Sample records for eva joint angle

  1. Studies Relating to EVA

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In this session, Session JA1, the discussion focuses on the following topics: The Staged Decompression to the Hypobaric Atmosphere as a Prophylactic Measure Against Decompression Sickness During Repetitive EVA; A New Preoxygenation Procedure for Extravehicular Activity (EVA); Metabolic Assessments During Extra-Vehicular Activity; Evaluation of Safety of Hypobaric Decompressions and EVA From Positions of Probabilistic Theory; Fatty Acid Composition of Plasma Lipids and Erythrocyte Membranes During Simulation of Extravehicular Activity; Biomedical Studies Relating to Decompression Stress with Simulated EVA, Overview; The Joint Angle and Muscle Signature (JAMS) System - Current Uses and Future Applications; and Experimental Investigation of Cooperative Human-Robotic Roles in an EVA Work Site.

  2. Quantifying Astronaut Tasks: Robotic Technology and Future Space Suit Design

    NASA Technical Reports Server (NTRS)

    Newman, Dava

    2003-01-01

    The primary aim of this research effort was to advance the current understanding of astronauts' capabilities and limitations in space-suited EVA by developing models of the constitutive and compatibility relations of a space suit, based on experimental data gained from human test subjects as well as a 12 degree-of-freedom human-sized robot, and utilizing these fundamental relations to estimate a human factors performance metric for space suited EVA work. The three specific objectives are to: 1) Compile a detailed database of torques required to bend the joints of a space suit, using realistic, multi- joint human motions. 2) Develop a mathematical model of the constitutive relations between space suit joint torques and joint angular positions, based on experimental data and compare other investigators' physics-based models to experimental data. 3) Estimate the work envelope of a space suited astronaut, using the constitutive and compatibility relations of the space suit. The body of work that makes up this report includes experimentation, empirical and physics-based modeling, and model applications. A detailed space suit joint torque-angle database was compiled with a novel experimental approach that used space-suited human test subjects to generate realistic, multi-joint motions and an instrumented robot to measure the torques required to accomplish these motions in a space suit. Based on the experimental data, a mathematical model is developed to predict joint torque from the joint angle history. Two physics-based models of pressurized fabric cylinder bending are compared to experimental data, yielding design insights. The mathematical model is applied to EVA operations in an inverse kinematic analysis coupled to the space suit model to calculate the volume in which space-suited astronauts can work with their hands, demonstrating that operational human factors metrics can be predicted from fundamental space suit information.

  3. A feasibility study of hand kinematics for EVA analysis using magnetic resonance imaging

    NASA Technical Reports Server (NTRS)

    Dickenson, Reuben D.; Lorenz, Christine H.; Peterson, Steven W.; Strauss, Alvin M.; Main, John A.

    1992-01-01

    A new method for analyzing the kinematics of joint motion using magnetic resonance imaging (MRI) is described. The reconstruction of the metacarpalphalangeal joint of the left index finger into a 3D graphic display is shown. From the reconstructed volumetric images, measurements of the angles of movement of the applicable bones are obtained and processed by analyzing the screw motion of the joint. Landmark positions are chosen at distinctive locations of the joint at fixed image threshold intensity levels to ensure repeatability. The primarily 2D planar motion of this joint is then studied using a method of constructing coordinate systems using three or more points. A transformation matrix based on a world coordinate system describes the location and orientation of the local target coordinate system. The findings show the applicability of MRI to joint kinematics for gaining further knowledge of the hand-glove design for EVA.

  4. Dynamic analysis of astronaut motions in microgravity: Applications for Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    Newman, Dava J.

    1995-01-01

    Simulations of astronaut motions during extravehicular activity (EVA) tasks were performed using computational multibody dynamics methods. The application of computational dynamic simulation to EVA was prompted by the realization that physical microgravity simulators have inherent limitations: viscosity in neutral buoyancy tanks; friction in air bearing floors; short duration for parabolic aircraft; and inertia and friction in suspension mechanisms. These limitations can mask critical dynamic effects that later cause problems during actual EVA's performed in space. Methods of formulating dynamic equations of motion for multibody systems are discussed with emphasis on Kane's method, which forms the basis of the simulations presented herein. Formulation of the equations of motion for a two degree of freedom arm is presented as an explicit example. The four basic steps in creating the computational simulations were: system description, in which the geometry, mass properties, and interconnection of system bodies are input to the computer; equation formulation based on the system description; inverse kinematics, in which the angles, velocities, and accelerations of joints are calculated for prescribed motion of the endpoint (hand) of the arm; and inverse dynamics, in which joint torques are calculated for a prescribed motion. A graphical animation and data plotting program, EVADS (EVA Dynamics Simulation), was developed and used to analyze the results of the simulations that were performed on a Silicon Graphics Indigo2 computer. EVA tasks involving manipulation of the Spartan 204 free flying astronomy payload, as performed during Space Shuttle mission STS-63 (February 1995), served as the subject for two dynamic simulations. An EVA crewmember was modeled as a seven segment system with an eighth segment representing the massive payload attached to the hand. For both simulations, the initial configuration of the lower body (trunk, upper leg, and lower leg) was a neutral microgravity posture. In the first simulation, the payload was manipulated around a circular trajectory of 0.15 m radius in 10 seconds. It was found that the wrist joint theoretically exceeded its ulnal deviation limit by as much as 49. 8 deg and was required to exert torques as high as 26 N-m to accomplish the task, well in excess of the wrist physiological limit of 12 N-m. The largest torque in the first simulation, 52 N-m, occurred in the ankle joint. To avoid these problems, the second simulation placed the arm in a more comfortable initial position and the radius and speed of the circular trajectory were reduced by half. As a result, the joint angles and torques were reduced to values well within their physiological limits. In particular, the maximum wrist torque for the second simulation was only 3 N-m and the maximum ankle torque was only 6 N-m.

  5. Establishing a relationship between maximum torque production of isolated joints to simulate EVA ratchet push-pull maneuver: A case study

    NASA Technical Reports Server (NTRS)

    Pandya, Abhilash; Maida, James; Hasson, Scott; Greenisen, Michael; Woolford, Barbara

    1993-01-01

    As manned exploration of space continues, analytical evaluation of human strength characteristics is critical. These extraterrestrial environments will spawn issues of human performance which will impact the designs of tools, work spaces, and space vehicles. Computer modeling is an effective method of correlating human biomechanical and anthropometric data with models of space structures and human work spaces. The aim of this study is to provide biomechanical data from isolated joints to be utilized in a computer modeling system for calculating torque resulting from any upper extremity motions: in this study, the ratchet wrench push-pull operation (a typical extravehicular activity task). Established here are mathematical relationships used to calculate maximum torque production of isolated upper extremity joints. These relationships are a function of joint angle and joint velocity.

  6. Development and Applications of a Self-Contained, Non-Invasive EVA Joint Angle and Muscle Fatigue Sensor System

    NASA Technical Reports Server (NTRS)

    Ranniger, C. U.; Sorenson, E. A.; Akin, D. L.

    1995-01-01

    The University of Maryland Space Systems Laboratory, as a participant in NASA's INSTEP program, is developing a non-invasive, self-contained sensor system which can provide quantitative measurements of joint angles and muscle fatigue in the hand and forearm. The goal of this project is to develop a system with which hand/forearm motion and fatigue metrics can be determined in various terrestrial and zero-G work environments. A preliminary study of the prototype sensor systems and data reduction techniques for the fatigue measurement system are presented. The sensor systems evaluated include fiberoptics, used to measure joint angle, surface electrodes, which measure the electrical signals created in muscle as it contracts; microphones, which measure the noise made by contracting muscle; and accelerometers, which measure the lateral muscle acceleration during contraction. The prototype sensor systems were used to monitor joint motion of the metacarpophalangeal joint and muscle fatigue in flexor digitorum superficialis and flexor carpi ulnaris in subjects performing gripping tasks. Subjects were asked to sustain a 60-second constant-contraction (isometric) exercise and subsequently to perform a repetitive handgripping task to failure. Comparison of the electrical and mechanical signals of the muscles during the different tasks will be used to evaluate the applicability of muscle signal measurement techniques developed for isometric contraction tasks to fatigue prediction in quasi-dynamic exercises. Potential data reduction schemes are presented.

  7. Modeling and dynamic simulation of astronaut's upper limb motions considering counter torques generated by the space suit.

    PubMed

    Li, Jingwen; Ye, Qing; Ding, Li; Liao, Qianfang

    2017-07-01

    Extravehicular activity (EVA) is an inevitable task for astronauts to maintain proper functions of both the spacecraft and the space station. Both experimental research in a microgravity simulator (e.g. neutral buoyancy tank, zero-g aircraft or a drop tower/tube) and mathematical modeling were used to study EVA to provide guidance for the training on Earth and task design in space. Modeling has become more and more promising because of its efficiency. Based on the task analysis, almost 90% of EVA activity is accomplished through upper limb motions. Therefore, focusing on upper limb models of the body and space suit is valuable to this effort. In previous modeling studies, some multi-rigid-body systems were developed to simplify the human musculoskeletal system, and the space suit was mostly considered as a part of the astronaut body. With the aim to improve the reality of the models, we developed an astronauts' upper limb model, including a torque model and a muscle-force model, with the counter torques from the space suit being considered as a boundary condition. Inverse kinematics and the Maggi-Kane's method was applied to calculate the joint angles, joint torques and muscle force given that the terminal trajectory of upper limb motion was known. Also, we validated the muscle-force model using electromyogram (EMG) data collected in a validation experiment. Muscle force calculated from our model presented a similar trend with the EMG data, supporting the effectiveness and feasibility of the muscle-force model we established, and also, partially validating the joint model in kinematics aspect.

  8. A feasibility study of hand kinematics for EVA analysis using magnetic resonance imaging

    NASA Technical Reports Server (NTRS)

    Dickenson, Rueben D.; Lorenz, Christine H.; Peterson, Steven W.; Strauss, Alvin M.; Main, John A.

    1992-01-01

    A new method of analyzing the kinematics of joint motion is developed. Magnetic Resonance Imaging (MRI) offers several distinct advantages. Past methods of studying anatomic joint motion have usually centered on four approaches. These methods are x-ray projection, goniometric linkage analysis, sonic digitization, and landmark measurement of photogrammetry. Of these four, only x-ray is applicable for in vivo studies. The remaining three methods utilize other types of projections of inter-joint measurements, which can cause various types of error. MRI offers accuracy in measurement due to its tomographic nature (as opposed to projection) without the problems associated with x-ray dosage. Once the data acquisition of MR images was complete, the images were processed using a 3D volume rendering workstation. The metacarpalphalangeal (MCP) joint of the left index finger was selected and reconstructed into a three-dimensional graphic display. From the reconstructed volumetric images, measurements of the angles of movement of the applicable bones were obtained and processed by analyzing the screw motion of the MCP joint. Landmark positions were chosen at distinctive locations of the joint at fixed image threshold intensity levels to ensure repeatability. The primarily two dimensional planar motion of this joint was then studied using a method of constructing coordinate systems using three (or more) points. A transformation matrix based on a world coordinate system described the location and orientation of a local target coordinate system. Future research involving volume rendering of MRI data focusing on the internal kinematics of the hand's individual ligaments, cartilage, tendons, etc. will follow. Its findings will show the applicability of MRI to joint kinematics for gaining further knowledge of the hand-glove (power assisted) design for extravehicular activity (EVA).

  9. Extravehicular Activity (EVA) Hardware & Operations Overview

    NASA Technical Reports Server (NTRS)

    Moore, Sandra; Marmolejo, Jose

    2014-01-01

    The objectives of this presentation are to: Define Extravehicular Activity (EVA), identify the reasons for conducting an EVA, and review the role that EVA has played in the space program; Identify the types of EVAs that may be performed; Describe some of the U.S. Space Station equipment and tools that are used during an EVA, such as the Extravehicular Mobility Unit (EMU), the Simplified Aid For EVA Rescue (SAFER), the International Space Station (ISS) Joint Airlock and Russian Docking Compartment 1 (DC-1), and EVA Tools & Equipment; Outline the methods and procedures of EVA Preparation, EVA, and Post-EVA operations; Describe the Russian spacesuit used to perform an EVA; Provide a comparison between U.S. and Russian spacesuit hardware and EVA support; and Define the roles that different training facilities play in EVA training.

  10. EVA console personnel during STS-61 simulations

    NASA Image and Video Library

    1993-09-01

    Susan P. Rainwater monitors an extravehicular activity (EVA) simulation from the EVA console at JSC's Mission Control Center (MCC) during joint integrated simulations for the STS-61 mission. Astronauts assigned to extravehicular activity (EVA) tasks with the Hubble Space Telescope (HST) were simultaneously rehearsing in a neutral buoyancy tank at the Marshall Space Flight Center (MSFC) in Alabama.

  11. Extravehicular activity space suit interoperability.

    PubMed

    Skoog, A I; McBarron JW 2nd; Severin, G I

    1995-10-01

    The European Agency (ESA) and the Russian Space Agency (RKA) are jointly developing a new space suit system for improved extravehicular activity (EVA) capabilities in support of the MIR Space Station Programme, the EVA Suit 2000. Recent national policy agreements between the U.S. and Russia on planned cooperations in manned space also include joint extravehicular activity (EVA). With an increased number of space suit systems and a higher operational frequency towards the end of this century an improved interoperability for both routine and emergency operations is of eminent importance. It is thus timely to report the current status of ongoing work on international EVA interoperability being conducted by the Committee on EVA Protocols and Operations of the International Academy of Astronauts initiated in 1991. This paper summarises the current EVA interoperability issues to be harmonised and presents quantified vehicle interface requirements for the current U.S. Shuttle EMU and Russian MIR Orlan DMA and the new European/Russian EVA Suit 2000 extravehicular systems. Major critical/incompatible interfaces for suits/mother-craft of different combinations are discussed, and recommendations for standardisations given.

  12. Post-Shuttle EVA Operations on ISS

    NASA Technical Reports Server (NTRS)

    West, Bill; Witt, Vincent; Chullen, Cinda

    2010-01-01

    The EVA hardware used to assemble and maintain the ISS was designed with the assumption that it would be returned to Earth on the Space Shuttle for ground processing, refurbishment, or failure investigation (if necessary). With the retirement of the Space Shuttle, a new concept of operations was developed to enable EVA hardware (EMU, Airlock Systems, EVA tools, and associated support equipment and consumables) to perform ISS EVAs until 2016 and possibly beyond to 2020. Shortly after the decision to retire the Space Shuttle was announced, NASA and the One EVA contractor team jointly initiated the EVA 2010 Project. Challenges were addressed to extend the operating life and certification of EVA hardware, secure the capability to launch EVA hardware safely on alternate launch vehicles, and protect EMU hardware operability on orbit for long durations.

  13. Hand-Eye Calibration of Robonaut

    NASA Technical Reports Server (NTRS)

    Nickels, Kevin; Huber, Eric

    2004-01-01

    NASA's Human Space Flight program depends heavily on Extra-Vehicular Activities (EVA's) performed by human astronauts. EVA is a high risk environment that requires extensive training and ground support. In collaboration with the Defense Advanced Research Projects Agency (DARPA), NASA is conducting a ground development project to produce a robotic astronaut's assistant, called Robonaut, that could help reduce human EVA time and workload. The project described in this paper designed and implemented a hand-eye calibration scheme for Robonaut, Unit A. The intent of this calibration scheme is to improve hand-eye coordination of the robot. The basic approach is to use kinematic and stereo vision measurements, namely the joint angles self-reported by the right arm and 3-D positions of a calibration fixture as measured by vision, to estimate the transformation from Robonaut's base coordinate system to its hand coordinate system and to its vision coordinate system. Two methods of gathering data sets have been developed, along with software to support each. In the first, the system observes the robotic arm and neck angles as the robot is operated under external control, and measures the 3-D position of a calibration fixture using Robonaut's stereo cameras, and logs these data. In the second, the system drives the arm and neck through a set of pre-recorded configurations, and data are again logged. Two variants of the calibration scheme have been developed. The full calibration scheme is a batch procedure that estimates all relevant kinematic parameters of the arm and neck of the robot The daily calibration scheme estimates only joint offsets for each rotational joint on the arm and neck, which are assumed to change from day to day. The schemes have been designed to be automatic and easy to use so that the robot can be fully recalibrated when needed such as after repair, upgrade, etc, and can be partially recalibrated after each power cycle. The scheme has been implemented on Robonaut Unit A and has been shown to reduce mismatch between kinematically derived positions and visually derived positions from a mean of 13.75cm using the previous calibration to means of 1.85cm using a full calibration and 2.02cm using a suboptimal but faster daily calibration. This improved calibration has already enabled the robot to more accurately reach for and grasp objects that it sees within its workspace. The system has been used to support an autonomous wrench-grasping experiment and significantly improved the workspace positioning of the hand based on visually derived wrench position. estimates.

  14. Conversion of IVA Human Computer Model to EVA Use and Evaluation and Comparison of the Result to Existing EVA Models

    NASA Technical Reports Server (NTRS)

    Hamilton, George S.; Williams, Jermaine C.

    1998-01-01

    This paper describes the methods, rationale, and comparative results of the conversion of an intravehicular (IVA) 3D human computer model (HCM) to extravehicular (EVA) use and compares the converted model to an existing model on another computer platform. The task of accurately modeling a spacesuited human figure in software is daunting: the suit restricts the human's joint range of motion (ROM) and does not have joints collocated with human joints. The modeling of the variety of materials needed to construct a space suit (e. g. metal bearings, rigid fiberglass torso, flexible cloth limbs and rubber coated gloves) attached to a human figure is currently out of reach of desktop computer hardware and software. Therefore a simplified approach was taken. The HCM's body parts were enlarged and the joint ROM was restricted to match the existing spacesuit model. This basic approach could be used to model other restrictive environments in industry such as chemical or fire protective clothing. In summary, the approach provides a moderate fidelity, usable tool which will run on current notebook computers.

  15. View of Swanson working on the S3 Truss for STS-117 EVA2 during Joint Operations with Expedition 15

    NASA Image and Video Library

    2007-06-14

    ISS015-E-12063 (13 June 2007) --- Astronauts Steven Swanson and Patrick Forrester (out of frame), both STS-117 mission specialists, participate in the mission's second planned session of extravehicular activity (EVA), as construction resumes on the International Space Station. Among other tasks, Forrester and Swanson removed all of the launch locks holding the 10-foot-wide solar alpha rotary joint in place and began the solar array retraction.

  16. Computational simulation of extravehicular activity dynamics during a satellite capture attempt.

    PubMed

    Schaffner, G; Newman, D J; Robinson, S K

    2000-01-01

    A more quantitative approach to the analysis of astronaut extravehicular activity (EVA) tasks is needed because of their increasing complexity, particularly in preparation for the on-orbit assembly of the International Space Station. Existing useful EVA computer analyses produce either high-resolution three-dimensional computer images based on anthropometric representations or empirically derived predictions of astronaut strength based on lean body mass and the position and velocity of body joints but do not provide multibody dynamic analysis of EVA tasks. Our physics-based methodology helps fill the current gap in quantitative analysis of astronaut EVA by providing a multisegment human model and solving the equations of motion in a high-fidelity simulation of the system dynamics. The simulation work described here improves on the realism of previous efforts by including three-dimensional astronaut motion, incorporating joint stops to account for the physiological limits of range of motion, and incorporating use of constraint forces to model interaction with objects. To demonstrate the utility of this approach, the simulation is modeled on an actual EVA task, namely, the attempted capture of a spinning Intelsat VI satellite during STS-49 in May 1992. Repeated capture attempts by an EVA crewmember were unsuccessful because the capture bar could not be held in contact with the satellite long enough for the capture latches to fire and successfully retrieve the satellite.

  17. Metabolic Assessment of Suited Mobility Using Functional Tasks

    NASA Technical Reports Server (NTRS)

    Norcross, J. R.; McFarland, S. M.; Ploutz-Snyder, Robert

    2016-01-01

    Existing methods for evaluating extravehicular activity (EVA) suit mobility have typically focused on isolated joint range of motion or torque, but these techniques have little to do with how well a crewmember functionally performs in an EVA suit. To evaluate suited mobility at the system level through measuring metabolic cost (MC) of functional tasks.

  18. EVA 3 - P6 truss and arrays

    NASA Image and Video Library

    2007-10-30

    S120-E-007426 (30 Oct. 2007) --- Astronaut Scott Parazynski, STS-120 mission specialist, participates in the third scheduled session of extravehicular activity (EVA) as construction continues on the International Space Station. During the 7-hour, 8-minute spacewalk Parazynski and astronaut Doug Wheelock (out of frame), mission specialist, installed the P6 truss segment with its set of solar arrays to its permanent home, installed a spare main bus switching unit on a stowage platform, and performed a few get-ahead tasks. Also, Parazynski inspected the port Solar Alpha Rotary Joint (SARJ) to gather comparison data for the starboard rotary joint.

  19. EVA 3 - P6 truss and arrays

    NASA Image and Video Library

    2007-10-30

    S120-E-007424 (30 Oct. 2007) --- Astronaut Scott Parazynski, STS-120 mission specialist, participates in the third scheduled session of extravehicular activity (EVA) as construction continues on the International Space Station. During the 7-hour, 8-minute spacewalk Parazynski and astronaut Doug Wheelock (out of frame), mission specialist, installed the P6 truss segment with its set of solar arrays to its permanent home, installed a spare main bus switching unit on a stowage platform, and performed a few get-ahead tasks. Also, Parazynski inspected the port Solar Alpha Rotary Joint (SARJ) to gather comparison data for the starboard rotary joint.

  20. Parazynski during EVA 3

    NASA Image and Video Library

    2007-10-30

    ISS016-E-007423 (30 Oct. 2007) --- Astronaut Scott Parazynski, STS-120 mission specialist, participates in the third scheduled session of extravehicular activity (EVA) as construction continues on the International Space Station. During the 7-hour, 8-minute spacewalk Parazynski and astronaut Doug Wheelock (out of frame), mission specialist, installed the P6 truss segment with its set of solar arrays to its permanent home, installed a spare main bus switching unit on a stowage platform, and performed a few get-ahead tasks. Also, Parazynski inspected the port Solar Alpha Rotary Joint (SARJ) to gather comparison data for the starboard rotary joint.

  1. Stabilization of the Abdominal Aorta During the Cardiac Cycle with the Sac-Anchoring Nellix Device.

    PubMed

    Itoga, Nathan K; Suh, Ga-Young; Cheng, Christopher P

    2018-06-09

    The Nellix device uses polymer-filled endobags to stabilize the abdominal aortic aneurysm (AAA) sac which is described as endovascular aneurysm sealing (EVAS). We analyzed cardiac-gated computed tomography angiography scans of repaired AAA with EVAS in 4 patients to evaluate the geometry and cardiac pulsatility-induced deformation. Graft translation and aortic curvature changes were found to be minimal during the cardiac cycle. The mean ± standard deviation changes in renal-aorta angles (1.0 ± 0.9°) were less than the changes in the superior mesenteric artery-aorta angle (4.0 ± 2.1°) (P < 0.01), during the cardiac cycle, demonstrating greater stabilization of the visceral branches closer to the device. These findings confirm stabilization of the abdominal aorta during the cardiac cycle using EVAS. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. The Potential of Wearable Sensor Technology for EVA Glove Ergonomic Evaluation

    NASA Technical Reports Server (NTRS)

    Reid, Christopher R.; McFarland, Shane M.; Norcross, Jason R.; Rajulu, Sudhakar

    2014-01-01

    Injuries to the hands are common among astronauts who train for extravehicular activity (EVA). Many of these injuries refer to the gloves worn during EVA as the root cause. While pressurized, the bladder and outer material of these gloves restrict movement and create pressure points while performing tasks, sometimes resulting in pain, muscle fatigue, abrasions, and occasionally a more severe injury, onycholysis (fingernail delamination). The most common injury causes are glove contact (pressure point/rubbing), ill-fitting gloves, and/or performing EVA tasks in pressurized gloves. A brief review of the Lifetime Surveillance of Astronaut Health's injury database reveals over 57% of the total injuries to the upper extremities during EVA training occurred either to the metacarpophalangeal (MCP) joint, fingernail, or the fingertip. Twenty-five of these injuries resulted in a diagnosis of onycholysis.

  3. The Potential of Wearable Sensor Technology for EVA Glove Ergonomic Evaluation

    NASA Technical Reports Server (NTRS)

    Reid, Christopher R.; McFarland, Shane; Norcross, Jason R.; Rajulu, Sudhakar

    2014-01-01

    Injuries to the hands are common among astronauts who train for extravehicular activity (EVA). Many of these injuries refer to the gloves worn during EVA as the root cause. While pressurized, the bladder and outer material of these gloves restrict movement and create pressure points while performing tasks, sometimes resulting in pain, muscle fatigue, abrasions, and occasionally a more severe injury, onycholysis (fingernail delamination). The most common injury causes are glove contact (pressure point/rubbing), ill-fitting gloves, and/or performing EVA tasks in pressurized gloves. A brief review of the Lifetime Surveillance of Astronaut Health's injury database reveals over 57% of the total injuries to the upper extremities during EVA training occurred either to the metacarpophalangeal (MCP) joint, fingernail, or the fingertip. Twenty-five of these injuries resulted in a diagnosis of onycholysis

  4. Mid-shot of Seller on EVA3 during STS-121 / Expedition 13 joint operations

    NASA Image and Video Library

    2006-07-12

    S121-E-06583 (12 July 2006) --- Astronaut Piers J. Sellers, STS-121 mission specialist, participates in the mission's third and final session of extravehicular activity (EVA). The demonstration of orbiter heat shield repair techniques was the objective of the 7-hour, 11-minute excursion outside Space Shuttle Discovery and the International Space Station.

  5. Control of biofilm formation by poly-ethylene-co-vinyl acetate films incorporating nisin.

    PubMed

    Nostro, Antonia; Scaffaro, Roberto; Ginestra, Giovanna; D'Arrigo, Manuela; Botta, Luigi; Marino, Andreana; Bisignano, Giuseppe

    2010-06-01

    The aim of this study was to evaluate the effect of poly-ethylene-co-vinyl acetate (EVA) films incorporating different concentrations (0.1%, 0.5% and 1%) of nisin on the biofilm-forming ability of Listeria monocytogenes ATCC 7644, Staphylococcus aureus 815 and Staphylococcus epidermidis ATCC 35984. Nisin was incorporated into two grades of EVA (EVA14 and EVA28) in the melt during a common film-blowing operation. The efficacy of EVA/nisin films was evaluated by biofilm biomass measurements and Live/Dead staining in combination with fluorescence microscopy. In order to evaluate whether the nisin incorporation could modify the film surface properties, contact angle measurements and scanning electron microscopy were performed. The results revealed the efficacy of EVA14/nisin films in reducing biofilm formation on their surfaces with more evident effect for S. epidermidis than L. monocytogenes and S. aureus strains. In contrast, EVA28/nisin films showed unsatisfactory activity. Fluorescence microscopy confirmed poor biofilm formation on EVA14/nisin films, also characterised by the presence of dead cells. The data presented in this study offer new potential applications for developing strategies aimed to improve the effect of antimicrobial agents.

  6. EVA/ORU model architecture using RAMCOST

    NASA Technical Reports Server (NTRS)

    Ntuen, Celestine A.; Park, Eui H.; Wang, Y. M.; Bretoi, R.

    1990-01-01

    A parametrically driven simulation model is presented in order to provide a detailed insight into the effects of various input parameters in the life testing of a modular space suit. The RAMCOST model employed is a user-oriented simulation model for studying the life-cycle costs of designs under conditions of uncertainty. The results obtained from the EVA simulated model are used to assess various mission life testing parameters such as the number of joint motions per EVA cycle time, part availability, and number of inspection requirements. RAMCOST first simulates EVA completion for NASA application using a probabilistic like PERT network. With the mission time heuristically determined, RAMCOST then models different orbital replacement unit policies with special application to the astronaut's space suit functional designs.

  7. Effect of VA and MWNT contents on the rheological and physical properties of EVA

    NASA Astrophysics Data System (ADS)

    Kim, Jong-Ho; Lee, Seungwon; Kim, Byoung Chul; Shin, Bong-Seob; Jeon, Jong-Young; Chae, Dong Wook

    2016-02-01

    Ethylene vinyl acetate (EVA) copolymers with two different VA contents (15 and 33 wt.%, denoted by EVA15 and EVA33, respectively) were melt compounded with multi-walled carbon nanotubes (MWNTs) and the effect of VA and nanotube contents on the rheological, thermal and morphological properties was investigated. The addition of nanotubes into both EVAs increased the onset temperature of crystallization and broadened the peak, but further addition from 3 wt.% slightly decreased the temperature with increasing nanotube contents. In the wide angle X-ray diffraction patterns the peak of EVA15 was little affected by the presence of nanotubes but that of EVA33 slightly shifted to higher degree and became sharper with increasing nanotube contents. Dynamic viscosity (η') increased with nanotube contents giving abrupt increase at 2 wt.% nanotubes. Loss tangent decreased with increasing nanotube contents exhibiting the plateau-like behavior over most of the frequency range from 2 wt.% nanotubes. In the Casson plot, yield stress increased with nanotube content and its increasing extent was more notable for more VA content. In the Cole-Cole plot, the presence of nanotubes from 2 wt.% gave rise to the deviation from the single master curve by decreasing the slope. The deviated extent of EVA33 became more remarkable with increasing nanotube contents than that of EVA15. The stress-strain curve showed that more improved tensile modulus and yield stress were achieved by the introduction of MWNTs for EVA 33 than for EVA15. Tensile strength of EVA33 increased with increasing nanotube contents, while that of EVA15 decreased.

  8. Effect of electron beam irradiation and microencapsulation on the flame retardancy of ethylene-vinyl acetate copolymer materials during hot water ageing test

    NASA Astrophysics Data System (ADS)

    Sheng, Haibo; Zhang, Yan; Wang, Bibo; Yu, Bin; Shi, Yongqian; Song, Lei; Kundu, Chanchal Kumar; Tao, Youji; Jie, Ganxin; Feng, Hao; Hu, Yuan

    2017-04-01

    Microencapsulated ammonium polyphosphate (MCAPP) in combination with polyester polyurethane (TPU) was used to flame retardant ethylene-vinyl acetate copolymer (EVA). The EVA composites with different irradiation doses were immersed in hot water (80 °C) to accelerate ageing process. The microencapsulation and irradiation dose ensured positive impacts on the properties of the EVA composites in terms of better dimensional stability and flame retardant performance. The microencapsulation of APP could lower its solubility in water and the higher irradiation dose led to the more MCAPP immobilized in three dimensional crosslinked structure of the EVA matrix which could jointly enhance the flame retardant and electrical insulation properties of the EVA composites. So, the EVA composites with 180 kGy irradiation dose exhibited better dimensional stability than the EVA composites with 120 kGy due to the higher crosslinking degree. Moreover, the higher irradiation dose lead to the more MCAPP immobilizated in crosslinked three-dimensional structure of EVA, enhancing the flame retardancy and electrical insulation properties of the EVA composites. After ageing test in hot water at 80 °C for 2 weeks, the EVA/TPU/MCAPP composite with 180 kGy could still maintain the UL-94 V-0 rating and the limiting oxygen index (LOI) value was as high as 30%. This investigation indicated the flame retardant EVA cable containing MCAPP could achieve stable properties and lower electrical fire hazard risk during long-term hot water ageing test.

  9. Fossum smiles at the camera during EVA3 on STS-121 / Expedition 13 joint operations

    NASA Image and Video Library

    2006-07-12

    S121-E-06685 (12 July 2006) --- Astronaut Michael E. Fossum, STS-121 mission specialist, works in Space Shuttle Discovery's cargo bay during the mission's third and final session of extravehicular activity (EVA). The demonstration of orbiter heat shield repair techniques was the objective of the 7-hour, 11-minute excursion outside the shuttle and the International Space Station.

  10. Fossum smiles at the camera during EVA3 on STS-121 / Expedition 13 joint operations

    NASA Image and Video Library

    2006-07-12

    S121-E-06679 (12 July 2006) --- Astronaut Michael E. Fossum, STS-121 mission specialist, works in Space Shuttle Discovery's cargo bay during the mission's third and final session of extravehicular activity (EVA). The demonstration of orbiter heat shield repair techniques was the objective of the 7-hour, 11-minute excursion outside the shuttle and the International Space Station.

  11. Decompression sickness during simulated extravehicular activity: ambulation vs. non-ambulation.

    PubMed

    Webb, James T; Beckstrand, Devin P; Pilmanis, Andrew A; Balldin, Ulf I

    2005-08-01

    Extravehicular activity (EVA) is required from the International Space Station on a regular basis. Because of the weightless environment during EVA, physical activity is performed using mostly upper-body movements since the lower body is anchored for stability. The adynamic model (restricted lower-body activity; non-ambulation) was designed to simulate this environment during earthbound studies of decompression sickness (DCS) risk. DCS symptoms during ambulatory (walking) and non-ambulatory high altitude exposure activity were compared. The objective was to determine if symptom incidences during ambulatory and non-ambulatory exposures are comparable and provide analogous estimates of risk under otherwise identical conditions. A retrospective analysis was accomplished on DCS symptoms from 2010 ambulatory and 330 non-ambulatory exposures. There was no significant difference between the overall incidence of DCS or joint-pain DCS in the ambulatory (49% and 40%) vs. the non-ambulatory exposures (53% and 36%; p > 0.1). DCS involving joint pain only in the lower body was higher during ambulatory exposures (28%) than non-ambulatory exposures (18%; p < 0.01). Non-ambulatory exposures terminated more frequently with non-joint-pain DCS (17%) or upper-body-only joint pain (18%) as compared with ambulatory exposures, 9% and 11% (p < 0.01), respectively. These findings show that lower-body, weight-bearing activity shifts the incidence of joint-pain DCS from the upper body to the lower body without altering the total incidence of DCS or joint-pain DCS. Use of data from previous and future subject exposures involving ambulatory activity while decompressed appears to be a valid analogue of non-ambulatory activity in determining DCS risk during simulated EVA studies.

  12. NASA Research Announcement Phase 2 Final Report for the Development of a Power Assisted Space Suit Glove

    NASA Technical Reports Server (NTRS)

    Lingo, Robert; Cadogan, Dave; Sanner, Rob; Sorenson, Beth

    1997-01-01

    The main goal of this program was to develop an unobtrusive power-assisted EVA glove metacarpalphalangeal (MCP) joint that could provide the crew member with as close to nude body performance as possible, and to demonstrate the technology feasibility of power assisted space suit components in general. The MCP joint was selected due to its being representative of other space suit joints, such as the shoulder, hip and carpometacarpal joint, that would also greatly benefit from this technology. In order to meet this objective, a development team of highly skilled and experienced personnel was assembled. The team consisted of two main entities. The first was comprised of ILC's experienced EVA space suit glove designers, who had the responsibility of designing and fabricating a low torque MCP joint which would be compatible with power assisted technology. The second part of the team consisted of space robotics experts from the University of Maryland's Space Systems Laboratory. This team took on the responsibility of designing and building the robotics aspects of the power-assist system. Both parties addressed final system integration responsibilities.

  13. Evaluation of an Anthropometric Human Body Model for Simulated EVA Task Assessment

    NASA Technical Reports Server (NTRS)

    Etter, Brad

    1996-01-01

    One of the more mission-critical tasks performed in space is extravehicular activity (EVA) which requires the astronaut to be external to the station or spacecraft, and subsequently at risk from the many threats posed by space. These threats include, but are not limited to: no significant atmosphere, harmful electromagnetic radiation, micrometeoroids, and space debris. To protect the astronaut from this environment, a special EVA suit is worn which is designed to maintain a sustainable atmosphere (at 1/3 atmosphere) and provide protection against the hazards of space. While the EVA suit serves these functions well, it does impose limitations on the astronaut as a consequence of the safety it provides. Since the astronaut is in a virtual vacuum, any atmospheric pressure inside the suit serves to pressurize the suit and restricts mobility of flexible joints (such as fabric). Although some of the EVA suit joints are fixed, rotary-style joints, most of the mobility is achieved by the simple flexibility of the fabric. There are multiple layers of fabric, each of which serves a special purpose in the safety of the astronaut. These multiple layers add to the restriction of motion the astronaut experiences in the space environment. Ground-based testing is implemented to evaluate the capability of EVA-suited astronauts to perform the various tasks in space. In addition to the restriction of motion imposed by the EVA suit, most EVA activity is performed in a micro-gravity (weight less) environment. To simulate weightlessness EVA-suited testing is performed in a neutral buoyancy simulator (NBS). The NBS is composed of a large container of water (pool) in which a weightless environment can be simulated. A subject is normally buoyant in the pressurized suit; however he/she can be made neutrally buoyant with the addition of weights. In addition, most objects the astronaut must interface with in the NBS sink in water and flotation must be added to render them "weightless". The implementation of NBS testing has proven to invaluable in the assessment of EVA activities performed with the Orbiter and is considered to be a key step in the construction of the International Space Station (ISS). While the NBS testing is extremely valuable, it does require considerable overhead to maintain and operate. It has been estimated that the cost of utilizing the facility is approximately $10,000 per day. Therefore it is important to maximize the utility of NBS testing for optimal results. One important aspect to consider in any human/worksite interface is the considerable wealth of anthropometric and ergonomic data available. A subset of this information specific to EVA activity is available in NASA standard 3000. The difficulty in implementing this data is that most of the anthropometric information is represented in a two-dimensional format. This poses some limitations in complete evaluation of the astronaut's capabilities in a three-dimensional environment. Advances in computer hardware and software have provided for three-dimensional design and implementation of hardware with the advance of computer aided design (CAD) software. There are a number of CAD products available and most companies and agencies have adopted CAD as a fundamental aspect of the design process. Another factor which supports the use of CAD is the implementation of computer aided manufacturing (CAM) software and hardware which provides for rapid prototyping and decreases the time to product in the design process. It is probable that most hardware to be accessed by astronauts in EVA or IVA (intravehicular activity) has been designed by a CAD system, and is therefore represented in three-dimensional space for evaluation. Because of the implementation of CAD systems and the movement towards early prototyping, a need has arisen in industry and government for tools which facilitate the evaluation of ergonomic consideration in a three-dimensional environment where the hardware has been designed by the CAD tools. One such product is Jack which was developed by the University of Pennsylvania with funding from several government agencies, including NASA. While the primary purpose of Jack is to model human figures in a ground-based (gravity) environment, it can be utilized to evaluate EVA-suited activities as well. The effects of simulated gravity must be turned off by turning off "behaviors". Although Jack provides human figures for manipulation, the primary instrument to be evaluated for EVA mobility is the work envelope provided by the EVA suit. An EVA Jack suit model has been developed by NASA-JSC and was utilized in this study. This suit model provided a more restrictive motion environment as expected for an EVA suited subject. As part of this study, the anthropometric dimensions for a 50th percentile male were compared with basic anthropometric data and were found to be representative for the population group expected in the NASA flight program. The joints for the suit were created in a manner which provided consistent performance with EVA reach envelopes published in NASA standard #3000.

  14. Swanson works on the P6 Truss during EVA 2

    NASA Image and Video Library

    2007-06-14

    S117-E-07332 (13 June 2007) --- Astronauts Steven Swanson and Patrick Forrester (out of frame), both STS-117 mission specialists, participate in the mission's second planned session of extravehicular activity (EVA), as construction resumes on the International Space Station. Among other tasks, Forrester and Swanson removed all of the launch locks holding the 10-foot-wide solar alpha rotary joint in place and began the solar array retraction.

  15. Sellers translates along the S1 Truss during EVA3 on STS-121 / Expedition 13 joint operations

    NASA Image and Video Library

    2006-07-12

    S121-E-07413 (12 July 2006) --- Astronaut Piers J. Sellers, STS-121 mission specialist, translates along a truss on the International Space Station during the mission's third and final session of extravehicular activity (EVA) while Space Shuttle Discovery was docked with the station. A blue and white Earth and the blackness of space form the backdrop for the image.

  16. Swanson moves to the S3/S4 Truss during STS-117 EVA 2

    NASA Image and Video Library

    2007-06-13

    S117-E-07264 (13 June 2007) --- Astronauts Steven Swanson and Patrick Forrester (out of frame), both STS-117 mission specialists, participate in the mission's second planned session of extravehicular activity (EVA), as construction resumes on the International Space Station. Among other tasks, Forrester and Swanson removed all of the launch locks holding the 10-foot-wide solar alpha rotary joint in place and began the solar array retraction.

  17. Forrester works at the P6 Truss during EVA 2 on STS-117 Mission

    NASA Image and Video Library

    2007-06-14

    S117-E-07313 (13 June 2007) --- Astronauts Patrick Forrester and Steven Swanson (out of frame), both STS-117 mission specialists, participate in the mission's second planned session of extravehicular activity (EVA), as construction resumes on the International Space Station. Among other tasks, Forrester and Swanson removed all of the launch locks holding the 10-foot-wide solar alpha rotary joint in place and began the solar array retraction.

  18. Forrester works at the P6 Truss during EVA 2 on STS-117 Mission

    NASA Image and Video Library

    2007-06-14

    S117-E-07315 (13 June 2007) --- Astronauts Patrick Forrester and Steven Swanson (out of frame), both STS-117 mission specialists, participate in the mission's second planned session of extravehicular activity (EVA), as construction resumes on the International Space Station. Among other tasks, Forrester and Swanson removed all of the launch locks holding the 10-foot-wide solar alpha rotary joint in place and began the solar array retraction.

  19. Forrester moves to the S3/S4 Truss during STS-117 EVA 2

    NASA Image and Video Library

    2007-06-13

    S117-E-07258 (13 June 2007) --- Astronauts Patrick Forrester and Steven Swanson (out of frame), both STS-117 mission specialists, participate in the mission's second planned session of extravehicular activity (EVA), as construction resumes on the International Space Station. Among other tasks, Forrester and Swanson removed all of the launch locks holding the 10-foot-wide solar alpha rotary joint in place and began the solar array retraction.

  20. Post-Shuttle EVA Operations on ISS

    NASA Technical Reports Server (NTRS)

    West, William; Witt, Vincent; Chullen, Cinda

    2010-01-01

    The expected retirement of the NASA Space Transportation System (also known as the Space Shuttle ) by 2011 will pose a significant challenge to Extra-Vehicular Activities (EVA) on-board the International Space Station (ISS). The EVA hardware currently used to assemble and maintain the ISS was designed assuming that it would be returned to Earth on the Space Shuttle for refurbishment, or if necessary for failure investigation. With the retirement of the Space Shuttle, a new concept of operations was developed to enable EVA hardware (Extra-vehicular Mobility Unit (EMU), Airlock Systems, EVA tools, and associated support hardware and consumables) to perform ISS EVAs until 2015, and possibly beyond to 2020. Shortly after the decision to retire the Space Shuttle was announced, the EVA 2010 Project was jointly initiated by NASA and the One EVA contractor team. The challenges addressed were to extend the operating life and certification of EVA hardware, to secure the capability to launch EVA hardware safely on alternate launch vehicles, to protect for EMU hardware operability on-orbit, and to determine the source of high water purity to support recharge of PLSSs (no longer available via Shuttle). EVA 2010 Project includes the following tasks: the development of a launch fixture that would allow the EMU Portable Life Support System (PLSS) to be launched on-board alternate vehicles; extension of the EMU hardware maintenance interval from 3 years (current certification) to a minimum of 6 years (to extend to 2015); testing of recycled ISS Water Processor Assembly (WPA) water for use in the EMU cooling system in lieu of water resupplied by International Partner (IP) vehicles; development of techniques to remove & replace critical components in the PLSS on-orbit (not routine); extension of on-orbit certification of EVA tools; and development of an EVA hardware logistical plan to support the ISS without the Space Shuttle. Assumptions for the EVA 2010 Project included no more than 8 EVAs per year for ISS EVA operations in the Post-Shuttle environment and limited availability of cargo upmass on IP launch vehicles. From 2010 forward, EVA operations on-board the ISS without the Space Shuttle will be a paradigm shift in safely operating EVA hardware on orbit and the EVA 2010 effort was initiated to accommodate this significant change in EVA evolutionary history. 1

  1. Forrester works on the S1/S3 Trusses during EVA 2 on STS-117 Mission

    NASA Image and Video Library

    2007-06-14

    S117-E-07217 (13 June 2007) --- Astronauts Patrick Forrester and Steven Swanson (out of frame), both STS-117 mission specialists, participate in the mission's second planned session of extravehicular activity (EVA), as construction resumes on the International Space Station. Among other tasks, Forrester and Swanson removed all of the launch locks holding the 10-foot-wide solar alpha rotary joint in place and began the solar array retraction.

  2. Forrester works at the S3/S4 Trusses during EVA 2 on STS-117 Mission

    NASA Image and Video Library

    2007-06-13

    S117-E-07190 (13 June 2007) --- Astronauts Patrick Forrester and Steven Swanson (out of frame), both STS-117 mission specialists, participate in the mission's second planned session of extravehicular activity (EVA), as construction resumes on the International Space Station. Among other tasks, Forrester and Swanson removed all of the launch locks holding the 10-foot-wide solar alpha rotary joint in place and began the solar array retraction.

  3. Forrester works at the S3/S4 Trusses during EVA 2 on STS-117 Mission

    NASA Image and Video Library

    2007-06-13

    S117-E-07289 (13 June 2007) --- Astronauts Patrick Forrester and Steven Swanson (out of frame), both STS-117 mission specialists, participate in the mission's second planned session of extravehicular activity (EVA), as construction resumes on the International Space Station. Among other tasks, Forrester and Swanson removed all of the launch locks holding the 10-foot-wide solar alpha rotary joint in place and began the solar array retraction.

  4. Forrester works at the S3/S4 Trusses during EVA 2 on STS-117 Mission

    NASA Image and Video Library

    2007-06-13

    S117-E-07286 (13 June 2007) --- Astronauts Patrick Forrester and Steven Swanson (out of frame), both STS-117 mission specialists, participate in the mission's second planned session of extravehicular activity (EVA), as construction resumes on the International Space Station. Among other tasks, Forrester and Swanson removed all of the launch locks holding the 10-foot-wide solar alpha rotary joint in place and began the solar array retraction.

  5. Sellers and Fossum on the end of the OBSS during EVA1 on STS-121 / Expedition 13 joint operations

    NASA Image and Video Library

    2006-07-08

    STS121-323-011 (8 July 2006) --- Astronauts Piers J. Sellers and Michael E. Fossum, STS-121 mission specialists, work in tandem on Space Shuttle Discovery's Remote Manipulator System/Orbiter Boom Sensor System (RMS/OBSS) during the mission's first scheduled session of extravehicular activity (EVA). Also visible on the OBSS are the Laser Dynamic Range Imager (LDRI), Intensified Television Camera (ITVC) and Laser Camera System (LCS).

  6. Stefanyshyn-Piper and Tanner perform first EVA during STS-115 / Expedition 13 joint operations

    NASA Image and Video Library

    2006-09-12

    S115-E-05663 (12 Sept. 2006) --- Astronauts Joseph R. Tanner (left) and Heidemarie M. Stefanyshyn-Piper, both STS-115 mission specialists, work in tandem during the mission's first session of extravehicular activity (EVA) while the Space Shuttle Atlantis was docked with the International Space Station. During today's spacewalk, Tanner and Stefanyshyn-Piper worked to connect power cables on the P3/P4 truss, release restraints for the Solar Array Blanket Boxes that hold the solar arrays and the Beta Gimbal Assemblies that serve as the structural link between the truss' integrated electronics and the Solar Array Wings. Stefanyshyn-Piper and Tanner also installed the Solar Alpha Rotary Joint and completed the connection of electrical cables between the new P3 truss and the P1 truss.

  7. Whitson during EVA 13

    NASA Image and Video Library

    2007-12-18

    ISS016-E-017370 (18 Dec. 2007) --- Astronaut Peggy A. Whitson, Expedition 16 commander, participates in a session of extravehicular activity (EVA). During the 6-hour, 56-minute spacewalk, Whitson and astronaut Daniel Tani (out of frame), flight engineer, looked for the cause of partial loss of electrical power to one of the International Space Station's two Beta Gimbal Assemblies (BGA) for starboard solar wings and examined damage to the starboard Solar Alpha Rotary Joint (SARJ). The spacewalk was the 100th for the construction and maintenance of the station.

  8. STS-117 Astronauts Patrick Forrester and Steven Swanson During EVA

    NASA Technical Reports Server (NTRS)

    2007-01-01

    STS-117 astronauts and mission specialists Patrick Forrester and Steven Swanson (out of frame), participated in the second Extra Vehicular Activity (EVA) as construction resumed on the International Space Station (ISS). Among other tasks, the two removed all of the launch locks holding the 10 foot wide solar alpha rotary joint in place and began the solar array retraction. The primary mission objective was the installment of the second and third starboard truss segments (S3 and S4).

  9. Swanson and Forrester prepare to retract the P6 Truss STBD 2B SAW during EVA 2

    NASA Image and Video Library

    2007-06-13

    S117-E-07246 (13 June 2007) --- Astronauts Steven Swanson and Patrick Forrester (at left, partially out of frame), both STS-117 mission specialists, participate in the mission's second planned session of extravehicular activity (EVA), as construction resumes on the International Space Station. Among other tasks, Forrester and Swanson removed all of the launch locks holding the 10-foot-wide solar alpha rotary joint in place and began the solar array retraction.

  10. Lineger and Tsibliev during EVA outside Mir Space Station

    NASA Image and Video Library

    1997-04-29

    NM23-48-009 (29 April 1997) --- United States astronaut Jerry M. Linenger, cosmonaut guest researcher, works outside the Russian Mir Space Station during a joint United States-Russian space walk on April 29, 1997. He was joined by Mir-23 commander Vasili V. Tsibliyev (out of frame) for the five-hour Extravehicular Activity (EVA) designed to deploy scientific instruments and retrieve other science hardware. At the top of the frame is a Russian Progress re-supply capsule docked to the Mir’s Kvant-1 module.

  11. EVA 2 - Tani on S1 truss.

    NASA Image and Video Library

    2007-10-28

    S120-E-007003 (28 Oct. 2007) --- Astronaut Daniel Tani, Expedition 16 flight engineer, participates in the second of five scheduled sessions of extravehicular activity (EVA) as construction continues on the International Space Station. During the 6-hour, 33-minute spacewalk Tani and astronaut Scott Parazynski (out of frame), STS-120 mission specialist, worked in tandem to disconnect cables from the P6 truss, allowing it to be removed from the Z1 truss. Tani also visually inspected the station's starboard Solar Alpha Rotary Joint (SARJ) and gathered samples of "shavings" he found under the joint's multi-layer insulation covers. Also the spacewalkers outfitted the Harmony module, mated the power and data grapple fixture and reconfigured connectors on the starboard 1 (S1) truss that will allow the radiator on S1 to be deployed from the ground later.

  12. EVA 2 - Parazynski outfitting Node 2

    NASA Image and Video Library

    2007-10-28

    S120-E-007080 (28 Oct. 2007) --- Astronaut Scott Parazynski, STS-120 mission specialist, participates in the second of five scheduled sessions of extravehicular activity (EVA) as construction continues on the International Space Station. During the 6-hour, 33-minute spacewalk Parazynski and astronaut Daniel Tani (out of frame), Expedition 16 flight engineer, worked in tandem to disconnect cables from the P6 truss, allowing it to be removed from the Z1 truss. Tani also visually inspected the station's starboard Solar Alpha Rotary Joint (SARJ) and gathered samples of "shavings" he found under the joint's multi-layer insulation covers. Also the spacewalkers outfitted the Harmony module, mated the power and data grapple fixture and reconfigured connectors on the starboard 1 (S1) truss that will allow the radiator on S1 to be deployed from the ground later.

  13. EVA 2 - Tani on S1 truss

    NASA Image and Video Library

    2007-10-28

    S120-E-007119 (28 Oct. 2007) --- Astronaut Daniel Tani, Expedition 16 flight engineer, participates in the second of five scheduled sessions of extravehicular activity (EVA) as construction continues on the International Space Station. During the 6-hour, 33-minute spacewalk Tani and astronaut Scott Parazynski (out of frame), STS-120 mission specialist, worked in tandem to disconnect cables from the P6 truss, allowing it to be removed from the Z1 truss. Tani also visually inspected the station's starboard Solar Alpha Rotary Joint (SARJ) and gathered samples of "shavings" he found under the joint's multi-layer insulation covers. Also the spacewalkers outfitted the Harmony module, mated the power and data grapple fixture and reconfigured connectors on the starboard 1 (S1) truss that will allow the radiator on S1 to be deployed from the ground later.

  14. Lineger and Tsibliev during EVA outside Mir Space Station

    NASA Image and Video Library

    1997-04-29

    NM23-48-009 (29 April 1997) --- United States astronaut Jerry M. Linenger, cosmonaut guest researcher, works outside the Russian Mir Space Station during a joint United States-Russian space walk on April 29, 1997. He was joined by Mir-23 commander Vasili V. Tsibliyev (out of frame) for the five-hour Extravehicular Activity (EVA) designed to deploy scientific instruments and retrieve other science hardware. At the top of the frame is a Russian Progress re-supply capsule docked to the Mir’s Kvant-1 module.

  15. View of Forrester working on ISS construction during STS-117 EVA2

    NASA Image and Video Library

    2007-06-13

    ISS015-E-12018 (13 June 2007) --- Anchored to a foot restraint on the Space Station Remote Manipulator System (SSRMS) or Canadarm2, astronaut Patrick Forrester, STS-117 mission specialist, participates in the mission's second planned session of extravehicular activity (EVA), as construction resumes on the International Space Station. Among other tasks, Forrester and astronaut Steven Swanson (out of frame), mission specialist, removed all of the launch locks holding the 10-foot-wide solar alpha rotary joint in place and began the solar array retraction.

  16. Forrester prepares to retract the P6 Truss STBD SAW during EVA 2

    NASA Image and Video Library

    2007-06-13

    S117-E-07232 (13 June 2007) --- Astronauts Patrick Forrester and Steven Swanson (out of frame), both STS-117 mission specialists, participate in the mission's second planned session of extravehicular activity (EVA), as construction resumes on the International Space Station. Among other tasks, Forrester, seen here perched on the mobile foot restraint connected to the Canadian-built remote manipulator system (RMS), and Swanson removed all of the launch locks holding the 10-foot-wide solar alpha rotary joint in place and began the solar array retraction.

  17. View of Mastracchio and Williams on EVA 1 during STS-118/Expedition 15 Joint Operations

    NASA Image and Video Library

    2007-08-11

    S118-E-06281 (11 Aug. 2007) --- Astronauts Rick Mastracchio (left) and Canadian Space Agency's Dave Williams, both STS-118 mission specialists, participate in the mission's first planned session of extravehicular activity (EVA), as construction continues on the International Space Station. During the 6-hour, 17-minute spacewalk Mastracchio and Williams attached the Starboard 5 (S5) segment of the station's truss, retracted the forward heat-rejecting radiator from the station's Port 6 (P6) truss, and performed several get-ahead tasks.

  18. Olivas and Reilly participating in EVA during Expedition/STS-117 Joint Operations

    NASA Image and Video Library

    2007-06-11

    ISS015-E-12926 (11 June 2007) --- Astronauts Jim Reilly (right) and John "Danny" Olivas, both STS-117 mission specialists, participate in the mission's first planned session of extravehicular activity (EVA), as construction continues on the International Space Station. Among other tasks, Reilly and Olivas connected power, data and cooling cables between S1 and S3; released the launch restraints from and deployed the four solar array blanket boxes on S4 and released the cinches and winches holding the photovoltaic radiator on S4.

  19. Wide-angle view of Station 4 during Apollo 17 second EVA

    NASA Image and Video Library

    1972-12-12

    AS17-137-20992 (12 Dec. 1972) --- A view looking into Shorty Crater, taken at Station 4, showing the orange soil. Astronaut Harrison H. Schmitt found the orange soil on the moon during the second Apollo 17 extravehicular activity (EVA) at the Taurus-Littrow landing site. While astronauts Eugene A. Cernan, commander, and Schmitt, lunar module pilot, descended in the Lunar Module (LM) "Challenger" to explore the Taurus-Littrow region of the moon, astronaut Ronald E. Evans, command module pilot, remained with the Command and Service Modules (CSM) "America" in lunar orbit.

  20. Astronaut Charles Duke near Lunar Roving Vehicle at Station no. 4 during EVA

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut Charles M. Duke Jr., lunar module pilot of the Apollo 16 lunar landing mission, stands near the Lunar Roving Vehicle at Station no. 4, near Stone Mountain, during the second Apollo 16 extravehicular activity (EVA-2) at the Descartes landing site. Light rays from South Ray crater can be seen at upper left. The gnomon, which is used as a photographic reference to establish local vertical Sun angle, scale, and lunar color, is deployed in the center foreground. Note angularity of rocks in the area.

  1. A computer controlled power tool for the servicing of the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Richards, Paul W.; Konkel, Carl; Smith, Chris; Brown, Lee; Wagner, Ken

    1996-01-01

    The Hubble Space Telescope (HST) Pistol Grip Tool (PGT) is a self-contained, microprocessor controlled, battery-powered, 3/8-inch-drive hand-held tool. The PGT is also a non-powered ratchet wrench. This tool will be used by astronauts during Extravehicular Activity (EVA) to apply torque to the HST and HST Servicing Support Equipment mechanical interfaces and fasteners. Numerous torque, speed, and turn or angle limits are programmed into the PGT for use during various missions. Batteries are replaceable during ground operations, Intravehicular Activities, and EVA's.

  2. TEJAS - TELEROBOTICS/EVA JOINT ANALYSIS SYSTEM VERSION 1.0

    NASA Technical Reports Server (NTRS)

    Drews, M. L.

    1994-01-01

    The primary objective of space telerobotics as a research discipline is the augmentation and/or support of extravehicular activity (EVA) with telerobotic activity; this allows increased emplacement of on-orbit assets while providing for their "in situ" management. Development of the requisite telerobot work system requires a well-understood correspondence between EVA and telerobotics that to date has been only partially established. The Telerobotics/EVA Joint Analysis Systems (TEJAS) hypermedia information system uses object-oriented programming to bridge the gap between crew-EVA and telerobotics activities. TEJAS Version 1.0 contains twenty HyperCard stacks that use a visual, customizable interface of icon buttons, pop-up menus, and relational commands to store, link, and standardize related information about the primitives, technologies, tasks, assumptions, and open issues involved in space telerobot or crew EVA tasks. These stacks are meant to be interactive and can be used with any database system running on a Macintosh, including spreadsheets, relational databases, word-processed documents, and hypermedia utilities. The software provides a means for managing volumes of data and for communicating complex ideas, relationships, and processes inherent to task planning. The stack system contains 3MB of data and utilities to aid referencing, discussion, communication, and analysis within the EVA and telerobotics communities. The six baseline analysis stacks (EVATasks, EVAAssume, EVAIssues, TeleTasks, TeleAssume, and TeleIssues) work interactively to manage and relate basic information which you enter about the crew-EVA and telerobot tasks you wish to analyze in depth. Analysis stacks draw on information in the Reference stacks as part of a rapid point-and-click utility for building scripts of specific task primitives or for any EVA or telerobotics task. Any or all of these stacks can be completely incorporated within other hypermedia applications, or they can be referenced as is, without requiring data to be transferred into any other database. TEJAS is simple to use and requires no formal training. Some knowledge of HyperCard is helpful, but not essential. All Help cards printed in the TEJAS User's Guide are part of the TEJAS Help Stack and are available from a pop-up menu any time you are using TEJAS. Specific stacks created in TEJAS can be exchanged between groups, divisions, companies, or centers for complete communication of fundamental information that forms the basis for further analyses. TEJAS runs on any Apple Macintosh personal computer with at least one megabyte of RAM, a hard disk, and HyperCard 1.21, or later version. TEJAS is a copyrighted work with all copyright vested in NASA. HyperCard and Macintosh are registered trademarks of Apple Computer, Inc.

  3. 2nd EVA - Tani on P6 Truss

    NASA Image and Video Library

    2007-10-28

    S120-E-007038 (28 Oct. 2007) --- Astronaut Daniel Tani (top center), Expedition 16 flight engineer, participates in the second of five scheduled sessions of extravehicular activity (EVA) as construction continues on the International Space Station. During the 6-hour, 33-minute spacewalk Tani and astronaut Scott Parazynski (out of frame), STS-120 mission specialist, worked in tandem to disconnect cables from the P6 truss, allowing it to be removed from the Z1 truss. Tani also visually inspected the station's starboard Solar Alpha Rotary Joint (SARJ) and gathered samples of "shavings" he found under the joint's multi-layer insulation covers. Also the spacewalkers outfitted the Harmony module, mated the power and data grapple fixture and reconfigured connectors on the starboard 1 (S1) truss that will allow the radiator on S1 to be deployed from the ground later. The moon is visible at lower center.

  4. Lighting constraints on lunar surface operations

    NASA Technical Reports Server (NTRS)

    Eppler, Dean B.

    1991-01-01

    An investigation into the levels of ambient lighting on the lunar surface indicates that for most nearside locations, illumination will be adequate throughout most of the lunar night to conduct EVAs with only minor artificial illumination. The maximum lighting available during the lunar night from Earthshine will be similar to the light level on a July evening at approximately 8:00 pm in the southern United States (approximately 15 minutes after sunset). Because of the captured rotation of the Moon about the Earth, the location of the Earth will remain approximately constant throughout the lunar night, with consequent constant shadow length and angle. Variations in the level of Earthside illumination will be solely a function of Earth phase angle. Experience during the Apollo Program suggests that EVA activities during the period around the lunar noon may be difficult due to lack of surface definition caused by elimination of shadows.

  5. Power assist EVA glove development

    NASA Technical Reports Server (NTRS)

    Main, John A.; Peterson, Steven W.; Strauss, Alvin M.

    1992-01-01

    Structural modeling of the EVA glove indicates that flexibility in the metacarpophalangeal (MCP) joint can be improved by selectively lowering the elasticity of the glove fabric. Two strategies are used to accomplish this. One method uses coil springs on the back of the glove to carry the tension in the glove skin due to pressurization. These springs carry the loads normally borne by the glove fabric, but are more easily deformed. An active system was also designed for the same purpose and uses gas filled bladders attached to the back of the EVA glove that change the dimensions of the back of the glove and allow the glove to bend at the MCP joint, thus providing greater flexibility at this joint. A threshold control scheme was devised to control the action of the joint actuators. Input to the controller was provided by thin resistive pressure sensors placed between the hand and the pressurized glove. The pressure sensors consist of a layer of polyester film that has a thin layer of ink screened on the surface. The resistivity of the ink is pressure dependent, so an extremely thin pressure sensor can be fabricated by covering the ink patch with another layer of polyester film and measuring the changing resistance of the ink with a bridge circuit. In order to sense the force between the hand and the glove at the MCP joint, a sensor was placed on the palmar face of the middle finger. The resultant signal was used by the controller to decide whether to fill or exhaust the bladder actuators on the back of the glove. The information from the sensor can also be used to evaluate the effectiveness of a given control scheme or glove design since the magnitude of the measured pressures gives some idea of the torque required to bend a glove finger at the MCP joint. Tests of this actuator, sensor, and control system were conducted in an 57.2 kPa glove box by performing a series of 90 degree finger bends with a glove without an MCP joint assembly, a glove with the coil spring assembly, and with the four fingered actuated glove. The tests of these three glove designs confirm the validity of the model.

  6. Whitson during EVA 13

    NASA Image and Video Library

    2007-12-18

    ISS016-E-017499 (18 Dec. 2007) --- Astronaut Peggy A. Whitson, Expedition 16 commander, participates in a session of extravehicular activity (EVA). During the 6-hour, 56-minute spacewalk, Whitson and astronaut Daniel Tani (out of frame), flight engineer, looked for the cause of partial loss of electrical power to one of the International Space Station's two Beta Gimbal Assemblies (BGA) for starboard solar wings and examined damage to the starboard Solar Alpha Rotary Joint (SARJ). The spacewalk was the 100th for the construction and maintenance of the station. A blue and white Earth provides the background for the scene.

  7. Whitson during EVA 13

    NASA Image and Video Library

    2007-12-18

    ISS016-E-017501 (18 Dec. 2007) --- Astronaut Peggy A. Whitson, Expedition 16 commander, participates in a session of extravehicular activity (EVA). During the 6-hour, 56-minute spacewalk, Whitson and astronaut Daniel Tani (out of frame), flight engineer, looked for the cause of partial loss of electrical power to one of the International Space Station's two Beta Gimbal Assemblies (BGA) for starboard solar wings and examined damage to the starboard Solar Alpha Rotary Joint (SARJ). The spacewalk was the 100th for the construction and maintenance of the station. A blue and white Earth provides the background for the scene.

  8. Swanson prepares to retract the P6 Truss STBD SAW during EVA 2

    NASA Image and Video Library

    2007-06-13

    S117-E-07233 (13 June 2007) --- Astronauts Steven Swanson and Patrick Forrester (out of frame), both STS-117 mission specialists, participate in the mission's second planned session of extravehicular activity (EVA), as construction resumes on the International Space Station. Among other tasks, Forrester and Swanson removed all of the launch locks holding the 10-foot-wide solar alpha rotary joint in place and began the solar array retraction. Tethered to his Extravehicular Mobility Unit (EMU) spacesuit, a hockey-stick-shaped tool wrapped in insulating tape, is visible in front of Swanson.

  9. Swanson prepares to retract the P6 Truss STBD SAW during EVA 2

    NASA Image and Video Library

    2007-06-13

    S117-E-07234 (13 June 2007) --- Astronauts Steven Swanson and Patrick Forrester (out of frame), both STS-117 mission specialists, participate in the mission's second planned session of extravehicular activity (EVA), as construction resumes on the International Space Station. Among other tasks, Forrester and Swanson removed all of the launch locks holding the 10-foot-wide solar alpha rotary joint in place and began the solar array retraction. Tethered to his Extravehicular Mobility Unit (EMU) spacesuit, a hockey-stick-shaped tool wrapped in insulating tape, is visible in front of Swanson.

  10. Radiographic evaluation of perching-joint angles in cockatiels (Nymphicus hollandicus), Hispaniolan Amazon parrots (Amazona ventralis), and barred owls (Strix varia).

    PubMed

    Bonin, Glen; Lauer, Susanne K; Guzman, David Sanchez-Migallon; Nevarez, Javier; Tully, Thomas N; Hosgood, Giselle; Gaschen, Lorrie

    2009-06-01

    Information on perching-joint angles in birds is limited. Joint immobilization in a physiologic perching angle has the potential to result more often in complete restoration of limb function. We evaluated perching-joint angles in 10 healthy cockatiels (Nymphicus hollandicus), 10 Hispaniolan Amazons (Amazona ventralis), and 9 barred owls (Strix varia) and determined intra- and interobserver variability for goniometric measurements in 2 different radiographic projections. Intra- and interobserver variation was less than 7% for all stifle and intertarsal joint measurements but frequently exceeded 10% for the hip-joint measurements. Hip, stifle, and intertarsal perching angles differed significantly among cockatiels, Hispaniolan Amazon parrots, and barred owls. The accuracy of measurements performed on straight lateral radiographic projections with superimposed limbs was not consistently superior to measurements on oblique projections with a slightly rotated pelvis. Stifle and intertarsal joint angles can be measured on radiographs by different observers with acceptable variability, but intra- and interobserver variability for hip-joint-angle measurements is higher.

  11. Interoperability Trends in Extravehicular Activity (EVA) Space Operations for the 21st Century

    NASA Technical Reports Server (NTRS)

    Miller, Gerald E.

    1999-01-01

    No other space operations in the 21 st century more comprehensively embody the challenges and dependencies of interoperability than EVA. This discipline is already functioning at an W1paralleled level of interagency, inter-organizational and international cooperation. This trend will only increase as space programs endeavor to expand in the face of shrinking budgets. Among the topics examined in this paper are hardware-oriented issues. Differences in design standards among various space participants dictate differences in the EVA tools that must be manufactured, flown and maintained on-orbit. Presently only two types of functional space suits exist in the world. However, three versions of functional airlocks are in operation. Of the three airlocks, only the International Space Station (ISS) Joint Airlock can accommodate both types of suits. Due to functional differences in the suits, completely different operating protocols are required for each. Should additional space suit or airlock designs become available, the complexity will increase. The lessons learned as a result of designing and operating within such a system are explored. This paper also examines the non-hardware challenges presented by interoperability for a discipline that is as uniquely dependent upon the individual as EVA. Operation of space suits (essentially single-person spacecrafts) by persons whose native language is not that of the suits' designers is explored. The intricacies of shared mission planning, shared control and shared execution of joint EVA's are explained. For example, once ISS is fully functional, the potential exists for two crewmembers of different nationality to be wearing suits manufactured and controlled by a third nation, while operating within an airlock manufactured and controlled by a fourth nation, in an effort to perform tasks upon hardware belonging to a fifth nation. Everything from training issues, to procedures development and writing, to real-time operations is addressed. Finally, this paper looks to the management challenges presented by interoperability in general. With budgets being reduced among all space-faring nations, the need to expand cooperation in the highly expensive field of human space operations is only going to intensify. The question facing management is not if the trend toward interoperation will continue, but how to best facilitate its doing so. Real-world EVA interoperability experience throughout the ShuttlelMir and ISS Programs is discussed to illustrate the challenges and

  12. Olivas and Reilly participate in an EVA during Expedition 15/STS-117 Joint Operations

    NASA Image and Video Library

    2007-06-11

    ISS015-E-12863 (11 June 2007) --- Astronauts Jim Reilly (left) and John "Danny" Olivas, both STS-117 mission specialists, participate in the mission's first planned session of extravehicular activity (EVA), as construction continues on the International Space Station. Among other tasks, Reilly and Olivas connected power, data and cooling cables between S1 and S3; released the launch restraints from and deployed the four solar array blanket boxes on S4 and released the cinches and winches holding the photovoltaic radiator on S4. Earth's horizon and the blackness of space provide the backdrop for the scene.

  13. Predicting tibiotalar and subtalar joint angles from skin-marker data with dual-fluoroscopy as a reference standard.

    PubMed

    Nichols, Jennifer A; Roach, Koren E; Fiorentino, Niccolo M; Anderson, Andrew E

    2016-09-01

    Evidence suggests that the tibiotalar and subtalar joints provide near six degree-of-freedom (DOF) motion. Yet, kinematic models frequently assume one DOF at each of these joints. In this study, we quantified the accuracy of kinematic models to predict joint angles at the tibiotalar and subtalar joints from skin-marker data. Models included 1 or 3 DOF at each joint. Ten asymptomatic subjects, screened for deformities, performed 1.0m/s treadmill walking and a balanced, single-leg heel-rise. Tibiotalar and subtalar joint angles calculated by inverse kinematics for the 1 and 3 DOF models were compared to those measured directly in vivo using dual-fluoroscopy. Results demonstrated that, for each activity, the average error in tibiotalar joint angles predicted by the 1 DOF model were significantly smaller than those predicted by the 3 DOF model for inversion/eversion and internal/external rotation. In contrast, neither model consistently demonstrated smaller errors when predicting subtalar joint angles. Additionally, neither model could accurately predict discrete angles for the tibiotalar and subtalar joints on a per-subject basis. Differences between model predictions and dual-fluoroscopy measurements were highly variable across subjects, with joint angle errors in at least one rotation direction surpassing 10° for 9 out of 10 subjects. Our results suggest that both the 1 and 3 DOF models can predict trends in tibiotalar joint angles on a limited basis. However, as currently implemented, neither model can predict discrete tibiotalar or subtalar joint angles for individual subjects. Inclusion of subject-specific attributes may improve the accuracy of these models. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Expedition 16 Flight Engineer Tani Performs EVA

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Astronaut Daniel Tani (top center), Expedition 16 flight engineer, participates in the second of five scheduled sessions of extravehicular activity (EVA) as construction continues on the International Space Station (ISS). During the 6-hour and 33-minute space walk, Tani and STS-120 mission specialist Scott Parazynski (out of frame), worked in tandem to disconnect cables from the P6 truss, allowing it to be removed from the Z1 truss. Tani also visually inspected the station's starboard Solar Alpha Rotary Joint (SARJ) and gathered samples of 'shavings' he found under the joint's multilayer insulation covers. The space walkers also outfitted the Harmony module, mated the power and data grapple fixture and reconfigured connectors on the starboard 1 (S1) truss that will allow the radiator on S1 to be deployed from the ground later. The moon is visible at lower center. The STS-120 mission launched from Kennedy Space Center's launch pad 39A at 11:38:19 a.m. (EDT) on October 23, 2007.

  15. Extravehicular activity compatibility evaluation of developmental hardware for assembly and repair of precision reflectors

    NASA Technical Reports Server (NTRS)

    Heard, Walter L., Jr.; Lake, Mark S.; Bush, Harold G.; Jensen, J. Kermit; Phelps, James E.; Wallsom, Richard E.

    1992-01-01

    This report presents results of tests performed in neutral buoyancy by two pressure-suited test subjects to simulate Extravehicular Activity (EVA) tasks associated with the on-orbit construction and repair of a precision reflector spacecraft. Two complete neutral buoyancy assemblies of the test article (tetrahedral truss with three attached reflector panels) were performed. Truss joint hardware, two different panel attachment hardware concepts, and a panel replacement tool were evaluated. The test subjects found the operation and size of the truss joint hardware to be acceptable. Both panel attachment concepts were found to be EVA compatible, although one concept was judged by the test subjects to be considerably easier to operate. The average time to install a panel from a position within arm's reach of the test subjects was 1 min 14 sec. The panel replacement tool was used successfully to demonstrate the removal and replacement of a damaged reflector panel in 10 min 25 sec.

  16. Tests of an alternate mobile transporter and extravehicular activity assembly procedure for the Space Station Freedom truss

    NASA Technical Reports Server (NTRS)

    Heard, Walter L., Jr.; Watson, Judith J.; Lake, Mark S.; Bush, Harold G.; Jensen, J. Kermit; Wallsom, Richard E.; Phelps, James E.

    1992-01-01

    Results are presented from a ground test program of an alternate mobile transporter (MT) concept and extravehicular activity (EVA) assembly procedure for the Space Station Freedom (SSF) truss keel. A three-bay orthogonal tetrahedral truss beam consisting of 44 2-in-diameter struts and 16 nodes was assembled repeatedly in neutral buoyancy by pairs of pressure-suited test subjects working from astronaut positioning devices (APD's) on the MT. The truss bays were cubic with edges 15 ft long. All the truss joint hardware was found to be EVA compatible. The average unit assembly time for a single pair of experienced test subjects was 27.6 sec/strut, which is about half the time derived from other SSF truss assembly tests. A concept for integration of utility trays during truss assembly is introduced and demonstrated in the assembly tests. The concept, which requires minimal EVA handling of the trays, is shown to have little impact on overall assembly time. The results of these tests indicate that by using an MT equipped with APD's, rapid EVA assembly of a space station-size truss structure can be expected.

  17. Effect of STS space suit on astronaut dominant upper limb EVA work performance

    NASA Technical Reports Server (NTRS)

    Greenisen, Michael C.

    1987-01-01

    The STS Space Suited and unsuited dominant upper limb performance was evaluated in order to quantify future EVA astronaut skeletal muscle upper limb performance expectations. Testing was performed with subjects standing in EVA STS foot restraints. Data was collected with a CYBEX Dynamometer enclosed in a waterproof container. Control data was taken in one g. During one g testing, weight of the Space Suit was relieved from the subject via an overhead crane with a special connection to the PLSS of the suit. Experimental data was acquired during simulated zero g, accomplished by neutral buoyancy in the Weightless Environment Training Facility. Unsuited subjects became neutrally buoyant via SCUBA BC vests. Actual zero g experimental data was collected during parabolic arc flights on board NASA's modified KC-135 aircraft. During all test conditions, subjects performed five EVA work tasks requiring dominant upper limb performance and ten individual joint articulation movements. Dynamometer velocities for each tested movement were 0 deg/sec, 30 or 60 deg/sec and 120 or 180 deg/sec, depending on the test, with three repetitions per test. Performance was measured in foot pounds of torque.

  18. Space Shuttle Projects

    NASA Image and Video Library

    1995-11-12

    The STS-76 crew patch depicts the Space Shuttle Atlantis and Russia's Mir Space Station as the space ships prepare for a rendezvous and docking. The Spirit of 76, an era of new beginnings, is represented by the Space Shuttle rising through the circle of 13 stars in the Betsy Ross flag. STS-76 begins a new period of international cooperation in space exploration with the first Shuttle transport of a United States astronaut, Shannon W. Lucid, to the Mir Space Station for extended joint space research. Frontiers for future exploration are represented by stars and the planets. The three gold trails and the ring of stars in union form the astronaut logo. Two suited extravehicular activity (EVA) crew members in the outer ring represent the first EVA during Shuttle-Mir docked operations. The EVA objectives were to install science experiments on the Mir exterior and to develop procedures for future EVA's on the International Space Station. The surnames of the crew members encircle the patch: Kevin P. Chilton, mission commander; Richard A. Searfoss, pilot; Ronald M. Sega, Michael R. ( Rich) Clifford, Linda M. Godwin and Lucid, all mission specialists. This patch was designed by Brandon Clifford, age 12, and the crew members of STS-76.

  19. Fogging Control on LDPE/EVA Coextruded Films: Wettability Behavior and Its Correlation with Electric Performance.

    PubMed

    Waldo-Mendoza, Miguel A; Quiñones-Jurado, Zoe V; Pérez-Medina, Juan C; Yañez-Soto, Bernardo; Ramírez-González, Pedro E

    2017-02-22

    The transformation of fog at a non-visible water layer on a membrane of low-density polyethylene (LDPE) and ethylene-vinyl acetate (EVA) was evaluated. Nonionic surfactants of major demand in the polyolefin industry were studied. A kinetic study using a hot fog chamber showed that condensation is controlled by both the diffusion and permanency of the surfactant more than by the change of the surface energy developed by the wetting agents. The greatest permanency of the anti-fog effect of the LDPE/EVA surface was close to 3000 h. The contact angle results demonstrated the ability of the wetting agent to spread out to the surface. Complementarily, the migration of nonionic surfactants from the inside of the polymeric matrix to the surface was analyzed by Fourier transform infrared (FTIR) microscopy. Additionally, electrical measurement on the anti-fogging membrane at alternating currents and at a sweep frequency was proposed to test the conductivity and wetting ability of nonionic surfactants. We proved that the amphiphilic molecules had the ability to increase the conductivity in the polyolefin membrane. A correlation between the bulk electrical conductivity and the permanency of the fogging control on the LDPE/EVA coextruded film was found.

  20. Fogging Control on LDPE/EVA Coextruded Films: Wettability Behavior and Its Correlation with Electric Performance

    PubMed Central

    Waldo-Mendoza, Miguel A.; Quiñones-Jurado, Zoe V.; Pérez-Medina, Juan C.; Yañez-Soto, Bernardo; Ramírez-González, Pedro E.

    2017-01-01

    The transformation of fog at a non-visible water layer on a membrane of low-density polyethylene (LDPE) and ethylene-vinyl acetate (EVA) was evaluated. Nonionic surfactants of major demand in the polyolefin industry were studied. A kinetic study using a hot fog chamber showed that condensation is controlled by both the diffusion and permanency of the surfactant more than by the change of the surface energy developed by the wetting agents. The greatest permanency of the anti-fog effect of the LDPE/EVA surface was close to 3000 h. The contact angle results demonstrated the ability of the wetting agent to spread out to the surface. Complementarily, the migration of nonionic surfactants from the inside of the polymeric matrix to the surface was analyzed by Fourier transform infrared (FTIR) microscopy. Additionally, electrical measurement on the anti-fogging membrane at alternating currents and at a sweep frequency was proposed to test the conductivity and wetting ability of nonionic surfactants. We proved that the amphiphilic molecules had the ability to increase the conductivity in the polyolefin membrane. A correlation between the bulk electrical conductivity and the permanency of the fogging control on the LDPE/EVA coextruded film was found. PMID:28241433

  1. Remote Operation of the ExoGeoLab Lander at ESTEC and Lunares Base

    NASA Astrophysics Data System (ADS)

    Lillo, A.; Foing, B. H.; Evellin, P.; Kołodziejczyk, A.; Jonglez, C.; Heinicke, C.; Harasymczuk, M.; Authier, L.; Blanc, A.; Chahla, C.; Tomic, A.; Mirino, M.; Schlacht, I.; Hettrich, S.; Pacher, T.

    2017-10-01

    The ExoGeoLab Lander is a prototype developed to demonstrate joint use of remote operation and EVA astronaut work in analogue lunar environment. It was recently deployed in the new analogue base Lunares in Poland and controlled from ESA ESTEC center.

  2. Does practicing a wide range of joint angle configurations lead to higher flexibility in a manual obstacle-avoidance target-pointing task?

    PubMed Central

    Bootsma, Reinoud J.; Schoemaker, Marina M.; Otten, Egbert; Mouton, Leonora J.; Bongers, Raoul M.

    2017-01-01

    Flexibility in motor actions can be defined as variability in the use of degrees of freedom (e.g., joint angles in the arm) over repetitions while keeping performance (e.g., fingertip position) stabilized. We examined whether flexibility can be increased through enlarging the joint angle range during practice in a manual obstacle-avoidance target-pointing task. To establish differences in flexibility we partitioned the variability in joint angles over repetitions in variability within (GEV) and variability outside the solution space (NGEV). More GEV than NGEV reflects flexibility; when the ratio of the GEV and NGEV is higher, flexibility is higher. The pretest and posttest consisted of 30 repetitions of manual pointing to a target while moving over a 10 cm high obstacle. To enlarge the joint angle range during practice participants performed 600 target-pointing movements while moving over obstacles of different heights (5–9 cm, 11–15 cm). The results indicated that practicing movements over obstacles of different heights led participants to use enlarged range of joint angles compared to the range of joint angles used in movements over the 10 cm obstacle in the pretest. However, for each individual obstacle neither joint angle variance nor flexibility were higher during practice. We also did not find more flexibility after practice. In the posttest, joint angle variance was in fact smaller than before practice, primarily in GEV. The potential influences of learning effects and the task used that could underlie the results obtained are discussed. We conclude that with this specific type of practice in this specific task, enlarging the range of joint angles does not lead to more flexibility. PMID:28700695

  3. KSC-01pp1200

    NASA Image and Video Library

    2001-06-26

    KENNEDY SPACE CENTER, Fla. -- The Joint Airlock Module, sporting a NASA logo, is moved toward the payload bay of Space Shuttle Atlantis for mission STS-104. Once installed and activated, the airlock becomes the primary path for International Space Station spacewalk entry and departure using U.S. spacesuits, which are known as Extravehicular Mobility Units, or EMUs. In addition, the Joint Airlock is designed to support the Russian Orlan spacesuit for EVA activity. Launch of Atlantis is scheduled no earlier than July 12 at 5:04 a.m. EDT

  4. Effects of Arg-Gly-Asp sequence peptide and hyperosmolarity on the permeability of interstitial matrix and fenestrated endothelium in joints.

    PubMed

    Poli, A; Mason, R M; Levick, J R

    2004-09-01

    The aims were to assess the contribution of arg-gly-asp (RGD) mediated cell integrin-matrix bonds to interstitial hydraulic resistance and to fenestrated endothelial permeability in joints. Joint fluid is generated by filtration from fenestrated capillaries and drains through a fibronectin-rich synovial intercellular matrix. The role of parenchymal cell-matrix bonding in determining tissue hydraulic resistance is unknown. The knee cavity of anesthetized rabbits was infused with saline or the competitive hexapeptide blocker GRGDTP, with or without added osmotic stress (600 mosm saline). Intra-articular pressure Pj, net trans-synovial drainage rate s, and the permeation of Evans blue-labeled albumin (EVA) from plasma into the joint cavity were measured. GRGDTP increased the hydraulic conductance of the synovial drainage pathway, ds/dPj, by 71% (p =.02, paired t test, n = 6 animals). Synovial plasma EVA clearance (control 7.1 +/- 0.8 microL h-1, mean +/- SEM, n = 15) was unaffected by GRGDTP (7.0 +/- 2.3 microL h(-1), n = 6) or hyperosmolarity (4.9 +/- 1.5 microL h(-1), n = 8) but was increased by GRGDTP and hyperosmolarity together (15.9 +/- 4.8 microL h(-1), n = 5) (p =.01, ANOVA). Changes in dPj/dt evoked by GRGDTP plus hyperosmolarity, but neither alone, demonstrated increased microvascular filtration into the joint cavity (p <.001, ANOVA), as did changes in fluid absorption from the infusion system at fixed Pj. RGD-mediated bonds between the parenchymal cells and interstitial polymers reduce the interstitial hydraulic conductance by 42%. This helps to retain the lubricating fluid inside a joint cavity. RGD-mediated bonds also support the macromolecular barrier function of fenestrated endothelium, but in vivo this is evident only in stressed endothelium (cf. in vitro).

  5. Flight Director works out problem during STS-61 simulations

    NASA Image and Video Library

    1993-09-01

    Flight Director Robert E. Castle Jr. works out a problem during joint integrated simulations for the STS-61 mission. Astronauts assigned to extravehicular activity (EVA) tasks with the Hubble Space Telescope (HST) were simultaneously rehearsing in a neutral buoyancy tank at the Marshall Space Flight Center (MSFC) in Alabama.

  6. Expedition 27 and Expedition 28 crew members NBL training

    NASA Image and Video Library

    2010-10-26

    PHOTO DATE: 10-26-10 LOCATION: NBL - Pool Topside SUBJECT: Expedition 27 crew member Ron Garan and Expedition 28 crew member Mike Fossum during a joint INC-27/INC-28 ISS EVA Cleanup training session at the NBL WORK ORDER: 03126-BS__NBLEXP27_10-26-10 PHOTOGRAPHER: BILL STAFFORD

  7. Extravehicular Mobility Unit (EMU) Preparations in Joint Airlock Quest

    NASA Image and Video Library

    2009-03-23

    ISS018-E-042704 (23 March 2009) --- Astronaut Richard Arnold, STS-119 mission specialist, attired in his Extravehicular Mobility Unit (EMU) spacesuit, gives a ?thumbs-up? signal as he prepares for the mission's third scheduled session of extravehicular activity (EVA) in the Quest Airlock of the International Space Station.

  8. Task network models in the prediction of workload imposed by extravehicular activities during the Hubble Space Telescope servicing mission

    NASA Technical Reports Server (NTRS)

    Diaz, Manuel F.; Takamoto, Neal; Woolford, Barbara

    1994-01-01

    In a joint effort with Brooks AFB, Texas, the Flight Crew Support Division at JSC has begun a computer simulation and performance modeling program directed at establishing the predictive validity of software tools for modeling human performance during spaceflight. This paper addresses the utility of task network modeling for predicting the workload that astronauts are likely to encounter in extravehicular activities (EVA) during the Hubble Space Telescope (HST) repair mission. The intent of the study was to determine whether two EVA crewmembers and one intravehicular activity (IVA) crewmember could reasonably be expected to complete HST Wide Field/Planetary Camera (WFPC) replacement in the allotted time. Ultimately, examination of the points during HST servicing that may result in excessive workload will lead to recommendations to the HST Flight Systems and Servicing Project concerning (1) expectation of degraded performance, (2) the need to change task allocation across crewmembers, (3) the need to expand the timeline, and (4) the need to increase the number of EVA's.

  9. STS-124 EVA 3 Nitrogen Tank Assembly (NTA) OPS

    NASA Image and Video Library

    2008-06-08

    ISS017-E-009220 (8 June 2008) --- Anchored to a Canadarm2 mobile foot restraint, astronaut Ron Garan, STS-124 mission specialist, participates in the mission's third scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 33-minute spacewalk, Garan and astronaut Mike Fossum (out of frame), mission specialist, exchanged a depleted Nitrogen Tank Assembly for a new one, removed thermal covers and launch locks from the Kibo laboratory, reinstalled a repaired television camera onto the space station's left P1 truss, and retrieved samples of a dust-like substance from the left Solar Alpha Rotary Joint for analysis by experts on the ground.

  10. Shoulder Injuries in US Astronauts Related to EVA Suit Design

    NASA Technical Reports Server (NTRS)

    Scheuring, R. A.; McCulloch, P.; Van Baalen, Mary; Minard, Charles; Watson, Richard; Blatt, T.

    2011-01-01

    Introduction: For every one hour spent performing extravehicular activity (EVA) in space, astronauts in the US space program spend approximately six to ten hours training in the EVA spacesuit at NASA-Johnson Space Center's Neutral Buoyancy Lab (NBL). In 1997, NASA introduced the planar hard upper torso (HUT) EVA spacesuit which subsequently replaced the existing pivoted HUT. An extra joint in the pivoted shoulder allows increased mobility but also increased complexity. Over the next decade a number of astronauts developed shoulder problems requiring surgical intervention, many of whom performed EVA training in the NBL. This study investigated whether changing HUT designs led to shoulder injuries requiring surgical repair. Methods: US astronaut EVA training data and spacesuit design employed were analyzed from the NBL data. Shoulder surgery data was acquired from the medical record database, and causal mechanisms were obtained from personal interviews Analysis of the individual HUT designs was performed as it related to normal shoulder biomechanics. Results: To date, 23 US astronauts have required 25 shoulder surgeries. Approximately 48% (11/23) directly attributed their injury to training in the planar HUT, whereas none attributed their injury to training in the pivoted HUT. The planar HUT design limits shoulder abduction to 90 degrees compared to approximately 120 degrees in the pivoted HUT. The planar HUT also forces the shoulder into a forward flexed position requiring active retraction and extension to increase abduction beyond 90 degrees. Discussion: Multiple factors are associated with mechanisms leading to shoulder injury requiring surgical repair. Limitations to normal shoulder mechanics, suit fit, donning/doffing, body position, pre-existing injury, tool weight and configuration, age, in-suit activity, and HUT design have all been identified as potential sources of injury. Conclusion: Crewmembers with pre-existing or current shoulder injuries or certain anthropometric body types should conduct NBL EVA training in the pivoted HUT.

  11. Fusimotor control of spindle sensitivity regulates central and peripheral coding of joint angles.

    PubMed

    Lan, Ning; He, Xin

    2012-01-01

    Proprioceptive afferents from muscle spindles encode information about peripheral joint movements for the central nervous system (CNS). The sensitivity of muscle spindle is nonlinearly dependent on the activation of gamma (γ) motoneurons in the spinal cord that receives inputs from the motor cortex. How fusimotor control of spindle sensitivity affects proprioceptive coding of joint position is not clear. Furthermore, what information is carried in the fusimotor signal from the motor cortex to the muscle spindle is largely unknown. In this study, we addressed the issue of communication between the central and peripheral sensorimotor systems using a computational approach based on the virtual arm (VA) model. In simulation experiments within the operational range of joint movements, the gamma static commands (γ(s)) to the spindles of both mono-articular and bi-articular muscles were hypothesized (1) to remain constant, (2) to be modulated with joint angles linearly, and (3) to be modulated with joint angles nonlinearly. Simulation results revealed a nonlinear landscape of Ia afferent with respect to both γ(s) activation and joint angle. Among the three hypotheses, the constant and linear strategies did not yield Ia responses that matched the experimental data, and therefore, were rejected as plausible strategies of spindle sensitivity control. However, if γ(s) commands were quadratically modulated with joint angles, a robust linear relation between Ia afferents and joint angles could be obtained in both mono-articular and bi-articular muscles. With the quadratic strategy of spindle sensitivity control, γ(s) commands may serve as the CNS outputs that inform the periphery of central coding of joint angles. The results suggest that the information of joint angles may be communicated between the CNS and muscles via the descending γ(s) efferent and Ia afferent signals.

  12. Effect of knee joint angle on neuromuscular activation of the vastus intermedius muscle during isometric contraction.

    PubMed

    Watanabe, K; Akima, H

    2011-12-01

    The purpose of this study was to compare the relationship between surface electromyography (EMG) and knee joint angle of the vastus intermedius muscle (VI) with the synergistic muscles in the quadriceps femoris (QF) muscle group. Fourteen healthy men performed maximal voluntary contractions during isometric knee extension at four knee joint angles from 90°, 115°, 140°, and 165° (180° being full extension). During the contractions, surface EMG was recorded at four muscle components of the QF muscle group: the VI, vastus lateralis (VL), vastus medialis (VM), and rectus femoris (RF) muscles. The root mean square of the surface EMG at each knee joint angle was calculated and normalized by that at a knee joint angle of 90° for individual muscles. The normalized RMS of the VI muscle was significantly lower than those of the VL and RF muscles at the knee joint angles of 115° and 165° and those of the VL, VM, and RF muscles at the knee joint angle of 140° (P<0.05). The present results suggest that the neuromuscular activation of the VI muscle is regulated in a manner different from the alteration of the knee joint angle compared with other muscle components of the QF muscle group. © 2011 John Wiley & Sons A/S.

  13. Effect of the Angle Between Sn Grain c-Axis and Electron Flow Direction on Cu-Reinforced Composite Solder Joints Under Current Stressing

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Han, Jing; Wang, Yishu; Ma, Limin; Guo, Fu

    2018-01-01

    With a body-centered tetragonal crystal structure, Sn grains were demonstrated to have highly anisotropic behaviors in various properties. The electromigration behavior of lead-free solder was impacted by the grain orientations. In this paper, the angle between the c-axis and the electron flow direction in composite solder joints (angle θ) was proven to be an important factor during electromigration. The effects of angle θ on the electromigration of composite solder joints were investigated in this paper. Cu particle-reinforced Sn3.5Ag solder joints were stressed under a current density of 104 A/cm2 at room temperature. After 336 h current stressing time, different electromigration phenomena occurred at the two sides of the grain boundary in the composite solder joint which contained two Sn grains with different angle θ. The Sn grains with the larger angle θ had a smaller growth rate of Cu6Sn5. In addition, a composite solder joint with a single Sn grain was set as the contrast and its angle θ was smaller than that of the composite solder joint with two Sn grains. The growth rate of Cu6Sn5 in the composite solder joint with a single grain was faster than that of the composite solder joint with two Sn grains.

  14. Estimation of Finger Joint Angles Based on Electromechanical Sensing of Wrist Shape.

    PubMed

    Kawaguchi, Junki; Yoshimoto, Shunsuke; Kuroda, Yoshihiro; Oshiro, Osamu

    2017-09-01

    An approach to finger motion capture that places fewer restrictions on the usage environment and actions of the user is an important research topic in biomechanics and human-computer interaction. We proposed a system that electrically detects finger motion from the associated deformation of the wrist and estimates the finger joint angles using multiple regression models. A wrist-mounted sensing device with 16 electrodes detects deformation of the wrist from changes in electrical contact resistance at the skin. In this study, we experimentally investigated the accuracy of finger joint angle estimation, the adequacy of two multiple regression models, and the resolution of the estimation of total finger joint angles. In experiments, both the finger joint angles and the system output voltage were recorded as subjects performed flexion/extension of the fingers. These data were used for calibration using the least-squares method. The system was found to be capable of estimating the total finger joint angle with a root-mean-square error of 29-34 degrees. A multiple regression model with a second-order polynomial basis function was shown to be suitable for the estimation of all total finger joint angles, but not those of the thumb.

  15. STS-127 EVA-3

    NASA Image and Video Library

    2009-07-22

    ISS020-E-023358 (22 July 2009) ---This is a view of the Japanese Experiment Module - Exposed Facility which has been a major subject of attention by the joint crews aboard the International Space Station, currently docked with the Space Shuttle Endeavour. July 22 activity saw both hands-on and robotics work with the new hardware.

  16. Interdependence of torque, joint angle, angular velocity and muscle action during human multi-joint leg extension.

    PubMed

    Hahn, Daniel; Herzog, Walter; Schwirtz, Ansgar

    2014-08-01

    Force and torque production of human muscles depends upon their lengths and contraction velocity. However, these factors are widely assumed to be independent of each other and the few studies that dealt with interactions of torque, angle and angular velocity are based on isolated single-joint movements. Thus, the purpose of this study was to determine force/torque-angle and force/torque-angular velocity properties for multi-joint leg extensions. Human leg extension was investigated (n = 18) on a motor-driven leg press dynamometer while measuring external reaction forces at the feet. Extensor torque in the knee joint was calculated using inverse dynamics. Isometric contractions were performed at eight joint angle configurations of the lower limb corresponding to increments of 10° at the knee from 30 to 100° of knee flexion. Concentric and eccentric contractions were performed over the same range of motion at mean angular velocities of the knee from 30 to 240° s(-1). For contractions of increasing velocity, optimum knee angle shifted from 52 ± 7 to 64 ± 4° knee flexion. Furthermore, the curvature of the concentric force/torque-angular velocity relations varied with joint angles and maximum angular velocities increased from 866 ± 79 to 1,238 ± 132° s(-1) for 90-50° knee flexion. Normalised eccentric forces/torques ranged from 0.85 ± 0.12 to 1.32 ± 0.16 of their isometric reference, only showing significant increases above isometric and an effect of angular velocity for joint angles greater than optimum knee angle. The findings reveal that force/torque production during multi-joint leg extension depends on the combined effects of angle and angular velocity. This finding should be accounted for in modelling and optimisation of human movement.

  17. Hip and knee joints are more stabilized than driven during the stance phase of gait: an analysis of the 3D angle between joint moment and joint angular velocity.

    PubMed

    Dumas, R; Cheze, L

    2008-08-01

    Joint power is commonly used in orthopaedics, ergonomics or sports analysis but its clinical interpretation remains controversial. Some basic principles on muscle actions and energy transfer have been proposed in 2D. The decomposition of power on 3 axes, although questionable, allows the same analysis in 3D. However, these basic principles have been widely criticized, mainly because bi-articular muscles must be considered. This requires a more complex computation in order to determine how the individual muscle force contributes to drive the joint. Conversely, with simple 3D inverse dynamics, the analysis of both joint moment and angular velocity directions is essential to clarify when the joint moment can contribute or not to drive the joint. The present study evaluates the 3D angle between the joint moment and the joint angular velocity and investigates when the hip, knee and ankle joints are predominantly driven (angle close to 0 degrees and 180 degrees ) or stabilized (angle close to 90 degrees ) during gait. The 3D angle curves show that the three joints are never fully but only partially driven and that the hip and knee joints are mainly stabilized during the stance phase. The notion of stabilization should be further investigated, especially for subjects with motion disorders or prostheses.

  18. [Relationship between muscle activity and kinematics of the lower extremity in slow motions of squats in humans].

    PubMed

    Khorievin, V I; Horkovenko, A V; Vereshchaka, I V

    2013-01-01

    Squatting can be performed on ankle strategy when ankle joint is flexed more than a hip joint and on hip strategy when large changes occur at the hip joint. The relationships between changes ofjoint angles and electromyogram (EMG) of the leg muscles were studied in five healthy men during squatting that was performed at the ankle and hip strategies with a slow changes in the knee angle of 40 and 60 degrees. It is established that at ankle strategy the ankle muscles were activated ahead of joint angle changes and shifting the center of pressure (CT) on stabilographic platform, whereas activation of the thigh muscles began simultaneously with the change of the joint angles, showing the clear adaptation in successive trials and a linear relationships between the static EMG component and the angle changes of the ankle joint. In the case of hip strategy of squatting the thigh muscles were activated simultaneously with the change in the joint angles and the displacement of CT, whereas the ankle muscles were activated later than the thigh muscles, especially the muscle tibialis anterior, showing some adaptations in consecutive attempts. At the ankle strategy the EMG amplitude was greatest in thigh muscles, reproducing contour of changes in joint angles, whereas the ankle muscles were activated only slightly during changes of joint angles. In the case of hip strategy dominated the EMG amplitude of the muscle tibialis anterior, which was activated when driving down the trunk and fixation of the joint angles that was accompanied by a slight coactivation of the calf muscles with the step-like increase in the amplitude of the EMG of the thigh muscles. Choice of leg muscles to start the squatting on both strategies occurred without a definite pattern, which may indicate the existence of a wide range of options for muscle activity in a single strategy.

  19. View of MS Mastracchio participating in EVA 2 during STS-118/Expedition 15 Joint Operations

    NASA Image and Video Library

    2007-08-13

    S118-E-06969 (13 Aug. 2007) --- Astronaut Rick Mastracchio, STS-118 mission specialist, participates in the mission's second planned session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the 6-hour, 28-minute spacewalk, Mastracchio and astronaut Dave Williams (out of frame), mission specialist representing the Canadian Space Agency, removed a faulty control moment gyroscope (CMG-3) and installed a new CMG into the station's Z1 truss. The failed CMG will remain at its temporary stowage location on the station's exterior until it is returned to Earth on a later shuttle mission. The new gyroscope is one of four CMGs that are used to control the station's attitude in orbit.

  20. View of MS Mastracchio participating in EVA 2 during STS-118/Expedition 15 Joint Operations

    NASA Image and Video Library

    2007-08-13

    S118-E-06968 (13 Aug. 2007) --- Astronaut Rick Mastracchio, STS-118 mission specialist, participates in the mission's second planned session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the 6-hour, 28-minute spacewalk, Mastracchio and astronaut Dave Williams (out of frame), mission specialist representing the Canadian Space Agency, removed a faulty control moment gyroscope (CMG-3) and installed a new CMG into the station's Z1 truss. The failed CMG will remain at its temporary stowage location on the station's exterior until it is returned to Earth on a later shuttle mission. The new gyroscope is one of four CMGs that are used to control the station's attitude in orbit.

  1. Lunar Balance and Locomotion

    NASA Technical Reports Server (NTRS)

    Paloski, William H.

    2008-01-01

    Balance control and locomotor patterns were altered in Apollo crewmembers on the lunar surface, owing, presumably, to a combination of sensory-motor adaptation during transit and lunar surface operations, decreased environmental affordances associated with the reduced gravity, and restricted joint mobility as well as altered center-of-gravity caused by the EVA pressure suits. Dr. Paloski will discuss these factors, as well as the potential human and mission impacts of falls and malcoordination during planned lunar sortie and outpost missions. Learning objectives: What are the potential impacts of postural instabilities on the lunar surface? CME question: What factors affect balance control and gait stability on the moon? Answer: Sensory-motor adaptation to the lunar environment, reduced mechanical and visual affordances, and altered biomechanics caused by the EVA suit.

  2. Linnehan on EVA 2 - during Expedition 16 / STS-123 Joint Operations

    NASA Image and Video Library

    2008-03-16

    S123-E-006790 (15/16 March 2008) --- Astronauts Mike Foreman and Rick Linnehan (partially out of frame), both STS-123 mission specialists, participate in the mission's second scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the 7-hour, 8-minute spacewalk, Linnehan and Foreman, assembled the stick-figure-shaped Dextre, also known as the Special Purpose Dextrous Manipulator (SPDM), a task that included attaching its two arms. Designed for station maintenance and service, Dextre is capable of sensing forces and movement of objects it is manipulating. It can automatically compensate for those forces and movements to ensure an object is moved smoothly. Dextre is the final element of the station's Mobile Servicing System.

  3. Linnehan and Foreman on EVA 2 - during Expedition 16 / STS-123 Joint Operations

    NASA Image and Video Library

    2008-03-16

    S123-E-006788 (15/16 March 2008) --- Astronauts Mike Foreman (left) and Rick Linnehan, both STS-123 mission specialists, participate in the mission's second scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the 7-hour, 8-minute spacewalk, Linnehan and Foreman, assembled the stick-figure-shaped Dextre, also known as the Special Purpose Dextrous Manipulator (SPDM), a task that included attaching its two arms. Designed for station maintenance and service, Dextre is capable of sensing forces and movement of objects it is manipulating. It can automatically compensate for those forces and movements to ensure an object is moved smoothly. Dextre is the final element of the station's Mobile Servicing System.

  4. Linnehan and Foreman on EVA 2 - during Expedition 16 / STS-123 Joint Operations

    NASA Image and Video Library

    2008-03-16

    S123-E-006781 (15/16 March 2008) --- Astronauts Rick Linnehan (right) and Mike Foreman, both STS-123 mission specialists, participate in the mission's second scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the 7-hour, 8-minute spacewalk, Linnehan and Foreman, assembled the stick-figure-shaped Dextre, also known as the Special Purpose Dextrous Manipulator (SPDM), a task that included attaching its two arms. Designed for station maintenance and service, Dextre is capable of sensing forces and movement of objects it is manipulating. It can automatically compensate for those forces and movements to ensure an object is moved smoothly. Dextre is the final element of the station's Mobile Servicing System.

  5. Kinematic functions for the 7 DOF robotics research arm

    NASA Technical Reports Server (NTRS)

    Kreutz, K.; Long, M.; Seraji, Homayoun

    1989-01-01

    The Robotics Research Model K-1207 manipulator is a redundant 7R serial link arm with offsets at all joints. To uniquely determine joint angles for a given end-effector configuration, the redundancy is parameterized by a scalar variable which corresponds to the angle between the manipulator elbow plane and the vertical plane. The forward kinematic mappings from joint-space to end-effector configuration and elbow angle, and the augmented Jacobian matrix which gives end-effector and elbow angle rates as a function of joint rates, are also derived.

  6. [Correlation analysis on the disorders of patella-femoral joint and torsional deformity of tibia].

    PubMed

    Sun, Zhen-Jie; Yuan, Yi; Liu, Rui-Bo

    2015-03-01

    To reveal the possible mechanism involved in patella-femoral degenerative arthritis (PFDA) in- duced by torsion-deformity of tibia via analyzing the relationship between torsion-deformity of the tibia in patients with PFDA and the disorder of patella-femoral joint under the static and dynamic conditions. From October 2009 to October 2010, 50 patients (86 knees, 24 knees of male patients and 62 knees of female patients) with PFDA were classified as disease group and 16 people (23 knees, 7 knees of males and 16 knees of females) in the control group. The follow indexes were measured: the torsion-angle of tibia on CT scanning imagings, the patella-femoral congruence angle and lateral patella-femoral angle under static and dynamic conditions when the knee bent at 30 degrees of flexion. Based on the measurement results, the relationship between the torsion-deformity of tibias and the disorders of patella-femoral joints in patients with PFDA were analyzed. Finally,the patients were divided into three groups including large torsion-angle group, small torsion-angle group and normal group according to the size of torsion-angle, in order to analyze the relationship between torsion-deformity and disorders of patella-femoral joint, especially under the dynamic conditions. Compared with patients without PFDA, the ones with PFDA had bigger torsion-angle (30.30 ± 7.11)° of tibia, larger patella-femoral congruence angle (13.20 ± 3.94)° and smaller lateral patella-femoral angle (12.30 ± 3.04)°. The congruence angle and lateral patella-femoral angle under static and dynamic conditions had statistical differences respectively in both too-big torsion-angle group and too-small torsion-angle group. The congruence angle and lateral patella-femoral angle under static and dynamic conditions had no statistical differences in normal torsion-angle group. Torsion-deformity of tibia is the main reason for disorder of patella-femoral joint in the patients with PFDA. Torsion-deformity of tibia is always accompanied by instability of patella-femoral joint,especially under the dynamic condition, thus causing PFDA. It can not only provide arrangement information and degenerative condition of patella-femoral joint,but also provide guidance through the analysis on the relationship for better clinical prevention and early treatment of degenerative bone and joint disease.

  7. Objective evaluation of female feet and leg joint conformation at time of selection and post first parity in swine.

    PubMed

    Stock, J D; Calderón Díaz, J A; Rothschild, M F; Mote, B E; Stalder, K J

    2018-06-09

    Feet and legs of replacement females were objectively evaluated at selection, i.e. approximately 150 days of age (n=319) and post first parity, i.e. any time after weaning of first litter and before 2nd parturition (n=277) to 1) compare feet and leg joint angle ranges between selection and post first parity; 2) identify feet and leg joint angle differences between selection and first three weeks of second gestation; 3) identify feet and leg join angle differences between farms and gestation days during second gestation; and 4) obtain genetic variance components for conformation angles for the two time points measured. Angles for carpal joint (knee), metacarpophalangeal joint (front pastern), metatarsophalangeal joint (rear pastern), tarsal joint (hock), and rear stance were measured using image analysis software. Between selection and post first parity significant differences were observed for all joints measured (P < 0.05). Knee, front and rear pastern angles were less (more flexion), and hock angles were greater (less flexion) as age progressed (P < 0.05), while the rear stance pattern was less (feet further under center) at selection than post first parity (only including measures during first three weeks of second gestation). Only using post first parity leg conformation information, farm was a significant source of variation for front and rear pasterns and rear stance angle measurements (P < 0.05). Knee angle was less (more flexion) (P < 0.05) as gestation age progressed. Heritability estimates were low to moderate (0.04 - 0.35) for all traits measured across time points. Genetic correlations between the same joints at different time points were high (> 0.8) between the front leg joints and low (<0.2) between the rear leg joints. High genetic correlations between time points indicate that the trait can be considered the same at either time point, and low genetic correlations indicate that the trait at different time points should be considered as two separate traits. Minimal change in the front leg suggests conformation traits that remain between selection and post first parity, while larger changes in rear leg indicate that rear leg conformation traits should be evaluated at multiple time periods.

  8. Deployed P4 Radiator during STS-115 EVA during Joint Operations

    NASA Image and Video Library

    2006-09-15

    S115-E-06143 (15 Sept. 2006) --- Backdropped by a blue and white Earth, the newly installed P3/P4 truss and the Canadarm2 of the International Space Station are featured in this image photographed by a STS-115 crewmember while the Space Shuttle Atlantis was docked with the International Space Station.

  9. Structural analysis of three space crane articulated-truss joint concepts

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Sutter, Thomas R.

    1992-01-01

    Three space crane articulated truss joint concepts are studied to evaluate their static structural performance over a range of geometric design parameters. Emphasis is placed on maintaining the four longeron reference truss performance across the joint while allowing large angle articulation. A maximum positive articulation angle and the actuator length ratio required to reach the angle are computed for each concept as the design parameters are varied. Configurations with a maximum articulation angle less than 120 degrees or actuators requiring a length ratio over two are not considered. Tip rotation and lateral deflection of a truss beam with an articulated truss joint at the midspan are used to select a point design for each concept. Deflections for one point design are up to 40 percent higher than for the other two designs. Dynamic performance of the three point design is computed as a function of joint articulation angle. The two lowest frequencies of each point design are relatively insensitive to large variations in joint articulation angle. One point design has a higher maximum tip velocity for the emergency stop than the other designs.

  10. Effects of tibial plateau angle and spacer thickness applied during in vitro canine total knee replacement on three-dimensional kinematics and collateral ligament strain.

    PubMed

    Baker, Katherine M; Foutz, Timothy L; Johnsen, Kyle J; Budsberg, Steven C

    2014-09-01

    To quantify the 3-D kinematics and collateral ligament strain of stifle joints in cadaveric canine limbs before and after cranial cruciate ligament transection followed by total knee replacement (TKR) involving various tibial plateau angles and spacer thicknesses. 6 hemi-pelvises collected from clinically normal nonchondrodystrophic dogs (weight range, 25 to 35 kg). Hemi-pelvises were mounted on a modified Oxford knee rig that allowed 6 degrees of freedom of the stifle joint but prevented mechanical movement of the hip and tarsal joints. Kinematics and collateral ligament strain were measured continuously while stifle joints were flexed. Data were again collected after cranial cruciate ligament transection and TKR with combinations of 3 plateau angles (0°, 4°, and 8°) and spacer thicknesses (5, 7, and 9 mm). Presurgical (ie, normal) stifle joint rotations were comparable to those previously documented for live dogs. After TKR, kinematics recorded for the 8°, 5-mm implant most closely resembled those of unaltered stifle joints. Decreasing the plateau angle and increasing spacer thickness altered stifle joint adduction, internal rotation, and medial translation. Medial collateral ligament strain was minimal in unaltered stifle joints and was unaffected by TKR. Lateral collateral ligament strain decreased with steeper plateau angles but returned to a presurgical level at the flattest plateau angle. Among the constructs tested, greatest normalization of canine stifle joint kinematics in vitro was achieved with the steepest plateau angle paired with the thinnest spacer. Furthermore, results indicated that strain to the collateral ligaments was not negatively affected by TKR.

  11. Correlation between hindfoot joint three-dimensional kinematics and the changes of the medial arch angle in stage II posterior tibial tendon dysfunction flatfoot.

    PubMed

    Zhang, Yi-Jun; Xu, Jian; Wang, Yue; Lin, Xiang-Jin; Ma, Xin

    2015-02-01

    The aim of this study was to explore the correlation between the kinematics of the hindfoot joint and the medial arch angle change in stage II posterior tibial tendon dysfunction flatfoot three-dimensionally under loading. Computed tomography (CT) scans of 12 healthy feet and 12 feet with stage II posterior tibial tendon dysfunction flatfoot were taken both in non- and full-body-weight-bearing condition. The CT images of the hindfoot bones were reconstructed into three-dimensional models with Mimics and Geomagic reverse engineering software. The three-dimensional changes of the hindfoot joint were calculated to determine their correlation to the medial longitudinal arch angle. The medial arch angle change was larger in stage II posterior tibial tendon dysfunction flatfoot compared to that in healthy foot under loading. The rotation and translation of the talocalcaneal joint, the talonavicular joint and the calcanocuboid joint had little influence on the change of the medial arch angle in healthy foot. However, the eversion of the talocalcaneal joint, the proximal translation of the calcaneus relative to the talus and the dorsiflexion of talonavicular joint could increase the medial arch angle in stage II posterior tibial tendon dysfunction flatfoot under loading. Joint instability occurred in patients with stage II posterior tibial tendon dysfunction flatfoot under loading. Limitation of over movement of the talocalcaneal joint and the talonavicular joint may help correct the medial longitudinal arch in stage II posterior tibial tendon dysfunction flatfoot. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. The Shank-to-Vertical-Angle as a parameter to evaluate tuning of Ankle-Foot Orthoses.

    PubMed

    Kerkum, Yvette L; Houdijk, Han; Brehm, Merel-Anne; Buizer, Annemieke I; Kessels, Manon L C; Sterk, Arjan; van den Noort, Josien C; Harlaar, Jaap

    2015-09-01

    The effectiveness of an Ankle-Foot Orthosis footwear combination (AFO-FC) may be partly dependent on the alignment of the ground reaction force with respect to lower limb joint rotation centers, reflected by joint angles and moments. Adjusting (i.e. tuning) the AFO-FC's properties could affect this alignment, which may be guided by monitoring the Shank-to-Vertical-Angle. This study aimed to investigate whether the Shank-to-Vertical-Angle during walking responds to variations in heel height and footplate stiffness, and if this would reflect changes in joint angles and net moments in healthy adults. Ten subjects walked on an instrumented treadmill and performed six trials while walking with bilateral rigid Ankle-Foot Orthoses. The AFO-FC heel height was increased, aiming to impose a Shank-to-Vertical-Angle of 5°, 11° and 20°, and combined with a flexible or stiff footplate. For each trial, the Shank-to-Vertical-Angle, joint flexion-extension angles and net joint moments of the right leg at midstance were averaged over 25 gait cycles. The Shank-to-Vertical-Angle significantly increased with increasing heel height (p<0.001), resulting in an increase in knee flexion angle and internal knee extensor moment (p<0.001). The stiff footplate reduced the effect of heel height on the internal knee extensor moment (p=0.030), while the internal ankle plantar flexion moment increased (p=0.035). Effects of heel height and footplate stiffness on the hip joint were limited. Our results support the potential to use the Shank-to-Vertical-Angle as a parameter to evaluate AFO-FC tuning, as it is responsive to changes in heel height and reflects concomitant changes in the lower limb angles and moments. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Application of a symbolic motion structure representation algorithm to identify upper extremity kinematic changes during a repetitive task.

    PubMed

    Whittaker, Rachel L; Park, Woojin; Dickerson, Clark R

    2018-04-27

    Efficient and holistic identification of fatigue-induced movement strategies can be limited by large between-subject variability in descriptors of joint angle data. One promising alternative to traditional, or computationally intensive methods is the symbolic motion structure representation algorithm (SMSR), which identifies the basic spatial-temporal structure of joint angle data using string descriptors of temporal joint angle trajectories. This study attempted to use the SMSR to identify changes in upper extremity time series joint angle data during a repetitive goal directed task causing muscle fatigue. Twenty-eight participants (15 M, 13 F) performed a seated repetitive task until fatigued. Upper extremity joint angles were extracted from motion capture for representative task cycles. SMSRs, averages and ranges of several joint angles were compared at the start and end of the repetitive task to identify kinematic changes with fatigue. At the group level, significant increases in the range of all joint angle data existed with large between-subject variability that posed a challenge to the interpretation of these fatigue-related changes. However, changes in the SMSRs across participants effectively summarized the adoption of adaptive movement strategies. This establishes SMSR as a viable, logical, and sensitive method of fatigue identification via kinematic changes, with novel application and pragmatism for visual assessment of fatigue development. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Improving Kinematic Accuracy of Soft Wearable Data Gloves by Optimizing Sensor Locations

    PubMed Central

    Kim, Dong Hyun; Lee, Sang Wook; Park, Hyung-Soon

    2016-01-01

    Bending sensors enable compact, wearable designs when used for measuring hand configurations in data gloves. While existing data gloves can accurately measure angular displacement of the finger and distal thumb joints, accurate measurement of thumb carpometacarpal (CMC) joint movements remains challenging due to crosstalk between the multi-sensor outputs required to measure the degrees of freedom (DOF). To properly measure CMC-joint configurations, sensor locations that minimize sensor crosstalk must be identified. This paper presents a novel approach to identifying optimal sensor locations. Three-dimensional hand surface data from ten subjects was collected in multiple thumb postures with varied CMC-joint flexion and abduction angles. For each posture, scanned CMC-joint contours were used to estimate CMC-joint flexion and abduction angles by varying the positions and orientations of two bending sensors. Optimal sensor locations were estimated by the least squares method, which minimized the difference between the true CMC-joint angles and the joint angle estimates. Finally, the resultant optimal sensor locations were experimentally validated. Placing sensors at the optimal locations, CMC-joint angle measurement accuracies improved (flexion, 2.8° ± 1.9°; abduction, 1.9° ± 1.2°). The proposed method for improving the accuracy of the sensing system can be extended to other types of soft wearable measurement devices. PMID:27240364

  15. Large displacement spherical joint

    DOEpatents

    Bieg, Lothar F.; Benavides, Gilbert L.

    2002-01-01

    A new class of spherical joints has a very large accessible full cone angle, a property which is beneficial for a wide range of applications. Despite the large cone angles, these joints move freely without singularities.

  16. Development of reaching during mid-childhood from a Developmental Systems perspective.

    PubMed

    Golenia, Laura; Schoemaker, Marina M; Otten, Egbert; Mouton, Leonora J; Bongers, Raoul M

    2018-01-01

    Inspired by the Developmental Systems perspective, we studied the development of reaching during mid-childhood (5-10 years of age) not just at the performance level (i.e., endpoint movements), as commonly done in earlier studies, but also at the joint angle level. Because the endpoint position (i.e., the tip of the index finger) at the reaching target can be achieved with multiple joint angle combinations, we partitioned variability in joint angles over trials into variability that does not (goal-equivalent variability, GEV) and that does (non-goal-equivalent variability, NGEV) influence the endpoint position, using the Uncontrolled Manifold method. Quantifying this structure in joint angle variability allowed us to examine whether and how spatial variability of the endpoint at the reaching target is related to variability in joint angles and how this changes over development. 6-, 8- and 10-year-old children and young adults performed reaching movements to a target with the index finger. Polynomial trend analysis revealed a linear and a quadratic decreasing trend for the variable error. Linear decreasing and cubic trends were found for joint angle standard deviations at movement end. GEV and NGEV decreased gradually with age, but interestingly, the decrease of GEV was steeper than the decrease of NGEV, showing that the different parts of the joint angle variability changed differently over age. We interpreted these changes in the structure of variability as indicating changes over age in exploration for synergies (a family of task solutions), a concept that links the performance level with the joint angle level. Our results suggest changes in the search for synergies during mid-childhood development.

  17. Dataglove measurement of joint angles in sign language handshapes

    PubMed Central

    Eccarius, Petra; Bour, Rebecca; Scheidt, Robert A.

    2012-01-01

    In sign language research, we understand little about articulatory factors involved in shaping phonemic boundaries or the amount (and articulatory nature) of acceptable phonetic variation between handshapes. To date, there exists no comprehensive analysis of handshape based on the quantitative measurement of joint angles during sign production. The purpose of our work is to develop a methodology for collecting and visualizing quantitative handshape data in an attempt to better understand how handshapes are produced at a phonetic level. In this pursuit, we seek to quantify the flexion and abduction angles of the finger joints using a commercial data glove (CyberGlove; Immersion Inc.). We present calibration procedures used to convert raw glove signals into joint angles. We then implement those procedures and evaluate their ability to accurately predict joint angle. Finally, we provide examples of how our recording techniques might inform current research questions. PMID:23997644

  18. Method and apparatus for calibrating multi-axis load cells in a dexterous robot

    NASA Technical Reports Server (NTRS)

    Wampler, II, Charles W. (Inventor); Platt, Jr., Robert J. (Inventor)

    2012-01-01

    A robotic system includes a dexterous robot having robotic joints, angle sensors adapted for measuring joint angles at a corresponding one of the joints, load cells for measuring a set of strain values imparted to a corresponding one of the load cells during a predetermined pose of the robot, and a host machine. The host machine is electrically connected to the load cells and angle sensors, and receives the joint angle values and strain values during the predetermined pose. The robot presses together mating pairs of load cells to form the poses. The host machine executes an algorithm to process the joint angles and strain values, and from the set of all calibration matrices that minimize error in force balance equations, selects the set of calibration matrices that is closest in a value to a pre-specified value. A method for calibrating the load cells via the algorithm is also provided.

  19. Investigation on the Cracking Character of Jointed Rock Mass Beneath TBM Disc Cutter

    NASA Astrophysics Data System (ADS)

    Yang, Haiqing; Liu, Junfeng; Liu, Bolong

    2018-04-01

    With the purpose to investigate the influence of joint dip angle and spacing on the TBM rock-breaking efficacy and cracking behaviour, experiments that include miniature cutter head tests are carried out on sandstone rock material. In the experiment, prefabricated joints of different forms are made in rock samples. Then theoretical analysis is conducted to improve the calculating models of the fractured work and crack length of rock in the TBM process. The experimental results indicate that lower rupture angles appear for specimens with joint dip angles between 45° and 60°. Meanwhile, rock-breaking efficacy for rock mass with joint dip angles in this interval is also higher. Besides, the fracture patterns are transformed from compressive shear mode to tensile shear mode as the joint spacing decreases. As a result, failure in a greater extent is resulted for specimens with smaller joint spacings. The results above suggest that joint dip angle between 45° and 60° and joint spacing of 1 cm are the optimal rock-breaking conditions for the tested specimens. Combining the present experimental data and taking the joint dip angle and spacing into consideration, the calculating model for rock fractured work that proposed by previous scholars is improved. Finally, theoretical solution of rock median and side crack length is also derived based on the analytical method of elastoplastic invasion fracture for indenter. The result of the analytical solution is also in good agreement with the actual measured experimental result. The present study may provide some primary knowledge about the rock cracking character and breaking efficacy under different engineering conditions.

  20. Static balance according to hip joint angle of unsupported leg during one-leg standing.

    PubMed

    Cha, Ju-Hyung; Kim, Jang-Joon; Ye, Jae-Gwan; Lee, Seul-Ji; Hong, Jeong-Mi; Choi, Hyun-Kyu; Choi, Ho-Suk; Shin, Won-Seob

    2017-05-01

    [Purpose] This study aimed to determine static balance according to hip joint angle of the unsupported leg during one-leg standing. [Subjects and Methods] Subjects included 45 healthy adult males and females in their 20s. During one-leg standing on the non-dominant leg, the position of the unsupported leg was classified according to hip joint angles of point angle was class. Static balance was then measured using a force plate with eyes open and closed. The total length, sway velocity, maximum deviation, and velocity on the mediolateral and anteroposterior axes of center of pressure were measured. [Results] In balance assessment with eyes open, there were significant differences between groups according to hip joint angle, except for maximum deviation on the anteroposterior axis. In balance assessment with eyes closed, there were significant differences between total length measurements at 0° and 30°, 60° and between 30° and 90°. There were significant differences between sway velocity measurements at 0° and 30° and between 30° and 90°. [Conclusion] Thus, there were differences in static balance according to hip joint angle. It is necessary to clearly identify the hip joint angle during one-leg standing testing.

  1. Behnken during EVA 4 - Expedition 16 / STS-13 Joint Operations

    NASA Image and Video Library

    2008-03-21

    S123-E-007816 (21 March 2008) --- Astronaut Robert L. Behnken, STS-123 mission specialist, participates in the mission's fourth scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the 6-hour, 24-minute spacewalk, Behnken and astronaut Mike Foreman (out of frame), mission specialist, replaced a failed Remote Power Control Module -- essentially a circuit breaker -- on the station's truss. The spacewalkers also tested a repair method for damaged heat resistant tiles on the space shuttle. This technique used a caulk-gun-like tool named the Tile Repair Ablator Dispenser to dispense a material called Shuttle Tile Ablator-54 into purposely damaged heat shield tiles. The sample tiles will be returned to Earth to undergo extensive testing on the ground.

  2. Foreman during EVA 4 - Expedition 16 / STS-13 Joint Operations

    NASA Image and Video Library

    2008-03-21

    S123-E-007832 (21 March 2008) --- Astronaut Mike Foreman, STS-123 mission specialist, participates in the mission's fourth scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the 6-hour, 24-minute spacewalk, Foreman and astronaut Robert L. Behnken (out of frame), mission specialist, replaced a failed Remote Power Control Module -- essentially a circuit breaker -- on the station's truss. The spacewalkers also tested a repair method for damaged heat resistant tiles on the space shuttle. This technique used a caulk-gun-like tool named the Tile Repair Ablator Dispenser to dispense a material called Shuttle Tile Ablator-54 into purposely damaged heat shield tiles. The sample tiles will be returned to Earth to undergo extensive testing on the ground.

  3. Behnken during EVA 4 - Expedition 16 / STS-13 Joint Operations

    NASA Image and Video Library

    2008-03-21

    S123-E-007907 (21 March 2008) --- Astronaut Robert L. Behnken, STS-123 mission specialist, participates in the mission's fourth scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the 6-hour, 24-minute spacewalk, Behnken and astronaut Mike Foreman (out of frame), mission specialist, replaced a failed Remote Power Control Module -- essentially a circuit breaker -- on the station's truss. The spacewalkers also tested a repair method for damaged heat resistant tiles on the space shuttle. This technique used a caulk-gun-like tool named the Tile Repair Ablator Dispenser to dispense a material called Shuttle Tile Ablator-54 into purposely damaged heat shield tiles. The sample tiles will be returned to Earth to undergo extensive testing on the ground.

  4. Behnken and Foreman during EVA 4 - Expedition 16 / STS-13 Joint Operations

    NASA Image and Video Library

    2008-03-21

    S123-E-007838 (21 March 2008) --- Astronauts Robert L. Behnken (top) and Mike Foreman, both STS-123 mission specialists, participate in the mission's fourth scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the 6-hour, 24-minute spacewalk, Behnken and Foreman replaced a failed Remote Power Control Module -- essentially a circuit breaker -- on the station's truss. The spacewalkers also tested a repair method for damaged heat resistant tiles on the space shuttle. This technique used a caulk-gun-like tool named the Tile Repair Ablator Dispenser to dispense a material called Shuttle Tile Ablator-54 into purposely damaged heat shield tiles. The sample tiles will be returned to Earth to undergo extensive testing on the ground.

  5. Behnken during EVA 4 - Expedition 16 / STS-13 Joint Operations

    NASA Image and Video Library

    2008-03-21

    S123-E-007906 (21 March 2008) --- Astronaut Robert L. Behnken, STS-123 mission specialist, participates in the mission's fourth scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the 6-hour, 24-minute spacewalk, Behnken and astronaut Mike Foreman (out of frame), mission specialist, replaced a failed Remote Power Control Module -- essentially a circuit breaker -- on the station's truss. The spacewalkers also tested a repair method for damaged heat resistant tiles on the space shuttle. This technique used a caulk-gun-like tool named the Tile Repair Ablator Dispenser to dispense a material called Shuttle Tile Ablator-54 into purposely damaged heat shield tiles. The sample tiles will be returned to Earth to undergo extensive testing on the ground.

  6. Behnken during EVA 4 - Expedition 16 / STS-13 Joint Operations

    NASA Image and Video Library

    2008-03-21

    S123-E-007909 (21 March 2008) --- Astronaut Robert L. Behnken, STS-123 mission specialist, participates in the mission's fourth scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the 6-hour, 24-minute spacewalk, Behnken and astronaut Mike Foreman (out of frame), mission specialist, replaced a failed Remote Power Control Module -- essentially a circuit breaker -- on the station's truss. The spacewalkers also tested a repair method for damaged heat resistant tiles on the space shuttle. This technique used a caulk-gun-like tool named the Tile Repair Ablator Dispenser to dispense a material called Shuttle Tile Ablator-54 into purposely damaged heat shield tiles. The sample tiles will be returned to Earth to undergo extensive testing on the ground.

  7. Behnken and Foreman during EVA 4 - Expedition 16 / STS-13 Joint Operations

    NASA Image and Video Library

    2008-03-21

    S123-E-007839 (21 March 2008) --- Astronauts Mike Foreman (foreground) and Robert L. Behnken, both STS-123 mission specialists, participate in the mission's fourth scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the 6-hour, 24-minute spacewalk, Foreman and Behnken replaced a failed Remote Power Control Module -- essentially a circuit breaker -- on the station's truss. The spacewalkers also tested a repair method for damaged heat resistant tiles on the space shuttle. This technique used a caulk-gun-like tool named the Tile Repair Ablator Dispenser to dispense a material called Shuttle Tile Ablator-54 into purposely damaged heat shield tiles. The sample tiles will be returned to Earth to undergo extensive testing on the ground.

  8. Linnehan and Foreman on EVA 2 - during Expedition 16 / STS-123 Joint Operations

    NASA Image and Video Library

    2008-03-16

    S123-E-006787 (15/16 March 2008) --- Astronauts Mike Foreman and Rick Linnehan (partially out of frame), both STS-123 mission specialists, participate in the mission's second scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the 7-hour, 8-minute spacewalk, Linnehan and Foreman, assembled the stick-figure-shaped Dextre, also known as the Special Purpose Dextrous Manipulator (SPDM), a task that included attaching its two arms. Designed for station maintenance and service, Dextre is capable of sensing forces and movement of objects it is manipulating. It can automatically compensate for those forces and movements to ensure an object is moved smoothly. Dextre is the final element of the station's Mobile Servicing System.

  9. Concurrent validation of Xsens MVN measurement of lower limb joint angular kinematics.

    PubMed

    Zhang, Jun-Tian; Novak, Alison C; Brouwer, Brenda; Li, Qingguo

    2013-08-01

    This study aims to validate a commercially available inertial sensor based motion capture system, Xsens MVN BIOMECH using its native protocols, against a camera-based motion capture system for the measurement of joint angular kinematics. Performance was evaluated by comparing waveform similarity using range of motion, mean error and a new formulation of the coefficient of multiple correlation (CMC). Three dimensional joint angles of the lower limbs were determined for ten healthy subjects while they performed three daily activities: level walking, stair ascent, and stair descent. Under all three walking conditions, the Xsens system most accurately determined the flexion/extension joint angle (CMC > 0.96) for all joints. The joint angle measurements associated with the other two joint axes had lower correlation including complex CMC values. The poor correlation in the other two joint axes is most likely due to differences in the anatomical frame definition of limb segments used by the Xsens and Optotrak systems. Implementation of a protocol to align these two systems is necessary when comparing joint angle waveforms measured by the Xsens and other motion capture systems.

  10. Study of the Peak Shear Strength of a Cement-Filled Hard Rock Joint

    NASA Astrophysics Data System (ADS)

    She, Cheng-Xue; Sun, Fu-Ting

    2018-03-01

    The peak shear strength of a cement-filled hard rock joint is studied by theoretical analysis and laboratory testing. Based on the concept of the shear resistance angle, by combining the statistical method and fractal theory, three new parameters are proposed to characterize the three-dimensional joint morphology, reflecting the effects of the average roughness, multi-scale asperities and the dispersion degree of the roughness distribution. These factors are independent of the measurement scale, and they reflect the anisotropy of the joint roughness. Compressive shear tests are conducted on cement-filled joints. Because joints without cement can be considered special cement-filled joints in which the filling degree of cement is zero, they are also tested. The cement-filled granite joint fails primarily along the granite-cement interfaces. The filling degree of cement controls the joint failure and affects its mechanical behaviour. With a decrease in the filling degree of cement, the joint cohesion decreases; however, the dilatancy angle and the basic friction angle of the interface increase. As the filling degree approaches zero, the cohesion approaches zero, while the dilatancy angle and the basic friction angle increase to those of the joint without cement. A set of formulas is proposed to evaluate the peak shear strength of the joints with and without cement. The formulas are shown to be reasonable by comparison with the tested peak shear strength, and they reflect the anisotropy of the strength. This research deepens the understanding of cement-filled joints and provides a method to evaluate their peak shear strength.

  11. Analysis of Knee Joint Line Obliquity after High Tibial Osteotomy.

    PubMed

    Oh, Kwang-Jun; Ko, Young Bong; Bae, Ji Hoon; Yoon, Suk Tae; Kim, Jae Gyoon

    2016-11-01

    The aim of this study was to evaluate which lower extremity alignment (knee and ankle joint) parameters affect knee joint line obliquity (KJLO) in the coronal plane after open wedge high tibial osteotomy (OWHTO). Overall, 69 knees of patients that underwent OWHTO were evaluated using radiographs obtained preoperatively and from 6 weeks to 3 months postoperatively. We measured multiple parameters of knee and ankle joint alignment (hip-knee-ankle angle [HKA], joint line height [JLH], posterior tibial slope [PS], femoral condyle-tibial plateau angle [FCTP], medial proximal tibial angle [MPTA], mechanical lateral distal femoral angle [mLDFA], KJLO, talar tilt angle [TTA], ankle joint obliquity [AJO], and the lateral distal tibial ground surface angle [LDTGA]; preoperative [-pre], postoperative [-post], and the difference between -pre and -post values [-Δ]). We categorized patients into two groups according to the KJLO-post value (the normal group [within ± 4 degrees, 56 knees] and the abnormal group [greater than ± 4 degrees, 13 knees]), and compared their -pre parameters. Multiple logistic regression analysis was used to examine the contribution of the -pre parameters to abnormal KJLO-post. The mean HKA-Δ (-9.4 ± 4.7 degrees) was larger than the mean KJLO-Δ (-2.1 ± 3.2 degrees). The knee joint alignment parameters (the HKA-pre, FCTP-pre) differed significantly between the two groups ( p  < 0.05). In addition, the HKA-pre (odds ratio [OR] = 1.27, p  = 0.006) and FCTP-pre (OR = 2.13, p  = 0.006) were significant predictors of abnormal KJLO-post. However, -pre ankle joint parameters (TTA, AJO, and LDTGA) did not differ significantly between the two groups and were not significantly associated with the abnormal KJLO-post. The -pre knee joint alignment and knee joint convergence angle evaluated by HKA-pre and FCTP-pre angle, respectively, were significant predictors of abnormal KJLO after OWHTO. However, -pre ankle joint parameters were not significantly associated with abnormal KJLO after OWHTO. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  12. Feasibility study of using a Microsoft Kinect for virtual coaching of wheelchair transfer techniques.

    PubMed

    Hwang, Seonhong; Tsai, Chung-Ying; Koontz, Alicia M

    2017-05-24

    The purpose of this study was to test the concurrent validity and test-retest reliability of the Kinect skeleton tracking algorithm for measurement of trunk, shoulder, and elbow joint angle measurement during a wheelchair transfer task. Eight wheelchair users were recruited for this study. Joint positions were recorded simultaneously by the Kinect and Vicon motion capture systems while subjects transferred from their wheelchairs to a level bench. Shoulder, elbow, and trunk angles recorded with the Kinect system followed a similar trajectory as the angles recorded with the Vicon system with correlation coefficients that are larger than 0.71 on both sides (leading arm and trailing arm). The root mean square errors (RMSEs) ranged from 5.18 to 22.46 for the shoulder, elbow, and trunk angles. The 95% limits of agreement (LOA) for the discrepancy between the two systems exceeded the clinical significant level of 5°. For the trunk, shoulder, and elbow angles, the Kinect had very good relative reliability for the measurement of sagittal, frontal and horizontal trunk angles, as indicated by the high intraclass correlation coefficient (ICC) values (>0.90). Small standard error of the measure (SEM) values, indicating good absolute reliability, were observed for all joints except for the leading arm's shoulder joint. Relatively large minimal detectable changes (MDCs) were observed in all joint angles. The Kinect motion tracking has promising performance levels for some upper limb joints. However, more accurate measurement of the joint angles may be required. Therefore, understanding the limitations in precision and accuracy of Kinect is imperative before utilization of Kinect.

  13. Comparison of joint angles and electromyographic activity of the lower extremities during standing with wearing standard and revised high-heeled shoes: A pilot study.

    PubMed

    Bae, Young-Hyeon; Ko, Mansoo; Lee, Suk Min

    2016-04-29

    Revised high-heeled shoes (HHSs) were designed to improve the shortcomings of standard HHSs. This study was conducted to compare revised and standard HHSs with regard to joint angles and electromyographic (EMG) activity of the lower extremities during standing. The participants were five healthy young women. Data regarding joint angles and EMG activity of the lower extremities were obtained under three conditions: barefoot, when wearing revised HHSs, and when wearing standard HHSs. Lower extremity joint angles in the three dimensional plane were confirmed using a VICON motion capture system. EMG activity of the lower extremities was measured using active bipolar surface EMG. Kruskal-Wallis one-way analysis of variance by rank applied to analyze differences during three standing conditions. Compared with the barefoot condition, the standard HHSs condition was more different than the revised HHSs condition with regard to lower extremity joint angles during standing. EMG activity of the lower extremities was different for the revised HHSs condition, but the differences among the three conditions were not significant. Wearing revised HHSs may positively impact joint angles and EMG activity of the lower extremities by improving body alignment while standing.

  14. Measurement of body joint angles for physical therapy based on mean shift tracking using two low cost Kinect images.

    PubMed

    Chen, Y C; Lee, H J; Lin, K H

    2015-08-01

    Range of motion (ROM) is commonly used to assess a patient's joint function in physical therapy. Because motion capture systems are generally very expensive, physical therapists mostly use simple rulers to measure patients' joint angles in clinical diagnosis, which will suffer from low accuracy, low reliability, and subjective. In this study we used color and depth image feature from two sets of low-cost Microsoft Kinect to reconstruct 3D joint positions, and then calculate moveable joint angles to assess the ROM. A Gaussian background model is first used to segment the human body from the depth images. The 3D coordinates of the joints are reconstructed from both color and depth images. To track the location of joints throughout the sequence more precisely, we adopt the mean shift algorithm to find out the center of voxels upon the joints. The two sets of Kinect are placed three meters away from each other and facing to the subject. The joint moveable angles and the motion data are calculated from the position of joints frame by frame. To verify the results of our system, we take the results from a motion capture system called VICON as golden standard. Our 150 test results showed that the deviation of joint moveable angles between those obtained by VICON and our system is about 4 to 8 degree in six different upper limb exercises, which are acceptable in clinical environment.

  15. Cranial cruciate stability in the rottweiler and racing greyhound: an in vitro study.

    PubMed

    Wingfield, C; Amis, A A; Stead, A C; Law, H T

    2000-05-01

    An in vitro biomechanical study of cadaver stifles from rottweilers and racing greyhounds was undertaken to evaluate the contribution of the cranial cruciate ligament to stifle joint stability. This was performed at differing stifle joint angles, first with the joint capsules and ligaments intact and then with all structures removed except for the cranial cruciate ligament. Craniocaudal laxity increased in both breeds as stifle flexion increased. The rottweiler stifle showed greater craniocaudal joint laxity than the racing greyhound at all joint angles between 150 degrees and 110 degrees, but the actual increases in joint laxity between these joint angles were similar for both breeds. Tibial rotation during craniocaudal loading of the stifle increased craniocaudal laxity in both breeds during joint flexion. The relative contribution of the cranial cruciate ligament to cranial stability of the stifle joint increased as the joint flexed and was similar in both breeds.

  16. The Joint Airlock Module is moved to the payload canister

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- In the Space Station Processing Facility, the Joint Airlock Module is moved closer to the payload canister. The airlock will be installed in the payload bay of Atlantis for mission STS-104 to the International Space Station. The airlock is a pressurized flight element consisting of two cylindrical chambers attached end-to-end by a connecting bulkhead and hatch. Once installed and activated, the Airlock becomes the primary path for spacewalk entry to and departure from the Space Station for U.S. spacesuits, which are known as Extravehicular Mobility Units, or EMUs. In addition, the Joint Airlock is designed to support the Russian Orlan spacesuit for EVA activity. STS-104 is scheduled for launch June 14 from Launch Pad 39B.

  17. SU-E-T-171: Evaluation of the Analytical Anisotropic Algorithm in a Small Finger Joint Phantom Using Monte Carlo Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chow, J; Owrangi, A; Jiang, R

    2014-06-01

    Purpose: This study investigated the performance of the anisotropic analytical algorithm (AAA) in dose calculation in radiotherapy concerning a small finger joint. Monte Carlo simulation (EGSnrc code) was used in this dosimetric evaluation. Methods: Heterogeneous finger joint phantom containing a vertical water layer (bone joint or cartilage) sandwiched by two bones with dimension 2 × 2 × 2 cm{sup 3} was irradiated by the 6 MV photon beams (field size = 4 × 4 cm{sup 2}). The central beam axis was along the length of the bone joint and the isocenter was set to the center of the joint. Themore » joint width and beam angle were varied from 0.5–2 mm and 0°–15°, respectively. Depth doses were calculated using the AAA and DOSXYZnrc. For dosimetric comparison and normalization, dose calculations were repeated in water phantom using the same beam geometry. Results: Our AAA and Monte Carlo results showed that the AAA underestimated the joint doses by 10%–20%, and could not predict joint dose variation with changes of joint width and beam angle. The calculated bone dose enhancement for the AAA was lower than Monte Carlo and the depth of maximum dose for the phantom was smaller than that for the water phantom. From Monte Carlo results, there was a decrease of joint dose as its width increased. This reflected the smaller the joint width, the more the bone scatter contributed to the depth dose. Moreover, the joint dose was found slightly decreased with an increase of beam angle. Conclusion: The AAA could not handle variations of joint dose well with changes of joint width and beam angle based on our finger joint phantom. Monte Carlo results showed that the joint dose decreased with increase of joint width and beam angle. This dosimetry comparison should be useful to radiation staff in radiotherapy related to small bone joint.« less

  18. Maximum voluntary joint torque as a function of joint angle and angular velocity: model development and application to the lower limb.

    PubMed

    Anderson, Dennis E; Madigan, Michael L; Nussbaum, Maury A

    2007-01-01

    Measurements of human strength can be important during analyses of physical activities. Such measurements have often taken the form of the maximum voluntary torque at a single joint angle and angular velocity. However, the available strength varies substantially with joint position and velocity. When examining dynamic activities, strength measurements should account for these variations. A model is presented of maximum voluntary joint torque as a function of joint angle and angular velocity. The model is based on well-known physiological relationships between muscle force and length and between muscle force and velocity and was tested by fitting it to maximum voluntary joint torque data from six different exertions in the lower limb. Isometric, concentric and eccentric maximum voluntary contractions were collected during hip extension, hip flexion, knee extension, knee flexion, ankle plantar flexion and dorsiflexion. Model parameters are reported for each of these exertion directions by gender and age group. This model provides an efficient method by which strength variations with joint angle and angular velocity may be incorporated into comparisons between joint torques calculated by inverse dynamics and the maximum available joint torques.

  19. The use of an extended ventilation tube as a countermeasure for EVA-associated upper extremity medical issues

    NASA Astrophysics Data System (ADS)

    Jones, J. A.; Hoffman, R. B.; Buckland, D. A.; Harvey, C. M.; Bowen, C. K.; Hudy, C. E.; Strauss, S.; Novak, J.; Gernhardt, M. L.

    Introduction: Onycholysis due to repetitive activity in the space suit glove during Neutral Buoyancy Laboratory (NBL) training and during spaceflight extravehicular activity (EVA) is a common observation. Moisture accumulates in gloves during EVA task performance and may contribute to the development of pain and damage to the fingernails experienced by many astronauts. The study evaluated the use of a long ventilation tube to determine if improved gas circulation into the hand area could reduce hand moisture and thereby decrease the associated symptoms. Methods: The current Extravehicular Mobility Unit (EMU) was configured with a ventilation tube that extended down a single arm of the crew member (E) and compared with the unventilated arm (C). Skin surface moisture was measured on both hands immediately after glove removal and a questionnaire administered to determine subjective measures. Astronauts ( n=6) were examined pre- and post-run. Results: There were consistent trends in the reduction of relative hydration ratios at dorsum ( C=3.34, E=2.11) and first ring finger joint ( C=2.46, E=1.96) when the ventilation tube was employed. Ventilation appeared more effective on the left versus the right hand, implying an interaction with hand anthropometry and glove fit. Symptom score was lower on the hand that had the long ventilation tube relative to the control hand in 2/6 EVA crew members. Conclusions: Increased ventilation to the hand was effective in reducing the risks of hand and nail discomfort symptoms from moderate to low in one-third of the subjects. Improved design in the ventilation capability of EVA spacesuits is expected to improve efficiency of air flow distribution.

  20. Sonomyography Analysis on Thickness of Skeletal Muscle During Dynamic Contraction Induced by Neuromuscular Electrical Stimulation: A Pilot Study.

    PubMed

    Qiu, Shuang; Feng, Jing; Xu, Jiapeng; Xu, Rui; Zhao, Xin; Zhou, Peng; Qi, Hongzhi; Zhang, Lixin; Ming, Dong

    2017-01-01

    Neuromuscular electrical stimulation (NMES) that stimulates skeletal muscles to induce contractions has been widely applied to restore functions of paralyzed muscles. However, the architectural changes of stimulated muscles induced by NMES are still not well understood. The present study applies sonomyography (SMG) to evaluate muscle architecture under NMES-induced and voluntary movements. The quadriceps muscles of seven healthy subjects were tested for eight cycles during an extension exercise of the knee joint with/without NMES, and SMG and the knee joint angle were recorded during the process of knee extension. A least squares support vector machine (LS-SVM) LS-SVM model was developed and trained using the data sets of six cycles collected under NMES, while the remaining data was used to test. Muscle thickness changes were extracted from ultrasound images and compared between NMES-induced and voluntary contractions, and LS-SVM was used to model a relationship between dynamical knee joint angles and SMG signals. Muscle thickness showed to be significantly correlated with joint angle in NMES-induced contractions, and a significant negative correlation was observed between Vastus intermedius (VI) thickness and rectus femoris (RF) thickness. In addition, there was a significant difference between voluntary and NMES-induced contractions . The LS-SVM model based on RF thickness and knee joint angle provided superior performance compared with the model based on VI thickness and knee joint angle or total thickness and knee joint angle. This suggests that a strong relation exists between the RF thickness and knee joint angle. These results provided direct evidence for the potential application of RF thickness in optimizing NMES system as well as measuring muscle state under NMES.

  1. Knee joint angle affects EMG-force relationship in the vastus intermedius muscle.

    PubMed

    Saito, Akira; Akima, Hiroshi

    2013-12-01

    It is not understood how the knee joint angle affects the relationship between electromyography (EMG) and force of four individual quadriceps femoris (QF) muscles. The purpose of this study was to examine the effect of the knee joint angle on the EMG-force relationship of the four individual QF muscles, particularly the vastus intermedius (VI), during isometric knee extensions. Eleven healthy men performed 20-100% of maximal voluntary contraction (MVC) at knee joint angles of 90°, 120° and 150°. Surface EMG of the four QF synergists was recorded and normalized by the root mean square during MVC. The normalized EMG of the four QF synergists at a knee joint angle of 150° was significantly lower than that at 90° and 120° (P < 0.05). Comparing the normalized EMG among the four QF synergists, a significantly lower normalized EMG was observed in the VI at 150° as compared with the other three QF muscles (P < 0.05). These results suggest that the EMG-force relationship of the four QF synergists shifted downward at an extended knee joint angle of 150°. Furthermore, the neuromuscular activation of the VI was the most sensitive to change in muscle length among the four QF synergistic muscles. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Femoral condyle curvature is correlated with knee walking kinematics in ungulates.

    PubMed

    Sylvester, Adam D

    2015-12-01

    The knee has been the focus of many studies linking mammalian postcranial form with locomotor behaviors and animal ecology. A more difficult task has been linking joint morphology with joint kinematics during locomotor tasks. Joint curvature represents one opportunity to link postcranial morphology with walking kinematics because joint curvature develops in response to mechanical loading. As an initial examination of mammalian knee joint curvature, the curvature of the medial femoral condyle was measured on femora representing 11 ungulate species. The position of a region of low curvature was measured using a metric termed the "angle to low curvature". This low-curvature region is important because it provides the greatest contact area between femoral and tibial condyles. Kinematic knee angles during walking were derived from the literature and kinematic knee angles across the gait cycle were correlated with angle to low curvature values. The highest correlation between kinematic knee angle and the angle to low curvature metric occurred at 20% of the walking gait cycle. This early portion of the walking gait cycle is associated with a peak in the vertical ground reaction force for some mammals. The chondral modeling theory predicts that frequent and heavy loading of particular regions of a joint surface during ontogeny will result in these regions being flatter than the surrounding joint surface. The locations of flatter regions of the femoral condyles of ungulates, and their association with knee angles used during the early stance phase of walking provides support for the chondral modeling theory. © 2015 Wiley Periodicals, Inc.

  3. High Performance EVA Glove Collaboration: Glove Injury Data Mining Effort

    NASA Technical Reports Server (NTRS)

    Reid, C. R.; Benson, E.; England, S.; Charvat, J.; Norcross, J. R.; McFarland, S. M.; Rajulu, S.

    2015-01-01

    Human hands play a significant role during Extravehicular Activity (EVA) missions and Neutral Buoyancy Lab (NBL) training events, as they are needed for translating and performing tasks in the weightless environment. Because of this high frequency usage, hand and arm related injuries are known to occur during EVA and EVA training in the NBL. The primary objectives of this investigation were to: 1) document all known EVA glove related injuries and circumstances of these incidents, 2) determine likely risk factors, and 3) recommend interventions where possible that could be implemented in the current and future glove designs. METHODS: The investigation focused on the discomforts and injuries of U.S. crewmembers who had worn the pressurized Extravehicular Mobility Unit (EMU) spacesuit and experienced 4000 Series or Phase VI glove related incidents during 1981 to 2010 for either EVA ground training or in-orbit flight. We conducted an observational retrospective case-control investigation using 1) a literature review of known injuries, 2) data mining of crew injury, glove sizing, and hand anthropometry databases, 3) descriptive statistical analyses, and finally 4) statistical risk correlation and predictor analyses to better understand injury prevalence and potential causation. Specific predictor statistical analyses included use of principal component analyses (PCA), multiple logistic regression, and survival analyses (Cox proportional hazards regression). Results of these analyses were computed risk variables in the forms of odds ratios (likelihood of an injury occurring given the magnitude of a risk variable) and hazard ratios (likelihood of time to injury occurrence). Due to the exploratory nature of this investigation, we selected predictor variables significant at p=0.15. RESULTS: Through 2010, there have been a total of 330 NASA crewmembers, from which 96 crewmembers performed 322 EVAs during 1981-2010, resulting in 50 crewmembers being injured inflight and 44 injured during 11,704 ground EVA training events. Of the 196 glove related injury incidents, 106 related to EVA and 90 to EVA training. Over these 196 incidents, 277 total injuries (126 flight; 151 training) were reported and were then grouped into 23 types of injuries. Of EVA flight injuries, 65% were commonly reported to the hand (in general), metacarpophalangeal (MCP) joint, and finger (not including thumb) with fatigue, abrasion, and paresthesia being the most common injury types (44% of total flight injuries). Training injuries totaled to more than 70% being distributed to the fingernail, MCP joint, and finger crotch with 88% of the specific injuries listed as pain, erythema, and onycholysis. Of these training injuries, when reporting pain or erythema, the most common location was the index finger, but when reporting onycholysis, it was the middle finger. Predictor variables specific to increased risk of onycholysis included: female sex (OR=2.622), older age (OR=1.065), increased duration in hours of the flight or training event (OR=1.570), middle finger length differences in inches between the finger and the EVA glove (OR=7.709), and use of the Phase VI glove (OR=8.535). Differentiation between training and flight and injury reporting during 2002-2004 were significant control variables. For likelihood of time to first onycholysis injury, there was a 24% reduction in rate of reporting for each year increase in age. Also, more experienced crewmembers, based on number of EVA flight or training events completed, were less likely to report an onycholysis injury (3% less for every event). Longer duration events also found reporting rates to occur 2.37 times faster for every hour of length. Crewmembers with larger hand size reported onycholysis 23% faster than those with smaller hand size. Finally, for every 1/10th of an inch increase in difference between the middle finger length and the glove, the rate of reporting increased by 60%. DISCUSSION: One key finding was that the Series 4000 glove had a lower injury risk than the Phase VI, which provides a platform for further evaluation. General interventions that reduce hand overexertion and repetitive use exposure through tool development, procedural changes and shorter exposures may be one mitigation path, but due to the way the training event times were reported, we cannot provide a guideline for a specific event duration change. When the finger length was different from the glove length, the risk of injury increased indicating that the use of larger finger take-ups could be contributing to injury and therefore may not be recommended. Prior to this investigation, there was one previous investigation indicating hand anthropometry may be related to onycholysis. We found different hand anthropometry variables indicated by this investigation as compared to the prior, specifically differences in middle finger length compared to glove finger length, which point more towards a sizing issue than a specific anthropometry issue. Additionally, although this investigation has identified sizing as an issue, the force and environmental-related variables of the EVA glove that could also cause injury were not accounted for.

  4. Astronauts Ross and Helms at CAPCOM station during STS-61 simulations

    NASA Image and Video Library

    1993-09-01

    S93-43752 (1 Sept 1993) --- Astronauts Jerry L. Ross and Susan J. Helms are pictured at the Spacecraft Communicators Console during joint integrated simulations for the STS-61 mission. Astronauts assigned to extravehicular activity (EVA) tasks with the Hubble Space Telescope (HST) were simultaneously rehearsing in a Neutral Buoyancy Simulator (NBS) tank at the Marshall Space Flight Center (MSFC) in Alabama.

  5. View of MISSE PEC taken during STS-118/Expedition 15 Joint Operations

    NASA Image and Video Library

    2007-08-13

    ISS015-E-22410 (13 Aug. 2007) --- Backdropped by a blue and white Earth, a Materials International Space Station Experiment (MISSE) on the exterior of the station is featured in this image photographed by a crewmember during the STS-118 mission's second planned session of extravehicular activity (EVA). MISSE collects information on how different materials weather in the environment of space.

  6. Linnehan and Foreman on EVA 2 - during Expedition 16 / STS-123 Joint Operations

    NASA Image and Video Library

    2008-03-16

    S123-E-006786 (15/16 March 2008) --- Astronaut Rick Linnehan, STS-123 mission specialist, participates in the mission's second scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the 7-hour, 8-minute spacewalk, Linnehan and astronaut Mike Foreman (out of frame), mission specialist, assembled the stick-figure-shaped Dextre, also known as the Special Purpose Dextrous Manipulator (SPDM), a task that included attaching its two arms. Designed for station maintenance and service, Dextre is capable of sensing forces and movement of objects it is manipulating. It can automatically compensate for those forces and movements to ensure an object is moved smoothly. Dextre is the final element of the station's Mobile Servicing System. The blackness of space and Earth's horizon provide the backdrop for the scene.

  7. Linnehan and Foreman on EVA 2 during STS-123 / Expedition 16 Joint Operations

    NASA Image and Video Library

    2008-03-16

    S123-E-006400 (15/16 March 2008) --- Astronauts Rick Linnehan and Mike Foreman, both STS-123 mission specialists, participate in the mission's second scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the 7-hour, 8-minute spacewalk, Linnehan and Foreman, assembled the stick-figure-shaped Dextre, also known as the Special Purpose Dextrous Manipulator (SPDM), a task that included attaching its two arms. Designed for station maintenance and service, Dextre is capable of sensing forces and movement of objects it is manipulating. It can automatically compensate for those forces and movements to ensure an object is moved smoothly. Dextre is the final element of the station's Mobile Servicing System. The blackness of space and Earth's horizon provide the backdrop for the scene.

  8. Linnehan and Foreman on EVA 2 during STS-123 / Expedition 16 Joint Operations

    NASA Image and Video Library

    2008-03-16

    S123-E-006403 (15/16 March 2008) --- Astronauts Rick Linnehan and Mike Foreman, both STS-123 mission specialists, participate in the mission's second scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the 7-hour, 8-minute spacewalk, Linnehan and Foreman, assembled the stick-figure-shaped Dextre, also known as the Special Purpose Dextrous Manipulator (SPDM), a task that included attaching its two arms. Designed for station maintenance and service, Dextre is capable of sensing forces and movement of objects it is manipulating. It can automatically compensate for those forces and movements to ensure an object is moved smoothly. Dextre is the final element of the station's Mobile Servicing System. The blackness of space and Earth's horizon provide the backdrop for the scene.

  9. The effects of grip width on sticking region in bench press.

    PubMed

    Gomo, Olav; Van Den Tillaar, Roland

    2016-01-01

    The aim of this study was to examine the occurrence of the sticking region by examining how three different grip widths affect the sticking region in powerlifters' bench press performance. It was hypothesised that the sticking region would occur at the same joint angle of the elbow and shoulder independent of grip width, indicating a poor mechanical region for vertical force production at these joint angles. Twelve male experienced powerlifters (age 27.7 ± 8.8 years, mass 91.9 ± 15.4 kg) were tested in one repetition maximum (1-RM) bench press with a narrow, medium and wide grip. Joint kinematics, timing, bar position and velocity were measured with a 3D motion capture system. All participants showed a clear sticking region with all three grip widths, but this sticking region was not found to occur at the same joint angles in all three grip widths, thereby rejecting the hypothesis that the sticking region would occur at the same joint angle of the elbow and shoulder independent of grip width. It is suggested that, due to the differences in moment arm of the barbell about the elbow joint in the sticking region, there still might be a poor mechanical region for total force production that is joint angle-specific.

  10. The Joint Airlock Module is moved to the payload canister

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- In the Space Station Processing Facility, workers standing inside the payload canister help guide the Joint Airlock Module into place. The airlock will be installed in the payload bay of Atlantis for mission STS-104 to the International Space Station. The airlock is a pressurized flight element consisting of two cylindrical chambers attached end-to-end by a connecting bulkhead and hatch. Once installed and activated, the Airlock becomes the primary path for spacewalk entry to and departure from the Space Station for U.S. spacesuits, which are known as Extravehicular Mobility Units, or EMUs. In addition, the Joint Airlock is designed to support the Russian Orlan spacesuit for EVA activity. STS-104 is scheduled for launch June 14 from Launch Pad 39B.

  11. The Joint Airlock Module is moved to the payload canister

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- In the Space Station Processing Facility, the Joint Airlock Module is lifted from its workstand for a transfer to the payload canister. The airlock will be installed in the payload bay of Atlantis for mission STS-104 to the International Space Station. The airlock is a pressurized flight element consisting of two cylindrical chambers attached end-to-end by a connecting bulkhead and hatch. Once installed and activated, the airlock becomes the primary path for spacewalk entry to and departure from the Space Station for U.S. spacesuits, which are known as Extravehicular Mobility Units, or EMUs. In addition, the Joint Airlock is designed to support the Russian Orlan spacesuit for EVA activity. STS-104 is scheduled for launch June 14 from Launch Pad 39B.

  12. Influence of Joint Angle on EMG-Torque Model During Constant-Posture, Torque-Varying Contractions.

    PubMed

    Liu, Pu; Liu, Lukai; Clancy, Edward A

    2015-11-01

    Relating the electromyogram (EMG) to joint torque is useful in various application areas, including prosthesis control, ergonomics and clinical biomechanics. Limited study has related EMG to torque across varied joint angles, particularly when subjects performed force-varying contractions or when optimized modeling methods were utilized. We related the biceps-triceps surface EMG of 22 subjects to elbow torque at six joint angles (spanning 60° to 135°) during constant-posture, torque-varying contractions. Three nonlinear EMG σ -torque models, advanced EMG amplitude (EMG σ ) estimation processors (i.e., whitened, multiple-channel) and the duration of data used to train models were investigated. When EMG-torque models were formed separately for each of the six distinct joint angles, a minimum "gold standard" error of 4.01±1.2% MVC(F90) resulted (i.e., error relative to maximum voluntary contraction at 90° flexion). This model structure, however, did not directly facilitate interpolation across angles. The best model which did so achieved a statistically equivalent error of 4.06±1.2% MVC(F90). Results demonstrated that advanced EMG σ processors lead to improved joint torque estimation as do longer model training durations.

  13. Joint angles of the ankle, knee, and hip and loading conditions during split squats.

    PubMed

    Schütz, Pascal; List, Renate; Zemp, Roland; Schellenberg, Florian; Taylor, William R; Lorenzetti, Silvio

    2014-06-01

    The aim of this study was to quantify how step length and the front tibia angle influence joint angles and loading conditions during the split squat exercise. Eleven subjects performed split squats with an additional load of 25% body weight applied using a barbell. Each subject's movements were recorded using a motion capture system, and the ground reaction force was measured under each foot. The joint angles and loading conditions were calculated using a cluster-based kinematic approach and inverse dynamics modeling respectively. Increases in the tibia angle resulted in a smaller range of motion (ROM) of the front knee and a larger ROM of the rear knee and hip. The external flexion moment in the front knee/hip and the external extension moment in the rear hip decreased as the tibia angle increased. The flexion moment in the rear knee increased as the tibia angle increased. The load distribution between the legs changed < 25% when split squat execution was varied. Our results describing the changes in joint angles and the resulting differences in the moments of the knee and hip will allow coaches and therapists to adapt the split squat exercise to the individual motion and load demands of athletes.

  14. An intelligent system with EMG-based joint angle estimation for telemanipulation.

    PubMed

    Suryanarayanan, S; Reddy, N P; Gupta, V

    1996-01-01

    Bio-control of telemanipulators is being researched as an alternate control strategy. This study investigates the use of surface EMG from the biceps to predict joint angle during flexion of the arm that can be used to control an anthropomorphic telemanipulator. An intelligent system based on neural networks and fuzzy logic has been developed to use the processed surface EMG signal and predict the joint angle. The system has been tested on various angles of flexion-extension of the arm and at several speeds of flexion-extension. Preliminary results show the RMS error between the predicted angle and the actual angle to be less than 3% during training and less than 15% during testing. The technique of direct bio-control using EMG has the potential as an interface for telemanipulation applications.

  15. The angle-torque-relationship of the subtalar pronators and supinators in male athletes: A comparative study of soccer and handball players.

    PubMed

    Hagen, Marco; Asholt, Johannes; Lemke, Martin; Lahner, Matthias

    2016-05-18

    It is currently unclear how participation in different sports affects the angle-specific subtalar pronator and supinator muscle strength and pronator-to-supinator strength ratio (PSR). Based on the hypothesis that both differences sport-related patterns of play and foot-ground interaction may lead to sport-specific muscle adaptations, this study compared the angle specific pronator and supinator strength capacity of handball and soccer players. Eighteen healthy male handball and 19 soccer players performed maximum isometric voluntary isometric contractions using a custom-made testing apparatus. Peak pronator (PPT) and supinator torques (PST), pronator and supinator strength curves (normalised to the peak torque across all joint angles) and PSR were measured in five anatomical joint angles across the active subtalar range of motion (ROM). All analysed parameters were dependent on the subtalar joint angle. The ANOVA revealed significant `joint angle' × `group' interactions on PPT, pronator strength curves and PSR. No group differences were found for active subtalar ROM. In previously uninjured handball and soccer athletes, there were intrinsic differences in angle-specific subtalar pronator muscle strength. The lower PSR, which was found in the most supinated angle, can be seen as a risk factor for sustaining an ankle sprain.

  16. View of Reilly posing for a photo in the A/L during STS-117/Expedition 15 Joint Operations

    NASA Image and Video Library

    2007-06-15

    ISS015-E-12289 (15 June 2007) --- Attired in his Extravehicular Mobility Unit (EMU) spacesuit, astronaut Jim Reilly, STS-117 mission specialist, gives a "thumbs-up" signal as he awaits the start of the mission's third session of extravehicular activity (EVA) in the Quest Airlock of the International Space Station while Space Shuttle Atlantis was docked with the station.

  17. KSC-01pp1255

    NASA Image and Video Library

    2001-07-08

    KENNEDY SPACE CENTER, Fla. -- STS-104 Mission Specialist Janet Lynn Kavandi arrives at the KSC Shuttle Landing Facility to make final preparations for launch of Space Shuttle Atlantis July 12. The mission is the 10th assembly flight to the International Space Station and carries the Joint Airlock Module, which will become the primary path for spacewalk entry and departure using both U.S. spacesuits and the Russian Orlan spacesuit for EVA activity

  18. Hip rotation angle is associated with frontal plane knee joint mechanics during running.

    PubMed

    Sakaguchi, Masanori; Shimizu, Norifumi; Yanai, Toshimasa; Stefanyshyn, Darren J; Kawakami, Yasuo

    2015-02-01

    Inability to control lower extremity segments in the frontal and transverse planes resulting in large knee abduction angle and increased internal knee abduction impulse has been associated with patellofemoral pain (PFP). However, the influence of hip rotation angles on frontal plane knee joint kinematics and kinetics remains unclear. The purpose of this study was to explore how hip rotation angles are related to frontal plane knee joint kinematics and kinetics during running. Seventy runners participated in this study. Three-dimensional marker positions and ground reaction forces were recorded with an 8-camera motion analysis system and a force plate while subjects ran along a 25-m runway at a speed of 4m/s. Knee abduction, hip rotation and toe-out angles, frontal plane lever arm at the knee, internal knee abduction moment and impulse, ground reaction forces and the medio-lateral distance from the ankle joint center to the center of pressure (AJC-CoP) were quantified. The findings of this study indicate that greater hip external rotation angles were associated with greater toe-out angles, longer AJC-CoP distances, smaller internal knee abduction impulses with shorter frontal plane lever arms and greater knee abduction angles. Thus, there appears to exist a conflict between kinematic and kinetic risk factors of PFP, and hip external rotation angle may be a key factor to control frontal plane knee joint kinematics and kinetics. These results may help provide an appropriate manipulation and/or intervention on running style to reduce the risk of PFP. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Correlations among pelvic positions and differences in lower extremity joint angles during walking in female university students.

    PubMed

    Cho, Misuk

    2015-06-01

    [Purpose] This study aimed to identify correlations among pelvic positions and differences in lower extremity joint angles during walking in female university students. [Subjects] Thirty female university students were enrolled and their pelvic positions and differences in lower extremity joint angles were measured. [Methods] Pelvic position, pelvic torsion, and pelvic rotation were assessed using the BackMapper. In addition, motion analysis was performed to derive differences between left and right flexion, abduction, and external rotation ranges of hip joints; flexion, abduction, and external rotation ranges of knee joints; and dorsiflexion, inversion, and abduction ranges of ankle joints, according to X, Y, and Z-axes. [Results] Pelvic position was found to be positively correlated with differences between left and right hip flexion (r=0.51), hip abduction (r=0.62), knee flexion (r=0.45), knee abduction (r=0.42), and ankle inversion (r=0.38). In addition, the difference between left and right hip abduction showed a positive correlation with difference between left and right ankle dorsiflexion (r=0.64). Moreover, differences between left and right knee flexion exhibited positive correlations with differences between left and right knee abduction (r=0.41) and ankle inversion (r=0.45). [Conclusion] Bilateral pelvic tilt angles are important as they lead to bilateral differences in lower extremity joint angles during walking.

  20. Neuromuscular properties of different spastic human joints vary systematically.

    PubMed

    Mirbagheri, M M; Settle, K

    2010-01-01

    We quantified the mechanical abnormalities of the spastic wrist in chronic stroke survivors, and determined whether these findings were representative of those recorded at the elbow and ankle joints. System identification techniques were used to characterize the mechanical abnormalities of these joints and to identify the contribution of intrinsic and reflex stiffness to these abnormalities. Modulation of intrinsic and reflex stiffness with the joint angle was studied by applying PRBS perturbations to the joints at different joint angles over the range of motion. Age-matched healthy subjects were used as control.

  1. Radiographic Shape of Foot With Second Metatarsophalangeal Joint Dislocation Associated With Hallux Valgus.

    PubMed

    Kokubo, Tetsuro; Hashimoto, Takeshi; Suda, Yasunori; Waseda, Akeo; Ikezawa, Hiroko

    2017-12-01

    Second metatarsophalangeal (MTP) joint dislocation is associated with hallux valgus, and the treatment of complete dislocation can be difficult. The purpose of this study was to radiographically clarify the characteristic foot shape in the presence of second MTP joint dislocation. Weight-bearing foot radiographs of the 268 patients (358 feet) with hallux valgus were examined. They were divided into 2 groups: those with second MTP joint dislocation (study group = 179 feet) and those without dislocation (control group = 179 feet). Parameters measured included the hallux valgus angle (HVA), first-second intermetatarsal angle (IMA), second MTP joint angle, hallux interphalangeal angle (IPA), second metatarsal protrusion distance (MPD), metatarsus adductus angle (MAA), and the second metatarsal declination angle (2MDA). Furthermore, the dislocation group was divided into 3 subgroups according to second toe deviation direction: group M (medial type), group N (neutral type), and group L (lateral type). The IPA and the 2MDA were significantly greater in the study group than in the control group. By multiple comparison analysis, the IMA was greatest in group M and smallest in group L. The IPA was smaller and 2MDA greater in group N than in group L. The HVA and MAA in group L were greatest, and MPD in group L was smallest. The patients with second MTP joint dislocation associated with hallux valgus had greater hallux interphalangeal joint varus and a second metatarsal more inclined than with hallux valgus alone. The second toe deviated in a different direction according to the foot shape. Level III, retrospective comparative study.

  2. Spatiotemporal distribution of location and object effects in reach-to-grasp kinematics

    PubMed Central

    Rouse, Adam G.

    2015-01-01

    In reaching to grasp an object, the arm transports the hand to the intended location as the hand shapes to grasp the object. Prior studies that tracked arm endpoint and grip aperture have shown that reaching and grasping, while proceeding in parallel, are interdependent to some degree. Other studies of reaching and grasping that have examined the joint angles of all five digits as the hand shapes to grasp various objects have not tracked the joint angles of the arm as well. We, therefore, examined 22 joint angles from the shoulder to the five digits as monkeys reached, grasped, and manipulated in a task that dissociated location and object. We quantified the extent to which each angle varied depending on location, on object, and on their interaction, all as a function of time. Although joint angles varied depending on both location and object beginning early in the movement, an early phase of location effects in joint angles from the shoulder to the digits was followed by a later phase in which object effects predominated at all joint angles distal to the shoulder. Interaction effects were relatively small throughout the reach-to-grasp. Whereas reach trajectory was influenced substantially by the object, grasp shape was comparatively invariant to location. Our observations suggest that neural control of reach-to-grasp may occur largely in two sequential phases: the first determining the location to which the arm transports the hand, and the second shaping the entire upper extremity to grasp and manipulate the object. PMID:26445870

  3. Do changes in neuromuscular activation contribute to the knee extensor angle-torque relationship?

    PubMed

    Lanza, Marcel B; Balshaw, Thomas G; Folland, Jonathan P

    2017-08-01

    What is the central question of the study? Do changes in neuromuscular activation contribute to the knee extensor angle-torque relationship? What is the main finding and its importance? Both agonist (quadriceps) and antagonist coactivation (hamstrings) differed with knee joint angle during maximal isometric knee extensions and thus both are likely to contribute to the angle-torque relationship. Specifically, two independent measurement techniques showed quadriceps activation to be lower at more extended positions. These effects might influence the capacity for neural changes in response to training and rehabilitation at different knee joint angles. The influence of joint angle on knee extensor neuromuscular activation is unclear, owing in part to the diversity of surface electromyography (sEMG) and/or interpolated twitch technique (ITT) methods used. The aim of the study was to compare neuromuscular activation, using rigorous contemporary sEMG and ITT procedures, during isometric maximal voluntary contractions (iMVCs) of the quadriceps femoris at different knee joint angles and examine whether activation contributes to the angle-torque relationship. Sixteen healthy active men completed two familiarization sessions and two experimental sessions of isometric knee extension and knee flexion contractions. The experimental sessions included the following at each of four joint angles (25, 50, 80 and 106 deg): iMVCs (with and without superimposed evoked doublets); submaximal contractions with superimposed doublets; and evoked twitch and doublet contractions whilst voluntarily passive, and knee flexion iMVC at the same knee joint positions. The absolute quadriceps femoris EMG was normalized to the peak-to-peak amplitude of an evoked maximal M-wave, and the doublet-voluntary torque relationship was used to calculate activation with the ITT. Agonist activation, assessed with both normalized EMG and the ITT, was reduced at the more extended compared with the more flexed positions (25 and 50 versus 80 and 106 deg; P ≤ 0.016), whereas antagonist coactivation was greatest in the most flexed compared with the extended positions (106 versus 25 and 50 deg; P ≤ 0.02). In conclusion, both agonist and antagonist activation differed with knee joint angle during knee extension iMVCs, and thus both are likely to contribute to the knee extensor angle-torque relationship. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.

  4. Gait changes after using a temporomandibular joint exerciser in patients who underwent lower limb joint surgery

    PubMed Central

    Chung, Gu-Young; Choi, Geun-Seok; Shin, Ki-Young; Park, Joon-Soo

    2016-01-01

    [Purpose] The improvements in gait of the patients with lower limb disease who used a temporomandibular joint (TMJ) exerciser were verified. [Subjects and Methods] Eleven subjects were included. Their mean age was 53.2 years. The lower limb joint angles before and after using the TMJ exerciser were measured using a gait analyzer. Before the gait experiment, the TMJ exerciser setting process and one-leg stance balance test (OLST) were repeated until the balance maintenance time improved. [Results] Because of the OLST, the mean change in the body center point after the subjects used the exerciser improved from 5.76 mm to 4.20 mm. When the TMJ exerciser was used, the joint angle range of the subjects approached that of the normal individuals. [Conclusion] According to the gait experiments, the angles of the subjects’ hips, knees, and ankle joints approached to those of the normal individuals after the subjects used the TMJ exerciser; however, the results did not completely match. The changes in the hip, knee, and ankle joint angles were statistically significant, which confirm the usefulness of the TMJ exerciser. PMID:27313377

  5. STS-111 Crew Interviews: Franklin Chang-Diaz, Mission Specialist 2

    NASA Technical Reports Server (NTRS)

    2002-01-01

    STS-111 Mission Specialist 2 Franklin Chang-Diaz is seen during this interview, where he gives a quick overview of the mission before answering questions about his inspiration to become an astronaut and his career path. Chang-Diaz outlines his role in the mission in general, and specifically during the extravehicular activities (EVAs). He describes in great detail his duties in the three EVAs which involved preparing the Mobile Remote Servicer Base System (MBS) for installation onto the Space Station's Mobile Transporter, attaching the MBS onto the Space Station and replacing a wrist roll joint on the station's robot arm. Chang-Diaz also discusses the science experiments which are being brought on board the Space Station by the STS-111 mission. He also offers thoughts on how the International Space Station (ISS) fits into NASA's vision and how his previous space mission experience will benefit the STS-111 flight.

  6. Gastrocnemius tightness on joint angle and work of lower extremity during gait.

    PubMed

    You, Jia-Yuan; Lee, Hsin-Min; Luo, Hong-Ji; Leu, Chwan-Chin; Cheng, Pen-Gang; Wu, Shyi-Kuen

    2009-11-01

    Muscular tightness is a common clinical musculoskeletal disorder and is regarded as a predisposing factor for muscle injuries. In this study, a two-way mixed design ANOVA was applied to investigate the effects of the gastrocnemius tightness on the joint angle and joint work during walking. Twenty-two patients with muscular tightness of gastrocnemius muscle (<12 degrees of ankle dorsiflexion with knee extended) and 22 age- and gender-matched subjects with normal gastrocnemius flexibility (>15 degrees of ankle dorsiflexion with knee extended) participated in this study. The joint angle and work at hip, knee, and ankle joints during the stance phase were analyzed at two preset cadences of 100 steps/min and 140 steps/min. Significantly greater flexion angles at hip (P=0.025) and knee (P=0.001) were found in the tightness group at the time of maximal ankle dorsiflexion. Significantly less work generation at knee (P=0.034) and greater work absorption at ankle (P=0.024) were detected in the tightness group. The subjects with gastrocnemius tightness revealed a compensatory gait pattern, which included the changes in the joint angles and associated work productions. The potential disturbance of the knee control and strain injuries of plantar flexors might be crucial in the clinical considerations for subjects with gastrocnemius tightness.

  7. Joint torques and joint reaction forces during squatting with a forward or backward inclined Smith machine.

    PubMed

    Biscarini, Andrea; Botti, Fabio M; Pettorossi, Vito E

    2013-02-01

    We developed a biomechanical model to determine the joint torques and loadings during squatting with a backward/forward-inclined Smith machine. The Smith squat allows a large variety of body positioning (trunk tilt, foot placement, combinations of joint angles) and easy control of weight distribution between forefoot and heel. These distinctive aspects of the exercise can be managed concurrently with the equipment inclination selected to unload specific joint structures while activating specific muscle groups. A backward (forward) equipment inclination decreases (increases) knee torque, and compressive tibiofemoral and patellofemoral forces, while enhances (depresses) hip and lumbosacral torques. For small knee flexion angles, the strain-force on the posterior cruciate ligament increases (decreases) with a backward (forward) equipment inclination, whereas for large knee flexion angles, this behavior is reversed. In the 0 to 60 degree range of knee flexion angles, loads on both cruciate ligaments may be simultaneously suppressed by a 30 degree backward equipment inclination and selecting, for each value of the knee angle, specific pairs of ankle and hip angles. The anterior cruciate ligament is safely maintained unloaded by squatting with backward equipment inclination and uniform/forward foot weight distribution. The conditions for the development of anterior cruciate ligament strain forces are clearly explained.

  8. [How safe are orthoroentgenograms in determining the amount of correction for varus deformities?].

    PubMed

    Gürsu, Sarper; Yıldırım, Timur; Issın, Ahmet; Sofu, Hakan; Sahin, Vedat

    2014-01-01

    In this study, we evaluated the effects of the distance of the legs from the midline on alignment and angles of the lower extremities in orthoroentgenograms. Between March 2012 and April 2013, 95 limbs of 56 patients with varus deformity who underwent orthoroentgenogram to identify the amount of joint laxity in two positions were included in this study. The initial X-ray was performed with the feet in contact, while the other was performed as the legs were abducted to be in line with the shoulders. For each orthoroentgenogram, the mean mechanical axis angle, anatomical axis, and joint line orientation angles were measured retrospectively. These measurements were repeated for 43 limbs with varus deformity >10°. In the orthoroentgenograms with the feet in contact, the mean mechanical axis angle was 9.58°±5.7°, (0.20°; 26.0°), the mean anatomical axis angle 3.65°±6.14°, (-9.0°; 21.0°), and the mean joint line orientation angle -3.41°±2.52°, (-12.0°; 1.60°). In the orthoroentgenograms with the legs abducted, the mean mechanical axis angle was 7.73°±5.58°, (-3.0°; 23.0°), the mean anatomical axis angle 2.62°±5.87°, (-11.0°; 18.30°), and mean joint line orientation angle was -2.44°±2.41°, (-13.0°; 3.0°). The differences in the angles between the two positions were statistically significant (p<0.005). Our study results showed that the mean values of mechanical axis angle, anatomical axis and the joint line orientation angle were higher in orthoroentgenograms with the feet in contact than the orthoroentgenograms with the legs abducted in patients with varus gonarthrosis. We suggest that this may lead to mistakes in the preoperative planning. Ideal positions should be standardized to minimize possible problems.

  9. View of the orange soil which Apollo 17 crewmen found at Station 4 during EVA

    NASA Image and Video Library

    1972-12-12

    AS17-137-20990 (12 Dec. 1972) --- A view of the area at Station 4 (Shorty Crater) showing the now highly-publicized orange soil which the Apollo 17 crew members found on the moon during the second Apollo 17 extravehicular activity (EVA) at the Taurus-Littrow landing site. The tripod-like object is the gnomon and photometric chart assembly which is used as a photographic reference to establish local vertical sun angle, scale and lunar color. The gnomon is one of the Apollo lunar geology hand tools. While astronauts Eugene A. Cernan, commander, and Harrison H. Schmitt, lunar module pilot, descended in the Lunar Module (LM) "Challenger" to explore the Taurus-Littrow region of the moon, astronaut Ronald E. Evans, command module pilot, remained with the Command and Service Modules (CSM) "America" in lunar orbit. Schmitt was the crew man who first spotted the orange soil.

  10. Joint mobilization acutely improves landing kinematics in chronic ankle instability.

    PubMed

    Delahunt, Eamonn; Cusack, Kim; Wilson, Laura; Doherty, Cailbhe

    2013-03-01

    The objective of this study is to examine the acute effect of ankle joint mobilizations akin to those performed in everyday clinical practice on sagittal plane ankle joint kinematics during a single-leg drop landing in participants with chronic ankle instability (CAI). Fifteen participants with self-reported CAI (defined as <24 on the Cumberland Ankle Instability Tool) performed three single-leg drop landings under two different conditions: 1) premobilization and, 2) immediately, postmobilization. The mobilizations performed included Mulligan talocrural joint dorsiflexion mobilization with movement, Mulligan inferior tibiofibular joint mobilization, and Maitland anteroposterior talocrural joint mobilization. Three CODA cx1 units (Charnwood Dynamics Ltd., Leicestershire, UK) were used to provide information on ankle joint sagittal plane angular displacement. The dependent variable under investigation was the angle of ankle joint plantarflexion at the point of initial contact during the drop landing. There was a statistically significant acute decrease in the angle of ankle joint plantarflexion from premobilization (34.89° ± 4.18°) to postmobilization (31.90° ± 5.89°), t(14) = 2.62, P < 0.05 (two-tailed). The mean decrease in the angle of ankle joint plantarflexion as a result of the ankle joint mobilization was 2.98° with a 95% confidence interval ranging from 0.54 to 5.43. The eta squared statistic (0.32) indicated a large effect size. These results indicate that mobilization acted to acutely reduce the angle of ankle joint plantarflexion at initial contact during a single-leg drop landing. Mobilization applied to participants with CAI has a mechanical effect on the ankle joint, thus facilitating a more favorable positioning of the ankle joint when landing from a jump.

  11. Ankle Joint Angle and Lower Leg Musculotendinous Unit Responses to Cryotherapy.

    PubMed

    Akehi, Kazuma; Long, Blaine C; Warren, Aric J; Goad, Carla L

    2016-09-01

    Akehi, K, Long, BC, Warren, AJ, and Goad, CL. Ankle joint angle and lower leg musculotendinous unit responses to cryotherapy. J Strength Cond Res 30(9): 2482-2492, 2016-The use of cold application has been debated for its influence on joint range of motion (ROM) and stiffness. The purpose of this study was to determine whether a 30-minute ice bag application to the plantarflexor muscles or ankle influences passive ankle dorsiflexion ROM and lower leg musculotendinous stiffness (MTS). Thirty-five recreationally active college-aged individuals with no history of lower leg injury 6 months before data collection volunteered. On each testing day, we measured maximum passive ankle dorsiflexion ROM (°) and plantarflexor torque (N·m) on an isokinetic dynamometer to calculate the passive plantarflexor MTS (N·m per degree) at 4 joint angles before, during, and after a treatment. Surface electromyography amplitudes (μV), and skin surface and ambient air temperature (°C) were also measured. Subjects received an ice bag to the posterior lower leg, ankle joint, or nothing for 30 minutes in different days. Ice bag application to the lower leg and ankle did not influence passive ROM (F(12,396) = 0.67, p = 0.78). Passive torque increased after ice bag application to the lower leg (F(12,396) = 2.21, p = 0.011). Passive MTS at the initial joint angle increased after ice bag application to the lower leg (F(12,396) = 2.14, p = 0.014) but not at the other joint angles (p > 0.05). Surface electromyography amplitudes for gastrocnemius and soleus muscles increased after ice application to the lower leg (F(2,66) = 5.61, p = 0.006; F(12,396) = 3.60, p < 0.001). Ice bag application to the lower leg and ankle joint does not alter passive dorsiflexion ROM but increases passive ankle plantarflexor torque in addition to passive ankle plantarflexor MTS at the initial joint angle.

  12. Position of the prosthesis and the incidence of dislocation following total hip replacement.

    PubMed

    He, Rong-xin; Yan, Shi-gui; Wu, Li-dong; Wang, Xiang-hua; Dai, Xue-song

    2007-07-05

    Dislocation is the second most common complication of hip replacement surgery, and impact of the prosthesis is believed to be the fundamental reason. The present study employed Solidworks 2003 and MSC-Nastran software to analyze the three dimensional variables in order to investigate how to prevent dislocation following hip replacement surgery. Computed tomography (CT) imaging was used to collect femoral outline data and Solidworks 2003 software was used to construct the cup model with variabilities. Nastran software was used to evaluate dislocation at different prosthesis positions and different geometrical shapes. Three dimensional movement and results from finite element method were analyzed and the values of dislocation resistance index (DRI), range of motion to impingement (ROM-I), range of motion to dislocation (ROM-D) and peak resisting moment (PRM) were determined. Computer simulation was used to evaluate the range of motion of the hip joint at different prosthesis positions. Finite element analysis showed: (1) Increasing the ratio of head/neck increased the ROM-I values and moderately increased ROM-D and PRM values. Increasing the head size significantly increased PRM and to some extent ROM-I and ROM-D values, which suggested that there would be a greater likelihood of dislocation. (2) Increasing the anteversion angle increased the ROM-I, ROM-D, PRM, energy required for dislocation (ENERGY-D) and DRI values, which would increase the stability of the joint. (3) As the chamber angle was increased, ROM-I, ROM-D, PRM, Energy-D and DRI values were increased, resulting in improved joint stability. Chamber angles exceeding 55 degrees resulted in increases in ROM-I and ROM-D values, but decreases in PRM, Energy-D, and DRI values, which, in turn, increased the likelihood of dislocation. (4) The cup, which was reduced posteriorly, reduced ROM-I values (2.1 -- 5.3 degrees ) and increased the DRI value (0.073). This suggested that the posterior high side had the effect of 10 degrees anteversion angle. Increasing the head/neck ratio increases joint stability. Posterior high side reduced the range of motion of the joint but increased joint stability; Increasing the anteversion angle increases DRI values and thus improve joint stability; Increasing the chamber angle increases DRI values and improves joint stability. However, at angles exceeding 55 degrees , further increases in the chamber angle result in decreased DRI values and reduce the stability of the joint.

  13. Reconstructing for joint angles on the shoulder and elbow from non-invasive electroencephalographic signals through electromyography

    PubMed Central

    Choi, Kyuwan

    2013-01-01

    In this study, first the cortical activities over 2240 vertexes on the brain were estimated from 64 channels electroencephalography (EEG) signals using the Hierarchical Bayesian estimation while 5 subjects did continuous arm reaching movements. From the estimated cortical activities, a sparse linear regression method selected only useful features in reconstructing the electromyography (EMG) signals and estimated the EMG signals of 9 arm muscles. Then, a modular artificial neural network was used to estimate four joint angles from the estimated EMG signals of 9 muscles: one for movement control and the other for posture control. The estimated joint angles using this method have the correlation coefficient (CC) of 0.807 (±0.10) and the normalized root-mean-square error (nRMSE) of 0.176 (±0.29) with the actual joint angles. PMID:24167469

  14. Space Station Solar Array Joint Repair

    NASA Technical Reports Server (NTRS)

    Loewenthal, Stuart; Allmon, Curtis; Reznik, Carter; McFatter, Justin; Davis, Robert E.

    2015-01-01

    In Oct 2007 the International Space Station (ISS) crew noticed a vibrating camera in the vicinity of Starboard Solar Alpha Rotary Joint (SARJ). It had less than 5 months of run time when the anomaly was observed. This approximately 3.2 meter diameter bearing joint supports solar arrays that power the station critical to its operation. The crew performed an EVA to identify what was causing the vibration. It was discovered that one of the 3 bearing tracks of this unconventional bearing had significant spalling damage. This paper discusses the SARJ's unique bearing design and the vulnerability in its design leading to the observed anomaly. The design of a SARJ vacuum test rig is also described along with the results of a life test that validated the proposed repair should extend the life of the SARJ a minimum of 18 years on-orbit.

  15. Variability of Plyometric and Ballistic Exercise Technique Maintains Jump Performance.

    PubMed

    Chandler, Phillip T; Greig, Matthew; Comfort, Paul; McMahon, John J

    2018-06-01

    Chandler, PT, Greig, M, Comfort, P, and McMahon, JJ. Variability of plyometric and ballistic exercise technique maintains jump performance. J Strength Cond Res 32(6): 1571-1582, 2018-The aim of this study was to investigate changes in vertical jump technique over the course of a training session. Twelve plyometric and ballistic exercise-trained male athletes (age = 23.4 ± 4.6 years, body mass = 78.7 ± 18.8 kg, height = 177.1 ± 9.0 cm) performed 3 sets of 10 repetitions of drop jump (DJ), rebound jump (RJ) and squat jump (SJ). Each exercise was analyzed from touchdown to peak joint flexion and peak joint flexion to take-off. Squat jump was analyzed from peak joint flexion to take-off only. Jump height, flexion and extension time and range of motion, and instantaneous angles of the ankle, knee, and hip joints were measured. Separate 1-way repeated analyses of variance compared vertical jump technique across exercise sets and repetitions. Exercise set analysis found that SJ had lower results than DJ and RJ for the angle at peak joint flexion for the hip, knee, and ankle joints and take-off angle of the hip joint. Exercise repetition analysis found that the ankle joint had variable differences for the angle at take-off, flexion, and extension time for RJ. The knee joint had variable differences for flexion time for DJ and angle at take-off and touchdown for RJ. There was no difference in jump height. Variation in measured parameters across repetitions highlights variable technique across plyometric and ballistic exercises. This did not affect jump performance, but likely maintained jump performance by overcoming constraints (e.g., level of rate coding).

  16. Slant path rain attenuation and path diversity statistics obtained through radar modeling of rain structure

    NASA Technical Reports Server (NTRS)

    Goldhirsh, J.

    1984-01-01

    Single and joint terminal slant path attenuation statistics at frequencies of 28.56 and 19.04 GHz have been derived, employing a radar data base obtained over a three-year period at Wallops Island, VA. Statistics were independently obtained for path elevation angles of 20, 45, and 90 deg for purposes of examining how elevation angles influences both single-terminal and joint probability distributions. Both diversity gains and autocorrelation function dependence on site spacing and elevation angles were determined employing the radar modeling results. Comparisons with other investigators are presented. An independent path elevation angle prediction technique was developed and demonstrated to fit well with the radar-derived single and joint terminal radar-derived cumulative fade distributions at various elevation angles.

  17. The reliability of humerothoracic angles during arm elevation depends on the representation of rotations.

    PubMed

    López-Pascual, Juan; Cáceres, Magda Liliana; De Rosario, Helios; Page, Álvaro

    2016-02-08

    The reliability of joint rotation measurements is an issue of major interest, especially in clinical applications. The effect of instrumental errors and soft tissue artifacts on the variability of human motion measures is well known, but the influence of the representation of joint motion has not yet been studied. The aim of the study was to compare the within-subject reliability of three rotation formalisms for the calculation of the shoulder elevation joint angles. Five repetitions of humeral elevation in the scapular plane of 27 healthy subjects were recorded using a stereophotogrammetry system. The humerothoracic joint angles were calculated using the YX'Y" and XZ'Y" Euler angle sequences and the attitude vector. A within-subject repeatability study was performed for the three representations. ICC, SEM and CV were the indices used to estimate the error in the calculation of the angle amplitudes and the angular waveforms with each method. Excellent results were obtained in all representations for the main angle (elevation), but there were remarkable differences for axial rotation and plane of elevation. The YX'Y" sequence generally had the poorest reliability in the secondary angles. The XZ'Y' sequence proved to be the most reliable representation of axial rotation, whereas the attitude vector had the highest reliability in the plane of elevation. These results highlight the importance of selecting the method used to describe the joint motion when within-subjects reliability is an important issue of the experiment. This may be of particular importance when the secondary angles of motions are being studied. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Application of TrackEye in equine locomotion research.

    PubMed

    Drevemo, S; Roepstorff, L; Kallings, P; Johnston, C J

    1993-01-01

    TrackEye is an analysis system, which is applicable for equine biokinematic studies. It covers the whole process from digitizing of images, automatic target tracking and analysis. Key components in the system are an image work station for processing of video images and a high-resolution film-to-video scanner for 16-mm film. A recording module controls the input device and handles the capture of image sequences into a videodisc system, and a tracking module is able to follow reference markers automatically. The system offers a flexible analysis including calculations of markers displacements, distances and joint angles, velocities and accelerations. TrackEye was used to study effects of phenylbutazone on the fetlock and carpal joint angle movements in a horse with a mild lameness caused by osteo-arthritis in the fetlock joint of a forelimb. Significant differences, most evident before treatment, were observed in the minimum fetlock and carpal joint angles when contralateral limbs were compared (p < 0.001). The minimum fetlock angle and the minimum carpal joint angle were significantly greater in the lame limb before treatment compared to those 6, 37 and 49 h after the last treatment (p < 0.001).

  19. International Space Station (ISS)

    NASA Image and Video Library

    2007-06-13

    STS-117 astronauts and mission specialists Patrick Forrester and Steven Swanson (out of frame), participated in the second Extra Vehicular Activity (EVA) as construction resumed on the International Space Station (ISS). Among other tasks, the two removed all of the launch locks holding the 10 foot wide solar alpha rotary joint in place and began the solar array retraction. The primary mission objective was the installment of the second and third starboard truss segments (S3 and S4).

  20. Cluster-based upper body marker models for three-dimensional kinematic analysis: Comparison with an anatomical model and reliability analysis.

    PubMed

    Boser, Quinn A; Valevicius, Aïda M; Lavoie, Ewen B; Chapman, Craig S; Pilarski, Patrick M; Hebert, Jacqueline S; Vette, Albert H

    2018-04-27

    Quantifying angular joint kinematics of the upper body is a useful method for assessing upper limb function. Joint angles are commonly obtained via motion capture, tracking markers placed on anatomical landmarks. This method is associated with limitations including administrative burden, soft tissue artifacts, and intra- and inter-tester variability. An alternative method involves the tracking of rigid marker clusters affixed to body segments, calibrated relative to anatomical landmarks or known joint angles. The accuracy and reliability of applying this cluster method to the upper body has, however, not been comprehensively explored. Our objective was to compare three different upper body cluster models with an anatomical model, with respect to joint angles and reliability. Non-disabled participants performed two standardized functional upper limb tasks with anatomical and cluster markers applied concurrently. Joint angle curves obtained via the marker clusters with three different calibration methods were compared to those from an anatomical model, and between-session reliability was assessed for all models. The cluster models produced joint angle curves which were comparable to and highly correlated with those from the anatomical model, but exhibited notable offsets and differences in sensitivity for some degrees of freedom. Between-session reliability was comparable between all models, and good for most degrees of freedom. Overall, the cluster models produced reliable joint angles that, however, cannot be used interchangeably with anatomical model outputs to calculate kinematic metrics. Cluster models appear to be an adequate, and possibly advantageous alternative to anatomical models when the objective is to assess trends in movement behavior. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Neuromuscular adaptations associated with knee joint angle-specific force change.

    PubMed

    Noorkõiv, Marika; Nosaka, Kazunori; Blazevich, Anthony J

    2014-08-01

    Neuromuscular adaptations to joint angle-specific force increases after isometric training have not yet been fully elucidated. This study examined angle-specific neuromuscular adaptations in response to isometric knee extension training at short (SL, joint angle 38.1° ± 3.7°) versus long (LL, 87.5° ± 6.0°) muscle lengths. Sixteen men trained three times a week for 6 wk either at SL (n = 8) or LL (n = 8). Voluntary maximal isometric knee extensor (MVC) force, doublet twitch force, EMG amplitudes (EMG/Mmax), and voluntary activation during MVC force (VA%) were measured at eight knee joint angles (30°-100°) at weeks 0, 3, and 6. Muscle volume and cross-sectional area (CSA) were measured from magnetic resonance imaging scans, and fascicle length (Lf) was assessed using ultrasonography before and after training. Clear joint angle specificity of force increase was seen in SL but not in LL. The 13.4% ± 9.7% (P = 0.01) force increase around the training angle in SL was related to changes in vastus lateralis and vastus medialis EMG/Mmax around the training angle (r = 0.84-0.88, P < 0.05), without changes in the doublet twitch force-angle relation or muscle size. In LL, muscle volume and CSA increased and the changes in CSA at specific muscle regions were correlated with changes in MVC force. A 5.4% ± 4.9% (P = 0.001) increase in Lf found in both groups was not associated with angle-specific force changes. There were no angle-specific changes in VA%. The EMG/Mmax, although not VA%, results suggest that neural adaptations underpinned training-related changes at short quadriceps lengths, but hypertrophic changes predominated after training at long lengths. The findings of this study should contribute to the development of more effective and evidence-based rehabilitation and strength training protocols.

  2. Triceps surae muscle-tendon unit length changes as a function of ankle joint angles and contraction levels: the effect of foot arch deformation.

    PubMed

    Iwanuma, Soichiro; Akagi, Ryota; Hashizume, Satoru; Kanehisa, Hiroaki; Yanai, Toshimasa; Kawakami, Yasuo

    2011-09-23

    The purpose of this study was to clarify how foot deformation affects the relationship between triceps surae muscle-tendon unit (MTU) length and ankle joint angle. For six women and six men a series of sagittal magnetic resonance (MR) images of the right foot were taken, and changes in MTU length (the displacement of the calcaneal tuberosity), foot arch angle, and ankle joint angle were measured. In the passive session, each subject's ankle joint was secured at 10° dorsiflexed position, neutral position (NP), and 10° and 20° plantar flexed positions while MR images were acquired. In the active session, each subject was requested to perform submaximal isometric plantar flexions (30%, 60%, and 80% of voluntary maximum) at NP. The changes in MTU length in each trial were estimated by two different formulae reported previously. The changes of the measured MTU length as a function of ankle joint angles observed in all trials of the active session were significantly (p<0.05) larger than corresponding values in the passive session and by the estimation formulae. In the passive session, MTU length changes were significantly smaller than the estimated values when the ankle was plantar flexed. The foot arch angle increased as the contraction level increased from rest (117 ± 4°) to 80% (125 ± 3°), and decreased as the ankle was positioned further into plantar flexion in the passive session (115 ± 3°). These results indicate that foot deformation profoundly affects the triceps surae MTU length-ankle joint angle relationship during plantar flexion. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Fatigue affects peak joint torque angle in hamstrings but not in quadriceps.

    PubMed

    Coratella, Giuseppe; Bellin, Giuseppe; Beato, Marco; Schena, Federico

    2015-01-01

    Primary aim of this study was to investigate peak joint torque angle (i.e. the angle of peak torque) changes recorded during an isokinetic test before and after a fatiguing soccer match simulation. Secondarily we want to investigate functional Hecc:Qconc and conventional Hconc:Qconc ratio changes due to fatigue. Before and after a standardised soccer match simulation, twenty-two healthy male amateur soccer players performed maximal isokinetic strength tests both for hamstrings and for quadriceps muscles at 1.05 rad · s(‒1), 3.14 rad · s(‒1) and 5.24 rad · s(‒1). Peak joint torque angle, peak torque and both functional Hecc:Qconc and conventional Hconc:Qconc ratios were examined. Both dominant and non-dominant limbs were tested. Peak joint torque angle significantly increased only in knee flexors. Both eccentric and concentric contractions resulted in such increment, which occurred in both limbs. No changes were found in quadriceps peak joint torque angle. Participants experienced a significant decrease in torque both in hamstrings and in quadriceps. Functional Hecc:Qconc ratio was lower only in dominant limb at higher velocities, while Hconc:Qconc did not change. This study showed after specific fatiguing task changes in hamstrings only torque/angle relationship. Hamstrings injury risk could depend on altered torque when knee is close to extension, coupled with a greater peak torque decrement compared to quadriceps. These results suggest the use eccentric based training to prevent hamstrings shift towards shorter length.

  4. Foot mechanics during the first six years of independent walking.

    PubMed

    Samson, William; Dohin, Bruno; Desroches, Guillaume; Chaverot, Jean-Luc; Dumas, Raphaël; Cheze, Laurence

    2011-04-29

    Recognition of the changes during gait that occur normally as a part of growth is essential to prevent mislabeling those changes from adult gait as evidence of gait pathology. Currently, in the literature, the definition of a mature age for ankle joint dynamics is controversial (i.e., between 5 and 10 years). Moreover, the mature age of the metatarsophalangeal (MP) joint, which is essential for the functioning of the foot, has not been defined in the literature. Thus, the objective of the present study explored foot mechanics (ankle and MP joints) in young children to define a mature age of foot function. Forty-two healthy children between 1 and 6 years of age and eight adults were measured during gait. The ground reaction force (GRF), the MP and ankle joint angles, moments, powers, and 3D angles between the joint moment and the joint angular velocity vectors (3D angle α(M.ω)) were processed and compared between four age groups (2, 3.5, 5 and adults). Based on statistical analysis, the MP joint biomechanical parameters were similar between children (older than 2 years) and adults, hinting at a quick maturation of this joint mechanics. The ankle joint parameters and the GRFs (except for the frontal plane) showed an adult-like pattern in 5-year-old children. Some ankle joint parameters, such as the joint power and the 3D angle α(M.ω) still evolved significantly until 3.5 years. Based on these results, it would appear that foot maturation during gait is fully achieved at 5 years. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Nonlinear adaptive control of an elastic robotic arm

    NASA Technical Reports Server (NTRS)

    Singh, S. N.

    1986-01-01

    An approach to control of a class of nonlinear flexible robotic systems is presented. For simplicity, a robot arm (PUMA-type) with three rotational joints is considered. The third link is assumed to be elastic. An adaptive torquer control law is derived for controlling the joint angles. This controller includes a dynamic system in the feedback path, requires only joint angle and rate for feedback, and asymptotically decomposes the elastic dynamics into two subsystems representing the transverse vibrations of the elastic link in two orthogonal planes. To damp out the elastic vibration, a force control law using modal feedback is synthesized. The combination of the torque and force control laws accomplishes joint angle control and elastic mode stabilization.

  6. Configuration control of seven-degree-of-freedom arms

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun (Inventor); Long, Mark K. (Inventor); Lee, Thomas S. (Inventor)

    1992-01-01

    A seven degree of freedom robot arm with a six degree of freedom end effector is controlled by a processor employing a 6 by 7 Jacobian matrix for defining location and orientation of the end effector in terms of the rotation angles of the joints, a 1 (or more) by 7 Jacobian matrix for defining 1 (or more) user specified kinematic functions constraining location or movement of selected portions of the arm in terms of the joint angles, the processor combining the two Jacobian matrices to produce an augmented 7 (or more) by 7 Jacobian matrix, the processor effecting control by computing in accordance with forward kinematics from the augmented 7 by 7 Jacobian matrix and from the seven joint angles of the arm a set of seven desired joint angles for transmittal to the joint servo loops of the arm. One of the kinematic functions constraints the orientation of the elbow plane of the arm. Another one of the kinematic functions minimizes a sum of gravitational torques on the joints. Still another kinematic function constrains the location of the arm to perform collision avoidance. Generically, one kinematic function minimizes a sum of selected mechanical parameters of at least some of the joints associated with weighting coefficients which may be changed during arm movement. The mechanical parameters may be velocity errors or gravity torques associated with individual joints.

  7. Configuration control of seven degree of freedom arms

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun (Inventor)

    1995-01-01

    A seven-degree-of-freedom robot arm with a six-degree-of-freedom end effector is controlled by a processor employing a 6-by-7 Jacobian matrix for defining location and orientation of the end effector in terms of the rotation angles of the joints, a 1 (or more)-by-7 Jacobian matrix for defining 1 (or more) user-specified kinematic functions constraining location or movement of selected portions of the arm in terms of the joint angles, the processor combining the two Jacobian matrices to produce an augmented 7 (or more)-by-7 Jacobian matrix, the processor effecting control by computing in accordance with forward kinematics from the augmented 7-by-7 Jacobian matrix and from the seven joint angles of the arm a set of seven desired joint angles for transmittal to the joint servo loops of the arms. One of the kinematic functions constrains the orientation of the elbow plane of the arm. Another one of the kinematic functions minimizing a sum of gravitational torques on the joints. Still another one of the kinematic functions constrains the location of the arm to perform collision avoidance. Generically, one of the kinematic functions minimizes a sum of selected mechanical parameters of at least some of the joints associated with weighting coefficients which may be changed during arm movement. The mechanical parameters may be velocity errors or position errors or gravity torques associated with individual joints.

  8. An Investigation into the Relation between the Technique of Movement and Overload in Step Aerobics

    PubMed Central

    Wysocka, Katarzyna

    2017-01-01

    The aim of this research was to determine the features of a step workout technique which may be related to motor system overloading in step aerobics. Subjects participating in the research were instructors (n = 15) and students (n = 15) without any prior experience in step aerobics. Kinematic and kinetic data was collected with the use of the BTS SMART system comprised of 6 calibrated video cameras and two Kistler force plates. The subjects' task was to perform basic steps. The following variables were analyzed: vertical, anteroposterior, and mediolateral ground reaction forces; foot flexion and abduction and adduction angles; knee joint flexion angle; and trunk flexion angle in the sagittal plane. The angle of a foot adduction recorded for the instructors was significantly smaller than that of the students. The knee joint angle while stepping up was significantly higher for the instructors compared to that for the students. Our research confirmed that foot dorsal flexion and adduction performed while stepping up increased load on the ankle joint. Both small and large angles of knee flexion while stepping up and down resulted in knee joint injuries. A small trunk flexion angle in the entire cycle of step workout shut down dorsal muscles, which stopped suppressing the load put on the spine. PMID:28348501

  9. The effect of uncontrolled moment and short-term, repeated passive stretching on maximum ankle joint dorsiflexion angle.

    PubMed

    Gatt, Alfred; Chockalingam, Nachiappan

    2012-06-01

    Trials investigating ankle joint measurement normally apply a known moment. Maximum ankle angle is affected by foot posture and stretching characteristics of the calf muscles. To investigate whether consistent maximum ankle angles could be achieved without applying a constant moment to all subjects, and whether short, repetitive stretching of the calf muscle tendon unit would produce a difference in the maximum ankle angle. Passive dorsiflexion in 14 healthy participants was captured using an optoelectronic motion analysis system, with the foot placed in 3 postures. The maximum ankle angles for both the neutral and supinated positions did not differ significantly. In general, the majority of subjects (92.8%) showed no increase in the maximum ankle dorsiflexion angle following repetitive brief passive stretching. Only one subject exhibited a significant increase in maximum ankle angle at the neutral position. Since the range of motion of the ankle joint is clearly determined by other physical factors, the maximum ankle dorsiflexion angle can be assessed at both neutral and supinated positions without moment being controlled. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. The in vivo plantar soft tissue mechanical property under the metatarsal head: implications of tissues׳ joint-angle dependent response in foot finite element modeling.

    PubMed

    Chen, Wen-Ming; Lee, Sung-Jae; Lee, Peter Vee Sin

    2014-12-01

    Material properties of the plantar soft tissue have not been well quantified in vivo (i.e., from life subjects) nor for areas other than the heel pad. This study explored an in vivo investigation of the plantar soft tissue material behavior under the metatarsal head (MTH). We used a novel device collecting indentation data at controlled metatarsophalangeal joint angles. Combined with inverse analysis, tissues׳ joint-angle dependent material properties were identified. The results showed that the soft tissue under MTH exhibited joint-angle dependent material responses, and the computed parameters using the Ogden material model were 51.3% and 30.9% larger in the dorsiflexed than in the neutral positions, respectively. Using derived parameters in subject-specific foot finite element models revealed only those models that used tissues׳ joint-dependent responses could reproduce the known plantar pressure pattern under the MTH. It is suggested that, to further improve specificity of the personalized foot finite element models, quantitative mechanical properties of the tissue inclusive of the effects of metatarsophalangeal joint dorsiflexion are needed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. The Relationship Between Osteoarthritis of the Lumbar Facet Joints and Lumbosacropelvic Morphology.

    PubMed

    Sahin, Mehmet Sukru; Ergün, Adviye; Aslan, Akın

    2015-10-01

    Cross-sectional study. To investigate the relation between lumbosacropelvic morphology and the presence and degree of facet joint degeneration. Osteoarthritis of the facet joints is one of the most common degenerative changes in the spine. It is considered to be formed secondary to repetitive stress or trauma and spinal deformity with secondary overload. The cause(s) of facet joints osteoarthritis, however, have not been clearly identified. Abdominal computed tomography (CT) images of 723 patients which were taken between the years 2010 and 2014 were evaluated retrospectively. Patients with prior lumbar spinal surgery, serious congenital anomalies on CT, incomplete or complete lumbosacral transition, severe scoliosis, were excluded from the study. To eliminate the age- and sex-related differences in spinopelvic morphology, a study group was formed of the remaining subjects by including patients from a specific age group (30-35 yr) and same sex (females). For each patient the presence and grade of facet joint degeneration was investigated. In addition, pelvic incidence (PI), sacral slope and the angles of L1-L5 lumbar lordosis, sacral table, L5 vertebra posterior, and sacral kyphosis were measured for each patient. Sacral slope, sacral kyphosis, and L1-L5 lumbar lordosis angle were significantly higher in patients with osteoarthritic compared with normal subjects (P = 0.015, P = 0.018, P = 0.016). L5 vertebra posterior and sacral table angle were found to be significantly lower in patients with osteoarthritic than in normal subjects (P = 0.019, P = 0.007). The degree of facet joint degeneration was noticed to increase parallel to the decrease in the sacral table angle and L5 vertebra posterior angle, and to the increase in the L1-L5 lumbar lordosis, PI, and sacral slope. A close relation exists between the presence and degree of degeneration in the facet joint and lumbosacral pelvic morphology. Prevalence and degree of the degeneration in facet joint increases as the angle of sacral slope, L1-L5 lumbar lordosis, and PI increases or the angle of sacral table and L5 vertebra posterior decreases. 4.

  12. Relationships among measurements obtained by use of computed tomography and radiography and scores of cartilage microdamage in hip joints with moderate to severe joint laxity of adult dogs.

    PubMed

    Lopez, Mandi J; Lewis, Brooke P; Swaab, Megan E; Markel, Mark D

    2008-03-01

    To evaluate correlations among measurements on radiographic and computed tomography (CT) images with articular cartilage microdamage in lax hip joints of dogs. 12 adult mixed-breed hounds. Pelvic CT and radiography were performed. Hip joints were harvested following euthanasia. Orthopedic Foundation for Animals (OFA) and PennHIP radiograph reports were obtained. Norberg angle (NA) and radiographic percentage femoral head coverage (RPC) were determined. Center-edge angle (CEA), horizontal toit externe angle (HTEA), ventral acetabular sector angle (VASA), dorsal acetabular sector angle (DASA), horizontal acetabular sector angle (HASA), acetabular index (AI), and CT percentage femoral head coverage (CPC) were measured on 2-dimensional CT images. Femoral head-acetabular shelf percentage was measured on sagittal 3-dimensional CT (SCT) and transverse 3-dimensional CT (TCT) images. Light microscopy was used to score joint cartilage. Relationships of OFA confirmation and PennHIP osteoarthritis scores with radiography, CT, and cartilage variables and relationships of cartilage scores with radiography and CT measurements were evaluated with Spearman rank correlations. Pearson correlation was used for relationships of distraction index (DI) with radiography, CT, and cartilage variables. Significant relationships included PennHIP osteoarthritis score with cartilage score, CEA, HTEA, DASA, AI, CPC, and TCT; OFA confirmation score with cartilage score, NA, RPC, CEA, HTEA, DASA, AI, CPC, and TCT; cartilage score with NA, RPC, CEA, HTEA, DASA, HASA, AI, and TCT; and DI with cartilage score, CEA, HTEA, DASA, HASA, AI, and CPC. CT appeared to be a valuable imaging modality for predicting cartilage microdamage in canine hip joints.

  13. A study on muscle activity and ratio of the knee extensor depending on the types of squat exercise

    PubMed Central

    Kang, Jeong-Il; Park, Joon-Su; Choi, Hyun; Jeong, Dae-Keun; Kwon, Hye-Min; Moon, Young-Jun

    2017-01-01

    [Purpose] For preventing the patellofemoral pain syndrome, this study aims to suggest a proper squat method, which presents selective muscle activity of Vastus Medialis Oblique and muscle activity ratios of Vastus Medialis Oblique/Vastus Lateralis by applying squat that is a representative weight bearing exercise method in various ways depending on the surface conditions and knee bending angles. [Subjects and Methods] An isometric squat that was accompanied by hip adduction, depending on the surface condition and the knee joint flexion angle, was performed by 24 healthy students. The muscle activity and the ratio of muscle activity were measured. [Results] In a comparison of muscle activity depending on the knee joint flexion angle on a weight-bearing surface, the vastus medialis oblique showed a significant difference at 15° and 60°. Meanwhile, in a comparison of the muscle activity ratio between the vastus medialis oblique and the vastus lateralis depending on the knee joint flexion angle on a weight-bearing surface, significant differences were observed at 15° and 60°. [Conclusion] An efficient squat exercise posture for preventing the patellofemoral pain syndrome is to increase the knee joint bending angle on a stable surface. But it would be efficient for patients with difficulties in bending the knee joint to keep a knee joint bending angle of 15 degrees or less on an unstable surface. It is considered that in future, diverse studies on selective Vastus Medialis Oblique strengthening exercise methods would be needed after applying them to patients with the patellofemoral pain syndrome. PMID:28210036

  14. Ambulant adults with spastic cerebral palsy: the validity of lower limb joint angle measurements from sagittal video recordings.

    PubMed

    Larsen, Kerstin L; Maanum, Grethe; Frøslie, Kathrine F; Jahnsen, Reidun

    2012-02-01

    In the development of a clinical program for ambulant adults with cerebral palsy (CP), we investigated the validity of joint angles measured from sagittal video recordings and explored if movements in the transversal plane identified with three-dimensional gait analysis (3DGA) affected the validity of sagittal video joint angle measurements. Ten observers, and 10 persons with spastic CP (19-63 years), Gross Motor Function Classification System I-II, participated in the study. Concurrent criterion validity between video joint angle measurements and 3DGA was assessed by Bland-Altman plots with mean differences and 95% limits of agreement (LoA). Pearson's correlation coefficients (r) and scatter plots were used supplementary. Transversal kinematics ≥2 SD from our reference band were defined as increased movement in the transversal plane. The overall mean differences in degrees between joint angles measured by 3DGA and video recordings (3°, 5° and -7° for the hip, knee and ankle respectively) and corresponding LoA (18°, 10° and 15° for the hip, knee and ankle, respectively) demonstrated substantial discrepancies between the two methods. The correlations ranged from low (r=0.39) to moderate (r=0.68). Discrepancy between the two measurements was seen both among persons with and without the presence of deviating transversal kinematics. Quantifying lower limb joint angles from sagittal video recordings in ambulant adults with spastic CP demonstrated low validity, and should be conducted with caution. This gives implications for selecting evaluation method of gait. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Anthropometric specifications, development, and evaluation of EvaRID--a 50th percentile female rear impact finite element dummy model.

    PubMed

    Carlsson, Anna; Chang, Fred; Lemmen, Paul; Kullgren, Anders; Schmitt, Kai-Uwe; Linder, Astrid; Svensson, Mats Y

    2014-01-01

    Whiplash-associated disorders (WADs), or whiplash injuries, due to low-severity vehicle crashes are of great concern in motorized countries and it is well established that the risk of such injuries is higher for females than for males, even in similar crash conditions. Recent protective systems have been shown to be more beneficial for males than for females. Hence, there is a need for improved tools to address female WAD prevention when developing and evaluating the performance of whiplash protection systems. The objective of this study is to develop and evaluate a finite element model of a 50th percentile female rear impact crash test dummy. The anthropometry of the 50th percentile female was specified based on literature data. The model, called EvaRID (female rear impact dummy), was based on the same design concept as the existing 50th percentile male rear impact dummy, the BioRID II. A scaling approach was developed and the first version, EvaRID V1.0, was implemented. Its dynamic response was compared to female volunteer data from rear impact sled tests. The EvaRID V1.0 model and the volunteer tests compared well until ∼250 ms of the head and T1 forward accelerations and rearward linear displacements and of the head rearward angular displacement. Markedly less T1 rearward angular displacement was found for the EvaRID model compared to the female volunteers. Similar results were received for the BioRID II model when comparing simulated responses with experimental data under volunteer loading conditions. The results indicate that the biofidelity of the EvaRID V1.0 and BioRID II FE models have limitations, predominantly in the T1 rearward angular displacement, at low velocity changes (7 km/h). The BioRID II model was validated against dummy test results in a loading range close to consumer test conditions (EuroNCAP) and lower severity levels of volunteer testing were not considered. The EvaRID dummy model demonstrated the potential of becoming a valuable tool when evaluating and developing seats and whiplash protection systems. However, updates of the joint stiffness will be required to provide better correlation at lower load levels. Moreover, the seated posture, curvature of the spine, and head position of 50th percentile female occupants needs to be established and implemented in future models.

  16. High Performance EVA Glove Collaboration: Glove Injury Data Mining Effort

    NASA Technical Reports Server (NTRS)

    Reid, C. R.; Benosn, E.; England, S.; Norcross, J. R.; McFarland, S. M.; Rajulu, S.

    2014-01-01

    Human hands play a significant role during extravehicular activity (EVA) missions and Neutral Buoyancy Lab (NBL) training events, as they are needed for translating and performing tasks in the weightless environment. It is because of this high frequency usage that hand- and arm-related injuries and discomfort are known to occur during training in the NBL and while conducting EVAs. Hand-related injuries and discomforts have been occurring to crewmembers since the days of Apollo. While there have been numerous engineering changes to the glove design, hand-related issues still persist. The primary objectives of this study are therefore to: 1) document all known EVA glove-related injuries and the circumstances of these incidents, 2) determine likely risk factors, and 3) recommend ergonomic mitigations or design strategies that can be implemented in the current and future glove designs. METHODS: The investigator team conducted an initial set of literature reviews, data mining of Lifetime Surveillance of Astronaut Health (LSAH) databases, and data distribution analyses to understand the ergonomic issues related to glove-related injuries and discomforts. The investigation focused on the injuries and discomforts of U.S. crewmembers who had worn pressurized suits and experienced glove-related incidents during the 1980 to 2010 time frame, either during training or on-orbit EVA. In addition to data mining of the LSAH database, the other objective of the study was to find complimentary sources of information such as training experience, EVA experience, suit-related sizing data, and hand-arm anthropometric data to be tied to the injury data from LSAH. RESULTS: Past studies indicated that the hand was the most frequently injured part of the body during both EVA and NBL training. This study effort thus focused primarily on crew training data in the NBL between 2002 and 2010. Of the 87 recorded training incidents, 19 occurred to women and 68 to men. While crew ages ranged from thirties to fifties, the age category most affected was in the forties range. Incident rate calculations (incidents per 100 training runs) revealed that the 2002, 2003, and 2004 time periods registered the highest reported incident rate levels (3.4, 6.1, and 4.1 respectively) when compared to the following years (all = 1.0). In addition to general hand-arm discomfort being the highest reported result from training, specific types of hand injuries or symptoms included erythema, fingernail delamination, abrasions, muscle soreness/fatigue, paresthesia, bruising, blanching, and edema. Specific body locations most affected by hand injuries included the metacarpophalangeal joints, fingernails, finger crotches, fingers in general, interphalangeal joints, and fingertips. Causes of injuries reported in the LSAH data were primarily attributed to the forces that the gloved hands were exposed to due to hand intensive tasks and/or poor glove sizing. DISCUSSION: Although the age data indicate that most injuries are reported by male crewmembers in their forties, that is also the dominant gender and age range of most EVA crew therefore it is not an unexpected finding. Age and gender analysis will continue as more details on the uninjured population is accrued. While there is a reasonable mechanism to link training quantity to injury, the results were inconsistent and point to the need for a consistent method of suit-related injury screening and documentation. For instance, the high-incident rate levels for the years 2002 to 2004 could be attributed to a comprehensive medical review of crewmembers post-NBL EVA training that occurred from July 19, 2002 to January 16, 2004. Furthermore, there could have been increased awareness from an investigation at the NBL. These investigations may have temporarily increased the fidelity of reported injuries and discomforts during these dates as compared to surrounding years, when injury signs and symptom were no longer actively being investigated but rather voluntarily reported. Data mining for possible mechanistic factors continues and includes more detailed training timelines, hand anthropometry, and suit sizing information. The limited published data looking at hand-arm anthropometry correlated hand-anthropometry metrics with injuries stemming from glove design and operation. Future work will include further evaluation of body sizing and fit in relation to hand injury incidents.

  17. The effect of different decline angles on the biomechanics of double limb squats and the implications to clinical and training practice.

    PubMed

    Richards, Jim; Selfe, James; Sinclair, Jonathan; May, Karen; Thomas, Gavin

    2016-09-01

    Bilateral decline squatting has been well documented as a rehabilitation exercise, however, little information exists on the optimum angle of decline. The aim of this study was to determine the ankle and knee angle, moments, the patellofemoral joint load, patellar tendon load and associated muscle activity while performing a double limb squat at different decline angles and the implications to rehabilitation. Eighteen healthy subjects performed double limb squats at 6 angles of declination: 0, 5, 10, 15, 20 and 25 degrees. The range of motion of the knee and ankle joints, external moments, the patellofemoral/patellar tendon load and integrated EMG of gastrocnemius, tibialis anterior, rectus femoris and biceps femoris were evaluated. As the decline angle increased up to 20 degrees, the range of motion possible at the ankle and knee increased. The joint moments showed a decrease at the ankle up to 15 degrees and an increase at the knee up to 25 degrees, indicating a progressive reduction in loading around the ankle with a corresponding increase of the load in the patellar tendon and patellofemoral joint. These trends were supported by a decrease in tibialis anterior activity and an increase in the rectus femoris activity up to 15 degrees declination. However, gastrocnemius and biceps femoris activity increased as the decline angle increased above 15 degrees. The action of gastrocnemius and biceps femoris stabilises the knee against an anterior displacement of the femur on the tibia. These findings would suggest that there is little benefit in using a decline angle greater than 15-20 degrees unless the purpose is to offer an additional stability challenge to the knee joint.

  18. The effect of different decline angles on the biomechanics of double limb squats and the implications to clinical and training practice

    PubMed Central

    Richards, Jim; Selfe, James; Sinclair, Jonathan; May, Karen; Thomas, Gavin

    2016-01-01

    Abstract Bilateral decline squatting has been well documented as a rehabilitation exercise, however, little information exists on the optimum angle of decline. The aim of this study was to determine the ankle and knee angle, moments, the patellofemoral joint load, patellar tendon load and associated muscle activity while performing a double limb squat at different decline angles and the implications to rehabilitation. Eighteen healthy subjects performed double limb squats at 6 angles of declination: 0, 5, 10, 15, 20 and 25 degrees. The range of motion of the knee and ankle joints, external moments, the patellofemoral/patellar tendon load and integrated EMG of gastrocnemius, tibialis anterior, rectus femoris and biceps femoris were evaluated. As the decline angle increased up to 20 degrees, the range of motion possible at the ankle and knee increased. The joint moments showed a decrease at the ankle up to 15 degrees and an increase at the knee up to 25 degrees, indicating a progressive reduction in loading around the ankle with a corresponding increase of the load in the patellar tendon and patellofemoral joint. These trends were supported by a decrease in tibialis anterior activity and an increase in the rectus femoris activity up to 15 degrees declination. However, gastrocnemius and biceps femoris activity increased as the decline angle increased above 15 degrees. The action of gastrocnemius and biceps femoris stabilises the knee against an anterior displacement of the femur on the tibia. These findings would suggest that there is little benefit in using a decline angle greater than 15-20 degrees unless the purpose is to offer an additional stability challenge to the knee joint. PMID:28149400

  19. Facet joint geometry and intervertebral disk degeneration in the L5-S1 region of the vertebral column in German Shepherd dogs.

    PubMed

    Seiler, Gabriela S; Häni, Hansjürg; Busato, André R; Lang, Johann

    2002-01-01

    To evaluate the possible association between facet joint geometry and intervertebral disk degeneration in German Shepherd Dogs. 25 German Shepherd Dogs and 11 control dogs of similar body weight and condition. Facet joint angles in the caudal portion of the lumbar region of the vertebral column (L5-S1) were measured by use of computed tomography, and the intervertebral discs were evaluated microscopically. The relationship between facet joint geometry and disk degeneration was evaluated by use of statistical methods. German Shepherd Dogs had significantly more facet joint tropism than control dogs, but an association with disk degeneration was not found. However, German Shepherd Dogs had a different facet joint conformation, with more sagittally oriented facet joints at L5-L6 and L6-L7 and a larger angle difference between the lumbar and lumbosacral facet joints, compared with control dogs. A large difference between facet joint angles at L6-L7 and L7-S1 in German Shepherd Dogs may be associated with the frequent occurrence of lumbosacral disk degeneration in this breed.

  20. Economy, Movement Dynamics, and Muscle Activity of Human Walking at Different Speeds.

    PubMed

    Raffalt, P C; Guul, M K; Nielsen, A N; Puthusserypady, S; Alkjær, T

    2017-03-08

    The complex behaviour of human walking with respect to movement variability, economy and muscle activity is speed dependent. It is well known that a U-shaped relationship between walking speed and economy exists. However, it is an open question if the movement dynamics of joint angles and centre of mass and muscle activation strategy also exhibit a U-shaped relationship with walking speed. We investigated the dynamics of joint angle trajectories and the centre of mass accelerations at five different speeds ranging from 20 to 180% of the predicted preferred speed (based on Froude speed) in twelve healthy males. The muscle activation strategy and walking economy were also assessed. The movement dynamics was investigated using a combination of the largest Lyapunov exponent and correlation dimension. We observed an intermediate stage of the movement dynamics of the knee joint angle and the anterior-posterior and mediolateral centre of mass accelerations which coincided with the most energy-efficient walking speed. Furthermore, the dynamics of the joint angle trajectories and the muscle activation strategy was closely linked to the functional role and biomechanical constraints of the joints.

  1. A literature review on optimum and preferred joint angles in automotive sitting posture.

    PubMed

    Schmidt, Susanne; Amereller, Maximilian; Franz, Matthias; Kaiser, Ralf; Schwirtz, Ansgar

    2014-03-01

    In this study, a survey of the scientific literature in the field of optimum and preferred human joint angles in automotive sitting posture was conducted by referring to thirty different sources published between 1940 and today. The strategy was to use only sources with numerical angle data in combination with keywords. The aim of the research was to detect commonly used joint angles in interior car design. The main analysis was on data measurement, usability and comparability of the different studies. In addition, the focus was on the reasons for the differently described results. It was found that there is still a lack of information in methodology and description of background. Due to these reasons published data is not always usable to design a modern ergonomic car environment. As a main result of our literature analysis we suggest undertaking further research in the field of biomechanics and ergonomics to work out scientific based and objectively determined "optimum" joint angles in automotive sitting position. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  2. A Study of Knee Joint Kinematics and Mechanics using a Human FE Model.

    PubMed

    Kitagawa, Yuichi; Hasegawa, Junji; Yasuki, Tsuyoshi; Iwamoto, Masami; Miki, Kazuo

    2005-11-01

    Posterior translation of the tibia with respect to the femur can stretch the posterior cruciate ligament (PCL). Fifteen millimeters of relative displacement between the femur and tibia is known as the Injury Assessment Reference Value (IARV) for the PCL injury. Since the anterior protuberance of the tibial plateau can be the first site of contact when the knee is flexed, the knee bolster is generally designed with an inclined surface so as not to directly load the projection in frontal crashes. It should be noted, however, that the initial flexion angle of the occupant knee can vary among individuals and the knee flexion angle can change due to the occupant motion. The behavior of the tibial protuberance related to the knee flexion angle has not been described yet. The instantaneous angle of the knee joint at the timing of restraining the knee should be known to manage the geometry and functions of knee restraint devices. The purposes of this study are first to understand the kinematics of the knee joint during flexion, and second to characterize the mechanics of the knee joint under anterior-posterior loading. A finite element model of the knee joint, extracted from the Total Human Model for Safety (THUMS), was used to analyze the mechanism. The model was validated against kinematics and mechanical responses of the human knee joint. By tracking the relative positions and angles between the patella and the tibia in a knee flexing simulation, the magnitude of the tibial anterior protuberance was described as a function of the knee joint angle. The model revealed that the mechanics of the knee joint was characterized as a combination of stiffness of the patella-femur structure and the PCL It was also found that the magnitude of the tibial anterior protuberance determined the amount of initial stretch of the PCL in anterior-posterior loading. Based on the knee joint kinematics and mechanics, an interference boundary was proposed for different knee flexion angles, so as not to directly load the anterior protuberance of the tibial plateau in restraining of the knee. A frontal crash simulation was performed using a partial vehicle model with the THUMS seated. The performance and effects of the knee airbag, as one of the candidates for knee restraint devices, were evaluated through the simulation.

  3. Comparing the effects of mechanical perturbation training with a compliant surface and manual perturbation training on joints kinematics after ACL-rupture.

    PubMed

    Nawasreh, Zakariya; Failla, Mathew; Marmon, Adam; Logerstedt, David; Snyder-Mackler, Lynn

    2018-05-23

    Performing physical activities on a compliant surface alters joint kinematics and increases joints stiffness. However, the effect of compliant surface on joint kinematics after ACL-rupture is yet unknown. To compare the effects of mechanical perturbation training with a compliant surface to manual perturbation training on joint kinematics after ACL-rupture. Sixteen level I/II athletes with ACL-rupture participated in this preliminary study. Eight patients received mechanical perturbation with compliant surface (Mechanical) and 8 patients received manual perturbation training (Manual). Patients completed standard gait analysis before (Pre) and after (Post) training. Significant group-by-time interactions were found for knee flexion angle at initial contact (IC) and peak knee flexion (PKF) (p<0.004), with manual group significantly increased knee flexion angle at IC and PKF (p<0.03). Main effects of group were found for hip flexion angle at IC (Manual:34.34+3.51°, Mechanical:27.68+4.08°, p = 0.011), hip rotation angle at PKE (Manual:-3.40+4.78°, Mechanical:5.43+4.78°, p < 0.0001), and knee adduction angle at PKE (Manual:-2.00+2.23°, Mechanical:0.55+2.23°, p = 0.039). Main effects of time were found for hip adduction angle at PKE (Pre:6.98+4.48°, Post:8.41+4.91°, p = 0.04), knee adduction angle at IC (Pre:-2.90+3.50°, Post:-0.62+2.58°, p = 0.03), ankle adduction angle at IC (Pre:2.16+3.54, Post:3.8+3.68, p = 0.008), and ankle flexion angle at PKF (Pre:-4.55+2.77°, Post:-2.39+3.48°, p = 0.01). Training on a compliant surface induces different effects on joint kinematics compared to manual perturbation training after ACL-rupture. Manual perturbation improved hip alignment and increased knee flexion angles, while mechanical training decreased knee flexion angles throughout the stance phase. Administering training on a compliant surface after ACL-rupture may help improving dynamic knee stability, however, long-term effects on knee health needs to be determined. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Hydraulic involute cam actuator

    DOEpatents

    Love, Lonnie J [Knoxville, TN; Lind, Randall F [Loudon, TX

    2011-11-01

    Mechanical joints are provided in which the angle between a first coupled member and a second coupled member may be varied by mechanical actuators. In some embodiments the angle may be varied around a pivot axis in one plane and in some embodiments the angle may be varied around two pivot axes in two orthogonal planes. The joints typically utilize a cam assembly having two lobes with an involute surface. Actuators are configured to push against the lobes to vary the rotation angle between the first and second coupled member.

  5. The effect of angle and moment of the hip and knee joint on iliotibial band hardness.

    PubMed

    Tateuchi, Hiroshige; Shiratori, Sakiko; Ichihashi, Noriaki

    2015-02-01

    Although several studies have described kinematic deviations such as excessive hip adduction in patients with iliotibial band (ITB) syndrome, the factors contributing to increased ITB hardness remains undetermined, owing to lack of direct in vivo measurement. The purpose of this study was to clarify the factors contributing to an increase in ITB hardness by comparing the ITB hardness between the conditions in which the angle, moment, and muscle activity of the hip and knee joint are changed. Sixteen healthy individuals performed the one-leg standing under five conditions in which the pelvic and trunk inclination were changed in the frontal plane. The shear elastic modulus in the ITB was measured as an indicator of the ITB hardness using shear wave elastography. The three-dimensional joint angle and external joint moment in the hip and knee joints, and muscle activities of the gluteus maximus, gluteus medius, tensor fasciae latae, and vastus lateralis, which anatomically connect to the ITB, were also measured. ITB hardness was significantly increased in the posture with pelvic and trunk inclination toward the contralateral side of the standing leg compared with that in all other conditions (increase of approximately 32% compared with that during normal one-leg standing). This posture increased both the hip adduction angle and external adduction moment at the hip and knee joint, although muscle activities were not increased. Our findings suggest that coexistence of an increased adduction moment at the hip and knee joints with an excessive hip adduction angle lead to an increase in ITB hardness. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Where is your arm? Variations in proprioception across space and tasks.

    PubMed

    Fuentes, Christina T; Bastian, Amy J

    2010-01-01

    The sense of limb position is crucial for movement control and environmental interactions. Our understanding of this fundamental proprioceptive process, however, is limited. For example, little is known about the accuracy of arm proprioception: Does it vary with changes in arm configuration, since some peripheral receptors are engaged only when joints move toward extreme angles? Are these variations consistent across different tasks? Does proprioceptive ability change depending on what we try to localize (e.g., fingertip position vs. elbow angle)? We used a robot exoskeleton to study proprioception in 14 arm configurations across three tasks, asking healthy subjects to 1) match a pointer to elbow angles after passive movements, 2) match a pointer to fingertip positions after passive movements, and 3) actively match their elbow angle to a pointer. Across all three tasks, subjects overestimated more extreme joint positions; this may be due to peripheral sensory signals biasing estimates as a safety mechanism to prevent injury. We also found that elbow angle estimates were more precise when used to judge fingertip position versus directly reported, suggesting that the brain has better access to limb endpoint position than joint angles. Finally, precision of elbow angle estimates improved in active versus passive movements, corroborating work showing that efference copies of motor commands and alpha-gamma motor neuron coactivation contribute to proprioceptive estimates. In sum, we have uncovered fundamental aspects of normal proprioceptive processing, demonstrating not only predictable biases that are dependent on joint configuration and independent of task but also improved precision when integrating information across joints.

  7. Reducing Bolt Preload Variation with Angle-of-Twist Bolt Loading

    NASA Technical Reports Server (NTRS)

    Thompson, Bryce; Nayate, Pramod; Smith, Doug; McCool, Alex (Technical Monitor)

    2001-01-01

    Critical high-pressure sealing joints on the Space Shuttle reusable solid rocket motor require precise control of bolt preload to ensure proper joint function. As the reusable solid rocket motor experiences rapid internal pressurization, correct bolt preloads maintain the sealing capability and structural integrity of the hardware. The angle-of-twist process provides the right combination of preload accuracy, reliability, process control, and assembly-friendly design. It improves significantly over previous methods. The sophisticated angle-of-twist process controls have yielded answers to all discrepancies encountered while the simplicity of the root process has assured joint preload reliability.

  8. Reliability of the standard goniometry and diagrammatic recording of finger joint angles: a comparative study with healthy subjects and non-professional raters.

    PubMed

    Macionis, Valdas

    2013-01-09

    Diagrammatic recording of finger joint angles by using two criss-crossed paper strips can be a quick substitute to the standard goniometry. As a preliminary step toward clinical validation of the diagrammatic technique, the current study employed healthy subjects and non-professional raters to explore whether reliability estimates of the diagrammatic goniometry are comparable with those of the standard procedure. The study included two procedurally different parts, which were replicated by assigning 24 medical students to act interchangeably as 12 subjects and 12 raters. A larger component of the study was designed to compare goniometers side-by-side in measurement of finger joint angles varying from subject to subject. In the rest of the study, the instruments were compared by parallel evaluations of joint angles similar for all subjects in a situation of simulated change of joint range of motion over time. The subjects used special guides to position the joints of their left ring finger at varying angles of flexion and extension. The obtained diagrams of joint angles were converted to numerical values by computerized measurements. The statistical approaches included calculation of appropriate intraclass correlation coefficients, standard errors of measurements, proportions of measurement differences of 5 or less degrees, and significant differences between paired observations. Reliability estimates were similar for both goniometers. Intra-rater and inter-rater intraclass correlation coefficients ranged from 0.69 to 0.93. The corresponding standard errors of measurements ranged from 2.4 to 4.9 degrees. Repeated measurements of a considerable number of raters fell within clinically non-meaningful 5 degrees of each other in proportions comparable with a criterion value of 0.95. Data collected with both instruments could be similarly interpreted in a simulated situation of change of joint range of motion over time. The paper goniometer and the standard goniometer can be used interchangeably by non-professional raters for evaluation of normal finger joints. The obtained results warrant further research to assess clinical performance of the paper strip technique.

  9. Reliability of the standard goniometry and diagrammatic recording of finger joint angles: a comparative study with healthy subjects and non-professional raters

    PubMed Central

    2013-01-01

    Background Diagrammatic recording of finger joint angles by using two criss-crossed paper strips can be a quick substitute to the standard goniometry. As a preliminary step toward clinical validation of the diagrammatic technique, the current study employed healthy subjects and non-professional raters to explore whether reliability estimates of the diagrammatic goniometry are comparable with those of the standard procedure. Methods The study included two procedurally different parts, which were replicated by assigning 24 medical students to act interchangeably as 12 subjects and 12 raters. A larger component of the study was designed to compare goniometers side-by-side in measurement of finger joint angles varying from subject to subject. In the rest of the study, the instruments were compared by parallel evaluations of joint angles similar for all subjects in a situation of simulated change of joint range of motion over time. The subjects used special guides to position the joints of their left ring finger at varying angles of flexion and extension. The obtained diagrams of joint angles were converted to numerical values by computerized measurements. The statistical approaches included calculation of appropriate intraclass correlation coefficients, standard errors of measurements, proportions of measurement differences of 5 or less degrees, and significant differences between paired observations. Results Reliability estimates were similar for both goniometers. Intra-rater and inter-rater intraclass correlation coefficients ranged from 0.69 to 0.93. The corresponding standard errors of measurements ranged from 2.4 to 4.9 degrees. Repeated measurements of a considerable number of raters fell within clinically non-meaningful 5 degrees of each other in proportions comparable with a criterion value of 0.95. Data collected with both instruments could be similarly interpreted in a simulated situation of change of joint range of motion over time. Conclusions The paper goniometer and the standard goniometer can be used interchangeably by non-professional raters for evaluation of normal finger joints. The obtained results warrant further research to assess clinical performance of the paper strip technique. PMID:23302419

  10. Joint kinematics of surgeons during lumbar pedicle screw placement.

    PubMed

    Park, Jeong-Yoon; Kim, Kyung-Hyun; Kuh, Sung-Uk; Chin, Dong-Kyu; Kim, Keun-Su; Cho, Yong-Eun

    2016-12-01

    A surgical robot for spine surgery has recently been developed. The objective is to assess the joint kinematics of the surgeon during spine surgery. We enrolled 18 spine surgeons, who each performed pedicle screw placement, and used an optoelectronic motion analysis system. Using three-dimensional (3D) motion images, distance changes in five joints and angle changes in six joints were calculated during surgery. Distance fluctuations increased gradually from the proximal to the distal joint. Angle fluctuations were largest at the distal point but did not gradually increase, and the elbow showed the second largest fluctuation. Changes along the X axis were larger than those of the Y and Z axes. The distances gradually increased from proximal portions of the body to the hand. In angle changes, the elbow was most dynamic during pedicle screw placement. The surgeons' whole joints carry out a harmonic role during lumbar pedicle screw placement. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  11. STS-76 Atlantis, Orbiter Vehicle (OV) 104, crew insignia

    NASA Image and Video Library

    1995-11-01

    STS076-S-001 (November 1995) --- The STS-76 crew patch depicts the space shuttle Atlantis and Russia's Mir Space Station as the space ships prepare for a rendezvous and docking. The "Spirit of 76," an era of new beginnings, is represented by the space shuttle rising through the circle of 13 stars in the Betsy Ross flag. STS-76 begins a new period of international cooperation in space exploration with the first shuttle transport of a United States astronaut, Shannon W. Lucid, to the Mir Space Station for extended joint space research. Frontiers for future exploration are represented by stars and the planets. The three gold trails and the ring of stars in union form the astronaut logo. Two suited extravehicular activity (EVA) crew members in the outer ring represent the first EVA during Shuttle-Mir docked operations. The EVA objectives are to install science experiments on the Mir exterior and to develop procedures for future EVA's on the International Space Station. The surnames of the crew members encircle the patch: Kevin P. Chilton, mission commander; Richard A. Searfoss, pilot; Ronald M. Sega, Michael R. ( Rich) Clifford, Linda M. Godwin and Lucid, all mission specialists. This patch was designed by Brandon Clifford, age 12, and the crew members of STS-76. The NASA insignia design for space shuttle flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the forms of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, the change will be publicly announced. Photo credit: NASA

  12. A Pilot Model for the NASA Simplified Aid for EVA Rescue (SAFER) (Single-Axis Pitch Task)

    NASA Astrophysics Data System (ADS)

    Handley, Patrick Mark

    This thesis defines, tests, and validates a descriptive pilot model for a single-axis pitch control task of the Simplified Aid for EVA Rescue (SAFER). SAFER is a small propulsive jetpack used by astronauts for self-rescue. Pilot model research supports development of improved self-rescue strategies and technologies through insights into pilot behavior.This thesis defines a multi-loop pilot model. The innermost loop controls the hand controller, the middle loop controls pitch rate, and the outer loop controls pitch angle. A human-in-the-loop simulation was conducted to gather data from a human pilot. Quantitative and qualitative metrics both indicate that the model is an acceptable fit to the human data. Fuel consumption was nearly identical; time to task completion matched very well. There is some evidence that the model responds faster to initial pitch rates than the human, artificially decreasing the model's time to task completion. This pilot model is descriptive, not predictive, of the human pilot. Insights are made into pilot behavior from this research. Symmetry implies that the human responds to positive and negative initial conditions with the same strategy. The human pilot appears indifferent to pitch angles within 0.5 deg, coasts at a constant pitch rate 1.09 deg/s, and has a reaction delay of 0.1 s.

  13. Effects of footwear on lead limb knee and ankle joint kinematics in a fast bowler with a history of posterior ankle joint impingement-a case report.

    PubMed

    Bishop, Chris; Bartold, Simon; Thewlis, Dominic

    2013-11-01

    This case study reports the kinematic effect of 2 different cricket shoes on a fast bowler who reports a history of posterior ankle joint impingement. The participant bowled 6 trials in 2 pairs of cricket shoes. The 3-dimensional kinematics of the joints of the front leg was quantified during stance phase of the delivery stride. Wearing the high-cut shoe resulted in the ankle being 7.7-degree angle more plantarflexed at initial contact compared with the low-cut shoe. Again, when wearing the high-cut shoe compared with the low-cut shoe, the ankle joint was 15.5-degree angle more adducted and the knee was 4.1-degree angle less externally rotated at initial contact. This case study identifies the bowler's preferred shoe (high-cut shoe) as a potential contributing factor to the symptoms he was experiencing.

  14. Invariant hip moment pattern while walking with a robotic hip exoskeleton

    PubMed Central

    Lewis, Cara L.; Ferris, Daniel P.

    2011-01-01

    Robotic lower limb exoskeletons hold significant potential for gait assistance and rehabilitation; however, we have a limited understanding of how people adapt to walking with robotic devices. The purpose of this study was to test the hypothesis that people reduce net muscle moments about their joints when robotic assistance is provided. This reduction in muscle moment results in a total joint moment (muscle plus exoskeleton) that is the same as the moment without the robotic assistance despite potential differences in joint angles. To test this hypothesis, eight healthy subjects trained with the robotic hip exoskeleton while walking on a force-measuring treadmill. The exoskeleton provided hip flexion assistance from approximately 33% to 53% of the gait cycle. We calculated the root mean squared difference (RMSD) between the average of data from the last 15 minutes of the powered condition and the unpowered condition. After completing three 30-minute training sessions, the hip exoskeleton provided 27% of the total peak hip flexion moment during gait. Despite this substantial contribution from the exoskeleton, subjects walked with a total hip moment pattern (muscle plus exoskeleton) that was almost identical and more similar to the unpowered condition than the hip angle pattern (hip moment RMSD 0.027, angle RMSD 0.134, p<0.001). The angle and moment RMSD were not different for the knee and ankle joints. These findings support the concept that people adopt walking patterns with similar joint moment patterns despite differences in hip joint angles for a given walking speed. PMID:21333995

  15. The Effect of Gap Angle on Tensile Strength of Preceramic Base Metal Solder Joints.

    PubMed

    Fattahi, Farnaz; Hashemi Ardakani, Zahra; Hashemi Ardakani, Maryam

    2015-12-01

    Soldering is a process commonly used in fabricating dental prosthesis. Since most soldered prosthesis fail at the solder joints; the joint strength is of utmost importance. The purpose of this study was to evaluate the effect of gap angle on the tensile strength of base metal solder joints. A total number of 40 Ni-Cr samples were fabricated according to ADA/ISO 9693 specifications for tensile test. Samples were cut at the midpoint of the bar, and were placed at the considered angles by employing an explicitly designed device. They were divided into 4 groups regarding the gap angle; Group C (control group) with parallel gap on steady distance of 0.2mm, Group 1: 10°, Group 2: 20°, and Group3: 30° gap angles. When soldered, the specimens were all tested for tensile strength using a universal testing machine at a cross-head speed of 0.5 mm/min with a preload of 10N. Kruskal-Wallis H test was used to compare tensile strength among the groups (p< 0.05). The mean tensile strength values obtained from the study groups were respectively 307.84, 391.50, 365.18, and 368.86 MPa. The tensile strength was not statistically different among the four groups in general (p≤ 0.490). Making the gap angular at the solder joints and the subsequent unsteady increase of the gap distance would not change the tensile strength of the joint.

  16. Gait cycle analysis: parameters sensitive for functional evaluation of peripheral nerve recovery in rat hind limbs.

    PubMed

    Rui, Jing; Runge, M Brett; Spinner, Robert J; Yaszemski, Michael J; Windebank, Anthony J; Wang, Huan

    2014-10-01

    Video-assisted gait kinetics analysis has been a sensitive method to assess rat sciatic nerve function after injury and repair. However, in conduit repair of sciatic nerve defects, previously reported kinematic measurements failed to be a sensitive indicator because of the inferior recovery and inevitable joint contracture. This study aimed to explore the role of physiotherapy in mitigating joint contracture and to seek motion analysis indices that can sensitively reflect motor function. Data were collected from 26 rats that underwent sciatic nerve transection and conduit repair. Regular postoperative physiotherapy was applied. Parameters regarding step length, phase duration, and ankle angle were acquired and analyzed from video recording of gait kinetics preoperatively and at regular postoperative intervals. Stride length ratio (step length of uninjured foot/step length of injured foot), percent swing of the normal paw (percentage of the total stride duration when the uninjured paw is in the air), propulsion angle (toe-off angle subtracted by midstance angle), and clearance angle (ankle angle change from toe off to midswing) decreased postoperatively comparing with baseline values. The gradual recovery of these measurements had a strong correlation with the post-nerve repair time course. Ankle joint contracture persisted despite rigorous physiotherapy. Parameters acquired from a 2-dimensional motion analysis system, that is, stride length ratio, percent swing of the normal paw, propulsion angle, and clearance angle, could sensitively reflect nerve function impairment and recovery in the rat sciatic nerve conduit repair model despite the existence of joint contractures.

  17. Comparison of goniometric measurements of the stifle joint in seven breeds of normal dogs.

    PubMed

    Sabanci, Seyyid S; Ocal, Mehmet K

    2016-05-18

    To compare the goniometric measurements of the stifle joint in seven dog breeds, and to determine the relationship among goniometric measurements, age, body weight, tibial plateau angle, crus and thigh circumferences, and widths of quadriceps, hamstring, and gastrocnemius muscles in healthy dogs. We used a total of 126 dogs from seven different breeds, and recorded the angle of the stifle joint at standing, extension, and flexion together with the range of motion (ROM). The circumferences of the thigh and crus were also measured. Mediolateral radiographic projections of the tibia and the femur were obtained from the dogs, and the tibial plateau angles, as well as the widths of quadriceps, hamstring, and gastrocnemius muscles, were measured from these images. Neither the sex of the dog nor the differences in the side measured affected the goniometric measurements of the stifle joint. The standing, extension, flexion, and ROM angles were different among the breeds. The standard deviations of the standing and extension angles were small relative to their means, but the standard deviations of the flexion angle were large relative to their means in all breeds. Body weight and muscular measurements were the most influential factors on the stifle flexion angle and ROM. Breed differences, body weights, and muscle mass should be taken into consideration during assessment of the stifle function using goniometric measurements.

  18. The influence of lower leg configurations on muscle force variability.

    PubMed

    Ofori, Edward; Shim, Jaeho; Sosnoff, Jacob J

    2018-04-11

    The maintenance of steady contractions is required in many daily tasks. However, there is little understanding of how various lower limb configurations influence the ability to maintain force. The purpose of the current investigation was to examine the influence of joint angle on various lower-limb constant force contractions. Nineteen adults performed knee extension, knee flexion, and ankle plantarflexion isometric force contractions to 11 target forces, ranging from 2 to 95% maximal voluntary contraction (MVC) at 2 angles. Force variability was quantified with mean force, standard deviation, and the coefficient of variation of force output. Non-linearities in force output were quantified with approximate entropy. Curve fitting analyses were performed on each set of data from each individual across contractions to further examine whether joint angle interacts with global functions of lower-limb force variability. Joint angle had significant effects on the model parameters used to describe the force-variability function for each muscle contraction (p < 0.05). Regularities in force output were more explained by force level in smaller angle conditions relative to the larger angle conditions (p < 0.05). The findings support the notion that limb configuration influences the magnitude and regularities in force production. Biomechanical factors, such as joint angle, along with neurophysiological factors should be considered together in the discussion of the dynamics of constant force production. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Determining Metacarpophalangeal Flexion Angle Tolerance for Reliable Volumetric Joint Space Measurements by High-resolution Peripheral Quantitative Computed Tomography.

    PubMed

    Tom, Stephanie; Frayne, Mark; Manske, Sarah L; Burghardt, Andrew J; Stok, Kathryn S; Boyd, Steven K; Barnabe, Cheryl

    2016-10-01

    The position-dependence of a method to measure the joint space of metacarpophalangeal (MCP) joints using high-resolution peripheral quantitative computed tomography (HR-pQCT) was studied. Cadaveric MCP were imaged at 7 flexion angles between 0 and 30 degrees. The variability in reproducibility for mean, minimum, and maximum joint space widths and volume measurements was calculated for increasing degrees of flexion. Root mean square coefficient of variance values were < 5% under 20 degrees of flexion for mean, maximum, and volumetric joint spaces. Values for minimum joint space width were optimized under 10 degrees of flexion. MCP joint space measurements should be acquired at < 10 degrees of flexion in longitudinal studies.

  20. The Orientation and Variation of the Acromioclavicular Ligament: An Anatomic Study.

    PubMed

    Nakazawa, Masataka; Nimura, Akimoto; Mochizuki, Tomoyuki; Koizumi, Masahiro; Sato, Tatsuo; Akita, Keiichi

    2016-10-01

    Several biomechanical studies have shown that the acromioclavicular (AC) ligament prevents posterior translation of the clavicle in the horizontal plane. In anatomy textbooks, however, the AC ligament is illustrated as running straight across the AC joint surface. The AC ligament does not run straight across the joint surface, and the configuration of the AC ligament may vary. Descriptive laboratory study. We used 16 pairs of shoulder girdles in this study. After identifying the AC ligament, we macroscopically investigated the orientation and attachment of the ligament and measured the angle between the ligament and the line perpendicular to the AC joint surface by using a digital goniometer. In addition, the AC joint inclination angle was measured, and the Spearman rank correlation coefficient between the joint inclination and the ligament angle was calculated. Finally, we sought to classify the AC ligament based on its configuration. Of the 16 pairs of specimens, 3 pairs of shoulders were histologically examined. The AC ligament was divided into 2 parts: a bundle at the superoposterior (SP) part and a bundle at the anteroinferior (AI) part of the joint. The well-developed SP bundle was consistent and ran obliquely at an average ± SD 30° ± 6° in relation to the AC joint surface, from the anterior part of the acromion to the posterior part of the distal clavicle. The joint inclination was 70° ± 12°, and a negative moderate correlation was found between the joint inclination and the ligament angle (P = .02, r = -0.46). In comparison, the AI bundle was thin and narrow, and it could be categorized into 3 types according to its various configurations. The AC ligament could be separated into the SP bundle and the AI bundle. The SP bundle ran posteriorly toward the distal clavicle from the acromion at an average angle of 30° to the joint surface. Anatomic reconstruction, based on the current findings in combination with findings regarding the coracoclavicular ligament, could facilitate improved outcome in the treatment of AC joint disruption. © 2016 The Author(s).

  1. Anatomy of the proximal tibiofibular joint and interosseous membrane, and their contributions to joint kinematics in below-knee amputations.

    PubMed

    Burkhart, Timothy A; Asa, Benjamin; Payne, Michael W C; Johnson, Marjorie; Dunning, Cynthia E; Wilson, Timothy D

    2015-02-01

    A result of below-knee amputations (BKAs) is abnormal motion that occurs about the proximal tibiofibular joint (PTFJ). While it is known that joint morphology may play a role in joint kinematics, this is not well understood with respect to the PTFJ. Therefore, the purposes of this study were: (i) to characterize the anatomy of the PTFJ and statistically analyze the relationships within the joint; and (ii) to determine the relationships between the PTFJ characteristics and the degree of movement of the fibula in BKAs. The PTFJ was characterized in 40 embalmed specimens disarticulated at the knee, and amputated through the mid-tibia and fibula. Four metrics were measured: inclination angle (angle at which the fibula articulates with the tibia); tibial and fibular articular surface areas; articular surface concavity and shape. The specimens were mechanically tested by applying a load through the biceps femoris tendon, and the degree of motion about the tibiofibular joint was measured. Regression analyses were performed to determine the relationships between the different PTFJ characteristics and the magnitude of fibular abduction. Finally, Pearson correlation analyses were performed on inclination angle and surface area vs. fibular kinematics. The inclination angle measured on the fibula was significantly greater than that measured on the tibia. This difference may be attributed to differences in concavity of the tibial and fibular surfaces. Surface area measured on the tibia and fibula was not statistically different. The inclination angle was not statistically correlated to surface area. However, when correlating fibular kinematics in BKAs, inclination angle was positively correlated to the degree of fibular abduction, whereas surface area was negatively correlated. The characteristics of the PTFJ dictate the amount of fibular movement, specifically, fibular abduction in BKAs. Predicting BKA complications based on PTFJ characteristics can lead to recommendations in treatment. © 2014 Anatomical Society.

  2. Movement within foot and ankle joint in children with spastic cerebral palsy: a 3-dimensional ultrasound analysis of medial gastrocnemius length with correction for effects of foot deformation

    PubMed Central

    2013-01-01

    Background In spastic cerebral palsy (SCP), a limited range of motion of the foot (ROM), limits gait and other activities. Assessment of this limitation of ROM and knowledge of active mechanisms is of crucial importance for clinical treatment. Methods For a comparison between spastic cerebral palsy (SCP) children and typically developing children (TD), medial gastrocnemius muscle-tendon complex length was assessed using 3-D ultrasound imaging techniques, while exerting externally standardized moments via a hand-held dynamometer. Exemplary X-ray imaging of ankle and foot was used to confirm possible TD-SCP differences in foot deformation. Results SCP and TD did not differ in normalized level of excitation (EMG) of muscles studied. For given moments exerted in SCP, foot plate angles were all more towards plantar flexion than in TD. However, foot plate angle proved to be an invalid estimator of talocrural joint angle, since at equal foot plate angles, GM muscle-tendon complex was shorter in SCP (corresponding to an equivalent of 1 cm). A substantial difference remained even after normalizing for individual differences in tibia length. X-ray imaging of ankle and foot of one SCP child and two typically developed adults, confirmed that in SCP that of total footplate angle changes (0-4 Nm: 15°), the contribution of foot deformation to changes in foot plate angle (8) were as big as the contribution of dorsal flexion at the talocrural joint (7°). In typically developed individuals there were relatively smaller contributions (10 -11%) by foot deformation to changes in foot plate angle, indicating that the contribution of talocrural angle changes was most important. Using a new estimate for position at the talocrural joint (the difference between GM muscle–tendon complex length and tibia length, GM relative length) removed this effect, thus allowing more fair comparison of SCP and TD data. On the basis of analysis of foot plate angle and GM relative length as a function of externally applied moments, it is concluded that foot plate angle measurements underestimate angular changes at the talocrural joint when moving in dorsal flexion direction and overestimate them when moving in plantar flexion direction, with concomitant effects on triceps surae lengths. Conclusions In SCP children diagnosed with decreased dorsal ROM of the ankle joint, the commonly used measure (i.e. range of foot plate angle), is not a good estimate of rotation at the talocrural joint. since a sizable part of the movement of the foot (or foot plate) derives from internal deformation of the foot. PMID:24364826

  3. Radiologic changes of ankle joint after total knee arthroplasty.

    PubMed

    Lee, Jung Hee; Jeong, Bi O

    2012-12-01

    The authors noticed that ankle joint osteoarthritis was not uncommon when lower extremity malalignment, such as a knee varus deformity, was present as a result of severe osteoarthritis of the knee. The purpose of this study was to analyze radiologic changes of the ankle joint after total knee arthroplasty. This study included 142 cases in 110 patients who underwent total knee arthroplasty and were followed for at least 3 years. The varus knee group included 128 cases and the valgus knee group included 14 cases. On anteroposterior standing lower extremity radiographs, varus and valgus angles of the knee were measured preoperatively and at the last follow-up. The angle between the ground surface and the distal tibial plafond as well as the upper talus was also measured. In addition, tibial anterior surface angle, talar tilt, space between the medial malleolar distal tip and the medial articular surface of the talus, and medial tibiotalar joint space of the ankle joint were measured. Out of 142 cases, 50 (35.2%) had arthritis in the ankle before total knee arthroplasty and 31 (21.8%) had newly developed or progressive arthritis after surgery. In particular, the varus knee group demonstrated statistically significant differences in preoperative varus deformity, preoperative talar tilt, and postoperative correction angle between the cases that developed or had progressive arthritis and those that did not show any changes (p < .05). After total knee arthroplasty, arthritis developed or progressed in the ankle of many cases radiographically. In particular, when the preoperative talar tilt increased medial to the ankle or the postoperative correction angle was large, the incidence of arthritis in the ankle joint increased. The authors recommend more cautious follow-up on the symptoms of the ankle joint after total knee arthroplasty.

  4. Joint power and kinematics coordination in load carriage running: Implications for performance and injury.

    PubMed

    Liew, Bernard X W; Morris, Susan; Netto, Kevin

    2016-06-01

    Investigating the impact of incremental load magnitude on running joint power and kinematics is important for understanding the energy cost burden and potential injury-causative mechanisms associated with load carriage. It was hypothesized that incremental load magnitude would result in phase-specific, joint power and kinematic changes within the stance phase of running, and that these relationships would vary at different running velocities. Thirty-one participants performed running while carrying three load magnitudes (0%, 10%, 20% body weight), at three velocities (3, 4, 5m/s). Lower limb trajectories and ground reaction forces were captured, and global optimization was used to derive the variables. The relationships between load magnitude and joint power and angle vectors, at each running velocity, were analyzed using Statistical Parametric Mapping Canonical Correlation Analysis. Incremental load magnitude was positively correlated to joint power in the second half of stance. Increasing load magnitude was also positively correlated with alterations in three dimensional ankle angles during mid-stance (4.0 and 5.0m/s), knee angles at mid-stance (at 5.0m/s), and hip angles during toe-off (at all velocities). Post hoc analyses indicated that at faster running velocities (4.0 and 5.0m/s), increasing load magnitude appeared to alter power contribution in a distal-to-proximal (ankle→hip) joint sequence from mid-stance to toe-off. In addition, kinematic changes due to increasing load influenced both sagittal and non-sagittal plane lower limb joint angles. This study provides a list of plausible factors that may influence running energy cost and injury risk during load carriage running. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. [X-ray characteristics of sacroiliac joint disorders and its clinical significance].

    PubMed

    Shi, Ning-Ning; Shen, Guo-Quan; He, Shui-Yong; Guo, Ru-bao

    2013-02-01

    To study the X-ray characteristics of sacroiliac joint disorders and its clinical significance,so as to provide clinical diagnosis basis for Tuina treatment of sacroiliac joint disorder. From July 2009 to March 2011,104 patients with sacroiliac joint disorder were reviewed,including 64 males and 40 females,ranging in age from 18 to 81 years, with an average of (45.39 +/- 1.30) years. The duration of the disease ranged from 1 to 144 months,with an average of (12.64 +/- 2.19) months. One hundred and four pelvic plain films and 97 lumbar spine lateral films of the patients with sacroiliac joint disorder were taken. On the lateral X-ray of lumbar,the sacral horizontal angles (lumbosacral angle) were measured; and on the X-ray of pelvis,the vertical distance of two side iliac crest (iliac crest difference), the distance from lateral border to medial margin of two hips (hip width),the clip angle between sacral spin connection and vertical axis were measured,and then the data were analyzed. The mean difference of iliac crest was (10.34+/-0.73) mm; the mean width difference of hip'was (6.73+/-1.01) mm; and the mean difference of the iliac crest was larger than that of mean difference of hip (P<0.01). The occurrence rate of inequal width of hip was higher(P<0.01). The mean abnormal lumbosacral angle was (7.29 +/- 1.86) degrees,and the mean angle of sacral crest tilting to left or right was (3.18 +/- 0.47) degrees; the mean abnormal lumbosacral angle was larger than that of angle of sacral crest tilting to left or right (P<0.01), and the occurrence rate of sacral crest tilting to left or right was higher

  6. Correlation between extension-block K-wire insertion angle and postoperative extension loss in mallet finger fracture.

    PubMed

    Lee, S K; Kim, Y H; Moon, K H; Choy, W S

    2018-02-01

    Extension-block pinning represents a simple and reliable surgical technique. Although this procedure is commonly performed successfully, some patients develop postoperative extension loss. To date, the relationship between extension-block Kirschner wire (K-wire) insertion angle and postoperative extension loss in mallet finger fracture remains unclear. We aimed to clarify this relationship and further evaluate how various operative and non-operative factors affect postoperative extension loss after extension-block pinning for mallet finger fracture. A retrospective study was conducted to investigate a relationship between extension block K-wire insertion angle and postoperative extension loss. The inclusion criteria were: (1) a dorsal intra-articular fracture fragment involving 30% of the base of the distal phalanx with or without volar subluxation of the distal phalanx; and (2) <3 weeks delay from the injury without treatment. Extension-block K-wire insertion angle and fixation angle of the distal interphalangeal (DIP) joint were assessed using lateral radiograph at immediate postoperative time. Postoperative extension loss was assessed by using lateral radiograph at latest follow-up. Extension-block K-wire insertion angle was defined as the acute angle between extension block K-wire and longitudinal axis of middle phalangeal head. DIP joint fixation angle was defined as the acute angle between the distal phalanx and middle phalanx longitudinal axes. Seventy-five patients were included. The correlation analysis revealed that extension-block K-wire insertion angle had a negative correlation with postoperative extension loss, whereas fracture size and time to operation had a positive correlation (correlation coefficient for extension block K-wire angle: -0.66, facture size: +0.67, time to operation: +0.60). When stratifying patients in terms of negative and positive fixation angle of the DIP joint, the independent t-test showed that mean postoperative extension loss is -3.67° and +4.54° (DIP joint fixation angles of <0° and ≥0°, respectively, P=0.024). When stratifying patients in terms of extension-block K-wire insertion angle (30°, 30°-40°, >40°), ANOVA showed significantly less postoperative extension loss for higher insertion angles (>40°) than for medium insertion angles (30°-40°). Mean postoperative extension loss difference between higher insertion angle (>40°) and medium insertion angle (30°-40°) was 11° (P=0.002). Using an insertion angle of the extension-block K-wire of 40°-45° and a slightly hyperextended position of the DIP joint may help reducing postoperative extension loss. Therapeutic level III. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. Olivas participating in EVA during Expedition/STS-117 Joint Operations

    NASA Image and Video Library

    2007-06-15

    ISS015-E-12938 (15 June 2007) --- Anchored to a foot restraint on Space Shuttle Atlantis' remote manipulator system (RMS) robotic arm, astronaut John "Danny" Olivas, STS-117 mission specialist, moves toward Atlantis' port orbital maneuvering system (OMS) pod that was damaged during the shuttle's climb to orbit. During the repair, Olivas pushed the turned up portion of the thermal blanket back into position, used a medical stapler to secure the layers of the blanket, and pinned it in place against adjacent thermal tile.

  8. Multi angle laser light scattering evaluation of field exposed thermoplastic photovoltaic encapsulant materials

    DOE PAGES

    Kempe, Michael D.; Miller, David C.; Wohlgemuth, John H.; ...

    2016-01-08

    As creep of polymeric materials is potentially a safety concern for photovoltaic modules, the potential for module creep has become a significant topic of discussion in the development of IEC 61730 and IEC 61215. To investigate the possibility of creep, modules were constructed, using several thermoplastic encapsulant materials, into thin-film mock modules and deployed in Mesa, Arizona. The materials examined included poly(ethylene)-co-vinyl acetate (EVA, including formulations both cross-linked and with no curing agent), polyethylene/polyoctene copolymer (PO), poly(dimethylsiloxane) (PDMS), polyvinyl butyral (PVB), and thermoplastic polyurethane (TPU). The absence of creep in this experiment is attributable to several factors of which themore » most notable one was the unexpected cross-linking of an EVA formulation without a cross-linking agent. It was also found that some materials experienced both chain scission and cross-linking reactions, sometimes with a significant dependence on location within a module. The TPU and EVA samples were found to degrade with cross-linking reactions dominating over chain scission. In contrast, the PO materials degraded with chain scission dominating over cross-linking reactions. Furthermore, we found no significant indications that viscous creep is likely to occur in fielded modules capable of passing the qualification tests, we note that one should consider how a polymer degrades, chain scission or cross-linking, in assessing the suitability of a thermoplastic polymer in terrestrial photovoltaic applications.« less

  9. Effect of Rare Earth Ions on the Properties of Composites Composed of Ethylene Vinyl Acetate Copolymer and Layered Double Hydroxides

    PubMed Central

    Wang, Lili; Li, Bin; Zhao, Xiaohong; Chen, Chunxia; Cao, Jingjing

    2012-01-01

    Background The study on the rare earth (RE)-doped layered double hydroxides (LDHs) has received considerable attention due to their potential applications in catalysts. However, the use of RE-doped LDHs as polymer halogen-free flame retardants was seldom investigated. Furthermore, the effect of rare earth elements on the hydrophobicity of LDHs materials and the compatibility of LDHs/polymer composite has seldom been reported. Methodology/Principal Findings The stearate sodium surface modified Ni-containing LDHs and RE-doped Ni-containing LDHs were rapidly synthesized by a coprecipitation method coupled with the microwave hydrothermal treatment. The influences of trace amounts of rare earth ions La, Ce and Nd on the amount of water molecules, the crystallinity, the morphology, the hydrophobicity of modified Ni-containing LDHs and the adsorption of modifier in the surface of LDHs were investigated by TGA, XRD, TEM, contact angle and IR, respectively. Moreover, the effects of the rare earth ions on the interfacial compatibility, the flame retardancy and the mechanical properties of ethylene vinyl acetate copolymer (EVA)/LDHs composites were also explored in detail. Conclusions/Significance S-Ni0.1MgAl-La displayed more uniform dispersion and better interfacial compatibility in EVA matrix compared with other LDHs. Furthermore, the S-Ni0.1MgAl-La/EVA composite showed the best fire retardancy and mechanical properties in all composites. PMID:22693627

  10. Design and control of a prosthetic leg for above-knee amputees operated in semi-active and active modes

    NASA Astrophysics Data System (ADS)

    Park, Jinhyuk; Yoon, Gun-Ha; Kang, Je-Won; Choi, Seung-Bok

    2016-08-01

    This paper proposes a new prosthesis operated in two different modes; the semi-active and active modes. The semi-active mode is achieved from a flow mode magneto-rheological (MR) damper, while the active mode is obtained from an electronically commutated (EC) motor. The knee joint part of the above knee prosthesis is equipped with the MR damper and EC motor. The MR damper generates reaction force by controlling the field-dependent yield stress of the MR fluid, while the EC motor actively controls the knee joint angle during gait cycle. In this work, the MR damper is designed as a two-end type flow mode mechanism without air chamber for compact size. On other hand, in order to predict desired knee joint angle to be controlled by EC motor, a polynomial prediction function using a statistical method is used. A nonlinear proportional-derivative controller integrated with the computed torque method is then designed and applied to both MR damper and EC motor to control the knee joint angle. It is demonstrated that the desired knee joint angle is well achieved in different walking velocities on the ground ground.

  11. Gender-related differences in lower limb alignment, range of joint motion, and the incidence of sports injuries in Japanese university athletes.

    PubMed

    Mitani, Yasuhiro

    2017-01-01

    [Purpose] To investigate the gender-related differences in lower limb alignment, range of joint motion, and history of lower limb sports injuries in Japanese university athletes. [Subjects and Methods] The subjects were 224 Japanese university athletes (154 males and 70 females). The quadriceps angle (Q-angle), arch height index, and ranges of internal and external rotation of the hip joints were measured. History of lower limb sports injury was surveyed using a questionnaire. [Results] Females had a significantly higher Q-angle and hip joint internal rotation angle and a significantly lower arch height index than males. The survey revealed that a significantly higher proportion of females had a history of lower limb sports injuries, and that the proportion of those with a history of foot/ankle injuries was particularly high. [Conclusion] These results suggested that females experience more lower limb sports injuries than males, and that a large proportion of these injuries involve the foot/ankle. Reduced lower limb alignment and increased range of joint motion in females may be risk factors for injury because they lead to increased physical stress being exerted on the lower legs during sporting activities.

  12. IMU-Based Joint Angle Measurement for Gait Analysis

    PubMed Central

    Seel, Thomas; Raisch, Jorg; Schauer, Thomas

    2014-01-01

    This contribution is concerned with joint angle calculation based on inertial measurement data in the context of human motion analysis. Unlike most robotic devices, the human body lacks even surfaces and right angles. Therefore, we focus on methods that avoid assuming certain orientations in which the sensors are mounted with respect to the body segments. After a review of available methods that may cope with this challenge, we present a set of new methods for: (1) joint axis and position identification; and (2) flexion/extension joint angle measurement. In particular, we propose methods that use only gyroscopes and accelerometers and, therefore, do not rely on a homogeneous magnetic field. We provide results from gait trials of a transfemoral amputee in which we compare the inertial measurement unit (IMU)-based methods to an optical 3D motion capture system. Unlike most authors, we place the optical markers on anatomical landmarks instead of attaching them to the IMUs. Root mean square errors of the knee flexion/extension angles are found to be less than 1° on the prosthesis and about 3° on the human leg. For the plantar/dorsiflexion of the ankle, both deviations are about 1°. PMID:24743160

  13. Optical Enhancement of Exoskeleton-Based Estimation of Glenohumeral Angles

    PubMed Central

    Cortés, Camilo; Unzueta, Luis; de los Reyes-Guzmán, Ana; Ruiz, Oscar E.; Flórez, Julián

    2016-01-01

    In Robot-Assisted Rehabilitation (RAR) the accurate estimation of the patient limb joint angles is critical for assessing therapy efficacy. In RAR, the use of classic motion capture systems (MOCAPs) (e.g., optical and electromagnetic) to estimate the Glenohumeral (GH) joint angles is hindered by the exoskeleton body, which causes occlusions and magnetic disturbances. Moreover, the exoskeleton posture does not accurately reflect limb posture, as their kinematic models differ. To address the said limitations in posture estimation, we propose installing the cameras of an optical marker-based MOCAP in the rehabilitation exoskeleton. Then, the GH joint angles are estimated by combining the estimated marker poses and exoskeleton Forward Kinematics. Such hybrid system prevents problems related to marker occlusions, reduced camera detection volume, and imprecise joint angle estimation due to the kinematic mismatch of the patient and exoskeleton models. This paper presents the formulation, simulation, and accuracy quantification of the proposed method with simulated human movements. In addition, a sensitivity analysis of the method accuracy to marker position estimation errors, due to system calibration errors and marker drifts, has been carried out. The results show that, even with significant errors in the marker position estimation, method accuracy is adequate for RAR. PMID:27403044

  14. In Vivo Measurement of Glenohumeral Joint Contact Patterns

    NASA Astrophysics Data System (ADS)

    Bey, Michael J.; Kline, Stephanie K.; Zauel, Roger; Kolowich, Patricia A.; Lock, Terrence R.

    2009-12-01

    The objectives of this study were to describe a technique for measuring in-vivo glenohumeral joint contact patterns during dynamic activities and to demonstrate application of this technique. The experimental technique calculated joint contact patterns by combining CT-based 3D bone models with joint motion data that were accurately measured from biplane x-ray images. Joint contact patterns were calculated for the repaired and contralateral shoulders of 20 patients who had undergone rotator cuff repair. Significant differences in joint contact patterns were detected due to abduction angle and shoulder condition (i.e., repaired versus contralateral). Abduction angle had a significant effect on the superior/inferior contact center position, with the average joint contact center of the repaired shoulder 12.1% higher on the glenoid than the contralateral shoulder. This technique provides clinically relevant information by calculating in-vivo joint contact patterns during dynamic conditions and overcomes many limitations associated with conventional techniques for quantifying joint mechanics.

  15. Inflight - STS-11/41B (MISSION CONTROL CENTER [MCC]) - JSC

    NASA Image and Video Library

    1984-02-08

    S84-26503 (7 Feb 1984) --- This wide angle, overall view of activity in the mission operations control room in the Johnson Space Center?s mission control center, was photographed during the first even non-tethered extravehicular activity (EVA) in space. The large MOCR monitor and those at individual consoles feed to ground controllers the spectacular scene of Astronaut Bruce McCandless II ?suspended? I space above the blue and white Earth. The scene was photographed at 7:30 a.m. (CST), February 7, 1984.

  16. Detection of Underwater UXOs in Mud

    DTIC Science & Technology

    2013-04-01

    the system can operate in a water depth up to 30 m. 4 1.3 Outline of Report The report is structured as follows: Section 2 provides an...and tilt angle can be modified, such that the system can operate in a water depth up to 30 m. Figure 2 – Data flow diagram for the MUD processing...ground-truth location. The water depth is in the range between 8 and 15 m. Figure 4 – SAS image snippets of the CMRE EVA cylinder using (a) regular

  17. Dynamic Cytology and Transcriptional Regulation of Rice Lamina Joint Development1[OPEN

    PubMed Central

    2017-01-01

    Rice (Oryza sativa) leaf angle is determined by lamina joint and is an important agricultural trait determining leaf erectness and, hence, the photosynthesis efficiency and grain yield. Genetic studies reveal a complex regulatory network of lamina joint development; however, the morphological changes, cytological transitions, and underlying transcriptional programming remain to be elucidated. A systemic morphological and cytological study reveals a dynamic developmental process and suggests a common but distinct regulation of the lamina joint. Successive and sequential cell division and expansion, cell wall thickening, and programmed cell death at the adaxial or abaxial sides form the cytological basis of the lamina joint, and the increased leaf angle results from the asymmetric cell proliferation and elongation. Analysis of the gene expression profiles at four distinct developmental stages ranging from initiation to senescence showed that genes related to cell division and growth, hormone synthesis and signaling, transcription (transcription factors), and protein phosphorylation (protein kinases) exhibit distinct spatiotemporal patterns during lamina joint development. Phytohormones play crucial roles by promoting cell differentiation and growth at early stages or regulating the maturation and senescence at later stages, which is consistent with the quantitative analysis of hormones at different stages. Further comparison with the gene expression profile of leaf inclination1, a mutant with decreased auxin and increased leaf angle, indicates the coordinated effects of hormones in regulating lamina joint. These results reveal a dynamic cytology of rice lamina joint that is fine-regulated by multiple factors, providing informative clues for illustrating the regulatory mechanisms of leaf angle and plant architecture. PMID:28500269

  18. Dynamic Cytology and Transcriptional Regulation of Rice Lamina Joint Development.

    PubMed

    Zhou, Li-Juan; Xiao, Lang-Tao; Xue, Hong-Wei

    2017-07-01

    Rice ( Oryza sativa ) leaf angle is determined by lamina joint and is an important agricultural trait determining leaf erectness and, hence, the photosynthesis efficiency and grain yield. Genetic studies reveal a complex regulatory network of lamina joint development; however, the morphological changes, cytological transitions, and underlying transcriptional programming remain to be elucidated. A systemic morphological and cytological study reveals a dynamic developmental process and suggests a common but distinct regulation of the lamina joint. Successive and sequential cell division and expansion, cell wall thickening, and programmed cell death at the adaxial or abaxial sides form the cytological basis of the lamina joint, and the increased leaf angle results from the asymmetric cell proliferation and elongation. Analysis of the gene expression profiles at four distinct developmental stages ranging from initiation to senescence showed that genes related to cell division and growth, hormone synthesis and signaling, transcription (transcription factors), and protein phosphorylation (protein kinases) exhibit distinct spatiotemporal patterns during lamina joint development. Phytohormones play crucial roles by promoting cell differentiation and growth at early stages or regulating the maturation and senescence at later stages, which is consistent with the quantitative analysis of hormones at different stages. Further comparison with the gene expression profile of leaf inclination1 , a mutant with decreased auxin and increased leaf angle, indicates the coordinated effects of hormones in regulating lamina joint. These results reveal a dynamic cytology of rice lamina joint that is fine-regulated by multiple factors, providing informative clues for illustrating the regulatory mechanisms of leaf angle and plant architecture. © 2017 American Society of Plant Biologists. All Rights Reserved.

  19. Computed tomographic method for measurement of inclination angles and motion of the sacroiliac joints in German Shepherd Dogs and Greyhounds.

    PubMed

    Saunders, Fritha C; Cave, Nick J; Hartman, Karl M; Gee, Erica K; Worth, Andrew J; Bridges, Janis P; Hartman, Angela C

    2013-09-01

    To develop an in vivo CT method to measure inclination angles and motion of the sacroiliac joints in dogs of performance breeds. 10 German Shepherd Dogs and 12 Greyhounds without signs of lumbosacral region pain or neurologic problems. CT of the ilium and sacrum was performed in flexed, neutral, and extended hind limb positions. Lines were drawn on volume-rendered images acquired in the flexed and extended positions to measure motion of the ilia relative to the sacra. Inclination angles of the synovial and ligamentous components of the sacroiliac joints were measured on transverse-plane CT images acquired at cranial and caudal locations. Coefficients of variance of measurements were calculated to determine intraobserver variability. Coefficients of variance of measurements ranged from 0.17% to 2.45%. A significantly higher amount of sacroiliac joint rotational motion was detected for German Shepherd Dogs versus Greyhounds. The cranial synovial joint component had a significantly more sagittal orientation in German Shepherd Dogs versus Greyhounds. No significant differences were detected between breeds for x- or y-axis translational motion or caudal synovial or ligamentous joint component inclination angles. The small amounts of sacroiliac joint motion detected in this study may buffer high-frequency vibrations during movement of dogs. Differences detected between breeds may be associated with the predisposition of German Shepherd Dogs to develop lumbosacral region signs of pain, although the biological importance of this finding was not determined. Future studies are warranted to compare sacroiliac joint variables between German Shepherd Dogs with and without lumbosacral region signs of pain.

  20. Monitoring Human Performance During Suited Operations: A Technology Feasibility Study Using EMU Gloves

    NASA Technical Reports Server (NTRS)

    Bekdash, Omar; Norcross, Jason; McFarland, Shane

    2015-01-01

    Mobility tracking of human subjects while conducting suited operations still remains focused on the external movement of the suit and little is known about the human movement within it. For this study, accelerometers and bend sensitive resistors were integrated into a custom carrier glove to quantify range of motion and dexterity from within the pressurized glove environment as a first stage feasibility study of sensor hardware, integration, and reporting capabilities. Sensors were also placed on the exterior of the pressurized glove to determine if it was possible to compare a glove joint angle to the anatomical joint angle of the subject during tasks. Quantifying human movement within the suit was feasible, with accelerometers clearly detecting movements in the wrist and reporting expected joint angles at maximum flexion or extension postures with repeatability of plus or minus 5 degrees between trials. Bend sensors placed on the proximal interphalangeal and distal interphalangeal joints performed less well. It was not possible to accurately determine the actual joint angle using these bend sensors, but these sensors could be used to determine when the joint was flexed to its maximum and provide a general range of mobility needed to complete a task. Further work includes additional testing with accelerometers and the possible inclusion of hardware such as magnetometers or gyroscopes to more precisely locate the joint in 3D space. We hope to eventually expand beyond the hand and glove and develop a more comprehensive suit sensor suite to characterize motion across more joints (knee, elbow, shoulder, etc.) and fully monitor the human body operating within the suit environment.

  1. Automatically Locking/Unlocking Orthotic Knee Joint

    NASA Technical Reports Server (NTRS)

    Weddendorf, Bruce

    1994-01-01

    Proposed orthotic knee joint locks and unlocks automatically, at any position within range of bend angles, without manual intervention by wearer. Includes tang and clevis, locks whenever wearer transfers weight to knee and unlocks when weight removed. Locking occurs at any angle between 45 degrees knee bend and full extension.

  2. Flexor bias of joint position in humans during spaceflight

    NASA Technical Reports Server (NTRS)

    McCall, G. E.; Goulet, C.; Boorman, G. I.; Roy, R. R.; Edgerton, V. R.

    2003-01-01

    The ability to estimate ankle and elbow joint position was tested before, during, and after a 17-day spaceflight. Subjects estimated targeted joint angles during isovelocity (IsoV) joint movements with agonist muscle groups either active or relaxed. These movements included elbow extension (EE) and elbow flexion (EF), and plantarflexion (PF) and dorsiflexion (DF) of the ankle. Subjects also estimated these joint positions while moving the dynamometer at their chosen (variable) velocity (VarV) during EE and PF. For IsoV tests, no differences were observed between active and passive movements for either the ankle or elbow. Compared with those of pre-flight test days, estimates of targeted elbow joint angles were approximately 5 degrees to 15 degrees more flexed in-flight, and returned toward the pre-flight values during recovery. The spaceflight effects for the ankle were inconsistent and less prevalent than those for the elbow. The VarV PF test condition for the 120 degrees target angle at the ankle exhibited approximately 5 degrees to 7 degrees more DF target angle estimates in-flight compared with those pre- or post-flight. In contrast, during IsoV PF there was a tendency for ankle estimates to be approximately 2 degrees to 3 degrees more PF after 2-3 days exposure to spaceflight. These data indicate that during spaceflight the perception of elbow extension is greater than actuality, and are consistent with the interpretation that microgravity induced a flexor bias in the estimation of the actual elbow joint position. Moreover, these effects in joint proprioception during spaceflight were observed in individual isolated single-joint movements during tasks in which vestibular function in maintaining posture were minimal.

  3. Flexor bias of joint position in humans during spaceflight.

    PubMed

    McCall, G E; Goulet, C; Boorman, G I; Roy, R R; Edgerton, V R

    2003-09-01

    The ability to estimate ankle and elbow joint position was tested before, during, and after a 17-day spaceflight. Subjects estimated targeted joint angles during isovelocity (IsoV) joint movements with agonist muscle groups either active or relaxed. These movements included elbow extension (EE) and elbow flexion (EF), and plantarflexion (PF) and dorsiflexion (DF) of the ankle. Subjects also estimated these joint positions while moving the dynamometer at their chosen (variable) velocity (VarV) during EE and PF. For IsoV tests, no differences were observed between active and passive movements for either the ankle or elbow. Compared with those of pre-flight test days, estimates of targeted elbow joint angles were approximately 5 degrees to 15 degrees more flexed in-flight, and returned toward the pre-flight values during recovery. The spaceflight effects for the ankle were inconsistent and less prevalent than those for the elbow. The VarV PF test condition for the 120 degrees target angle at the ankle exhibited approximately 5 degrees to 7 degrees more DF target angle estimates in-flight compared with those pre- or post-flight. In contrast, during IsoV PF there was a tendency for ankle estimates to be approximately 2 degrees to 3 degrees more PF after 2-3 days exposure to spaceflight. These data indicate that during spaceflight the perception of elbow extension is greater than actuality, and are consistent with the interpretation that microgravity induced a flexor bias in the estimation of the actual elbow joint position. Moreover, these effects in joint proprioception during spaceflight were observed in individual isolated single-joint movements during tasks in which vestibular function in maintaining posture were minimal.

  4. Invariant hip moment pattern while walking with a robotic hip exoskeleton.

    PubMed

    Lewis, Cara L; Ferris, Daniel P

    2011-03-15

    Robotic lower limb exoskeletons hold significant potential for gait assistance and rehabilitation; however, we have a limited understanding of how people adapt to walking with robotic devices. The purpose of this study was to test the hypothesis that people reduce net muscle moments about their joints when robotic assistance is provided. This reduction in muscle moment results in a total joint moment (muscle plus exoskeleton) that is the same as the moment without the robotic assistance despite potential differences in joint angles. To test this hypothesis, eight healthy subjects trained with the robotic hip exoskeleton while walking on a force-measuring treadmill. The exoskeleton provided hip flexion assistance from approximately 33% to 53% of the gait cycle. We calculated the root mean squared difference (RMSD) between the average of data from the last 15 min of the powered condition and the unpowered condition. After completing three 30-min training sessions, the hip exoskeleton provided 27% of the total peak hip flexion moment during gait. Despite this substantial contribution from the exoskeleton, subjects walked with a total hip moment pattern (muscle plus exoskeleton) that was almost identical and more similar to the unpowered condition than the hip angle pattern (hip moment RMSD 0.027, angle RMSD 0.134, p<0.001). The angle and moment RMSD were not different for the knee and ankle joints. These findings support the concept that people adopt walking patterns with similar joint moment patterns despite differences in hip joint angles for a given walking speed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. The Effect of Gap Angle on Tensile Strength of Preceramic Base Metal Solder Joints

    PubMed Central

    Fattahi, Farnaz; Hashemi Ardakani, Zahra; Hashemi Ardakani, Maryam

    2015-01-01

    Statement of the Problem Soldering is a process commonly used in fabricating dental prosthesis. Since most soldered prosthesis fail at the solder joints; the joint strength is of utmost importance. Purpose The purpose of this study was to evaluate the effect of gap angle on the tensile strength of base metal solder joints. Materials and Method A total number of 40 Ni-Cr samples were fabricated according to ADA/ISO 9693 specifications for tensile test. Samples were cut at the midpoint of the bar, and were placed at the considered angles by employing an explicitly designed device. They were divided into 4 groups regarding the gap angle; Group C (control group) with parallel gap on steady distance of 0.2mm, Group 1: 10°, Group 2: 20°, and Group3: 30° gap angles. When soldered, the specimens were all tested for tensile strength using a universal testing machine at a cross-head speed of 0.5 mm/min with a preload of 10N. Kruskal-Wallis H test was used to compare tensile strength among the groups (p< 0.05). Results The mean tensile strength values obtained from the study groups were respectively 307.84, 391.50, 365.18, and 368.86 MPa. The tensile strength was not statistically different among the four groups in general (p≤ 0.490). Conclusion Making the gap angular at the solder joints and the subsequent unsteady increase of the gap distance would not change the tensile strength of the joint. PMID:26636118

  6. Effect of the sagittal ankle angle at initial contact on energy dissipation in the lower extremity joints during a single-leg landing.

    PubMed

    Lee, Jinkyu; Song, Yongnam; Shin, Choongsoo S

    2018-05-01

    During landing, the ankle angle at initial contact (IC) exhibits relatively wide individual variation compared to the knee and hip angles. However, little is known about the effect of different IC ankle angles on energy dissipation. The purpose of this study was to investigate the relationship between individual ankle angles at IC and energy dissipation in the lower extremity joints. Twenty-seven adults performed single-leg landings from a 0.3-m height. Kinetics and kinematics of the lower extremity joints were measured. The relationship between ankle angles at IC and negative work, range of motion, the time to peak ground reaction force, and peak loading rate were analyzed. The ankle angle at IC was positively correlated with ankle negative work (r = 0.80, R 2  = 0.64, p < 0.001) and the contribution of the ankle to total (ankle, knee and hip joint) negative work (r = 0.84, R 2  = 0.70, p < 0.001), but the ankle angle was negatively correlated with hip negative work (r = -0.46, R 2  = 0.21, p = 0.01) and the contribution of the hip to total negative work (r = -0.61, R 2  = 0.37, p < 0.001). The knee negative work and the contribution of the knee to total negative work were not correlated with the ankle angle at IC. The ankle angle at IC was positively correlated with total negative work (r = 0.50, R 2  = 0.25, p < 0.01) and negatively correlated with the peak loading rate (r = -0.76, R 2  = 0.57, p < 0.001). These results indicated that landing mechanics changed as the ankle angle at IC increased, such that the ankle energy dissipation increased and redistributed the energy dissipation in the ankle and hip joints. Further, these results suggest that increased ankle energy dissipation with a higher IC plantar flexion angle may be a potential landing technique for reducing the risk of injury to the anterior cruciate ligament and hip musculature. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Bilateral differences in muscle fascicle architecture are not related to the preferred leg in jumping athletes.

    PubMed

    Aeles, Jeroen; Lenchant, Sietske; Vanlommel, Liesbeth; Vanwanseele, Benedicte

    2017-07-01

    In many sports, athletes have a preferred leg for sport-specific tasks, such as jumping, which leads to strength differences between both legs, yet the underlying changes in force-generating mechanical properties of the muscle remain unknown. The purpose of this study was to investigate whether the muscle architecture of the medial gastrocnemius (MG) is different between both legs in well-trained jumping athletes and untrained individuals. In addition, we investigated the effect of two ankle joint positions on ultrasound muscle architecture measurements. Muscle architecture of both legs was measured in 16 athletes and 11 untrained individuals at two ankle joint angles: one with the ankle joint in a tendon slack length (TSL) angle and one in a 90° angle. Fascicle lengths and pennation angles at TSL were not different between the preferred and non-preferred legs in either group. The comparison between groups showed no difference in fascicle length, but greater pennation angles were found in the athletes (21.7° ± 0.5°) compared to the untrained individuals (19.8° ± 0.6°). Analyses of the muscle architecture at a 90° angle yielded different results, mainly in the comparison between groups. These results provide only partial support for the notion of training-induced changes in muscle architecture as only differences in pennation angles were found between athletes and untrained individuals. Furthermore, our results provide support to the recommendation to take into account the tension-length relationship and to measure muscle architecture at individually determined tendon slack joint angles.

  8. The associations between quadriceps muscle strength, power, and knee joint mechanics in knee osteoarthritis: A cross-sectional study.

    PubMed

    Murray, Amanda M; Thomas, Abbey C; Armstrong, Charles W; Pietrosimone, Brian G; Tevald, Michael A

    2015-12-01

    Abnormal knee joint mechanics have been implicated in the pathogenesis and progression of knee osteoarthritis. Deficits in muscle function (i.e., strength and power) may contribute to abnormal knee joint loading. The associations between quadriceps strength, power and knee joint mechanics remain unclear in knee osteoarthritis. Three-dimensional motion analysis was used to collect peak knee joint angles and moments during the first 50% of stance phase of gait in 33 participants with knee osteoarthritis. Quadriceps strength and power were assessed using a knee extension machine. Strength was quantified as the one repetition maximum. Power was quantified as the peak power produced at 40-90% of the one repetition maximum. Quadriceps strength accounted for 15% of the variance in peak knee flexion angle (P=0.016). Quadriceps power accounted for 20-29% of the variance in peak knee flexion angle (P<0.05). Quadriceps power at 90% of one repetition maximum accounted for 9% of the variance in peak knee adduction moment (P=0.05). These data suggest that quadriceps power explains more variance in knee flexion angle and knee adduction moment during gait in knee osteoarthritis than quadriceps strength. Additionally, quadriceps power at multiple loads is associated with knee joint mechanics and therefore should be assessed at a variety of loads. Taken together, these results indicate that quadriceps power may be a potential target for interventions aimed at changing knee joint mechanics in knee osteoarthritis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Estimations of relative effort during sit-to-stand increase when accounting for variations in maximum voluntary torque with joint angle and angular velocity.

    PubMed

    Bieryla, Kathleen A; Anderson, Dennis E; Madigan, Michael L

    2009-02-01

    The main purpose of this study was to compare three methods of determining relative effort during sit-to-stand (STS). Fourteen young (mean 19.6+/-SD 1.2 years old) and 17 older (61.7+/-5.5 years old) adults completed six STS trials at three speeds: slow, normal, and fast. Sagittal plane joint torques at the hip, knee, and ankle were calculated through inverse dynamics. Isometric and isokinetic maximum voluntary contractions (MVC) for the hip, knee, and ankle were collected and used for model parameters to predict the participant-specific maximum voluntary joint torque. Three different measures of relative effort were determined by normalizing STS joint torques to three different estimates of maximum voluntary torque. Relative effort at the hip, knee, and ankle were higher when accounting for variations in maximum voluntary torque with joint angle and angular velocity (hip=26.3+/-13.5%, knee=78.4+/-32.2%, ankle=27.9+/-14.1%) compared to methods which do not account for these variations (hip=23.5+/-11.7%, knee=51.7+/-15.0%, ankle=20.7+/-10.4%). At higher velocities, the difference in calculating relative effort with respect to isometric MVC or incorporating joint angle and angular velocity became more evident. Estimates of relative effort that account for the variations in maximum voluntary torque with joint angle and angular velocity may provide higher levels of accuracy compared to methods based on measurements of maximal isometric torques.

  10. A Human Machine Interface for EVA

    NASA Astrophysics Data System (ADS)

    Hartmann, L.

    EVA astronauts work in a challenging environment that includes high rate of muscle fatigue, haptic and proprioception impairment, lack of dexterity and interaction with robotic equipment. Currently they are heavily dependent on support from on-board crew and ground station staff for information and robotics operation. They are limited to the operation of simple controls on the suit exterior and external robot controls that are difficult to operate because of the heavy gloves that are part of the EVA suit. A wearable human machine interface (HMI) inside the suit provides a powerful alternative for robot teleoperation, procedure checklist access, generic equipment operation via virtual control panels and general information retrieval and presentation. The HMI proposed here includes speech input and output, a simple 6 degree of freedom (dof) pointing device and a heads up display (HUD). The essential characteristic of this interface is that it offers an alternative to the standard keyboard and mouse interface of a desktop computer. The astronaut's speech is used as input to command mode changes, execute arbitrary computer commands and generate text. The HMI can respond with speech also in order to confirm selections, provide status and feedback and present text output. A candidate 6 dof pointing device is Measurand's Shapetape, a flexible "tape" substrate to which is attached an optic fiber with embedded sensors. Measurement of the modulation of the light passing through the fiber can be used to compute the shape of the tape and, in particular, the position and orientation of the end of the Shapetape. It can be used to provide any kind of 3d geometric information including robot teleoperation control. The HUD can overlay graphical information onto the astronaut's visual field including robot joint torques, end effector configuration, procedure checklists and virtual control panels. With suitable tracking information about the position and orientation of the EVA suit, the overlaid graphical information can be registered with the external world. For example, information about an object can be positioned on or beside the object. This wearable HMI supports many applications during EVA including robot teleoperation, procedure checklist usage, operation of virtual control panels and general information or documentation retrieval and presentation. Whether the robot end effector is a mobile platform for the EVA astronaut or is an assistant to the astronaut in an assembly or repair task, the astronaut can control the robot via a direct manipulation interface. Embedded in the suit or the astronaut's clothing, Shapetape can measure the user's arm/hand position and orientation which can be directly mapped into the workspace coordinate system of the robot. Motion of the users hand can generate corresponding motion of the robot end effector in order to reposition the EVA platform or to manipulate objects in the robot's grasp. Speech input can be used to execute commands and mode changes without the astronaut having to withdraw from the teleoperation task. Speech output from the system can provide feedback without affecting the user's visual attention. The procedure checklist guiding the astronaut's detailed activities can be presented on the HUD and manipulated (e.g., move, scale, annotate, mark tasks as done, consult prerequisite tasks) by spoken command. Virtual control panels for suit equipment, equipment being repaired or arbitrary equipment on the space station can be displayed on the HUD and can be operated by speech commands or by hand gestures. For example, an antenna being repaired could be pointed under the control of the EVA astronaut. Additionally arbitrary computer activities such as information retrieval and presentation can be carried out using similar interface techniques. Considering the risks, expense and physical challenges of EVA work, it is appropriate that EVA astronauts have considerable support from station crew and ground station staff. Reducing their dependence on such personnel may under many circumstances, however, improve performance and reduce risk. For example, the EVA astronaut is likely to have the best viewpoint at a robotic worksite. Direct access to the procedure checklist can help provide temporal context and continuity throughout an EVA. Access to station facilities through an HMI such as the one described here could be invaluable during an emergency or in a situation in which a fault occurs. The full paper will describe the HMI operation and applications in the EVA context in more detail and will describe current laboratory prototyping activities.

  11. Experimental Investigation of the Influence of Joint Geometric Configurations on the Mechanical Properties of Intermittent Jointed Rock Models Under Cyclic Uniaxial Compression

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Dai, Feng; Fan, Pengxian; Xu, Nuwen; Dong, Lu

    2017-06-01

    Intermittent joints in rock mass are quite sensitive to cyclic loading conditions. Understanding the fatigue mechanical properties of jointed rocks is beneficial for rational design and stability analysis of rock engineering projects. This study experimentally investigated the influences of joint geometry (i.e., dip angle, persistency, density and spacing) on the fatigue mechanism of synthetic jointed rock models. Our results revealed that the stress-strain curve of jointed rock under cyclic loadings is dominated by its curve under monotonic uniaxial loadings; the terminal strain in fatigue curve is equal to the post-peak strain corresponding to the maximum cyclic stress in the monotonic stress-strain curve. The four joint geometrical parameters studied significantly affect the fatigue properties of jointed rocks, including the irreversible strains, the fatigue deformation modulus, the energy evolution, the damage variable and the crack coalescence patterns. The higher the values of the geometrical parameters, the lower the elastic energy stores in this jointed rock, the higher the fatigue damage accumulates in the first few cycles, and the lower the fatigue life. The elastic energy has certain storage limitation, at which the fatigue failure occurs. Two basic micro-cracks, i.e., tensile wing crack and shear crack, are observed in cyclic loading and unloading tests, which are controlled principally by joint dip angle and persistency. In general, shear cracks only occur in the jointed rock with higher dip angle or higher persistency, and the jointed rock is characterized by lower fatigue strength, larger damage variable and lower fatigue life.

  12. Use of the shape memory polymer polystyrene in the creation of thin film stretchable sensors for wearable applications

    NASA Astrophysics Data System (ADS)

    Van Volkinburg, Kyle R.; Nguyen, Thao; Pegan, Jonathan D.; Khine, Michelle; Washington, Gregory N.

    2016-04-01

    The shape memory polymer polystyrene (PS) has been used to create complex hierarchical wrinkling in the fabrication of stretchable thin film bimetallic sensors ideal for wearable based gesture monitoring applications. The film has been bonded to the elastomer polydimethylsiloxane (PDMS) and operates as a strain gauge under the general notion of geometric piezoresistivity. The film was subject to tensile, cyclic, and step loading conditions in order to characterize its dynamic behavior. To measure the joint angle of the metacarpophalangeal (MCP) joint on the right index finger, the sensor was adhered to a fitted golf glove above said joint and a motion study was conducted. At maximum joint angle the sensor experienced roughly 23.5% strain. From the study it was found that two simple curves, one while the finger was in flexion and the other while the finger was in extension, were able to predict the joint angle from measured voltage with an average error of 2.99 degrees.

  13. [Correlation of medial compartmental joint line elevation with femorotibial angle correction and clinical function after unicompartmental arthroplasty].

    PubMed

    Zhang, Zhan-Feng; Wang, Dan; Min, Ji-Kang

    2017-04-25

    To study the correlation of postoperative femorotibial angle with medial compartmental joint line elevation after unicompartmental arthroplasty(UKA), as well as the correlation of joint line elevation with the clinical function by measuring radiological joint line. A retrospective study of 56 patients from July 2012 to August 2015 was performed. The mean body mass index (BMI) was 23.5 (ranged, 18.3 to 30.1). The standing anteroposterior radiographs of these patients were assessed both pre-and post-operatively, and the knee function was evaluated according to HSS grading. The correlation between postoperative femorotibial angle(FTA) and joint line elevation was analyzed as well as the correlation between joint line elevation and the clinical function. The mean medial joint line elevation was (2.2±2.0) mm(ranged, -3.3 to 7.0 mm), and the mean FTA correction was (2.3±3.0)°(ranged, -4.5° to 9.6°). The mean follow-up period was 12.2 months. There was a significant correlation between in joint line elevation and FTA correction( P <0.05), while there was no significant correlation between joint line elevation and the clinical function( P >0.05). There was a significant correlation between medial compartmental joint line elevation and FTA correction after UKA, and the proximal tibial osteotomy was critical during the procedure. There was no significant correlation between joint line elevation and the clinical function, which may be related to the design of UKA prosthesis.

  14. Experimental and numerical study of the failure process and energy mechanisms of rock-like materials containing cross un-persistent joints under uniaxial compression.

    PubMed

    Cao, Rihong; Cao, Ping; Lin, Hang; Fan, Xiang

    2017-01-01

    Joints and fissures in natural rocks have a significant influence on the stability of the rock mass, and it is often necessary to evaluate strength failure and crack evolution behavior. In this paper, based on experimental tests and numerical simulation (PFC2D), the macro-mechanical behavior and energy mechanism of jointed rock-like specimens with cross non-persistent joints under uniaxial loading were investigated. The focus was to study the effect of joint dip angle α and intersection angle γ on the characteristic stress, the coalescence modes and the energy release of jointed rock-like specimens. For specimens with γ = 30° and 45°, the UCS (uniaxial compression strength), CIS (crack initiation stress) and CDiS (critical dilatancy stress) increase as α increases from 0° to 75°. When γ = 60° and 75°, the UCS, CIS and CDiS increase as α increases from 0° to 60° and decrease when α is over 60°. Both the inclination angle α and intersection angle γ have great influence on the failure pattern of pre-cracked specimens. With different α and γ, specimens exhibit 4 kinds of failure patterns. Both the experimental and numerical results show that the energy of a specimen has similar trends with characteristic stress as α increases.

  15. Joining by plating: optimization of occluded angle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dini, J.W.; Johnson, H.R.; Kan, Y.R.

    1978-11-01

    An empirical method has been developed for predicting the minimum angle required for maximum joint strength for materials joined by plating. This is done through a proposed power law failure function, whose coefficients are taken from ring shear and conical head tensile data for plating/substrate combinations and whose exponent is determined from one set of plated-joint data. Experimental results are presented for Al-Ni-Al (7075-T6) and AM363-Ni-AM363 joints, and the failure function is used to predict joint strengths for Al-Ni-Al (2024-T6), UTi-Ni-UTi, and Be-Ti-Be.

  16. Biomechanical design of escalading lower limb exoskeleton with novel linkage joints.

    PubMed

    Zhang, Guoan; Liu, Gangfeng; Ma, Sun; Wang, Tianshuo; Zhao, Jie; Zhu, Yanhe

    2017-07-20

    In this paper, an obstacle-surmounting-enabled lower limb exoskeleton with novel linkage joints that perfectly mimicked human motions was proposed. Currently, most lower exoskeletons that use linear actuators have a direct connection between the wearer and the controlled part. Compared to the existing joints, the novel linkage joint not only fitted better into compact chasis, but also provided greater torque when the joint was at a large bend angle. As a result, it extended the angle range of joint peak torque output. With any given power, torque was prioritized over rotational speed, because instead of rotational speed, sufficiency of torque is the premise for most joint actions. With insufficient torque, the exoskeleton will be a burden instead of enhancement to its wearer. With optimized distribution of torque among the joints, the novel linkage method may contribute to easier exoskeleton movements.

  17. Axial traction magnetic resonance imaging (MRI) of the glenohumeral joint in healthy volunteers: initial experience.

    PubMed

    Garwood, Elisabeth R; Souza, Richard B; Zhang, Amy; Zhang, Alan L; Ma, C Benjamin; Link, Thomas M; Motamedi, Daria

    Evaluate technical feasibility and potential applications of glenohumeral (GH) joint axial traction magnetic resonance imaging (MRI) in healthy volunteers. Eleven shoulders were imaged in neutral and with 4kg axial traction at 3T. Quantitative measurements were assessed. Axial traction was well tolerated. There was statistically significant widening of the superior GH joint space (p=0.002) and acromial angle (p=0.017) with traction. Inter-rater agreement was high. GH joint axial traction MRI is technically feasible and well tolerated in volunteers. Traction of the capsule, widening of the superior GH joint space and acromial angle were observed. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. EVA worksite analysis--use of computer analysis for EVA operations development and execution.

    PubMed

    Anderson, D

    1999-01-01

    To sustain the rate of extravehicular activity (EVA) required to assemble and maintain the International Space Station, we must enhance our ability to plan, train for, and execute EVAs. An underlying analysis capability has been developed to ensure EVA access to all external worksites as a starting point for ground training, to generate information needed for on-orbit training, and to react quickly to develop contingency EVA plans, techniques, and procedures. This paper describes the use of computer-based EVA worksite analysis techniques for EVA worksite design. EVA worksite analysis has been used to design 80% of EVA worksites on the U.S. portion of the International Space Station. With the launch of the first U.S. element of the station, EVA worksite analysis is being developed further to support real-time analysis of unplanned EVA operations. This paper describes this development and deployment of EVA worksite analysis for International Space Station (ISS) mission support.

  19. Investigating locomotion of dairy cows by use of high speed cinematography.

    PubMed

    Herlin, A H; Drevemo, S

    1997-05-01

    The longterm influence of management systems on the locomotion of 17 dairy cows was investigated by high speed cinematography (100 frames/s) and kinematic analysis. Angular patterns and hoof trajectories of the left fore- and hindlimbs are presented and statistics made of occurring minimum and maximum angles. At the recording, 3 cows had been kept in tie-stalls (TI) and 6 cows in cubicles (CI) for a consecutive time of about 2.5 years while 8 cows had been kept on grass for about 3 months. Four of the grazing cows had earlier been kept in cubicles (CG) and 4 in tie-stalls (TG) during earlier off grazing seasons together with TI and CI cows. The CI cows had a smaller maximum angle of the elbow joint compared to TI, TG and CG cows. The hock joint angle of the CI cows was less flexed during the stance phase than in TI and CG cows while the minimum angle during the swing phase was greater in the TI and CI cows compared to TG and CG cows. Pastured cows (TG and CG) had a less pronounced flexion of the fetlock joint angle during the stance compared to cows kept indoors (TI and CI). The results suggest that slatted floor and lack of exercise during summer grazing may affect locomotion. This is indicated by restrictions in the movements of the elbow and hock joints and in less fetlock joint flexion at full support.

  20. Development of an EVA systems cost model. Volume 3: EVA systems cost model

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The EVA systems cost model presented is based on proposed EVA equipment for the space shuttle program. General information on EVA crewman requirements in a weightless environment and an EVA capabilities overview are provided.

  1. Lower extremity joint moments of collegiate soccer players differ between genders during a forward jump.

    PubMed

    Hart, Joseph M; Garrison, J Craig; Palmieri-Smith, Riann; Kerrigan, D Casey; Ingersoll, Christopher D

    2008-05-01

    Lower extremity kinetics while performing a single-leg forward jump landing may help explain gender biased risk for noncontact anterior cruciate ligament injury. Gender comparison of lower extremity joint angles and moments. Static groups comparison. Motion analysis laboratory. 8 male and 8 female varsity, collegiate soccer athletes. 5 single-leg landings from a 100cm forward jump. Peak and initial contact external joint moments and joint angles of the ankle, knee, and hip. At initial heel contact, males exhibited a adduction moment whereas females exhibited a abduction moment at the hip. Females also had significantly less peak hip extension moment and significantly less peak hip internal rotation moment than males had. Females exhibited greater knee adduction and hip internal rotation angles than men did. When decelerating from a forward jump, gender differences exist in forces acting at the hip.

  2. Correlation in the Coronal Angle between Knee and Hindfoot Was Observed in Patients with Rheumatoid Arthritis Unless Talocrural Joint Was Destroyed.

    PubMed

    Nishitani, Kohei; Ito, Hiromu; Shimozono, Yoshiharu; Furu, Moritoshi; Azukizawa, Masayuki; Hashimoto, Motomu; Tanaka, Masao; Mimori, Tsuneyo; Matsuda, Shuichi

    2017-01-01

    The purpose of this study is to investigate the compensatory correlation between knee and hindfoot in patients with rheumatoid arthritis (RA). This cross-sectional study included 218 patients (407 lower extremities). Radiographs of the hindfoot and full-length posteroanterior hip-to-calcaneus standing radiographs were evaluated. The destruction of the hindfoot was evaluated using the Larsen grading system. The coronal angular deformity of the knee and hindfoot was evaluated by the femorotibial angle (FTA) and the angle between the tibial shaft and the entire hindfoot (tibiohindfoot angle, THFA). The correlation between FTA and THFA was determined by Pearson's coefficient. For all patients, FTA correlated to THFA ( R = 0.28, p < 0.001). The correlation was observed as long as the talocrural joint was preserved (Larsen grade ≤ 2), even if the subtalar joint had been destroyed (Larsen grade ≥ 3). However, the correlation was not observed when the talocrural joint was destroyed (Larsen grade ≥ 3, R = -0.02, p = 0.94). The pain in the hindfoot did not correlate with FTA or THFA. In conclusion, a compensatory deformity of the hindfoot against the deformity of the knee was observed in RA, and the correlation was lost when talocrural joint was destroyed.

  3. Postoperative Knee Flexion Angle Is Affected by Lateral Laxity in Cruciate-Retaining Total Knee Arthroplasty.

    PubMed

    Nakano, Naoki; Matsumoto, Tomoyuki; Muratsu, Hirotsugu; Takayama, Koji; Kuroda, Ryosuke; Kurosaka, Masahiro

    2016-02-01

    Although many studies have reported that postoperative knee flexion is influenced by preoperative conditions, the factors which affect postoperative knee flexion have not been fully elucidated. We tried to investigate the influence of intraoperative soft tissue balance on postoperative knee flexion angle after cruciate-retaining (CR) total knee arthroplasty (TKA) using a navigation and an offset-type tensor. We retrospectively analyzed 55 patients with osteoarthritis who underwent TKA using e.motion-CR (B. Braun Aesculap, Germany) whose knee flexion angle could be measured at 2 years after operation. The exclusion criteria included valgus deformity, severe bony defect, infection, and bilateral TKA. Intraoperative varus ligament balance and joint component gap were measured with the navigation (Orthopilot 4.2; B. Braun Aesculap) while applying 40-lb joint distraction force at 0° to 120° of knee flexion using an offset-type tensor. Correlations between the soft tissue parameters and postoperative knee flexion angle were analyzed using simple linear regression models. Varus ligament balance at 90° of flexion (R = 0.56; P < .001) and lateral compartment gap at 90° of flexion (R = 0.51; P < .001) were positively correlated with postoperative knee flexion angle. In addition, as with past studies, joint component gap at 90° of flexion (R = 0.30; P < .05) and preoperative knee flexion angle (R = 0.63; P < .001) were correlated with postoperative knee flexion angle. Lateral laxity as well as joint component gap at 90° of flexion is one of the most important factors affecting postoperative knee flexion angle in CR-TKA. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. The effect of changing plantarflexion resistive moment of an articulated ankle-foot orthosis on ankle and knee joint angles and moments while walking in patients post stroke

    PubMed Central

    Kobayashi, Toshiki; Singer, Madeline L.; Orendurff, Michael S.; Gao, Fan; Daly, Wayne K.; Foreman, K. Bo

    2015-01-01

    Background The adjustment of plantarflexion resistive moment of an articulated ankle-foot orthosis is considered important in patients post stroke, but the evidence is still limited. Therefore, the aim of this study was to investigate the effect of changing the plantarflexion resistive moment of an articulated ankle-foot orthosis on ankle and knee joint angles and moments in patients post stroke. Methods Gait analysis was performed on 10 subjects post stroke under four different plantarflexion resistive moment conditions using a newly designed articulated ankle-foot orthosis. Data were recorded using a Bertec split-belt instrumented treadmill in a 3-dimensional motion analysis laboratory. Findings The ankle and knee sagittal joint angles and moments were significantly affected by the amount of plantarflexion resistive moment of the ankle-foot orthosis. Increasing the plantarflexion resistive moment of the ankle-foot orthosis induced significant decreases both in the peak ankle plantarflexion angle (P<0.01) and the peak knee extension angle (P<0.05). Also, the increase induced significant increases in the internal dorsiflexion moment of the ankle joint (P<0.01) and significantly decreased the internal flexion moment of the knee joint (P<0.01). Interpretation These results suggest an important link between the kinematic/kinetic parameters of the lower-limb joints and the plantarflexion resistive moment of an articulated ankle-foot orthosis. A future study should be performed to clarify their relationship further so that the practitioners may be able to use these parameters as objective data to determine an optimal plantarflexion resistive moment of an articulated ankle-foot orthosis for improved orthotic care in individual patients. PMID:26149007

  5. The effect of changing plantarflexion resistive moment of an articulated ankle-foot orthosis on ankle and knee joint angles and moments while walking in patients post stroke.

    PubMed

    Kobayashi, Toshiki; Singer, Madeline L; Orendurff, Michael S; Gao, Fan; Daly, Wayne K; Foreman, K Bo

    2015-10-01

    The adjustment of plantarflexion resistive moment of an articulated ankle-foot orthosis is considered important in patients post stroke, but the evidence is still limited. Therefore, the aim of this study was to investigate the effect of changing the plantarflexion resistive moment of an articulated ankle-foot orthosis on ankle and knee joint angles and moments in patients post stroke. Gait analysis was performed on 10 subjects post stroke under four different plantarflexion resistive moment conditions using a newly designed articulated ankle-foot orthosis. Data were recorded using a Bertec split-belt instrumented treadmill in a 3-dimensional motion analysis laboratory. The ankle and knee sagittal joint angles and moments were significantly affected by the amount of plantarflexion resistive moment of the ankle-foot orthosis. Increasing the plantarflexion resistive moment of the ankle-foot orthosis induced significant decreases both in the peak ankle plantarflexion angle (P<0.01) and the peak knee extension angle (P<0.05). Also, the increase induced significant increases in the internal dorsiflexion moment of the ankle joint (P<0.01) and significantly decreased the internal flexion moment of the knee joint (P<0.01). These results suggest an important link between the kinematic/kinetic parameters of the lower-limb joints and the plantarflexion resistive moment of an articulated ankle-foot orthosis. A future study should be performed to clarify their relationship further so that the practitioners may be able to use these parameters as objective data to determine an optimal plantarflexion resistive moment of an articulated ankle-foot orthosis for improved orthotic care in individual patients. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Principal components of hand kinematics and neurophysiological signals in motor cortex during reach to grasp movements

    PubMed Central

    Aggarwal, Vikram; Thakor, Nitish V.; Schieber, Marc H.

    2014-01-01

    A few kinematic synergies identified by principal component analysis (PCA) account for most of the variance in the coordinated joint rotations of the fingers and wrist used for a wide variety of hand movements. To examine the possibility that motor cortex might control the hand through such synergies, we collected simultaneous kinematic and neurophysiological data from monkeys performing a reach-to-grasp task. We used PCA, jPCA and isomap to extract kinematic synergies from 18 joint angles in the fingers and wrist and analyzed the relationships of both single-unit and multiunit spike recordings, as well as local field potentials (LFPs), to these synergies. For most spike recordings, the maximal absolute cross-correlations of firing rates were somewhat stronger with an individual joint angle than with any principal component (PC), any jPC or any isomap dimension. In decoding analyses, where spikes and LFP power in the 100- to 170-Hz band each provided better decoding than other LFP-based signals, the first PC was decoded as well as the best decoded joint angle. But the remaining PCs and jPCs were predicted with lower accuracy than individual joint angles. Although PCs, jPCs or isomap dimensions might provide a more parsimonious description of kinematics, our findings indicate that the kinematic synergies identified with these techniques are not represented in motor cortex more strongly than the original joint angles. We suggest that the motor cortex might act to sculpt the synergies generated by subcortical centers, superimposing an ability to individuate finger movements and adapt the hand to grasp a wide variety of objects. PMID:24990564

  7. The influence of the Peroneus Longus muscle on the foot under axial loading: A CT evaluated dynamic cadaveric model study.

    PubMed

    Dullaert, K; Hagen, J; Klos, K; Gueorguiev, B; Lenz, M; Richards, R G; Simons, P

    2016-05-01

    Subtle hypermobility of the first tarsometatarsal joint can occur concomitantly with other pathologies and may be difficult to diagnose. Peroneus Longus muscle might influence stability of this joint. Collapse of the medial longitudinal arch is common in flatfoot deformity and the muscle might also play a role in correcting Meary's angle. A radiolucent frame was used to simulate weightbearing during CT examination. Eight pairs fresh-frozen lower legs were imaged in neutral position under non-weightbearing (75N), weightbearing (700N) and with 15kg weights hung from Peroneus Longus tendon. Measurements included first metatarsal rotation, intermetatarsal angle, first tarsometatarsal joint subluxation and Meary's angle. Weightbearing significantly increased Meary's angle and significantly decreased first tarsometatarsal joint subluxation (both P<0.01). Pulling Peroneus Longus tendon significantly increased first metatarsal rotation (P<0.01), significantly decreased the intermetatarsal angle (P<0.01) and increased non-significantly Meary's angle (P=0.52). A considerable effect weightbearing has on the medial longitudinal arch and first tarsometatarsal joint was observed. Pulling Peroneus Longus tendon improved first metatarsal subluxation but increased its rotation. The study calls into question the importance of this tendon in maintaining the medial longitudinal arch and raises concerns about rotational deformity of the first metatarsal following hallux valgus correction without first tarsometatarsal arthrodesis. Study outcomes will provide more insight in foot pathology. Weightbearing affects anatomy of the foot. No reliable information is available concerning the influence of the Peroneus muscle. This study investigates the influence of weightbearing and the impact the Peroneus muscle on the anatomy of the foot. Copyright © 2016. Published by Elsevier Ltd.

  8. The influence of bar diameter on neuromuscular strength and activation: inferences from an isometric unilateral bench press.

    PubMed

    Fioranelli, Douglas; Lee, C Matthew

    2008-05-01

    The purpose of this study was to examine the influence of two different bar diameters on neuromuscular activation and strength. The bar diameters used reflected a standard Olympic bar (28 mm (1.1 inch); THIN) and a larger fat bar (51 mm [2 inch]; THICK). Eighteen healthy men (age 25.0 +/- 1 years) were assessed for their maximal voluntary contraction (MVC) during a unilateral isometric bench press exercise with the 2 bar types at 2 different joint angles (angle 1 and angle 2; elbow joint at approximately 45 and 90 degrees , respectively). Additionally, on a separate day, subjects performed three 10-second isometric repetitions at an intensity of 80% MVC using the 2 different bars at angle 1 and angle 2. Electromyographic recordings were collected in the pectoralis major and the muscles of the forearm flexor region at a sampling rate of 1000 Hz during the second day of testing. Analysis of variance was used to examine differences in MVC between bars and also examine between bar differences in electromyographic activity for each muscle group at each joint angle. A significance level of 0.05 was used for all tests. MVC was not different between bar types, although there was a main effect of joint angle on MVC such that it was greater at angle 2. There was a main effect of bar at both angles for the forearm muscles and at angle 1 for the pectoralis such that electromyographic activity was greater with THIN. Our data do not support the hypothesis that bar diameter influences performance during an isometric bench press exercise. However, higher electromyographic activity with THIN suggests greater neuromuscular activation with a standard Olympic bar as opposed to a larger diameter "fat" bar. Although our data do not support the use of a fat bar for increasing neuromuscular activation, these findings should be confirmed in other resistance training exercises.

  9. A hybrid BMI-based exoskeleton for paresis: EMG control for assisting arm movements

    NASA Astrophysics Data System (ADS)

    Kawase, Toshihiro; Sakurada, Takeshi; Koike, Yasuharu; Kansaku, Kenji

    2017-02-01

    Objective. Brain-machine interface (BMI) technologies have succeeded in controlling robotic exoskeletons, enabling some paralyzed people to control their own arms and hands. We have developed an exoskeleton asynchronously controlled by EEG signals. In this study, to enable real-time control of the exoskeleton for paresis, we developed a hybrid system with EEG and EMG signals, and the EMG signals were used to estimate its joint angles. Approach. Eleven able-bodied subjects and two patients with upper cervical spinal cord injuries (SCIs) performed hand and arm movements, and the angles of the metacarpophalangeal (MP) joint of the index finger, wrist, and elbow were estimated from EMG signals using a formula that we derived to calculate joint angles from EMG signals, based on a musculoskeletal model. The formula was exploited to control the elbow of the exoskeleton after automatic adjustments. Four able-bodied subjects and a patient with upper cervical SCI wore an exoskeleton controlled using EMG signals and were required to perform hand and arm movements to carry and release a ball. Main results. Estimated angles of the MP joints of index fingers, wrists, and elbows were correlated well with the measured angles in 11 able-bodied subjects (correlation coefficients were 0.81  ±  0.09, 0.85  ±  0.09, and 0.76  ±  0.13, respectively) and the patients (e.g. 0.91  ±  0.01 in the elbow of a patient). Four able-bodied subjects successfully positioned their arms to adequate angles by extending their elbows and a joint of the exoskeleton, with root-mean-square errors  <6°. An upper cervical SCI patient, empowered by the exoskeleton, successfully carried a ball to a goal in all 10 trials. Significance. A BMI-based exoskeleton for paralyzed arms and hands using real-time control was realized by designing a new method to estimate joint angles based on EMG signals, and these may be useful for practical rehabilitation and the support of daily actions.

  10. A hybrid BMI-based exoskeleton for paresis: EMG control for assisting arm movements.

    PubMed

    Kawase, Toshihiro; Sakurada, Takeshi; Koike, Yasuharu; Kansaku, Kenji

    2017-02-01

    Brain-machine interface (BMI) technologies have succeeded in controlling robotic exoskeletons, enabling some paralyzed people to control their own arms and hands. We have developed an exoskeleton asynchronously controlled by EEG signals. In this study, to enable real-time control of the exoskeleton for paresis, we developed a hybrid system with EEG and EMG signals, and the EMG signals were used to estimate its joint angles. Eleven able-bodied subjects and two patients with upper cervical spinal cord injuries (SCIs) performed hand and arm movements, and the angles of the metacarpophalangeal (MP) joint of the index finger, wrist, and elbow were estimated from EMG signals using a formula that we derived to calculate joint angles from EMG signals, based on a musculoskeletal model. The formula was exploited to control the elbow of the exoskeleton after automatic adjustments. Four able-bodied subjects and a patient with upper cervical SCI wore an exoskeleton controlled using EMG signals and were required to perform hand and arm movements to carry and release a ball. Estimated angles of the MP joints of index fingers, wrists, and elbows were correlated well with the measured angles in 11 able-bodied subjects (correlation coefficients were 0.81  ±  0.09, 0.85  ±  0.09, and 0.76  ±  0.13, respectively) and the patients (e.g. 0.91  ±  0.01 in the elbow of a patient). Four able-bodied subjects successfully positioned their arms to adequate angles by extending their elbows and a joint of the exoskeleton, with root-mean-square errors  <6°. An upper cervical SCI patient, empowered by the exoskeleton, successfully carried a ball to a goal in all 10 trials. A BMI-based exoskeleton for paralyzed arms and hands using real-time control was realized by designing a new method to estimate joint angles based on EMG signals, and these may be useful for practical rehabilitation and the support of daily actions.

  11. Crack Damage Parameters and Dilatancy of Artificially Jointed Granite Samples Under Triaxial Compression

    NASA Astrophysics Data System (ADS)

    Walton, G.; Alejano, L. R.; Arzua, J.; Markley, T.

    2018-06-01

    A database of post-peak triaxial test results was created for artificially jointed planes introduced in cylindrical compression samples of a Blanco Mera granite. Aside from examining the artificial jointing effect on major rock and rock mass parameters such as stiffness, peak strength and residual strength, other strength parameters related to brittle cracking and post-yield dilatancy were analyzed. Crack initiation and crack damage values for both the intact and artificially jointed samples were determined, and these damage envelopes were found to be notably impacted by the presence of jointing. The data suggest that with increased density of jointing, the samples transition from a combined matrix damage and joint slip yielding mechanism to yield dominated by joint slip. Additionally, post-yield dilation data were analyzed in the context of a mobilized dilation angle model, and the peak dilation angle was found to decrease significantly when there were joints in the samples. These dilatancy results are consistent with hypotheses in the literature on rock mass dilatancy.

  12. Root Cause Investigation of the Starboard Solar Alpha Rotary Joint Anomaly on the International Space Station

    NASA Technical Reports Server (NTRS)

    Taylor, Deneen; Enriquez, Carlos; McCann, David; McFatter, Justin

    2010-01-01

    The Solar Alpha Rotary Joint (SARJ) is a single-axis pointing mechanism used to orient the solar power generating arrays relative to the sun for the International Space Station (ISS). Approximately 83 days after its on-orbit installation, one of the two SARJ mechanisms aboard the ISS began to exhibit high current draw. Later inspections via Extravehicular Activity (EVA) discovered that the case hardened steel race ring on the outboard side of the joint had extensive damage to one of its three rolling surfaces. A far-reaching investigation of the anomaly was undertaken, comprising metallurgical inspections, coupon tests, traction kinematics tests, detailed bearing measurements, and thermal and structural analyses. The investigation found that the race ring damage had been caused by high bearing edge stresses that resulted from inadequate lubrication of the rolling contact. The profile of the roller bearings and the metallurgical properties of the race ring were also found to be significant contributing factors.

  13. Shuttle EVA description and design criteria

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The STS extravehicular mobility unit, orbiter EVA provisions, EVA equipment, factors affecting employment of EVA, EVA mission integration, baselined extravehicular activity are discussed. Design requirements are also discussed.

  14. Normal axial alignment of the lower extremity and load-bearing distribution at the knee.

    PubMed

    Hsu, R W; Himeno, S; Coventry, M B; Chao, E Y

    1990-06-01

    Based on a series of 120 normal subjects of different gender and age, the geometry of the knee joint was analyzed using a full-length weight-bearing roentgenogram of the lower extremity. A special computer program based on the theory of a rigid body spring model was applied to calculate the important anatomic and biomechanical factors of the knee joint. The tibiofemoral mechanical angle was 1.2 degrees varus. Hence, it is difficult to rationalize the 3 degree varus placement of the tibial component in total knee arthroplasty suggested by some authors. The distal femoral anatomic valgus (measured from the lower one-half of the femur) was 4.2 degrees in reference to its mechanical axis. This angle became 4.9 degrees when the full-length femoral anatomic axis was used. When simulating a one-legged weight-bearing stance by shifting the upper-body gravity closer to the knee joint, 75% of the knee joint load passed through the medial tibial plateau. The knee joint-line obliquity was more varus in male subjects. The female subjects had a higher peak joint pressure and a greater patello-tibial Q angle. Age had little effect on the factors relating to axial alignment of the lower extremity and load transmission through the knee joint.

  15. Estimation of ground reaction forces and joint moments on the basis on plantar pressure insoles and wearable sensors for joint angle measurement.

    PubMed

    Ostaszewski, Michal; Pauk, Jolanta

    2018-05-16

    Gait analysis is a useful tool medical staff use to support clinical decision making. There is still an urgent need to develop low-cost and unobtrusive mobile health monitoring systems. The goal of this study was twofold. Firstly, a wearable sensor system composed of plantar pressure insoles and wearable sensors for joint angle measurement was developed. Secondly, the accuracy of the system in the measurement of ground reaction forces and joint moments was examined. The measurements included joint angles and plantar pressure distribution. To validate the wearable sensor system and examine the effectiveness of the proposed method for gait analysis, an experimental study on ten volunteer subjects was conducted. The accuracy of measurement of ground reaction forces and joint moments was validated against the results obtained from a reference motion capture system. Ground reaction forces and joint moments measured by the wearable sensor system showed a root mean square error of 1% for min. GRF and 27.3% for knee extension moment. The correlation coefficient was over 0.9, in comparison with the stationary motion capture system. The study suggests that the wearable sensor system could be recommended both for research and clinical applications outside a typical gait laboratory.

  16. Kinematic control of robot with degenerate wrist

    NASA Technical Reports Server (NTRS)

    Barker, L. K.; Moore, M. C.

    1984-01-01

    Kinematic resolved rate equations allow an operator with visual feedback to dynamically control a robot hand. When the robot wrist is degenerate, the computed joint angle rates exceed operational limits, and unwanted hand movements can result. The generalized matrix inverse solution can also produce unwanted responses. A method is introduced to control the robot hand in the region of the degenerate robot wrist. The method uses a coordinated movement of the first and third joints of the robot wrist to locate the second wrist joint axis for movement of the robot hand in the commanded direction. The method does not entail infinite joint angle rates.

  17. A proposal for a new definition of the axial rotation angle of the shoulder joint.

    PubMed

    Masuda, Tadashi; Ishida, Akimasa; Cao, Lili; Morita, Sadao

    2008-02-01

    The Euler/Cardan angles are commonly used to define the motions of the upper arm with respect to the trunk. This definition, however, has a problem in that the angles of both the horizontal flexion/extension and the axial rotation of the shoulder joint become unstable at the gimbal-lock positions. In this paper, a new definition of the axial rotation angle was proposed. The proposed angle was stable over the entire range of the shoulder motion. With the new definition, the neutral position of the axial rotation agreed with that in the conventional anatomy. The advantage of the new definition was demonstrated by measuring actual complex motions of the shoulder with a three-dimensional motion capture system.

  18. Quantitative evaluation of toothbrush and arm-joint motion during tooth brushing.

    PubMed

    Inada, Emi; Saitoh, Issei; Yu, Yong; Tomiyama, Daisuke; Murakami, Daisuke; Takemoto, Yoshihiko; Morizono, Ken; Iwasaki, Tomonori; Iwase, Yoko; Yamasaki, Youichi

    2015-07-01

    It is very difficult for dental professionals to objectively assess tooth brushing skill of patients, because an obvious index to assess the brushing motion of patients has not been established. The purpose of this study was to quantitatively evaluate toothbrush and arm-joint motion during tooth brushing. Tooth brushing motion, performed by dental hygienists for 15 s, was captured using a motion-capture system that continuously calculates the three-dimensional coordinates of object's motion relative to the floor. The dental hygienists performed the tooth brushing on the buccal and palatal sides of their right and left upper molars. The frequencies and power spectra of toothbrush motion and joint angles of the shoulder, elbow, and wrist were calculated and analyzed statistically. The frequency of toothbrush motion was higher on the left side (both buccal and palatal areas) than on the right side. There were no significant differences among joint angle frequencies within each brushing area. The inter- and intra-individual variations of the power spectrum of the elbow flexion angle when brushing were smaller than for any of the other angles. This study quantitatively confirmed that dental hygienists have individual distinctive rhythms during tooth brushing. All arm joints moved synchronously during brushing, and tooth brushing motion was controlled by coordinated movement of the joints. The elbow generated an individual's frequency through a stabilizing movement. The shoulder and wrist control the hand motion, and the elbow generates the cyclic rhythm during tooth brushing.

  19. Risk Management in EVA

    NASA Technical Reports Server (NTRS)

    Hall, Jonathan; Lutomski, M.

    2006-01-01

    This viewgraph presentation reviews the use of risk management in Extravehicular Activities (EVA). The contents include: 1) EVA Office at NASA - JSC; 2) EVA Project Risk Management: Why and When; 3) EVA Office Risk Management: How; 4) Criteria for Closing a Risk; 5) Criteria for Accepting a Risk; 6) ISS IRMA Reference Card Data Entry Requirement s; 7) XA/ EVA Office Risk Activity Summary; 8) EVA Significant Change Summary; 9) Integrated Risk Management Application (XA) Matrix, March 31, 2004; 10) ISS Watch Item: 50XX Summary Report; and 11) EVA Project RM Usefulness

  20. EVA Systems Technology Gaps and Priorities 2017

    NASA Technical Reports Server (NTRS)

    Johnson, Brian J.; Buffington, Jesse A.

    2017-01-01

    Performance of Extra-Vehicular Activities (EVA) has been and will continue to be a critical capability for human space flight. Human exploration missions beyond LEO will require EVA capability for either contingency or nominal activities to support mission objectives and reduce mission risk. EVA systems encompass a wide array of products across pressure suits, life support systems, EVA tools and unique spacecraft interface hardware (i.e. EVA Translation Paths and EVA Worksites). In a fiscally limited environment with evolving transportation and habitation options, it is paramount that the EVA community's strategic planning and architecture integration products be reviewed and vetted for traceability between the mission needs far into the future to the known technology and knowledge gaps to the current investments across EVA systems. To ascertain EVA technology and knowledge gaps many things need to be brought together, assessed and analyzed. This includes an understanding of the destination environments, various mission concept of operations, current state of the art of EVA systems, EVA operational lessons learned, and reference advanced capabilities. A combined assessment of these inputs should result in well-defined list of gaps. This list can then be prioritized depending on the mission need dates and time scale of the technology or knowledge gap closure plan. This paper will summarize the current state of EVA related technology and knowledge gaps derived from NASA's Exploration EVA Reference Architecture and Operations Concept products. By linking these products and articulating NASA's approach to strategic development for EVA across all credible destinations an EVA could be done in, the identification of these gaps is then used to illustrate the tactical and strategic planning for the EVA technology development portfolio. Finally, this paper illustrates the various "touch points" with other human exploration risk identification areas including human health and performance.

  1. Olivas participating in EVA during Expedition/STS-117 Joint Operations

    NASA Image and Video Library

    2007-06-15

    ISS015-E-12948 (15 June 2007) --- Anchored to a foot restraint on Space Shuttle Atlantis' remote manipulator system (RMS) robotic arm, astronaut John "Danny" Olivas, STS-117 mission specialist, moves toward Atlantis' port orbital maneuvering system (OMS) pod that was damaged during the shuttle's climb to orbit last week. During the repair, Olivas pushed the turned up portion of the thermal blanket back into position, used a medical stapler to secure the layers of the blanket, and pinned it in place against adjacent thermal tile.

  2. Olivas participating in EVA during Expedition/STS-117 Joint Operations

    NASA Image and Video Library

    2007-06-15

    ISS015-E-12939 (15 June 2007) --- Anchored to a foot restraint on Space Shuttle Atlantis' remote manipulator system (RMS) robotic arm, astronaut John "Danny" Olivas, STS-117 mission specialist, moves toward Atlantis' port orbital maneuvering system (OMS) pod that was damaged during the shuttle's climb to orbit last week. During the repair, Olivas pushed the turned up portion of the thermal blanket back into position, used a medical stapler to secure the layers of the blanket, and pinned it in place against adjacent thermal tile.

  3. Study of Hind Limb Tissue Gas Phase Formation in Response to Suspended Adynamia and Hypokinesia

    NASA Technical Reports Server (NTRS)

    Butler, Bruce D.

    1996-01-01

    The purpose of this study was to investigate the hypothesis that reduced joint/muscle activity (hypo kinesia) as well as reduced or null loading of limbs (adynamia) in gravity would result in reduced decompression-induced gas phase and symptoms of decompression sickness (DCS). Finding a correlation between the two phenomena would correspond to the proposed reduction in tissue gas phase formation in astronauts undergoing decompression during extravehicular activity (EVA) in microgravity. The observation may further explain the reported low incidence of DCS in space.

  4. Energy utilization rates during shuttle extravehicular activities.

    PubMed

    Waligora, J M; Kumar, K V

    1995-01-01

    The work rates or energy utilization rates during EVA are major factors in sizing of life support systems. These rates also provide a measure of ease of EVA and its cost in crew fatigue. From the first Shuttle EVA on the STS-6 mission in 1983, we have conducted 59 man-EVA and 341 man-hours of EVA. Energy utilization rates have been measured on each of these EVA. Metabolic rate was measured during each EVA using oxygen utilization corrected for suit leakage. From 1981-1987, these data were available for average data over the EVA or over large segments of the EVA. Since 1987, EVA oxygen utilization data were available at 2-minute intervals. The average metabolic rate on Shuttle EVA (194 kcal/hr.) has been significantly lower than metabolic rates during Apollo and Skylab missions. Peak rates have been below design levels, infrequent, and of short duration. The data suggest that the energy cost of tasks may be inversely related to the degree of training for the task. The data provide insight on the safety margins provided by life support designs and on the energy cost of Station construction EVA.

  5. A Novel Recombinant Enterovirus Type EV-A89 with Low Epidemic Strength in Xinjiang, China

    PubMed Central

    Fan, Qin; Zhang, Yong; Hu, Lan; Sun, Qiang; Cui, Hui; Yan, Dongmei; Sikandaner, Huerxidan; Tang, Haishu; Wang, Dongyan; Zhu, Zhen; Zhu, Shuangli; Xu, Wenbo

    2015-01-01

    Enterovirus A89 (EV-A89) is a novel member of the EV-A species. To date, only one full-length genome sequence (the prototype strain) has been published. Here, we report the molecular identification and genomic characterization of a Chinese EV-A89 strain, KSYPH-TRMH22F/XJ/CHN/2011, isolated in 2011 from a contact of an acute flaccid paralysis (AFP) patient during AFP case surveillance in Xinjiang China. This was the first report of EV-A89 in China. The VP1 coding sequence of this strain demonstrated 93.2% nucleotide and 99.3% amino acid identity with the EV-A89 prototype strain. In the P2 and P3 regions, the Chinese EV-A89 strain demonstrated markedly higher identity than the prototype strains of EV-A76, EV-A90, and EV-A91, indicating that one or more recombination events between EV-A89 and these EV-A types might have occurred. Long-term evolution of these EV types originated from the same ancestor provides the spatial and temporal circumstances for recombination to occur. An antibody sero-prevalence survey against EV-A89 in two Xinjiang prefectures demonstrated low positive rates and low titres of EV-A89 neutralization antibody, suggesting limited range of transmission and exposure to the population. This study provides a solid foundation for further studies on the biological and pathogenic properties of EV-A89. PMID:26685900

  6. A Novel Recombinant Enterovirus Type EV-A89 with Low Epidemic Strength in Xinjiang, China.

    PubMed

    Fan, Qin; Zhang, Yong; Hu, Lan; Sun, Qiang; Cui, Hui; Yan, Dongmei; Sikandaner, Huerxidan; Tang, Haishu; Wang, Dongyan; Zhu, Zhen; Zhu, Shuangli; Xu, Wenbo

    2015-12-21

    Enterovirus A89 (EV-A89) is a novel member of the EV-A species. To date, only one full-length genome sequence (the prototype strain) has been published. Here, we report the molecular identification and genomic characterization of a Chinese EV-A89 strain, KSYPH-TRMH22F/XJ/CHN/2011, isolated in 2011 from a contact of an acute flaccid paralysis (AFP) patient during AFP case surveillance in Xinjiang China. This was the first report of EV-A89 in China. The VP1 coding sequence of this strain demonstrated 93.2% nucleotide and 99.3% amino acid identity with the EV-A89 prototype strain. In the P2 and P3 regions, the Chinese EV-A89 strain demonstrated markedly higher identity than the prototype strains of EV-A76, EV-A90, and EV-A91, indicating that one or more recombination events between EV-A89 and these EV-A types might have occurred. Long-term evolution of these EV types originated from the same ancestor provides the spatial and temporal circumstances for recombination to occur. An antibody sero-prevalence survey against EV-A89 in two Xinjiang prefectures demonstrated low positive rates and low titres of EV-A89 neutralization antibody, suggesting limited range of transmission and exposure to the population. This study provides a solid foundation for further studies on the biological and pathogenic properties of EV-A89.

  7. Landing Mechanics During Side Hopping and Crossover Hopping Maneuvers in Noninjured Women and Women With Anterior Cruciate Ligament Reconstruction

    PubMed Central

    Ortiz, Alexis; Olson, Sharon; Trudelle-Jackson, Elaine; Rosario, Martin; Venegas, Heidi L.

    2011-01-01

    Objective To compare, landing mechanics and electromyographic activity of the lower extremities during side hopping and crossover hopping maneuvers, in noninjured women and women with anterior cruciate ligament (ACL) reconstruction. Design A case-control study. Setting A 3-dimensional motion analysis laboratory. Participants Twenty-eight young women (range, 21–35 years) (15 control subjects and 13 subjects with ACL reconstruction). Patients and Methods All participants performed a side-to-side hopping task that consisted of hopping single-legged 10 times consecutively from side to side across 2 lines marked 30 cm apart on 2 individual force plates. The task was designated as a side hopping when the hop was to the opposite side of the stance leg and as crossover hopping when the hop was toward the side of the stance leg. Main Outcome Measurements Peak hip-/knee-joint angles; peak knee extension/abduction joint moments; electromyographic studies of the gluteus maximus, gluteus medius, rectus femoris, and hamstring muscles; and quadriceps/hamstring co-contraction ratio were compared between the groups by means of 2 × 2 multivariate analysis of variance tests (group × maneuver). Results Noninjured women and women with ACL reconstruction exhibited similar hip-and knee-joint angles during both types of hopping. Hip-joint angles were greater during the crossover hopping in both groups, and knee-joint angles did not differ between the groups or hops. Knee-joint moments demonstrated a significant group × maneuver interaction. Greater knee extension and valgus moments were noted in the control group during crossover hopping, and greater knee abduction moments were noted in the ACL group during side hopping. Electromyographic data revealed no statistically significantly differences between the groups. Conclusions Women with ACL reconstruction exhibited the restoration of functional biomechanical movements such as hip-/knee-joint angles and lower extremity neuromuscular activation during side-to-side athletic tasks. However, not all biomechanical strategies are restored years after surgery, and women who have undergone a procedure such as ACL reconstruction may continue to exhibit knee-joint abduction moments that increase the risk of additional knee injury. PMID:21257128

  8. Joint kinematics and kinetics during walking and running in 32 patients with hip dysplasia 1 year after periacetabular osteotomy

    PubMed Central

    Jacobsen, Julie S; Nielsen, Dennis B; Sørensen, Henrik; Søballe, Kjeld; Mechlenburg, Inger

    2014-01-01

    Background and purpose — Hip dysplasia can be treated with periacetabular osteotomy (PAO). We compared joint angles and joint moments during walking and running in young adults with hip dysplasia prior to and 6 and 12 months after PAO with those in healthy controls. Patients and methods — Joint kinematics and kinetics were recorded using a 3-D motion capture system. The pre- and postoperative gait characteristics quantified as the peak hip extension angle and the peak joint moment of hip flexion were compared in 23 patients with hip dysplasia (18–53 years old). Similarly, the gait patterns of the patients were compared with those of 32 controls (18–54 years old). Results — During walking, the peak hip extension angle and the peak hip flexion moment were significantly smaller at baseline in the patients than in the healthy controls. The peak hip flexion moment increased 6 and 12 months after PAO relative to baseline during walking, and 6 months after PAO relative to baseline during running. For running, the improvement did not reach statistical significance at 12 months. In addition, the peak hip extension angle during walking increased 12 months after PAO, though not statistically significantly. There were no statistically significant differences in peak hip extension angle and peak hip flexion moment between the patients and the healthy controls after 12 months. Interpretation — Walking and running characteristics improved after PAO in patients with symptomatic hip dysplasia, although gait modifications were still present 12 months postoperatively. PMID:25191933

  9. Effect of Knee Joint Angle and Contraction Intensity on Hamstrings Coactivation.

    PubMed

    Wu, Rui; Delahunt, Eamonn; Ditroilo, Massimiliano; Lowery, Madeleine M; DE Vito, Giuseppe

    2017-08-01

    This study investigated the effect of knee joint angle and contraction intensity on the coactivation of the hamstring muscles (when acting as antagonists to the quadriceps) in young and older individuals of both sexes. A total of 25 young (24 ± 2.6 yr) and 26 older (70 ± 2.5 yr) healthy men and women participated. Maximal voluntary isometric contraction of the knee extensors and flexors was assessed at two knee joint angles (90° and 60°, 0° = full extension). At each angle, participants performed submaximal contractions of the knee extensors (20%, 50%, and 80% maximal voluntary isometric contraction), whereas surface EMG was simultaneously acquired from the vastus lateralis and biceps femoris muscles to assess the level (EMG root-mean-square) of agonist activation and antagonist coactivation. Subcutaneous adipose tissue in the areas corresponding to surface EMG electrode placements was measured via ultrasonography. The contractions performed at 90° knee flexion demonstrated higher levels of antagonist coactivation (all P < 0.01) and agonist activation (all P < 0.01) as a function of contraction intensity compared with the 60° knee flexion. Furthermore, after controlling for subcutaneous adipose tissue, older participants exhibited a higher level of antagonist coactivation at 60° knee flexion compared with young participants (P < 0.05). The results of the present study suggest that 1) the antagonist coactivation is dependent on knee joint angle and contraction intensity and 2) subcutaneous adipose tissue may affect the measured coactivation level likely because of a cross-talk effect. Antagonist coactivation may play a protective role in stabilizing the knee joint and maintaining constant motor output.

  10. A Numerical Study on Toppling Failure of a Jointed Rock Slope by Using the Distinct Lattice Spring Model

    NASA Astrophysics Data System (ADS)

    Lian, Ji-Jian; Li, Qin; Deng, Xi-Fei; Zhao, Gao-Feng; Chen, Zu-Yu

    2018-02-01

    In this work, toppling failure of a jointed rock slope is studied by using the distinct lattice spring model (DLSM). The gravity increase method (GIM) with a sub-step loading scheme is implemented in the DLSM to mimic the loading conditions of a centrifuge test. A classical centrifuge test for a jointed rock slope, previously simulated by the finite element method and the discrete element model, is simulated by using the GIM-DLSM. Reasonable boundary conditions are obtained through detailed comparisons among existing numerical solutions with experimental records. With calibrated boundary conditions, the influences of the tensional strength of the rock block, cohesion and friction angles of the joints, as well as the spacing and inclination angles of the joints, on the flexural toppling failure of the jointed rock slope are investigated by using the GIM-DLSM, leading to some insight into evaluating the state of flexural toppling failure for a jointed slope and effectively preventing the flexural toppling failure of jointed rock slopes.

  11. EVA1A inhibits GBM cell proliferation by inducing autophagy and apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Xue; Kan, Shifeng; Liu, Zhen

    Eva-1 homolog A (EVA1A) is a novel lysosome and endoplasmic reticulum-associated protein involved in autophagy and apoptosis. In this study, we constructed a recombinant adenovirus 5-EVA1A vector (Ad5-EVA1A) to overexpress EVA1A in glioblastoma (GBM) cell lines and evaluated its anti-tumor activities in vitro and in vivo. We found that overexpression of EVA1A in three GBM cell lines (U251, U87 and SHG44) resulted in a suppression of tumor cell growth via activation of autophagy and induction of cell apoptosis in a dose- and time-dependent manner. EVA1A-mediated autophagy was associated with inactivation of the mTOR/RPS6KB1 signaling pathway. Furthermore in vivo, overexpression ofmore » EVA1A successfully inhibited tumor growth in NOD/SCID mice. Our data suggest that EVA1A-induced autophagy and apoptosis play a role in suppressing the development of GBM and their up-regulation may be an effective method for treating this form of cancer. - Highlights: • Overexpression of EVA1A suppresses GBM cell growth. • EVA1A induces autophagy through the mTOR/RPS6KB1 pathway. • EVA1A induces GBM cell apoptosis. • EVA1A inhibits the development of GBM in vivo.« less

  12. Application of Shuttle EVA Systems to Payloads. Volume 2: Payload EVA Task Completion Plans

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Candidate payload tasks for EVA application were identified and selected, based on an analysis of four representative space shuttle payloads, and typical EVA scenarios with supporting crew timelines and procedures were developed. The EVA preparations and post EVA operations, as well as the timelines emphasizing concurrent payload support functions, were also summarized.

  13. Advanced EVA system design requirements study: EVAS/space station system interface requirements

    NASA Technical Reports Server (NTRS)

    Woods, T. G.

    1985-01-01

    The definition of the Extravehicular Activity (EVA) systems interface requirements and accomodations for effective integration of a production EVA capability into the space station are contained. A description of the EVA systems for which the space station must provide the various interfaces and accomodations are provided. The discussion and analyses of the various space station areas in which the EVA interfaces are required and/or from which implications for EVA system design requirements are derived, are included. The rationale is provided for all EVAS mechanical, fluid, electrical, communications, and data system interfaces as well as exterior and interior requirements necessary to facilitate EVA operations. Results of the studies supporting these discussions are presented in the appendix.

  14. Operating Comfort Prediction Model of Human-Machine Interface Layout for Cabin Based on GEP.

    PubMed

    Deng, Li; Wang, Guohua; Chen, Bo

    2015-01-01

    In view of the evaluation and decision-making problem of human-machine interface layout design for cabin, the operating comfort prediction model is proposed based on GEP (Gene Expression Programming), using operating comfort to evaluate layout scheme. Through joint angles to describe operating posture of upper limb, the joint angles are taken as independent variables to establish the comfort model of operating posture. Factor analysis is adopted to decrease the variable dimension; the model's input variables are reduced from 16 joint angles to 4 comfort impact factors, and the output variable is operating comfort score. The Chinese virtual human body model is built by CATIA software, which will be used to simulate and evaluate the operators' operating comfort. With 22 groups of evaluation data as training sample and validation sample, GEP algorithm is used to obtain the best fitting function between the joint angles and the operating comfort; then, operating comfort can be predicted quantitatively. The operating comfort prediction result of human-machine interface layout of driller control room shows that operating comfort prediction model based on GEP is fast and efficient, it has good prediction effect, and it can improve the design efficiency.

  15. Device for measuring hole elongation in a bolted joint

    NASA Technical Reports Server (NTRS)

    Wichorek, Gregory R. (Inventor)

    1987-01-01

    A device to determine the operable failure mode of mechanically fastened lightweight composite joints by measuring the hole elongation of a bolted joint is disclosed. The double-lap joint test apparatus comprises a stud, a test specimen having a hole, two load transfer plates, and linear displacement measuring instruments. The test specimen is sandwiched between the two load transfer plates and clamped together with the stud. Spacer washers are placed between the test specimen and each load transfer plate to provide a known, controllable area for the determination of clamping forces around the hole of the specimen attributable to bolt torque. The spacer washers also provide a gap for the mounting of reference angles on each side of the test specimen. Under tensile loading, elongation of the hole of the test specimen causes the stud to move away from the reference angles. This displacement is measured by the voltage output of two linear displacement measuring instruments that are attached to the stud and remain in contact with the reference angles throughout the tensile loading. The present invention obviates previous problems in obtaining specimen deformation measurements by monitoring the reference angles to the test specimen and the linear displacement measuring instruments to the stud.

  16. Quasi-stiffness of the knee joint in flexion and extension during the golf swing.

    PubMed

    Choi, Ahnryul; Sim, Taeyong; Mun, Joung Hwan

    2015-01-01

    Biomechanical understanding of the knee joint during a golf swing is essential to improve performance and prevent injury. In this study, we quantified the flexion/extension angle and moment as the primary knee movement, and evaluated quasi-stiffness represented by moment-angle coupling in the knee joint. Eighteen skilled and 23 unskilled golfers participated in this study. Six infrared cameras and two force platforms were used to record a swing motion. The anatomical angle and moment were calculated from kinematic and kinetic models, and quasi-stiffness of the knee joint was determined as an instantaneous slope of moment-angle curves. The lead knee of the skilled group had decreased resistance duration compared with the unskilled group (P < 0.05), and the resistance duration of the lead knee was lower than that of the trail knee in the skilled group (P < 0.01). The lead knee of the skilled golfers had greater flexible excursion duration than the trail knee of the skilled golfers, and of both the lead and trail knees of the unskilled golfers. These results provide critical information for preventing knee injuries during a golf swing and developing rehabilitation strategies following surgery.

  17. Operating Comfort Prediction Model of Human-Machine Interface Layout for Cabin Based on GEP

    PubMed Central

    Wang, Guohua; Chen, Bo

    2015-01-01

    In view of the evaluation and decision-making problem of human-machine interface layout design for cabin, the operating comfort prediction model is proposed based on GEP (Gene Expression Programming), using operating comfort to evaluate layout scheme. Through joint angles to describe operating posture of upper limb, the joint angles are taken as independent variables to establish the comfort model of operating posture. Factor analysis is adopted to decrease the variable dimension; the model's input variables are reduced from 16 joint angles to 4 comfort impact factors, and the output variable is operating comfort score. The Chinese virtual human body model is built by CATIA software, which will be used to simulate and evaluate the operators' operating comfort. With 22 groups of evaluation data as training sample and validation sample, GEP algorithm is used to obtain the best fitting function between the joint angles and the operating comfort; then, operating comfort can be predicted quantitatively. The operating comfort prediction result of human-machine interface layout of driller control room shows that operating comfort prediction model based on GEP is fast and efficient, it has good prediction effect, and it can improve the design efficiency. PMID:26448740

  18. A New Artificial Neural Network Approach in Solving Inverse Kinematics of Robotic Arm (Denso VP6242)

    PubMed Central

    Dülger, L. Canan; Kapucu, Sadettin

    2016-01-01

    This paper presents a novel inverse kinematics solution for robotic arm based on artificial neural network (ANN) architecture. The motion of robotic arm is controlled by the kinematics of ANN. A new artificial neural network approach for inverse kinematics is proposed. The novelty of the proposed ANN is the inclusion of the feedback of current joint angles configuration of robotic arm as well as the desired position and orientation in the input pattern of neural network, while the traditional ANN has only the desired position and orientation of the end effector in the input pattern of neural network. In this paper, a six DOF Denso robotic arm with a gripper is controlled by ANN. The comprehensive experimental results proved the applicability and the efficiency of the proposed approach in robotic motion control. The inclusion of current configuration of joint angles in ANN significantly increased the accuracy of ANN estimation of the joint angles output. The new controller design has advantages over the existing techniques for minimizing the position error in unconventional tasks and increasing the accuracy of ANN in estimation of robot's joint angles. PMID:27610129

  19. A New Artificial Neural Network Approach in Solving Inverse Kinematics of Robotic Arm (Denso VP6242).

    PubMed

    Almusawi, Ahmed R J; Dülger, L Canan; Kapucu, Sadettin

    2016-01-01

    This paper presents a novel inverse kinematics solution for robotic arm based on artificial neural network (ANN) architecture. The motion of robotic arm is controlled by the kinematics of ANN. A new artificial neural network approach for inverse kinematics is proposed. The novelty of the proposed ANN is the inclusion of the feedback of current joint angles configuration of robotic arm as well as the desired position and orientation in the input pattern of neural network, while the traditional ANN has only the desired position and orientation of the end effector in the input pattern of neural network. In this paper, a six DOF Denso robotic arm with a gripper is controlled by ANN. The comprehensive experimental results proved the applicability and the efficiency of the proposed approach in robotic motion control. The inclusion of current configuration of joint angles in ANN significantly increased the accuracy of ANN estimation of the joint angles output. The new controller design has advantages over the existing techniques for minimizing the position error in unconventional tasks and increasing the accuracy of ANN in estimation of robot's joint angles.

  20. Tracking Historical NASA EVA Training: Lifetime Surveillance of Astronaut Health (LSAH) Development of the EVA Suit Exposure Tracker (EVA SET)

    NASA Technical Reports Server (NTRS)

    Laughlin, Mitzi S.; Murray, Jocelyn D.; Lee, Lesley R.; Wear, Mary L.; Van Baalen, Mary

    2017-01-01

    During a spacewalk, designated as extravehicular activity (EVA), an astronaut ventures from the protective environment of the spacecraft into the vacuum of space. EVAs are among the most challenging tasks during a mission, as they are complex and place the astronaut in a highly stressful environment dependent on the spacesuit for survival. Due to the complexity of EVA, NASA has conducted various training programs on Earth to mimic the environment of space and to practice maneuvers in a more controlled and forgiving environment. However, rewards offset the risks of EVA, as some of the greatest accomplishments in the space program were accomplished during EVA, such as the Apollo moonwalks and the Hubble Space Telescope repair missions. Water has become the environment of choice for EVA training on Earth, using neutral buoyancy as a substitute for microgravity. During EVA training, an astronaut wears a modified version of the spacesuit adapted for working in water. This high fidelity suit allows the astronaut to move in the water while performing tasks on full-sized mockups of space vehicles, telescopes, and satellites. During the early Gemini missions, several EVA objectives were much more difficult than planned and required additional time. Later missions demonstrated that "complex (EVA) tasks were feasible when restraints maintained body position and underwater simulation training ensured a high success probability".1,2 EVA training has evolved from controlling body positioning to perform basic tasks to complex maintenance of the Hubble Space Telescope and construction of the International Space Station (ISS). Today, preparation is centered at special facilities built specifically for EVA training, such as the Neutral Buoyancy Laboratory (NBL) at NASA's Johnson Space Center ([JSC], Houston) and the Hydrolab at the Gagarin Cosmonaut Training Centre ([GCTC], Star City, outside Moscow). Underwater training for an EVA is also considered hazardous duty for NASA astronauts. This activity places astronauts at risk for decompression sickness and barotrauma as well as various musculoskeletal disorders from working in the spacesuit. The medical, operational and research communities over the years have requested access to EVA training data to better understand the risks. As a result of these requests, epidemiologists within the Lifetime Surveillance of Astronaut Health (LSAH) team have compiled records from numerous EVA training venues to quantify the exposure to EVA training. The EVA Suit Exposure Tracker (EVA SET) dataset is a compilation of ground-based training activities using the extravehicular mobility unit (EMU) in neutrally buoyant pools to enhance EVA performance on orbit. These data can be used by the current ISS program and future exploration missions by informing physicians, researchers, and operational personnel on the risks of EVA training in order that future suit and mission designs incorporate greater safety. The purpose of this technical report is to document briefly the various facilities where NASA astronauts have performed EVA training while describing in detail the EVA training records used to generate the EVA SET dataset.

  1. Comparison of dominant hand range of motion among throwing types in baseball pitchers.

    PubMed

    Wang, Lin-Hwa; Kuo, Li-Chieh; Shih, Sheng-Wen; Lo, Kuo-Cheng; Su, Fong-Chin

    2013-08-01

    Previous research on baseball pitchers' wrists, elbows, and should joints contributes to our understanding of pitchers' control over delicate joint motion and ball release. However, limited research on forearm, wrist, and hand joints prevents full comprehension of the throwing mechanism. The present descriptive laboratory study quantifies angular performances of hand and wrist joints while pitching breaking balls, including fastballs, curveballs and sliders, among pitchers with different skill levels. Nineteen baseball pitchers performed required pitching tasks (10 from university and 9 from high school). A three-dimensional motion analysis system collected pitching motion data. The range of joint motion in the wrist and proximal interphalangeal (PIP) and metacarpophalangeal (MP) joints of the index and middle fingers were compared among fastballs, curveballs and sliders. Thirteen reflective markers were placed on selected anatomic landmarks of the wrist, middle and index fingers of the hand. Wrist flexion angle in the pitching acceleration phase was larger in fastballs (20.58±4.07°) and sliders (22.48±5.45°) than in curveballs (9.08±3.03°) (p = .001). The flexion angle of the PIP joint was significantly larger in curveballs (38.5±3.8°) than in fastballs (30.3±4.8°) and sliders (30.2±4.5°) (p=.004) of the middle finger. Abduction angle of MP joint on the middle finger was significantly larger in curveballs (15.4 ±3.6°) than in fastballs (8.9±1.2°) and sliders (6.9±2.9°) (p=.001) of the middle finger, and the abduction angle of index finger was significantly larger in sliders (13.5±15.0°) than in fastballs (7.2 ±2.8°) (p=.007). Hand and wrist motion and grip types affect the relative position between fingers and ball, which produces different types of baseball pitches. A larger extension angle of the wrist joint and the coordination of middle and index fingers are crucial when pitching a fastball. Abduction and flexion movement on the MP joint of the middle finger are important for a curveball. MP joint abduction and flexion movement of the index finger produce sliders. Understanding the control mechanism in a throwing hand can help improve training protocols in either injury prevention or performance improvement for baseball pitchers. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Joint scientific statement of the European Association for the Study of Obesity and the European Society of Hypertension: Obesity and early vascular ageing.

    PubMed

    Jordan, Jens; Nilsson, Peter M; Kotsis, Vasilios; Olsen, Michael H; Grassi, Guido; Yumuk, Volkan; Hauner, Hans; Zahorska-Markiewicz, Barbara; Toplak, Hermann; Engeli, Stefan; Finer, Nick

    2015-03-01

    Current cardiovascular risk scores do not include obesity or fat distribution as independent factors, and may underestimate risk in obese individuals. Assessment of early vascular ageing (EVA) biomarkers including arterial stiffness, central blood pressure, carotid intima-media thickness and flow-mediated vasodilation may help to refine risk assessment in obese individuals in whom traditional cardiovascular risk scores and factors suggest no need for specific medical attention. A number of issues need to be addressed before this approach is ready for translation into routine clinical practice. Methodologies for measurements of vascular markers need to be further standardized and less operator-dependent. The utility of these nontraditional risk factors will also need to be proven in sufficiently large and properly designed interventional studies. Indeed, published studies on vascular markers in obesity and weight loss vary in quality and study design, are sometimes conducted in small populations, use a variety of differing methodologies and study differing vascular beds. Finally, current vascular measurements are still crude and may not be sufficient to cover the different aspects of EVA in obesity.

  3. Understanding how axial loads on the spine influence segmental biomechanics for idiopathic scoliosis patients: A magnetic resonance imaging study.

    PubMed

    Little, J P; Pearcy, M J; Izatt, M T; Boom, K; Labrom, R D; Askin, G N; Adam, C J

    2016-02-01

    Segmental biomechanics of the scoliotic spine are important since the overall spinal deformity is comprised of the cumulative coronal and axial rotations of individual joints. This study investigates the coronal plane segmental biomechanics for adolescent idiopathic scoliosis patients in response to physiologically relevant axial compression. Individual spinal joint compliance in the coronal plane was measured for a series of 15 idiopathic scoliosis patients using axially loaded magnetic resonance imaging. Each patient was first imaged in the supine position with no axial load, and then again following application of an axial compressive load. Coronal plane disc wedge angles in the unloaded and loaded configurations were measured. Joint moments exerted by the axial compressive load were used to derive estimates of individual joint compliance. The mean standing major Cobb angle for this patient series was 46°. Mean intra-observer measurement error for endplate inclination was 1.6°. Following loading, initially highly wedged discs demonstrated a smaller change in wedge angle, than less wedged discs for certain spinal levels (+2,+1,-2 relative to the apex, (p<0.05)). Highly wedged discs were observed near the apex of the curve, which corresponded to lower joint compliance in the apical region. While individual patients exhibit substantial variability in disc wedge angles and joint compliance, overall there is a pattern of increased disc wedging near the curve apex, and reduced joint compliance in this region. Approaches such as this can provide valuable biomechanical data on in vivo spinal biomechanics of the scoliotic spine, for analysis of deformity progression and surgical planning. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Joint angle affects volitional and magnetically-evoked neuromuscular performance differentially.

    PubMed

    Minshull, C; Rees, D; Gleeson, N P

    2011-08-01

    This study examined the volitional and magnetically-evoked neuromuscular performance of the quadriceps femoris at functional knee joint angles adjacent to full extension. Indices of volitional and magnetically-evoked neuromuscular performance (N=15 healthy males, 23.5 ± 2.9 years, 71.5 ± 5.4 kg, 176.5 ± 5.5 cm) were obtained at 25°, 35° and 45° of knee flexion. Results showed that volitional and magnetically-evoked peak force (PF(V) and P(T)F(E), respectively) and electromechanical delay (EMD(V) and EMD(E), respectively) were enhanced by increased knee flexion. However, greater relative improvements in volitional compared to evoked indices of neuromuscular performance were observed with increasing flexion from 25° to 45° (e.g. EMD(V), EMD(E): 36% vs. 11% improvement, respectively; F([2,14])=6.8, p<0.05). There were no significant correlations between EMD(V) and EMD(E) or PF(V) and P(T)F(E), at analogous joint positions. These findings suggest that the extent of the relative differential between volitional and evoked neuromuscular performance capabilities is joint angle-specific and not correlated with performance capabilities at adjacent angles, but tends to be smaller with increased flexion. As such, effective prediction of volitional from evoked performance capabilities at both analogous and adjacent knee joint positions would lack robustness. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Outcomes of total knee arthroplasty in relation to preoperative patient-reported and radiographic measures: data from the osteoarthritis initiative.

    PubMed

    Kahn, Timothy L; Soheili, Aydin; Schwarzkopf, Ran

    2013-12-01

    Total knee arthroplasty (TKA) is the preferred surgical treatment for end-stage osteoarthritis. However, substantial numbers of patients still experience poor outcomes. Consequently, it is important to identify which patient characteristics are predictive of outcomes in order to guide clinical decisions. Our hypothesis is that preoperative patient-reported outcome measures and radiographic measures may help to predict TKA outcomes. Using cohort data from the Osteoarthritis Initiative, we studied 172 patients who underwent TKA. For each patient, we compiled pre- and postoperative Western Ontario and McMaster University Arthritis Index (WOMAC) scores. Radiographs were measured for knee joint angles, femorotibial angles, anatomical lateral distal femoral angles, and anatomical medial proximal tibial angles; Kellgren and Lawrence (KL) grades were assigned to each compartment of the knee. All studied measurements were compared to WOMAC outcomes. Preoperative WOMAC disability, pain, and total scores were positively associated with postoperative WOMAC total scores (P = .010, P = .010, and P = .009, respectively) and were associated with improvement in WOMAC total scores (P < .001, P < .001, and P < .001, respectively). For radiographic measurements, preoperative joint angles were positively associated with improvements in postoperative WOMAC total scores (P = .044). Combined KL grades (medial and lateral compartments) were negatively correlated with postoperative WOMAC disability and pain scores (P = .045 and P = .044) and were positively correlated with improvements in WOMAC total scores (P = .001). All preoperative WOMAC scores demonstrated positive associations with postoperative WOMAC scores, while among the preoperative radiographic measurements only combined KL grades and joint angles showed any correlation with postoperative WOMAC scores. Higher preoperative KL grades and joint angles were associated with better (lower) postoperative WOMAC scores, demonstrating an inverse correlation.

  6. No evidence hip joint angle modulates intrinsically produced stretch reflex in human hopping.

    PubMed

    Gibson, W; Campbell, A; Allison, G

    2013-09-01

    Motor output in activities such as walking and hopping is suggested to be mediated neurally by purported stretch reflex augmentation of muscle output. Reflex EMG activity during these tasks has been frequently investigated in the soleus muscle; with alterations in reflex amplitude being associated with changes in hip joint angle/phase of the gait cycle. Previous work has focussed on reflex activity induced by an artificial perturbation or by induction of H-reflexes. As such, it is currently unknown if stretch reflex activity induced intrinsically (as part of the task) is modulated by changes in hip joint angle. This study investigated whether hip joint angle modulated reflex EMG 'burst' activity during a hopping task performed on a custom-built partially reclined sleigh. Ten subjects participated; EMG and kinematic data (VICON motor capture system) was collected for each hop cycle. Participants completed 5 sets of 30s of self-paced hopping in (1) hip neutral and (2) hip 60° flexion conditions. There was no difference in EMG 'burst' activity or in sagittal plane kinematics (knee/ankle) in the hopping task between the two conditions. The results indicate that during a functional task such as hopping, changes in hip angle do not alter the stretch reflex-like activity associated with landing. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Modeling the effect of preexisting joints on normal fault geometries using a brittle and cohesive material

    NASA Astrophysics Data System (ADS)

    Kettermann, M.; van Gent, H. W.; Urai, J. L.

    2012-04-01

    Brittle rocks, such as for example those hosting many carbonate or sandstone reservoirs, are often affected by different kinds of fractures that influence each other. Understanding the effects of these interactions on fault geometries and the formation of cavities and potential fluid pathways might be useful for reservoir quality prediction and production. Analogue modeling has proven to be a useful tool to study faulting processes, although usually the used materials do not provide cohesion and tensile strength, which are essential to create open fractures. Therefore, very fine-grained, cohesive, hemihydrate powder was used for our experiments. The mechanical properties of the material are scaling well for natural prototypes. Due to the fine grain size structures are preserved in in great detail. The used deformation box allows the formation of a half-graben and has initial dimensions of 30 cm width, 28 cm length and 20 cm height. The maximum dip-slip along the 60° dipping predefined basement fault is 4.5 cm and was fully used in all experiments. To setup open joints prior to faulting, sheets of paper placed vertically within the box to a depth of about 5 cm from top. The powder was then sieved into the box, embedding the paper almost entirely. Finally strings were used to remove the paper carefully, leaving open voids. Using this method allows the creation of cohesionless open joints while ensuring a minimum impact on the sensitive surrounding material. The presented series of experiments aims to investigate the effect of different angles between the strike of a rigid basement fault and a distinct joint set. All experiments were performed with a joint spacing of 2.5 cm and the fault-joint angles incrementally covered 0°, 4°, 8°, 12°, 16°, 20° and 25°. During the deformation time lapse photography from the top and side captured every structural change and provided data for post-processing analysis using particle imaging velocimetry (PIV). Additionally, stereo-photography at the final stage of deformation enabled the creation of 3D models to preserve basic geometric information. The models showed that at the surface the deformation localized always along preexisting joints, even when they strike at an angle to the basement-fault. In most cases faults intersect precisely at the maximum depth of the joints. With increasing fault-joint angle the deformation occurred distributed over several joints by forming stepovers with fractures oriented normal to the strike of the joints. No fractures were observed parallel to the basement fault. At low angles stepovers coincided with wedge-shaped structures between two joints that remain higher than the surrounding joint-fault intersection. The wide opening gap along the main fault allowed detailed observations of the fault planes at depth, which revealed (1) changing dips according to joint-fault angles, (2) slickenlines, (3) superimposed steepening fault-planes, causing sharp sawtooth-shaped structures. Comparison to a field analogue at Canyonlands National Park, Utah/USA showed similar structures and features such as vertical fault escarpments at the surface coinciding with joint-surfaces. In the field and in the models stepovers were observed as well as conjugate faulting and incremental fault-steepening.

  8. Double slotted socket spherical joint

    DOEpatents

    Bieg, Lothar F.; Benavides, Gilbert L.

    2001-05-22

    A new class of spherical joints is disclosed. These spherical joints are capable of extremely large angular displacements (full cone angles in excess of 270.degree.), while exhibiting no singularities or dead spots in their range of motion. These joints can improve or simplify a wide range of mechanical devices.

  9. Knockout of Eva1a leads to rapid development of heart failure by impairing autophagy

    PubMed Central

    Zhang, Shu; Lin, Xin; Li, Ge; Shen, Xue; Niu, Di; Lu, Guang; Fu, Xin; Chen, Yingyu; Cui, Ming; Bai, Yun

    2017-01-01

    EVA1A (Eva-1 homologue A) is a novel lysosome and endoplasmic reticulum-associated protein that can regulate cell autophagy and apoptosis. Eva1a is expressed in the myocardium, but its function in myocytes has not yet been investigated. Therefore, we generated inducible, cardiomyocyte-specific Eva1a knockout mice with an aim to determine the role of Eva1a in cardiac remodelling in the adult heart. Data from experiments showed that loss of Eva1a in the adult heart increased cardiac fibrosis, promoted cardiac hypertrophy, and led to cardiomyopathy and death. Further investigation suggested that this effect was associated with impaired autophagy and increased apoptosis in Eva1a knockout hearts. Moreover, knockout of Eva1a activated Mtor signalling and the subsequent inhibition of autophagy. In addition, Eva1a knockout hearts showed disorganized sarcomere structure and mitochondrial misalignment and aggregation, leading to the lack of ATP generation. Collectively, these data demonstrated that Eva1a improves cardiac function and inhibits cardiac hypertrophy and fibrosis by increasing autophagy. In conclusion, our results demonstrated that Eva1a may have an important role in maintaining cardiac homeostasis. PMID:28151473

  10. The ExaVolt Antenna: Concept and Development Updates

    NASA Astrophysics Data System (ADS)

    Pfendner, Carl

    2017-03-01

    A flux of ultrahigh energy neutrinos is expected both directly from sources and from interactions between ultrahigh energy cosmic rays and the cosmic microwave background. Using the cost-effective radio Cherenkov technique to search for these neutrinos, the ExaVolt Antenna (EVA) is a mission concept that aims to build on the capabilities of earlier radio-based balloon-borne neutrino detectors and increase the sensitivity to lower energies and fluxes. The novel EVA design exploits the surface of the balloon to provide a focusing reflector that aims to provide a signal gain of 30 dBi (compared to 10 dBi on ANITA). This increase in gain when combined with a large instantaneous viewing angle will yield a 10-fold increase in sensitivity and will allow this balloon-borne experiment to probe the expected low neutrino fluxes even at energies greater than 1019 eV. This contribution will present an overview of the mission concept, recent technology developments, and the results of a hang test of a 1:20-scale model which demonstrates the effectiveness of the design.

  11. [The effect of verticalization of the resulting force (R) of weight bearing in the hip joint on morphologic characteristics of the medullary canal in the femoral shaft in patients with coxarthrosis].

    PubMed

    Jovanović, S

    1992-01-01

    An influence of verticalization of the resulting force of weight-bearing on the hip joint "R" on the morphological characteristics of the medullar canal on the proximal edge of the shaft of femur was researched. Progressive degenerative changes of the hip joint with a consequent sideways limping or changes of the collodiaphysial angle (ccd angle) were the cause of the verticalization of the resulting force "R". The analysis of patients treated and operated on The Orthopaedic Department of the General Hospital Osijek and The Orthopaedic Clinic of The Medical Faculty of The University of Zagreb. The research, undoubtedly, proved that the patients with coxarthrosis and side-ways in the hip or with changed collodiaphysial angle experienced verticalization of the resulting force of weigh-bearing of the hip joint and the proximal edge of femur which caused morphological changes of the medular canal of the shaft of femur.

  12. Measurements of normal joint angles by goniometry in calves.

    PubMed

    Sengöz Şirin, O; Timuçin Celik, M; Ozmen, A; Avki, S

    2014-01-01

    The aim of this study was to establish normal reference values of the forelimb and hindlimb joint angles in normal Holstein calves. Thirty clinically normal Holstein calves that were free of any detectable musculoskeletal abnormalities were included in the study. A standard transparent plastic goniometer was used to measure maximum flexion, maximum extension, and range-of-motion of the shoulder, elbow, carpal, hip, stifle, and tarsal joints. The goniometric measurements were done on awake calves that were positioned in lateral recumbency. The goniometric values were measured and recorded by two independent investigators. As a result of the study it was concluded that goniometric values obtained from awake calves in lateral recumbency were found to be highly consistent and accurate between investigators (p <0.05). The data of this study acquired objective and useful information on the normal forelimb and hindlimb joint angles in normal Holstein calves. Further studies can be done to predict detailed goniometric values from different diseases and compare them.

  13. Lunar Extravehicular Activity Program

    NASA Technical Reports Server (NTRS)

    Heartsill, Amy Ellison

    2006-01-01

    Extravehicular Activity (EVA) has proven an invaluable tool for space exploration since the inception of the space program. There are situations in which the best means to evaluate, observe, explore and potentially troubleshoot space systems are accomplished by direct human intervention. EVA provides this unique capability. There are many aspects of the technology required to enable a "miniature spaceship" to support individuals in a hostile environment in order to accomplish these tasks. This includes not only the space suit assembly itself, but the tools, design interfaces of equipment on which EVA must work and the specific vehicles required to support transfer of humans between habitation areas and the external world. This lunar mission program will require EVA support in three primary areas. The first of these areas include Orbital stage EVA or micro-gravity EVA which includes both Low Earth Orbit (LEO), transfer and Lunar Orbit EVA. The second area is Lunar Lander EVA capability, which is lunar surface EVA and carries slightly different requirements from micro-gravity EVA. The third and final area is Lunar Habitat based surface EVA, which is the final system supporting a long-term presence on the moon.

  14. Space Station Freedom extravehicular activity systems evolution study

    NASA Technical Reports Server (NTRS)

    Rouen, Michael

    1990-01-01

    Evaluation of Space Station Freedom (SSF) support of manned exploration is in progress to identify SSF extravehicular activity (EVA) system evolution requirements and capabilities. The output from these studies will provide data to support the preliminary design process to ensure that Space Station EVA system requirements for future missions (including the transportation node) are adequately considered and reflected in the baseline design. The study considers SSF support of future missions and the EVA system baseline to determine adequacy of EVA requirements and capabilities and to identify additional requirements, capabilities, and necessary technology upgrades. The EVA demands levied by formal requirements and indicated by evolutionary mission scenarios are high for the out-years of Space Station Freedom. An EVA system designed to meet the baseline requirements can easily evolve to meet evolution demands with few exceptions. Results to date indicate that upgrades or modifications to the EVA system may be necessary to meet the full range of EVA thermal environments associated with the transportation node. Work continues to quantify the EVA capability in this regard. Evolution mission scenarios with EVA and ground unshielded nuclear propulsion engines are inconsistent with anthropomorphic EVA capabilities.

  15. Chimpanzee ankle and foot joint kinematics: Arboreal versus terrestrial locomotion.

    PubMed

    Holowka, Nicholas B; O'Neill, Matthew C; Thompson, Nathan E; Demes, Brigitte

    2017-09-01

    Many aspects of chimpanzee ankle and midfoot joint morphology are believed to reflect adaptations for arboreal locomotion. However, terrestrial travel also constitutes a significant component of chimpanzee locomotion, complicating functional interpretations of chimpanzee and fossil hominin foot morphology. Here we tested hypotheses of foot motion and, in keeping with general assumptions, we predicted that chimpanzees would use greater ankle and midfoot joint ranges of motion during travel on arboreal supports than on the ground. We used a high-speed motion capture system to measure three-dimensional kinematics of the ankle and midfoot joints in two male chimpanzees during three locomotor modes: terrestrial quadrupedalism on a flat runway, arboreal quadrupedalism on a horizontally oriented tree trunk, and climbing on a vertically oriented tree trunk. Chimpanzees used relatively high ankle joint dorsiflexion angles during all three locomotor modes, although dorsiflexion was greatest in arboreal modes. They used higher subtalar joint coronal plane ranges of motion during terrestrial and arboreal quadrupedalism than during climbing, due in part to their use of high eversion angles in the former. Finally, they used high midfoot inversion angles during arboreal locomotor modes, but used similar midfoot sagittal plane kinematics across all locomotor modes. The results indicate that chimpanzees use large ranges of motion at their various ankle and midfoot joints during both terrestrial and arboreal locomotion. Therefore, we argue that chimpanzee foot anatomy enables a versatile locomotor repertoire, and urge caution when using foot joint morphology to reconstruct arboreal behavior in fossil hominins. © 2017 Wiley Periodicals, Inc.

  16. Subgrain Rotation Behavior in Sn3.0Ag0.5Cu-Sn37Pb Solder Joints During Thermal Shock

    NASA Astrophysics Data System (ADS)

    Han, Jing; Tan, Shihai; Guo, Fu

    2018-01-01

    Ball grid array (BGA) samples were soldered on a printed circuit board with Sn37Pb solder paste to investigate the recrystallization induced by subgrain rotation during thermal shock. The composition of the solder balls was Sn3.0Ag0.5Cu-Sn37Pb, which comprised mixed solder joints. The BGA component was cross-sectioned before thermal shock. The microstructure and grain orientations were obtained by a scanning electron microscope equipped with an electron back-scattered diffraction system. Two mixed solder joints at corners of the BGA component were selected as the subjects. The results showed that recrystallization occurred at the corner of the solder joints after 200 thermal shock cycles. The recrystallized subgrains had various new grain orientations. The newly generated grain orientations were closely related to the initial grain orientations, which indicated that different subgrain rotation behaviors could occur in one mixed solder joint with the same initial grain orientation. When the misorientation angles were very small, the rotation axes were about Sn [100], [010] and [001], as shown by analyzing the misorientation angles and subgrain rotation axes, while the subgrain rotation behavior with large misorientation angles in the solder joints was much more complicated. As Pb was contained in the solder joints and the stress was concentrated on the corner of the mixed solder joints, concaves and cracks were formed. When the adjacent recrystallized subgrains were separated, and the process of the continuous recrystallization was limited.

  17. EVA Wiki - Transforming Knowledge Management for EVA Flight Controllers and Instructors

    NASA Technical Reports Server (NTRS)

    Johnston, Stephanie S.; Alpert, Brian K.; Montalvo, Edwin James; Welsh, Lawrence Daren; Wray, Scott; Mavridis, Costa

    2016-01-01

    The EVA Wiki was recently implemented as the primary knowledge database to retain critical knowledge and skills in the EVA Operations group at NASA's Johnson Space Center by ensuring that information is recorded in a common, easy to search repository. Prior to the EVA Wiki, information required for EVA flight controllers and instructors was scattered across different sources, including multiple file share directories, SharePoint, individual computers, and paper archives. Many documents were outdated, and data was often difficult to find and distribute. In 2011, a team recognized that these knowledge management problems could be solved by creating an EVA Wiki using MediaWiki, a free and open-source software developed by the Wikimedia Foundation. The EVA Wiki developed into an EVA-specific Wikipedia on an internal NASA server. While the technical implementation of the wiki had many challenges, one of the biggest hurdles came from a cultural shift. Like many enterprise organizations, the EVA Operations group was accustomed to hierarchical data structures and individually-owned documents. Instead of sorting files into various folders, the wiki searches content. Rather than having a single document owner, the wiki harmonized the efforts of many contributors and established an automated revision controlled system. As the group adapted to the wiki, the usefulness of this single portal for information became apparent. It transformed into a useful data mining tool for EVA flight controllers and instructors, as well as hundreds of others that support the EVA. Program managers, engineers, astronauts, flight directors, and flight controllers in differing disciplines now have an easier-to-use, searchable system to find EVA data. This paper presents the benefits the EVA Wiki has brought to NASA's EVA community, as well as the cultural challenges it had to overcome.

  18. EVA Wiki - Transforming Knowledge Management for EVA Flight Controllers and Instructors

    NASA Technical Reports Server (NTRS)

    Johnston, Stephanie S.; Alpert, Brian K.; Montalvo, Edwin James; Welsh, Lawrence Daren; Wray, Scott; Mavridis, Costa

    2016-01-01

    The EVA Wiki was recently implemented as the primary knowledge database to retain critical knowledge and skills in the EVA Operations group at NASA's Johnson Space Center by ensuring that information is recorded in a common, easy to search repository. Prior to the EVA Wiki, information required for EVA flight controllers and instructors was scattered across different sources, including multiple file share directories, SharePoint, individual computers, and paper archives. Many documents were outdated, and data was often difficult to find and distribute. In 2011, a team recognized that these knowledge management problems could be solved by creating an EVA Wiki using MediaWiki, a free and open-source software developed by the Wikimedia Foundation. The EVA Wiki developed into an EVA-specific Wikipedia on an internal NASA server. While the technical implementation of the wiki had many challenges, one of the biggest hurdles came from a cultural shift. Like many enterprise organizations, the EVA Operations group was accustomed to hierarchical data structures and individually-owned documents. Instead of sorting files into various folders, the wiki searches content. Rather than having a single document owner, the wiki harmonized the efforts of many contributors and established an automated revision controlled system. As the group adapted to the wiki, the usefulness of this single portal for information became apparent. It transformed into a useful data mining tool for EVA flight controllers and instructors, as well as hundreds of others that support EVA. Program managers, engineers, astronauts, flight directors, and flight controllers in differing disciplines now have an easier-to-use, searchable system to find EVA data. This paper presents the benefits the EVA Wiki has brought to NASA's EVA community, as well as the cultural challenges it had to overcome.

  19. Development of new EVA formulations for improved performance at NREL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pern, F.J.

    1997-02-01

    We review in chronological order the research stages and fundamental concepts involved in developing modified and new EVA formulations for improved performance against photo-induced degradation and discoloration. The new NREL EVA formulations use additives totally different from the present commercial formulations (EVA A9918 and EVA 15295). Validation of their long-term photostability and thermostability is presently under way. Together with UV-absorbing glass superstrates, they may offer better success in achieving a more reliable module performance and longer service life without significant EVA discoloration problems, which are commonly experienced with EVA A9918 and, at a lesser rate, EVA 15295. {copyright} {ital 1997more » American Institute of Physics.}« less

  20. Temporal Control and Hand Movement Efficiency in Skilled Music Performance

    PubMed Central

    Goebl, Werner; Palmer, Caroline

    2013-01-01

    Skilled piano performance requires considerable movement control to accomplish the high levels of timing and force precision common among professional musicians, who acquire piano technique over decades of practice. Finger movement efficiency in particular is an important factor when pianists perform at very fast tempi. We document the finger movement kinematics of highly skilled pianists as they performed a five-finger melody at very fast tempi. A three-dimensional motion-capture system tracked the movements of finger joints, the hand, and the forearm of twelve pianists who performed on a digital piano at successively faster tempi (7–16 tones/s) until they decided to stop. Joint angle trajectories computed for all adjacent finger phalanges, the hand, and the forearm (wrist angle) indicated that the metacarpophalangeal joint contributed most to the vertical fingertip motion while the proximal and distal interphalangeal joints moved slightly opposite to the movement goal (finger extension). An efficiency measure of the combined finger joint angles corresponded to the temporal accuracy and precision of the pianists’ performances: Pianists with more efficient keystroke movements showed higher precision in timing and force measures. Keystroke efficiency and individual joint contributions remained stable across tempo conditions. Individual differences among pianists supported the view that keystroke efficiency is required for successful fast performance. PMID:23300946

  1. Effects of high doses of oxytetracycline on metacarpophalangeal joint kinematics in neonatal foals.

    PubMed

    Kasper, C A; Clayton, H M; Wright, A K; Skuba, E V; Petrie, L

    1995-07-01

    Thirteen clinically normal Belgian-type foals were used to study the effects of high doses of oxytetracycline on metacarpophalangeal joint kinematics. Seven foals (treatment group) received 2 doses of oxytetracycline (3 g, IV). The first dose was given when foals were 4 days old; the second dose was given 24 hours later. Six foals (control group) received 2 doses of saline (0.9% NaCl) solution (15 ml, IV) at equivalent time periods. All foals were videotaped at a walk twice: immediately prior to the first treatment and 24 hours after the second treatment. The tapes were digitized, and metacarpophalangeal joint angle was measured along the palmar surface of the limb during 3 strides. The angular data were normalized for time, and data from the 3 strides were averaged to describe a representative stride. Repeated measures ANOVA was used to test for differences between groups and within groups over time. Values for stride duration, stance phase percentage, and minimum metacarpophalangeal joint angle obtained before treatment were not significantly different from values obtained after treatment. Maximum metacarpophalangeal joint angle, which occurred during the stance phase of the stride, and range of joint motion were significantly increased for foals in the treatment group, compared with foals in the control group.

  2. [Study of mechanical effects of the EVA glove on finger base with finite element modeling].

    PubMed

    Li, Zhuoyou; Ding, Li; Yue, Guodong

    2013-08-01

    The hand strength of astronauts, when they are outside the space capsule, is highly influenced by the residual pressure (the pressure difference between inside pressure and outside one of the suit) of extravehicular activity spacesuit glove and the pressure exerted by braided fabric. The hand strength decreases significantly on extravehicular activity, severely reducing the operation efficiency. To measure mechanical influence caused by spacesuit glove on muscle-tendon and joints, the present paper analyzes the movement anatomy and biomechanical characteristics of gripping, and then proposes a grip model. With phalangeal joint simplified as hinges, seven muscles as a finger grip energy unit, the Hill muscle model was used to compute the effects. We also used ANSYS in this study to establish a 3-D finite element model of an index finger which included both bones and muscles with glove, and then we verified the model. This model was applied to calculate the muscle stress in various situations of bare hands or hands wearing gloves in three different sizes. The results showed that in order to achieve normal grip strength with the influence caused by superfluous press, the finger's muscle stress should be increased to 5.4 times of that in normal situation, with most of the finger grip strength used to overcome the influence of superfluous pressure. When the gap between the finger surface and the glove is smaller, the mechanical influence which superfluous press made will decrease. The results would provide a theoretical basis for the design of the EVA Glove.

  3. A cadaveric investigation into the demographic and bony alignment properties associated with osteoarthritis of the patellofemoral joint.

    PubMed

    Weinberg, Douglas S; Tucker, Braden J; Drain, Joseph P; Wang, David M; Gilmore, Allison; Liu, Raymond W

    2016-06-01

    Patellofemoral joint osteoarthritis is common, although circumstances dictating its evolution and pathogenesis remain unclear. Advances in surgical technique have improved the ability to modify long-bone alignment in the coronal, sagittal, and axial planes. However, to our knowledge, there is no significant long-term data available in regard to the relationship between anatomic alignment parameters most amenable to surgical modification and patellofemoral joint osteoarthritis. Five-hundred and seventy-one cadaveric skeletons were obtained from the Hamann-Todd osteological collection. Mechanical lateral distal femoral angle, medial proximal tibial angle, tibial slope, femoral version, tibial torsion, the position of the tibial tubercle relative to the width of the tibial plateau, trochlear depth, and patellar size were measured using validated techniques. A previously published grading system for patellofemoral joint arthritis was used to quantify macroscopic signs of degenerative joint disease. Increasing age (standardized beta 0.532, p<0.001), female gender (standardized beta 0.201, p=0.002), and decreasing mechanical lateral distal femoral angle (standardized beta -0.128, p=0.025) were independent correlates of increased patellofemoral joint osteoarthritis. A relatively more laterally positioned tibial tubercle trended towards predicting patellofemoral joint osteoarthritis (standardized beta 0.080, p=0.089). These findings confirm that patellofemoral joint osteoarthritis is strongly associated with increasing age and female gender. Valgus alignment of the distal femur, a relatively more lateral location of the tibial tubercle, and a shallower trochlear grove appear to have modest effects on the development of patellofemoral joint osteoarthritis. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Measuring the Viewing Angle of GW170817 with Electromagnetic and Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Finstad, Daniel; De, Soumi; Brown, Duncan A.; Berger, Edo; Biwer, Christopher M.

    2018-06-01

    The joint detection of gravitational waves (GWs) and electromagnetic (EM) radiation from the binary neutron star merger GW170817 ushered in a new era of multi-messenger astronomy. Joint GW–EM observations can be used to measure the parameters of the binary with better precision than either observation alone. Here, we use joint GW–EM observations to measure the viewing angle of GW170817, the angle between the binary’s angular momentum and the line of sight. We combine a direct measurement of the distance to the host galaxy of GW170817 (NGC 4993) of 40.7 ± 2.36 Mpc with the Laser Interferometer Gravitational-wave Observatory (LIGO)/Virgo GW data and find that the viewing angle is {32}-13+10 +/- 1.7 degrees (90% confidence, statistical, and systematic errors). We place a conservative lower limit on the viewing angle of ≥13°, which is robust to the choice of prior. This measurement provides a constraint on models of the prompt γ-ray and radio/X-ray afterglow emission associated with the merger; for example, it is consistent with the off-axis viewing angle inferred for a structured jet model. We provide for the first time the full posterior samples from Bayesian parameter estimation of LIGO/Virgo data to enable further analysis by the community.

  5. Effect of EVA on thermal stability, flammability, mechanical properties of HDPE/EVA/Mg(OH)2 composites

    NASA Astrophysics Data System (ADS)

    Cao, R.; Deng, Z. L.; Ma, Y. H.; Chen, X. L.

    2017-06-01

    In this work, ethylene vinyl acetate (EVA) is introduced to improve the properties of high-density polyethylene (HDPE)/magnesium hydroxide (MH) composites. The thermal stability, flame retardancy and mechanical properties of HDPE/EVA/MH composites are investigated and discussed. With increasing content of EVA, the limiting oxygen index (LOI) of the composites increases. The thermal stability analysis shows that the initial decomposition temperature begins at a low temperature; however, the residues of the composites at 600°C increase when HDPE is replaced by small amounts of EVA. The early degradation absorbs heat, dilute oxygen and residue. During this process, it protects the matrix inside. Compared with the HDPE/MH and EVA/MH composites, the ternary HDPE/EVA/MH composites exhibit better flame retardancy by increasing the LOI values, and reducing the heat release rate (HRR) and total heat release (THR). With increasing content of EVA, the mechanical properties can also be improved, which is attributed to the good affinity between EVA and MH particles.

  6. Application of shuttle EVA systems to payloads. Volume 1: EVA systems and operational modes description

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Descriptions of the EVA system baselined for the space shuttle program were provided, as well as a compendium of data on available EVA operational modes for payload and orbiter servicing. Operational concepts and techniques to accomplish representative EVA payload tasks are proposed. Some of the subjects discussed include: extravehicular mobility unit, remote manipulator system, airlock, EVA translation aids, restraints, workstations, tools and support equipment.

  7. Pressure-volume relationships and elastance in the knee joint of the dog.

    PubMed

    Nade, S; Newbold, P J

    1984-12-01

    This study has investigated changes in intra-articular hydrostatic pressure in the knee joints of normal dogs in response to continuous and stepwise infusions of fluids. The relationship between pressure and volume in the joint was examined over the pressure range of -8 to +50 mmHg, and also at much higher pressures often associated with joint disease or injury. The effects of joint angle and dog weight on the pressure-volume relationship and on elastance of the dogs' knees were also examined. With liquid paraffin B.P. the pressure was found to increase more with each unit volume infused at subatmospheric pressures than at pressures around atmospheric, and increased more again at higher pressures. The pressure-volume curve with saline infusions was affected by egress of fluid from the joint at supra-atmospheric pressure. Above +5 mmHg the rise in pressure per unit volume infused was less than that for paraffin at the same volume. Elastance and compliance of the normal joint capsule were calculated from the pressure-volume data. Elastance was high at subatmospheric pressures, decreased rapidly as atmospheric pressure was approached and rose as a linear function of pressure above 12 mmHg. The biphasic shape of the elastance-pressure curve is discussed, and explanations for the shape are suggested. After intra-articular pressure in the knee was raised by infusion of paraffin oil the joint was moved through the range of positions from 125 deg extension to 50 deg flexion. Intra-articular pressure did not change across the range 125-110 deg. However, increasing the angle of flexion from 110 to 50 deg resulted in a rise in pressure which became steeper for each volume increment. Increasing intra-articular fluid volume caused a decrease in the total range of movement of the joint. The pressure-volume curves measured at extended angles of 110, 125 and 140 deg, where the starting pressures were subatmospheric, were the same. At flexed joint positions of 80 and 50 deg, where the starting pressures were supra-atmospheric, the pressure-volume curves became steeper with greater flexion. Elastance of the joint tissues increased with flexion. The elastance at each joint angle depended also on the volume or pressure. Significant differences were found to exist between pressure-volume curves for three groups of animals of different weight.(ABSTRACT TRUNCATED AT 400 WORDS)

  8. Phytohormones signaling and crosstalk regulating leaf angle in rice.

    PubMed

    Luo, Xiangyu; Zheng, Jingsheng; Huang, Rongyu; Huang, Yumin; Wang, Houcong; Jiang, Liangrong; Fang, Xuanjun

    2016-12-01

    Leaf angle is an important agronomic trait in rice (Oryza sativa L.). It affects both the efficiency of sunlight capture and nitrogen reservoirs. The erect leaf phenotype is suited for high-density planting and thus increasing crop yields. Many genes regulate leaf angle by affecting leaf structure, such as the lamina joint, mechanical tissues, and the midrib. Signaling of brassinosteroids (BR), auxin (IAA), and gibberellins (GA) plays important roles in the regulation of lamina joint bending in rice. In addition, the biosynthesis and signaling of BR are known to have dominant effects on leaf angle development. In this review, we summarize the factors and genes associated with the development of leaf angle in rice, outline the regulatory mechanisms based on the signaling of BR, IAA, and GA, and discuss the contribution of crosstalk between BR and IAA or GA in the formation of leaf angle. Promising lines of research in the transgenic engineering of rice leaf angle to increase grain yield are proposed.

  9. Individual Optimal Frequency in Whole-Body Vibration: Effect of Protocol, Joint Angle, and Fatiguing Exercise.

    PubMed

    Carlucci, Flaminia; Felici, Francesco; Piccinini, Alberto; Haxhi, Jonida; Sacchetti, Massimo

    2016-12-01

    Carlucci, F, Felici, F, Piccinini, A, Haxhi, J, and Sacchetti, M. Individual optimal frequency in whole-body vibration: effect of protocol, joint angle, and fatiguing exercise. J Strength Cond Res 30(12): 3503-3511, 2016-Recent studies have shown the importance of individualizing the vibration intervention to produce greater effects on the neuromuscular system in less time. The purpose of this study was to assess the individual optimal vibration frequency (OVF) corresponding to the highest muscle activation (RMSmax) during vibration at different frequencies, comparing different protocols. Twenty-nine university students underwent 3 continuous (C) and 2 random (R) different vibrating protocols, maintaining a squat position on a vibration platform. The C protocol lasted 50 seconds and involved the succession of ascending frequencies from 20 to 55 Hz, every 5 seconds. The same protocol was performed twice, having the knee angle at 120° (C) and 90° (C90), to assess the effect of joint angle and after a fatiguing squatting exercise (CF) to evaluate the influence of fatigue on OVF assessment. In the random protocols, vibration time was 20 seconds with a 2-minute (R2) and a 4-minute (R4) pauses between tested frequencies. Muscle activation and OVF values did not differ significantly in the C, R2, and R4 protocols. RMSmax was higher in C90 (p < 0.001) and in CF (p = 0.04) compared with the C protocol. Joint angle and fatiguing exercise had no effect on OVF. In conclusion, the shorter C protocol produced similar myoelectrical activity in the R2 and the R4 protocols, and therefore, it could be equally valid in identifying the OVF with considerable time efficiency. Knee joint angle and fatiguing exercise had an effect on surface electromyography response during vibration but did not affect OVF identification significantly.

  10. EVA Physiology and Medical Considerations Working in the Suit

    NASA Technical Reports Server (NTRS)

    Parazynski, Scott

    2012-01-01

    This "EVA Physiology and Medical Considerations Working in the Suit" presentation covers several topics related to the medical implications and physiological effects of suited operations in space from the perspective of a physician with considerable first-hand Extravehicular Activity (EVA) experience. Key themes include EVA physiology working in a pressure suit in the vacuum of space, basic EVA life support and work support, Thermal Protection System (TPS) inspections and repairs, and discussions of the physical challenges of an EVA. Parazynski covers the common injuries and significant risks during EVAs, as well as physical training required to prepare for EVAs. He also shares overall suit physiological and medical knowledge with the next generation of Extravehicular Mobility Unit (EMU) system designers.

  11. Exploration EVA System

    NASA Technical Reports Server (NTRS)

    Kearney, Lara

    2004-01-01

    In January 2004, the President announced a new Vision for Space Exploration. NASA's Office of Exploration Systems has identified Extravehicular Activity (EVA) as a critical capability for supporting the Vision for Space Exploration. EVA is required for all phases of the Vision, both in-space and planetary. Supporting the human outside the protective environment of the vehicle or habitat and allow ing him/her to perform efficient and effective work requires an integrated EVA "System of systems." The EVA System includes EVA suits, airlocks, tools and mobility aids, and human rovers. At the core of the EVA System is the highly technical EVA suit, which is comprised mainly of a life support system and a pressure/environmental protection garment. The EVA suit, in essence, is a miniature spacecraft, which combines together many different sub-systems such as life support, power, communications, avionics, robotics, pressure systems and thermal systems, into a single autonomous unit. Development of a new EVA suit requires technology advancements similar to those required in the development of a new space vehicle. A majority of the technologies necessary to develop advanced EVA systems are currently at a low Technology Readiness Level of 1-3. This is particularly true for the long-pole technologies of the life support system.

  12. Robot cable-compliant devices

    NASA Technical Reports Server (NTRS)

    Kerley, James J., Jr. (Inventor)

    1990-01-01

    A cable compliant robotic joint includes two U configuration cross section brackets with their U cross sections lying in different planes, one of their brackets being connected to a robot arm and the other to a tool. Additional angle brackets are displaced from the other brackets at corners of the robotic joint. All the brackets are connected by cable segments which lie in one or more planes which are perpendicular to the direction of tool travel as it approaches a work object. The compliance of the joint is determined by the cable segment characteristics, such as their length, material, angle, stranding, pretwisting, and prestressing.

  13. Apparatus and method for routing a transmission line through a downhole tool

    DOEpatents

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David S.; Briscoe, Michael; Reynolds, Jay

    2006-07-04

    A method for routing a transmission line through a tool joint having a primary and secondary shoulder, a central bore, and a longitudinal axis, includes drilling a straight channel, at a positive, nominal angle with respect to the longitudinal axis, through the tool joint from the secondary shoulder to a point proximate the inside wall of the centtral bore. The method further includes milling back, from within the central bore, a second channel to merge with the straight channel, thereby forming a continuous channel from the secondary shoulder to the central bore. In selected embodiments, drilling is accomplished by gun-drilling the straight channel. In other embodiments, the method includes tilting the tool joint before drilling to produce the positive, nominal angle. In selected embodiments, the positive, nominal angle is less than or equal to 15 degrees.

  14. Functional range of movement of the hand: declination angles to reachable space.

    PubMed

    Pham, Hai Trieu; Pathirana, Pubudu N; Caelli, Terry

    2014-01-01

    The measurement of the range of hand joint movement is an essential part of clinical practice and rehabilitation. Current methods use three finger joint declination angles of the metacarpophalangeal, proximal interphalangeal and distal interphalangeal joints. In this paper we propose an alternate form of measurement for the finger movement. Using the notion of reachable space instead of declination angles has significant advantages. Firstly, it provides a visual and quantifiable method that therapists, insurance companies and patients can easily use to understand the functional capabilities of the hand. Secondly, it eliminates the redundant declination angle constraints. Finally, reachable space, defined by a set of reachable fingertip positions, can be measured and constructed by using a modern camera such as Creative Senz3D or built-in hand gesture sensors such as the Leap Motion Controller. Use of cameras or optical-type sensors for this purpose have considerable benefits such as eliminating and minimal involvement of therapist errors, non-contact measurement in addition to valuable time saving for the clinician. A comparison between using declination angles and reachable space were made based on Hume's experiment on functional range of movement to prove the efficiency of this new approach.

  15. Calculating the axes of rotation for the subtalar and talocrural joints using 3D bone reconstructions.

    PubMed

    Parr, W C H; Chatterjee, H J; Soligo, C

    2012-04-05

    Orientation of the subtalar joint axis dictates inversion and eversion movements of the foot and has been the focus of evolutionary and clinical studies for a number of years. Previous studies have measured the subtalar joint axis against the axis of the whole foot, the talocrural joint axis and, recently, the principal axes of the talus. The present study introduces a new method for estimating average joint axes from 3D reconstructions of bones and applies the method to the talus to calculate the subtalar and talocrural joint axes. The study also assesses the validity of the principal axes as a reference coordinate system against which to measure the subtalar joint axis. In order to define the angle of the subtalar joint axis relative to that of another axis in the talus, we suggest measuring the subtalar joint axis against the talocrural joint axis. We present corresponding 3D vector angles calculated from a modern human skeletal sample. This method is applicable to virtual 3D models acquired through surface-scanning of disarticulated 'dry' osteological samples, as well as to 3D models created from CT or MRI scans. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Unweaving the joints in Entrada Sandstone, Arches National Park, Utah, U.S.A.

    NASA Astrophysics Data System (ADS)

    Cruikshank, Kenneth M.; Aydin, Atilla

    1995-03-01

    On the southwest limb of Salt Valley Anticline, Arches National Park, Utah three sets of joints are developed in the Entrada Sandstone covering an area of about 6 km 2. Within the 20 m thick Moab Member, a single joint set is is found in three distinct areas, separated by a second set of joints at a 35° angle to the first set. Joint interaction features show that the second set is younger than the first. This illustrates that joints of a single set do not have to fill the entire area across which the stresses that formed the joints were acting. The underlying Slickrock Member contains a third set of joints, which is at an angle of 5°-35° to joints in the Moab Member. The Slickrock set nucleated from the lower edges of joints of all orientations in the overlying Moab Member. Thus, the fracture pattern evolved both horizontally, within the same unit, and vertically between units. The sequence of jointing is determined by establishing the relative ages of each joint set. Each joint orientation is best interpreted as representing a direction of maximum compression, ruling out the possibility that the joints are a conjugate set. The joints, and an earlier set of deformation bands, record a 95° counterclockwise rotation of the direction of maximum compression.

  17. EVA Wiki - Transforming Knowledge Management for EVA Flight Controllers and Instructors

    NASA Technical Reports Server (NTRS)

    Johnston, Stephanie

    2016-01-01

    The EVA (Extravehicular Activity) Wiki was recently implemented as the primary knowledge database to retain critical knowledge and skills in the EVA Operations group at NASA's Johnson Space Center by ensuring that information is recorded in a common, searchable repository. Prior to the EVA Wiki, information required for EVA flight controllers and instructors was scattered across different sources, including multiple file share directories, SharePoint, individual computers, and paper archives. Many documents were outdated, and data was often difficult to find and distribute. In 2011, a team recognized that these knowledge management problems could be solved by creating an EVA Wiki using MediaWiki, a free and open-source software developed by the Wikimedia Foundation. The EVA Wiki developed into an EVA-specific Wikipedia on an internal NASA server. While the technical implementation of the wiki had many challenges, the one of the biggest hurdles came from a cultural shift. Like many enterprise organizations, the EVA Operations group was accustomed to hierarchical data structures and individually-owned documents. Instead of sorting files into various folders, the wiki searches content. Rather than having a single document owner, the wiki harmonized the efforts of many contributors and established an automated revision control system. As the group adapted to the wiki, the usefulness of this single portal for information became apparent. It transformed into a useful data mining tool for EVA flight controllers and instructors, and also for hundreds of other NASA and contract employees. Program managers, engineers, astronauts, flight directors, and flight controllers in differing disciplines now have an easier-to-use, searchable system to find EVA data. This paper presents the benefits the EVA Wiki has brought to NASA's EVA community, as well as the cultural challenges it had to overcome.

  18. The Evolution of Extravehicular Activity Operations to Lunar Exploration Based on Operational Lessons Learned During 2009 NASA Desert RATS Field Testing

    NASA Technical Reports Server (NTRS)

    Bell, Ernest R., Jr.; Welsh, Daren; Coan, Dave; Johnson, Kieth; Ney, Zane; McDaniel, Randall; Looper, Chris; Guirgis, Peggy

    2010-01-01

    This paper will present options to evolutionary changes in several philosophical areas of extravehicular activity (EVA) operations. These areas will include single person verses team EVAs; various loss of communications scenarios (with Mission Control, between suited crew, suited crew to rover crew, and rover crew A to rover crew B); EVA termination and abort time requirements; incapacitated crew ingress time requirements; autonomous crew operations during loss of signal periods including crew decisions on EVA execution (including decision for single verses team EVA). Additionally, suggestions as to the evolution of the make-up of the EVA flight control team from the current standard will be presented. With respect to the flight control team, the major areas of EVA flight control, EVA Systems and EVA Tasks, will be reviewed, and suggested evolutions of each will be presented. Currently both areas receive real-time information, and provide immediate feedback during EVAs as well as spacesuit (extravehicular mobility unit - EMU) maintenance and servicing periods. With respect to the tasks being performed, either EMU servicing and maintenance, or the specific EVA tasks, daily revising of plans will need to be able to be smoothly implemented to account for unforeseen situations and findings. Many of the presented ideas are a result of lessons learned by the NASA Johnson Space Center Mission Operations Directorate operations team support during the 2009 NASA Desert Research and Technology Studies (Desert RATS). It is important that the philosophy of both EVA crew operations and flight control be examined now, so that, where required, adjustments can be made to a next generation EMU and EVA equipment that will complement the anticipated needs of both the EVA flight control team and the crews.

  19. Preparation and Properties of Ethylene Vinyl Acetate Copolymer/Silica Nanocomposites in Presence of EVA-g-Acrylic Acid.

    PubMed

    Tham, Do Quang; Tuan, Vu Manh; Thanh, Dinh Thi Mai; Chinh, Nguyen Thuy; Giang, Nguyen Vu; Trang, Nguyen Thi Thu; Hang, To Thi Xuan; Huong, Ho Thu; Dung, Nguyen Thi Kim; Hoang, Thai

    2015-04-01

    Here we report a facile approach to enhance the dispersibility of ethylene vinyl acetate copolymer (EVA)/silica nanocomposites (for the EVA/silica nanocomposites and interaction between silica nanoparticles (nanosilica) and EVA by adding EVA-g-acrylic acid (EVAgAA) as a compatibilizer, which was formed by grafting acrylic acid onto EVA chains with the aid of dicumyl peroxide). The above nanocomposites with and without EVAgAA were prepared by melt mixing in a Haake intermixer with different contents of silica and EVAgAA. Their structure and morphology were characterized by Fourier transform infra-red (FT-IR) spectroscopy, field emission scanning electron microscopy (FE-SEM), and the mechanical, rheological, dielectrical, and flammability properties of the nanocomposites were also investigated. The FT-IR spectra of the nanocomposites confirmed the formation of hydrogen bonds between the surface silanol groups of nanosilica and C=O groups of EVA and/or EVAgAA. The presence of EVAgAA remarkably increased the intensity of hydrogen bonding between nanosilica and EVA which not only enhanced the dispersion of nanosilica in EVA matrix but also increased the mechanical, viscosity and storage modulus of EVA/silica nanocomposites. In addition, the flammability of EVA/silica nanocomposites is also significantly reduced after the functionalization with EVAgAA. However, the mechanical properties of EVA/silica nanocomposites tended to level off when its content was above 1.5 wt.%. It has also been found that the dielectric constant value of the EVA/EVAgAA/silica nanocomposites is much lower than that of the EVA/silica nanocomposites, which is another evidence of the hydrogen bonding formation between EVAgAA and nanosilica.

  20. Advanced development of non-discoloring EVA-based PV encapsulants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holley, W.H.; Galica, J.P.; Argo, S.C.

    1996-01-01

    The purpose of this investigation was to better define the problem of field yellowing of EVA-based PV encapsulant, through laboratory study of probable chemical mechanisms and the development of stabilization strategies for protecting EVA from discoloration. EVA from fielded modules was analyzed for vinyl acetate content, unsaturation, and additive levels. These test results were then compared to results from Xenon Arc Weather-Ometer aged glass/EVA/glass laminates made in the laboratory. Variables evaluated in Weather-Ometer aged laminates included ``standard-cure`` A9918P EVA, ``fast-cure`` 15295P EVA, low iron glass superstrate containing cerium oxide, and systematic elimination or addition of specific additives. Six significant findingsmore » were revealed: 1) Improved ``standard-cure`` and ``fast-cure`` type EVA encapsulants, formulations X9903P and X15303P, respectively, showed little or no yellowing after extended Weather-Ometer exposure; 2) The use of {open_quote}{open_quote}fast-cure{close_quote}{close_quote} EVA reduced discoloration when compared with {open_quote}{open_quote}standard-cure{close_quote}{close_quote} A9918P EVA; 3) Glass superstrate containing cerium oxide resulted in a reduced rate of EVA discoloration; 4) {open_quote}{open_quote}Fast-cure{close_quote}{close_quote} EVA used with glass superstrate containing cerium oxide showed no visible yellowing after 32 weeks in the Weather-Ometer{emdash}a period estimated to be roughly equivalent to 20{endash}30 years of exposure in the Southwest; 5) Severely discolored EVA samples from the field showed no measurable loss of acetate group and little detectable unsaturation; and 6) EVA encapsulant with a Tefzel cover exhibited no yellowing after extended Weather-Ometer exposure. {copyright} {ital 1996 American Institute of Physics.}« less

  1. Swivel Joint For Liquid Nitrogen

    NASA Technical Reports Server (NTRS)

    Milner, James F.

    1988-01-01

    Swivel joint allows liquid-nitrogen pipe to rotate through angle of 100 degree with respect to mating pipe. Functions without cracking hard foam insulation on lines. Pipe joint rotates on disks so mechanical stress not transmitted to thick insulation on pipes. Inner disks ride on fixed outer disks. Disks help to seal pressurized liquid nitrogen flowing through joint.

  2. Sunshade for building exteriors

    DOEpatents

    Braunstein, Richard; McKenna, Gregory B.; Hewitt, David W.; Harper, Randolph S.

    2002-01-01

    A sunshade for shading window exteriors includes at least one connecting bracket for attachment to a window mullion, a blade support strut attached to the connecting bracket at a first joint, and a plurality of louvered blades supported by the blade support strut at a second joint. The pivot angle at the first joint may be varied to extend the louvered blades a desired distance from the window mullion. The louvered blades are positioned at a preselected fixed profile angle on the second joint in order to optimize shading at the latitude where the sunshade is installed. In a preferred embodiment, the louvered blades have top walls supporting photovoltaic cells and the sunshade includes electric cables for connecting the photovoltaic cells to an electric circuit.

  3. Numerical Model for the Study of the Strength and Failure Modes of Rock Containing Non-Persistent Joints

    NASA Astrophysics Data System (ADS)

    Vergara, Maximiliano R.; Van Sint Jan, Michel; Lorig, Loren

    2016-04-01

    The mechanical behavior of rock containing parallel non-persistent joint sets was studied using a numerical model. The numerical analysis was performed using the discrete element software UDEC. The use of fictitious joints allowed the inclusion of non-persistent joints in the model domain and simulating the progressive failure due to propagation of existing fractures. The material and joint mechanical parameters used in the model were obtained from experimental results. The results of the numerical model showed good agreement with the strength and failure modes observed in the laboratory. The results showed the large anisotropy in the strength resulting from variation of the joint orientation. Lower strength of the specimens was caused by the coalescence of fractures belonging to parallel joint sets. A correlation was found between geometrical parameters of the joint sets and the contribution of the joint sets strength in the global strength of the specimen. The results suggest that for the same dip angle with respect to the principal stresses; the uniaxial strength depends primarily on the joint spacing and the angle between joints tips and less on the length of the rock bridges (persistency). A relation between joint geometrical parameters was found from which the resulting failure mode can be predicted.

  4. Real-Time EVA Troubleshooting

    NASA Technical Reports Server (NTRS)

    Leestma, David

    2013-01-01

    David Leestma was EV-1 for the STS-41G extravehicular activity (EVA) with Kathy Sullivan (first American female spacewalker). They conducted an EVA to fully demonstrate the feasibility of refueling satellites from the Space Shuttle, and performed the first contingency EVA task involving the Ku-band antenna. STS-41G was the fourth Space Shuttle mission to perform an EVA, and Leestma related his experiences with training, the spacesuit, and EVA tasks that were conducted on October 11, 1984 during this mission.

  5. Flexor digitorum brevis transfer for floating toe prevention after Weil osteotomy: a cadaveric study.

    PubMed

    Lee, Lydia C; Charlton, Timothy P; Thordarson, David B

    2013-12-01

    A floating toe deformity occurs in many patients who undergo Weil osteotomies. It is likely caused by the failure of the windlass mechanism in shortening the metatarsal. For patients who require a proximal interphalangeal (PIP) joint arthroplasty or fusion in addition to a Weil osteotomy, the transfer of the flexor digitorum brevis (FDB) tendon to the PIP joint might restore the windlass mechanism and decrease the incidence of floating toes. Fourteen cadaveric foot specimens were examined to determine the effects of changing metatarsal length as well as tensioning the FDB tendon on the angle of the metatarsophalangeal (MTP) joint as a measure of a floating toe. Shortening and lengthening the second metatarsal resulted in a significant change in MTP angle (P = .03 and .02, respectively), though there was no clear relationship found between the amount of change in metatarsal length and the change in MTP angle. Transferring the FDB to a PIP arthroplasty site plantarflexed the MTP joint and corrected floating toes; the change in angle was significant compared with the control and shortening groups (P = .0001 and .002, respectively). This study supports the theory that change in length of the metatarsal, possibly via the windlass mechanism, plays a role in the pathophysiology of the floating toe deformity. Tensioning and transferring the FDB tendon into the PIP joint helped prevent the floating toe deformity in this cadaveric model. Continued research in this subject will help to refine methods of prevention and correction of the floating toe deformity.

  6. Effects of medially wedged foot orthoses on knee and hip joint running mechanics in females with and without patellofemoral pain syndrome.

    PubMed

    Boldt, Andrew R; Willson, John D; Barrios, Joaquin A; Kernozek, Thomas W

    2013-02-01

    We examined the effects of medially wedged foot orthoses on knee and hip joint mechanics during running in females with and without patellofemoral pain syndrome (PFPS). We also tested if these effects depend on standing calcaneal eversion angle. Twenty female runners with and without PFPS participated. Knee and hip joint transverse and frontal plane peak angle, excursion, and peak internal knee and hip abduction moment were calculated while running with and without a 6° full-length medially wedged foot orthoses. Separate 3-factor mixed ANOVAs (group [PFPS, control] x condition [medial wedge, no medial wedge] x standing calcaneal angle [everted, neutral, inverted]) were used to test the effect of medially wedged orthoses on each dependent variable. Knee abduction moment increased 3% (P = .03) and hip adduction excursion decreased 0.6° (P < .01) using medially wedged foot orthoses. No significant group x condition or calcaneal angle x condition effects were observed. The addition of medially wedged foot orthoses to standardized running shoes had minimal effect on knee and hip joint mechanics during running thought to be associated with the etiology or exacerbation of PFPS symptoms. These effects did not appear to depend on injury status or standing calcaneal posture.

  7. Influence of inclination angles on intra- and inter-limb load-sharing during uphill walking.

    PubMed

    Hong, Shih-Wun; Leu, Tsai-Hsueh; Li, Jia-Da; Wang, Ting-Ming; Ho, Wei-Ping; Lu, Tung-Wu

    2014-01-01

    Uphill walking is an inevitable part of daily living, placing more challenges on the locomotor system with greater risk of falls than level walking does. The current study aimed to investigate the effects of inclination angles on the inter-joint and inter-limb load-sharing during uphill walking in terms of total support moment and contributions of individual joint moments to the total support moment. Fifteen young adults walked up walkways with 0°, 5°, 10° and 15° of slope while kinematic and kinetic data were collected and analyzed. With increasing inclination angles, the first peak of the total support moment was increased with unaltered individual joint contributions, suggesting an unaltered inter-joint control pattern in the leading limb to meet the increased demands. The second peak of the total support moment remained unchanged with increasing inclination angles primarily through a compensatory redistribution of the hip and knee moments. During DLS, the leading limb shared the majority of the whole body support moments. The current results reveal basic intra- and inter-limb load-sharing patterns of uphill walking, which will be helpful for a better understanding of the control strategies adopted and for subsequent clinical applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Injury Risk Assessment of Extravehicular Mobility Unit (EMU) Phase VI and Series 4000 Gloves During Extravehicular Activity (EVA) Hand Manipulation Tasks

    NASA Technical Reports Server (NTRS)

    Kilby, Melissa

    2015-01-01

    Functional Extravehicular Mobility Units (EMUs) with high precision gloves are essential for the success of Extravehicular Activity (EVA). Previous research done at NASA has shown that total strength capabilities and performance are reduced when wearing a pressurized EMU. The goal of this project was to characterize the human-space suit glove interaction and assess the risk of injury during common EVA hand manipulation tasks, including pushing, pinching and gripping objects. A custom third generation sensor garment was designed to incorporate a combination of sensors, including force sensitive resistors, strain gauge sensors, and shear force sensors. The combination of sensors was used to measure the forces acting on the finger nails, finger pads, finger tips, as well as the knuckle joints. In addition to measuring the forces, data was collected on the temperature, humidity, skin conductance, and blood perfusion of the hands. Testing compared both the Phase VI and Series 4000 glove against an ungloved condition. The ungloved test was performed wearing the sensor garment only. The project outcomes identified critical landmarks that experienced higher workloads and are more likely to suffer injuries. These critical landmarks varied as a function of space suit glove and task performed. The results showed that less forces were acting on the hands while wearing the Phase VI glove as compared to wearing the Series 4000 glove. Based on our findings, the engineering division can utilize these methods for optimizing the current space suit glove and designing next generation gloves to prevent injuries and optimize hand mobility and comfort.

  9. EVA1A inhibits GBM cell proliferation by inducing autophagy and apoptosis.

    PubMed

    Shen, Xue; Kan, Shifeng; Liu, Zhen; Lu, Guang; Zhang, Xiaoyan; Chen, Yingyu; Bai, Yun

    2017-03-01

    Eva-1 homolog A (EVA1A) is a novel lysosome and endoplasmic reticulum-associated protein involved in autophagy and apoptosis. In this study, we constructed a recombinant adenovirus 5-EVA1A vector (Ad5-EVA1A) to overexpress EVA1A in glioblastoma (GBM) cell lines and evaluated its anti-tumor activities in vitro and in vivo. We found that overexpression of EVA1A in three GBM cell lines (U251, U87 and SHG44) resulted in a suppression of tumor cell growth via activation of autophagy and induction of cell apoptosis in a dose- and time-dependent manner. EVA1A-mediated autophagy was associated with inactivation of the mTOR/RPS6KB1 signaling pathway. Furthermore in vivo, overexpression of EVA1A successfully inhibited tumor growth in NOD/SCID mice. Our data suggest that EVA1A-induced autophagy and apoptosis play a role in suppressing the development of GBM and their up-regulation may be an effective method for treating this form of cancer. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Development of Damp-Heat Resistant Self-Primed EVA and Non-EVA Encapsulant Formulations at NREL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pern, F. J.; Jorgensen, G. J.

    2005-11-01

    Self-primed ethylene-vinyl acetate (EVA) and non-EVA (PMG) encapsulant formulations were developed that have greater resistance to damp heat exposure at 85 deg C and 85% relative humidity (RH) (in terms of adhesion strength to glass substrates) than a commonly used commercial EVA product. The self-primed EVA formulations were developed on the basis of high-performing glass priming formulations that have previously proven to significantly enhance the adhesion strength of unprimed and primed EVA films on glass substrates during damp heat exposure. The PMG encapsulant formulations were based on an ethylene-methylacrylate copolymer containing glycidyl methacrylate.

  11. Comparison of neuromuscular abnormalities between upper and lower extremities in hemiparetic stroke.

    PubMed

    Mirbagheri, M M; AliBiglou, L; Thajchayapong, M; Lilaonitkul, T; Rymer, W Z

    2006-01-01

    We studied the neuromuscular mechanical properties of the elbow and ankle joints in chronic, hemiparetic stroke patients and healthy subjects. System identification techniques were used to characterize the mechanical abnormalities of these joints and to identify the contribution of intrinsic and reflex stiffness to these abnormalities. Modulation of intrinsic and reflex stiffness with the joint angle was studied by applying PRBS perturbations to the joint at different joint angles. The experiments were performed for both spastic (stroke) and contralateral (control) sides of stroke patients and one side of healthy (normal) subjects. We found reflex stiffness gain (GR) was significantly larger in the stroke than the control side for both elbow and ankle joints. GR was also strongly position dependent in both joints. However, the modulation of GR with position was slightly different in two joints. GR was also larger in the control than the normal joints but the differences were significant only for the ankle joint. Intrinsic stiffness gain (K) was also significantly larger in the stroke than the control joint at elbow extended positions and at ankle dorsiflexed positions. Modulation of K with the ankle angle was similar for stroke, control and normal groups. In contrast, the position dependency of the elbow was different. K was larger in the control than normal ankle whereas it was lower in the control than normal elbow. However, the differences were not significant for any joint. The findings demonstrate that both reflex and intrinsic stiffness gain increase abnormally in both upper and lower extremities. However, the major contribution of intrinsic and reflex stiffness to the abnormalities is at the end of ROM and at the middle ROM, respectively. The results also demonstrate that the neuromuscular properties of the contralateral limb are not normal suggesting that it may not be used as a suitable control at least for the ankle study.

  12. Space shuttle EVA opportunities. [a technology assessment

    NASA Technical Reports Server (NTRS)

    Bland, D. A., Jr.

    1976-01-01

    A technology assessment is presented on space extravehicular activities (EVA) that will be possible when the space shuttle orbiter is completed and launched. The use of EVA in payload systems design is discussed. Also discussed is space crew training. The role of EVA in connection with the Large Space Telescope and Skylab are described. The value of EVA in constructing structures in space and orbital assembly is examined. Excellent color illustrations are provided which show the proposed EVA functions that were described.

  13. [The present status and development of thermal control system of spacesuits for extravehicular activity].

    PubMed

    Zhao, C Y; Sun, J B; Yuan, X G

    1999-04-01

    With the extension of extravehicular activity (EVA) duration, the need for more effective thermal control of EVA spacesuits is required. The specific schemes investigated in heat sink system for EVA are discussed, including radiator, ice storage, metal hydride heat pump, phase-change storage/radiator and sublimator. The importance and requirements of automatic thermal control for EVA are also discussed. Existed automatic thermal control for EVA are reviewed. Prospects of further developments of thermal control of spacesuits for EVA are proposed.

  14. The effect of subject measurement error on joint kinematics in the conventional gait model: Insights from the open-source pyCGM tool using high performance computing methods.

    PubMed

    Schwartz, Mathew; Dixon, Philippe C

    2018-01-01

    The conventional gait model (CGM) is a widely used biomechanical model which has been validated over many years. The CGM relies on retro-reflective markers placed along anatomical landmarks, a static calibration pose, and subject measurements as inputs for joint angle calculations. While past literature has shown the possible errors caused by improper marker placement, studies on the effects of inaccurate subject measurements are lacking. Moreover, as many laboratories rely on the commercial version of the CGM, released as the Plug-in Gait (Vicon Motion Systems Ltd, Oxford, UK), integrating improvements into the CGM code is not easily accomplished. This paper introduces a Python implementation for the CGM, referred to as pyCGM, which is an open-source, easily modifiable, cross platform, and high performance computational implementation. The aims of pyCGM are to (1) reproduce joint kinematic outputs from the Vicon CGM and (2) be implemented in a parallel approach to allow integration on a high performance computer. The aims of this paper are to (1) demonstrate that pyCGM can systematically and efficiently examine the effect of subject measurements on joint angles and (2) be updated to include new calculation methods suggested in the literature. The results show that the calculated joint angles from pyCGM agree with Vicon CGM outputs, with a maximum lower body joint angle difference of less than 10-5 degrees. Through the hierarchical system, the ankle joint is the most vulnerable to subject measurement error. Leg length has the greatest effect on all joints as a percentage of measurement error. When compared to the errors previously found through inter-laboratory measurements, the impact of subject measurements is minimal, and researchers should rather focus on marker placement. Finally, we showed that code modifications can be performed to include improved hip, knee, and ankle joint centre estimations suggested in the existing literature. The pyCGM code is provided in open source format and available at https://github.com/cadop/pyCGM.

  15. The effect of subject measurement error on joint kinematics in the conventional gait model: Insights from the open-source pyCGM tool using high performance computing methods

    PubMed Central

    Dixon, Philippe C.

    2018-01-01

    The conventional gait model (CGM) is a widely used biomechanical model which has been validated over many years. The CGM relies on retro-reflective markers placed along anatomical landmarks, a static calibration pose, and subject measurements as inputs for joint angle calculations. While past literature has shown the possible errors caused by improper marker placement, studies on the effects of inaccurate subject measurements are lacking. Moreover, as many laboratories rely on the commercial version of the CGM, released as the Plug-in Gait (Vicon Motion Systems Ltd, Oxford, UK), integrating improvements into the CGM code is not easily accomplished. This paper introduces a Python implementation for the CGM, referred to as pyCGM, which is an open-source, easily modifiable, cross platform, and high performance computational implementation. The aims of pyCGM are to (1) reproduce joint kinematic outputs from the Vicon CGM and (2) be implemented in a parallel approach to allow integration on a high performance computer. The aims of this paper are to (1) demonstrate that pyCGM can systematically and efficiently examine the effect of subject measurements on joint angles and (2) be updated to include new calculation methods suggested in the literature. The results show that the calculated joint angles from pyCGM agree with Vicon CGM outputs, with a maximum lower body joint angle difference of less than 10-5 degrees. Through the hierarchical system, the ankle joint is the most vulnerable to subject measurement error. Leg length has the greatest effect on all joints as a percentage of measurement error. When compared to the errors previously found through inter-laboratory measurements, the impact of subject measurements is minimal, and researchers should rather focus on marker placement. Finally, we showed that code modifications can be performed to include improved hip, knee, and ankle joint centre estimations suggested in the existing literature. The pyCGM code is provided in open source format and available at https://github.com/cadop/pyCGM. PMID:29293565

  16. One hundred US EVAs: a perspective on spacewalks.

    PubMed

    Wilde, Richard C; McBarron, James W; Manatt, Scott A; McMann, Harold J; Fullerton, Richard K

    2002-01-01

    In the 36 years between June 1965 and February 2001, the US human space flight program has conducted 100 spacewalks, or extravehicular activities (EVAs), as NASA officially calls them. EVA occurs when astronauts wearing spacesuits travel outside their protective spacecraft to perform tasks in the space vacuum environment. US EVA started with pioneering feasibility tests during the Gemini Program. The Apollo Program required sending astronauts to the moon and performing EVA to explore the lunar surface. EVA supported scientific mission objectives of the Skylab program, but may be best remembered for repairing launch damage to the vehicle and thus saving the program. EVA capability on Shuttle was initially planned to be a kit that could be flown at will, and was primarily intended for coping with vehicle return emergencies. The Skylab emergency and the pivotal role of EVA in salvaging that program quickly promoted Shuttle EVA to an essential element for achieving mission objectives, including retrieving satellites and developing techniques to assemble and maintain the International Space Station (ISS). Now, EVA is supporting assembly of ISS. This paper highlights development of US EVA capability within the context of the overarching mission objectives of the US human space flight program. c2002 International Astronautical Federation. Published by Elsevier Science Ltd. All rights reserved.

  17. Association between the gait pattern characteristics of older people and their two-step test scores.

    PubMed

    Kobayashi, Yoshiyuki; Ogata, Toru

    2018-04-27

    The Two-Step test is one of three official tests authorized by the Japanese Orthopedic Association to evaluate the risk of locomotive syndrome (a condition of reduced mobility caused by an impairment of the locomotive organs). It has been reported that the Two-Step test score has a good correlation with one's walking ability; however, its association with the gait pattern of older people during normal walking is still unknown. Therefore, this study aims to clarify the associations between the gait patterns of older people observed during normal walking and their Two-Step test scores. We analyzed the whole waveforms obtained from the lower-extremity joint angles and joint moments of 26 older people in various stages of locomotive syndrome using principal component analysis (PCA). The PCA was conducted using a 260 × 2424 input matrix constructed from the participants' time-normalized pelvic and right-lower-limb-joint angles along three axes (ten trials of 26 participants, 101 time points, 4 angles, 3 axes, and 2 variable types per trial). The Pearson product-moment correlation coefficient between the scores of the principal component vectors (PCVs) and the scores of the Two-Step test revealed that only one PCV (PCV 2) among the 61 obtained relevant PCVs is significantly related to the score of the Two-Step test. We therefore concluded that the joint angles and joint moments related to PCV 2-ankle plantar-flexion, ankle plantar-flexor moments during the late stance phase, ranges of motion and moments on the hip, knee, and ankle joints in the sagittal plane during the entire stance phase-are the motions associated with the Two-Step test.

  18. Reliability of a smartphone-based goniometer for knee joint goniometry.

    PubMed

    Ferriero, Giorgio; Vercelli, Stefano; Sartorio, Francesco; Muñoz Lasa, Susana; Ilieva, Elena; Brigatti, Elisa; Ruella, Carolina; Foti, Calogero

    2013-06-01

    The aim of this study was to assess the reliability of a smartphone-based application developed for photographic-based goniometry, DrGoniometer (DrG), by comparing its measurement of the knee joint angle with that made by a universal goniometer (UG). Joint goniometry is a common mode of clinical assessment used in many disciplines, in particular in rehabilitation. One validated method is photographic-based goniometry, but the procedure is usually complex: the image has to be downloaded from the camera to a computer and then edited using dedicated software. This disadvantage may be overcome by the new generation of mobile phones (smartphones) that have computer-like functionality and an integrated digital camera. This validation study was carried out under two different controlled conditions: (i) with the participant to measure in a fixed position and (ii) with a battery of pictures to assess. In the first part, four raters performed repeated measurements with DrG and UG at different knee joint angles. Then, 10 other raters measured the knee at different flexion angles ranging 20-145° on a battery of 35 pictures taken in a clinical setting. The results showed that inter-rater and intra-rater correlations were always more than 0.958. Agreement with the UG showed a width of 18.2° [95% limits of agreement (LoA)=-7.5/+10.7°] and 14.1° (LoA=-6.6/+7.5°). In conclusion, DrG seems to be a reliable method for measuring knee joint angle. This mHealth application can be an alternative/additional method of goniometry, easier to use than other photographic-based goniometric assessments. Further studies are required to assess its reliability for the measurement of other joints.

  19. Deployment of the P4 Truss FWD SAW during Expedition 13 and STS-115 EVA Joint Operations

    NASA Image and Video Library

    2006-09-14

    S115-E-05996 (14 Sept. 2006) --- Space Shuttle Atlantis astronauts spread a second set of wings for the International Space Station today. The new solar arrays were fully extended at 7:44 a.m. (CDT). The new arrays span a total of 240 feet and have a width of 38 feet. They are attached to the station's newest component, the P3/P4 integrated truss segment. The installation of the P3/P4, which occurred Tuesday and the deployment of the arrays set the stage for future expansion of the station.

  20. P4 Truss FWD SAW during Expedition 13 and STS-115 EVA Joint Operations

    NASA Image and Video Library

    2006-09-14

    S115-E-05999 (14 Sept. 2006) --- Space Shuttle Atlantis astronauts spread a second set of wings for the International Space Station today. The new solar arrays were fully extended at 7:44 a.m CDT. The new arrays span a total of 240 feet and have a width of 38 feet. They are attached to the station's newest component, the P3/P4 integrated truss segment. The installation of the P3/P4, which occurred Tuesday, and the deployment of the arrays set the stage for future expansion of the station.

  1. STS-112 Flight Day 7 Highlights

    NASA Astrophysics Data System (ADS)

    2002-10-01

    On this seventh day of STS-112 mission members of the crew (Commander Jeff Ashby; Pilot Pam Melroy; Mission Specialist Sandy Magnus, Piers Sellers, Dave Wolf, and Fyodor Yurchikhin) along with the Expedition Five crew (Commander Valery Korzun; Flight Engineer Peggy Whitson, and Sergei Treschev) are seen answering questions during the mission's press interview and photo opportunity. They answered various questions regarding the mission's objectives, the onboard science experiments, the extravehicular activities (EVAs) and the effects of living in space. Shots of the test deployment of the S1 truss radiator and Canadarm rotor joint are also shown.

  2. STS-112 Flight Day 7 Highlights

    NASA Technical Reports Server (NTRS)

    2002-01-01

    On this seventh day of STS-112 mission members of the crew (Commander Jeff Ashby; Pilot Pam Melroy; Mission Specialist Sandy Magnus, Piers Sellers, Dave Wolf, and Fyodor Yurchikhin) along with the Expedition Five crew (Commander Valery Korzun; Flight Engineer Peggy Whitson, and Sergei Treschev) are seen answering questions during the mission's press interview and photo opportunity. They answered various questions regarding the mission's objectives, the onboard science experiments, the extravehicular activities (EVAs) and the effects of living in space. Shots of the test deployment of the S1 truss radiator and Canadarm rotor joint are also shown.

  3. Robinson in Destiny laboratory module wearing yellow hard hat

    NASA Image and Video Library

    2005-07-29

    S114-E-5591 (29 July 2005) --- Less than 24 hours away from performing a space walk, when he will be exchanging this gag hardhat for the helmet portion of an extravehicular mobility unit (EMU) space suit, astronaut Stephen K. Robinson shares some light humor with his spacewalking colleague, Japanese Aerospace Agency astronaut Soichi Noguchi, out of frame. Before the EVA is scheduled to begin, however, those two will assist in moving supplies from Raffaello. Today marks the second day of joint activities between the astronauts of Discovery and the crewmembers of the International Space Station onboard the orbital outpost.

  4. Olivas participating in EVA during Expedition/STS-117 Joint Operations

    NASA Image and Video Library

    2007-06-15

    ISS015-E-12943 (15 June 2007) --- Anchored to a foot restraint on Space Shuttle Atlantis' remote manipulator system (RMS) robotic arm, astronaut John "Danny" Olivas, STS-117 mission specialist, repairs a 4-by-6-inch section of a thermal blanket on Atlantis' port orbital maneuvering system (OMS) pod that was damaged during the shuttle's climb to orbit last week. During the repair, Olivas pushed the turned up portion of the thermal blanket back into position, used a medical stapler to secure the layers of the blanket, and pinned it in place against adjacent thermal tile.

  5. Olivas participating in EVA during Expedition/STS-117 Joint Operations

    NASA Image and Video Library

    2007-06-15

    ISS015-E-12952 (15 June 2007) --- Anchored to a foot restraint on Space Shuttle Atlantis' remote manipulator system (RMS) robotic arm, astronaut John "Danny" Olivas, STS-117 mission specialist, repairs a 4-by-6-inch section of a thermal blanket on Atlantis' port orbital maneuvering system (OMS) pod that was damaged during the shuttle's climb to orbit last week. During the repair, Olivas pushed the turned up portion of the thermal blanket back into position, used a medical stapler to secure the layers of the blanket, and pinned it in place against adjacent thermal tile.

  6. International Space Station (ISS)

    NASA Image and Video Library

    2001-07-01

    Astronaut Michael L. Gernhardt, STS-104 mission specialist, participates in one of three STS-104 space walks while holding on to the end effector of the Canadarm on the Space Shuttle Atlantis. Gernhardt was joined on the extravehicular activity (EVA) by astronaut James F. Reilly (out of frame). The major objective of the mission was to install and activate the Joint Airlock, which completed the second phase of construction on the International Space Station (ISS). The airlock accommodates both United States and Russian space suits and was designed and built at the Marshall Space Flight Center by the Boeing Company.

  7. A Nonlinear Dynamics-Based Estimator for Functional Electrical Stimulation: Preliminary Results From Lower-Leg Extension Experiments.

    PubMed

    Allen, Marcus; Zhong, Qiang; Kirsch, Nicholas; Dani, Ashwin; Clark, William W; Sharma, Nitin

    2017-12-01

    Miniature inertial measurement units (IMUs) are wearable sensors that measure limb segment or joint angles during dynamic movements. However, IMUs are generally prone to drift, external magnetic interference, and measurement noise. This paper presents a new class of nonlinear state estimation technique called state-dependent coefficient (SDC) estimation to accurately predict joint angles from IMU measurements. The SDC estimation method uses limb dynamics, instead of limb kinematics, to estimate the limb state. Importantly, the nonlinear limb dynamic model is formulated into state-dependent matrices that facilitate the estimator design without performing a Jacobian linearization. The estimation method is experimentally demonstrated to predict knee joint angle measurements during functional electrical stimulation of the quadriceps muscle. The nonlinear knee musculoskeletal model was identified through a series of experiments. The SDC estimator was then compared with an extended kalman filter (EKF), which uses a Jacobian linearization and a rotation matrix method, which uses a kinematic model instead of the dynamic model. Each estimator's performance was evaluated against the true value of the joint angle, which was measured through a rotary encoder. The experimental results showed that the SDC estimator, the rotation matrix method, and EKF had root mean square errors of 2.70°, 2.86°, and 4.42°, respectively. Our preliminary experimental results show the new estimator's advantage over the EKF method but a slight advantage over the rotation matrix method. However, the information from the dynamic model allows the SDC method to use only one IMU to measure the knee angle compared with the rotation matrix method that uses two IMUs to estimate the angle.

  8. Reliability and comparison of trunk and pelvis angles, arm distance and center of pressure in the seated functional reach test with and without foot support in children.

    PubMed

    Radtka, Sandra; Zayac, Jacqueline; Goldberg, Krystyna; Long, Michael; Ixanov, Rustem

    2017-03-01

    This study determined test-retest reliability of trunk and pelvis joint angles, arm distance and center of pressure (COP) excursion for the seated functional reach test (FRT) and compared these variables during the seated FRT with and without foot support. Fifteen typically developing children (age 9.3±4.1years) participated. Trunk and pelvis joint angles, arm distance, and COP excursion were collected on two days using three-dimensional motion analysis and a force plate while subjects reached maximally with and without foot support in the anterior, anterior/lateral, lateral, posterior/lateral directions. Age, weight, height, trunk and arm lengths were correlated (p<0.01) with maximum arm distance reached. Maximum arm distance, trunk and pelvis joint angles, and COP with and without foot support were not significant (p<0.05) for the two test periods. Excellent reliability (ICCs>0.75) was found for maximum arm distance reached in all four directions in the seated FRT with and without foot support. Most trunk and pelvis joint angles and COP excursions during maximum reach in all four directions showed excellent to fair reliability (ICCs>0.40-0.75). Reaching with foot support in all directions was significantly greater (p<0.05) than without foot support; however, most COP excursions and trunk and pelvic angles were not significantly different. Findings support the addition of anterior/lateral and posterior/lateral reaching directions in the seated FRT. Trunk and pelvis movement analysis is important to examine in the seated FRT to determine the specific movement strategies needed for maximum reaching without loss of balance. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Advanced EVA system design requirements study

    NASA Technical Reports Server (NTRS)

    Woods, T. G.

    1988-01-01

    The results are presented of a study to identify specific criteria regarding space station extravehicular activity system (EVAS) hardware requirements. Key EVA design issues include maintainability, technology readiness, LSS volume vs. EVA time available, suit pressure/cabin pressure relationship and productivity effects, crew autonomy, integration of EVA as a program resource, and standardization of task interfaces. A variety of DOD EVA systems issues were taken into consideration. Recommendations include: (1) crew limitations, not hardware limitations; (2) capability to perform all of 15 generic missions; (3) 90 days on-orbit maintainability with 50 percent duty cycle as minimum; and (4) use by payload sponsors of JSC document 10615A plus a Generic Tool Kit and Specialized Tool Kit description. EVA baseline design requirements and criteria, including requirements of various subsystems, are outlined. Space station/EVA system interface requirements and EVA accommodations are discussed in the areas of atmosphere composition and pressure, communications, data management, logistics, safe haven, SS exterior and interior requirements, and SS airlock.

  10. Quantitative photogrammetric analysis of the Klapp method for treating idiopathic scoliosis.

    PubMed

    Iunes, Denise H; Cecílio, Maria B B; Dozza, Marina A; Almeida, Polyanna R

    2010-01-01

    Few studies have proved that physical therapy techniques are efficient in the treatment of scoliosis. To analyze the efficiency of the Klapp method for the treatment of scoliosis, through a quantitative analysis using computerized biophotogrammetry. Sixteen participants of a mean age of 15+/-2.61 yrs. with idiopathic scoliosis were treated using the Klapp method. To analyze the results from the treatment, they were all of photographed before and after the treatments, following a standardized photographic method. All of the photographs were analyzed quantitatively by the same examiner using the ALCimagem 2000 software. The statistical analyses were performed using the paired t-test with a significance level of 5%. The treatments showed improvements in the angles which evaluated the symmetry of the shoulders, i.e. the acromioclavicular joint angle (AJ; p=0.00) and sternoclavicular joint angle (SJ; p=0.01). There were also improvements in the angle that evaluated the left Thales triangle (DeltaT; p=0.02). Regarding flexibility, there were improvements in the tibiotarsal angle (TTA; p=0.01) and in the hip joint angles (HJA; p=0.00). There were no changes in the vertebral curvatures and nor improvements in head positioning. Only the lumbar curvature, evaluated by the lumbar lordosis angle (LL; p=0.00), changed after the treatments. The Klapp method was an efficient therapeutic technique for treating asymmetries of the trunk and improving its flexibility. However, it was not efficient for pelvic asymmetry modifications in head positioning, cervical lordosis or thoracic kyphosis.

  11. A model-based approach to stabilizing crutch supported paraplegic standing by artificial hip joint stiffness.

    PubMed

    van der Spek, Jaap H; Veltink, Peter H; Hermens, Hermie J; Koopman, Bart F J M; Boom, Herman B K

    2003-12-01

    The prerequisites for stable crutch supported standing were analyzed in this paper. For this purpose, a biomechanical model of crutch supported paraplegic stance was developed assuming the patient was standing with extended knees. When using crutches during stance, the crutches will put a position constraint on the shoulder, thus reducing the number of degrees of freedom. Additional hip-joint stiffness was applied to stabilize the hip joint and, therefore, to stabilize stance. The required hip-joint stiffness for changing crutch placement and hip-joint offset angle was studied under static and dynamic conditions. Modeling results indicate that, by using additional hip-joint stiffness, stable crutch supported paraplegic standing can be achieved, both under static as well as dynamic situations. The static equilibrium postures and the stability under perturbations were calculated to be dependent on crutch placement and stiffness applied. However, postures in which the hip joint was in extension (C postures) appeared to the most stable postures. Applying at least 60 N x m/rad hip-joint stiffness gave stable equilibrium postures in all cases. Choosing appropriate hip-joint offset angles, the static equilibrium postures changed to more erect postures, without causing instability or excessive arm forces to occur.

  12. Improved Automatically Locking/Unlocking Orthotic Knee Joint

    NASA Technical Reports Server (NTRS)

    Weddendorf, Bruce

    1995-01-01

    Proposed orthotic knee joint improved version of one described in "Automatically Locking/Unlocking Orthotic Knee Joint" (MFS-28633). Locks automatically upon initial application of radial force (wearer's weight) and unlocks automatically, but only when all loads (radial force and bending) relieved. Joints lock whenever wearer applies weight to knee at any joint angle between full extension and 45 degree bend. Both devices offer increased safety and convenience relative to conventional orthotic knee joints.

  13. An Integrated Wireless Wearable Sensor System for Posture Recognition and Indoor Localization.

    PubMed

    Huang, Jian; Yu, Xiaoqiang; Wang, Yuan; Xiao, Xiling

    2016-10-31

    In order to provide better monitoring for the elderly or patients, we developed an integrated wireless wearable sensor system that can realize posture recognition and indoor localization in real time. Five designed sensor nodes which are respectively fixed on lower limbs and a standard Kalman filter are used to acquire basic attitude data. After the attitude angles of five body segments (two thighs, two shanks and the waist) are obtained, the pitch angles of the left thigh and waist are used to realize posture recognition. Based on all these attitude angles of body segments, we can also calculate the coordinates of six lower limb joints (two hip joints, two knee joints and two ankle joints). Then, a novel relative localization algorithm based on step length is proposed to realize the indoor localization of the user. Several sparsely distributed active Radio Frequency Identification (RFID) tags are used to correct the accumulative error in the relative localization algorithm and a set-membership filter is applied to realize the data fusion. The experimental results verify the effectiveness of the proposed algorithms.

  14. An Integrated Wireless Wearable Sensor System for Posture Recognition and Indoor Localization

    PubMed Central

    Huang, Jian; Yu, Xiaoqiang; Wang, Yuan; Xiao, Xiling

    2016-01-01

    In order to provide better monitoring for the elderly or patients, we developed an integrated wireless wearable sensor system that can realize posture recognition and indoor localization in real time. Five designed sensor nodes which are respectively fixed on lower limbs and a standard Kalman filter are used to acquire basic attitude data. After the attitude angles of five body segments (two thighs, two shanks and the waist) are obtained, the pitch angles of the left thigh and waist are used to realize posture recognition. Based on all these attitude angles of body segments, we can also calculate the coordinates of six lower limb joints (two hip joints, two knee joints and two ankle joints). Then, a novel relative localization algorithm based on step length is proposed to realize the indoor localization of the user. Several sparsely distributed active Radio Frequency Identification (RFID) tags are used to correct the accumulative error in the relative localization algorithm and a set-membership filter is applied to realize the data fusion. The experimental results verify the effectiveness of the proposed algorithms. PMID:27809230

  15. Multiunit Activity-Based Real-Time Limb-State Estimation from Dorsal Root Ganglion Recordings

    PubMed Central

    Han, Sungmin; Chu, Jun-Uk; Kim, Hyungmin; Park, Jong Woong; Youn, Inchan

    2017-01-01

    Proprioceptive afferent activities could be useful for providing sensory feedback signals for closed-loop control during functional electrical stimulation (FES). However, most previous studies have used the single-unit activity of individual neurons to extract sensory information from proprioceptive afferents. This study proposes a new decoding method to estimate ankle and knee joint angles using multiunit activity data. Proprioceptive afferent signals were recorded from a dorsal root ganglion with a single-shank microelectrode during passive movements of the ankle and knee joints, and joint angles were measured as kinematic data. The mean absolute value (MAV) was extracted from the multiunit activity data, and a dynamically driven recurrent neural network (DDRNN) was used to estimate ankle and knee joint angles. The multiunit activity-based MAV feature was sufficiently informative to estimate limb states, and the DDRNN showed a better decoding performance than conventional linear estimators. In addition, processing time delay satisfied real-time constraints. These results demonstrated that the proposed method could be applicable for providing real-time sensory feedback signals in closed-loop FES systems. PMID:28276474

  16. The validity and intra-tester reliability of markerless motion capture to analyse kinematics of the BMX Supercross gate start.

    PubMed

    Grigg, Josephine; Haakonssen, Eric; Rathbone, Evelyne; Orr, Robin; Keogh, Justin W L

    2017-11-13

    The aim of this study was to quantify the validity and intra-tester reliability of a novel method of kinematic measurement. The measurement target was the joint angles of an athlete performing a BMX Supercross (SX) gate start action through the first 1.2 s of movement in situ on a BMX SX ramp using a standard gate start procedure. The method employed GoPro® Hero 4 Silver (GoPro Inc., USA) cameras capturing data at 120 fps 720 p on a 'normal' lens setting. Kinovea 0.8.15 (Kinovea.org, France) was used for analysis. Tracking data was exported and angles computed in Matlab (Mathworks®, USA). The gold standard 3D method for joint angle measurement could not safely be employed in this environment, so a rigid angle was used. Validity was measured to be within 2°. Intra-tester reliability was measured by the same tester performing the analysis twice with an average of 55 days between analyses. Intra-tester reliability was high, with an absolute error <6° and <9 frames (0.075 s) across all angles and time points for key positions, respectively. The methodology is valid within 2° and reliable within 6° for the calculation of joint angles in the first ~1.25 s.

  17. A parametric model of muscle moment arm as a function of joint angle: application to the dorsiflexor muscle group in mice.

    PubMed

    Miller, S W; Dennis, R G

    1996-12-01

    A parametric model was developed to describe the relationship between muscle moment arm and joint angle. The model was applied to the dorsiflexor muscle group in mice, for which the moment arm was determined as a function of ankle angle. The moment arm was calculated from the torque measured about the ankle upon application of a known force along the line of action of the dorsiflexor muscle group. The dependence of the dorsiflexor moment arm on ankle angle was modeled as r = R sin(a + delta), where r is the moment arm calculated from the measured torque and a is the joint angle. A least-squares curve fit yielded values for R, the maximum moment arm, and delta, the angle at which the maximum moment arm occurs as offset from 90 degrees. Parametric models were developed for two strains of mice, and no differences were found between the moment arms determined for each strain. Values for the maximum moment arm, R, for the two different strains were 0.99 and 1.14 mm, in agreement with the limited data available from the literature. While in some cases moment arm data may be better fitted by a polynomial, use of the parametric model provides a moment arm relationship with meaningful anatomical constants, allowing for the direct comparison of moment arm characteristics between different strains and species.

  18. Interjoint coordination of the lower extremities in short-track speed skating.

    PubMed

    Khuyagbaatar, Batbayar; Purevsuren, Tserenchimed; Park, Won Man; Kim, Kyungsoo; Kim, Yoon Hyuk

    2017-10-01

    In short-track speed skating, the three-dimensional kinematics of the lower extremities during the whole skating cycle have not been studied. Kinematic parameters of the lower extremities during skating are presented as joint angles versus time. However, the angle-time presentation is not sufficient to describe the relationship between multi-joint movement patterns. Thus, angle-angle presentations were developed and used to describe interjoint coordination in sport activities. In this study, 15 professional male skaters' full body motion data were recorded using a wearable motion capture system during short-track speed skating. We investigated the three-dimensional kinematics of the lower extremities and then established the interjoint coordination between hip-knee and knee-ankle for both legs during the whole skating cycle. The results demonstrate the relationship between multi-joint movements during different phases of short-track speed skating. This study provides fundamentals of the movement mechanism of the lower extremities that can be integrated with physiotherapy to improve skating posture and prevent injuries from repetitive stress since physiological characteristics play an important role in skating performance.

  19. Risk factors for degenerative spondylolisthesis: a systematic review

    PubMed Central

    DeVine, John G.; Schenk-Kisser, Jeannette M.; Skelly, Andrea C.

    2012-01-01

    Study design: Systematic literature review. Rationale: Many authors have postulated on various risk factors associated with the pathogenesis of degenerative spondylolisthesis (DS), yet controversies regarding those risk factors still exist. Objective: To critically appraise and summarize evidence on risk factors for DS. Methods: Articles published before October 15, 2011, were systematically reviewed using PubMed and bibliographies of key articles. Each article was subject to quality rating and was analyzed by two independent reviewers. Results: From 382 citations, 30 underwent full-text review. Fourteen studies met inclusion criteria. All but two were considered poor quality. Female gender and higher facet joint angle were consistently associated with an increased risk of DS across multiple studies. Multiple studies also consistently reported no association between back pain and prolonged occupational sitting. Associations between age, parity, lumbosacral angle, lumbar lordosis, facet joint tropism, and pelvic inclination angles were inconsistent. Conclusions: There appears to be consistent evidence to suggest that the risk of DS increases with increasing age and is greater for females and people with a greater facet joint angle. PMID:23230415

  20. Optimized resolved rate control of seven-degree-of-freedom Laboratory Telerobotic Manipulator (LTM) with application to three-dimensional graphics simulation

    NASA Technical Reports Server (NTRS)

    Barker, L. Keith; Mckinney, William S., Jr.

    1989-01-01

    The Laboratory Telerobotic Manipulator (LTM) is a seven-degree-of-freedom robot arm. Two of the arms were delivered to Langley Research Center for ground-based research to assess the use of redundant degree-of-freedom robot arms in space operations. Resolved-rate control equations for the LTM are derived. The equations are based on a scheme developed at the Oak Ridge National Laboratory for computing optimized joint angle rates in real time. The optimized joint angle rates actually represent a trade-off, as the hand moves, between small rates (least-squares solution) and those rates which work toward satisfying a specified performance criterion of joint angles. In singularities where the optimization scheme cannot be applied, alternate control equations are devised. The equations developed were evaluated using a real-time computer simulation to control a 3-D graphics model of the LTM.

  1. EVA safety: Space suit system interoperability

    NASA Technical Reports Server (NTRS)

    Skoog, A. I.; McBarron, J. W.; Abramov, L. P.; Zvezda, A. O.

    1995-01-01

    The results and the recommendations of the International Academy of Astronautics extravehicular activities (IAA EVA) Committee work are presented. The IAA EVA protocols and operation were analyzed for harmonization procedures and for the standardization of safety critical and operationally important interfaces. The key role of EVA and how to improve the situation based on the identified EVA space suit system interoperability deficiencies were considered.

  2. EVA Training and Development Facilities

    NASA Technical Reports Server (NTRS)

    Cupples, Scott

    2016-01-01

    Overview: Vast majority of US EVA (ExtraVehicular Activity) training and EVA hardware development occurs at JSC; EVA training facilities used to develop and refine procedures and improve skills; EVA hardware development facilities test hardware to evaluate performance and certify requirement compliance; Environmental chambers enable testing of hardware from as large as suits to as small as individual components in thermal vacuum conditions.

  3. Kinematic relationship between rotation of lumbar spine and hip joints during golf swing in professional golfers.

    PubMed

    Mun, Frederick; Suh, Seung Woo; Park, Hyun-Joon; Choi, Ahnryul

    2015-05-14

    Understanding the kinematics of the lumbar spine and hip joints during a golf swing is a basic step for identifying swing-specific factors associated with low back pain. The objective of this study was to examine the kinematic relationship between rotational movement of the lumbar spine and hip joints during a golf swing. Fifteen professional golfers participated in this study with employment of six infrared cameras to record their golf swings. Anatomical reference system of the upper torso, pelvis and thigh segments, and the location of each hip and knee joint were defined by the protocols of the kinematic model of previous studies. Lumbar spine and hip joint rotational angle was calculated utilizing the Euler angle method. Cross-correlation and angle-angle plot was used to examine the degree of kinematic relationship between joints. A fairly strong coupling relationship was shown between the lumbar spine and hip rotational movements with an average correlation of 0.81. Leading hip contribution to overall rotation was markedly high in the early stage of the downswing, while the lumbar spine contributed greater towards the end of the downswing; however, the relative contributions of the trailing hip and lumbar spine were nearly equal during the entire downswing. Most of the professional golfers participated in this study used a similar coordination strategy when moving their hips and lumbar spine during golf swings. The rotation of hips was observed to be more efficient in producing the overall rotation during the downswing when compared to the backswing. These results provide quantitative information to better understand the lumbar spine and hip joint kinematic characteristics of professional golfers. This study will have great potential to be used as a normal control data for the comparison with kinematic information among golfers with low back pain and for further investigation of golf swing-specific factors associated with injury.

  4. Sacroiliac joint motion in patients with degenerative lumbar spine disorders.

    PubMed

    Nagamoto, Yukitaka; Iwasaki, Motoki; Sakaura, Hironobu; Sugiura, Tsuyoshi; Fujimori, Takahito; Matsuo, Yohei; Kashii, Masafumi; Murase, Tsuyoshi; Yoshikawa, Hideki; Sugamoto, Kazuomi

    2015-08-01

    OBJECT Usually additional anchors into the ilium are necessary in long fusion to the sacrum for degenerative lumbar spine disorders (DLSDs), especially for adult spine deformity. Although the use of anchors is becoming quite common, surgeons must always keep in mind that the sacroiliac (SI) joint is mobile and they should be aware of the kinematic properties of the SI joint in patients with DLSDs, including adult spinal deformity. No previous study has clarified in vivo kinematic changes in the SI joint with respect to patient age, sex, or parturition status or the presence of DLSDs. The authors conducted a study to clarify the mobility and kinematic characteristics of the SI joint in patients with DLSDs in comparison with healthy volunteers by using in vivo 3D motion analysis with voxel-based registration, a highly accurate, noninvasive method. METHODS Thirteen healthy volunteers (the control group) and 20 patients with DLSDs (the DLSD group) underwent low-dose 3D CT of the lumbar spine and pelvis in 3 positions (neutral, maximal trunk flexion, and maximal trunk extension). SI joint motion was calculated by computer processing of the CT images (voxel-based registration). 3D motion of the SI joint was expressed as both 6 df by Euler angles and translations on the coordinate system and a helical axis of rotation. The correlation between joint motion and the cross-sectional area of the trunk muscles was also investigated. RESULTS SI joint motion during trunk flexion-extension was minute in healthy volunteers. The mean rotation angles during trunk flexion were 0.07° around the x axis, -0.02° around the y axis, and 0.16° around the z axis. The mean rotation angles during trunk extension were 0.38° around the x axis, -0.08° around the y axis, and 0.08° around the z axis. During trunk flexion-extension, the largest amount of motion occurred around the x axis. In patients with DLSDs, the mean rotation angles during trunk flexion were 0.57° around the x axis, 0.01° around the y axis, and 0.19° around the z axis. The mean rotation angles during trunk extension were 0.68° around the x axis, -0.11° around the y axis, and 0.05° around the z axis. Joint motion in patients with DLSDs was significantly greater, with greater individual difference, than in healthy volunteers. Among patients with DLSDs, women had significantly more motion than men did during trunk extension. SI joint motion was significantly negatively correlated with the cross-sectional area of the trunk muscles during both flexion and extension of the trunk. CONCLUSIONS The authors elucidated the mobility and kinematic characteristics of the SI joint in patients with DLSDs compared with healthy volunteers for the first time. This information is useful for spine surgeons because of the recent increase in spinopelvic fusion for the treatment of DLSDs.

  5. An Integrated Extravehicular Activity Research Plan

    NASA Technical Reports Server (NTRS)

    Abercromby, Andrew F. J.; Ross, Amy J.; Cupples, J. Scott

    2016-01-01

    Multiple organizations within NASA and outside of NASA fund and participate in research related to extravehicular activity (EVA). In October 2015, representatives of the EVA Office, the Crew and Thermal Systems Division (CTSD), and the Human Research Program (HRP) at NASA Johnson Space Center agreed on a formal framework to improve multi-year coordination and collaboration in EVA research. At the core of the framework is an Integrated EVA Research Plan and a process by which it will be annually reviewed and updated. The over-arching objective of the collaborative framework is to conduct multi-disciplinary cost-effective research that will enable humans to perform EVAs safely, effectively, comfortably, and efficiently, as needed to enable and enhance human space exploration missions. Research activities must be defined, prioritized, planned and executed to comprehensively address the right questions, avoid duplication, leverage other complementary activities where possible, and ultimately provide actionable evidence-based results in time to inform subsequent tests, developments and/or research activities. Representation of all appropriate stakeholders in the definition, prioritization, planning and execution of research activities is essential to accomplishing the over-arching objective. A formal review of the Integrated EVA Research Plan will be conducted annually. External peer review of all HRP EVA research activities including compilation and review of published literature in the EVA Evidence Book is already performed annually. Coordination with stakeholders outside of the EVA Office, CTSD, and HRP is already in effect on a study-by-study basis; closer coordination on multi-year planning with other EVA stakeholders including academia is being actively pursued. Details of the current Integrated EVA Research Plan are presented including description of ongoing and planned research activities in the areas of: Benchmarking; Anthropometry and Suit Fit; Sensors; Human-Suit Modeling; Suit Trauma Monitoring and Countermeasures; EVA Workload and Duration Effects; Decompression Sickness Risk Mitigation; Deconditioned EVA Performance; and Exploration EVA Concept of Operations.

  6. Integrated Extravehicular Activity Human Research Plan: 2017

    NASA Technical Reports Server (NTRS)

    Abercromby, Andrew

    2017-01-01

    Multiple organizations within NASA as well as industry and academia fund and participate in research related to extravehicular activity (EVA). In October 2015, representatives of the EVA Office, the Crew and Thermal Systems Division (CTSD), and the Human Research Program (HRP) at NASA Johnson Space Center agreed on a formal framework to improve multi-year coordination and collaboration in EVA research. At the core of the framework is an Integrated EVA Human Research Plan and a process by which it will be annually reviewed and updated. The over-arching objective of the collaborative framework is to conduct multi-disciplinary cost-effective research that will enable humans to perform EVAs safely, effectively, comfortably, and efficiently, as needed to enable and enhance human space exploration missions. Research activities must be defined, prioritized, planned and executed to comprehensively address the right questions, avoid duplication, leverage other complementary activities where possible, and ultimately provide actionable evidence-based results in time to inform subsequent tests, developments and/or research activities. Representation of all appropriate stakeholders in the definition, prioritization, planning and execution of research activities is essential to accomplishing the over-arching objective. A formal review of the Integrated EVA Human Research Plan will be conducted annually. Coordination with stakeholders outside of the EVA Office, CTSD, and HRP is already in effect on a study-by-study basis; closer coordination on multi-year planning with other EVA stakeholders including academia is being actively pursued. Details of the preliminary Integrated EVA Human Research Plan are presented including description of ongoing and planned research activities in the areas of: physiological and performance capabilities; suit design parameters; EVA human health and performance modeling; EVA tasks and concepts of operations; EVA informatics; human-suit sensors; suit sizing and fit; and EVA injury risk and mitigation. This paper represents the 2017 update to the Integrated EVA Human Research Plan.

  7. Preparation, characterization and application of EVA film containing Eu3+ complex with 1-tridecanecarboxylic acid ligand

    NASA Astrophysics Data System (ADS)

    Dong, Jin; Lin, Baoping

    2017-11-01

    In this study, on the basis of complex Eu(DBM)3Phen which was widely applied in polymer matrices, quaternary complex Eu(DBM)2Phen(TA) was synthesized by the introduction of 1-tridecanecarboxylic acid (TA). XRD analyses show that Eu(DBM)2Phen(TA) inclines to amorphization compared with Eu(DBM)3Phen which is crystal. Ethylene-vinyl acetate (EVA) film doped with Eu(DBM)2Phen(TA) was prepared by casting method. SEM and AFM analyses show that the compatibility of Eu(DBM)2Phen(TA) with EVA is better than that of Eu(DBM)3Phen with EVA. Under the same addition amount of Eu3+ complexes, visible light transmittance of Eu(DBM)2Phen(TA)/EVA film is obviously greater than that of Eu(DBM)3Phen/EVA film, and the fluorescence intensity of Eu(DBM)2Phen(TA)/EVA film is only slightly lower than that of Eu(DBM)3Phen/EVA film. With the optimum addition amount of Eu3+ complexes, the energy conversion efficiency of the polycrystalline silicon solar cell coated with Eu(DBM)2Phen(TA)/EVA film is improved to 12.14%, and in comparison, that of the solar cell coated with Eu(DBM)3Phen/EVA film is only 11.98%. Hence Eu(DBM)2Phen(TA)/EVA film has a potential prospect as luminescent down-shifting material.

  8. EVA Design, Verification, and On-Orbit Operations Support Using Worksite Analysis

    NASA Technical Reports Server (NTRS)

    Hagale, Thomas J.; Price, Larry R.

    2000-01-01

    The International Space Station (ISS) design is a very large and complex orbiting structure with thousands of Extravehicular Activity (EVA) worksites. These worksites are used to assemble and maintain the ISS. The challenge facing EVA designers was how to design, verify, and operationally support such a large number of worksites within cost and schedule. This has been solved through the practical use of computer aided design (CAD) graphical techniques that have been developed and used with a high degree of success over the past decade. The EVA design process allows analysts to work concurrently with hardware designers so that EVA equipment can be incorporated and structures configured to allow for EVA access and manipulation. Compliance with EVA requirements is strictly enforced during the design process. These techniques and procedures, coupled with neutral buoyancy underwater testing, have proven most valuable in the development, verification, and on-orbit support of planned or contingency EVA worksites.

  9. Modified EVA Encapsulant Formulations for Low Temperature Processing: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mei, Z.; Pern, F. J.; Glick, S. H.

    2001-10-01

    Presented at the 2001 NCPV Program Review Meeting: We have developed several new ethylene-vinyl acetate (EVA) formulations modified on the basis of NREL patented EVA formulations [1]. The new formulations can be cured to a desired gel content of {approx}80% in the ambient at temperatures 20-30 C lower than the typical conditions in vacuum (i.e. {approx}150 C). Glass/glass laminates showed transmittance spectra that are essentially the same as that of EVA 15295P in the visible and NIR regions but higher in the UV region. Results of fluorescence analysis of the ambient-processed new EVA formulations showed the concentrations of the curing-generatedmore » {alpha},{beta}-unsaturated carbonyl chromophores, which are responsible for the UV induced EVA discoloration and photodegradation, were considerably lower than that of EVA 15295P, therefore suggesting a better photochemical stability of new EVA formulations.« less

  10. COMAP: a new computational interpretation of human movement planning level based on coordinated minimum angle jerk policies and six universal movement elements.

    PubMed

    Emadi Andani, Mehran; Bahrami, Fariba

    2012-10-01

    Flash and Hogan (1985) suggested that the CNS employs a minimum jerk strategy when planning any given movement. Later, Nakano et al. (1999) showed that minimum angle jerk predicts the actual arm trajectory curvature better than the minimum jerk model. Friedman and Flash (2009) confirmed this claim. Besides the behavioral support that we will discuss, we will show that this model allows simplicity in planning any given movement. In particular, we prove mathematically that each movement that satisfies the minimum joint angle jerk condition is reproducible by a linear combination of six functions. These functions are calculated independent of the type of the movement and are normalized in the time domain. Hence, we call these six universal functions the Movement Elements (ME). We also show that the kinematic information at the beginning and end of the movement determines the coefficients of the linear combination. On the other hand, in analyzing recorded data from sit-to-stand (STS) transfer, arm-reaching movement (ARM) and gait, we observed that minimum joint angle jerk condition is satisfied only during different successive phases of these movements and not for the entire movement. Driven by these observations, we assumed that any given ballistic movement may be decomposed into several successive phases without overlap, such that for each phase the minimum joint angle jerk condition is satisfied. At the boundaries of each phase the angular acceleration of each joint should obtain its extremum (zero third derivative). As a consequence, joint angles at each phase will be linear combinations of the introduced MEs. Coefficients of the linear combination at each phase are the values of the joint kinematics at the boundaries of that phase. Finally, we conclude that these observations may constitute the basis of a computational interpretation, put differently, of the strategy used by the Central Nervous System (CNS) for motor planning. We call this possible interpretation "Coordinated Minimum Angle jerk Policy" or COMAP. Based on this policy, the function of the CNS in generating the desired pattern of any given task (like STS, ARM or gait) can be described computationally using three factors: (1) the kinematics of the motor system at given body states, i.e., at certain movement events/instances, (2) the time length of each phase, and (3) the proposed MEs. From a computational point of view, this model significantly simplifies the processes of movement planning as well as feature abstraction for saving characterizing information of any given movement in memory. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Extravehicular Activity (EVA) Technology Development Status and Forecast

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda; Westheimer, David T.

    2010-01-01

    Beginning in Fiscal Year (FY) 2011, Extravehicular activity (EVA) technology development became a technology foundational domain under a new program Enabling Technology Development and Demonstration. The goal of the EVA technology effort is to further develop technologies that will be used to demonstrate a robust EVA system that has application for a variety of future missions including microgravity and surface EVA. Overall the objectives will be reduce system mass, reduce consumables and maintenance, increase EVA hardware robustness and life, increase crew member efficiency and autonomy, and enable rapid vehicle egress and ingress. Over the past several years, NASA realized a tremendous increase in EVA system development as part of the Exploration Technology Development Program and the Constellation Program. The evident demand for efficient and reliable EVA technologies, particularly regenerable technologies was apparent under these former programs and will continue to be needed as future mission opportunities arise. The technological need for EVA in space has been realized over the last several decades by the Gemini, Apollo, Skylab, Space Shuttle, and the International Space Station (ISS) programs. EVAs were critical to the success of these programs. Now with the ISS extension to 2028 in conjunction with a current forecasted need of at least eight EVAs per year, the EVA technology life and limited availability of the EMUs will become a critical issue eventually. The current Extravehicular Mobility Unit (EMU) has vastly served EVA demands by performing critical operations to assemble the ISS and provide repairs of satellites such as the Hubble Space Telescope. However, as the life of ISS and the vision for future mission opportunities are realized, a new EVA systems capability could be an option for the future mission applications building off of the technology development over the last several years. Besides ISS, potential mission applications include EVAs for missions to Near Earth Objects (NEO), Phobos, or future surface missions. Surface missions could include either exploration of the Moon or Mars. Providing an EVA capability for these types of missions enables in-space construction of complex vehicles or satellites, hands on exploration of new parts of our solar system, and engages the public through the inspiration of knowing that humans are exploring places that they have never been before. This paper offers insight into what is currently being developed and what the potential opportunities are in the forecast

  12. Posterior Tibial Slope Angle Correlates With Peak Sagittal and Frontal Plane Knee Joint Loading During Robotic Simulations of Athletic Tasks.

    PubMed

    Bates, Nathaniel A; Nesbitt, Rebecca J; Shearn, Jason T; Myer, Gregory D; Hewett, Timothy E

    2016-07-01

    Tibial slope angle is a nonmodifiable risk factor for anterior cruciate ligament (ACL) injury. However, the mechanical role of varying tibial slopes during athletic tasks has yet to be clinically quantified. To examine the influence of posterior tibial slope on knee joint loading during controlled, in vitro simulation of the knee joint articulations during athletic tasks. Descriptive laboratory study. A 6 degree of freedom robotic manipulator positionally maneuvered cadaveric knee joints from 12 unique specimens with varying tibial slopes (range, -7.7° to 7.7°) through drop vertical jump and sidestep cutting tasks that were derived from 3-dimensional in vivo motion recordings. Internal knee joint torques and forces were recorded throughout simulation and were linearly correlated with tibial slope. The mean (±SD) posterior tibial slope angle was 2.2° ± 4.3° in the lateral compartment and 2.3° ± 3.3° in the medial compartment. For simulated drop vertical jumps, lateral compartment tibial slope angle expressed moderate, direct correlations with peak internally generated knee adduction (r = 0.60-0.65), flexion (r = 0.64-0.66), lateral (r = 0.57-0.69), and external rotation torques (r = 0.47-0.72) as well as inverse correlations with peak abduction (r = -0.42 to -0.61) and internal rotation torques (r = -0.39 to -0.79). Only frontal plane torques were correlated during sidestep cutting simulations. For simulated drop vertical jumps, medial compartment tibial slope angle expressed moderate, direct correlations with peak internally generated knee flexion torque (r = 0.64-0.69) and lateral knee force (r = 0.55-0.74) as well as inverse correlations with peak external torque (r = -0.34 to -0.67) and medial knee force (r = -0.58 to -0.59). These moderate correlations were also present during simulated sidestep cutting. The investigation supported the theory that increased posterior tibial slope would lead to greater magnitude knee joint moments, specifically, internally generated knee adduction and flexion torques. The knee torques that positively correlated with increased tibial slope angle in this investigation are associated with heightened risk of ACL injury. Therefore, the present data indicated that a higher posterior tibial slope is correlated to increased knee loads that are associated with heightened risk of ACL injury. © 2016 The Author(s).

  13. Shoulder joint loading and posture during medicine cart pushing task.

    PubMed

    Xu, Xu; Lin, Jia-Hua; Boyer, Jon

    2013-01-01

    Excessive physical loads and awkward shoulder postures during pushing and pulling are risk factors for shoulder pain. Pushing a medicine cart is a major component of a work shift for nurses and medical assistants in hospitals and other health care facilities. A laboratory experiment was conducted to examine the effects of common factors (e.g., lane congestion, cart load stability, floor surface friction) on shoulder joint moment and shoulder elevation angle of participants during cart pushing. Participants pushed a medicine cart on straight tracks and turning around right-angle corners. Peak shoulder joint moments reached 25.1 Nm, 20.3 Nm, and 26.8 Nm for initial, transition, and turning phases of the pushing tasks, indicating that shoulder joint loading while pushing a medical cart is comparable to levels previously reported from heavy manual activities encountered in industry (e.g., garbage collection). Also, except for user experience, all other main study factors, including congestion level, cart load stability, location of transition strip, shoulder tendency, surface friction, and handedness, significantly influenced shoulder joint moment and shoulder elevation angle. The findings provide a better understanding of shoulder exposures associated with medicine cart operations and may be helpful in designing and optimizing the physical environment where medicine carts are used.

  14. X-ray motion analysis of the vertebral column during the startle response in striped bass, Morone saxatilis.

    PubMed

    Nowroozi, B N; Brainerd, E L

    2013-08-01

    Whole-body stiffness has a substantial impact on propulsive wave speed during axial undulatory locomotion in fishes. The connective tissues of the vertebral column may contribute to body stiffness, but without mechanical and kinematic analysis it is unclear whether the in vivo range of motion of intervertebral joints (IVJs) is great enough to stress IVJ tissues, thus generating stiffness. The present study used 2D videoradiography and 3D X-ray reconstruction of moving morphology (XROMM) to quantify vertebral kinematics during the startle response in striped bass (Morone saxatilis). X-ray video revealed two distinct patterns of bending: pattern I begins in the abdominal region and then proceeds to maximum IVJ angles in the caudal region, whereas pattern II begins in the cervical region and proceeds to maximum IVJ angles in the abdominal and then the caudal joints. In pattern II bends, the cervical joints exhibit a greater in vivo range of motion than previously reported in other species. XROMM analysis of caudal IVJs suggests primarily lateral bending: mean axial and dorsoventral rotations were less than 2 deg and inconsistent across 51 sequences analyzed from five individuals, whereas mean maximum lateral bending angles were 10.4±3.57 deg. These angles, combined with previous investigations of mechanical properties, reveal that the maximum angles all occur within the neutral zone of bending, indicating that little stress is experienced about the joint. This suggests that the IVJs of striped bass are quite compliant and likely do not contribute significantly to whole-body stiffness or elastic recoil during swimming in vivo.

  15. The physical demands of Olympic yacht racing.

    PubMed

    Mackie, H; Sanders, R; Legg, S

    1999-12-01

    The primary purpose of this study was to quantify the up wards forces of the feet on the hiking strap and the forces in the mainsheet of four Olympic classes of racing dinghies (Europe, Laser. Finn and 470) during realistic on-water sailing in varying wind conditions. The secondary aim of the study was to measure the joint angles adopted by the sailors and boat heel angles. The tertiary aim was to identify events and sailing conditions associated with large or patterned force production. Forces in the hiking strap and mainsheet of four classes of Olympic sailing dinghies were measured on eleven New Zealand sailors during simulated on-water racing in a range of wind conditions. Up-wind hiking strap forces reached an average of 73-87% of predicted maximal voluntary contraction (pred MVC), with peak forces exceeding 100% pred MVC. Mainsheet forces reached 25-35% pred MVC, with peak forces reaching 40-50% pred MVC. Off-wind hiking strap and mainsheet forces were considerably lower than up-wind forces. Ankle and hip joint angles increased and knee joint angles decreased with increasing wind speed during up-wind sailing. Large forces occurred in the hiking strap and mainsheet when boats reached the tops of wave during up-wind sailing in high wind speeds and when a gust of wind hit the boat. During off-wind sailing large forces were observed in the mainsheet when surfing down waves. It is recommended that the intensities and joint angles found in this study be used as a basis for the development of class specific off-water physical conditioning programmes.

  16. Compression member response of steel angle on truss structure with variation of single and double sections

    NASA Astrophysics Data System (ADS)

    Panjaitan, Arief; Hasibuan, Purwandy

    2018-05-01

    Implementation of an axial compression load on the steel angle can be found at the various structure such as truss system on telecommunication tower. For telecommunication tower, steel angle section can be suggested as an alternative solution due to its assembling easiness as well as its strength. But, antennas and microwaves installation that keep increases every time on this structure demand reinforcement on each leg of the tower structure. One solution suggested is reinforcement with increasing areas section capacity, where tower leg consisted of single angle section will be reinforced to be double angle section. Regarding this case, this research discussed the behavior of two types of steel angle section: single angle of L.30.30.3 and double angles of 2L.30.30.3. These two sections were designed identically in length (103 cm) and tested by axial compression load. At the first step, compression member together with tension member was formed to be a truss system, where compression and tension member were met at a joint plate. Schematic loading was implemented by giving tension loading on the joint plate until failure of specimens. Experimental work findings showed that implementing double angle sections (103 cm) significantly increased compression capacity of steel angle section up to 118 %.

  17. Integrated Design of a Telerobotic Workstation

    NASA Technical Reports Server (NTRS)

    Rochlis, Jennifer L.; Clarke, John-Paul

    2001-01-01

    The experiments described in this paper are part of a larger joint MIT/NASA research effort that focuses on the development of a methodology for designing and evaluating integrated interfaces for highly dexterous and multi-functional telerobots. Specifically, a telerobotic workstation is being designed for an Extravehicular Activity (EVA) anthropomorphic space station telerobot. Previous researchers have designed telerobotic workstations based upon performance of discrete subsets of tasks (for example, peg-in-hole, tracking, etc.) without regard for transitions that operators go through between tasks performed sequentially in the context of larger integrated tasks. The exploratory research experiments presented here took an integrated approach and assessed how subjects operating a full-immersion telerobot perform during the transitions between sub-tasks of two common EVA tasks. Preliminary results show that up to 30% of total task time is spent gaining and maintaining Situation Awareness (SA) of their task space and environment during transitions. Although task performance improves over the two trial days, the percentage of time spent on SA remains the same. This method identifies areas where workstation displays and feedback mechanisms are most needed to increase operator performance and decrease operator workload - areas that previous research methods have not been able to address.

  18. STS-61B Astronaut Spring During EASE Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The crew assigned to the STS-61B mission included Bryan D. O'Conner, pilot; Brewster H. Shaw, commander; Charles D. Walker, payload specialist; mission specialists Jerry L. Ross, Mary L. Cleave, and Sherwood C. Spring; and Rodolpho Neri Vela, payload specialist. Launched aboard the Space Shuttle Atlantis November 28, 1985 at 7:29:00 pm (EST), the STS-61B mission's primary payload included three communications satellites: MORELOS-B (Mexico); AUSSAT-2 (Australia); and SATCOM KU-2 (RCA Americom). Two experiments were conducted to test assembling erectable structures in space: EASE (Experimental Assembly of Structures in Extravehicular Activity), and ACCESS (Assembly Concept for Construction of Erectable Space Structure). In a joint venture between NASA/Langley Research Center in Hampton, Virginia, and the Marshall Space Flight Center (MSFC), the EASE and ACCESS were developed and demonstrated at MSFC's Neutral Buoyancy Simulator (NBS). In this STS-61B onboard photo, astronaut Spring was working on the EASE during an Extravehicular Activity (EVA). The primary objective of this experiment was to test the structural assembly concepts for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction.

  19. Space Station Human Factors Research Review. Volume 1: EVA Research and Development

    NASA Technical Reports Server (NTRS)

    Cohen, Marc M. (Editor); Vykukal, H. C. (Editor)

    1988-01-01

    An overview is presented of extravehicular activity (EVA) research and development activities at Ames. The majority of the program was devoted to presentations by the three contractors working in parallel on the EVA System Phase A Study, focusing on Implications for Man-Systems Design. Overhead visuals are included for a mission results summary, space station EVA requirements and interface accommodations summary, human productivity study cross-task coordination, and advanced EVAS Phase A study implications for man-systems design. Articles are also included on subsea approach to work systems development and advanced EVA system design requirements.

  20. Improved crystallinity and dynamic mechanical properties of reclaimed waste tire rubber/EVA blends under the influence of electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Ramarad, Suganti; Ratnam, Chantara T.; Khalid, Mohammad; Chuah, Abdullah Luqman; Hanson, Svenja

    2017-01-01

    Dependence on automobiles has led to a huge amount of waste tires produced annually around the globe. In this study, the feasibility of recycling these waste tires by blending reclaimed waste tire rubber (RTR) with poly(ethylene-co-vinyl acetate) (EVA) and electron beam irradiation was studied. The RTR/EVA blends containing 100-0 wt% of RTR were prepared in the internal mixer followed by electron beam (EB) irradiation with doses ranging from 50 to 200 kGy. The processing torques, calorimetric and dynamic mechanical properties of the blends were studied. Blends were found to have lower processing torque indicating easier processability of RTR/EVA blends compared to EVA. RTR domains were found to be dispersed in EVA matrix, whereas, irradiation improved the dispersion of RTR into smaller domains in EVA matrix. Results showed the addition of EVA improves the efficiency of irradiation induced crosslink formation and dynamic mechanical properties of the blends at the expense of the calorimetric properties. Storage and loss modulus of 50 wt% RTR blend was higher than RTR and EVA, suggesting partial miscibility of the blend. Whereas, electron beam irradiation improved the calorimetric properties and dynamic mechanical properties of the blends through redistribution of RTR in smaller domain sizes within EVA.

  1. Frontal plane landing mechanics in high-arched compared with low-arched female athletes.

    PubMed

    Powell, Douglas W; Hanson, Nicholas J; Long, Benjamin; Williams, D S Blaise

    2012-09-01

    To examine ground reaction forces (GRFs); frontal plane hip, knee, and ankle joint angles; and moments in high-arched (HA) and low-arched (LA) athletes during landing. Experimental study. Controlled research laboratory. Twenty healthy female recreational athletes (10 HA and 10 LA). Athletes performed 5 barefoot drop landings from a height of 30 cm. Frontal plane ankle, knee, and hip joint angles (in degrees) at initial contact, peak vertical GRF, and peak knee flexion; peak ankle, knee, and hip joint moments in the frontal plane. Vertical GRF profiles were similar between HA and LA athletes (P = 0.78). The HA athletes exhibited significantly smaller peak ankle inversion angles than the LA athletes (P = 0.01) at initial contact. At peak vertical GRF, HA athletes had significantly greater peak knee (P = 0.01) and hip abduction angles than LA athletes (P = 0.02). There were no significant differences between HA and LA athletes in peak joint moments (hip: P = 0.68; knee: P = 0.71; ankle: P = 0.15). These findings demonstrate that foot type is associated with altered landing mechanics, which may underlie lower extremity injuries. The ankle-driven strategy previously reported in female athletes suggests that foot function may have a greater relationship with lower extremity injury than that in male athletes. Future research should address the interaction of foot type and gender during landing tasks.

  2. Effect of local magnetic field disturbances on inertial measurement units accuracy.

    PubMed

    Robert-Lachaine, Xavier; Mecheri, Hakim; Larue, Christian; Plamondon, André

    2017-09-01

    Inertial measurement units (IMUs), a practical motion analysis technology for field acquisition, have magnetometers to improve segment orientation estimation. However, sensitivity to magnetic disturbances can affect their accuracy. The objective of this study was to determine the joint angles accuracy of IMUs under different timing of magnetic disturbances of various durations and to evaluate a few correction methods. Kinematics from 12 individuals were obtained simultaneously with an Xsens system where an Optotrak cluster acting as the reference system was affixed to each IMU. A handling task was executed under normal laboratory conditions and imposed magnetic disturbances. Joint angle RMSE was used to conduct a three-way repeated measures analysis of variance in order to contrast the following disturbance factors: duration (0, 30, 60, 120 and 240 s), timing (during the disturbance, directly after it and a 30-second delay after it) and axis (X, Y and Z). The highest joint angle RMSE was observed on rotations about the Y longitudinal axis and during the longer disturbances. It stayed high directly after a disturbance, but returned close to baseline after a 30-second delay. When magnetic disturbances are experienced, waiting 30 s in a normal condition is recommended as a way to restore the IMUs' initial accuracy. The correction methods performed modestly or poorly in the reduction of joint angle RMSE. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. [Development of Patient Transfer Techniques based on Postural-stability Principles for the Care Helpers in Nursing Homes and Evaluation of Effectiveness].

    PubMed

    Ma, Ryewon; Jung, Dukyoo

    2016-02-01

    This study was done to develop a postural-stability patient transfer technique for care helpers in nursing homes and to evaluate its effectiveness. Four types of patient transfer techniques (Lifting towards the head board of the bed, turning to the lateral position, sitting upright on the bed, transferring from wheel chair to bed) were practiced in accordance with the following three methods; Care helpers habitually used transfer methods (Method 1), patient transfer methods according to care helper standard textbooks (Method 2), and a method developed by the author ensuring postural-stability (Method 3). The care helpers' muscle activity and four joint angles were measured. The collected data were analyzed using the program SPSS Statistic 21.0. To differentiate the muscle activity and joint angle, the Friedman test was executed and the post-hoc analysis was conducted using the Wilcoxon Signed Rank test. Muscle activity was significantly lower during Method 3 compared to Methods 1 and 2. In addition, the joint angle was significantly lower for the knee and shoulder joint angle while performing Method 3 compared to Methods 1 and 2. Findings indicate that using postural-stability patient transfer techniques can contribute to the prevention of musculoskeletal disease which care helpers suffer from due to physically demanding patient care in nursing homes.

  4. Solar Alpha Rotary Joint (SARJ) Lubrication Interval Test and Evaluation (LITE). Post-Test Grease Analysis

    NASA Technical Reports Server (NTRS)

    Golden, Johnny L.; Martinez, James E.; Devivar, Rodrigo V.

    2015-01-01

    The Solar Alpha Rotary Joint (SARJ) is a mechanism of the International Space Station (ISS) that orients the solar power generating arrays toward the sun as the ISS orbits our planet. The orientation with the sun must be maintained to fully charge the ISS batteries and maintain all the other ISS electrical systems operating properly. In 2007, just a few months after full deployment, the starboard SARJ developed anomalies that warranted a full investigation including ISS Extravehicular Activity (EVA). The EVA uncovered unexpected debris that was due to degradation of a nitride layer on the SARJ bearing race. ISS personnel identified the failure root-cause and applied an aerospace grease to lubricate the area associated with the anomaly. The corrective action allowed the starboard SARJ to continue operating within the specified engineering parameters. The SARJ LITE (Lubrication Interval Test and Evaluation) program was initiated by NASA, Lockheed Martin, and Boeing to simulate the operation of the ISS SARJ for an extended time. The hardware was designed to test and evaluate the exact material components used aboard the ISS SARJ, but in a controlled area where engineers could continuously monitor the performance. After running the SARJ LITE test for an equivalent of 36+ years of continuous use, the test was opened to evaluate the metallography and lubrication. We have sampled the SARJ LITE rollers and plate to fully assess the grease used for lubrication. Chemical and thermal analysis of these samples has generated information that has allowed us to assess the location, migration, and current condition of the grease. The collective information will be key toward understanding and circumventing any performance deviations involving the ISS SARJ in the years to come.

  5. Basic Mars Navigation System For Local Areas

    NASA Astrophysics Data System (ADS)

    Petitfils, E.-A.; Boche-Sauvan, L.; Foing, B. H.; Monaghan, E.; Crews, Eurogeomars

    2009-04-01

    Introduction: This project has been first set up as a basic solution in navigation during EVA (extra-vehicular activities) in the Mars Society Desert Research Station in the desert of Utah. The main idea is to keep the system as simple as possible so that it can be easily adaptable and portable. The purpose of such a device is to tell the astronauts in EVA where they roughly are and then letting them reaching different points in avoiding any risky way. Thus the precision needed has not to be really high: even if it is about 50m, every astronaut can then look on a map and be able to design a way to another point. This navigation system will improve the safety of the EVA as it is an added reliable orientating tool. Concept: To look at a simple way to localize oneself, one should have a look at what has been done by mankind on Earth. Today, everyone can think of the GPS because it's simple and very reliable. However the infrastructure for such a system is huge and will not be for sure available during the first missions. We can think of course of a basic GPS using the satellites being in orbit but this approach is not yet as simple as we would like. If we want to keep the sky in sight, we can use the stars and the moons of Mars. Yet this would be a good solution and we can even have a star tracker that would give a good position according to the time of the picture. This solution has to be kept in mind but a star tracker is quite big for an astronaut without any rover nearby and using the sky may not be as precise as one should expect. Another useful tool is the compass. It has been used for centuries by sailors but on Mars, without a good magnetic field for this purpose. But sailors also use lighthouses and some placemarks on the land to localize themselves. This is done with a compass, measuring the angle between a placemark and the magnetic North. With two angles, we can then have the position of the boat. The idea here is the same: measuring the angles between different placemarks so that we can compute the position. But which placemarks? We have to think about something that can be installed on Mars and is light enough to be brought there. Balloons are really light, and in order to place them, we need a gas as helium (or hydrogen) and also some rope. Hydrogen is likely to be produced in situ and rope will be useful for astronauts. So we started on a concept with some balloons around the base, with different colors or patterns. The crew in EVA can thus know where the base is every time they are in sight of a balloon and with at least three balloons; they can compute their position according to the base. Procedure of the test: During EVA, the astronauts will measure the angle between the different balloons. The balloons are high in the sky so they can be seen far from their location. This is particularly important on Mars where the horizon is nearer than on Earth. The balloons have different colors so they can be identified and we can even think of adding an autonomous colored light under so they can be observed during the night. With good quality balloons, we can keep them in the sky for a few days without maintenance. Angle measurement is done thanks to a camera. A numeric camera can have a precision of less than 0.01°/pixel, which is enough for our application. The distance between the different balloons can easily be seen in a free picture management software and a Matlab tool is under development for this. An algorithm is then run and it gives the positions that fit with the observations on a map. Simulation gave areas 20m width, which is enough for the astronaut who has a map. The exact precision will be investigated in situ, at the MDRS. For this first test bench, computations will be manually done on a computer in order to validate the concept without huge development. Afterwards, one can imagine an implementation on a PDA brought by the astronauts. This PDA would have its own camera so the process can be fully automatic. Such a system can also implement other navigation system as a Martian GPS or a radio localization system like a VOR in order to enhance the reliability of the system and use all the advantages of each method. Acknowledgements: We thank the ExoGeoLab, EuroGeoMars teams for support during tests, operations and data analysis. References: [1] "ExoGeoLab Lander/Rover instruments and EuroGeoMars MDRS campaign", B.H. Foing, LPSC abstract 2009

  6. Effect of linear polarized near-infrared light irradiation on flexibility of shoulder and ankle joints.

    PubMed

    Demura, S; Yamaji, S; Ikemoto, Y

    2002-12-01

    There is a possibility that heat stimulus by linear polarized near-infrared light irradiation (PL: Super Lizer HA-30, Tokyo Medical Laboratory) improves the range of joint motion, because the flexibility of soft-part tissues, such as a muscle or a tendon, is improved by increasing the muscle temperature. The purpose of this study was to examine the influence of PL-irradiation on the ranges of shoulder and ankle motions. 30 healthy young adults (15 males: mean+/-SD, age 19.1+/-0.8 yrs, height 173.3+/-4.6 cm, body mass 68.5+/-8.0 kg and 15 females: mean+/-SD, age 19.2+/-0.7 yrs, height 162.3+/-4.5 cm, body mass 58.1+/-6.6 kg) participated in the experiment under PL-irradiation and no-irradiation (placebo) conditions. the angles of shoulder and ankle joint motions were measured twice, before and after the PL- and placebo-irradiations. The angle of a motion was defined as the angle connecting 3 points at linearity as follows: for the shoulder, the greater trochanter, acromion, and caput ulnare, and for the ankle, the knee joint, fassa of lateral malleolus and metacarpal bone. Each angle was measured when a subject extended or flexed maximally without support. The trial-to-trial reliability of each range of joint motion was very high. All parameters in PL-irradiation were significantly larger in postirradiation than pre-irradiation, and the value of postirradiation in PL-irradiation was significantly greater than that for placebo. The ranges of shoulder and ankle motions in placebo-irradiation were also significantly greater in postirradiation than pre-irradiation. Moreover, the change rate for each range of joint motion between pre- and postirradiations was significantly greater in PL-irradiation in both joints. In PL-irradiation, most subject's motions were greater in postirradiation than pre-irradiation, but not in the placebo-irradiation. The effect of PL-irradiation tended to be greater on subjects with a small range of a joint motion. It is considered from the present results that the ranges of shoulder and ankle motions became greater with PL-irradiation, and is effective as a warming-up method.

  7. Evaluation of joint findings with gait analysis in children with hemophilia.

    PubMed

    Cayir, Atilla; Yavuzer, Gunes; Sayli, Revide Tülin; Gurcay, Eda; Culha, Vildan; Bozkurt, Murat

    2014-01-01

    Hemophilic arthropathy due to recurrent joint bleeding leads to physical, psychological and socioeconomic problems in children with hemophilia and reduces their quality of life. The purpose of this study was to evaluate joint damage through various parameters and to determine functional deterioration in the musculoskeletal system during walking using kinetic and kinematic gait analysis. Physical examination and kinetic and kinematic gait analysis findings of 19 hemophilic patients aged 7-20 years were compared with those of age, sex and leg length matched controls. Stride time was longer in the hemophilia group (p=0.001) compared to the age matched healthy control group, while hip, knee and ankle joint rotation angles were more limited (p=0.001, p=0.035 and p=0.001, respectively). In the hemophilia group, the extensor moment of the knee joint in the stance phase was less than that in the control group (p=0.001). Stride time was longer in the severe hemophilia group compared to the mild-moderate hemophilia and control groups (p=0.011 and p=0.001, respectively). Rotation angle of the ankle was wider in the control group compared to the other two groups (p=0.001 for both). Rotation angle of the ankle joint was narrower in the severe hemophilia group compared to the others (p=0.001 for each). Extensor moment of the knee joint was greater in the control group compared to the other two groups (p=0.003 and p=0.001, respectively). Walking velocity was higher in the control group compared to the severe hemophilia group. Kinetic and kinematic gait analysis has the sensitivity to detect minimal changes in biomechanical parameters. Gait analysis can be used as a reliable method to detect early joint damage.

  8. Automated 3D quantitative assessment and measurement of alpha angles from the femoral head-neck junction using MR imaging

    NASA Astrophysics Data System (ADS)

    Xia, Ying; Fripp, Jurgen; Chandra, Shekhar S.; Walker, Duncan; Crozier, Stuart; Engstrom, Craig

    2015-10-01

    To develop an automated approach for 3D quantitative assessment and measurement of alpha angles from the femoral head-neck (FHN) junction using bone models derived from magnetic resonance (MR) images of the hip joint. Bilateral MR images of the hip joints were acquired from 30 male volunteers (healthy active individuals and high-performance athletes, aged 18-49 years) using a water-excited 3D dual echo steady state (DESS) sequence. In a subset of these subjects (18 water-polo players), additional True Fast Imaging with Steady-state Precession (TrueFISP) images were acquired from the right hip joint. For both MR image sets, an active shape model based algorithm was used to generate automated 3D bone reconstructions of the proximal femur. Subsequently, a local coordinate system of the femur was constructed to compute a 2D shape map to project femoral head sphericity for calculation of alpha angles around the FHN junction. To evaluate automated alpha angle measures, manual analyses were performed on anterosuperior and anterior radial MR slices from the FHN junction that were automatically reformatted using the constructed coordinate system. High intra- and inter-rater reliability (intra-class correlation coefficients  >  0.95) was found for manual alpha angle measurements from the auto-extracted anterosuperior and anterior radial slices. Strong correlations were observed between manual and automatic measures of alpha angles for anterosuperior (r  =  0.84) and anterior (r  =  0.92) FHN positions. For matched DESS and TrueFISP images, there were no significant differences between automated alpha angle measures obtained from the upper anterior quadrant of the FHN junction (two-way repeated measures ANOVA, F  <  0.01, p  =  0.98). Our automatic 3D method analysed MR images of the hip joints to generate alpha angle measures around the FHN junction circumference with very good reliability and reproducibility. This work has the potential to improve analyses of cam-type lesions of the FHN junction for large-scale morphometric and clinical MR investigations of the human hip region.

  9. Compression member response of double steel angles on truss structure with member length variation

    NASA Astrophysics Data System (ADS)

    Hasibuan, Purwandy; Panjaitan, Arief; Haiqal, Muhammad

    2018-05-01

    One type of structures that implements steel angles as its members is truss system of telecommunication tower. For this structure, reinforcements on tower legs are also needed when antennas and microwaves installation placed on the peak of tower increases in quantity. One type of reinforcement methods commonly used is by increasing areas section capacity, where tower leg consisted of single angle section will be reinforced to be double angle sections. Regarding this case, this research discussed behavior two types of double angle steel section 2L 30.30.3 that were designed identically in area section but vary in length: 103 cm and 83 cm. At the first step, compression member together with tension member was formed to be a truss system, where compression and tension member were met at the joint plate. Schematic loading was implemented by giving tension loading on the joint plate, and this loading was terminated when each specimen reached its failure. Research findings showed that implementing shorter double angle (83 cm) sections, increased compression strength of steel angle section up to 13 %. Significant deformation occurring only on the flange for both of specimens indicated that implementing double angle is effective to prevent lateral-torsional buckling.

  10. Evidence for intermuscle difference in slack angle in human triceps surae.

    PubMed

    Hirata, Kosuke; Kanehisa, Hiroaki; Miyamoto-Mikami, Eri; Miyamoto, Naokazu

    2015-04-13

    This study examined whether the slack angle (i.e., the joint angle corresponding to the slack length) varies among the synergists of the human triceps surae in vivo. By using ultrasound shear wave elastography, shear modulus of each muscle of the triceps surae was measured during passive stretching from 50° of plantar flexion in the knee extended position at an angular velocity of 1°/s in 9 healthy adult subjects. The slack angle of each muscle was determined from the ankle joint angle-shear modulus relationship as the first increase in shear modulus. The slack angle was significantly greater in the medial gastrocnemius (20.7±6.7° plantarflexed position) than in the lateral gastrocnemius (14.9±6.7° plantarflexed position) and soleus (2.0±4.8° dorsiflexed position) and greater in the lateral gastrocnemius than in the soleus. This study provided evidence that the slack angle differs among the triceps surae; the medial gastrocnemius produced passive force at the most plantarflexed position while the slack angle of the soleus was the most dorsiflexed position. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Does the subtalar joint compensate for ankle malalignment in end-stage ankle arthritis?

    PubMed

    Wang, Bibo; Saltzman, Charles L; Chalayon, Ornusa; Barg, Alexej

    2015-01-01

    Patients with ankle arthritis often present with concomitant hindfoot deformity, which may involve the tibiotalar and subtalar joints. However, the possible compensatory mechanisms of these two mechanically linked joints are not well known. In this study we sought to (1) compare ankle and hindfoot alignment of our study cohort with end-stage ankle arthritis with that of a control group; (2) explore the frequency of compensated malalignment between the tibiotalar and subtalar joints in our study cohort; and (3) assess the intraobserver and interobserver reliability of classification methods of hindfoot alignment used in this study. Between March 2006 and September 2013, we performed 419 ankle arthrodesis and ankle replacements (380 patients). In this study, we evaluated radiographs for 233 (56%) ankles (226 patients) which met the following inclusion criteria: (1) no prior subtalar arthrodesis; (2) no previously failed total ankle replacement or ankle arthrodesis; (3) with complete conventional radiographs (all three ankle views were required: mortise, lateral, and hindfoot alignment view). Ankle and hindfoot alignment was assessed by measurement of the medial distal tibial angle, tibial talar surface angle, talar tilting angle, tibiocalcaneal axis angle, and moment arm of calcaneus. The obtained values were compared with those observed in the control group of 60 ankles from 60 people. Only those without obvious degenerative changes of the tibiotalar and subtalar joints and without previous surgeries of the ankle or hindfoot were included in the control group. Demographic data for the patients with arthritis and the control group were comparable (sex, p=0.321; age, p=0.087). The frequency of compensated malalignment between the tibiotalar and subtalar joints, defined as tibiocalcaneal angle or moment arm of the calcaneus being greater or smaller than the same 95% CI statistical cutoffs from the control group, was tallied. All ankle radiographs were independently measured by two observers to determine the interobserver reliability. One of the observers evaluated all images twice to determine the intraobserver reliability. There were differences in medial distal tibial surface angle (86.6°±7.3° [95% CI, 66.3°-123.7°) versus 89.1°±2.9° [95% CI, 83.0°-96.3°], p<0.001), tibiotalar surface angle (84.9°±14.4° [95% CI, 45.3°-122.7°] versus 89.1°±2.9° [95% CI, 83.0°-96.3°], p<0.001), talar tilting angle (-1.7°±12.5° [95% CI, -41.3°-30.3°) versus 0.0°±0.0° [95% CI, 0.0°-0.0°], p=0.003), and tibiocalcaneal axis angle (-7.2°±13.1° [95% CI, -57°-33°) versus -2.7°±5.2° [95% CI, -13.3°-9.0°], p<0.001) between patients with ankle arthritis and the control group. Using the classification system based on the tibiocalcaneal angle, there were 62 (53%) and 22 (39%) compensated ankles in the varus and valgus groups, respectively. Using the classification system based on the moment arm of the calcaneus, there were 68 (58%) and 20 (35%) compensated ankles in the varus and valgus groups, respectively. For all conditions or methods of measurement, patients with no or mild degenerative change of the subtalar joint have a greater likelihood of compensating coronal plane deformity of the ankle with arthritis (p<0.001-p=0.032). The interobserver and intraobserver reliability for all radiographic measurements was good to excellent (the correlation coefficients range from 0.820 to 0.943). Substantial ankle malalignment, mostly varus deformity, is common in ankles with end-stage osteoarthritis. The subtalar joint often compensates for the malaligned ankle in static weightbearing. Level III, diagnostic study.

  12. The International Space Station Solar Alpha Rotary Joint Anomaly Investigation

    NASA Technical Reports Server (NTRS)

    Harik, Elliot P.; McFatter, Justin; Sweeney, Daniel J.; Enriquez, Carlos F.; Taylor, Deneen M.; McCann, David S.

    2010-01-01

    The Solar Alpha Rotary Joint (SARJ) is a single-axis pointing mechanism used to orient the solar power generating arrays relative to the sun for the International Space Station (ISS). Approximately 83 days after its on-orbit installation, one of the two SARJ mechanisms aboard the ISS began to exhibit high drive motor current draw. Increased structural vibrations near the joint were also observed. Subsequent inspections via Extravehicular Activity (EVA) discovered that the nitrided case-hardened steel bearing race on the outboard side of the joint had extensive damage to one of its three rolling surfaces. A farreaching investigation of the anomaly was undertaken. The investigation included metallurgical inspections, coupon tests, traction kinematics tests, detailed bearing measurements, and thermal and structural analyses. The results of the investigation showed that the anomaly had most probably been caused by high bearing edge stresses that resulted from inadequate lubrication of the rolling contact. The profile of the roller bearings and the metallurgical properties of the race ring were also found to be significant contributing factors. To mitigate the impact of the damage, astronauts cleaned and lubricated the race ring surface with grease. This corrective action led to significantly improved performance of the mechanism both in terms of drive motor current and induced structural vibration.

  13. The International Space Station Solar Alpha Rotary Joint Anomaly Investigation

    NASA Technical Reports Server (NTRS)

    Harik, Elliot P.; McFatter, Justin; Sweeney, Daniel J.; Enriquez, Carlos F.; Taylor, Deneen M.; McCann, David S.

    2010-01-01

    The Solar Alpha Rotary Joint (SARJ) is a single-axis pointing mechanism used to orient the solar power generating arrays relative to the sun for the International Space Station (ISS). Approximately 83 days after its on-orbit installation, one of the two SARJ mechanisms aboard the ISS began to exhibit high drive motor current draw. Increased structural vibrations near the joint were also observed. Subsequent inspections via Extravehicular Activity (EVA) discovered that the nitrided case hardened steel bearing race on the outboard side of the joint had extensive damage to one of its three rolling surfaces. A far-reaching investigation of the anomaly was undertaken. The investigation included metallurgical inspections, coupon tests, traction kinematics tests, detailed bearing measurements, and thermal and structural analyses. The results of the investigation showed that anomaly had most probably been caused by high bearing edge stresses that resulted from inadequate lubrication of the rolling contact. The profile of the roller bearings and the metallurgical properties of the race ring were also found to be significant contributing factors. To mitigate the impact of the damage astronauts cleaned and lubricated the race ring surface with grease. This corrective action led to significantly improved performance of the mechanism both in terms of drive motor current and induced structural vibration.

  14. Control of the seven-degree-of-freedom upper limb exoskeleton for an improved human-robot interface

    NASA Astrophysics Data System (ADS)

    Kim, Hyunchul; Kim, Jungsuk

    2017-04-01

    This study analyzes a practical scheme for controlling an exoskeleton robot with seven degrees of freedom (DOFs) that supports natural movements of the human arm. A redundant upper limb exoskeleton robot with seven DOFs is mechanically coupled to the human body such that it becomes a natural extension of the body. If the exoskeleton robot follows the movement of the human body synchronously, the energy exchange between the human and the robot will be reduced significantly. In order to achieve this, the redundancy of the human arm, which is represented by the swivel angle, should be resolved using appropriate constraints and applied to the robot. In a redundant 7-DOF upper limb exoskeleton, the pseudoinverse of the Jacobian with secondary objective functions is widely used to resolve the redundancy that defines the desired joint angles. A secondary objective function requires the desired joint angles for the movement of the human arm, and the angles are estimated by maximizing the projection of the longest principle axis of the manipulability ellipsoid for the human arm onto the virtual destination toward the head region. Then, they are fed into the muscle model with a relative damping to achieve more realistic robot-arm movements. Various natural arm movements are recorded using a motion capture system, and the actual swivel-angle is compared to that estimated using the proposed swivel angle estimation algorithm. The results indicate that the proposed algorithm provides a precise reference for estimating the desired joint angle with an error less than 5°.

  15. Altered astronaut lower limb and mass center kinematics in downward jumping following space flight

    NASA Technical Reports Server (NTRS)

    Newman, D. J.; Jackson, D. K.; Bloomberg, J. J.

    1997-01-01

    Astronauts exposed to the microgravity conditions encountered during space flight exhibit postural and gait instabilities upon return to earth that could impair critical postflight performance. The aim of the present study was to determine the effects of microgravity exposure on astronauts' performance of two-footed jump landings. Nine astronauts from several Space Shuttle missions were tested both preflight and postflight with a series of voluntary, two-footed downward hops from a 30-cm-high step. A video-based, three-dimensional motion-analysis system permitted calculation of body segment positions and joint angular displacements. Phase-plane plots of knee, hip, and ankle angular velocities compared with the corresponding joint angles were used to describe the lower limb kinematics during jump landings. The position of the whole-body center of mass (COM) was also estimated in the sagittal plane using an eight-segment body model. Four of nine subjects exhibited expanded phase-plane portraits postflight, with significant increases in peak joint flexion angles and flexion rates following space flight. In contrast, two subjects showed significant contractions of their phase-plane portraits postflight and three subjects showed insignificant overall changes after space flight. Analysis of the vertical COM motion generally supported the joint angle results. Subjects with expanded joint angle phase-plane portraits postflight exhibited larger downward deviations of the COM and longer times from impact to peak deflection, as well as lower upward recovery velocities. Subjects with postflight joint angle phase-plane contraction demonstrated opposite effects in the COM motion. The joint kinematics results indicated the existence of two contrasting response modes due to microgravity exposure. Most subjects exhibited "compliant" impact absorption postflight, consistent with decreased limb stiffness and damping, and a reduction in the bandwidth of the postural control system. Fewer subjects showed "stiff" behavior after space flight, where contractions in the phase-plane portraits pointed to an increase in control bandwidth. The changes appeared to result from adaptive modifications in the control of lower limb impedance. A simple 2nd-order model of the vertical COM motion indicated that changes in the effective vertical stiffness of the legs can predict key features of the postflight performance. Compliant responses may reflect inflight adaptation due to altered demands on the postural control system in microgravity, while stiff behavior may result from overcompensation postflight for the presumed reduction in limb stiffness inflight.

  16. An Approach for Performance Assessments of Extravehicular Activity Gloves

    NASA Technical Reports Server (NTRS)

    Aitchison, Lindsay; Benosn, Elizabeth

    2014-01-01

    The Space Suit Assembly (SSA) Development Team at NASA Johnson Space Center has invested heavily in the advancement of rear-entry planetary exploration suit design but largely deferred development of extravehicular activity (EVA) glove designs, and accepted the risk of using the current flight gloves, Phase VI, for unique mission scenarios outside the Space Shuttle and International Space Station (ISS) Program realm of experience. However, as design reference missions mature, the risks of using heritage hardware have highlighted the need for developing robust new glove technologies. To address the technology gap, the NASA Game-Changing Technology group provided start-up funding for the High Performance EVA Glove (HPEG) Project in the spring of 2012. The overarching goal of the HPEG Project is to develop a robust glove design that increases human performance during EVA and creates pathway for future implementation of emergent technologies, with specific aims of increasing pressurized mobility to 60% of barehanded capability, increasing the durability by 100%, and decreasing the potential of gloves to cause injury during use. The HPEG Project focused initial efforts on identifying potential new technologies and benchmarking the performance of current state of the art gloves to identify trends in design and fit leading to establish standards and metrics against which emerging technologies can be assessed at both the component and assembly levels. The first of the benchmarking tests evaluated the quantitative mobility performance and subjective fit of two sets of prototype EVA gloves developed ILC Dover and David Clark Company as compared to the Phase VI. Both companies were asked to design and fabricate gloves to the same set of NASA provided hand measurements (which corresponded to a single size of Phase Vi glove) and focus their efforts on improving mobility in the metacarpal phalangeal and carpometacarpal joints. Four test subjects representing the design-to hand anthropometry completed range of motion, grip/pinch strength, dexterity, and fit evaluations for each glove design in pressurized conditions, with and without thermal micrometeoroid garments (TMG) installed. This paper provides a detailed description of hardware and test methodologies used and lessons learned.

  17. Risk Reduction and Measures of Injury for EVA Associated Upper Extremity Medical Issues: Extended Vent Tube Study

    NASA Technical Reports Server (NTRS)

    Jones, Jeffrey A.; Hoffman, Ronald B.; Harvey, C. M.; Bowen, C. K.; Hudy, C. E.; Gernhardt, M. L.

    2007-01-01

    During Neutral Buoyancy Lab (NBL) training sessions, a large amount of moisture accumulates in the EVA gloves. The glove design restricts the extension of the EVA suit s ventilation/cooling system to the hand. Subungual redness and fingernail pain develops for many astronauts following their NBL training sessions with subsequent oncholysis occurring over succeeding weeks. Various attempts have been made to reduce or avoid this problem. The causal role of moisture has yet to be defined. Methods: To determine the contribution that moisture plays in the injury to the fingers and fingernails during EVA training operations in NBL, the current Extravehicular Mobility Unit (EMU), with a Portable Life Support System (PLSS) was configured with a ventilation tube that extended down a single arm of the crewmember during the test and compared with the unventilated contralateral arm; with the ventilated hand serving as the experimental condition (E) and the opposite arm as the control (C). A cross-over design was used with opposite handedness for the vent tube on a subsequent NBL training run. Moisture content measures were conducted at six points on each hand with three types of moisture meters. A questionnaire was administered to determine subjective thermal hand discomfort, skin moisture perception, and hand and nail discomfort. Photographs and video were recorded. Measures were applied to six astronauts pre- and post-run in the NBL. Results: The consistent trends in relative hydration ratios at the dorsum, from 3.34 for C to 2.11 for E, and first ring finger joint locations, from 2.46 for C to 1.96 for E, indicated the extended vent tube promoted skin drying. The experimental treatment appeared to be more effective on the left hand versus the right hand, implying an interaction with hand anthropometry and glove fit. Video analyses differentiated fine and gross motor training tasks during runs and will be discussed. Conclusions: This potential countermeasure was effective in reducing the risks of hand and nail discomfort symptoms from moderate to low in two of six subjects. Improved design in the ventilation pattern of such a countermeasure is expected to improve the countermeasure s efficiency.

  18. The influence of muscle pennation angle and cross-sectional area on contact forces in the ankle joint.

    PubMed

    Sopher, Ran S; Amis, Andrew A; Davies, D Ceri; Jeffers, Jonathan Rt

    2017-01-01

    Data about a muscle's fibre pennation angle and physiological cross-sectional area are used in musculoskeletal modelling to estimate muscle forces, which are used to calculate joint contact forces. For the leg, muscle architecture data are derived from studies that measured pennation angle at the muscle surface, but not deep within it. Musculoskeletal models developed to estimate joint contact loads have usually been based on the mean values of pennation angle and physiological cross-sectional area. Therefore, the first aim of this study was to investigate differences between superficial and deep pennation angles within each muscle acting over the ankle and predict how differences may influence muscle forces calculated in musculoskeletal modelling. The second aim was to investigate how inter-subject variability in physiological cross-sectional area and pennation angle affects calculated ankle contact forces. Eight cadaveric legs were dissected to excise the muscles acting over the ankle. The mean surface and deep pennation angles, fibre length and physiological cross-sectional area were measured. Cluster analysis was applied to group the muscles according to their architectural characteristics. A previously validated OpenSim model was used to estimate ankle muscle forces and contact loads using architecture data from all eight limbs. The mean surface pennation angle for soleus was significantly greater (54%) than the mean deep pennation angle. Cluster analysis revealed three groups of muscles with similar architecture and function: deep plantarflexors and peroneals, superficial plantarflexors and dorsiflexors. Peak ankle contact force was predicted to occur before toe-off, with magnitude greater than five times bodyweight. Inter-specimen variability in contact force was smallest at peak force. These findings will help improve the development of experimental and computational musculoskeletal models by providing data to estimate force based on both surface and deep pennation angles. Inter-subject variability in muscle architecture affected ankle muscle and contact loads only slightly. The link between muscle architecture and function contributes to the understanding of the relationship between muscle structure and function.

  19. Evaluation of joint position sense measured by inversion angle replication error in patients with an osteochondral lesion of the talus.

    PubMed

    Nakasa, Tomoyuki; Adachi, Nobuo; Shibuya, Hayatoshi; Okuhara, Atsushi; Ochi, Mitsuo

    2013-01-01

    The etiology of the osteochondral lesion of the talar dome (OLT) remains unclear. A joint position sense deficit of the ankle is reported to be a possible cause of ankle disorder. Repeated contact of the articular surface of the talar dome with the plafond during inversion might be a cause of OLT. The aim of the present study was to evaluate the joint position sense deficit by measuring the replication error of the inversion angle in patients with OLT. The replication error, which is the difference between the index angle and replication angle in inversion, was measured in 15 patients with OLT. The replication error in 15 healthy volunteers was evaluated as a control group. The side to side differences of the replication errors between the patients with OLT and healthy volunteers and the replication errors in each angle between the involved and uninvolved ankle in the patients with OLT were investigated. Finally, the side to side differences of the replication errors between the patients with OLT with a traumatic and nontraumatic history were compared. The side to side difference in the patients with OLT (1.3° ± 0.2°) was significantly greater than that in the healthy subjects (0.4° ± 0.7°) (p ≤ .05). Significant differences were found between the involved and uninvolved sides at 10°, 15°, 20°, and 25° in the patients with OLT. No significant difference (p > .05) was found between the patients with traumatic and nontraumatic OLT. The present study found that the patients with OLT have a joint position sense deficit during inversion movement, regardless of a traumatic history. Although various factors for the etiology of OLT have been reported, the joint position sense deficit in inversion might be a cause of OLT. Copyright © 2013 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  20. Extravehicular Activity Technology Development Status and Forecast

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda; Westheimer, David T.

    2011-01-01

    The goal of NASA s current EVA technology effort is to further develop technologies that will be used to demonstrate a robust EVA system that has application for a variety of future missions including microgravity and surface EVA. Overall the objectives will be to reduce system mass, reduce consumables and maintenance, increase EVA hardware robustness and life, increase crew member efficiency and autonomy, and enable rapid vehicle egress and ingress. Over the past several years, NASA realized a tremendous increase in EVA system development as part of the Exploration Technology Development Program and the Constellation Program. The evident demand for efficient and reliable EVA technologies, particularly regenerable technologies was apparent under these former programs and will continue to be needed as future mission opportunities arise. The technological need for EVA in space has been realized over the last several decades by the Gemini, Apollo, Skylab, Space Shuttle, and the International Space Station (ISS) programs. EVAs were critical to the success of these programs. Now with the ISS extension to 2028 in conjunction with a current forecasted need of at least eight EVAs per year, the EVA hardware life and limited availability of the Extravehicular Mobility Units (EMUs) will eventually become a critical issue. The current EMU has successfully served EVA demands by performing critical operations to assemble the ISS and provide repairs of satellites such as the Hubble Space Telescope. However, as the life of ISS and the vision for future mission opportunities are realized, a new EVA systems capability will be needed and the current architectures and technologies under development offer significant improvements over the current flight systems. In addition to ISS, potential mission applications include EVAs for missions to Near Earth Objects (NEO), Phobos, or future surface missions. Surface missions could include either exploration of the Moon or Mars. Providing an EVA capability for these types of missions enables in-space construction of complex vehicles or satellites, hands on exploration of new parts of our solar system, and engages the public through the inspiration of knowing that humans are exploring places that they have never been before. This paper offers insight into what is currently being developed and what the potential opportunities are in the forecast.

  1. Extravehicular Activity Asteroid Exploration and Sample Collection Capability

    NASA Technical Reports Server (NTRS)

    Scoville, Zebulon; Sipila, Stephanie; Bowie, Jonathan

    2014-01-01

    NASA's Asteroid Redirect Crewed Mission (ARCM) is challenged with primary mission objectives of demonstrating deep space Extravehicular Activity (EVA) and tools, and obtaining asteroid samples to return to Earth for further study. Although the Modified Advanced Crew Escape Suit (MACES) is used for the EVAs, it has limited mobility which increases fatigue and decreases the crews' capability to perform EVA tasks. Furthermore, previous Shuttle and International Space Station (ISS) spacewalks have benefited from EVA interfaces which have been designed and manufactured on Earth. Rigid structurally mounted handrails, and tools with customized interfaces and restraints optimize EVA performance. For ARCM, some vehicle interfaces and tools can leverage heritage designs and experience. However, when the crew ventures onto an asteroid capture bag to explore the asteroid and collect rock samples, EVA complexity increases due to the uncertainty of the asteroid properties. The variability of rock size, shape and composition, as well as bunching of the fabric bag will complicate EVA translation, tool restraint and body stabilization. The unknown asteroid hardness and brittleness will complicate tool use. The rock surface will introduce added safety concerns for cut gloves and debris control. Feasible solutions to meet ARCM EVA objectives were identified using experience gained during Apollo, Shuttle, and ISS EVAs, terrestrial mountaineering practices, NASA Extreme Environment Mission Operations (NEEMO) 16 mission, and during Neutral Buoyancy Laboratory testing in the MACES suit. The proposed concept utilizes expandable booms and integrated features of the asteroid capture bag to position and restrain the crew at the asteroid worksite. These methods enable the capability to perform both finesse, and high load tasks necessary to collect samples for scientific characterization of the asteroid. This paper will explore the design trade space and options that were examined for EVA, the overall concept for the EVAs including translation paths and body restraint methods, potential tools used to extract the samples, design implications for the Asteroid Redirect Vehicle (ARV) for EVA, the results of early development testing of potential EVA tasks, and extensibility of the EVA architecture to NASA's exploration missions.

  2. How Well Can Modern Nonhabitual Barefoot Youth Adapt to Barefoot and Minimalist Barefoot Technology Shoe Walking, in regard to Gait Symmetry.

    PubMed

    Xu, Y; Hou, Q; Wang, C; Simpson, T; Bennett, B; Russell, S

    2017-01-01

    We aim to test how well modern nonhabitual barefoot people can adapt to barefoot and Minimalist Bare Foot Technology (MBFT) shoes, in regard to gait symmetry. 28 healthy university students (22 females/6 males) were recruited to walk on a 10-meter walkway randomly on barefoot, in MBFT shoes, and in neutral running shoes at their comfortable walking speed. Kinetic and kinematic data were collected using an 8-camera motion capture system. Data of joint angles, joint forces, and joint moments were extracted to compute a consecutive symmetry index. Compared to walking in neutral running shoes, walking barefoot led to worse symmetry of the following: ankle joint force in sagittal plane, knee joint moment in transverse plane, and ankle joint moment in frontal plane, while improving the symmetry of joint angle in sagittal plane at ankle joints and global (hip-knee-ankle) level. Walking in MBFT shoes had intermediate gait symmetry performance as compared to walking barefoot/walking in neutral running shoes. We conclude that modern nonhabitual barefoot adults will lose some gait symmetry in joint force/moment if they switch to barefoot walking without fitting in; MBFT shoe might be an ideal compromise for healthy youth as regards gait symmetry in walking.

  3. Extravehicular Activity training and hardware design considerations

    NASA Technical Reports Server (NTRS)

    Thuot, Pierre J.; Harbaugh, Gregory J.

    1993-01-01

    Designing hardware that can be successfully operated by EVA astronauts for EVA tasks required to assemble and maintain Space Station Freedom requires a thorough understanding of human factors and of the capabilities and limitations of the space-suited astronaut, as well as of the effect of microgravity environment on the crew member's capabilities and on the overhead associated with EVA. This paper describes various training methods and facilities that are being designed for training EVA astronauts for Space Station assembly and maintenance, taking into account the above discussed factors. Particular attention is given to the user-friendly hardware design for EVA and to recent EVA flight experience.

  4. Current status of EVA degradation in Si modules and interface stability in CdTe/CdS modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Czanderna, A.W.

    1994-06-30

    The goals, objectives, background, technical approach, status, and accomplishments on the PV Module Reliability Research Task are summarized for FY 1993. The accomplishments are reported in two elements, ethylene vinyl acetate (EVA) degradation and stability in CdTe/CdS modules. The EVA results are presented under the headings modified EVA and potential EVA replacements, degradation mechanisms, efficiency losses from yellowed EVA, and equipment acquisitions. The results on CdTe/CdS modules are presented under subheadings of stability of the SnO[sub 2]/CdS interface and degradation at the CdTe/CdS interface.

  5. An Experimental Investigation of Dextrous Robots Using EVA Tools and Interfaces

    NASA Technical Reports Server (NTRS)

    Ambrose, Robert; Culbert, Christopher; Rehnmark, Frederik

    2001-01-01

    This investigation of robot capabilities with extravehicular activity (EVA) equipment looks at how improvements in dexterity are enabling robots to perform tasks once thought to be beyond machines. The approach is qualitative, using the Robonaut system at the Johnson Space Center (JSC), performing task trials that offer a quick look at this system's high degree of dexterity and the demands of EVA. Specific EVA tools attempted include tether hooks, power torque tools, and rock scoops, as well as conventional tools like scissors, wire strippers, forceps, and wrenches. More complex EVA equipment was also studied, with more complete tasks that mix tools, EVA hand rails, tethers, tools boxes, PIP pins, and EVA electrical connectors. These task trials have been ongoing over an 18 month period, as the Robonaut system evolved to its current 43 degree of freedom (DOF) configuration, soon to expand to over 50. In each case, the number of teleoperators is reported, with rough numbers of attempts and their experience level, with a subjective difficulty rating assigned to each piece of EVA equipment and function. JSC' s Robonaut system was successful with all attempted EVA hardware, suggesting new options for human and robot teams working together in space.

  6. Extravehicular Activity System Sizing Analysis Tool (EVAS_SAT)

    NASA Technical Reports Server (NTRS)

    Brown, Cheryl B.; Conger, Bruce C.; Miranda, Bruno M.; Bue, Grant C.; Rouen, Michael N.

    2007-01-01

    An effort was initiated by NASA/JSC in 2001 to develop an Extravehicular Activity System Sizing Analysis Tool (EVAS_SAT) for the sizing of Extravehicular Activity System (EVAS) architecture and studies. Its intent was to support space suit development efforts and to aid in conceptual designs for future human exploration missions. Its basis was the Life Support Options Performance Program (LSOPP), a spacesuit and portable life support system (PLSS) sizing program developed for NASA/JSC circa 1990. EVAS_SAT estimates the mass, power, and volume characteristics for user-defined EVAS architectures, including Suit Systems, Airlock Systems, Tools and Translation Aids, and Vehicle Support equipment. The tool has undergone annual changes and has been updated as new data have become available. Certain sizing algorithms have been developed based on industry standards, while others are based on the LSOPP sizing routines. The sizing algorithms used by EVAS_SAT are preliminary. Because EVAS_SAT was designed for use by members of the EVA community, subsystem familiarity on the part of the intended user group and in the analysis of results is assumed. The current EVAS_SAT is operated within Microsoft Excel 2003 using a Visual Basic interface system.

  7. Designing, Fabrication and Controlling Of Multipurpose3-DOF Robotic Arm

    NASA Astrophysics Data System (ADS)

    Nabeel, Hafiz Muhammad; Azher, Anum; Usman Ali, Syed M.; Wahab Mughal, Abdul

    2013-12-01

    In the present work, we have successfully designed and developed a 3-DOF articulated Robotic Arm capable of performing typical industrial tasks such as painting or spraying, assembling and handling automobiles parts and etc., in resemblance to a human arm. The mechanical assembly is designed on SOLIDWORKS and aluminum grade 6061 -T6 is used for its fabrication in order to reduce the structure weight. We have applied inverse kinematics to determine the joint angles, equations are fed into an efficient microcontroller ATMEGA16 which performs all the calculations to determine the joint angles on the basis of given coordinates to actuate the joints through motorized control. Good accuracy was obtained with quadrature optical encoders installed in each joint to achieve the desired position and a LabVIEW based GUI is designed to provide human machine interface.

  8. Dexterous Humanoid Robotic Wrist

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Bridgwater, Lyndon (Inventor); Reich, David M. (Inventor); Wampler, II, Charles W. (Inventor); Askew, Scott R. (Inventor); Diftler, Myron A. (Inventor); Nguyen, Vienny (Inventor)

    2013-01-01

    A humanoid robot includes a torso, a pair of arms, a neck, a head, a wrist joint assembly, and a control system. The arms and the neck movably extend from the torso. Each of the arms includes a lower arm and a hand that is rotatable relative to the lower arm. The wrist joint assembly is operatively defined between the lower arm and the hand. The wrist joint assembly includes a yaw axis and a pitch axis. The pitch axis is disposed in a spaced relationship to the yaw axis such that the axes are generally perpendicular. The pitch axis extends between the yaw axis and the lower arm. The hand is rotatable relative to the lower arm about each of the yaw axis and the pitch axis. The control system is configured for determining a yaw angle and a pitch angle of the wrist joint assembly.

  9. Elastic robot control - Nonlinear inversion and linear stabilization

    NASA Technical Reports Server (NTRS)

    Singh, S. N.; Schy, A. A.

    1986-01-01

    An approach to the control of elastic robot systems for space applications using inversion, servocompensation, and feedback stabilization is presented. For simplicity, a robot arm (PUMA type) with three rotational joints is considered. The third link is assumed to be elastic. Using an inversion algorithm, a nonlinear decoupling control law u(d) is derived such that in the closed-loop system independent control of joint angles by the three joint torquers is accomplished. For the stabilization of elastic oscillations, a linear feedback torquer control law u(s) is obtained applying linear quadratic optimization to the linearized arm model augmented with a servocompensator about the terminal state. Simulation results show that in spite of uncertainties in the payload and vehicle angular velocity, good joint angle control and damping of elastic oscillations are obtained with the torquer control law u = u(d) + u(s).

  10. The effects of rear-wheel camber on the kinematics of upper extremity during wheelchair propulsion

    PubMed Central

    2012-01-01

    Background The rear-wheel camber, defined as the inclination of the rear wheels, is usually used in wheelchair sports, but it is becoming increasingly employed in daily propulsion. Although the rear-wheel camber can increase stability, it alters physiological performance during propulsion. The purpose of the study is to investigate the effects of rear-wheel cambers on temporal-spatial parameters, joint angles, and propulsion patterns. Methods Twelve inexperienced subjects (22.3±1.6 yr) participated in the study. None had musculoskeletal disorders in their upper extremities. An eight-camera motion capture system was used to collect the three-dimensional trajectory data of markers attached to the wheelchair-user system during propulsion. All participants propelled the same wheelchair, which had an instrumented wheel with cambers of 0°, 9°, and 15°, respectively, at an average velocity of 1 m/s. Results The results show that the rear-wheel camber significantly affects the average acceleration, maximum end angle, trunk movement, elbow joint movement, wrist joint movement, and propulsion pattern. The effects are especially significant between 0° and 15°. For a 15° camber, the average acceleration and joint peak angles significantly increased (p < 0.01). A single loop pattern (SLOP) was adopted by most of the subjects. Conclusions The rear-wheel camber affects propulsion patterns and joint range of motion. When choosing a wheelchair with camber adjustment, the increase of joint movements and the base of support should be taken into consideration. PMID:23173938

  11. The effects of rear-wheel camber on the kinematics of upper extremity during wheelchair propulsion.

    PubMed

    Tsai, Chung-Ying; Lin, Chien-Ju; Huang, Yueh-Chu; Lin, Po-Chou; Su, Fong-Chin

    2012-11-22

    The rear-wheel camber, defined as the inclination of the rear wheels, is usually used in wheelchair sports, but it is becoming increasingly employed in daily propulsion. Although the rear-wheel camber can increase stability, it alters physiological performance during propulsion. The purpose of the study is to investigate the effects of rear-wheel cambers on temporal-spatial parameters, joint angles, and propulsion patterns. Twelve inexperienced subjects (22.3±1.6 yr) participated in the study. None had musculoskeletal disorders in their upper extremities. An eight-camera motion capture system was used to collect the three-dimensional trajectory data of markers attached to the wheelchair-user system during propulsion. All participants propelled the same wheelchair, which had an instrumented wheel with cambers of 0°, 9°, and 15°, respectively, at an average velocity of 1 m/s. The results show that the rear-wheel camber significantly affects the average acceleration, maximum end angle, trunk movement, elbow joint movement, wrist joint movement, and propulsion pattern. The effects are especially significant between 0° and 15°. For a 15° camber, the average acceleration and joint peak angles significantly increased (p < 0.01). A single loop pattern (SLOP) was adopted by most of the subjects. The rear-wheel camber affects propulsion patterns and joint range of motion. When choosing a wheelchair with camber adjustment, the increase of joint movements and the base of support should be taken into consideration.

  12. Does increased femoral antetorsion predispose to cartilage lesions of the patellofemoral joint?

    PubMed

    Oppermann, Johannes; Bredow, Jan; Wissusek, Boris; Spies, Christian Karl; Boese, Christoph Kolja; Chang, Shi-Min; Eysel, Peer; Dargel, Jens

    2017-09-01

    The purpose of this study was to investigate whether there was a relationship between femoral neck antetorsion and the presence and pattern of osteoarthritis of the patellofemoral joint. It was hypothesized that an increased femoral neck antetorsion (1) correlates with osteoarthritic changes of the lateral facet of the patellofemoral joint and (2) correlates with an increased lateral trochlear height and a decreased sulcus angle. Seventy-eight formalin-embedded cadaveric lower extremities from thirty-nine subjects with a median age of 74 years (range 60-88) were used. Surrounding soft tissues of the lower limb were removed. The femoral neck antetorsion was measured and referenced to the transepicondylar axis and the posterior condylar line. The height of the medial and lateral facet of the trochlea and the sulcus angle was measured. The location and the degree of patellofemoral cartilage degeneration were recorded. A Pearson's correlation analysis was performed to correlate the femoral neck antetorsion with the measured knee parameters. No significant correlation could be found between the femoral antetorsion and cartilage degeneration of the lateral patellofemoral joint (n.s.), the height of the lateral trochlea (n.s.) and the sulcus angle (n.s.). This study could not document that the femoral neck antetorsion and subsequent internal rotation of the distal femur correlated with the degree of degeneration of the lateral facet of the patellofemoral joint. Clinically, femoral internal rotation may play a minor role in the development of lateral patellofemoral joint degeneration.

  13. A Cabin Air Separator for EVA Oxygen

    NASA Technical Reports Server (NTRS)

    Graf, John C.

    2011-01-01

    Presently, the Extra-Vehicular Activities (EVAs) conducted from the Quest Joint Airlock on the International Space Station use high pressure, high purity oxygen that is delivered to the Space Station by the Space Shuttle. When the Space Shuttle retires, a new method of delivering high pressure, high purity oxygen to the High Pressure Gas Tanks (HPGTs) is needed. One method is to use a cabin air separator to sweep oxygen from the cabin air, generate a low pressure/high purity oxygen stream, and compress the oxygen with a multistage mechanical compressor. A main advantage to this type of system is that the existing low pressure oxygen supply infrastructure can be used as the source of cabin oxygen. ISS has two water electrolysis systems that deliver low pressure oxygen to the cabin, as well as chlorate candles and compressed gas tanks on cargo vehicles. Each of these systems can feed low pressure oxygen into the cabin, and any low pressure oxygen source can be used as an on-board source of oxygen. Three different oxygen separator systems were evaluated, and a two stage Pressure Swing Adsorption system was selected for reasons of technical maturity. Two different compressor designs were subjected to long term testing, and the compressor with better life performance and more favorable oxygen safety characteristics was selected. These technologies have been used as the basis of a design for a flight system located in Equipment Lock, and taken to Preliminary Design Review level of maturity. This paper describes the Cabin Air Separator for EVA Oxygen (CASEO) concept, describes the separator and compressor technology trades, highlights key technology risks, and describes the flight hardware concept as presented at Preliminary Design Review (PDR)

  14. Novel angle estimation for bistatic MIMO radar using an improved MUSIC

    NASA Astrophysics Data System (ADS)

    Li, Jianfeng; Zhang, Xiaofei; Chen, Han

    2014-09-01

    In this article, we study the problem of angle estimation for bistatic multiple-input multiple-output (MIMO) radar and propose an improved multiple signal classification (MUSIC) algorithm for joint direction of departure (DOD) and direction of arrival (DOA) estimation. The proposed algorithm obtains initial estimations of angles obtained from the signal subspace and uses the local one-dimensional peak searches to achieve the joint estimations of DOD and DOA. The angle estimation performance of the proposed algorithm is better than that of estimation of signal parameters via rotational invariance techniques (ESPRIT) algorithm, and is almost the same as that of two-dimensional MUSIC. Furthermore, the proposed algorithm can be suitable for irregular array geometry, obtain automatically paired DOD and DOA estimations, and avoid two-dimensional peak searching. The simulation results verify the effectiveness and improvement of the algorithm.

  15. Deformation of angle profiles in forward kinematics for nullifying end-point offset while preserving movement properties.

    PubMed

    Zhang, Xudong

    2002-10-01

    This work describes a new approach that allows an angle-domain human movement model to generate, via forward kinematics, Cartesian-space human movement representation with otherwise inevitable end-point offset nullified but much of the kinematic authenticity retained. The approach incorporates a rectification procedure that determines the minimum postural angle change at the final frame to correct the end-point offset, and a deformation procedure that deforms the angle profile accordingly to preserve maximum original kinematic authenticity. Two alternative deformation schemes, named amplitude-proportional (AP) and time-proportional (TP) schemes, are proposed and formulated. As an illustration and empirical evaluation, the proposed approach, along with two deformation schemes, was applied to a set of target-directed right-hand reaching movements that had been previously measured and modeled. The evaluation showed that both deformation schemes nullified the final frame end-point offset and significantly reduced time-averaged position errors for the end-point as well as the most distal intermediate joint while causing essentially no change in the remaining joints. A comparison between the two schemes based on time-averaged joint and end-point position errors indicated that overall the TP scheme outperformed the AP scheme. In addition, no statistically significant difference in time-averaged angle error was identified between the raw prediction and either of the deformation schemes, nor between the two schemes themselves, suggesting minimal angle-domain distortion incurred by the deformation.

  16. Extravehicular activity at geosynchronous earth orbit

    NASA Technical Reports Server (NTRS)

    Shields, Nicholas, Jr.; Schulze, Arthur E.; Carr, Gerald P.; Pogue, William

    1988-01-01

    The basic contract to define the system requirements to support the Advanced Extravehicular Activity (EVA) has three phases: EVA in geosynchronous Earth orbit; EVA in lunar base operations; and EVA in manned Mars surface exploration. The three key areas to be addressed in each phase are: environmental/biomedical requirements; crew and mission requirements; and hardware requirements. The structure of the technical tasks closely follows the structure of the Advanced EVA studies for the Space Station completed in 1986.

  17. Eva Physiology, Systems, and Performance (EPSP) Project Overview

    NASA Technical Reports Server (NTRS)

    Gernhardt, Michael L.

    2007-01-01

    Extravehicular activity (EVA) is any activity performed by astronauts outside their space vehicle or habitat. EVA may be performed on orbit, such as outside the Space Shuttle or the International Space Station, or on a planetary surface such as Mars or on the moon. Astronauts wear a pressurized suit that provides environmental protection, mobility, life support, and communications while they work in the harsh conditions of a microgravity environment. Exploration missions to the moon and Mars may last many days and will include many types of EVAs; exploration, science, construction and maintenance. The effectiveness and success of these EVA-filled missions is dependent on the ability to perform tasks efficiently. The EVA Physiology, Systems and Performance (EPSP) project will conduct a number of studies to understand human performance during EVA, from a molecular level to full-scale equipment and suit design aspects, with the aim of developing safe and efficient systems for Exploration missions and the Constellation Program. The EPSP project will 1) develop Exploration Mission EVA suit requirements for metabolic and thermal loading, optional center of gravity location, biomedical sensors, hydration, nutrition, and human biomedical interactions; 2) develop validated EVA prebreathe protocols that meet medical, vehicle, and habitat constraints while minimizing crew time and thus increasing EVA work efficiency; and 3) define exploration decompression sickness (DCS) risks, policy, and mission success statistics and develop a DCS risk definition report.

  18. Extravehicular Activity Asteroid Exploration and Sample Collection Capability

    NASA Technical Reports Server (NTRS)

    Sipila, Stephanie A.; Scoville, Zebulon C.; Bowie, Jonathan T.; Buffington, Jesse A.

    2014-01-01

    One of the challenging primary objectives associated with NASA's Asteroid Redirect Crewed Mission (ARCM) is to demonstrate deep space Extravehicular Activity (EVA) and tools and to obtain asteroid samples to return to Earth for further study. Prior Shuttle and International Space Station (ISS) spacewalks have benefited from engineered EVA interfaces which have been designed and manufactured on Earth. Rigid structurally mounted handrails, and tools with customized interfaces and restraints optimize EVA performance. For ARCM, EVA complexity increases due to the uncertainty of the asteroid properties. The variability of rock size, shape and composition, as well as behavior of the asteroid capture mechanism will complicate EVA translation, tool restraint, and body stabilization. The unknown asteroid hardness and brittleness will complicate tool use. The rock surface will introduce added safety concerns for cut gloves and debris control. Feasible solutions to meet ARCM EVA objectives were identified using experience gained during Apollo, Shuttle, and ISS EVAs, terrestrial mountaineering practices, NASA Extreme Environment Mission Operations (NEEMO) 16 mission, and during Neutral Buoyancy Laboratory testing in the Modified Advanced Crew Escape Suit (MACES) suit. This paper will summarize the overall operational concepts for conducting EVAs for the ARCM mission including translation paths and body restraint methods, potential tools used to extract the samples, design implications for the Asteroid Redirect Vehicle (ARV) for EVA, and the results of early development testing of potential EVA tasks.

  19. EVA: laparoscopic instrument tracking based on Endoscopic Video Analysis for psychomotor skills assessment.

    PubMed

    Oropesa, Ignacio; Sánchez-González, Patricia; Chmarra, Magdalena K; Lamata, Pablo; Fernández, Alvaro; Sánchez-Margallo, Juan A; Jansen, Frank Willem; Dankelman, Jenny; Sánchez-Margallo, Francisco M; Gómez, Enrique J

    2013-03-01

    The EVA (Endoscopic Video Analysis) tracking system is a new system for extracting motions of laparoscopic instruments based on nonobtrusive video tracking. The feasibility of using EVA in laparoscopic settings has been tested in a box trainer setup. EVA makes use of an algorithm that employs information of the laparoscopic instrument's shaft edges in the image, the instrument's insertion point, and the camera's optical center to track the three-dimensional position of the instrument tip. A validation study of EVA comprised a comparison of the measurements achieved with EVA and the TrEndo tracking system. To this end, 42 participants (16 novices, 22 residents, and 4 experts) were asked to perform a peg transfer task in a box trainer. Ten motion-based metrics were used to assess their performance. Construct validation of the EVA has been obtained for seven motion-based metrics. Concurrent validation revealed that there is a strong correlation between the results obtained by EVA and the TrEndo for metrics, such as path length (ρ = 0.97), average speed (ρ = 0.94), or economy of volume (ρ = 0.85), proving the viability of EVA. EVA has been successfully validated in a box trainer setup, showing the potential of endoscopic video analysis to assess laparoscopic psychomotor skills. The results encourage further implementation of video tracking in training setups and image-guided surgery.

  20. Inverse kinematics problem in robotics using neural networks

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin B.; Lawrence, Charles

    1992-01-01

    In this paper, Multilayer Feedforward Networks are applied to the robot inverse kinematic problem. The networks are trained with endeffector position and joint angles. After training, performance is measured by having the network generate joint angles for arbitrary endeffector trajectories. A 3-degree-of-freedom (DOF) spatial manipulator is used for the study. It is found that neural networks provide a simple and effective way to both model the manipulator inverse kinematics and circumvent the problems associated with algorithmic solution methods.

  1. Utilization of ISS to Develop and Test Operational Concepts and Hardware for Low-Gravity Terrestrial EVA

    NASA Technical Reports Server (NTRS)

    Gast, Matthew A.

    2010-01-01

    NASA has considerable experience in two areas of Extravehicular Activities (EVA). The first can be defined as microgravity, orbital EVAs. This consists of everything done in low Earth orbit (LEO), from the early, proof of concept EVAs conducted during the Gemini program of the 1960s, to the complex International Space Station (ISS) assembly tasks of the first decade of the 21st century. The second area of expertise is comprised of those EVAs conducted on the lunar surface, under a gravitational force one-sixth that of Earth. This EVA expertise encapsulates two extremes - microgravity and Earthlike gravitation - but is insufficient as humans expand their exploration purview, most notably with respect to spacewalks conducted on very low-gravity bodies, such as near- Earth objects (NEO) and the moons of Mars. The operational and technical challenges of this category of EVA have yet to be significantly examined, and as such, only a small number of operational concepts have been proposed thus far. To ensure mission success, however, EVA techniques must be developed and vetted to allow the selection of operational concepts that can be utilized across an assortment of destinations whose physical characteristics vary. This paper examines the utilization of ISS-based EVAs to test operational concepts and hardware in preparation for a low-gravity terrestrial EVA. While the ISS cannot mimic some of the fundamental challenges of a low-gravity terrestrial EVA - such as rotation rate and surface composition - it may be the most effective test bed available.

  2. Pulmonary gas exchange is not impaired 24 h after extravehicular activity.

    PubMed

    Prisk, G Kim; Fine, Janelle M; Cooper, Trevor K; West, John B

    2005-12-01

    Extravehicular activity (EVA) during spaceflight involves a significant decompression stress. Previous studies have shown an increase in the inhomogeneity of ventilation-perfusion ratio (VA/Q) after some underwater dives, presumably through the embolic effects of venous gas microemboli in the lung. Ground-based chamber studies simulating EVA have shown that venous gas microemboli occur in a large percentage of the subjects undergoing decompression, despite the use of prebreathe protocols to reduce dissolved N(2) in the tissues. We studied eight crewmembers (7 male, 1 female) of the International Space Station who performed 15 EVAs (initial cabin pressure 748 mmHg, final suit pressure either approximately 295 or approximately 220 mmHg depending on the suit used) and who followed the denitrogenation procedures approved for EVA from the International Space Station. The intrabreath VA/Q slope was calculated from the alveolar Po(2) and Pco(2) in a prolonged exhalation maneuver on the day after EVA and compared with measurements made in microgravity on days well separated from the EVA. There were no significant changes in intrabreath VA/Q slope as a result of EVA, although there was a slight increase in metabolic rate and ventilation (approximately 9%) on the day after EVA. Vital capacity and other measures of pulmonary function were largely unaltered by EVA. Because measurements could only be performed on the day after EVA because of logistical constraints, we were unable to determine an acute effect of EVA on VA/Q inequality. The results suggest that current denitrogenation protocols do not result in any major lasting alteration to gas exchange in the lung.

  3. Asteroid Redirect Crewed Mission Space Suit and EVA System Architecture Trade Study

    NASA Technical Reports Server (NTRS)

    Blanco, Raul A.; Bowie, Jonathan T.; Watson, Richard D.; Sipila, Stephanie A.

    2014-01-01

    The Asteroid Redirect Crewed Mission (ARCM) requires a Launch/Entry/Abort (LEA) suit capability and short duration Extra Vehicular Activity (EVA) capability for Orion. The EVAs will involve a two-person crew for approximately four hours. Currently, two EVAs are planned with one contingency EVA in reserve. Providing this EVA capability is very challenging due to system level constraints and a new and unknown environment. The goal of the EVA architecture for ARCM is one that builds upon previously developed technologies and lessons learned, and that accomplishes the ARCM mission while providing a stepping stone to future missions and destinations. The primary system level constraints are to 1) minimize system mass and volume and 2) minimize the interfacing impacts to the baseline Orion design. In order to minimize the interfacing impacts and to not perturb the baseline Orion schedule, the concept of adding "kits" to the baseline system is proposed. These kits consist of: an EVA kit (converts LEA suit to EVA suit), EVA Servicing and Recharge Kit (provides suit consumables), the EVA Tools, Translation Aids & Sample Container Kit (the tools and mobility aids to complete the tasks), the EVA Communications Kit (interface between the EVA radio and the MPCV), and the Cabin Repress Kit (represses the MPCV between EVAs). This paper will focus on the trade space, analysis, and testing regarding the space suit (pressure garment and life support system). Historical approaches and lessons learned from all past EVA operations were researched. Previous and current, successfully operated EVA hardware and high technology readiness level (TRL) hardware were evaluated, and a trade study was conducted for all possible pressure garment and life support options. Testing and analysis was conducted and a recommended EVA system architecture was proposed. Pressure garment options that were considered for this mission include the currently in-use ISS EVA Mobility Unit (EMU), all variations of the Advanced Crew Escape Suit (ACES), and the Exploration Z-suit. For this mission, the pressure garment that was selected is the Modified ACES (MACES) with EVA enhancements. Life support options that were considered included short closed-loop umbilicals, long open-loop umbilicals, the currently in-use ISS EMU Portable Life Support System (PLSS), and the currently in development Exploration PLSS. For this mission, the life support option that was selected is the Exploration PLSS. The greatest risk in the proposed architecture is viewed to be the comfort and mobility of the baseline MACES and the delicate balance between adding more mobility features while not compromising landing safety. Feasibility testing was accomplished in low fidelity analogs and in the JSC Neutral Buoyancy Laboratory (NBL) to validate the concept before a final recommendation on the architecture was made. The proposed architecture was found to meet the mission constraints, but much more work is required to determine the details of the required suit upgrades, the integration with the PLSS, and the rest of the tools and equipment required to accomplish the mission. This work and further definition of the remaining kits will be conducted in government fiscal year 14.

  4. Advanced EVA system design requirements study, executive summary

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Design requirements and criteria for the space station advanced Extravehicular Activity System (EVAS) including crew enclosures, portable life support systems, maneuvering propulsion systems, and related EVA support equipment were established. The EVA mission requirements, environments, and medical and physiological requirements, as well as operational, procedures and training issues were considered.

  5. EVA design: lessons learned.

    PubMed

    Ross, J L

    1994-01-01

    Extravehicular Activities (EVAs) are very demanding and specialized space flight activities. There are many aspects to consider in the design of hardware, tools, and procedures to be used on an EVA mission. To help minimize costs and optimize the EVA productivity, experience shows that astronauts should become involved early in the design process.

  6. Development of an EVA systems cost model. Volume 2: Shuttle orbiter crew and equipment translation concepts and EVA workstation concept development and integration

    NASA Technical Reports Server (NTRS)

    1975-01-01

    EVA crewman/equipment translational concepts are developed for a shuttle orbiter payload application. Also considered are EVA workstation systems to meet orbiter and payload requirements for integration of workstations into candidate orbiter payload worksites.

  7. Inverse Kinematics for Upper Limb Compound Movement Estimation in Exoskeleton-Assisted Rehabilitation.

    PubMed

    Cortés, Camilo; de Los Reyes-Guzmán, Ana; Scorza, Davide; Bertelsen, Álvaro; Carrasco, Eduardo; Gil-Agudo, Ángel; Ruiz-Salguero, Oscar; Flórez, Julián

    2016-01-01

    Robot-Assisted Rehabilitation (RAR) is relevant for treating patients affected by nervous system injuries (e.g., stroke and spinal cord injury). The accurate estimation of the joint angles of the patient limbs in RAR is critical to assess the patient improvement. The economical prevalent method to estimate the patient posture in Exoskeleton-based RAR is to approximate the limb joint angles with the ones of the Exoskeleton. This approximation is rough since their kinematic structures differ. Motion capture systems (MOCAPs) can improve the estimations, at the expenses of a considerable overload of the therapy setup. Alternatively, the Extended Inverse Kinematics Posture Estimation (EIKPE) computational method models the limb and Exoskeleton as differing parallel kinematic chains. EIKPE has been tested with single DOF movements of the wrist and elbow joints. This paper presents the assessment of EIKPE with elbow-shoulder compound movements (i.e., object prehension). Ground-truth for estimation assessment is obtained from an optical MOCAP (not intended for the treatment stage). The assessment shows EIKPE rendering a good numerical approximation of the actual posture during the compound movement execution, especially for the shoulder joint angles. This work opens the horizon for clinical studies with patient groups, Exoskeleton models, and movements types.

  8. Muscle Activation Differs between Three Different Knee Joint-Angle Positions during a Maximal Isometric Back Squat Exercise

    PubMed Central

    Jarbas da Silva, Josinaldo; Jon Schoenfeld, Brad; Nardi, Priscyla Silva Monteiro; Pecoraro, Silvio Luis; D'Andréa Greve, Julia Maria; Hartigan, Erin

    2016-01-01

    The purpose of this study was to compare muscle activation of the lower limb muscles when performing a maximal isometric back squat exercise over three different positions. Fifteen young, healthy, resistance-trained men performed an isometric back squat at three knee joint angles (20°, 90°, and 140°) in a randomized, counterbalanced fashion. Surface electromyography was used to measure muscle activation of the vastus lateralis (VL), vastus medialis (VM), rectus femoris (RF), biceps femoris (BF), semitendinosus (ST), and gluteus maximus (GM). In general, muscle activity was the highest at 90° for the three quadriceps muscles, yet differences in muscle activation between knee angles were muscle specific. Activity of the GM was significantly greater at 20° and 90° compared to 140°. The BF and ST displayed similar activation at all joint angles. In conclusion, knee position alters muscles activation of the quadriceps and gluteus maximus muscles. An isometric back squat at 90° generates the highest overall muscle activation, yet an isometric back squat at 140° generates the lowest overall muscle activation of the VL and GM only. PMID:27504484

  9. A Robust Parameterization of Human Gait Patterns Across Phase-Shifting Perturbations

    PubMed Central

    Villarreal, Dario J.; Poonawala, Hasan A.; Gregg, Robert D.

    2016-01-01

    The phase of human gait is difficult to quantify accurately in the presence of disturbances. In contrast, recent bipedal robots use time-independent controllers relying on a mechanical phase variable to synchronize joint patterns through the gait cycle. This concept has inspired studies to determine if human joint patterns can also be parameterized by a mechanical variable. Although many phase variable candidates have been proposed, it remains unclear which, if any, provide a robust representation of phase for human gait analysis or control. In this paper we analytically derive an ideal phase variable (the hip phase angle) that is provably monotonic and bounded throughout the gait cycle. To examine the robustness of this phase variable, ten able-bodied human subjects walked over a platform that randomly applied phase-shifting perturbations to the stance leg. A statistical analysis found the correlations between nominal and perturbed joint trajectories to be significantly greater when parameterized by the hip phase angle (0.95+) than by time or a different phase variable. The hip phase angle also best parameterized the transient errors about the nominal periodic orbit. Finally, interlimb phasing was best explained by local (ipsilateral) hip phase angles that are synchronized during the double-support period. PMID:27187967

  10. The role of EVA on Space Shuttle. [experimental support and maintenance activities

    NASA Technical Reports Server (NTRS)

    Carson, M. A.

    1974-01-01

    The purpose of this paper is to present the history of Extravehicular Activity (EVA) through the Skylab Program and to outline the expected tasks and equipment capabilities projected for the Space Shuttle Program. Advantages offered by EVA as a tool to extend payload capabilities and effectiveness and economic advantages of using EVA will be explored. The presentation will conclude with some guidelines and recommendations for consideration by payload investigators in establishing concepts and designs utilizing EVA support.

  11. Extravehicular Activity/Air Traffic Control (EVA/ATC) test report. [communication links to the astronaut

    NASA Technical Reports Server (NTRS)

    Tomaro, D. J.

    1982-01-01

    During extravehicular activity (EVA), communications between the EVA astronaut and the space shuttle orbiter are maintained by means of transceiver installed in the environmental support system backpack. Onboard the orbiter, a transceiver line replaceable unit and its associated equipment performs the task of providing a communications link to the astronaut in the extravehicular activity/air traffic control (EVA/ATC) mode. Results of the acceptance tests that performed on the system designed and fabricated for EVA/ATC testing are discussed.

  12. Research in human performance related to space: A compilation of three projects/proposals

    NASA Technical Reports Server (NTRS)

    Hasson, Scott M.

    1989-01-01

    Scientific projects were developed in order to maximize performance in space and assure physiological homeostatis upon return. Three projects that are related to this common goal were either initiated or formulated during the Faculty Fellowship Summer Program. The projects were entitled: (1) Effect of simulated weightlessness (bed rest) on muscle performance and morphology; (2) Effect of submaximal eccentric muscle contractions on muscle injury, soreness and performance: A grant proposal; and (3) Correlation between isolated joint dynamic muscle strength to end-effector strength of the push and pull extravehicular activity (EVA) ratchet maneuver. The purpose is to describe each of these studies in greater detail.

  13. US space flight experience. Physical exertion and metabolic demand of extravehicular activity: Past, present, and future

    NASA Technical Reports Server (NTRS)

    Moore, Thomas P.

    1989-01-01

    A review of physical exertion and metabolic demands of extravehicular activity (EVA) on U.S. astronauts is given. Information is given on EVA during Gemini, Apollo and Skylab missions. It is noted that nominal EVA's should not be overstressful from a cardiovascular standpoint; that manual-intensive EVA's such as are planned for the construction phase of the Space Station can and will be demanding from a muscular standpoint, primarily for the upper extremities; that off-nominal unplanned EVA's can be physically demanding both from an endurance and from a muscular standpoint; and that crewmembers should be physically prepared and capable of performing these EVA's at any time during the mission.

  14. The reliability of knee joint position testing using electrogoniometry

    PubMed Central

    Piriyaprasarth, Pagamas; Morris, Meg E; Winter, Adele; Bialocerkowski, Andrea E

    2008-01-01

    Background The current investigation examined the inter- and intra-tester reliability of knee joint angle measurements using a flexible Penny and Giles Biometric® electrogoniometer. The clinical utility of electrogoniometry was also addressed. Methods The first study examined the inter- and intra-tester reliability of measurements of knee joint angles in supine, sitting and standing in 35 healthy adults. The second study evaluated inter-tester and intra-tester reliability of knee joint angle measurements in standing and after walking 10 metres in 20 healthy adults, using an enhanced measurement protocol with a more detailed electrogoniometer attachment procedure. Both inter-tester reliability studies involved two testers. Results In the first study, inter-tester reliability (ICC[2,10]) ranged from 0.58–0.71 in supine, 0.68–0.79 in sitting and 0.57–0.80 in standing. The standard error of measurement between testers was less than 3.55° and the limits of agreement ranged from -12.51° to 12.21°. Reliability coefficients for intra-tester reliability (ICC[3,10]) ranged from 0.75–0.76 in supine, 0.86–0.87 in sitting and 0.87–0.88 in standing. The standard error of measurement for repeated measures by the same tester was less than 1.7° and the limits of agreement ranged from -8.13° to 7.90°. The second study showed that using a more detailed electrogoniometer attachment protocol reduced the error of measurement between testers to 0.5°. Conclusion Using a standardised protocol, reliable measures of knee joint angles can be gained in standing, supine and sitting by using a flexible goniometer. PMID:18211714

  15. Subtalar joint stress imaging with tomosynthesis.

    PubMed

    Teramoto, Atsushi; Watanabe, Kota; Takashima, Hiroyuki; Yamashita, Toshihiko

    2014-06-01

    The purpose of this study was to perform stress imaging of hindfoot inversion and eversion using tomosynthesis and to assess the subtalar joint range of motion (ROM) of healthy subjects. The subjects were 15 healthy volunteers with a mean age of 29.1 years. Coronal tomosynthesis stress imaging of the subtalar joint was performed in a total of 30 left and right ankles. A Telos stress device was used for the stress load, and the load was 150 N for both inversion and eversion. Tomographic images in which the posterior talocalcaneal joint could be confirmed on the neutral position images were used in measurements. The angle of the intersection formed by a line through the lateral articular facet of the posterior talocalcaneal joint and a line through the surface of the trochlea of the talus was measured. The mean change in the angle of the calcaneus with respect to the talus was 10.3 ± 4.8° with inversion stress and 5.0 ± 3.8° with eversion stress from the neutral position. The result was a clearer depiction of the subtalar joint, and inversion and eversion ROM of the subtalar joint was shown to be about 15° in healthy subjects. Diagnostic, Level IV.

  16. Biomechanical analysis of posture in patients with spinal kyphosis due to ankylosing spondylitis: a pilot study.

    PubMed

    Bot, S D; Caspers, M; Van Royen, B J; Toussaint, H M; Kingma, I

    1999-05-01

    Patients with ankylosing spondylitis may experience a progressive spinal kyphosis, which induces a forward and downward displacement of the centre of mass (COM) of the trunk. In this pilot study, the possible mechanisms used to compensate for the displacement of the trunk COM were analysed. Joint angles of hip, knee and ankle were determined in four patients with ankylosing spondylitis and compared to data of 18 healthy subjects. Each patient stood on a force platform and had to adopt several predefined postures, which were recorded by a video camera. In three patients, the hips were flexed when standing relaxed, and in all patients hip extension was limited. The knee angles of three patients were smaller and in two patients the angle of the ankles was larger compared to healthy subjects. The results suggest that the hip joints are at least no longer involved in balance control. This may imply that conservative therapy should focus on the prevention of restriction of the hip joints.

  17. Influence of velocity on variability in gait kinematics: implications for recognition in forensic science.

    PubMed

    Yang, Sylvia X M; Larsen, Peter K; Alkjaer, Tine; Lynnerup, Niels; Simonsen, Erik B

    2014-09-01

    Closed circuit television (CCTV) footage is often available from crime scenes and may be used to compare perpetrators with suspects. Usually, the footage comprises incomplete gait cycles at different velocities, making gait pattern identification from crimes difficult. This study investigated the concurrence of joint angles throughout a gait cycle at three different velocities (3.0, 4.5, 6.0 km/h). Six datasets at each velocity were collected from 16 men. A variability range VR throughout the gait cycle at each velocity for each joint angle for each person was calculated. The joint angles at each velocity were compared pairwise, and whenever this showed values within the VR of this velocity, the case was positive. By adding the positives throughout the gait cycle, phases with high and low concurrences were located; peak concurrence was observed at mid-stance phase. Striving for the same velocity for the suspect and perpetrator is recommended. © 2014 American Academy of Forensic Sciences.

  18. The combination effects of licl and the active leflunomide metabolite, A771726, on viral-induced interleukin 6 production and EV-A71 replication.

    PubMed

    Hung, Hui-Chen; Shih, Shin-Ru; Chang, Teng-Yuan; Fang, Ming-Yu; Hsu, John T-A

    2014-01-01

    Enterovirus 71 (EV-A71) is a neurotropic virus that can cause severe complications involving the central nervous system. No effective antiviral therapeutics are available for treating EV-A71 infection and drug discovery efforts are rarely focused to target this disease. Thus, the main goal of this study was to discover existing drugs with novel indications that may effectively inhibit EV-A71 replication and the inflammatory cytokines elevation. In this study, we showed that LiCl, a GSK3β inhibitor, effectively suppressed EV-A71 replication, apoptosis and inflammatory cytokines production (Interleukin 6, Interleukin-1β) in infected cells. Furthermore, LiCl and an immunomodular agent were shown to strongly synergize with each other in suppressing EV-A71 replication. The results highlighted potential new treatment regimens in suppressing sequelae caused by EV-A71 replication.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pern, F.J.; Glick, S.H.; Czanderna, A.W.

    The stabilization effects of various superstrate materials against UV-induced EVA discoloration and the effect of photocurrent enhancement by white light-reflecting substrates are summarized. Based on the results, some alternative PV module encapsulation schemes are proposed for improved module performance, where the current or modified formulations of EVA encapsulants still can be used so that the typical processing tools and conditions need not to be changed significantly. The schemes are designed in an attempt to eliminate or minimize the EVA yellow-browning and to increase the module power output. Four key experimental results from the studies of EVA discoloration and encapsulation aremore » to employ: (1) UV-absorbing (filtering) glasses as superstrates to protect EVA from UV-induced discoloration, (2) gas-permeable polymer films as superstrates and/or substrates to prevent EVA yellowing by permitting photobleaching reactions, (3) modified EVA formulations, and (4) internal reflection of the light by white substrates. {copyright} {ital 1996 American Institute of Physics.}« less

  20. Physiological and technological considerations for Mars mission extravehicular activity

    NASA Technical Reports Server (NTRS)

    Waligora, James M.; Sedej, Melaine M.

    1986-01-01

    The nature of the suit is a function of the needs of human physiology, the ambient environment outside the suit, and the type of activity to be accomplished while in the suit. The physiological requirements that must be provided for in the Martian Extravehicular Activity (EVA) suit will be reviewed. The influence of the Martian environment on the EVA suit and EVA capabilities is elaborated, and the Martian environment is compared with the lunar environment. The differences that may influence the EVA design are noted. The type, nature, and duration of activities to be done in transit to Mars and on the Martian surface will be evaluated and the impact of these activities on the requirements for EVA systems will be discussed. Furthermore, the interaction between Martian surface transportation systems and EVA systems will be covered. Finally, options other than EVA will be considered such as robotics, nonanthropometric suits, and vehicles with anthropometric extremities or robotic end effectors.

  1. Extravehicular activities limitations study. Volume 2: Establishment of physiological and performance criteria for EVA gloves

    NASA Technical Reports Server (NTRS)

    Ohara, John M.; Briganti, Michael; Cleland, John; Winfield, Dan

    1988-01-01

    One of the major probelms faced in Extravehicular Activity (EVA) glove development has been the absence of concise and reliable methods to measure the effects of EVA gloves on human hand capabilities. This report describes the development of a standardized set of tests designed to assess EVA-gloved hand capabilities in six measurement domains: Range of Motion, Strength, Tactile Perception, Dexterity, Fatigue, and Comfort. Based on an assessment of general human hand functioning and EVA task requirements several tests within each measurement domain were developed to provide a comprehensive evaluation. All tests were designed to be conducted in a glove box with the bare hand as a baseline and the EVA glove at operating pressure. A test program was conducted to evaluate the tests using a representative EVA glove. Eleven test subjects participated in a repeated-measures design. The report presents the results of the tests in each capability domain.

  2. Advanced EVA system design requirements study

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Design requirements and criteria for the Space Station Advanced Extravehicular Activity System (EVAS) including crew enclosures, portable life support systems, maneuvering propulsion systems, and related extravehicular activity (EVA) support equipment were defined and established. The EVA mission requirements, environments, and medical and physiological requirements, as well as opertional, procedures, and training issues were considered.

  3. U.S. Exploration EVA: ConOps, Interfaces and Test Objectives for Airlocks

    NASA Technical Reports Server (NTRS)

    Buffington, J.

    2017-01-01

    NASA is moving forward on defining the xEVA System Architecture and its implications to the spacecraft that host exploration EVA systems. This presentation provides an overview of the latest information for NASA's Concept of Operations (ConOps), Interfaces and corresponding Test Objectives for Airlocks hosting the xEVA System.

  4. 2014 Decompression Sickness/Extravehicular Activity Risks Standing Review Panel

    NASA Technical Reports Server (NTRS)

    Steinberg, Susan

    2015-01-01

    The 2014 Decompression Sickness (DCS)/Extravehicular Activity (EVA) Risks Standing Review Panel (from here on referred to as the SRP) met for a site visit in Houston, TX on November 4 - 5, 2014. The SRP reviewed the updated Evidence Reports for The Risk of Decompression Sickness (from here on referred to as the 2014 DCS Evidence Report) and the Risk of Injury and Compromised Performance due to EVA Operations (from here on referred to as the 2014 EVA Evidence Report), as well as the Research Plans for these Risks. The SRP appreciated the time and effort that the DCS and EVA disciplines put into their review documents and presentations. The SRP felt that the 2014 DCS Evidence Report and the 2014 EVA Evidence Reports were very thorough and addressed the majority of the known DCS and EVA issues. The researchers at NASA Johnson Space Center (JSC) have the knowledge base to deal with the DCS and EVA issues. Overall, the SRP thinks the DCS and EVA research teams have compiled excellent reports which address the majority of the literature and background information.

  5. Does distal tibiofibular joint mobilization decrease limitation of ankle dorsiflexion?

    PubMed

    Fujii, Misaki; Suzuki, Daisuke; Uchiyama, Eiichi; Muraki, Takayuki; Teramoto, Atsushi; Aoki, Mitsuhiro; Miyamoto, Shigenori

    2010-02-01

    Limitation of ankle motion is in many cases treated by joint mobilization (JM), a kind of manual physical therapy technique. Until now, the JM approach has mainly focused on the talocrural joint, with less attention to the distal tibiofibular joint. We applied cyclic loading to the lateral malleolus as in JM in order to clarify the relationship between the dorsiflexion angle and the excursion of the lateral malleolus. Seven normal, fresh-frozen cadaver legs were used. To each specimen, cyclic loading with a 30N force was applied 1000 times to the lateral malleolus at a speed of 15N/s. The displacement of the lateral malleolus was measured with a magnetic tracking system. The maximum dorsiflexion angle was measured before and after cyclic loading. After the first 100 and 1000 times of cyclic loading, the tibia was displaced 0.44+/-0.30mm and 0.75+/-0.36mm, respectively, and the fibula was displaced 0.44+/-0.28mm and 0.92+/-0.39mm, respectively. The average dorsiflexion angle increased from 14.36+/-7.51 degrees to 16.74+/-7.21 degrees after cyclic loading (P<0.05). Movement of the distal tibiofibular joint led to a significant increase in the range of ankle dorsiflexion. These results suggest that tibiofibular JM would be effective for limitation of ankle dorsiflexion.

  6. Increased leaf angle1, a Raf-like MAPKKK that interacts with a nuclear protein family, regulates mechanical tissue formation in the Lamina joint of rice.

    PubMed

    Ning, Jing; Zhang, Baocai; Wang, Nili; Zhou, Yihua; Xiong, Lizhong

    2011-12-01

    Mitogen-activated protein kinase kinase kinases (MAPKKKs), which function at the top level of mitogen-activated protein kinase cascades, are clustered into three groups. However, no Group C Raf-like MAPKKKs have yet been functionally identified. We report here the characterization of a rice (Oryza sativa) mutant, increased leaf angle1 (ila1), resulting from a T-DNA insertion in a Group C MAPKKK gene. The increased leaf angle in ila1 is caused by abnormal vascular bundle formation and cell wall composition in the leaf lamina joint, as distinct from the mechanism observed in brassinosteroid-related mutants. Phosphorylation assays revealed that ILA1 is a functional kinase with Ser/Thr kinase activity. ILA1 is predominantly resident in the nucleus and expressed in the vascular bundles of leaf lamina joints. Yeast two-hybrid screening identified six closely related ILA1 interacting proteins (IIPs) of unknown function. Using representative IIPs, the interaction of ILA1 and IIPs was confirmed in vivo. IIPs were localized in the nucleus and showed transactivation activity. Furthermore, ILA1 could phosphorylate IIP4, indicating that IIPs may be the downstream substrates of ILA1. Microarray analyses of leaf lamina joints provided additional evidence for alterations in mechanical strength in ila1. ILA1 is thus a key factor regulating mechanical tissue formation at the leaf lamina joint.

  7. Tracking control of time-varying knee exoskeleton disturbed by interaction torque.

    PubMed

    Li, Zhan; Ma, Wenhao; Yin, Ziguang; Guo, Hongliang

    2017-11-01

    Knee exoskeletons have been increasingly applied as assistive devices to help lower-extremity impaired people to make their knee joints move through providing external movement compensation. Tracking control of knee exoskeletons guided by human intentions often encounters time-varying (time-dependent) issues and the disturbance interaction torque, which may dramatically put an influence up on their dynamic behaviors. Inertial and viscous parameters of knee exoskeletons can be estimated to be time-varying due to unexpected mechanical vibrations and contact interactions. Moreover, the interaction torque produced from knee joint of wearers has an evident disturbance effect on regular motions of knee exoskeleton. All of these points can increase difficultly of accurate control of knee exoskeletons to follow desired joint angle trajectories. This paper proposes a novel control strategy for controlling knee exoskeleton with time-varying inertial and viscous coefficients disturbed by interaction torque. Such designed controller is able to make the tracking error of joint angle of knee exoskeletons exponentially converge to zero. Meanwhile, the proposed approach is robust to guarantee the tracking error bounded when the interaction torque exists. Illustrative simulation and experiment results are presented to show efficiency of the proposed controller. Additionally, comparisons with gradient dynamic (GD) approach and other methods are also presented to demonstrate efficiency and superiority of the proposed control strategy for tracking joint angle of knee exoskeleton. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Interobserver repeatability of measurements on computed tomography images of lax canine hip joints from youth to maturity.

    PubMed

    Lopez, Mandi J; Davis, Kechia M; Jeffrey-Borger, Susan L; Markel, Mark D; Rettenmund, Christy

    2009-12-01

    To determine interobserver repeatability of measurements on computed tomography (CT) images of lax canine hip joints at different ages and in the presence of degenerative joint disease at maturity. Longitudinal observational investigation. Sibling crossbreed hounds. Pelvic CT was performed at 20, 24, 32, 48, 68, and 104 weeks of age. Measures were performed on 3 contiguous two-dimensional (2D) transverse CT images of both hips at each time point by 3 investigators. Center-edge angle (CEA), horizontal toit externe angle (HTEA), ventral (VASA), dorsal (DASA), and horizontal (HASA) acetabular sector angles, acetabular index (AI), and percent femoral head coverage (CPC) were measured. Interobserver repeatability was quantified with the intraclass correlation coefficient (ICC). Satisfactory repeatability was considered when ICC >or=0.75. DASA, CEA, and CPC were repeatable in all age groups. HASA and HTEA were repeatable for all but 1 time point. At 20 weeks of age, all measures but AI were repeatable, and at 104 weeks of age, DASA, CEA, CPC, and HASA were repeatable. Measures were repeatable in hips with and without degenerative changes with the exceptions of AI and HASA in normal hips and VASA and HTEA in osteoarthritic hips. Most 2D CT measurements examined were repeatable regardless of age or joint disease. Two-dimensional CT measures may augment current techniques for assessing joint changes in lax canine hips.

  9. Bilaterally Asymmetric Effects of Quantitative Trait Loci (QTLs): QTLs That Affect Laxity in the Right Versus Left Coxofemoral (Hip) Joints of the Dog (Canis familiaris)

    PubMed Central

    Chase, Kevin; Lawler, Dennis F.; Adler, Fred R.; Ostrander, Elaine A.; Lark, Karl G.

    2009-01-01

    In dogs hip joint laxity that can lead to degenerative joint disease (DJD) is frequent and heritable, providing a genetic model for some aspects of the human disease. We have used Portuguese water dogs (PWDs) to identify Quantitative trait loci (QTLs) that regulate laxity in the hip joint.A population of 286 PWDs, each characterized by ca. 500 molecular genetic markers, was analyzed for subluxation of the hip joint as measured by the Norberg angle, a quantitative radiographic measure of laxity. A significant directed asymmetry was observed, such that greater laxity was observed in the left than the right hip. This asymmetry was not heritable. However, the average Norberg angle was highly heritable as were the Norberg angles of either the right or left hips. After correction for pedigree effects, two QTLs were identified using the metrics of the left and right hips as separate data sets. Both are on canine chromosome 1 (CFA1), separated by about 95 Mb. One QTL, associated with the SSR marker FH2524 was significant for the left, but not the right hip. The other, associated with FH2598, was significant for the right but not the left hip. For both QTLs, some extreme phenotypes were best explained by specific interactions between haplotypes. PMID:14708095

  10. Bilaterally asymmetric effects of quantitative trait loci (QTLs): QTLs that affect laxity in the right versus left coxofemoral (hip) joints of the dog (Canis familiaris).

    PubMed

    Chase, Kevin; Lawler, Dennis F; Adler, Fred R; Ostrander, Elaine A; Lark, Karl G

    2004-01-30

    In dogs hip joint laxity that can lead to degenerative joint disease (DJD) is frequent and heritable, providing a genetic model for some aspects of the human disease. We have used Portuguese water dogs (PWDs) to identify Quantitative trait loci (QTLs) that regulate laxity in the hip joint. A population of 286 PWDs, each characterized by ca. 500 molecular genetic markers, was analyzed for subluxation of the hip joint as measured by the Norberg angle, a quantitative radiographic measure of laxity. A significant directed asymmetry was observed, such that greater laxity was observed in the left than the right hip. This asymmetry was not heritable. However, the average Norberg angle was highly heritable as were the Norberg angles of either the right or left hips. After correction for pedigree effects, two QTLs were identified using the metrics of the left and right hips as separate data sets. Both are on canine chromosome 1 (CFA1), separated by about 95 Mb. One QTL, associated with the SSR marker FH2524 was significant for the left, but not the right hip. The other, associated with FH2598, was significant for the right but not the left hip. For both QTLs, some extreme phenotypes were best explained by specific interactions between haplotypes. Copyright 2003 Wiley-Liss, Inc.

  11. Mechanical behaviour of hamstring muscles in low-back pain patients and control subjects.

    PubMed

    Tafazzoli, F; Lamontagne, M

    1996-01-01

    The purpose of this study was to measure and compare the passive elastic moment, the stiffness and the damping coefficient of the hip joint, as functions of the hip and knee joint angles in men with and without low-back pain. Two conventional tests, the straight-leg-raising test and the trunk forward flexion, were also performed and compared between these subjects. The passive elastic moment was measured using an isokinetic device in the passive mode. This device raised the lower limb from the horizontal position to the straight-leg-raising angle at a slow and constant angular velocity. A custom-made splint connected with the lever arm of the isokinetic device maintained the knee in extension and the ankle in the neutral position. The damping coefficient of the hip joint was measured for 0, 15, 45, 60, 75 and 90% of straight leg raising angle of each subject, using the suspension method based on small oscillation theory. To ensure that muscles were inactive during the passive hip moment tests, muscle activity was monitored with surface EMG. The stiffness was computed as the ratio of the change in passive elastic moment to the change in the hip angle. The passive elastic moment, the stiffness and the normalized trunk flexion were significantly different between the two groups respectively. There was, however, no difference between the two groups in the results of straight-leg-raise and damping coefficient of the hip. The passive elastic moment was a nonlinear function of the hip flexion angle and showed large intersubject differences, especially as the joint limit was approached. The damping coefficient was a polynomial function of the hip flexion angle. The measured variables were analysed using a discriminant function and it was shown that the two groups were clearly discriminable in a meaningful manner.

  12. Potential roles for EVA and telerobotics in a unified worksite

    NASA Astrophysics Data System (ADS)

    Akin, David; Howard, Russel D.

    1993-02-01

    Although telerobotics and extravehicular activity (EVA) are often portrayed as competitive approaches to space operations, ongoing research in the Space Systems Laboratory (SSL) has demonstrated the utility of cooperative roles in an integrated EVA/telerobotic work site. Working in the neutral buoyancy simulation environment, tests were performed on interactive roles or EVA subjects and telerobots in structural assembly and satellite servicing tasks. In the most elaborate of these tests to date, EVA subjects were assisted by the SSL's Beam Assembly Teleoperator (BAT) in several servicing tasks planned for Hubble Space Telescope, using the high-fidelity crew training article in the NASA Marshall Neutral Buoyancy Simulator. These tests revealed several shortcomings in the design of BAT for satellite servicing and demonstrated the utility of a free-flying or RMS-mounted telerobot for providing EVA crew assistance. This paper documents the past tests, including the use of free-flying telerobots to effect the rescue of a simulated incapacitated EVA subject, and details planned future efforts in this area, including the testing of a new telerobotic system optimized for the satellite servicing role, the development of dedicated telerobotic devices designed specifically for assisting EVA crew, and conceptual approaches to advanced EVA/telerobotic operations such as the Astronaut Operations Vehicle.

  13. Role of EVA viscoelastic properties in the protective performance of a sport shoe: computational studies.

    PubMed

    Even-Tzur, Nurit; Weisz, Ety; Hirsch-Falk, Yifat; Gefen, Amit

    2006-01-01

    Modern sport shoes are designed to attenuate mechanical stress waves, mainly through deformation of the viscoelastic midsole which is typically made of ethylene vinyl acetate (EVA) foam. Shock absorption is obtained by flow of air through interconnected air cells in the EVA during shoe deformation under body-weight. However, when the shoe is overused and air cells collapse or thickness of the EVA is reduced, shock absorption capacity may be affected, and this may contribute to running injuries. Using lumped system and finite element models, we studied heel pad stresses and strains during heel-strike in running, considering the viscoelastic constitutive behavior of both the heel pad and EVA midsole. In particular, we simulated wear cases of the EVA, manifested in the modeling by reduced foam thickness, increased elastic stiffness, and shorter stress relaxation with respect to new shoe conditions. Simulations showed that heel pad stresses and strains were sensitive to viscous damping of the EVA. Wear of the EVA consistently increased heel pad stresses, and reduced EVA thickness was the most influential factor, e.g., for a 50% reduction in thickness, peak heel pad stress increased by 19%. We conclude that modeling of the heel-shoe interaction should consider the viscoelastic properties of the tissue and shoe components, and the age of the studied shoe.

  14. Joint design of large-tip-angle parallel RF pulses and blipped gradient trajectories.

    PubMed

    Cao, Zhipeng; Donahue, Manus J; Ma, Jun; Grissom, William A

    2016-03-01

    To design multichannel large-tip-angle kT-points and spokes radiofrequency (RF) pulses and gradient waveforms for transmit field inhomogeneity compensation in high field magnetic resonance imaging. An algorithm to design RF subpulse weights and gradient blip areas is proposed to minimize a magnitude least-squares cost function that measures the difference between realized and desired state parameters in the spin domain, and penalizes integrated RF power. The minimization problem is solved iteratively with interleaved target phase updates, RF subpulse weights updates using the conjugate gradient method with optimal control-based derivatives, and gradient blip area updates using the conjugate gradient method. Two-channel parallel transmit simulations and experiments were conducted in phantoms and human subjects at 7 T to demonstrate the method and compare it to small-tip-angle-designed pulses and circularly polarized excitations. The proposed algorithm designed more homogeneous and accurate 180° inversion and refocusing pulses than other methods. It also designed large-tip-angle pulses on multiple frequency bands with independent and joint phase relaxation. Pulses designed by the method improved specificity and contrast-to-noise ratio in a finger-tapping spin echo blood oxygen level dependent functional magnetic resonance imaging study, compared with circularly polarized mode refocusing. A joint RF and gradient waveform design algorithm was proposed and validated to improve large-tip-angle inversion and refocusing at ultrahigh field. © 2015 Wiley Periodicals, Inc.

  15. Effect of Forefoot Strike on Lower Extremity Muscle Activity and Knee Joint Angle During Cutting in Female Team Handball Players.

    PubMed

    Yoshida, Naruto; Kunugi, Shun; Mashimo, Sonoko; Okuma, Yoshihiro; Masunari, Akihiko; Miyazaki, Shogo; Hisajima, Tatsuya; Miyakawa, Shumpei

    2015-06-01

    The purpose of this study is to examine the effects of different strike forms, during cutting, on knee joint angle and lower limb muscle activity. Surface electromyography was used to measure muscle activity in individuals performing cutting manoeuvres involving either rearfoot strikes (RFS) or forefoot strikes (FFS). Three-dimensional motion analysis was used to calculate changes in knee angles, during cutting, and to determine the relationship between muscle activity and knee joint angle. Force plates were synchronized with electromyography measurements to compare muscle activity immediately before and after foot strike. The valgus angle tends to be smaller during FFS cutting than during RFS cutting. Just prior to ground contact, biceps femoris, semitendinosus, and lateral head of the gastrocnemius muscle activities were significantly greater during FFS cutting than during RFS cutting; tibialis anterior muscle activity was greater during RFS cutting. Immediately after ground contact, biceps femoris and lateral head of the gastrocnemius muscle activities were significantly greater during FFS cutting than during RFS cutting; tibialis anterior muscle activity was significantly lower during FFS cutting. The results of the present study suggest that the hamstrings demonstrate greater activity, immediately after foot strike, during FFS cutting than during RFS cutting. Thus, FFS cutting may involve a lower risk of anterior cruciate ligament injury than does RFS cutting.

  16. An Auto-Calibrating Knee Flexion-Extension Axis Estimator Using Principal Component Analysis with Inertial Sensors.

    PubMed

    McGrath, Timothy; Fineman, Richard; Stirling, Leia

    2018-06-08

    Inertial measurement units (IMUs) have been demonstrated to reliably measure human joint angles—an essential quantity in the study of biomechanics. However, most previous literature proposed IMU-based joint angle measurement systems that required manual alignment or prescribed calibration motions. This paper presents a simple, physically-intuitive method for IMU-based measurement of the knee flexion/extension angle in gait without requiring alignment or discrete calibration, based on computationally-efficient and easy-to-implement Principle Component Analysis (PCA). The method is compared against an optical motion capture knee flexion/extension angle modeled through OpenSim. The method is evaluated using both measured and simulated IMU data in an observational study ( n = 15) with an absolute root-mean-square-error (RMSE) of 9.24∘ and a zero-mean RMSE of 3.49∘. Variation in error across subjects was found, made emergent by the larger subject population than previous literature considers. Finally, the paper presents an explanatory model of RMSE on IMU mounting location. The observational data suggest that RMSE of the method is a function of thigh IMU perturbation and axis estimation quality. However, the effect size for these parameters is small in comparison to potential gains from improved IMU orientation estimations. Results also highlight the need to set relevant datums from which to interpret joint angles for both truth references and estimated data.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pern, F.J.; Eisgruber, I.L.; Micheels, R.H.

    The effects of ethylene-vinyl acetate (EVA) discoloration due to accelerated field or laboratory exposure on the encapsulated silicon (Si) solar cells or EVA/glass laminates were characterized quantitatively by using non-invasive, non-destructive ultraviolet-visible (UV-vis) spectrophotometry, spectrocolorimetry, spectrofluorometry, scanning laser OBIC (optical beam induced current) spectroscopy, and current-voltage (I-V) and quantum efficiency (QE) measurements. The results show that the yellowness index (YI) measured directly over the AR-coated solar cells under the glass superstrate increased from the range of {minus}80 to {minus}90 to the range of {minus}20 to 15 as the EVA changed from clear to brown. The ratio of two fluorescence emissionmore » peak areas generally increased from 1.45 to 5.69 as browning increased, but dropped to 4.21 on a darker EVA. For a solar cell with brown EVA in the central region, small-area grating QE measurements and scanning laser OBIC analysis between the brown and clear EVA regions showed that the quantum efficiency loss at 633 nm was 42%--48% of the loss at 488 nm, due to a reduced decrease of transmittance in browned EVA at the longer wavelengths. The portion of the solar cell under the browned EVA showed a decrease of {approximately}36% in efficiency, as compared to the cell efficiency under clear EVA. Transmittance loss at 633 nm was 38% of the loss at 488 nm for a light yellow-brown EVA/glass laminate that showed a small increase of 10 in the yellowness index.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pern, F.J.; Eisgruber, I.L.; Micheels, R.H.

    The effects of ethylene-vinyl acetate (EVA) discoloration due to accelerated field or laboratory exposure on the encapsulated silicon (Si) solar cells or EVA/glass laminates were characterized quantitatively by using non-invasive, non-destructive ultraviolet-visible (UV-vis) spectrophotometry, spectrocolorimetry, spectrofluorometry, scanning laser OBIC (optical beam induced current) spectroscopy, and current-voltage (I-V) and quantum efficiency (QE) measurements. The results show that the yellowness index (YI) measured directly over the AR-coated solar cells under the glass superstrate increased from the range of -80 to -90 to the range of -20 to 15 as the EVA changed from clear to brown. The ratio of two fluorescence emissionmore » peak areas generally increased from 1.45 to 5.69 as browning increased, but dropped to 4.21 on a darker EVA. For a solar cell with brown EVA in the central region, small-area grating QE measurements and scanning laser OBIC analysis between the brown and clear EVA regions showed that the quantum efficiency loss at 633 nm was 42%-48% of the loss at 488 nm, due to a reduced decrease of transmittance in browned EVA at the longer wavelengths. The portion of the solar cell under the browned EVA showed a decrease of {approximately}36% in efficiency, as compared to the cell efficiency under clear EVA. Transmittance loss at 633 nm was 38% of the loss at 488 nm for a light yellow-brown EVA/glass laminate that showed a small increase of 10 in the yellowness index.« less

  19. Clinically isolated enterovirus A71 subgenogroup C4 strain with lethal pathogenicity in 14-day-old mice and the application as an EV-A71 mouse infection model.

    PubMed

    Xu, Yi; Ma, Shuzhi; Zhu, Limeng; Huang, Zhiqiu; Chen, Liyun; Xu, Yuhua; Yin, Haibin; Peng, Tao; Wang, Yi

    2017-01-01

    The Enterovirus A71 (EV-A71) subgenogroup C4 is prevalent in China. EV-A71 causes hand, foot and mouth disease (HFMD) in children and may lead to severe neurological diseases. The development of antiviral and protective vaccines against EV-A71 is significantly hindered by the lack of suitable animal models to recapitulate human neurological symptoms. In this study, GZ-CII, a highly virulent EV-A71 subgenogroup C4 strain, was isolated from hospitalized children with HFMD. Intraperitoneal infections of GZ-CII resulted in progressive neurological disease in mice as old as 14 days. Administration of an inactivated EV-A71 vaccine or an anti-EV-A71 immune serum protected the mice against the GZ-CII infection. This demonstrated that a mouse model with EV-A71 GZ-CII could be used to evaluate potential vaccine candidates and therapeutics for subgenogroup C4. Comparing the genome sequence of GZ-CII with that of the avirulent EV-A71 subgenogroup C4 strain revealed unique mutations in GZ-CII. When mutation VP2-K149I was introduced into the nonpathogenic EV-A71 subgenogroup C4 strain, the variant similar to GZ-CII significantly increased viral replication and virulence in mice. These results indicated that the VP2-K149I mutation played an important role in enhancing the virulence of the EV-A71 subgenogroup C4 strain in mice, and that mice infected with the GZ-CII strain are a promising model for evaluating vaccines and therapeutics against the EV-A71 subgenogroup C4. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Use MACES IVA Suit for EVA Mobility Evaluations

    NASA Technical Reports Server (NTRS)

    Watson, Richard D.

    2014-01-01

    The use of an Intra-Vehicular Activity (IVA) suit for a spacewalk or Extra-Vehicular Activity (EVA) was evaluated for mobility and usability in the Neutral Buoyancy Lab (NBL) environment. The Space Shuttle Advanced Crew Escape Suit (ACES) has been modified (MACES) to integrate with the Orion spacecraft. The first several missions of the Orion MPCV spacecraft will not have mass available to carry an EVA specific suit so any EVA required will have to be performed by the MACES. Since the MACES was not designed with EVA in mind, it was unknown what mobility the suit would be able to provide for an EVA or if a person could perform useful tasks for an extended time inside the pressurized suit. The suit was evaluated in multiple NBL runs by a variety of subjects including crewmembers with significant EVA experience. Various functional mobility tasks performed included: translation, body positioning, carrying tools, body stabilization, equipment handling, and use of tools. Hardware configurations included with and without TMG, suit with IVA gloves and suit with EVA gloves. Most tasks were completed on ISS mockups with existing EVA tools. Some limited tasks were completed with prototype tools on a simulated rocky surface. Major findings include: demonstration of the ability to weigh-out the suit, understanding the need to have subjects perform multiple runs prior to getting feedback, determination of critical sizing factors, and need for adjustment of suit work envelop. The early testing has demonstrated the feasibility of EVA's limited duration and limited scope. Further testing is required with more flight like tasking and constraints to validate these early results. If the suit is used for EVA, it will require mission specific modifications for umbilical management or PLSS integration, safety tether attachment, and tool interfaces. These evaluations are continuing through calendar year 2014.

  1. Adhesion Strength Study of EVA Encapsulants on Glass Substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pern, F. J.; Glick, S. H.

    2003-05-01

    An extensive peel-test study was conducted to investigate the various factors that may affect the adhesion strength of photovoltaic module encapsulants, primarily ethylene-vinyl acetate (EVA), on glass substrates of various laminates based on a common configuration of glass/encapsulant/backfoil. The results show that"pure" or"absolute" adhesion strength of EVA-to-glass was very difficult to obtain because of tensile deformation of the soft, semi-elastic EVA layer upon pulling. A mechanically"strong enough" backing foil on the EVA was critical to achieving the"apparent" adhesion strength. Peel test method with a 90-degree-pull yielded similar results to a 180-degree-pull. The 90-degree-pull method better revealed the four stages ofmore » delamination failure of the EVA/backfoil layers. The adhesion strength is affected by a number of factors, which include EVA type, formulation, backfoil type and manufacturing source, glass type, and surface priming treatment on the glass surface or on the backfoil. Effects of the glass-cleaning method and surface texture are not obvious. Direct priming treatments used in the work did not improve, or even worsened, the adhesion. Aging of EVA by storage over~5 years reduced notably the adhesion strength. Lower adhesion strengths were observed for the blank (unformulated) EVA and non-EVA copolymers, such as poly(ethylene-co-methacrylate) (PEMA) or poly(ethylene-co-butylacrylate) (PEBA). Their adhesion strengths increased if the copolymers were cross-linked. Transparent fluoropolymer superstrates such as TefzelTM and DureflexTM films used for thin-film PV modules showed low adhesion strengths to the EVA at a level of~2 N/mm.« less

  2. Elbow joint angle and elbow movement velocity estimation using NARX-multiple layer perceptron neural network model with surface EMG time domain parameters.

    PubMed

    Raj, Retheep; Sivanandan, K S

    2017-01-01

    Estimation of elbow dynamics has been the object of numerous investigations. In this work a solution is proposed for estimating elbow movement velocity and elbow joint angle from Surface Electromyography (SEMG) signals. Here the Surface Electromyography signals are acquired from the biceps brachii muscle of human hand. Two time-domain parameters, Integrated EMG (IEMG) and Zero Crossing (ZC), are extracted from the Surface Electromyography signal. The relationship between the time domain parameters, IEMG and ZC with elbow angular displacement and elbow angular velocity during extension and flexion of the elbow are studied. A multiple input-multiple output model is derived for identifying the kinematics of elbow. A Nonlinear Auto Regressive with eXogenous inputs (NARX) structure based multiple layer perceptron neural network (MLPNN) model is proposed for the estimation of elbow joint angle and elbow angular velocity. The proposed NARX MLPNN model is trained using Levenberg-marquardt based algorithm. The proposed model is estimating the elbow joint angle and elbow movement angular velocity with appreciable accuracy. The model is validated using regression coefficient value (R). The average regression coefficient value (R) obtained for elbow angular displacement prediction is 0.9641 and for the elbow anglular velocity prediction is 0.9347. The Nonlinear Auto Regressive with eXogenous inputs (NARX) structure based multiple layer perceptron neural networks (MLPNN) model can be used for the estimation of angular displacement and movement angular velocity of the elbow with good accuracy.

  3. An articulated ankle-foot orthosis with adjustable plantarflexion resistance, dorsiflexion resistance and alignment: A pilot study on mechanical properties and effects on stroke hemiparetic gait

    PubMed Central

    Kobayashi, Toshiki; Orendurff, Michael S.; Hunt, Grace; Lincoln, Lucas S.; Gao, Fan; LeCursi, Nicholas; Foreman, K. Bo

    2017-01-01

    Mechanical properties of an articulated ankle-foot orthosis (AFO) are closely related to gait performance in individuals post-stroke. This paper presents a pilot study on the mechanical properties of a novel articulated AFO with adjustable plantarflexion resistance, dorsiflexion resistance and alignment, and its effect on ankle and knee joint kinematics and kinetics in an individual post-stroke during gait. The mechanical properties of the AFO were quantified. Gait analysis was performed using a 3D motion capture system with a split-belt instrumented treadmill under 12 different settings of the mechanical properties of the AFO [i.e. 4 plantarflexion resistances (P1

  4. Cluster-based exposure variation analysis

    PubMed Central

    2013-01-01

    Background Static posture, repetitive movements and lack of physical variation are known risk factors for work-related musculoskeletal disorders, and thus needs to be properly assessed in occupational studies. The aims of this study were (i) to investigate the effectiveness of a conventional exposure variation analysis (EVA) in discriminating exposure time lines and (ii) to compare it with a new cluster-based method for analysis of exposure variation. Methods For this purpose, we simulated a repeated cyclic exposure varying within each cycle between “low” and “high” exposure levels in a “near” or “far” range, and with “low” or “high” velocities (exposure change rates). The duration of each cycle was also manipulated by selecting a “small” or “large” standard deviation of the cycle time. Theses parameters reflected three dimensions of exposure variation, i.e. range, frequency and temporal similarity. Each simulation trace included two realizations of 100 concatenated cycles with either low (ρ = 0.1), medium (ρ = 0.5) or high (ρ = 0.9) correlation between the realizations. These traces were analyzed by conventional EVA, and a novel cluster-based EVA (C-EVA). Principal component analysis (PCA) was applied on the marginal distributions of 1) the EVA of each of the realizations (univariate approach), 2) a combination of the EVA of both realizations (multivariate approach) and 3) C-EVA. The least number of principal components describing more than 90% of variability in each case was selected and the projection of marginal distributions along the selected principal component was calculated. A linear classifier was then applied to these projections to discriminate between the simulated exposure patterns, and the accuracy of classified realizations was determined. Results C-EVA classified exposures more correctly than univariate and multivariate EVA approaches; classification accuracy was 49%, 47% and 52% for EVA (univariate and multivariate), and C-EVA, respectively (p < 0.001). All three methods performed poorly in discriminating exposure patterns differing with respect to the variability in cycle time duration. Conclusion While C-EVA had a higher accuracy than conventional EVA, both failed to detect differences in temporal similarity. The data-driven optimality of data reduction and the capability of handling multiple exposure time lines in a single analysis are the advantages of the C-EVA. PMID:23557439

  5. Bilateral Sequential Cochlear Implantation in Patients With Enlarged Vestibular Aqueduct (EVA) Syndrome.

    PubMed

    Manzoor, Nauman F; Wick, Cameron C; Wahba, Marian; Gupta, Amit; Piper, Robin; Murray, Gail S; Otteson, Todd; Megerian, Cliff A; Semaan, Maroun T

    2016-02-01

    To analyze audiometric outcomes after bilateral cochlear implantation in patients with isolated enlarged vestibular aqueduct (EVA) syndrome and associated incomplete partition (IP) malformations. Secondary objective was to analyze rate of cerebrospinal fluid (CSF) gusher in patients with IP-EVA spectrum deformities and compare this with the existing literature. Retrospective chart review. Thirty-two patients with EVA syndrome who received unilateral or bilateral cochlear implants between June 1999 and January 2014 were identified in the University Hospitals Case Medical Center cochlear implant database. Isolated EVA (IEVA) and Incomplete Partition Type II (IP-II) malformations were identified by reviewing high-resolution computed tomography (HRCT) imaging. Demographic information, age at implantation, surgical details, postimplantation audiometric data including speech reception thresholds (SRT), word, and sentence scores were reviewed and analyzed. Intra- and postoperative complications were analyzed as well and compared with the literature. Seventeen patients (32 implanted ears) had pediatric cochlear implantation for EVA-associated hearing loss. Data from 16 controls (32 implanted ears) were used to compare audiometric and speech outcomes of EVA cohort. Mean age at implantation was 6.8 years for EVA cohort and 6.0 years for controls. There was no statistically significant difference in long-term postoperative SRT, monaurally aided word scores, and binaurally tested word scores between pediatric EVA group and controls. The EVA patients had a long-term mean sentence score of 85.92%. A subset of EVA patients implanted at mean age of 3.18 years (n = 15 ears) had similar audiometric outcomes to another control group with Connexin 26 mutations (n = 20 ears) implanted at a similar age. Further subset analysis revealed no significant differences in age at implantation, SRT, and word scores in patients with IEVA and IP-II malformation. There was no significant association between size of vestibular aqueduct and age at implantation. There was no CSF gusher or other intra- or postoperative complications reported in our series. Bilateral sequential cochlear implantation can be performed safely in patients with EVA. Audiometric outcomes are excellent and comparable to pediatric cochlear implant patients with no malformations. CSF gusher rates can be minimized by trans-round window approach. Further long-term studies are needed to identify differences within IP-EVA spectrum deformities, audiometric outcomes, and proportions of EVA patients who will need cochlear implantation for hearing rehabilitation.

  6. Mathematical modelling as a tool to assessment of loads in volleyball player's shoulder joint during spike.

    PubMed

    Jurkojć, Jacek; Michnik, Robert; Czapla, Krzysztof

    2017-06-01

    This article deals with kinematic and kinetic conditions in volleyball attack and identifies loads in the shoulder joint. Joint angles and velocities of individual segments of upper limb were measured with the use of the motion capture system XSENS. Muscle forces and loads in skeletal system were calculated by means of mathematical model elaborated in AnyBody system. Spikes performed by players in the best and worst way were compared with each other. The relationships were found between reactions in shoulder joint and flexion/extension, abduction/adduction and rotation angles in the same joint and flexion/extension in the elbow joint. Reactions in shoulder joint varied from 591 N to 2001 N (in relation to body weight [BW] 83-328%). The analysis proved that hand velocity at the moment of the ball hit (which varied between 6.8 and 13.3 m s -1 ) influences on the value of reaction in joints, but positions of individual segments relative to each other are also crucial. It was also proved in objective way, that position of the upper limb during spike can be more or less harmful assuming that bigger reaction increases possibility of injury, what can be an indication for trainers and physiotherapists how to improve injury prevention.

  7. A kinematic analysis of the Space Station remote manipulator system (SSRMS)

    NASA Technical Reports Server (NTRS)

    Crane, Carl D., III; Duffy, Joseph; Carnahan, Tim

    1991-01-01

    An efficient reverse analysis of three 6-degree-of-freedom (dof) subchains of the 7-dof SSRMS is presented. The first subchain is formed by locking the seventh joint. The second subchain is formed by locking the second joint, while the third subchain is formed by locking the first joint (the grounded joint is counted as the first joint in the chain). There are a maximum of eight different arm configurations in each of the three subchains, and these were determined by employing a computer-efficient algorithm, which required the rooting of only at most quadratic polynomials. The algorithms were implemented, and the SSRMS was employed in an animated environment to perform and practice a number of useful tasks for Space Station servicing. The locking of the second joint has the advantage in that an operator can choose the orientation of the plane that contains the two longest links so as to avoid collisions with obstacles. However, it has the disadvantage that when the second joint angle equals 0 deg or 180 deg, the manipulator is in a singularity configuration. This plane can also be oriented by specifying the first joint angle, so that the plane can be oriented arbitrarily and, in this, the singularity is avoided.

  8. Mobile Phone-Based Joint Angle Measurement for Functional Assessment and Rehabilitation of Proprioception

    PubMed Central

    Mourcou, Quentin; Fleury, Anthony; Diot, Bruno; Franco, Céline; Vuillerme, Nicolas

    2015-01-01

    Assessment of joint functional and proprioceptive abilities is essential for balance, posture, and motor control rehabilitation. Joint functional ability refers to the capacity of movement of the joint. It may be evaluated thereby measuring the joint range of motion (ROM). Proprioception can be defined as the perception of the position and of the movement of various body parts in space. Its role is essential in sensorimotor control for movement acuity, joint stability, coordination, and balance. Its clinical evaluation is commonly based on the assessment of the joint position sense (JPS). Both ROM and JPS measurements require estimating angles through goniometer, scoliometer, laser-pointer, and bubble or digital inclinometer. With the arrival of Smartphones, these costly clinical tools tend to be replaced. Beyond evaluation, maintaining and/or improving joint functional and proprioceptive abilities by training with physical therapy is important for long-term management. This review aims to report Smartphone applications used for measuring and improving functional and proprioceptive abilities. It identifies that Smartphone applications are reliable for clinical measurements and are mainly used to assess ROM and JPS. However, there is lack of studies on Smartphone applications which can be used in an autonomous way to provide physical therapy exercises at home. PMID:26583101

  9. Walking to Olympus: An EVA Chronology

    NASA Technical Reports Server (NTRS)

    Portree, David S. F.; Trevino, Robert C.

    1997-01-01

    Spacewalkers enjoy a view of Earth once reserved for Apollo, Zeus, and other denizens of Mt. Olympus. During humanity's first extravehicular activity (EVA), Alexei Leonov floated above Gibraltar, the rock ancient seafarers saw as the gateway to the great unknown Atlantic. The symbolism was clear, Leonov stepped past a new Gibraltar when he stepped into space. More than 32 years and 154 EVAs later, Jerry Linenger conducted an EVA with Vladimir Tsibliyev as part of International Space Station Phase 1. They floated together above Gibraltar. Today the symbolism has new meaning: humanity is starting to think of stepping out of Earth orbit, space travel's new Gibraltar, and perhaps obtaining a new olympian view, a close-up look at Olympus Mons on Mars. Walking to Olympus: An EVA Chronology chronicles the 154 EVAs conducted from March 1965 to April 1997. It is intended to make clear the crucial role played by EVA in the history of spaceflight, as well as to chronicle the large body of EVA "lessons learned." Russia and the U.S. define EVA differently. Russian cosmonauts are said to perform EVA any time they are in vacuum in a space suit. A U.S. astronaut must have at least his head outside his spacecraft before he is said to perform an EVA. The difference is based in differing spacecraft design philoso- phies. Russian and Soviet spacecraft have always had a specialized airlock through which the EVA cosmonaut egressed, leaving the main habitable volume of the spacecraft pressurized. The U.S. Gemini and Apollo vehicles, on the other hand, depressurized their entire habitable volume for egress. In this document, we apply the Russian definition to Russian EVAS, and the U.S. definition to U.S. EVAS. Thus, for example, Gemini 4 Command Pilot James McDivitt does not share the honor of being first American spacewalker with Ed White, even though he was suited and in vacuum when White stepped out into space. Non-EVA spaceflights are listed in the chronology to provide context and to display the large num- ber of flights in which EVA played a role. This approach also makes apparent significant EVA gaps, for example, the U.S. gap between 1985 and 1991 following the Challenger accident. This NASA History Monograph is an edited extract from an extensive EVA Chronology and Reference Book being produced by the EVA Project Office, NASA Johnson Space Center, Houston, Texas. The larger work will be published as part of the NASA Formal Series in 1998. The authors gratefully acknowledge the assistance rendered by Max Ary, Ashot Bakunts, Gert-Jan Bartelds, Frank Cepollina, Andrew Chaikin, Phillip Clark, Richard Fullerton, Steven Glenn, Linda Godwin, Jennifer Green, Greg Harris, Clifford Hess, Jeffrey Hoffman, David Homan, Steven Hopkins, Nicholas Johnson, Eric Jones, Neville Kidger, Joseph Kosmo, Alexei Lebedev, Mark Lee, James LeBlanc, Dmitri Leshchenskii, Jerry Linenger, Igor Lissov, James McBarron, Clay McCullough, Joseph McMann, Story Musgrave, Dennis Newkirk, James Oberg, Joel Powell, Lee Saegesser, Andy Salmon, Glen Swanson, Joseph Tatarewicz, Kathy Thornton, Chris Vandenberg, Charles Vick, Bert Vis, David Woods, Mike Wright, John Young, and Keith Zimmerman. Special thanks to Laurie Buchanan, John Charles, Janet Kovacevich, Joseph Loftus, Sue McDonald, Martha Munies, Colleen Rapp, and Jerry Ross. Any errors remain the responsibility of the authors.

  10. Joint Angular Velocity in Spastic Gait and the Influence of Muscle-Tendon Lengthening*

    PubMed Central

    GRANATA, KEVIN P.; ABEL, MARK F.; DAMIANO, DIANE L.

    2006-01-01

    Background Joint angular velocity (the rate of flexion and extension of a joint) is related to the dynamics of muscle activation and force generation during walking. Therefore, the goal of this research was to examine the joint angular velocity in normal and spastic gait and changes resulting from muscle-tendon lengthening (recession and tenotomy) in patients who have spastic cerebral palsy. Methods The gait patterns of forty patients who had been diagnosed with spastic cerebral palsy (mean age, 8.3 years; range, 3.7 to 14.8 years) and of seventy-three age-matched, normally developing subjects were evaluated with three-dimensional motion analysis and electromyography. The patients who had cerebral palsy were evaluated before muscle-tendon lengthening and nine months after treatment. Results The gait patterns of the patients who had cerebral palsy were characterized by increased flexion of the knee in the stance phase, premature plantar flexion of the ankle, and reduced joint angular velocities compared with the patterns of the normally developing subjects. Even though muscle-tendon lengthening altered sagittal joint angles in gait, the joint angular velocities were generally unchanged at the hip and knee. Only the ankle demonstrated modified angular velocities, including reduced dorsiflexion velocity at foot-strike and improved dorsiflexion velocity through midstance, after treatment. Electromyographic changes included reduced amplitude of the gastrocnemius-soleus during the loading phase and decreased knee coactivity (the ratio of quadriceps and hamstring activation) at toe-off. Principal component analyses showed that, compared with joint-angle data, joint angular velocity was better able to discriminate between the gait patterns of the normal and cerebral palsy groups. Conclusions This study showed that muscle-tendon lengthening corrects biomechanical alignment as reflected by changes in sagittal joint angles. However, joint angular velocity and electromyographic data suggest that the underlying neural input remains largely unchanged at the hip and knee. Conversely, electromyographic changes and changes in velocity in the ankle indicate that the activation pattern of the gastrocnemius-soleus complex in response to stretch was altered by recession of the complex. PMID:10682726

  11. Alterations in walking knee joint stiffness in individuals with knee osteoarthritis and self-reported knee instability.

    PubMed

    Gustafson, Jonathan A; Gorman, Shannon; Fitzgerald, G Kelley; Farrokhi, Shawn

    2016-01-01

    Increased walking knee joint stiffness has been reported in patients with knee osteoarthritis (OA) as a compensatory strategy to improve knee joint stability. However, presence of episodic self-reported knee instability in a large subgroup of patients with knee OA may be a sign of inadequate walking knee joint stiffness. The objective of this work was to evaluate the differences in walking knee joint stiffness in patients with knee OA with and without self-reported instability and examine the relationship between walking knee joint stiffness with quadriceps strength, knee joint laxity, and varus knee malalignment. Overground biomechanical data at a self-selected gait velocity was collected for 35 individuals with knee OA without self-reported instability (stable group) and 17 individuals with knee OA and episodic self-reported instability (unstable group). Knee joint stiffness was calculated during the weight-acceptance phase of gait as the change in the external knee joint moment divided by the change in the knee flexion angle. The unstable group walked with lower knee joint stiffness (p=0.01), mainly due to smaller heel-contact knee flexion angles (p<0.01) and greater knee flexion excursions (p<0.01) compared to their knee stable counterparts. No significant relationships were observed between walking knee joint stiffness and quadriceps strength, knee joint laxity or varus knee malalignment. Reduced walking knee joint stiffness appears to be associated with episodic knee instability and independent of quadriceps muscle weakness, knee joint laxity or varus malalignment. Further investigations of the temporal relationship between self-reported knee joint instability and walking knee joint stiffness are warranted. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Alterations in walking knee joint stiffness in individuals with knee osteoarthritis and self-reported knee instability

    PubMed Central

    Gustafson, Jonathan A.; Gorman, Shannon; Fitzgerald, G. Kelley; Farrokhi, Shawn

    2017-01-01

    Increased walking knee joint stiffness has been reported in patients with knee osteoarthritis (OA) as a compensatory strategy to improve knee joint stability. However, presence of episodic self-reported knee instability in a large subgroup of patients with knee OA may be a sign of inadequate walking knee joint stiffness. The objective of this work was to evaluate the differences in walking knee joint stiffness in patients with knee OA with and without self-reported instability and examine the relationship between walking knee joint stiffness with quadriceps strength, knee joint laxity, and varus knee malalignment. Overground biomechanical data at a self-selected gait velocity was collected for 35 individuals with knee OA without self-reported instability (stable group) and 17 individuals with knee OA and episodic self-reported instability (unstable group). Knee joint stiffness was calculated during the weight-acceptance phase of gait as the change in the external knee joint moment divided by the change in the knee flexion angle. The unstable group walked with lower knee joint stiffness (p=0.01), mainly due to smaller heel-contact knee flexion angles (p<0.01) and greater knee flexion excursions (p<0.01) compared to their knee stable counterparts. No significant relationships were observed between walking knee joint stiffness and quadriceps strength, knee joint laxity or varus knee malalignment. Reduced walking knee joint stiffness appears to be associated with episodic knee instability and independent of quadriceps muscle weakness, knee joint laxity or varus malalignment. Further investigations of the temporal relationship between self-reported knee joint instability and walking knee joint stiffness are warranted. PMID:26481256

  13. Lower extremity kinematics during walking and elliptical training in individuals with and without traumatic brain injury.

    PubMed

    Buster, Thad; Burnfield, Judith; Taylor, Adam P; Stergiou, Nicholas

    2013-12-01

    Elliptical training may be an option for practicing walking-like activity for individuals with traumatic brain injuries (TBI). Understanding similarities and differences between participants with TBI and neurologically healthy individuals during elliptical trainer use and walking may help guide clinical applications incorporating elliptical trainers. Ten participants with TBI and a comparison group of 10 neurologically healthy participants underwent 2 familiarization sessions and 1 data collection session. Kinematic data were collected as participants walked on a treadmill or on an elliptical trainer. Gait-related measures, including coefficient of multiple correlations (a measure of similarity between ensemble joint movement profiles; coefficient of multiple correlations [CMCs]), critical event joint angles, variability of peak critical event joint angles (standard deviations [SDs]) of peak critical event joint angles, and maximum Lyapunov exponents (a measure of the organization of the variability [LyEs]) were compared between groups and conditions. Coefficient of multiple correlations values comparing the similarity in ensemble motion profiles between the TBI and comparison participants exceeded 0.85 for the hip, knee, and ankle joints. The only critical event joint angle that differed significantly between participants with TBI and comparison participants was the ankle during terminal stance. Variability was higher for the TBI group (6 of 11 comparisons significant) compared with comparison participants. Hip and knee joint movement patterns of both participants with TBI and comparison participants on the elliptical trainer were similar to walking (CMCs ≥ 0.87). Variability was higher during elliptical trainer usage compared with walking (5 of 11 comparisons significant). Hip LyEs were higher during treadmill walking. Ankle LyEs were greater during elliptical trainer usage. Movement patterns of participants with TBI were similar to, but more variable than, those of comparison participants while using both the treadmill and the elliptical trainer. If incorporation of complex movements similar to walking is a goal of rehabilitation, elliptical training is a reasonable alternative to treadmill-based training.Video Abstract available (see Video, Supplemental Digital Content 1, http://links.lww.com/JNPT/A65) for more insights from the authors.

  14. ChEVAS: Combining Suprarenal EVAS with Chimney Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torella, Francesco, E-mail: f.torella@liverpool.ac.uk; Chan, Tze Y., E-mail: tze.chan@rlbuht.nhs.uk; Shaikh, Usman, E-mail: usman.shaikh@rlbuht.nhs.uk

    2015-10-15

    Endovascular sealing with the Nellix{sup ®} endoprosthesis (EVAS) is a new technique to treat infrarenal abdominal aortic aneurysms. We describe the use of endovascular sealing in conjunction with chimney stents for the renal arteries (chEVAS) in two patients, one with a refractory type Ia endoleak and an expanding aneurysm, and one with a large juxtarenal aneurysm unsuitable for fenestrated endovascular repair (EVAR). Both aneurysms were successfully excluded. Our report confirms the utility of chEVAS in challenging cases, where suprarenal seal is necessary. We suggest that, due to lack of knowledge on its durability, chEVAS should only been considered when moremore » conventional treatment modalities (open repair and fenestrated EVAR) are deemed difficult or unfeasible.« less

  15. Correlation between surface carbon concentration and adhesive strength at the Si cell/EVA interface in a PV module

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhere, N.G.; Wollam, M.E.; Gadre, K.S.

    1997-12-31

    Silicon solar cell/EVA composite is being studied with an objective to further improve the manufacturing technology of PV modules. Sample extraction and adhesion strength measurement process has been modified. Silicon and EVA samples were extracted from solar cells of new and field-deployed modules. Optical microscopy, SEM, and AES of samples from new modules revealed EVA islands covering most of the silicon cell surface indicating a cohesive failure. A good correlation was observed between the adhesive strength and surface concentration of carbon. A low carbon concentration which indicated less EVA clinging to cell surface always resulted in low adhesive strengths. Themore » correlation provides a simple technique for inferring properties of EVA.« less

  16. Morphometric assessment of hip dysplasia in a cat treated by juvenile pubic symphysiodesis.

    PubMed

    Lai, Alen; Culvenor, John; Bailey, Craig

    2016-09-20

    To quantitatively evaluate the change of the coxofemoral joints using computed tomography and distraction index in a cat with hip dysplasia treated by juvenile pubic symphysiodesis. Case report. Eighteen-week-old female entire Maine Coon cat. Juvenile pubic symphysiodesis resulted in changes in the distraction index, acetabular angle, dorsal acetabular rim angle, dorsal acetabular sector angle, and clinical improvement at the six month follow-up. No intra-operative or postoperative complications were recorded. Juvenile pubic symphysiodesis performed at 18 weeks of age resulted in improvement in hip joint conformation and hip laxity in a dysplastic cat. Juvenile pubic symphysiodesis may be a promising treatment for feline hip dysplasia and is a safe and technically simple procedure to perform. Further investigations are warranted.

  17. Near-field non-radial motion generation from underground chemical explosions in jointed granite

    NASA Astrophysics Data System (ADS)

    Vorobiev, Oleg; Ezzedine, Souheil; Hurley, Ryan

    2018-01-01

    This paper describes analysis of non-radial ground motion generated by chemical explosions in a jointed rock formation during the Source Physics Experiment (SPE). Such motion makes it difficult to discriminate between various subsurface events such as explosions, implosions (i.e. mine collapse) and earthquakes. We apply 3-D numerical simulations to understand experimental data collected during the SPEs. The joints are modelled explicitly as compliant thin inclusions embedded into the rock mass. Mechanical properties of the rock and the joints as well as the joint spacing and orientation are inferred from experimental test data, and geophysical and geological characterization of the SPE site which is dominantly Climax Stock granitic outcrop. The role of various factors characterizing the joints such as joint spacing, frictional properties, orientation and persistence in generation of non-radial motion is addressed. The joints in granite at the SPE site are oriented in nearly orthogonal directions with two vertical sets dipping at 70-80 degrees with the same strike angle, one vertical set almost orthogonal to the first two and one shallow angle joint set dipping 15 degrees. In this study we establish the relationship between the joint orientation and azimuthal variations in the polarity of the observed shear motion. The majority of the shear motion is generated due to the effects of non-elastic sliding on the joints near the source, where the wave can create significant shear stress to overcome the cohesive forces at the joints. Near the surface the joints are less confined and are subject to sliding when the pressure waves are reflected. In the far field, where the cohesive forces on the joints cannot be overcome, additional shear motion can be generated due to elastic anisotropy of the rock mass given by preferred spatial orientations of compliant joints.

  18. Contribution of calcaneal and leg segment rotations to ankle joint dorsiflexion in a weight-bearing task.

    PubMed

    Chizewski, Michael G; Chiu, Loren Z F

    2012-05-01

    Joint angle is the relative rotation between two segments where one is a reference and assumed to be non-moving. However, rotation of the reference segment will influence the system's spatial orientation and joint angle. The purpose of this investigation was to determine the contribution of leg and calcaneal rotations to ankle rotation in a weight-bearing task. Forty-eight individuals performed partial squats recorded using a 3D motion capture system. Markers on the calcaneus and leg were used to model leg and calcaneal segment, and ankle joint rotations. Multiple linear regression was used to determine the contribution of leg and calcaneal segment rotations to ankle joint dorsiflexion. Regression models for left (R(2)=0.97) and right (R(2)=0.97) ankle dorsiflexion were significant. Sagittal plane leg rotation had a positive influence (left: β=1.411; right: β=1.418) while sagittal plane calcaneal rotation had a negative influence (left: β=-0.573; right: β=-0.650) on ankle dorsiflexion. Sagittal plane rotations of the leg and calcaneus were positively correlated (left: r=0.84, P<0.001; right: r=0.80, P<0.001). During a partial squat, the calcaneus rotates forward. Simultaneous forward calcaneal rotation with ankle dorsiflexion reduces total ankle dorsiflexion angle. Rear foot posture is reoriented during a partial squat, allowing greater leg rotation in the sagittal plane. Segment rotations may provide greater insight into movement mechanics that cannot be explained via joint rotations alone. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Effect of PEG6000 on the in vitro and in vivo transdermal permeation of ondansetron hydrochloride from EVA1802 membranes.

    PubMed

    Krishnaiah, Yellela S R; Rama, Bukka; Raghumurthy, Vanambattina; Ramanamurthy, Kolapalli V; Satyanarayana, Vemulapalli

    2009-01-01

    The objective was to evaluate ethylene vinyl acetate (EVA) copolymer membranes with vinyl acetate content of 18% w/w (EVA1802) for transdermal delivery of ondansetron hydrochloride. The EVA1802 membranes containing selected concentrations (0, 5, 10 and 15% w/w) of PEG6000 were prepared, and subjected to in vitro permeation studies from a nerodilol-based drug reservoir. Flux of ondansetron from EVA1802 membranes without PEG6000 was 64.1 +/- 0.6 microg/cm(2.)h, and with 10%w/w of PEG6000 (EVA1802-PEG6000-10) it increased to 194.9 +/- 4.6 microg/cm(2.)h. However, with 15%w/w of PEG6000, EVA1802 membranes produced a burst release of drug which in turn decreased drug flux. The EVA1802-PEG6000-10 membrane was coated with an adhesive emulsion, applied to rat epidermis and subjected to in vitro permeation studies against controls. Flux of ondansetron from transdermal patch across rat epidermis was 111.7 +/- 1.3 microg/cm(2.)h, which is about 1.3 times the required flux. A TTS was fabricated using adhesive-coated EVA1802-PEG6000-10 membrane and other TTS components, and subjected to in vivo delivery in human volunteers against a control. It was concluded from the comparative pharmacokinetic study that TTS of ondansetron, prepared with EVA1802-PEG6000-10 membrane, provided average steady-state plasma concentration on par with multiple-dosed oral tablets, but with a low percent of peak-to-trough fluctuation.

  20. Self-Control and Emotional and Verbal Aggression in Dating Relationships: A Dyadic Understanding.

    PubMed

    Baker, Elizabeth A; Klipfel, Katherine M; van Dulmen, Manfred H M

    2016-08-01

    Guided by the dynamic developmental systems perspective, this study extends past research by examining the association between self-control and emotional and verbal aggression (EVA) using a dyadic multi-method design. Guided by empirical research and the dynamic developmental systems perspective, we hypothesized that (a) there would be a negative association between one's own self-control and one's own perpetration of EVA and (b) there would also be a negative association between one's partner's self-control and one's own perpetration of EVA. One hundred twenty heterosexual dating couples (ages 18-25 years) provided data on self-control (Grasmick et al.'s Low Self-Control Scale; reverse scored for ease of interpretation), self-reported perpetration of EVA (Emotional and Verbal Abuse subscale of the Conflict in Adolescent Dating Relationships Inventory), and observationally assessed perpetration of EVA. Data were analyzed using path analyses within the Actor-Partner Interdependence Model (APIM) framework. Consistent with previous findings, we found that self-control was negatively associated with the perpetration of EVA. Furthermore, we found partner effects, such that female-but not male-self-control predicted partner-observed perpetration of EVA. These findings highlight the importance of examining risk factors for EVA of both partners. Our findings also suggest that the association between self-control and EVA is partially a function of whether EVA is assessed through self-report or observational methodology. This highlights the need to conduct multi-method assessments in future research. As discussed in the article, our findings have implications for theories on intimate partner violence, study designs, and couple interventions.

Top