to incommensurate structural phase transition occurred on cooling. It involves a symmetry breaking leading to a distortion of the PbI6 octahedron. The resulting incommensurate spatial modulation of the Pb-I distances (and Pb-I-Pb angles) causes a spatial modulation of the band gap, which is at the origin of the emergence of the LB below ∼130 K and the anomalous behavior of the position of P1 below 130 K. The change of the interlayer spacing in the 40-50 K range may in turn be related to the significant decrease of the intensity of P2 and the maximum emission of the LB. These results underline the intricate character of the structural and the PL properties of the hybrid perovskites; understanding such properties should benefit to the design of optoelectronic devices with targeted properties.
Cosmic Ray-Air Shower Measurement from Space
NASA Technical Reports Server (NTRS)
Takahashi, Yoshiyuki
1997-01-01
A feasibility study has been initiated to observe from space the highest energy cosmic rays above 1021 eV. A satellite observatory concept, the Maximum-energy Auger (Air)-Shower Satellite (MASS), is recently renamed as the Orbital Wide-angle Collector (OWL) by taking its unique feature of using a very wide field-of-view (FOV) optics. A huge array of imaging devices (about 10(exp 6) pixels) is required to detect and record fluorescent light profiles of cosmic ray cascades in the atmosphere. The FOV of MASS could extend to as large as about 60 in. diameter, which views (500 - 1000 km) of earth's surface and more than 300 - 1000 cosmic ray events per year could be observed above 1020 eV. From far above the atmosphere, the MASS/OWL satellite should be capable of observing events at all angles including near horizontal tracks, and would have considerable aperture for high energy photon and neutrino observation. With a large aperture and the spatial and temporal resolution, MASS could determine the energy spectrum, the mass composition, and arrival anisotropy of cosmic rays from 1020 eV to 1022 eV; a region hitherto not explored by ground-based detectors such as the Fly's Eye and air-shower arrays. MASS/OWL's ability to identify cosmic neutrinos and gamma rays may help providing evidence for the theory which attributes the above cut-off cosmic ray flux to the decay of topological defects. Very wide FOV optics system of MASS/OWL with a large array of imaging devices is applicable to observe other atmospheric phenomena including upper atmospheric lightning. The wide FOV MASS optics being developed can also improve ground-based gamma-ray observatories by allowing simultaneous observation of many gamma ray sources located at different constellations.
NASA Technical Reports Server (NTRS)
Chutjian, A.; Trajmar, S.; Cartwright, D. C.
1977-01-01
Analysis of electron energy-loss data at incident electron energies of 40 and 60 eV has led to the determination of normalized absolute differential cross sections for electron-impact excitation of five optically-allowed singlet states, two known triplet states, and two unknown triplet-like states of N2, lying in the energy-loss range 12.5-14.2 eV. The range of scattering angles was 5 to 138 deg. The optically allowed transitions and the known triplet excitations are identified. Cross sections for excitation to two unidentified triplet-like states at 13.155 and 13.395 eV were also obtained. The relationship of the generalized oscillator strength for the dipole-allowed states obtained from the described data to known optical oscillator strengths is discussed.
X-Ray Spectroscopy of Optically Bright Planets using the Chandra Observatory
NASA Technical Reports Server (NTRS)
Ford, P. G.; Elsner, R. F.
2005-01-01
Since its launch in July 1999, Chandra's Advanced CCD Imaging Spectrometer (ACIS) has observed several planets (Venus, Mars, Jupiter and Saturn) and 6 comets. At 0.5 arc-second spatial resolution, ACIS detects individual x-ray photons with good quantum efficiency (25% at 0.6 KeV) and energy resolution (20% FWHM at 0.6 KeV). However, the ACIS CCDs are also sensitive to optical and near-infrared light, which is absorbed by optical blocking filters (OBFs) that eliminate optical contamination from all but the brightest extended sources, e.g., planets. .Jupiter at opposition subseconds approx.45 arc-seconds (90 CCD pixels.) Since Chandra is incapable of tracking a moving target, the planet takes 10 - 20 kiloseconds to move across the most sensitive ACIS CCD, after which the observatory must be re-pointed. Meanwhile, the OBF covering that CCD adds an opt,ical signal equivalent to approx.110 eV to each pixel that lies within thc outline of the Jovian disk. This has three consequences: (1) the observatory must be pointed away from Jupiter while CCD bias maps are constructed; (2) most x-rays from within the optical image will be misidentified as charged-particle background and ignored; and (3) those x-rays that are reported will bc assigned anomalously high energies. The same also applies to thc other planets, but is less serious since they are either dimmer at optical wavelengths, or they show less apparent motion across the sky, permitting reduced CCD exposure times: the optical contamination from Saturn acids approx.15 eV per pixel, and from Mars and Venus approx.31 eV. After analyzing a series of short .Jupiter observations in December 2000, ACIS parameters were optimized for the February 2003 opposition. CCD bias maps were constructed while Chandra pointed away from Jupiter, and the subsequent observations employed on-board software to ignore any pixel that contained less charge than that expected from optical leakage. In addition, ACIS was commanded to report 5 x 5 arrays of pixel values surrounding each x-ray event, and the outlying values were employed during ground processing to correct for the optical contamination.
Optical and physical properties of sodium lead barium borate glasses doped with praseodymium ion
NASA Astrophysics Data System (ADS)
Lenkennavar, Susheela K.; Madhu, A.; Eraiah, B.; Kokila, M. K.
2018-05-01
Praseodymium doped sodium lead barium borate glasses have been prepared using single step melt quenching technique. The XRD spectrum confirms amorphous nature of glasses. The optical absorbance studies were carried out on these glasses using PekinElemer Lambda-35 Uv-Vis spectrometer in the range of 200 -1100 nm. The optical direct band gap energies were found to be in the range of 3.62 eV to 3.69 eV and indirect band gap energies were found to be in the range of 3.57 eV to 3.62eV. The refractive indices were measured by using Abbe refractometer the values are in the range of 1.620 to 1.625.
Study of optical and electronic properties of nickel from reflection electron energy loss spectra
NASA Astrophysics Data System (ADS)
Xu, H.; Yang, L. H.; Da, B.; Tóth, J.; Tőkési, K.; Ding, Z. J.
2017-09-01
We use the classical Monte Carlo transport model of electrons moving near the surface and inside solids to reproduce the measured reflection electron energy-loss spectroscopy (REELS) spectra. With the combination of the classical transport model and the Markov chain Monte Carlo (MCMC) sampling of oscillator parameters the so-called reverse Monte Carlo (RMC) method was developed, and used to obtain optical constants of Ni in this work. A systematic study of the electronic and optical properties of Ni has been performed in an energy loss range of 0-200 eV from the measured REELS spectra at primary energies of 1000 eV, 2000 eV and 3000 eV. The reliability of our method was tested by comparing our results with the previous data. Moreover, the accuracy of our optical data has been confirmed by applying oscillator strength-sum rule and perfect-screening-sum rule.
Chemically functionalized ZnS quantum dots as new optical nanosensor of herbicides
NASA Astrophysics Data System (ADS)
Masteri-Farahani, M.; Mahdavi, S.; Khanmohammadi, H.
2018-03-01
Surface chemical functionalization of ZnS quantum dots (ZnS-QDs) with cysteamine hydrochloride resulted in the preparation of an optical nanosensor for detection of herbicides. Characterization of the functionalized ZnS-QDs was performed with physicochemical methods such as x-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, energy dispersive x-ray (EDX) analysis, ultraviolet-visible (UV–vis) and photoluminescence (PL) spectroscopies. The optical band gap of the functionalized ZnS-QDs was determined by using Tauc plot as 4.1 eV. Addition of various herbicides resulted in the linearly fluorescence quenching of the functionalized ZnS-QDs according to the Stern-Volmer equation. The functionalized ZnS-QDs can be used as simple, rapid, and inexpensive nanosensor for practical detection and measurement of various herbicides.
Colton, J S; Erickson, S D; Smith, T J; Watt, R K
2014-04-04
Ferritin is a protein nano-cage that encapsulates minerals inside an 8 nm cavity. Previous band gap measurements on the native mineral, ferrihydrite, have reported gaps as low as 1.0 eV and as high as 2.5-3.5 eV. To resolve this discrepancy we have used optical absorption spectroscopy, a well-established technique for measuring both direct and indirect band gaps. Our studies included controls on the protein nano-cage, ferritin with the native ferrihydrite mineral, and ferritin with reconstituted ferrihydrite cores of different sizes. We report measurements of an indirect band gap for native ferritin of 2.140 ± 0.015 eV (579.7 nm), with a direct transition appearing at 3.053 ± 0.005 eV (406.1 nm). We also see evidence of a defect-related state having a binding energy of 0.220 ± 0.010 eV . Reconstituted ferrihydrite minerals of different sizes were also studied and showed band gap energies which increased with decreasing size due to quantum confinement effects. Molecules that interact with the surface of the mineral core also demonstrated a small influence following trends in ligand field theory, altering the native mineral's band gap up to 0.035 eV.
Optical properties of quasi-tetragonal BiFeO3 thin films
NASA Astrophysics Data System (ADS)
Chen, P.; Podraza, N. J.; Xu, X. S.; Melville, A.; Vlahos, E.; Gopalan, V.; Ramesh, R.; Schlom, D. G.; Musfeldt, J. L.
2010-03-01
Optical transmission spectroscopy and spectroscopic ellipsometry were used to extract the optical properties of an epitaxially grown quasi-tetragonal BiFeO3 thin film in the near infrared to near ultraviolet range. The absorption spectrum is overall blue shifted compared with that of rhombohedral BiFeO3, with an absorption onset near 2.25 eV, a direct 3.1 eV band gap, and charge transfer excitations that are ˜0.4 eV higher than those of the rhombohedral counterpart. We interpret these results in terms of structural strain and local symmetry breaking.
Large Band Gap of alpha-RuCl3 Probed by Photoemission and Inverse Photoemission Spectroscopy
NASA Astrophysics Data System (ADS)
Sinn, Soobin; Kim, Choong Hyun; Sandilands, Luke; Lee, Kyungdong; Won, Choongjae; Oh, Ji Seop; Han, Moonsup; Chang, Young Jun; Hur, Namjung; Sato, Hitoshi; Park, Byeong-Gyu; Kim, Changyoung; Kim, Hyeong-Do; Noh, Tae Won
The Kitaev honeycomb lattice model has attracted great attention because of its possibility to stabilize a quantum spin liquid ground state. Recently, it was proposed that alpha-RuCl3 is its material realization and the first 4 d relativistic Mott insulator from an optical spectrum and LDA + U + SO calculations. Here, we present photoemission and inverse photoemission spectra of alpha-RuCl3. The observed band gap is about 1.8 eV, which suggests that the previously assigned optical gap of 0.3 eV is misinterpreted, and that the strong peak at about 1.2 eV in the optical spectrum may be associated with an actual optical gap. Assuming a strong excitonic effect of 0.6 eV in the optical spectrum, all the structures except for the peak at 0.3 eV are consistent with our electronic spectra. When compared with LDA + U + SO calculations, the value of U should be considerably larger than the previous one, which implies that the spin-orbit coupling is not a necessary ingredient for the insulating mechanism of alpha-RuCl3. We also present angle-resolved photoemission spectra to be compared with LDA + U + SO and LDA +DMFT calculations.
Optical parameters of Ge15Sb5Se80 and Ge15Sb5Te80 from ellipsometric measurements
NASA Astrophysics Data System (ADS)
Abdel-Wahab, F.; Ashraf, I. M.; Alomairy, S. E.
2018-02-01
The optical properties of Ge15Sb5Se80 (GSS) and Ge15Sb5Te80 (GST) films prepared by thermal evaporation method were investigated in the photon energy range from 0.9 eV to 5 eV by using a variable-angle spectroscopic ellipsometer. Combinations of multiple Gaussian, and Tauc-Lorentz or Cody-Lorentz dispersion functions are used to fit the experimental data. The models' parameters (Lorentz oscillator amplitude, resonance energy, oscillator width, optical band gap, and Urbach energy) of both GSS and GST films were calculated. Refractive indices and extinction coefficients of the films were determined. Analysis of the absorption coefficient shows that the optical absorption edge of GSS and GST films to be 1.6 eV and 0.89 eV, respectively. Manca's relation based on mean bond energy and the bond statistics of chemically ordered model (COM) and random covalent network model (CRNM) is applied for the estimation of the optical band gap (Eg) of the investigated films. A good agreement between experimental and calculated Eg is obtained.
Optical properties of tetragonal and nanoscale BiFeO3
NASA Astrophysics Data System (ADS)
Chen, P.; Xu, X. S.; Musfeldt, J. L.; Santulli, A. C.; Koenigsmann, C.; Wong, S. S.; Podraza, N. J.; Melville, A.; Vlahos, E.; Gopalan, V.; Schlom, D. G.; Ramesh, R.
2010-03-01
We measured the optical properties of tetragonal thin film and nanoscale rhombohedral BiFeO3 in the range from near infrared to the near ultraviolet. The absorption spectrum in the tetragonal film is overall blue-shifted compared with that of the rhombohedral BiFeO3 film. It shows an absorption onset near 2.25 eV, a direct 3.1 eV band gap, and charge transfer excitations that are ˜0.4 eV higher than those of the rhombohedral counterpart. In the nanoparticles, the band gap decreases from 2.7 eV to ˜2.3 eV, and the well-known 3.2 and 4.5 eV charge transfer excitations split into multiplets. We discuss these results in terms of structural strain, surface strain, and local symmetry breaking.
Synthesis and optical property of holmium doped Lithium lead borate glasses
NASA Astrophysics Data System (ADS)
Usharani, V. L.; Eraiah, B.
2017-05-01
The new glass system 60B2O3-30PbO-(10-x)Li2O-xHo2O3 (where x =0, 0.1, 0.3 and 0.5 mol%) were prepared by conventional melt quenching method. The XRD spectrum confirms the amorphous nature of the sample. The density of these glasses is measured by using Archimedes principle, the values range from 4.23 g/cm-3 to 4.34 g/cm-3 and the corresponding molar volumes are calculated. The optical absorbance studies were carried out on these glasses in the wavelength range of 200nm to 1100nm. The measured optical direct band gap energies were in the range of 3.072eV to 3.259eV and the optical indirect band gap energies in the range of 2.658eV to 2.846eV. The refractive indices of these glasses were measured by using Abbe refractometer and the corresponding polarizabilities of oxide ions are calculated by using Lorentz-Lorentz relations.
Defect annealing in electron-irradiated boron-doped silicon
NASA Astrophysics Data System (ADS)
Awadelkarim, O. O.; Chen, W. M.; Weman, H.; Monemar, B.
1990-01-01
Defects introduced by room-temperature electron irradiation and subsequent annealing in boron-doped silicon are studied by means of deep-level transient spectroscopy, photoluminescence, and optical detection of magnetic resonance (ODMR) techniques. ODMR reveals a thermally induced paramagnetic (S=(1/2) defect center that is produced following annealing at 400 °C. The center possesses a C3v point-group symmetry with the trigonal axis along <111>. Detailed analysis of the ODMR line shapes indicates the involvement of a silicon atom in the defect center. It appears from the results that boron is either another possible defect component or an essential catalyst for the defect formation. The occurrence of the ODMR signal together with a luminescence band peaking at 0.80 eV is independent of oxygen or carbon contents in the samples. The band does not belong to the center observed by ODMR; however, a decrease in its intensity, under resonance conditions in the ODMR center, is explained in terms of carrier recombination, capture, or energy-transfer processes involving this center. Annealing studies on a metastable hole trap observed at Ev+0.12 eV (Ev being the top of the valence band) establish the trap assignment to a carbon-interstitial-carbon-substitutional pair. The introduction of postannealing traps observed at Ev+0.07 eV, Ev+0.45 eV, and Ec-0.59 eV (Ec being the conduction-band edge) is found to be boron dependent. Isothermal formation of the centers responsible for these traps are observed, and none of the traps appears to be related to either the center observed by ODMR or the 0.80-eV band.
Advanced optical systems for ultra high energy cosmic rays detection
NASA Astrophysics Data System (ADS)
Gambicorti, L.; Pace, E.; Mazzinghi, P.
2017-11-01
A new advanced optical system is proposed and analysed in this work with the purpose to improve the photons collection efficiency of Multi-AnodePhotoMultipliers (MAPMT) detectors, which will be used to cover large focal surface of instruments dedicated to the Ultra High Energy Cosmic Rays (UHECRs, above 1019eV) and Ultra High Energy Neutrino (UHEN) detection. The employment of the advanced optical system allows to focus all photons inside the sensitive area of detectors and to improve the signal-to-noise ratios in the wavelength range of interest (300-400nm), thus coupling imaging and filtering capability. Filter is realised with a multilayer coating to reach high transparency in UV range and with a sharp cut-off outside. In this work the applications on different series of PMTs have been studied and results of simulations are shown. First prototypes have been realised. Finally, this paper proposes another class of adapters to be optically coupled on each pixel of MAPMT detector selected, consisting of non-imaging concentrators as Winston cones.
NASA Astrophysics Data System (ADS)
Gingell, M.; Mason, N. J.; Walker, I. C.; Marston, G.; Zhao, H.; Siggel, M. R. F.
1999-06-01
Absolute optical (VUV) absorption cross sections for cyclopropane have been measured from 5.0 to 11.2 and 20-40 eV using synchrotron radiation. Also, electron energy-loss (EEL) spectra have been obtained using incident electrons of (a) 150 eV energy scattered through small angles (energy loss 5.0-15 eV) and (b) near-threshold energies scattered through large angles (energy loss 0-10.5 eV). Taken together these confirm that the low-lying excited electronic states of cyclopropane are of Rydberg type and, although spectral bands are diffuse, a known Rydberg series has been extended. Recent computations (Galasso V 1996 Chem. Phys. 206 289) appear to give a good account of the experimental spectrum from threshold to about 11 eV, but these must be extended if valence-excited states are to be characterized. Particular attention has been directed at the evaluation of absolute optical cross sections. These are now believed to be established over the energy ranges 5-15 and 20-40 eV. In the gap region (15-20 eV) second-order radiation may affect the optical measurements. From consideration of second-order effects, and comparison of the present studies with earlier measurements, we propose a best-estimate cross section in this energy region also.
DFT Studies of Semiconductor and Scintillator Detection Materials
NASA Astrophysics Data System (ADS)
Biswas, Koushik
2013-03-01
Efficient radiation detection technology is dependent upon the development of new semiconductor and scintillator materials with advanced capabilities. First-principles based approaches can provide vital information about the structural, electrical, optical and defect properties that will help develop new materials. In addition to the predictive power of modern density functional methods, these techniques can be used to establish trends in properties that may lead to identifying new materials with optimum properties. We will discuss the properties of materials that are of current interest both in the field of scintillators and room temperature semiconductor detectors. In case of semiconductors, binary compounds such as TlBr, InI, CdTe and recently developed ternary chalcohalide Tl6SeI4 will be discussed. Tl6SeI4 mixes a halide (TlI) with a chalcogenide (Tl2Se), which results in an intermediate band gap (1.86 eV) between that of TlI (2.75 eV) and Tl2Se (0.6 eV). For scintillators, we will discuss the case of the elpasolite compounds whose rich chemical compositions should enable the fine-tuning of the band gap and band edges to achieve high light yield and fast scintillation response.
Cryogenic scintillation properties of n-type GaAs for the direct detection of MeV/c2 dark matter
NASA Astrophysics Data System (ADS)
Derenzo, S.; Bourret, E.; Hanrahan, S.; Bizarri, G.
2018-03-01
This paper is the first report of n-type GaAs as a cryogenic scintillation radiation detector for the detection of electron recoils from interacting dark matter (DM) particles in the poorly explored MeV/c2 mass range. Seven GaAs samples from two commercial suppliers and with different silicon and boron concentrations were studied for their low temperature optical and scintillation properties. All samples are n-type even at low temperatures and exhibit emission between silicon donors and boron acceptors that peaks at 1.33 eV (930 nm). The lowest excitation band peaks at 1.44 eV (860 nm), and the overlap between the emission and excitation bands is small. The X-ray excited luminosities range from 7 to 43 photons/keV. Thermally stimulated luminescence measurements show that n-type GaAs does not accumulate metastable radiative states that could cause afterglow. Further development and use with cryogenic photodetectors promises a remarkable combination of large target size, ultra-low backgrounds, and a sensitivity to electron recoils of a few eV that would be produced by DM particles as light as a few MeV/c2.
Optical and Magnetic Resonance Studies of Na-Diffused ZnO Bulk Single Crystals
NASA Astrophysics Data System (ADS)
Glaser, E. R.; Garces, N. Y.; Parmar, N. S.; Lynn, K. G.
2013-03-01
Photoluminescence (PL) and optically-detected magnetic resonance (ODMR) at 24 GHz were performed on bulk ZnO crystals after diffusion of Na impurities that were explored as an alternate doping source for p-type conductivity. PL at 2K revealed strong bandedge excitonic recombination at 3.361 eV and a broad ``orange'' PL band at 2.17 eV with FWHM of ~0.5 eV. This ``orange'' emission is very similar to that reported previously[1] from thermoluminescence measurements of intentionally Na-doped bulk ZnO and, thus, strongly suggests the incorporation and activation of the Na-diffused impurities. ODMR performed on this ``orange'' PL revealed two signals. The first was a sharp feature with g-value of ~1.96 and is a well-known ``fingerprint'' of shallow donors in ZnO. The second signal consisted of a pair of lines with an intensity ratio of ~3:1 and with g-tensors (g∥,g⊥ ~2.008-2.029) very similar to ESR signals attributed previously[2] to holes bound to Na impurities located at the axial and non-axial Zn host lattice sites in Na-doped ZnO. Thus, the ``orange'' PL can be tentatively assigned to radiative recombination between residual shallow donors and deep Na-related hole traps.
Synthesis and optical properties of antimony oxide glasses doped with holmium trioxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raghunatha, S.; Eraiah, B., E-mail: eraiah@rediffmail.com
2016-05-06
Holmium doped lithium-antimony-lead borate glasses having 1 mol% AgNO{sub 3} with composition 50B{sub 2}O{sub 3}-20PbO-25Sb{sub 2}O{sub 3}-5Li{sub 2}O have been prepared using single step melt quenching technique. The XRD spectrum confirms amorphous nature of glasses. The optical absorbance studies were carried out on these glasses. The optical direct band gap energies were found to be in the range of 3.10 eV to 3.31 eV and indirect band gap energies were found to be in the range of 2.28 eV to 3.00 eV. The refractive indexes have been calculated by using Lorentz-Lorenz formula and the calculated values in the range ofmore » 2.31 to 2.37.« less
Effect of Se addition on optical and electrical properties of chalcogenide CdSSe thin films
NASA Astrophysics Data System (ADS)
Hassanien, A. S.; Akl, Alaa A.
2016-01-01
Compositional dependence of optical and electrical properties of chalcogenide CdSxSe1-x (0.4 ≥ x ≥ 0.0 at. %) thin films was studied. Cadmium sulphoselenide films were deposited by thermal evaporation technique at vacuum (8.2 × 10-4 Pa) onto preheated glass substrates (523 K). The evaporation rate and film thickness were kept constant at 2.50 nm/s and 375 ± 5 nm, respectively. X-ray diffractograms showed that, the deposited films have the low crystalline nature. Energy dispersive analysis by X-ray (EDAX) was used to check the compositional elements of deposited films. The absorption coefficient was determined from transmission and reflection measurements at room temperature in the wavelength range 300-2500 nm. Optical density, skin depth, optical energy gap and Urbach's parameters of CdSSe thin films have also been estimated. The direct optical energy gap decreased from 2.248 eV to 1.749 eV when the ratio of Se-content was increased from 0.60 to 1.00 . Conduction band and valance band positions were evaluated. The temperature dependence of dc-electrical resistivity in the temperature range (293-450 K) has been reported. Three conduction regions due to different conduction mechanisms were detected. Electrical sheet resistance, activation energy and pre-exponential parameters were discussed. The estimated values of optical and electrical parameters were strongly dependent upon the Se-content in CdSSe matrix.
NASA Astrophysics Data System (ADS)
Li, Hsing-Yuan; Tseng, Shing-Hua; Cheng, Tsai-Mu; Chu, Hsueh-Liang; Lu, Yu-Ning; Wang, Fang-Yu; Tsai, Li-Yun; Shieh, Juo-Yu; Yang, Jyh-Yuan; Juan, Chien-Chang; Tu, Lung-Chen; Chang, Chia-Ching
2013-07-01
Enterovirus 71 (EV71) infection is an emerging infectious disease causing neurological complications and/or death within two to three days after the development of fever and rash. A low viral titre in clinical specimens makes the detection of EV71 difficult. Conventional approaches for detecting EV71 are time consuming, poorly sensitive, or complicated, and cannot be used effectively for clinical diagnosis. Furthermore, EV71 and Coxsackie virus A16 (CA16) may cross react in conventional assays. Therefore, a rapid, highly sensitive, specific, and user-friendly test is needed. We developed an EV71-specific nanogold-modified working electrode for electrochemical impedance spectroscopy in the detection of EV71. Our results show that EV71 can be distinguished from CA16, Herpes simplex virus, and lysozyme, with the modified nanogold electrode being able to detect EV71 in concentrations as low as 1 copy number/50 μl reaction volume, and the duration between sample preparation and detection being 11 min. This detection platform may have the potential for use in point-of-care diagnostics.
Effects of excess oxygen on the 4.5-6.3 eV absorption spectra of oxygen-rich high purity silica
NASA Astrophysics Data System (ADS)
Magruder, R. H.; Robinson, S. J.
2016-05-01
Type III silica samples were implanted with O using a multi-energy process that produced a layer of constant concentration to within ±5% beginning ∼80 nm from the surface and extending to ∼640 nm below the surfaces of the samples. The concentrations of excess oxygen in the layer ranged from 0.035 to ∼2.1at.%. In these samples we show that E‧ centers and NBOHCs, as well as the normal cadre of ODC (II) centers, were suppressed, and the optical absorption from 4.7 to 6.4 eV was primarily due to oxygen excess defects. Using Gaussian fitting techniques to examine the optical difference spectra, we have been able to identify four defect centers that are related to excess oxygen defect bands at 4.76 eV, 5.42 eV, 5.75 eV and 6.25 eV.
The Swift/Fermi GRB 080928 from 1 eV to 150 keV
NASA Technical Reports Server (NTRS)
Sonbas, Eda; Rossi, A.; Schulze, S.; Klose, S.; Kann, D. A.; Ferrero, P.; NicuesaGuelbenzu, A.; Rau, A.; Kruehler, T.; Greiner, J.;
2010-01-01
We present the results of a comprehensive study of the Gamma-Ray Burst 080928 and of its afterglow. GRB 08092 was a long burst detected by Swift/BAT and Fermi/GBM, It is one of the exceptional cases where optical emission was already detected when the GRB itself was still radiating in the gamma-ray band. for nearly 100 seconds simultaneous optical X-ray and gamma-ray data provide a coverage of the spectral energy distribution of the transient source from about 1 eV to 150 keV. Here we analyze the prompt emission, constrain its spectral propertIes. and set lower limits on the initial Lorentz factor of the relativistic outflow, In particular. we show that the SED during the main prompt emission phase is in agreement with synchrotron radiation. We construct the optical/near-infrared light curve and the spectral energy distribution based on Swift/UVOT. ROTSE-Illa (Australia) and GROND (La Silla) data and compare it to the X-ray light curve retrieved from the Swift/XRT repository. We show that its bumpy shape can be modeled by multiple energy injections into the forward shock. Furthermore, we provide evidence that the temporal and spectral evolution of the first strong flare seen in the early X-ray light curve can be explained by large-angle emission. Finally, we report on the results of our search for the GRB host galaxy, for which only a deep upper limit can be provided.
Anhydrous crystals of DNA bases are wide gap semiconductors.
Maia, F F; Freire, V N; Caetano, E W S; Azevedo, D L; Sales, F A M; Albuquerque, E L
2011-05-07
We present the structural, electronic, and optical properties of anhydrous crystals of DNA nucleobases (guanine, adenine, cytosine, and thymine) found after DFT (Density Functional Theory) calculations within the local density approximation, as well as experimental measurements of optical absorption for powders of these crystals. Guanine and cytosine (adenine and thymine) anhydrous crystals are predicted from the DFT simulations to be direct (indirect) band gap semiconductors, with values 2.68 eV and 3.30 eV (2.83 eV and 3.22 eV), respectively, while the experimentally estimated band gaps we have measured are 3.83 eV and 3.84 eV (3.89 eV and 4.07 eV), in the same order. The electronic effective masses we have obtained at band extremes show that, at low temperatures, these crystals behave like wide gap semiconductors for electrons moving along the nucleobases stacking direction, while the hole transport are somewhat limited. Lastly, the calculated electronic dielectric functions of DNA nucleobases crystals in the parallel and perpendicular directions to the stacking planes exhibit a high degree of anisotropy (except cytosine), in agreement with published experimental results.
Optical properties of InN thin films
NASA Astrophysics Data System (ADS)
Malakhov, Vladislav Y.
2000-04-01
The basic optical properties of low temperature plasma enhanced chemical reactionary sputtered (PECRS) InN thin films are presented. Optical absorption and reflectance spectra of InN polycrystalline films at room temperature in visible and near infrared (NIR) regions were taken to determine direct band gap energy (2.03 eV), electron plasma resonances energy (0.6 eV), damping constant (0.18 eV), and optical effective mass of electrons (0.11). In addition the UV and visible reflectance spectra have been used to reproduce accurately dielectric function of wurtzite InN for assignments of the peak structures to interband transitions (1.5 - 12.0 eV) as well as to determine dielectric constant (9.3) and refractive index (>3.0). The revealed reflectance peaks at 485 and 590 cm-1 respectively in IR spectra are connected with TO and LO optical vibration modes of InN films. Some TO (485 cm-1) and LO (585 cm-1) phonon features of indium nitride polycrystalline films on ceramics were observed in Raman spectra and also discussed. The excellent possibilities of InN polycrystalline layers for potential application in optoelectronic devices such as LEDs based InGaAlN and high efficiency solar cells are confirmed.
NASA Astrophysics Data System (ADS)
Ismail, Raid A.; Khashan, Khawla S.; Jawad, Muslim F.; Mousa, Ali M.; Mahdi, Farah
2018-05-01
In this study, low cost ZnO/Si and ZnO/MgO/Si heterojunction (HJ) photodetectors were fabricated using laser ablation and spray Pyrolysis techniques. MgO nanofibers were synthesized by laser ablation of Mg target in distilled water. Also; the ZnO films were prepared by spray pyrolysis technique. The optical and structural properties of nanostructured MgO were investigated using XRD, SEM and FT-IR. The XRD results showed that the MgO was polycrystalline with cubic structure. SEM investigation confirmed the formation of MgO nanofibers and sub-microparticles. The optical energy gaps of MgO and ZnO were calculated and found to be 5.7 eV and 3.3 eV, respectively. For the electrical properties; responsivity, quantum efficiency, specific detectivity, and speed of response of the photodetector were measured and found to enhance after the insertion of nanostructured MgO film. The Photoresponse results at 3 V reverse bias showed that the maximum responsivity of ZnO/Si and ZnO/MgO/Si photodetectors were 185 and 331 mAW‑1 at 500 nm, respectively. The specific detectivity of ZnO/MgO/Si Photodetector was higher than that of ZnO/Si.
NASA Astrophysics Data System (ADS)
Johansson, Malin B.; Baldissera, Gustavo; Valyukh, Iryna; Persson, Clas; Arwin, Hans; Niklasson, Gunnar A.; Österlund, Lars
2013-05-01
The optical and electronic properties of nanocrystalline WO3 thin films prepared by reactive dc magnetron sputtering at different total pressures (Ptot) were studied by optical spectroscopy and density functional theory (DFT) calculations. Monoclinic films prepared at low Ptot show absorption in the near infrared due to polarons, which is attributed to a strained film structure. Analysis of the optical data yields band-gap energies Eg ≈ 3.1 eV, which increase with increasing Ptot by 0.1 eV, and correlate with the structural modifications of the films. The electronic structures of triclinic δ-WO3, and monoclinic γ- and ε-WO3 were calculated using the Green function with screened Coulomb interaction (GW approach), and the local density approximation. The δ-WO3 and γ-WO3 phases are found to have very similar electronic properties, with weak dispersion of the valence and conduction bands, consistent with a direct band-gap. Analysis of the joint density of states shows that the optical absorption around the band edge is composed of contributions from forbidden transitions (>3 eV) and allowed transitions (>3.8 eV). The calculations show that Eg in ε-WO3 is higher than in the δ-WO3 and γ-WO3 phases, which provides an explanation for the Ptot dependence of the optical data.
NASA Astrophysics Data System (ADS)
Wang, Fang-Yu; Li, Hsing-Yuan; Tseng, Shing-Hua; Cheng, Tsai-Mu; Chu, Hsueh-Liang; Yang, Jyh-Yuan; Chang, Chia-Ching
2013-03-01
Enterovirus 71 (EV71), which is the most fulminant and invasive species of enterovirus, can cause children neurologic complications and death within 2-3 days after fever and rash developed. Besides, EV71 has high sequence similarity with Coxsackie A 16 (CA16) that makes differential diagnosis difficult in clinic and laboratory. Since conventional viral diagnostic method cannot diagnose EV71 quickly and EV71 can transmit at low viral titer, the patients might delay in treatment. A quick, high sensitive, and high specific test for EV71 detection is pivotal. Electrochemical impedance spectroscopy (EIS) has been applied for detecting bio-molecules as biosensors recently. In this study, we try to build a detection platform for EV71 detection by nanogold modified EIS probe. The result shows that our probe can detect 3.6 VP1/50 μl (one EV71 particle has 60 VP1) in 3 minutes. The test can also distinguish EV71 from CA16 and lysozyme. Diagnosis of enterovirus 71 by electrochemical impedance spectroscopy has the potential to apply in clinic.
Optical performance of W/B4C multilayer mirror in the soft x-ray region
NASA Astrophysics Data System (ADS)
Pradhan, P. C.; Majhi, A.; Nayak, M.
2018-03-01
W/B4C x-ray multilayers (MLs) with 300 layer pairs and a period in the range of d = 2-1.6 nm are fabricated and investigated for the x-ray optical element in the soft x-ray regime. The structural analyses of the MLs are carried out by using hard x-ray reflectivity (HXR) measurements at 8.047 keV. Well-defined successive higher order Bragg peaks (up to 3rd order) in HXR data collected up to glancing incidence angles of ˜9° reveal a good quality of the periodic structure. The ML mirrors have an average interface width of ˜0.35 nm and have a compressive residual stress of ˜0.183 GPa and 0. 827 GPa for d = 1.62 nm and d = 1.98 nm, respectively. MLs maintain structural stability over a long time, with a slight increase in interface widths of the W layers by 0.1 nm due to self-diffusion. Soft x-ray reflectivity (SXR) performances are evaluated in the energy range of 650 to 1500 eV. At energy ˜ 1489 eV, measured reflectivities (energy resolution, ΔE) are ˜ 10% (19 eV) and 4.5% (13 eV) at glancing incident angles of 12.07° and 15° for MLs having periods of 1.98 nm and 1.62 nm, respectively. The optical performance from 1600 eV to 4500 eV is theoretically analysed by considering the measured structural parameters. The structure-stress-optical performance is correlated on the basis of the mechanism of film growth. The implications of W/B4C MLs are discussed, particularly with respect to the development of ML optics with high spectral selectivity and reflectance for soft x-ray instruments.
Plasmons in cuprate superconductors
NASA Astrophysics Data System (ADS)
Bozovic, Ivan
1990-08-01
The customary way of determining the complex dielectric constant from the measured reflectance spectra suffers from large uncertainties because of the extrapolations required for the Kramers-Kronig transformation. To avoid these, a method is introduced in which reflectance and ellipsometric data on single crystals and epitaxial films are combined. Utilizing this approach, the spectral functions of YBa2Cu3O7 (Y-Ba-Cu-O) and Bi2Sr2CaCu2O8 (Bi-Sr-Ca-Cu-O) are determined with substantially improved accuracy. This enables the unambiguous identification of optic plasmons at 1.4 eV in Y-Ba-Cu-O and at 1.1 eV in Bi-Sr-Ca-Cu-O. No other low-lying optic plasmons are detected, which likely rules out most plasmon-mediated superconductivity models. Next, the bare plasma frequency is found to be ħωp=3.2+/-0.3 eV in Y-Ba-Cu-O and ħωp=2.4+/-0.3 eV in Bi-Sr-Ca-Cu-O. These values support ascribing the strong infrared absorption to charge carriers which, however, are not free-electron-like, but rather show characteristic polaronic behavior. Finally, in both Y-Ba-Cu-O and Bi-Sr-Ca-Cu-O, it is found that Im(-1/ɛ)=βω2 for small ω, and this law is conjectured to be universal for all layered cuprate superconductors. It is again not Drude-like; it may be compatible with the layered electron-gas model. The latter implies existence of a broad band of acoustic plasmon branches.
Ultraviolet detection using TiO2 nanowire array with Ag Schottky contact
NASA Astrophysics Data System (ADS)
Chinnamuthu, P.; Dhar, J. C.; Mondal, A.; Bhattacharyya, A.; Singh, N. K.
2012-04-01
The glancing angle deposition technique has been employed to synthesize TiO2 nanowire (NW) arrays which have been characterized by x-ray diffraction, field emission-scanning electron microscopy and high resolution transmission electron microscopy. Optical absorption measurements show the absorption edge at 3.42 eV and 3.48 eV for TiO2 thin film (TF) and NW, respectively. The blue shift in absorption band is attributed to quantum confinement in NW structures. Photoluminescence measurement revealed oxygen-defect-related emission at 425 nm (˜2.9 eV). Ag/TiO2 (NW) and Ag/TiO2 (TF) contacts exhibit Schottky behaviour, and a higher turn-on voltage (˜6.5 V) was observed for NW devices than that of TF devices (˜5.25 V) under dark condition. In addition, TiO2-NW-based devices show twofold improvement in photodetection efficiency in the UV region, compared with TiO2-TF-based devices.
Hwang, Seoyeon; Kang, Byunghak; Hong, Jiyoung; Kim, Ahyoun; Kim, Hyejin; Kim, Kisang; Cheon, Doo-Sung
2013-07-01
Human enterovirus (EV) 71 is the main etiological agent of hand, foot, and mouth disease (HFMD). It is associated with neurological complications, and caused fatalities during recent outbreaks in the Asia-Pacific region. Infections caused by EV71 could lead to many complications, ranging from brainstem encephalitis to pulmonary oedema, resulting in high mortality. In this study, a duplex real-time RT-PCR assay was developed in order to simultaneously detect pan-EV and EV71. EV71-specific primers and probes were designed based on the highly conserved VP1 region of EV71. Five EV71 strains were detected as positive, and no positive fluorescence signal was observed in the duplex real-time RT-PCR for other viral RNA, which showed 100% specificity for the selected panel, and no cross-reactions were observed in this duplex real-time RT-PCR. The EV71-specific duplex real-time RT-PCR was more sensitive than conventional RT-PCR, and detected viral titers that were 10-fold lower than those measured by the latter. Of the 381 HFMD clinical specimens, 196 (51.4%) cases were pan-EV-positive, of which 170 (86.7%) were EV71-positive when tested by pan-EV and EV71-specific duplex real-time RT-PCR. EV71-specific duplex real-time RT-PCR offers a rapid and sensitive method to detect EV71 from clinical specimens, and will allow quarantine measures to be taken more effectively during outbreaks. Copyright © 2013 Wiley Periodicals, Inc.
Effect of γ-radiation on the optical properties of soda-lime-silicate glasses
NASA Astrophysics Data System (ADS)
Vanina, E. A.; Chibisova, M. A.; Chibisov, A. N.
2007-11-01
We have studied the effect of γ-radiation on the optical constants of soda-lime-silicate glasses. As the irradiation dose grows in the interval from 3.7 to 3.7 × 101 Gy, the refractive index n increases, while the optical bandgap width decreases (from 3.13 to 3.05 3.09 eV); upon irradiation to a dose of 3.7 × 102 Gy, the refractive index n drops, while the optical bandgap width E g increases up to 3.23 eV.
Severe paediatric conditions linked with EV-A71 and EV-D68, France, May to October 2016
Antona, Denise; Kossorotoff, Manoëlle; Schuffenecker, Isabelle; Mirand, Audrey; Leruez-Ville, Marianne; Bassi, Clément; Aubart, Mélodie; Moulin, Florence; Lévy-Bruhl, Daniel; Henquell, Cécile; Lina, Bruno; Desguerre, Isabelle
2016-01-01
We report 59 cases of severe paediatric conditions linked with enterovirus (EV)-A71 and EV-D68 in France between May and October 2016. Fifty-two children had severe neurological symptoms. EV sequence-based typing for 42 cases revealed EV-A71 in 21 (18 subgenotype C1, detected for the first time in France) and EV-D68 in eight. Clinicians should be encouraged to obtain stool and respiratory specimens from patients presenting with severe neurological disorders for EV detection and characterisation. PMID:27918268
Optical evidence of strong coupling between valence-band holes and d -localized spins in Zn1-xMnxO
NASA Astrophysics Data System (ADS)
Sokolov, V. I.; Druzhinin, A. V.; Gruzdev, N. B.; Dejneka, A.; Churpita, O.; Hubicka, Z.; Jastrabik, L.; Trepakov, V.
2010-04-01
We report on optical-absorption study of Zn1-xMnxO (x=0-0.06) films on fused silica substrates taking special attention to the spectral range of the fundamental absorption edge (3.1-4 eV). Well-pronounced excitonic lines observed in the region 3.40-3.45 eV were found to shift to higher energies with increasing Mn concentration. The optical band-gap energy increases with x too, reliably evidencing strong coupling between oxygen holes and localized spins of manganese ions. In the 3.1-3.3 eV region the optical-absorption curve in the manganese-contained films was found to shift to lower energies with respect to that for undoped ZnO. The additional absorption observed in this range is interpreted as a result of splitting of a localized Zhang-Rice-type state into the band gap.
NASA Astrophysics Data System (ADS)
Kunii, Toshie; Yoshida, Norimitsu; Hori, Yasuro; Nonomura, Shuichi
2006-05-01
A resonant photothermal bending spectroscopy (PBS) is demonstrated for the measurement of absorption coefficient spectra in hydrogenated microcrystalline silicon (μc-Si:H) and hydrogenated microcrystalline cubic silicon carbide (μc-3C-SiC:H) films. The resonant vibration technique utilized in PBS establishes the sensitivity as α d˜ 5× 10-5 in a vacuum measurement. Appling resonant PBS to μc-Si:H films, a new extra absorption coefficient αex spectrum is observed from 0.6 to 1.2 eV. The αex spectrum has a peak at ˜1.0 eV, and the localized states inducing the αex are located ˜0.35 eV below the conduction band edge of μc-Si:H. A possible explanation for the observed localized state is that an oxidation produces weak bonds at the grain boundaries and/or amorphous silicon tissues. In μc-3C-SiC:H film, an optical band-gap energy of ˜2.2 eV was demonstrated assuming an indirect optical transition. The temperature coefficient of the optical band-gap energy was ˜2.3× 10-4 eV K-1. The αex spectrum of μc-3C-SiC:H film is plateau-shaped and its magnitude is in accord with an increase in grain size.
Luminescence of Co1-xZnxO solid solutions during interband excitation
NASA Astrophysics Data System (ADS)
Gruzdev, N. B.; Sokolov, V. I.; Pustovarov, V. A.; Churmanov, V. N.
2015-03-01
A discussion of the photoluminescence (PL) and photoluminescence excitation (PLE) spectra of CoO, and the solid solution Co0.7Zn0.3O. At low temperatures, the spectra were detected using synchrotron radiation as a source of excitation. The PL and PLE spectra of CoO are more intense than the Co0.7Zn0.3O spectra. It is shown that in the 7.5-10.5 eV energy range, the PLE spectrum of Co0.7Zn0.3O is more intense than the spectrum in the 3.7-6.5 eV region. This could be caused by sufficiently intense optical p-s transitions from the valence zone to the conduction zone, formed by the 4s states of zinc.
NASA Astrophysics Data System (ADS)
Attia, A. A.; Saadeldin, M. M.; Soliman, H. S.; Gadallah, A.-S.; Sawaby, K.
2016-12-01
Para-quaterpheny1 (p-4pheny1) thin films were deposited by the thermal evaporation method on glass/quartz substrates for structural and optical investigations. The XRD of p-4phenyl thin films showed that the as-deposited films have a monoclinic structure. The surface morphology of p-4phenyl thin film was studied using scanning electron microscope. The absorption spectrum of p-4phenyl thin film recorded in the wavelength range 200-2500 nm. Photoluminescence measurements revealed two emission peaks at 435 and 444 nm using N2-laser (337.8 nm). The energy gap obtained from the absorption and photoluminescence data was found to be 2.87 and 2.74 eV respectively with Stokes shift value of 0.13 eV. The current-voltage characteristics of p-4phenyl/p-Si heterojunction have been recorded in the dark and under illumination of laser (337.8 nm). Responsivity, Detectivity, External quantum efficiency and Response speed of (Au/p-4pheny1/p-Si/Al) photodetector have been determined using different laser sources at -1 V bias.
UV-active plasmons in alkali and alkaline-earth intercalated graphene
NASA Astrophysics Data System (ADS)
Despoja, V.; Marušić, L.
2018-05-01
The interband π and π +σ plasmons in pristine graphene and the Dirac plasmon in doped graphene are not applicable, since they are broad or weak, and weakly couple to an external longitudinal or electromagnetic probe. Therefore, the ab initio density functional theory is used to demonstrate that the chemical doping of the graphene by the alkali or alkaline-earth atoms dramatically changes the poor graphene excitation spectrum in the ultraviolet frequency range (4-10 eV). Four prominent modes are detected. Two of them are the intralayer plasmons with square-root dispersion, characteristic of the two-dimensional modes. The remaining two are the interlayer plasmons, very strong in the long-wavelength limit but damped for larger wave vectors. The optical absorption calculations show that the interlayer plasmons are both optically active, which makes these materials suitable for small-organic-molecule sensing. This is particularly intriguing because the optically active two-dimensional plasmons have not been detected in other materials.
Severe paediatric conditions linked with EV-A71 and EV-D68, France, May to October 2016.
Antona, Denise; Kossorotoff, Manoëlle; Schuffenecker, Isabelle; Mirand, Audrey; Leruez-Ville, Marianne; Bassi, Clément; Aubart, Mélodie; Moulin, Florence; Lévy-Bruhl, Daniel; Henquell, Cécile; Lina, Bruno; Desguerre, Isabelle
2016-11-17
We report 59 cases of severe paediatric conditions linked with enterovirus (EV)-A71 and EV-D68 in France between May and October 2016. Fifty-two children had severe neurological symptoms. EV sequence-based typing for 42 cases revealed EV-A71 in 21 (18 subgenotype C1, detected for the first time in France) and EV-D68 in eight. Clinicians should be encouraged to obtain stool and respiratory specimens from patients presenting with severe neurological disorders for EV detection and characterisation. This article is copyright of The Authors, 2016.
Optical absorption of zigzag single walled boron nitride nanotubes
NASA Astrophysics Data System (ADS)
Moradian, Rostam; Chegel, Raad; Behzad, Somayeh
2010-11-01
In a realistic three-dimensional model, optical matrix element and linear optical absorption of zigzag single walled boron nitride nanotubes (BNNTs) in the tight binding approximation are studied. In terms of absolute value of dipole matrix elements of the first three direct transitions at kz=0, we divided the zigzag BNNTs into three groups and investigated their optical absorption spectrum in energy ranges E<5, 7
Arraud, Nicolas; Gounou, Céline; Turpin, Delphine; Brisson, Alain R
2016-02-01
Plasma contains cell-derived extracellular vesicles (EVs) which participate in various physiopathological processes and have potential biomedical applications. Despite intense research activity, knowledge on EVs is limited mainly due to the difficulty of isolating and characterizing sub-micrometer particles like EVs. We have recently reported that a simple flow cytometry (FCM) approach based on triggering the detection on a fluorescence signal enabled the detection of 50× more Annexin-A5 binding EVs (Anx5+ EVs) in plasma than the conventional FCM approach based on light scattering triggering. Here, we present the application of the fluorescence triggering approach to the enumeration and phenotyping of EVs from platelet free plasma (PFP), focusing on CD41+ and CD235a+ EVs, as well as their sub-populations which bind or do not bind Anx5. Higher EV concentrations were detected by fluorescence triggering as compared to light scattering triggering, namely 40× for Anx5+ EVs, 75× for CD41+ EVs, and 15× for CD235a+ EVs. We found that about 30% of Anx5+ EVs were of platelet origin while only 3% of them were of erythrocyte origin. In addition, a majority of EVs from platelet and erythrocyte origin do not expose PS, in contrast to the classical theory of EV formation. Furthermore, the same PFP samples were analyzed fresh and after freeze-thawing, showing that freeze-thawing processes induce an increase, of about 35%, in the amount of Anx5+ EVs, while the other EV phenotypes remain unchanged. The method of EV detection and phenotyping by fluorescence triggering is simple, sensitive and reliable. We foresee that its application to EV studies will improve our understanding on the formation mechanisms and functions of EVs in health and disease and help the development of EV-based biomarkers. © 2015 International Society for Advancement of Cytometry.
Ohodnicki, Jr., Paul R; Wang, Congjun; Andio, Mark A
2014-01-28
The disclosure relates to a method of detecting a change in a chemical composition by contacting a doped oxide material with a monitored stream, illuminating the doped oxide material with incident light, collecting exiting light, monitoring an optical signal based on a comparison of the incident light and the exiting light, and detecting a shift in the optical signal. The doped metal oxide has a carrier concentration of at least 10.sup.18/cm.sup.3, a bandgap of at least 2 eV, and an electronic conductivity of at least 10.sup.1 S/cm, where parameters are specified at a temperature of 25.degree. C. The optical response of the doped oxide materials results from the high carrier concentration of the doped metal oxide, and the resulting impact of changing gas atmospheres on that relatively high carrier concentration. These changes in effective carrier densities of conducting metal oxide nanoparticles are postulated to be responsible for the change in measured optical absorption associated with free carriers. Exemplary doped metal oxides include but are not limited to Al-doped ZnO, Sn-doped In.sub.2O.sub.3, Nb-doped TiO.sub.2, and F-doped SnO.sub.2.
Saeed, Saba; Buters, Frank; Dohnalova, Katerina; Wosinski, Lech; Gregorkiewicz, Tom
2014-10-10
We present a structural and optical study of solid-state dispersions of Ge nanocrystals prepared by plasma-enhanced chemical vapor deposition. Structural analysis shows the presence of nanocrystalline germanium inclusions embedded in an amorphous matrix of Si-rich SiO(2).Optical characterization reveals two prominent emission bands centered around 2.6 eV and 3.4 eV, and tunable by excitation energy. In addition, the lower energy band shows an excitation power-dependent blue shift of up to 0.3 eV. Decay dynamics of the observed emission contains fast (nanosecond) and slow (microseconds) components, indicating contributions of several relaxation channels. Based on these material characteristics, a possible microscopic origin of the individual emission bands is discussed.
Van Dung, Nguyen; Anh, Pham Hong; Van Cuong, Nguyen; Hoa, Ngo Thi; Carrique-Mas, Juan; Hien, Vo Be; Sharp, C.; Rabaa, M.; Berto, A.; Campbell, James; Baker, Stephen; Farrar, Jeremy; Woolhouse, Mark E.; Bryant, Juliet E.; Simmonds, Peter
2016-01-01
A recent survey of pigs in Dong Thap province, Vietnam identified a high frequency of enterovirus species G (EV-G) infection (144/198; 72.7 %). Amongst these was a plethora of EV-G types (EV-G1, EV-G6 and four new types EV-G8–EV-G11). To better characterize the genetic diversity of EV-G and investigate the possible existence of further circulating types, we performed a larger-scale study on 484 pig and 45 farm-bred boar faecal samples collected in 2012 and 2014, respectively. All samples from the previous and current studies were also screened for kobuviruses. The overall EV infection frequency remained extremely high (395/484; 81.6 %), but with comparable detection rates and viral loads between healthy and diarrhoeic pigs; this contrasted with less frequent detection of EV-G in boars (4/45; 8.9 %). EV was most frequently detected in pigs ≤ 14 weeks old (∼95 %) and declined in older pigs. Infections with EV-G1 and EV-G6 were most frequent, whilst less commonly detected types included EV-G3, EV-G4 and EV-G8–EV-G11, and five new types (EV-G12–EV-G16). In contrast, kobuvirus infection frequency was significantly higher in diarrhoeic pigs (40.9 versus 27.6 %; P = 0.01). Kobuviruses also showed contrasting epizootiologies and age associations; a higher prevalence was found in boars (42 %) compared with domestic pigs (29 %), with the highest infection frequency amongst pigs >52 weeks old. Although genetically diverse, all kobuviruses identified belonged to the species Aichivirus C. In summary, this study confirms infection with EV-G was endemic in Vietnamese domestic pigs and exhibits high genetic diversity and extensive inter-type recombination. PMID:26653281
Tsalu, Philippe Vuka; Kim, Geun Wan; Hong, Jong Wook; Ha, Ji Won
2018-06-22
The most polarizable localized surface plasmon resonance (LSPR) longitudinal mode of anisotropic metallic nanoparticles, such as gold bipyramids (AuBPs), is of high prominence. This optical response has tremendous applications from spectroscopy to photonics and energy devices to sensing. In conventional LSPR-based sensing, broadening and asymmetry in peaks due to chemical and instrument noise hinder obtaining a precise insight on shift positions, accordingly limiting the effectiveness and impact of LSPR sensors. Further, when investigating LSPR properties, utilizing more simplistic frequency dependent dielectric-type models can aberrantly impact the reliability of fundamental properties used for designing and fabricating efficient optical devices. For instance, more approximations can effectively limit screening intra-band and inter-band (IB) electronic transition contributions and other related optical properties. With an aim to find alternative methods to further improve their efficiency, as a first report, we devoted a particular focus on LSPR scattering inflection points (IFs) of single AuBPs. The findings reveal that tracking LSPR IFs exhibit high sensitivity over their counterpart LSPR peak shift locations. In addition, we newly detected IB transition contributions near the resonance energy in the range (1.50 eV-2.00 eV) dominated by intra-band transitions. A small increase in the local RI effectively enhances the LSPR quality factor due to IB transitions. Therefore, while neglecting IB transitions in the range below 2.4 eV can work for local air refractive index (RI), in high local RI media it can be aberrantly underestimated. Demonstrated by the use of the dielectric function based on Kramers-Kronig consistent Lorentz oscillators, our findings are in good agreement with the enhancing RI sensitivity effect. The results of this investigation support the idea that tracking curvature changes of an optical signal can be effectively used for LSPR longitudinal peak RI sensing as well as damping in the local RI environment of a single AuBP.
Enterovirus D68 detection in respiratory specimens: Association with severe disease.
Engelmann, Ilka; Fatoux, Marie; Lazrek, Mouna; Alidjinou, Enagnon K; Mirand, Audrey; Henquell, Cécile; Dewilde, Anny; Hober, Didier
2017-07-01
Molecular techniques increased the number of documented respiratory infections. In a substantial number of cases the causative agent remains undetected. Since August 2014, an increase in Enterovirus(EV)-D68 infections was reported. We aimed to investigate epidemiology and clinical relevance of EV-D68. From June to December 2014 and from September to December 2015, 803 and 847 respiratory specimens, respectively, were tested for respiratory viruses with a multiplex RT-PCR. This multiplex RT-PCR does not detect EV-D68. Therefore, 457 (2014) and 343 (2015) specimens with negative results were submitted to an EV-specific-RT-PCR. EV-positive specimens were tested with an EV-D68-specific-RT-PCR and genotyped. Eleven specimens of 2014 tested positive in the EV-specific-RT-PCR and of these seven were positive in the EV-D68-specific-RT-PCR. Typing confirmed these as EV-D68. Median age of EV-D68-positive patients was 3 years (1 month-91 years). Common symptoms included fever (n = 6, 86%), respiratory distress (n = 5, 71%), and cough (n = 4, 57%). All EV-D68-positive patients were admitted to hospital, 4 (57%) were admitted to intensive care units and 6 (86%) received oxygen. One patient suffered from acute flaccid paralysis. Seven specimens of 2015 were positive in the EV-specific-RT-PCR but negative in the EV-D68-specific-RT-PCR. In conclusion, use of an EV-specific-RT-PCR allowed us to detect EV-D68 circulation in autumn 2014 that was not detected by the multiplex RT-PCR and was associated with severe disease. © 2017 Wiley Periodicals, Inc.
Franquesa, Marcella; Hoogduijn, Martin J.; Ripoll, Elia; Luk, Franka; Salih, Mahdi; Betjes, Michiel G. H.; Torras, Juan; Baan, Carla C.; Grinyó, Josep M.; Merino, Ana Maria
2014-01-01
The research field on extracellular vesicles (EV) has rapidly expanded in recent years due to the therapeutic potential of EV. Adipose tissue human mesenchymal stem cells (ASC) may be a suitable source for therapeutic EV. A major limitation in the field is the lack of standardization of the challenging techniques to isolate and characterize EV. The aim of our study was to incorporate new controls for the detection and quantification of EV derived from ASC and to analyze the applicability and limitations of the available techniques. ASC were cultured in medium supplemented with 5% of vesicles-free fetal bovine serum. The EV were isolated from conditioned medium by differential centrifugation with size filtration (0.2 μm). As a control, non-conditioned culture medium was used (control medium). To detect EV, electron microscopy, conventional flow cytometry, and western blot were used. The quantification of the EV was by total protein quantification, ExoELISA immunoassay, and Nanosight. Cytokines and growth factors in the EV samples were measured by multiplex bead array kit. The EV were detected by electron microscope. Total protein measurement was not useful to quantify EV as the control medium showed similar protein contents as the EV samples. The ExoELISA kits had technical troubles and it was not possible to quantify the concentration of exosomes in the samples. The use of Nanosight enabled quantification and size determination of the EV. It is, however, not possible to distinguish protein aggregates from EV with this method. The technologies for quantification and characterization of the EV need to be improved. In addition, we detected protein contaminants in the EV samples, which make it difficult to determine the real effect of EV in experimental models. It will be crucial in the future to optimize design novel methods for purification and characterization of EV. PMID:25374572
Wiklander, Oscar P. B.; Bostancioglu, R. Beklem; Welsh, Joshua A.; Zickler, Antje M.; Murke, Florian; Corso, Giulia; Felldin, Ulrika; Hagey, Daniel W.; Evertsson, Björn; Liang, Xiu-Ming; Gustafsson, Manuela O.; Mohammad, Dara K.; Wiek, Constanze; Hanenberg, Helmut; Bremer, Michel; Gupta, Dhanu; Björnstedt, Mikael; Giebel, Bernd; Nordin, Joel Z.; Jones, Jennifer C.; EL Andaloussi, Samir; Görgens, André
2018-01-01
Extracellular vesicles (EVs) can be harvested from cell culture supernatants and from all body fluids. EVs can be conceptually classified based on their size and biogenesis as exosomes and microvesicles. Nowadays, it is however commonly accepted in the field that there is a much higher degree of heterogeneity within these two subgroups than previously thought. For instance, the surface marker profile of EVs is likely dependent on the cell source, the cell’s activation status, and multiple other parameters. Within recent years, several new methods and assays to study EV heterogeneity in terms of surface markers have been described; most of them are being based on flow cytometry. Unfortunately, such methods generally require dedicated instrumentation, are time-consuming and demand extensive operator expertise for sample preparation, acquisition, and data analysis. In this study, we have systematically evaluated and explored the use of a multiplex bead-based flow cytometric assay which is compatible with most standard flow cytometers and facilitates a robust semi-quantitative detection of 37 different potential EV surface markers in one sample simultaneously. First, assay variability, sample stability over time, and dynamic range were assessed together with the limitations of this assay in terms of EV input quantity required for detection of differently abundant surface markers. Next, the potential effects of EV origin, sample preparation, and quality of the EV sample on the assay were evaluated. The findings indicate that this multiplex bead-based assay is generally suitable to detect, quantify, and compare EV surface signatures in various sample types, including unprocessed cell culture supernatants, cell culture-derived EVs isolated by different methods, and biological fluids. Furthermore, the use and limitations of this assay to assess heterogeneities in EV surface signatures was explored by combining different sets of detection antibodies in EV samples derived from different cell lines and subsets of rare cells. Taken together, this validated multiplex bead-based flow cytometric assay allows robust, sensitive, and reproducible detection of EV surface marker expression in various sample types in a semi-quantitative way and will be highly valuable for many researchers in the EV field in different experimental contexts.
Wiklander, Oscar P B; Bostancioglu, R Beklem; Welsh, Joshua A; Zickler, Antje M; Murke, Florian; Corso, Giulia; Felldin, Ulrika; Hagey, Daniel W; Evertsson, Björn; Liang, Xiu-Ming; Gustafsson, Manuela O; Mohammad, Dara K; Wiek, Constanze; Hanenberg, Helmut; Bremer, Michel; Gupta, Dhanu; Björnstedt, Mikael; Giebel, Bernd; Nordin, Joel Z; Jones, Jennifer C; El Andaloussi, Samir; Görgens, André
2018-01-01
Extracellular vesicles (EVs) can be harvested from cell culture supernatants and from all body fluids. EVs can be conceptually classified based on their size and biogenesis as exosomes and microvesicles. Nowadays, it is however commonly accepted in the field that there is a much higher degree of heterogeneity within these two subgroups than previously thought. For instance, the surface marker profile of EVs is likely dependent on the cell source, the cell's activation status, and multiple other parameters. Within recent years, several new methods and assays to study EV heterogeneity in terms of surface markers have been described; most of them are being based on flow cytometry. Unfortunately, such methods generally require dedicated instrumentation, are time-consuming and demand extensive operator expertise for sample preparation, acquisition, and data analysis. In this study, we have systematically evaluated and explored the use of a multiplex bead-based flow cytometric assay which is compatible with most standard flow cytometers and facilitates a robust semi-quantitative detection of 37 different potential EV surface markers in one sample simultaneously. First, assay variability, sample stability over time, and dynamic range were assessed together with the limitations of this assay in terms of EV input quantity required for detection of differently abundant surface markers. Next, the potential effects of EV origin, sample preparation, and quality of the EV sample on the assay were evaluated. The findings indicate that this multiplex bead-based assay is generally suitable to detect, quantify, and compare EV surface signatures in various sample types, including unprocessed cell culture supernatants, cell culture-derived EVs isolated by different methods, and biological fluids. Furthermore, the use and limitations of this assay to assess heterogeneities in EV surface signatures was explored by combining different sets of detection antibodies in EV samples derived from different cell lines and subsets of rare cells. Taken together, this validated multiplex bead-based flow cytometric assay allows robust, sensitive, and reproducible detection of EV surface marker expression in various sample types in a semi-quantitative way and will be highly valuable for many researchers in the EV field in different experimental contexts.
He, Fang; Kiener, Tanja K; Lim, Xiao Fang; Tan, Yunrui; Raj, Kattur Venkatachalam Ashok; Tang, Manli; Chow, Vincent T K; Chen, Qingfeng; Kwang, Jimmy
2013-01-01
Human Enterovirus 71 (EV71) is a common cause of hand, foot and mouth disease (HFMD) in young children. It is often associated with severe neurological diseases and mortalities in recent outbreaks across the Asia Pacific region. Currently, there is no efficient universal antibody test available to detect EV71 infections. In the present study, an epitope-blocking ELISA was developed to detect specific antibodies to human EV71 viruses in human or animal sera. The assay relies on a novel monoclonal antibody (Mab 1C6) that specifically binds to capsid proteins in whole EV71 viruses without any cross reaction to any EV71 capsid protein expressed alone. The sensitivity and specificity of the epitope-blocking ELISA for EV71 was evaluated and compared to microneutralization using immunized animal sera to multiple virus genotypes of EV71 and coxsackieviruses. Further, 200 serum sample from human individuals who were potentially infected with EV71 viruses were tested in both the blocking ELISA and microneutralization. Results indicated that antibodies to EV71 were readily detected in immunized animals or human sera by the epitope blocking ELISA whereas specimens with antibodies to other enteroviruses yielded negative results. This assay is not only simpler to perform but also shows higher sensitivity and specificity as compared to microneutralization. The epitope-blocking ELISA based on a unique Mab 1C6 provided highly sensitive and 100% specific detection of antibodies to human EV71 viruses in human sera.
Barnadas, Céline; Midgley, Sofie E; Skov, Marianne N; Jensen, Lotte; Poulsen, Mille W; Fischer, Thea Kølsen
2017-08-01
The potential for outbreaks due to Enteroviruses (EV) with respiratory tropism, such as EV-D68, and the detection of new and rare EV species C is a concern. These EVs are typically not detected in stool specimens and may therefore be missed by standard EV surveillance systems. Following the North American outbreak of EV-D68 in 2014, Denmark piloted an enhanced EV surveillance system that included the screening of respiratory samples. We aim to report clinical manifestations and phylogenetic descriptions from the rare and emerging EVs identified thereby demonstrating the usefulness of this system. Positive EV samples received through the enhanced non-polio EV pilot surveillance system were characterized by sequencing fragments of VP1, VP2 and VP4 capsid proteins and clinical observations were compiled. Between January 2015 and October 2016, six cases of rare genotypes EV-C104, C105 and C109 and nine cases of EV-D68 were identified. Patients presented with mild to moderately severe respiratory illness; no paralysis occurred. Distinct EV-C104, EV-C109 and EV-D68 sequences argue against a common source of introduction of these genotypes in the Danish population. The enhanced EV surveillance system enabled detection and characterization of rare EVs in Denmark. In order to improve our knowledge of and our preparedness against emerging EVs, public health laboratories should consider expanding their EV surveillance system to include respiratory specimens. Copyright © 2017 Elsevier B.V. All rights reserved.
Mauleekoonphairoj, John; Puenpa, Jiratchaya; Korkong, Sumeth; Vongpunsawad, Sompong; Poovorawan, Yong
2015-11-01
Human enterovirus (EV) infection causes hand, foot, and mouth disease (HFMD) and herpangina (HA). We studied the prevalence of enterovirus (EV) among patients with HFMD and HA in Thailand during 2013. We conducted a study in archived specimens of patients sent for screening for enterovirus. A total of 203 clinical specimens from 184 individuals with painful blister in the oropharynx and on the palms, soles, knees, elbows or buttock were examined by semi-nested polymerase chain reaction (PCR) for the 5'UTR and VP1 genes of EV. Eighty-six samples were positive: EV71 was detected in 14 (30%), CV-A8 in 12 (26%) and CV-A16 in 10 (21%). Classification of EV species detected revealed that 46 specimens were EV-A, 14 specimens were EV-B, 1 specimen was EV-D, and 16 specimens were positive for unclassified enterovirus. The majority of individuals with EV infection were aged 2-6 years. Multiple EV-A serotypes were detected among HFMD and HA patients in our study.
Cabrerizo, María; Calvo, Cristina; Rabella, Nuria; Muñoz-Almagro, Carmen; del Amo, Eva; Pérez-Ruiz, Mercedes; Sanbonmatsu-Gámez, Sara; Moreno-Docón, Antonio; Otero, Almudena; Trallero, Gloria
2014-11-01
Human enteroviruses (EVs) and parechoviruses (HPeVs) are important etiological agents causing infections such as meningitis, encephalitis and sepsis-like disease in neonates and young children. We have developed a real-time RT-PCR for simultaneous detection of EV and HPeV in clinical samples. Primers and probe sets were designed from the conserved 5'-noncoding region of the genomes. The sensitivity, specificity and reproducibility of the technique were measured using a set of 25 EV and 6 HPeV types. All EVs but no HPeVs were detected with the EV primers-probe set. The HPeV primers-probe set detected only the 6 HPeV types. The lower detection limit was found to be 4 and 40CCID50/ml for HPeV and EV respectively, demonstrating high sensitivity of the technique for both viruses. The threshold cycle values were highly reproducible on repeat testing of positive controls among assay runs. The assay was evaluated in 53 clinical samples of suspected meningitis, sepsis or febrile syndromes from children under 3 years. In 11 of these (21%) EVs were detected, while 4, i.e. 7.5%, were HPeV positive. Molecular typing was carried out for 73% of the viruses. In summary, the RT-PCR method developed demonstrated effectively both EV and HPeV detection, which can cause similar clinical symptoms in infants. Copyright © 2014 Elsevier B.V. All rights reserved.
Effects of FeCl3 additives on optical parameters of PVA
NASA Astrophysics Data System (ADS)
Latif, Duha M. A.; Chiad, Sami S.; Erhayief, Muhssen S.; Abass, Khalid H.; Habubi, Nadir F.; Hussin, Hadi A.
2018-05-01
PVA doped FeCl3 have been deposited utilizing casting technique. Absorption spectrum was registered in the wavelengths (300-900 nm) utilizing UV-Visible spectrophotometer. Optical constants behavior such as, absorbance, absorption coefficient, and skin depth were studied. It was found these parameters were increased as Fe content increase. While the extinction coefficient and optical conductivity was decreased. The energy gap of PVA-Fe films were decreased from 4 eV for the PVA film to 3.5 eV for the PVA: 4 % Fe film.
Structural and Optical Behaviour of Ar+ Implanted Polycarbonate
NASA Astrophysics Data System (ADS)
Shekhawat, Nidhi; Aggarwal, Sanjeev; Sharma, Annu; Deshpande, S. K.; Nair, K. G. M.
2011-07-01
Effects of 130 keV Ar+ ion implantation on the structural and optical properties of polycarbonate specimens have been studied using Raman, UV-Visible spectroscopy and glancing angle X-ray diffraction techniques. Formation of disordered carbonaceous network in the implanted layers has been observed using Raman and UV-Visible spectroscopy. A sharp decline in band gap values (4.1 eV to 0.63 eV) with increase in implantation dose has been observed. This decrease in optical band gap has been correlated with the formation of disordered structures in the implanted layers of polycarbonate.
Optical, electrical, thermal properties of cadmium chloride doped PVA – PVP blend
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baraker, Basavarajeshwari M.; Hammannavar, Preeti B.; Lobo, Blaise, E-mail: blaise.lobo@gmail.com
2015-06-24
Films of polyvinylalcohol (PVA) – polyvinylpyrrolidone (PVP) blend doped with Cadmium Chloride (CdCl{sub 2}) in the doping range 1 wt% to 40 wt% were prepared by solution casting technique. These films were characterized using optical/UV-Vis- NIR spectroscopy, Differential Scanning Calorimetry (DSC) and DC electrical measurements. The UV-Visible spectra were quantitatively analyzed to yield the optical parameters. The UV-Visible Spectra show intermediate absorption bands (before the final absorption edge) due to formation of energy bands in the forbidden gap of PVA-PVP. There is a prominent absorption band at 2.9 eV, from 0.5 wt% up to 1.8 wt% doping level (DL) causedmore » by the dopant (CdCl{sub 2}). The DC electrical studies showed an increase in activation energy from 2.8 eV at 0.5 wt% DL up to 3.5 eV at 4.4 wt% DL, reaching a low of 2.4 eV at 11.2 wt% DL. DSC scans show evidence of formation of chain fragments, at doping levels beyond 8 wt%.« less
NASA Astrophysics Data System (ADS)
Song, Baokun; Gu, Honggang; Zhu, Simin; Jiang, Hao; Chen, Xiuguo; Zhang, Chuanwei; Liu, Shiyuan
2018-05-01
Optical properties of mono-graphene fabricated by chemical vapor deposition (CVD) and highly oriented pyrolytic graphite (HOPG) are comparatively studied by Mueller matrix ellipsometry (MME) over an ultra-wide energy range of 0.73-6.42 eV. A multilayer stacking model is constructed to describe the CVD mono-graphene, in which the roughness of the glass substrate and the water adsorption on the graphene are considered. We introduce a uniaxial anisotropic dielectric model to parameterize the optical constants of both the graphene and the HOPG. With the established models, broadband optical constants of the graphene and the HOPG are determined from the Mueller matrix spectra based on a point-by-point method and a non-linear regression method, respectively. Two significant absorption peaks at 4.75 eV and 6.31 eV are observed in the extinction coefficient spectra of the mono-graphene, which can be attributed to the von-Hove singularity (i.e., the π-to-π∗ exciton transition) near the M point and the σ-to-σ∗ exciton transition near the Γ point of the Brillouin zone, respectively. Comparatively, only a major absorption peak at 4.96 eV appears in the ordinary extinction coefficient spectra of the HOPG, which is mainly formed by the π-to-π∗ interband transition.
NASA Astrophysics Data System (ADS)
Naz, Hina; Ali, Rai Nauman; Zhu, Xingqun; Xiang, Bin
2018-06-01
In this paper, we report the effect of single phase Mo and Ti doping concentration on the structural and optical properties of the ZnS nanoparticles. The structural and optical properties of the as-synthesized samples have been examined by x-ray diffraction, transmission electron microscopy (TEM), UV-visible near infrared absorption spectroscopy and x-ray photoelectron spectroscopy. TEM characterizations reveal a variation in the doped ZnS nanoparticle size distribution by utilizing different dopants of Mo and Ti. In absorption spectra, a clear red shift of 14 nm is observed with increasing Mo concentration as compared to pure ZnS nanoparticles, while by increasing Ti doping concentration, blue shift of 14 nm is obtained. Moreover, it demonstrates that the value of energy band gap decreases from 4.03 eV to 3.89 eV in case of Mo doping. However, the value of energy band gap have shown a remarkable increase from 4.11 eV to 4.27 eV with increasing Ti doping concentration. Our results provide a new pathway to understand the effect of Mo and Ti doping concentrations on the structural and optical properties of ZnS nanoparticles as it could be the key to tune the properties for future optoelectronic devices.
Harvala, Heli; Jasir, Aftab; Penttinen, Pasi; Pastore Celentano, Lucia; Greco, Donato; Broberg, Eeva
2017-01-01
Enteroviruses (EVs) cause severe outbreaks of respiratory and neurological disease as illustrated by EV-D68 and EV-A71 outbreaks, respectively. We have mapped European laboratory capacity for identification and characterisation of non-polio EVs to improve preparedness to respond to (re)-emerging EVs linked to severe disease. An online questionnaire on non-polio EV surveillance and laboratory detection was submitted to all 30 European Union (EU)/European Economic Area (EEA) countries. Twenty-nine countries responded; 26 conducted laboratory-based non-polio EV surveillance, and 24 included neurological infections in their surveillance. Eleven countries have established specific surveillance for EV-D68 via sentinel influenza surveillance (n = 7), typing EV-positive respiratory samples (n = 10) and/or acute flaccid paralysis surveillance (n = 5). Of 26 countries performing non-polio EV characterisation/typing, 10 further characterised culture-positive EV isolates, whereas the remainder typed PCR-positive but culture-negative samples. Although 19 countries have introduced sequence-based EV typing, seven still rely entirely on virus isolation. Based on 2015 data, six countries typed over 300 specimens mostly by sequencing, whereas 11 countries characterised under 50 EV-positive samples. EV surveillance activity varied between EU/EEA countries, and did not always specifically target patients with neurological and/or respiratory infections. Introduction of sequence-based typing methods is needed throughout the EU/EEA to enhance laboratory capacity for the detection of EVs. PMID:29162204
Harvala, Heli; Jasir, Aftab; Penttinen, Pasi; Pastore Celentano, Lucia; Greco, Donato; Broberg, Eeva
2017-11-01
Enteroviruses (EVs) cause severe outbreaks of respiratory and neurological disease as illustrated by EV-D68 and EV-A71 outbreaks, respectively. We have mapped European laboratory capacity for identification and characterisation of non-polio EVs to improve preparedness to respond to (re)-emerging EVs linked to severe disease. An online questionnaire on non-polio EV surveillance and laboratory detection was submitted to all 30 European Union (EU)/European Economic Area (EEA) countries. Twenty-nine countries responded; 26 conducted laboratory-based non-polio EV surveillance, and 24 included neurological infections in their surveillance. Eleven countries have established specific surveillance for EV-D68 via sentinel influenza surveillance (n = 7), typing EV-positive respiratory samples (n = 10) and/or acute flaccid paralysis surveillance (n = 5). Of 26 countries performing non-polio EV characterisation/typing, 10 further characterised culture-positive EV isolates, whereas the remainder typed PCR-positive but culture-negative samples. Although 19 countries have introduced sequence-based EV typing, seven still rely entirely on virus isolation. Based on 2015 data, six countries typed over 300 specimens mostly by sequencing, whereas 11 countries characterised under 50 EV-positive samples. EV surveillance activity varied between EU/EEA countries, and did not always specifically target patients with neurological and/or respiratory infections. Introduction of sequence-based typing methods is needed throughout the EU/EEA to enhance laboratory capacity for the detection of EVs.
Gasper, Gerald L.; Carlson, Ross; Akhmetov, Artem; Moore, Jerry F.; Hanley, Luke
2010-01-01
This paper describes the development of laser desorption 7.87 eV vacuum ultraviolet postionization mass spectrometry (LDPI-MS) to detect antibiotics within intact bacterial colony biofilms. As >99% of the molecules ejected by laser desorption are neutrals, vacuum ultraviolet (VUV) photoionization of these neutrals can provide significantly increased signal compared to detection of directly emitted ions. Postionization with VUV radiation from the molecular fluorine laser single photon ionizes laser desorbed neutrals with ionization potentials below the 7.87 eV photon energy. Antibiotics with structures indicative of sub-7.87 eV ionization potentials were examined for their ability to be detected by 7.87 eV LDPI-MS. Tetracycline, sulfadiazine, and novobiocin were successfully detected neat as dried films physisorbed on porous silicon oxide substrates. Tetracycline and sulfadiazine were then detected within intact Staphylococcus epidermidis colony biofilms, the former with LOD in the micromolar concentration range. PMID:18704905
Physical Characterization of Orthorhombic AgInS2 Nanocrystalline Thin Films
NASA Astrophysics Data System (ADS)
El Zawawi, I. K.; Mahdy, Manal A.
2017-11-01
Nanocrystalline thin films of AgInS2 were synthesized using an inert gas condensation technique. The grazing incident in-plane x-ray diffraction technique was used to detect the crystal structure of the deposited and annealed thin films. The results confirmed that the as-deposited film shows an amorphous behavior and that the annealed film has a single phase crystallized in an orthorhombic structure. The orthorhombic structure and particle size were detected using high-resolution transmission electron microscopy. The particle size ( P_{{s}}) estimated from micrograph images of the nanocrystalline films were increased from 6 nm to 12 nm as the film thickness increased from 11 nm to 110 nm. Accordingly, increasing the film thickness up to 110 nm reflects varying the optical band gap from 2.75 eV to 2.1 eV. The photocurrent measurements were studied where the fast rise and decay of the photocurrent are governed by the recombination mechanism. The electrical conductivity behavior was demonstrated by two transition mechanisms: extrinsic transition for a low-temperature range (300-400 K) and intrinsic transition for the high-temperature region above 400 K.
Spin-to-charge conversion for hot photoexcited electrons in germanium
NASA Astrophysics Data System (ADS)
Zucchetti, C.; Bottegoni, F.; Isella, G.; Finazzi, M.; Rortais, F.; Vergnaud, C.; Widiez, J.; Jamet, M.; Ciccacci, F.
2018-03-01
We investigate the spin-to-charge conversion in highly doped germanium as a function of the kinetic energy of the carriers. Spin-polarized electrons are optically generated in the Ge conduction band, and their kinetic energy is varied by changing the photon energy in the 0.7-2.2 eV range. The spin detection scheme relies on spin-dependent scattering inside Ge, which yields an inverse spin-Hall electromotive force. The detected signal shows a sign inversion for h ν ≈1 eV which can be related to an interplay between the spin relaxation of high-energy electrons photoexcited from the heavy-hole and light-hole bands and that of low-energy electrons promoted from the split-off band. The inferred spin-Hall angle increases by about 3 orders of magnitude within the analyzed photon energy range. Since, for increasing photon energies, the phonon contribution to spin scattering exceeds that of impurities, our result indicates that the spin-to-charge conversion mediated by phonons is much more efficient than the one mediated by impurities.
Reconciling Particle-Beam and Optical Stopping-Power Measurements in Silicon
NASA Astrophysics Data System (ADS)
Karstens, William; Shiles, E. J.; Smith, David Y.
A swift, charged particle passing through matter loses energy to electronic excitations via the electro-magnetic transients experienced by atoms along its path. Bethe related this process to the matter's frequency-dependent dielectric function ɛ (ℏω) through the energy-loss function, Im[-1/ ɛ (ℏω) ]. The matter's response may be summarized by a single parameter, the mean excitation energy, or I value, that combines the optical excitation spectrum and excitation probability. Formally, ln I is the mean of ln ℏω weighted by the energy-loss function. This provides an independent optical check on particle energy-loss experiments. However, a persistent disagreement is found for silicon: direct particle-beam studies yield 173.5< I<176 eV, but a fit to the stopping-power of 36 elements suggests 165 eV. An independent determination from optical data in 1986 gave 174 eV supporting the higher values. However, recent x-ray measurements disclosed short comings in the 1986 optical data: 1. Measurements by Ershov and Lukirskii underestimated the L-edge strength, and 2. A power-law extrapolation overestimated the K-edge strength. We have updated these data and find I = 162 eV, suggesting that silicon's recommended I value should be reconsidered. While this 5% change in I value changes the stopping power by only 1%, it is significant for precision measurements with Si detectors. Supported in part by the US Department of Energy, Office of Science, Office of Nuclear Physics under Contract DE-AC02-06CH11357.
First principles study of optical properties of molybdenum disulfide: From bulk to monolayer
NASA Astrophysics Data System (ADS)
Hieu, Nguyen N.; Ilyasov, Victor V.; Vu, Tuan V.; Poklonski, Nikolai A.; Phuc, Huynh V.; Phuong, Le T. T.; Hoi, Bui D.; Nguyen, Chuong V.
2018-03-01
In this paper, we theoretically study the optical properties of both bulk and monolayer MoS2 using first-principles calculations. The optical characters such as: dielectric function, optical reflectivity, and electron energy-loss spectrum of MoS2 are observed in the energy region from 0 to 15 eV. At equilibrium state the dielectric constant in the parallel E∥ x and perpendicular E∥ z directions are of 15.01 and 8.92 for bulk while they are 4.95 and 2.92 for monolayer MoS2, respectively. In the case of bulk MoS2, the obtained computational results for both real and imaginary parts of the dielectric constant are in good agreement with the previous experimental data. In the energy range from 0 to 6 eV, the dielectric functions have highly anisotropic, whereas they become isotropic when the energy is larger than 7 eV. For the adsorption spectra and optical reflectivity, both the collective plasmon resonance and (π + σ) electron plasmon peaks are observed, in which the transition in E∥ x direction is accordant with the experiment data more than the transition in E∥ z direction is. The refractive index, extinction index, and electron energy-loss spectrum are also investigated. The observed prominent peak at 23.1 eV in the energy-loss spectra is in good agreement with experiment value. Our results may provide a useful potential application for the MoS2 structures in electronic and optoelectronic devices.
SYBR Green Real-Time PCR for the Detection of All Enterovirus-A71 Genogroups
Dubot-Pérès, Audrey; Tan, Charlene Y. Q.; de Chesse, Reine; Sibounheuang, Bountoy; Vongsouvath, Manivanh; Phommasone, Koukeo; Bessaud, Maël; Gazin, Céline; Thirion, Laurence; Phetsouvanh, Rattanaphone; Newton, Paul N.; de Lamballerie, Xavier
2014-01-01
Enterovirus A71 (EV-A71) has recently become an important public health threat, especially in South-East Asia, where it has caused massive outbreaks of Hand, Foot and Mouth disease every year, resulting in significant mortality. Rapid detection of EV-A71 early in outbreaks would facilitate implementation of prevention and control measures to limit spread. Real-time RT-PCR is the technique of choice for the rapid diagnosis of EV-A71 infection and several systems have been developed to detect circulating strains. Although eight genogroups have been described globally, none of these PCR techniques detect all eight. We describe, for the first time, a SYBR Green real-time RT-PCR system validated to detect all 8 EV-A71 genogroups. This tool could permit the early detection and shift in genogroup circulation and the standardization of HFMD virological diagnosis, facilitating networking of laboratories working on EV-A71 in different regions. PMID:24651608
Effect of Aluminum on Characterization of ZnTe/n-Si Heterojunction Photo detector
NASA Astrophysics Data System (ADS)
Maki, Samir A.; Hassun, Hanan K.
2018-05-01
Aluminum doped zinc telluride ZnTenSi thin films of (400nm) thickness with (005 01 015 and 02) wt % were deposited on the glass substrate and nSi wafer to fabricate ZnTenSi heterojunction Photodetector by using thermal vacuum evaporation technique Structural optical electrical and photovoltaic properties are investigated for the samples XRD analysis shows that all the deposited ZnTenSi films show polycrystalline structure with cubic phases and highest sharp peak corresponding to (111) planes and from AFM images shows the surface roughness increase with increase Al percentage ratio The optical absorption measurement of the films was find from transmittance ranges in the variety of wavelength (400 1000) nm and the optical energy band gap decrease from 224 eV to 186 eV dependent upon the Aluminum ratio in the films moreover our studies contain the calculation of the electrical properties of hetero junction were obtained via IV (dark and light condition) and C V measurement The photoelectric properties indicated rise illumination current of heterojunctions through increasing both of incident lighting intensity and Aluminum dopant The values of specific detectivity and quantum efficiency are calculated for all samples also the best spectral response occurs when Al doping ratio 02% The high photo sensitivity and comparatively fast response haste are attributable to in height crystal quality of the [ZnTe ] thin films.
NASA Astrophysics Data System (ADS)
Hara, Kosuke O.; Nakagawa, Yoshihiko; Suemasu, Takashi; Usami, Noritaka
2015-07-01
We have realized BaSi2 films by a simple vacuum evaporation technique for solar cell applications. X-ray diffraction analysis shows that single-phase BaSi2 films are formed on alkali-free glass substrates at 500 and 600 °C while impurity phases coexist on quartz or soda-lime glass substrates or at a substrate temperature of 400 °C. The mechanism of film growth is discussed by analyzing the residue on the evaporation boat. An issue on the fabricated films is cracking due to thermal mismatch, as observed by secondary electron microscopy. Optical characterizations by transmittance and reflectance spectroscopy show that the evaporated films have high absorption coefficients, reaching 2 × 104 cm-1 for a photon energy of 1.5 eV, and have indirect absorption edges of 1.14-1.21 eV, which are suitable for solar cells. The microwave-detected photoconductivity decay measurement reveals that the carrier lifetime is approximately 0.027 µs, corresponding to the diffusion length of 0.84 µm, which suggests the potential effective usage of photoexcited carriers.
Structural and optical properties of ITO and Cu doped ITO thin films
NASA Astrophysics Data System (ADS)
Chakraborty, Deepannita; Kaleemulla, S.; Rao, N. Madhusudhana; Subbaravamma, K.; Rao, G. Venugopal
2018-04-01
(In0.95Sn0.05)2O3 and (In0.90Cu0.05Sn0.05)2O3 thin films were coated onto glass substrate by electron beam evaporation technique. The structural and optical properties of ITO and Cu doped ITO thin films have been studied by X-ray diffractometer (XRD) and UV-Vis-NIR spectrophotometer. The crystallite size obtained for ITO and Cu doped ITO thin films was in the range of 24 nm to 22 nm. The optical band gap of 4 eV for ITO thin film sample has been observed. The optical band gap decreases to 3.85 eV by doping Cu in ITO.
Electronically conducting metal oxide nanoparticles and films for optical sensing applications
Ohodnicki, Jr., Paul R.; Wang, Congjun; Andio, Mark A
2014-09-16
The disclosure relates to a method of detecting a change in a chemical composition by contacting a conducting oxide material with a monitored stream, illuminating the conducting oxide material with incident light, collecting exiting light, monitoring an optical signal based on a comparison of the incident light and the exiting light, and detecting a shift in the optical signal. The conducting metal oxide has a carrier concentration of at least 10.sup.17/cm.sup.3, a bandgap of at least 2 eV, and an electronic conductivity of at least 10.sup.-1 S/cm, where parameters are specified at the gas stream temperature. The optical response of the conducting oxide materials is proposed to result from the high carrier concentration and electronic conductivity of the conducting metal oxide, and the resulting impact of changing gas atmospheres on that relatively high carrier concentration and electronic conductivity. These changes in effective carrier densities and electronic conductivity of conducting metal oxide films and nanoparticles are postulated to be responsible for the change in measured optical absorption associated with free carriers. Exemplary conducting metal oxides include but are not limited to Al-doped ZnO, Sn-doped In.sub.2O.sub.3, Nb-doped TiO.sub.2, and F-doped SnO.sub.2.
NASA Astrophysics Data System (ADS)
Behzad, Somayeh
2016-04-01
The electronic and optical properties of α-graphyne sheet are investigated by using density functional theory. The results confirm that α-graphyne sheet is a zero-gap semimetal. The optical properties of the α-graphyne sheet such as dielectric function, refraction index, electron energy loss function, reflectivity, absorption coefficient and extinction index are calculated for both parallel and perpendicular electric field polarizations. The optical spectra are strongly anisotropic along these two polarizations. For (E ∥ x), absorption edge is at 0 eV, while there is no absorption below 8 eV for (E ∥ z).
Optical Properties of Ferroelectric Epitaxial K0.5Na0.5NbO3 Films in Visible to Ultraviolet Range
Pacherova, O.; Kocourek, T.; Jelinek, M.; Dejneka, A.; Tyunina, M.
2016-01-01
The complex index of refraction in the spectral range of 0.74 to 4.5 eV is studied by variable-angle spectroscopic ellipsometry in ferroelectric K0.5Na0.5NbO3 films. The 20-nm-thick cube-on-cube-type epitaxial films are grown on SrTiO3(001) and DyScO3(011) single-crystal substrates. The films are transparent and exhibit a significant difference between refractive indices Δn = 0.5 at photon energies below 3 eV. The energies of optical transitions are in the range of 3.15–4.30 eV and differ by 0.2–0.3 eV in these films. The observed behavior is discussed in terms of lattice strain and strain-induced ferroelectric polarization in epitaxial perovskite oxide films. PMID:27074042
Engel-Vosko GGA calculations of the structural, electronic and optical properties of LiYO2
NASA Astrophysics Data System (ADS)
Muhammad, Nisar; Khan, Afzal; Haidar Khan, Shah; Sajjaj Siraj, Muhammad; Shah, Syed Sarmad Ali; Murtaza, Ghulam
2017-09-01
Structural, electronic and optical properties of lithium yttrium oxide (LiYO2) are investigated using density functional theory (DFT). These calculations are based on full potential linearized augmented plane wave (FP-LAPW) method implemented by WIEN2k. The generalized gradient approximation (GGA) is used as an exchange correlation potential with Perdew-Burk-Ernzerhof (PBE) and Engel-Vosko (EV) as exchange correlation functional. The structural properties are calculated with PBE-GGA as it gives the equilibrium lattice constants very close to the experimental values. While, the band structure and optical properties are calculated with EV-GGA obtain much closer results to their experimental values. Our calculations confirm LiYO2 as large indirect band gap semiconductor having band gap of 5.23 eV exhibiting the characteristics of ultrawide band gap materials showing the properties like higher critical breakdown field, higher temperature operation and higher radiation tolerance. In this article, we report the density of states (DOS) in terms of contribution from s, p, and d-states of the constituent atoms, the band structure, the electronic structure, and the frequency-dependent optical properties of LiYO2. The optical properties presented in this article reveal LiYO2 a suitable candidate for the field of optoelectronic and optical devices.
Molecular Evolution of Enterovirus 68 Detected in the Philippines
Imamura, Tadatsugu; Suzuki, Akira; Lupisan, Socorro; Okamoto, Michiko; Aniceto, Rapunzel; Egos, Rutchie J.; Daya, Edgardo E.; Tamaki, Raita; Saito, Mariko; Fuji, Naoko; Roy, Chandra Nath; Opinion, Jaime M.; Santo, Arlene V.; Macalalad, Noel G.; Tandoc, Amado; Sombrero, Lydia; Olveda, Remigio; Oshitani, Hitoshi
2013-01-01
Background Detection of Enterovirus 68 (EV68) has recently been increased. However, underlying evolutionary mechanism of this increasing trend is not fully understood. Methods Nasopharyngeal swabs were collected from 5,240 patients with acute respiratory infections in the Philippines from June 2009 to December 2011. EV68 was detected by polymerase chain reaction (PCR) targeting for 5′ untranslated region (5′UTR), viral protein 1 (VP1), and VP4/VP2. Phylogenetic trees were generated using the obtained sequences. Results Of the 5,240 tested samples, 12 EV68 positive cases were detected between August and December in 2011 (detection rate, 0.23%). The detection rate was higher among inpatients than outpatients (p<0.0001). Among VP1 sequences detected from 7 patients in 2011, 5 in lineage 2 were diverged from those detected in the Philippines in 2008, however, 2 in lineage 3 were not diverged from strains detected in the Philippines in 2008 but closely associated with strains detected in the United States. Combined with our previous report, EV68 occurrences were observed twice in the Philippines within the last four years. Conclusions EV68 detections might be occurring in cyclic patterns, and viruses might have been maintained in the community while some strains might have been newly introduced. PMID:24073203
Papadakis, Georgina; Chibo, Doris; Druce, Julian; Catton, Michael; Birch, Chris
2014-09-01
Genotyping by VP1 fragment polymerase chain reaction (PCR) and nucleic acid sequencing to detect enterovirus (EV) genotypes was performed directly on 729 EV PCR positive cerebrospinal fluid (CSF) samples collected between 2007 and 2012 from Victorian hospital inpatients. The overall genotype identification rate from CSF-positive material was 43%. The four most common genotypes identified were Echovirus 6 (24%), Echovirus 30 (17%), Echovirus 25 (10%), and Coxsackievirus A9 (10%), together comprising 61% of all EVs typed. The seasonal distribution of all EVs identified followed the recognized pattern of mainly summer epidemics. Three of the four predominant genotypes were present in each of the 6 years in which the study was conducted, with 20 other EV genotypes also detected, often in only a single year. Genotyping of EVs directly in CSF is faster, simpler and more sensitive than traditional virus neutralization assays performed on EV positive samples. © 2014 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Bacuyag, Dhonny; Escaño, Mary Clare Sison; David, Melanie; Tani, Masahiko
2018-06-01
We performed first-principles calculations based on density functional theory (DFT) to investigate the role of point defects in the structural, electronic, and optical properties of the GaAs(001)- β2(2x4). In terms of structural properties, AsGa is the most stable defect structure, consistent with experiments. With respect to the electronic structure, band structures revealed the existence of sub-band and midgap states for all defects. The induced sub-bands and midgap states originated from the redistributions of charges towards these defects and neighboring atoms. The presence of these point defects introduced deep energy levels characteristic of EB3 (0.97 eV), EL4 (0.52 eV), and EL2 (0.82 eV) for AsGa, GaAs, GaV, respectively. The optical properties are found to be strongly related to these induced gap states. The calculated onset values in the absorption spectra, corresponding to the energy gaps, confirmed the absorption below the known bulk band gap of 1.43 eV. These support the possible two-step photoabsorption mediated by midgap states as observed in experiments.
NASA Astrophysics Data System (ADS)
Sahoo, Smruti Ranjan; Sahu, Sridhar; Sharma, Sagar
2018-05-01
We present density functional study of the charge transport and optical properties of trifluoromethyl substituted benzodithiophene (TFMBDT) molecule. We found the hole reorganization energy, reduced by 0.354 eV compared to the electron reorganization energy, thus favoring the hole transport across the molecular barrier. We found the maximum tH and tL at the tilting angle 85°, to be 0.473 eV and 0.472 eV, respectively. Although, both tH and tL are found to equivalent, however, low λh can contribute to the larger hole mobility. In the TD-DFT calculation, the low energy electronic transition (H→L) was found to be accordance with the electronic HOMO-LUMO energy gap of the conjugated organic molecule. The calculated gas phase maximum absorption (λmax) of TFMBDT molecule was observed at 337.31 nm (3.67 eV) for B3LYP/6-311+G(d, p) level and 328.04 nm (3.77 eV) for PBE1PBE/6-311+G(d, p) level, which is mostly associated with HOMO→LUMO transition.
A novel multiplex bead-based platform highlights the diversity of extracellular vesicles
Koliha, Nina; Wiencek, Yvonne; Heider, Ute; Jüngst, Christian; Kladt, Nikolay; Krauthäuser, Susanne; Johnston, Ian C. D.; Bosio, Andreas; Schauss, Astrid; Wild, Stefan
2016-01-01
The surface protein composition of extracellular vesicles (EVs) is related to the originating cell and may play a role in vesicle function. Knowledge of the protein content of individual EVs is still limited because of the technical challenges to analyse small vesicles. Here, we introduce a novel multiplex bead-based platform to investigate up to 39 different surface markers in one sample. The combination of capture antibody beads with fluorescently labelled detection antibodies allows the analysis of EVs that carry surface markers recognized by both antibodies. This new method enables an easy screening of surface markers on populations of EVs. By combining different capture and detection antibodies, additional information on relative expression levels and potential vesicle subpopulations is gained. We also established a protocol to visualize individual EVs by stimulated emission depletion (STED) microscopy. Thereby, markers on single EVs can be detected by fluorophore-conjugated antibodies. We used the multiplex platform and STED microscopy to show for the first time that NK cell–derived EVs and platelet-derived EVs are devoid of CD9 or CD81, respectively, and that EVs isolated from activated B cells comprise different EV subpopulations. We speculate that, according to our STED data, tetraspanins might not be homogenously distributed but may mostly appear as clusters on EV subpopulations. Finally, we demonstrate that EV mixtures can be separated by magnetic beads and analysed subsequently with the multiplex platform. Both the multiplex bead-based platform and STED microscopy revealed subpopulations of EVs that have been indistinguishable by most analysis tools used so far. We expect that an in-depth view on EV heterogeneity will contribute to our understanding of different EVs and functions. PMID:26901056
Improved resolution in extracellular vesicle populations using 405 instead of 488 nm side scatter
McVey, Mark J.; Spring, Christopher M.; Kuebler, Wolfgang M.
2018-01-01
ABSTRACT Improvements in identification and assessment of extracellular vesicles (EVs) have fuelled a recent surge in EV publications investigating their roles as biomarkers and mediators of disease. Meaningful scientific comparisons are, however, hampered by difficulties in accurate, reproducible enumeration and characterization of EVs in biological fluids. High-sensitivity flow cytometry (FCM) is presently the most commonly applied strategy to assess EVs, yet its utility is limited by variant ability to resolve smaller EVs. Here, we propose the use of 405 nm (violet) wavelength lasers in place of 488 nm (blue) for side scatter (SSC) detection to obtain greater resolution of EVs using high-sensitivity FCM. To test this hypothesis, we modelled EV resolution by violet versus blue SSC in silico and compared resolution of reference beads and biological EVs from plasma and bronchoalveolar lavage (BAL) fluid using either violet or blue wavelength SSC EV detection. Mie scatter modelling predicted that violet as compared to blue SSC increases resolution of small (100–500 nm) spherical particles with refractive indices (1.34–1.46) similar to EVs by approximately twofold in terms of light intensity and by nearly 20% in SSC signal quantum efficiency. Resolution of reference beads was improved by violet instead of blue SSC with two- and fivefold decreases in coefficients of variation for particles of 300–500 nm and 180–240 nm size, respectively. Resolution was similarly improved for detection of EVs from plasma or BAL fluid. Violet SSC detection for high-sensitivity FCM allows for significantly greater resolution of EVs in plasma and BAL compared to conventional blue SSC and particularly improves resolution of smaller EVs. Notably, the proposed strategy is readily implementable and inexpensive for machines already equipped with 405 nm SSC or the ability to accommodate 405/10 nm bandpass filters in their violet detector arrays. PMID:29696076
Characterization on RF magnetron sputtered niobium pentoxide thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Usha, N.; Sivakumar, R., E-mail: krsivakumar1979@yahoo.com; Sanjeeviraja, C.
2014-10-15
Niobium pentoxide (Nb{sub 2}O{sub 5}) thin films with amorphous nature were deposited on microscopic glass substrates at 100°C by rf magnetron sputtering technique. The effect of rf power on the structural, morphological, optical, and vibrational properties of Nb{sub 2}O{sub 5} films have been investigated. Optical study shows the maximum average transmittance of about 87% and the optical energy band gap (indirect allowed) changes between 3.70 eV and 3.47 eV. AFM result indicates the smooth surface nature of the samples. Photoluminescence measurement showed the better optical quality of the deposited films. Raman spectra show the LO-TO splitting of Nb-O stretching ofmore » Nb{sub 2}O{sub 5} films.« less
First-principles study of direct and indirect optical absorption in BaSnO3
NASA Astrophysics Data System (ADS)
Kang, Youngho; Peelaers, Hartwin; Krishnaswamy, Karthik; Van de Walle, Chris G.
2018-02-01
We report first-principles results for the electronic structure and the optical absorption of perovskite BaSnO3 (BSO). BSO has an indirect fundamental gap, and hence, both direct and indirect transitions need to be examined. We assess direct absorption by calculations of the dipole matrix elements. The phonon-assisted indirect absorption spectrum at room temperature is calculated using a quasiclassical approach. Our analysis provides important insights into the optical properties of BSO and addresses several inconsistencies in the results of optical absorption experiments. We shed light on the variety of bandgap values that have been previously reported, concluding that the indirect gap is 2.98 eV and the direct gap is 3.46 eV.
Detection and proteomic characterization of extracellular vesicles in human pancreatic juice.
Osteikoetxea, Xabier; Benke, Márton; Rodriguez, Marta; Pálóczi, Krisztina; Sódar, Barbara W; Szvicsek, Zsuzsanna; Szabó-Taylor, Katalin; Vukman, Krisztina V; Kittel, Ágnes; Wiener, Zoltán; Vékey, Károly; Harsányi, László; Szűcs, Ákos; Turiák, Lilla; Buzás, Edit I
2018-04-30
The prognosis of patients with pancreatic cancer has remained virtually unchanged with a high mortality rate compared to other types of cancers. An earlier detection would provide a time window of opportunity for treatment and prevention of deaths. In the present study we investigated extracellular vesicle (EV)-associated potential biomarkers for pancreatic cancer by directly assessing EV size-based subpopulations in pancreatic juice samples of patients with chronic pancreatitis or pancreatic cancer. In addition, we also studied blood plasma and pancreatic cancer cell line-derived EVs. Comparative proteomic analysis was performed of 102 EV preparations from human pancreatic juices, blood, and pancreatic cancer cell lines Capan-1 and MIA PaCa-2. EV preparations were also characterized by electron microscopy, tunable resistive pulse sensing, and flow cytometry. Here we describe the presence of EVs in human pancreatic juice samples. Pancreatic juice EV-associated proteins that we identified as possible candidate markers for pancreatic cancer included mucins, such as MUC1, MUC4, MUC5AC, MUC6 and MUC16, CFTR, and MDR1 proteins. These candidate biomarkers could also be detected by flow cytometry in EVs found in pancreatic juice and those secreted by pancreatic cancer cell lines. Together our data show that detection and characterization of EVs directly in pancreatic juice is feasible and may prove to be a valuable source of potential biomarkers of pancreatic cancer. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Alvarez-Muñiz, Jaime; Carvalho, Washington R.; Payet, Kévin; Romero-Wolf, Andrés; Schoorlemmer, Harm; Zas, Enrique
2018-01-01
There has been a recent surge in interest in the detection of τ -lepton-induced air showers from detectors at altitude. When a τ neutrino (ντ) enters the Earth, it produces τ leptons as a result of nuclear charged-current interactions. In some cases, this process results in a τ lepton exiting the surface of the Earth, which can subsequently decay in the atmosphere and produce an extensive air shower. These upward-going air showers can be detected via fluorescence, optical Cherenkov, or geomagnetic radio emission. Several experiments have been proposed to detect these signals. We present a comprehensive simulation of the production of τ leptons by ντ's propagating through Earth to aid the design of future experiments. These simulations for ντ's and leptons in the energy range from 1 015 eV to 1 021 eV treat the full range of incidence angles from Earth-skimming to diametrically traversing. Propagation of ντ's and leptons includes the effects of rock and an ocean or ice layer of various thicknesses. The interaction models include ντ regeneration and account for uncertainties in the Standard Model neutrino cross section and in the photonuclear contribution to the τ energy-loss rate.
NASA Astrophysics Data System (ADS)
Zhang, Z.; Arehart, A. R.; Kyle, E. C. H.; Chen, J.; Zhang, E. X.; Fleetwood, D. M.; Schrimpf, R. D.; Speck, J. S.; Ringel, S. A.
2015-01-01
The impact of proton irradiation on the deep level states throughout the Mg-doped p-type GaN bandgap is investigated using deep level transient and optical spectroscopies. Exposure to 1.8 MeV protons of 1 × 1013 cm-2 and 3 × 1013 cm-2 fluences not only introduces a trap with an EV + 1.02 eV activation energy but also brings monotonic increases in concentration for as-grown deep states at EV + 0.48 eV, EV + 2.42 eV, EV + 3.00 eV, and EV + 3.28 eV. The non-uniform sensitivities for individual states suggest different physical sources and/or defect generation mechanisms. Comparing with prior theoretical calculations reveals that several traps are consistent with associations to nitrogen vacancy, nitrogen interstitial, and gallium vacancy origins, and thus are likely generated through displacing nitrogen and gallium atoms from the crystal lattice in proton irradiation environment.
Optical effects induced by epitaxial tension in lead titanate
NASA Astrophysics Data System (ADS)
Dejneka, A.; Chvostova, D.; Pacherova, O.; Kocourek, T.; Jelinek, M.; Tyunina, M.
2018-01-01
Single-crystal-type epitaxial films of perovskite oxide ferroelectrics are attractive for integrated photonic applications because of the remarkable optical properties and effects in ferroelectrics. The properties of the films may be influenced by epitaxial strain arising from the film-substrate mismatch. Here, dramatic strain-induced changes of the absorption and refraction are experimentally detected by spectroscopic ellipsometry in epitaxial films of archetypical ferroelectric PbTiO3. Comparison of the properties of a tensile-strained film with those of reference films and crystals reveals that epitaxial tension produces blueshifts of the primary above-bandgap absorption peaks by 1 eV and a decrease in the refractive index by 0.5 in the transparent spectral range. The obtained quadratic electrooptic and effective elastooptic coefficients exceed the bulk values by orders of magnitude. The experimental observations prove that epitaxy is a powerful tool for engineering unprecedented optical properties that may enable future photonics innovations.
The Electronic and Optical Properties of Au Doped Single-Layer Phosphorene
NASA Astrophysics Data System (ADS)
Zhu, Ziqing; Chen, Changpeng; Liu, Jiayi; Han, Lu
2018-01-01
The electronic properties and optical properties of single and double Au-doped phosphorene have been comparatively investigated using the first-principles plane-wave pseudopotential method based on density functional theory. The decrease from direct band gap 0.78 eV to indirect band gap 0.22 and 0.11 eV are observed in the single and double Au-doped phosphorene, respectively. The red shifts of absorbing edge occur in both doped systems, which consequently enhance the absorbing of infrared light in phosphorene. Band gap engineering can, therefore, be used to directly tune the optical absorption of phosphorene system by substitutional Au doping.
Wang, Ying; Zou, Gang; Xia, Aimei; Wang, Xiangshi; Cai, Jiehao; Gao, Qianqian; Yuan, Shilin; He, Guimei; Zhang, Shuyi; Zeng, Mei; Altmeyer, Ralf
2015-06-03
In 2012 a large outbreak of hand, foot, and mouth disease (HFMD) widely spread over China, causing more than 2 million cases and 567 deaths. Our purpose was to characterize the major pathogens responsible for the 2012 HFMD outbreak and analyze the genetic characterization of the enterovirus 71 (EV71) strains in Shanghai; also, to analyze the dynamic patterns of neutralizing antibody (NAb) against EV71 and evaluate the diagnostic value of several methods for clinical detection of EV71. Clinical samples including stool, serum and CSF were collected from 396 enrolled HFMD inpatients during the peak seasons in 2012. We analyzed the molecular epidemiology, clinical feature, and diagnostic tests of EV71 infection. EV71 was responsible for 60.35 % of HFMD inpatients and 88.46 % of severe cases. The circulating EV71 strains belonged to subgenogroup C4a. The nucleotide sequences of VP1 between severe cases and uncomplicated cases shared 99.2 ~ 100 % of homology. Among 218 cases with EV71 infection, 211 (96.79 %) serum samples showed NAb positive against EV71 and NAb titer reached higher level 3 days after disease onset. Of 92 cases with EV71-associated meningitis or encephalitis, 5 (5.43 %) of 92 had EV71 RNA detected in CSF samples. The blood anti-EV71 IgM assay showed a sensitivity of 93.30 % and a specificity of 50 %. EV71 C4a remained the predominant subgenotype circulating in Shanghai. The severity of the EV71 infection is not associated with the virulence determinants in VP1. RT-PCR together with IgM detection can enhance the early diagnosis of severe EV71-associated HFMD.
Development of a compact laser-based single photon ionization time-of-flight mass spectrometer
NASA Astrophysics Data System (ADS)
Tonokura, Kenichi; Kanno, Nozomu; Yamamoto, Yukio; Yamada, Hiroyuki
2010-02-01
We have developed a compact, laser-based, single photon ionization time-of-flight mass spectrometer (SPI-TOF-MS) for on-line monitoring of trace organic species. To obtain the mass spectrum, we use a nearly fragmentation-free SPI technique with 10.5 eV (118 nm) vacuum ultraviolet laser pulses generated by frequency tripling of the third harmonic of an Nd:YAG laser. The instrument can be operated in a linear TOF-MS mode or a reflectron TOF-MS mode in the coaxial design. We designed ion optics to optimize detection sensitivity and mass resolution. For data acquisition, the instrument is controlled using LabVIEW control software. The total power requirement for the vacuum unit, control electronics unit, ion optics, and detection system is approximately 100 W. We achieve a detection limit of parts per billion by volume (ppbv) for on-line trace analysis of several organic compounds. A mass resolution of 800 at about 100 amu is obtained for reflectron TOF-MS mode in a 0.35 m long instrument. The application of on-line monitoring of diesel engine exhaust was demonstrated.
Novel gas sensor with dual response under CO(g) exposure: Optical and electrical stimuli
NASA Astrophysics Data System (ADS)
Rocha, L. S. R.; Cilense, M.; Ponce, M. A.; Aldao, C. M.; Oliveira, L. L.; Longo, E.; Simoes, A. Z.
2018-05-01
In this work, a lanthanum (La) doped ceria (CeO2) film, which depicted a dual gas sensing response (electric and optical) for CO(g) detection, was obtained by the microwave-assisted hydrothermal (HAM) synthesis and deposited by the screen-printing technique, in order to prevent deaths by intoxication with this life-threatening gas. An electric response under CO(g) exposure was obtained, along with an extremely fast optical response for a temperature of 380 °C, associated with Ce+4 reduction and vacancy generation. A direct optical gap was found to be around 2.31 eV from UV-Vis results, which corresponds to a transition from valence band to 4f states. Due to the anomalous electron configuration of cerium atoms with 4f electrons in its reduced state, they are likely to present an electric conduction based on the small polaron theory with a hopping mechanism responsible for its dual sensing response with a complete reversible behaviour.
The Cloud Detection and UV Monitoring Experiment (CLUE)
NASA Technical Reports Server (NTRS)
Barbier, L.; Loh, E.; Sokolsky, P.; Streitmatter, R.
2004-01-01
We propose a large-area, low-power instrument to perform CLoud detection and Ultraviolet monitoring, CLUE. CLUE will combine the W detection capabilities of the NIGHTGLOW payload, with an array of infrared sensors to perform cloud slicing measurements. Missions such as EUSO and OWL which seek to measure UHE cosmic-rays at 1W20 eV use the atmosphere as a fluorescence detector. CLUE will provide several important correlated measurements for these missions, including: monitoring the atmospheric W emissions &om 330 - 400 nm, determining the ambient cloud cover during those W measurements (with active LIDAR), measuring the optical depth of the clouds (with an array of narrow band-pass IR sensors), and correlating LIDAR and IR cloud cover measurements. This talk will describe the instrument as we envision it.
NASA Astrophysics Data System (ADS)
Lu, Xuefeng; Gao, Xu; Ren, Junqiang; Li, Cuixia; Guo, Xin; Wei, Yupeng; La, Peiqing
2018-04-01
Based on first-principles simulations with the generalized gradient approximation (GGA) of the Perdew-Burke-Ernzerhof (PBE) functional, we studied the electronic structures and optical properties of hexagonal silicon nitride (β-Si3N4) doped with IV A elements, C, Ge, Sn and Pb. It was found that the Ge-doped system is characterized by a more stable structure with a lower formation energy of 2.584 eV compared with those of the C-, Sn- and Pb-doped systems of 3.877 eV, 5.249 eV and 7.672 eV, respectively. The band gap (EG) of the Pb-doped system was the lowest at 1.6 eV, displaying semiconducting characteristics. Additionally, there was a transition from a direct band gap to an indirect band gap in the C-doped system. Charge difference density analysis showed that the covalent property of the C-N bonds was enhanced by expansion of the electron-free region and the larger Mulliken population values of 0.71 and 0.86. Furthermore, lower absorption and reflectivity peaks at 11.30 eV were observed for the C-doped system, demonstrating its broader potential for application in photoelectric and microelectronic devices.
Shih, Chun-Liang; Chong, Kowit-Yu; Hsu, Shih-Che; Chien, Hsin-Jung; Ma, Ching-Ting; Chang, John Wen-Cheng; Yu, Chia-Jung; Chiou, Chiuan-Chian
2016-01-25
Cells release different types of extracellular vesicles (EVs). These EVs contain biomolecules, including proteins and nucleic acids, from their parent cells, which can be useful for diagnostic applications. The aim of this study was to develop a convenient procedure to collect circulating EVs with detectable mRNA or other biomolecules. Magnetic beads coated with annexin A5 (ANX-beads), which bound to phosphatidylserine moieties on the surfaces of most EVs, were tested for their ability to capture induced apoptotic bodies in vitro and other phosphatidylserine-presenting vesicles in body fluids. Our results show that up to 60% of induced apoptotic bodies could be captured by the ANX-beads. The vesicles captured from cultured media or plasma contained amplifiable RNA. Suitable blood samples for EV collection included EDTA-plasma and serum but not heparin-plasma. In addition, EVs in plasma were labile to freeze-and-thaw cycles. In rodents xenografted with human cancer cells, tumor-derived mRNA could be detected in EVs captured from serum samples. Active proteins could be detected in EVs captured from ascites but not from plasma. In conclusion, we have developed a magnetic bead-based procedure for the collection of EVs from body fluids and proved that captured EVs contain biomolecules from their parent cells, and therefore have great potential for disease diagnosis. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Reena Philip, Rachel; Pradeep, B.; Shripathi, T.
2005-04-01
Thin films of the off-tie-line ordered vacancy compound CuIn7Se12 were deposited on optically flat glass substrates by multi-source co-evaporation method. The preliminary structural, compositional and morphological characterizations were done using X-ray diffraction, energy dispersive X-ray analysis and atomic force microscopy. The X-ray diffraction data were further analysed applying the Nelson-Riley method and CTB plus = experiment rule, respectively, for lattice constants (a = 5.746 Å and c = 11.78 Å) and bond length estimations (RCu-Se = 2.465 Å and RIn-Se = 2.554 Å). A detailed analysis of the optical absorption spectra of the compound, which exhibited a three-fold optical absorption structure in the fundamental gap region, yielded three characteristic direct energy gaps at 1.37, 1.48(7) and 1.72(8) eV indicative of valence band splitting, which were evaluated using Hopfield's quasi-cubic model. The 0.04 eV increase in spin-orbit splitting parameter of the compound (0.27 eV) compared to that of CuInSe2 (0.23 eV) is found to be suggestive of the smaller contribution of Cu d orbitals to hybridization (determined by the linear hybridization model) in this Cu-deficient compound. Spectral response spectra exhibit, in addition to a maximum around 1.34 ± 0.03 eV, two other defect transition peaks near 1.07 and 0.85 eV. The binding energies of Cu, In and Se in the compound were determined using X-ray photoelectron spectroscopy.
Song, Liqiong; Sun, Shipeng; Li, Bo; Pan, Yang; Li, Wenli; Zhang, Kuo; Li, Jinming
2011-10-01
Three armored RNAs (virus-like particles [VLPs]) containing target sequences from enterovirus 71 (EV71) and coxsackievirus A16 (CA16) and a pan-enterovirus (pan-EV) sequence were constructed and used in an external quality assessment (EQA) to determine the performance of laboratories in the detection of EV71 and CA16. The EQA panel, which consisted of 20 samples, including 14 positive samples with different concentrations of EV and either EV71 or CA16 armored RNAs, 2 samples with all 3 armored RNAs, and 4 negative-control samples (NaN(3)-preserved minimal essential medium [MEM] without VLPs), was distributed to 54 laboratories that perform molecular diagnosis of hand, foot, and mouth disease (HFMD) virus infections. A total of 41 data sets from 41 participants were returned; 5 (12.2%) were generated using conventional in-house reverse transcription-PCR (RT-PCR) assays, and 36 (87.8%) were generated using commercial real-time RT-PCR assays. Performance assessments of laboratories differed; 12 (29.3%) showed a need for improvement. Surprisingly, 4 laboratories were unable to detect EV71 RNA in any samples, even those containing the highest concentration of 10(7) IU/ml. Furthermore, the detection sensitivity for EV71 among all laboratories (82.1%) was substantially lower than that for EV (97.4%) or CA16 (95.1%). Overall, the results of the present study indicate that EQA should be performed periodically to help laboratories monitor their ability to detect HFMD viruses and to improve the comparability of results from different laboratories.
Song, Liqiong; Sun, Shipeng; Li, Bo; Pan, Yang; Li, Wenli; Zhang, Kuo; Li, Jinming
2011-01-01
Three armored RNAs (virus-like particles [VLPs]) containing target sequences from enterovirus 71 (EV71) and coxsackievirus A16 (CA16) and a pan-enterovirus (pan-EV) sequence were constructed and used in an external quality assessment (EQA) to determine the performance of laboratories in the detection of EV71 and CA16. The EQA panel, which consisted of 20 samples, including 14 positive samples with different concentrations of EV and either EV71 or CA16 armored RNAs, 2 samples with all 3 armored RNAs, and 4 negative-control samples (NaN3-preserved minimal essential medium [MEM] without VLPs), was distributed to 54 laboratories that perform molecular diagnosis of hand, foot, and mouth disease (HFMD) virus infections. A total of 41 data sets from 41 participants were returned; 5 (12.2%) were generated using conventional in-house reverse transcription-PCR (RT-PCR) assays, and 36 (87.8%) were generated using commercial real-time RT-PCR assays. Performance assessments of laboratories differed; 12 (29.3%) showed a need for improvement. Surprisingly, 4 laboratories were unable to detect EV71 RNA in any samples, even those containing the highest concentration of 107 IU/ml. Furthermore, the detection sensitivity for EV71 among all laboratories (82.1%) was substantially lower than that for EV (97.4%) or CA16 (95.1%). Overall, the results of the present study indicate that EQA should be performed periodically to help laboratories monitor their ability to detect HFMD viruses and to improve the comparability of results from different laboratories. PMID:21865426
Figueroa, Javier M; Skog, Johan; Akers, Johnny; Li, Hongying; Komotar, Ricardo; Jensen, Randy; Ringel, Florian; Yang, Isaac; Kalkanis, Steven; Thompson, Reid; LoGuidice, Lori; Berghoff, Emily; Parsa, Andrew; Liau, Linda; Curry, William; Cahill, Daniel; Bettegowda, Chetan; Lang, Frederick F; Chiocca, E Antonio; Henson, John; Kim, Ryan; Breakefield, Xandra; Chen, Clark; Messer, Karen; Hochberg, Fred; Carter, Bob S
2017-10-19
RNAs within extracellular vesicles (EVs) have potential as diagnostic biomarkers for patients with cancer and are identified in a variety of biofluids. Glioblastomas (GBMs) release EVs containing RNA into cerebrospinal fluid (CSF). Here we describe a multi-institutional study of RNA extracted from CSF-derived EVs of GBM patients to detect the presence of tumor-associated amplifications and mutations in epidermal growth factor receptor (EGFR). CSF and matching tumor tissue were obtained from patients undergoing resection of GBMs. We determined wild-type (wt)EGFR DNA copy number amplification, as well as wtEGFR and EGFR variant (v)III RNA expression in tumor samples. We also characterized wtEGFR and EGFRvIII RNA expression in CSF-derived EVs. EGFRvIII-positive tumors had significantly greater wtEGFR DNA amplification (P = 0.02) and RNA expression (P = 0.03), and EGFRvIII-positive CSF-derived EVs had significantly more wtEGFR RNA expression (P = 0.004). EGFRvIII was detected in CSF-derived EVs for 14 of the 23 EGFRvIII tissue-positive GBM patients. Conversely, only one of the 48 EGFRvIII tissue-negative patients had the EGFRvIII mutation detected in their CSF-derived EVs. These results yield a sensitivity of 61% and a specificity of 98% for the utility of CSF-derived EVs to detect an EGFRvIII-positive GBM. Our results demonstrate CSF-derived EVs contain RNA signatures reflective of the underlying molecular genetic status of GBMs in terms of wtEGFR expression and EGFRvIII status. The high specificity of the CSF-derived EV diagnostic test gives us an accurate determination of positive EGFRvIII tumor status and is essentially a less invasive "liquid biopsy" that might direct mutation-specific therapies for GBMs. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
[The early diagnosis value of EV 71 IgM class antibodies in the hand, foot and mouth disease].
Zhao, Jing; Xu, Jun; Chen, Wei-wei; Li, Yong-li; Tang, Yan; Li, Jia; Wang, Hai-bin; Guo, Tong-sheng; Zhao, Min; Li, Bo-an; Mao, Yuan-li
2011-04-01
Assessment of detection of IgM antibodies for human enterovirus 71 (EV 71) in early diagnosis for the hand, foot and mouth disease (HFMD). The sera and throat swabs from 38 patients which were clinical diagnosis as HFMD, were continuous daily collected in our hospital in 2010. These specimens were detected by EV 71 IgM antibodies assay, real time RT-PCR methods for EV 71 and Enterovirus. Among 38 HFMD patients, the cumulative positive rates of EV 71 IgM antibodies were: 60.5% on day 1, 71.1% on day 2, 81.5% in the first 3-4 days, 92.1% on day 5, 92.1% on day 6, and the positive rate of nucleic acid detected by the real time RT-PCR for EV 71 and Enterovirus were 60.5%, 73.6%. The positive rate of EV 71 IgM antibodies in the hand, foot and mouth disease just can occur on day 1, and reach to peak on day 5, which can be used as one of indicators of early diagnosis of hand, foot and mouth disease.
Schoeppler, Gita M; Buchner, Alexander; Zaak, Dirk; Khoder, Wael; Staehler, Michael; Stief, Christian G; Reiser, Maximilian F; Clevert, Dirk-Andre
2010-12-01
To prospectively evaluate the accuracy of transvesical contrast-enhanced ultrasound (CEUS) as an alternative method for the detection of anastomotic leakage after radical retropubic prostatectomy (RRP) in comparison with the current standard method of conventional retrograde cystography (CG). Forty-three patients underwent RRP for histologically proven localized prostate cancer. The vesico-urethral anastomosis was evaluated 8 days after RRP by CG and CEUS. Any peri-anastomotic leakage was assessed and determined in CG and CEUS as follows: no extravasation (EV), small leakage (≤0.5 cm), moderate leakage (>0.5 cm to ≤2 cm), large leakage (>2 cm diameter of EV seen). In total, 21 (49%) patients showed a watertight anastomosis. Ten (23%), two (4.7%) and ten (23%) patients showed a small, intermediate and large EV, respectively. In 31 cases (72%) there was 100% agreement of CG and CEUS for detection of no, moderate and large EV, respectively. In nine cases a small and in two cases a moderate EV was categorized as watertight anastomosis by CEUS. Only in one case did CG detect a small EV where a large EV was detected in CEUS. The agreement between both methods was 95% for detecting absence or large leakages. CEUS is a promising imaging modality that seems to be equivalent to CG for detecting the presence of a large anastomotic leakage that is clinically relevant for postoperative persistence of the indwelling catheter. CEUS could be a cheap and time-saving alternative to the CG without exposure of the patient to radiation. © 2010 THE AUTHORS. JOURNAL COMPILATION © 2010 BJU INTERNATIONAL.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dileep, K.; Loukya, B.; Datta, R., E-mail: ranjan@jncasr.ac.in
2014-09-14
Nanoscale optical band gap variations in epitaxial thin films of two different spinel ferrites, i.e., NiFe₂O₄ (NFO) and CoFe₂O₄ (CFO), have been investigated by spatially resolved high resolution electron energy loss spectroscopy. Experimentally, both NFO and CFO show indirect/direct band gaps around 1.52 eV/2.74 and 2.3 eV, and 1.3 eV/2.31 eV, respectively, for the ideal inverse spinel configuration with considerable standard deviation in the band gap values for CFO due to various levels of deviation from the ideal inverse spinel structure. Direct probing of the regions in both the systems with tetrahedral A site cation vacancy, which is distinct frommore » the ideal inverse spinel configuration, shows significantly smaller band gap values. The experimental results are supported by the density functional theory based modified Becke-Johnson exchange correlation potential calculated band gap values for the different cation configurations.« less
NASA Astrophysics Data System (ADS)
Green, M. A.; Teubner, P. J. O.; Campbell, L.; Brunger, M. J.; Hoshino, M.; Ishikawa, T.; Kitajima, M.; Tanaka, H.; Itikawa, Y.; Kimura, M.; Buenker, R. J.
2002-02-01
Absolute differential cross sections (DCSs) for electron impact excitation of electronic states of CO2 in the 10.8-11.5 eV energy-loss range are reported. These data were obtained at the incident electron energies 20,30,60,100 and 200 eV and over the scattered electron angular range 3.5°-90°. The accuracy of our experimental methods has been established independently by using several different normalization techniques at both Sophia and Flinders Universities. Generalized oscillator strengths were derived from our measured DCSs and then extrapolated to zero momentum transfer, in order to determine the optical oscillator strengths. These optical oscillator strengths, where possible, are compared with the results from previous measurements and calculations.
Optical spectroscopy and band gap analysis of hybrid improper ferroelectric Ca3Ti2O7
NASA Astrophysics Data System (ADS)
Musfeldt, Janice; Cherian, Judy; Birol, Turan; Harms, Nathan; Gao, Bin; Cheong, Sang; Vanderbilt, David
We bring together optical absorption spectroscopy, photoconductivity, and first principles calculations to reveal the electronic structure of the room temperature ferroelectric Ca3Ti2O7. The 3.94 eV direct gap in Ca3Ti2O7 is charge transfer in nature and noticeably higher than that in CaTiO3 (3.4 eV), a finding that we attribute to dimensional confinement in the n = 2 member of the Ruddlesden-Popper series. While Sr substitution introduces disorder and broadens the gap edge slightly, oxygen deficiency reduces the gap to 3.7 eV and gives rise to a broad tail that persists to much lower energies. MSD, BES, U. S. DoE and DMREF, NSF.
Vibronic effects in the 1.4-eV optical center in diamond
NASA Astrophysics Data System (ADS)
Iakoubovskii, Konstantin; Davies, Gordon
2004-12-01
We report optical absorption and luminescence measurements on the 1.4-eV center in diamond. We show that the zero-phonon lines have a temperature-dependent Ni-isotope shift, that the isotopic shifts induced by carbon and nickel are opposite in sign, and that a local vibronic mode is present in the absorption spectrum but not in luminescence. The microscopic properties of the center are successfully analyzed with the Ludwig-Woodbury theory (LWT), revealing that the Ni+ ion in the 1.4-eV center only weakly interacts with the diamond lattice. The importance of vibronic effects in the LWT analysis is experimentally demonstrated. It is believed that similar effects can account for the discrepancies previously encountered in modeling other 3d9 impurities in semiconductors.
Structural and optical properties of AgIn5S8
NASA Astrophysics Data System (ADS)
Rincón, Carlos A. Durante; Durán, Larissa T.; Medina, Josefa Estévez; Castro, Jaime A.; León, Máximo; Fermín, Jose R.
2017-12-01
Compounds of the chalcogenide family Ag-In-VI (VI = S, Se, Te) are interesting materials due to their stoichiometric stability and potential application in nonlinear optics and solar cells. A polycrystalline ingot of AgIn5S8, an ordered vacancy semiconductor, was prepared by direct fusion of the stoichiometric mixture of the elements in an evacuated quartz ampoule. The presence of a single phase with cubic structure was confirmed by X-ray powder diffraction at room temperature. The lattice parameter, a, was calculated, giving 10.821750 Å. Samples in evacuated quartz ampoules were used to perform Differential Thermal Analysis measurements, showing congruent melting at 1110∘C. Transmittance and reflectivity measurements were used to calculate the absorption coefficient α. From the plot of (αhν)2 versus hν, two direct transitions are observed at 1.25 eV and 1.88 eV. While the higher energy direct transition has been observed by other authors, the direct nature of the lower energy transition was confirmed from the fitting of the plot of the reflectivity versus 1/hν between 0.53 eV-1 (1.89 eV) and 0.55 eV-1 (1.82 eV), obtaining a value of 1.29 eV. The real refractive index n and the high-frequency dielectric constant 𝜀∞ were also obtained from the fit of the reflectivity, resulting to be 2.68 and 7.2, respectively.
Fleury, Sylvain; Jamet, Éric; Roussarie, Vincent; Bosc, Laure; Chamard, Jean-Christophe
2016-12-01
Virtually silent electric vehicles (EVs) may pose a risk for pedestrians. This paper describes two studies that were conducted to assess the influence of different types of external sounds on EV detectability. In the first study, blindfolded participants had to detect an approaching EV with either no warning sounds at all or one of three types of sound we tested. In the second study, designed to replicate the results of the first one in an ecological setting, the EV was driven along a road and the experimenters counted the number of people who turned their heads in its direction. Results of the first study showed that adding external sounds improve EV detection, and modulating the frequency and increasing the pitch of these sounds makes them more effective. This improvement was confirmed in the ecological context. Consequently, pitch variation and frequency modulation should both be taken into account in future AVAS design. Copyright © 2016 Elsevier Ltd. All rights reserved.
Laitinen, Olli H; Svedin, Emma; Kapell, Sebastian; Hankaniemi, Minna M; Larsson, Pär G; Domsgen, Erna; Stone, Virginia M; Määttä, Juha A E; Hyöty, Heikki; Hytönen, Vesa P; Flodström-Tullberg, Malin
2018-05-01
Enteroviruses (EVs), such as the Coxsackie B-viruses (CVBs), are common human pathogens, which can cause severe diseases including meningitis, myocarditis and neonatal sepsis. EVs encode two proteases (2A pro and 3C pro ), which perform the proteolytic cleavage of the CVB polyprotein and also cleave host cell proteins to facilitate viral replication. The 2A pro cause direct damage to the infected heart and tools to investigate 2A pro and 3C pro expression may contribute new knowledge on virus-induced pathologies. Here, we developed new antibodies to CVB-encoded 2A pro and 3C pro ; Two monoclonal 2A pro antibodies and one 3C pro antibody were produced. Using cells infected with selected viruses belonging to the EV A, B and C species and immunocytochemistry, we demonstrate that the 3C pro antibody detects all of the EV species B (EV-B) viruses tested and that the 2A pro antibody detects all EV-B viruses apart from Echovirus 9. We furthermore show that the new antibodies work in Western blotting, immunocyto- and immunohistochemistry, and flow cytometry to detect CVBs. Confocal microscopy demonstrated the expression kinetics of 2A pro and 3C pro , and revealed a preferential cytosolic localization of the proteases in CVB3 infected cells. In summary, the new antibodies detect proteases that belong to EV species B in cells and tissue using multiple applications. Copyright © 2018 Elsevier B.V. All rights reserved.
Zanatta, G; Gottfried, C; Silva, A M; Caetano, E W S; Sales, F A M; Freire, V N
2014-03-28
Results of optical absorption measurements are presented together with calculated structural, electronic, and optical properties for the anhydrous monoclinic L-asparagine crystal. Density functional theory (DFT) within the generalized gradient approximation (GGA) including dispersion effects (TS, Grimme) was employed to perform the calculations. The optical absorption measurements revealed that the anhydrous monoclinic L-asparagine crystal is a wide band gap material with 4.95 eV main gap energy. DFT-GGA+TS simulations, on the other hand, produced structural parameters in very good agreement with X-ray data. The lattice parameter differences Δa, Δb, Δc between theory and experiment were as small as 0.020, 0.051, and 0.022 Å, respectively. The calculated band gap energy is smaller than the experimental data by about 15%, with a 4.23 eV indirect band gap corresponding to Z → Γ and Z → β transitions. Three other indirect band gaps of 4.30 eV, 4.32 eV, and 4.36 eV are assigned to α3 → Γ, α1 → Γ, and α2 → Γ transitions, respectively. Δ-sol computations, on the other hand, predict a main band gap of 5.00 eV, just 50 meV above the experimental value. Electronic wavefunctions mainly originating from O 2p-carboxyl, C 2p-side chain, and C 2p-carboxyl orbitals contribute most significantly to the highest valence and lowest conduction energy bands, respectively. By varying the lattice parameters from their converged equilibrium values, we show that the unit cell is less stiff along the b direction than for the a and c directions. Effective mass calculations suggest that hole transport behavior is more anisotropic than electron transport, but the mass values allow for some charge mobility except along a direction perpendicular to the molecular layers of L-asparagine which form the crystal, so anhydrous monoclinic L-asparagine crystals could behave as wide gap semiconductors. Finally, the calculations point to a high degree of optical anisotropy for the absorption and complex dielectric function, with more structured curves for incident light polarized along the 100 and 101 directions.
Electronic and optical properties of novel carbon allotropes
Wang, Zhanyu; Dong, F.; Shen, B.; ...
2016-01-22
The vibrational properties, electronic structures and optical properties of novel carbon allotropes, such as monolayer penta-graphene (PG), double-layer PG and T12-carbon, were studied by first-principles calculations. Results of phonon calculations demonstrate that these exotic carbon allotropes are dynamically stable. The bulk T12 phase is an indirect-gap semiconductor having a quasiparticle (QP) bandgap of ~5.19 eV. When the bulk material transforms to a two-dimensional (2D) phase, the monolayer and double-layer PG become quasi-direct gap semiconductors with smaller QP bandgaps of ~4.48 eV and ~3.67 eV, respectively. Furthermore, the partial charge density analysis indicates that the 2D phases retain part of themore » electronic characteristics of the T12 phase. The linear photon energy-dependent dielectric functions and related optical properties including refractive index, extinction coefficient, absorption spectrum, reflectivity, and energy-loss spectrum were also computed and discussed. Additionally, the chemical stability of monolayer PG and the electronic and optical properties of double-side hydrogenated monolayer PG were also investigated. Furthermore, the results obtained from our calculations are beneficial to practical applications of these exotic carbon allotropes in optoelectronics and electronics.« less
Optical and magneto-optical properties of AuMnSn
NASA Astrophysics Data System (ADS)
Lee, S. J.; Janssen, Y.; Park, J. M.; Cho, B. K.
2006-03-01
We have measured room-temperature magneto-optical properties of AuMnSn on a single-crystalline sample. The maximum polar Kerr rotation was predicted to be very large, about -0.7° at 1.2eV [L. Offernes, P. Ravindran, and A. Kjekshus, Appl. Phys. Lett. 82, 2862 (2003)]. We found the experimental maximum Kerr rotation and ellipticity were about three times smaller than predicted and appeared at energies about 0.6eV higher than predicted, which is possibly due to inaccurate handling of the theory based on the local spin-density approximation to density-function theory for the localized 4d and 5d orbitals in AuMnSn.
Krupin, O; Trigo, M; Schlotter, W F; Beye, M; Sorgenfrei, F; Turner, J J; Reis, D A; Gerken, N; Lee, S; Lee, W S; Hays, G; Acremann, Y; Abbey, B; Coffee, R; Messerschmidt, M; Hau-Riege, S P; Lapertot, G; Lüning, J; Heimann, P; Soufli, R; Fernández-Perea, M; Rowen, M; Holmes, M; Molodtsov, S L; Föhlisch, A; Wurth, W
2012-05-07
The recent development of x-ray free electron lasers providing coherent, femtosecond-long pulses of high brilliance and variable energy opens new areas of scientific research in a variety of disciplines such as physics, chemistry, and biology. Pump-probe experimental techniques which observe the temporal evolution of systems after optical or x-ray pulse excitation are one of the main experimental schemes currently in use for ultrafast studies. The key challenge in these experiments is to reliably achieve temporal and spatial overlap of the x-ray and optical pulses. Here we present measurements of the x-ray pulse induced transient change of optical reflectivity from a variety of materials covering the soft x-ray photon energy range from 500eV to 2000eV and outline the use of this technique to establish and characterize temporal synchronization of the optical-laser and FEL x-ray pulses.
NASA Astrophysics Data System (ADS)
Pyachin, S. A.; Burkov, A. A.; Makarevich, K. S.; Zaitsev, A. V.; Karpovich, N. F.; Ermakov, M. A.
2016-07-01
Titanium oxide particles are produced using electric-discharge dispersion of titanium in aqueous solution of hydrogen peroxide. Electron vacuum microscopy, X-ray diffraction, and diffuse reflection spectroscopy are used to study the morphology, composition, and optical characteristics of the erosion particles. It has been demonstrated that the particles consist of titanium and titanium oxides with different valences. The edge of the optical absorption is located in the UV spectral range. The band gap is 3.35 eV for indirect transitions and 3.87 eV for direct allowed transitions. The band gap decreases due to the relatively long heating in air at a temperature of 480-550°C, so that powder oxide compositions can be obtained, the optical characteristics of which are similar to optical characteristics of anatase. The erosion products are completely oxidized to rutile after annealing in air at a temperature of 1000°C.
VUV and XUV reflectance of optically coated mirrors for selection of high harmonics
Larsen, K. A.; Cryan, J. P.; Shivaram, N.; ...
2016-08-08
We report the reflectance, ~1° from normal incidence, of six different mirrors as a function of photon energy, using monochromatic vacuum ultraviolet (VUV) and extreme ultraviolet (XUV) radiation with energies between 7.5 eV and 24.5 eV. The mirrors examined included both single and multilayer optical coatings, as well as an uncoated substrate. Furthermore, we discuss the performance of each mirror, paying particular attention to the potential application of suppression and selection of high-order harmonics of a Ti:sapphire laser.
Smura, Teemu; Blomqvist, Soile; Vuorinen, Tytti; Ivanova, Olga; Samoilovich, Elena; Al-Hello, Haider; Savolainen-Kopra, Carita; Hovi, Tapani; Roivainen, Merja
2014-01-01
Genetic recombination is considered to be a very frequent phenomenon among enteroviruses (Family Picornaviridae, Genus Enterovirus). However, the recombination patterns may differ between enterovirus species and between types within species. Enterovirus C (EV-C) species contains 21 types. In the capsid coding P1 region, the types of EV-C species cluster further into three sub-groups (designated here as A-C). In this study, the recombination pattern of EV-C species sub-group B that contains types CVA-21, CVA-24, EV-C95, EV-C96 and EV-C99 was determined using partial 5'UTR and VP1 sequences of enterovirus strains isolated during poliovirus surveillance and previously published complete genome sequences. Several inter-typic recombination events were detected. Furthermore, the analyses suggested that inter-typic recombination events have occurred mainly within the distinct sub-groups of EV-C species. Only sporadic recombination events between EV-C species sub-group B and other EV-C sub-groups were detected. In addition, strict recombination barriers were inferred for CVA-21 genotype C and CVA-24 variant strains. These results suggest that the frequency of inter-typic recombinations, even within species, may depend on the phylogenetic position of the given viruses.
Enterovirus and parechovirus infection in children: a brief overview.
de Crom, S C M; Rossen, J W A; van Furth, A M; Obihara, C C
2016-08-01
Enterovirus and parechovirus are a frequent cause of infection in children. This review is an overview of what is known from enterovirus and parechovirus infection in children and contains information about the epidemiology, pathogenesis, clinical presentation, diagnosis, treatment, and prognosis of enterovirus and parechovirus infection in children. EV and HPeV infections are a frequent cause of infection in childhood. The clinical presentation is diverse. RT-qPCR is the best way to detect an EV or HPeV. Cerebrospinal fluid, blood and feces have the highest sensitivity for detecting an EV or HPeV. There is no treatment for EV and HPeV infections. Two vaccines against EV 71 are just licensed in China and will be available on the private market. Little is known about the prognosis of EV and HPeV infections. •EV and HPeV are a frequent cause of infection in children. What is new: •This review gives a brief overview over EV and HPeV infection in children.
Integrated Kidney Exosome Analysis for the Detection of Kidney Transplant Rejection.
Park, Jongmin; Lin, Hsing-Ying; Assaker, Jean Pierre; Jeong, Sangmoo; Huang, Chen-Han; Kurdi, A; Lee, Kyungheon; Fraser, Kyle; Min, Changwook; Eskandari, Siawosh; Routray, Sujit; Tannous, Bakhos; Abdi, Reza; Riella, Leonardo; Chandraker, Anil; Castro, Cesar M; Weissleder, Ralph; Lee, Hakho; Azzi, Jamil R
2017-11-28
Kidney transplant patients require life-long surveillance to detect allograft rejection. Repeated biopsy, albeit the clinical gold standard, is an invasive procedure with the risk of complications and comparatively high cost. Conversely, serum creatinine or urinary proteins are noninvasive alternatives but are late markers with low specificity. We report a urine-based platform to detect kidney transplant rejection. Termed iKEA (integrated kidney exosome analysis), the approach detects extracellular vesicles (EVs) released by immune cells into urine; we reasoned that T cells, attacking kidney allografts, would shed EVs, which in turn can be used as a surrogate marker for inflammation. We optimized iKEA to detect T-cell-derived EVs and implemented a portable sensing system. When applied to clinical urine samples, iKEA revealed high level of CD3-positive EVs in kidney rejection patients and achieved high detection accuracy (91.1%). Fast, noninvasive, and cost-effective, iKEA could offer new opportunities in managing transplant recipients, perhaps even in a home setting.
Constraining neutrino properties with a Euclid-like galaxy cluster survey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cerbolini, M. Costanzi Alunno; Sartoris, B.; Borgani, S.
2013-06-01
We perform a forecast analysis on how well a Euclid-like photometric galaxy cluster survey will constrain the total neutrino mass and effective number of neutrino species. We base our analysis on the Monte Carlo Markov Chains technique by combining information from cluster number counts and cluster power spectrum. We find that combining cluster data with Cosmic Microwave Background (CMB) measurements from Planck improves by more than an order of magnitude the constraint on neutrino masses compared to each probe used independently. For the ΛCDM+m{sub ν} model the 2σ upper limit on total neutrino mass shifts from Σm{sub ν} < 0.35more » eV using cluster data alone to Σm{sub ν} < 0.031 eV when combined with Planck data. When a non-standard scenario with N{sub eff}≠3.046 number of neutrino species is considered, we estimate an upper limit of N{sub eff} < 3.14 (95%CL), while the bounds on neutrino mass are relaxed to Σm{sub ν} < 0.040 eV. This accuracy would be sufficient for a 2σ detection of neutrino mass even in the minimal normal hierarchy scenario (Σm{sub ν} ≅ 0.05 eV). In addition to the extended ΛCDM+m{sub ν}+N{sub eff} model we also consider scenarios with a constant dark energy equation of state and a non-vanishing curvature. When these models are considered the error on Σm{sub ν} is only slightly affected, while there is a larger impact of the order of ∼ 15% and ∼ 20% respectively on the 2σ error bar of N{sub eff} with respect to the standard case. To assess the effect of an uncertain knowledge of the relation between cluster mass and optical richness, we also treat the ΛCDM+m{sub ν}+N{sub eff} case with free nuisance parameters, which parameterize the uncertainties on the cluster mass determination. Adopting the over-conservative assumption of no prior knowledge on the nuisance parameter the loss of information from cluster number counts leads to a large degradation of neutrino constraints. In particular, the upper bounds for Σm{sub ν} are relaxed by a factor larger than two, Σm{sub ν} < 0.083 eV (95%CL), hence compromising the possibility of detecting the total neutrino mass with good significance. We thus confirm the potential that a large optical/near-IR cluster survey, like that to be carried out by Euclid, could have in constraining neutrino properties, and we stress the importance of a robust measurement of masses, e.g. from weak lensing within the Euclid survey, in order to full exploit the cosmological information carried by such survey.« less
Niu, Peihua; Qi, Shunxiang; Yu, Benzhang; Zhang, Chen; Wang, Ji; Li, Qi; Ma, Xuejun
2016-11-01
Enterovirus 71 (EV71) is one of the major causative agents of outbreaks of hand, foot, and mouth disease (HFMD). A commercial TaqMan probe-based real-time PCR assay has been widely used for the differential detection of EV71 despite its relatively high cost and failure to detect samples with a low viral load (Ct value > 35). In this study, a highly sensitive real-time nested RT-PCR (RTN RT-PCR) assay in a single closed tube for detection of EV71 in HFMD was developed. The sensitivity and specificity of this assay were evaluated using a reference EV71 stock and a panel of controls consisting of coxsackievirus A16 (CVA16) and common respiratory viruses, respectively. The clinical performance of this assay was evaluated and compared with those of a commercial TaqMan probe-based real-time PCR (qRT-PCR) assay and a traditional two-step nested RT-PCR assay. The limit of detection for the RTN RT-PCR assay was 0.01 TCID50/ml, with a Ct value of 38.3, which was the same as that of the traditional two-step nested RT-PCR assay and approximately tenfold lower than that of the qRT-PCR assay. When testing the reference strain EV71, this assay showed favorable detection reproducibility and no obvious cross-reactivity. The testing results of 100 clinical throat swabs from HFMD-suspected patients revealed that 41 samples were positive for EV71 by both RTN RT-PCR and traditional two-step nested RT-PCR assays, whereas only 29 were EV71 positive by qRT-PCR assay.
Liang, Kai; Liu, Fei; Fan, Jia; Sun, Dali; Liu, Chang; Lyon, Christopher J.; Bernard, David W.; Li, Yan; Yokoi, Kenji; Katz, Matthew H.; Koay, Eugene J.; Zhao, Zhen; Hu, Ye
2017-01-01
Tumour-derived extracellular vesicles (EVs) are of increasing interest as a resource of diagnostic biomarkers. However, most EV assays require large samples, are time-consuming, low-throughput and costly, and thus impractical for clinical use. Here, we describe a rapid, ultrasensitive and inexpensive nanoplasmon-enhanced scattering (nPES) assay that directly quantifies tumor-derived EVs from as little as 1 μL of plasma. The assay uses the binding of antibody-conjugated gold nanospheres and nanorods to EVs captured by EV-specific antibodies on a sensor chip to produce a local plasmon effect that enhances tumour-derived EV detection sensitivity and specificity. We identified a pancreatic cancer EV biomarker, ephrin type-A receptor 2 (EphA2), and demonstrate that an nPES assay for EphA2-EVs distinguishes pancreatic cancer patients from pancreatitis patients and healthy subjects. EphA2-EVs were also informative in staging tumour progression and in detecting early responses to neoadjuvant therapy, with better performance than a conventional enzyme-linked immunosorbent assay. The nPES assay can be easily refined for clinical use, and readily adapted for diagnosis and monitoring of other conditions with disease-specific EV biomarkers. PMID:28791195
Ab-initio calculations of structural, electronic, and optical properties of Zn3(VO4)2
NASA Astrophysics Data System (ADS)
Ahmed, Nisar; Mukhtar, S.; Gao, Wei; Zafar Ilyas, Syed
2018-03-01
The structural, electronic, and optical properties of Zn3(VO4)2 are investigated using full potential linearized augmented plane wave (FP-LAPW) method within the framework of density functional theory (DFT). Various approaches are adopted to treat the exchange and correlation potential energy such as generalized gradient approximation (GGA), GGA+U, and the Tran–Blaha modified Becke–Johnson (TB-mBJ) potential. The calculated band gap of 3.424 eV by TB-mBJ is found to be close to the experimental result (3.3 eV). The optical anisotropy is analyzed through optical constants, such as dielectric function and absorption coefficient along parallel and perpendicular crystal orientations. The absorption coefficient reveals high absorption (1.5× {10}6 {cm}}-1) of photons in the ultraviolet region.
NASA Astrophysics Data System (ADS)
Lavrentiev, Vasily; Chvostova, Dagmar; Stupakov, Alexandr; Lavrentieva, Inna; Vacik, Jiri; Motylenko, Mykhaylo; Barchuk, Mykhailo; Rafaja, David; Dejneka, Alexandr
2018-04-01
Driving by interplay between plasmonic and magnetic effects in organic composite semiconductors is a challenging task with a huge potential for practical applications. Here, we present evidence of a quantum plasmon excited in the self-assembled Co x C60 nanocomposite films with x > 15 (interval of the Co cluster coalescence) and analyse it using the optical absorption (OA) spectra. In the case of Co x C60 film with x = 16 (LF sample), the quantum plasmon generated by the Co/CoO clusters is found as the 1.5 eV-centred OA peak. This finding is supported by the establishment of four specific C60-related OA lines detected at the photon energies E p > 2.5 eV. Increase of the Co content up to x = 29 (HF sample) leads to pronounced enhancement of OA intensity in the energy range of E p > 2.5 eV and to plasmonic peak downshift of 0.2 eV with respect to the peak position in the LF spectrum. Four pairs of the OA peaks evaluated in the HF spectrum at E p > 2.5 eV reflect splitting of the C60-related lines, suggesting great change in the microscopic conditions with increasing x. Analysis of the film nanostructure and the plasmon-induced conditions allows us to propose a Rashba-like spin splitting effect that suggests valuable sources for spin polarization.
NASA Astrophysics Data System (ADS)
Yamada, Yasuhiro; Nakamura, Toru; Endo, Masaru; Wakamiya, Atsushi; Kanemitsu, Yoshihiko
2014-03-01
We studied the near-band-edge optical responses of solution-processed CH3NH3PbI3 on mesoporous TiO2 electrodes, which is utilized in mesoscopic heterojunction solar cells. Photoluminescence (PL) and PL excitation spectra peaks appear at 1.60 and 1.64 eV, respectively. The transient absorption spectrum shows a negative peak at 1.61 eV owing to photobleaching at the band-gap energy, indicating a direct band-gap semiconductor. On the basis of the temperature-dependent PL and diffuse reflectance spectra, we clarified that the absorption tail at room temperature is explained in terms of an Urbach tail and consistently determined the band-gap energy to be ˜1.61 eV at room temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, W. F.; Institute of Materials Research and Engineering, Agency for Science, Technology and Research; Liu, Z. G.
2013-03-18
Al-doped ZnO (AZO) films with high transmittance and low resistivity were achieved on low temperature substrates by radio frequency magnetron sputtering using a high temperature target. By investigating the effect of target temperature (T{sub G}) on electrical and optical properties, the origin of electrical conduction is verified as the effect of the high T{sub G}, which enhances crystal quality that provides higher mobility of electrons as well as more effective activation for the Al dopants. The optical bandgap increases from 3.30 eV for insulating ZnO to 3.77 eV for conducting AZO grown at high T{sub G}, and is associated withmore » conduction-band filling up to 1.13 eV due to the Burstein-Moss effect.« less
NASA Astrophysics Data System (ADS)
Mahmoud, Siham; Sharaf, Fouad
Thin films of Bi2S3, of thickness in the range 300 to 500 nm, were produced by thermal evaporation technique. The reaction consisted in depositing the two elements (bismuth and sulfur) from a boat source and allowing their atoms to interdiffuse to form the compound during the deposition on quartz substrates. The material has been characterized by X-ray studies, optical and electrical measurements. When these films were annealed at 353 K, 393 K and 453 K for 5 hours, a nearly amorphous to polycrystalline transition was observed. The absorption coefficient revealed the existence of an allowed direct transition with Eg = 1.56 eV. The activation energies for electrical conduction in low and high temperature regions are 0.28 eV and 0.73 eV, respectively.
Gao, Caixia; Ding, Yingying; Zhou, Peng; Feng, Jiaojiao; Qian, Baohua; Lin, Ziyu; Wang, Lili; Wang, Jinhong; Zhao, Chunyan; Li, Xiangyu; Cao, Mingmei; Peng, Heng; Rui, Bing; Pan, Wei
2016-02-26
The overall serological prevalence of EV infections based on ELISA remains unknown. In the present study, the antibody responses against VP1 of the EV-A species (enterovirus 71 (EV71), Coxsackievirus A16 (CA16), Coxsackievirus A5 (CA5) and Coxsackievirus A6 (CA6)), of the EV-B species (Coxsackievirus B3 (CB3)), and of the EV-C species (Poliovirus 1 (PV1)) were detected and analyzed by a NEIBM (novel evolved immunoglobulin-binding molecule)-based ELISA in Shanghai blood donors. The serological prevalence of anti-CB3 VP1 antibodies was demonstrated to show the highest level, with anti-PV1 VP1 antibodies at the second highest level, and anti-CA5, CA6, CA16 and EV71 VP1 antibodies at a comparatively low level. All reactions were significantly correlated at different levels, which were approximately proportional to their sequence similarities. Antibody responses against EV71 VP1 showed obvious differences with responses against other EV-A viruses. Obvious differences in antibody responses between August 2013 and May 2014 were revealed. These findings are the first to describe the detailed information of the serological prevalence of human antibody responses against the VP1 of EV-A, B and C viruses, and could be helpful for understanding of the ubiquity of EV infections and for identifying an effective approach for seroepidemiological surveillance based on ELISA.
Comparative analysis of EV isolation procedures for miRNAs detection in serum samples.
Andreu, Zoraida; Rivas, Eva; Sanguino-Pascual, Aitana; Lamana, Amalia; Marazuela, Mónica; González-Alvaro, Isidoro; Sánchez-Madrid, Francisco; de la Fuente, Hortensia; Yáñez-Mó, María
2016-01-01
Extracellular vesicles (EVs) are emerging as potent non-invasive biomarkers. However, current methodologies are time consuming and difficult to translate to clinical practice. To analyse EV-encapsulated circulating miRNA, we searched for a quick, easy and economic method to enrich frozen human serum samples for EV. We compared the efficiency of several protocols and commercial kits to isolate EVs. Different methods based on precipitation, columns or filter systems were tested and compared with ultracentrifugation, which is the most classical protocol to isolate EVs. EV samples were assessed for purity and quantity by nanoparticle tracking analysis and western blot or cytometry against major EV protein markers. For biomarker validation, levels of a set of miRNAs were determined in EV fractions and compared with their levels in total serum. EVs isolated with precipitation-based methods were enriched for a subgroup of miRNAs that corresponded to miRNAs described to be encapsulated into EVs (miR-126, miR-30c and miR-143), while the detection of miR-21, miR-16-5p and miR-19a was very low compared with total serum. Our results point to precipitation using polyethylene glycol (PEG) as a suitable method for an easy and cheap enrichment of serum EVs for miRNA analyses. The overall performance of PEG was very similar, or better than other commercial precipitating reagents, in both protein and miRNA yield, but in comparison to them PEG is much cheaper. Other methods presented poorer results, mostly when assessing miRNA by qPCR analyses. Using PEG precipitation in a longitudinal study with human samples, we demonstrated that miRNA could be assessed in frozen samples up to 8 years of storage. We report a method based on a cut-off value of mean of fold EV detection versus serum that provides an estimate of the degree of encapsulation of a given miRNA.
Band bending at magnetic Ni/Ge(001) interface investigated by X-ray photoelectron spectroscopy
NASA Astrophysics Data System (ADS)
Bocîrnea, Amelia Elena; Tănase, Liviu Cristian; Costescu, Ruxandra Maria; Apostol, Nicoleta Georgiana; Teodorescu, Cristian Mihail
2017-12-01
We report the molecular beam epitaxy growth of Ni on a clean Ge(001) surface with an intermediate NiGe layer forming at the interface at room temperature. The crystallinity of the substrate is lost after the deposition of more than 2 Ni monolayers. The Schottky barrier formation is investigated by X-ray photoelectron spectroscopy. The method allows us to infer a 0.39-0.45 eV band bending at the interface between the compound and Ge(001). Magneto-optical Kerr effect measurements were conclusive in detecting the ferromagnetic ordering of Ni outermost layers.
Zhuge, Jian; Vail, Eric; Bush, Jeffrey L; Singelakis, Lauren; Huang, Weihua; Nolan, Sheila M; Haas, Janet P; Engel, Helen; Della Posta, Millicent; Yoon, Esther C; Fallon, John T; Wang, Guiqing
2015-06-01
An outbreak of severe respiratory illness associated with enterovirus D68 (EV-D68) infection was reported in mid-August 2014 in the United States. In this study, we evaluated the diagnostic utility of an EV-D68-specific real-time reverse transcription-PCR (rRT-PCR) that was recently developed by the Centers for Disease Control and Prevention in clinical samples. Nasopharyngeal (NP) swab specimens from patients in a recent outbreak of respiratory illness in the lower Hudson Valley, New York State, were collected and examined for the presence of human rhinovirus or enterovirus using the FilmArray Respiratory Panel (RP) assay. Samples positive by RP were assessed using EV-D68 rRT-PCR, and the data were compared to results from sequencing analysis of partial VP1 and 5' untranslated region (5'-UTR) sequences of the EV genome. A total of 285 RP-positive NP specimens (260 from the 2014 outbreak and 25 from 2013) were analyzed by rRT-PCR; EV-D68 was detected in 74 of 285 (26.0%) specimens examined. Data for comparisons between rRT-PCR and sequencing analysis were obtained from 194 NP specimens. EV-D68 detection was confirmed by sequencing analysis in 71 of 74 positive and in 1 of 120 randomly selected negative specimens by rRT-PCR. The EV-D68 rRT-PCR showed diagnostic sensitivity and specificity of 98.6% and 97.5%, respectively. Our data suggest that the EV-D68 rRT-PCR is a reliable assay for detection of EV-D68 in clinical samples and has a potential to be used as a tool for rapid diagnosis and outbreak investigation of EV-D68-associated infections in clinical and public health laboratories. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Zhuge, Jian; Vail, Eric; Bush, Jeffrey L.; Singelakis, Lauren; Huang, Weihua; Nolan, Sheila M.; Haas, Janet P.; Engel, Helen; Della Posta, Millicent; Yoon, Esther C.; Fallon, John T.
2015-01-01
An outbreak of severe respiratory illness associated with enterovirus D68 (EV-D68) infection was reported in mid-August 2014 in the United States. In this study, we evaluated the diagnostic utility of an EV-D68-specific real-time reverse transcription-PCR (rRT-PCR) that was recently developed by the Centers for Disease Control and Prevention in clinical samples. Nasopharyngeal (NP) swab specimens from patients in a recent outbreak of respiratory illness in the lower Hudson Valley, New York State, were collected and examined for the presence of human rhinovirus or enterovirus using the FilmArray Respiratory Panel (RP) assay. Samples positive by RP were assessed using EV-D68 rRT-PCR, and the data were compared to results from sequencing analysis of partial VP1 and 5′ untranslated region (5′-UTR) sequences of the EV genome. A total of 285 RP-positive NP specimens (260 from the 2014 outbreak and 25 from 2013) were analyzed by rRT-PCR; EV-D68 was detected in 74 of 285 (26.0%) specimens examined. Data for comparisons between rRT-PCR and sequencing analysis were obtained from 194 NP specimens. EV-D68 detection was confirmed by sequencing analysis in 71 of 74 positive and in 1 of 120 randomly selected negative specimens by rRT-PCR. The EV-D68 rRT-PCR showed diagnostic sensitivity and specificity of 98.6% and 97.5%, respectively. Our data suggest that the EV-D68 rRT-PCR is a reliable assay for detection of EV-D68 in clinical samples and has a potential to be used as a tool for rapid diagnosis and outbreak investigation of EV-D68-associated infections in clinical and public health laboratories. PMID:25854481
The Spectral Energy Distribution of the Seyfert Galaxy Ton S180
NASA Technical Reports Server (NTRS)
Turner, T. J.; Romano, P.; Kraemer, S. B.; George, I. M.; Yaqoob, T.; Crenshaw, D. M.; Storm, J.; Alloin, D.; Lazzaro, D.; DaSilva, L.;
2001-01-01
We present spectral results from a multi-satellite, broad-band campaign on the Narrow-line Seyfert 1 galaxy Ton S180 performed at the end of 1999. We discuss the spectral-energy distribution of the source, combining simultaneous Chandra, ASCA and EUVE data with contemporaneous FUSE, HST, and ground-based optical and infrared data. The resulting SED shows that most of the, energy is emitted in the 10 - 100 eV regime, which must be dominated by the primary energy source. No spectral turnover is evident in the UV regime. This, the strong soft X-ray emission, and the overall shape of the SED indicate that emission from the accretion disk peaks between 15 and 100 eV. High resolution FUSE spectra showing UV absorption due to OVI and the lack of detectable X-ray absorption in the Candra spectrum demonstrate the presence of a low column density of highly ionized gas along our line of sight.
ZnS nanostructured thin-films deposited by successive ionic layer adsorption and reaction
NASA Astrophysics Data System (ADS)
Deshmukh, S. G.; Jariwala, Akshay; Agarwal, Anubha; Patel, Chetna; Panchal, A. K.; Kheraj, Vipul
2016-04-01
ZnS thin films were grown on glass substrate using successive ionic layer adsorption and reaction (SILAR) technique at room temperature. Aqueous solutions of ZnCl2 and Na2S were used as precursors. The X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Raman spectroscopy and optical absorption measurements were applied to study the structural, surface morphology and optical properties of as-deposited ZnS thin films. The X-ray diffraction profiles revealed that ZnS thin films consist of crystalline grains with cubic phase. Spherical nano grains of random size and well covered on the glass substrate were observed from FESEM. The average grain size were found to be 77 nm, 100 nm and 124 nm for 20 cycles, 40 cycles and 60 cycles samples respectively. For 60 cycle sample, Raman spectra show two prominent peaks at 554 cm-1 and 1094 cm-1. The optical band gap values were found to be 3.76 eV, 3.72 eV and 3.67 eV for 20 cycle, 40 cycle and 60 cycle samples respectively.
Toyoshima, Akio; Kikuchi, Takashi; Tanaka, Hirokazu; Mase, Kazuhiko; Amemiya, Kenta
2015-11-01
Carbon-free chromium-coated optics are ideal in the carbon K-edge region (280-330 eV) because the reflectivity of first-order light is larger than that of gold-coated optics while the second-order harmonics (560-660 eV) are significantly suppressed by chromium L-edge and oxygen K-edge absorption. Here, chromium-, gold- and nickel-coated mirrors have been adopted in the vacuum ultraviolet and soft X-ray branch beamline BL-13B at the Photon Factory in Tsukuba, Japan. Carbon contamination on the chromium-coated mirror was almost completely removed by exposure to oxygen at a pressure of 8 × 10(-2) Pa for 1 h under irradiation of non-monochromated synchrotron radiation. The pressure in the chamber recovered to the order of 10(-7) Pa within a few hours. The reflectivity of the chromium-coated mirror of the second-order harmonics in the carbon K-edge region (560-660 eV) was found to be a factor of 0.1-0.48 smaller than that of the gold-coated mirror.
Excitation of the {sup 229m}Th nuclear isomer via resonance conversion in ionized atoms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karpeshin, F. F., E-mail: fkarpeshin@gmail.com; Trzhaskovskaya, M. B.
2015-09-15
Pressing problems concerning the optical pumping of the 7.6-eV {sup 229m}Th nuclear isomer, which is a candidate for a new nuclear optical reference point for frequencies, are examined. Physics behind the mechanism of the two-photon optical pumping of the isomer is considered. It is shown that, irrespective of the pumping scheme, a dominant contribution comes, in accord with what was proven earlier for the 3.5-eV isomer, from the resonance 8s–7s transition. Details of an optimum experimental scheme are discussed. It is shown that, after isomer excitation, the atom involved remains with a high probability in an excited state at anmore » energy of about 0.5 eV rather than in the ground state, the required energy of the two photons being equal to the energy of the nuclear level plus the energy of the lowest 7s state of the atom. The estimated pumping time is about 1.5 s in the case where the field strength of each laser is 1 V/cm.« less
Excitation of the 229 m Th nuclear isomer via resonance conversion in ionized atoms
NASA Astrophysics Data System (ADS)
Karpeshin, F. F.; Trzhaskovskaya, M. B.
2015-09-01
Pressing problems concerning the optical pumping of the 7.6-eV 229 m Th nuclear isomer, which is a candidate for a new nuclear optical reference point for frequencies, are examined. Physics behind the mechanism of the two-photon optical pumping of the isomer is considered. It is shown that, irrespective of the pumping scheme, a dominant contribution comes, in accord with what was proven earlier for the 3.5-eV isomer, from the resonance 8 s-7 s transition. Details of an optimum experimental scheme are discussed. It is shown that, after isomer excitation, the atom involved remains with a high probability in an excited state at an energy of about 0.5 eV rather than in the ground state, the required energy of the two photons being equal to the energy of the nuclear level plus the energy of the lowest 7 s state of the atom. The estimated pumping time is about 1.5 s in the case where the field strength of each laser is 1 V/cm.
Narrow bandgap semiconducting silicides: Intrinsic infrared detectors on a silicon chip
NASA Technical Reports Server (NTRS)
Mahan, John E.
1989-01-01
Polycrystalline thin films of CrSi2, LaSi2, and ReSi2 were grown on silicon substrates. Normal incidence optical transmittance and reflectance measurements were made as a function of wavelength. It was demonstrated that LaSi2 is a metallic conductor, but that CrSi2 and ReSi2 are, in fact, narrow bandgap semiconductors. For CrSi2, the complex index of refraction was determined by computer analysis of the optical data. From the imaginary part, the optical absorption coefficient was determined as a function of photon energy. It was shown that CrSi2 possesses an indirect forbidden energy gap of slightly less than 0.31 eV, and yet it is a very strong absorber of light above the absorption edge. On the other hand, the ReSi2 films exhibit an absorption edge in the vicinity of 0.2 eV. Measurements of the thermal activation energy of resistivity for ReSi2 indicate a bandgap of 0.18 eV. It is concluded that the semiconducting silicides merit further investigation for development as new silicon-compatible infrared detector materials.
Subgap Absorption in Conjugated Polymers
DOE R&D Accomplishments Database
Sinclair, M.; Seager, C. H.; McBranch, D.; Heeger, A. J; Baker, G. L.
1991-01-01
Along with X{sup (3)}, the magnitude of the optical absorption in the transparent window below the principal absorption edge is an important parameter which will ultimately determine the utility of conjugated polymers in active integrated optical devices. With an absorptance sensitivity of < 10{sup {minus}5}, Photothermal Deflection Spectroscopy (PDS) is ideal for determining the absorption coefficients of thin films of transparent'' materials. We have used PDS to measure the optical absorption spectra of the conjugated polymers poly(1,4-phenylene-vinylene) (and derivitives) and polydiacetylene-4BCMU in the spectral region from 0.55 eV to 3 eV. Our spectra show that the shape of the absorption edge varies considerably from polymer to polymer, with polydiacetylene-4BCMU having the steepest absorption edge. The minimum absorption coefficients measured varied somewhat with sample age and quality, but were typically in the range 1 cm{sup {minus}1} to 10 cm{sup {minus}1}. In the region below 1 eV, overtones of C-H stretching modes were observed, indicating that further improvements in transparency in this spectral region might be achieved via deuteration of fluorination.
Deep-UV emission at 219 nm from ultrathin MBE GaN/AlN quantum heterostructures
NASA Astrophysics Data System (ADS)
Islam, S. M.; Protasenko, Vladimir; Lee, Kevin; Rouvimov, Sergei; Verma, Jai; Xing, Huili Grace; Jena, Debdeep
2017-08-01
Deep ultraviolet (UV) optical emission below 250 nm (˜5 eV) in semiconductors is traditionally obtained from high aluminum containing AlGaN alloy quantum wells. It is shown here that high-quality epitaxial ultrathin binary GaN quantum disks embedded in an AlN matrix can produce efficient optical emission in the 219-235 nm (˜5.7-5.3 eV) spectral range, far above the bulk bandgap (3.4 eV) of GaN. The quantum confinement energy in these heterostructures is larger than the bandgaps of traditional semiconductors, made possible by the large band offsets. These molecular beam epitaxy-grown extreme quantum-confinement GaN/AlN heterostructures exhibit an internal quantum efficiency of 40% at wavelengths as short as 219 nm. These observations together with the ability to engineer the interband optical matrix elements to control the direction of photon emission in such binary quantum disk active regions offer unique advantages over alloy AlGaN quantum well counterparts for the realization of deep-UV light-emitting diodes and lasers.
Sulfurization effect on optical properties of Cu2SNS3 thin films grown by two-stage process
NASA Astrophysics Data System (ADS)
Reddy, G. Phaneendra; Reddy, K. T. Ramakrishna
2017-05-01
A good phase controlled and impurity free two stage process was used to prepare Cu2SnS3 layers on glass substrates. The layers were prepared by sulfurization of sputtered Cu-Sn metallic precursors by varying the sulfurization temperature (Ts) in the range, 150-450°C, keeping the other deposition parameters constant. A complete investigation of the optical properties of the layers with sulfurization temperature was made by using the optical transmittance and reflectance measurements versus wavelength. The absorption coefficient α, was evaluated using the optical data that showed a α > 104 cm-1 for all the as-grown films. The optical bandgap of the as grown layers was determined from the second derivative diffused reflectance spectra that varied from 1.96 eV to 0.99 eV. Consequently, refractive index and extinction coefficient were calculated from Pankov's relations. In addition, the other optical parameters such as the dielectric constants, dissipation factor and also optical conductivity calculated. A detailed analysis of the dependence of all the above parameters on Ts is reported and discussed.
Smura, Teemu; Blomqvist, Soile; Vuorinen, Tytti; Ivanova, Olga; Samoilovich, Elena; Al-Hello, Haider; Savolainen-Kopra, Carita; Hovi, Tapani; Roivainen, Merja
2014-01-01
Genetic recombination is considered to be a very frequent phenomenon among enteroviruses (Family Picornaviridae, Genus Enterovirus). However, the recombination patterns may differ between enterovirus species and between types within species. Enterovirus C (EV-C) species contains 21 types. In the capsid coding P1 region, the types of EV-C species cluster further into three sub-groups (designated here as A–C). In this study, the recombination pattern of EV-C species sub-group B that contains types CVA-21, CVA-24, EV-C95, EV-C96 and EV-C99 was determined using partial 5′UTR and VP1 sequences of enterovirus strains isolated during poliovirus surveillance and previously published complete genome sequences. Several inter-typic recombination events were detected. Furthermore, the analyses suggested that inter-typic recombination events have occurred mainly within the distinct sub-groups of EV-C species. Only sporadic recombination events between EV-C species sub-group B and other EV-C sub-groups were detected. In addition, strict recombination barriers were inferred for CVA-21 genotype C and CVA-24 variant strains. These results suggest that the frequency of inter-typic recombinations, even within species, may depend on the phylogenetic position of the given viruses. PMID:24722726
NASA Astrophysics Data System (ADS)
Seiferle, Benedict; von der Wense, Lars; Laatiaoui, Mustapha; Thirolf, Peter G.
2016-03-01
With an expected energy of 7.6(5) eV, 229Th possesses the lowest excited nuclear state in the landscape of all presently known nuclei. The energy corresponds to a wavelength of about 160 nm and would conceptually allow for an optical laser excitation of a nuclear transition. We report on a VUV optical detection system that was designed for the direct detection of the isomeric ground-state transition of 229Th. 229(m)Th ions originating from a 233U α-recoil source are collected on a micro electrode that is placed in the focus of an annular parabolic mirror. The latter is used to parallelize the UV fluorescence that may emerge from the isomeric ground-state transition of 229Th. The parallelized light is then focused by a second annular parabolic mirror onto a CsI-coated position-sensitive MCP detector behind the mirror exit. To achieve a high signal-to-background ratio, a small spot size on the MCP detector needs to be achieved. Besides extensive ray-tracing simulations of the optical setup, we present a procedure for its alignment, as well as test measurements using a D2 lamp, where a focal-spot size of ≈100 μm has been achieved. Assuming a purely photonic decay, a signal-to-background ratio of ≈7000:1 could be achieved.
Theoretical investigation of stabilities and optical properties of Si12C12 clusters
NASA Astrophysics Data System (ADS)
Duan, Xiaofeng F.; Burggraf, Larry W.
2015-01-01
By sorting through hundreds of globally stable Si12C12 isomers using a potential surface search and using simulated annealing, we have identified low-energy structures. Unlike isomers knit together by Si-C bonds, the lowest energy isomers have segregated carbon and silicon regions that maximize stronger C-C bonding. Positing that charge separation between the carbon and silicon regions would produce interesting optical absorption in these cluster molecules, we used time-dependent density functional theory to compare the calculated optical properties of four isomers representing structural classes having different types of silicon and carbon segregation regions. Absorptions involving charge transfer between segregated carbon and silicon regions produce lower excitation energies than do structures having alternating Si-C bonding for which frontier orbital charge transfer is exclusively from separated carbon atoms to silicon atoms. The most stable Si12C12 isomer at temperatures below 1100 K is unique as regards its high symmetry and large optical oscillator strength in the visible blue. Its high-energy and low-energy visible transitions (1.15 eV and 2.56 eV) are nearly pure one-electron silicon-to-carbon transitions, while an intermediate energy transition (1.28 eV) is a nearly pure carbon-to-silicon one-electron charge transfer.
Wang, Ruiqi; Zhang, Xian; He, Jianqiao; Bu, Kejun; Zheng, Chong; Lin, Jianhua; Huang, Fuqiang
2018-02-05
Six isostructural antiperovskite-derived chalcohalides, Ba 2 MQ 3 X (M = As, Sb; Q = S, Se; X = Cl, Br, I), crystallizing in the space group Pnma, have been synthesized by solid-state reactions. The crystal structure features a 3D framework with the [XBa 5 ] 9+ disordered square pyramids as building blocks and [MQ 3 ] 3- units filling the interspace. [XBa 5 ] 9+ disordered square pyramids are edge-sharing along [010], derived from the fusing of the two pyramids in octahedral [XBa 6 ] 11+ . Surprisingly, Ba 2 AsS 3 X (X = Cl, Br, I) show almost the same optical band gap of 2.80 eV, and Ba 2 AsSe 3 X (X = Br, I) also have a similar band gap of 2.28 eV. The optical band gap of Ba 2 SbS 3 I is 2.64 eV. First-principles calculations reveal that the optical absorption is attributed to the transitions between Q np at the valence band maximum (VBM) and M np-Q np at the conduction band minimum (CBM). These compounds also possess interesting photoluminescence properties with splitting emission peaks on excitation at 200 nm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doss, V. Arumai; Chithambararaj, A.; Bose, A. Chandra, E-mail: acbose@nitt.edu
2016-05-23
The present work aims to synthesize single phase h-MoO{sub 3} nanocrytals by chemical precipitation method exposed under different reaction atmospheres. The reaction atmosphere have been successfully tuned as air, nitrogen and argon and studied its effects on structural, functional, morphology and optical properties by using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy and diffuse reflectance spectroscopy (DRS) measurements. The XRD result indicates that the sample exhibits characteristic hexagonal phase of MoO{sub 3}. The crystallite size is estimated by well known Scherrer’s method. The crystallite size is relative small in the case of sample prepared atmore » argon atmosphere. The functional groups such as Mo-O, N-H and O-H are identified from FT-IR spectroscopy. The particle exhibits rod like morphology with perfect hexagonal cross-section. The optical absorption observed at 420-450 nm corresponds to fundamental optical absorption by h-MoO{sub 3}. The band gap values are estimated using Kublka-Munk (K-M) function and found to be 2. 87 eV, 2.93 eV and 2.97 eV for samples synthesized under air, nitrogen and argon, respectively.« less
NASA Astrophysics Data System (ADS)
Mahmood, Asif; Ramay, Shahid M.; Rafique, Hafiz Muhammad; Al-Zaghayer, Yousef; Khan, Salah Ud-Din
2014-05-01
In this paper, first-principles calculations of structural, electronic, optical and thermoelectric properties of AgMO3 (M = V, Nb and Ta) have been carried out using full potential linearized augmented plane wave plus local orbitals method (FP - LAPW + lo) and BoltzTraP code within the framework of density functional theory (DFT). The calculated structural parameters are found to agree well with the experimental data, while the electronic band structure indicates that AgNbO3 and AgTaO3 are semiconductors with indirect bandgaps of 1.60 eV and 1.64 eV, respectively, between the occupied O 2p and unoccupied d states of Nb and Ta. On the other hand, AgVO3 is found metallic due to the overlapping behavior of states across the Fermi level. Furthermore, optical properties, such as dielectric function, absorption coefficient, optical reflectivity, refractive index and extinction coefficient of AgNbO3 and AgTaO3, are calculated for incident photon energy up to 50 eV. Finally, we calculate thermo power for AgNbO3 and AgTaO3 at fixed doping 1019 cm-3. Electron doped thermo power of AgNbO3 shows significant increase over AgTaO3 with temperature.
An innovative Yb-based ultrafast deep ultraviolet source for time-resolved photoemission experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boschini, F.; Hedayat, H.; Dallera, C.
2014-12-15
Time- and angle-resolved photoemission spectroscopy is a powerful technique to study ultrafast electronic dynamics in solids. Here, an innovative optical setup based on a 100-kHz Yb laser source is presented. Exploiting non-collinear optical parametric amplification and sum-frequency generation, ultrashort pump (hν = 1.82 eV) and ultraviolet probe (hν = 6.05 eV) pulses are generated. Overall temporal and instrumental energy resolutions of, respectively, 85 fs and 50 meV are obtained. Time- and angle-resolved measurements on BiTeI semiconductor are presented to show the capabilities of the setup.
EAS development curve at energy of 10(16) - 10(18) eV measured by optical Cerenkov light
NASA Technical Reports Server (NTRS)
Hara, T.; Daigo, M.; Honda, M.; Kamata, K.; Kifune, T.; Mizumoto, Y.; Nagano, M.; Ohno, Y.; Tanahasni, G.
1985-01-01
The data of optical Cerenkov light from extensive air shower observed at the core distance more than 1 Km at Akeno are reexamined. Applying the new simulated results, the shower development curves for the individual events were constructed. For the showers of 10 to 17th power eV the average depth at the shower maximum is determined to be 660 + or - 40 gcm/2. The shower curve of average development is found to be well described by a Gaisser-Hillas shower development function with above shower maximum depth.
Multiparametric plasma EV profiling facilitates diagnosis of pancreatic malignancy.
Yang, Katherine S; Im, Hyungsoon; Hong, Seonki; Pergolini, Ilaria; Del Castillo, Andres Fernandez; Wang, Rui; Clardy, Susan; Huang, Chen-Han; Pille, Craig; Ferrone, Soldano; Yang, Robert; Castro, Cesar M; Lee, Hakho; Del Castillo, Carlos Fernandez; Weissleder, Ralph
2017-05-24
Pancreatic ductal adenocarcinoma (PDAC) is usually detected late in the disease process. Clinical workup through imaging and tissue biopsies is often complex and expensive due to a paucity of reliable biomarkers. We used an advanced multiplexed plasmonic assay to analyze circulating tumor-derived extracellular vesicles (tEVs) in more than 100 clinical populations. Using EV-based protein marker profiling, we identified a signature of five markers (PDAC EV signature) for PDAC detection. In our prospective cohort, the accuracy for the PDAC EV signature was 84% [95% confidence interval (CI), 69 to 93%] but only 63 to 72% for single-marker screening. One of the best markers, GPC1 alone, had a sensitivity of 82% (CI, 60 to 95%) and a specificity of 52% (CI, 30 to 74%), whereas the PDAC EV signature showed a sensitivity of 86% (CI, 65 to 97%) and a specificity of 81% (CI, 58 to 95%). The PDAC EV signature of tEVs offered higher sensitivity, specificity, and accuracy than the existing serum marker (CA 19-9) or single-tEV marker analyses. This approach should improve the diagnosis of pancreatic cancer. Copyright © 2017, American Association for the Advancement of Science.
Optical properties of armchair (7, 7) single walled carbon nanotubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gharbavi, K.; Badehian, H., E-mail: hojatbadehian@gmail.com
2015-07-15
Full potential linearized augmented plane waves method with the generalized gradient approximation for the exchange-correlation potential was applied to calculate the optical properties of (7, 7) single walled carbon nanotubes. The both x and z directions of the incident photons were applied to estimate optical gaps, dielectric function, electron energy loss spectroscopies, optical conductivity, optical extinction, optical refractive index and optical absorption coefficient. The results predict that dielectric function, ε (ω), is anisotropic since it has higher peaks along z-direction than x-direction. The static optical refractive constant were calculated about 1.4 (z-direction) and 1.1 (x- direction). Moreover, the electron energymore » loss spectroscopy showed a sharp π electron plasmon peaks at about 6 eV and 5 eV for z and x-directions respectively. The calculated reflection spectra show that directions perpendicular to the tube axis have further optical reflection. Moreover, z-direction indicates higher peaks at absorption spectra in low range energies. Totally, increasing the diameter of armchair carbon nanotubes cause the optical band gap, static optical refractive constant and optical reflectivity to decrease. On the other hand, increasing the diameter cause the optical absorption and the optical conductivity to increase. Moreover, the sharp peaks being illustrated at optical spectrum are related to the 1D structure of CNTs which confirm the accuracy of the calculations.« less
Multi-wavelength properties of two supersoft X-ray sources CAL83 and RXJ0513.9-6951
NASA Astrophysics Data System (ADS)
Rajoelimanana, A.; Meintjes, P.; Charles, P.
2017-10-01
Supersoft X-ray sources (SSS) are highly luminous (˜10^{38} erg s^{-1}), yet low temperature 10^{6} K sources, interpreted as a white dwarf (WD) accreting matter at a very high rate from its (heavy) companion, leading to Eddington-limited, steady hydrogen burning on the WD surface at T˜15-80 eV. A large fraction of this energy irradiates the surface of the disc, which gives rise to a reprocessed flux much larger than the intrinsic disc luminosity, accounting for the large optical and UV fluxes detected in SSS. We present the multi-wavelength properties of two prototypical LMC SSS, CAL83 and RXJ0513.9-6951, with particular emphasis on the anti-correlation between their X-ray and optical behaviour. Our SALT spectra show variable high excitation OVI emission as a function of optical brightness state, and which we link to the cyclic changes in the temperature and size of the WD, and hence the mass accretion rate.
Optical calibration of the Auger fluorescence telescopes
NASA Astrophysics Data System (ADS)
Matthews, John A. J.
2003-02-01
The Pierre Auger Observatory is optimized to study the cosmic ray spectrum in the region of the Greisen-Zatsepin-Kuz'min (GZK) cutoff, i.e.cosmic rays with energies of ~1020eV. Cosmic rays are detected as extensive air showers. To measure these showers each Auger site combines a 3000sq-km ground array with air fluorescence telescopes into a hybrid detector. Our design choice is motivated by the heightened importance of the energy scale, and related systematic uncertainties in shower energies, for experiments investigating the GZK cutoff. This paper focuses on the optical calibration of the Auger fluorescence telescopes. The optical calibration is done three independent ways: an absolute end-to-end calibration using a uniform, calibrated intensity, light-source at the telescope entrance aperture, a component by component calibration using both laboratory and in-situ measurements, and Rayleigh scattered light from external laser beams. The calibration concepts and related instrumentation are summarized. Results from the 5-month engineering array test are presented.
NASA Astrophysics Data System (ADS)
Kessentini, A.; Ben Ahmed, A.; Dammak, T.; Belhouchet, M.
2018-02-01
The current work undertakes the growth and the physicochemical properties of a novel green-yellow luminescence semi-organic material, the 3-picolylammonium bromide abbreviated (Pico-Br). In this paper, we report the X-ray diffraction measurements which show that the crystal lattice consists of distinct 3-picolylammonium cations and free bromide anions connected via Nsbnd H ⋯ Br and Nsbnd H ⋯ N hydrogen bonds leading to form a two dimensional frameworks. Molecular geometry compared with its optimized counterpart shows that the quantum chemical calculations carried out with density functional method (DFT) well produce the perceived structure by X-ray resolution of the studied material. To provide further insight into the spectroscopic properties, additional characterization of this material have been performed with Raman and infrared studies at room temperature. Theoretical computations have been computed using the (DFT) method at B3LYP/LanL2DZ level of theory implemented within Gaussian 03 program to study the vibrational spectra of the investigated molecule in the ground state. Optical absorption spectrum inspected by UV-visible absorption reveals the appearance of sharp optical gap of 280 nm (4.42 eV) as well as a strong green photoluminescence emission at 550 nm (2.25 eV) is detected on the photoluminescence (PL) spectrum at room temperature. Using the TD/DFT method, HOMO-LUMO energy gap and the Mulliken atomic charges were calculated in order to get an insight into the material. Good agreement between the theoretical results and the experimental ones was predicted.
Direct measurement of Dirac point energy at the graphene/oxide interface.
Xu, Kun; Zeng, Caifu; Zhang, Qin; Yan, Rusen; Ye, Peide; Wang, Kang; Seabaugh, Alan C; Xing, Huili Grace; Suehle, John S; Richter, Curt A; Gundlach, David J; Nguyen, N V
2013-01-09
We report the direct measurement of the Dirac point, the Fermi level, and the work function of graphene by performing internal photoemission measurements on a graphene/SiO(2)/Si structure with a unique optical-cavity enhanced test structure. A complete electronic band alignment at the graphene/SiO(2)/Si interfaces is accurately established. The observation of enhanced photoemission from a one-atom thick graphene layer was possible by taking advantage of the constructive optical interference in the SiO(2) cavity. The photoemission yield was found to follow the well-known linear density-of-states dispersion in the vicinity of the Dirac point. At the flat band condition, the Fermi level was extracted and found to reside 3.3 eV ± 0.05 eV below the bottom of the SiO(2) conduction band. When combined with the shift of the Fermi level from the Dirac point, we are able to ascertain the position of the Dirac point at 3.6 eV ± 0.05 eV with respect to the bottom of the SiO(2) conduction band edge, yielding a work function of 4.5 eV ± 0.05 eV which is in an excellent agreement with theory. The accurate determination of the work function of graphene is of significant importance to the engineering of graphene-based devices, and the measurement technique we have advanced in this Letter will have significant impact on numerous applications for emerging graphene-like 2-dimensional material systems.
Gimferrer, Laura; Campins, Magda; Codina, Maria Gema; Esperalba, Juliana; Martin, Maria Del Carmen; Fuentes, Francisco; Pumarola, Tomas; Anton, Andres
2015-11-01
Several outbreaks of Enterovirus 68 (EV-D68) have recently been reported in the USA and Canada, causing substantial hospitalisation of children with severe respiratory disease. The acute flaccid paralysis detected in the USA and Canada among children with EV-D68 infection has raised concerns about the aetiological role of this EV serotype in severe neurological disease. The circulation of EV-D68 in the general European population seems to be low, but European Centre for Disease Prevention and Control (ECDC) recommends being vigilant to new cases, particularly in severely ill hospitalised patients. In October 2014, enteroviruses were detected in respiratory samples collected from five hospitalised patients, children and adults. Phylogenetic analysis of partial VP1 sequences confirmed that the detected enteroviruses belonged to the D68 serotype, which were also similar to strains reported in USA (2014). However, all five patients developed respiratory symptoms, but only one required ICU admission. None of the patients described had symptoms of neurological disease. Other considerations related to the detection methods used for the diagnosis of respiratory enteroviruses are also discussed. In conclusion, additional evidence has been provided that supports the role of EV-D68 in respiratory infections in hospitalised patients. Copyright © 2015 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.
Precise genotyping and recombination detection of Enterovirus
2015-01-01
Enteroviruses (EV) with different genotypes cause diverse infectious diseases in humans and mammals. A correct EV typing result is crucial for effective medical treatment and disease control; however, the emergence of novel viral strains has impaired the performance of available diagnostic tools. Here, we present a web-based tool, named EVIDENCE (EnteroVirus In DEep conception, http://symbiont.iis.sinica.edu.tw/evidence), for EV genotyping and recombination detection. We introduce the idea of using mixed-ranking scores to evaluate the fitness of prototypes based on relatedness and on the genome regions of interest. Using phylogenetic methods, the most possible genotype is determined based on the closest neighbor among the selected references. To detect possible recombination events, EVIDENCE calculates the sequence distance and phylogenetic relationship among sequences of all sliding windows scanning over the whole genome. Detected recombination events are plotted in an interactive figure for viewing of fine details. In addition, all EV sequences available in GenBank were collected and revised using the latest classification and nomenclature of EV in EVIDENCE. These sequences are built into the database and are retrieved in an indexed catalog, or can be searched for by keywords or by sequence similarity. EVIDENCE is the first web-based tool containing pipelines for genotyping and recombination detection, with updated, built-in, and complete reference sequences to improve sensitivity and specificity. The use of EVIDENCE can accelerate genotype identification, aiding clinical diagnosis and enhancing our understanding of EV evolution. PMID:26678286
Spectroscopic and fiber optic ethanol sensing properties Gd doped ZnO nanoparticles.
Noel, J L; Udayabhaskar, R; Renganathan, B; Muthu Mariappan, S; Sastikumar, D; Karthikeyan, B
2014-11-11
We report the structural, optical and gas sensing properties of prepared pure and Gd doped ZnO nanoparticles through solgel method at moderate temperature. Structural studies are carried out by X-ray diffraction method confirms hexagonal wurtzite structure and doping induced changes in lattice parameters is observed. Optical absorption spectral studies shows red shift in the absorption peak corresponds to band-gap from 3.42 eV to 3.05 eV and broad absorption in the visible range after Gd doping is observed. Scanning electron microscopic studies shows increase in particle size where the particle diameters increase from few nm to micrometers after Gd doping. The clad modified ethanol fiber-optic sensor studies for ethanol sensing exhibits best sensitivity for the 3% Gd doped ZnO nanoparticles and the sensitivity get lowered incase of higher percentage of Gd doped ZnO sample. Copyright © 2014 Elsevier B.V. All rights reserved.
The influence of Ge on optical and thermo- mechanical properties of S-Se chalcogenide glasses
NASA Astrophysics Data System (ADS)
Samudrala, Kavitha; Babu Devarasetty, Suresh
2018-05-01
S-Se-Ge glasses were prepared by melt quenching method to investigate the effect of Germanium on thermo-mechanical and optical properties of chalcogenide glasses. The glassy nature of the samples has been verified by x-ray diffraction and DSC studies that the samples are glassy in nature. The optical band gap of the samples was estimated by the absorption spectrum fitting method. The optical band gap increased from 1.61 ev for x = 0 sample to 1.90 ev for x = 40 sample and is explained in terms of cohesive energies. The basic thermo-mechanical parameters such as micro-hardness, Volume (Vh) and formation energy (Eh) of micro voids in the glassy network, as well as the modulus of Elasticity (E) have been calculated for prepared glasses.in present glasses. The variation in these parameters with Ge content correlated with heat of atomization of alloys.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chander, Subhash, E-mail: sckhurdra@gmail.com; Purohit, A.; Lal, C.
2016-05-06
In this paper, the impact of thermal annealing on optical properties of cadmium telluride (CdTe) thin films is investigated. The films of thickness 650 nm were deposited on thoroughly cleaned glass substrate employing vacuum evaporation followed by thermal annealing in the temperature range 250-450 °C. The as-deposited and annealed films were characterized using UV-Vis spectrophotometer. The optical band gap is found to be decreased from 1.88 eV to 1.48 eV with thermal annealing. The refractive index is found to be in the range 2.73-2.92 and observed to increase with annealing treatment. The experimental results reveal that the thermal annealing plays anmore » important role to enhance the optical properties of CdTe thin films and annealed films may be used as absorber layer in CdTe/CdS solar cells.« less
Enterovirus D68 disease and molecular epidemiology in Australia.
Levy, Avram; Roberts, Jason; Lang, Jurissa; Tempone, Simone; Kesson, Alison; Dofai, Alfred; Daley, Andrew J; Thorley, Bruce; Speers, David J
2015-08-01
Enterovirus D68 (EV-D68) has received considerable recent attention as a cause of widespread respiratory illness. Neurological syndromes such as acute flaccid paralysis following EV-D68 infection have also been reported in a small number of cases. To summarize the clinical and epidemiological characteristics of laboratory confirmed EV-D68 cases in Australia. We combined EV-D68 data acquired through laboratory surveillance in Western Australia with cases from national enterovirus surveillance and regional acute flaccid paralysis (AFP) surveillance. Clinical data was obtained for EV-D68 cases and capsid protein sequences were used for phylogenetic analysis. Sporadic cases of EV-D68 were recorded in Australia since 2008, with peaks in activity during 2011 and 2013. EV-D68 was primarily associated with respiratory disease, but was also detected in cerebrospinal fluid of one patient and faeces of two patients presenting with AFP. EV-D68 has been circulating in Western Australia and is likely to have also been present in the wider region for a number of years, causing primarily respiratory disease. Detection of EV-D68 in cerebrospinal fluid of one patient and in faeces of two AFP cases reinforces the association between EV-D68 and neurological disease. Copyright © 2015 Elsevier B.V. All rights reserved.
Donin, Daiane Güllich; de Arruda Leme, Raquel; Alfieri, Alice Fernandes; Alberton, Geraldo Camilo; Alfieri, Amauri Alcindo
2014-03-01
Porcine teschovirus (PTV), Porcine sapelovirus (PSV) and Enterovirus G (EV-G) have been associated with enteric, respiratory, reproductive and neurological disorders. Although Brazil is the world's fourth largest producer and exporter of pork, no information on the occurrence of PTV, PSV and EV-G infections is available for Brazilian pig herds. This study aimed to investigate the occurrence of Porcine enteric picornavirus infections in pig farms located in three distinct geographical regions of Brazil. Forty randomly selected diarrhoeic and normal consistency faeces of suckling (n = 22) and nursery (n = 18) pigs from farms located in 21 distinct cities of the Southern, Southeast, and Midwest regions of Brazil were evaluated by nested-RT-PCR assays. Suckling piglets presented the expected amplicon size for PTV (158 bp) and EV-G (313 bp) in single and mixed infections in 40.9 % (9/22) of the faecal samples. PSV amplicon (212 bp) was not detected in this age group. For nursery pigs, Porcine enteric picornaviruses amplicons were present in 77.8 % (14/18) of the faecal samples. PTV and EV-G were detected in single and mixed infections, while PSV was detected only in two samples in co-infection with PTV and EV-G in this age group. The Brazilian regions evaluated presented at least two of the tested viruses. Sequencing analysis revealed high similarities to the related viruses (95.3 to 99.2 % for PTV, 94.2 to 98.5 % for PSV and 86 to 100 % for EV-G). For the first time PTV, PSV and EV-G have been molecularly detected and characterised in pig faecal samples in Brazil.
Cabrerizo, María; Díaz-Cerio, María; Muñoz-Almagro, Carmen; Rabella, Núria; Tarragó, David; Romero, María Pilar; Pena, María José; Calvo, Cristina; Rey-Cao, Sonia; Moreno-Docón, Antonio; Martínez-Rienda, Inés; Otero, Almudena; Trallero, Gloria
2017-03-01
The epidemiology and clinical association of enterovirus (EV) and parechovirus (HPeV) infections, as well as the type-distribution-according-to-age, were determined during a 4-year study period in Spain. During 2010-2013, a total of 21,832 clinical samples were screened for EV and the detection frequency was 6.5% (1,430). Of the total EV-negative samples, only 1,873 samples from 2011 to 2013 were available for HPeV testing. HPeV was detected in 42 (2%) of them. Positive samples were genotyped using PCR and sequencing. EV infections occurred in all age groups of patients: neonates (17%), children 28 days to 2 years (29%), children 2-14 years (40%), and adults (14%). Thirty-four different EV types were identified. HPeV infections were detected exclusively in infants <8 m (70% neonates, P < 0.05). All but one HPeV were HPeV-3. Differences in type frequency detection were found according to age and clinical manifestation. Coxsackievirus (CV)-B4 (61%), CV-B5 (83%), and HPeV-3 (64%) were more frequent in neonates than in older patients (P < 0.05). Echovirus (E)-3 (60%), E-18 (47%), E-25 (62%), CV-A6 (61%), CV-A16 (72%), and EV-71 (75%) were mainly detected in children 28 days to 2 years (P < 0.05), whereas, E-6 (79%), E-20 (88%), and E-30 (85%) were predominant in children >2 years and adults (P < 0.05). Clinically, meningitis was associated with EV (P < 0.01) whereas, encephalitis was more frequent in HPeV-infected patients. CV-B types were associated with myocarditis (90%; P < 0.05) and EV species A with hand-foot-mouth-disease/atypical exanthema (88%; P < 0.05). J. Med. Virol. 89:435-442, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Libregts, S F W M; Arkesteijn, G J A; Németh, A; Nolte-'t Hoen, E N M; Wauben, M H M
2018-05-20
Essentials Extracellular vesicles (EVs) in biological fluids are promising biomarkers for disease. Fluorescence-based flow cytometric analysis is suitable to detect low abundant EV subsets. Particles of non-interest can induce false-positive light scatter and fluorescent signals. Interference of particles of non-interest can be monitored by analyzing serial dilutions. Background Extracellular vesicles (EVs) in plasma are increasingly being recognized as potential biomarkers. EV analysis for diagnostic purposes should be robust and should allow analysis of EV subsets with a wide range of abundance and in a large number of patient samples. Flow cytometry offers possibilities to meet these criteria, as it allows multiparameter analysis of individual EVs. However, analysis of plasma EVs is challenging, because of their size and heterogeneity, and the presence of other submicrometer-sized particles in plasma that could interfere with EV analysis. Objectives To explore whether fluorescence-based flow cytometric analysis of EV subsets is suitable when the EVs of interest are present in low abundance in a background of non-labeled or differently labeled EVs and particles. Methods Fluorescently labeled EVs of interest were spiked at different ratios in full plasma, purified plasma components, or (non-)fluorescent polystyrene beads, and subsequently analyzed by flow cytometry with fluorescence threshold triggering. Results We found that light scatter detection of low-abundance or rare EV subsets during fluorescence threshold triggering was severely affected by particles of non-interest, owing to coincidence and swarming. Importantly, we show that interfering particles labeled with different fluorophores induced false-positive fluorescent signals on the particles of interest. These unwanted effects could only be discerned and controlled by performing serial dilutions and analyzing light scatter and fluorescence parameters. Conclusions We demonstrate how particles of non-interest in plasma can impact on the light scatter and fluorescence detection of low-abundance EVs of interest during fluorescence-based flow cytometric analysis, and provide a means to prevent erroneous data interpretation. © 2018 The Authors. Journal of Thrombosis and Haemostasis published by Wiley Periodicals, Inc. on behalf of International Society on Thrombosis and Haemostasis.
Optical Absorption and Electric Resistivity of an l-Cysteine Film
NASA Astrophysics Data System (ADS)
Kamada, Masao; Hideshima, Takuya; Azuma, Junpei; Yamamoto, Isamu; Imamura, Masaki; Takahashi, Kazutoshi
2016-12-01
The optical and electric properties of an l-cysteine film have been investigated to understand its applicability to bioelectronics. The fundamental absorption is the allowed transition having the threshold at 5.8 eV and the absorption is due to the charge-transfer type transition from sulfur-3sp to oxygen-2p and/or carbon-2p states, while absorptions more than 9 eV can be explained with intra-atomic transitions in the functional groups. The electric resistivity is 2.0 × 104 Ω m at room temperature and increases as the sample temperature decreases. The results indicate that the l-cysteine film is a p-type semiconductor showing the hole conduction caused by the sulfur-3sp occupied states and unknown impurity or defect states as acceptors. The electron affinity of the l-cysteine film is derived as ≦-0.3 eV.
Charge Transport and the Nature of Traps in Oxygen Deficient Tantalum Oxide.
Gritsenko, Vladimir A; Perevalov, Timofey V; Voronkovskii, Vitalii A; Gismatulin, Andrei A; Kruchinin, Vladimir N; Aliev, Vladimir Sh; Pustovarov, Vladimir A; Prosvirin, Igor P; Roizin, Yakov
2018-01-31
Optical and transport properties of nonstoichiometric tantalum oxide thin films grown by ion beam deposition were investigated in order to understand the dominant charge transport mechanisms and reveal the nature of traps. The TaO x films composition was analyzed by X-ray photoelectron spectroscopy and by quantum-chemistry simulation. From the optical absorption and photoluminescence measurements and density functional theory simulations, it was concluded that the 2.75 eV blue luminescence excited in a TaO x by 4.45 eV photons, originates from oxygen vacancies. These vacancies are also responsible for TaO x conductivity. The thermal trap energy of 0.85 eV determined from the transport experiments coincides with the half of the Stokes shift of the blue luminescence band. It is argued that the dominant charge transport mechanism in TaO x films is phonon-assisted tunneling between the traps.
NASA Astrophysics Data System (ADS)
Pat, Suat; Özen, Soner; Korkmaz, Şadan
2018-01-01
We report the influence of Sn doping on microstructure, surface, and optical properties of GaN thin films deposited on glass and polyethylene terephthalate (PET) substrate. Sn-doped GaN thin films have been deposited by thermionic vacuum arc (TVA) at low temperature. TVA is a rapid deposition technology for thin film growth. Surface and optical properties of the thin films were presented. Grain size, height distribution, roughness values were determined. Grain sizes were calculated as 20 nm and 13 nm for glass and PET substrates, respectively. Nano crystalline forms were shown by field emission scanning electron microscopy. Optical band gap values were determined by optical methods and photoluminescence measurement. The optical band gap values of Sn doped GaN on glass and PET were determined to be approximately ˜3.40 eV and ˜3.47 eV, respectively. As a result, TVA is a rapid and low temperature deposition technology for the Sn doped GaN deposited on glass and PET substrate.
AB INITIO STUDY OF OPTOELECTRONIC PROPERTIES OF SPINEL ZnAl2O4 BEYOND GGA AND LDA
NASA Astrophysics Data System (ADS)
Yousaf, Masood; Saeed, M. A.; Isa, Ahmad Radzi Mat; Rahnamaye Aliabad, H. A.; Noor, N. A.
2012-12-01
Electronic band structure and optical parameters of ZnAl2O4 are investigated by first-principles technique based on a new potential approximation, known as modified Becke-Johnson (mBJ). This method describes the excited states of insulators and semiconductors more accurately The recent direct band gap result by EV-GGA is underestimated by about 15% compared to our band gap value using mBJ-GGA. The value of the band gap of ZnAl2O4 decreases as follows: Eg(mBJ-GGA/LDA) > Eg(GGA) > Eg(LDA). The band structure base optical parametric quantities (dielectric constant, index of refraction, reflectivity and optical conductivity) are also calculated, and their variations with energy range are discussed. The first critical point (optical absorption's edge) in ZnAl2O4 occurs at about 5.26 eV in case of mBJ. This study about the optoelectronic properties indicates that ZnAl2O4 can be used in optical devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nayyar, Iffat H.; Chamberlin, Sara E.; Kaspar, Tiffany C.
2017-01-01
The electronic and optical properties of a-(Fe1xVx)2O3 at low (x = 0.04) and high (x = 0.5) doping levels are investigated using a combination of periodic and embedded cluster approaches, and time dependent density functional theory. At low V concentrations the onset of the optical absorption is B0.5 eV (i.e., nearly 1.6 eV lower than that in pure a-Fe2O3) and corresponds to the electron transitions from V 3d to Fe 3d* orbitals. At high V concentrations, optical absorption energies and intensities are sensitive to specific arrangements of Fe and V atoms and their spin configuration that determine Fe–V hybridization. Themore » onset of the lowest inter-vanadium absorption band in the case of Fe2O3/V2O3 hetero-structures is as low as B0.3 eV and the corresponding peak is at B0.7 eV. In contrast, in the case of solid solutions this peak has lower intensity and is shifted to higher energy (B1.2 eV). Analysis of the orbital character of electronic excitation suggests that Fe2O3/V2O3 hetero-structures absorb light much more effectively than random alloys, thus promoting efficient photo-induced carrier generation. These predictions can be tested in a-(Fe1xVx)2O3 thin films synthesized with well-controlled spatial distribution of Fe and V species.« less
Enterovirus D68 in Viet Nam (2009-2015).
Ny, Nguyen Thi Han; Anh, Nguyen To; Hang, Vu Thi Ty; Nguyet, Lam Anh; Thanh, Tran Tan; Ha, Do Quang; Minh, Ngo Ngoc Quang; Ha, Do Lien Anh; McBride, Angela; Tuan, Ha Manh; Baker, Stephen; Tam, Pham Thi Thanh; Phuc, Tran My; Huong, Dang Thao; Loi, Tran Quoc; Vu, Nguyen Tran Anh; Hung, Nguyen Van; Minh, Tran Thi Thuy; Xang, Nguyen Van; Dong, Nguyen; Nghia, Ho Dang Trung; Chau, Nguyen Van Vinh; Thwaites, Guy; van Doorn, H Rogier; Anscombe, Catherine; Le Van, Tan
2017-01-01
Since 1962, enterovirus D68 (EV-D68) has been implicated in multiple outbreaks and sporadic cases of respiratory infection worldwide, but especially in the USA and Europe with an increasing frequency between 2010 and 2014. We describe the detection, associated clinical features and molecular characterization of EV-D68 in central and southern Viet Nam between 2009 and 2015. Enterovirus/rhinovirus PCR positive respiratory or CSF samples taken from children and adults with respiratory/central nervous system infections in Viet Nam were tested by an EV-D68 specific PCR. The included samples were derived from 3 different observational studies conducted at referral hospitals across central and southern Viet Nam between 2009 and 2015. Whole-genome sequencing was carried out using a MiSeq based approach. Phylogenetic reconstruction and estimation of evolutionary rate and recombination were carried out in BEAST and Recombination Detection Program, respectively. EV-D68 was detected in 21/625 (3.4%) enterovirus/rhinovirus PCR positive respiratory samples but in none of the 15 CSF. All the EV-D68 patients were young children (age range: 11.8 - 24.5 months) and had moderate respiratory infections. Phylogenetic analysis suggested that the Vietnamese sequences clustered with those from Asian countries, of which 9 fell in the B1 clade, and the remaining sequence was identified within the A2 clade. One intra sub-clade recombination event was detected, representing the second reported recombination within EV-D68. The evolutionary rate of EV-D68 was estimated to be 5.12E -3 substitutions/site/year. Phylogenetic analysis indicated that the virus was imported into Viet Nam in 2008. We have demonstrated for the first time EV-D68 has been circulating at low levels in Viet Nam since 2008, associated with moderate acute respiratory infection in children. EV-D68 in Viet Nam is most closely related to Asian viruses, and clusters separately from recent US and European viruses that were suggested to be associated with acute flaccid paralysis.
NASA Astrophysics Data System (ADS)
Lioudakis, Emmanouil; Othonos, Andreas; Alexandrou, Ioannis; Hayashi, Yasuhiko
2007-10-01
In this work, we present the evolution of optical constants as a function of [6,6]-phenylC61-butyric acid methyl ester (PCBM) concentration for conjugated poly(3-hexylthiophene)/[6,6]-phenylC61-butyric acid methyl ester composites. The PCBM concentration of the utilized samples varies from 1to50wt%. The dielectric functions for all these composites reveal electronic structural changes as a result of the addition of PCBM. We have deconvoluted the contribution of the substrate using a two-layer Fabry-Pérot structural model. The extracted optical properties contain crucial absorption peaks of singlet exciton states and vibronic sidebands for poly(3-hexylthiophene) (P3HT) conjugated polymer as well as two PCBM-related states at higher energies. With the addition of PCBM, we have observed a limit of 20wt% PCBM beyond which two discrete energy levels (3.64 and 4.67eV) appear in the spectrum. For the highest concentration composite, the results suggest that the interchain interactions provide a small excitonic contribution in the absorption spectrum at energies where the conjugated polymer absorbs (1.85-2.7eV) and a strong rise of PCBM states (3.64 and 4.67eV) which are responsible for the subsequent exciton dissociation. In addition, the energy gap between the higher occupied molecular orbitals and the lower unoccupied molecular orbitals of the highest concentration composite (50wt%) is 1.85eV. The tuning of the optical properties of P3HT with the addition of PCBM shows that ellipsometry can be used to monitor layer concentration toward optimization of plastic solar cells.
NASA Technical Reports Server (NTRS)
Pouch, J. J.; Alterovitz, S. A.; Warner, J. D.
1986-01-01
The amorphous dielectrics a-C:H and BN were deposited on III-V semiconductors. Optical band gaps as high as 3 eV were measured for a-C:H generated by C4H10 plasmas; a comparison was made with bad gaps obtained from films prepared by CH4 glow discharges. The ion beam deposited BN films exhibited amorphous behavior with band gaps on the order of 5 eV. Film compositions were studied by Auger electron spectroscopy (AES), x-ray photoelectron spectroscopy (XPS) and secondary ion mass spectrometry (SIMS). The optical properties were characterized by ellipsometry, UV/VIS absorption, and IR reflection and transmission. Etching rates of a-C:H subjected to O2 dicharges were determined.
Alves, Júnia de O; Neto, Waldomiro B; Mitsutake, Hery; Alves, Paulo S P; Augusti, Rodinei
2010-07-15
Extra virgin (EV), the finest and most expensive among all the olive oil grades, is often adulterated by the cheapest and lowest quality ordinary (ON) olive oil. A new methodology is described herein that provides a simple, rapid, and accurate way not only to detect such type of adulteration, but also to distinguish between these olive oil grades (EV and ON). This approach is based on the application of direct infusion electrospray ionization mass spectrometry in the positive ion mode, ESI(+)-MS, followed by the treatment of the MS data via exploratory statistical approaches, PCA (principal component analysis) and HCA (hierarchical clustering analysis). Ten distinct brands of each EV and ON olive oil, acquired at local stores, were analyzed by ESI(+)-MS and the results from HCA and PCA clearly indicated the formation of two distinct groups related to these two categories. For the adulteration study, one brand of each olive oil grade (EV and ON) was selected. The counterfeit samples (a total of 20) were then prepared by adding assorted proportions, from 1 to 20% w/w, with increments of 1% w/w, of the ON to the EV olive oil. The PCA and HCA methodologies, applied to the ESI(+)-MS data from the counterfeit (20) and authentic (10) EV samples, were able to readily detect adulteration, even at levels as low as 1% w/w. Copyright 2010 John Wiley & Sons, Ltd.
The physical driver of the optical Eigenvector 1 in Quasar Main Sequence
NASA Astrophysics Data System (ADS)
Panda, Swayamtrupta; Czerny, Bożena; Wildy, Conor
2017-11-01
Quasars are complex sources, characterized by broad band spectra from radio through optical to X-ray band, with numerous emission and absorption features. This complexity leads to rich diagnostics. However, tet{bg92} used Principal Component Analysis (PCA), and with this analysis they were able to show significant correlations between the measured parameters. The leading component, related to Eigenvector 1 (EV1) was dominated by the anticorrelation between the Fe II optical emission and [OIII] line and EV1 alone contained 30% of the total variance. It opened a way in defining a quasar main sequence, in close analogy to the stellar main sequence on the Hertzsprung-Russel (HR) diagram ( tealt{sul01}). The question still remains which of the basic theoretically motivated parameters of an active nucleus (Eddington ratio, black hole mass, accretion rate, spin, and viewing angle) is the main driver behind the EV1. Here we limit ourselves to the optical waveband, and concentrate on theoretical modelling the Fe II to Hβ ratio, and we test the hypothesis that the physical driver of EV1 is the maximum of the accretion disk temperature, reflected in the shape of the spectral energy distribution (SED). We performed computations of the Hβ and optical Fe II for a broad range of SED peak position using CLOUDY photoionisation code. We assumed that both Hβ and Fe II emission come from the Broad Line Region represented as a constant density cloud in a plane-parallel geometry. We expected that a hotter disk continuum will lead to more efficient production of Fe II but our computations show that the Fe II to Hβ ratio actually drops with the rise of the disk temperature. Thus either hypothesis is incorrect, or approximations used in our paper for the description of the line emissivity is inadequate.
Investigation of the effect of Mg doping for improvements of optical and electrical properties
NASA Astrophysics Data System (ADS)
Caglar, Mujdat; Caglar, Yasemin; Ilican, Saliha
2016-03-01
Sol-gel spin coating method was used for the deposition of nanostructured undoped and Mg doped ZnO films. The effects of magnesium incorporation on the crystalline structure were investigated by XRD measurements and the structural deterioration was observed in the crystalline quality of the films with respect to increasing in Mg doping. All the samples exhibited a wurtzite structure. From the scanning electron microscopy (SEM) images obtained to investigate the surface morphology it was detected that an increase in Mg doping caused an improvement on the surface roughness and a reduction in the number of voids on the surface. To evaluate the absorption edges of the produced samples depending on the Mg, different methods were used and according to the obtained results, a shifting towards to high energies for the optical band gap was observed in each method. By using the single oscillator model, developed by DiDomenico and Wemple, the refractive index dispersion of the films was analyzed. Eo and Ed values of the 5% Mg doped film were found to be 5.76 eV and 11.80 eV, respectively. Within the scope of electrical properties, from Hall effect measurements, it was determined that all the films exhibited n-type behavior and the carrier concentration increased from 1.49×1016 to 1.20×1017 cm-3 with increasing Mg doping.
NASA Astrophysics Data System (ADS)
Peter, Jörg; Semmler, Wolfhard
2007-10-01
Alongside and in part motivated by recent advances in molecular diagnostics, the development of dual-modality instruments for patient and dedicated small animal imaging has gained attention by diverse research groups. The desire for such systems is high not only to link molecular or functional information with the anatomical structures, but also for detecting multiple molecular events simultaneously at shorter total acquisition times. While PET and SPECT have been integrated successfully with X-ray CT, the advance of optical imaging approaches (OT) and the integration thereof into existing modalities carry a high application potential, particularly for imaging small animals. A multi-modality Monte Carlo (MC) simulation approach at present has been developed that is able to trace high-energy (keV) as well as optical (eV) photons concurrently within identical phantom representation models. We show that the involved two approaches for ray-tracing keV and eV photons can be integrated into a unique simulation framework which enables both photon classes to be propagated through various geometry models representing both phantoms and scanners. The main advantage of such integrated framework for our specific application is the investigation of novel tomographic multi-modality instrumentation intended for in vivo small animal imaging through time-resolved MC simulation upon identical phantom geometries. Design examples are provided for recently proposed SPECT-OT and PET-OT imaging systems.
Ultrasonographic features of the mule embryo, fetus and fetal-placental unit.
Paolucci, M; Palombi, C; Sylla, L; Stradaioli, G; Monaci, M
2012-01-15
The aim of this study was to establish baseline ultrasound data concerning the mule conceptus during gestation. Ten multiparous Trotter mares were artificially inseminated with chilled semen from an Amiatino jack donkey. Daily transrectal ultrasonography was carried out from the day of ovulation until Day 50 of gestation to determine the following: first detection of the embryonic vesicle (EV), mobility phase, EV diameter, day of EV fixation, changes in EV shape, date of yolk sac regression and embryo crown-rump length. Monthly ultrasonic assessments from Day 50 of gestation to term were carried out. These assessments included an evaluation of fetal well-being and the growth of the mule conceptus, which were monitored using the following variables: cardiac activity, fetal activity and presentation, fetal fluid echogenicity, combined thickness of the utero-placenta unit and fetal orbital and aortic diameter. Mule EV first detection was observed earlier (37% at Day 8) than that observed in the equine pregnancy. EV diameter at first detection was 4.6 ± 1.1 mm. At Day 10, 75% of EVs were detected. EV fixation occurred on Day 17.1 ± 1.1, with a mean EV diameter of 2.5 ± 0.2 cm. EV growth rate was 4.04 mm/day from Days 11 to 16, 0.4 mm/day from Days 16 to 28 and 1.78 mm/day from Days 28 to 45 of pregnancy. The embryo proper was first detected on Day 19.9 ± 1.9 (average length 2.4 ± 1.4 mm), and the embryonic heartbeat was first detected on Day 24 ± 2.4. The fetal carotid pulse was observed at six months of gestation and provided a good means by which to estimate fetal cardiac activity in advanced gestation. The fetal heart rate was recorded from Month 2 of gestation to term. The mean ± SD of the combined uteroplacental thickness was assessed at the cervical-placental junction and at the ventral abdomen in mares between Months 2 and 5 until term, respectively. An abnormal fetal-placental unit and fetal inactivity was observed in association with abortion. Mule-conceptus biometric measurements correlated significantly with the gestational age, and these data were used to predict an unusually large mule fetus, which might result in dystocia. In conclusion, we can assume that early diagnosis of pregnancy failure and assessment of fetal biophysical profile and growth charts could improve the chances of gestation completion in mule-pregnant mares. The early detection of mares at risk for an abnormal pregnancy or delivery may increase the success of prompt treatments, therefore preventing costly emergency procedures and allowing proper obstetrical and neonatal assistance. Copyright © 2012 Elsevier Inc. All rights reserved.
Stoichiometric effects on the optical properties of LiInSe(2)
NASA Technical Reports Server (NTRS)
Smith, Cecily J.; Lowe, Calvin W.
1989-01-01
The diffuse reflectance of LiInSe(2) between 0.67 and 3.54 eV have been measured and the Kubelka-Munk theory was used to obtain the absorption coefficient from the data. The band gap in the samples is located at approximately 1.6 eV. The In and Se content of the samples was determined from atomic absorption measurements. Absorption peaks at 0.890 and 0.896 eV have been observed which are correlated, respectively, to the selenium and indium deficiencies in the samples.
Zhang, Jianhua; Jiang, Bingfu; Xu, Mingjie; Dai, Xing; Purdy, Michael A; Meng, Jihong
2014-08-30
Human enterovirus 71 (EV-71) is the main etiologic agent of hand, foot and mouth disease (HFMD). We sought to identify EV-71 specific antigens and develop serologic assays for acute-phase EV-71 infection. A series of truncated proteins within the N-terminal 100 amino acids (aa) of EV-71 VP1 was expressed in Escherichia coli. Western blot (WB) analysis showed that positions around 11-21 aa contain EV-71-specific antigenic sites, whereas positions 1-5 and 51-100 contain epitopes shared with human coxsackievirus A16 (CV-A16) and human echovirus 6 (E-6). The N-terminal truncated protein of VP1, VP₁₆₋₄₃, exhibited good stability and was recognized by anti-EV-71 specific rabbit sera. Alignment analysis showed that VP₁₆₋₄₃ is highly conserved among EV-71 strains from different genotypes but was heterologous among other enteroviruses. When the GST-VP₁₆₋₄₃ fusion protein was incorporated as antibody-capture agent in a WB assay and an ELISA for detecting anti-EV-71 IgM in human sera, sensitivities of 91.7% and 77.8% were achieved, respectively, with 100% specificity for both. The characterized EV-71 VP1 protein truncated to positions 6-43 aa has potential as an antigen for detection of anti-EV-71 IgM for early diagnosis of EV-71 infection in a WB format. Copyright © 2014 Elsevier B.V. All rights reserved.
ELENA MCP detector: absolute detection efficiency for low-energy neutral atoms
NASA Astrophysics Data System (ADS)
Rispoli, R.; De Angelis, E.; Colasanti, L.; Vertolli, N.; Orsini, S.; Scheer, J. A.; Mura, A.; Milillo, A.; Wurz, P.; Selci, S.; Di Lellis, A. M.; Leoni, R.; D'Alessandro, M.; Mattioli, F.; Cibella, S.
2012-09-01
Microchannel Plates (MCP) detectors are frequently used in space instrumentation for detecting a wide range of radiation and particles. In particular, the capability to detect non-thermal low energy neutral species is crucial for the sensor ELENA (Emitted Low-Energy Neutral Atoms), part of the package SERENA (Search for Exospheric Refilling and Emitted Natural Abundances) on board the BepiColombo mission of ESA to Mercury to be launched in 2015. ELENA is a Time of Flight (TOF) sensor, based on a novel concept using an ultra-sonic oscillating shutter (Start section), which is operated at frequencies up to 50 kHz; a MCP detector is used as a Stop detector. The scientific objective of ELENA is to detect energetic neutral atoms in the range 10 eV - 5 keV, within 76° FOV, perpendicular to the S/C orbital plane. ELENA will monitor the emission of neutral atoms from the whole surface of Mercury thanks to the spacecraft motion. The major scientific objectives are the interaction between the plasma environment and the planet’s surface, the global particle loss-rate and the remote sensing of the surface properties. In particular, surface release processes are investigated by identifying particles released from the surface, via solar wind-induced ion sputtering (< 1eV - < 100 eV) as well as Hydrogen back-scattered at hundreds eV. MCP absolute detection efficiency for very low energy neutral atoms (E < 30 eV) is a crucial point for this investigation. At the MEFISTO facility of the Physical Institute of the University of Bern (CH), measurements on three different types of MCP (with and without coating) have been performed providing the detection efficiencies in the energy range 10eV - 1keV. Outcomes from such measurements are discussed here.
Beld, Marcel; Minnaar, René; Weel, Jan; Sol, Cees; Damen, Marjolein; van der Avoort, Harry; Wertheim-van Dillen, Pauline; Breda, Alex van; Boom, René
2004-01-01
The objective of the present study was the development of a diagnostic reverse transcription (RT)-PCR for the specific detection of enterovirus (EV) RNA in clinical specimens controlled by an internal control (IC) RNA. The IC RNA contains the same primer binding sites as EV RNA but has a different probe region. The IC RNA was packaged into an MS2 phage core particle (armored) and was added to the clinical sample to allow monitoring of both extraction efficiency and RT-PCR efficiency. Serial dilutions of the IC RNA were made, and the detection limit of the RT-PCR was tested in a background of EV RNA-negative cerebrospinal fluid. The sensitivity and specificity of the RT-PCR assay were tested by using all 64 known EV serotypes, several non-EV serotypes, and two Quality Control for Molecular Diagnostics (QCMD) Program EV proficiency panels from 2001 and 2002. In total, 322 clinical specimens were tested by RT-PCR, and to establish the clinical utility of the RT-PCR, a comparison of the results of viral culture and RT-PCR was done with 87 clinical specimens. The lower limit of sensitivity was reached at about 150 copies of IC RNA/ml. All 64 EV serotypes were positive, while all non-EV serotypes were negative. All culture-positive samples of the 2001 QCMD proficiency panel (according to the 50% tissue culture infective doses per milliliter) were positive by RT-PCR. Invalid results, i.e., negativity for both EV RNA and IC RNA, due to inhibition of RT-PCR were observed for 33.3% of the members of the 2002 QCMD proficiency panel and 3.1% of the clinical specimens. Inhibition of RT-PCR could be relieved by the addition of 400 ng of bovine α-casein per μl to both the RT reaction mixture and the PCR mixture. With this optimized protocol, the results for all samples of the 2002 QCMD proficiency panel and all clinical specimens except one fecal sample (0.3%) were valid. Evaluation of the clinical samples demonstrated that EV infection could be detected in 12 of 87 samples (13.8%) by RT-PCR, while viral culture was negative. Our data show that the RT-PCR with armored IC RNA offers a very reliable and rapid diagnostic tool for the detection of EV in clinical specimens and that the addition of bovine α-casein relieved inhibition of the RT-PCR for 99.7% of clinical specimens. PMID:15243060
Linear Optical Response of Silicon Nanotubes Under Axial Magnetic Field
NASA Astrophysics Data System (ADS)
Chegel, Raad; Behzad, Somayeh
2013-01-01
We investigated the optical properties of silicon nanotubes (SiNTs) in the low energy region, E < 0.5 eV, and middle energy region, 1.8 eV < E < 2 eV. The dependence of optical matrix elements and linear susceptibility on radius and magnetic field, in terms of one-dimensional (1-d) wavevector and subband index, is calculated using the tight-binding approximation. It is found that, on increasing the nanotube diameter, the low-energy peaks show red-shift and their intensities are decreased. Also, we found that in the middle energy region all tubes have two distinct peaks, where the energy position of the second peak is approximately constant and independent of the nanotube diameter. Comparing the band structure of these tubes in different magnetic fields, several differences are clearly seen, such as splitting of degenerate bands, creation of additional band-edge states, and bandgap modification. It is found that applying the magnetic field leads to a phase transition in zigzag silicon hexagonal nanotubes (Si h-NTs), unlike in zigzag silicon gear-like nanotubes (Si g-NTs), which remain semiconducting in any magnetic field. We found that the axial magnetic field has two effects on the linear susceptibility spectrum, namely broadening and splitting. The axial magnetic field leads to the creation of a peak with energy less than 0.2 eV in metallic Si h-NTs, whereas in the absence of a magnetic field such a transition is not allowed.
Prediction of a two-dimensional S3N2 solid for optoelectronic applications
NASA Astrophysics Data System (ADS)
Xiao, Hang; Shi, Xiaoyang; Liao, Xiangbiao; Zhang, Yayun; Chen, Xi
2018-02-01
Two-dimensional materials have attracted tremendous attention for their fascinating electronic, optical, chemical, and mechanical properties. However, the band gaps of most reported two-dimensional (2D) materials are smaller than 2.0 eV, which has greatly restricted their optoelectronic applications in the blue and ultraviolet range of the spectrum. Here, we propose a stable trisulfur dinitride (S3N2 ) 2D crystal that is a covalent network composed solely of S-N σ bonds. The S3N2 crystal is dynamically, thermally, and chemically stable, as confirmed by the computed phonon spectrum and ab initio molecular dynamics simulations. GW calculations show that the S3N2 crystal is a wide, direct band-gap (3.92 eV) semiconductor with a small-hole effective mass. In addition, the band gap of S3N2 structures can be tuned by forming multilayer S3N2 crystals, S3N2 nanoribbons, and S3N2 nanotubes, expanding its potential applications. The anisotropic optical response of the 2D S3N2 crystal is revealed by GW-Bethe-Salpeter-equation calculations. The optical band gap of S3N2 is 2.73 eV and the exciton binding energy of S3N2 is 1.19 eV, showing a strong excitonic effect. Our result not only marks the prediction of a 2D crystal composed of nitrogen and sulfur, but also underpins potential innovations in 2D electronics and optoelectronics.
Reiner, Agnes T; Tan, Sisareuth; Agreiter, Christiane; Auer, Katharina; Bachmayr-Heyda, Anna; Aust, Stefanie; Pecha, Nina; Mandorfer, Mattias; Pils, Dietmar; Brisson, Alain R; Zeillinger, Robert; Lim, Sai Kiang
2017-01-01
High-grade serous ovarian cancer (HGSOC) is the most aggressive type of ovarian cancer and is responsible for most deaths caused by gynecological cancers. Numerous candidate biomarkers were identified for this disease in the last decades, but most were not sensitive or specific enough for clinical applications. Hence, new biomarkers for HGSOC are urgently required. This study aimed to identify new markers by isolating different extracellular vesicle (EV) types from the ascites of ovarian cancer patients according to their affinities for lipid-binding proteins and analyzing their protein cargo. This approach circumvents the low signal-to-noise ratio when using biological fluids for biomarker discovery and the issue of contamination by large non-EV complexes. We isolated and analyzed three distinct EV populations from the ascites of patients with ovarian cancer or cirrhosis and observed that Annexin V-binding EVs have higher levels of matrix metalloproteinase 9 in malignant compared to portal-hypertensive ascites. As this protein was not detected in other EV populations, this study validates our approach of using different EV types for optimal biomarker discovery. Furthermore, MMP9 in Annexin V-binding EVs could be a HGSOC biomarker with enhanced specificity, because its identification requires detection of two distinct components, that is, lipid and protein.
Wide bandgap OPV polymers based on pyridinonedithiophene unit with efficiency >5%
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneider, Alexander M.; Lu, Luyao; Manley, Eric F.
2015-06-04
We report the properties of a new series of wide band gap photovoltaic polymers based on the N-alkyl 2-pyridone dithiophene (PDT) unit. These polymers are effective bulk heterojunction solar cell materials when blended with phenyl-C 71-butyric acid methyl ester (PC 71BM). They achieve power conversion efficiencies (up to 5.33%) high for polymers having such large bandgaps, ca. 2.0 eV (optical) and 2.5 eV (electrochemical). As a result, grazing incidence wide-angle X-ray scattering (GIWAXS) reveals strong correlations between π–π stacking distance and regularity, polymer backbone planarity, optical absorption maximum energy, and photovoltaic efficiency.
Hybrid k .p tight-binding model for intersubband optics in atomically thin InSe films
NASA Astrophysics Data System (ADS)
Magorrian, S. J.; Ceferino, A.; Zólyomi, V.; Fal'ko, V. I.
2018-04-01
We propose atomic films of n -doped γ -InSe as a platform for intersubband optics in the infrared and far-infrared range, coupled to out-of-plane polarized light. Depending on the film thickness (number of layers) and the amount of n -doping of the InSe film, these transitions span from ˜0.7 eV for bilayer to ˜0.05 eV for 15-layer InSe. We use a hybrid k .p theory and tight-binding model, fully parametrized using density-functional theory, to predict their oscillator strengths and thermal linewidths at room temperature.
Structural and optical characterization of the propolis films
NASA Astrophysics Data System (ADS)
Drapak, S. I.; Bakhtinov, A. P.; Gavrylyuk, S. V.; Drapak, I. T.; Kovalyuk, Z. D.
2006-10-01
We have performed structural and optical characterizations of the propolis (an organic entity of biological nature) films grown on various non-organic substrates. The films were grown from a propolis melt or a propolis alcohol solution. The crystal structure has been observed in the films precipitated from the solution onto substrates such as an amorphous glass and sapphire or semiconductor indium monoselenide. For any growth method, the propolis film is a semiconductor with the bandgap of 3.07 eV at 300 K that is confirmed by a maximum in photoluminescence spectra at 2.86 eV. We argue that propolis films might be used in various optoelectronic device applications.
Electronic and optical properties of GaN under pressure: DFT calculations
NASA Astrophysics Data System (ADS)
Javaheri, Sahar; Boochani, Arash; Babaeipour, Manuchehr; Naderi, Sirvan
2017-12-01
Optical and electronic properties of ZB, RS and WZ structures of gallium nitride (GaN) are studied in equilibrium and under pressure using the first-principles calculation in the density functional theory (DFT) framework to obtain quantities like dielectric function, loss function, reflectance and absorption spectra, refractive index and their relation parameters. The electronic properties are studied using EV-GGA and GGA approximations and the results calculated by EV-GGA approximation were found to be much closer to the experimental results. The interband electron transitions are studied using the band structure and electron transition peaks in the imaginary part of the dielectric function; these transitions occur in three structures from N-2p orbital to Ga-4s and Ga-4p orbitals in the conduction band. Different optical properties of WZ structure were calculated in two polarization directions of (100) and (001) and the results were close to each other. Plasmon energy corresponding to the main peak of the energy-loss function in RS with the value of 26 eV was the highest one, which increased under pressure. In general, RS shows more different properties than WZ and ZB.
ZnS nanostructured thin-films deposited by successive ionic layer adsorption and reaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deshmukh, S. G., E-mail: deshmukhpradyumn@gmail.com; Jariwala, Akshay; Agarwal, Anubha
ZnS thin films were grown on glass substrate using successive ionic layer adsorption and reaction (SILAR) technique at room temperature. Aqueous solutions of ZnCl{sub 2} and Na{sub 2}S were used as precursors. The X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Raman spectroscopy and optical absorption measurements were applied to study the structural, surface morphology and optical properties of as-deposited ZnS thin films. The X-ray diffraction profiles revealed that ZnS thin films consist of crystalline grains with cubic phase. Spherical nano grains of random size and well covered on the glass substrate were observed from FESEM. The average grainmore » size were found to be 77 nm, 100 nm and 124 nm for 20 cycles, 40 cycles and 60 cycles samples respectively. For 60 cycle sample, Raman spectra show two prominent peaks at 554 cm{sup −1} and 1094 cm{sup −1}. The optical band gap values were found to be 3.76 eV, 3.72 eV and 3.67 eV for 20 cycle, 40 cycle and 60 cycle samples respectively.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Araújo-Filho, Adailton A.; Silva, Fábio L.R.; Righi, Ariete
Powder samples of bulk monoclinic sodium trititanate Na{sub 2}Ti{sub 3}O{sub 7} were prepared carefully by solid state reaction, and its monoclinic P2{sub 1}/m crystal structure and morphology were characterized by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM), respectively. Moreover, the sodium trititanate main energy band gap was estimated as E{sub g}=3.51±0.01 eV employing UV–Vis spectroscopy, which is smaller than the measured 3.70 eV energy gap published previously by other authors. Aiming to achieve a better understanding of the experimental data, density functional theory (DFT) computations were performed within the local density and generalized gradient approximations (LDA and GGA,more » respectively) taking into account dispersion effects through the scheme of Tkatchenko and Scheffler (GGA+TS). Optimal lattice parameters, with deviations relative to measurements Δa=−0.06 Å, Δb=0.02 Å, and Δc=−0.09 Å, were obtained at the GGA level, which was then used to simulate the sodium trititanate electronic and optical properties. Indirect band transitions have led to a theoretical gap energy value of about 3.25 eV. Our results, however, differ from pioneer DFT results with respect to the specific Brillouin zone vectors for which the indirect transition with smallest energy value occurs. Effective masses for electrons and holes were also estimated along a set of directions in reciprocal space. Lastly, our calculations revealed a relatively large degree of optical isotropy for the Na{sub 2}Ti{sub 3}O{sub 7} optical absorption and complex dielectric function. - Graphical abstract: Monoclinic sodium trititanate Na2Ti3O7 was characterized by experiment and dispersion-corrected DFT calculations. An indirect gap of 3.5 eV is predicted, with heavy electrons and anisotropic holes ruling its conductivity. - Highlights: • Monoclinic Na2Ti3O7 was characterized by experiment (XRD, SEM, UV–Vis spectroscopy). • DFT GGA+TS optimized geometry and optoelectronic properties were obtained. • An experimental (theoretical) indirect gap of 3.5 (3.25) eV is predicted. • Heavy electrons and anisotropic holes rule the conductivity. • Ti-O bond lengths and charge states probably cause oxygen reactivity variations.« less
Othman, Ines; Volle, Romain; Elargoubi, Aida; Guediche, Mohamed Neji; Chakroun, Mohamed; Sfar, Mohamed Tahar; Pereira, Bruno; Peigue-Lafeuille, Hélène; Aouni, Mahjoub; Archimbaud, Christine; Bailly, Jean-Luc
2016-02-01
Acute enterovirus (EV) meningitis is a frequent cause of hospitalisation, and over 100 EV serotypes may be involved. A total of 215 patients of all ages with meningitis signs were investigated in 2 Tunisian hospitals. Their cerebrospinal fluid (CSF) was analysed retrospectively for EVs with a TaqMan real-time RT-qPCR. The virus strains were typed, and their evolutionary relationships were determined by Bayesian phylogenetic methods. An EV genome was detected in 21/215 patients (9.8%). The CSF viral loads ranged from 3.27 to 5.63 log10 genome copies/mL. The strains were identified in 13/21 patients and assigned to EV-B types. Viruses identified in Tunisian patients were genetically related to variants detected in France. The viral loads were similar in Tunisian and French patients for most EV types. The phylogenetic data and viral loads determined in Tunisian and French patients suggest that close EV variants were involved in aseptic meningitis in the 2 countries over a same period. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rahmawati, Fitria, E-mail: fitria@mipa.uns.ac.id; Wulandari, Rini, E-mail: riniwulandari55@yahoo.com; Murni, Irvinna M., E-mail: irvinna-mutiara@yahoo.com
2016-02-08
This research prepared a photocatalyst tablet of CdS-ZnS-TiO{sub 2} on a graphite substrate. The synthesis was conducted through chemical bath deposition method. The graphite substrate used was a waste graphite rod from primary batteries. The aims of this research are studying the crystal structure, the optical properties and the photocatalytic activity of the prepared material. The photocatalytic activity was determined through isopropanol degradation. The result shows that the TiO{sub 2}/Graphite provide direct transition gap energy at 2.91 eV and an indirect transition gap energy at 3.21 eV. Deposition of CdS-ZnS changed the direct transition gap energy to 3.01 eV andmore » the indirect transition gap energy to 3.22 eV. Isopropanol degradation with the prepared catalyst produced new peaks at 223-224 nm and 265-266 nm confirming the production of acetone. The degradation follows first order with rate constant of 2.4 × 10{sup −2} min{sup −1}.« less
Benschop, Kimberley S M; van der Avoort, Harrie G; Jusic, Edin; Vennema, Harry; van Binnendijk, Rob; Duizer, Erwin
2017-07-01
Polioviruses (PVs) are members of the genus Enterovirus In the Netherlands, the exclusion of PV circulation is based on clinical enterovirus (EV) surveillance (CEVS) of EV-positive cases and routine environmental EV surveillance (EEVS) conducted on sewage samples collected in the region of the Netherlands where vaccination coverage is low due to religious reasons. We compared the EEVS data to those of the CEVS to gain insight into the relevance of EEVS for poliovirus and nonpolio enterovirus surveillance. Following the polio outbreak in Syria, EEVS was performed at the primary refugee center in Ter Apel in the Netherlands, and data were compared to those of CEVS and EEVS. Furthermore, we assessed the feasibility of poliovirus detection by EEVS using measles virus detection in sewage during a measles outbreak as a proxy. Two Sabin-like PVs were found in routine EEVS, 11 Sabin-like PVs were detected in the CEVS, and one Sabin-like PV was found in the Ter Apel sewage. We observed significant differences between the three programs regarding which EVs were found. In 6 sewage samples collected during the measles outbreak in 2013, measles virus RNA was detected in regions where measles cases were identified. In conclusion, we detected PVs, nonpolio EVs, and measles virus in sewage and showed that environmental surveillance is useful for poliovirus detection in the Netherlands, where live oral poliovirus vaccine is not used and communities with lower vaccination coverage exist. EEVS led to the detection of EV types not seen in the CEVS, showing that EEVS is complementary to CEVS. IMPORTANCE We show that environmental enterovirus surveillance complements clinical enterovirus surveillance for poliovirus detection, or exclusion, and for nonpolio enterovirus surveillance. Even in the presence of adequate surveillance, only a very limited number of Sabin-like poliovirus strains were detected in a 10-year period, and no signs of transmission of oral polio vaccine (OPV) strains were found in a country using exclusively inactivated polio vaccine (IPV). Measles viruses can be detected during an outbreak in sewage samples collected and concentrated following procedures used for environmental enterovirus surveillance. Copyright © 2017 American Society for Microbiology.
Benschop, Kimberley S. M.; van der Avoort, Harrie G.; Jusic, Edin; Vennema, Harry; van Binnendijk, Rob
2017-01-01
ABSTRACT Polioviruses (PVs) are members of the genus Enterovirus. In the Netherlands, the exclusion of PV circulation is based on clinical enterovirus (EV) surveillance (CEVS) of EV-positive cases and routine environmental EV surveillance (EEVS) conducted on sewage samples collected in the region of the Netherlands where vaccination coverage is low due to religious reasons. We compared the EEVS data to those of the CEVS to gain insight into the relevance of EEVS for poliovirus and nonpolio enterovirus surveillance. Following the polio outbreak in Syria, EEVS was performed at the primary refugee center in Ter Apel in the Netherlands, and data were compared to those of CEVS and EEVS. Furthermore, we assessed the feasibility of poliovirus detection by EEVS using measles virus detection in sewage during a measles outbreak as a proxy. Two Sabin-like PVs were found in routine EEVS, 11 Sabin-like PVs were detected in the CEVS, and one Sabin-like PV was found in the Ter Apel sewage. We observed significant differences between the three programs regarding which EVs were found. In 6 sewage samples collected during the measles outbreak in 2013, measles virus RNA was detected in regions where measles cases were identified. In conclusion, we detected PVs, nonpolio EVs, and measles virus in sewage and showed that environmental surveillance is useful for poliovirus detection in the Netherlands, where live oral poliovirus vaccine is not used and communities with lower vaccination coverage exist. EEVS led to the detection of EV types not seen in the CEVS, showing that EEVS is complementary to CEVS. IMPORTANCE We show that environmental enterovirus surveillance complements clinical enterovirus surveillance for poliovirus detection, or exclusion, and for nonpolio enterovirus surveillance. Even in the presence of adequate surveillance, only a very limited number of Sabin-like poliovirus strains were detected in a 10-year period, and no signs of transmission of oral polio vaccine (OPV) strains were found in a country using exclusively inactivated polio vaccine (IPV). Measles viruses can be detected during an outbreak in sewage samples collected and concentrated following procedures used for environmental enterovirus surveillance. PMID:28432101
NASA Astrophysics Data System (ADS)
Vlasov, M. N.; Kelley, M. C.; Hysell, D. L.
2013-06-01
Enhanced optical emissions observed during HF pumping are induced by electrons accelerated by high-power electromagnetic waves. Using measured emission intensities, the energy distribution of accelerated electrons can be inferred. Energy loss from the excitation of molecular nitrogen vibrational levels (the vibrational barrier) strongly influences the electron energy distribution (EED). In airglow calculations, compensation for electron depletion within the 2-3 eV energy range, induced by the vibrational barrier, can be achieved via electrons with an EED similar to a Gaussian distribution and energies higher than 3 eV. This EED has a peak within the 5-10 eV energy range. We show that the main EED features depend strongly on altitude and solar activity. An EED similar to a power law distribution can occur above 270-300 km altitude. Below 270 km altitude, a Gaussian distribution for energies between 3 eV and 10 eV, together with a power law distribution for energies higher than 10 eV, is indicated. A Gaussian distribution combined with an exponential function is needed below 230 km altitude. The transition altitude from Gaussian to power law distribution depends strongly on solar activity, increasing for high solar activity. Electrons accelerated during the initial collisionless stage can inhibit the depletion of fast electrons within the vibrational barrier range, an effect that strongly depends on altitude and solar activity. The approach, based on the effective root square electric field, enables EED calculation, providing the observed red-line intensities for low and high solar activities.
Surface roughness estimation of MBE grown CdTe/GaAs(211)B by ex-situ spectroscopic ellipsometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karakaya, Merve, E-mail: mervegunnar@iyte.edu.tr; Bilgilisoy, Elif; Arı, Ozan
Spectroscopic ellipsometry (SE) ranging from 1.24 eV to 5.05 eV is used to obtain the film thickness and optical properties of high index (211) CdTe films. A three-layer optical model (oxide/CdTe/GaAs) was chosen for the ex-situ ellipsometric data analysis. Surface roughness cannot be determined by the optical model if oxide is included. We show that roughness can be accurately estimated, without any optical model, by utilizing the correlation between SE data (namely the imaginary part of the dielectric function, or phase angle, ψ) and atomic force microscopy (AFM) roughness. and ψ values at 3.31 eV, which corresponds to E{sub 1}more » critical transition energy of CdTe band structure, are chosen for the correlation since E{sub 1} gives higher resolution than the other critical transition energies. On the other hand, due to the anisotropic characteristic of (211) oriented CdTe surfaces, SE data ( and ψ) shows varieties for different azimuthal angle measurements. For this reason, in order to estimate the surface roughness by considering these correlations, it is shown that SE measurements need to be taken at the same surface azimuthal angle. Estimating surface roughness in this manner is an accurate way to eliminate cumbersome surface roughness measurement by AFM.« less
NASA Astrophysics Data System (ADS)
Göde, F.; Güneri, E.; Kariper, A.; Ulutaş, C.; Kirmizigül, F.; Gümüş, C.
2011-11-01
Zinc sulfide films have been deposited on glass substrates at room temperature by the chemical bath deposition technique. The growth mechanism is studied using X-ray diffraction, scanning electron microscopy, optical absorption spectra and electrical measurements. The as-deposited film was given thermal annealing treatment in air atmosphere at various temperatures (100, 200, 300 400 and 500 °C) for 1 h. The annealed film was also characterized by structural, optical and electrical studies. The structural analyses revealed that the as-deposited film was amorphous, but after being annealed at 500 °C, it changed to polycrystalline. The optical band gap is direct with a value of 4.01 eV, but this value decreased to 3.74 eV with annealing temperature, except for the 500 °C anneal where it only decreased to 3.82 eV. The refractive index (n), extinction coefficient (k), and real (ɛ1) and imaginary (ɛ2) parts of the dielectric constant are evaluated. Raman peaks appearing at ~478 cm-1, ~546 cm-1, ~778 cm-1 and ~1082 cm-1 for the annealed film (500 °C) were attributed to [TOl+LAΣ, 2TOΓ, 2LO, 3LO phonons of ZnS. The electrical conductivities of both as-deposited and annealed films have been calculated to be of the order of ~10-10 (Ω cm)-1 .
NASA Astrophysics Data System (ADS)
Inglis, M. D.; Takai, H.; Warasia, R.; Sundermier, J.
2005-12-01
Extreme Energy Cosmic Rays are nuclei that have been accelerated to kinetic energies in excess of 1020 eV. Where do they come from? How are they produced? Are they survivors of the early universe? Are they remnants of supernovas? MARIACHI, a unique collaboration between scientists, physics teachers and students, is an innovative technique that allows us to detect and study them. The Experiment MARIACHI is a unique research experiment that seeks the detection of extreme energy cosmic rays (EECRs), with E >1020 eV. It is an exciting project with many aspects: Research: It investigates an unconventional way of detecting EECRs based upon a method successfully used to detect meteors entering the upper atmosphere. The method was developed by planetary astronomers listening to radio signals reflected off the ionization trail. MARIACHI seeks to listen to TV signals reflected off the ionization trail of an EECR. The unique experiment topology will also permit the study of meteors, exotic forms of lightning, and atmospheric science. Computing and Technology: It uses radio detection stations, along with mini shower arrays hooked up to GPS clocks. Teachers and students build the arrays. It implements the Internet and the GRID as means of communication, data transfer, data processing, and for hosting a public educational outreach web site. Outreach and Education: It is an open research project with the active participation of a wide audience of astronomers, physicists, college professors, high school teachers and students. Groups representing high schools, community colleges and universities all collaborate in the project. The excitement of a real experiment motivates the science and technology classroom, and incorporates several high school physical science topics along with material from other disciplines such as astronomy, electronics, radio, optics.
Vacuum-UV fluorescence spectroscopy of PF3 in the range 9-20 eV
NASA Astrophysics Data System (ADS)
Biehl, H.; Boyle, K. J.; Seccombe, D. P.; Tuckett, R. P.; Baumgärtel, H.; Jochims, H. W.
1998-01-01
The vacuum-UV and visible spectroscopy of PF3 using fluorescence excitation and dispersed emission techniques is reported. The fluorescence excitation spectrum has been recorded following photoexcitation with monochromatized synchrotron radiation from the Daresbury, UK source in the energy range 9-20 eV with an average resolution of ˜0.015 eV. Transitions to the three lowest-energy bands in the Rydberg spectra show resolved vibrational structure, they are assigned to transitions to the (8a1)-1 4p, 5p, and 6p Rydberg states of PF3, and fluorescence is due to valence transitions in the PF2 radical. From a Franck-Condon analysis of the vibrational structure, it is shown that the FPF bond angle in PF3 increases by ˜14±1° upon photoexcitation. The use of optical filters shows that at least three excited electronic states of PF2 are responsible for the induced emission. Dispersed emission spectra in the UV/visible region have been recorded with an optical resolution of 8 nm at the BESSY 1, Germany synchrotron source at the energies of all the peaks in the excitation spectrum. Four different decay channels are observed: (a) PF2 Ã 2A1-X˜2B1 fluorescence in the wide range 320-550 nm for photon energies around 9.8 eV, (b) PF2 ÖX˜, and B˜ 2B2-X˜ 2B1 fluorescence at ˜300 nm for photon energies around 11.0 eV, (c) PF2 C˜ 2A1-X˜ 2B1 and Ẽ 2B1 (2Π)-Ã 2A1 fluorescence at ˜222 and 325 nm, respectively, for photon energies around 14.4 eV, and (d) PF A 3Π-X 3Σ- fluorescence between 300-380 nm for photon energies around 16.1 eV. These assignments are confirmed by action spectra in which the excitation energy of the vacuum-UV radiation is scanned with detection of the fluorescence at a fixed, dispersive wavelength. Using the single-bunch mode of the BESSY 1 source, we have attempted to measure the lifetimes of the emitting states, but the timing profile of the source imposes an upper limit on lifetimes that can be measured of ˜500 ns. We have therefore only been able to measure values for the bent C˜ 2A1 and linear Ẽ 2B1 (2Π) states of PF2 of 14.7 and 7.9 ns, respectively; the lifetimes of the other emitters are too long to measure by this method. Our assignments in PF2 are heavily dependent on recent ab initio calculations on the geometries and energies of the valence electronic states of this species. Our knowledge on the electronic spectroscopy of this free radical is reviewed.
Chemical spray pyrolyzed kesterite Cu2ZnSnS4 (CZTS) thin films
NASA Astrophysics Data System (ADS)
Khalate, S. A.; Kate, R. S.; Deokate, R. J.
2018-04-01
Pure kesterite phase thin films of Cu2ZnSnS4 (CZTS) were synthesized at different substrate temperatures using sulphate precursors by spray pyrolysis method. The significance of synthesis temperature on the structural, morphological and optical properties has been studied. The X-ray analysis assured that synthesized CZTS thin films showing pure kesterite phase. The value of crystallite size was found maximum at the substrate temperature 400 °C. At the same temperature, microstructural properties such as dislocation density, micro-strain and stacking fault probability were found minimum. The morphological examination designates the development of porous and uniform CZTS thin films. The synthesized CZTS thin films illustrate excellent optical absorption (105 cm-1) in the visible band and the optical band gap varies in the range of 1.489 eV to 1.499 eV.
Ellipsometry study of optical parameters of AgIn5S8 crystals
NASA Astrophysics Data System (ADS)
Isik, Mehmet; Gasanly, Nizami
2015-12-01
AgIn5S8 crystals grown by Bridgman method were characterized for optical properties by ellipsometry measurements. Spectral dependence of optical parameters; real and imaginary parts of the pseudodielectric function, pseudorefractive index, pseudoextinction coefficient, reflectivity and absorption coefficient were obtained from ellipsometry experiments carried out in the 1.2-6.2 eV range. Direct band gap energy of 1.84 eV was found from the analysis of absorption coefficient vs. photon energy. The oscillator energy, dispersion energy and zero-frequency refractive index, high-frequency dielectric constant values were found from the analysis of the experimental data using Wemple-DiDomenico and Spitzer-Fan models. Crystal structure and atomic composition ratio of the constituent elements in the AgIn5S8 crystal were revealed from structural characterization techniques of X-ray diffraction and energy dispersive spectroscopy.
NASA Astrophysics Data System (ADS)
Bakhshayeshi, A.; Sarmazdeh, M. Majidiyan; Mendi, R. Taghavi; Boochani, A.
2017-04-01
Electronic, magnetic, and optical properties of Co2MnAs full-Heusler compound have been calculated using a first-principles approach with the full-potential linearized augmented plane-wave (FP-LAPW) method and generalized gradient approximation plus U (GGA + U). The results are compared with various properties of Co2Mn Z ( Z = Si, Ge, Al, Ga, Sn) full-Heusler compounds. The results of our calculations show that Co2MnAs is a half-metallic ferromagnetic compound with 100% spin polarization at the Fermi level. The total magnetic moment and half-metallic gap of Co2MnAs compound are found to be 6.00 μ B and 0.43 eV, respectively. It is also predicted that the spin-wave stiffness constant and Curie temperature of Co2MnAs compound are about 3.99 meV nm2 and 1109 K, respectively. The optical results show that the dominant behavior, at energy below 2 eV, is due to interactions of free electrons in the system. Interband optical transitions have been calculated based on the imaginary part of the dielectric function and analysis of critical points in the second energy derivative of the dielectric function. The results show that there is more than one plasmon energy for Co2MnAs compound, with the highest occurring at 25 eV. Also, the refractive index variations and optical reflectivity for radiation at normal incidence are calculated for Co2MnAs. Because of its high magnetic moment, high Curie temperature, and 100% spin polarization at the Fermi level as well as its optical properties, Co2MnAs is a good candidate for use in spintronic components and magnetooptical devices.
Puenpa, Jiratchaya; Suwannakarn, Kamol; Chansaenroj, Jira; Vongpunsawad, Sompong; Poovorawan, Yong
2017-10-01
Real-time reverse-transcription polymerase chain reaction (rRT-PCR) to detect enterovirus 71 (EV-A71) and coxsackievirus A16 (CV-A16) has facilitated the rapid and accurate identification of the two most common etiological agents underlying hand, foot, and mouth disease (HFMD). However, the worldwide emergence of CV-A6 infection in HFMD necessitates development of an improved multiplex rRT-PCR method. To rapidly determine the etiology of HFMD, two rRT-PCR assays using TaqMan probes were developed to differentiate among three selected common enteroviruses (EV-A71, CV-A16 and CV-A6) and to enable broad detection of enteroviruses (pan-enterovirus assay). No cross-reactions were observed with other RNA viruses examined. The detection limits of both assays were 10 copies per microliter for EV-A71, CV-A6 and CV-A16, and pan-enterovirus. The methods showed high accuracy (EV-A71, 90.6%; CV-A6, 92.0%; CV-A16, 100%), sensitivity (EV-A71, 96.5%; CV-A6, 95.8%; CV-A16, 99.0%), and specificity (EV-A71, 100%; CV-A6, 99.9%; CV-A16, 99.9%) in testing clinical specimens (n=1049) during 2014-2016, superior to those of conventional RT-PCR. Overall, the multiplex rRT-PCR assays enabled highly sensitive detection and rapid simultaneous typing of EV-A71, CV-A6 and CV-A16, and enteroviruses, rendering them feasible and attractive methods for large-scale surveillance of enteroviruses associated with HFMD outbreaks. Copyright © 2017 Elsevier B.V. All rights reserved.
Chen, Walter W; Balaj, Leonora; Liau, Linda M; Samuels, Michael L; Kotsopoulos, Steve K; Maguire, Casey A; LoGuidice, Lori; Soto, Horacio; Garrett, Matthew; Zhu, Lin Dan; Sivaraman, Sarada; Chen, Clark; Wong, Eric T; Carter, Bob S; Hochberg, Fred H; Breakefield, Xandra O; Skog, Johan
2013-01-01
Development of biofluid-based molecular diagnostic tests for cancer is an important step towards tumor characterization and real-time monitoring in a minimally invasive fashion. Extracellular vesicles (EVs) are released from tumor cells into body fluids and can provide a powerful platform for tumor biomarkers because they carry tumor proteins and nucleic acids. Detecting rare point mutations in the background of wild-type sequences in biofluids such as blood and cerebrospinal fluid (CSF) remains a major challenge. Techniques such as BEAMing (beads, emulsion, amplification, magnetics) PCR and droplet digital PCR (ddPCR) are substantially more sensitive than many other assays for mutant sequence detection. Here, we describe a novel approach that combines biofluid EV RNA and BEAMing RT-PCR (EV-BEAMing), as well droplet digital PCR to interrogate mutations from glioma tumors. EVs from CSF of patients with glioma were shown to contain mutant IDH1 transcripts, and we were able to reliably detect and quantify mutant and wild-type IDH1 RNA transcripts in CSF of patients with gliomas. EV-BEAMing and EV-ddPCR represent a valuable new strategy for cancer diagnostics, which can be applied to a variety of biofluids and neoplasms. PMID:23881452
[Value of polymerase chain reaction in serum for the diagnosis of enteroviral meningitis].
Marque Juillet, S; Lion, M; Pilmis, B; Tomini, E; Dommergues, M-A; Laporte, S; Foucaud, P
2013-06-01
Enteroviruses (EV) are a common cause of aseptic meningitis in children. Virological diagnosis of EV meningitis is currently based on the detection of the viral genome in the cerebrospinal fluid (CSF). This study attempted to determine the correlation and the temporality of the polymerase chain reaction (PCR) assay in serum and CSF and to evaluate the possibility of diagnosing EV infection only on the serum PCR. The EV genome was sought by RT real-time PCR (Smart Cycler EV Primer and Probe Set(®), Cepheid) in CSF and serum, collected at the same time, for all children who underwent a lumbar puncture for suspected meningitis, between 1 June and 31 July 2010 at the Versailles Hospital. Forty-four patients were included in the study. EV infection was documented for 22 of them. In 10 patients, the EV genome was detected in CSF only; in 3 patients in serum only, and in 9 patients in both. Among patients with acute EV neurological infection, viremic children were significantly younger (1.6 months versus 5.8 years; P<0.001). Viremia was detected when the serum was sampled within 30 h after the beginning of symptoms. These results confirm previous reports of early and transient viremia in young children. This preliminary study shows the limits and added value of EV PCR in serum. It suggests that in some children and under certain conditions (age >3 months, clinical and biological compatibility with a viral infection, no previous antibiotic therapy, time from symptom onset to blood sampling <30 h, PCR in serum analyzed within 3h), PCR in serum, when positive, is a possible alternative. Therefore, it may be possible to diagnose EV infection without performing a lumbar puncture in a limited number of young children (11.4% of our suspected cases). This study needs to be reinforced by a multicenter study with a broader panel of patients. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Improved adenoma detection with Endocuff Vision: the ADENOMA randomised controlled trial.
Ngu, Wee Sing; Bevan, Roisin; Tsiamoulos, Zacharias P; Bassett, Paul; Hoare, Zoë; Rutter, Matthew D; Clifford, Gayle; Totton, Nicola; Lee, Thomas J; Ramadas, Arvind; Silcock, John G; Painter, John; Neilson, Laura J; Saunders, Brian P; Rees, Colin J
2018-01-23
Low adenoma detection rates (ADR) are linked to increased postcolonoscopy colorectal cancer rates and reduced cancer survival. Devices to enhance mucosal visualisation such as Endocuff Vision (EV) may improve ADR. This multicentre randomised controlled trial compared ADR between EV-assisted colonoscopy (EAC) and standard colonoscopy (SC). Patients referred because of symptoms, surveillance or following a positive faecal occult blood test (FOBt) as part of the Bowel Cancer Screening Programme were recruited from seven hospitals. ADR, mean adenomas per procedure, size and location of adenomas, sessile serrated polyps, EV removal rate, caecal intubation rate, procedural time, patient experience, effect of EV on workload and adverse events were measured. 1772 patients (57% male, mean age 62 years) were recruited over 16 months with 45% recruited through screening. EAC increased ADR globally from 36.2% to 40.9% (P=0.02). The increase was driven by a 10.8% increase in FOBt-positive screening patients (50.9% SC vs 61.7% EAC, P<0.001). EV patients had higher detection of mean adenomas per procedure, sessile serrated polyps, left-sided, diminutive, small adenomas and cancers (cancer 4.1% vs 2.3%, P=0.02). EV removal rate was 4.1%. Median intubation was a minute quicker with EAC (P=0.001), with no difference in caecal intubation rate or withdrawal time. EAC was well tolerated but caused a minor increase in discomfort on anal intubation in patients undergoing colonoscopy with no or minimal sedation. There were no significant EV adverse events. EV significantly improved ADR in bowel cancer screening patients and should be used to improve colonoscopic detection. NCT 02552017, Results; ISRCTN 11821044, Results. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Ellipsometric and optical study of some uncommon insulator films on 3-5 semiconductors
NASA Technical Reports Server (NTRS)
Alterovitz, S. A.; Warner, J. D.; Liu, D. C.; Pouch, J. J.
1985-01-01
Optical properties of three types of insulating films that show promise in potential applications in the 3-4 semiconductor technology were evaluated, namely a-C:H, BN and CaF2. The plasma deposited a-C:H shows an amorphous behavior with optical energy gaps of approximately 2 to 2.4 eV. These a-C:H films have higher density and/or hardness, higher refractive index and lower optical energy gaps with increasing energy of the particles in the plasma, while the density of states remains unchanged. These results are in agreement, and give a fine-tuned positive confirmation to an existing conjecture on the nature of a-C:H films (1). Ion beam deposited BN films show amorphous behavior with energy gap of 5 eV. These films are nonstoichiometric (B/N approximately 2) and have refractive index, density and/or hardness which are dependent on the deposition conditions. The epitaxially grown CaF2 on GaAs films have optical parameters equal to bulk, but evidence of damage was found in the GaAs at the interface.
Moon, Seong Min; Kim, Y D; Oh, S K; Park, M J; Kwak, Joon Seop
2012-05-01
We have investigated the high-temperature degradation of optical power as well as electrical properties of InGaN/GaN light-emitting diodes (LEDs) fabricated with ITO transparent p-electrode during accelerated electro-thermal stress. As the thermal stress increased from 150 degrees C to 250 degrees C at a electrical stress of 200 mA, the optical power of the LEDs was significantly reduced. Degradation of the optical power was thermally activated, with the activation of 0.9 eV. In addition, the activation energy of the degradation of optical power was fairly similar to that of the degradation of series resistance of the LEDs, 1.0 eV, which implies that the increase in the series resistance may result in the severe degradation of optical power. We also showed that the increase in the series resistance of the LEDs during the accelerated electro-thermal stress can be attributed to reduction of the active acceptor concentration in the p-type semiconductor layers and local joule heating due to the current crowding.
Structural and optical characterization of PVA:KMnO4 based solid polymer electrolyte
NASA Astrophysics Data System (ADS)
Abdullah, Omed Gh.; Aziz, Shujahadeen B.; Rasheed, Mariwan A.
Solid polymer electrolyte films of polyvinyl alcohol (PVA) doped with a different weight percent of potassium permanganate (KMnO4) were prepared by standard solution cast method. XRD and FTIR techniques were performed for structural study. Complex formation between the PVA polymer and KMnO4 salt was confirmed by Fourier transform infrared (FTIR) spectroscopy. The description of crystalline nature of the solid polymer electrolyte films has been confirmed by XRD analysis. The UV-Visible absorption spectra were analyzed in terms of absorption formula for non-crystalline materials. The fundamental optical parameters such as optical band gap energy, refractive index, optical conductivity, and dielectric constants have been investigated and showed a clear dependence on the KMnO4 concentration. The observed value of optical band gap energy for pure PVA is about 6.27 eV and decreases to a value 3.12 eV for the film sample formed with 4 wt% KMnO4 salt. The calculated values of refractive index and the dielectric constants of the polymer electrolyte films increase with increasing KMnO4 content.
Influence of europium (Eu3+) ions on the optical properties of lithium zinc phosphate glasses
NASA Astrophysics Data System (ADS)
Shwetha, M.; Eraiah, B.
2018-02-01
Europium doped lithium zinc phosphate glasses with composition xEu2O3-(15-x) Li2O-45ZnO-40P2O5 (where x=0, 0.1, 0.3 and 0.5 mol %) named as EP0, EP1, EP3 and EP5 respectively, are prepared by melt-quenching method and the influence of Eu3+ ions on physical and optical properties of these glasses has been studied. Optical properties were studied using optical absorption spectra which was recorded at room temperature in the UV-Visible region. Optical direct band gap and indirect band gap energies were measured and their values range from 3.167 to 4.23eV and 2.08 to 3.02eV, respectively. Refractive indices have been measured with respect to different concentration of europium ions. Fluorescence spectroscopy measurements have been performed by excitation in the UV-Visible range, which resulted in the significant fluorescence peaks. The luminescence color of the glass system is characterized using Commission International de l’Eclairage de France 1931 standards.
NASA Astrophysics Data System (ADS)
Parrey, Khursheed Ahmad; Khandy, Shakeel Ahmad; Islam, Ishtihadah; Laref, Amel; Gupta, Dinesh C.; Niazi, Asad; Aziz, Anver; Ansari, S. G.; Khenata, R.; Rubab, Seemin
2018-03-01
Double perovskite La2NbMnO6 was systematically studied using the first-principles calculations. The structural, electronic, optical and transport properties of this compound were calculated. Spin resolved band structure predicted this material as a half-metal with an energy gap of 3.75 eV in spin down state. The optical coefficients including optical conductivity, reflectivity and electron energy loss are calculated for photon energy up to 30.00 eV to understand the optical response of this perovskite. The strong absorption of all the ultraviolet and infrared frequencies of the spectrum by this material may suggest the potential application of this material for the optoelectronic devices in ultraviolet and infra-red region. Also, the thermoelectric properties with a speculation from the half-metallic electronic structure are reported. Subsequently, the Seebeck coefficient, electrical and thermal conductivity coefficients are calculated to predict the thermoelectric figure of merit (zT), the maximum of which is found out to be 0.14 at 800 K.
Effect of annealing on structural, electrical and optical properties of p-quaterphenyl thin films
NASA Astrophysics Data System (ADS)
Darwish, A. A. A.
2017-05-01
Thin films of p-quaterphenyl are deposited by an evaporation technique. IR spectra confirm that the thermal evaporation method is a decent one to acquire p-quaterphenyl films without dissociation. The X-ray diffraction studies demonstrate that the as-deposited and annealed films are polycrystalline with monoclinic structure. The electrical conductivity shows an activated behavior and indicating that p-quaterphenyl behaves as an organic semiconductor. The value of activation energy decreases by annealing, which explains due to the adjustment in the crystallite size. Optical properties of p-quaterphenyl films were performed to determine some optical constants. Dispersion of the refractive index is described utilizing the Wemple-DiDomenico model. In addition, the third order nonlinear susceptibility and the nonlinear refractive index are calculated. The analysis of the absorption coefficient for the as-deposited film showed an allowed direct optical band gap with a value of 2.35 eV, which decreased by annealing to 2.05 eV.
Study of lattice strain and optical properties of nanocrystalline SnO2
NASA Astrophysics Data System (ADS)
Ahmad, Naseem; Khan, Shakeel; Bhargava, Richa; Ansari, Mohd Mohsin Nizam
2018-05-01
Nanocrystalline SnO2 has been synthesized by co-precipitation method by using two solvents (water and ethylene glycol). The structure and surface morphology were investigated using XRD and scanning electron microscope (SEM). The optical properties were studied using diffused reflectance spectroscopy (DRS). From the XRD analysis, the prepared materials are found to be pure crystalline with tetragonal rutile structure. The lattice strain and crystallite size, were calculated using Williamson-Hall method, are found to be 0.00413 & 16.3 nm in water assisted SnO2 and 0.00495 & 35.6 nm for EG assisted SnO2. Study of surface morphology of the samples was carried out using SEM. It has been seen that the solvents which are used in synthesis can also alter the optical properties of the materials. The optical band gap of the water based SnO2 and EG based SnO2 are found to be 3.92eV and 3.86eV respectively.
Puhka, Maija; Takatalo, Maarit; Nordberg, Maria-Elisa; Valkonen, Sami; Nandania, Jatin; Aatonen, Maria; Yliperttula, Marjo; Laitinen, Saara; Velagapudi, Vidya; Mirtti, Tuomas; Kallioniemi, Olli; Rannikko, Antti; Siljander, Pia R-M; af Hällström, Taija Maria
2017-01-01
Body fluids are a rich source of extracellular vesicles (EVs), which carry cargo derived from the secreting cells. So far, biomarkers for pathological conditions have been mainly searched from their protein, (mi)RNA, DNA and lipid cargo. Here, we explored the small molecule metabolites from urinary and platelet EVs relative to their matched source samples. As a proof-of-concept study of intra-EV metabolites, we compared alternative normalization methods to profile urinary EVs from prostate cancer patients before and after prostatectomy and from healthy controls. Methods: We employed targeted ultra-performance liquid chromatography-tandem mass spectrometry to profile over 100 metabolites in the isolated EVs, original urine samples and platelets. We determined the enrichment of the metabolites in the EVs and analyzed their subcellular origin, pathways and relevant enzymes or transporters through data base searches. EV- and urine-derived factors and ratios between metabolites were tested for normalization of the metabolomics data. Results: Approximately 1 x 1010 EVs were sufficient for detection of metabolite profiles from EVs. The profiles of the urinary and platelet EVs overlapped with each other and with those of the source materials, but they also contained unique metabolites. The EVs enriched a selection of cytosolic metabolites including members from the nucleotide and spermidine pathways, which linked to a number of EV-resident enzymes or transporters. Analysis of the urinary EVs from the patients indicated that the levels of glucuronate, D-ribose 5-phosphate and isobutyryl-L-carnitine were 2-26-fold lower in all pre-prostatectomy samples compared to the healthy control and post-prostatectomy samples (p < 0.05). These changes were only detected from EVs by normalization to EV-derived factors or with metabolite ratios, and not from the original urine samples. Conclusions: Our results suggest that metabolite analysis of EVs from different samples is feasible using a high-throughput platform and relatively small amount of sample material. With the knowledge about the specific enrichment of metabolites and normalization methods, EV metabolomics could be used to gain novel biomarker data not revealed by the analysis of the original EV source materials. PMID:29109780
Donbraye, Emmanuel; Olasunkanmi, Oluwatayo Israel; Opabode, Babatunde Ayoola; Ishola, Temitayo Rachael; Faleye, Temitope Oluwasegun Cephas; Adewumi, Olubusuyi Moses; Adeniji, Johnson Adekunle
2018-06-01
We recently showed that enteroviruses (EVs) andenterovirus species C (EV-C) in particular were abundant in faecal samples from children who had been diagnosed with acute flaccid paralysis (AFP) in Nigeria but declared to be EV-free by the RD-L20B cell culture-based algorithm. In this study, we investigated whether this observed preponderance of EVs (and EV-Cs) in such samples varies by geographical region. One hundred and eight samples (i.e. 54 paired stool suspensions from 54 AFP cases) that had previously been confirmed to be negative for EVs by the WHO-recommended RD-L20B cell culture-based algorithm were analysed. The 108 samples were made into 54 pools (27 each from North-West and South-South Nigeria). All were subjected to RNA extraction, cDNA synthesis and the WHO-recommended semi-nested PCR assay and its modifications. All of the amplicons were sequenced, and the enteroviruses identified, using the enterovirus genotyping tool and phylogenetic analysis. EVs were detected in 16 (29.63 %) of the 54 samples that were screened and successfully identified in 14 (25.93 %). Of these, 10 were from North-West and 4 were from South-South Nigeria. One (7.14 %), 2 (14.29 %) and 11 (78.57 %) of the strains detected were EV-A, EV-B and EV-C, respectively. The 10 strains from North-West Nigeria included 7 EV types, namely CV-A10, E29, CV-A13, CV-A17, CV-A19, CV-A24 and EV-C99. The four EV types recovered from South-South Nigeria were E31, CV-A1, EV-C99 and EV-C116. The results of this study showed that the presence of EVs and consequently EV-Cs in AFP samples declared to be EV-free by the RD-L20B cell culture-based algorithm varies by geographical region in Nigeria.
ELENA MCP detector: absolute efficiency measurement for low energy neutral atoms
NASA Astrophysics Data System (ADS)
Rispoli, R.; De Angelis, E.; Colasanti, L.; Vertolli, N.; Orsini, S.; Scheer, J.; Mura, A.; Milillo, A.; Wurz, P.; Selci, S.; Di Lellis, A. M.; Leoni, R.; D'Alessandro, M.; Mattioli, F.; Cibella, S.
2012-04-01
MicroChannel plates (MCP) detectors are frequently used in space instrumentation for detecting a wide range of radiation and particles. In particular, the capability to detect non-thermal low energy neutral species is crucial for the sensor ELENA (Emitted Low-Energy Neutral Atoms), part of the package SERENA (Search for Exospheric Refilling and Emitted Natural Abundances) on board the BepiColombo mission to Mercury to be launched in 2014. ELENA is a TOF sensor, based on a novel concept ultra-sonic oscillating shutter (Start section)which is operated at frequencies up to 50 kHz; a MCP detector is used as a Stop section. It is aimed to detect neutral atoms in the range 10 eV - 5 keV, within 70° FOV, perpendicular to the S/C orbital plane. ELENA will monitor the emission of neutral atoms from the whole surface of Mercury thanks to the spacecraft motion. The major scientific objectives are the interaction between the environment and the planet, the global particle loss-rate and the remote sensing of the surface properties. In particular, surface release processes are investigated by identifying particles release from the surface, via solar wind-induced ion sputtering (<1eV and >100 eV) as well as Hydrogen back-scattered at hundreds eV. MCP absolute detection efficiency for very low energy neutral atoms (E< 30eV) is a crucial point not yet investigated. At the MEFISTO facility of the Physical Institute of University of Bern (CH), measurements on three different type of MCPs coating have been performed providing the behaviors of MCP detection efficiency in the range 10eV-1keV. Outcomes from such measurements are here discussed.
[Expression of EV71-VP1, PSGL-1 and SCARB2 in Tissues of Infants with Brain Stem Encephalitis].
Li, Ming; Kong, Xiao-ping; Liu, Hong; Cheng, Ling-xi; Huang, Jing-lu; Quan, Li; Wu, Fang-yu; Hao, Bo; Liu, Chao; Luo, Bin
2015-04-01
To understand the correlation of enterovirus 71 (EV71), P-selectin glycoprotein ligand-1 (PSGL-1), and scavenger receptor B2 (SCARB2) and to explore the possible pathway and mechanism of EV71 infection by observing the expression of EV71, PSGL-1 and SCARB2 in tissues of infants with brain stem encephalitis. The organs and tissues of infants with EV71-VP1 positivity in their brain stems were chosen. Expression and distribution of EV71-VP1, PSGL-1, and SCARB2 were detected and compared by immunohistochemistry. Strong staining of EV71 -VP1 was observed in the neuron, glial cells, the inflammatory cells of perivascular cuffing, parietal cells of the gastric fundus gland while alveolar macrophages, intestinal gland epithelium cells, mucosa lymphoid nodule and lymphocyte of palatine tonsil showed moderate staining and weak staining were displayed in mesenteric lymph nodes and lymphocyte of spleen. PSGL-1 expression was detected in parietal cells of the gastric fundus gland, tonsillar crypt squamous epithelium, alveolar macrophages and leukocytes in each tissue. SCARB2 expression was observed in all the above tissues except the intestines and spleen. The distribution of EV71 correlates with SCARB2 expression. SCARB2 plays an important role in virus infection and replication. Stomach may be an important site for EV71 replication.
Point defect induced degradation of electrical properties of Ga2O3 by 10 MeV proton damage
NASA Astrophysics Data System (ADS)
Polyakov, A. Y.; Smirnov, N. B.; Shchemerov, I. V.; Yakimov, E. B.; Yang, Jiancheng; Ren, F.; Yang, Gwangseok; Kim, Jihyun; Kuramata, A.; Pearton, S. J.
2018-01-01
Deep electron and hole traps in 10 MeV proton irradiated high-quality β-Ga2O3 films grown by Hydride Vapor Phase Epitaxy (HVPE) on bulk β-Ga2O3 substrates were measured by deep level transient spectroscopy with electrical and optical injection, capacitance-voltage profiling in the dark and under monochromatic irradiation, and also electron beam induced current. Proton irradiation caused the diffusion length of charge carriers to decrease from 350-380 μm in unirradiated samples to 190 μm for a fluence of 1014 cm-2, and this was correlated with an increase in density of hole traps with optical ionization threshold energy near 2.3 eV. These defects most likely determine the recombination lifetime in HVPE β-Ga2O3 epilayers. Electron traps at Ec-0.75 eV and Ec-1.2 eV present in as-grown samples increase in the concentration after irradiation and suggest that these centers involve native point defects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nair, Sinitha B., E-mail: sinithanair@gmail.com, E-mail: anithakklm@gmail.com; Abraham, Anitha, E-mail: sinithanair@gmail.com, E-mail: anithakklm@gmail.com; Philip, Rachel Reena, E-mail: reenatara@rediffmail.com
2014-10-15
Cadmium Lead Sulphide thin films with systematic variation in Cd/Pb ratio are prepared at 333K by CBD, adjusting the reagent-molarity, deposition time and pH. XRD exhibits crystalline-amorphous transition as Cd% exceeds Pb%. AFM shows agglomeration of crystallites of size ∼50±5 nm. EDAX assess the composition whereas XPS ascertains the ternary formation, with binding energies of Pb4f{sub 7/2} and 4f{sub 5/2}, Cd3d{sub 5/2} and 3d{sub 3/2} and S2p at 137.03, 141.606, 404.667, 412.133 and 160.218 eV respectively. The optical absorption spectra reveal the variance in the direct allowed band gaps, from 1.57eV to 2.42 eV as Cd/Pb ratio increases from 0.2more » to 2.7, suggesting possibility of band gap engineering in the n-type films.« less
Tan, Zhenyu; Liu, Wei
2013-12-01
Systematic calculations are performed for determining the stopping powers (SP) and inelastic mean free paths (IMFP) for 20 eV-20 keV electrons in 11 types of human tissue. The calculations are based on a dielectric model, including the Born-Ochkur exchange correction. The optical energy loss functions (OELF) are empirically evaluated, because of the lack of available experimental optical data for the 11 tissues under consideration. The evaluated OELFs are examined by the f-sum rule expected from the dielectric response theory, and by calculation of the mean excitation energy. The calculated SPs are compared with those for PMMA (polymethylmethacrylate, a tissue equivalent material) and liquid water. The SP and IMFP data presented here are the results for the 11 human tissues over the energy range of 20 eV-20 keV, and are of importance in radiotherapy planning and for studies of various radiation effects on human tissues. © 2013 Elsevier Ltd. All rights reserved.
Optical properties of InP/ZnS quantum dots deposited into nanoporous anodic alumina
NASA Astrophysics Data System (ADS)
Savchenko, S. S.; Vokhmintsev, A. S.; Weinstein, I. A.
2016-08-01
Spectral characteristics of InP/ZnS core/shell colloidal quantum dots of two different sizes (QD-1 and QD-2) were investigated. Absorption and luminescence spectra were analyzed for a series of solutions with a concentration range from 0.04 to 40 g/l. Energies of the optical transitions are evaluated. The obtained values of 2.60 eV (QD-1) and 2.38 eV (QD-2) correspond to the InP first excitonic transitions while 4.06 (QD-2) and 4.70 eV (QD-1, QD-2) are assumed to be caused by the ZnS shell absorption. Structures based on nanoporous anodic aluminum oxide (AAO) with the QDs were synthesized via an electrochemical oxidation and ultrasonic-assisted deposition. Chromaticity coordinates and correlated color temperatures for all phosphors under study were calculated. The fabrication possibilities of InP/ZnS@AAO nanostructures with tunable emission color (including the border of white region) were shown.
Magnetic Resonance Characterization of Defects in Icosahedral and Cubic Boron Arsenide Bulk Crystals
NASA Astrophysics Data System (ADS)
Glaser, E. R.; Freitas, J. A., Jr.; Cress, C. D.; Perkins, F. K.; Prokes, S. M.; Ruppalt, L. B.; Culbertson, J. C.; Whiteley, C.; Edgar, J. H.; Tian, F.; Ren, Z.; Kim, J.; Shi, L.; Naval Research Lab Team; Kansas State U. Team; U. Houston Team; U. Texas Team
Low-temperature electron spin resonance (ESR) at 9.5 GHz and optically-detected magnetic resonance (ODMR) at 24 GHz were employed to investigate point defects in icosahedral and cubic Boron Arsenide bulk crystals. These semiconductors are of interest for use in high radiation and/or high temperature environments. ESR of the (001) B12As2 (Eg = 3.47 eV) mm-size platelets revealed two distinct features of unknown origin. The first signal is characterized by Zeeman splitting g-values of g|| = 2.017, g⊥ = 2.0183 while the second with g|| = 2.0182, g⊥ = 1.9997. Most notably, the second signal was also observed from ODMR on the broad 2.4 eV ``yellow/green'' photoluminescence band previously reported for these crystals and suggests its direct involvement in this likely defect-related radiative recombination process. Preliminary ESR obtained for the 100-300 micron-size cubic BAs crystals revealed a signal with g-value of 2.018 (very similar to that found for the B12As2 crystals) and broad FWHM value of 182 G. Possible origins of these defects will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vieregg, A.G.; Bechtol, K.; Romero-Wolf, A., E-mail: avieregg@kicp.uchicago.edu, E-mail: bechtol@kicp.uchicago.edu, E-mail: andrew.romero-wolf@jpl.nasa.gov
The detection of high energy neutrinos (10{sup 15}–10{sup 20} eV) is an important step toward understanding the most energetic cosmic accelerators and would enable tests of fundamental physics at energy scales that cannot easily be achieved on Earth. In this energy range, there are two expected populations of neutrinos: the astrophysical flux observed with IceCube at lower energies (∼1 PeV) and the predicted cosmogenic flux at higher energies (∼10{sup 18} eV) . Radio detector arrays such as RICE, ANITA, ARA, and ARIANNA exploit the Askaryan effect and the radio transparency of glacial ice, which together enable enormous volumes of icemore » to be monitored with sparse instrumentation. We describe here the design for a phased radio array that would lower the energy threshold of radio techniques to the PeV scale, allowing measurement of the astrophysical flux observed with IceCube over an extended energy range. Meaningful energy overlap with optical Cherenkov telescopes could be used for energy calibration. The phased radio array design would also provide more efficient coverage of the large effective volume required to discover cosmogenic neutrinos.« less
NASA Astrophysics Data System (ADS)
Torchynska, T. V.; Casas Espinola, J. L.; Jaramillo Gómez, J. A.; Douda, J.; Gazarian, K.
2013-06-01
Double core CdSeTe/ZnS quantum dots (QDs) with emission at 800 nm (1.60 eV) have been studied by photoluminescence (PL) and Raman scattering methods in the non-conjugated state and after the conjugation to the Pseudo rabies virus (PRV) antibodies. The transformation of PL spectra, stimulated by the electric charge of antibodies, has been detected for the bioconjugated QDs. Raman scattering spectra are investigated with the aim to reveal the CdSeTe core compositions. The double core QD energy diagrams were designed that help to analyze the PL spectra and their transformation at the bioconjugation. It is revealed that the interface in double core QDs has the type II quantum well character that permits to explain the near IR optical transition (1.60 eV) in the double core QDs. It is shown that the essential transformation of PL spectra is useful for the study of QD bioconjugation with specific antibodies and can be a powerful technique in early medical diagnostics.
Stationary Plasma Thruster Plume Emissions
NASA Technical Reports Server (NTRS)
Manzella, David H.
1994-01-01
The emission spectrum from a xenon plasma produced by a Stationary Plasma Thruster provided by the Ballistic Missile Defense Organization (BMDO) was measured. Approximately 270 individual Xe I, Xe II, and XE III transitions were identified. A total of 250 mW of radiated optical emission was estimated from measurements taken at the thruster exit plane. There was no evidence of erosion products in the emission signature. Ingestion and ionization of background gas at elevated background pressure was detected. The distribution of excited states could be described by temperatures ranging from fractions of 1 eV to 4 eV with a high degree of uncertainty due to the nonequilibrium nature of this plasma. The plasma was over 95 percent ionized at the thruster exit plane. Between 10 and 20 percent of the ions were doubly charged. Two modes of operation were identified. The intensity of plasma emission increased by a factor of two during operation in an oscillatory mode. The transfer between the two modes of operation was likely related to unidentified phenomena occurring on a time scale of minutes.
Lu, S B; Miao, L L; Guo, Z N; Qi, X; Zhao, C J; Zhang, H; Wen, S C; Tang, D Y; Fan, D Y
2015-05-04
Black phosphorous (BP), the most thermodynamically stable allotrope of phosphorus, is a high-mobility layered semiconductor with direct band-gap determined by the number of layers from 0.3 eV (bulk) to 2.0 eV (single layer). Therefore, BP is considered as a natural candidate for broadband optical applications, particularly in the infrared (IR) and mid-IR part of the spectrum. The strong light-matter interaction, narrow direct band-gap, and wide range of tunable optical response make BP as a promising nonlinear optical material, particularly with great potentials for infrared and mid-infrared opto-electronics. Herein, we experimentally verified its broadband and enhanced saturable absorption of multi-layer BP (with a thickness of ~10 nm) by wide-band Z-scan measurement technique, and anticipated that multi-layer BPs could be developed as another new type of two-dimensional saturable absorber with operation bandwidth ranging from the visible (400 nm) towards mid-IR (at least 1930 nm). Our results might suggest that ultra-thin multi-layer BP films could be potentially developed as broadband ultra-fast photonics devices, such as passive Q-switcher, mode-locker, optical switcher etc.
NASA Astrophysics Data System (ADS)
Kamohara, Masumi; Izumi, Yudai; Tanaka, Masafumi; Okamoto, Keiko; Tanaka, Masahito; Kaneko, Fusae; Kodama, Yoko; Koketsu, Toshiyuki; Nakagawa, Kazumichi
2008-10-01
Absorption spectra of thin films of glycine (Gly), alanine (Ala), valine (Val), serine (Ser), leucine (Leu), phenylalanine (Phe) and methinine (Met) were measured in absolute values of absorption cross section σ( E) for the photon energy E from 3 to 250 eV. We translated σ( E) into the optical oscillator strength distribution df/dE and we examined the Thomas-Reiche-Kuhn sum rule [Hirschfelder, J.O., Curtiss, C.F., Bird, R.B., 1954. Molecular Theory of Gases and Liquids. Wiley, New York, p. 890]. We concluded that T-R-K sum rule was correctly applicable for such relatively large size of biomolecules.
Structural, optical and Carrier dynamics of self-assembled InGaN nanocolumns on Si(111)
NASA Astrophysics Data System (ADS)
Kumar, Praveen; Devi, Pooja; Soto Rodriguez, P. E. D.; Jain, Rishabh; Jaggi, Neena; Sinha, R. K.; Kumar, Mahesh
2018-05-01
We investigated the morphological, structural, optical, electrical and carrier relaxation dynamic changes on the self-assembled grown InGaN nanocolumns (NCs) directly on p-Si(111) substrate at two different substrate temperature, namely 580 °C (A) and 500 °C (B). The emission wavelength of comparably low temperature (LT) grown NCs was red-shifted from 3.2eV to 2.4eV. First observations on the charge carrier dynamics of these directly grown NCs show comparable broad excited state absorption (ESA) for LT gown NCs, which manifest bi-exponential decay due to the radiative defects generated during the coalescence of these NCs.
BariumCopperChFluorine (Ch = Sulfur, Selenium, Tellurium) p-type transparent conductors
NASA Astrophysics Data System (ADS)
Zakutayev, Andriy
BaCuChF (Ch = S, Se, Te) materials are chalcogen-based transparent conductors with wide optical band gaps (2.9 -- 3.5 eV) and a high concentration of free holes (1018 -- 1020 cm-3 ) caused by the presence of copper vacancies. Chalcogen vacancies compensate copper vacancies in these materials, setting the Fermi level close to the valence band maximum. BaCuChF thin film solid solutions prepared by pulsed laser deposition (PLD) have tunable properties, such as lattice constants, conductivity and optical band gaps. BaCuSF and BaCuSeF materials also feature room-temperature stable 3D excitons with spin-orbit-split levels. BaCuTeF has forbidden lowest-energy optical transitions which extends its transparency range. BaCuChF surfaces oxidize when exposed to air, but can be protected using Ch capping layers. Polycrystalline BaCuSeF thin films have a 4.85 eV work function, a 0.11 eV hole injection barrier into ZnPc, and 0.00 eV valence band offset with ZnTe. BaCuSeF should have s similar band offset and similar interfacial properties with CdTe and Cu(InGa)Se2, and BaCuSF should have no valence band offset with Cu2ZnSnS4, according to the transitivity rule. Therefore, BaCuSeF is suitable for applications as a p-layer in organic light-emitting diodes, p-i-n double-heterojunction and tandem chalcogenide solar cells.
Reemergence of enterovirus 71 epidemic in northern Taiwan, 2012.
Luo, Shu-Ting; Chiang, Pai-Shan; Chung, Wan-Yu; Chia, Min-Yuan; Tsao, Kuo-Chien; Wang, Ying-Hsiang; Lin, Tzou-Yien; Lee, Min-Shi
2015-01-01
Enterovirus 71 (EV71) belongs to picornavirus family and could be classified phylogenetically into three major genogroups (A, B and C) including 11 genotypes (A, B1-B5 and C1-C5). Since 1997, EV71 has caused large-scale of epidemics with neurological complications in Asian children. In Taiwan, nationwide EV71 epidemics with different predominant genotypes have occurred cyclically since 1998. A nationwide EV71 epidemic occurred again in 2012. We conducted genetic and antigenic characterizations of the 2012 epidemic. Chang Gung Memorial Hospital (CGMH) is a medical center in northern Taiwan. In CGMH, specimens were collected from pediatric inpatients with suspected enterovirus infections for virus isolation. Enterovirus isolates were serotyped and genotyped and sera from EV71 inpatients were collected for measuring neutralizing antibody titers. There were 10, 16 and 99 EV71 inpatients identified in 2010, 2011 and 2012, respectively. There were 82 EV71 isolates genotyped, which identified 17 genotype C4a viruses and 65 genotype B5 viruses. The genotype B5 viruses were not detected until November 2011 and caused epidemics in 2012. Interestingly, the B5-2011 viruses were genetically distinguishable from the B5 viruses causing the 2008 epidemic and are likely introduced from China or Southeastern Asia. Based on antigenic analysis, minor antigenic variations were detected among the B5-2008, B5-2011, C4a-2008 and C4a-2012 viruses but these viruses antigenically differed from genotype A. Genotype B5 and C4a viruses antigenically differ from genotype A viruses which have disappeared globally for 30 years but have been detected in China since 2008. Enterovirus surveillance should monitor genetic and antigenic variations of EV71.
Structural and optical characterization of NiSe film grown by screen-printing method
NASA Astrophysics Data System (ADS)
Sharma, Kapil; Sharma, D. K.; Dwivedi, D. K.; Kumar, Vipin
2018-05-01
In present investigation NiSe films were grown by economical screen-printing method. Optimum conditions for growing good quality screen-printed films were found. The films were characterized for their structural and optical properties. The polycrystalline nature of films with hexagonal structure was confirmed through XRD analysis. Direct type of optical band gap of 1.75 eV for the NiSe film was confirmed by optical characterization.
The study of optical property of sapphire irradiated with 73 MeV Ca ions
NASA Astrophysics Data System (ADS)
Yang, Yitao; Zhang, Chonghong; Song, Yin; Gou, Jie; Liu, Juan; Xian, Yongqiang
2015-12-01
Single crystals of sapphire were irradiated with 73 MeV Ca ions at room temperature to the fluences of 0.1, 0.5 and 1.0 × 1014 ions/cm2. Optical properties of these samples were characterized by ultraviolet-visible spectrometry (UV-VIS) and fluorescence spectrometer (PL). In UV-VIS spectra, it is observed the absorbance bands from oxygen single vacancy (F and F+ color centers) and vacancy pair (F2+ and F22+ color centers). The oxygen single vacancy initially increases rapidly and then does not increase in the fluence range from 0.1 to 0.5 × 1014 ions/cm2. When the fluence is higher than 0.5 × 1014 ions/cm2, oxygen single vacancy starts to increase again. Oxygen vacancy pair increases monotonically with fluence for all irradiated samples. The variation of oxygen single vacancy with fluence is probably associated with the recombination of oxygen vacancies with Al interstitials and complex defect formation (such as vacancy clusters). From PL spectra, two emission bands around 3.1 and 2.34 eV are observed. The PL intensity of the emission band around 3.1 eV decreases for all the irradiated samples. For the emission band around 2.34 eV, the PL intensity initially decreases, and then increases with fluence. Meanwhile, the peak position of the emission band around 2.34 eV gradually shifts to high energy direction with increase of fluence. The decrease of the intensity of the emission bands around 3.1 and 2.34 eV could be induced by stress from the damage layer in the irradiated samples. The shift of peak position for the emission band around 2.34 eV is induced by the appearance of emission band from Al interstitials.
NASA Astrophysics Data System (ADS)
Islamov, A. Kh.; Salikhbaev, U. S.; Ibragimova, E. M.; Nuritdinov, I.; Fayzullaev, B. S.; Vukolov, K. Yu.; Orlovskiy, I.
2013-11-01
Pure quartz glasses of KS-4V and KU-1 types are candidates for optical plasma diagnostic system in ITER. The purpose of experiment was to study the efficiency of defect production in these glasses under irradiation with 60Со γ-quanta (5.7 Gy/s) dose range of 102-107 Gy and the fission reactor neutrons in the fluency range of 1020-1023 n/m2 and gammas simulating the plasma influence. In KU-1 (1000 ppm OH) the accumulation kinetics of E‧-(5.75 eV) and NBO-(1.9 eV) centers at γ-doses⩾5×105 Gy and neutron fluencies <1021 n/m2 is faster, than that in KS-4V glasses (<0.1 ppm OH) that is caused by rupture of hydrogen bonds. At fluencies >1021 n/m2 the NBO accumulation kinetics is slower in KU-1 than in KS-4B, because highly mobile hydrogen atoms access to the generated NBO centers. In KS-4V irradiated to γ-doses102-5 × 103 Gy a new unstable absorption band at 1.8 eV was found, which is caused by the glass synthesis conditions and alkali metal impurities. The transparency at 3.5-6.2 eV at fluencies 1020-5 × 1021 n/m2 is higher in KS-4V than KU-1. However at fluencies >1021 n/m2 in KS-4V the photoluminescence band at 2.7 eV is more intensive and distorts a diagnosed signal. The transparency in 3.5-1.2 eV at fluencies >1021 n/m2 is higher in KU-1 than KS-4V.
Non-linear optics of ultrastrongly coupled cavity polaritons
NASA Astrophysics Data System (ADS)
Crescimanno, Michael; Liu, Bin; McMaster, Michael; Singer, Kenneth
2016-05-01
Experiments at CWRU have developed organic cavity polaritons that display world-record vacuum Rabi splittings of more than an eV. This ultrastrongly coupled polaritonic matter is a new regime for exploring non-linear optical effects. We apply quantum optics theory to quantitatively determine various non-linear optical effects including types of low harmonic generation (SHG and THG) in single and double cavity polariton systems. Ultrastrongly coupled photon-matter systems such as these may be the foundation for technologies including low-power optical switching and computing.
Pressure-induced changes of the structure and properties of monoclinic α -chalcocite Cu2S
NASA Astrophysics Data System (ADS)
Zimmer, D.; Ruiz-Fuertes, J.; Morgenroth, W.; Friedrich, A.; Bayarjargal, L.; Haussühl, E.; Santamaría-Pérez, D.; Frischkorn, S.; Milman, V.; Winkler, B.
2018-04-01
The high-pressure behavior of monoclinic (P 21/c ) α -chalcocite, Cu2S , was investigated at ambient temperature by single-crystal x-ray diffraction, electrical resistance measurements, and optical absorption spectroscopy up to 16 GPa. The experiments were complemented by density-functional-theory-based calculations. Single-crystal x-ray diffraction data show that monoclinic α -chalcocite undergoes two pressure-induced first-order phase transitions at ˜3.1 and ˜7.1 GPa. The crystal structure of the first high-pressure polymorph, HP1, was solved and refined in space group P 21/c with a =10.312 (4 )Å , b =6.737 (3 )Å , c =7.305 (1 )Å , and β =100.17 (2) ∘ at 6.2(3) GPa. The crystal structure of the second high-pressure polymorph, HP2, was solved and refined in space group P 21/c with a =6.731 (4 )Å , b =6.689 (2 )Å , c =6.967 (8 )Å , and β =93.18 (3) ∘ at 7.9(4) GPa. Electrical resistance measurements upon compression and optical absorption experiments upon decompression show that the structural changes in α -chalcocite are accompanied by changes of the electrical and optical properties. Upon pressure release, the band gap Eg of α -chalcocite (1.24 eV at ambient conditions) widens across the first structural phase transition, going from 1.24 eV at 2.2 GPa (α -chalcocite) to 1.35 eV at 2.6 GPa (HP1), and closes significantly across the second phase transition, going from 1.32 eV at 4.4 GPa (HP1) to 0.87 eV at 4.9 GPa (HP2). The electrical resistance shows similar behavior: its highest value is for the first high-pressure polymorph (HP1), and its lowest value is for the second high-pressure polymorph (HP2) of α -chalcocite. These results are interpreted on the basis of calculated electronic band structures.
Temperature Evolution of Excitonic Absorptions in Cd(1-x)Zn(x)Te Materials
NASA Technical Reports Server (NTRS)
Quijada, Manuel A.; Henry, Ross
2007-01-01
The studies consist of measuring the frequency dependent transmittance (T) and reflectance (R) above and below the optical band-gap in the UV/Visible and infrared frequency ranges for Cd(l-x),Zn(x),Te materials for x=0 and x=0.04. Measurements were also done in the temperature range from 5 to 300 K. The results show that the optical gap near 1.49 eV at 300 K increases to 1.62 eV at 5 K. Finally, we observe sharp absorption peaks near this gap energy at low temperatures. The close proximity of these peaks to the optical transition threshold suggests that they originate from the creation of bound electron-hole pairs or excitons. The decay of these excitonic absorptions may contribute to a photoluminescence and transient background response of these back-illuminated HgCdTe CCD detectors.
Electronic structure and optical property of boron doped semiconducting graphene nanoribbons
NASA Astrophysics Data System (ADS)
Chen, Aqing; Shao, Qingyi; Wang, Li; Deng, Feng
2011-08-01
We present a system study on the electronic structure and optical property of boron doped semiconducting graphene nanoribbons using the density functional theory. Energy band structure, density of states, deformation density, Mulliken popular and optical spectra are considered to show the special electronic structure of boron doped semiconducting graphene nanoribbons. The C-B bond form is discussed in detail. From our analysis it is concluded that the Fermi energy of boron doped semiconducting graphene nanoribbons gets lower than that of intrinsic semiconducting graphene nanoribbons. Our results also show that the boron doped semiconducting graphene nanoribbons behave as p-type semiconducting and that the absorption coefficient of boron doped armchair graphene nanoribbons is generally enhanced between 2.0 eV and 3.3 eV. Therefore, our results have a great significance in developing nano-material for fabricating the nano-photovoltaic devices.
Electronic, transport, and optical properties of bulk and mono-layer PdSe 2
Sun, Jifeng; Shi, Hongliang; Siegrist, Theo; ...
2015-10-13
In this study, the electronic and optical properties of bulk and monolayer PdSe 2 are investigated using firstprinciples calculations. Using the modified Becke-Johnson potential, we find semiconductor behavior for both bulk and monolayer PdSe 2 with indirect gap values of 0.03 eV for bulk and 1.43 eV for monolayer, respectively. Our sheet optical conductivity results support this observation and show similar anisotropic feature in the 2D plane. We further study the thermoelectric properties of the 2D PdSe 2 using Blotzmann transport model and find interestingly high Seebeck coefficients (>200 μV/K) for both p- and n-type up to high doping levelmore » (–2 x 10 13 cm 2) with an anisotropic character in an electrical conductivity suggesting better thermoelectric performance along y direction in the plane.V« less
Xu, Yuanfeng; Zhang, Hao; Shao, Hezhu; ...
2017-12-15
The extraordinary properties and the novel applications of black phosphorene induce the research interest in the monolayer group-IV monochalcogenides. Here using first-principles calculations, we systematically investigate the electronic, transport, and optical properties of monolayer α- and β-GeSe, revealing a direct band gap of 1.61 eV for monolayer α-GeSe and an indirect band gap of 2.47 eV for monolayer β-GeSe. For monolayer β-GeSe, the electronic/hole transport is anisotropic, with an extremely high electron mobility of 2.93×104cm2/Vs along the armchair direction, comparable to that of black phosphorene. However, for β-GeSe, robust band gaps nearly independent of the applied tensile strain along themore » armchair direction are observed. Both monolayer α- and β-GeSe exhibit anisotropic optical absorption in the visible spectrum.« less
Characterization of Pb-Doped GaN Thin Films Grown by Thermionic Vacuum Arc
NASA Astrophysics Data System (ADS)
Özen, Soner; Pat, Suat; Korkmaz, Şadan
2018-03-01
Undoped and lead (Pb)-doped gallium nitride (GaN) thin films have been deposited by a thermionic vacuum arc (TVA) method. Glass and polyethylene terephthalate were selected as optically transparent substrates. The structural, optical, morphological, and electrical properties of the deposited thin films were investigated. These physical properties were interpreted by comparison with related analysis methods. The crystalline structure of the deposited GaN thin films was hexagonal wurtzite. The optical bandgap energy of the GaN and Pb-doped GaN thin films was found to be 3.45 eV and 3.47 eV, respectively. The surface properties of the deposited thin films were imaged using atomic force microscopy and field-emission scanning electron microscopy, revealing a nanostructured, homogeneous, and granular surface structure. These results confirm that the TVA method is an alternative layer deposition system for Pb-doped GaN thin films.
Prakash, T; Prasad, K Padma; Ramasamy, S; Murty, B S
2008-08-01
Nanocrystalline p-type semiconductor copper aluminum oxide (CuAlO2) has been synthesized by mechanical alloying using freshly prepared Cu2O and alpha-AlO2O3 nanocrystals in toluene medium. A study on structural property performed with different alloying and post annealing durations, by X-ray diffraction (XRD) reveals the formation of single phase with average crystallite size approximately 45 nm. Optical absorbance onset at 364.5 nm confirms its wide band gap nature (E(g) = 3.4 eV) and the fluorescence emission behaviour (390 nm) confirms its direct band type transition. The activation energy for electrical conduction has been calculated by Arrhenius plots using impedance measurement. Both grain and grain boundary conductivity takes place with almost equal activation energies of approximately 0.45 eV. The paper discusses synthesis, structural, optical and electrical properties of delafossite CuAlO2 in detail.
Temperature dependence of the optical absorption spectra of InP/ZnS quantum dots
NASA Astrophysics Data System (ADS)
Savchenko, S. S.; Vokhmintsev, A. S.; Weinstein, I. A.
2017-03-01
The optical-absorption spectra of InP/ZnS (core/shell) quantum dots have been studied in a broad temperature range of T = 6.5-296 K. Using the second-order derivative spectrophotometry technique, the energies of optical transitions at room temperature were found to be E 1 = 2.60 ± 0.02 eV (for the first peak of excitonic absorption in the InP core) and E 2 = 4.70 ± 0.02 eV (for processes in the ZnS shell). The experimental curve of E 1( T) has been approximated for the first time in the framework of a linear model and in terms of the Fan's formula. It is established that the temperature dependence of E 1 is determined by the interaction of excitons and longitudinal acoustic phonons with hω = 15 meV.
NASA Astrophysics Data System (ADS)
Shmurak, S. Z.; Kiselev, A. P.; Kurmasheva, D. M.; Red'Kin, B. S.; Sinitsyn, V. V.
2010-05-01
A method is proposed for detecting spectral characteristics of optically inactive molybdates of rare-earth elements by their doping with rare-earth ions whose luminescence lies in the transparency region of all structural modifications of the sample. Gadolinium molybdate is chosen as the object of investigations, while europium ions are used as an optically active and structurally sensitive admixture. It is shown that after the action of a high pressure under which gadolinium molybdate passes to the amorphous state, the spectral characteristics of Gd1.99Eu0.01(MoO4)3 (GMO:Eu) change radically; namely, considerable line broadening is observed in the luminescence spectra and the luminescence excitation spectra, while the long-wave threshold of optical absorption is shifted considerably (by approximately 1.1 eV) towards lower energies. It is found that by changing the structural state of GMO:Eu by solid-state amorphization followed by annealing, the spectral characteristics of the sample can be purposefully changed. This is extremely important for solving the urgent problem of designing high-efficiency light-emitting diodes producing “white” light.
Optical Emissions Enhanced by O and X Mode Ionosphere HF Pumping: Similarities and Differences
NASA Astrophysics Data System (ADS)
Sergienko, T.; Brandstrom, U.; Gustavsson, B.; Blagoveshchenskaya, N. F.
2013-12-01
Strong enhancement of the optical emissions with excitation thresholds from 1.96 eV up to 18.75 eV have been observed during experiments of ionosphere modification by high power HF radio waves since the early 1970s. Up to now all these emissions were observed only during the interaction of the O-mode HF radio wave with the ionospheric plasma. On 19 October 2012, during an EISCAT heating experiment, strong optical emissions were observed by ALIS, in first time, for X-mode ionosphere pumping. While for O-mode heating the optical emission enhancements can be explained by the ionospheric electron heating and acceleration due to the nonlinear interaction of the powerful radio wave with ionosphere, the mechanism responsible for the emission enhancements during the X-mode heating is not known. In the experiment optical emissions have been measured in three different wave-lengths simultaneously from four ALIS stations. The emission intensity ratios as well as the characteristics of the spatial distribution of the enhanced optical emissions provide important information on the possible mechanisms of the radio wave - ionosphere interaction. In this report we present the results of comparison of the characteristics of the optical emissions caused by X-mode heating with the characteristics of the emissions enhanced by O-mode measured during same experiment.
NASA Astrophysics Data System (ADS)
Mariappan, R.; Ponnuswamy, V.; Suresh, P.; Suresh, R.; Ragavendar, M.
2013-07-01
Nanostructured GdxZn1-xO thin films with different Gd concentration from 0% to 10% deposited at 400 °C using the NSP technique. The films were characterized by structural, surface and optical properties, respectively. X-ray diffraction analysis shows that the Gd doped ZnO films have lattice parameters a = 3.2497 Å and c = 5.2018 Å with hexagonal structure and preferential orientation along (0 0 2) plane. The estimated values compare well with the standard values. When film thickness increases from 222 to 240 nm a high visible region transmittance (>70%) is observed. The optical band gap energy, optical constants (n and k), complex dielectric constants (ɛr and ɛi) and optical conductivities (σr and σi) were calculated from optical transmittance data. The optical band gap energy is 3.2 eV for pure ZnO film and 3.6 eV for Gd0.1Zn0.9O film. The PL studies confirm the presence of a strong UV emission peak at 399 nm. Besides, the UV emission of ZnO films decreases with the increase of Gd doping concentration correspondingly the ultra-violet emission is replaced by blue and green emissions.
Synthesis of copper quantum dots by chemical reduction method and tailoring of its band gap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prabhash, P. G.; Nair, Swapna S., E-mail: swapna.s.nair@gmail.com
Metallic copper nano particles are synthesized with citric acid and CTAB (cetyltrimethylammonium bromide) as surfactant and chlorides as precursors. The particle size and surface morphology are analyzed by High Resolution Transmission Electron Microscopy. The average size of the nano particle is found to be 3 - 10 nm. The optical absorption characteristics are done by UV-Visible spectrophotometer. From the Tauc plots, the energy band gaps are calculated and because of their smaller size the particles have much higher band gap than the bulk material. The energy band gap is changed from 3.67 eV to 4.27 eV in citric acid coatedmore » copper quantum dots and 4.17 eV to 4.52 eV in CTAB coated copper quantum dots.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nhalil, Hariharan; Whiteside, Vincent R.; Sellers, Ian R.
Here, we report synthesis, crystal and electronic structures, and optical properties of two new Hg-based zero-dimensional hybrid organic-inorganic halides (HIm)2Hg3Cl8 and (HIm)HgI3 (HIm = imidazolium). (HIm) 2Hg 3Cl 8 crystallizes in the triclinic P-1 space group with a pseudo-layered structure made of organic imidazolium cation layers and anionic inorganic layers containing [Hg 2Cl 6] 2- units and linear [HgCl 2] 0 molecules. (HIm)HgI 3 crystallizes in the monoclinic P2 1/c space group featuring anionic [HgI 3]- units that are surrounded by imidazolium cations. Based on density functional theory calculations, (HIm) 2Hg 3Cl 8 has an indirect band gap, whereas (HIm)HgImore » 3 has a direct band gap with the measured onsets of optical absorption at 3.43 and 2.63 eV, respectively. (HIm) 2Hg 3Cl 8 and (HIm)HgI 3 are broadband light emitters with broad photoluminescence peaks centered at 548 nm (2.26 eV) and 582 nm (2.13 eV), respectively. In conclusion, following the crystal and electronic structure considerations, the PL peaks are assigned to self-trapped excitons.« less
Exciton Resonances in Novel Silicon Carbide Polymers
NASA Astrophysics Data System (ADS)
Burggraf, Larry; Duan, Xiaofeng
2015-05-01
A revolutionary technology transformation from electronics to excitionics for faster signal processing and computing will be advantaged by coherent exciton transfer at room temperature. The key feature required of exciton components for this technology is efficient and coherent transfer of long-lived excitons. We report theoretical investigations of optical properties of SiC materials having potential for high-temperature excitonics. Using Car-Parinello simulated annealing and DFT we identified low-energy SiC molecular structures. The closo-Si12C12 isomer, the most stable 12-12 isomer below 1100 C, has potential to make self-assembled chains and 2-D nanostructures to construct exciton components. Using TDDFT, we calculated the optical properties of the isomer as well as oligomers and 2-D crystal formed from the isomer as the monomer unit. This molecule has large optical oscillator strength in the visible. Its high-energy and low-energy transitions (1.15 eV and 2.56 eV) are nearly pure one-electron silicon-to-carbon transitions, while an intermediate energy transition (1.28 eV) is a nearly pure carbon-to-silicon one-electron charge transfer. These results are useful to describe resonant, coherent transfer of dark excitons in the nanostructures. Research supported by the Air Force Office of Scientific Research.
NASA Astrophysics Data System (ADS)
Majidi, M. A.; Thoeng, E.; Gogoi, P. K.; Wendt, F.; Wang, S. H.; Santoso, I.; Asmara, T. C.; Handayani, I. P.; van Loosdrecht, P. H. M.; Nugroho, A. A.; Rübhausen, M.; Rusydi, A.
2013-06-01
We study the temperature dependence as well as anisotropy of optical conductivity (σ1) in the pseudocubic single crystal Pr0.5Ca1.5MnO4 using spectrocopic ellipsometry. Three transition temperatures are observed and can be linked to charge-orbital (TCO/OO˜320 K), two-dimensional-antiferromagnetic (2D-AFM) (˜200 K), and three-dimensional AFM (TN˜125 K) orderings. Below TCO/OO, σ1 shows a charge-ordering peak (˜0.8 eV) with a significant blue shift as the temperature decreases. Calculations based on a model that incorporates a static Jahn-Teller distortion and assumes the existence of a local charge imbalance between two different sublattices support this assignment and explain the blue shift. This view is further supported by the partial spectral weight analysis showing the onset of optical anisotropy at TCO/OO in the charge-ordering region (0.5-2.5 eV). Interestingly, in the charge-transfer region (2.5-4 eV), the spectral weight shows anomalies around the T2D-AFM that we attribute to the role of oxygen-p orbitals in stabilizing the CE-type magnetic ordering. Our result shows the importance of spin, charge, orbital, and lattice degrees of freedom in this layered manganite.
NASA Astrophysics Data System (ADS)
Kurban, Mustafa; Gündüz, Bayram
2017-06-01
In this study, 4-(dicyanomethylene)-2-tert-butyl-6-(1,1,7,7-tetramethyljulolidin-4-yl-vinyl)-4H-pyran (DCJTB) was achieved using the experimental and theoretical studies. The electronic, optical and spectroscopic properties of DCJTB molecule were first investigated by performing experimental both solution and thin film techniques and then theoretical calculations. Theoretical results showed that one intense electronic transition is 505.26 nm a quite reasonable and agreement with the measured experimental data 505.00 and 503 nm with solution technique and film technique, respectively. Experimental and simple models were also taken into consideration to calculate the optical refractive index (n) of DCJTB molecule. The structural and electronic properties were next calculated using density functional theory (DFT) with B3LYP/6-311G (d, p) basis set. UV, FT-IR spectra characteristics and the electronic properties, such as frontier orbitals, and band gap energy (Eg) of DCJTB were also recorded time-dependent (TD) DFT approach. The theoretical Eg value were found to be 2.269 eV which is consistent with experimental results obtained from solution technique for THF solvent (2.155 eV) and literature (2.16 eV). The results herein obtained reveal that solution is simple, cost-efficient and safe for optoelectronic applications when compared with film technique.
NASA Astrophysics Data System (ADS)
Hoat, D. M.; Silva, J. F. Rivas; Blas, A. Méndez
2018-07-01
In this work, we present the first principles calculations for structural, electronic and optical properties of perovskites CaZrO3 and CaHfO3 using the full-potential linearized augmented plane wave method (FP-LAPW) within the framework of density functional theory (DFT) as implemented in WIEN2k package. The exchange-correlation potential is treated with local density approximation (LDA) and generalized gradient approximation (GGA-PBE and PBESol). Additionally, the Tran Blaha modified Becke-Johnson exchange potential (mBJ) also is employed for electronic and optical calculations due to that it gives very accurate band gap of solids. Our obtained structural parameters are in good agreement with experimental datas and other theoretical results. The energy band gap obtained with mBJ is 4.56 eV for CaZrO3 and 5.27 eV for CaHfO3. The hybridization of states of O atom with those of Zr and Hf atoms in CaZrO3 and CaHfO3, respectively, is observed. The spin-orbit coupling effect on electronic properties of considered compounds also is investigated. Finally, the linear optical properties of CaZrO3 and CaHfO3 are derived from their complex dielectric function calculated with mBJ potential for wide energy range up to 45 eV, and all of them analyzed in details.
Excited-state vibronic wave-packet dynamics in H2 probed by XUV transient four-wave mixing
NASA Astrophysics Data System (ADS)
Cao, Wei; Warrick, Erika R.; Fidler, Ashley; Leone, Stephen R.; Neumark, Daniel M.
2018-02-01
The complex behavior of a molecular wave packet initiated by an extreme ultraviolet (XUV) pulse is investigated with noncollinear wave mixing spectroscopy. A broadband XUV pulse spanning 12-16 eV launches a wave packet in H2 comprising a coherent superposition of multiple electronic and vibrational levels. The molecular wave packet evolves freely until a delayed few-cycle optical laser pulse arrives to induce nonlinear signals in the XUV via four-wave mixing (FWM). The angularly resolved FWM signals encode rich energy exchange processes between the optical laser field and the XUV-excited molecule. The noncollinear geometry enables spatial separation of ladder and V- or Λ-type transitions induced by the optical field. Ladder transitions, in which the energy exchange with the optical field is around 3 eV, appear off axis from the incident XUV beam. Each vibrationally revolved FWM line probes a different part of the wave packet in energy, serving as a promising tool for energetic tomography of molecular wave packets. V- or Λ-type transitions, in which the energy exchange is well under 1 eV, result in on-axis nonlinear signals. The first-order versus third-order interference of the on-axis signal serves as a mapping tool of the energy flow pathways. Intra- and interelectronic potential energy curve transitions are decisively identified. The current study opens possibilities for accessing complete dynamic information in XUV-excited complex systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
University of Illinois at Chicago; Blaze, Melvin M. T.; Takahashi, Lynelle
2011-03-14
The small molecular analyte 3,5-dibromotyrosine (Br2Y) and chitosan-alginate polyelectrolyte multilayers (PEM) with and without adsorbed Br2Y were analyzed by laser desorption postionization mass spectrometry (LDPI-MS). LDPI-MS using 7.87 eV laser and tunable 8 ? 12.5 eV synchrotron vacuum ultraviolet (VUV) radiation found that desorption of clusters from Br2Y films allowed detection by≤8 eV single photon ionization. Thermal desorption and electronic structure calculations determined the ionization energy of Br2Y to be ~;;8.3?0.1 eV and further indicated that the lower ionization energies of clusters permitted their detection at≤8 eV photon energies. However, single photon ionization could only detect Br2Y adsorbed within PEMsmore » when using either higher photon energies or matrix addition to the sample. All samples were also analyzed by 25 keV Bi3 + secondary ion mass spectrometry (SIMS), with the negative ion spectra showing strong parent ion signal which complemented that observed by LDPI-MS. The negative ion SIMS depended strongly on the high electron affinity of this specific analyte and the analyte?s condensed phase environment.« less
Determination of band gap in epitaxial delafossite Cu oxide using optical techniques
NASA Astrophysics Data System (ADS)
Cabrera, Alejandro; Wheatley, R.; Seifert, B.; Wallentowitz, S.; Joshi, T.; Lederman, D.
Highly epitaxial delafossite CuFeO2 and CuFe1-xGaxO2 films were grown using Pulsed Laser Deposition techniques. The sample thicknesses were estimated to be 21 nm, 75 nm.The estimated gallium fraction of substituted ferric atoms was x =0.25 for the composite sample. We present the study of the fundamental band gap(s) for each sample via observation of their respective optical absorption properties in the NIR-VIS region using transmittance and diffuse reflection spectroscopy. Predominant absorption edges measured were between 1.1eV and 3.1eV from transmittance spectra. The sample of CuFe1-xGaxO2 showed measurable absorption features located at 2.4eV and 2.8eV. This study also found evidence of changes between apparent absorption edges between transmittance and diffuse reflectance spectroscopies of each sample and it may be resultant from absorption channels via surface states. Future photoluminescence experiments are planned to determine the photo-induced semiconductor behavior of these materials. ACNOWLEDGEMENTS: This work was supported by FONDECyT 1130372 and Proyecto Anillo ACT1409 at PUC and supported in part by the WV Higher Education Policy Commission (Grant HEPC.dsr.12.29) and by FAME sponsored by MARCO and DARPA (contract # 2013-MA-2382).
NASA Astrophysics Data System (ADS)
Ouyang, Tianhong; Qian, Zhao; Ahuja, Rajeev; Liu, Xiangfa
2018-05-01
The optimized atomic structures, energetics and electronic structures of toxic gas CO adsorption systems on pristine, C-doped and N-vacancy defected h-AlN nanosheets respectively have been investigated using Density functional theory (DFT-D2 method) to explore their potential gas detection or sensing capabilities. It is found that both the C-doping and the N-vacancy defect improve the CO adsorption energies of AlN nanosheet (from pure -3.847 eV to -5.192 eV and -4.959 eV). The absolute value of the system band gap change induced by adsorption of CO can be scaled up to 2.558 eV or 1.296 eV after C-doping or N-vacancy design respectively, which is evidently larger than the value of 0.350 eV for pristine material and will benefit the robustness of electronic signals in potential gas detection. Charge transfer mechanisms between CO and the AlN nanosheet have been presented by the Bader charge and differential charge density analysis to explore the deep origin of the underlying electronic structure changes. This theoretical study is proposed to predict and understand the CO adsorption properties of the pristine and defected h-AlN nanosheets and would help to guide experimentalists to develop better AlN-based two-dimensional materials for efficient gas detection or sensing applications in the future.
Chen, Walter W; Balaj, Leonora; Liau, Linda M; Samuels, Michael L; Kotsopoulos, Steve K; Maguire, Casey A; Loguidice, Lori; Soto, Horacio; Garrett, Matthew; Zhu, Lin Dan; Sivaraman, Sarada; Chen, Clark; Wong, Eric T; Carter, Bob S; Hochberg, Fred H; Breakefield, Xandra O; Skog, Johan
2013-07-23
Development of biofluid-based molecular diagnostic tests for cancer is an important step towards tumor characterization and real-time monitoring in a minimally invasive fashion. Extracellular vesicles (EVs) are released from tumor cells into body fluids and can provide a powerful platform for tumor biomarkers because they carry tumor proteins and nucleic acids. Detecting rare point mutations in the background of wild-type sequences in biofluids such as blood and cerebrospinal fluid (CSF) remains a major challenge. Techniques such as BEAMing (beads, emulsion, amplification, magnetics) PCR and droplet digital PCR (ddPCR) are substantially more sensitive than many other assays for mutant sequence detection. Here, we describe a novel approach that combines biofluid EV RNA and BEAMing RT-PCR (EV-BEAMing), as well droplet digital PCR to interrogate mutations from glioma tumors. EVs from CSF of patients with glioma were shown to contain mutant IDH1 transcripts, and we were able to reliably detect and quantify mutant and wild-type IDH1 RNA transcripts in CSF of patients with gliomas. EV-BEAMing and EV-ddPCR represent a valuable new strategy for cancer diagnostics, which can be applied to a variety of biofluids and neoplasms.Molecular Therapy-Nucleic Acids (2013) 2, e109; doi:10.1038/mtna.2013.28; published online 23 July 2013.
Characterization of W-Ti-O thin films for application in photovoltaics
NASA Astrophysics Data System (ADS)
Christmas, Amanda P.
Photovoltaic (PV) devices consist of the conversion of light energy into electricity. Nearly all PV technologies employ transparent conducting oxides (TCO) as an integral part of the de-vice structure so that the light can reach the semiconductor. The predominant transparent conducting oxide (TCO) that is currently being used in industry is indium tin oxide (ITO). However, Indium (In) is high in cost and becoming scarce in the world. This work is focused towards Titanium doped Tungsten oxide (WO3) for TCO application. The ultimate goal is making novel, cheaper, and efficient TCOs based on W-Ti-O films. Titanium will enhance the conductivity of the film. In addition, Ti is more abundant than In thus leading to low-cost TCO. Ti-doped WO3 (W-Ti-O) films were grown by co-sputter deposition onto silicon, Si (100), and optical grade quartz wafers. Co-sputtering of Ti and W metal targets was per-formed in a wide growth temperature range (room temperature (RT)-500 °C). The Ti sputter-ing power varied from 50 watts-100 watts in order to gain an understanding of the Ti effect. The structure and optical properties were characterized by the X-ray diffraction (XRD), scan-ning electron microscopy (SEM) and the spectrophotometry measurements. The films are op-tically transparent and a correlation between the growth conditions and optical properties is derived. The XRD results show W-Ti-O films grown at RT are amorphous and the films crys-tallize at 200°C. A decrease in the peak intensity implies that the crystallinity decreases with an increase in titanium (Ti) along with a phase change at higher substrate growth tempera-tures. The optical results show the transparency of the films is well above 80%. The energy band gap decreases from 4.0 eV to 3.9 eV with an increase in substrate temperature and in-creases from 3.85 eV to 3.95 eV with an increase of Ti. These results meet the criteria of two essential TCO parameters.
Effect of Rare Earth Elements (Er, Ho) on Semi-Metallic Materials (ScN) in an Applied Electric Field
NASA Technical Reports Server (NTRS)
Kim, Hyunjung; Park, Yeonjoon; King, Glen C.; Lee, Kunik; Choi, Sang H.
2012-01-01
The development of materials and fabrication technology for field-controlled spectrally active optics is essential for applications such as membrane optics, filters for LIDARs, windows for sensors, telescopes, spectroscopes, cameras and flat-panel displays. The dopants of rare earth elements, in a host of optical systems, create a number of absorption and emission band structures and can easily be incorporated into many high quality crystalline and amorphous hosts. In wide band-gap semiconductors like ScN, the existing deep levels can capture or emit the mobile charges, and can be ionized with the loss or capture of the carriers which are the fundamental basis of concept for smart optic materials. The band gap shrinkage or splitting with dopants supports the possibility of this concept. In the present work, a semi-metallic material (ScN) was doped with rare earth elements (Er, Ho) and tested under an applied electric field to characterize spectral and refractive index shifts by either Stark or Zeeman Effect. These effects can be verified using the UV-Vis spectroscopy, the Hall Effect measurement and the ellipsometric spectroscopy. The optical band gaps of ScN doped with Er and doped with Ho were experimentally estimated as 2.33eV and 2.24eV ( 0.2eV) respectively. This is less than that of undoped ScN (2.5 0.2eV). The red-shifted absorption onset is a direct evidence for the decrease of band gap energy (Eg), and the broadening of valence band states is attributable to the doping cases. A decrease in refractive index with an applied field was observed as a small shift in absorption coefficient using a variable angle spectroscopic ellipsometer. In the presence of an electric field, mobile carriers are redistributed within the space charge region (SCR) to produce this electro-refractive effect. The shift in refractive index is also affected by the density and location of deep potential wells within the SCR. In addition, the microstructure change was observed by a TEM analysis. These results give an insight for future applications for the field-controlled spectrally active material systems.
X-ray emission from a plasma mirror of a neodymium glass laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalal, M.; Pina, L.; Vrbova, M.
1984-11-01
An investigation was made of the optical and x-ray characteristics of the radiation emitted by a plasma mirror in a neodymium glass laser. The optical reflection coefficient of the mirror was found to be nonlinear and the plasma temperature was about 300 eV.
Pellegrini, Kathryn L.; Patil, Dattatraya; Douglas, Kristen J.S.; Lee, Grace; Wehrmeyer, Kathryn; Torlak, Mersiha; Clark, Jeremy; Cooper, Colin S.; Moreno, Carlos S.; Sanda, Martin G.
2018-01-01
Background The measurement of gene expression in post-digital rectal examination (DRE) urine specimens provides a non-invasive method to determine a patient’s risk of prostate cancer. Many currently available assays use whole urine or cell pellets for the analysis of prostate cancer-associated genes, although the use of extracellular vesicles (EVs) has also recently been of interest. We investigated the expression of prostate-, kidney-, and bladder-specific transcripts and known prostate cancer biomarkers in urine EVs. Methods Cell pellets and EVs were recovered from post-DRE urine specimens, with the total RNA yield and quality determined by Bioanalyzer. The levels of prostate, kidney, and bladder-associated transcripts in EVs were assessed by TaqMan qPCR and targeted sequencing. Results RNA was more consistently recovered from the urine EV specimens, with over 80% of the patients demonstrating higher RNA yields in the EV fraction as compared to urine cell pellets. The median EV RNA yield of 36.4 ng was significantly higher than the median urine cell pellet RNA yield of 4.8 ng. Analysis of the post-DRE urine EVs indicated that prostate-specific transcripts were more abundant than kidney- or bladder-specific transcripts. Additionally, patients with prostate cancer had significantly higher levels of the prostate cancer-associated genes PCA3 and ERG. Conclusions Post-DRE urine EVs are a viable source of prostate-derived RNAs for biomarker discovery and prostate cancer status can be distinguished from analysis of these specimens. Continued analysis of urine EVs offers the potential discovery of novel biomarkers for pre-biopsy prostate cancer detection. PMID:28419548
Pellegrini, Kathryn L; Patil, Dattatraya; Douglas, Kristen J S; Lee, Grace; Wehrmeyer, Kathryn; Torlak, Mersiha; Clark, Jeremy; Cooper, Colin S; Moreno, Carlos S; Sanda, Martin G
2017-06-01
The measurement of gene expression in post-digital rectal examination (DRE) urine specimens provides a non-invasive method to determine a patient's risk of prostate cancer. Many currently available assays use whole urine or cell pellets for the analysis of prostate cancer-associated genes, although the use of extracellular vesicles (EVs) has also recently been of interest. We investigated the expression of prostate-, kidney-, and bladder-specific transcripts and known prostate cancer biomarkers in urine EVs. Cell pellets and EVs were recovered from post-DRE urine specimens, with the total RNA yield and quality determined by Bioanalyzer. The levels of prostate, kidney, and bladder-associated transcripts in EVs were assessed by TaqMan qPCR and targeted sequencing. RNA was more consistently recovered from the urine EV specimens, with over 80% of the patients demonstrating higher RNA yields in the EV fraction as compared to urine cell pellets. The median EV RNA yield of 36.4 ng was significantly higher than the median urine cell pellet RNA yield of 4.8 ng. Analysis of the post-DRE urine EVs indicated that prostate-specific transcripts were more abundant than kidney- or bladder-specific transcripts. Additionally, patients with prostate cancer had significantly higher levels of the prostate cancer-associated genes PCA3 and ERG. Post-DRE urine EVs are a viable source of prostate-derived RNAs for biomarker discovery and prostate cancer status can be distinguished from analysis of these specimens. Continued analysis of urine EVs offers the potential discovery of novel biomarkers for pre-biopsy prostate cancer detection. © 2017 Wiley Periodicals, Inc.
Absorption of light dark matter in semiconductors
Hochberg, Yonit; Lin, Tongyan; Zurek, Kathryn M.
2017-01-01
Semiconductors are by now well-established targets for direct detection of MeV to GeV dark matter via scattering off electrons. We show that semiconductor targets can also detect significantly lighter dark matter via an absorption process. When the dark matter mass is above the band gap of the semiconductor (around an eV), absorption proceeds by excitation of an electron into the conduction band. Below the band gap, multiphonon excitations enable absorption of dark matter in the 0.01 eV to eV mass range. Energetic dark matter particles emitted from the sun can also be probed for masses below an eV. We derivemore » the reach for absorption of a relic kinetically mixed dark photon or pseudoscalar in germanium and silicon, and show that existing direct detection results already probe new parameter space. Finally, with only a moderate exposure, low-threshold semiconductor target experiments can exceed current astrophysical and terrestrial constraints on sub-keV bosonic dark matter.« less
NASA Astrophysics Data System (ADS)
Orient, O. J.; Chutjian, A.; Murad, E.
1995-03-01
Optical emissions in single-collision, beam-beam reactions of fast (3-22-eV translational energy) O(3P) atoms with C2H2 have been measured in the wavelength range 300-850 nm. Two features were observed, one with a peak wavelength at 431 nm, corresponding to the CH A 2X 2Πr transition, and a second weaker emission in the range 380-400 nm corresponding to the B 2Σ--->X 2Πr transition. Both the A-->X and B-->X emissions were fit to a synthetic spectrum of CH(A) at a vibrational temperature Tv of 10 000 K (0.86 eV) and a rotational temperature Tr of approximately 5000 K (0.43 eV); and CH(B) to Tv=2500 K (0.22 eV) and Tr=1000 K (0.09 eV). The energy threshold for the A-->X emission was measured to be 7.3+/-0.4 eV (lab) or 4.5+/-0.2 eV (c.m.). This agrees with the energy threshold of 7.36 eV (lab) for the reaction O(3P)+C2H2-->CH(A)+HCO.
Electron energy-loss spectra in molecular fluorine
NASA Technical Reports Server (NTRS)
Nishimura, H.; Cartwright, D. C.; Trajmar, S.
1979-01-01
Electron energy-loss spectra in molecular fluorine, for energy losses from 0 to 17.0 eV, have been taken at incident electron energies of 30, 50, and 90 eV and scattering angles from 5 to 140 deg. Features in the spectra above 11.5 eV energy loss agree well with the assignments recently made from optical spectroscopy. Excitations of many of the eleven repulsive valence excited electronic states are observed and their location correlates reasonably well with recent theoretical results. Several of these excitations have been observed for the first time and four features, for which there are no identifications, appear in the spectra.
The origin of 2.7 eV luminescence and 5.2 eV excitation band in hafnium oxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perevalov, T. V., E-mail: timson@isp.nsc.ru; Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk; Aliev, V. Sh.
2014-02-17
The origin of a blue luminescence band at 2.7 eV and a luminescence excitation band at 5.2 eV of hafnia has been studied in stoichiometric and non-stoichiometric hafnium oxide films. Experimental and calculated results from the first principles valence band spectra showed that the stoichiometry violation leads to the formation of the peak density of states in the band gap caused by oxygen vacancies. Cathodoluminescence in the non-stoichiometric film exhibits a band at 2.65 eV that is excited at the energy of 5.2 eV. The optical absorption spectrum calculated for the cubic phase of HfO{sub 2} with oxygen vacancies showsmore » a peak at 5.3 eV. Thus, it could be concluded that the blue luminescence band at 2.7 eV and HfO{sub x} excitation peak at 5.2 eV are due to oxygen vacancies. The thermal trap energy in hafnia was estimated.« less
Size distribution of extracellular vesicles by optical correlation techniques.
Montis, Costanza; Zendrini, Andrea; Valle, Francesco; Busatto, Sara; Paolini, Lucia; Radeghieri, Annalisa; Salvatore, Annalisa; Berti, Debora; Bergese, Paolo
2017-10-01
Understanding the colloidal properties of extracellular vesicles (EVs) is key to advance fundamental knowledge in this field and to develop effective EV-based diagnostics, therapeutics and devices. Determination of size distribution and of colloidal stability of purified EVs resuspended in buffered media is a complex and challenging issue - because of the wide range of EV diameters (from 30 to 2000nm), concentrations of interest and membrane properties, and the possible presence of co-isolated contaminants with similar size and densities, such as protein aggregates and fat globules - which is still waiting to be fully addressed. We report here a fully detailed protocol for accurate and robust determination of the size distribution and stability of EV samples which leverages a dedicated combination of Fluorescence Correlation Spectroscopy (FCS) and Dynamic Light Scattering (DLS). The theoretical background, critical experimental steps and data analysis procedures are thoroughly presented and finally illustrated through the representative case study of EV formulations obtained from culture media of B16 melanoma cells, a murine tumor cell line used as a model for human skin cancers. Copyright © 2017 Elsevier B.V. All rights reserved.
Panchromatic Observations of GRB 110205A and Other GRB Optical Prompt Observations Obtained by ROTSE
NASA Astrophysics Data System (ADS)
Zheng, Weikang; with a larger Collaboration
2011-09-01
The leading radiation mechanisms for gamma-ray bursts (GRBs), as predicted by the standard GRB fireball model, include synchrotron radiation, synchrotron self-Compton (SSC), and inverse Compton scattering from thermal photons. Panchromatic observations during GRB prompt emission are important to distinguish the mechanisms. GRB 110205A, triggered by Swift, is also detected by Suzaku, ROTSE-IIIb and BOOTES telescopes when the GRB is still radiating gamma-rays. These panchromatic observations, covering 6 orders of energy range from 1 eV to 5 MeV, will be presented. We clearly discover an interesting two-break energy spectrum for the first time, roughly consistent with the synchrotron spectrum predicted by the standard GRB fireball model. The two break energies can be explained as νc, the synchrotron cooling frequency, and νm, the synchrotron typical frequency. With a sample of GRBs with optical prompt detections from ROTSE observations, one can also constrain the self-absorption frequency, νa. These detailed prompt observations are important to discriminate different mechanisms and thus lead us to a better and deeper understanding of the GRB fireball model. This research is supported by the NASA grant NNX08AV63G and the NSF grant PHY-0801007.
Investigation of optical properties and local structure of Gd3+ doped nano-crystalline GeSe2
NASA Astrophysics Data System (ADS)
Hantour, Hanan Hassan
2017-04-01
Pure and Gd-doped nano-crystalline GeSe2 were prepared by the melt-quenching technique. Structure analysis using Rietveld program suggests monoclinic structure for both virgin and doped samples with nano-particle size 41 nm for GeSe2 and 48 nm for Gd-doped sample. A wide optical band gap as estimated from absorbance measurements is 4.1 and 4.8 eV for pure and doped samples in accordance with the confinement effects. Raman spectra show two unresolved components at ˜202 cm-1 with broad line width. Also, well identified low intensity (υ < 145 cm-1) and high intensity (υ > 250 cm-1) bands are detected. For Gd-doped sample, the main band is shifted to lower energies and its full width at half maximum (FWHM) is reduced by ˜50% accompanied by an intensity increase of about ˜17 fold times. The photoluminescence analysis of the pure sample shows a main emission band at ˜604 nm. This band is split into two separated bands with higher intensity. The detected emission bands at wavelength >650 nm are assigned to transmission from 6GJ to the different 6PJ terms.
Calculation of Electronic and Optical Properties of AgGaO2 Polymorphs Using Many-Body Approaches
NASA Astrophysics Data System (ADS)
Dadsetani, Mehrdad; Nejatipour, Reihan
2018-02-01
Ab initio calculations based on many-body perturbation theory have been used to study the electronic and optical properties of AgGaO2 in rhombohedral, hexagonal, and orthorhombic phases. GW calculations showed that AgGaO2 is an indirect-bandgap semiconductor in all three phases with energy bandgap of 2.35 eV, 2.23 eV, and 2.07 eV, in good agreement with available experimental values. By solving the Bethe-Salpeter equation (BSE) using the full potential linearized augmented plane wave basis, optical properties of the AgGaO2 polymorphs were calculated and compared with those obtained using the GW-corrected random phase approximation (RPA) and with existing experimental data. Strong anisotropy in the optical absorption spectra was observed, and the excitonic structures which were absent in the RPA calculations were reproduced in GWBSE calculations, in good agreement with the optical absorption spectrum of the rhombohedral phase. While modifying peak positions and intensities of the absorption spectra, the GWBSE gave rise to the redistribution of oscillator strengths. In comparison with the z-polarized response, excitonic effects in the x-polarized response were dominant. In the x- (and y-) polarized responses of r- and h-AgGaO2, spectral features and excitonic effects occur at the lower energies, but in the case of o-AgGaO2, the spectral structures of the z-polarized response occur at lower energies. In addition, the low-energy loss functions of AgGaO2 were calculated and compared using the GWBSE approach. Spectral features in the energy loss function components near the bandgap region were attributed to corresponding excitonic structures in the imaginary part of the dielectric function.
Potentials and capabilities of the Extracellular Vesicle (EV) Array.
Jørgensen, Malene Møller; Bæk, Rikke; Varming, Kim
2015-01-01
Extracellular vesicles (EVs) and exosomes are difficult to enrich or purify from biofluids, hence quantification and phenotyping of these are tedious and inaccurate. The multiplexed, highly sensitive and high-throughput platform of the EV Array presented by Jørgensen et al., (J Extracell Vesicles, 2013; 2: 10) has been refined regarding the capabilities of the method for characterization and molecular profiling of EV surface markers. Here, we present an extended microarray platform to detect and phenotype plasma-derived EVs (optimized for exosomes) for up to 60 antigens without any enrichment or purification prior to analysis.
Midgley, Sofie E; Nielsen, Astrid G; Trebbien, Ramona; Poulsen, Mille W; Andersen, Peter H; Fischer, Thea K
2017-06-29
In Europe, enterovirus A71 (EV-A71) has primarily been associated with sporadic cases of neurological disease. The recent emergence of new genotypes and larger outbreaks with severely ill patients demonstrates a potential for the spread of new, highly pathogenic EV-A71 strains. Detection and characterisation of these new emerging EV variants is challenging as standard EV assays may not be adequate, necessitating the use of whole genome analysis. This article is copyright of The Authors, 2017.
Wagatsuma, Kazuaki
2009-04-01
The emission characteristics of ionic lines of nickel, cobalt, and vanadium were investigated when argon or krypton was employed as the plasma gas in glow discharge optical emission spectrometry. A dc Grimm-style lamp was employed as the excitation source. Detection limits of the ionic lines in each iron-matrix alloy sample were compared between the krypton and the argon plasmas. Particular intense ionic lines were observed in the emission spectra as a function of the discharge gas (krypton or argon), such as the Co II 258.033 nm for krypton and the Co II 231.707 nm for argon. The explanation for this is that collisions with the plasma gases dominantly populate particular excited levels of cobalt ion, which can receive the internal energy from each gas ion selectively, for example, the 3d(7)4p (3)G(5) (6.0201 eV) for krypton and the 3d(7)4p (3)G(4) (8.0779 eV) for argon. In the determination of nickel as well as cobalt in iron-matrix samples, more sensitive ionic lines could be found in the krypton plasma rather than the argon plasma. Detection limits in the krypton plasma were 0.0039 mass% Ni for the Ni II 230.299-nm line and 0.002 mass% Co for the Co II 258.033-nm line. However, in the determination of vanadium, the argon plasma had better analytical performance, giving a detection limit of 0.0023 mass% V for the V II 309.310-nm line.
NASA Astrophysics Data System (ADS)
Siddique, M. Naseem; Ahmed, Ateeq; Ali, T.; Tripathi, P.
2018-05-01
Nickel oxide (NiO) nanoparticles with a crystal size of around 16.26 nm have been synthesized via sol-gel method. The synthesized precursor was calcined at 600 °C for 4 hours to obtain the nickel oxide nanoparticles. The XRD analysis result indicated that the calcined sample has a cubic structure without any impurity phases. The FTIR analysis result confirmed the formation of NiO. The NiO nanoparticle exhibited absorption band edge at 277.27 nm and the optical band gap have been estimated approximately 4.47 eV using diffuse reflectance spectroscopy and photoluminescence emission spectrum of our as-synthesized sample showed strong peak at 3.65 eV attributed to the band edge transition.
Stacking fault related luminescence in GaN nanorods.
Forsberg, M; Serban, A; Poenaru, I; Hsiao, C-L; Junaid, M; Birch, J; Pozina, G
2015-09-04
Optical and structural properties are presented for GaN nanorods (NRs) grown in the [0001] direction on Si(111) substrates by direct-current reactive magnetron sputter epitaxy. Transmission electron microscopy (TEM) reveals clusters of dense stacking faults (SFs) regularly distributed along the c-axis. A strong emission line at ∼3.42 eV associated with the basal-plane SFs has been observed in luminescence spectra. The optical signature of SFs is stable up to room temperatures with the activation energy of ∼20 meV. Temperature-dependent time-resolved photoluminescence properties suggest that the recombination mechanism of the 3.42 eV emission can be understood in terms of multiple quantum wells self-organized along the growth axis of NRs.
Optical properties of ZnO powder prepared by using a proteic sol-gel process
NASA Astrophysics Data System (ADS)
Kwon, Bong-Joon; Woo, Hyun-Joo; Park, Ji-Yeon; Jang, Kiwan; Lim, Seung-Hyuk; Cho, Yong-Hoon
2013-03-01
We have studied the optical properties of ZnO powder synthesized by using a proteic sol-gel process with coconut water as the precursor. The energy dispersive X-ray spectrometer and X-ray diffraction results show high purity of the synthesized ZnO powder. From the low-temperature (12 K) and power-dependent PL spectra, the donor-bound exciton, the acceptor-bound exciton, the donor-to-acceptor pair (DAP), and the phonon-replica of the DAP transition have been observed at 3.38, 3.34, 3.26, and 3.19 eV, respectively. The free exciton emission (˜3.3 eV) is also observed at 300 K in the temperature-dependent PL spectra.
Computational prediction of the electronic structure and optical properties of graphene-like β-CuN3.
Zhang, Xu; Zhao, Xudong; Jing, Yu; Wu, Dihua; Zhou, Zhen
2015-12-21
Recently, a new polymorph of the highly energetic phase β-CuN3 has been synthesized. By hybrid density functional computations, we investigated the structural, electronic and optical properties of β-CuN3 bulk and layers. Due to the quantum confinement effect, the band gap of the monolayer (2.39 eV) is larger than that of the bulk (2.23 eV). The layer number affects the configuration and the band gap. β-CuN3 shows both ionic and covalent characters, and could be stable in the infrared and visible spectrum and would decompose under ultraviolet light. The results imply that bulk β-CuN3 could be used as an energetic material.
Synthesis and characterisation of co-evaporated tin sulphide thin films
NASA Astrophysics Data System (ADS)
Koteeswara Reddy, N.; Ramesh, K.; Ganesan, R.; Ramakrishna Reddy, K. T.; Gunasekhar, K. R.; Gopal, E. S. R.
2006-04-01
Tin sulphide films were grown at different substrate temperatures by a thermal co-evaporation technique. The crystallinity of the films was evaluated from X-ray diffraction studies. Single-phase SnS films showed a strong (040) orientation with an orthorhombic crystal structure and a grain size of 0.12 μm. The films showed an electrical resistivity of 6.1 Ω cm with an activation energy of 0.26 eV. These films exhibited an optical band gap of 1.37 eV and had a high optical absorption coefficient (>104 cm-1) above the band-gap energy. The results obtained were analysed to evaluate the potentiality of the co-evaporated SnS films as an absorber layer in solar photovoltaic devices.
Naturally acquired picornavirus infections in primates at the Dhaka zoo.
Oberste, M Steven; Feeroz, Mohammed M; Maher, Kaija; Nix, W Allan; Engel, Gregory A; Begum, Sajeda; Hasan, Kamrul M; Oh, Gunwha; Pallansch, Mark A; Jones-Engel, Lisa
2013-01-01
The conditions in densely populated Bangladesh favor picornavirus transmission, resulting in a high rate of infection in the human population. Data suggest that nonhuman primates (NHP) may play a role in the maintenance and transmission of diverse picornaviruses in Bangladesh. At the Dhaka Zoo, multiple NHP species are caged in close proximity. Their proximity to other species and to humans, both zoo workers and visitors, provides the potential for cross-species transmission. To investigate possible interspecies and intraspecies transmission of picornaviruses among NHP, we collected fecal specimens from nine NHP taxa at the Dhaka Zoo at three time points, August 2007, January 2008, and June 2008. Specimens were screened using real-time PCR for the genera Enterovirus, Parechovirus, and Sapelovirus, and positive samples were typed by VP1 sequencing. Fifty-two picornaviruses comprising 10 distinct serotypes were detected in 83 fecal samples. Four of these serotypes, simian virus 19 (SV19), baboon enterovirus (BaEV), enterovirus 112 (EV112), and EV115, have been solely associated with infection in NHP. EV112, EV115, and SV19 accounted for 88% of all picornaviruses detected. Over 80% of samples from cages housing rhesus macaques, olive baboons, or hamadryas baboons were positive for a picornavirus, while no picornaviruses were detected in samples from capped langurs or vervet monkeys. In contrast to our findings among synanthropic NHP in Bangladesh where 100% of the picornaviruses detected were of human serotypes, in the zoo population, only 15% of picornaviruses detected in NHP were of human origin. Specific serotypes tended to persist over time, suggesting either persistent infection of individuals or cycles of reinfection.
Electronic, Optical and Thermoelectric Properties of 2H-CuAlO2: A First Principles Study
NASA Astrophysics Data System (ADS)
Bhamu, K. C.; Khenata, R.; Khan, Saleem Ayaz; Singh, Mangej; Priolkar, K. R.
2016-01-01
The electronic and optical properties of 2H-CuAlO2, including energy bands, density of states (DOS), optical dielectric behaviour, refractive index, absorption coefficient and optical conductivity, have been investigated within the framework of a full-potential linearized augmented plane wave scheme using different potentials. The direct and indirect band gaps for CuAlO2, computed using the Becke-Johnson potential, are estimated at 3.53 eV and 2.48 eV, respectively, which are in better agreement with the experimentally reported band gaps than those previously computed. The origin of energy bands is elucidated in terms of DOS, while the behaviour of the imaginary part of the dielectric constant is explained in terms of electronic transitions from valence bands to conduction bands. The computed value of the refractive index is 2.25 (1.94) for light perpendicular (parallel) to the c axis, in concordance with the available values. The overall shape of the spectral distribution for absorption coefficient and optical conductivity is also in accord with the reported data. The investigated thermoelectric properties indicate that CuAlO2 is a p-type semiconductor showing high effectiveness at low temperatures.
Optical properties of pure and PbSe doped TiS2 nanodiscs
NASA Astrophysics Data System (ADS)
Parvaz, M.; Islamuddin; Khan, Zishan H.
2018-06-01
Titanium disulfide, being one of the popular transition-metal dichalcogenide (TMD) materials, shows wonderful properties owing to tunable optical band gap. Pure and PbSe doped titanium disulfide nanodiscs have been synthesized by solid-state reaction method. FESEM, TEM and Raman images confirm the synthesis of nanodiscs. XRD spectra suggest the polycrystalline structure of as-prepared as well as PbSe doped TiS2 nanodiscs. PL spectra of the as-synthesized nanodiscs has been studied in the wavelength range of (300–550 nm), at room temperature. The position of the peak shifts towards the lower wavelength (blue shift) and intensity of the PL increases after the doping of PbSe, which may be due to a broadening of the optical band gap. UV–vis spectra has been used to calculate optical band gap of pure and PbSe doped titanium disulfide nanodiscs. The calculated value are found to be 1.93 eV and 2.03 eV respectively. Various optical constants such as n and k have been calculated. The value of extinction coefficient (k) of pure and doped titanium disulfide increases while the value of the refractive index (n) decreases with increase in photon energy.
NASA Astrophysics Data System (ADS)
Khimani, Ankurkumar J.; Chaki, Sunil H.; Malek, Tasmira J.; Tailor, Jiten P.; Chauhan, Sanjaysinh M.; Deshpande, M. P.
2018-03-01
The CdS thin films were deposited on glass slide substrates by Chemical Bath Deposition and dip coating techniques. The films thickness variation with deposition time showed maximum films deposition at 35 min for both the films. The energy dispersive analysis of x-ray showed both the films to be stoichiometric. The x-ray diffraction analysis confirmed the films possess hexagonal crystal structure. The transmission electron, scanning electron and optical microscopy study showed the films deposition to be uniform. The selected area electron diffraction exhibited ring patterns stating the films to be polycrystalline in nature. The atomic force microscopy images showed surface formed of spherical grains, hills and valleys. The recorded optical absorbance spectra analysis revealed the films possess direct optical bandgap having values of 2.25 eV for CBD and 2.40 eV for dip coating. The refractive index (η), extinction coefficient (k), complex dielectric constant (ε) and optical conductivity (σ 0) variation with wavelength showed maximum photon absorption till the respective wavelengths corresponding to the optical bandgap energy values. The recorded photoluminescence spectra showed two emission peaks. All the obtained results have been discussed in details.
Rigosi, Albert F; Hill, Heather M; Glavin, Nicholas R; Pookpanratana, Sujitra J; Yang, Yanfei; Boosalis, Alexander G; Hu, Jiuning; Rice, Anthony; Allerman, Andrew A; Nguyen, Nhan V; Hacker, Christina A; Elmquist, Randolph E; Hight Walker, Angela R; Newell, David B
2018-01-01
Monolayer epitaxial graphene (EG), grown on the Si face of SiC, is an advantageous material for a variety of electronic and optical applications. EG forms as a single crystal over millimeter-scale areas and consequently, the large scale single crystal can be utilized as a template for growth of other materials. In this work, we present the use of EG as a template to form millimeter-scale amorphous and hexagonal boron nitride ( a -BN and h -BN) films. The a -BN is formed with pulsed laser deposition and the h -BN is grown with triethylboron (TEB) and NH 3 precursors, making it the first metal organic chemical vapor deposition (MOCVD) process of this growth type performed on epitaxial graphene. A variety of optical and non-optical characterization methods are used to determine the optical absorption and dielectric functions of the EG, a -BN, and h -BN within the energy range of 1 eV to 8.5 eV. Furthermore, we report the first ellipsometric observation of high-energy resonant excitons in EG from the 4H polytype of SiC and an analysis on the interactions within the EG and h -BN heterostructure.
Influence of europium (Eu3+) ions on the optical properties of boro tellurite glasses
NASA Astrophysics Data System (ADS)
Devaraja, C.; Gowda, G. V. Jagadeesha; Eraiah, B.
2018-05-01
The influence of Eu3+ ions on the Optical properties of Boro Tellurite Glasses of (70-x) B2O3-15TeO2-10Na2O- 5PbO-xEu2O3 with x = 0, 0.1, 0.2, 0.3, 0.4 and 0.5 mol% glasses were prepared by conventional melt quenching method and their physical and optical properties were investigated by using UV absorption spectra, which was recorded at room temperature in the UV-visible region of wavelength 200-1100 nm. By the absorption edge studies, the values of optical bandgap energies have been evaluated. The direct and indirect bandgap values ranges between 3.362 to 3.650 eV and 2.011 to 2.863 eV respectively. The refractive index, molar refraction and polarizability of oxide ions have been calculated by using Lorentz-Lorentz relations. The refractive index and molar refraction values were ranges from 2.241 to 2.358 and 76.147 to 79.915 cm3 respectively. The non-linear variations of the above optical parameters were discussed with respect to small variation of europium (Eu3+) ion concentration.
NASA Technical Reports Server (NTRS)
Chutjian, A.; Orient, O. J.; Murad, E.
1990-01-01
Using a newly-developed, magnetically confined source, low-energy, ground state oxygen negative ions and neutral atoms are generated. The energy range is variable, and atom and neutrals have been generated at energies varying from 2 eV to 40 eV and higher. It was found that the interaction of these low-energy species with a solid magnesium fluoride target leads to optical emissions in the (at least) visible and infrared regions of the spectrum. Researchers describe y details of the photodetachment source, and present spectra of the neutral and ion glows in the wavelength range 250 to 850 nm (for O(-)) and 600 to 850 nm (for O), and discuss the variability of the emissions for incident energies between 4 and 40 eV.
NASA Technical Reports Server (NTRS)
Orient, O. J.; Chutjian, A.; Murad, E.
1990-01-01
Using a newly-developed, magnetically confined source, low-energy, ground state oxygen negative ions and neutral atoms are generated. The energy range is variable, and atom and neutrals have been generated at energies varying from 2 eV to 40 eV and higher. It was found that the interaction of these low-energy species with a solid magnesium fluoride target leads to optical emissions in the (at least) visible and infrared regions of the spectrum. Researchers describe y details of the photodetachment source, and present spectra of the neutral and ion glows in the wavelength range 250 to 850 nm (for O/-/) and 600 to 850 nm (for O), and discuss the variability of the emissions for incident energies between 4 and 40 eV.
Optical Properties of Fe3O4 Thin Films Prepared from the Iron Sand by Spin Coating Method
NASA Astrophysics Data System (ADS)
Yulfriska, N.; Rianto, D.; Murti, F.; Darvina, Y.; Ramli, R.
2018-04-01
Research on magnetic oxide is growing very rapidly. This magnetic oxide can be found in nature that is in iron sand. One of the beaches in Sumatera Barat containing iron sand is Tiram Beach, Padang Pariaman District, Sumatera Barat. The content of iron sand is generally in the form of magnetic minerals such as magnetite, hematite, and maghemit. Magnetite has superior properties that can be developed into thin films. The purpose of this research is to investigate the optical properties of transmittance, absorbance, reflectance and energy gap from Fe3O4 thin films. This type of research is an experimental research. The iron sand obtained from nature is first purified using a permanent magnet, then made in nanoparticle size using HEM-E3D with milling time for 30 hours. After that, the process of making thin film with sol-gel spin coating method. In this research, variation of rotation speed from spin coating is 1000 rpm, 2000 rpm and 3000 rpm. Based on XRD results indicated that the iron sand of Tiram beach contains magnetite minerals and the SEM results show that the thickness of the thin films formed is 25μm, 24μm and 11μm. The characterization tool used for characterizing optical properties is the UV-VIS Spectrophotometer. So it can be concluded that the greater the speed of rotation the thickness of the thin layer will be smaller, resulting in the transmittance and reflectance will be greater, while the absorbance will be smaller. Energy gap obtained from this research is 3,75eV, 3,75eV and 3,74eV. So the average energy gap obtained is 3,75eV.
NASA Astrophysics Data System (ADS)
Yin, Zhu-Hua; Zhang, Jian-Min
2016-10-01
The structural stability, electronic, magnetic and optical properties of zincblende Zn0.5V0.5Te under pressures 0-5 GPa are investigated by the spin-polarized first-principles calculation. Under pressure, the Zn0.5V0.5Te is always half-metal with the total magnetic moment μtot of 3μB / cell mainly contributed by V2+ ion, but the spin-down channel opens a band gap. The Zn0.5V0.5Te also behaves in a ductile manner and is mechanical stable until 3.78 GPa pressure. The static dielectric function ε1 (0) and refractive index n (0) increase with pressure. The two absorption peaks located in energy regions 0-20 eV and 35-50 eV not only increase but also shift to the higher energy region (blue shift) with pressure. So the electronic and optical properties of Zn0.5V0.5Te could be tuned through external pressure, which is beneficial to the electronic and optical applications.
Properties of the exotic metastable ST12 germanium allotrope
Zhao, Zhisheng; Zhang, Haidong; Kim, Duck Young; ...
2017-01-03
The optical and electronic properties of semiconducting materials are of great importance to a vast range of contemporary technologies. Diamond-cubic germanium is a well-known semiconductor, although other ‘exotic’ forms may possess distinct properties. In particular, there is currently no consensus for the band gap and electronic structure of ST12-Ge (tP12, P4 32 12) due to experimental limitations in sample preparation and varying theoretical predictions. Here we report clear experimental and theoretical evidence for the intrinsic properties of ST12-Ge, including the first optical measurements on bulk samples. Phase-pure bulk samples of ST12-Ge were synthesized, and the structure and purity were verifiedmore » using powder X-ray diffraction, transmission electron microscopy, Raman and wavelength/energy dispersive X-ray spectroscopy. Lastly, optical measurements indicate that ST12-Ge is a semiconductor with an indirect band gap of 0.59 eV and a direct optical transition at 0.74 eV, which is in good agreement with electrical transport measurements and our first-principles calculations.« less
Enhanced photoelectrochemical and optical performance of ZnO films tuned by Cr doping
NASA Astrophysics Data System (ADS)
Salem, M.; Akir, S.; Massoudi, I.; Litaiem, Y.; Gaidi, M.; Khirouni, K.
2017-04-01
In this paper, pure and Cr-doped nanostructured Zinc oxide thin films were synthesized by simple and low cost co-precipitation and spin-coating method with Cr concentration varying between 0.5 and 5 at.%. Crystalline structure of the prepared films was investigated by X-ray diffraction (XRD) and Raman spectroscopy techniques. XRD analysis indicated that the films were indexed as the hexagonal phase of wurtzite-type structure and demonstrated a decrease in the crystallite size with increasing Cr doping content. Cr doping revealed a significant effect on the optical measurements such as transmission and photoluminescence properties. The optical measurements indicated that Cr doping decreases the optical band gap and it has been shifted from 3.41 eV for pure ZnO film to 3.31 eV for 5 at.% Cr-doped one. The photoelectrochemical (PEC) sensing characteristics of Cr-doped ZnO layers were investigated. Amongst all photo-anodes with different Cr dopant concentration, the 2 at.% Cr incorporated ZnO films exhibited fast response and higher photoconduction sensitivity.
NASA Astrophysics Data System (ADS)
Pierre Auger Collaboration; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antiči'c, T.; Aramo, C.; Arganda, E.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Balzer, M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Barroso, S. L. C.; Baughman, B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellétoile, A.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Buroker, L.; Burton, R. E.; Caballero-Mora, K. S.; Caccianiga, B.; Caramete, L.; Caruso, R.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chirinos Diaz, J.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Cordier, A.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; De Donato, C.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; del Peral, L.; del Río, M.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gemmeke, H.; Ghia, P. L.; Giller, M.; Gitto, J.; Glass, H.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gouffon, P.; Grashorn, E.; Grebe, S.; Griffith, N.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holmes, V. C.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Ionita, F.; Italiano, A.; Jansen, S.; Jarne, C.; Jiraskova, S.; Josebachuili, M.; Kadija, K.; Kampert, K. H.; Karhan, P.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Koang, D.-H.; Kotera, K.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; Lachaud, C.; LaHurd, D.; Latronico, L.; Lauer, R.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, J.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mazur, P. O.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Mertsch, P.; Messina, S.; Meurer, C.; Meyhandan, R.; Mi'canovi'c, S.; Micheletti, M. I.; Minaya, I. A.; Miramonti, L.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nožka, L.; Oehlschläger, J.; Olinto, A.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parizot, E.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Peķala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrolini, A.; Petrov, Y.; Pfendner, C.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Ponce, V. H.; Pontz, M.; Porcelli, A.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez, G.; Rodriguez Cabo, I.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarkar, S.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovánek, P.; Schröder, F.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Silva Lopez, H. H.; Sima, O.; 'Smiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanic, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Taşcău, O.; Tcaciuc, R.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Travnicek, P.; Tridapalli, D. B.; Tristram, G.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wommer, M.; Wundheiler, B.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano Garcia, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.
2012-12-01
A thorough search for large-scale anisotropies in the distribution of arrival directions of cosmic rays detected above 1018 eV at the Pierre Auger Observatory is presented. This search is performed as a function of both declination and right ascension in several energy ranges above 1018 eV, and reported in terms of dipolar and quadrupolar coefficients. Within the systematic uncertainties, no significant deviation from isotropy is revealed. Assuming that any cosmic-ray anisotropy is dominated by dipole and quadrupole moments in this energy range, upper limits on their amplitudes are derived. These upper limits allow us to test the origin of cosmic rays above 1018 eV from stationary Galactic sources densely distributed in the Galactic disk and predominantly emitting light particles in all directions.
Native defects in GaN: a hybrid functional study
NASA Astrophysics Data System (ADS)
Diallo, Ibrahima Castillo; Demchenko, Denis
Intrinsic defects play an important role in the performance of GaN-based devices. We present hybrid density functional calculations of the electronic and possible optical properties of interstitial N (Ni-Ni) , N antisite (NGa) , interstitial Ga (Gai) , Ga antisite (GaN) , Ga vacancy (VGa) , N vacancy (VN) and Ga-N divacancies (VGaVN) in GaN. Our results show that the vacancies display relatively low formation energies in certain samples, whereas antisites and interstitials are energetically less favorable. However, interstitials can be created by electron irradiation. For instance, in 2.5 MeV electron-irradiated GaN samples, a strong correlation between the frequently observed photoluminescence (PL) band centered around 0.85 eV accompanied with a rich phonon sideband of ~0.88 eV and the theoretical optical behavior of interstitial Ga is discussed. N vacancies are found to likely contribute to the experimentally obtained green luminescence band (GL2) peaking at 2.24 eV in high-resistivity undoped and Mg-doped GaN. National Science Foundation (DMR-1410125) and the Thomas F. and Kate Miller Jeffress Memorial Trust.
Han, Jae-Hee; Paulus, Geraldine L C; Maruyama, Ryuichiro; Heller, Daniel A; Kim, Woo-Jae; Barone, Paul W; Lee, Chang Young; Choi, Jong Hyun; Ham, Moon-Ho; Song, Changsik; Fantini, C; Strano, Michael S
2010-10-01
There has been renewed interest in solar concentrators and optical antennas for improvements in photovoltaic energy harvesting and new optoelectronic devices. In this work, we dielectrophoretically assemble single-walled carbon nanotubes (SWNTs) of homogeneous composition into aligned filaments that can exchange excitation energy, concentrating it to the centre of core-shell structures with radial gradients in the optical bandgap. We find an unusually sharp, reversible decay in photoemission that occurs as such filaments are cycled from ambient temperature to only 357 K, attributed to the strongly temperature-dependent second-order Auger process. Core-shell structures consisting of annular shells of mostly (6,5) SWNTs (E(g)=1.21 eV) and cores with bandgaps smaller than those of the shell (E(g)=1.17 eV (7,5)-0.98 eV (8,7)) demonstrate the concentration concept: broadband absorption in the ultraviolet-near-infrared wavelength regime provides quasi-singular photoemission at the (8,7) SWNTs. This approach demonstrates the potential of specifically designed collections of nanotubes to manipulate and concentrate excitons in unique ways.
Properties of NiZnO Thin Films with Different Amounts of Al Doping
NASA Astrophysics Data System (ADS)
Kayani, Zohra N.; Fatima, Gulnaz; Zulfiqar, Bareera; Riaz, Saira; Naseem, Shahzad
2017-10-01
Transparent Al-doped NiZnO thin films have been fabricated by sol-gel dip coating and investigated using scanning electron microscopy, x-ray diffraction analysis, ultraviolet-visible-near infrared (UV-Vis-NIR) spectrophotometry, vibrating-sample magnetometry, and Fourier-transform infrared spectroscopy. The Al-doped NiZnO films consisted of ZnO hexagonal and α-Al2O3 rhombohedral phases as the Al incorporation was gradually increased from 1 at.% up to 3 at.%. A decrease in the optical bandgap from 3.90 eV to 3.09 eV was observed for films grown with Al content of 1 at.% to 2.5 at.%, but at 3 at.% Al, the bandgap increased to 3.87 eV. Optical transmittance of 96% was achieved for these transparent oxide films. Study of their magnetic properties revealed that increasing Al percentage resulted in enhanced ferromagnetism. The saturated magnetization increased with increasing Al percentage. The ferromagnetic properties of Al-doped NiZnO are mediated by electrons. The surface of the deposited thin films consisted of nanowires, nanorods, porous surface, and grains.
The Effects of Synthetic and Enhanced Vision Technologies for Lunar Landings
NASA Technical Reports Server (NTRS)
Kramer, Lynda J.; Norman, Robert M.; Prinzel, Lawrence J., III; Bailey, Randall E.; Arthur, Jarvis J., III; Shelton, Kevin J.; Williams, Steven P.
2009-01-01
Eight pilots participated as test subjects in a fixed-based simulation experiment to evaluate advanced vision display technologies such as Enhanced Vision (EV) and Synthetic Vision (SV) for providing terrain imagery on flight displays in a Lunar Lander Vehicle. Subjects were asked to fly 20 approaches to the Apollo 15 lunar landing site with four different display concepts - Baseline (symbology only with no terrain imagery), EV only (terrain imagery from Forward Looking Infra Red, or FLIR, and LIght Detection and Ranging, or LIDAR, sensors), SV only (terrain imagery from onboard database), and Fused EV and SV concepts. As expected, manual landing performance was excellent (within a meter of landing site center) and not affected by the inclusion of EV or SV terrain imagery on the Lunar Lander flight displays. Subjective ratings revealed significant situation awareness improvements with the concepts employing EV and/or SV terrain imagery compared to the Baseline condition that had no terrain imagery. In addition, display concepts employing EV imagery (compared to the SV and Baseline concepts which had none) were significantly better for pilot detection of intentional but unannounced navigation failures since this imagery provided an intuitive and obvious visual methodology to monitor the validity of the navigation solution.
NASA Astrophysics Data System (ADS)
Satiawati, L.; Majidi, M. A.
2017-07-01
A theory of high-energy optical conductivity of La0.7Ca0.3MnO3 has been proposed previously. The proposed theory works to explain the temperature-dependence of the optical conductivity for the photon energy region above ˜0.5 eV for up to ˜22 eV, but fails to capture the correct physics close to the dc limit in which metal-insulator transition occurs. The missing physics at the low energy has been acknowledged as mainly due to not incorporating phonon degree of freedom and electron-phonon interactions. In this study, we aim to complete the above theory by proposing a more complete Hamiltonian incorporating additional terms such as crystal field, two modes of Jahn-Teller vibrations, and coupling between electrons and the two Jahn-Teller vibrational modes. We solve the model by means of dynamical mean-field theory. At this stage, we aim to derive the analytical formulae involved in the calculation, and formulate the algorithmic implementation for the self-consistent calculation process. Our final goal is to compute the density of states and the optical conductivity for the complete photon energy range from 0 to 22 eV at various temperatures, and compare them with the experimental data. We expect that the improved model preserves the correct temperature-dependent physics at high photon energies, as already captured by the previous model, while it would also reveal ferromagnetic metal - paramagnetic insulator transition at the dc limit.
Optical properties of InGaN thin films in the entire composition range
NASA Astrophysics Data System (ADS)
Kazazis, S. A.; Papadomanolaki, E.; Androulidaki, M.; Kayambaki, M.; Iliopoulos, E.
2018-03-01
The optical properties of thick InGaN epilayers, with compositions spanning the entire ternary range, are studied in detail. High structural quality, single phase InxGa1-xN (0001) films were grown heteroepitaxially by radio-frequency plasma assisted molecular-beam epitaxy on freestanding GaN substrates. Their emission characteristics were investigated by low temperature photoluminescence spectroscopy, whereas variable angle spectroscopic ellipsometry was applied to determine the complex dielectric function of the films, in the 0.55-4.0 eV photon range. Photoluminescence lines were intense and narrow, in the range of 100 meV for Ga-rich InGaN films (x < 0.3), around 150 meV for mid-range composition films (0.3 < x < 0.6), and in the range of 50 meV for In-rich alloys (x > 0.6). The composition dependence of the strain-free emission energy was expressed by a bowing parameter of b = 2.70 ± 0.12 eV. The films' optical dielectric function dispersion was obtained by the analysis of the ellipsometric data employing a Kramers-Kronig consistent parameterized optical model. The refractive index dispersion was obtained for alloys in the entire composition range, and the corresponding values at the band edge show a parabolic dependence on the InN mole fraction expressed by a bowing parameter of b = 0.81 ± 0.04. The bowing parameter describing the fundamental energy bandgap was deduced to be equal to 1.66 ± 0.07 eV, consistent with the ab initio calculations for statistically random (non-clustered) InGaN alloys.
NASA Astrophysics Data System (ADS)
Bagheri-Mohagheghi, Mohammad-Mehdi; Shokooh-Saremi, Mehrdad
2010-10-01
The electrical, optical and structural properties of Cobalt (Co) doped SnO 2 transparent semiconducting thin films, deposited by the spray pyrolysis technique, have been studied. The SnO 2:Co films, with different Co-content, were deposited on glass substrates using an aqueous-ethanol solution consisting of tin and cobalt chlorides. X-ray diffraction studies showed that the SnO 2:Co films were polycrystalline only with tin oxide phases and preferential orientations along (1 1 0) and (2 1 1) planes and grain sizes in the range 19-82 nm. Optical transmittance spectra of the films showed high transparency ∼75-90% in the visible region, decreasing with increase in Co-doping. The optical absorption edge for undoped SnO 2 films was found to be 3.76 eV, while for higher Co-doped films shifted toward higher energies (shorter wavelengths) in the range 3.76-4.04 eV and then slowly decreased again to 4.03 eV. A change in sign of the Hall voltage and Seebeck coefficient was observed for a specific acceptor dopant level ∼11.4 at% in film and interpreted as a conversion from n-type to p-type conductivity. The thermoelectric electro-motive force (e.m.f.) of the films was measured in the temperature range 300-500 K and Seebeck coefficients were found in the range from -62 to +499 μVK -1 for various Co-doped SnO 2 films.
Extracellular Vesicles in Cardiovascular Theranostics
Bei, Yihua; Das, Saumya; Rodosthenous, Rodosthenis S.; Holvoet, Paul; Vanhaverbeke, Maarten; Monteiro, Marta Chagas; Monteiro, Valter Vinicius Silva; Radosinska, Jana; Bartekova, Monika; Jansen, Felix; Li, Qian; Rajasingh, Johnson; Xiao, Junjie
2017-01-01
Extracellular vesicles (EVs) are small bilayer lipid membrane vesicles that can be released by most cell types and detected in most body fluids. EVs exert key functions for intercellular communication via transferring their bioactive cargos to recipient cells or activating signaling pathways in target cells. Increasing evidence has shown the important regulatory effects of EVs in cardiovascular diseases (CVDs). EVs secreted by cardiomyocytes, endothelial cells, fibroblasts, and stem cells play essential roles in pathophysiological processes such as cardiac hypertrophy, cardiomyocyte survival and apoptosis, cardiac fibrosis, and angiogenesis in relation to CVDs. In this review, we will first outline the current knowledge about the physical characteristics, biological contents, and isolation methods of EVs. We will then focus on the functional roles of cardiovascular EVs and their pathophysiological effects in CVDs, as well as summarize the potential of EVs as therapeutic agents and biomarkers for CVDs. Finally, we will discuss the specific application of EVs as a novel drug delivery system and the utility of EVs in the field of regenerative medicine. PMID:29158817
Zheng, Hui-Wen; Sun, Ming; Guo, Lei; Wang, Jing-Jing; Song, Jie; Li, Jia-Qi; Li, Hong-Zhe; Ning, Ruo-Tong; Yang, Ze-Ning; Fan, Hai-Tao; He, Zhan-Long; Liu, Long-Ding
2017-01-01
Data from EV-D68-infected patients demonstrate that pathological changes in the lower respiratory tract are principally characterized by severe respiratory illness in children and acute flaccid myelitis. However, lack of a suitable animal model for EV-D68 infection has limited the study on the pathogenesis of this critical pathogen, and the development of a vaccine. Ferrets have been widely used to evaluate respiratory virus infections. In the current study, we used EV-D68-infected ferrets as a potential animal to identify impersonal indices, involving clinical features and histopathological changes in the upper and lower respiratory tract (URT and LRT). The research results demonstrate that the EV-D68 virus leads to minimal clinical symptoms in ferrets. According to the viral load detection in the feces, nasal, and respiratory tracts, the infection and shedding of EV-D68 in the ferret model was confirmed, and these results were supported by the EV-D68 VP1 immunofluorescence confocal imaging with α2,6-linked sialic acid (SA) in lung tissues. Furthermore, we detected the inflammatory cytokine/chemokine expression level, which implied high expression levels of interleukin (IL)-1a, IL-8, IL-5, IL-12, IL-13, and IL-17a in the lungs. These data indicate that systemic observation of responses following infection with EV-D68 in ferrets could be used as a model for EV-D68 infection and pathogenesis. PMID:28489053
Zheng, Hui-Wen; Sun, Ming; Guo, Lei; Wang, Jing-Jing; Song, Jie; Li, Jia-Qi; Li, Hong-Zhe; Ning, Ruo-Tong; Yang, Ze-Ning; Fan, Hai-Tao; He, Zhan-Long; Liu, Long-Ding
2017-05-10
Data from EV-D68-infected patients demonstrate that pathological changes in the lower respiratory tract are principally characterized by severe respiratory illness in children and acute flaccid myelitis. However, lack of a suitable animal model for EV-D68 infection has limited the study on the pathogenesis of this critical pathogen, and the development of a vaccine. Ferrets have been widely used to evaluate respiratory virus infections. In the current study, we used EV-D68-infected ferrets as a potential animal to identify impersonal indices, involving clinical features and histopathological changes in the upper and lower respiratory tract (URT and LRT). The research results demonstrate that the EV-D68 virus leads to minimal clinical symptoms in ferrets. According to the viral load detection in the feces, nasal, and respiratory tracts, the infection and shedding of EV-D68 in the ferret model was confirmed, and these results were supported by the EV-D68 VP1 immunofluorescence confocal imaging with α2,6-linked sialic acid (SA) in lung tissues. Furthermore, we detected the inflammatory cytokine/chemokine expression level, which implied high expression levels of interleukin (IL)-1a, IL-8, IL-5, IL-12, IL-13, and IL-17a in the lungs. These data indicate that systemic observation of responses following infection with EV-D68 in ferrets could be used as a model for EV-D68 infection and pathogenesis.
Thermal stability of deep level defects induced by high energy proton irradiation in n-type GaN
NASA Astrophysics Data System (ADS)
Zhang, Z.; Farzana, E.; Sun, W. Y.; Chen, J.; Zhang, E. X.; Fleetwood, D. M.; Schrimpf, R. D.; McSkimming, B.; Kyle, E. C. H.; Speck, J. S.; Arehart, A. R.; Ringel, S. A.
2015-10-01
The impact of annealing of proton irradiation-induced defects in n-type GaN devices has been systematically investigated using deep level transient and optical spectroscopies. Moderate temperature annealing (>200-250 °C) causes significant reduction in the concentration of nearly all irradiation-induced traps. While the decreased concentration of previously identified N and Ga vacancy related levels at EC - 0.13 eV, 0.16 eV, and 2.50 eV generally followed a first-order reaction model with activation energies matching theoretical values for NI and VGa diffusion, irradiation-induced traps at EC - 0.72 eV, 1.25 eV, and 3.28 eV all decrease in concentration in a gradual manner, suggesting a more complex reduction mechanism. Slight increases in concentration are observed for the N-vacancy related levels at EC - 0.20 eV and 0.25 eV, which may be due to the reconfiguration of other N-vacancy related defects. Finally, the observed reduction in concentrations of the states at EC - 1.25 and EC - 3.28 eV as a function of annealing temperature closely tracks the detailed recovery behavior of the background carrier concentration as a function of annealing temperature. As a result, it is suggested that these two levels are likely to be responsible for the underlying carrier compensation effect that causes the observation of carrier removal in proton-irradiated n-GaN.
A novel Enterovirus 96 circulating in China causes hand, foot, and mouth disease.
Xu, Yi; Sun, Yisuo; Ma, Jinmin; Zhou, Shuru; Fang, Wei; Ye, Jiawei; Tan, Limei; Ji, Jingkai; Luo, Dan; Li, Liqiang; Li, Jiandong; Fang, Chunxiao; Pei, Na; Shi, Shuo; Liu, Xin; Jiang, Hui; Gong, Sitang; Xu, Xun
2017-06-01
Enterovirus 96 (EV-96) is a recently described member of the species Enterovirus C and is associated with paralysis and myelitis. In this study, using metagenomic sequencing, we identified a new enterovirus 96 strain (EV-96-SZ/GD/CHN/2014) as the sole pathogen causing hand, foot, and mouth disease (HFMD). A genomic comparison showed that EV-96-SZ/GD/CHN/2014 is most similar to the EV-96-05517 strain (85% identity), which has also been detected in Guangdong Province. This is the first time that metagenomic sequencing has been used to identify an EV-96 strain shown to be associated with HFMD.
Enterovirus 74 Infection in Children
Peacey, Matthew; Hall, Richard J.; Wang, Jing; Todd, Angela K.; Yen, Seiha; Chan-Hyams, Jasmine; Rand, Christy J.; Stanton, Jo-Ann; Huang, Q. Sue
2013-01-01
Enterovirus 74 (EV74) is a rarely detected viral infection of children. In 2010, EV74 was identified in New Zealand in a 2 year old child with acute flaccid paralysis (AFP) through routine polio AFP surveillance. A further three cases of EV74 were identified in children within six months. These cases are the first report of EV74 in New Zealand. In this study we describe the near complete genome sequence of four EV74 isolates from New Zealand, which shows only limited sequence identity in the non-structural proteins when compared to the other two known EV74 sequences. As is typical of enteroviruses multiple recombination events were evident, particularly in the P2 region and P3 regions. This is the first complete EV74 genome sequenced from a patient with acute flaccid paralysis. PMID:24098514
DOE Office of Scientific and Technical Information (OSTI.GOV)
Limão-Vieira, P., E-mail: plimaovieira@fct.unl.pt; Department of Physics, Sophia University, Tokyo 102-8554; Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA
2015-02-14
The electronic state spectroscopy of carbonyl sulphide, COS, has been investigated using high resolution vacuum ultraviolet photoabsorption spectroscopy and electron energy loss spectroscopy in the energy range of 4.0–10.8 eV. The spectrum reveals several new features not previously reported in the literature. Vibronic structure has been observed, notably in the low energy absorption dipole forbidden band assigned to the (4π←3π) ({sup 1}Δ←{sup 1}Σ{sup +}) transition, with a new weak transition assigned to ({sup 1}Σ{sup −}←{sup 1}Σ{sup +}) reported here for the first time. The absolute optical oscillator strengths are determined for ground state to {sup 1}Σ{sup +} and {sup 1}Πmore » transitions. Based on our recent measurements of differential cross sections for the optically allowed ({sup 1}Σ{sup +} and {sup 1}Π) transitions of COS by electron impact, the optical oscillator strength f{sub 0} value and integral cross sections (ICSs) are derived by applying a generalized oscillator strength analysis. Subsequently, ICSs predicted by the scaling are confirmed down to 60 eV in the intermediate energy region. The measured absolute photoabsorption cross sections have been used to calculate the photolysis lifetime of carbonyl sulphide in the upper stratosphere (20–50 km)« less
NASA Astrophysics Data System (ADS)
Kosch, Michael; Bristow, Bill; Gustavsson, Bjorn; Heinselman, Craig; Hughes, John; Isham, Brett; Mutiso, Charles; Nielsen, Kim; Pedersen, Todd; Wang, Weiyuan; Wong, Alfred
We report results from a unique experiment performed at the HIPAS ionospheric modification facility in Alaska. High power radio waves at 2.85 MHz, which corresponds to the second electron gyroharmonic at 240 km altitude, were transmitted into the nighttime ionosphere. Diagnostics included optical equipment at HIPAS and HAARP, 288 km to the south-east, the PFISR radar at Poker Flat, 32 km to the north-west, and the Kodiak SuperDARN radar, 856 km to the south-west. Camera observations of the stimulated optical emissions at 557.7 nm (O1S, threshold 4.2 eV) and 630 nm (O1D, threshold 2 eV) were made, allowing tomographic reconstruction of the volume emission. The first observations of pump-induced 732 nm (O+, threshold 18.6 eV) emissions are reported. Kodiak radar backscatter, which is a proxy for upper-hybrid resonance, shows strong production of striations without a minimum on the second gyroharmonic, confirming previous results. PFISR analysis shows clear evidence of electron temperature enhancements, consistent with previous EISCAT results, maximizing when the pump frequency matches the second gyroharmonic and when double resonance occurs, i.e. the upper-hybrid resonance frequency matches the second gyroharmonic. This is consistent with the optical observations. From the above data, we are able to infer the efficiency of different groups of electron-accelerating mechanisms.
NASA Astrophysics Data System (ADS)
Ahmadipour, Mohsen; Ain, Mohd Fadzil; Ahmad, Zainal Arifin
2016-11-01
In this study, calcium copper titanate (CCTO) thin films were deposited on ITO substrates successfully by radio frequency (RF) magnetron sputtering method in argon atmosphere. The CCTO thin films present a polycrystalline, uniform and porous structure. The surface morphology, optical and humidity sensing properties of the synthesized CCTO thin films have been studied by X-ray diffraction (XRD), atomic force microscopy (AFM), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), UV-vis spectrophotometer and current-voltage (I-V) analysis. XRD and AFM confirmed that the intensity of peaks and pore size of CCTO thin films were enhanced by increasing the thin films. Tauc plot method was adopted to estimate the optical band gaps. The surface structure and energy band gaps of the deposited films were affected by film thickness. Energy band gap of the layers were 3.76 eV, 3.68 eV and 3.5 eV for 200 nm, 400 nm, and 600 nm CCTO thin films layer, respectively. The humidity sensing properties were measured by using direct current (DC) analysis method. The response times were 12 s, 22 s, and 35 s while the recovery times were 500 s, 600 s, and 650 s for 200 nm, 400 nm, and 600 nm CCTO thin films, respectively at humidity range of 30-90% relative humidity (RH).
Sutter-Fella, Carolin M; Li, Yanbo; Amani, Matin; Ager, Joel W; Toma, Francesca M; Yablonovitch, Eli; Sharp, Ian D; Javey, Ali
2016-01-13
Hybrid organic-inorganic halide perovskite based semiconductor materials are attractive for use in a wide range of optoelectronic devices because they combine the advantages of suitable optoelectronic attributes and simultaneously low-cost solution processability. Here, we present a two-step low-pressure vapor-assisted solution process to grow high quality homogeneous CH3NH3PbI3-xBrx perovskite films over the full band gap range of 1.6-2.3 eV. Photoluminescence light-in versus light-out characterization techniques are used to provide new insights into the optoelectronic properties of Br-containing hybrid organic-inorganic perovskites as a function of optical carrier injection by employing pump-powers over a 6 orders of magnitude dynamic range. The internal luminescence quantum yield of wide band gap perovskites reaches impressive values up to 30%. This high quantum yield translates into substantial quasi-Fermi level splitting and high "luminescence or optically implied" open-circuit voltage. Most importantly, both attributes, high internal quantum yield and high optically implied open-circuit voltage, are demonstrated over the entire band gap range (1.6 eV ≤ Eg ≤ 2.3 eV). These results establish the versatility of Br-containing perovskite semiconductors for a variety of applications and especially for the use as high-quality top cell in tandem photovoltaic devices in combination with industry dominant Si bottom cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutter-Fella, Carolin M.; Li, Yanbo; Amani, Matin
Hybrid organic-inorganic halide perovskite based semiconductor materials are attractive for use in a wide range of optoelectronic devices because they combine the advantages of suitable optoelectronic attributes and simultaneously low-cost solution processability. Here, we present a two-step low-pressure vapor-assisted solution process to grow high quality homogeneous CH 3NH 3PbI 3-xBr x perovskite films over the full band gap range of 1.6-2.3 eV. Photoluminescence light-in versus light-out characterization techniques are used to provide new insights into the optoelectronic properties of Br-containing hybrid organic-inorganic perovskites as a function of optical carrier injection by employing pump-powers over a 6 orders of magnitude dynamicmore » range. The internal luminescence quantum yield of wide band gap perovskites reaches impressive values up to 30%. This high quantum yield translates into substantial quasi-Fermi level splitting and high "luminescence or optically implied" open-circuit voltage. Most importantly, both attributes, high internal quantum yield and high optically implied open-circuit voltage, are demonstrated over the entire band gap range (1.6 eV ≤ E g ≤ 2.3 eV). These results establish the versatility of Br-containing perovskite semiconductors for a variety of applications and especially for the use as high-quality top cell in tandem photovoltaic devices in combination with industry dominant Si bottom cells. (Figure Presented).« less
An EAS experiment at mountain altitude for the detection of gamma-ray sources
NASA Technical Reports Server (NTRS)
Allkofer, O. C.; Samorski, M.; Stamm, W.
1985-01-01
The plan of an extensive air shower experiment 2.200 m above sea level for the detection of 10 to the 14th power eV to 10 to the 17th power eV gamma rays from sources in the declination band 0 deg to + 60 deg is described. The site selection, detector array and electronic layout are detailed.
Effect of heavy doping on the optical spectra of silicon
NASA Astrophysics Data System (ADS)
Chen, Chen-jia; A, Borghesi; G, Guizzetti; L, Nosenzo; E, Reguzzoni; A, Stella
1985-07-01
In this paper reflectance (R) and thermoreflectance (TR) spectra in heavily doped silicon concerning both interband and intraband transitions are reported and discussed. The heavily doped sample shows a red-shift and lifetime broadening in the two singularities E1(similar 3.4eV) and E2(similar 4.5eV). The values of the scattering time τ extracted from the reflectivity fit are obtained and compared with those obtained from Hall mobility measurements.
NASA Astrophysics Data System (ADS)
Yanagisawa, Susumu; Hatada, Shin-No-Suke; Morikawa, Yoshitada
Bathocuproine (BCP) is a promising organic material of a hole blocking layer in organic light-emitting diodes or an electron buffer layer in organic photovoltaic cells. The nature of the unoccupied electronic states is a key characteristic of the material, which play vital roles in the electron transport. To elucidate the electronic properties of the molecular or crystalline BCP, we use the GW approximation for calculation of the fundamental gap, and the long-range corrected density functional theory for the molecular optical absorption. It is found that the band gap of the BCP single crystal is 4.39 eV, and it is in agreement with the recent low-energy inverse photoemission spectroscopy measurement. The polarization energy is estimated to be larger than 1 eV, demonstrating the large polarization effects induced by the electronic clouds surrounding the injected charge. The theoretical optical absorption energy is 3.68 eV, and the exciton binding energy is estimated to be 0.71 eV, implying the large binding in the eletron-hole pair distributed around the small part of the molecular region. This work was supported by the Grants-in-Aid for Young Scientists (B) (No. 26810009), and for Scientific Research on Innovative Areas ``3D Active-Site Science'' (No. 26105011) from Japan Society for the Promotion of Science.
Detectability of cold streams into high-redshift galaxies by absorption lines
NASA Astrophysics Data System (ADS)
Goerdt, Tobias; Dekel, Avishai; Sternberg, Amiel; Gnat, Orly; Ceverino, Daniel
2012-08-01
Cold gas streaming along the dark matter filaments of the cosmic web is predicted to be the major source of fuel for disc buildup, violent disc instability and star formation in massive galaxies at high redshift. We investigate to what extent such cold gas is detectable in the extended circumgalactic environment of galaxies via Lyα absorption and selected low-ionization metal absorption lines. We model the expected absorption signatures using high-resolution zoom-in adaptive mesh refinement cosmological simulations. In the post-processing, we distinguish between self-shielded gas and unshielded gas. In the self-shielded gas, which is optically thick to Lyman continuum radiation, we assume pure collisional ionization for species with an ionization potential greater than 13.6 eV. In the optically-thin, unshielded gas, these species are also photoionized by the metagalactic radiation. In addition to absorption of radiation from background quasars, we compute the absorption line profiles of radiation emitted by the galaxy at the centre of the same halo. We predict the strength of the absorption signal for individual galaxies without stacking. We find that the Lyα absorption profiles produced by the streams are consistent with observations of absorption and emission Lyα profiles in high-redshift galaxies. Due to the low metallicities in the streams, and their low covering factors, the metal absorption features are weak and difficult to detect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyashchenko, S. A., E-mail: lsa@iph.krasn.ru; Popov, Z. I.; Varnakov, S. N.
The optical, magnetooptical, and magnetic properties of polycrystalline (Fe{sub 5}Si{sub 3}/SiO{sub 2}/Si(100)) and epitaxial Fe{sub 3}Si/Si(111) films are investigated by spectral magnetoellipsometry. The dispersion of the complex refractive index of Fe{sub 5}Si{sub 3} is measured using multiangle spectral ellipsometry in the range of 250–1000 nm. The dispersion of complex Voigt magnetooptical parameters Q is determined for Fe{sub 5}Si{sub 3} and Fe{sub 3}Si in the range of 1.6–4.9 eV. The spectral dependence of magnetic circular dichroism for both silicides has revealed a series of resonance peaks. The energies of the detected peaks correspond to interband electron transitions for spin-polarized densities ofmore » electron states (DOS) calculated from first principles for bulk Fe{sub 5}Si{sub 3} and Fe{sub 3}Si crystals.« less
Deep level defects in Ge-doped (010) β-Ga2O3 layers grown by plasma-assisted molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Farzana, Esmat; Ahmadi, Elaheh; Speck, James S.; Arehart, Aaron R.; Ringel, Steven A.
2018-04-01
Deep level defects were characterized in Ge-doped (010) β-Ga2O3 layers grown by plasma-assisted molecular beam epitaxy (PAMBE) using deep level optical spectroscopy (DLOS) and deep level transient (thermal) spectroscopy (DLTS) applied to Ni/β-Ga2O3:Ge (010) Schottky diodes that displayed Schottky barrier heights of 1.50 eV. DLOS revealed states at EC - 2.00 eV, EC - 3.25 eV, and EC - 4.37 eV with concentrations on the order of 1016 cm-3, and a lower concentration level at EC - 1.27 eV. In contrast to these states within the middle and lower parts of the bandgap probed by DLOS, DLTS measurements revealed much lower concentrations of states within the upper bandgap region at EC - 0.1 - 0.2 eV and EC - 0.98 eV. There was no evidence of the commonly observed trap state at ˜EC - 0.82 eV that has been reported to dominate the DLTS spectrum in substrate materials synthesized by melt-based growth methods such as edge defined film fed growth (EFG) and Czochralski methods [Zhang et al., Appl. Phys. Lett. 108, 052105 (2016) and Irmscher et al., J. Appl. Phys. 110, 063720 (2011)]. This strong sensitivity of defect incorporation on crystal growth method and conditions is unsurprising, which for PAMBE-grown β-Ga2O3:Ge manifests as a relatively "clean" upper part of the bandgap. However, the states at ˜EC - 0.98 eV, EC - 2.00 eV, and EC - 4.37 eV are reminiscent of similar findings from these earlier results on EFG-grown materials, suggesting that possible common sources might also be present irrespective of growth method.
Heparin affinity purification of extracellular vesicles
Balaj, Leonora; Atai, Nadia A.; Chen, Weilin; Mu, Dakai; Tannous, Bakhos A.; Breakefield, Xandra O.; Skog, Johan; Maguire, Casey A.
2015-01-01
Extracellular vesicles (EVs) are lipid membrane vesicles released by cells. They carry active biomolecules including DNA, RNA, and protein which can be transferred to recipient cells. Isolation and purification of EVs from culture cell media and biofluids is still a major challenge. The most widely used isolation method is ultracentrifugation (UC) which requires expensive equipment and only partially purifies EVs. Previously we have shown that heparin blocks EV uptake in cells, supporting a direct EV-heparin interaction. Here we show that EVs can be purified from cell culture media and human plasma using ultrafiltration (UF) followed by heparin-affinity beads. UF/heparin-purified EVs from cell culture displayed the EV marker Alix, contained a diverse RNA profile, had lower levels of protein contamination, and were functional at binding to and uptake into cells. RNA yield was similar for EVs isolated by UC. We were able to detect mRNAs in plasma samples with comparable levels to UC samples. In conclusion, we have discovered a simple, scalable, and effective method to purify EVs taking advantage of their heparin affinity. PMID:25988257
NASA Astrophysics Data System (ADS)
Smolin, Sergey Y.
Ultrafast transient absorption and reflectance spectroscopy are foundational techniques for studying photoexcited carrier recombination mechanisms, lifetimes, and charge transfer rates. Because quantifying photoexcited carrier dynamics is central to the intelligent design and improvement of many solid state devices, these transient optical techniques have been applied to a wide range of semiconductors. However, despite their promise, interpretation of transient absorption and reflectance data is not always straightforward and often relies on assumptions of physical processes, especially with respect to the influence of heating. Studying the material space of perovskite oxides, the careful collection, interpretation, and analysis of ultrafast data is presented here as a guide for future research into novel semiconductors. Perovskite oxides are a class of transition metal oxides with the chemical structure ABO3. Although traditionally studied for their diverse physical, electronic, and magnetic properties, perovskite oxides have gained recent research attention as novel candidates for light harvesting applications. Indeed, strong tunable absorption, unique interfacial properties, and vast chemical flexibility make perovskite oxides a promising photoactive material system. However, there is limited research characterizing dynamic optoelectronic properties, such as recombination lifetimes, which are critical to know in the design of any light-harvesting device. In this thesis, ultrafast transient absorption and reflectance spectroscopy was used to understand these dynamic optoelectronic properties in highquality, thin (<50 nm) perovskite oxide films grown by molecular beam epitaxy. Starting with epitaxial LaFeO3 (LFO) grown on (LaAlO 3)0.3(Sr2AlTaO6)0.7 (LSAT), transient absorption spectroscopy reveals two photoinduced absorption features at the band gap of LFO at 2.4 eV and at the higher energy absorption edge at 3.5 eV. Using a combination of temperature-dependent, variable-angle spectroscopic ellipsometry and time-resolved ultrafast optical spectroscopy on a type I heterostructure, we clarify thermal and electronic contributions to spectral transients in LaFeO3. Upon comparison to thermally-derived static spectra of LaFeO3, we find that thermal contributions dominate the transient absorption and reflectance spectra above the band gap. A transient photoinduced absorption feature below the band gap at 1.9 eV is not reproduced in the thermally derived spectra and has significantly longer decay kinetics from the thermallyinduced features; therefore, this long lived photoinduced absorption is likely derived, at least partially, from photoexcited carriers with lifetimes much longer than 3 nanoseconds. LaFeO3 has a wide band gap of 2.4 eV but its absorption can be decreased with chemical substitution of Sr for Fe to make it more suitable for various applications. This type of A-site substitution is a common route to change static optical absorption in perovskite oxides, but there are no systematic studies looking at how A-site substitution changes dynamic optoelectronic properties. To understand the relationship between composition and static and dynamic optical properties we worked with the model system of La1-xSrxFeO 3-delta epitaxial films grown on LSAT, uncovering the effects of A-site cation substitution and oxygen stoichiometry. Variable-angle spectroscopic ellipsometry was used to measure static optical properties, revealing a linear increase in absorption coefficient at 1.25 eV and a red-shifting of the optical absorption edge with increasing Sr fraction. The absorption spectra can be similarly tuned through the introduction of oxygen vacancies, indicating the critical role that nominal Fe valence plays in optical absorption. Dynamic optoelectronic properties were studied with ultrafast transient reflectance spectroscopy with broadband visible (1.6 eV to 4 eV) and near-infrared (0.9 eV to 1.5 eV) probes. The sign of the reflectance change in the near-infrared region in LSFO is indicative of carrier bandfilling of newly created electronic states by photoexcited carriers. Moreover, we find that similar transient spectral trends can be induced with A-site substitution or through oxygen vacancies, which is a surprising result. Probing the near-infrared region reveals similar nanosecond (1-3 ns) photoexcited carrier lifetimes for oxygen deficient and stoichiometric films. These results demonstrate that while the static optical absorption is strongly dependent on nominal Fe valence tuned through cation or anion stoichiometry, oxygen vacancies do not appear to play a significantly detrimental role in long lived recombination kinetics. Although this thesis represents one of the first comprehensive studies using broad band transient absorption and reflectance spectroscopy to study dynamic optoelectronic phenomena in perovskite oxides, it can also serve as a guide for the implementation and interpretation of ultrafast spectroscopy in other material systems. Moreover, the ultrafast work on perovskite oxides indicates that these materials have long nanosecond lifetimes required for light harvesting devices and should be investigated further.
Naturally Acquired Picornavirus Infections in Primates at the Dhaka Zoo
Feeroz, Mohammed M.; Maher, Kaija; Nix, W. Allan; Engel, Gregory A.; Begum, Sajeda; Hasan, Kamrul M.; Oh, Gunwha; Pallansch, Mark A.; Jones-Engel, Lisa
2013-01-01
The conditions in densely populated Bangladesh favor picornavirus transmission, resulting in a high rate of infection in the human population. Data suggest that nonhuman primates (NHP) may play a role in the maintenance and transmission of diverse picornaviruses in Bangladesh. At the Dhaka Zoo, multiple NHP species are caged in close proximity. Their proximity to other species and to humans, both zoo workers and visitors, provides the potential for cross-species transmission. To investigate possible interspecies and intraspecies transmission of picornaviruses among NHP, we collected fecal specimens from nine NHP taxa at the Dhaka Zoo at three time points, August 2007, January 2008, and June 2008. Specimens were screened using real-time PCR for the genera Enterovirus, Parechovirus, and Sapelovirus, and positive samples were typed by VP1 sequencing. Fifty-two picornaviruses comprising 10 distinct serotypes were detected in 83 fecal samples. Four of these serotypes, simian virus 19 (SV19), baboon enterovirus (BaEV), enterovirus 112 (EV112), and EV115, have been solely associated with infection in NHP. EV112, EV115, and SV19 accounted for 88% of all picornaviruses detected. Over 80% of samples from cages housing rhesus macaques, olive baboons, or hamadryas baboons were positive for a picornavirus, while no picornaviruses were detected in samples from capped langurs or vervet monkeys. In contrast to our findings among synanthropic NHP in Bangladesh where 100% of the picornaviruses detected were of human serotypes, in the zoo population, only 15% of picornaviruses detected in NHP were of human origin. Specific serotypes tended to persist over time, suggesting either persistent infection of individuals or cycles of reinfection. PMID:23097447
New Introductions of Enterovirus 71 Subgenogroup C4 Strains, France, 2012
Henquell, Cécile; Mirand, Audrey; Coste-Burel, Marianne; Marque-Juillet, Stéphanie; Desbois, Delphine; Lagathu, Gisèle; Bornebusch, Laure; Bailly, Jean-Luc; Lina, Bruno
2014-01-01
In France during 2012, human enterovirus 71 (EV-A71) subgenogroup C4 strains were detected in 4 children hospitalized for neonatal fever or meningitis. Phylogenetic analysis showed novel and independent EV-A71 introductions, presumably from China, and suggested circulation of C4 strains throughout France. This observation emphasizes the need for monitoring EV-A71 infections in Europe. PMID:25061698
Structural, optical and thermal characterization of PVC/SnO2 nanocomposites
NASA Astrophysics Data System (ADS)
Taha, T. A.; Ismail, Z.; Elhawary, M. M.
2018-04-01
The structural, optical, and thermal properties of PVC/SnO2 nanocomposites were investigated. XRD patterns were used to explore the structures of these prepared samples. Optical UV-Vis measurements were analyzed to calculate the spectroscopic optical constants of the prepared PVC/SnO2 nanocomposites. Both direct and indirect optical band gaps decreased with increasing SnO2 content. The refractive index, high frequency dielectric constant, plasma frequency, and optical conductivity values increased with SnO2. The single oscillator energy increased from 5.64 to 10.97 eV and the dispersion energy increased from 6.35 to 19.80 eV with the addition of SnO2. The other optical parameters such as optical moments, single oscillator strength, volume energy loss, and surface energy loss were calculated for different SnO2 concentrations. Raman spectra of the PVC/SnO2 nanocomposite films revealed the characteristic vibrational modes of PVC and surface phonon modes of SnO2. The thermal stability of PVC/SnO2 nanocomposite films was studied using DTA and thermogravimetric analysis. The glass transition ( T g) values abruptly changed from 46 °C for PVC to an average value of 59 °C for the polymer films doped with 2.0, 4.0, and 6.0 wt% SnO2. The weight loss decreased as the SnO2 concentration increased in the temperature range of 350-500 °C, corresponding to enhanced thermal stability.
Ayukekbong, James; Kabayiza, Jean-Claude; Lindh, Magnus; Nkuo-Akenji, Theresia; Tah, Ferdinand; Bergström, Tomas; Norder, Helene
2013-09-01
Infections caused by human enteroviruses (EVs) are often asymptomatic or mild, although they may cause more severe illnesses as meningitis and acute flaccid paralysis. EVs have globally posed a threat to children, and outbreaks of aseptic meningitis and hand, foot and mouth disease are frequently reported. To identify EV strains circulating among healthy children in a small community in Limbe, Cameroon two years apart. Species and EV types were obtained by partial 5'UTR-VP4 and VP1 sequencing of RNA from stool samples collected in October 2009 and September 2011 from 150 children in Cameroon. In all, 74 children (49%) were infected with 28 different types of EV. There were 29 (54%) infected children in 2009, and 45 (47%) in 2011. There was a significant difference between detected species of EV, with 15 (47%) children infected with EV-A in 2009, and 22 (71%) with EV-B in 2011 (p=0.0001). In 2009, one child was infected by a divergent EV, which was most similar to EV-A90. Based on the complete VP1 sequence, it was shown to be a new EV designated EV-A119. The current study shows a high heterogeneity of circulating EV types among children in Limbe, Cameroon, and a previously not described shift in predominating EV species. Copyright © 2013 Elsevier B.V. All rights reserved.
Hu, Shuiwang; Musante, Luca; Tataruch, Dorota; Xu, Xiaomeng; Kretz, Oliver; Henry, Michael; Meleady, Paula; Luo, Haihua; Zou, Hequn; Jiang, Yong; Holthofer, Harry
2018-01-05
Urinary extracellular vesicles (uEVs) have become a promising source for biomarkers accurately reflecting biochemical changes in kidney and urogenital diseases. Characteristically, uEVs are rich in membrane proteins associated with several cellular functions like adhesion, transport, and signaling. Hence, membrane proteins of uEVs should represent an exciting protein class with unique biological properties. In this study, we utilized uEVs to optimize the Triton X-114 detergent partitioning protocol targeted for membrane proteins and proceeded to their subsequent characterization while eliminating effects of Tamm-Horsfall protein, the most abundant interfering protein in urine. This is the first report aiming to enrich and characterize the integral transmembrane proteins present in human urinary vesicles. First, uEVs were enriched using a "hydrostatic filtration dialysis'' appliance, and then the enriched uEVs and lysates were verified by transmission electron microscopy. After using Triton X-114 phase partitioning, we generated an insoluble pellet fraction and aqueous phase (AP) and detergent phase (DP) fractions and analyzed them with LC-MS/MS. Both in- and off-gel protein digestion methods were used to reveal an increased number of membrane proteins of uEVs. After comparing with the identified proteins without phase separation as in our earlier publication, 199 different proteins were detected in DP. Prediction of transmembrane domains (TMDs) from these protein fractions showed that DP had more TMDs than other groups. The analyses of hydrophobicity revealed that the GRAVY score of DP was much higher than those of the other fractions. Furthermore, the analysis of proteins with lipid anchor revealed that DP proteins had more lipid anchors than other fractions. Additionally, KEGG pathway analysis showed that the DP proteins detected participate in endocytosis and signaling, which is consistent with the expected biological functions of membrane proteins. Finally, results of Western blotting confirmed that the membrane protein bands are found in the DP fraction instead of AP. In conclusion, our study validates the use of Triton X-114 phase partitioning protocol on uEVs for a targeted isolation of membrane proteins and to reduce sample complexity. This method successfully facilitates detection of potential biomarkers and druggable targets in uEVs.
Changes in the pattern of plasma extracellular vesicles after severe trauma
Kuravi, Sahithi J.; Yates, Clara M.; Foster, Mark; Hampson, Peter; Watson, Chris; Midwinter, Mark
2017-01-01
Background Extracellular vesicles (EV) released into the circulation after traumatic injury may influence complications. We thus evaluated the numbers of EV in plasma over 28 days after trauma and evaluated their pro-coagulant and inflammatory effects. Methods and findings 37 patients suffering trauma with an injury severity score >15 were studied along with 24 healthy controls. Plasma samples were isolated by double centrifugation (2000g 20min; 13000g 2min) from blood collected from within an hour up to 28 days after injury. Plasma EV were counted and sized using nanoparticle tracking analysis (NTA); counts and cellular origins were also determined by flow cytometry (FC) using cell-specific markers. Functional effects were tested in a procoagulant phospholipid assay and in flow-based, leukocyte adhesion assay after endothelial cells (EC) were treated with EV. We found that EV concentrations measured by NTA were significantly increased in trauma patients compared to healthy controls, and remained elevated over days. In addition, or FC showed that patients with trauma had higher numbers of EV derived from platelets (CD41+), leukocytes (CD45+) and endothelial EC (CD144+). The increases were evident throughout the 28-day follow-up. However, the FC count represented <1% of the count detected by NTA, and only 1–2% of EV identified using NTA had a diameter >400nm. The procoagulant phospholipid activity assay showed that patient plasma accelerated coagulation on day 1 and day 3 after trauma, with coagulation times correlated with EV counts. Furthermore, treatment of EC for 24 hours with plasma containing EV tended to increase the recruitment of peripheral flowing blood mononuclear cells. Conclusions EV counted by FC represent a small sub-population of the total load detected by NTA. Both methods however indicate a significant increase in plasma EV after severe traumatic injury that have pro-coagulant and pro-inflammatory effects that may influence outcomes. PMID:28837705
Deep-Ultraviolet Luminescence of Rocksalt-Structured Mg x Zn1-x O (x > 0.5) Films on MgO Substrates
NASA Astrophysics Data System (ADS)
Kaneko, Kentaro; Tsumura, Keiichi; Ishii, Kyohei; Onuma, Takayoshi; Honda, Tohru; Fujita, Shizuo
2018-04-01
Rocksalt-structured Mg x Zn1-x O films with Mg composition x of 0.47, 0.57, and 0.64 were grown on (100)-oriented MgO substrates using mist chemical vapor deposition. Cathodoluminescence measurements showed deep ultraviolet (DUV) emission peaking at 4.88 eV (254 nm), 5.15 eV (241 nm), and 5.21 eV (238 nm), respectively, at 12 K. The peak energies were lower than the band gap energies by ca. 1 eV, suggesting that the deep ultraviolet (DUV) emission may be recognized as near band edge luminescence but is associated with impurities, defects, or band fluctuations. The use of carbon-free precursors in the growth is suggested to eliminate carbon impurities and to improve the optical properties of Mg x Zn1-x O.
Optical third harmonic generation in the magnetic semiconductor EuSe
NASA Astrophysics Data System (ADS)
Lafrentz, M.; Brunne, D.; Kaminski, B.; Pavlov, V. V.; Pisarev, R. V.; Henriques, A. B.; Yakovlev, D. R.; Springholz, G.; Bauer, G.; Bayer, M.
2012-01-01
Third harmonic generation (THG) has been studied in europium selenide EuSe in the vicinity of the band gap at 2.1-2.6 eV and at higher energies up to 3.7 eV. EuSe is a magnetic semiconductor crystalizing in centrosymmetric structure of rock-salt type with the point group m3m. For this symmetry the crystallographic and magnetic-field-induced THG nonlinearities are allowed in the electric-dipole approximation. Using temperature, magnetic field, and rotational anisotropy measurements, the crystallographic and magnetic-field-induced contributions to THG were unambiguously separated. Strong resonant magnetic-field-induced THG signals were measured at energies in the range of 2.1-2.6 eV and 3.1-3.6 eV for which we assign to transitions from 4f7 to 4f65d1 bands, namely involving 5d(t2g) and 5d(eg) states.
Hybrid Perovskite Phase Transition and Its Ionic, Electrical and Optical Properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoque, Md Nadim Ferdous; Islam, Nazifah; Zhu, Kai
Hybrid perovskite solar cells (PSCs) under normal operation will reach a temperature above ~ 60 °C, across the tetragonal-cubic structural phase transition of methylammonium lead iodide (MAPbI 3). Whether the structural phase transition could result in dramatic changes of ionic, electrical and optical properties that may further impact the PSC performances should be studied. Herein, we report a structural phase transition temperature of MAPbI 3thin film at ~ 55 °C, but a striking contrast occurred at ~ 45 °C in the ionic and electrical properties of MAPbI 3due to a change of the ion activation energy from 0.7 eV tomore » 0.5 eV. The optical properties exhibited no sharp transition except for the steady increase of the bandgap with temperature. It was also observed that the activation energy for ionic migration steadily increased with increased grain sizes, and reduction of the grain boundary density reduced the ionic migration.« less
Study of the optical properties of CuAlS2 thin films prepared by two methods
NASA Astrophysics Data System (ADS)
Ahmad, S. M.
2017-04-01
CuAlS2 thin films were successfully deposited on glass substrates using two methods: chemical spray pyrolysis (CSP) and chemical bath deposition (CBD). It was confirmed from the X-ray diffraction (XRD) analysis that CSP films exhibited a polycrystalline nature while amorphous nature was diagnosed for CBD films. Also XRD analysis was utilized to compute grain size, strain and dislocation density. Surface morphology was characterized using scanning electron microscope and photomicroscope images. The optical absorption measurement revealed that the direct allowed electronic transition with band gaps 2.8 eV and 3.0 eV for CBD and CSP methods, respectively. The optical constants, such as extinction coefficient ( k), refractive index ( n), real and imaginary dielectric constants ( ɛ 1, ɛ 2) were discussed. The photoluminescence (PL) spectra of CuAlS2 thin films appeared as a single peak for each of them, and this is attributed to band-to-band transition.
Annealing effect on structural and optical properties of chemical bath deposited MnS thin film
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ulutas, Cemal, E-mail: cemalulutas@hakkari.edu.tr; Gumus, Cebrail
2016-03-25
MnS thin film was prepared by the chemical bath deposition (CBD) method on commercial microscope glass substrate deposited at 30 °C. The as-deposited film was given thermal annealing treatment in air atmosphere at various temperatures (150, 300 and 450 °C) for 1 h. The MnS thin film was characterized by using X-ray diffraction (XRD), UV-vis spectrophotometer and Hall effect measurement system. The effect of annealing temperature on the structural, electrical and optical properties such as optical constants of refractive index (n) and energy band gap (E{sub g}) of the film was determined. XRD measurements reveal that the film is crystallized inmore » the wurtzite phase and changed to tetragonal Mn{sub 3}O{sub 4} phase after being annealed at 300 °C. The energy band gap of film decreased from 3.69 eV to 3.21 eV based on the annealing temperature.« less
Optical, structural and thermal properties of bismuth nitrate doped polycarbonate composite
NASA Astrophysics Data System (ADS)
Mirji, Rajeshwari; Lobo, Blaise
2018-04-01
Bismuth nitrate (Bi(NO3)3) doped polycarbonate (PC) films were prepared by solution casting method, in the doping range varying from 0.1 wt% to 5 wt %. The prepared samples were characterized using UV-Visible spectroscopy, X-Ray Diffraction (XRD) and Differential Scanning Calorimetry (DSC). Optical band gap was calculated by analyzing the UV-Visible spectra of pure as well as doped PC. Optical band gap is found to decrease from 4.38 eV to 4.33 eV as the Bi(NO3)3 content within PC increases. XRD patterns showed an increase in the degree of crystallinity of Bi(NO3)3 doped PC, especially at 3.5 wt% and 5 wt%. DSC study showed an increase in the degradation temperature, as the doping level is increased from 0 wt% up to 0.3 wt%. A decrease in Tg is observed as the doping level of these samples increases from 0 wt% up to 5 wt%.
Transparent Conducting Mo-Doped CdO Thin Films by Spray Pyrolysis Method for Solar Cell Applications
NASA Astrophysics Data System (ADS)
Helen, S. J.; Devadason, Suganthi; Haris, M.; Mahalingam, T.
2018-04-01
Pure and 3%, 5%, and 7% molybdenum-doped cadmium oxide (CdO) thin films have been prepared on glass substrates preheated to 400°C using a spray pyrolysis technique, then analyzed using x-ray diffraction analysis, field-emission scanning electron microscopy, ultraviolet-visible spectroscopy, and photoluminescence and Hall measurements. The films were found to have polycrystalline nature with cubic structure. The crystallite size was calculated to be ˜ 12 nm for various doping concentrations. Doping improved the optical transparency of the CdO thin film, with the 5% Mo-doped film recording the highest transmittance in the optical region. The energy bandgap deduced from optical studies ranged from 2.38 eV and 2.44 eV for different Mo doping levels. The electrical conductivity was enhanced on Mo doping, with the highest conductivity of 1.74 × 103 (Ω cm)-1 being achieved for the 5% Mo-doped CdO thin film.
Optical properties and surface topography of CdCl2 activated CdTe thin films
NASA Astrophysics Data System (ADS)
Patel, S. L.; Purohit, A.; Chander, S.; Dhaka, M. S.
2018-05-01
The effect of post-CdCl2 heat treatment on optical properties and surface topography of evaporated CdTe thin films is investigated. The pristine and thermally annealed films were subjected to UV-Vis spectrophotometer and atomic force microscopy (AFM) to investigate the optical properties and surface topography, respectively. The absorbance is found to be maximum (˜90%) at 320°C temperature and transmittance found to be minimum and almost constant in ultraviolet and visible regions. The direct band gap is increased from 1.42 eV to 2.12 eV with post-CdCl2 annealing temperature. The surface topography revealed that the uniformity is improved with annealing temperature and average surface roughness is found in the range of 83.3-144.3 nm as well as grains have cylindrical hill-like shapes. The investigated results indicate that the post-CdCl2 treated films annealed at 320°C may be well-suitable for thin film solar cells as an absorber layer.
Ordinary dielectric function of corundumlike α -Ga2O3 from 40 meV to 20 eV
NASA Astrophysics Data System (ADS)
Feneberg, Martin; Nixdorf, Jakob; Neumann, Maciej D.; Esser, Norbert; Artús, Lluis; Cuscó, Ramon; Yamaguchi, Tomohiro; Goldhahn, Rüdiger
2018-04-01
The linear optical response of metastable α -Ga2O3 is investigated by spectroscopic ellipsometry. We determine the ordinary dielectric function from lattice vibrations up to the vacuum ultraviolet spectral range at room temperature for a sample with a (0001 ) surface. Three out of four Eu infrared-active phonon modes are unambiguously determined, and their frequencies are in good agreement with density functional theory calculations. The dispersion of the refractive index in the visible and ultraviolet part of the spectrum is determined. High-energy interband transitions are characterized up to 20 eV . By comparison with the optical response of α -Al2O3 and with theoretical results, a tentative assignment of interband transitions is proposed.
Optical characterization of CdS nanorods capped with starch
NASA Astrophysics Data System (ADS)
Roy, J. S.; Pal Majumder, T.; Schick, C.
2015-05-01
Well crystalline uniform CdS nanorods were grown by changing the concentration of maize starch. The highly polymeric (branched) structure of starch enhances the growth of CdS nanorods. The average diameter of the nanorods is 20-25 nm while length is of 500-600 nm as verified from SEM and XRD observations. The optical band gaps of the CdS nanorods are varying from 2.66 eV to 2.52 eV depending on concentration of maize starch. The photoluminescence (PL) emission bands are shifted from 526 nm to 529 nm with concentration of maize starch. We have also observed the enhanced PL intensity in CdS nanorods capped with starch. The Fourier transform infrared (FTIR) spectroscopy shows the significant effect of starch on CdS nanorods.
Synthesis and evaluation of optical and antimicrobial properties of Ag-SnO2 nanocomposites
NASA Astrophysics Data System (ADS)
Kumar Nair, Kishore; Kumar, Promod; Kumar, Vinod; Harris, R. A.; Kroon, R. E.; Viljoen, Bennie; Shumbula, P. M.; Mlambo, M.; Swart, H. C.
2018-04-01
We report on the sol-gel based room temperature synthesis of undoped SnO2 and Ag-SnO2 nanostructures. The synthesized nanostructures were characterized by Fourier transform infrared spectroscopy, X-ray diffraction (XRD), Raman spectroscopy, High-resolution transmission electron microscopy (HR-TEM) and UV-visible spectroscopy. The XRD pattern confirmed that the obtained nanostructures have a tetragonally rutile structure. No extra phase changes were observed after Ag doping. UV-visible spectroscopy measurements indicated that the band gap of 3.59 eV for pure SnO2 nanostructures, decreased to 3.39 eV after doping. TEM analysis showed that no regular shape morphology existed and some rod-shaped particles were also detected in the nanostructures. The antibacterial activity of the nanostructures against E. coli was evaluated and a continuous decrease of microbial count was observed. The microbial population decreased from 6 × 105 cfu/ml to 7 × 104 cfu/ml and 5 × 104 cfu/ml on SnO2 and Ag-SnO2 treatments, respectively. Thus, the nanostructures can be used for the biorational management of E. coli for waste water treatment before discharge.
Black phosphorus nanodevices at terahertz frequencies: Photodetectors and future challenges
NASA Astrophysics Data System (ADS)
Viti, Leonardo; Politano, Antonio; Vitiello, Miriam Serena
2017-03-01
The discovery of graphene triggered a rapid rise of unexplored two-dimensional materials and heterostructures having optoelectronic and photonics properties that can be tailored on the nanoscale. Among these materials, black phosphorus (BP) has attracted a remarkable interest, thanks to many favorable properties, such as the high carrier mobility, the in-plane anisotropy, the possibility to alter its transport via electrical gating, and the direct band-gap, which can be tuned by thickness from 0.3 eV (bulk crystalline) to 1.7 eV (single atomic layer). When integrated in a microscopic field effect transistor, a few-layer BP flake can detect Terahertz (THz) frequency radiation. Remarkably, the in-plane crystalline anisotropy can be exploited to tailor the mechanisms that dominate the photoresponse; a BP-based field effect transistor can be engineered to act as a plasma-wave rectifier, a thermoelectric sensor, or a thermal bolometer. Here we present a review on recent research on BP detectors operating from 0.26 THz to 3.4 THz with particular emphasis on the underlying physical mechanisms and the future challenges that are yet to be addressed for making BP the active core of stable and reliable optical and electronic technologies.
Awareness and Detection of Traffic and Obstacles Using Synthetic and Enhanced Vision Systems
NASA Technical Reports Server (NTRS)
Bailey, Randall E.
2012-01-01
Research literature are reviewed and summarized to evaluate the awareness and detection of traffic and obstacles when using Synthetic Vision Systems (SVS) and Enhanced Vision Systems (EVS). The study identifies the critical issues influencing the time required, accuracy, and pilot workload associated with recognizing and reacting to potential collisions or conflicts with other aircraft, vehicles and obstructions during approach, landing, and surface operations. This work considers the effect of head-down display and head-up display implementations of SVS and EVS as well as the influence of single and dual pilot operations. The influences and strategies of adding traffic information and cockpit alerting with SVS and EVS were also included. Based on this review, a knowledge gap assessment was made with recommendations for ground and flight testing to fill these gaps and hence, promote the safe and effective implementation of SVS/EVS technologies for the Next Generation Air Transportation System
Supernova 2010ev: A reddened high velocity gradient type Ia supernova
NASA Astrophysics Data System (ADS)
Gutiérrez, Claudia P.; González-Gaitán, Santiago; Folatelli, Gastón; Pignata, Giuliano; Anderson, Joseph P.; Hamuy, Mario; Morrell, Nidia; Stritzinger, Maximilian; Taubenberger, Stefan; Bufano, Filomena; Olivares E., Felipe; Haislip, Joshua B.; Reichart, Daniel E.
2016-05-01
Aims: We present and study the spectroscopic and photometric evolution of the type Ia supernova (SN Ia) 2010ev. Methods: We obtain and analyze multiband optical light curves and optical/near-infrared spectroscopy at low and medium resolution spanning -7 days to +300 days from the B-band maximum. Results: A photometric analysis shows that SN 2010ev is a SN Ia of normal brightness with a light-curve shape of Δm15(B) = 1.12 ± 0.02 and a stretch s = 0.94 ± 0.01 suffering significant reddening. From photometric and spectroscopic analysis, we deduce a color excess of E(B - V) = 0.25 ± 0.05 and a reddening law of Rv = 1.54 ± 0.65. Spectroscopically, SN 2010ev belongs to the broad-line SN Ia group, showing stronger than average Si IIλ6355 absorption features. We also find that SN 2010ev is a high velocity gradient SN with v˙Si = 164 ± 7 km s-1 d-1. The photometric and spectral comparison with other supernovae shows that SN 2010ev has similar colors and velocities to SN 2002bo and SN 2002dj. The analysis of the nebular spectra indicates that the [Fe II]λ7155 and [Ni II]λ7378 lines are redshifted, as expected for a high velocity gradient supernova. All these common intrinsic and extrinsic properties of the high velocity gradient (HVG) group are different from the low velocity gradient (LVG) normal SN Ia population and suggest significant variety in SN Ia explosions. This paper includes data gathered with the Du Pont Telescope at Las Campanas Observatory, Chile; and the Gemini Observatory, Cerro Pachon, Chile (Gemini Program GS-2010A-Q-14). Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile (ESO Programme 085.D-0577).
Maruyama, Hitoshi; Kobayashi, Kazufumi; Kiyono, Soichiro; Ogasawara, Sadahisa; Ooka, Yoshihiko; Suzuki, Eiichiro; Chiba, Tetsuhiro; Kato, Naoya
2018-05-25
To examine the effect of hemodynamic assessment of the left gastric vein (LGV) as a noninvasive test to diagnose esophageal varices (EV) in cirrhosis patients. This cross-sectional study consisted of 229 cirrhosis patients (62.7 ± 11.8 years; Child-Pugh score 5-14). One hundred fifty-four patients had EV (67.2%; small, 53; medium, 71; large, 30). All patients underwent a blood test and Doppler ultrasound followed by upper gastrointestinal endoscopy on the same day. The diagnostic ability for EV was compared between LGV-related findings and the platelet count/spleen diameter ratio (Plt/Spl). The detectability of the LGV was higher in patients with EV (129/144, 89.6%) than in those without (35/75, 46.7%; p < 0.0001), and was higher in those with large EV (30/30, 100%) than in those without (134/199, 67.3%; p = 0.0002). The positive detection of the LGV showed 100% sensitivity and negative predictive value (NPV) to identify large EV in the whole cohort and compensated group (n = 127). The best cutoff value in the LGV diameter was 5.35 mm to identify large EV, showing 0.753 area under the receiver operating characteristic curve (AUROC) with 90% sensitivity and 96.5% NPV. The Plt/Spl showed 62.1% sensitivity and 87.1% NPV, and the best cutoff value was 442.9 to identify large EV with 0.658 AUROC, which was comparable to LGV-based assessment (p = 0.162). This same-day comparison study demonstrated the value of LGV-based noninvasive test to identify large EV with high sensitivity and NPV in cirrhosis patients at a lower cost.
A mouse model of paralytic myelitis caused by enterovirus D68
Yu, Guixia; Leser, J. Smith; Yagi, Shigeo; Tyler, Kenneth L.
2017-01-01
In 2014, the United States experienced an epidemic of acute flaccid myelitis (AFM) cases in children coincident with a nationwide outbreak of enterovirus D68 (EV-D68) respiratory disease. Up to half of the 2014 AFM patients had EV-D68 RNA detected by RT-PCR in their respiratory secretions, although EV-D68 was only detected in cerebrospinal fluid (CSF) from one 2014 AFM patient. Given previously described molecular and epidemiologic associations between EV-D68 and AFM, we sought to develop an animal model by screening seven EV-D68 strains for the ability to induce neurological disease in neonatal mice. We found that four EV-D68 strains from the 2014 outbreak (out of five tested) produced a paralytic disease in mice resembling human AFM. The remaining 2014 strain, as well as 1962 prototype EV-D68 strains Fermon and Rhyne, did not produce, or rarely produced, paralysis in mice. In-depth examination of the paralysis caused by a representative 2014 strain, MO/14-18947, revealed infectious virus, virion particles, and viral genome in the spinal cords of paralyzed mice. Paralysis was elicited in mice following intramuscular, intracerebral, intraperitoneal, and intranasal infection, in descending frequency, and was associated with infection and loss of motor neurons in the anterior horns of spinal cord segments corresponding to paralyzed limbs. Virus isolated from spinal cords of infected mice transmitted disease when injected into naïve mice, fulfilling Koch’s postulates in this model. Finally, we found that EV-D68 immune sera, but not normal mouse sera, protected mice from development of paralysis and death when administered prior to viral challenge. These studies establish an experimental model to study EV-D68-induced myelitis and to better understand disease pathogenesis and develop potential therapies. PMID:28231269
Piralla, Antonio; Principi, Nicola; Ruggiero, Luca; Girello, Alessia; Giardina, Federica; De Sando, Elisabetta; Caimmi, Silvia; Bianchini, Sonia; Marseglia, Gian Luigi; Lunghi, Giovanna; Baldanti, Fausto; Esposito, Susanna
In recent years, several outbreaks due to Enterovirus D-68 (EV-D68) have been reported, and it was confirmed that the virus can cause upper and lower respiratory tract diseases and be associated with the development of neurological problems. The main aim of this research was to study the genetic characteristics of EV-D68 strains that were circulating in Italy identified during an outbreak of an EV-D68 infection that occurred in Italy during the period March-October 2016. A retrospective study of the circulation of different types and subtypes of EV-D68 was performed. Nasopharyngeal swabs were collected from March 2016 through October 2016 in children admitted to the Emergency Room with respiratory diseases. Among 390 children, 22 (59.1% males; mean age 47 months) were found to be infected by EV-D68 and most of them were immunocompetent (72.7%). Pneumonia was diagnosed in 12 (54.5%) children. Phylogenetic analysis of the VP1 region showed that all the strains identified in this study belonged to clade B3. Within B3 subclade, the Italian EV-D68 strains were most closely related to strains detected in Southern China in 2015 as well as to strains detected in US and the Netherlands in 2016. These results showed that EV-D68 infections are a common cause of lower respiratory illness in pediatric age. The circulation of one EV-D68 lineage has been proven in Italy and in the European region during 2016. However, further studies are required to investigate whether some strains or lineages may possess a higher affinity for the lower airway or central nervous system. Copyright © 2018 Elsevier B.V. All rights reserved.
Zhang, X; Pengsakul, T; Tukayo, M; Yu, L; Fang, W; Luo, D
2017-09-25
The tea green leafhopper, Empoasca vitis Göthe, is one of the most serious pests in tea growing areas. This study investigated the roles played by olfaction and vision in host orientation behavior. The compound eye of E. vitis was found to be a photopic eye; few olfactory sensilla were found on the antennae, while abundant gustatory sensilla were recorded on the mouthparts. Three opsin genes (EV_LWop, EV_UVop, EV_Bop) were isolated and found to be mainly expressed in the compound eye compared with other parts of the body. Immunolocalization indicated that the opsins mainly located in the different regions of rhabdom. The transcription levels of EV_LWop, EV_Bop and EV_UVop were reduced by 77.3, 70.0 and 40.0%, respectively, by RNA interference induced by being fed a special RNA-rich diet for 6 days. The rate of tropism to host color was effectively impaired by 67.6 and 29.5% in the dsEV_LWop and dsEV_Bop treatment groups, but there was no significant change in the dsEV_UVop group. The determination of the cause of the tropism indicated that odors from the host over long distances were unable to attract E. vitis and were only detected when the insects were close to the host. The developed compound eye of E. vitis plays a leading role in host location, and the long-wavelength opsin significantly affects the tropism to host color; the lack of olfactory sensilla results in long-distance odors not being able to be detected until the insect is near to the host-plant. The understanding of these behavioral mechanisms, especially the importance of opsin genes is expected to be useful for pest management.
Logotheti, Maria; Pogka, Vasiliki; Horefti, Elina; Papadakos, Konstantinos; Giannaki, Maria; Pangalis, Anastasia; Sgouras, Dionyssios; Mentis, Andreas
2009-11-01
Aseptic meningitis is the most commonly observed CNS infection and is mainly attributed to Non-Polio Enteroviruses (EV). Identification and genetic analysis of the EV involved in the recent aseptic meningitis outbreak which occurred in Greece, during the summer of 2007. In total, 213 CSF and faecal samples were examined for EV presence by culture, while enteroviral RNA detection was performed by nucleic acid sequence-based amplification assay (NASBA). EV strains were typed by seroneutralization, as well as nested RT-PCR followed by VP1-2A gene partial sequencing. Phylogenetic analysis was carried out for the identification of the genetic relatedness among the isolated EV strains. EV detection rate in CSF and faecal samples was 43.9% and 70.8%, respectively. EV serotyping and VP1 region analysis revealed the predominance of echovirus 4 (ECV4) serotype and the circulation of ECV6, 9, 14, 25, Coxsackie A6, A15, A24 and Coxsackie B1 serotypes. All ECV4 isolates presented a 98.7% similarity in nucleotide sequence, with a Spanish ECV4 strain, isolated during a meningitis outbreak in 2006. It is the first time that ECV4 is associated with an aseptic meningitis outbreak in Greece, during which 9 different EV serotypes were co-circulating. All Greek ECV4 isolates were closely related to the Spanish ECV4 strain. Genetic analysis of the VP1 gene can significantly contribute to the revelation of the endemic EV strains circulation pattern and their phylogenetic relationship with enteroviruses involved in epidemics of distant geographical areas at different time periods.
Ling, Beh Poay; Jalilian, Farid Azizi; Harmal, Nabil Saad; Yubbu, Putri; Sekawi, Zamberi
2014-12-01
Hand, foot and mouth disease (HFMD) is a common viral infection among infants and children. The major causative agents of HFMD are enterovirus 71 (EV71) and coxsackievirus A16 (CVA16). Recently, coxsackievirus A6 (CVA6) infections were reported in neighboring countries. Infected infants and children may present with fever, mouth/throat ulcers, rashes and vesicles on hands and feet. Moreover, EV71 infections might cause fatal neurological complications. Since 1997, EV71 caused fatalities in Sarawak and Peninsula Malaysia. The purpose of this study was to identify and classify the viruses which detected from the patients who presenting clinical signs and symptoms of HFMD in Seri Kembangan, Malaysia. From December 2012 until July 2013, a total of 28 specimens were collected from patients with clinical case definitions of HFMD. The HFMD viruses were detected by using semi-nested reverse transcription polymerase chain reaction (snRT-PCR). The positive snRT-PCR products were sequenced and phylogenetic analyses of the viruses were performed. 12 of 28 specimens (42.9%) were positive in snRT-PCR, seven are CVA6 (58.3%), two CVA16 (16.7%) and three EV71 (25%). Based on phylogenetic analysis studies, EV71 strains were identified as sub-genotype B5; CVA16 strains classified into sub-genotype B2b and B2c; CVA6 strains closely related to strains in Taiwan and Japan. In this study, HFMD in Seri Kembangan were caused by different types of Enterovirus, which were EV71, CVA6 and CVA16.
Giulieri, Stefano G; Chapuis-Taillard, Caroline; Manuel, Oriol; Hugli, Olivier; Pinget, Christophe; Wasserfallen, Jean-Blaise; Sahli, Roland; Jaton, Katia; Marchetti, Oscar; Meylan, Pascal
2015-01-01
Enterovirus (EV) is the most frequent cause of aseptic meningitis (AM). Lack of microbiological documentation results in unnecessary antimicrobial therapy and hospitalization. To assess the impact of rapid EV detection in cerebrospinal fluid (CSF) by a fully-automated PCR (GeneXpert EV assay, GXEA) on the management of AM. Observational study in adult patients with AM. Three groups were analyzed according to EV documentation in CSF: group A = no PCR or negative PCR (n=17), group B = positive real-time PCR (n = 20), and group C = positive GXEA (n = 22). Clinical, laboratory and health-care costs data were compared. Clinical characteristics were similar in the 3 groups. Median turn-around time of EV PCR decreased from 60 h (IQR (interquartile range) 44-87) in group B to 5h (IQR 4-11) in group C (p<0.0001). Median duration of antibiotics was 1 (IQR 0-6), 1 (0-1.9), and 0.5 days (single dose) in groups A, B, and C, respectively (p < 0.001). Median length of hospitalization was 4 days (2.5-7.5), 2 (1-3.7), and 0.5 (0.3-0.7), respectively (p < 0.001). Median hospitalization costs were $5458 (2676-6274) in group A, $2796 (2062-5726) in group B, and $921 (765-1230) in group C (p < 0.0001). Rapid EV detection in CSF by a fully-automated PCR improves management of AM by significantly reducing antibiotic use, hospitalization length and costs. Copyright © 2014 Elsevier B.V. All rights reserved.
OPTOELECTRONIC PROPERTIES AND THE GAP STATE DISTRIBUTION IN a-Si, Ge ALLOYS
NASA Astrophysics Data System (ADS)
Aljishi, S.; Smith, Z. E.; Wagner, S.
In this article we review optical and electronic transport data measured in amorphous silicon-germanium alloys with the goal of identifying the density of states as a function of alloy composition. The results show that while alloying a-Si:H with germanium has little effect on the valence band tail, the conduction band tail density of states is increased dramatically. Defect distributions both above and below midgap are detected and identified with the dangling bond D+/° and D°/- states. The density of deep defects below midgap increases exponentially with germanium content. Above midgap, a large concentration of defects lying between 0.3 and 0.5 eV below the conduction band edge has a strong effect on transient electron transport.
Enterovirus infections in hospitals of Ile de France region over 2013.
Molet, Lucie; Saloum, Kenda; Marque-Juillet, Stéphanie; Garbarg-Chenon, Antoine; Henquell, Cécile; Schuffenecker, Isabelle; Peigue-Lafeuille, Hélène; Rozenberg, Flore; Mirand, Audrey
2016-01-01
The monitoring and genotyping of Enterovirus (EV) infections can help to associate particular or severe clinical manifestations with specific EV types and to identify the aetiology of infectious outbreaks. To describe the epidemiological features of EV infections diagnosed during the year 2013 in the Greater Paris area (Ile de France). During 2013, 2497 samples taken from 470 patients in 33 hospitals of Ile-de France were tested for EV genome by RT-PCR. EV genotyping was performed by the National Reference Centre (NRC) laboratories. EV infections were retrospectively reviewed by retrieving clinical and genotyping data from the NRC database. Of the 2497 samples, 490 (19.6%) was positive for EV genome detection. These EV infections represented 88.7% and 24.1%, respectively, of all reported regional and national infections. Twenty-seven different genotypes were identified. Echovirus 30 (E-30) accounted for 54.1% of all characterized strains and caused a large outbreak. Four severe neonatal infections were reported, of which two were caused by EV-A71. Respiratory infections involving EV-D68 were observed in two adults. One fatal case of Coxsackievirus A2-associated myocarditis was reported. Monitoring EV infections in combination with EV genotyping via the French EV network characterized the epidemiology of EV infections in the Ile de France region in 2013 and documented severe EV infections associated with EV-A71 or CV-A2. Copyright © 2015 Elsevier B.V. All rights reserved.
Electron Impact Excitation of the lowest-lying A^1B1 Electronic state of Water
NASA Astrophysics Data System (ADS)
Teubner, P. J. O.; Thorn, P. A.; Brunger, M. J.; Campbell, L.; Kato, H.; Makochekanwa, C.; Hoshino, M.; Tanaka, H.
2006-05-01
We report differential and integral cross sections for excitation of the A^1B1 electronic state of water. The energy range of these measurements is 15--50eV and, where possible, comparison is made to the results of available theory. We additionally report generalised oscillator strengths (at energies 30, 100 and 200eV) and a value of the optical oscillator strength (OOS) for this state. The present OOS is also compared to the results of earlier studies.
Growth and characterization of InAs sub-monolayer quantum dots with varying fractional coverage
NASA Astrophysics Data System (ADS)
Mukherjee, S.; Pradhan, A.; Mukherje, S.; Maitra, T.; Sengupta, S.; Chakrabarti, S.; Nayak, A.; Bhunia, S.
2018-04-01
We have studied the optical properties of InAs sub monolayer (SML) quantum dots in GaAs quantum well with InAs average deposition below one monolayer (ML) [0.3 - 0.8 ML] in Molecular Beam Epitaxy (MBE) growth system. The samples have exhibited sharp photoluminescence peak at low temperature (3.3 K) which could be tuned in the near infrared (NIR) region (1.42 eV-1.47 eV) by controlling the InAs SML coverage.
Suguna, S; Anbuselvi, D; Jayaraman, D; Nagaraja, K S; Jeyaraj, B
2014-11-11
Piperazine-1,4-diium bis 2,4,6-trinitrophenolate is one of the useful organic materials with nonlinear optical (NLO) and pharmaceutical applications. The material was grown by slow evaporation solution growth method at room temperature. The crystal system and lattice parameters were identified by single crystal XRD analysis. The grown material crystallizes in monoclinic system with P21/n space group. The main functional groups NH2, NO2, CN, CC, and phenolic 'O' atom were identified using FTIR analysis. The protons and carbons of grown crystal with various chemical environments were studied by 1H and 13C NMR spectroscopy to confirm the molecular structure. The optical properties of the crystal were studied by UV-vis-NIR spectroscopy and the transmission 100% range starts from 532 nm onwards. The optical band gap was measured as 2.63 eV from the plot of (αhν)2 versus hν. The thermal stability was detected at 304.1°C using TG-DTA analysis. The dielectric studies of the sample were carried out at different temperatures in the frequency range from 50 Hz to 5 MHz to establish the dielectric nature of the crystal. Photoconductivity measurements were carried out on the grown crystal. The Second Harmonic Generation (SHG) of the crystal was tested to confirm the nonlinear optical property. Copyright © 2014 Elsevier B.V. All rights reserved.
Trapping of a microsphere pendulum resonator in an optical potential
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, J. M.; Photonics Centre, Tyndall National Institute, Prospect Row, Cork; Wu, Y.
We propose a method to spatially confine or corral the movements of a micropendulum via the optical forces produced by two simultaneously excited optical modes of a photonic molecule comprising two microspherical cavities. We discuss how the cavity-enhanced optical force generated in the photonic molecule can create an optomechanical potential of about 10 eV deep and 30 pm wide, which can be used to trap the pendulum at any given equilibrium position by a simple choice of laser frequencies. This result presents opportunities for very precise all-optical self-alignment of microsystems.
... EV-D68 outbreak this year or in future years? Enteroviruses are ever-present in the community. We can’t predict whether EV-D68 will be a common type of enterovirus detected this year or in other future seasons. A mix of ...
NASA Astrophysics Data System (ADS)
Sıdır, İsa
2017-10-01
Six new low-band-gap copolymers of donor-donor-acceptor (D-D-A) architecture have been designed using density functional theory and time-dependent density functional theory methods in order to use them in organic photovoltaic cell (OPVC). Phenanthro[3,4-d:9,10-d‧]bis([1,2,3]thiadiazole)-10,12-dicarbonitrile moiety has been used as an acceptor for all compounds. We insert benzo[1,2-b:4,5-b‧]dithiophene and N,N-diphenylbenzo[1,2-b:4,5-b‧]dithiophen-2-amine units as donor to complete designing of copolymers. In order to tuning the optical and electronic properties, we have modified the donor unit by substituted with amine, methoxyamine, N-methylenethiophen-2-amine, methoxy, alkoxy moieties. The band gap (Eg), HOMO and LUMO values and plots, open circuit voltage (VOC) as well as optical properties have been analysed for designed copolymers. The optimised copolymers exhibit low-band-gap lying in the range of 1.03-2.24 eV. DPTD-6 copolymer presents the optimal properties to be used as an active layer due to its low Eg (1.03 eV) and a moderate VOC (0.56 eV). Thus, OPVC based on this copolymer in bulk-heterojunction composites with [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) as an acceptor has been modelled. Eg and VOC values of composite material DPTD-6:PCBM are found as 1.32 and 0.65 eV, respectively. A model band diagram has been established for OPVC, simulating the energy transfer between active layers.
NASA Astrophysics Data System (ADS)
Souri, Dariush; Tahan, Zahra Esmaeili
2015-05-01
A new method (named as DASF: Derivation of absorption spectrum fitting) is proposed for the determination of optical band gap and the nature of optical transitions in semiconductors; this method only requires the measurement of the absorbance spectrum of the sample, avoiding any needs to film thickness or any other parameters. In this approach, starting from absorption spectrum fitting (ASF) procedure and by the first derivation of the absorbance spectrum, the optical band gap and then the type of optical transition can be determined without any presumption about the nature of transition. DASF method was employed on (60-x)V2O5-40TeO2-xAg2O glassy systems (hereafter named as TVAgx), in order to confirm the validity of this new method. For the present glasses, the DASF results were compared with the results of ASF procedure for, confirming a very good agreement between these approaches. These glasses were prepared by using the melt quenching and blowing methods to obtain bulk and film samples, respectively. Results show that the optical band gap variation for TVAgx glasses can be divided into two regions, 0 ≤ x ≤ 20 and 20 ≤ x ≤ 40 mol%. The optical band gap has a maximum value equal to 2.72 eV for x = 40 and the minimum value equal to 2.19 eV for x = 40. Also, some physical quantities such as the width of the band tails (Urbach energy), glass density, molar volume, and optical basicity were reported for the under studied glasses.
Artificial optical emissions in the thermosphere induced by powerful radio waves: A review
NASA Astrophysics Data System (ADS)
Kosch, M.; Senior, A.; Gustavsson, B.; Grach, S.; Pedersen, T.; Rietveld, M.
High-power high-frequency radio waves beamed into the ionosphere with O-mode polarization cause plasma turbulence which can accelerate electrons These electrons collide with the F-layer neutrals causing artificial optical emissions identical to natural aurora The brightest optical emissions are O 1D 630 nm with a threshold of 2 eV and O 1S 557 7 nm with a threshold of 4 2 eV The optical emissions give direct evidence of electron acceleration by plasma turbulence as well as their non-Maxwellian energy spectrum HF pumping of the ionosphere also causes electron temperature enhancements but these alone are not sufficient to explain the optical emissions EISCAT plasma-line measurements indicate that the enhanced electron temperatures are consistent with the bulk of the electrons having a Maxwellian energy spectrum Novel discoveries include 1 Very large electron temperature enhancements of several 1000 K which maximise along the magnetic field line direction 2 Ion temperature enhancements of a few 100 K 3 Large ion outflows exceeding 200 m s 4 The F-layer optical emission maximizes sharply near the magnetic zenith with clear evidence of self-focusing 5 The optical emission generally appears below the HF pump reflection altitude as well as the upper-hybrid resonance height 6 The optical emission and HF coherent radar backscatter generally minimize when pumping on the third or higher electron gyro-harmonic frequency suggesting upper-hybrid waves as the primary mechanism 7 The optical emissions and HF coherent backscatter are enhanced on the
Optical studies on electron beam evaporated Lithium Triborate films
NASA Astrophysics Data System (ADS)
Mohandoss, R.; Dhanuskodi, S.; Sanjeeviraja, C.
2012-10-01
Lithium triborate (LB3) has numerous applications in scintillator for neutron detection, laser weapon and communication. LB3 films have been prepared by electron beam evaporation technique under a pressure of 1 × 10-5 mbar on glass substrate at 323 K for 4 min. The crystallographic orientations and the lattice parameters (a = 8.55 (2); b = 5.09 (2); c = 7.39 (2) Å) were determined by powder XRD indicating the (1 1 1) preferential orientation of the film. The lower cut off wavelength at 325 nm with 75% transparency was measured from the UV-vis spectrum. The optical constants extinction coefficient (K), reflectance (R), the linear refractive index (1.34) and the optical energy band gap (˜4.0 eV) were estimated. The photoluminescence spectrum shows the emission peak in the visible region with low concentration of oxygen defects. LB3 is found to be second harmonic generation (SHG) active using a Q-switched Nd:YAG laser (1064 nm, 9 ns, 10 Hz). The nonlinear refractive index (n2 ˜ 10-16 cm2/W) and nonlinear absorption coefficient (β ˜ 10-2 cm/W) reveal (Z-scan technique) that the material has negative nonlinearity and self-focusing nature.
Optical studies on electron beam evaporated lithium triborate films.
Mohandoss, R; Dhanuskodi, S; Sanjeeviraja, C
2012-10-01
Lithium triborate (LB3) has numerous applications in scintillator for neutron detection, laser weapon and communication. LB3 films have been prepared by electron beam evaporation technique under a pressure of 1×10(-5) mbar on glass substrate at 323 K for 4 min. The crystallographic orientations and the lattice parameters (a=8.55 (2); b=5.09 (2); c=7.39 (2)Å) were determined by powder XRD indicating the (111) preferential orientation of the film. The lower cut off wavelength at 325 nm with 75% transparency was measured from the UV-vis spectrum. The optical constants extinction coefficient (K), reflectance (R), the linear refractive index (1.34) and the optical energy band gap (~4.0 eV) were estimated. The photoluminescence spectrum shows the emission peak in the visible region with low concentration of oxygen defects. LB3 is found to be second harmonic generation (SHG) active using a Q-switched Nd:YAG laser (1064 nm, 9 ns, 10 Hz). The nonlinear refractive index (n(2)~10(-16) cm(2)/W) and nonlinear absorption coefficient (β~10(-2) cm/W) reveal (Z-scan technique) that the material has negative nonlinearity and self-focusing nature. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Othman, H. A.; Arzumanyan, G. M.; Möncke, D.
2016-12-01
Undoped, singly Sm doped, Ce doped, and Sm/Ce co-doped lithium alumino-phosphate glasses with different alkaline earth modifiers were prepared by melt quenching. The structure of the prepared glasses was investigated by FT-IR and Raman, as well as by optical spectroscopy. The effect of the optical basicity of the host glass matrix on the added active dopants was studied, as was the effect doping had on the phosphate structural units. The optical edge shifts toward higher wavelengths with an increase in the optical basicity due to the increased polarizability of the glass matrix, but also with increasing CeO2 concentration as a result of Ce3+/Ce4+ inter valence charge transfer (IV-CT) absorption. The optical band gap for direct and indirect allowed transitions was calculated for the undoped glasses. The glass sample containing Mg2+ modifier ions is found to have the highest value (4.16 eV) for the optical band gap while Ba2+ has the lowest value (3.61 eV). The change in the optical band gap arises from the structural changes and the overall polarizability (optical basicity). Refractive index, molar refractivity Rm and molar polarizability αm values increase with increasing optical basicity of the glasses. The characteristic absorption peaks of Sm3+ were also investigated. For Sm/Ce co-doped glasses, especially at high concentration of CeO2, the absorption of Ce3+ hinders the high energy absorption of Sm3+ and this effect becomes more obvious with increasing optical basicity.
Sadeghi, Farzin; Talebi-Nesami, Masoumeh; Barari-Savadkouhi, Rahim; Bijani, Ali; Ferdosi-Shahandashti, Elahe; Yahyapour, Yousef
2017-01-01
Enterovirus (EV) infections are one of the most common causes of aseptic meningitis in pediatrics. To diagnose EV meningitis, virus isolation in cell cultures is often time consuming and lacks sensitivity to be of clinical relevance. This makes the virus culture results difficult to interpret. The rapid detection of EVs in cerebrospinal fluid (CSF) by molecular diagnostic techniques may improve the management of patients with aseptic meningitis. The purpose of the present study was to develop a more convenient and sensitive alternative technique to viral culture. The current investigation aimed to explore the prevalence of EVs in CSF of children with suspected aseptic meningitis in northern Iran, between June 2014 and March 2015 via the one-step real-time RT-PCR technique. A single center cross-sectional study was carried out on 50 children suspected with aseptic meningitis, aged 6 months to 13 years. The presence of EV RNA in CSF samples was screened by the use of qualitative one-step real-time RT-PCR. Enteroviral RNA was detected in 9 (18%) subjects using the one-step real-time RT-PCR assay. There was significant difference between EV positive and negative subjects regarding mean age (P=0.023), mean lymphocyte percentage (P=0.001) and mean glucose levels in CSF (P=0.037). The disease onset data indicate that the majority of EV meningitis occurred in the summer. This study provides the first data on the prevalence and epidemiology of EV infections in children with suspected aseptic meningitis in northern Iran.
NASA Astrophysics Data System (ADS)
Ren, Dahua; Xiang, Baoyan; Hu, Cheng; Qian, Kai; Cheng, Xinlu
2018-04-01
Hydrogen can be trapped in the bulk materials in four forms: interstitial molecular H2, interstitial atom H, O‑H+(2Si=O–H)+, Si‑H‑( {{4O}}\\bar \\equiv {{Si&x2212H}})‑ to affect the electronic and optical properties of amorphous silica. Therefore, the electronic and optical properties of defect-free and hydrogen defects in amorphous silica were performed within the scheme of density functional theory. Initially, the negative charged states hydrogen defects introduced new defect level between the valence band top and conduction band bottom. However, the neutral and positive charged state hydrogen defects made both the valence band and conduction band transfer to the lower energy. Subsequently, the optical properties such as absorption spectra, conductivity and loss functions were analyzed. It is indicated that the negative hydrogen defects caused the absorption peak ranging from 0 to 2.0 eV while the positive states produced absorption peaks at lower energy and two strong absorption peaks arose at 6.9 and 9.0 eV. However, the neutral hydrogen defects just improved the intensity of absorption spectrum. This may give insights into understanding the mechanism of laser-induced damage for optical materials. Project supported by the Science and Technology of Hubei Provincial Department of Education (No. B2017098).
NASA Astrophysics Data System (ADS)
Mahmoud, K. H.
2015-03-01
Silver nanoparticles (Ag NPs) were synthesized by chemical reduction of silver salt (AgNO3) through sodium borohydride. The characteristic surface plasmon resonance band located at around 400 nm in the UV-Visible absorption spectrum confirmed the formation of Ag nanoparticles. Polyvinyl alcohol-silver (PVA-Ag) nanocomposite films were prepared by the casting technique. The morphology and interaction of PVA with Ag NPs were examined by transmission electron microscopy and FTIR spectroscopy. Optical studies show that PVA exhibited indirect allowed optical transition with optical energy gap of 4.8 eV, which reduced to 4.45 eV under addition of Ag NPs. Optical parameters such as refractive index, complex dielectric constant and their dispersions have been analyzed using Wemple and DiDomenco model. Color properties of the nanocomposites are discussed in the framework of CIE L∗u∗v∗ color space. The antimicrobial activity of the nanocomposite samples was tested against Gram positive bacteria (Staphylococcus aureus NCTC 7447 &Bacillus subtillis NCIB 3610), Gram negative bacteria (Escherichia coli, NTC10416 &Pseudomonas aeruginosa NCIB 9016) and fungi (Aspergillus niger Ferm - BAM C-21) using the agar diffusion technique. The antimicrobial study showed that PVA has moderate antibacterial activity against B. subtillis and the 0.04 wt% Ag NPs composite sample effect was strong against S. aureus.
NASA Astrophysics Data System (ADS)
Rezaee, Sahar; Ghobadi, Nader
2018-06-01
The present study aims to investigate optical properties of Ag-Cu-Pd alloy thin films synthesized by DC-magnetron sputtering method. The thin films are deposited on the glass and silicon substrates using Argon gas and Ag-Cu-Pd target. XRD analysis confirms the successful growth of Ag, Cu, and Pd NPs with FCC crystalline structure. Moreover, UV-visible absorption spectroscopy is applied to determine optical properties of the prepared samples which are affected by changes in surface morphology. The existence of single surface plasmon resonance (SPR) peak near 350 nm proves the formation of silver nanoparticles with a slight red shift through increasing deposition time. Ineffective thickness method (ITM) and Derivation of ineffective thickness method (DITM) are applied to extract optical band gap and transition type via absorption spectrum. SEM and AFM analyses show the distribution of near-spherical nanoparticles covering the surface of thin films. Furthermore, thickness variation affects the grain size. In addition, TEM image reveals the uniform size distribution of nanoparticles with an average particle size of about 15 nm. The findings show that increasing grain size and crystallite order along with the decrease of structural defect and disorders decrease optical band gap from 3.86 eV to 2.58 eV.
Optical Properties of Cu2O Electrodeposited on FTO Substrates: Effects of Cl Concentration
NASA Astrophysics Data System (ADS)
Bouderbala, Ibrahim Yaacoub; Herbadji, Abdelmadjid; Mentar, Loubna; Beniaiche, Abdelkrim; Azizi, Amor
2018-03-01
In this study, cuprous oxide (Cu2O) nanostructures were deposited via electrochemical route from aqueous solution containing different concentrations of copper chloride (CuCl2). The effect of chloride (Cl- ) ions on structural and optical properties was studied. Photocurrent results show that the type of conduction of these nanostructures is affected by adding Cl- ions and changed from p-type to n-type conduction. The x-ray diffraction (XRD) shows that our samples were pure Cu2O with a preferential orientation along the (111) direction. The intensity of (111) peak increases with the increase of Cl- concentration. The optical characterization of Cu2O was studied by analyzing the transmission spectrum measured in normal incidence in the range of 300-1100 nm. The thickness and the refractive index of Cu2O nanostructures were determined using different methods. The optical gap energy ( E g) and associated Urbach energy ( E u) were also calculated. Effectively, the optical gap was estimated from Tauc extrapolation; it was found that it decreases from 2.02 eV to 1.85 eV with the increase in CuCl2 concentration; on the other hand, the thickness of the layers increases from 267 nm to 300 nm.
Chen, Jingfang; Zhang, Rusheng; Ou, Xinhua; Yao, Dong; Huang, Zheng; Li, Linzhi; Sun, Biancheng
2017-06-01
A TaqMan based duplex one-step real time RT-PCR (rRT-PCR) assay was developed for the rapid detection of Coxsackievirus A10 (CV-A10) and other enterovirus (EVs) in clinical samples. The assay was fully evaluated and found to be specific and sensitive. When applied in 115 clinical samples, a 100% diagnostic sensitivity in CV-A10 detection and 97.4% diagnostic sensitivity in other EVs were found. Copyright © 2017 Elsevier Ltd. All rights reserved.
Structural and optical modification in 4H-SiC following 30 keV silver ion irradiation
NASA Astrophysics Data System (ADS)
Kaushik, Priya Darshni; Aziz, Anver; Siddiqui, Azher M.; Lakshmi, G. B. V. S.; Syväjärvi, Mikael; Yakimova, Rositsa; Yazdi, G. Reza
2018-05-01
The market of high power, high frequency and high temperature based electronic devices is captured by SiC due to its superior properties like high thermal conductivity and high sublimation temperature and also due to the limitation of silicon based electronics in this area. There is a need to investigate effect of ion irradiation on SiC due to its application in outer space as outer space is surrounded both by low and high energy ion irradiations. In this work, effect of low energy ion irradiation on structural and optical property of 4H-SiC is investigated. ATR-FTIR is used to study structural modification and UV-Visible spectroscopy is used to study optical modifications in 4H-SiC following 30 keV Ag ion irradiation. FTIR showed decrease in bond density of SiC along the ion path (track) due to the creation of point defects. UV-Visible absorption spectra showed decrease in optical band gap from 3.26 eV to 2.9 eV. The study showed degradation of SiC crystallity and change in optical band gap following low energy ion irradiation and should be addressed while fabricationg devices based on SiC for outer space application. Additionally, this study provides a platform for introducing structural and optical modification in 4H-SiC using ion beam technology in a controlled manner.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wünsche, Martin; Fuchs, Silvio; Aull, Stefan
A quasi-supercontinuum source in the extreme ultraviolet (XUV) is demonstrated using a table-top femtosecond laser and a tunable optical parametric amplifier (OPA) as a driver for high-harmonic generation (HHG). The harmonic radiation, which is usually a comb of odd multiples of the fundamental frequency, is generated by near-infrared (NIR) laser pulses from the OPA. A quasi-continuous XUV spectrum in the range of 30 to 100 eV is realized by averaging over multiple harmonic comb spectra with slightly different fundamental frequencies and thus different spectral spacing between the individual harmonics. The driving laser wavelength is swept automatically during an averaging timemore » period. With a total photon flux of 4×10 9 photons/s in the range of 30 eV to 100 eV and 1×10 7 photons/s in the range of 100 eV to 200 eV, the resulting quasi-supercontinuum XUV source is suited for applications such as XUV coherence tomography (XCT) or near-edge absorption fine structure spectroscopy (NEXAFS).« less
Wünsche, Martin; Fuchs, Silvio; Aull, Stefan; ...
2017-03-16
A quasi-supercontinuum source in the extreme ultraviolet (XUV) is demonstrated using a table-top femtosecond laser and a tunable optical parametric amplifier (OPA) as a driver for high-harmonic generation (HHG). The harmonic radiation, which is usually a comb of odd multiples of the fundamental frequency, is generated by near-infrared (NIR) laser pulses from the OPA. A quasi-continuous XUV spectrum in the range of 30 to 100 eV is realized by averaging over multiple harmonic comb spectra with slightly different fundamental frequencies and thus different spectral spacing between the individual harmonics. The driving laser wavelength is swept automatically during an averaging timemore » period. With a total photon flux of 4×10 9 photons/s in the range of 30 eV to 100 eV and 1×10 7 photons/s in the range of 100 eV to 200 eV, the resulting quasi-supercontinuum XUV source is suited for applications such as XUV coherence tomography (XCT) or near-edge absorption fine structure spectroscopy (NEXAFS).« less
Electron impact excitation of the merocyanine molecule in the gas phase
NASA Astrophysics Data System (ADS)
Kulinich, A. V.; Ishchenko, A. A.; Kukhta, I. N.; Mitryukhin, L. K.; Kazakov, S. M.; Kukhta, A. V.
2018-03-01
Electronic transitions in a merocyanine dye were studied in the gas phase using electron energy loss spectroscopy and compared with the optical absorption spectra. It was found that the most intense band of the S1 ← S0 polymethine transition lies at 2.8 eV in vapor and 2.4 eV in n-hexane. Higher electronic transitions in the range of 3.7-7 eV were also analyzed. Besides, the singlet-triplet transition was revealed near 1.8 eV. TDDFT simulation of singlet-singlet transitions in the studied molecule was performed using B97D3, B3LYP, B3PW91 and wB97xD functionals. The calculated energy of the long-wavelength transition is closest to the experimental value with the latter. Other functionals result in the energy 0.2-0.4 eV exceeding experimental. The interpretation of higher transitions/bands is complicated due to their superposition and difference between experimental and calculated data. The excitation anisotropy spectra were measured in glycerol for more reliable determination of higher transitions and comparison with the TDDFT/PCM simulation.
Brett, Sabine I; Lucien, Fabrice; Guo, Charles; Williams, Karla C; Kim, Yohan; Durfee, Paul N; Brinker, C J; Chin, Joseph I; Yang, Jun; Leong, Hon S
2017-05-01
The ability to isolate extracellular vesicles (EVs) such as exosomes or microparticles is an important method that is currently not standardized. While commercially available kits offer purification of EVs from biofluids, such purified EV samples will also contain non-EV entities such as soluble protein and nucleic acids that could confound subsequent experimentation. Ideally, only EVs would be isolated and no soluble protein would be present in the final EV preparation. We compared commercially available EV isolation kits with immunoaffinity purification techniques and evaluated our final EV preparations using atomic force microscopy (AFM) and nanoscale flow cytometry (NFC). AFM is the only modality capable of detecting distinguishing soluble protein from EVs which is important for downstream proteomics approaches. NFC is the only technique capable of quantitating the proportion of target EVs to non-target EVs in the final EV preparation. To determine enrichment of prostate derived EVs relative to non-target MPs, anti-PSMA (Prostate Specific Membrane Antigen) antibodies were used in NFC. Antibody-based immunoaffinity purification generated the highest quality of prostate derived EV preparations due to the lack of protein and RNA present in the samples. All kits produced poor purity EV preparations that failed to deplete the sample of plasma protein. While attractive due to their ease of use, EV purification kits do not provide substantial improvements in isolation of EVs from biofluids such as plasma. Immunoaffinity approaches are more efficient and economical and will also eliminate a significant portion of plasma proteins which is necessary for downstream approaches. © 2017 Wiley Periodicals, Inc.
The electronic and optical properties of CH3NH3MoI3 perovskite
NASA Astrophysics Data System (ADS)
Kansara, Shivam; Sonvane, Yogesh; Gupta, Sanjeev K.
2018-05-01
In this work, a first-principles theoretical study of hybrid perovskite CH3NH3MoI3 is performed using PBE exchange-correlation approximations in density functional theory. The results of electronic band structure are 0.90 eV (M-point: Direct) and 0.60 eV (R-X point: Indirect), respectively. We have also calculated the dielectric properties such as real, imaginary, extension coefficient (K) and reflectivity (R) properties of hybrid perovskite CH3NH3MoI3. The low-bandgap molecules are used to absorb near-IR range and typically having a bandgap smaller than 1.6 eV. This is particularly attractive in organic photovoltaics (OPV), photodetectors (PDs), and ambipolar field-effect transistors (FETs).
NASA Astrophysics Data System (ADS)
Ranković, Milos Lj.; Giuliani, Alexandre; Milosavljević, Aleksandar R.
2016-06-01
A new apparatus was designed, coupling an electron gun with a linear quadrupole ion trap mass spectrometer, to perform m/ z (mass over charge) selected ion activation by electron impact for tandem mass spectrometry and action spectroscopy. We present in detail electron tracing simulations of a 300 eV electron beam inside the ion trap, design of the mechanical parts, electron optics and electronic circuits used in the experiment. We also report examples of electron impact activation tandem mass spectra for Ubiquitin protein, Substance P and Melittin peptides, at incident electron energies in the range from 280 eV to 300 eV.
The electronic structure and optical properties of ABP 2O 7 ( A = Na, Li) double phosphates
NASA Astrophysics Data System (ADS)
Hizhnyi, Yu. A.; Oliynyk, A.; Gomenyuk, O.; Nedilko, S. G.; Nagornyi, P.; Bojko, R.; Bojko, V.
2008-01-01
Partial densities of states and reflection spectra of NaAlP 2O 7, KAlP 2O 7 and LiInP 2O 7 double phosphate crystals are calculated by the full-potential linear-augmented-plane-wave (FLAPW) method. Experimental reflection spectra of KAlP 2O 7, CsAlP 2O 7 and NaInP 2O 7 are measured in the 4-20 eV energy range. The values of band gaps, Eg, are found from a comparison of experiment and calculations to be 6.0 eV for NaAlP 2O 7 and KAlP 2O 7, and 4.6 eV for LiInP 2O 7.
NASA Technical Reports Server (NTRS)
Orient, O. J.; Chutjian, A.; Murad, E.
1995-01-01
Optical emissions in single-collision, beam-beam reactions of fast (3-22 eV translational energy) O(P-3) atoms with C2H2 have been measured in the wavelength range 300-850 nm. Two features were observed, one with a peak wavelength at 431 nm, corresponding to the CH A (sup 2)Delta yields X (sup 2)Pi(sub r) transition, and a second weaker emission in the range 380-400 nm corresponding to the B (sup 2)Sigma(sup -) yields X (sup 2)Pi(sub r) transition. Both the A yields X and B yields X emissions were fit to a synthetic spectrum of CH(A) at a vibrational temperature T(sub v) of 10,000 K (0.86 eV) and a rotational temperature T(r) of approximately 5000 K (0.43 eV); and CH(B) to T(sub v) = 2500 K (0.22 eV) and T(sub r) = 1000 K (0.09 eV). The energy threshold for the A yields X emission was measured to be 7.3 +/- 0.4 eV (lab) or 4.5 +/- 0.2 eV (c.m.). This agrees with the energy threshold of 7.36 eV (lab) for the reaction O(P-3) + C2H2 yields CH(A) + HCO.
Brouwer, Lieke; van der Sanden, Sabine M G; Calis, Job C J; Bruning, Andrea H L; Wang, Steven; Wildenbeest, Joanne G; Rebers, Sjoerd P H; Phiri, Kamija S; Westerhuis, Brenda M; van Hensbroek, Michaël Boele; Pajkrt, Dasja; Wolthers, Katja C
2018-05-28
Enteroviruses (EVs) are among the most commonly detected viruses infecting humans worldwide. Although the prevalence of EVs is widely studied, the status of EV prevalence in sub-Saharan Africa remains largely unknown. The objective of our present study was therefore to increase our knowledge on EV circulation in sub-Saharan Africa. We obtained 749 fecal samples from a cross-sectional study conducted on Malawian children aged 6 to 60 months. We tested the samples for the presence of EVs using real time PCR, and typed the positive samples based on partial viral protein 1 (VP1) sequences. A large proportion of the samples was EV positive (89.9%). 12.9% of the typed samples belonged to EV species A (EV-A), 48.6% to species B (EV-B) and 38.5% to species C (EV-C). More than half of the EV-C strains (53%) belonged to subgroup C containing, among others, Poliovirus (PV) 1-3. The serotype most frequently isolated in our study was CVA-13, followed by EV-C99. The strains of CVA-13 showed a vast genetic diversity, possibly representing a new cluster, 'F'. The majority of the EV-C99 strains grouped together as cluster B. In conclusion, this study showed a vast circulation of EVs among Malawian children, with an EV prevalence of 89.9%. Identification of prevalences for species EV-C comparable to our study (38.5%) have only previously been reported in sub-Saharan Africa, and EV-C is rarely found outside of this region. The data found in this study are an important contribution to our current knowledge of EV epidemiology within sub-Saharan Africa.
Effects of Chromium Dopant on Ultraviolet Photoresponsivity of ZnO Nanorods
NASA Astrophysics Data System (ADS)
Mokhtari, S.; Safa, S.; Khayatian, A.; Azimirad, R.
2017-07-01
Structural and optical properties of bare ZnO nanorods, ZnO-encapsulated ZnO nanorods, and Cr-doped ZnO-encapsulated ZnO nanorods have been investigated. Encapsulated ZnO nanorods were grown using a simple two-stage method in which ZnO nanorods were first grown on a glass substrate directly from a hydrothermal bath, then encapsulated with a thin layer of Cr-doped ZnO by dip coating. Comparative study of x-ray diffraction patterns showed that Cr was successfully incorporated into the shell layer of ZnO nanorods. Moreover, energy-dispersive x-ray spectroscopy confirmed presence of Cr in this sample. It was observed that the thickness of the shell layer around the core of the ZnO nanorods was at least about 20 nm. Transmission electron microscopy of bare ZnO nanorods revealed single-crystalline structure. Based on optical results, both the encapsulation process and addition of Cr dopant decreased the optical bandgap of the samples. Indeed, the optical bandgap values of Cr-doped ZnO-encapsulated ZnO nanorods, ZnO-encapsulated ZnO nanorods, and bare ZnO nanorods were 2.89 eV, 3.15 eV, and 3.34 eV, respectively. The ultraviolet (UV) parameters demonstrated that incorporation of Cr dopant into the shell layer of ZnO nanorods considerably facilitated formation and transportation of photogenerated carriers, optimizing their performance as a practical UV detector. As a result, the photocurrent of the Cr-doped ZnO-encapsulated ZnO nanorods was the highest (0.6 mA), compared with ZnO-encapsulated ZnO nanorods and bare ZnO nanorods (0.21 mA and 0.06 mA, respectively).
Optical and solid state characterizaion of chemically deposited CuO/PbS double layer thin film
NASA Astrophysics Data System (ADS)
Chukwuemeka, Augustine; Nnabuchi Mishark, Nnamdi
2018-02-01
Optical and solid state characteristics of novel CuO/PbS double layer thin films were studied. Rutherford backscattering (RBS) technique deciphered the thicknesses of the films as 650 nm, 471 nm and 482 nm for as-deposited, annealed at 473 K and 673 K respectively. The XRD analysis depicts increase in grain size and peak intensity as temperature increases. The results of optical characterization show that thermal annealing has profound effects on all the optical and solid state parameters investigated. The absorbance increased with increase in temperature exhibiting maximum for the film annealed at 673 K. The transmittance of the film samples showed a decreasing trend with increase in temperature exhibiting minimum for the film annealed at 673 K. The absorption coefficient increases from 0.001 × 106 m-1 to 0.006 × 106 m-1 for as-deposited, 0.0025 × 106 m-1 to 0.0175 × 106 m-1 for the annealed at 473 K and 0.003 × 106 m-1 to 0.020 × 106 m-1 for the annealed at 673 K. The extinction coefficient increased with increased in temperature exhibiting a maximum for the film annealed at 673 K. The refractive index, real and imaginary dielectric constant do not have a trend with increase in annealing temperature. Increase in annealing temperature lowers the band gap from 4.13 eV for the as-deposited to 4.05 eV and 3.90 eV for the annealed at 473 K and 673 K respectively. The wide- bandgap materials permits devices to operate at much higher voltages, frequencies and temperatures than convection semiconductor materials. Thus, this film could be used for high power applications, light-emitting diodes, transducers and window layers for solar cell fabrication.
Peterson, Eric M; Harris, Joel M
2013-09-24
Optically transparent semiconductors allow simultaneous control of interfacial electrical potential and spectroscopic observation of chemistry near the electrode surface. Care must be taken, however, to avoid unwanted photoexcitation-induced charging of the semiconductor electrode that could influence the results. In this work, we investigate the in situ surface charging by photoexcitation well below the band gap of an optically transparent semiconductor, indium-tin oxide (ITO) electrode. Using total-internal-reflection fluorescence microscopy, the population of ~100-nm negatively charged carboxylate-polystyrene fluorescent nanoparticles at an ITO-aqueous solution interface could be monitored in situ. At positive applied potentials (~0.7 V versus Ag/AgCl), nanoparticles accumulate reversibly in the electrical double-layer of the ITO surface, and the interfacial nanoparticle populations increase with 488-nm excitation intensity. The potential sensitivity of nanoparticle population exhibited no dependence on excitation intensity, varied from 0.1 to 10 W cm(-2), while the onset potential for particle accumulation shifted by as much as 0.3 V. This shift in surface potential appears to be due to photoexcitation-induced charging of the ITO, even though the excitation radiation photon energy, ~2.4 eV, is well below the primary band gap of ITO, >3.5 eV. A kinetic model was developed to determine the photon order of electron-hole generation relative to the electron-hole recombination. The photoexcitation process was found to be first-order in photon flux, suggesting one-photon excitation of an indirect band gap or defect sites, rather than two-photon excitation into the direct band gap. A control experiment was conducted with red-fluorescent carboxylate-polystyrene particles that were counted using 647-nm excitation, where the photon energy is below the indirect band gap or defect site energy and where the optical absorption of the film vanishes. Red illumination between 1 and 15 W cm(-2) produced no detectable shifts in the onset accumulation potential, which is consistent with the negligible optical absorption of the ITO film at this longer wavelength.
Optical, Structural, and Thermal Properties of Cerium-Doped Zinc Borophosphate Glasses.
Choi, Su-Yeon; Ryu, Bong-Ki
2015-11-01
In this study, we verify the relationship between the optical properties and structure of cerium-doped zinc borophosphate glasses that have concurrence of non-bridging oxygen (NBO) and bridging oxygen (BO), Ce3+ and Ce4+, and BO3 structure and BO4 structure. We prepared cerium-doped zinc borophosphate glass with various compositions, given by xCeO2-(100-x)[50ZnO-10B2O3 -40P2O5] (x = 1 mol% to 6 mol%), and analyzed their optical band energy, glass transition temperature, crystallization temperature, density, and molar volume. Some of the techniques used for analysis were Fourier transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS). In the investigated glasses, the optical band gap energy decreased from 3.28 eV to 1.73 eV. From these results, we can deduce the changes when transitions occur from BO to NBO, from Ce3+ to Ce4+, and from the BO3 structure to the BO4 structure with increasing CeO2 content using FT-IR and XPS analysis. We also verified the changes in structural and physical properties from quantitative properties such as glass transition temperature, crystallization temperature, density, and molar volume.
Morphology, structure and optical properties of hydrothermally synthesized CeO2/CdS nanocomposites
NASA Astrophysics Data System (ADS)
Mohanty, Biswajyoti; Nayak, J.
2018-04-01
CeO2/CdS nanocomposites were synthesized using a two-step hydrothermal technique. The effects of precursor concentration on the optical and structural properties of the CeO2/CdS nanoparticles were systematically studied. The morphology, composition and the structure of the CeO2/CdS nanocomposite powder were studied by scanning electron microscopy (SEM), energy dispersive X-ray spectrum analysis (EDXA) and X-ray diffraction (XRD), respectively. The optical properties of CeO2/CdS nanocomposites were studied by UV-vis absorption and photoluminescence (PL) spectroscopy. The optical band gaps of the CeO2/CdS nanopowders ranged from 2.34 eV to 2.39 eV as estimated from the UV-vis absorption. In the room temperature photoluminescence spectrum of CeO2/CdS nanopowder, a strong blue emission band was observed at 400 nm. Since the powder shows strong visible luminescence, it may be used as a blue phosphor in future. The original article published with this DOI was submitted in error. The correct article was inadvertently left out of the original submission. This has been rectified and the correct article was published online on 16 April 2018.
Rare earth substitution on structural and optical behaviour of CdSe thin films
NASA Astrophysics Data System (ADS)
Singh, Sarika; Shrivastava, A. K.; Tapdiya, Swati
2018-05-01
A series of Sm2+,Gd2+ doped with Cadmium selenide CdSe (x =0.01) has been prepared by using Chemical bath deposition technique. Structural, Optical and Morphological studies were performed using X-ray diffraction (XRD), UV-Visible spectrometer, Raman Studies and Scanning Electron Microscopy (SEM). XRD patterns confirm the samples with Sm,Gd ions, some diffraction peaks appeared which belongs to the cubic phase structure. The values of lattice parameter (a) decreased and particle size decrease on doping. Morphology of the grown films reveals that surface are homogeneous and uniformly spread on the substrates. The elemental analysis of CdSe doped Sm and Gd (1%) different composition was analyzed by Energy Dispersive X-Rays (EDX). The optical values of some important parameters of the studied films were calculated by UVstudy are determined from transmission spectra at wavelength 200 to 900nm. Optical band gap Eg was calculated by tauc relation. Energy band gap of CdSe doped with Sm and Gd varies at 1.8eV and 1.9eV respectively. Bandgap In Raman analysis, a prominent peak shows that confirmation of nano crystalline phase. And intensity of peaks was decreasing after doping.
NASA Astrophysics Data System (ADS)
Hymavathi, B.; Rajesh Kumar, B.; Subba Rao, T.
2018-01-01
Nanostructured Cr-doped CdO thin films were deposited on glass substrates by reactive direct current magnetron sputtering and post-annealed in vacuum from 200°C to 500°C. X-ray diffraction studies confirmed that the films exhibit cubic nature with preferential orientation along the (111) plane. The crystallite size, lattice parameters, unit cell volume and strain in the films were determined from x-ray diffraction analysis. The surface morphology of the films has been characterized by field emission scanning electron microscopy and atomic force microscopy. The electrical properties of the Cr-doped CdO thin films were measured by using a four-probe method and Hall effect system. The lowest electrical resistivity of 2.20 × 10-4 Ω cm and a maximum optical transmittance of 88% have been obtained for the thin films annealed at 500°C. The optical band gap of the films decreased from 2.77 eV to 2.65 eV with the increase of annealing temperature. The optical constants, packing density and porosity of Cr-doped CdO thin films were also evaluated from the transmittance spectra.
Xiong, Ling-Hong; He, Xuewen; Xia, Junjie; Ma, Hanwu; Yang, Fan; Zhang, Qian; Huang, Dana; Chen, Long; Wu, Chunli; Zhang, Xiaomin; Zhao, Zheng; Wan, Chengsong; Zhang, Renli; Cheng, Jinquan
2017-05-03
Development of sensitive, convenient, and cost-effective virus detection product is of great significance to meet the growing demand of clinical diagnosis at the early stage of virus infection. Herein, a naked-eye readout of immunoassay by means of virion bridged catalase-mediated in situ reduction of gold ions and growth of nanoparticles, has been successfully proposed for rapid visual detection of Enterovirus 71 (EV71). Through tailoring the morphologies of the produced gold nanoparticles (GNPs) varying between dispersion and aggregation, a distinguishing color changing was ready for observation. This colorimetric detection assay, by further orchestrating the efficient magnetic enrichment and the high catalytic activity of enzyme, is managed to realize highly sensitive detection of EV71 virions with the limit of detection (LOD) down to 0.65 ng/mL. Our proposed method showed a much lower LOD value than the commercial ELISA for EV71 virion detection. Comparing to the current clinical gold standard polymerase chain reaction (PCR) method, our strategy provided the same diagnostic outcomes after testing real clinical samples. Besides, this strategy has no need of complicated sample pretreatment or expensive instruments. Our presented naked-eye immunoassay method holds a promising prospect for the early detection of virus-infectious disease especially in resource-constrained settings.
Targeted Approach for Proteomic Analysis of a Hidden Membrane Protein.
Martins-Marques, Tania; Anjo, Sandra I; Ribeiro-Rodrigues, Teresa; Manadas, Bruno; Girao, Henrique
2017-01-01
Given the properties of plasma membrane proteins, namely, their hydrophobicity, low solubility, and high resistance to digestion and extraction, their identification by traditional mass spectrometry (MS) has been a challenging task. Hence, proteomic studies involving the transmembrane protein connexin43 (Cx43) are scarce. Additionally, studies demonstrating the presence of proteins embedded in the lipid bilayer of extracellular vesicles (EVs) are difficult to perform and require specific changes and fine adjustments in the experimental and technical procedure to allow their detection by MS. In this review, we provide a detailed description of the protocol we have used to detect Cx43 in EVs of human peripheral blood. This includes some of the modifications that we have introduced in order to improve the detection of Cx43 in EVs, including an optimization of vesicle isolation, Cx43 purification, MS acquisition data, and further analysis.
NASA Astrophysics Data System (ADS)
Xu, Wei-Qing; Xu, Long-Quan; Qi, De-Guang; Chen, Tao; Liu, Ya-Wei; Zhu, Lin-Fan
2018-04-01
The differential cross sections and generalized oscillator strengths for the low-lying excitations of the valence-shell 1eg orbital electron in ethane have been measured for the first time at a high incident electron energy of 1500 eV and a scattering angular range of 1.5°-10°. A weak feature, termed X here, with a band center of about 7.5 eV has been observed, which was also announced by the previous experimental and theoretical studies. The dynamic behaviors of the generalized oscillator strengths for the 3s (8.7 eV), 3s+3p (9.31 eV, 9.41 eV), and X (˜7.5 eV) transitions on the momentum transfer squared have been obtained. The integral cross sections of these transitions from their thresholds to 5000 eV have been obtained with the aid of the BE-scaling (B is the binding energy and E is the excitation energy) method. The optical oscillator strengths of the above transitions determined by extrapolating their generalized oscillator strengths to the limit of the squared momentum transfer K2 → 0 are in good agreement with the ones from the photoabsorption spectrum [J. W. Au et al., Chem. Phys. 173, 209 (1993)], which indicates that the present differential cross sections, generalized oscillator strengths, and integral cross sections can serve as benchmark data.
Design of Metastable Tin Titanium Nitride Semiconductor Alloys
Bikowski, Andre; Siol, Sebastian; Gu, Jing; ...
2017-07-07
Here, we report on design of optoelectronic properties in previously unreported metastable tin titanium nitride alloys with spinel crystal structure. Theoretical calculations predict that Ti alloying in metastable Sn 3N 4 compound should improve hole effective mass by up to 1 order of magnitude, while other optical bandgaps remains in the 1–2 eV range up to x ~ 0.35 Ti composition. Experimental synthesis of these metastable alloys is predicted to be challenging due to high required nitrogen chemical potential (Δμ N ≥ +1.0 eV) but proven to be possible using combinatorial cosputtering from metal targets in the presence of nitrogenmore » plasma. Characterization experiments confirm that thin films of such (Sn 1–xTi x) 3N 4 alloys can be synthesized up to x = 0.45 composition, with suitable optical band gaps (1.5–2.0 eV), moderate electron densities (10 17 to 10 18 cm –3), and improved photogenerated hole transport (by 5×). Overall, this study shows that it is possible to design the metastable nitride materials with properties suitable for potential use in solar energy conversion applications.« less
Synthesis, structural and semiconducting properties of Ba(Cu1/3 Sb2/3)O3-PbTiO3 solid solutions
NASA Astrophysics Data System (ADS)
Singh, Chandra Bhal; Kumar, Dinesh; Prashant, Verma, Narendra Kumar; Singh, Akhilesh Kumar
2018-05-01
We report the synthesis and properties of a new solid solution 0.05Ba(Cu1/3Sb2/3)O3-0.95PbTiO3 (BCS-PT) which shows the semiconducting properties. In this study, we have designed new perovskite-type (ABO3) solid solution of BCS-PT that have tunable optical band gap. BCS-PT compounds were prepared by conventional solid-state reaction method and their structural, micro-structural and optical properties were analyzed. The calcination temperature for BCS-PT solid solutions has been optimized to obtain a phase pure system. The Reitveld analysis of X-ray data show that all samples crystallize in tetragonal crystal structure with space group P4mm. X-ray investigation revealed that increase in calcination temperature led to increase of lattice parameter `a' while `c' parameter value lowered. The band gap of PbTiO3 is reduced from 3.2 eV to 2.8 eV with BCS doping and with increasing calcination temperature it further reduces to 2.56 eV. The reduced band gap indicated that the compounds are semiconducting and can be used for photovoltaic device applications.
Characteristics of ITO films with oxygen plasma treatment for thin film solar cell applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Yong Seob; Kim, Eungkwon; Hong, Byungyou
2013-12-15
Graphical abstract: The effect of O{sub 2} plasma treatment on the surface and the work function of ITO films. - Highlights: • ITO films were prepared on the glass substrate by RF magnetron sputtering method. • Effects of O{sub 2} plasma treatment on the properties of ITO films were investigated. • The work function of ITO film was changed from 4.67 to 5.66 eV by plasma treatment. - Abstract: The influence of oxygen plasma treatment on the electro-optical and structural properties of indium-tin-oxide films deposited by radio frequency magnetron sputtering method were investigated. The films were exposed at different O{submore » 2} plasma powers and for various durations by using the plasma enhanced chemical vapor deposition (PECVD) system. The resistivity of the ITO films was almost constant, regardless of the plasma treatment conditions. Although the optical transmittance of ITO films was little changed by the plasma power, the prolonged treatment slightly increased the transmittance. The work function of ITO film was changed from 4.67 eV to 5.66 eV at the plasma treatment conditions of 300 W and 60 min.« less
NASA Astrophysics Data System (ADS)
Vyas, Sumit; Tiwary, Rohit; Shubham, Kumar; Chakrabarti, P.
2015-04-01
The effect of target (Ti metal target and TiO2 target) on Titanium Dioxide (TiO2) thin films grown on ITO coated glass substrate by RF magnetron sputtering has been investigated. A comparative study of both the films was done in respect of crystalline structure, surface morphology and optical properties by using X-ray diffractometer (XRD), Atomic Force Microscopy (AFM) studies and ellipsometric measurements. The XRD results confirmed the crystalline structure and indicated that the deposited films have the intensities of anatase phase. The surface morphology and roughness values indicated that the film using Ti metal target has a smoother surface and densely packed with grains as compared to films obtained using TiO2 target. A high transmission in the visible region, and direct band gap of 3.67 eV and 3.75 eV for films derived by using Ti metal and TiO2 target respectively and indirect bandgap of 3.39 eV for the films derived from both the targets (Ti metal and TiO2 target) were observed by the ellipsometric measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhuwalka, Achala; Ewan, Monique D.; Elshobaki, Moneim
2015-08-22
In an effort to design efficient low-cost polymers for use in organic photovoltaic cells the easily prepared donor–acceptor–donor triad of a either cis-benzobisoxazole, trans-benzobisoxazole or trans-benzobisthiazole flanked by two thiophene rings was combined with the electron-rich 4,8-bis(5-(2-ethylhexyl)-thien-2-yl)-benzo[1,2-b:4,5-b']dithiophene. The electrochemical, optical, morphological, charge transport, and photovoltaic properties of the resulting terpolymers were investigated. Although the polymers differed in the arrangement and/or nature of the chalcogens, they all had similar highest occupied molecular orbital energy levels (-5.2 to -5.3 eV) and optical band gaps (2.1–2.2 eV). However, the lowest unoccupied molecular orbital energy levels ranged from -3.1 to -3.5 eV. When themore » polymers were used as electron donors in bulk heterojunction photovoltaic devices with PC71BM ([6,6]-phenyl C71-butyric acid methyl ester) as the acceptor, the trans-benzobisoxazole polymer had the best performance with a power conversion efficiency of 2.8%.« less
Enhanced photoemission from glancing angle deposited SiOx-TiO2 axial heterostructure nanowire arrays
NASA Astrophysics Data System (ADS)
Dhar, J. C.; Mondal, A.; Singh, N. K.; Chattopadhyay, K. K.
2013-05-01
The glancing angle deposition technique has been employed to synthesize SiOx-TiO2 heterostructure nanowire (NW) arrays on indium tin oxide (ITO) coated glass substrate. A field emission gun scanning electron microscopic image shows that the average diameter of the NWs is ˜50 nm. Transmission electron microscopy images show the formation of heterostructure NWs, which consist of ˜180 nm SiOx and ˜210 nm long TiO2. The selected-area electron diffraction shows the amorphous nature of the synthesized NWs, which was also confirmed by X-ray diffraction method. The main band absorption edges at 3.5 eV were found for both the SiOx-TiO2 and TiO2 NW arrays on ITO coated glass plate from optical absorption measurement. Ti3+ defect related sub-band gap transition at 2.5 eV was observed for TiO2 NWs, whereas heterostructure NWs revealed the SiOx optical band gap related transition at ˜2.2 eV. Two fold improved photon absorption as well as five times photoluminescence emission enhancement were observed for the SiOx-TiO2 multilayer NWs compared to TiO2 NWs.
NASA Astrophysics Data System (ADS)
Maaß, Friedrich; Utecht, Manuel; Stremlau, Stephan; Gille, Marie; Schwarz, Jutta; Hecht, Stefan; Klamroth, Tillmann; Tegeder, Petra
2017-07-01
Utilizing suitable precursor molecules, a thermally activated and surface-assisted synthesis results in the formation of defect-free graphene nanoribbons (GNRs), which exhibit electronic properties that are not present in extended graphene. Most importantly, they have a band gap in the order of a few electron volts, depending on the nanoribbon width. In this study, we investigate the electronic structure changes during the formation of GNRs, nitrogen-doped (singly and doubly N-doped) as well as non-N-doped chevron-shaped CGNRs on Au(111). Thus we determine the optical gaps of the precursor molecules, the intermediate nonaromatic polymers, and finally the aromatic GNRs, using high-resolution electron energy loss spectroscopy and density functional theory calculations. As expected, we find no influence of N-doping on the size of the optical gaps. The gap of the precursor molecules is around 4.5 eV. Polymerization leads to a reduction of the gap to a value of 3.2 eV due to elongation and thus enhanced delocalization. The CGNRs exhibit a band gap of 2.8 eV, thus the gap is further reduced in the nanoribbons, since they exhibit an extended delocalized π -electron system.
Temperature-dependent optical band gap of the metastable zinc-blende structure [beta]-GaN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramirez-Flores, G.; Navarro-Contreras, H.; Lastras-Martinez, A.
1994-09-15
The temperature-dependent (10--300 K) optical band gap [ital E][sub 0]([ital T]) of the epitaxial metastable zinc-blende-structure [beta]-GaN(001)4[times]1 has been determined by modulated photoreflectance and used to interpret low-temperature photoluminescence spectra. [ital E][sub 0] in [beta]-GaN was found to vary from 3.302[plus minus]0.004 eV at 10 K to 3.231[plus minus]0.008 eV at 300 K with a temperature dependence given by [ital E][sub 0]([ital T]) =3.302--6.697[times]10[sup [minus]4][ital T][sup 2]/([ital T]+600) eV. The spin-orbit splitting [Delta][sub 0] in the valence band was determined to be 17[plus minus]1 meV. The oscillations in the photoreflectance spectra were very sharp with a broadening parameter [Gamma] ofmore » only 10 meV at 10 K. The dominant transition observed in temperature-dependent photoluminescence was attributed to radiative recombination between a shallow donor, at [congruent]11 meV below the conduction-band edge and the valence band.« less
Gangadaran, Prakash; Li, Xiu Juan; Lee, Ho Won; Oh, Ji Min; Kalimuthu, Senthilkumar; Rajendran, Ramya Lakshmi; Son, Seung Hyun; Baek, Se Hwan; Singh, Thoudam Debraj; Zhu, Liya; Jeong, Shin Young; Lee, Sang-Woo; Lee, Jaetae; Ahn, Byeong-Cheol
2017-01-01
In vivo biodistribution and fate of extracellular vesicles (EVs) are still largely unknown and require reliable in vivo tracking techniques. In this study, in vivo bioluminescence imaging (BLI) using Renilla luciferase (Rluc) was developed and applied to monitoring of EVs derived from thyroid cancer (CAL-62 cells) and breast cancer (MDA-MB-231) in nude mice after intravenous administration and was compared with a dye-based labeling method for EV derived from CAL-62 cells. The EVs were successfully labeled with Rluc and visualized by BLI in mice. In vivo distribution of the EVs, as measured by BLI, was consistent with the results of ex vivo organ analysis. EV-CAL-62/Rluc showed strong signals at lung followed by liver, spleen & kidney (P < 0.05). EV-MDA-MB-231/Rluc showed strong signals at liver followed by lung, spleen & kidney (P < 0.05). EV-CAL-62/Rluc and EV-MDA-MB-231/Rluc stayed in animal till day 9 and 3, respectively; showed a differential distribution. Spontaneous EV-CAL-62/Rluc shown distributed mostly to lung followed by liver, spleen & kidney. The new BLI system used to show spontaneous distribution of EV-CAL-62/Rluc in subcutaneous CAL-62/Rluc bearing mice. Dye (DiR)-labeled EV-CAL-62/Rluc showed a different distribution in vivo & ex vivo compared to EV-CAL-62/Rluc. Fluorescent signals were predominately detected in the liver (P < 0.05) and spleen (P < 0.05) regions. The bioluminescent EVs developed in this study may be used for monitoring of EVs in vivo. This novel reporter-imaging approach to visualization of EVs in real time is expected to pave the way for monitoring of EVs in EV-based treatments. PMID:29299117
The enhancement in optical and magnetic properties of Na-doped LaFeO3
NASA Astrophysics Data System (ADS)
Devi, E.; Kalaiselvi, B. J.
2018-04-01
La1-xNaxFeO3(x=0.00 and 0.05) were synthesized by sol-gel auto-combustion method. No evidence of impurity phase and the peak (121) slightly shift towards lower angle is confirmed by X-ray diffraction analysis (XRD). The UV-visible spectra show strong absorption peak centered at approximately 231 nm and the calculated optical band gap are found to be 2.73eV, 2.36eV for x = 0.00 and 0.05, respectively. The M-H loop of pure sample is anti-ferromagnetic, whereas those of the Na doped sample shows enhanced ferromagnetic behavior. The remnant magnetization (Mr), saturation magnetization (Ms) and coercive field (Hc) of Na-doped sample are enhanced to 1.06emu/g, 5.39emu/g and 182.84kOe, respectively.
Electrical characterization of ZnO/NiO p-n junction prepared by the sol-gel method
NASA Astrophysics Data System (ADS)
Merih Akyuzlu, A.; Dagdelen, Fethi; Gultek, Ahmet; Hendi, A. A.; Yakuphanoglu, Fahrettin
2017-04-01
ZnO and NiO films were synthesized on fluourine-doped tin oxide (FTO) glass substrate by the sol-gel method. The surface morphology of the films was investigated by atomic force microscopy. The optical band gaps of the ZnO and NiO films were found to be 3.198 and 3.827eV, respectively. A ZnO/NiO p-n junction diode was prepared and electrical charge transport mechanism of the diode was analyzed using thermionic emission and Norde functions. The ideality factor, barrier height and series resistance of the diode were determined to be 6.46, 1.036eV and 39.1 M {Ω} , respectively. The obtained results indicate that ZnO/NiO p-n junction can be used as transparent diode for optic communications.
NASA Astrophysics Data System (ADS)
Hill, Heather M.; Rigosi, Albert F.; Chowdhury, Sugata; Yang, Yanfei; Nguyen, Nhan V.; Tavazza, Francesca; Elmquist, Randolph E.; Newell, David B.; Hight Walker, Angela R.
2017-11-01
Monolayer epitaxial graphene (EG) is a suitable candidate for a variety of electronic applications. One advantage of EG growth on the Si face of SiC is that it develops as a single crystal, as does the layer below, referred to as the interfacial buffer layer (IBL), whose properties include an electronic band gap. Although much research has been conducted to learn about the electrical properties of the IBL, not nearly as much work has been reported on the optical properties of the IBL. In this work, we combine measurements from Mueller matrix ellipsometry, differential reflectance contrast, atomic force microscopy, and Raman spectroscopy, as well as calculations from Kramers-Kronig analyses and density-functional theory, to determine the dielectric function of the IBL within the energy range of 1 eV to 8.5 eV.
NASA Astrophysics Data System (ADS)
Ghomrasni, S.; Aribi, I.; Chemek, M.; Said, A. Haj; Alimi, K.
2018-04-01
Some photopysical properties of a new oligomer obtained from the anodic oxidation of the 4,4‧-dimethoxy-chalcone were investigated using different and complementary techniques. Firstly, TGA analysis and X-Ray diffraction experiments showed that the oligomer is thermally stable up to 500 K and partially organized at the solid state, respectively. Secondly, the optical properties of the oligomer were studied in solution and in the solid state. The optical band gap was estimated to be 3.17 eV in solution state and 2.70 eV in film state. What's more, the fluorescence decay is determined showing a considerably faster in the film state (0.183 ns) than in solution state (1.606 ns), due to the rapid non-radiative decay at inter-chain trap sites.
NASA Astrophysics Data System (ADS)
Luque, P. A.; Gómez-Gutiérrez, Claudia M.; Lastra, G.; Carrillo-Castillo, A.; Quevedo-López, M. A.; Olivas, A.
2014-11-01
Zinc sulfide (ZnS) thin films have been grown by chemical bath deposition (CBD) using different zinc sources on a silicon nitride (Si3N4) substrate in an alkaline solution. The zinc precursors used were zinc acetate, zinc nitrate, and zinc sulfate. The structural and optical characteristics of the ZnS thin films obtained were analyzed. The morphology of the surface showed that the films were compact and uniform, with some pinholes in the surface depending on the zinc source. The most homogeneous and compact surfaces were those obtained using zinc nitrate as the zinc source with a root-mean-square (RMS) value of 3 nm. The transmission spectra indicated average transmittance of 80% to 85% in the spectral range from 300 nm to 800 nm, and the optical bandgap calculated for the films was around 3.71 eV to 3.74 eV.
NASA Astrophysics Data System (ADS)
Mayengbam, Rishikanta; Tripathy, S. K.; Pandey, B. P.
2018-03-01
In this paper, we have investigated the structural, electronic and optical properties of ZnAl2Te4 defect chalcopyrite semiconductor using generalized gradient approximation (GGA) within density functional theory (DFT). We have calculated the optimized lattice constants (a and c) and compared with the available experimental values. The optimized lattice constants have been used to calculate the energy band gap and found to be 1.57 eV. The partial density of states and total density of states have been discussed in detail. The frequency dependent dielectric constant and refractive index have been calculated and plotted in the energy range 0-13 eV. All the above parameters have been compared with the available experimental and theoretical values and found good agreement between them.
Multivalent Mn-doped TiO2 thin films
NASA Astrophysics Data System (ADS)
Lin, C. Y. W.; Channei, D.; Koshy, P.; Nakaruk, A.; Sorrell, C. C.
2012-07-01
Thin films of TiO2 doped with Mn were deposited on F-doped SnO2-coated glass using spin coating. The concentration of the dopant was in the range 0-7 wt% Mn (metal basis). The films were examined in terms of the structural, chemical, and optical properties. Glancing angle X-ray diffraction data show that the films consisted of the anatase polymorph of TiO2, without any contaminant phases. The X-ray photoelectron spectroscopy data indicate the presence of Mn3+ and Mn4+ in the doped films as well as atomic disorder and associated structural distortion. Ultraviolet-visible spectrophotometry data show that the optical indirect band gap of the films decreased significantly with increasing manganese doping, from 3.32 eV for the undoped composition to 2.90 eV for that doped with 7 wt% Mn.
NASA Astrophysics Data System (ADS)
Sahin, B.; Aydin, R.
2018-07-01
Nanostructured CdO films have been successfully synthesized with different ratios of surfactant triethanolamine (TEA) under SILAR condition. The influence of addition of TEA on the physical properties of CdO nanoparticles was studied. The surface morphology of the films was studied by metallurgical microscope and SEM analysis. Surface topography of the film was studied by AFM. The structural properties of the samples were studied by X-ray diffraction (XRD). The XRD studies confirm that the deposited CdO films has cubic structure (111) preferred orientation with well-crystallinity and purity. The optical bandgap energy was estimated based on the UV-vis spectroscopies which were obtained in the range of 2.16 eV-2.46 eV. Our study is encouraging to get enhanced surface topography by surfactant TEA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Yuanfeng; Zhang, Hao; Shao, Hezhu
The extraordinary properties and the novel applications of black phosphorene induce the research interest in the monolayer group-IV monochalcogenides. Here using first-principles calculations, we systematically investigate the electronic, transport, and optical properties of monolayer α- and β-GeSe, revealing a direct band gap of 1.61 eV for monolayer α-GeSe and an indirect band gap of 2.47 eV for monolayer β-GeSe. For monolayer β-GeSe, the electronic/hole transport is anisotropic, with an extremely high electron mobility of 2.93×104cm2/Vs along the armchair direction, comparable to that of black phosphorene. However, for β-GeSe, robust band gaps nearly independent of the applied tensile strain along themore » armchair direction are observed. Both monolayer α- and β-GeSe exhibit anisotropic optical absorption in the visible spectrum.« less
An automated design process for short pulse laser driven opacity experiments
Martin, M. E.; London, R. A.; Goluoglu, S.; ...
2017-12-21
Stellar-relevant conditions can be reached by heating a buried layer target with a short pulse laser. Previous design studies of iron buried layer targets found that plasma conditions are dominantly controlled by the laser energy while the accuracy of the inferred opacity is limited by tamper emission and optical depth effects. In this paper, we developed a process to simultaneously optimize laser and target parameters to meet a variety of design goals. We explored two sets of design cases: a set focused on conditions relevant to the upper radiative zone of the sun (electron temperatures of 200 to 400 eVmore » and densities greater than 1/10 of solid density) and a set focused on reaching temperatures consistent with deep within the radiative zone of the sun (500 to 1000 eV) at a fixed density. We found optimized designs for iron targets and determined that the appropriate dopant, for inferring plasma conditions, depends on the goal temperature: magnesium for up to 300 eV, aluminum for 300 to 500 eV, and sulfur for 500 to 1000 eV. The optimal laser energy and buried layer thickness increase with goal temperature. The accuracy of the inferred opacity is limited to between 11% and 31%, depending on the design. Finally, overall, short pulse laser heated iron experiments reaching stellar-relevant conditions have been designed with consideration of minimizing tamper emission and optical depth effects while meeting plasma condition and x-ray emission goals.« less
Mulder, Joshua R; Guerra, Célia Fonseca; Slootweg, J Chris; Lammertsma, Koop; Bickelhaupt, F Matthias
2016-01-15
A comprehensive theoretical treatment is presented for the electronic excitation spectra of ca. 50 different mono-, di-, and tetrasubstituted naphthalenediimides (NDI) using time-dependent density functional theory (TDDFT) at ZORA-CAM-B3LYP/TZ2P//ZORA-BP86/TZ2P with COSMO for simulating the effect of dichloromethane (DCM) solution. The substituents -XHn are from groups 14-17 and rows 2-5 of the periodic table. The lowest dipole-allowed singlet excitation (S0 -S1 ) of the monosubstituted NDIs can be tuned from 3.39 eV for -F to 2.42 eV for -TeH, while the S0 -S2 transition is less sensitive to substitution with energies ranging between 3.67 eV for -CH3 and 3.44 eV for -SbH2 . In the case of NDIs with group-15 and -16 substituents, the optical transitions strongly depend on the extent to which -XHn is planar or pyramidal as well as on the possible formation of intramolecular hydrogen bonds. The accumulative effect of double and quadruple substitution leads in general to increasing bathochromic shifts, but the increased steric hindrance in tetrasubstituted NDIs can lead to deformations that diminish the effectiveness of the substituents. Detailed analyses of the Kohn-Sham orbital electronic structure in monosubstituted NDIs reveal the mesomeric destabilization of the HOMO as the primary cause of the bathochromic shift of the S0-S1 transition. © 2015 Wiley Periodicals, Inc.
An automated design process for short pulse laser driven opacity experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, M. E.; London, R. A.; Goluoglu, S.
Stellar-relevant conditions can be reached by heating a buried layer target with a short pulse laser. Previous design studies of iron buried layer targets found that plasma conditions are dominantly controlled by the laser energy while the accuracy of the inferred opacity is limited by tamper emission and optical depth effects. In this paper, we developed a process to simultaneously optimize laser and target parameters to meet a variety of design goals. We explored two sets of design cases: a set focused on conditions relevant to the upper radiative zone of the sun (electron temperatures of 200 to 400 eVmore » and densities greater than 1/10 of solid density) and a set focused on reaching temperatures consistent with deep within the radiative zone of the sun (500 to 1000 eV) at a fixed density. We found optimized designs for iron targets and determined that the appropriate dopant, for inferring plasma conditions, depends on the goal temperature: magnesium for up to 300 eV, aluminum for 300 to 500 eV, and sulfur for 500 to 1000 eV. The optimal laser energy and buried layer thickness increase with goal temperature. The accuracy of the inferred opacity is limited to between 11% and 31%, depending on the design. Finally, overall, short pulse laser heated iron experiments reaching stellar-relevant conditions have been designed with consideration of minimizing tamper emission and optical depth effects while meeting plasma condition and x-ray emission goals.« less
Optical absorption and thermal stability study of Cu doped NiO nanoparticles
NASA Astrophysics Data System (ADS)
Varunkumar, K.; Ethiraj, Anita Sagadevan; Kechiantz, Ara
2018-05-01
This work reports variation of Cu doping concentration in NiO nanoparticles (NiO:Cu NPs) synthesized via chemical co-precipitation from solution by using NiCl2.6H2O as precursor, CuSO4.5H2O as dopant and NaOH as surfactant. We studied optical and thermal stability of prepared NiO:Cu NPs by UV-Vis absorbance, Diffuse Reflectance Spectroscopy (DRS), Atomic Absorption Spectroscopy (AAS), and Thermo Gravimetric/Differential Scanning Calorimetry (TGA/DSC) analyses. Optical absorption data of NiO:Cu NPs indicated strong absorption peaks shifted towards blue with respect to the peak of undoped NiO NPs due to quantum confinement effect. The bandgap estimated via Tauc plot first increased from 3.32eV (undoped NiO NPs) to 3.37 eV (8 at % of Cu in NiO NPs) and further increase of Cu doping to 10 at% reduced the bandgap to 3.35 eV. Such behavior of the bandgap clearly indicates that the size of NiO NPs first reduces with Cu doping up to 8 at % and then increases with further Cu doping to 10 at %. This behavior of reduction in particle size with increased doping can be attributed to the dislocation density and microstrain developed in NiO:Cu NPs. Thermal stability analysis demonstrated that in addition undoped NiO NPs, all NiO:Cu nanoparticle samples exhibited good thermal stability.
High Photoluminescence Quantum Yield in Band Gap Tunable Bromide Containing Mixed Halide Perovskites
Sutter-Fella, Carolin M.; Li, Yanbo; Amani, Matin; ...
2015-12-21
Hybrid organic-inorganic halide perovskite based semiconductor materials are attractive for use in a wide range of optoelectronic devices because they combine the advantages of suitable optoelectronic attributes and simultaneously low-cost solution processability. Here, we present a two-step low-pressure vapor-assisted solution process to grow high quality homogeneous CH 3NH 3PbI 3-xBr x perovskite films over the full band gap range of 1.6-2.3 eV. Photoluminescence light-in versus light-out characterization techniques are used to provide new insights into the optoelectronic properties of Br-containing hybrid organic-inorganic perovskites as a function of optical carrier injection by employing pump-powers over a 6 orders of magnitude dynamicmore » range. The internal luminescence quantum yield of wide band gap perovskites reaches impressive values up to 30%. This high quantum yield translates into substantial quasi-Fermi level splitting and high "luminescence or optically implied" open-circuit voltage. Most importantly, both attributes, high internal quantum yield and high optically implied open-circuit voltage, are demonstrated over the entire band gap range (1.6 eV ≤ E g ≤ 2.3 eV). These results establish the versatility of Br-containing perovskite semiconductors for a variety of applications and especially for the use as high-quality top cell in tandem photovoltaic devices in combination with industry dominant Si bottom cells. (Figure Presented).« less
A reverse genetics system for enterovirus D68 using human RNA polymerase I.
Pan, Minglei; Gao, Shuai; Zhou, Zhenwei; Zhang, Keke; Liu, Sihua; Wang, Zhiyun; Wang, Tao
2018-05-17
Human enterovirus D68 (EV-D68) is a highly contagious virus, which causes respiratory tract infections. However, no effective vaccines are currently available for controlling EV-D68 infection. Here, we developed a reverse genetics system to recover EV-D68 minireplicons and infectious EV-D68 from transfected plasmids using the RNA polymerase I (Pol I) promoter. The EV-D68 minireplicons contained the luciferase reporter gene, which flanked by the non-coding regions of the EV-D68 RNA. The luciferase signals could be detected in cells after transfection and Pol I promoter-mediated luciferase signal was significantly stronger than that mediated by the T7 promoter. Furthermore, recombinant viruses were generated by transfecting plasmids that contained the genomic RNA segments of EV-D68, under the control of Pol I promoter into 293T cells or RD cells. On plaque morphology and growth kinetics, the rescued virus and parental virus were indistinguishable. In addition, we showed that the G394C mutation disrupts the viral 5'-UTR structure and suppresses the viral cap-independent translation. This reverse genetics system for EV-D68 recovery can greatly facilitate research into EV-D68 biology. Moreover, this system could accelerate the development of EV-D68 vaccines and anti-EV-D68 drugs.
[Automated detection and volumetric segmentation of the spleen in CT scans].
Hammon, M; Dankerl, P; Kramer, M; Seifert, S; Tsymbal, A; Costa, M J; Janka, R; Uder, M; Cavallaro, A
2012-08-01
To introduce automated detection and volumetric segmentation of the spleen in spiral CT scans with the THESEUS-MEDICO software. The consistency between automated volumetry (aV), estimated volume determination (eV) and manual volume segmentation (mV) was evaluated. Retrospective evaluation of the CAD system based on methods like "marginal space learning" and "boosting algorithms". 3 consecutive spiral CT scans (thoraco-abdominal; portal-venous contrast agent phase; 1 or 5 mm slice thickness) of 15 consecutive lymphoma patients were included. The eV: 30 cm³ + 0.58 (width × length × thickness of the spleen) and the mV as the reference standard were determined by an experienced radiologist. The aV could be performed in all CT scans within 15.2 (± 2.4) seconds. The average splenic volume measured by aV was 268.21 ± 114.67 cm³ compared to 281.58 ± 130.21 cm³ in mV and 268.93 ± 104.60 cm³ in eV. The correlation coefficient was 0.99 (coefficient of determination (R²) = 0.98) for aV and mV, 0.91 (R² = 0.83) for mV and eV and 0.91 (R² = 0.82) for aV and eV. There was an almost perfect correlation of the changes in splenic volume measured with the new aV and mV (0.92; R² = 0.84), mV and eV (0.95; R² = 0.91) and aV and eV (0.83; R² = 0.69) between two time points. The automated detection and volumetric segmentation software rapidly provides an accurate measurement of the splenic volume in CT scans. Knowledge about splenic volume and its change between two examinations provides valuable clinical information without effort for the radiologist. © Georg Thieme Verlag KG Stuttgart · New York.
CdZnO coated film: A material for photovoltaic applications
NASA Astrophysics Data System (ADS)
Zargar, R. A.; Bhat, M. A.; Reshi, H. A.; Khan, S. D.
2018-06-01
The present study reports structural and optical parameters of wide band gap oxide thick film prepared by screen-printing followed by sintering route. Characterization of the samples was carried out with UV-spectroscopy, XRD, SEM, and Photoluminous study. The XRD and SEM studies reveal that the film deposited is polycrystalline, double phase, and porous with unsymmetrical grain distributions. Optical diffused reflection spectroscopy and Pl measurements give optical band gap of 2.87 eV and near band edge emission at 430 nm.
Liu, Weiyong; Wu, Shimin; Xiong, Ying; Li, Tongya; Wen, Zhou; Yan, Mingzhe; Qin, Kai; Liu, Yingle; Wu, Jianguo
2014-01-01
A total of 1844 patients with hand, foot, and mouth disease (HFMD), most of them were children of age 1–3-year-old, in Central China were hospitalized from 2011 to 2012. Among them, 422 were infected with coxsackievirus A16 (CVA16), 334 were infected with enterovirus 71 (EV71), 38 were co-infected with EV71 and CVA16, and 35 were infected with other enteroviruses. Molecular epidemiology analysis revealed that EV71 and CVA16 were detected year-round, but EV71 circulated mainly in July and CVA16 circulated predominantly in November, and incidence of HFMD was reduced in January and February and increased in March. Clinical data showed that hyperglycemia and neurologic complications were significantly higher in EV71-infected patients, while upper respiratory tract infection and C-reactive protein were significantly higher in CVA16-associated patients. 124 EV71 and 80 CVA16 strains were isolated, among them 56 and 68 EV71 strains were C4a and C4b, while 25 and 55 CVA16 strains were B1a and B1b, respectively. Similarity plots and bootscan analyses based on entire genomic sequences revealed that the three C4a sub-genotype EV71 strains were recombinant with C4b sub-genotype EV71 in 2B–2C region, and the three CVA16 strains were recombinant with EV71 in 2A–2B region. Thus, CVA16 and EV71 were the major causative agents in a large HFMD outbreak in Central China. HFMD incidence was high for children among household contact and was detected year-round, but outbreak was seasonal dependent. CVA16 B1b and EV71 C4b reemerged and caused a large epidemic in China after a quiet period of many years. Moreover, EV71 and CVA16 were co-circulated during the outbreak, which may have contributed to the genomic recombination between the pathogens. It should gain more attention as there may be an upward trend in co-circulation of the two pathogens globally and the new role recombination plays in the emergence of new enterovirus variants. PMID:24776922
Smura, Teemu; Blomqvist, Soile; Vuorinen, Tytti; Ivanova, Olga; Samoilovich, Elena; Al-Hello, Haider; Savolainen-Kopra, Carita; Hovi, Tapani; Roivainen, Merja
2014-01-01
Genus Enterovirus (Family Picornaviridae,) consists of twelve species divided into genetically diverse types by their capsid protein VP1 coding sequences. Each enterovirus type can further be divided into intra-typic sub-clusters (genotypes). The aim of this study was to elucidate what leads to the emergence of novel enterovirus clades (types and genotypes). An evolutionary analysis was conducted for a sub-group of Enterovirus C species that contains types Coxsackievirus A21 (CVA-21), CVA-24, Enterovirus C95 (EV-C95), EV-C96 and EV-C99. VP1 gene datasets were collected and analysed to infer the phylogeny, rate of evolution, nucleotide and amino acid substitution patterns and signs of selection. In VP1 coding gene, high intra-typic sequence diversities and robust grouping into distinct genotypes within each type were detected. Within each type the majority of nucleotide substitutions were synonymous and the non-synonymous substitutions tended to cluster in distinct highly polymorphic sites. Signs of positive selection were detected in some of these highly polymorphic sites, while strong negative selection was indicated in most of the codons. Despite robust clustering to intra-typic genotypes, only few genotype-specific ‘signature’ amino acids were detected. In contrast, when different enterovirus types were compared, there was a clear tendency towards fixation of type-specific ‘signature’ amino acids. The results suggest that permanent fixation of type-specific amino acids is a hallmark associated with evolution of different enterovirus types, whereas neutral evolution and/or (frequency-dependent) positive selection in few highly polymorphic amino acid sites are the dominant forms of evolution when strains within an enterovirus type are compared. PMID:24695547
Smura, Teemu; Blomqvist, Soile; Vuorinen, Tytti; Ivanova, Olga; Samoilovich, Elena; Al-Hello, Haider; Savolainen-Kopra, Carita; Hovi, Tapani; Roivainen, Merja
2014-01-01
Genus Enterovirus (Family Picornaviridae,) consists of twelve species divided into genetically diverse types by their capsid protein VP1 coding sequences. Each enterovirus type can further be divided into intra-typic sub-clusters (genotypes). The aim of this study was to elucidate what leads to the emergence of novel enterovirus clades (types and genotypes). An evolutionary analysis was conducted for a sub-group of Enterovirus C species that contains types Coxsackievirus A21 (CVA-21), CVA-24, Enterovirus C95 (EV-C95), EV-C96 and EV-C99. VP1 gene datasets were collected and analysed to infer the phylogeny, rate of evolution, nucleotide and amino acid substitution patterns and signs of selection. In VP1 coding gene, high intra-typic sequence diversities and robust grouping into distinct genotypes within each type were detected. Within each type the majority of nucleotide substitutions were synonymous and the non-synonymous substitutions tended to cluster in distinct highly polymorphic sites. Signs of positive selection were detected in some of these highly polymorphic sites, while strong negative selection was indicated in most of the codons. Despite robust clustering to intra-typic genotypes, only few genotype-specific 'signature' amino acids were detected. In contrast, when different enterovirus types were compared, there was a clear tendency towards fixation of type-specific 'signature' amino acids. The results suggest that permanent fixation of type-specific amino acids is a hallmark associated with evolution of different enterovirus types, whereas neutral evolution and/or (frequency-dependent) positive selection in few highly polymorphic amino acid sites are the dominant forms of evolution when strains within an enterovirus type are compared.
Growth and optical properties of Dy doped and undoped n-type InSe single crystal
NASA Astrophysics Data System (ADS)
Gürbulak, B.
1999-02-01
Undoped n-InSe and Dy doped n-InSe (n-InSe : Dy) single crystals were grown by a method which is similar to direct freezing method. Ingots had no cracks and voids on the surface. There were no processes to polish and clean treatment at cleavage faces of these samples because of the natural mirror-like cleavage faces. The absorption measurements were carried out in n-InSe and n-InSe : Dy samples in the temperature range 10-320 K. The first exciton energies for n=1 were calculated as 1.331, 1.248 eV in n-InSe and were 1.326, 1.244 eV in n-InSe : Dy at 10 and 300 K, respectively. The second exciton energies for n=2 in n-InSe were calculated as 1.346, 1.336 eV and in n-InSe : Dy were 1.340, 1.332 eV at 10 and 80 K, respectively. Binding energies of n-InSe and n-InSe : Dy were calculated as 19.47 and 18.87 meV, respectively. The direct bands gap for n-InSe are 1.350, 1.267 eV and for n-InSe : Dy are 1.344, 1.263 eV at 10, 300 K, respectively.
Indication of Horizontal DNA Gene Transfer by Extracellular Vesicles
Speiseder, Thomas; Badbaran, Anita; Reimer, Rudolph; Indenbirken, Daniela; Grundhoff, Adam; Brunswig-Spickenheier, Bärbel; Alawi, Malik; Lange, Claudia
2016-01-01
The biological relevance of extracellular vesicles (EV) in intercellular communication has been well established. Thus far, proteins and RNA were described as main cargo. Here, we show that EV released from human bone marrow derived mesenchymal stromal cells (BM-hMSC) also carry high-molecular DNA in addition. Extensive EV characterization revealed this DNA mainly associated with the outer EV membrane and to a smaller degree also inside the EV. Our EV purification protocol secured that DNA is not derived from apoptotic or necrotic cells. To analyze the relevance of EV-associated DNA we lentivirally transduced Arabidopsis thaliana-DNA (A.t.-DNA) as indicator into BM-hMSC and generated EV. Using quantitative polymerase chain reaction (qPCR) techniques we detected high copy numbers of A.t.-DNA in EV. In recipient hMSC incubated with tagged EV for two weeks we identified A.t.-DNA transferred to recipient cells. Investigation of recipient cell DNA using quantitative PCR and verification of PCR-products by sequencing suggested stable integration of A.t.-DNA. In conclusion, for the first time our proof-of-principle experiments point to horizontal DNA transfer into recipient cells via EV. Based on our results we assume that eukaryotic cells are able to exchange genetic information in form of DNA extending the known cargo of EV by genomic DNA. This mechanism might be of relevance in cancer but also during cell evolution and development. PMID:27684368
Hu, Lan; Zhang, Yong; Hong, Mei; Zhu, Shuangli; Yan, Dongmei; Wang, Dongyan; Li, Xiaolei; Zhu, Zhen; Tsewang; Xu, Wenbo
2014-01-01
Enterovirus B81 (EV-B81) is a newly identified serotype within the species enterovirus B (EV-B). To date, only eight nucleotide sequences of EV-B81 have been published and only one full-length genome sequence (the prototype strain) has been made available in the GenBank database. Here, we report the full-length genome sequences of two EV-B81 strains isolated in the Tibet Autonomous Region of China during acute flaccid paralysis surveillance activities, and we also conducted an antibody seroprevalence study in two prefectures of Tibet. The sequence comparison and phylogenetic dendrogram analysis revealed high variability among the global EV-B81 strains and frequent intertypic recombination in the non-structural protein region of EV-B serotypes, suggesting high genetic diversity of EV-B81. However, low positive rates and low titers of neutralizing antibodies against EV-B81 were detected. Nearly 68% of children under the age of five had no neutralizing antibodies against EV-B81. Hence, the extent of transmission and the exposure of the population to this EV type are very limited. Although little is known about the biological and pathogenic properties of EV-B81 because of few research in this field owing to the limited number of isolates, our study provides basic information for further studies of EV-B81. PMID:25112835
Indication of Horizontal DNA Gene Transfer by Extracellular Vesicles.
Fischer, Stefanie; Cornils, Kerstin; Speiseder, Thomas; Badbaran, Anita; Reimer, Rudolph; Indenbirken, Daniela; Grundhoff, Adam; Brunswig-Spickenheier, Bärbel; Alawi, Malik; Lange, Claudia
The biological relevance of extracellular vesicles (EV) in intercellular communication has been well established. Thus far, proteins and RNA were described as main cargo. Here, we show that EV released from human bone marrow derived mesenchymal stromal cells (BM-hMSC) also carry high-molecular DNA in addition. Extensive EV characterization revealed this DNA mainly associated with the outer EV membrane and to a smaller degree also inside the EV. Our EV purification protocol secured that DNA is not derived from apoptotic or necrotic cells. To analyze the relevance of EV-associated DNA we lentivirally transduced Arabidopsis thaliana-DNA (A.t.-DNA) as indicator into BM-hMSC and generated EV. Using quantitative polymerase chain reaction (qPCR) techniques we detected high copy numbers of A.t.-DNA in EV. In recipient hMSC incubated with tagged EV for two weeks we identified A.t.-DNA transferred to recipient cells. Investigation of recipient cell DNA using quantitative PCR and verification of PCR-products by sequencing suggested stable integration of A.t.-DNA. In conclusion, for the first time our proof-of-principle experiments point to horizontal DNA transfer into recipient cells via EV. Based on our results we assume that eukaryotic cells are able to exchange genetic information in form of DNA extending the known cargo of EV by genomic DNA. This mechanism might be of relevance in cancer but also during cell evolution and development.
Prevalence, genetic diversity and recombination of species G enteroviruses infecting pigs in Vietnam
Van Dung, Nguyen; Anh, Pham Hong; Van Cuong, Nguyen; Hoa, Ngo Thi; Carrique-Mas, Juan; Hien, Vo Be; Campbell, James; Baker, Stephen; Farrar, Jeremy; Woolhouse, Mark E.; Bryant, Juliet E.
2014-01-01
Picornaviruses infecting pigs, described for many years as ‘porcine enteroviruses’, have recently been recognized as distinct viruses within three distinct genera (Teschovirus, Sapelovirus and Enterovirus). To better characterize the epidemiology and genetic diversity of members of the Enterovirus genus, faecal samples from pigs from four provinces in Vietnam were screened by PCR using conserved enterovirus (EV)-specific primers from the 5′ untranslated region (5′ UTR). High rates of infection were recorded in pigs on all farms, with detection frequencies of approximately 90 % in recently weaned pigs but declining to 40 % in those aged over 1 year. No differences in EV detection rates were observed between pigs with and without diarrhoea [74 % (n = 70) compared with 72 % (n = 128)]. Genetic analysis of consensus VP4/VP2 and VP1 sequences amplified from a subset of EV-infected pigs identified species G EVs in all samples. Among these, VP1 sequence comparisons identified six type 1 and seven type 6 variants, while four further VP1 sequences failed to group with any previously identified EV-G types. These have now been formally assigned as EV-G types 8–11 by the Picornavirus Study Group. Comparison of VP1, VP4/VP2, 3Dpol and 5′ UTRs of study samples and those available on public databases showed frequent, bootstrap-supported differences in their phylogenies indicative of extensive within-species recombination between genome regions. In summary, we identified extremely high frequencies of infection with EV-G in pigs in Vietnam, substantial genetic diversity and recombination within the species, and evidence for a much larger number of circulating EV-G types than currently described. PMID:24323635
Stochastic and Resolvable Gravitational Waves from Ultralight Bosons
NASA Astrophysics Data System (ADS)
Brito, Richard; Ghosh, Shrobana; Barausse, Enrico; Berti, Emanuele; Cardoso, Vitor; Dvorkin, Irina; Klein, Antoine; Pani, Paolo
2017-09-01
Ultralight scalar fields around spinning black holes can trigger superradiant instabilities, forming a long-lived bosonic condensate outside the horizon. We use numerical solutions of the perturbed field equations and astrophysical models of massive and stellar-mass black hole populations to compute, for the first time, the stochastic gravitational-wave background from these sources. In optimistic scenarios the background is observable by Advanced LIGO and LISA for field masses ms in the range ˜[2 ×10-13,10-12] and ˜5 ×[10-19,10-16] eV , respectively, and it can affect the detectability of resolvable sources. Our estimates suggest that an analysis of the stochastic background limits from LIGO O1 might already be used to marginally exclude axions with mass ˜10-12.5 eV . Semicoherent searches with Advanced LIGO (LISA) should detect ˜15 (5 ) to 200(40) resolvable sources for scalar field masses 3 ×10-13 (10-17) eV . LISA measurements of massive BH spins could either rule out bosons in the range ˜[10-18,2 ×10-13] eV , or measure ms with 10% accuracy in the range ˜[10-17,10-13] eV .
Kataoka, Chikako; Suzuki, Tadaki; Kotani, Osamu; Iwata-Yoshikawa, Naoko; Nagata, Noriyo; Ami, Yasushi; Wakita, Takaji; Nishimura, Yorihiro; Shimizu, Hiroyuki
2015-01-01
Enterovirus 71 (EV71), a major causative agent of hand, foot, and mouth disease, occasionally causes severe neurological symptoms. We identified P-selectin glycoprotein ligand-1 (PSGL-1) as an EV71 receptor and found that an amino acid residue 145 in the capsid protein VP1 (VP1-145) defined PSGL-1-binding (PB) and PSGL-1-nonbinding (non-PB) phenotypes of EV71. However, the role of PSGL-1-dependent EV71 replication in neuropathogenesis remains poorly understood. In this study, we investigated viral replication, genetic stability, and the pathogenicity of PB and non-PB strains of EV71 in a cynomolgus monkey model. Monkeys were intravenously inoculated with cDNA-derived PB and non-PB strains of EV71, EV71-02363-EG and EV71-02363-KE strains, respectively, with two amino acid differences at VP1-98 and VP1-145. Mild neurological symptoms, transient lymphocytopenia, and inflammatory cytokine responses, were found predominantly in the 02363-KE-inoculated monkeys. During the early stage of infection, viruses were frequently detected in clinical samples from 02363-KE-inoculated monkeys but rarely in samples from 02363-EG-inoculated monkeys. Histopathological analysis of central nervous system (CNS) tissues at 10 days postinfection revealed that 02363-KE induced neuropathogenesis more efficiently than that induced by 02363-EG. After inoculation with 02363-EG, almost all EV71 variants detected in clinical samples, CNS, and non-CNS tissues, possessed a G to E amino acid substitution at VP1-145, suggesting a strong in vivo selection of VP1-145E variants and CNS spread presumably in a PSGL-1-independent manner. EV71 variants with VP1-145G were identified only in peripheral blood mononuclear cells in two out of four 02363-EG-inoculated monkeys. Thus, VP1-145E variants are mainly responsible for the development of viremia and neuropathogenesis in a non-human primate model, further suggesting the in vivo involvement of amino acid polymorphism at VP1-145 in cell-specific viral replication, in vivo fitness, and pathogenesis in EV71-infected individuals. PMID:26181772
Sarquiz-Martínez, Brenda; González-Bonilla, César R; Santacruz-Tinoco, Clara Esperanza; Muñoz-Medina, José E; Pardavé-Alejandre, Héctor D; Barbosa-Cabrera, Elizabeth; Ramírez-González, José Ernesto; Díaz-Quiñonez, José Alberto
2017-01-01
Enterovirus (EV) and herpes simplex virus 1 and 2 (HSV1 and HSV2) are the main etiologic agents of central nervous system infections. Early laboratory confirmation of these infections is performed by viral culture of the cerebrospinal fluid (CSF), or the detection of specific antibodies in serum (e.g., HSV). The sensitivity of viral culture ranges from 65 to 75%, with a recovery time varying from 3 to 10 days. Serological tests are faster and easy to carry out, but they exhibit cross-reactivity between HSV1 and HSV2. Although molecular techniques are more sensitive (sensitivity >95%), they are more expensive and highly susceptible to cross-contamination. A real-time RT-PCR for the detection of EV, HSV1, and HSV2 was compared with end-point nested PCR. We tested 87 CSF samples of patients with a clinical diagnosis of viral meningitis or encephalitis. Fourteen samples were found to be positive by RT-PCR, but only 8 were positive by end-point PCR. The RT-PCR showed a specificity range of 94-100%, the negative predictive value was 100%, and the positive predictive value was 62, 100, and 28% for HSV1, HSV2, and EV, respectively. Real-time RT-PCR detected EV, HSV1, and HSV2 with a higher sensitivity and specificity than end-point nested RT-PCR. © 2017 S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Kmail, Renal R. N.; Qasrawi, A. F.
2015-11-01
In this work, the design and optical and electrical properties of MgO/GaSe heterojunction devices are reported and discussed. The device was designed using 0.4- μm-thick n-type GaSe as substrate for a 1.6- μm-thick p-type MgO optoelectronic window. The device was characterized by means of ultraviolet-visible optical spectrophotometry in the wavelength region from 200 nm to 1100 nm, current-voltage ( I- V) characteristics, impedance spectroscopy in the range from 1.0 MHz to 1.8 GHz, and microwave amplitude spectroscopy in the frequency range from 1.0 MHz to 3.0 GHz. Optical analysis of the MgO/GaSe heterojunction revealed enhanced absorbing ability of the GaSe below 2.90 eV with an energy bandgap shift from 2.10 eV for the GaSe substrate to 1.90 eV for the heterojunction design. On the other hand, analysis of I- V characteristics revealed a tunneling-type device conducting current by electric field-assisted tunneling of charged particles through a barrier with height of 0.81 eV and depletion region width of 670 nm and 116 nm when forward and reverse biased, respectively. Very interesting features of the device are observed when subjected to alternating current (ac) signal analysis. In particular, the device exhibited resonance-antiresonance behavior and negative capacitance characteristics near 1.0 GHz. The device quality factor was ˜102. In addition, when a small ac signal of Bluetooth amplitude (0.0 dBm) was imposed between the device terminals, the power spectra of the device displayed tunable band-stop filter characteristics with maximum notch frequency of 1.6 GHz. The energy bandgap discontinuity, the resonance-antiresonance behavior, the negative capacitance features, and the tunability of the electromagnetic power spectra at microwave frequencies nominate the Ag/MgO/GaSe/Al device as a promising optoelectronic device for use in multipurpose operations at microwave frequencies.
Formation, optical properties, and electronic structure of thin Yb silicide films on Si(111)
NASA Astrophysics Data System (ADS)
Galkin, N. G.; Maslov, A. M.; Polyarnyi, V. O.
2005-06-01
Continuous very thin (2.5-3.0 nm) and thin (16-18 nm) ytterbium suicide films with some pinhole density (3×107- 1×108 cm-2) have been formed on Si(111) by solid phase epitaxy (SPE) and reactive deposition epitaxy (RDE) growth methods on templates. The stoichiometric ytterbium suicide (YbSi2) formation has shown in SPE grown films by AES and EELS data. Very thin Yb suicide films grown by RDE method had the silicon enrichment in YbSi2 suicide composition. The analysis of LEED data and AFM imaging has shown that ytterbium suicide films had non-oriented blocks with the polycrystalline structure. The analysis of scanning region length dependencies of the root mean square roughness deviation (σR(L)) for grown suicide films has shown that the formation of ytterbium suicide in SPE and RDE growth methods is determined by the surface diffusion of Yb atoms during the three-dimensional growth process. Optical functions (n, k, α, ɛ1, ɛ2, Im ɛ1-1, neff, ɛeff) of ytterbium silicide films grown on Si(1 1 1) have been calculated from transmittance and reflectance spectra in the energy range of 0.1-6.2 eV. Two nearly discrete absorption bands have been observed in the electronic structure of Yb silicide films with different composition, which connected with interband transitions on divalent and trivalent Yb states. It was established that the reflection coefficient minimum in R-spectra at energies higher 4.2 eV corresponds to the state density minimum in Yb suicide between divalent and trivalent Yb states. It was shown from optical data that Yb silicide films have the semi-metallic properties with low state densities at energies less 0.4 eV and high state densities at 0.5-2.5 eV.
DFT study of structural and electronic properties of MoS2(1-x)Se2x alloy (x = 0.25)
NASA Astrophysics Data System (ADS)
Gusakova, Julia; Gusakov, Vasilii; Tay, Beng Kang
2018-04-01
First-principles calculations have been performed to study the structural features of the monolayer MoS2(1-x)Se2x (x = 0.25) alloy and its electronic properties. We studied the effects of the relative positions of Se atoms in a real monolayer alloy. It was demonstrated that the distribution of the Se atoms between the top and bottom chalcogen planes was most energetically favorable. For a more probable distribution of Se atoms, a MoS2(1-x)Se2x (x = 0.25) monolayer alloy is a direct semiconductor with a fundamental band gap equal to 2.35 eV (calculated with the GVJ-2e method). We also evaluated the optical band gap of the alloy at 77 K (1.86 eV) and at room temperature (1.80 eV), which was in good agreement with the experimentally measured band gap of 1.79 eV.
Hatayama, Masatoshi; Ichimaru, Satoshi; Ohcni, Tadayuki; Takahashi, Eiji J; Midorikawa, Katsumi; Oku, Satoshi
2016-06-27
An experimental demonstration of a wide-range narrowband multilayer mirror for selecting a single-order high-harmonic (HH) beam from multiple-order harmonics in the photon energy range between 40 eV and 70 eV was carried out. This extreme ultraviolet (XUV) mirror, based on a pair of Zr and Al0.7Si0.3 multilayers, has a reflectivity of 20-35% and contrast of more than 7 with respect to neighboring HHs at angles of incidence from 10 to 56.9 degrees, assuming HHs pumped at 1.55 eV. Thus, specific single-order harmonic beams can be arbitrarily selected from multiple-order harmonics in this photo energy range. In addition, the dispersion for input pulses of the order of 1 fs is negligible. This simple-to-align optical component is useful for the many various applications in physics, chemistry and biology that use ultrafast monochromatic HH beams.
Decoupling the effects of confinement and passivation on semiconductor quantum dots.
Rudd, Roya; Hall, Colin; Murphy, Peter J; Reece, Peter J; Charrault, Eric; Evans, Drew
2016-07-20
Semiconductor (SC) quantum dots (QDs) have recently been fabricated by both chemical and plasma techniques for specific absorption and emission of light. Their optical properties are governed by the size of the QD and the chemistry of any passivation at their surface. Here, we decouple the effects of confinement and passivation by utilising DC magnetron sputtering to fabricate SC QDs in a perfluorinated polyether oil. Very high band gaps are observed for fluorinated QDs with increasing levels of quantum confinement (from 4.2 to 4.6 eV for Si, and 2.5 to 3 eV for Ge), with a shift down to 3.4 eV for Si when oxygen is introduced to the passivation layer. In contrast, the fluorinated Si QDs display a constant UV photoluminescence (3.8 eV) irrespective of size. This ability to tune the size and passivation independently opens a new opportunity to extending the use of simple semiconductor QDs.
Sensitivity of Proposed Search for Axion-induced Magnetic Field using Optically Pumped Magnetometers
Chu, Pinghan; Duffy, Leanne Delma; Kim, Young Jin; ...
2018-04-17
We investigate the sensitivity of a search for the oscillating current induced by axion dark matter in an external magnetic field using optically pumped magnetometers. This experiment is based upon the LC circuit (circuit with inductor and capacitor) axion detection concept of Sikivie et al. [Phys. Rev. Lett. 112, 131301 (2014)]. The modification of Maxwell’s equations caused by the axion-photon coupling results in a minute magnetic field oscillating at a frequency equal to the axion mass, in the presence of an external magnetic field. The axion-induced magnetic field could be searched for using a LC circuit amplifier with an opticallymore » pumped magnetometer, the most sensitive cryogen-free magnetic-field sensor, in a room-temperature experiment, avoiding the need for a complicated and expensive cryogenic system. Here, we discuss how an existing magnetic resonance imaging experiment can be modified to search for axions in a previously unexplored part of the parameter space. Our existing detection setup, optimized for magnetic resonance imagining, is already sensitive to an axion-photon coupling of 10 -7 GeV -1 for an axion mass near 3 × 10 -10 eV, which is already limited by astrophysical processes and solar axion searches. We show that realistic modifications, and optimization of the experiment for axion detection, can probe the axion-photon coupling up to 4 orders of magnitude beyond the current best limit, for axion masses between 10 -1 and 10 -7 eV.« less
Sensitivity of Proposed Search for Axion-induced Magnetic Field using Optically Pumped Magnetometers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, Pinghan; Duffy, Leanne Delma; Kim, Young Jin
We investigate the sensitivity of a search for the oscillating current induced by axion dark matter in an external magnetic field using optically pumped magnetometers. This experiment is based upon the LC circuit (circuit with inductor and capacitor) axion detection concept of Sikivie et al. [Phys. Rev. Lett. 112, 131301 (2014)]. The modification of Maxwell’s equations caused by the axion-photon coupling results in a minute magnetic field oscillating at a frequency equal to the axion mass, in the presence of an external magnetic field. The axion-induced magnetic field could be searched for using a LC circuit amplifier with an opticallymore » pumped magnetometer, the most sensitive cryogen-free magnetic-field sensor, in a room-temperature experiment, avoiding the need for a complicated and expensive cryogenic system. Here, we discuss how an existing magnetic resonance imaging experiment can be modified to search for axions in a previously unexplored part of the parameter space. Our existing detection setup, optimized for magnetic resonance imagining, is already sensitive to an axion-photon coupling of 10 -7 GeV -1 for an axion mass near 3 × 10 -10 eV, which is already limited by astrophysical processes and solar axion searches. We show that realistic modifications, and optimization of the experiment for axion detection, can probe the axion-photon coupling up to 4 orders of magnitude beyond the current best limit, for axion masses between 10 -1 and 10 -7 eV.« less
Kooijmans, S A A; Fliervoet, L A L; van der Meel, R; Fens, M H A M; Heijnen, H F G; van Bergen En Henegouwen, P M P; Vader, P; Schiffelers, R M
2016-02-28
Extracellular vesicles (EVs) are increasingly being recognized as candidate drug delivery systems due to their ability to functionally transfer biological cargo between cells. However, the therapeutic applicability of EVs may be limited due to a lack of cell-targeting specificity and rapid clearance of exogenous EVs from the circulation. In order to improve EV characteristics for drug delivery to tumor cells, we have developed a novel method for decorating EVs with targeting ligands conjugated to polyethylene glycol (PEG). Nanobodies specific for the epidermal growth factor receptor (EGFR) were conjugated to phospholipid (DMPE)-PEG derivatives to prepare nanobody-PEG-micelles. When micelles were mixed with EVs derived from Neuro2A cells or platelets, a temperature-dependent transfer of nanobody-PEG-lipids to the EV membranes was observed, indicative of a 'post-insertion' mechanism. This process did not affect EV morphology, size distribution, or protein composition. After introduction of PEG-conjugated control nanobodies to EVs, cellular binding was compromised due to the shielding properties of PEG. However, specific binding to EGFR-overexpressing tumor cells was dramatically increased when EGFR-specific nanobodies were employed. Moreover, whereas unmodified EVs were rapidly cleared from the circulation within 10min after intravenous injection in mice, EVs modified with nanobody-PEG-lipids were still detectable in plasma for longer than 60min post-injection. In conclusion, we propose post-insertion as a novel technique to confer targeting capacity to isolated EVs, circumventing the requirement to modify EV-secreting cells. Importantly, insertion of ligand-conjugated PEG-derivatized phospholipids in EV membranes equips EVs with improved cell specificity and prolonged circulation times, potentially increasing EV accumulation in targeted tissues and improving cargo delivery. Copyright © 2015. Published by Elsevier B.V.
Electron beam irradiated ITO films as highly transparent p-type electrodes for GaN-based LEDs.
Hong, C H; Wie, S M; Park, M J; Kwak, J S
2013-08-01
We have investigated the effect of electron beam irradiation on the electrical and optical properties of ITO film prepared by magnetron sputtering method at room temperature. Electron beam irradiation to the ITO films resulted in a significant decrease in sheet resistance from 1.28 x 10(-3) omega cm to 2.55 x 10(-4) omega cm and in a great increase in optical band gap from 3.72 eV to 4.16 eV, followed by improved crystallization and high transparency of 97.1% at a wavelength of 485 nm. The overall change in electrical, optical and structural properties of ITO films is related to annealing effect and energy transfer of electron by electron beam irradiation. We also fabricated GaN-based light-emitting diodes (LEDs) by using the ITO p-type electrode with/without electron beam irradiation. The results show that the LEDs having ITO p-electrode with electron beam irradiation produced higher output power due to the low absorption of light in the p-type electrode.
NASA Technical Reports Server (NTRS)
Anderson, John R.; Wilbur, Paul J.
1989-01-01
The potential usefulness of the constrained sheath optics concept as a means of controlling the divergence of low energy, high current density ion beams is examined numerically and experimentally. Numerical results demonstrate that some control of the divergence of typical ion beamlets can be achieved at perveance levels of interest by contouring the surface of the constrained sheath properly. Experimental results demonstrate that a sheath can be constrained by a wire mesh attached to the screen plate of the ion optics system. The numerically predicted beamlet divergence characteristics are shown to depart from those measured experimentally, and additional numerical analysis is used to demonstrate that this departure is probably due to distortions of the sheath caused by the fact that it attempts to conform to the individual wires that make up the sheath constraining mesh. The concept is considered potentially useful in controlling the divergence of ion beamlets in applications where low divergence, low energy, high current density beamlets are being sought, but more work is required to demonstrate this for net beam ion energies as low as 5 eV.
Comparative optical studies of ZnO and ZnO-TiO2 - Metal oxide nanoparticle
NASA Astrophysics Data System (ADS)
Vijayalakshmi, R. Vanathi; Asvini, V.; Kumar, P. Praveen; Ravichandran, K.
2018-05-01
A comparative study was carried out to show the enhancement in optical activity of bimetal oxide nanoparticle (ZnO - TiO2) than metal oxide nanoparticle (ZnO), which can preferably be used for optical applications. The samples were prepared by wet chemical method and crystalline structure of the samples as hexagonal - primitive for ZnO and tetragonal - bcc for ZnO-TiO2 was confirmed by XRD measurements. The average grain size of ZnO - 19.89nm and ZnO-TiO2- 49.89 nm was calculated by Debye- Scherrer formula. The structure and particle size of the sample was analyzed by FESEM images. The direct band gap energy of ZnO (3.9eV) and ZnO - TiO2(4.68eV) was calculated by Kubelka-Munk Function, from which it is clear that the band gap energy increases in bimetal oxide to a desired level than in its pure form. The photoluminescence study shows that the emitted wavelength of the samples lies exactly around the visible region.
Hu, Tao; Hong, Jisang
2015-10-28
Phosphorene is receiving great research interests because of its peculiar physical properties. Nonetheless, the phosphorus has a trouble of degradation due to oxidation. Hereby, we propose that the electrical and optical anisotropic properties can be preserved by encapsulating into hexagonal boron nitride (h-BN). We found that the h-BN contributed to enhancing the band gap of the phosphorene layer. Comparing the band gap of the pristine phosphorene layer, the band gap of the phosphorene/BN(1ML) system was enhanced by 0.15 eV. It was further enhanced by 0.31 eV in the BN(1ML)/phosphorene/BN(1ML) trilayer structure. However, the band gap was not further enhanced when we increased the thickness of the h-BN layers even up to 4 MLs. Interestingly, the anisotropic effective mass and optical property were still preserved in BN/phosphorene/BN heterostructures. Overall, we predict that the capping of phosphorene by the h-BN layers can be an excellent solution to protect the intrinsic properties of the phosphorene.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, S. Sampath; Rubio, E. J.; Noor-A-Alam, M.
Ga2O3 thin films were produced by sputter deposition by varying the substrate temperature (Ts) in a wide range (Ts=25-800 oC). The structural characteristics and optical properties of Ga2O3 films were evaluated using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDS), Rutherford backscattering spectrometry (RBS) and spectrophotometric measurements. The effect of growth temperature is significant on the chemistry, crystal structure and morphology of Ga2O3 films. XRD and SEM analyses indicate that the Ga2O3 films grown at lower temperatures were amorphous while those grown at Ts≥500 oC were nanocrystalline. RBS measurements indicate the well-maintained stoichiometry of Ga2O3 films atmore » Ts=300-700 oC. The spectral transmission of the films increased with increasing temperature. The band gap of the films varied from 4.96 eV to 5.17 eV for a variation in Ts in the range 25-800 oC. A relationship between microstructure and optical property is discussed.« less
Exciton-polariton state in nanocrystalline SiC films
NASA Astrophysics Data System (ADS)
Semenov, A. V.; Lopin, A. V.
2016-05-01
We studied the features of optical absorption in the films of nanocrystalline SiC (nc-SiC) obtained on the sapphire substrates by the method of direct ion deposition. The optical absorption spectra of the films with a thickness less than ~500 nm contain a maximum which position and intensity depend on the structure and thickness of the nc-SiC films. The most intense peak at 2.36 eV is observed in the nc-SiC film with predominant 3C-SiC polytype structure and a thickness of 392 nm. Proposed is a resonance absorption model based on excitation of exciton polaritons in a microcavity. In the latter, under the conditions of resonance, there occurs strong interaction between photon modes of light with λph=521 nm and exciton of the 3С polytype with an excitation energy of 2.36 eV that results in the formation of polariton. A mismatch of the frequencies of photon modes of the cavity and exciton explains the dependence of the maximum of the optical absorption on the film thickness.
Synthesis and characterization of cadmium sulphide thin films prepared by spin coating
NASA Astrophysics Data System (ADS)
Chodavadiya, Nisarg; Chapanari, Amisha; Zinzala, Jignesh; Ray, Jaymin; Pandya, Samir
2018-05-01
An II-VI group semiconductor is Wide band gap materials and has been widely studied due to their fundamental optical, structural, and electrical properties. Cadmium sulphide (CdS) is one of the most emerged materials in II-VI group. It has many applications such as buffer later in photovoltaic cell, multilayer light emitting diodes, optical filters, thin film field effect transistors, gas sensors, light detectors etc. It is fundamentally an n-type material with an optical band gap of 2.4 eV. Owing to these properties we had studied CdS thin films synthesis and characterized by Raman, Ultraviolet - Visible spectroscopy (UV-VIS) and Hot probe method. CdS thin films were prepared by spin coating of the Cadmium-thiourea precursor solution. Visual inspection after 20 minute thermolysis time the films were looks uniform and shiny pale yellow in color. Raman confirms the A1 vibration of pure CdS. UV-VIS gives the band gap about 2.52 eV, which confirms the formation of nanocrystalline form of CdS. Finally, hot probe signifies the n-type conductivity of the CdS film.
Multifunctionality of nanocrystalline lanthanum ferrite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rai, Atma, E-mail: atma@iitp.ac.in; Thakur, Awalendra K.; Centre for Energy and Environment, Indian Institute of Technology Patna 800013 India
2016-05-06
Nanocrystalline lanthanum ferrite has been synthesized by adopting modified Pechini route. No evidence of impurity or secondary phase has been detected up to the detection of error limit of X-ray diffractometer (XRD). Rietveld refinement of X-ray diffraction pattern reveals orthorhombic crystal system with space group Pnma (62).Crystallite size and lattice strain was found to be ∼42.8nm and 0.306% respectively. Optical band gap was found to be 2.109 eV, by UV-Visible diffused reflectance spectrum (DRS). Brunauer-Emmet-Teller (BET) surface area was found to be ∼3.45 m{sup 2}/g. Magnetization-hysteresis (M-H) loop was recorded at room temperature (300K) reveals weak ferromagnetism in Nanocrystalline lanthanummore » ferrite. The weak ferromagnetism in lanthanum ferrite is due to the uncompensated antiferromagnetic spin ordering. Ferroelectric loop hysteresis observed at room temperature at 100Hz depicts the presence of ferroelectric ordering in LaFeO{sub 3}.Simultanious presence of magnetic and ferroelectric ordering at room temperature makes it suitable candidate of Multiferroic family.« less
Multifunctionality of nanocrystalline lanthanum ferrite
NASA Astrophysics Data System (ADS)
Rai, Atma; Thakur, Awalendra K.
2016-05-01
Nanocrystalline lanthanum ferrite has been synthesized by adopting modified Pechini route. No evidence of impurity or secondary phase has been detected up to the detection of error limit of X-ray diffractometer (XRD). Rietveld refinement of X-ray diffraction pattern reveals orthorhombic crystal system with space group Pnma (62).Crystallite size and lattice strain was found to be ˜42.8nm and 0.306% respectively. Optical band gap was found to be 2.109 eV, by UV-Visible diffused reflectance spectrum (DRS). Brunauer-Emmet-Teller (BET) surface area was found to be ˜3.45 m2/g. Magnetization-hysteresis (M-H) loop was recorded at room temperature (300K) reveals weak ferromagnetism in Nanocrystalline lanthanum ferrite. The weak ferromagnetism in lanthanum ferrite is due to the uncompensated antiferromagnetic spin ordering. Ferroelectric loop hysteresis observed at room temperature at 100Hz depicts the presence of ferroelectric ordering in LaFeO3.Simultanious presence of magnetic and ferroelectric ordering at room temperature makes it suitable candidate of Multiferroic family.
High-Resolution Two-Dimensional Optical Spectroscopy of Electron Spins
NASA Astrophysics Data System (ADS)
Salewski, M.; Poltavtsev, S. V.; Yugova, I. A.; Karczewski, G.; Wiater, M.; Wojtowicz, T.; Yakovlev, D. R.; Akimov, I. A.; Meier, T.; Bayer, M.
2017-07-01
Multidimensional coherent optical spectroscopy is one of the most powerful tools for investigating complex quantum mechanical systems. While it was conceived decades ago in magnetic resonance spectroscopy using microwaves and radio waves, it has recently been extended into the visible and UV spectral range. However, resolving MHz energy splittings with ultrashort laser pulses still remains a challenge. Here, we analyze two-dimensional Fourier spectra for resonant optical excitation of resident electrons to localized trions or donor-bound excitons in semiconductor nanostructures subject to a transverse magnetic field. Particular attention is devoted to Raman coherence spectra, which allow one to accurately evaluate tiny splittings of the electron ground state and to determine the relaxation times in the electron spin ensemble. A stimulated steplike Raman process induced by a sequence of two laser pulses creates a coherent superposition of the ground-state doublet which can be retrieved only optically because of selective excitation of the same subensemble with a third pulse. This provides the unique opportunity to distinguish between different complexes that are closely spaced in energy in an ensemble. The related experimental demonstration is based on photon-echo measurements in an n -type CdTe /(Cd ,Mg )Te quantum-well structure detected by a heterodyne technique. The difference in the sub-μ eV range between the Zeeman splittings of donor-bound electrons and electrons localized at potential fluctuations can be resolved even though the homogeneous linewidth of the optical transitions is larger by 2 orders of magnitude.
McAllister, Shane C; Schleiss, Mark R; Arbefeville, Sophie; Steiner, Marie E; Hanson, Ryan S; Pollock, Catherine; Ferrieri, Patricia
2015-01-01
Enterovirus D68 (EV-D68) is an emerging virus known to cause sporadic disease and occasional epidemics of severe lower respiratory tract infection. However, the true prevalence of infection with EV-D68 is unknown, due in part to the lack of a rapid and specific nucleic acid amplification test as well as the infrequency with which respiratory samples are analyzed by enterovirus surveillance programs. During the 2014 EV-D68 epidemic in the United States, we noted an increased frequency of "low-positive" results for human rhinovirus (HRV) detected in respiratory tract samples using the GenMark Diagnostics eSensor respiratory viral panel, a multiplex PCR assay able to detect 14 known respiratory viruses but not enteroviruses. We simultaneously noted markedly increased admissions to our Pediatric Intensive Care Unit for severe lower respiratory tract infections in patients both with and without a history of reactive airway disease. Accordingly, we hypothesized that these "low-positive" RVP results were due to EV-D68 rather than rhinovirus infection. Sequencing of the picornavirus 5' untranslated region (5'-UTR) of 49 samples positive for HRV by the GenMark RVP revealed that 33 (67.3%) were in fact EV-D68. Notably, the mean intensity of the HRV RVP result was significantly lower in the sequence-identified EV-D68 samples (20.3 nA) compared to HRV (129.7 nA). Using a cut-off of 40 nA for the differentiation of EV-D68 from HRV resulted in 94% sensitivity and 88% specificity. The robust diagnostic characteristics of our data suggest that the cross-reactivity of EV-D68 and HRV on the GenMark Diagnostics eSensor RVP platform may be an important factor to consider in making accurate molecular diagnosis of EV-D68 at institutions utilizing this system or other molecular respiratory platforms that may also cross-react.
Ebrahimiasl, Saeideh; Yunus, Wan Md. Zin Wan; Kassim, Anuar; Zainal, Zulkarnain
2011-01-01
Nanocrystalline SnOx (x = 1–2) thin films were prepared on glass substrates by a simple chemical bath deposition method. Triethanolamine was used as complexing agent to decrease time and temperature of deposition and shift the pH of the solution to the noncorrosive region. The films were characterized for composition, surface morphology, structure and optical properties. X-ray diffraction analysis confirms that SnOx thin films consist of a polycrystalline structure with an average grain size of 36 nm. Atomic force microscopy studies show a uniform grain distribution without pinholes. The elemental composition was evaluated by energy dispersive X-ray spectroscopy. The average O/Sn atomic percentage ratio is 1.72. Band gap energy and optical transition were determined from optical absorbance data. The film was found to exhibit direct and indirect transitions in the visible spectrum with band gap values of about 3.9 and 3.7 eV, respectively. The optical transmittance in the visible region is 82%. The SnOx nanocrystals exhibit an ultraviolet emission band centered at 392 nm in the vicinity of the band edge, which is attributed to the well-known exciton transition in SnOx. Photosensitivity was detected in the positive region under illumination with white light. PMID:22163690
Doping-induced change of optical properties in underdoped cuprate superconductors
NASA Astrophysics Data System (ADS)
Liu, H. L.; Quijada, M. A.; Zibold, A. M.; Yoon, Y.-D.; Tanner, D. B.; Cao, G.; Crow, J. E.; Berger, H.; Margaritondo, G.; Forró, L.; O, Beom-Hoan; Markert, J. T.; Kelly, R. J.; Onellion, M.
1999-01-01
We report on the ab-plane optical reflectance measurements of single crystals of Y-doped 0953-8984/11/1/020/img15 and Pr-doped 0953-8984/11/1/020/img16 over a wide frequency range from 80 to 0953-8984/11/1/020/img17 (10 meV-5 eV) and at temperatures between 20 and 300 K. Y and Pr doping both decrease the hole concentration in the 0953-8984/11/1/020/img18 planes. This has allowed us to investigate the evolution of ab-plane charge dynamics at doping levels ranging from heavily underdoped to nearly optimally doped. Our results of the low-frequency optical conductivity and spectral weight do not show any features associated with the normal-state pseudogap. Instead, one-component analysis for the optical conductivity shows the low-frequency depression in the scattering rate at 0953-8984/11/1/020/img19, signalling entry into the pseudogap state. Alternatively, no clear indications of the normal-state pseudogap are detected in the temperature-dependent zero-frequency free-carrier scattering rate by using two-component analysis. In the superconducting state, there is also no convincing evidence of superconducting gap absorption in all spectra. We find that there is a `universal correlation' between the numbers of carriers and the transition temperature. This correlation holds whether one considers the number of carriers in the superfluid or the total number of carriers.
Theoretical studies on band structure and optical gain of GaInAsN/GaAs /GaAs cylindrical quantum dot
NASA Astrophysics Data System (ADS)
Mal, Indranil; Samajdar, Dip Prakash; John Peter, A.
2018-07-01
Electronic band structure, effective masses, band offsets and optical gain of Ga0.661In0.339N0.0554As0.9446/GaAs quantum dot systems are investigated using 10 band k·p Hamiltonian for various nitrogen and indium concentrations. The calculations include the effects of strain generated due to the lattice mismatch and the effective band gap of GaInAsN/GaAs heterostructures. The variation of conduction band, light hole and heavy hole band offsets with indium and nitrogen compositions in the alloy are obtained. The band structure of Ga0.661In0.339N0.0554As0.9446/GaAs quantum dot is found in the crystal directions Δ (100) and Λ (111) using 10 band k·p Hamiltonian. The optical gain of the cylindrical quantum dot structures as functions of surface carrier concentration and the dot radius is investigated. Our results show that the tensile strain of 1.34% generates a band gap of 0.59 eV and the compressive strain of 2.2% produces a band gap of 1.28 eV and the introduction of N atoms has no effect on the spin orbit split off band. The variation of optical gain with the dot size and the carrier concentration indicates that the optical gain increases with the decrease in the radius of the quantum dot. The results may be useful for the potential applications in optical devices.
NASA Astrophysics Data System (ADS)
Najafi-Ashtiani, Hamed; Bahari, Ali
2016-08-01
In the field of materials for electrochromic (EC) applications much attention was paid to the derivatives of aniline. We report on the optical, structural and electrochromic properties of electrochromic thin film based on composite of WO3 nanoparticles and copolymer of aniline and o-toluidine prepared by electrochemical polymerization method on fluorine doped tin oxide (FTO) coated glass. The thin film was studied by X-ray diffraction (XRD) and Fourier transforms infrared (FTIR) spectroscopy. The morphology of prepared thin film was characterized by field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM) and the thermal gravimetric analysis (TGA) as well. The optical spectra of nanocomposite thin film were characterized in the 200-900 nm wavelength range and EC properties of nanocomposite thin film were studied by cyclic voltammetry (CV). The calculation of optical band gaps of thin film exhibited that the thin film has directly allowed transition with the values of 2.63 eV on first region and 3.80 eV on second region. Dispersion parameters were calculated based on the single oscillator model. Finally, important parameters such as dispersion energy, oscillator energy and lattice dielectric constant were determined and compared with the data from other researchers. The nonlinear optical properties such as nonlinear optical susceptibility, nonlinear absorption coefficient and nonlinear refractive index were extracted. The obtained results of nanocomposite thin film can be useful for the optoelectronic applications.
Linear and nonlinear optical properties of Sb-doped GeSe2 thin films
NASA Astrophysics Data System (ADS)
Zhang, Zhen-Ying; Chen, Fen; Lu, Shun-Bin; Wang, Yong-Hui; Shen, Xiang; Dai, Shi-Xun; Nie, Qiu-Hua
2015-06-01
Sb-doped GeSe2 chalcogenide thin films are prepared by the magnetron co-sputtering method. The linear optical properties of as-deposited films are derived by analyzing transmission spectra. The refractive index rises and the optical band gap decreases from 2.08 eV to 1.41 eV with increasing the Sb content. X-ray photoelectron spectra further confirm the formation of a covalent Sb-Se bond. The third-order nonlinear optical properties of thin films are investigated under femtosecond laser excitation at 800 nm. The results show that the third-order nonlinear optical properties are enhanced with increasing the concentration of Sb. The nonlinear refraction indices of these thin films are measured to be on the order of 10-18 m2/W with a positive sign and the nonlinear absorption coefficients are obtained to be on the order of 10-10 m/W. These excellent properties indicate that Sb-doped Ge-Se films have a good prospect in the applications of nonlinear optical devices. Project supported by the National Key Basic Research Program of China (Grant No. 2012CB722703), the National Natural Science Foundation of China (Grant No. 61377061), the Young Leaders of Academic Climbing Project of the Education Department of Zhejiang Province, China (Grant No. pd2013092), the Program for Innovative Research Team of Ningbo City, China (Grant No. 2009B217), and the K. C. Wong Magna Fund in Ningbo University, China.
Butler, William E.; Atai, Nadia; Carter, Bob; Hochberg, Fred
2014-01-01
The Richard Floor Biorepository supports collaborative studies of extracellular vesicles (EVs) found in human fluids and tissue specimens. The current emphasis is on biomarkers for central nervous system neoplasms but its structure may serve as a template for collaborative EV translational studies in other fields. The informatic system provides specimen inventory tracking with bar codes assigned to specimens and containers and projects, is hosted on globalized cloud computing resources, and embeds a suite of shared documents, calendars, and video-conferencing features. Clinical data are recorded in relation to molecular EV attributes and may be tagged with terms drawn from a network of externally maintained ontologies thus offering expansion of the system as the field matures. We fashioned the graphical user interface (GUI) around a web-based data visualization package. This system is now in an early stage of deployment, mainly focused on specimen tracking and clinical, laboratory, and imaging data capture in support of studies to optimize detection and analysis of brain tumour–specific mutations. It currently includes 4,392 specimens drawn from 611 subjects, the majority with brain tumours. As EV science evolves, we plan biorepository changes which may reflect multi-institutional collaborations, proteomic interfaces, additional biofluids, changes in operating procedures and kits for specimen handling, novel procedures for detection of tumour-specific EVs, and for RNA extraction and changes in the taxonomy of EVs. We have used an ontology-driven data model and web-based architecture with a graph theory–driven GUI to accommodate and stimulate the semantic web of EV science. PMID:25317275
Butler, William E; Atai, Nadia; Carter, Bob; Hochberg, Fred
2014-01-01
The Richard Floor Biorepository supports collaborative studies of extracellular vesicles (EVs) found in human fluids and tissue specimens. The current emphasis is on biomarkers for central nervous system neoplasms but its structure may serve as a template for collaborative EV translational studies in other fields. The informatic system provides specimen inventory tracking with bar codes assigned to specimens and containers and projects, is hosted on globalized cloud computing resources, and embeds a suite of shared documents, calendars, and video-conferencing features. Clinical data are recorded in relation to molecular EV attributes and may be tagged with terms drawn from a network of externally maintained ontologies thus offering expansion of the system as the field matures. We fashioned the graphical user interface (GUI) around a web-based data visualization package. This system is now in an early stage of deployment, mainly focused on specimen tracking and clinical, laboratory, and imaging data capture in support of studies to optimize detection and analysis of brain tumour-specific mutations. It currently includes 4,392 specimens drawn from 611 subjects, the majority with brain tumours. As EV science evolves, we plan biorepository changes which may reflect multi-institutional collaborations, proteomic interfaces, additional biofluids, changes in operating procedures and kits for specimen handling, novel procedures for detection of tumour-specific EVs, and for RNA extraction and changes in the taxonomy of EVs. We have used an ontology-driven data model and web-based architecture with a graph theory-driven GUI to accommodate and stimulate the semantic web of EV science.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khan, Samreen Heena, E-mail: samreen.heena.khan@gmail.com; Suriyaprabha, R.; Pathak, Bhawana, E-mail: bhawana.pathak@cug.ac.in
With the miniaturization of crystal size, the fraction of under-coordinated surface atoms becomes dominant, and hence, materials in the nano-regime behave very differently from the similar material in a bulk. Zinc oxide (ZnO), particularly, exhibits extraordinary properties such as a wide direct band gap (3.37 eV), large excitation binding energy (60 meV), low refractive index (1.9), stability to intense ultraviolet (UV) illumination, resistance to high-energy irradiation, and lower toxicity as compared to other semiconductors. This very property makes Zinc Oxide a potential candidate in many application fields, particularly as a prominent semiconductor. Zinc Oxide plays a significant role in manymore » technological advances with its application in semiconductor mediated photocatalytic processes and sensor, solar cells and others. In present study, Zinc Oxide (ZnO) has been synthesized using three different precursors by sonochemical method. Zinc Acetate Dihydrate, Zinc Nitrate Hexahydrate and Zinc Sulphate Heptahydrate used as a precursor for the synthesis process. The synthesized ZnO nanoparticle has been found under the range of ∼50 nm. Zinc oxide nanoparticles were characterized using different characterizing tools. The as-synthesized ZnO was characterized by Fourier Transform-Infrared Spectroscopy (FT-IR) for the determination of functional group; Scanning Electron Microscopy equipped with Energy Dispersive Spectroscopy (SEM-EDS) for Morphology and elemental detection respectively, Transmission Electron Microscopy for Particle size distribution and morphology and X-Ray Diffraction (XRD) for the confirmation of crystal structure of the nanomaterial. The optical properties of the ZnO were examined by UV-VIS spectroscopy equipped with Diffuse Reflectance spectroscopy (DRS) confirmed the optical band gap of ZnO-3 around 3.23 eV resembles with the band gap of bulk ZnO (3.37eV). The TEM micrograph of the as-synthesized material showed perfectly spherical shaped nanoparticle under the size range of 50nm. The XRD data showed that the ZnO-3 which was synthesized using Zinc Nitrate Hexahydrate as precursor showed the hexagonal wurtzite crystal structure. The XRD data obtained were compared with the JCPDS standard data. The precursor Zinc Nitrate Hexahydrate (ZnO-3) showed the good yield, monodispersity and size of nanoparticle under the range of 50 nm. The ZnO nanoparticles synthesize using different precursor was found effective in order of ZnO-3, followed by ZnO-1 & ZnO-2. The Synthesized ZnO has wider application in environmental remediation and clean-up as a potential nano-catalyst.« less
NASA Astrophysics Data System (ADS)
Hosseinpour, Rabie; Izadifard, Morteza; Ghazi, Mohammad Ebrahim; Bahramian, Bahram
2018-02-01
The effect of annealing temperature on structural, optical, and electrical properties of Cu2ZnSnS4 (CZTS) thin films grown on a glass substrate by spin coating sol-gel technique has been studied. Structural study showed that all samples had kesterite crystalline structure. Scanning electron microscopy images showed that the crystalline quality of the samples was improved by heat treatment. Optical study showed that the energy gap values for the samples ranged from 1.55 eV to 1.78 eV. Moreover, good optical conductivity values (1012 S-1 to 1014 S-1) were obtained for the samples. Investigation of the electrical properties of the CZTS thin films showed that the carrier concentration increased significantly with the annealing temperature. The photoelectrical behavior of the samples revealed that the photocurrent under light illumination increased significantly. Overall, the results show that the CZTS thin films annealed at 500°C had better structural, optical, and electrical properties and that such CZTS thin films are desirable for use as absorber layers in solar cells. The photovoltaic properties of the CZTS layer annealed at 500°C were also investigated and the associated figure of merit calculated. The results showed that the fabricated ZnS-CZTS heterojunction exhibited good rectifying behavior but rather low fill factor.
NASA Astrophysics Data System (ADS)
Abdel-Khalek, H.; El-Samahi, M. I.; El-Mahalawy, Ahmed M.
2018-06-01
The influence of plasma exposure on structural, morphological and optical properties of copper (II) acetylacetonate thin films deposited by thermal evaporation technique was investigated. Copper (II) acetylacetonate as-grown thin films were exposed to the atmospheric plasma for different times. The exposure of as-grown cu(acac)2 thin film to atmospheric plasma for 5 min modified its structural, morphological and optical properties. The effect of plasma exposure on structure and roughness of cu(acac)2 thin films was evaluated by XRD and AFM techniques, respectively. The XRD results showed an increment in crystallinity due to exposure for 5 min, but, when the exposure time reaches 10 min, the film was transformed to an amorphous state. The AFM results revealed a strong modification of films roughness when the average roughness decreased from 63.35 nm to 1 nm as a result of interaction with plasma. The optical properties of as-grown and plasma exposured cu(acac)2 thin films were studied using spectrophotometric method. The exposure of cu(acac)2 thin films to plasma produced the indirect energy gap decrease from 3.20 eV to 2.67 eV for 10 min exposure time. The dispersion parameters were evaluated in terms of single oscillator model for as-grown and plasma exposured thin films. The influence of plasma exposure on third order optical susceptibility was studied.
NASA Technical Reports Server (NTRS)
Krizmanic, John F.; Mitchell, John W.; Streitmatter, Robert E.
2013-01-01
OWL [1] uses the Earth's atmosphere as a vast calorimeter to fully enable the emerging field of charged-particle astronomy with high-statistics measurements of ultra-high-energy cosmic rays (UHECR) and a search for sources of UHE neutrinos and photons. Confirmation of the Greisen-Zatsepin-Kuzmin (GZK) suppression above approx. 4 x 10(exp 19) eV suggests that most UHECR originate in astrophysical objects. Higher energy particles must come from sources within about 100 Mpc and are deflected by approx. 1 degree by predicted intergalactic/galactic magnetic fields. The Pierre Auger Array, Telescope Array and the future JEM-EUSO ISS mission will open charged-particle astronomy, but much greater exposure will be required to fully identify and measure the spectra of individual sources. OWL uses two large telescopes with 3 m optical apertures and 45 degree FOV in near-equatorial orbits. Simulations of a five-year OWL mission indicate approx. 10(exp 6) sq km/ sr/ yr of exposure with full aperture at approx. 6 x 10(exp 19) eV. Observations at different altitudes and spacecraft separations optimize sensitivity to UHECRs and neutrinos. OWL's stereo event reconstruction is nearly independent of track inclination and very tolerant of atmospheric conditions. An optional monocular mode gives increased reliability and can increase the instantaneous aperture. OWL can fully reconstruct horizontal and upward-moving showers and so has high sensitivity to UHE neutrinos. New capabilities in inflatable structures optics and silicon photomultipliers can greatly increase photon sensitivity, reducing the energy threshold for n detection or increasing viewed area using a higher orbit. Design trades between the original and optimized OWL missions and the enhanced science capabilities are described.
Dopant-driven enhancements in the optoelectronic properties of laser ablated ZnO: Ga thin films
NASA Astrophysics Data System (ADS)
Hassan, Ali; Jin, Yuhua; Chao, Feng; Irfan, Muhammad; Jiang, Yijian
2018-04-01
Theoretically and experimentally evaluated optoelectronic properties of GZO (Ga-doped zinc oxide) were correlated in the present article. Density functional theory and Hubbard U (DFT + Ud + Up) first-principle calculations were used for the theoretical study. The pulsed laser deposition technique was used to fabricate GZO thin films on p-GaN, Al2O3, and p-Si substrates. X-ray diffraction graphs show single crystal growth of GZO thin films with (002) preferred crystallographic orientation. The chemical composition was studied via energy dispersive X-ray spectroscopy, and no other unwanted impurity-related peaks were found, which indicated the impurity-free thin film growth of GZO. Field emission scanning electron microscopic micrographs revealed noodle-, seed-, and granular-like structures of GZO/GaN, GZO/Al2O3, and GZO/Si, respectively. Uniform growth of GZO/GaN was found due to fewer mismatches between ZnO and GaN (0.09%). Hall effect measurements in the van der Pauw configuration were used to check electrical properties. The highest mobility (53 cm2/Vs) with a high carrier concentration was found with low laser shots (1800). A 5-fold photoluminescence enhancement in the noodle-like structure of GZO/GaN compared with GZO/Al2O3 and GZO/Si was detected. This points toward shape-driven optical properties because the noodle-like structure is more favorable for optical enhancements in GZO thin films. Theoretical (3.539 eV) and experimental (3.54 eV) values of the band-gap were also found to be comparable. Moreover, the lowest resistivity (3.5 × 10-4 Ωcm) with 80% transmittance is evidence that GZO is a successful alternate of ITO.
NASA Astrophysics Data System (ADS)
Nery, Jean Paul; Allen, Philip B.
2016-09-01
We develop a simple method to study the zero-point and thermally renormalized electron energy ɛk n(T ) for k n the conduction band minimum or valence maximum in polar semiconductors. We use the adiabatic approximation, including an imaginary broadening parameter i δ to suppress noise in the density-functional integrations. The finite δ also eliminates the polar divergence which is an artifact of the adiabatic approximation. Nonadiabatic Fröhlich polaron methods then provide analytic expressions for the missing part of the contribution of the problematic optical phonon mode. We use this to correct the renormalization obtained from the adiabatic approximation. Test calculations are done for zinc-blende GaN for an 18 ×18 ×18 integration grid. The Fröhlich correction is of order -0.02 eV for the zero-point energy shift of the conduction band minimum, and +0.03 eV for the valence band maximum; the correction to renormalization of the 3.28 eV gap is -0.05 eV, a significant fraction of the total zero point renormalization of -0.15 eV.
NASA Astrophysics Data System (ADS)
Morshedi, Hosein; Naseri, Mosayeb; Hantehzadeh, Mohammad Reza; Elahi, Seyed Mohammad
2018-04-01
In this paper, using a first principles calculation, a two-dimensional structure of silicon-antimony named penta-Sb2Si is predicted. The structural, kinetic, and thermal stabilities of the predicted monolayer are confirmed by the cohesive energy calculation, phonon dispersion analysis, and first principles molecular dynamic simulation, respectively. The electronic properties investigation shows that the pentagonal Sb2Si monolayer is a semiconductor with an indirect band gap of about 1.53 eV (2.1 eV) from GGA-PBE (PBE0 hybrid functional) calculations which can be effectively engineered by employing external biaxial compressive and tensile strain. Furthermore, the optical characteristics calculation indicates that the predicted monolayer has considerable optical absorption and reflectivity in the ultraviolet region. The results suggest that a Sb2Si monolayer has very good potential applications in new nano-optoelectronic devices.
High crystalline CuAlS2 thin films via chemical spray pyrolysis route
NASA Astrophysics Data System (ADS)
Naveena, D.; Logu, T.; Sethuraman, K.; Bose, A. Chandra
2018-04-01
High crystalline and non-toxic CuAlS2 thin films were successfully deposited on glass substrate by chemical spray pyrolysis method. The as-prepared sample was subjected to the sulphurization at 450 °C for 30 min. The structural, morphological, optical and electrical properties of the as deposited and sulphurized films have been systematically analyzed. XRD result shows that the sulphurized sample exhibited tetragonal crystal structure with increase in crystallite size. The optical band gap was found to decrease from 3.25 eV to 3.21 eV and the carrier concentration is 4.22×1015cm-3 for the as-deposited film which rises to 6.29×1015cm-3 after sulphurizing the film in nitrogen atmosphere. The results of this study provide a framework for fabricating an optimized high crystalline CuAlS2 layer in optoelectronic devices.
Penta-P2X (X=C, Si) monolayers as wide-bandgap semiconductors: A first principles prediction
NASA Astrophysics Data System (ADS)
Naseri, Mosayeb; Lin, Shiru; Jalilian, Jaafar; Gu, Jinxing; Chen, Zhongfang
2018-06-01
By means of density functional theory computations, we predicted two novel two-dimensional (2D) nanomaterials, namely P2X (X=C, Si) monolayers with pentagonal configurations. Their structures, stabilities, intrinsic electronic, and optical properties as well as the effect of external strain to the electronic properties have been systematically examined. Our computations showed that these P2C and P2Si monolayers have rather high thermodynamic, kinetic, and thermal stabilities, and are indirect semiconductors with wide bandgaps (2.76 eV and 2.69 eV, respectively) which can be tuned by an external strain. These monolayers exhibit high absorptions in the UV region, but behave as almost transparent layers for visible light in the electromagnetic spectrum. Their high stabilities and exceptional electronic and optical properties suggest them as promising candidates for future applications in UV-light shielding and antireflection layers in solar cells.
Physical preparation and optical properties of CuSbS2 nanocrystals by mechanical alloying process
NASA Astrophysics Data System (ADS)
Zhang, Huihui; Xu, Qishu; Tan, Guolong
2016-09-01
CuSbS2 nanocrystals have been synthesized through mechanical alloying Cu, Sb and S elemental powders for 40 hs. The optical spectrum of as-milled CuSbS2 nano-powders demonstrates a direct gap of 1.35 eV and an indirect gap of 0.36 eV, which are similar to that of silicon and reveals the evidence for the indirect semiconductor characterization of CuSbS2. Afterwards, CuSbS2 nanocrystals were capped with trioctylphosphine oxide/trioctylphosphine/pyridine (TOPO/TOP). There appear four sharp absorption peaks within the region of 315 to 355 nm for the dispersion solution containing the capped nanocrystals. The multiple peaks are proposed to be originating from the energy level splitting of 1S electronic state into four discrete sub-levels, where electrons were excited into the conduction band and thus four exciton absorption peaks were produced.
Opto-chemical response of CR-39 and polystyrene to swift heavy ion irradiation
NASA Astrophysics Data System (ADS)
Singh, Lakhwant; Singh Samra, Kawaljeet; Singh, Ravinder
2007-02-01
The samples of CR-39 and polystyrene (PS) polymers have been irradiated with 64Cu 9+ (120 MeV) and 12C 5+ (70 MeV) ion beams having fluence ranging from 1 × 10 11 to 1 × 10 13 ions/cm -2. UV spectra of irradiated samples reveal that the optical band gap decreases from 5.50 to 2.75 eV in CR-39 and from 4.36 to 1.73 eV in PS. The correlation between optical band gap and the number of carbon atoms in a cluster with modified Tauc's equation has been discussed in case of CR-39. FTIR spectra reveal that there is the formation of hydroxyl, alkene, alkyne and carboxylic groups in the Cu-ion irradiated PS. In CR-39, changes in the intensity of the bands on irradiation relative to pristine samples without appearance of any new band have been observed and discussed.
Optical properties of zinc lead tellurite glasses
NASA Astrophysics Data System (ADS)
Alazoumi, Salah Hassan; Aziz, Sidek Abdul; El-Mallawany, R.; Aliyu, Umar Sa'ad; Kamari, Halimah Mohamed; Zaid, Mohd Hafiz Mohd Mohd; Matori, Khamirul Amin; Ushah, Abdulbaset
2018-06-01
Tellurite glass systems in the form of [ZnO]x [(TeO2)0.7-(PbO)0.3]1-x with x = 0.15, 0.17, 0.20, 0.22 and 0.25 mol% were prepared using the melt quenching technique. XRD of the prepared samples have been measured for all samples. Both FTIR (280-4000 cm-1) and UV-Vis (200-800 nm) spectra have been measured. Optical band gap and refractive index were calculated for every glass sample. Density of glass, molar volume and oxygen packing density (OPD) were obtained. Values of the direct, indirect band gap ranged were found in the range 3.41-3.94 eV and 2.40-2.63 eV with increasing of ZnO concentration. Refractive index 2.58 and dielectric constant 6.66 were heigh at 17 ZnO mol% concentration. Molar polarizability, metallization criterion, polaron radius have been calculated for every glass composition.
2012-01-01
We have investigated the structural and optical properties of type-II GaSb/InGaAs quantum dots [QDs] grown on InP (100) substrate by molecular beam epitaxy. Rectangular-shaped GaSb QDs were well developed and no nanodash-like structures which could be easily found in the InAs/InP QD system were formed. Low-temperature photoluminescence spectra show there are two peaks centered at 0.75eV and 0.76ev. The low-energy peak blueshifted with increasing excitation power is identified as the indirect transition from the InGaAs conduction band to the GaSb hole level (type-II), and the high-energy peak is identified as the direct transition (type-I) of GaSb QDs. This material system shows a promising application on quantum-dot infrared detectors and quantum-dot field-effect transistor. PMID:22277096
Effect of Coulomb collision on the negative ion extraction mechanism in negative ion sources.
Goto, I; Miyamoto, K; Nishioka, S; Mattei, S; Lettry, J; Abe, S; Hatayama, A
2016-02-01
To improve the H(-) ion beam optics, it is necessary to understand the energy relaxation process of surface produced H(-) ions in the extraction region of Cs seeded H(-) ion sources. Coulomb collisions of charged particles have been introduced to the 2D3V-PIC (two dimension in real space and three dimension in velocity space particle-in-cell) model for the H(-) extraction by using the binary collision model. Due to Coulomb collision, the lower energy part of the ion energy distribution function of H(-) ions has been greatly increased. The mean kinetic energy of the surface produced H(-) ions has been reduced to 0.65 eV from 1.5 eV. It has been suggested that the beam optics of the extracted H(-) ion beam is strongly affected by the energy relaxation process due to Coulomb collision.
Gustavsson, B; Leyser, T B; Kosch, M; Rietveld, M T; Steen, A; Brändström, B U E; Aso, T
2006-11-10
Optical emissions and incoherent scatter radar data obtained during high-frequency electromagnetic pumping of the ionospheric plasma from the ground give data on electron energization in an energy range from 2 to 100 eV. Optical emissions at 4278 A from N2+ that require electrons with energies above the 18 eV ionization energy give the first images ever of pump-induced ionization of the thermosphere. The intensity at 4278 A is asymmetric around the ionospheric electron gyroharmonic, being stronger above the gyroresonance. This contrasts with emissions at 6300 A from O(1D) and of electron temperature enhancements, which have minima at the gyroharmonic but have no apparent asymmetry. This direct evidence of pump-induced ionization contradicts previous indirect evidence, which indicated that ionization is most efficiently produced when the pump frequency was below the gyroharmonic.
Ion polished Cr/Sc attosecond multilayer mirrors for high water window reflectivity
Guggenmos, Alexander; Radünz, Stefan; Rauhut, Roman; ...
2014-01-20
Recent advances in the development of attosecond soft X-ray sources ranging into the water window spectral range, between the 1s states of carbon and oxygen (284 eV–543 eV), are also driving the development of suited broadband multilayer optics for steering and shaping attosecond pulses. The relatively low intensity of current High Harmonic Generation (HHG) soft X-ray sources calls for an efficient use of photons, thus the development of low-loss multilayer optics is of uttermost importance. Here, we report about the realization of broadband Cr/Sc attosecond multilayer mirrors with nearly atomically smooth interfaces by an optimized ion beam deposition and assistedmore » interface polishing process. This yields to our knowledge highest multilayer mirror reflectivity at 300 eV near normal incidence. The results are verified by transmission electron microscopy (TEM) and soft/hard X-ray reflectometry.« less
Ion polished Cr/Sc attosecond multilayer mirrors for high water window reflectivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guggenmos, Alexander; Radünz, Stefan; Rauhut, Roman
Recent advances in the development of attosecond soft X-ray sources ranging into the water window spectral range, between the 1s states of carbon and oxygen (284 eV–543 eV), are also driving the development of suited broadband multilayer optics for steering and shaping attosecond pulses. The relatively low intensity of current High Harmonic Generation (HHG) soft X-ray sources calls for an efficient use of photons, thus the development of low-loss multilayer optics is of uttermost importance. Here, we report about the realization of broadband Cr/Sc attosecond multilayer mirrors with nearly atomically smooth interfaces by an optimized ion beam deposition and assistedmore » interface polishing process. This yields to our knowledge highest multilayer mirror reflectivity at 300 eV near normal incidence. The results are verified by transmission electron microscopy (TEM) and soft/hard X-ray reflectometry.« less
NASA Astrophysics Data System (ADS)
Galkin, N. G.; Galkin, K. N.; Dotsenko, , S. A.; Goroshko, D. L.; Shevlyagin, A. V.; Chusovitin, E. A.; Chernev, I. M.
2017-01-01
By method of in situ differential spectroscopy it was established that at the formation of monolayer Fe, Cr, Ca, Mg silicide and Mg stannide islands on the atomically clean silicon surface an appearance of loss peaks characteristic for these materials in the energy range of 1.1-2.6 eV is observed. An optimization of growth processes permit to grow monolithic double nanoheterostructures (DNHS) with embedded Fe, Cr and Ca nanocrystals, and also polycrystalline DNHS with NC of Mg silicide and Mg stannide and Ca disilicide. By methods of optical spectroscopy and Raman spectroscopy it was shown that embedded NC form intensive peaks in the reflectance spectra at energies up to 2.5 eV and Raman peaks. In DNS with β-FeSi2 NC a photoluminescence and electroluminescence at room temperature were firstly observed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, L.; Shi, Z.; Zhou, S. M., E-mail: wur@uci.edu, E-mail: shiming@tongji.edu.cn
2014-05-14
We have studied the magneto-optical Kerr effect (MOKE) of L1{sub 0} Fe{sub 0.5}(Pd{sub 1−x}Pt{sub x}){sub 0.5} alloy films with both experiments and first-principles calculations. In the visible region, negative Kerr rotation and ellipticity peaks are, respectively, observed in the regions of 1.5–2.0 eV and 1.7–2.6 eV. These peaks are shifted towards higher energies, and their magnitudes are enhanced for larger x. The MOKE evolution is mainly ascribed to the anomalous Hall conductivity contributed by the spin-down d{sub ↓,x{sup 2}−y{sup 2}} bands from Pd and Pt. We established a close correlation among the MOKE spectra, the spin orbit coupling strength, andmore » the band feature for this prototypical system.« less
Electrical and material properties of hydrothermally grown single crystal (111) UO2
NASA Astrophysics Data System (ADS)
Dugan, Christina L.; Peterson, George Glenn; Mock, Alyssa; Young, Christopher; Mann, J. Matthew; Nastasi, Michael; Schubert, Mathias; Wang, Lu; Mei, Wai-Ning; Tanabe, Iori; Dowben, Peter A.; Petrosky, James
2018-04-01
The semiconductor and optical properties of UO2 are investigated. The very long drift carrier lifetimes, obtained from current-voltage I( V) and capacitance-voltage C( V) measurements, along with the well-defined optical properties provide little evidence of an abundance of material defects away from the surface region. Schottky barrier formation may be possible, but very much dependent on the choice of contact and surface stoichiometry and we find that Ohmic contacts are in fact favored. Depth resolved photoemission provided evidence of a chemical shift at the surface. Density functional theory, with the Heyd-Scuseria-Ernzerhof (HSE) functional, indicates a band gap of a 2.19 eV and an anti-ferromagnetic ground state. Ellipsometry measurements indicates at UO2 is relatively isotropic with a band gap of approximately 2.0 eV band gap, consistent with theoretical expectations.
Dye anchored ZnO nanoparticles: The positive and negative photoluminescence quenching effects
NASA Astrophysics Data System (ADS)
Ganesh, T.; Kim, Jong Hoon; Yoon, Seog Joon; Lee, Sangjin; Lee, Wonjoo; Mane, Rajaram S.; Han, Jin Wook; Han, Sung-Hwan
2009-10-01
The positive and negative photoluminescence quenching effects in dye [BCMoxo and BCtCM (curcumin-derived molecules)] anchored ZnO nanoparticles (NPs) are investigated using the optical and electronic properties. The photoluminescence, band gap (BCMoxo, 2.2 eV; BCtCM, 2.3 eV), and wettability studies confirm an optical quenching, well-matched electronic structure and relative hydrophobic nature, respectively, in the presence of dicarboxylic anchor groups (BCtCM) on ZnO NPs in contrast to that of keto groups (BCMoxo). Systematic change in UV-visible absorption band edge is noticeable for the BCtCM and BCMoxo-anchored ZnO NPs. The atomic absorption spectroscopy and inductively coupled-mass-spectroscopy analysis quantitatively verifies the amount of BCtCM dye molecules present on ZnO NPs surface area about three times higher than that of BCMoxo dye molecule without anchor groups.
Optical absorption of Er3+ doped lithium lead borate glasses
NASA Astrophysics Data System (ADS)
Usharani, V. L.; Eraiah, B.
2018-05-01
A new glass system Lithium lead borate doped with erbium trioxide were perpared using conventional melt quenching method. The amorphous nature of the glass samples were confirmed by XRD spectrum. The density of these glass were measured using Archmides principle, the values lie in the range from 4.27 to 4.76 g/cm-3. The corresponding molar volumes are calculated and the values are in the range of 23.81 to 26.17 cm-3. Absorption spectra were recorded in the wavelength range of 200nm to 1100nm, for the prepared glass samples. The optical direct and indirect energy band gaps were measured, the values are in the range of 2.875 to 3.254 eV and 2.25 to 2.81 eV respectively. Photoluminescence technique was employed to study the luminescent property of the prepared glasses excited at 380nm, emission spectra were recorded and analyzed.
pnCCD for photon detection from near-infrared to X-rays
NASA Astrophysics Data System (ADS)
Meidinger, Norbert; Andritschke, Robert; Hartmann, Robert; Herrmann, Sven; Holl, Peter; Lutz, Gerhard; Strüder, Lothar
2006-09-01
A pnCCD is a special type of charge-coupled device developed for spectroscopy and imaging of X-rays with high time resolution and quantum efficiency. Its most famous application is the operation on the XMM-Newton satellite, an X-ray astronomy mission that was launched by the European space agency in 1999. The excellent performance of the focal plane camera has been maintained for more than 6 years in orbit. The energy resolution in particular has shown hardly any degradation since launch. In order to satisfy the requirements of future X-ray astronomy missions as well as those of ground-based experiments, a new type of pnCCD has been developed. This ‘frame-store pnCCD’ shows an enhanced performance compared to the XMM-Newton type of pnCCD. Now, more options in device design and operation are available to tailor the detector to its respective application. Part of this concept is a programmable analog signal processor, which has been developed for the readout of the CCD signals. The electronic noise of the new detector has a value of only 2 electrons equivalent noise charge (ENC), which is less than half of the figure achieved for the XMM-Newton-type pnCCD. The energy resolution for the Mn-Kα line at 5.9 keV is approximately 130 eV FWHM. We have close to 100% quantum efficiency for both low- and high-energy photon detection (e.g. the C-K line at 277 eV, and the Ge-Kα line at 10 keV, respectively). Very high frame rates of 1000 images/s have been achieved due to the ultra-fast readout accomplished by the parallel architecture of the pnCCD and the analog signal processor. Excellent spectroscopic performance is shown even at the relatively high operating temperature of -25 °C that can be achieved by a Peltier cooler. The applications of the low-noise and fast pnCCD detector are not limited to the detection of X-rays. With an anti-reflective coating deposited on the photon entrance window, we achieve high quantum efficiency also for near-infrared and optical photons. A novel type of pnCCD is in preparation, which allows single optical photon counting. This feature is accomplished by implementation of an avalanche-type amplifier in the pnCCD concept.
[Analysis of pathogen spectrum of Encephalitis/Meningitis in northwestern area of China].
Zhang, Xiao-shu; Wang, Xu-xia; Yu, De-shan; Jiang, Jian-xiang; Zhang, Guang-ye; Wang, Fang; Li, Hui
2013-10-01
To learn the characteristics of pathogen spectrum of Encephalitis /Meningitis in northwestern area of China. Between January 1st 2009 and March 31st 2011, a total of 569 patients with clinical symptoms of Encephalitis/Meningitis were selected from the hospitals in Gansu, Qinghai,Inner Mongolia and Xinjiang province. 1514 samples of specimen were collected from the 515 patients, to detect the IgM of Japanese encephalitis virus (JEV), enterovirus (EV, including Coxsackie virus, ECHO virus and enterovirus 71), Mumps virus, Herpes simplex virus (HSV) in blood and cerebrospinal fluid. Meanwhile, Neisseria meningitis (Nm), Haemophilus influenzae Type B (Hib), Staphylococcus, Streptococcus pneumonia, Streptococcus Suis, E. Coli and Cryptococci were also identified. The detection results were analyzed by different region, time and age range. Pathogenic bacteria were identified in the specimen from 16 patients, with the rate at 3.65%, of which the dominant ones were Streptococcus pneumonia (7 patients, 43.75%). Virus were identified in the specimen from 132 patients, with the rate at 27.05%, of which the dominant types were EV and HSV, accounting for 33.33% (44 cases) and 31.82% (42 cases) respectively. The detection rate of virus showed a significant seasonal trend, with the peak appearing between June and November each year. The peak of EV detection was between July and September, with 24 cases detected out; the peak of HSV was between June and August (11 cases detected out); mumps virus was mainly found between July and December (25 cases). There was no significant time-distribution found in the detection of bacteria. The EV and HSV were mainly distributed in Gansu and Qinghai province (70 cases) ;most of mumps virus were found in Gansu province (24 cases);and JEV were only found in Gansu province (20 cases). The viral pathogen spectrum was identified in all ages, and the EV and mumps virus were mainly found in children aged 0-14 years old (42 and 17 cases respectively) ; JEV were identified in people over 15 years old, with 13 detected out of the 20 patients. The main pathogen of acute encephalitis and meningitis in northwestern area of China was virus, and the main pathogens of encephalitis and meningitis in children under 15 years were Herpes simplex virus and Mumps virus.
Optical properties of BaTiO3 nanoparticles and silver nanoprisms in polymer host matrices
NASA Astrophysics Data System (ADS)
Requena, Sebastian
Nanocomposites are materials comprised of a host matrix, such as glass or polymer, with embedded nanoparticles. Embedding nanoparticles into the host makes it possible to create materials with properties that are distinctly unique from those of their host and nanoparticle constituents. Nanocomposites can have superior mechanical, thermal, and optical properties compared to their host materials. We characterized the photoluminescent properties of BaTiO3 polymer nanocomposites and the effects of chemically modifying the nanoparticles surface on said properties. BaTiO3 nanopowders of average grain sizes 50 nm and 100 nm were functionalized by (3-aminopropyl)triethoxysilane (3APTS) and mixed with poly(methyl methacrylate)/toluene solution. The nanocomposites films morphology and chemical structure were studied via AFM and FTIR. The photoluminescence spectrum of the pure nanoparticles was composed of an emission at ˜3.0 eV and multiple bands centered at ˜2.5 eV. Surface functionalization of the BaTiO3 nanoparticles via 3APTS increased overall luminescence at room temperature while only enhancing the ˜3.0 eV emission at low-temperature. On the other hand, polymer coating of the functionalized nanoparticles significantly enhances ˜3.0 eV emissions while decreasing emissions associated with near-surface lattice distortions at ˜2.5 eV. Chemical modification of the surface with 3APTS and PMMA presents a pathway to tune and control the photoluminescent properties of BTO nanoparticles. We also present optical studies of two different size distributions of silver triangular nanoprisms, one with a dipole resonance at ˜520 nm and the other with a dipole resonance at ˜650 nm, placed in different media. The silver nanoprisms were embedded in a polyvinyl alcohol (PVA) polymer matrix and oriented by stretching the polymer/nanoprism nanocomposite films. We observe significantly increased linear dichroism in the region associated with the plasmonic in-plane dipole mode upon stretching. Additionally, there is a weaker linear dichroism in the region associated with out-of-plane modes, which vanish in the extinction spectrum of the stretched nanocomposite film. Our results show that these silver nanoprisms are promising as key components in wavelength-specific depolarizers and depolarization-based assays.
NASA Astrophysics Data System (ADS)
Zolnai, Z.; Toporkov, M.; Volk, J.; Demchenko, D. O.; Okur, S.; Szabó, Z.; Özgür, Ü.; Morkoç, H.; Avrutin, V.; Kótai, E.
2015-02-01
The atomic composition with less than 1-2 atom% uncertainty was measured in ternary BeZnO and quaternary BeMgZnO alloys using a combination of nondestructive Rutherford backscattering spectrometry with 1 MeV He+ analyzing ion beam and non-Rutherford elastic backscattering experiments with 2.53 MeV energy protons. An enhancement factor of 60 in the cross-section of Be for protons has been achieved to monitor Be atomic concentrations. Usually the quantitative analysis of BeZnO and BeMgZnO systems is challenging due to difficulties with appropriate experimental tools for the detection of the light Be element with satisfactory accuracy. As it is shown, our applied ion beam technique, supported with the detailed simulation of ion stopping, backscattering, and detection processes allows of quantitative depth profiling and compositional analysis of wurtzite BeZnO/ZnO/sapphire and BeMgZnO/ZnO/sapphire layer structures with low uncertainty for both Be and Mg. In addition, the excitonic bandgaps of the layers were deduced from optical transmittance measurements. To augment the measured compositions and bandgaps of BeO and MgO co-alloyed ZnO layers, hybrid density functional bandgap calculations were performed with varying the Be and Mg contents. The theoretical vs. experimental bandgaps show linear correlation in the entire bandgap range studied from 3.26 eV to 4.62 eV. The analytical method employed should help facilitate bandgap engineering for potential applications, such as solar blind UV photodetectors and heterostructures for UV emitters and intersubband devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, M. P.; Kaplar, R. J.; Dickerson, J. R.
Electrical performance and characterization of deep levels in vertical GaN P-i-N diodes grown on low threading dislocation density (~10 4 –10 6 cm –2) bulk GaN substrates are investigated. The lightly doped n drift region of these devices is observed to be highly compensated by several prominent deep levels detected using deep level optical spectroscopy at E c-2.13, 2.92, and 3.2 eV. A combination of steady-state photocapacitance and lighted capacitance-voltage profiling indicates the concentrations of these deep levels to be N t = 3 × 10 12, 2 × 10 15, and 5 × 10 14 cm –3, respectively. Themore » E c-2.92 eV level is observed to be the primary compensating defect in as-grown n-type metal-organic chemical vapor deposition GaN, indicating this level acts as a limiting factor for achieving controllably low doping. The device blocking voltage should increase if compensating defects reduce the free carrier concentration of the n drift region. Understanding the incorporation of as-grown and native defects in thick n-GaN is essential for enabling large V BD in the next-generation wide-bandgap power semiconductor devices. Furthermore, controlling the as-grown defects induced by epitaxial growth conditions is critical to achieve blocking voltage capability above 5 kV.« less
Enhancement of nonlinear optical susceptibility of CuPc films by ITO layer
NASA Astrophysics Data System (ADS)
Ganesh, V.; Zahran, H. Y.; Yahia, I. S.; Shkir, Mohd; AlFaify, S.
2016-12-01
In the present study, the Copper Phthalocyanine (CuPc)/ITO thin film was fabricated using thermal evaporation method. The structural property was analyzed by X-ray diffraction study and confirms that the thin film has been preferentially grown along (200) plane. The atomic force microscope study was carried out on deposited film and quality of thin films is assessed by calculating the roughness of the films. The direct and indirect band gap, linear and nonlinear optical characteristics of grown films were calculated by using UV-Vis-NIR spectrometer studies. The calculated values of the first direct and indirect band gaps (Eg1(d) &Eg1(ind)) are 1.879 and 1.644 eV as a fundamental gap, while the values of second direct and indirect band gap (Eg2(d) &Eg2(ind)) are 1.660 and 1.498 eV as an onset gap for CuPc. The values of nonlinear refractive index (n2) and third order nonlinear optical susceptibility (χ3) are found to be 5 × 10-8 and 8 × 10-9 (theoretical) and 5.2 × 10-8 and 1.56 × 10-7 (experimental) respectively. The optical band and third order nonlinear properties suggest that the as-prepared films are may be applied in optoelectronic and nonlinear applications.
Optical and structural investigation on sodium borosilicate glasses doped with Cr2O3
NASA Astrophysics Data System (ADS)
Ebrahimi, E.; Rezvani, M.
2018-02-01
In this work, Sodium borosilicate glasses with chemical composition of 60% SiO2-20% B2O3-20%Na2O doped with different contents of Cr2O3 were prepared by melting-quenching method. Physical, structural and optical properties of glasses were investigated by studying density and molar volume, Fourier Transform Infrared (FT-IR) Spectra and UV-visible absorption spectroscopy. The results showed an increase in density of glasses with the increase of Cr2O3 that can be due to addition of oxide with high molar mass. The optical absorption spectra of un-doped glass reveals UV absorption due to trace iron impurities with no visible band however Cr2O3 doped glasses shows absorption in visible range that are characteristic. Increasing of Cr3 + ions in the glassy microstructure of samples provides a semiconducting character to Sodium borosilicate glass by reducing the direct and indirect optical band gaps of glass samples from 3.79 to 2.59 (ev) and 3.36 to 2.09 (ev), respectively. These changes could be attributed to the role of Cr3 + ions as the network former which asserts improvement of semiconducting behavior in presence of Cr2O3.
Influence of samarium ions (Sm3+) on the optical properties of lithium zinc phosphate glasses
NASA Astrophysics Data System (ADS)
Shwetha, M.; Eraiah, B.
2018-05-01
New glass samples with composition xSm2O3-(15-x) Li2O-45ZnO-40P2O5, where x= 0, 0.1, 0.3 and 0.5 mol % are prepared by conventional melt-quenching method. X-ray Diffraction measurements were performed to confirm their amorphous nature. Densities of these glasses were measured by Archimedes method. Optical properties were studied using optical absorption spectra which was recorded at room temperature in the UV-Vis region. Electronic transitions specific to the rare earth ion were observed from the UV-Visible spectroscopy. Optical direct band gap and indirect band gap energies were measured and their values were found to be between 4.23-4.74 eV and 3.02-3.67 eV, respectively. Refractive index has been measured with respect to different concentrations of Sm2O3. Polaron radius, inter-nuclear distance, field strength, dielectric constant and polarizability of oxide ions have been calculated. Fluorescence spectroscopy measurements have been performed by excitation in the UV-Visible range, which resulted in the significant fluorescence peaks. The luminescence color of the glass system has been characterized using Commission International de l'Eclairage de France 1931 chromaticity diagram.
Habibi, Mohammad Hossein; Mardani, Maryam
2015-02-25
Binary zinc tin oxide nano-composite was synthesized by a facile sol-gel method using simple precursors from the solutions consisting of zinc acetate, tin(IV) chloride and ethanol. Effect of annealing temperature on optical and structural properties was investigated using X-ray diffraction (XRD), diffuse reflectance spectra (DRS), field emission scanning electron microscopy (FESEM) and Fourier transform infrared spectroscopy (FTIR). XRD results revealed the existence of the ZnO and SnO2 phases. FESEM results showed that binary zinc tin oxide nano-composites ranges from 56 to 60 nm in diameter at 400°C and 500°C annealing temperatures respectively. The optical band gap was increased from 2.72 eV to 3.11 eV with the increasing of the annealing temperature. FTIR results confirmed the presence of zinc oxide and tin oxide and the broad absorption peaks at 3426 and 1602 cm(-1) can be ascribed to the vibration of absorptive water, and the absorption peaks at 546, 1038 and 1410 cm(-1) are due to the vibration of Zn-O or Sn-O groups in binary zinc tin oxide. Copyright © 2014 Elsevier B.V. All rights reserved.
Optical and structural investigation on sodium borosilicate glasses doped with Cr2O3.
Ebrahimi, E; Rezvani, M
2018-02-05
In this work, Sodium borosilicate glasses with chemical composition of 60% SiO 2 -20% B 2 O 3 -20%Na 2 O doped with different contents of Cr 2 O 3 were prepared by melting-quenching method. Physical, structural and optical properties of glasses were investigated by studying density and molar volume, Fourier Transform Infrared (FT-IR) Spectra and UV-visible absorption spectroscopy. The results showed an increase in density of glasses with the increase of Cr 2 O 3 that can be due to addition of oxide with high molar mass. The optical absorption spectra of un-doped glass reveals UV absorption due to trace iron impurities with no visible band however Cr 2 O 3 doped glasses shows absorption in visible range that are characteristic. Increasing of Cr 3+ ions in the glassy microstructure of samples provides a semiconducting character to Sodium borosilicate glass by reducing the direct and indirect optical band gaps of glass samples from 3.79 to 2.59 (ev) and 3.36 to 2.09 (ev), respectively. These changes could be attributed to the role of Cr 3+ ions as the network former which asserts improvement of semiconducting behavior in presence of Cr 2 O 3 . Copyright © 2017. Published by Elsevier B.V.
Structural and optical properties of tin disulphide thin films grown by flash evaporation
NASA Astrophysics Data System (ADS)
Banotra, Arun; Padha, Naresh
2018-04-01
Tin Disulphide thin films were deposited by Flash Evaporation method on corning Glass Substrate at different substrate temperatures. The deposited films were undertaken for Structural, Optical and compositional characterizations. Compositional analysis of the films exhibited decrease in the sulphur content enabling S/Sn ratio to vary from 2.05 to 1.32 with increasing substrate temperature. X-ray diffraction reveals amorphous nature of the as-deposited films with varying substrate temperatures. Optical measurements estimated from absorbance spectra suggest higher absorbance at λ≤500nm and higher transmission at λ≥500nm with bandgap changes from 2.45eV to 2.09eV. The 323K as-deposited films were undertaken for annealing which transforms the films into crystalline form corresponding to hexagonal SnS2 phase at 423K and above. However, the optical response for the annealed samples shows a higher transmission of 70% in the visible region which increases further in the Infrared region of the spectrum achieving maximum transmission upto 98%. This higher transmission in the Visible to Infrared region of the solar spectrum in amorphous as well as crystalline form makes the film suitable for their use as a window layer in the Solar Cell Design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajendran, V.; Gajendiran, J., E-mail: gaja.nanotech@gmail.com
2014-08-15
Highlights: • CuO nanostructures by surfactants mediated method. • Structural and optical properties of CuO nanostructures changes under the effect of surface modifier. • Citric acid assisted is the best, in terms of size, morphology and optical properties than that of CTAB, SDS and PEG-400. - Abstract: Nanostructures of copper oxide (CuO) was synthesized into crystallite sized ranging from 20 to 50 nm in the presence of different surfactants, and complex agent such as cityl tri methyl ammonium bromide (CTAB), sodium do decyl sulfate (SDS), poly ethylene glycol (PEG-400) and citric acid via a precipitation route. Variations in several parametersmore » and their effects on the structural and optical properties of CuO nanostructures (crystallite size, morphology and band gap) were investigated by XRD, FTIR, SEM and UV analysis. The UV–visible absorption spectra of the different surfactants and complexing agent assisted CuO nanostructures indicates that the estimated optical band gap energy value (1.94–1.98 eV) is higher than that of the bulk CuO value (1.4 eV), which is attributed to the quantum confinement effect. The formation mechanism of different surfactants and complexing agent assisted CuO nanostructures is also proposed.« less