Sample records for evacuation modeling system

  1. A microcomputer based traffic evacuation modeling system for emergency planning application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rathi, A.K.

    1994-12-01

    Vehicular evacuation is one of the major and often preferred protective action options available for emergency management in a real or anticipated disaster. Computer simulation models of evacuation traffic flow are used to estimate the time required for the affected populations to evacuate to safer areas, to evaluate effectiveness of vehicular evacuations as a protective action option. and to develop comprehensive evacuation plans when required. Following a review of the past efforts to simulate traffic flow during emergency evacuations, an overview of the key features in Version 2.0 of the Oak Ridge Evacuation Modeling System (OREMS) are presented in thismore » paper. OREMS is a microcomputer-based model developed to simulate traffic flow during regional emergency evacuations. OREMS integrates a state-of-the-art dynamic traffic flow and simulation model with advanced data editing and output display programs operating under a MS-Windows environment.« less

  2. A Global System for Transportation Simulation and Visualization in Emergency Evacuation Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Wei; Liu, Cheng; Thomas, Neil

    2015-01-01

    Simulation-based studies are frequently used for evacuation planning and decision making processes. Given the transportation systems complexity and data availability, most evacuation simulation models focus on certain geographic areas. With routine improvement of OpenStreetMap road networks and LandScanTM global population distribution data, we present WWEE, a uniform system for world-wide emergency evacuation simulations. WWEE uses unified data structure for simulation inputs. It also integrates a super-node trip distribution model as the default simulation parameter to improve the system computational performance. Two levels of visualization tools are implemented for evacuation performance analysis, including link-based macroscopic visualization and vehicle-based microscopic visualization. Formore » left-hand and right-hand traffic patterns in different countries, the authors propose a mirror technique to experiment with both scenarios without significantly changing traffic simulation models. Ten cities in US, Europe, Middle East, and Asia are modeled for demonstration. With default traffic simulation models for fast and easy-to-use evacuation estimation and visualization, WWEE also retains the capability of interactive operation for users to adopt customized traffic simulation models. For the first time, WWEE provides a unified platform for global evacuation researchers to estimate and visualize their strategies performance of transportation systems under evacuation scenarios.« less

  3. 76 FR 15229 - Airworthiness Directives; Goodrich Evacuation Systems Approved Under Technical Standard Order...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-21

    ... Evacuation Systems Approved Under Technical Standard Order (TSO) TSO-C69b and Installed on Airbus Model A330-200 and -300 Series Airplanes, Model A340-200 and -300 Series Airplanes, and Model A340-541 and -642... evacuation systems approved under TSO- C69b and installed on certain Model A330-200 and -300 series airplanes...

  4. Study on queueing behavior in pedestrian evacuation by extended cellular automata model

    NASA Astrophysics Data System (ADS)

    Hu, Jun; You, Lei; Zhang, Hong; Wei, Juan; Guo, Yangyong

    2018-01-01

    This paper proposes a pedestrian evacuation model for effective simulation of evacuation efficiency based on extended cellular automata. In the model, pedestrians' momentary transition probability to a target position is defined in terms of the floor field and queueing time, and the critical time is defined as the waiting time threshold in a queue. Queueing time and critical time are derived using Fractal Brownian Motion through analysis of pedestrian arrival characteristics. Simulations using the platform and actual evacuations were conducted to study the relationships among system evacuation time, average system velocity, pedestrian density, flow rate, and critical time. The results demonstrate that at low pedestrian density, evacuation efficiency can be improved through adoption of the shortest route strategy, and critical time has an inverse relationship with average system velocity. Conversely, at higher pedestrian densities, it is better to adopt the shortest queueing time strategy, and critical time is inversely related to flow rate.

  5. A spatiotemporal optimization model for the evacuation of the population exposed to flood hazard

    NASA Astrophysics Data System (ADS)

    Alaeddine, H.; Serrhini, K.; Maizia, M.

    2015-03-01

    Managing the crisis caused by natural disasters, and especially by floods, requires the development of effective evacuation systems. An effective evacuation system must take into account certain constraints, including those related to traffic network, accessibility, human resources and material equipment (vehicles, collecting points, etc.). The main objective of this work is to provide assistance to technical services and rescue forces in terms of accessibility by offering itineraries relating to rescue and evacuation of people and property. We consider in this paper the evacuation of an urban area of medium size exposed to the hazard of flood. In case of inundation, most people will be evacuated using their own vehicles. Two evacuation types are addressed in this paper: (1) a preventive evacuation based on a flood forecasting system and (2) an evacuation during the disaster based on flooding scenarios. The two study sites on which the developed evacuation model is applied are the Tours valley (Fr, 37), which is protected by a set of dikes (preventive evacuation), and the Gien valley (Fr, 45), which benefits from a low rate of flooding (evacuation before and during the disaster). Our goal is to construct, for each of these two sites, a chronological evacuation plan, i.e., computing for each individual the departure date and the path to reach the assembly point (also called shelter) according to a priority list established for this purpose. The evacuation plan must avoid the congestion on the road network. Here we present a spatiotemporal optimization model (STOM) dedicated to the evacuation of the population exposed to natural disasters and more specifically to flood risk.

  6. A spatio-temporel optimization model for the evacuation of the population exposed to natural disasters

    NASA Astrophysics Data System (ADS)

    Alaeddine, H.; Serrhini, K.; Maïzia, M.; Néron, E.

    2015-01-01

    The importance of managing the crisis caused by natural disasters, and especially by flood, requires the development of an effective evacuation systems. An effective evacuation system must take into account certain constraints, including those related to network traffic, accessibility, human resources and material equipment (vehicles, collecting points, etc.). The main objective of this work is to provide assistance to technical services and rescue forces in terms of accessibility by offering itineraries relating to rescue and evacuation of people and property. We consider in this paper the evacuation of an urban area of medium size exposed to the hazard of flood. In case of inundation, most people will be evacuated using their own vehicles. Two evacuation types are addressed in this paper, (1) a preventive evacuation based on a flood forecasting system and (2) an evacuation during the disaster based on flooding scenarios. The two study sites on which the evacuation model developed is applied are the valley of Tours (Fr, 37) which is protected by a set of dikes (preventive evacuation) and the valley of Gien (Fr, 45) which benefits of a low rate of flooding (evacuation before and during the disaster). Our goal is to construct, for each of these two sites, a chronological evacuation plan i.e. computing for each individual the departure date and the path to reach the assembly point (also called shelter) associated according to a priorities list established for this purpose. Evacuation plan must avoid the congestion on the road network. Here we present a Spatio-Temporal Optimization Model (STOM) dedicated to the evacuation of the population exposed to natural disasters and more specifically to flood risk.

  7. The application of Firefly algorithm in an Adaptive Emergency Evacuation Centre Management (AEECM) for dynamic relocation of flood victims

    NASA Astrophysics Data System (ADS)

    ChePa, Noraziah; Hashim, Nor Laily; Yusof, Yuhanis; Hussain, Azham

    2016-08-01

    Flood evacuation centre is defined as a temporary location or area of people from disaster particularly flood as a rescue or precautionary measure. Gazetted evacuation centres are normally located at secure places which have small chances from being drowned by flood. However, due to extreme flood several evacuation centres in Kelantan were unexpectedly drowned. Currently, there is no study done on proposing a decision support aid to reallocate victims and resources of the evacuation centre when the situation getting worsens. Therefore, this study proposes a decision aid model to be utilized in realizing an adaptive emergency evacuation centre management system. This study undergoes two main phases; development of algorithm and models, and development of a web-based and mobile app. The proposed model operates using Firefly multi-objective optimization algorithm that creates an optimal schedule for the relocation of victims and resources for an evacuation centre. The proposed decision aid model and the adaptive system can be applied in supporting the National Security Council's respond mechanisms for handling disaster management level II (State level) especially in providing better management of the flood evacuating centres.

  8. A microcomputer based traffic evacuation modeling system for emergency planning application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rathi, A.K.

    1995-12-31

    The US Army stockpiles unitary chemical weapons, both as bulk chemicals and as munitions, at eight major sites in the United States. The continued storage and disposal of the chemical stockpile has the potential for accidental releases of toxic gases that could escape the installation boundaries and pose a threat to the civilian population in the vicinity. Vehicular evacuation is one of the major and often preferred protective action options available for emergency management in a real or anticipated disaster. Computer simulation models of evacuation traffic flow are used to estimate the time required for the affected populations to evacuatemore » to safer areas, to evaluate effectiveness of vehicular evacuations as a protective action option, and to develop comprehensive evacuation plans when required. Following a review of the past efforts to simulate traffic flow during emergency evacuations, an overview of the key features in Version 2.0 of the Oak Ridge Evacuation Modeling System (OREMS) are presented in this paper. OREMS is a microcomputer-based model developed to simulate traffic flow during regional emergency evacuations. OREMS integrates a state-of-the-art dynamic traffic flow and simulation model with advanced data editing and output display programs operating under a MS-Windows environment.« less

  9. Experiment and modeling of paired effect on evacuation from a three-dimensional space

    NASA Astrophysics Data System (ADS)

    Jun, Hu; Huijun, Sun; Juan, Wei; Xiaodan, Chen; Lei, You; Musong, Gu

    2014-10-01

    A novel three-dimensional cellular automata evacuation model was proposed based on stairs factor for paired effect and variety velocities in pedestrian evacuation. In the model pedestrians' moving probability of target position at the next moment was defined based on distance profit and repulsive force profit, and evacuation strategy was elaborated in detail through analyzing variety velocities and repulsive phenomenon in moving process. At last, experiments with the simulation platform were conducted to study the relationships of evacuation time, average velocity and pedestrian velocity. The results showed that when the ratio of single pedestrian was higher in the system, the shortest route strategy was good for improving evacuation efficiency; in turn, if ratio of paired pedestrians was higher, it is good for improving evacuation efficiency to adopt strategy that avoided conflicts, and priority should be given to scattered evacuation.

  10. Simulating large-scale pedestrian movement using CA and event driven model: Methodology and case study

    NASA Astrophysics Data System (ADS)

    Li, Jun; Fu, Siyao; He, Haibo; Jia, Hongfei; Li, Yanzhong; Guo, Yi

    2015-11-01

    Large-scale regional evacuation is an important part of national security emergency response plan. Large commercial shopping area, as the typical service system, its emergency evacuation is one of the hot research topics. A systematic methodology based on Cellular Automata with the Dynamic Floor Field and event driven model has been proposed, and the methodology has been examined within context of a case study involving the evacuation within a commercial shopping mall. Pedestrians walking is based on Cellular Automata and event driven model. In this paper, the event driven model is adopted to simulate the pedestrian movement patterns, the simulation process is divided into normal situation and emergency evacuation. The model is composed of four layers: environment layer, customer layer, clerk layer and trajectory layer. For the simulation of movement route of pedestrians, the model takes into account purchase intention of customers and density of pedestrians. Based on evacuation model of Cellular Automata with Dynamic Floor Field and event driven model, we can reflect behavior characteristics of customers and clerks at the situations of normal and emergency evacuation. The distribution of individual evacuation time as a function of initial positions and the dynamics of the evacuation process is studied. Our results indicate that the evacuation model using the combination of Cellular Automata with Dynamic Floor Field and event driven scheduling can be used to simulate the evacuation of pedestrian flows in indoor areas with complicated surroundings and to investigate the layout of shopping mall.

  11. An interval-parameter mixed integer multi-objective programming for environment-oriented evacuation management

    NASA Astrophysics Data System (ADS)

    Wu, C. Z.; Huang, G. H.; Yan, X. P.; Cai, Y. P.; Li, Y. P.

    2010-05-01

    Large crowds are increasingly common at political, social, economic, cultural and sports events in urban areas. This has led to attention on the management of evacuations under such situations. In this study, we optimise an approximation method for vehicle allocation and route planning in case of an evacuation. This method, based on an interval-parameter multi-objective optimisation model, has potential for use in a flexible decision support system for evacuation management. The modeling solutions are obtained by sequentially solving two sub-models corresponding to lower- and upper-bounds for the desired objective function value. The interval solutions are feasible and stable in the given decision space, and this may reduce the negative effects of uncertainty, thereby improving decision makers' estimates under different conditions. The resulting model can be used for a systematic analysis of the complex relationships among evacuation time, cost and environmental considerations. The results of a case study used to validate the proposed model show that the model does generate useful solutions for planning evacuation management and practices. Furthermore, these results are useful for evacuation planners, not only in making vehicle allocation decisions but also for providing insight into the tradeoffs among evacuation time, environmental considerations and economic objectives.

  12. A fuzzy-theory-based behavioral model for studying pedestrian evacuation from a single-exit room

    NASA Astrophysics Data System (ADS)

    Fu, Libi; Song, Weiguo; Lo, Siuming

    2016-08-01

    Many mass events in recent years have highlighted the importance of research on pedestrian evacuation dynamics. A number of models have been developed to analyze crowd behavior under evacuation situations. However, few focus on pedestrians' decision-making with respect to uncertainty, vagueness and imprecision. In this paper, a discrete evacuation model defined on the cellular space is proposed according to the fuzzy theory which is able to describe imprecise and subjective information. Pedestrians' percept information and various characteristics are regarded as fuzzy input. Then fuzzy inference systems with rule bases, which resemble human reasoning, are established to obtain fuzzy output that decides pedestrians' movement direction. This model is tested in two scenarios, namely in a single-exit room with and without obstacles. Simulation results reproduce some classic dynamics phenomena discovered in real building evacuation situations, and are consistent with those in other models and experiments. It is hoped that this study will enrich movement rules and approaches in traditional cellular automaton models for evacuation dynamics.

  13. Development of a decision support system for tsunami evacuation: application to the Jiyang District of Sanya city in China

    NASA Astrophysics Data System (ADS)

    Hou, Jingming; Yuan, Ye; Wang, Peitao; Ren, Zhiyuan; Li, Xiaojuan

    2017-03-01

    Major tsunami disasters often cause great damage in the first few hours following an earthquake. The possible severity of such events requires preparations to prevent tsunami disasters or mitigate them. This paper is an attempt to develop a decision support system for rapid tsunami evacuation for local decision makers. Based on the numerical results database of tsunami disasters, this system can quickly obtain the tsunami inundation and travel time. Because numerical models are calculated in advance, this system can reduce decision-making time. Population distribution, as a vulnerability factor, was analyzed to identify areas of high risk for tsunami disasters. Combined with spatial data, this system can comprehensively analyze the dynamic and static evacuation process and identify problems that negatively impact evacuation, thus supporting the decision-making for tsunami evacuation in high-risk areas. When an earthquake and tsunami occur, this system can rapidly obtain the tsunami inundation and travel time and provide information to assist with tsunami evacuation operations.

  14. A methodology for evacuation design for urban areas: theoretical aspects and experimentation

    NASA Astrophysics Data System (ADS)

    Russo, F.; Vitetta, A.

    2009-04-01

    This paper proposes an unifying approach for the simulation and design of a transportation system under conditions of incoming safety and/or security. Safety and security are concerned with threats generated by very different factors and which, in turn, generate emergency conditions, such as the 9/11, Madrid and London attacks, the Asian tsunami, and the Katrina hurricane; just considering the last five years. In transportation systems, when exogenous events happen and there is a sufficient interval time between the instant when the event happens and the instant when the event has effect on the population, it is possible to reduce the negative effects with the population evacuation. For this event in every case it is possible to prepare with short and long term the evacuation. For other event it is possible also to plan the real time evacuation inside the general risk methodology. The development of models for emergency conditions in transportation systems has not received much attention in the literature. The main findings in this area are limited to only a few public research centres and private companies. In general, there is no systematic analysis of the risk theory applied in the transportation system. Very often, in practice, the vulnerability and exposure in the transportation system are considered as similar variables, or in other worse cases the exposure variables are treated as vulnerability variables. Models and algorithms specified and calibrated in ordinary conditions cannot be directly applied in emergency conditions under the usual hypothesis considered. This paper is developed with the following main objectives: (a) to formalize the risk problem with clear diversification (for the consequences) in the definition of the vulnerability and exposure in a transportation system; thus the book offers improvements over consolidated quantitative risk analysis models, especially transportation risk analysis models (risk assessment); (b) to formalize a system of models for evacuation simulation; (c) to calibrate and validate system of model for evacuation simulation from a real experimentation. In relation to the proposed objectives in this paper: (a) a general framework about risk analysis is reported in the first part, with specific methods and models to analyze urban transportation system performances in emergency conditions when exogenous phenomena occur and for the specification of the risk function; (b) a formulation of the general evacuation problem in the standard simulation context of "what if" approach is specified in the second part with reference to the model considered for the simulation of transportation system in ordinary condition; (c) a set of models specified in the second part are calibrated and validated from a real experimentation in the third part. The experimentation was developed in the central business district of an Italian village and about 1000 inhabitants were evacuated, in order to construct a complete data-base. Our experiment required that socioeconomic information (population, number employed, public buildings, schools, etc.) and ‎transport supply characteristics (infrastructures, etc.) be measured before and during experimentation. The real data of evacuation were recorded with 30 video cameras for laboratory analysis. The results are divided into six strictly connected tasks: Demand models; Supply and supply-demand interaction models for users; Simulation of refuge areas for users; Design of path choice models for emergency vehicles; Pedestrian outflow models in a building; Planning process and guidelines.

  15. Incorporating topography in a cellular automata model to simulate residents evacuation in a mountain area in China

    NASA Astrophysics Data System (ADS)

    Wang, Li; Liu, Mao; Meng, Bo

    2013-02-01

    In China, both the mountainous areas and the number of people who live in mountain areas occupy a significant proportion. When production accidents or natural disasters happen, the residents in mountain areas should be evacuated and the evacuation is of obvious importance to public safety. But it is a pity that there are few studies on safety evacuation in rough terrain. The particularity of the complex terrain in mountain areas, however, makes it difficult to study pedestrian evacuation. In this paper, a three-dimensional surface cellular automata model is proposed to numerically simulate the real time dynamic evacuation of residents. The model takes into account topographic characteristics (the slope gradient) of the environment and the biomechanics characteristics (weight and leg extensor power) of the residents to calculate the walking speed. This paper only focuses on the influence of topography and the physiological parameters are defined as constants according to a statistical report. Velocity varies with the topography. In order to simulate the behavior of a crowd with varying movement velocities, and a numerical algorithm is used to determine the time step of iteration. By doing so, a numerical simulation can be conducted in a 3D surface CA model. Moreover, considering residents evacuation around a gas well in a mountain area as a case, a visualization system for a three-dimensional simulation of pedestrian evacuation is developed. In the simulation process, population behaviors of congestion, queuing and collision avoidance can be observed. The simulation results are explained reasonably. Therefore, the model presented in this paper can realize a 3D dynamic simulation of pedestrian evacuation vividly in complex terrain and predict the evacuation procedure and evacuation time required, which can supply some valuable information for emergency management.

  16. 3D Building Evacuation Route Modelling and Visualization

    NASA Astrophysics Data System (ADS)

    Chan, W.; Armenakis, C.

    2014-11-01

    The most common building evacuation approach currently applied is to have evacuation routes planned prior to these emergency events. These routes are usually the shortest and most practical path from each building room to the closest exit. The problem with this approach is that it is not adaptive. It is not responsively configurable relative to the type, intensity, or location of the emergency risk. Moreover, it does not provide any information to the affected persons or to the emergency responders while not allowing for the review of simulated hazard scenarios and alternative evacuation routes. In this paper we address two main tasks. The first is the modelling of the spatial risk caused by a hazardous event leading to choosing the optimal evacuation route for a set of options. The second is to generate a 3D visual representation of the model output. A multicriteria decision making (MCDM) approach is used to model the risk aiming at finding the optimal evacuation route. This is achieved by using the analytical hierarchy process (AHP) on the criteria describing the different alternative evacuation routes. The best route is then chosen to be the alternative with the least cost. The 3D visual representation of the model displays the building, the surrounding environment, the evacuee's location, the hazard location, the risk areas and the optimal evacuation pathway to the target safety location. The work has been performed using ESRI's ArcGIS. Using the developed models, the user can input the location of the hazard and the location of the evacuee. The system then determines the optimum evacuation route and displays it in 3D.

  17. A Feeder-Bus Dispatch Planning Model for Emergency Evacuation in Urban Rail Transit Corridors

    PubMed Central

    Wang, Yun; Yan, Xuedong; Zhou, Yu; Zhang, Wenyi

    2016-01-01

    The mobility of modern metropolises strongly relies on urban rail transit (URT) systems, and such a heavy dependence causes that even minor service interruptions would make the URT systems unsustainable. This study aims at optimally dispatching the ground feeder-bus to coordinate with the urban rails’ operation for eliminating the effect of unexpected service interruptions in URT corridors. A feeder-bus dispatch planning model was proposed for the collaborative optimization of URT and feeder-bus cooperation under emergency situations and minimizing the total evacuation cost of the feeder-buses. To solve the model, a concept of dummy feeder-bus system is proposed to transform the non-linear model into traditional linear programming (ILP) model, i.e., traditional transportation problem. The case study of Line #2 of Nanjing URT in China was adopted to illustrate the model application and sensitivity analyses of the key variables. The modeling results show that as the evacuation time window increases, the total evacuation cost as well as the number of dispatched feeder-buses decrease, and the dispatched feeder-buses need operate for more times along the feeder-bus line. The number of dispatched feeder-buses does not show an obvious change with the increase of parking spot capacity and time window, indicating that simply increasing the parking spot capacity would cause huge waste for the emergent bus utilization. When the unbalanced evacuation demand exists between stations, the more feeder-buses are needed. The method of this study will contribute to improving transportation emergency management and resource allocation for URT systems. PMID:27676179

  18. ABM and GIS-based multi-scenarios volcanic evacuation modelling of Merapi

    NASA Astrophysics Data System (ADS)

    Jumadi, Carver, Steve; Quincey, Duncan

    2016-05-01

    Conducting effective evacuation is one of the successful keys to deal with such crisis. Therefore, a plan that considers the probability of the spatial extent of the hazard occurrences is needed. Likewise, the evacuation plan in Merapi is already prepared before the eruption on 2010. However, the plan could not be performed because the eruption magnitude was bigger than it was predicted. In this condition, the extent of the hazardous area was increased larger than the prepared hazard model. Managing such unpredicted situation need adequate information that flexible and adaptable to the current situation. Therefore, we applied an Agent-based Model (ABM) and Geographic Information System (GIS) using multi-scenarios hazard model to support the evacuation management. The methodology and the case study in Merapi is provided.

  19. The Pedestrian Evacuation Analyst: geographic information systems software for modeling hazard evacuation potential

    USGS Publications Warehouse

    Jones, Jeanne M.; Ng, Peter; Wood, Nathan J.

    2014-01-01

    Recent disasters such as the 2011 Tohoku, Japan, earthquake and tsunami; the 2013 Colorado floods; and the 2014 Oso, Washington, mudslide have raised awareness of catastrophic, sudden-onset hazards that arrive within minutes of the events that trigger them, such as local earthquakes or landslides. Due to the limited amount of time between generation and arrival of sudden-onset hazards, evacuations are typically self-initiated, on foot, and across the landscape (Wood and Schmidtlein, 2012). Although evacuation to naturally occurring high ground may be feasible in some vulnerable communities, evacuation modeling has demonstrated that other communities may require vertical-evacuation structures within a hazard zone, such as berms or buildings, if at-risk individuals are to survive some types of sudden-onset hazards (Wood and Schmidtlein, 2013). Researchers use both static least-cost-distance (LCD) and dynamic agent-based models to assess the pedestrian evacuation potential of vulnerable communities. Although both types of models help to understand the evacuation landscape, LCD models provide a more general overview that is independent of population distributions, which may be difficult to quantify given the dynamic spatial and temporal nature of populations (Wood and Schmidtlein, 2012). Recent LCD efforts related to local tsunami threats have focused on an anisotropic (directionally dependent) path distance modeling approach that incorporates travel directionality, multiple travel speed assumptions, and cost surfaces that reflect variations in slope and land cover (Wood and Schmidtlein, 2012, 2013). The Pedestrian Evacuation Analyst software implements this anisotropic path-distance approach for pedestrian evacuation from sudden-onset hazards, with a particular focus at this time on local tsunami threats. The model estimates evacuation potential based on elevation, direction of movement, land cover, and travel speed and creates a map showing travel times to safety (a time map) throughout a hazard zone. Model results provide a general, static view of the evacuation landscape at different pedestrian travel speeds and can be used to identify areas outside the reach of naturally occurring high ground. In addition, data on the size and location of different populations within the hazard zone can be integrated with travel-time maps to create tables and graphs of at-risk population counts as a function of travel time to safety. As a decision-support tool, the Pedestrian Evacuation Analyst provides the capability to evaluate the effectiveness of various vertical-evacuation structures within a study area, both through time maps of the modeled travel-time landscape with a potential structure in place and through comparisons of population counts within reach of safety. The Pedestrian Evacuation Analyst is designed for use by researchers examining the pedestrian-evacuation potential of an at-risk community. In communities where modeled evacuation times exceed the event (for example, tsunami wave) arrival time, researchers can use the software with emergency managers to assess the area and population served by potential vertical-evacuation options. By automating and managing the modeling process, the software allows researchers to concentrate efforts on providing crucial and timely information on community vulnerability to sudden-onset hazards.

  20. Tsunami evacuation mathematical model for the city of Padang

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kusdiantara, R.; Hadianti, R.; Badri Kusuma, M. S.

    2012-05-22

    Tsunami is a series of wave trains which travels with high speed on the sea surface. This traveling wave is caused by the displacement of a large volume of water after the occurrence of an underwater earthquake or volcano eruptions. The speed of tsunami decreases when it reaches the sea shore along with the increase of its amplitudes. Two large tsunamis had occurred in the last decades in Indonesia with huge casualties and large damages. Indonesian Tsunami Early Warning System has been installed along the west coast of Sumatra. This early warning system will give about 10-15 minutes to evacuatemore » people from high risk regions to the safe areas. Here in this paper, a mathematical model for Tsunami evacuation is presented with the city of Padang as a study case. In the model, the safe areas are chosen from the existing and selected high rise buildings, low risk region with relatively high altitude and (proposed to be built) a flyover ring road. Each gathering points are located in the radius of approximately 1 km from the ring road. The model is formulated as an optimization problem with the total normalized evacuation time as the objective function. The constraints consist of maximum allowable evacuation time in each route, maximum capacity of each safe area, and the number of people to be evacuated. The optimization problem is solved numerically using linear programming method with Matlab. Numerical results are shown for various evacuation scenarios for the city of Padang.« less

  1. A method of emotion contagion for crowd evacuation

    NASA Astrophysics Data System (ADS)

    Cao, Mengxiao; Zhang, Guijuan; Wang, Mengsi; Lu, Dianjie; Liu, Hong

    2017-10-01

    The current evacuation model does not consider the impact of emotion and personality on crowd evacuation. Thus, there is large difference between evacuation results and the real-life behavior of the crowd. In order to generate more realistic crowd evacuation results, we present a method of emotion contagion for crowd evacuation. First, we combine OCEAN (Openness, Extroversion, Agreeableness, Neuroticism, Conscientiousness) model and SIS (Susceptible Infected Susceptible) model to construct the P-SIS (Personalized SIS) emotional contagion model. The P-SIS model shows the diversity of individuals in crowd effectively. Second, we couple the P-SIS model with the social force model to simulate emotional contagion on crowd evacuation. Finally, the photo-realistic rendering method is employed to obtain the animation of crowd evacuation. Experimental results show that our method can simulate crowd evacuation realistically and has guiding significance for crowd evacuation in the emergency circumstances.

  2. Variable population exposure and distributed travel speeds in least-cost tsunami evacuation modelling

    NASA Astrophysics Data System (ADS)

    Fraser, S. A.; Wood, N. J.; Johnston, D. M.; Leonard, G. S.; Greening, P. D.; Rossetto, T.

    2014-06-01

    Evacuation of the population from a tsunami hazard zone is vital to reduce life-loss due to inundation. Geospatial least-cost distance modelling provides one approach to assessing tsunami evacuation potential. Previous models have generally used two static exposure scenarios and fixed travel speeds to represent population movement. Some analyses have assumed immediate evacuation departure time or assumed a common departure time for all exposed population. In this paper, a method is proposed to incorporate time-variable exposure, distributed travel speeds, and uncertain evacuation departure time into an existing anisotropic least-cost path distance framework. The model is demonstrated for a case study of local-source tsunami evacuation in Napier City, Hawke's Bay, New Zealand. There is significant diurnal variation in pedestrian evacuation potential at the suburb-level, although the total number of people unable to evacuate is stable across all scenarios. Whilst some fixed travel speeds can approximate a distributed speed approach, others may overestimate evacuation potential. The impact of evacuation departure time is a significant contributor to total evacuation time. This method improves least-cost modelling of evacuation dynamics for evacuation planning, casualty modelling, and development of emergency response training scenarios.

  3. Evacuation Simulation in Kalayaan Residence Hall, up Diliman Using Gama Simulation Software

    NASA Astrophysics Data System (ADS)

    Claridades, A. R. C.; Villanueva, J. K. S.; Macatulad, E. G.

    2016-09-01

    Agent-Based Modeling (ABM) has recently been adopted in some studies for the modelling of events as a dynamic system given a set of events and parameters. In principle, ABM employs individual agents with assigned attributes and behaviors and simulates their behavior around their environment and interaction with other agents. This can be a useful tool in both micro and macroscale-applications. In this study, a model initially created and applied to an academic building was implemented in a dormitory. In particular, this research integrates three-dimensional Geographic Information System (GIS) with GAMA as the multi-agent based evacuation simulation and is implemented in Kalayaan Residence Hall. A three-dimensional GIS model is created based on the floor plans and demographic data of the dorm, including respective pathways as networks, rooms, floors, exits and appropriate attributes. This model is then re-implemented in GAMA. Different states of the agents and their effect on their evacuation time were then observed. GAMA simulation with varying path width was also implemented. It has been found out that compared to their original states, panic, eating and studying will hasten evacuation, and on the other hand, sleeping and being on the bathrooms will be impedances. It is also concluded that evacuation time will be halved when path widths are doubled, however it is recommended for further studies for pathways to be modeled as spaces instead of lines. A more scientific basis for predicting agent behavior in these states is also recommended for more realistic results.

  4. 46 CFR 133.145 - Marine evacuation system launching arrangements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Marine evacuation system launching arrangements. 133.145... LIFESAVING SYSTEMS Requirements for All OSVs § 133.145 Marine evacuation system launching arrangements. (a) Arrangements. Each marine evacuation system must have the following arrangements: (1) Each marine evacuation...

  5. 46 CFR 133.145 - Marine evacuation system launching arrangements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Marine evacuation system launching arrangements. 133.145... LIFESAVING SYSTEMS Requirements for All OSVs § 133.145 Marine evacuation system launching arrangements. (a) Arrangements. Each marine evacuation system must have the following arrangements: (1) Each marine evacuation...

  6. 46 CFR 133.145 - Marine evacuation system launching arrangements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Marine evacuation system launching arrangements. 133.145... LIFESAVING SYSTEMS Requirements for All OSVs § 133.145 Marine evacuation system launching arrangements. (a) Arrangements. Each marine evacuation system must have the following arrangements: (1) Each marine evacuation...

  7. 46 CFR 133.145 - Marine evacuation system launching arrangements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Marine evacuation system launching arrangements. 133.145... LIFESAVING SYSTEMS Requirements for All OSVs § 133.145 Marine evacuation system launching arrangements. (a) Arrangements. Each marine evacuation system must have the following arrangements: (1) Each marine evacuation...

  8. 46 CFR 199.145 - Marine evacuation system launching arrangements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Marine evacuation system launching arrangements. 199.145....145 Marine evacuation system launching arrangements. (a) Arrangements. Each marine evacuation system... from the marine evacuation system platform by a person either in the liferaft or on the platform; (4...

  9. 46 CFR 199.145 - Marine evacuation system launching arrangements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Marine evacuation system launching arrangements. 199.145....145 Marine evacuation system launching arrangements. (a) Arrangements. Each marine evacuation system... from the marine evacuation system platform by a person either in the liferaft or on the platform; (4...

  10. 46 CFR 199.145 - Marine evacuation system launching arrangements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Marine evacuation system launching arrangements. 199.145....145 Marine evacuation system launching arrangements. (a) Arrangements. Each marine evacuation system... from the marine evacuation system platform by a person either in the liferaft or on the platform; (4...

  11. 46 CFR 199.145 - Marine evacuation system launching arrangements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Marine evacuation system launching arrangements. 199.145....145 Marine evacuation system launching arrangements. (a) Arrangements. Each marine evacuation system... from the marine evacuation system platform by a person either in the liferaft or on the platform; (4...

  12. 46 CFR 199.145 - Marine evacuation system launching arrangements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Marine evacuation system launching arrangements. 199.145....145 Marine evacuation system launching arrangements. (a) Arrangements. Each marine evacuation system... from the marine evacuation system platform by a person either in the liferaft or on the platform; (4...

  13. Evacuee Compliance Behavior Analysis using High Resolution Demographic Information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Wei; Han, Lee; Liu, Cheng

    2014-01-01

    The purpose of this study is to examine whether evacuee compliance behavior with route assignments from different resolutions of demographic data would impact the evacuation performance. Most existing evacuation strategies assume that travelers will follow evacuation instructions, while in reality a certain percent of evacuees do not comply with prescribed instructions. In this paper, a comparison study of evacuation assignment based on Traffic Analysis Zones (TAZ) and high resolution LandScan USA Population Cells (LPC) were conducted for the detailed road network representing Alexandria, Virginia. A revised platform for evacuation modeling built on high resolution demographic data and activity-based microscopic trafficmore » simulation is proposed. The results indicate that evacuee compliance behavior affects evacuation efficiency with traditional TAZ assignment, but it does not significantly compromise the efficiency with high resolution LPC assignment. The TAZ assignment also underestimates the real travel time during evacuation, especially for high compliance simulations. This suggests that conventional evacuation studies based on TAZ assignment might not be effective at providing efficient guidance to evacuees. From the high resolution data perspective, traveler compliance behavior is an important factor but it does not impact the system performance significantly. The highlight of evacuee compliance behavior analysis should be emphasized on individual evacuee level route/shelter assignments, rather than the whole system performance.« less

  14. Variable population exposure and distributed travel speeds in least-cost tsunami evacuation modelling

    NASA Astrophysics Data System (ADS)

    Fraser, S. A.; Wood, N. J.; Johnston, D. M.; Leonard, G. S.; Greening, P. D.; Rossetto, T.

    2014-11-01

    Evacuation of the population from a tsunami hazard zone is vital to reduce life-loss due to inundation. Geospatial least-cost distance modelling provides one approach to assessing tsunami evacuation potential. Previous models have generally used two static exposure scenarios and fixed travel speeds to represent population movement. Some analyses have assumed immediate departure or a common evacuation departure time for all exposed population. Here, a method is proposed to incorporate time-variable exposure, distributed travel speeds, and uncertain evacuation departure time into an existing anisotropic least-cost path distance framework. The method is demonstrated for hypothetical local-source tsunami evacuation in Napier City, Hawke's Bay, New Zealand. There is significant diurnal variation in pedestrian evacuation potential at the suburb level, although the total number of people unable to evacuate is stable across all scenarios. Whilst some fixed travel speeds approximate a distributed speed approach, others may overestimate evacuation potential. The impact of evacuation departure time is a significant contributor to total evacuation time. This method improves least-cost modelling of evacuation dynamics for evacuation planning, casualty modelling, and development of emergency response training scenarios. However, it requires detailed exposure data, which may preclude its use in many situations.

  15. Variable population exposure and distributed travel speeds in least-cost tsunami evacuation modelling

    USGS Publications Warehouse

    Fraser, Stuart A.; Wood, Nathan J.; Johnston, David A.; Leonard, Graham S.; Greening, Paul D.; Rossetto, Tiziana

    2014-01-01

    Evacuation of the population from a tsunami hazard zone is vital to reduce life-loss due to inundation. Geospatial least-cost distance modelling provides one approach to assessing tsunami evacuation potential. Previous models have generally used two static exposure scenarios and fixed travel speeds to represent population movement. Some analyses have assumed immediate departure or a common evacuation departure time for all exposed population. Here, a method is proposed to incorporate time-variable exposure, distributed travel speeds, and uncertain evacuation departure time into an existing anisotropic least-cost path distance framework. The method is demonstrated for hypothetical local-source tsunami evacuation in Napier City, Hawke's Bay, New Zealand. There is significant diurnal variation in pedestrian evacuation potential at the suburb level, although the total number of people unable to evacuate is stable across all scenarios. Whilst some fixed travel speeds approximate a distributed speed approach, others may overestimate evacuation potential. The impact of evacuation departure time is a significant contributor to total evacuation time. This method improves least-cost modelling of evacuation dynamics for evacuation planning, casualty modelling, and development of emergency response training scenarios. However, it requires detailed exposure data, which may preclude its use in many situations.

  16. An Information Perception-Based Emotion Contagion Model for Fire Evacuation

    NASA Astrophysics Data System (ADS)

    Liu, Ting Ting; Liu, Zhen; Ma, Minhua; Xuan, Rongrong; Chen, Tian; Lu, Tao; Yu, Lipeng

    2017-03-01

    In fires, people are easier to lose their mind. Panic will lead to irrational behavior and irreparable tragedy. It has great practical significance to make contingency plans for crowd evacuation in fires. However, existing studies about crowd simulation always paid much attention on the crowd density, but little attention on emotional contagion that may cause a panic. Based on settings about information space and information sharing, this paper proposes an emotional contagion model for crowd in panic situations. With the proposed model, a behavior mechanism is constructed for agents in the crowd and a prototype of system is developed for crowd simulation. Experiments are carried out to verify the proposed model. The results showed that the spread of panic not only related to the crowd density and the individual comfort level, but also related to people's prior knowledge of fire evacuation. The model provides a new way for safety education and evacuation management. It is possible to avoid and reduce unsafe factors in the crowd with the lowest cost.

  17. [Organization of anesthesia management and advanced life support at military medical evacuation levels].

    PubMed

    Shchegolev, A V; Petrakov, V A; Savchenko, I F

    2014-07-01

    Anesthesia management and advanced life support for the severely wounded personnel at military medical evacuation levels in armed conflict (local war) is time-consuming and resource-requiring task. One of the mathematical modeling methods was used to evaluate capabilities of anesthesia and intensive care units at tactical level. Obtained result allows us to tell that there is a need to make several system changes of the existing system of anesthesia management and advanced life support for the severely wounded personnel at military medical evacuation levels. In addition to increasing number of staff of anesthesiology-critical care during the given period of time another solution should be the creation of an early evacuation to a specialized medical care level by special means while conducting intensive monitoring and treatment.

  18. An indoor augmented reality mobile application for simulation of building evacuation

    NASA Astrophysics Data System (ADS)

    Sharma, Sharad; Jerripothula, Shanmukha

    2015-03-01

    Augmented Reality enables people to remain connected with the physical environment they are in, and invites them to look at the world from new and alternative perspectives. There has been an increasing interest in emergency evacuation applications for mobile devices. Nearly all the smart phones these days are Wi-Fi and GPS enabled. In this paper, we propose a novel emergency evacuation system that will help people to safely evacuate a building in case of an emergency situation. It will further enhance knowledge and understanding of where the exits are in the building and safety evacuation procedures. We have applied mobile augmented reality (mobile AR) to create an application with Unity 3D gaming engine. We show how the mobile AR application is able to display a 3D model of the building and animation of people evacuation using markers and web camera. The system gives a visual representation of a building in 3D space, allowing people to see where exits are in the building through the use of a smart phone or tablets. Pilot studies were conducted with the system showing its partial success and demonstrated the effectiveness of the application in emergency evacuation. Our computer vision methods give good results when the markers are closer to the camera, but accuracy decreases when the markers are far away from the camera.

  19. Modeling pedestrian evacuation with guiders based on a multi-grid model

    NASA Astrophysics Data System (ADS)

    Cao, Shuchao; Song, Weiguo; Lv, Wei

    2016-02-01

    Pedestrian evacuation with guidance is investigated by a multi-grid model in this paper. The effects of guider type, guider number, guider distribution and guidance strategy on evacuation are discussed. From the analysis of simulation results, it is found that the identified guiders are more beneficial to evacuation because they can be distinguished easily by pedestrians during evacuation; The optimal guider number exists in view of the human cost and can be obtained in our model; The uniform distribution of guiders covers more area in the room and makes evacuation efficient; Evacuation guidance is more effective when the speed of guider is about 75% of herding pedestrian's speed in our simulation scenario; The performance of evacuation guidance strategy considering both distance and occupant number is the best when compared to other strategies; The coordination and cooperation between guiders are very important and necessary to facilitate the evacuation. The study may be useful for understanding the importance of guidance in evacuation and developing efficient evacuation strategy for management under emergency.

  20. A Markov Decision Process Model for the Optimal Dispatch of Military Medical Evacuation Assets

    DTIC Science & Technology

    2014-03-27

    further background on MEDEVAC and provides a review of pertinent literature . Section 3 provides a de- scription of the problem for which we develop our...best medical evacuation system possible, for those who follow in your footsteps . Special thanks goes to my wife and two children for their...order to generate the computational results necessary to make this paper a success. Lastly, I would like to thank the US Army Medical Evacuation

  1. Modeling hurricane evacuation traffic : testing the gravity and intervening opportunity models as models of destination choice in hurricane evacuation.

    DOT National Transportation Integrated Search

    2008-03-01

    The objectives of this study are to test whether the Gravity and Intervening Opportunity Models (IOM) can successfully reproduce aggregate evacuation destination choice observed in evacuation behavior from Hurricane Floyd, compare the performance of ...

  2. Fluid Transient Analysis during Priming of Evacuated Line

    NASA Technical Reports Server (NTRS)

    Bandyopadhyay, Alak; Majumdar, Alok K.; Holt, Kimberley

    2017-01-01

    Water hammer analysis in pipe lines, in particularly during priming into evacuated lines is important for the design of spacecraft and other in-space application. In the current study, a finite volume network flow analysis code is used for modeling three different geometrical configurations: the first two being straight pipe, one with atmospheric air and other with evacuated line, and the third case is a representation of a complex flow network system. The numerical results show very good agreement qualitatively and quantitatively with measured data available in the literature. The peak pressure and impact time in case of straight pipe priming in evacuated line shows excellent agreement.

  3. Optimization and Planning of Emergency Evacuation Routes Considering Traffic Control

    PubMed Central

    Zhang, Lijun; Wang, Zhaohua

    2014-01-01

    Emergencies, especially major ones, happen fast, randomly, as well as unpredictably, and generally will bring great harm to people's life and the economy. Therefore, governments and lots of professionals devote themselves to taking effective measures and providing optimal evacuation plans. This paper establishes two different emergency evacuation models on the basis of the maximum flow model (MFM) and the minimum-cost maximum flow model (MC-MFM), and proposes corresponding algorithms for the evacuation from one source node to one designated destination (one-to-one evacuation). Ulteriorly, we extend our evaluation model from one source node to many designated destinations (one-to-many evacuation). At last, we make case analysis of evacuation optimization and planning in Beijing, and obtain the desired evacuation routes and effective traffic control measures from the perspective of sufficiency and practicability. Both analytical and numerical results support that our models are feasible and practical. PMID:24991636

  4. 46 CFR 108.545 - Marine evacuation system launching arrangements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... associated liferafts. Inflatable liferafts used in conjunction with the marine evacuation system must be stowed as follows: (1) Each inflatable liferaft used in conjunction with the marine evacuation system... platform. (2) Each inflatable liferaft used in conjunction with the marine evacuation system must be...

  5. Sensitivity of tsunami evacuation modeling to direction and land cover assumptions

    USGS Publications Warehouse

    Schmidtlein, Mathew C.; Wood, Nathan J.

    2015-01-01

    Although anisotropic least-cost-distance (LCD) modeling is becoming a common tool for estimating pedestrian-evacuation travel times out of tsunami hazard zones, there has been insufficient attention paid to understanding model sensitivity behind the estimates. To support tsunami risk-reduction planning, we explore two aspects of LCD modeling as it applies to pedestrian evacuations and use the coastal community of Seward, Alaska, as our case study. First, we explore the sensitivity of modeling to the direction of movement by comparing standard safety-to-hazard evacuation times to hazard-to-safety evacuation times for a sample of 3985 points in Seward's tsunami-hazard zone. Safety-to-hazard evacuation times slightly overestimated hazard-to-safety evacuation times but the strong relationship to the hazard-to-safety evacuation times, slightly conservative bias, and shorter processing times of the safety-to-hazard approach make it the preferred approach. Second, we explore how variations in land cover speed conservation values (SCVs) influence model performance using a Monte Carlo approach with one thousand sets of land cover SCVs. The LCD model was relatively robust to changes in land cover SCVs with the magnitude of local model sensitivity greatest in areas with higher evacuation times or with wetland or shore land cover types, where model results may slightly underestimate travel times. This study demonstrates that emergency managers should be concerned not only with populations in locations with evacuation times greater than wave arrival times, but also with populations with evacuation times lower than but close to expected wave arrival times, particularly if they are required to cross wetlands or beaches.

  6. Conceptualizing intragroup and intergroup dynamics within a controlled crowd evacuation.

    PubMed

    Elzie, Terra; Frydenlund, Erika; Collins, Andrew J; Robinson, R Michael

    2015-01-01

    Social dynamics play a critical role in successful pedestrian evacuations. Crowd modeling research has made progress in capturing the way individual and group dynamics affect evacuations; however, few studies have simultaneously examined how individuals and groups interact with one another during egress. To address this gap, the researchers present a conceptual agent-based model (ABM) designed to study the ways in which autonomous, heterogeneous, decision-making individuals negotiate intragroup and intergroup behavior while exiting a large venue. A key feature of this proposed model is the examination of the dynamics among and between various groupings, where heterogeneity at the individual level dynamically affects group behavior and subsequently group/group interactions. ABM provides a means of representing the important social factors that affect decision making among diverse social groups. Expanding on the 2013 work of Vizzari et al., the researchers focus specifically on social factors and decision making at the individual/group and group/group levels to more realistically portray dynamic crowd systems during a pedestrian evacuation. By developing a model with individual, intragroup, and intergroup interactions, the ABM provides a more representative approximation of real-world crowd egress. The simulation will enable more informed planning by disaster managers, emergency planners, and other decision makers. This pedestrian behavioral concept is one piece of a larger simulation model. Future research will build toward an integrated model capturing decision-making interactions between pedestrians and vehicles that affect evacuation outcomes.

  7. 46 CFR 108.545 - Marine evacuation system launching arrangements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Marine evacuation system launching arrangements. 108.545... DRILLING UNITS DESIGN AND EQUIPMENT Lifesaving Equipment § 108.545 Marine evacuation system launching arrangements. (a) Arrangements. Each marine evacuation system must have the following arrangements: (1) Each...

  8. Application of fire and evacuation models in evaluation of fire safety in railway tunnels

    NASA Astrophysics Data System (ADS)

    Cábová, Kamila; Apeltauer, Tomáš; Okřinová, Petra; Wald, František

    2017-09-01

    The paper describes an application of numerical simulation of fire dynamics and evacuation of people in a tunnel. The software tool Fire Dynamics Simulator is used to simulate temperature resolution and development of smoke in a railway tunnel. Comparing to temperature curves which are usually used in the design stage results of the model show that the numerical model gives lower temperature of hot smoke layer. Outputs of the numerical simulation of fire also enable to improve models of evacuation of people during fires in tunnels. In the presented study the calculated high of smoke layer in the tunnel is in 10 min after the fire ignition lower than the level of 2.2 m which is considered as the maximal limit for safe evacuation. Simulation of the evacuation process in bigger scale together with fire dynamics can provide very valuable information about important security conditions like Available Safe Evacuation Time (ASET) vs Required Safe Evacuation Time (RSET). On given example in software EXODUS the paper summarizes selected results of evacuation model which should be in mind of a designer when preparing an evacuation plan.

  9. SCALING AN URBAN EMERGENCY EVACUATION FRAMEWORK: CHALLENGES AND PRACTICES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karthik, Rajasekar; Lu, Wei

    2014-01-01

    Critical infrastructure disruption, caused by severe weather events, natural disasters, terrorist attacks, etc., has significant impacts on urban transportation systems. We built a computational framework to simulate urban transportation systems under critical infrastructure disruption in order to aid real-time emergency evacuation. This framework will use large scale datasets to provide a scalable tool for emergency planning and management. Our framework, World-Wide Emergency Evacuation (WWEE), integrates population distribution and urban infrastructure networks to model travel demand in emergency situations at global level. Also, a computational model of agent-based traffic simulation is used to provide an optimal evacuation plan for traffic operationmore » purpose [1]. In addition, our framework provides a web-based high resolution visualization tool for emergency evacuation modelers and practitioners. We have successfully tested our framework with scenarios in both United States (Alexandria, VA) and Europe (Berlin, Germany) [2]. However, there are still some major drawbacks for scaling this framework to handle big data workloads in real time. On our back-end, lack of proper infrastructure limits us in ability to process large amounts of data, run the simulation efficiently and quickly, and provide fast retrieval and serving of data. On the front-end, the visualization performance of microscopic evacuation results is still not efficient enough due to high volume data communication between server and client. We are addressing these drawbacks by using cloud computing and next-generation web technologies, namely Node.js, NoSQL, WebGL, Open Layers 3 and HTML5 technologies. We will describe briefly about each one and how we are using and leveraging these technologies to provide an efficient tool for emergency management organizations. Our early experimentation demonstrates that using above technologies is a promising approach to build a scalable and high performance urban emergency evacuation framework that can improve traffic mobility and safety under critical infrastructure disruption in today s socially connected world.« less

  10. 46 CFR 133.145 - Marine evacuation system launching arrangements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... liferafts. Inflatable liferafts used in conjunction with the marine evacuation system must be stowed as follows: (1) Each inflatable liferaft used in conjunction with the marine evacuation system must be close.... (2) Each inflatable liferaft used in conjunction with the marine evacuation system must be capable of...

  11. Modeling Evacuation of a Hospital without Electric Power.

    PubMed

    Vugrin, Eric D; Verzi, Stephen J; Finley, Patrick D; Turnquist, Mark A; Griffin, Anne R; Ricci, Karen A; Wyte-Lake, Tamar

    2015-06-01

    Hospital evacuations that occur during, or as a result of, infrastructure outages are complicated and demanding. Loss of infrastructure services can initiate a chain of events with corresponding management challenges. This report describes a modeling case study of the 2001 evacuation of the Memorial Hermann Hospital in Houston, Texas (USA). The study uses a model designed to track such cascading events following loss of infrastructure services and to identify the staff, resources, and operational adaptations required to sustain patient care and/or conduct an evacuation. The model is based on the assumption that a hospital's primary mission is to provide necessary medical care to all of its patients, even when critical infrastructure services to the hospital and surrounding areas are disrupted. Model logic evaluates the hospital's ability to provide an adequate level of care for all of its patients throughout a period of disruption. If hospital resources are insufficient to provide such care, the model recommends an evacuation. Model features also provide information to support evacuation and resource allocation decisions for optimizing care over the entire population of patients. This report documents the application of the model to a scenario designed to resemble the 2001 evacuation of the Memorial Hermann Hospital, demonstrating the model's ability to recreate the timeline of an actual evacuation. The model is also applied to scenarios demonstrating how its output can inform evacuation planning activities and timing.

  12. Modeling and assessment of civil aircraft evacuation based on finer-grid

    NASA Astrophysics Data System (ADS)

    Fang, Zhi-Ming; Lv, Wei; Jiang, Li-Xue; Xu, Qing-Feng; Song, Wei-Guo

    2016-04-01

    Studying civil aircraft emergency evacuation process by using computer model is an effective way. In this study, the evacuation of Airbus A380 is simulated using a Finer-Grid Civil Aircraft Evacuation (FGCAE) model. In this model, the effect of seat area and others on escape process and pedestrian's "hesitation" before leaving exits are considered, and an optimized rule of exit choice is defined. Simulations reproduce typical characteristics of aircraft evacuation, such as the movement synchronization between adjacent pedestrians, route choice and so on, and indicate that evacuation efficiency will be determined by pedestrian's "preference" and "hesitation". Based on the model, an assessment procedure of aircraft evacuation safety is presented. The assessment and comparison with the actual evacuation test demonstrate that the available exit setting of "one exit from each exit pair" used by practical demonstration test is not the worst scenario. The half exits of one end of the cabin are all unavailable is the worst one, that should be paid more attention to, and even be adopted in the certification test. The model and method presented in this study could be useful for assessing, validating and improving the evacuation performance of aircraft.

  13. Agent-based Large-Scale Emergency Evacuation Using Real-Time Open Government Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Wei; Liu, Cheng; Bhaduri, Budhendra L

    The open government initiatives have provided tremendous data resources for the transportation system and emergency services in urban areas. This paper proposes a traffic simulation framework using high temporal resolution demographic data and real time open government data for evacuation planning and operation. A comparison study using real-world data in Seattle, Washington is conducted to evaluate the framework accuracy and evacuation efficiency. The successful simulations of selected area prove the concept to take advantage open government data, open source data, and high resolution demographic data in emergency management domain. There are two aspects of parameters considered in this study: usermore » equilibrium (UE) conditions of traffic assignment model (simple Non-UE vs. iterative UE) and data temporal resolution (Daytime vs. Nighttime). Evacuation arrival rate, average travel time, and computation time are adopted as Measure of Effectiveness (MOE) for evacuation performance analysis. The temporal resolution of demographic data has significant impacts on urban transportation dynamics during evacuation scenarios. Better evacuation performance estimation can be approached by integrating both Non-UE and UE scenarios. The new framework shows flexibility in implementing different evacuation strategies and accuracy in evacuation performance. The use of this framework can be explored to day-to-day traffic assignment to support daily traffic operations.« less

  14. Societal acceptance of unnecessary evacuation

    NASA Astrophysics Data System (ADS)

    McCaughey, Jamie W.; Mundzir, Ibnu; Patt, Anthony; Rosemary, Rizanna; Safrina, Lely; Mahdi, Saiful; Daly, Patrick

    2017-04-01

    Uncertainties in forecasting extreme events force an unavoidable tradeoff between false alarms and misses. The appropriate balance depends on the level of societal acceptance of unnecessary evacuations, but there has been little empirical research on this. Intuitively it may seem that an unnecessary evacuation would make people less likely to evacuate again in the future, but our study finds no support for this intuition. Using new quantitative (n=800) and qualitative evidence, we examine individual- and household-level evacuation decisions in response to the strong 11-Apr-2012 earthquake in Aceh, Indonesia. This earthquake did not produce a tsunami, but the population had previously experienced the devastating 2004 tsunami. In our sample, the vast majority of people (86%) evacuated in the 2012 earthquake, and nearly all (94%) say they would evacuate again if a similar earthquake happened in the future. Self-reported level of fear at the moment of the 2012 earthquake explains more of the variance in evacuation decisions and intentions than does a combination of perceived tsunami risk and perceived efficacy of evacuation modeled on protection motivation theory. These findings suggest that the appropriate balance between false alarms and misses may be highly context-specific. Investigating this in each context would make an important contribution to the effectiveness of early-warning systems.

  15. An Integrated Scenario Ensemble-Based Framework for Hurricane Evacuation Modeling: Part 2-Hazard Modeling.

    PubMed

    Blanton, Brian; Dresback, Kendra; Colle, Brian; Kolar, Randy; Vergara, Humberto; Hong, Yang; Leonardo, Nicholas; Davidson, Rachel; Nozick, Linda; Wachtendorf, Tricia

    2018-04-25

    Hurricane track and intensity can change rapidly in unexpected ways, thus making predictions of hurricanes and related hazards uncertain. This inherent uncertainty often translates into suboptimal decision-making outcomes, such as unnecessary evacuation. Representing this uncertainty is thus critical in evacuation planning and related activities. We describe a physics-based hazard modeling approach that (1) dynamically accounts for the physical interactions among hazard components and (2) captures hurricane evolution uncertainty using an ensemble method. This loosely coupled model system provides a framework for probabilistic water inundation and wind speed levels for a new, risk-based approach to evacuation modeling, described in a companion article in this issue. It combines the Weather Research and Forecasting (WRF) meteorological model, the Coupled Routing and Excess STorage (CREST) hydrologic model, and the ADvanced CIRCulation (ADCIRC) storm surge, tide, and wind-wave model to compute inundation levels and wind speeds for an ensemble of hurricane predictions. Perturbations to WRF's initial and boundary conditions and different model physics/parameterizations generate an ensemble of storm solutions, which are then used to drive the coupled hydrologic + hydrodynamic models. Hurricane Isabel (2003) is used as a case study to illustrate the ensemble-based approach. The inundation, river runoff, and wind hazard results are strongly dependent on the accuracy of the mesoscale meteorological simulations, which improves with decreasing lead time to hurricane landfall. The ensemble envelope brackets the observed behavior while providing "best-case" and "worst-case" scenarios for the subsequent risk-based evacuation model. © 2018 Society for Risk Analysis.

  16. Modeling pedestrian evacuation by means of game theory

    NASA Astrophysics Data System (ADS)

    Shi, Dongmei; Zhang, Wenyao; Wang, Binghong

    2017-04-01

    Pedestrian evacuation is studied based on a modified lattice model. The payoff matrix in this model represents the complicated interactions between selfish individuals, and the mean force imposed on an individual is given by considering the impacts of neighbors, walls, and defector herding. Each passer-by moves to his selected location according to the Fermi function, and the average velocity of pedestrian flow is defined as a function of the motion rule. Two pedestrian types are included: cooperators, who adhere to the evacuation instructions; and defectors, who ignore the rules and act individually. It is observed that the escape time increases as fear degree increases, and the system remains smooth for a low fear degree, but exhibits three stages for a high fear degree. We prove that the fear degree determines the dynamics of this system, and the initial density of cooperators has a negligible impact. The system experiences three phases, a single phase of cooperator, a mixed two-phase pedestrian, and a single phase of defector sequentially as the fear degree upgrades. The phase transition has been proven basically robust to the changes of empty site contribution, wall’s pressure, and noise amplitude in the motion rule. It is further shown that pedestrians derive the greatest benefit from overall cooperation, but are trapped in the worst situation if they are all defectors. Dynamics of pedestrian evacuation.

  17. People's Risk Recognition Preceding Evacuation and Its Role in Demand Modeling and Planning.

    PubMed

    Urata, Junji; Pel, Adam J

    2018-05-01

    Evacuation planning and management involves estimating the travel demand in the event that such action is required. This is usually done as a function of people's decision to evacuate, which we show is strongly linked to their risk awareness. We use an empirical data set, which shows tsunami evacuation behavior, to demonstrate that risk recognition is not synonymous with objective risk, but is instead determined by a combination of factors including risk education, information, and sociodemographics, and that it changes dynamically over time. Based on these findings, we formulate an ordered logit model to describe risk recognition combined with a latent class model to describe evacuation choices. Our proposed evacuation choice model along with a risk recognition class can evaluate quantitatively the influence of disaster mitigation measures, risk education, and risk information. The results obtained from the risk recognition model show that risk information has a greater impact in the sense that people recognize their high risk. The results of the evacuation choice model show that people who are unaware of their risk take a longer time to evacuate. © 2017 Society for Risk Analysis.

  18. "Denial or Faith?" Therapy versus Messianism in Preparing for the Evacuation of Israeli Settlements

    ERIC Educational Resources Information Center

    Amrami, Galia Plotkin

    2015-01-01

    This article offers an ethnographic account of the professional activities of mental health practitioners, employed by the state's religious education system. I analyze various models implemented by practitioners for the purposes of preparing pupils for the state-mandated evacuation of Jewish settlers from Gaza and the West Bank. By focusing on…

  19. Ultra-Scale Computing for Emergency Evacuation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhaduri, Budhendra L; Nutaro, James J; Liu, Cheng

    2010-01-01

    Emergency evacuations are carried out in anticipation of a disaster such as hurricane landfall or flooding, and in response to a disaster that strikes without a warning. Existing emergency evacuation modeling and simulation tools are primarily designed for evacuation planning and are of limited value in operational support for real time evacuation management. In order to align with desktop computing, these models reduce the data and computational complexities through simple approximations and representations of real network conditions and traffic behaviors, which rarely represent real-world scenarios. With the emergence of high resolution physiographic, demographic, and socioeconomic data and supercomputing platforms, itmore » is possible to develop micro-simulation based emergency evacuation models that can foster development of novel algorithms for human behavior and traffic assignments, and can simulate evacuation of millions of people over a large geographic area. However, such advances in evacuation modeling and simulations demand computational capacity beyond the desktop scales and can be supported by high performance computing platforms. This paper explores the motivation and feasibility of ultra-scale computing for increasing the speed of high resolution emergency evacuation simulations.« less

  20. Pedestrian flow-path modeling to support tsunami evacuation and disaster relief planning in the U.S. Pacific Northwest

    USGS Publications Warehouse

    Wood, Nathan J.; Jones, Jeanne M.; Schmidtlein, Mathew; Schelling, John; Frazier, T.

    2016-01-01

    Successful evacuations are critical to saving lives from future tsunamis. Pedestrian-evacuation modeling related to tsunami hazards primarily has focused on identifying areas and the number of people in these areas where successful evacuations are unlikely. Less attention has been paid to identifying evacuation pathways and population demand at assembly areas for at-risk individuals that may have sufficient time to evacuate. We use the neighboring coastal communities of Hoquiam, Aberdeen, and Cosmopolis (Washington, USA) and the local tsunami threat posed by Cascadia subduction zone earthquakes as a case study to explore the use of geospatial, least-cost-distance evacuation modeling for supporting evacuation outreach, response, and relief planning. We demonstrate an approach that uses geospatial evacuation modeling to (a) map the minimum pedestrian travel speeds to safety, the most efficient paths, and collective evacuation basins, (b) estimate the total number and demographic description of evacuees at predetermined assembly areas, and (c) determine which paths may be compromised due to earthquake-induced ground failure. Results suggest a wide range in the magnitude and type of evacuees at predetermined assembly areas and highlight parts of the communities with no readily accessible assembly area. Earthquake-induced ground failures could obstruct access to some assembly areas, cause evacuees to reroute to get to other assembly areas, and isolate some evacuees from relief personnel. Evacuation-modeling methods and results discussed here have implications and application to tsunami-evacuation outreach, training, response procedures, mitigation, and long-term land use planning to increase community resilience.

  1. A Method for Formulizing Disaster Evacuation Demand Curves Based on SI Model

    PubMed Central

    Song, Yulei; Yan, Xuedong

    2016-01-01

    The prediction of evacuation demand curves is a crucial step in the disaster evacuation plan making, which directly affects the performance of the disaster evacuation. In this paper, we discuss the factors influencing individual evacuation decision making (whether and when to leave) and summarize them into four kinds: individual characteristics, social influence, geographic location, and warning degree. In the view of social contagion of decision making, a method based on Susceptible-Infective (SI) model is proposed to formulize the disaster evacuation demand curves to address both social influence and other factors’ effects. The disaster event of the “Tianjin Explosions” is used as a case study to illustrate the modeling results influenced by the four factors and perform the sensitivity analyses of the key parameters of the model. Some interesting phenomena are found and discussed, which is meaningful for authorities to make specific evacuation plans. For example, due to the lower social influence in isolated communities, extra actions might be taken to accelerate evacuation process in those communities. PMID:27735875

  2. Measuring and Modeling Behavioral Decision Dynamics in Collective Evacuation

    PubMed Central

    Carlson, Jean M.; Alderson, David L.; Stromberg, Sean P.; Bassett, Danielle S.; Craparo, Emily M.; Guiterrez-Villarreal, Francisco; Otani, Thomas

    2014-01-01

    Identifying and quantifying factors influencing human decision making remains an outstanding challenge, impacting the performance and predictability of social and technological systems. In many cases, system failures are traced to human factors including congestion, overload, miscommunication, and delays. Here we report results of a behavioral network science experiment, targeting decision making in a natural disaster. In a controlled laboratory setting, our results quantify several key factors influencing individual evacuation decision making in a controlled laboratory setting. The experiment includes tensions between broadcast and peer-to-peer information, and contrasts the effects of temporal urgency associated with the imminence of the disaster and the effects of limited shelter capacity for evacuees. Based on empirical measurements of the cumulative rate of evacuations as a function of the instantaneous disaster likelihood, we develop a quantitative model for decision making that captures remarkably well the main features of observed collective behavior across many different scenarios. Moreover, this model captures the sensitivity of individual- and population-level decision behaviors to external pressures, and systematic deviations from the model provide meaningful estimates of variability in the collective response. Identification of robust methods for quantifying human decisions in the face of risk has implications for policy in disasters and other threat scenarios, specifically the development and testing of robust strategies for training and control of evacuations that account for human behavior and network topologies. PMID:24520331

  3. Study on Earthquake Emergency Evacuation Drill Trainer Development

    NASA Astrophysics Data System (ADS)

    ChangJiang, L.

    2016-12-01

    With the improvement of China's urbanization, to ensure people survive the earthquake needs scientific routine emergency evacuation drills. Drawing on cellular automaton, shortest path algorithm and collision avoidance, we designed a model of earthquake emergency evacuation drill for school scenes. Based on this model, we made simulation software for earthquake emergency evacuation drill. The software is able to perform the simulation of earthquake emergency evacuation drill by building spatial structural model and selecting the information of people's location grounds on actual conditions of constructions. Based on the data of simulation, we can operate drilling in the same building. RFID technology could be used here for drill data collection which read personal information and send it to the evacuation simulation software via WIFI. Then the simulation software would contrast simulative data with the information of actual evacuation process, such as evacuation time, evacuation path, congestion nodes and so on. In the end, it would provide a contrastive analysis report to report assessment result and optimum proposal. We hope the earthquake emergency evacuation drill software and trainer can provide overall process disposal concept for earthquake emergency evacuation drill in assembly occupancies. The trainer can make the earthquake emergency evacuation more orderly, efficient, reasonable and scientific to fulfill the increase in coping capacity of urban hazard.

  4. Analysis of Tsunami Evacuation Issues Using Agent Based Modeling. A Case Study of the 2011 Tohoku Tsunami in Yuriage, Natori.

    NASA Astrophysics Data System (ADS)

    Mas, E.; Takagi, H.; Adriano, B.; Hayashi, S.; Koshimura, S.

    2014-12-01

    The 2011 Great East Japan earthquake and tsunami reminded that nature can exceed structural countermeasures like seawalls, breakwaters or tsunami gates. In such situations it is a challenging task for people to find nearby haven. This event, as many others before, confirmed the importance of early evacuation, tsunami awareness and the need for developing much more resilient communities with effective evacuation plans. To support reconstruction activities and efforts on developing resilient communities in areas at risk, tsunami evacuation simulation can be applied to tsunami mitigation and evacuation planning. In this study, using the compiled information related to the evacuation behavior at Yuriage in Natori during the 2011 tsunami, we simulated the evacuation process and explored the reasons for the large number of fatalities in the area. It was found that residents did evacuate to nearby shelter areas, however after the tsunami warning was increased some evacuees decided to conduct a second step evacuation to a far inland shelter. Simulation results show the consequences of such decision and the outcomes when a second evacuation would not have been performed. The actual reported number of fatalities in the event and the results from simulation are compared to verify the model. The case study shows the contribution of tsunami evacuation models as tools to be applied for the analysis of evacuees' decisions and the related outcomes. In addition, future evacuation plans and activities for reconstruction process and urban planning can be supported by the results provided from this kind of tsunami evacuation models.

  5. Modeling hurricane evacuation traffic : development of a time-dependent hurricane evacuation demand model.

    DOT National Transportation Integrated Search

    2008-04-01

    The objective of this research is to develop alternative time-dependent travel demand models of hurricane evacuation travel and to compare the performance of these models with each other and with the state-of-the-practice models in current use. Speci...

  6. Crowd evacuation model based on bacterial foraging algorithm

    NASA Astrophysics Data System (ADS)

    Shibiao, Mu; Zhijun, Chen

    To understand crowd evacuation, a model based on a bacterial foraging algorithm (BFA) is proposed in this paper. Considering dynamic and static factors, the probability of pedestrian movement is established using cellular automata. In addition, given walking and queue times, a target optimization function is built. At the same time, a BFA is used to optimize the objective function. Finally, through real and simulation experiments, the relationship between the parameters of evacuation time, exit width, pedestrian density, and average evacuation speed is analyzed. The results show that the model can effectively describe a real evacuation.

  7. Managed traffic evacuation using distributed sensor processing

    NASA Astrophysics Data System (ADS)

    Ramuhalli, Pradeep; Biswas, Subir

    2005-05-01

    This paper presents an integrated sensor network and distributed event processing architecture for managed in-building traffic evacuation during natural and human-caused disasters, including earthquakes, fire and biological/chemical terrorist attacks. The proposed wireless sensor network protocols and distributed event processing mechanisms offer a new distributed paradigm for improving reliability in building evacuation and disaster management. The networking component of the system is constructed using distributed wireless sensors for measuring environmental parameters such as temperature, humidity, and detecting unusual events such as smoke, structural failures, vibration, biological/chemical or nuclear agents. Distributed event processing algorithms will be executed by these sensor nodes to detect the propagation pattern of the disaster and to measure the concentration and activity of human traffic in different parts of the building. Based on this information, dynamic evacuation decisions are taken for maximizing the evacuation speed and minimizing unwanted incidents such as human exposure to harmful agents and stampedes near exits. A set of audio-visual indicators and actuators are used for aiding the automated evacuation process. In this paper we develop integrated protocols, algorithms and their simulation models for the proposed sensor networking and the distributed event processing framework. Also, efficient harnessing of the individually low, but collectively massive, processing abilities of the sensor nodes is a powerful concept behind our proposed distributed event processing algorithms. Results obtained through simulation in this paper are used for a detailed characterization of the proposed evacuation management system and its associated algorithmic components.

  8. Enhancing Evacuation Plans with a Situation Awareness System Based on End-User Knowledge Provision

    PubMed Central

    Morales, Augusto; Alcarria, Ramon; Martin, Diego; Robles, Tomas

    2014-01-01

    Recent disasters have shown that having clearly defined preventive procedures and decisions is a critical component that minimizes evacuation hazards and ensures a rapid and successful evolution of evacuation plans. In this context, we present our Situation-Aware System for enhancing Evacuation Plans (SASEP) system, which allows creating end-user business rules that technically support the specific events, conditions and actions related to evacuation plans. An experimental validation was carried out where 32 people faced a simulated emergency situation, 16 of them using SASEP and the other 16 using a legacy system based on static signs. From the results obtained, we compare both techniques and discuss in which situations SASEP offers a better evacuation route option, confirming that it is highly valuable when there is a threat in the evacuation route. In addition, a study about user satisfaction using both systems is presented showing in which cases the systems are assessed as satisfactory, relevant and not frustrating. PMID:24961212

  9. Enhancing evacuation plans with a situation awareness system based on end-user knowledge provision.

    PubMed

    Morales, Augusto; Alcarria, Ramon; Martin, Diego; Robles, Tomas

    2014-06-24

    Recent disasters have shown that having clearly defined preventive procedures and decisions is a critical component that minimizes evacuation hazards and ensures a rapid and successful evolution of evacuation plans. In this context, we present our Situation-Aware System for enhancing Evacuation Plans (SASEP) system, which allows creating end-user business rules that technically support the specific events, conditions and actions related to evacuation plans. An experimental validation was carried out where 32 people faced a simulated emergency situation, 16 of them using SASEP and the other 16 using a legacy system based on static signs. From the results obtained, we compare both techniques and discuss in which situations SASEP offers a better evacuation route option, confirming that it is highly valuable when there is a threat in the evacuation route. In addition, a study about user satisfaction using both systems is presented showing in which cases the systems are assessed as satisfactory, relevant and not frustrating.

  10. Exploring the Role of Social Media and Individual Behaviors in Flood Evacuation Processes: An Agent-Based Modeling Approach

    NASA Astrophysics Data System (ADS)

    Du, Erhu; Cai, Ximing; Sun, Zhiyong; Minsker, Barbara

    2017-11-01

    Flood warnings from various information sources are important for individuals to make evacuation decisions during a flood event. In this study, we develop a general opinion dynamics model to simulate how individuals update their flood hazard awareness when exposed to multiple information sources, including global broadcast, social media, and observations of neighbors' actions. The opinion dynamics model is coupled with a traffic model to simulate the evacuation processes of a residential community with a given transportation network. Through various scenarios, we investigate how social media affect the opinion dynamics and evacuation processes. We find that stronger social media can make evacuation processes more sensitive to the change of global broadcast and neighbor observations, and thus, impose larger uncertainty on evacuation rates (i.e., a large range of evacuation rates corresponding to sources of information). For instance, evacuation rates are lower when social media become more influential and individuals have less trust in global broadcast. Stubborn individuals can significantly affect the opinion dynamics and reduce evacuation rates. In addition, evacuation rates respond to the percentage of stubborn agents in a nonlinear manner, i.e., above a threshold, the impact of stubborn agents will be intensified by stronger social media. These results highlight the role of social media in flood evacuation processes and the need to monitor social media so that misinformation can be corrected in a timely manner. The joint impacts of social media, quality of flood warnings, and transportation capacity on evacuation rates are also discussed.

  11. An agent-based modelling framework to explore the role of social media and stubborn people on evacuation rates during flooding events

    NASA Astrophysics Data System (ADS)

    Du, E.; Cai, X.; Minsker, B. S.; Sun, Z.

    2017-12-01

    Flood warnings from various information sources are important for individuals to make evacuation decisions during a flood event. In this study, we develop a general opinion dynamics model to simulate how individuals update their flood hazard awareness when exposed to multiple information sources, including global broadcast, social media, and observations of neighbors' actions. The opinion dynamics model is coupled with a traffic model to simulate the evacuation processes of a residential community with a given transportation network. Through various scenarios, we investigate how social media affect the opinion dynamics and evacuation processes. We find that stronger social media can make evacuation processes more sensitive to the change of global broadcast and neighbor observations, and thus, impose larger uncertainty on evacuation rates (i.e., a large range of evacuation rates corresponding to sources of information). For instance, evacuation rates are lower when social media become more influential and individuals have less trust in global broadcast. Stubborn individuals can significantly affect the opinion dynamics and reduce evacuation rates. In addition, evacuation rates respond to the percentage of stubborn agents in a non-linear manner, i.e., above a threshold, the impact of stubborn agents will be intensified by stronger social media. These results highlight the role of social media in flood evacuation processes and the need to monitor social media so that misinformation can be corrected in a timely manner. The joint impacts of social media, quality of flood warnings and transportation capacity on evacuation rates are also discussed.

  12. Pedestrian evacuation modeling to reduce vehicle use for distant tsunami evacuations in Hawaiʻi

    USGS Publications Warehouse

    Wood, Nathan J.; Jones, Jamie; Peters, Jeff; Richards, Kevin

    2018-01-01

    Tsunami waves that arrive hours after generation elsewhere pose logistical challenges to emergency managers due to the perceived abundance of time and inclination of evacuees to use vehicles. We use coastal communities on the island of Oʻahu (Hawaiʻi, USA) to demonstrate regional evacuation modeling that can identify where successful pedestrian-based evacuations are plausible and where vehicle use could be discouraged. The island of Oʻahu has two tsunami-evacuation zones (standard and extreme), which provides the opportunity to examine if recommended travel modes vary based on zone. Geospatial path distance models are applied to estimate population exposure as a function of pedestrian travel time and speed out of evacuation zones. The use of the extreme zone triples the number of residents, employees, and facilities serving at-risk populations that would be encouraged to evacuate and slightly reduces the percentage of residents (98–76%) that could evacuate in less than 15 min at a plausible speed (with similar percentages for employees). Areas with lengthy evacuations are concentrated in the North Shore region for the standard zone but found all around the Oʻahu coastline for the extreme zone. The use of the extreme zone results in a 26% increase in the number of hotel visitors that would be encouraged to evacuate, and a 76% increase in the number of them that may require more than 15 min. Modeling can identify where pedestrian evacuations are plausible; however, there are logistical and behavioral issues that warrant attention before localized evacuation procedures may be realistic.

  13. Factors associated with high-rise evacuation: qualitative results from the World Trade Center Evacuation Study.

    PubMed

    Gershon, Robyn R M; Qureshi, Kristine A; Rubin, Marcie S; Raveis, Victoria H

    2007-01-01

    Due to the fact that most high-rise structures (i.e., >75 feet high, or eight to ten stories) are constructed with extensive and redundant fire safety features, current fire safety procedures typically only involve limited evacuation during minor to moderate fire emergencies. Therefore, full-scale evacuation of high-rise buildings is highly unusual and consequently, little is known about how readily and rapidly high-rise structures can be evacuated fully. Factors that either facilitate or inhibit the evacuation process remain under-studied. This paper presents results from the qualitative phase of the World Trade Center Evacuation Study, a three-year, five-phase study designed to improve our understanding of the individual, organizational, and environmental factors that helped or hindered evacuation from the World Trade Center (WTC) Towers 1 and 2, on 11 September 2001. Qualitative data from semi-structured, in-depth interviews and focus groups involving WTC evacuees were collected and analyzed. On the individual level, factors that affected evacuation included perception of risk (formed largely by sensory cues), preparedness training, degree of familiarity with the building, physical condition, health status, and footwear. Individual behavior also was affected by group behavior and leadership. At the organizational level, evacuation was affected by worksite preparedness planning, including the training and education of building occupants, and risk communication. The environmental conditions affecting evacuation included smoke, flames, debris, general condition and degree of crowdedness on staircases, and communication infrastructure systems (e.g., public address, landline, cellular and fire warden's telephones). Various factors at the individual, organizational, and environmental levels were identified that affected evacuation. Interventions that address the barriers to evacuation may improve the full-scale evacuation of other high-rise buildings under extreme conditions. Further studies should focus on the development and evaluation of targeted interventions, including model emergency preparedness planning for high-rise occupancies.

  14. Modeling hurricane evacuation traffic : testing the gravity and intervening opportunity models as models of destination choice in hurricane evacuation.

    DOT National Transportation Integrated Search

    2006-09-01

    The test was conducted by estimating the models on a portion of evacuation data from South Carolina following Hurricane Floyd, and then observing how well the models reproduced destination choice at the county level on the remaining data. The tests s...

  15. Optimizing Crisis Action Planning in the Noncombatant Evacuation Operation Setting

    DTIC Science & Technology

    2010-06-01

    Federal Regulations, the DoS has a firm rule to not enter into preemptive contracts for any logistical resources (e.g., transportation, food, water...bottlenecks, flow limiters, and options to quicken queues ; and identifying resources and transportation mediums that display the most sensitivity to...policy changes. These objectives were addressed by exploring topics in NEOs, evacuation planning, queueing systems, and modeling techniques and

  16. Prospect Theory and Interval-Valued Hesitant Set for Safety Evacuation Model

    NASA Astrophysics Data System (ADS)

    Kou, Meng; Lu, Na

    2018-01-01

    The study applies the research results of prospect theory and multi attribute decision making theory, combined with the complexity, uncertainty and multifactor influence of the underground mine fire system and takes the decision makers’ psychological behavior of emotion and intuition into full account to establish the intuitionistic fuzzy multiple attribute decision making method that is based on the prospect theory. The model established by this method can explain the decision maker’s safety evacuation decision behavior in the complex system of underground mine fire due to the uncertainty of the environment, imperfection of the information and human psychological behavior and other factors.

  17. A review of computer evacuation models and their data needs.

    DOT National Transportation Integrated Search

    1994-05-01

    This document reviews the history and current status of computer models of the evacuation of an airliner cabin. Basic concepts upon which evacuation models are based are discussed, followed by a review of the Civil Aerospace Medical Institute s effor...

  18. Developing a database for pedestrians' earthquake emergency evacuation in indoor scenarios.

    PubMed

    Zhou, Junxue; Li, Sha; Nie, Gaozhong; Fan, Xiwei; Tan, Jinxian; Li, Huayue; Pang, Xiaoke

    2018-01-01

    With the booming development of evacuation simulation software, developing an extensive database in indoor scenarios for evacuation models is imperative. In this paper, we conduct a qualitative and quantitative analysis of the collected videotapes and aim to provide a complete and unitary database of pedestrians' earthquake emergency response behaviors in indoor scenarios, including human-environment interactions. Using the qualitative analysis method, we extract keyword groups and keywords that code the response modes of pedestrians and construct a general decision flowchart using chronological organization. Using the quantitative analysis method, we analyze data on the delay time, evacuation speed, evacuation route and emergency exit choices. Furthermore, we study the effect of classroom layout on emergency evacuation. The database for indoor scenarios provides reliable input parameters and allows the construction of real and effective constraints for use in software and mathematical models. The database can also be used to validate the accuracy of evacuation models.

  19. Traffic evacuation time under nonhomogeneous conditions.

    PubMed

    Fazio, Joseph; Shetkar, Rohan; Mathew, Tom V

    2017-06-01

    During many manmade and natural crises such as terrorist threats, floods, hazardous chemical and gas leaks, emergency personnel need to estimate the time in which people can evacuate from the affected urban area. Knowing an estimated evacuation time for a given crisis, emergency personnel can plan and prepare accordingly with the understanding that the actual evacuation time will take longer. Given the urban area to be evacuated, street widths exiting the area's perimeter, the area's population density, average vehicle occupancy, transport mode share and crawl speed, an estimation of traffic evacuation time can be derived. Peak-hour traffic data collected at three, midblock, Mumbai sites of varying geometric features and traffic composition were used in calibrating a model that estimates peak-hour traffic flow rates. Model validation revealed a correlation coefficient of +0.98 between observed and predicted peak-hour flow rates. A methodology is developed that estimates traffic evacuation time using the model.

  20. Understanding and managing disaster evacuation on a transportation network.

    PubMed

    Lambert, James H; Parlak, Ayse I; Zhou, Qian; Miller, John S; Fontaine, Michael D; Guterbock, Thomas M; Clements, Janet L; Thekdi, Shital A

    2013-01-01

    Uncertain population behaviors in a regional emergency could potentially harm the performance of the region's transportation system and subsequent evacuation effort. The integration of behavioral survey data with travel demand modeling enables an assessment of transportation system performance and the identification of operational and public health countermeasures. This paper analyzes transportation system demand and system performance for emergency management in three disaster scenarios. A two-step methodology first estimates the number of trips evacuating the region, thereby capturing behavioral aspects in a scientifically defensible manner based on survey results, and second, assigns these trips to a regional highway network, using geographic information systems software, thereby making the methodology transferable to other locations. Performance measures are generated for each scenario including maps of volume-to-capacity ratios, geographic contours of evacuation time from the center of the region, and link-specific metrics such as weighted average speed and traffic volume. The methods are demonstrated on a 600 segment transportation network in Washington, DC (USA) and are applied to three scenarios involving attacks from radiological dispersion devices (e.g., dirty bombs). The results suggests that: (1) a single detonation would degrade transportation system performance two to three times more than that which occurs during a typical weekday afternoon peak hour, (2) volume on several critical arterials within the network would exceed capacity in the represented scenarios, and (3) resulting travel times to reach intended destinations imply that un-aided evacuation is impractical. These results assist decisions made by two categories of emergency responders: (1) transportation managers who provide traveler information and who make operational adjustments to improve the network (e.g., signal retiming) and (2) public health officials who maintain shelters, food and water stations, or first aid centers along evacuation routes. This approach may also interest decisionmakers who are in a position to influence the allocation of emergency resources, including healthcare providers, infrastructure owners, transit providers, and regional or local planning staff. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Research on Evacuation Based on Social Force Model

    NASA Astrophysics Data System (ADS)

    Liu, W.; Deng, Z.; Li, W.; Lin, J.

    2017-09-01

    Crowded centers always cause personnel casualties in evacuation operations. Stampede events often occur by hit, squeeze and crush due to panic. It is of vital important to alleviate such situation. With the deepening of personnel evacuation research, more and more researchers are committed to study individual behaviors and self-organization phenomenon in evacuation process. The study mainly includes: 1, enrich the social force model from different facets such as visual, psychological, external force to descript more realistic evacuation; 2, research on causes and effects of self - organization phenomenon. In this paper, we focus on disorder motion that occurs in the crowded indoor publics, especially the narrow channel and safety exits and other special arteries. We put forward the improved social force model to depict pedestrians' behaviors, an orderly speed-stratification evacuation method to solve disorder problem, and shape-changed export to alleviate congestion. The result of this work shows an improvement of evacuation efficiency by 19.5 %. Guiding pedestrians' direction to slow down the influence of social forces has a guidance function in improving the efficiency of indoor emergency evacuation.

  2. An Integrated Approach to Modeling Evacuation Behavior

    DOT National Transportation Integrated Search

    2011-02-01

    A spate of recent hurricanes and other natural disasters have drawn a lot of attention to the evacuation decision of individuals. Here we focus on evacuation models that incorporate two economic phenomena that seem to be increasingly important in exp...

  3. Quantitative comparison between crowd models for evacuation planning and evaluation

    NASA Astrophysics Data System (ADS)

    Viswanathan, Vaisagh; Lee, Chong Eu; Lees, Michael Harold; Cheong, Siew Ann; Sloot, Peter M. A.

    2014-02-01

    Crowd simulation is rapidly becoming a standard tool for evacuation planning and evaluation. However, the many crowd models in the literature are structurally different, and few have been rigorously calibrated against real-world egress data, especially in emergency situations. In this paper we describe a procedure to quantitatively compare different crowd models or between models and real-world data. We simulated three models: (1) the lattice gas model, (2) the social force model, and (3) the RVO2 model, and obtained the distributions of six observables: (1) evacuation time, (2) zoned evacuation time, (3) passage density, (4) total distance traveled, (5) inconvenience, and (6) flow rate. We then used the DISTATIS procedure to compute the compromise matrix of statistical distances between the three models. Projecting the three models onto the first two principal components of the compromise matrix, we find the lattice gas and RVO2 models are similar in terms of the evacuation time, passage density, and flow rates, whereas the social force and RVO2 models are similar in terms of the total distance traveled. Most importantly, we find that the zoned evacuation times of the three models to be very different from each other. Thus we propose to use this variable, if it can be measured, as the key test between different models, and also between models and the real world. Finally, we compared the model flow rates against the flow rate of an emergency evacuation during the May 2008 Sichuan earthquake, and found the social force model agrees best with this real data.

  4. Agent-based Modeling with MATSim for Hazards Evacuation Planning

    NASA Astrophysics Data System (ADS)

    Jones, J. M.; Ng, P.; Henry, K.; Peters, J.; Wood, N. J.

    2015-12-01

    Hazard evacuation planning requires robust modeling tools and techniques, such as least cost distance or agent-based modeling, to gain an understanding of a community's potential to reach safety before event (e.g. tsunami) arrival. Least cost distance modeling provides a static view of the evacuation landscape with an estimate of travel times to safety from each location in the hazard space. With this information, practitioners can assess a community's overall ability for timely evacuation. More information may be needed if evacuee congestion creates bottlenecks in the flow patterns. Dynamic movement patterns are best explored with agent-based models that simulate movement of and interaction between individual agents as evacuees through the hazard space, reacting to potential congestion areas along the evacuation route. The multi-agent transport simulation model MATSim is an agent-based modeling framework that can be applied to hazard evacuation planning. Developed jointly by universities in Switzerland and Germany, MATSim is open-source software written in Java and freely available for modification or enhancement. We successfully used MATSim to illustrate tsunami evacuation challenges in two island communities in California, USA, that are impacted by limited escape routes. However, working with MATSim's data preparation, simulation, and visualization modules in an integrated development environment requires a significant investment of time to develop the software expertise to link the modules and run a simulation. To facilitate our evacuation research, we packaged the MATSim modules into a single application tailored to the needs of the hazards community. By exposing the modeling parameters of interest to researchers in an intuitive user interface and hiding the software complexities, we bring agent-based modeling closer to practitioners and provide access to the powerful visual and analytic information that this modeling can provide.

  5. Spatial Analysis of Traffic and Routing Path Methods for Tsunami Evacuation

    NASA Astrophysics Data System (ADS)

    Fakhrurrozi, A.; Sari, A. M.

    2018-02-01

    Tsunami disaster occurred relatively very fast. Thus, it has a very large-scale impact on both non-material and material aspects. Community evacuation caused mass panic, crowds, and traffic congestion. A further research in spatial based modelling, traffic engineering and splitting zone evacuation simulation is very crucial as an effort to reduce higher losses. This topic covers some information from the previous research. Complex parameters include route selection, destination selection, the spontaneous timing of both the departure of the source and the arrival time to destination and other aspects of the result parameter in various methods. The simulation process and its results, traffic modelling, and routing analysis emphasized discussion which is the closest to real conditions in the tsunami evacuation process. The method that we should highlight is Clearance Time Estimate based on Location Priority in which the computation result is superior to others despite many drawbacks. The study is expected to have input to improve and invent a new method that will be a part of decision support systems for disaster risk reduction of tsunamis disaster.

  6. 46 CFR 108.545 - Marine evacuation system launching arrangements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Marine evacuation system launching arrangements. 108.545 Section 108.545 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Lifesaving Equipment § 108.545 Marine evacuation system launching...

  7. 46 CFR 108.545 - Marine evacuation system launching arrangements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Marine evacuation system launching arrangements. 108.545 Section 108.545 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Lifesaving Equipment § 108.545 Marine evacuation system launching...

  8. 46 CFR 108.545 - Marine evacuation system launching arrangements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Marine evacuation system launching arrangements. 108.545 Section 108.545 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Lifesaving Equipment § 108.545 Marine evacuation system launching...

  9. Evacuation and Rescue in Automated Guideway Transit : Volume 2. Guidebook.

    DOT National Transportation Integrated Search

    1979-12-01

    Evacuation and rescue are significant problems in all transportation systems. Serious injuries and loss of life can result from situations in which inadequate means of evacuating and rescuing passengers exist. In conventional transporlation systems, ...

  10. Modified social force model based on information transmission toward crowd evacuation simulation

    NASA Astrophysics Data System (ADS)

    Han, Yanbin; Liu, Hong

    2017-03-01

    In this paper, the information transmission mechanism is introduced into the social force model to simulate pedestrian behavior in an emergency, especially when most pedestrians are unfamiliar with the evacuation environment. This modified model includes a collision avoidance strategy and an information transmission model that considers information loss. The former is used to avoid collision among pedestrians in a simulation, whereas the latter mainly describes how pedestrians obtain and choose directions appropriate to them. Simulation results show that pedestrians can obtain the correct moving direction through information transmission mechanism and that the modified model can simulate actual pedestrian behavior during an emergency evacuation. Moreover, we have drawn four conclusions to improve evacuation based on the simulation results; and these conclusions greatly contribute in optimizing a number of efficient emergency evacuation schemes for large public places.

  11. 33 CFR 150.506 - When must the operator service inflatable lifesaving appliances and marine evacuation systems?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... inflatable lifesaving appliances and marine evacuation systems? 150.506 Section 150.506 Navigation and...: OPERATIONS Emergency and Specialty Equipment Inflatable Lifesaving Appliances § 150.506 When must the operator service inflatable lifesaving appliances and marine evacuation systems? (a) The operator must...

  12. Impacts of high resolution data on traveler compliance levels in emergency evacuation simulations

    DOE PAGES

    Lu, Wei; Han, Lee D.; Liu, Cheng; ...

    2016-05-05

    In this article, we conducted a comparison study of evacuation assignment based on Traffic Analysis Zones (TAZ) and high resolution LandScan USA Population Cells (LPC) with detailed real world roads network. A platform for evacuation modeling built on high resolution population distribution data and activity-based microscopic traffic simulation was proposed. This platform can be extended to any cities in the world. The results indicated that evacuee compliance behavior affects evacuation efficiency with traditional TAZ assignment, but it did not significantly compromise the performance with high resolution LPC assignment. The TAZ assignment also underestimated the real travel time during evacuation. Thismore » suggests that high data resolution can improve the accuracy of traffic modeling and simulation. The evacuation manager should consider more diverse assignment during emergency evacuation to avoid congestions.« less

  13. Tsunami evacuation analysis, modelling and planning: application to the coastal area of El Salvador

    NASA Astrophysics Data System (ADS)

    Gonzalez-Riancho, Pino; Aguirre-Ayerbe, Ignacio; Aniel-Quiroga, Iñigo; Abad Herrero, Sheila; González Rodriguez, Mauricio; Larreynaga, Jeniffer; Gavidia, Francisco; Quetzalcoalt Gutiérrez, Omar; Álvarez-Gómez, Jose Antonio; Medina Santamaría, Raúl

    2014-05-01

    Advances in the understanding and prediction of tsunami impacts allow the development of risk reduction strategies for tsunami-prone areas. Conducting adequate tsunami risk assessments is essential, as the hazard, vulnerability and risk assessment results allow the identification of adequate, site-specific and vulnerability-oriented risk management options, with the formulation of a tsunami evacuation plan being one of the main expected results. An evacuation plan requires the analysis of the territory and an evaluation of the relevant elements (hazard, population, evacuation routes, and shelters), the modelling of the evacuation, and the proposal of alternatives for those communities located in areas with limited opportunities for evacuation. Evacuation plans, which are developed by the responsible authorities and decision makers, would benefit from a clear and straightforward connection between the scientific and technical information from tsunami risk assessments and the subsequent risk reduction options. Scientifically-based evacuation plans would translate into benefits for the society in terms of mortality reduction. This work presents a comprehensive framework for the formulation of tsunami evacuation plans based on tsunami vulnerability assessment and evacuation modelling. This framework considers (i) the hazard aspects (tsunami flooding characteristics and arrival time), (ii) the characteristics of the exposed area (people, shelters and road network), (iii) the current tsunami warning procedures and timing, (iv) the time needed to evacuate the population, and (v) the identification of measures to improve the evacuation process, such as the potential location for vertical evacuation shelters and alternative routes. The proposed methodological framework aims to bridge the gap between risk assessment and risk management in terms of tsunami evacuation, as it allows for an estimation of the degree of evacuation success of specific management options, as well as for the classification and prioritization of the gathered information, in order to formulate an optimal evacuation plan. The framework has been applied to the El Salvador case study through the project "Tsunami Hazard and Risk Assessment in El Salvador", funded by AECID during the period 2009-12, demonstrating its applicability to site-specific response times and population characteristics.

  14. A Study on the Priority Selection of Sediment-related Desaster Evacuation Using Debris Flow Combination Degree of Risk

    NASA Astrophysics Data System (ADS)

    Woo, C.; Kang, M.; Seo, J.; Kim, D.; Lee, C.

    2017-12-01

    As the mountainous urbanization has increased the concern about landslides in the living area, it is essential to develop the technology to minimize the damage through quick identification and sharing of the disaster occurrence information. In this study, to establish an effective system of alert evacuation that has influence on the residents, we used the debris flow combination degree of risk to predict the risk of the disaster and the level of damage and to select evacuation priorities. Based on the GIS information, the physical strength and social vulnerability were determined by following the debris flow combination of the risk formula. The results classify the physical strength hazard rating of the debris flow combination of the through the normalization process. Debris flow the estimated residential population included in the damage range of the damage prediction map is based on the area and the unit size data. Prediction of occupant formula was calculated by applying different weighting to the resident population and users, and the result was classified into 5 classes as the debris flow physical strength. The debris flow occurrence physical strength and social and psychological vulnerability were classified into the classifications to be reflected in the debris flow integrated risk map using the matrix technique. In addition, to supplement the risk of incorporation of debris flow, we added weight to disaster vulnerable facilities that require a lot of time and manpower to evacuate. The basic model of welfare facilities was supplemented by using basic data, population density, employment density and GDP. First, evacuate areas with high integrated degree of risk level, and evacuate with consideration of physical class differences if classification difficult because of the same or similar grade among the management areas. When the physical hazard class difference is similar, the population difference of the area including the welfare facility is considered first, and the priority is decided in order of age distribution, population density by period, and class difference of residential facility. The results of this study are expected be used as basic data for establishing a safety net for landslide by evacuation systems for disasters. Keyword: Landslide, Debris flow, Early warning system, evacuation

  15. Evacuation and rescue in automated guideway transit. Volume 1 : data collection, scenarios, and evaluation

    DOT National Transportation Integrated Search

    1979-12-01

    Evacuation and rescue are significant problems in all transportation systems. Serious injuries and loss of life can result from situations in which inadequate means of evacuating and rescuing passengers exist. In conventional transportation systems, ...

  16. Variations in population exposure and evacuation potential to multiple tsunami evacuation phases on Alameda and Bay Farm Islands, California

    NASA Astrophysics Data System (ADS)

    Peters, J.

    2015-12-01

    Planning for a tsunami evacuation is challenging for California communities due to the variety of earthquake sources that could generate a tsunami. A maximum tsunami inundation zone is currently the basis for all tsunami evacuations in California, although an Evacuation Playbook consisting of specific event-based evacuation phases relating to flooding severity is in development. We chose to investigate the Evacuation Playbook approach for the island community of Alameda, CA since past reports estimated a significant difference in numbers of residents in the maximum inundation zone when compared to an event-based inundation zone. In order to recognize variations in the types of residents and businesses within each phase, a population exposure analysis was conducted for each of the four Alameda evacuation phases. A pedestrian evacuation analysis using an anisotropic, path distance model was also conducted to understand the time it would take for populations to reach high ground by foot. Initial results suggest that the two islands of the City of Alameda have different situations when it comes to the four tsunami evacuation phases. Pedestrian evacuation results suggest that Bay Farm Island would have more success evacuating by vehicle due to limited nearby high ground for pedestrians to reach safety. Therefore, agent-based traffic simulation software was used to model vehicle evacuation off Bay Farm Island. Initial results show that Alameda Island could face challenges evacuating numerous boat docks and a large beach for phases 1 and 2, whereas Bay Farm Island is unaffected at these phases but might be challenged with evacuating by vehicle for phases 3 and maximum due to congestion on limited egress routes. A better understanding of the population exposure within each tsunami Evacuation Playbook phase and the time it would take to evacuate out of each phase by foot or vehicle will help emergency managers implement the evacuation phases during an actual tsunami event.

  17. Predation rates by North Sea cod (Gadus morhua) - Predictions from models on gastric evacuation and bioenergetics

    USGS Publications Warehouse

    Hansson, S.; Rudstam, L. G.; Kitchell, J.F.; Hilden, M.; Johnson, B.L.; Peppard, P.E.

    1996-01-01

    We compared four different methods for estimating predation rates by North Sea cod (Gadus moi hua). Three estimates, based on gastric evacuation rates, came from an ICES multispecies working group and the fourth from a bioenergetics model. The bioenergetics model was developed from a review of literature on cod physiology. The three gastric evacuation rate models produced very different prey consumption estimates for small (2 kg) fish. For most size and age classes, the bioenergetics model predicted food consumption rates intermediate to those predicted by the gastric evacuation models. Using the standard ICES model and the average population abundance and age structure for 1974-1989, annual, prey consumption by the North Sea cod population (age greater than or equal to 1) was 840 kilotons. The other two evacuation rate models produced estimates of 1020 and 1640 kilotons, respectively. The bioenergetics model estimate was 1420 kilotons. The major differences between models were due to consumption rate estimates for younger age groups of cod. (C) 1996 International Council for the Exploration of the Sea

  18. Nonimaging concentrators for solar thermal energy

    NASA Astrophysics Data System (ADS)

    Winston, R.; Gallagher, J. J.

    1980-03-01

    A small experimental solar collector test facility was used to explore applications of nonimaging optics for solar thermal concentration in three substantially different configurations: a single stage system with moderate concentration on an evacuated absorber (a 5.25X evacuated tube Compound Parabolic Concentrator or CPC), a two stage system with high concentration and a non-evacuated absorber (a 16X Fresnel lens/CPC type mirror) and moderate concentration single stage systems with non-evacuated absorbers for lower temperature (a 3X and a 6.5X CPC). Prototypes of each of these systems were designed, built and tested. The performance characteristics are presented.

  19. Hurricane Sandy Evacuation Among World Trade Center Health Registry Enrollees in New York City.

    PubMed

    Brown, Shakara; Gargano, Lisa M; Parton, Hilary; Caramanica, Kimberly; Farfel, Mark R; Stellman, Steven D; Brackbill, Robert M

    2016-06-01

    Timely evacuation is vital for reducing adverse outcomes during disasters. This study examined factors associated with evacuation and evacuation timing during Hurricane Sandy among World Trade Center Health Registry (Registry) enrollees. The study sample included 1162 adults who resided in New York City's evacuation zone A during Hurricane Sandy who completed the Registry's Hurricane Sandy substudy in 2013. Factors assessed included zone awareness, prior evacuation experience, community cohesion, emergency preparedness, and poor physical health. Prevalence estimates and multiple logistic regression models of evacuation at any time and evacuation before Hurricane Sandy were created. Among respondents who evacuated for Hurricane Sandy (51%), 24% had evacuated before the storm. In adjusted analyses, those more likely to evacuate knew they resided in an evacuation zone, had evacuated during Hurricane Irene, or reported pre-Sandy community cohesion. Evacuation was less likely among those who reported being prepared for an emergency. For evacuation timing, evacuation before Hurricane Sandy was less likely among those with pets and those who reported 14 or more poor physical health days. Higher evacuation rates were observed for respondents seemingly more informed and who lived in neighborhoods with greater social capital. Improved disaster messaging that amplifies these factors may increase adherence with evacuation warnings. (Disaster Med Public Health Preparedness. 2016;10:411-419).

  20. Developing Tsunami Evacuation Plans, Maps, And Procedures: Pilot Project in Central America

    NASA Astrophysics Data System (ADS)

    Arcos, N. P.; Kong, L. S. L.; Arcas, D.; Aliaga, B.; Coetzee, D.; Leonard, J.

    2015-12-01

    In the End-to-End tsunami warning chain, once a forecast is provided and a warning alert issued, communities must know what to do and where to go. The 'where to' answer would be reliable and practical community-level tsunami evacuation maps. Following the Exercise Pacific Wave 2011, a questionnaire was sent to the 46 Member States of Pacific Tsunami Warning System (PTWS). The results revealed over 42 percent of Member States lacked tsunami mass coastal evacuation plans. Additionally, a significant gap in mapping was exposed as over 55 percent of Member States lacked tsunami evacuation maps, routes, signs and assembly points. Thereby, a significant portion of countries in the Pacific lack appropriate tsunami planning and mapping for their at-risk coastal communities. While a variety of tools exist to establish tsunami inundation areas, these are inconsistent while a methodology has not been developed to assist countries develop tsunami evacuation maps, plans, and procedures. The International Tsunami Information Center (ITIC) and partners is leading a Pilot Project in Honduras demonstrating that globally standardized tools and methodologies can be applied by a country, with minimal tsunami warning and mitigation resources, towards the determination of tsunami inundation areas and subsequently community-owned tsunami evacuation maps and plans for at-risk communities. The Pilot involves a 1- to 2-year long process centered on a series of linked tsunami training workshops on: evacuation planning, evacuation map development, inundation modeling and map creation, tsunami warning & emergency response Standard Operating Procedures (SOPs), and conducting tsunami exercises (including evacuation). The Pilot's completion is capped with a UNESCO/IOC document so that other countries can replicate the process in their tsunami-prone communities.

  1. Statistical fluctuations in pedestrian evacuation times and the effect of social contagion

    NASA Astrophysics Data System (ADS)

    Nicolas, Alexandre; Bouzat, Sebastián; Kuperman, Marcelo N.

    2016-08-01

    Mathematical models of pedestrian evacuation and the associated simulation software have become essential tools for the assessment of the safety of public facilities and buildings. While a variety of models is now available, their calibration and test against empirical data are generally restricted to global averaged quantities; the statistics compiled from the time series of individual escapes ("microscopic" statistics) measured in recent experiments are thus overlooked. In the same spirit, much research has primarily focused on the average global evacuation time, whereas the whole distribution of evacuation times over some set of realizations should matter. In the present paper we propose and discuss the validity of a simple relation between this distribution and the microscopic statistics, which is theoretically valid in the absence of correlations. To this purpose, we develop a minimal cellular automaton, with features that afford a semiquantitative reproduction of the experimental microscopic statistics. We then introduce a process of social contagion of impatient behavior in the model and show that the simple relation under test may dramatically fail at high contagion strengths, the latter being responsible for the emergence of strong correlations in the system. We conclude with comments on the potential practical relevance for safety science of calculations based on microscopic statistics.

  2. NIRS external dose estimation system for Fukushima residents after the Fukushima Dai-ichi NPP accident

    NASA Astrophysics Data System (ADS)

    Akahane, Keiichi; Yonai, Shunsuke; Fukuda, Shigekazu; Miyahara, Nobuyuki; Yasuda, Hiroshi; Iwaoka, Kazuki; Matsumoto, Masaki; Fukumura, Akifumi; Akashi, Makoto

    2013-04-01

    The great east Japan earthquake and subsequent tsunamis caused Fukushima Dai-ichi Nuclear Power Plant (NPP) accident. National Institute of Radiological Sciences (NIRS) developed the external dose estimation system for Fukushima residents. The system is being used in the Fukushima health management survey. The doses can be obtained by superimposing the behavior data of the residents on the dose rate maps. For grasping the doses, 18 evacuation patterns of the residents were assumed by considering the actual evacuation information before using the survey data. The doses of the residents from the deliberate evacuation area were relatively higher than those from the area within 20 km radius. The estimated doses varied from around 1 to 6 mSv for the residents evacuated from the representative places in the deliberate evacuation area. The maximum dose in 18 evacuation patterns was estimated to be 19 mSv.

  3. NIRS external dose estimation system for Fukushima residents after the Fukushima Dai-ichi NPP accident.

    PubMed

    Akahane, Keiichi; Yonai, Shunsuke; Fukuda, Shigekazu; Miyahara, Nobuyuki; Yasuda, Hiroshi; Iwaoka, Kazuki; Matsumoto, Masaki; Fukumura, Akifumi; Akashi, Makoto

    2013-01-01

    The great east Japan earthquake and subsequent tsunamis caused Fukushima Dai-ichi Nuclear Power Plant (NPP) accident. National Institute of Radiological Sciences (NIRS) developed the external dose estimation system for Fukushima residents. The system is being used in the Fukushima health management survey. The doses can be obtained by superimposing the behavior data of the residents on the dose rate maps. For grasping the doses, 18 evacuation patterns of the residents were assumed by considering the actual evacuation information before using the survey data. The doses of the residents from the deliberate evacuation area were relatively higher than those from the area within 20 km radius. The estimated doses varied from around 1 to 6 mSv for the residents evacuated from the representative places in the deliberate evacuation area. The maximum dose in 18 evacuation patterns was estimated to be 19 mSv.

  4. Complementary methods to plan pedestrian evacuation of the French Riviera's beaches in case of tsunami threat: graph- and multi-agent-based modelling

    NASA Astrophysics Data System (ADS)

    Sahal, A.; Leone, F.; Péroche, M.

    2013-07-01

    Small amplitude tsunamis have impacted the French Mediterranean shore (French Riviera) in the past centuries. Some caused casualties; others only generated economic losses. While the North Atlantic and Mediterranean tsunami warning system is being tested and is almost operational, no awareness and preparedness measure is being implemented at a local scale. Evacuation is to be considered along the French Riviera, but no plan exists within communities. We show that various approaches can provide local stakeholders with evacuation capacities assessments to develop adapted evacuation plans through the case study of the Cannes-Antibes region. The complementarity between large- and small-scale approaches is demonstrated with the use of macro-simulators (graph-based) and micro-simulators (multi-agent-based) to select shelter points and choose evacuation routes for pedestrians located on the beach. The first one allows automatically selecting shelter points and measuring and mapping their accessibility. The second one shows potential congestion issues during pedestrian evacuations, and provides leads for the improvement of urban environment. Temporal accessibility to shelters is compared to potential local and distal tsunami travel times, showing a 40 min deficit for an adequate crisis management in the first scenario, and a 30 min surplus for the second one.

  5. Numerical Simulation of Evacuation Process in Malaysia By Using Distinct-Element-Method Based Multi-Agent Model

    NASA Astrophysics Data System (ADS)

    Abustan, M. S.; Rahman, N. A.; Gotoh, H.; Harada, E.; Talib, S. H. A.

    2016-07-01

    In Malaysia, not many researches on crowd evacuation simulation had been reported. Hence, the development of numerical crowd evacuation process by taking into account people behavioral patterns and psychological characteristics is crucial in Malaysia. On the other hand, tsunami disaster began to gain attention of Malaysian citizens after the 2004 Indian Ocean Tsunami that need quick evacuation process. In relation to the above circumstances, we have conducted simulations of tsunami evacuation process at the Miami Beach of Penang Island by using Distinct Element Method (DEM)-based crowd behavior simulator. The main objectives are to investigate and reproduce current conditions of evacuation process at the said locations under different hypothetical scenarios for the efficiency study of the evacuation. The sim-1 is initial condition of evacuation planning while sim-2 as improvement of evacuation planning by adding new evacuation area. From the simulation result, sim-2 have a shorter time of evacuation process compared to the sim-1. The evacuation time recuded 53 second. The effect of the additional evacuation place is confirmed from decreasing of the evacuation completion time. Simultaneously, the numerical simulation may be promoted as an effective tool in studying crowd evacuation process.

  6. 48 CFR 752.228-70 - Medical Evacuation (MEDEVAC) Services.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 5 2013-10-01 2013-10-01 false Medical Evacuation... Clauses 752.228-70 Medical Evacuation (MEDEVAC) Services. As prescribed in 728.307-70, for use in all contracts requiring performance overseas: Medical Evacuation (MEDEVAC) Services (JUL 2007) (a) Contractor...

  7. 48 CFR 752.228-70 - Medical Evacuation (MEDEVAC) Services.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 5 2014-10-01 2014-10-01 false Medical Evacuation... Clauses 752.228-70 Medical Evacuation (MEDEVAC) Services. As prescribed in 728.307-70, for use in all contracts requiring performance overseas: Medical Evacuation (MEDEVAC) Services (JUL 2007) (a) Contractor...

  8. 48 CFR 752.228-70 - Medical Evacuation (MEDEVAC) Services.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Medical Evacuation... Clauses 752.228-70 Medical Evacuation (MEDEVAC) Services. As prescribed in 728.307-70, for use in all contracts requiring performance overseas: Medical Evacuation (MEDEVAC) Services (JUL 2007) (a) Contractor...

  9. Tsunami evacuation modelling as a tool for risk reduction: application to the coastal area of El Salvador

    NASA Astrophysics Data System (ADS)

    González-Riancho, P.; Aguirre-Ayerbe, I.; Aniel-Quiroga, I.; Abad, S.; González, M.; Larreynaga, J.; Gavidia, F.; Gutiérrez, O. Q.; Álvarez-Gómez, J. A.; Medina, R.

    2013-12-01

    Advances in the understanding and prediction of tsunami impacts allow the development of risk reduction strategies for tsunami-prone areas. This paper presents an integral framework for the formulation of tsunami evacuation plans based on tsunami vulnerability assessment and evacuation modelling. This framework considers (i) the hazard aspects (tsunami flooding characteristics and arrival time), (ii) the characteristics of the exposed area (people, shelters and road network), (iii) the current tsunami warning procedures and timing, (iv) the time needed to evacuate the population, and (v) the identification of measures to improve the evacuation process. The proposed methodological framework aims to bridge between risk assessment and risk management in terms of tsunami evacuation, as it allows for an estimation of the degree of evacuation success of specific management options, as well as for the classification and prioritization of the gathered information, in order to formulate an optimal evacuation plan. The framework has been applied to the El Salvador case study, demonstrating its applicability to site-specific response times and population characteristics.

  10. A novel grid-based mesoscopic model for evacuation dynamics

    NASA Astrophysics Data System (ADS)

    Shi, Meng; Lee, Eric Wai Ming; Ma, Yi

    2018-05-01

    This study presents a novel grid-based mesoscopic model for evacuation dynamics. In this model, the evacuation space is discretised into larger cells than those used in microscopic models. This approach directly computes the dynamic changes crowd densities in cells over the course of an evacuation. The density flow is driven by the density-speed correlation. The computation is faster than in traditional cellular automata evacuation models which determine density by computing the movements of each pedestrian. To demonstrate the feasibility of this model, we apply it to a series of practical scenarios and conduct a parameter sensitivity study of the effect of changes in time step δ. The simulation results show that within the valid range of δ, changing δ has only a minor impact on the simulation. The model also makes it possible to directly acquire key information such as bottleneck areas from a time-varied dynamic density map, even when a relatively large time step is adopted. We use the commercial software AnyLogic to evaluate the model. The result shows that the mesoscopic model is more efficient than the microscopic model and provides more in-situ details (e.g., pedestrian movement pattern) than the macroscopic models.

  11. Human initiated cascading failures in societal infrastructures.

    PubMed

    Barrett, Chris; Channakeshava, Karthik; Huang, Fei; Kim, Junwhan; Marathe, Achla; Marathe, Madhav V; Pei, Guanhong; Saha, Sudip; Subbiah, Balaaji S P; Vullikanti, Anil Kumar S

    2012-01-01

    In this paper, we conduct a systematic study of human-initiated cascading failures in three critical inter-dependent societal infrastructures due to behavioral adaptations in response to a crisis. We focus on three closely coupled socio-technical networks here: (i) cellular and mesh networks, (ii) transportation networks and (iii) mobile call networks. In crises, changes in individual behaviors lead to altered travel, activity and calling patterns, which influence the transport network and the loads on wireless networks. The interaction between these systems and their co-evolution poses significant technical challenges for representing and reasoning about these systems. In contrast to system dynamics models for studying these interacting infrastructures, we develop interaction-based models in which individuals and infrastructure elements are represented in detail and are placed in a common geographic coordinate system. Using the detailed representation, we study the impact of a chemical plume that has been released in a densely populated urban region. Authorities order evacuation of the affected area, and this leads to individual behavioral adaptation wherein individuals drop their scheduled activities and drive to home or pre-specified evacuation shelters as appropriate. They also revise their calling behavior to communicate and coordinate among family members. These two behavioral adaptations cause flash-congestion in the urban transport network and the wireless network. The problem is exacerbated with a few, already occurring, road closures. We analyze how extended periods of unanticipated road congestion can result in failure of infrastructures, starting with the servicing base stations in the congested area. A sensitivity analysis on the compliance rate of evacuees shows non-intuitive effect on the spatial distribution of people and on the loading of the base stations. For example, an evacuation compliance rate of 70% results in higher number of overloaded base stations than the evacuation compliance rate of 90%.

  12. Human Initiated Cascading Failures in Societal Infrastructures

    PubMed Central

    Barrett, Chris; Channakeshava, Karthik; Huang, Fei; Kim, Junwhan; Marathe, Achla; Marathe, Madhav V.; Pei, Guanhong; Saha, Sudip; Subbiah, Balaaji S. P.; Vullikanti, Anil Kumar S.

    2012-01-01

    In this paper, we conduct a systematic study of human-initiated cascading failures in three critical inter-dependent societal infrastructures due to behavioral adaptations in response to a crisis. We focus on three closely coupled socio-technical networks here: (i) cellular and mesh networks, (ii) transportation networks and (iii) mobile call networks. In crises, changes in individual behaviors lead to altered travel, activity and calling patterns, which influence the transport network and the loads on wireless networks. The interaction between these systems and their co-evolution poses significant technical challenges for representing and reasoning about these systems. In contrast to system dynamics models for studying these interacting infrastructures, we develop interaction-based models in which individuals and infrastructure elements are represented in detail and are placed in a common geographic coordinate system. Using the detailed representation, we study the impact of a chemical plume that has been released in a densely populated urban region. Authorities order evacuation of the affected area, and this leads to individual behavioral adaptation wherein individuals drop their scheduled activities and drive to home or pre-specified evacuation shelters as appropriate. They also revise their calling behavior to communicate and coordinate among family members. These two behavioral adaptations cause flash-congestion in the urban transport network and the wireless network. The problem is exacerbated with a few, already occurring, road closures. We analyze how extended periods of unanticipated road congestion can result in failure of infrastructures, starting with the servicing base stations in the congested area. A sensitivity analysis on the compliance rate of evacuees shows non-intuitive effect on the spatial distribution of people and on the loading of the base stations. For example, an evacuation compliance rate of 70% results in higher number of overloaded base stations than the evacuation compliance rate of 90%. PMID:23118847

  13. Can cooperative behaviors promote evacuation efficiency?

    NASA Astrophysics Data System (ADS)

    Cheng, Yuan; Zheng, Xiaoping

    2018-02-01

    This study aims to get insight into the question whether cooperative behaviors can promote the evacuation efficiency during an evacuation process. In this work, cooperative behaviors and evacuation efficiency have been examined in detail by using a cellular automata model with behavioral extension. The simulation results show that moderate cooperative behaviors can result in the highest evacuation efficiency. It is found that in a mixture of cooperative and competitive individuals, more cooperative people will lead to relatively high evacuation efficiency, and the larger subgroup will play a leading role. This work can also provide some new insights for the study of cooperative behaviors and evacuation efficiency which can be a scientific decision-making basis for emergency response involving large-scale crowd evacuation in emergencies.

  14. Pedestrian flow-path modeling to support tsunami-evacuation planning

    NASA Astrophysics Data System (ADS)

    Wood, N. J.; Jones, J. M.; Schmidtlein, M.

    2015-12-01

    Near-field tsunami hazards are credible threats to many coastal communities throughout the world. Along the U.S. Pacific Northwest coast, low-lying areas could be inundated by a series of catastrophic tsunamis potentially arriving in a matter of minutes following a Cascadia subduction zone (CSZ) earthquake. We developed a geospatial-modeling method for characterizing pedestrian-evacuation flow paths and evacuation basins to support evacuation and relief planning efforts for coastal communities in this region. We demonstrate this approach using the coastal communities of Aberdeen, Hoquiam, and Cosmopolis in southwestern Grays Harbor County, Washington (USA), where previous research suggests approximately 20,500 people (99% of the residents in tsunami-hazard zones) will likely have enough time to evacuate before tsunami-wave arrival. Geospatial, anisotropic, path distance models were developed to map the most efficient pedestrian paths to higher ground from locations within the tsunami-hazard zone. This information was then used to identify evacuation basins, outlining neighborhoods sharing a common evacuation pathway to safety. We then estimated the number of people traveling along designated evacuation pathways and arriving at pre-determined safe assembly areas, helping determine shelter demand and relief support (e.g., for elderly individuals or tourists). Finally, we assessed which paths may become inaccessible due to earthquake-induced ground failures, a factor which may impact an individual's success in reaching safe ground. The presentation will include a discussion of the implications of our analysis for developing more comprehensive coastal community tsunami-evacuation planning strategies worldwide.

  15. Experimental study on occupant evacuation in narrow seat aisle

    NASA Astrophysics Data System (ADS)

    Huang, Shenshi; Lu, Shouxiang; Lo, Siuming; Li, Changhai; Guo, Yafei

    2018-07-01

    Narrow seat aisle is an important area in the train car interior due to the large passenger population, however evacuation therein has not gained enough concerns. In this experimental study, the occupant evacuation of the narrow seat aisle area is investigated, with the aisle width of 0.4-0.6 m and the evacuation direction of forward and backward. The evacuation behaviors are analyzed based on the video record, and the discussion is carried out in the aspect of evacuation time, crowdedness, evacuation order, and aisle conflicts. The result shows that with the increasing aisle width, total evacuation time and the average specific evacuation rate decrease. The aisle is crowded for some time, with a large linear occupant densities. The evacuation order of each occupant is mainly related to the seat position. Moreover, it is found that the aisle conflicts can be well described by Burstedde's model. This study gives a useful benchmark for evacuation simulation of narrow seat aisle, and provides reference to safety design of seat area in train cars.

  16. The Use of the Integrated Medical Model for Forecasting and Mitigating Medical Risks for a Near-Earth Asteroid Mission

    NASA Technical Reports Server (NTRS)

    Kerstman, Eric; Saile, Lynn; Freire de Carvalho, Mary; Myers, Jerry; Walton, Marlei; Butler, Douglas; Lopez, Vilma

    2011-01-01

    Introduction The Integrated Medical Model (IMM) is a decision support tool that is useful to space flight mission managers and medical system designers in assessing risks and optimizing medical systems. The IMM employs an evidence-based, probabilistic risk assessment (PRA) approach within the operational constraints of space flight. Methods Stochastic computational methods are used to forecast probability distributions of medical events, crew health metrics, medical resource utilization, and probability estimates of medical evacuation and loss of crew life. The IMM can also optimize medical kits within the constraints of mass and volume for specified missions. The IMM was used to forecast medical evacuation and loss of crew life probabilities, as well as crew health metrics for a near-earth asteroid (NEA) mission. An optimized medical kit for this mission was proposed based on the IMM simulation. Discussion The IMM can provide information to the space program regarding medical risks, including crew medical impairment, medical evacuation and loss of crew life. This information is valuable to mission managers and the space medicine community in assessing risk and developing mitigation strategies. Exploration missions such as NEA missions will have significant mass and volume constraints applied to the medical system. Appropriate allocation of medical resources will be critical to mission success. The IMM capability of optimizing medical systems based on specific crew and mission profiles will be advantageous to medical system designers. Conclusion The IMM is a decision support tool that can provide estimates of the impact of medical events on human space flight missions, such as crew impairment, evacuation, and loss of crew life. It can be used to support the development of mitigation strategies and to propose optimized medical systems for specified space flight missions. Learning Objectives The audience will learn how an evidence-based decision support tool can be used to help assess risk, develop mitigation strategies, and optimize medical systems for exploration space flight missions.

  17. Evacuation dynamics with smoking diffusion in three dimension based on an extended Floor-Field model

    NASA Astrophysics Data System (ADS)

    Zheng, Ying; Li, Xingang; Zhu, Nuo; Jia, Bin; Jiang, Rui

    2018-10-01

    This paper proposes an extended Floor-Field (FF) model to study the pedestrian evacuation dynamics under the influence of smoke diffusing in three-dimension (3D). In addition to static and dynamic fields, the extended model adopts the smoke and herding fields to reflect pedestrian's smoke-avoiding behavior and herding behavior. The impact of smoke on pedestrians' health is also considered. The smoke will reduce the pedestrians' health point and finally impact their moving ability. Numerical simulations were carried out to study the evacuation dynamics. The influence of the smoke particles producing rate, the initial health point, the critical smoke concentration value, and the herding field on evacuation dynamics were analyzed in detail. Those results could bring some guidance to make the evacuation strategy in the smoke diffusing environment.

  18. Effect of form of obstacle on speed of crowd evacuation

    NASA Astrophysics Data System (ADS)

    Yano, Ryosuke

    2018-03-01

    This paper investigates the effect of the form of an obstacle on the time that a crowd takes to evacuate a room, using a toy model. Pedestrians are modeled as active soft matter moving toward a point with intended velocities. An obstacle is placed in front of the exit, and it has one of four shapes: a cylindrical column, a triangular prism, a quadratic prism, or a diamond prism. Numerical results indicate that the evacuation-completion time depends on the shape of the obstacle. Obstacles with a circular cylinder (C.C.) shape yield the shortest evacuation-completion time in the proposed model.

  19. The World Trade Center bombing: injury prevention strategies for high-rise building fires.

    PubMed

    Quenemoen, L E; Davis, Y M; Malilay, J; Sinks, T; Noji, E K; Klitzman, S

    1996-06-01

    The WTC disaster provided an opportunity to look for ways to prevent morbidity among occupants of high-rise buildings during fires. This paper first describes the overall morbidity resulting from the explosion and fire, and second, presents the results of a case-control study carried out to identify risk factors for smoke-related morbidity. The main ones include: increased age, presence of a pre-existing cardio-pulmonary condition, entrapment in a lift and prolonged evacuation time. Study results point to the importance of the following safety systems during high-rise building fires: smoke-control systems with separate emergency power sources; lift-cars, lift-car position-monitoring systems, and lift-car communication systems with separate emergency power sources; two-way emergency communication systems on all floors and in stairwells; stairwells with emergency lighting and designed for the rapid egress of crowds; evacuation systems/equipment to assist in the evacuation of vulnerable people (elderly, infirm). Also important are evacuation plans that include regularly scheduled safety training and evacuation drills.

  20. Evacuation of the ICU

    PubMed Central

    Niven, Alexander S.; Beninati, William; Fang, Ray; Einav, Sharon; Rubinson, Lewis; Kissoon, Niranjan; Devereaux, Asha V.; Christian, Michael D.; Grissom, Colin K.; Christian, Michael D.; Devereaux, Asha V.; Dichter, Jeffrey R.; Kissoon, Niranjan; Rubinson, Lewis; Amundson, Dennis; Anderson, Michael R.; Balk, Robert; Barfield, Wanda D.; Bartz, Martha; Benditt, Josh; Beninati, William; Berkowitz, Kenneth A.; Daugherty Biddison, Lee; Braner, Dana; Branson, Richard D; Burkle, Frederick M.; Cairns, Bruce A.; Carr, Brendan G.; Courtney, Brooke; DeDecker, Lisa D.; De Jong, Marla J.; Dominguez-Cherit, Guillermo; Dries, David; Einav, Sharon; Erstad, Brian L.; Etienne, Mill; Fagbuyi, Daniel B.; Fang, Ray; Feldman, Henry; Garzon, Hernando; Geiling, James; Gomersall, Charles D.; Grissom, Colin K.; Hanfling, Dan; Hick, John L.; Hodge, James G.; Hupert, Nathaniel; Ingbar, David; Kanter, Robert K.; King, Mary A.; Kuhnley, Robert N.; Lawler, James; Leung, Sharon; Levy, Deborah A.; Lim, Matthew L.; Livinski, Alicia; Luyckx, Valerie; Marcozzi, David; Medina, Justine; Miramontes, David A.; Mutter, Ryan; Niven, Alexander S.; Penn, Matthew S.; Pepe, Paul E.; Powell, Tia; Prezant, David; Reed, Mary Jane; Rich, Preston; Rodriquez, Dario; Roxland, Beth E.; Sarani, Babak; Shah, Umair A.; Skippen, Peter; Sprung, Charles L.; Subbarao, Italo; Talmor, Daniel; Toner, Eric S.; Tosh, Pritish K.; Upperman, Jeffrey S.; Uyeki, Timothy M.; Weireter, Leonard J.; West, T. Eoin; Wilgis, John; Ornelas, Joe; McBride, Deborah; Reid, David; Baez, Amado; Baldisseri, Marie; Blumenstock, James S.; Cooper, Art; Ellender, Tim; Helminiak, Clare; Jimenez, Edgar; Krug, Steve; Lamana, Joe; Masur, Henry; Mathivha, L. Rudo; Osterholm, Michael T.; Reynolds, H. Neal; Sandrock, Christian; Sprecher, Armand; Tillyard, Andrew; White, Douglas; Wise, Robert; Yeskey, Kevin

    2014-01-01

    BACKGROUND: Despite the high risk for patient harm during unanticipated ICU evacuations, critical care providers receive little to no training on how to perform safe and effective ICU evacuations. We reviewed the pertinent published literature and offer suggestions for the critical care provider regarding ICU evacuation. The suggestions in this article are important for all who are involved in pandemics or disasters with multiple critically ill or injured patients, including front-line clinicians, hospital administrators, and public health or government officials. METHODS: The Evacuation and Mobilization topic panel used the American College of Chest Physicians (CHEST) Guidelines Oversight Committee’s methodology to develop seven key questions for which specific literature searches were conducted to identify studies upon which evidence-based recommendations could be made. No studies of sufficient quality were identified. Therefore, the panel developed expert opinion-based suggestions using a modified Delphi process. RESULTS: Based on current best evidence, we provide 13 suggestions outlining a systematic approach to prepare for and execute an effective ICU evacuation during a disaster. Interhospital and intrahospital collaboration and functional ICU communication are critical for success. Pre-event planning and preparation are required for a no-notice evacuation. A Critical Care Team Leader must be designated within the Hospital Incident Command System. A three-stage ICU Evacuation Timeline, including (1) no immediate threat, (2) evacuation threat, and (3) evacuation implementation, should be used. Detailed suggestions on ICU evacuation, including regional planning, evacuation drills, patient transport preparation and equipment, patient prioritization and distribution for evacuation, patient information and tracking, and federal and international evacuation assistance systems, are also provided. CONCLUSIONS: Successful ICU evacuation during a disaster requires active preparation, participation, communication, and leadership by critical care providers. Critical care providers have a professional obligation to become better educated, prepared, and engaged with the processes of ICU evacuation to provide a safe continuum of critical care during a disaster. PMID:25144509

  1. Evacuation of the ICU: care of the critically ill and injured during pandemics and disasters: CHEST consensus statement.

    PubMed

    King, Mary A; Niven, Alexander S; Beninati, William; Fang, Ray; Einav, Sharon; Rubinson, Lewis; Kissoon, Niranjan; Devereaux, Asha V; Christian, Michael D; Grissom, Colin K

    2014-10-01

    Despite the high risk for patient harm during unanticipated ICU evacuations, critical care providers receive little to no training on how to perform safe and effective ICU evacuations. We reviewed the pertinent published literature and offer suggestions for the critical care provider regarding ICU evacuation. The suggestions in this article are important for all who are involved in pandemics or disasters with multiple critically ill or injured patients, including front-line clinicians, hospital administrators, and public health or government officials. The Evacuation and Mobilization topic panel used the American College of Chest Physicians (CHEST) Guidelines Oversight Committee's methodology to develop seven key questions for which specific literature searches were conducted to identify studies upon which evidence-based recommendations could be made. No studies of sufficient quality were identified. Therefore, the panel developed expert opinion-based suggestions using a modified Delphi process. Based on current best evidence, we provide 13 suggestions outlining a systematic approach to prepare for and execute an effective ICU evacuation during a disaster. Interhospital and intrahospital collaboration and functional ICU communication are critical for success. Pre-event planning and preparation are required for a no-notice evacuation. A Critical Care Team Leader must be designated within the Hospital Incident Command System. A three-stage ICU Evacuation Timeline, including (1) no immediate threat, (2) evacuation threat, and (3) evacuation implementation, should be used. Detailed suggestions on ICU evacuation, including regional planning, evacuation drills, patient transport preparation and equipment, patient prioritization and distribution for evacuation, patient information and tracking, and federal and international evacuation assistance systems, are also provided. Successful ICU evacuation during a disaster requires active preparation, participation, communication, and leadership by critical care providers. Critical care providers have a professional obligation to become better educated, prepared, and engaged with the processes of ICU evacuation to provide a safe continuum of critical care during a disaster.

  2. Distance Learning Methodologies. TRANSCOM Regulating and Command & Control Evacuation System (TRAC2ES).

    ERIC Educational Resources Information Center

    Bloomquist, Carroll R.

    The TRANSCOM (Transportation Command) Regulating Command and Control Evacuation System (TRAC2ES), which applies state-of-the-art technology to manage global medical regulating (matching patients to clinical availability) and medical evacuation processes, will be installed at all Department of Defense medical locations globally. A combination of…

  3. Changes in population evacuation potential for tsunami hazards in Seward, Alaska, since the 1964 Good Friday earthquake

    USGS Publications Warehouse

    Wood, Nathan J.; Schmidtlein, Mathew C.; Peters, Jeff

    2014-01-01

    Pedestrian evacuation modeling for tsunami hazards typically focuses on current land-cover conditions and population distributions. To examine how post-disaster redevelopment may influence the evacuation potential of at-risk populations to future threats, we modeled pedestrian travel times to safety in Seward, Alaska, based on conditions before the 1964 Good Friday earthquake and tsunami disaster and on modern conditions. Anisotropic, path distance modeling is conducted to estimate travel times to safety during the 1964 event and in modern Seward, and results are merged with various population data, including the location and number of residents, employees, public venues, and dependent care facilities. Results suggest that modeled travel time estimates conform well to the fatality patterns of the 1964 event and that evacuation travel times have increased in modern Seward due to the relocation and expansion of port and harbor facilities after the disaster. The majority of individuals threatened by tsunamis today in Seward are employee, customer, and tourist populations, rather than residents in their homes. Modern evacuation travel times to safety for the majority of the region are less than wave arrival times for future tectonic tsunamis but greater than arrival times for landslide-related tsunamis. Evacuation travel times will likely be higher in the winter time, when the presence of snow may constrain evacuations to roads.

  4. Evacuation Preparedness in the Event of Fire in Intensive Care Units in Sweden: More is Needed.

    PubMed

    Löfqvist, Erika; Oskarsson, Åsa; Brändström, Helge; Vuorio, Alpo; Haney, Michael

    2017-06-01

    Introduction Hospitals, including intensive care units (ICUs), can be subject to threat from fire and require urgent evacuation. Hypothesis The hypothesis was that the current preparedness for ICU evacuation for fire in the national public hospital system in a wealthy country was very good, using Sweden as model. An already validated questionnaire for this purpose was adapted to national/local circumstances and translated into Swedish. It aimed to elicit information concerning fire response planning, personnel education, training, and exercises. Questionnaire results (yes/no answers) were collected and answers collated to assess grouped responses. Frequencies of responses were determined. While a written hospital plan for fire response and evacuation was noted by all responders, personnel familiarity with the plan was less frequent. Deficiencies were reported concerning all categories: lack of written fire response plan for ICU, lack of personnel education in this, and lack of practical exercises to practice urgent evacuation in the event of fire. These findings were interpreted as an indication of risk for worse consequences for patients in the event of fire and ICU evacuation among the hospitals in the country that was assessed, despite clear regulations and requirements for these. The exact reasons for this lack of compliance with existing laws was not clear, though there are many possible explanations. To remedy this, more attention is needed concerning recognizing risk related to lack of preparedness. Where there exists a goal of high-quality work in the ICU, this should include general leadership and medical staff preparedness in the event of urgent ICU evacuation. Löfqvist E , Oskarsson A , Brändström H , Vuorio A , Haney M . Evacuation preparedness in the event of fire in intensive care units in Sweden: more is needed. Prehosp Disaster Med. 2017;32(3):317-320.

  5. Suction forces generated by passive bile bag drainage on a model of post-subdural hematoma evacuation.

    PubMed

    Tenny, Steven O; Thorell, William E

    2018-05-05

    Passive drainage systems are commonly used after subdural hematoma evacuation but there is a dearth of published data regarding the suction forces created. We set out to quantify the suction forces generated by a passive drainage system. We created a model of passive drainage after subdural hematoma evacuation. We measured the maximum suction force generated with a bile bag drain for both empty drain tubing and fluid-filled drain tube causing a siphoning effect. We took measurements at varying heights of the bile bag to analyze if bile bag height changed suction forces generated. An empty bile bag with no fluid in the drainage tube connected to a rigid, fluid-filled model creates minimal suction force of 0.9 mmHg (95% CI 0.64-1.16 mmHg). When fluid fills the drain tubing, a siphoning effect is created and can generate suction forces ranging from 18.7 to 30.6 mmHg depending on the relative position of the bile bag and filled amount of the bile bag. The suction forces generated are statistically different if the bile bag is 50 cm below, level with or 50 cm above the experimental model. Passive bile bag drainage does not generate significant suction on a fluid-filled rigid model if the drain tubing is empty. If fluid fills the drain tubing then siphoning occurs and can increase the suction force of a passive bile bag drainage system to levels comparable to partially filled Jackson-Pratt bulb drainage.

  6. Intra-community implications of implementing multiple tsunami-evacuation zones in Alameda, California

    USGS Publications Warehouse

    Peters, Jeff; Wood, Nathan J.; Wilson, Rick; Miller, Kevin

    2016-01-01

    Tsunami-evacuation planning in coastal communities is typically based on maximum evacuation zones for a single scenario or a composite of sources; however, this approach may over-evacuate a community and overly disrupt the local economy and strain emergency-service resources. To minimize the potential for future over-evacuations, multiple evacuation zones based on arrival time and inundation extent are being developed for California coastal communities. We use the coastal city of Alameda, California (USA), as a case study to explore population and evacuation implications associated with multiple tsunami-evacuation zones. We use geospatial analyses to estimate the number and type of people in each tsunami-evacuation zone and anisotropic pedestrian evacuation models to estimate pedestrian travel time out of each zone. Results demonstrate that there are tens of thousands of individuals in tsunami-evacuation zones on the two main islands of Alameda, but they will likely have sufficient time to evacuate before wave arrival. Quality of life could be impacted by the high number of government offices, schools, day-care centers, and medical offices in certain evacuation zones and by potentially high population density at one identified safe area after an evacuation. Multi-jurisdictional evacuation planning may be warranted, given that many at-risk individuals may need to evacuate to neighboring jurisdictions. The use of maximum evacuation zones for local tsunami sources may be warranted given the limited amount of available time to confidently recommend smaller zones which would result in fewer evacuees; however, this approach may also result in over-evacuation and the incorrect perception that successful evacuations are unlikely.

  7. A materials test system for static compression at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Korellis, J. S.; Steinhaus, C. A.; Totten, J. J.

    1992-06-01

    This report documents modifications to our existing computer-controlled compression testing system to allow elevated temperature testing in an evacuated environment. We have adopted an 'inverse' design configuration where the evacuated test volume is located within the induction heating coil, eliminating the expense and minimizing the evacuation time of a much larger traditional vacuum chamber.

  8. A fuzzy Bayesian network approach to quantify the human behaviour during an evacuation

    NASA Astrophysics Data System (ADS)

    Ramli, Nurulhuda; Ghani, Noraida Abdul; Ahmad, Nazihah

    2016-06-01

    Bayesian Network (BN) has been regarded as a successful representation of inter-relationship of factors affecting human behavior during an emergency. This paper is an extension of earlier work of quantifying the variables involved in the BN model of human behavior during an evacuation using a well-known direct probability elicitation technique. To overcome judgment bias and reduce the expert's burden in providing precise probability values, a new approach for the elicitation technique is required. This study proposes a new fuzzy BN approach for quantifying human behavior during an evacuation. Three major phases of methodology are involved, namely 1) development of qualitative model representing human factors during an evacuation, 2) quantification of BN model using fuzzy probability and 3) inferencing and interpreting the BN result. A case study of three inter-dependencies of human evacuation factors such as danger assessment ability, information about the threat and stressful conditions are used to illustrate the application of the proposed method. This approach will serve as an alternative to the conventional probability elicitation technique in understanding the human behavior during an evacuation.

  9. Pedestrian Evacuation Analysis for Tsunami Hazards

    NASA Astrophysics Data System (ADS)

    Jones, J. M.; Ng, P.; Wood, N. J.

    2014-12-01

    Recent catastrophic tsunamis in the last decade, as well as the 50th anniversary of the 1964 Alaskan event, have heightened awareness of the threats these natural hazards present to large and increasing coastal populations. For communities located close to the earthquake epicenter that generated the tsunami, strong shaking may also cause significant infrastructure damage, impacting the road network and hampering evacuation. There may also be insufficient time between the earthquake and first wave arrival to rely on a coordinated evacuation, leaving at-risk populations to self-evacuate on foot and across the landscape. Emergency managers evaluating these coastal risks need tools to assess the evacuation potential of low-lying areas in order to discuss mitigation options, which may include vertical evacuation structures to provide local safe havens in vulnerable communities. The U.S. Geological Survey has developed the Pedestrian Evacuation Analyst software tool for use by researchers and emergency managers to assist in the assessment of a community's evacuation potential by modeling travel times across the landscape and producing both maps of travel times and charts of population counts with corresponding times. The tool uses an anisotropic (directionally dependent) least cost distance model to estimate evacuation potential and allows for the variation of travel speed to measure its effect on travel time. The effectiveness of vertical evacuation structures on evacuation time can also be evaluated and compared with metrics such as travel time maps showing each structure in place and graphs displaying the percentage change in population exposure for each structure against the baseline. Using the tool, travel time maps and at-risk population counts have been generated for some coastal communities of the U.S. Pacific Northwest and Alaska. The tool can also be used to provide valuable decision support for tsunami vertical evacuation siting.

  10. Application of Catastrophe Risk Modelling to Evacuation Public Policy

    NASA Astrophysics Data System (ADS)

    Woo, G.

    2009-04-01

    The decision by civic authorities to evacuate an area threatened by a natural hazard is especially fraught when the population in harm's way is extremely large, and where there is considerable uncertainty in the spatial footprint, scale, and strike time of a hazard event. Traditionally viewed as a hazard forecasting issue, civil authorities turn to scientists for advice on a potentially imminent dangerous event. However, the level of scientific confidence varies enormously from one peril and crisis situation to another. With superior observational data, meteorological and hydrological hazards are generally better forecast than geological hazards. But even with Atlantic hurricanes, the track and intensity of a hurricane can change significantly within a few hours. This complicated and delayed the decision to call an evacuation of New Orleans when threatened by Hurricane Katrina, and would present a severe dilemma if a major hurricane were appearing to head for New York. Evacuation needs to be perceived as a risk issue, requiring the expertise of catastrophe risk modellers as well as geoscientists. Faced with evidence of a great earthquake in the Indian Ocean in December 2004, seismologists were reluctant to give a tsunami warning without more direct sea observations. Yet, from a risk perspective, the risk to coastal populations would have warranted attempts at tsunami warning, even though there was significant uncertainty in the hazard forecast, and chance of a false alarm. A systematic coherent risk-based framework for evacuation decision-making exists, which weighs the advantages of an evacuation call against the disadvantages. Implicitly and qualitatively, such a cost-benefit analysis is undertaken by civic authorities whenever an evacuation is considered. With the progress in catastrophe risk modelling, such an analysis can be made explicit and quantitative, providing a transparent audit trail for the decision process. A stochastic event set, the core of a catastrophe risk model, is required to explore the casualty implications of different possible hazard scenarios, to assess the proportion of an evacuated population who would owe their lives to an evacuation, and to estimate the economic loss associated with an unnecessary evacuation. This paper will review the developing methodology for applying catastrophe risk modelling to support public policy in evacuation decision-making, and provide illustrations from across the range of natural hazards. Evacuation during volcanic crises is a prime example, recognizing the improving forecasting skill of volcanologists, now able to account probabilistically for precursory seismological, geodetic, and geochemical monitoring data. This methodology will be shown to help civic authorities make sounder risk-informed decisions on the timing and population segmentation of evacuation from both volcanoes and calderas, such as Vesuvius and Campi Flegrei, which are in densely populated urban regions.

  11. Human behaviours in evacuation crowd dynamics: From modelling to "big data" toward crisis management

    NASA Astrophysics Data System (ADS)

    Bellomo, N.; Clarke, D.; Gibelli, L.; Townsend, P.; Vreugdenhil, B. J.

    2016-09-01

    This paper proposes an essay concerning the understanding of human behaviours and crisis management of crowds in extreme situations, such as evacuation through complex venues. The first part focuses on the understanding of the main features of the crowd viewed as a living, hence complex system. The main concepts are subsequently addressed, in the second part, to a critical analysis of mathematical models suitable to capture them, as far as it is possible. Then, the third part focuses on the use, toward safety problems, of a model derived by the methods of the mathematical kinetic theory and theoretical tools of evolutionary game theory. It is shown how this model can depict critical situations and how these can be managed with the aim of minimizing the risk of catastrophic events.

  12. How to simulate pedestrian behaviors in seismic evacuation for vulnerability reduction of existing buildings

    NASA Astrophysics Data System (ADS)

    Quagliarini, Enrico; Bernardini, Gabriele; D'Orazio, Marco

    2017-07-01

    Understanding and representing how individuals behave in earthquake emergencies would be essentially to assess the impact of vulnerability reduction strategies on existing buildings in seismic areas. In fact, interactions between individuals and the scenario (modified by the earthquake occurrence) are really important in order to understand the possible additional risks for people, especially during the evacuation phase. The current approach is based on "qualitative" aspects, in order to define best practice guidelines for Civil Protection and populations. On the contrary, a "quantitative" description of human response and evacuation motion in similar conditions is urgently needed. Hence, this work defines the rules for pedestrians' earthquake evacuation in urban scenarios, by taking advantages of previous results of real-world evacuation analyses. In particular, motion laws for pedestrians is defined by modifying the Social Force model equation. The proposed model could be used for evaluating individuals' evacuation process and so for defining operative strategies for interferences reduction in critical urban fabric parts (e.g.: interventions on particular buildings, evacuation strategies definition, city parts projects).

  13. Tsunami evacuation plans for future megathrust earthquakes in Padang, Indonesia, considering stochastic earthquake scenarios

    NASA Astrophysics Data System (ADS)

    Muhammad, Ario; Goda, Katsuichiro; Alexander, Nicholas A.; Kongko, Widjo; Muhari, Abdul

    2017-12-01

    This study develops tsunami evacuation plans in Padang, Indonesia, using a stochastic tsunami simulation method. The stochastic results are based on multiple earthquake scenarios for different magnitudes (Mw 8.5, 8.75, and 9.0) that reflect asperity characteristics of the 1797 historical event in the same region. The generation of the earthquake scenarios involves probabilistic models of earthquake source parameters and stochastic synthesis of earthquake slip distributions. In total, 300 source models are generated to produce comprehensive tsunami evacuation plans in Padang. The tsunami hazard assessment results show that Padang may face significant tsunamis causing the maximum tsunami inundation height and depth of 15 and 10 m, respectively. A comprehensive tsunami evacuation plan - including horizontal evacuation area maps, assessment of temporary shelters considering the impact due to ground shaking and tsunami, and integrated horizontal-vertical evacuation time maps - has been developed based on the stochastic tsunami simulation results. The developed evacuation plans highlight that comprehensive mitigation policies can be produced from the stochastic tsunami simulation for future tsunamigenic events.

  14. Evacuation and rescue in automated guideway transit. Volume 2 : guidebook

    DOT National Transportation Integrated Search

    1979-12-01

    Evacuation and rescue are significant problems in all transportation systems. : Serious injuries and loss of life can result from situations in which inadequate : means of evacuating and rescuing passengers exist. In conventional transporlation : sys...

  15. RTSTEP regional transportation simulation tool for emergency planning - final report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ley, H.; Sokolov, V.; Hope, M.

    2012-01-20

    Large-scale evacuations from major cities during no-notice events - such as chemical or radiological attacks, hazardous material spills, or earthquakes - have an obvious impact on large regions rather than on just the directly affected area. The scope of impact includes the accommodation of emergency evacuation traffic throughout a very large area; the planning of resources to respond appropriately to the needs of the affected population; the placement of medical supplies and decontamination equipment; and the assessment and determination of primary escape routes, as well as routes for incoming emergency responders. Compared to events with advance notice, such as evacuationsmore » based on hurricanes approaching an affected area, the response to no-notice events relies exclusively on pre-planning and general regional emergency preparedness. Another unique issue is the lack of a full and immediate understanding of the underlying threats to the population, making it even more essential to gain extensive knowledge of the available resources, the chain of command, and established procedures. Given the size of the area affected, an advanced understanding of the regional transportation systems is essential to help with the planning for such events. The objectives of the work described here (carried out by Argonne National Laboratory) is the development of a multi-modal regional transportation model that allows for the analysis of different evacuation scenarios and emergency response strategies to build a wealth of knowledge that can be used to develop appropriate regional emergency response plans. The focus of this work is on the effects of no-notice evacuations on the regional transportation network, as well as the response of the transportation network to the sudden and unusual demand. The effects are dynamic in nature, with scenarios changing potentially from minute to minute. The response to a radiological or chemical hazard will be based on the time-delayed dispersion of such materials over a large area, with responders trying to mitigate the immediate danger to the population in a variety of ways that may change over time (e.g., in-place evacuation, staged evacuations, and declarations of growing evacuation zones over time). In addition, available resources will be marshaled in unusual ways, such as the repurposing of transit vehicles to support mass evacuations. Thus, any simulation strategy will need to be able to address highly dynamic effects and will need to be able to handle any mode of ground transportation. Depending on the urgency and timeline of the event, emergency responders may also direct evacuees to leave largely on foot, keeping roadways as clear as possible for emergency responders, logistics, mass transport, and law enforcement. This RTSTEP project developed a regional emergency evacuation modeling tool for the Chicago Metropolitan Area that emergency responders can use to pre-plan evacuation strategies and compare different response strategies on the basis of a rather realistic model of the underlying complex transportation system. This approach is a significant improvement over existing response strategies that are largely based on experience gained from small-scale events, anecdotal evidence, and extrapolation to the scale of the assumed emergency. The new tool will thus add to the toolbox available to emergency response planners to help them design appropriate generalized procedures and strategies that lead to an improved outcome when used during an actual event.« less

  16. Modeling social crowds. Comment on "Human behaviours in evacuation crowd dynamics: From modelling to "big data" toward crisis management" by Nicola Bellomo et al.

    NASA Astrophysics Data System (ADS)

    Poyato, David; Soler, Juan

    2016-09-01

    The study of human behavior is a complex task, but modeling some aspects of this behavior is an even more complicated and exciting idea. From crisis management to decision making in evacuation protocols, understanding the complexity of humans in stress situations is more and more demanded in our society by obvious reasons [5,6,8,12]. In this context, [4] deals with crowd dynamics with special attention to evacuation.

  17. Modeling hurricane evacuation traffic : evaluation of freeway contraflow evacuation initiation and termination point configurations.

    DOT National Transportation Integrated Search

    2010-06-01

    Over the last five years, the departments of transportation in 12 coastal states threatened by hurricanes have developed plans for the implementation of contraflow traffic operations on freeways during evacuations. Contraflow involves the use of one ...

  18. Modeling hurricane evacuation traffic : a mobile real-time traffic counter for monitoring hurricane evacuation traffic conditions.

    DOT National Transportation Integrated Search

    2006-04-01

    In this research report, an investigation was conducted to identify a suitable traffic monitoring device for collecting traffic data during actual emergency evacuation conditions that may result from hurricanes in Louisiana. The study reviewed thorou...

  19. Modeling hurricane evacuation traffic : evaluation of freeway contraflow evacuation initiation and termination point configurations.

    DOT National Transportation Integrated Search

    2006-06-01

    Over the last 5 years, the Departments of Transportation in 12 coastal states threatened by hurricanes have developed plans for the implementation of contraflow traffic operations on freeways during evacuations. Contraflow involves the use of one or ...

  20. Development of a time-dependent hurricane evacuation model for the New Orleans area : [technical summary].

    DOT National Transportation Integrated Search

    2013-01-01

    When hurricanes threaten coastal cities, the most eff ective strategy to mitigate mortality is to evacuate the population : at risk. However, public offi cials face several transportation challenges when managing evacuations from a large city : like ...

  1. Evacuation transportation management : task five : operational concept.

    DOT National Transportation Integrated Search

    2009-06-26

    Much of what is known about evacuations is based on preparations for incidents, such as hurricanes, for which there is advance warning. With advance warning, evacuations can be planned and managed using procedures and systems that have been developed...

  2. Evacuation transportation management. Task five, Operational concept

    DOT National Transportation Integrated Search

    2006-01-01

    Much of what is known about evacuations is based on preparations for incidents, such as hurricanes, for which there is advance warning. With advance warning, evacuations can be planned and managed using procedures and systems that have been developed...

  3. Pathways toward a low cost evacuated collector system

    NASA Astrophysics Data System (ADS)

    Hull, J. R.; Schertz, W. W.; Allen, J. W.; Ogallagher, J. J.; Winston, R.

    The goal of widespread use of solar thermal collectors will only be achieved when they are proven to be economically superior to competing energy sources. Evacuated tubular collectors appear to have the potential to achieve this goal. An advanced evacuated collector using nonimaging concentration under development at the University of Chicago and Argonne can achieve a 50% seasonal efficiency at heat delivery temperatures in excess of 170C. The same collector has an optical efficiency so that low temperature performance is also excellent. In this advanced collector design all of the critical components are enclosed in the vacuum, and the collector has an inherently long lifetime. The current cost of evacuated systems is too high, mainly because the volume of production has been too low to realize economies of mass production. It appears that certain design features of evacuated collectors can be changed (e.g., use of heat pipe absorbers) so as to introduce new system design and market strategy options that can reduce the balance of system cost.

  4. Improving Access to Pediatric Cardiology in Cape Verde via a Collaborative International Telemedicine Service.

    PubMed

    Lapão, Luís Velez; Correia, Artur

    2015-01-01

    This paper addresses the role of international telemedicine services in supporting the evacuation procedures from Cape Verde to Portugal, enabling better quality and cost reductions in the management of the global health system. The Cape Verde, as other African countries, health system lacks many medical specialists, like pediatric cardiologists, neurosurgery, etc. In this study, tele-cardiology shows good results as diagnostic support to the evacuation decision. Telemedicine services show benefits while monitoring patients in post-evacuation, helping to address the lack of responsive care in some specialties whose actual use will help save resources both in provision and in management of the evacuation procedures. Additionally, with tele-cardiology collaborative service many evacuations can be avoided whereas many cases will be treated and followed locally in Cape Verde with remote technical support from Portugal. This international telemedicine service enabled more efficient evacuations, by reducing expenses in travel and housing, and therefore contributed to the health system's improvement. This study provides some evidence of how important telemedicine really is to cope with both the geography and the shortage of physicians.

  5. Integrated numerical modeling of a landslide early warning system in a context of adaptation to future climatic pressures

    NASA Astrophysics Data System (ADS)

    Khabarov, Nikolay; Huggel, Christian; Obersteiner, Michael; Ramírez, Juan Manuel

    2010-05-01

    Mountain regions are typically characterized by rugged terrain which is susceptible to different types of landslides during high-intensity precipitation. Landslides account for billions of dollars of damage and many casualties, and are expected to increase in frequency in the future due to a projected increase of precipitation intensity. Early warning systems (EWS) are thought to be a primary tool for related disaster risk reduction and climate change adaptation to extreme climatic events and hydro-meteorological hazards, including landslides. An EWS for hazards such as landslides consist of different components, including environmental monitoring instruments (e.g. rainfall or flow sensors), physical or empirical process models to support decision-making (warnings, evacuation), data and voice communication, organization and logistics-related procedures, and population response. Considering this broad range, EWS are highly complex systems, and it is therefore difficult to understand the effect of the different components and changing conditions on the overall performance, ultimately being expressed as human lives saved or structural damage reduced. In this contribution we present a further development of our approach to assess a landslide EWS in an integral way, both at the system and component level. We utilize a numerical model using 6 hour rainfall data as basic input. A threshold function based on a rainfall-intensity/duration relation was applied as a decision criterion for evacuation. Damage to infrastructure and human lives was defined as a linear function of landslide magnitude, with the magnitude modelled using a power function of landslide frequency. Correct evacuation was assessed with a ‘true' reference rainfall dataset versus a dataset of artificially reduced quality imitating the observation system component. Performance of the EWS using these rainfall datasets was expressed in monetary terms (i.e. damage related to false and correct evacuation). We applied this model to a landslide EWS in Colombia that is currently being implemented within a disaster prevention project. We evaluated the EWS against rainfall data with artificially introduced error and computed with multiple model runs the probabilistic damage functions depending on rainfall error. Then we modified the original precipitation pattern to reflect possible climatic changes e.g. change in annual precipitation as well as change in precipitation intensity with annual values remaining constant. We let the EWS model adapt for changed conditions to function optimally. Our results show that for the same errors in rainfall measurements the system's performance degrades with expected changing climatic conditions. The obtained results suggest that EWS cannot internally adapt to climate change and require exogenous adaptive measures to avoid increase in overall damage. The model represents a first attempt to integrally simulate and evaluate EWS under future possible climatic pressures. Future work will concentrate on refining model components and spatially explicit climate scenarios.

  6. NUclear EVacuation Analysis Code (NUEVAC) : a tool for evaluation of sheltering and evacuation responses following urban nuclear detonations.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshimura, Ann S.; Brandt, Larry D.

    2009-11-01

    The NUclear EVacuation Analysis Code (NUEVAC) has been developed by Sandia National Laboratories to support the analysis of shelter-evacuate (S-E) strategies following an urban nuclear detonation. This tool can model a range of behaviors, including complex evacuation timing and path selection, as well as various sheltering or mixed evacuation and sheltering strategies. The calculations are based on externally generated, high resolution fallout deposition and plume data. Scenario setup and calculation outputs make extensive use of graphics and interactive features. This software is designed primarily to produce quantitative evaluations of nuclear detonation response options. However, the outputs have also proven usefulmore » in the communication of technical insights concerning shelter-evacuate tradeoffs to urban planning or response personnel.« less

  7. Evacuation transportation management : task four: interview and survey results.

    DOT National Transportation Integrated Search

    2006-06-26

    Much of what is known about evacuations is based on preparations for incidents, such as hurricanes, for which there is advance warning. With advance warning, evacuations can be planned and managed using procedures and systems that have been developed...

  8. Using highways during evacuation operations for events with advance notice

    DOT National Transportation Integrated Search

    2006-12-01

    This document constitutes the first of a primer series titled 'Routes to Effective Evacuation planning' and covers the use of the highway system during evacuation operations when advance planning is possible [...] This is a basic-level guide on condu...

  9. Evacuation transportation management. Task four, Interview and survey results

    DOT National Transportation Integrated Search

    2006-01-01

    Much of what is known about evacuations is based on preparations for incidents, such as hurricanes, for which there is advance warning. With advance warning, evacuations can be planned and managed using procedures and systems that have been developed...

  10. Modified two-layer social force model for emergency earthquake evacuation

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Liu, Hong; Qin, Xin; Liu, Baoxi

    2018-02-01

    Studies of crowd behavior with related research on computer simulation provide an effective basis for architectural design and effective crowd management. Based on low-density group organization patterns, a modified two-layer social force model is proposed in this paper to simulate and reproduce a group gathering process. First, this paper studies evacuation videos from the Luan'xian earthquake in 2012, and extends the study of group organization patterns to a higher density. Furthermore, taking full advantage of the strength in crowd gathering simulations, a new method on grouping and guidance is proposed while using crowd dynamics. Second, a real-life grouping situation in earthquake evacuation is simulated and reproduced. Comparing with the fundamental social force model and existing guided crowd model, the modified model reduces congestion time and truly reflects group behaviors. Furthermore, the experiment result also shows that a stable group pattern and a suitable leader could decrease collision and allow a safer evacuation process.

  11. Spatial modelling for tsunami evacuation route in Parangtritis Village

    NASA Astrophysics Data System (ADS)

    Juniansah, A.; Tyas, B. I.; Tama, G. C.; Febriani, K. R.; Farda, N. M.

    2018-04-01

    Tsunami is a series of huge sea waves that commonly occurs because of the oceanic plate movement or tectonic activity under the sea. As a sudden hazard, the tsunami has damaged many people over the years. Parangtritis village is one of high tsunami hazard risk area in Indonesia which needs an effective tsunami risk reduction. This study aims are modelling a tsunami susceptibility map, existing assembly points evaluation, and suggesting effective evacuation routes. The susceptibility map was created using ALOS PALSAR DEM and surface roughness coefficient. The method of tsunami modelling employed inundation model developed by Berryman (2006). The results are used to determine new assembly points based on the Sentinel 2A imagery and to determine the most effective evacuation route by using network analyst. This model can be used to create detailed scale of evacuation route, but unrepresentative for assembly point that far from road network.

  12. Interdisciplinary modeling and analysis to reduce loss of life from tsunamis

    NASA Astrophysics Data System (ADS)

    Wood, N. J.

    2016-12-01

    Recent disasters have demonstrated the significant loss of life and community impacts that can occur from tsunamis. Minimizing future losses requires an integrated understanding of the range of potential tsunami threats, how individuals are specifically vulnerable to these threats, what is currently in place to improve their chances of survival, and what risk-reduction efforts could be implemented. This presentation will provide a holistic perspective of USGS research enabled by recent advances in geospatial modeling to assess and communicate population vulnerability to tsunamis and the range of possible interventions to reduce it. Integrated research includes efforts to characterize the magnitude and demography of at-risk individuals in tsunami-hazard zones, their evacuation potential based on landscape conditions, nature-based mitigation to improve evacuation potential, evacuation pathways and population demand at assembly areas, siting considerations for vertical-evacuation refuges, community implications of multiple evacuation zones, car-based evacuation modeling for distant tsunamis, and projected changes in population exposure to tsunamis over time. Collectively, this interdisciplinary research supports emergency managers in their efforts to implement targeted risk-reduction efforts based on local conditions and needs, instead of generic regional strategies that only focus on hazard attributes.

  13. Decision analysis of emergency ventilation and evacuation strategies against suddenly released contaminant indoors by considering the uncertainty of source locations.

    PubMed

    Cai, Hao; Long, Weiding; Li, Xianting; Kong, Lingjuan; Xiong, Shuang

    2010-06-15

    In case hazardous contaminants are suddenly released indoors, the prompt and proper emergency responses are critical to protect occupants. This paper aims to provide a framework for determining the optimal combination of ventilation and evacuation strategies by considering the uncertainty of source locations. The certainty of source locations is classified as complete certainty, incomplete certainty, and complete uncertainty to cover all the possible situations. According to this classification, three types of decision analysis models are presented. A new concept, efficiency factor of contaminant source (EFCS), is incorporated in these models to evaluate the payoffs of the ventilation and evacuation strategies. A procedure of decision-making based on these models is proposed and demonstrated by numerical studies of one hundred scenarios with ten ventilation modes, two evacuation modes, and five source locations. The results show that the models can be useful to direct the decision analysis of both the ventilation and evacuation strategies. In addition, the certainty of the source locations has an important effect on the outcomes of the decision-making. Copyright 2010 Elsevier B.V. All rights reserved.

  14. High pressures in room evacuation processes and a first approach to the dynamics around unconscious pedestrians

    NASA Astrophysics Data System (ADS)

    Cornes, F. E.; Frank, G. A.; Dorso, C. O.

    2017-10-01

    Clogging raises as the principal phenomenon during many evacuation processes of pedestrians in an emergency situation. As people push to escape from danger, compression forces may increase to harming levels. Many individuals might fall down, while others will try to dodge the fallen people, or, simply pass through them. We studied the dynamics of the crowd for these situations, in the context of the "social force model". We modeled the unconscious (fallen) pedestrians as inanimate bodies that can be dodged (or not) by the surrounding individuals. We found that new morphological structures appear along the evacuating crowd. Under specific conditions, these structures may enhance the evacuation performance. The pedestrian's willings for either dodging or passing through the unconscious individuals play a relevant role in the overall evacuation performance.

  15. Evaluation of Neurophysiologic and Systematic Changes during Aeromedical Evacuation and en Route Care of Combat Casualties in a Swine Polytrauma Model

    DTIC Science & Technology

    2014-02-01

    Chamber construction has been completed and swine experiments have been initiated. The NMRC Center for Hypobaric Experimentation, Simulation and...Aeromedical evacuation, en-route care, hypobaric conditions, hypobaric chamber, swine model 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...diminished morbidity and mortality among combat casualties. However, not much is known about the effects of long range aero-medical evacuation in hypobaric

  16. Hurricanes Katrina and Rita and the Department of Veterans Affairs: a conceptual model for understanding the evacuation of nursing homes.

    PubMed

    Dobalian, Aram; Claver, Maria; Fickel, Jacqueline J

    2010-01-01

    Hurricanes Katrina and Rita exposed significant flaws in US preparedness for catastrophic events and the nation's capacity to respond to them. These flaws were especially evident in the affected disaster areas' nursing homes, which house a particularly vulnerable population of frail older adults. Although evacuation of a healthcare facility is a key preparedness activity, there is limited research on factors that lead to effective evacuation. Our review of the literature on evacuation is focused on developing a conceptual framework to study future evacuations rather than as a comprehensive assessment of prior work. This paper summarizes what is known thus far about disaster response activities of nursing homes following natural and human-caused disasters, describes a conceptual model to guide future inquiry regarding this topic, and suggests future areas of research to further understand the decision-making process of nursing home facilitators regarding evacuating nursing home residents. To demonstrate the utility of the conceptual model and to provide guidance about effective practices and procedures, this paper focuses on the responses of Veterans Health Administration (VHA) nursing homes to the 2 hurricanes. Quarantelli's conceptual framework, as modified by Perry and Mushkatel, is useful in guiding the development of central hypotheses related to the decision-making that occurred in VA nursing homes and other healthcare facilities following Hurricanes Katrina and Rita. However, we define evacuation somewhat differently to account for the fact that evacuation may, in some instances, be permanent. Thus, we propose modifying this framework to improve its applicability beyond preventive evacuation. We need to better understand how disaster plans can be adapted to meet the needs of frail elders and other residents in nursing homes. Moreover, we must address identified gaps in the scientific literature with respect to health outcomes by tracking outcomes over time. Information on health outcomes would allow administrators and others to more appropriately weigh the balance of risks and benefits associated with evacuation. Without this understanding of the relationship between evacuation and health outcomes, it is not possible to develop effective response plans that are tailored to meet the needs of nursing home residents. Copyright © 2010 S. Karger AG, Basel.

  17. 14 CFR 125.189 - Demonstration of emergency evacuation procedures.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... the emergency evacuation procedures for each type and model of airplane with a seating of more than 44... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Demonstration of emergency evacuation procedures. 125.189 Section 125.189 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF...

  18. Stakeholder-driven geospatial modeling for assessing tsunami vertical-evacuation strategies in the U.S. Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Wood, N. J.; Schmidtlein, M.; Schelling, J.; Jones, J.; Ng, P.

    2012-12-01

    Recent tsunami disasters, such as the 2010 Chilean and 2011 Tohoku events, demonstrate the significant life loss that can occur from tsunamis. Many coastal communities in the world are threatened by near-field tsunami hazards that may inundate low-lying areas only minutes after a tsunami begins. Geospatial integration of demographic data and hazard zones has identified potential impacts on populations in communities susceptible to near-field tsunami threats. Pedestrian-evacuation models build on these geospatial analyses to determine if individuals in tsunami-prone areas will have sufficient time to reach high ground before tsunami-wave arrival. Areas where successful evacuations are unlikely may warrant vertical-evacuation (VE) strategies, such as berms or structures designed to aid evacuation. The decision of whether and where VE strategies are warranted is complex. Such decisions require an interdisciplinary understanding of tsunami hazards, land cover conditions, demography, community vulnerability, pedestrian-evacuation models, land-use and emergency-management policy, and decision science. Engagement with the at-risk population and local emergency managers in VE planning discussions is critical because resulting strategies include permanent structures within a community and their local ownership helps ensure long-term success. We present a summary of an interdisciplinary approach to assess VE options in communities along the southwest Washington coast (U.S.A.) that are threatened by near-field tsunami hazards generated by Cascadia subduction zone earthquakes. Pedestrian-evacuation models based on an anisotropic approach that uses path-distance algorithms were merged with population data to forecast the distribution of at-risk individuals within several communities as a function of travel time to safe locations. A series of community-based workshops helped identify potential VE options in these communities, collectively known as "Project Safe Haven" at the State of Washington Emergency Management Division. Models of the influence of stakeholder-driven VE options identified changes in the type and distribution of at-risk individuals. Insights from VE use and performance as an aid to evacuations from the 2011 Tohoku tsunami helped to inform the meetings and the analysis. We developed geospatial tools to automate parts of the pedestrian-evacuation models to support the iterative process of developing VE options and forecasting changes in population exposure. Our summary presents the interdisciplinary effort to forecast population impacts from near-field tsunami threats and to develop effective VE strategies to minimize fatalities in future events.

  19. Development of a time-dependent hurricane evacuation model for the New Orleans area : research project capsule.

    DOT National Transportation Integrated Search

    2008-08-01

    Current hurricane evacuation transportation modeling uses an approach fashioned after the : traditional four-step procedure applied in urban transportation planning. One of the limiting : features of this approach is that it models traffic in a stati...

  20. A decision support model to understand route choice decisions and siting of facilities in emergency evacuation.

    DOT National Transportation Integrated Search

    2013-10-01

    In this research, we present the results of a behavior model to capture different routing strategies executed by evacuees : during hurricane evacuation by using a randomparameter logitbased modeling approach. To the best of our knowledge, : thi...

  1. Pedestrians’ behavior in emergency evacuation: Modeling and simulation

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Zheng, Jie-Hui; Zhang, Xiao-Shuang; Zhang, Jian-Lin; Wang, Qiu-Zhen; Zhang, Qian

    2016-11-01

    The social force model has been widely used to simulate pedestrian evacuation by analyzing attractive, repulsive, driving, and fluctuating forces among pedestrians. Many researchers have improved its limitations in simulating behaviors of large-scale population. This study modifies the well-accepted social force model by considering the impacts of interaction among companions and further develops a comprehensive model by combining that with a multi-exit utility function. Then numerical simulations of evacuations based on the comprehensive model are implemented in the waiting hall of the Wulin Square Subway Station in Hangzhou, China. The results provide safety thresholds of pedestrian density and panic levels in different operation situations. In spite of the operation situation and the panic level, a larger friend-group size results in lower evacuation efficiency. Our study makes important contributions to building a comprehensive multi-exit social force model and to applying it to actual scenarios, which produces data to facilitate decision making in contingency plans and emergency treatment. Project supported by the National Natural Science Foundation of China (Grant No. 71471163).

  2. Some aspects on kinetic modeling of evacuation dynamics. Comment on "Human behaviours in evacuation crowd dynamics: From modelling to "big data" toward crisis management" by Nicola Bellomo et al.

    NASA Astrophysics Data System (ADS)

    Calvo, Juan; Nieto, Juanjo

    2016-09-01

    The management of human crowds in extreme situations is a complex subject which requires to take into account a variety of factors. To name a few, the understanding of human behaviour, the psychological and behavioural features of individuals, the quality of the venue and the stress level of the pedestrian need to be addressed in order to select the most appropriate action during an evacuation process on a complex venue. In this sense, the mathematical modeling of such complex phenomena can be regarded as a very useful tool to understand and predict these situations. As presented in [4], mathematical models can provide guidance to the personnel in charge of managing evacuation processes, by means of helping to design a set of protocols, among which the most appropriate during a given critical situation is then chosen.

  3. A Time-Aware Routing Map for Indoor Evacuation †

    PubMed Central

    Zhao, Haifeng; Winter, Stephan

    2016-01-01

    Knowledge of dynamic environments expires over time. Thus, using static maps of the environment for decision making is problematic, especially in emergency situations, such as evacuations. This paper suggests a fading memory model for mapping dynamic environments: a mechanism to put less trust on older knowledge in decision making. The model has been assessed by simulating indoor evacuations, adopting and comparing various strategies in decision making. Results suggest that fading memory generally improves this decision making. PMID:26797610

  4. Simulation of pedestrian crowds’ evacuation in a huge transit terminal subway station

    NASA Astrophysics Data System (ADS)

    Lei, Wenjun; Li, Angui; Gao, Ran; Hao, Xinpeng; Deng, Baoshun

    2012-11-01

    As modernized urban rail transportation, subways are playing an important role in transiting large passenger flows. Passengers are in high density within the subway during rush hours. The casualty and injury will be tremendous if an accident occurs, such as a fire. Hence, enough attention should be paid on pedestrian crowds’ evacuation in a subway. In this paper, simulation of the process of pedestrian crowds’ evacuation from a huge transit terminal subway station is conducted. The evacuation process in different cases is conducted by using an agent-based model. Effects of occupant density, exit width and automatic fare gates on evacuation time are studied in detail. It is found that, with the increase of the occupant density, the evacuation efficiency would decline. There is a linear relationship between occupant density and evacuation time. Different occupant densities correspond to different critical exit widths. However, the existence of the automatic fare gates has little effect on evacuation time and tendency. The current results of this study will be helpful in guiding evacuation designs of huge underground spaces.

  5. An extended cost potential field cellular automata model considering behavior variation of pedestrian flow

    NASA Astrophysics Data System (ADS)

    Guo, Fang; Li, Xingli; Kuang, Hua; Bai, Yang; Zhou, Huaguo

    2016-11-01

    The original cost potential field cellular automata describing normal pedestrian evacuation is extended to study more general evacuation scenarios. Based on the cost potential field function, through considering the psychological characteristics of crowd under emergencies, the quantitative formula of behavior variation is introduced to reflect behavioral changes caused by psychology tension. The numerical simulations are performed to investigate the effects of the magnitude of behavior variation, the different pedestrian proportions with different behavior variation and other factors on the evacuation efficiency and process in a room. The spatiotemporal dynamic characteristic during the evacuation process is also discussed. The results show that compared with the normal evacuation, the behavior variation under an emergency does not necessarily lead to the decrease of the evacuation efficiency. At low density, the increase of the behavior variation can improve the evacuation efficiency, while at high density, the evacuation efficiency drops significantly with the increasing amplitude of the behavior variation. In addition, the larger proportion of pedestrian affected by the behavior variation will prolong the evacuation time.

  6. Initial multicenter technical experience with the Apollo device for minimally invasive intracerebral hematoma evacuation.

    PubMed

    Spiotta, Alejandro M; Fiorella, David; Vargas, Jan; Khalessi, Alexander; Hoit, Dan; Arthur, Adam; Lena, Jonathan; Turk, Aquilla S; Chaudry, M Imran; Gutman, Frederick; Davis, Raphael; Chesler, David A; Turner, Raymond D

    2015-06-01

    No conventional surgical intervention has been shown to improve outcomes for patients with spontaneous intracerebral hemorrhage (ICH) compared with medical management. We report the initial multicenter experience with a novel technique for the minimally invasive evacuation of ICH using the Penumbra Apollo system (Penumbra Inc, Alameda, California). Institutional databases were queried to perform a retrospective analysis of all patients who underwent ICH evacuation with the Apollo system from May 2014 to September 2014 at 4 centers (Medical University of South Carolina, Stony Brook University, University of California at San Diego, and Semmes-Murphy Clinic). Cases were performed either in the neurointerventional suite, operating room, or in a hybrid operating room/angiography suite. Twenty-nine patients (15 female; mean age, 62 ± 12.6 years) underwent the minimally invasive evacuation of ICH. Six of these parenchymal hemorrhages had an additional intraventricular hemorrhage component. The mean volume of ICH was 45.4 ± 30.8 mL, which decreased to 21.8 ± 23.6 mL after evacuation (mean, 54.1 ± 39.1% reduction; P < .001). Two complications directly attributed to the evacuation attempt were encountered (6.9%). The mortality rate was 13.8% (n = 4). Minimally invasive evacuation of ICH and intraventricular hemorrhage can be achieved with the Apollo system. Future work will be required to determine which subset of patients are most likely to benefit from this promising technology.

  7. A computer simulation of aircraft evacuation with fire

    NASA Technical Reports Server (NTRS)

    Middleton, V. E.

    1983-01-01

    A computer simulation was developed to assess passenger survival during the post-crash evacuation of a transport category aircraft when fire is a major threat. The computer code, FIREVAC, computes individual passenger exit paths and times to exit, taking into account delays and congestion caused by the interaction among the passengers and changing cabin conditions. Simple models for the physiological effects of the toxic cabin atmosphere are included with provision for including more sophisticated models as they become available. Both wide-body and standard-body aircraft may be simulated. Passenger characteristics are assigned stochastically from experimentally derived distributions. Results of simulations of evacuation trials and hypothetical evacuations under fire conditions are presented.

  8. An optimization design for evacuation planning based on fuzzy credibility theory and genetic algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, D.; Zhang, W. Y.

    2017-08-01

    Evacuation planning is an important activity in disaster management. It has to be planned in advance due to the unpredictable occurrence of disasters. It is necessary that the evacuation plans are as close as possible to the real evacuation work. However, the evacuation plan is extremely challenging because of the inherent uncertainty of the required information. There is a kind of vehicle routing problem based on the public traffic evacuation. In this paper, the demand for each evacuation set point is a fuzzy number, and each routing selection of the point is based on the fuzzy credibility preference index. This paper proposes an approximate optimal solution for this problem by the genetic algorithm based on the fuzzy reliability theory. Finally, the algorithm is applied to an optimization model, and the experiment result shows that the algorithm is effective.

  9. Global Optimization of Emergency Evacuation Assignments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Lee; Yuan, Fang; Chin, Shih-Miao

    2006-01-01

    Conventional emergency evacuation plans often assign evacuees to fixed routes or destinations based mainly on geographic proximity. Such approaches can be inefficient if the roads are congested, blocked, or otherwise dangerous because of the emergency. By not constraining evacuees to prespecified destinations, a one-destination evacuation approach provides flexibility in the optimization process. We present a framework for the simultaneous optimization of evacuation-traffic distribution and assignment. Based on the one-destination evacuation concept, we can obtain the optimal destination and route assignment by solving a one-destination traffic-assignment problem on a modified network representation. In a county-wide, large-scale evacuation case study, the one-destinationmore » model yields substantial improvement over the conventional approach, with the overall evacuation time reduced by more than 60 percent. More importantly, emergency planners can easily implement this framework by instructing evacuees to go to destinations that the one-destination optimization process selects.« less

  10. Clarifying evacuation options through fire behavior and traffic modeling

    Treesearch

    Carol L. Rice; Ronny J. Coleman; Mike Price

    2011-01-01

    Communities are becoming increasingly concerned with the variety of choices related to wildfire evacuation. We used ArcView with Network Analyst to evaluate the different options for evacuations during wildfire in a case study community. We tested overlaying fire growth patterns with the road network and population characteristics to determine recommendations for...

  11. A Simple Evacuation Modeling and Simulation Tool for First Responders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koch, Daniel B; Payne, Patricia W

    2015-01-01

    Although modeling and simulation of mass evacuations during a natural or man-made disaster is an on-going and vigorous area of study, tool adoption by front-line first responders is uneven. Some of the factors that account for this situation include cost and complexity of the software. For several years, Oak Ridge National Laboratory has been actively developing the free Incident Management Preparedness and Coordination Toolkit (IMPACT) to address these issues. One of the components of IMPACT is a multi-agent simulation module for area-based and path-based evacuations. The user interface is designed so that anyone familiar with typical computer drawing tools canmore » quickly author a geospatially-correct evacuation visualization suitable for table-top exercises. Since IMPACT is designed for use in the field where network communications may not be available, quick on-site evacuation alternatives can be evaluated to keep pace with a fluid threat situation. Realism is enhanced by incorporating collision avoidance into the simulation. Statistics are gathered as the simulation unfolds, including most importantly time-to-evacuate, to help first responders choose the best course of action.« less

  12. Game-Based Evacuation Drill Using Augmented Reality and Head-Mounted Display

    ERIC Educational Resources Information Center

    Kawai, Junya; Mitsuhara, Hiroyuki; Shishibori, Masami

    2016-01-01

    Purpose: Evacuation drills should be more realistic and interactive. Focusing on situational and audio-visual realities and scenario-based interactivity, the authors have developed a game-based evacuation drill (GBED) system that presents augmented reality (AR) materials on tablet computers. The paper's current research purpose is to improve…

  13. Safe Emergency Evacuation From Tall Structures

    NASA Technical Reports Server (NTRS)

    Stephan, E. S.

    1984-01-01

    Emergency egress system allows people to be evacuated quickly from tall structures. New emergency system applicable to rescues from fires in tall hotels and other buildings. System consists of basket on slide wire. Basket descends by gravity on sloped slide wire staked to ground.

  14. Behavioral effects in room evacuation models

    NASA Astrophysics Data System (ADS)

    Dossetti, V.; Bouzat, S.; Kuperman, M. N.

    2017-08-01

    In this work we study a model for the evacuation of pedestrians from an enclosure considering a continuous space substrate and discrete time. We analyze the influence of behavioral features that affect the use of the empty space, that can be linked to the attitudes or characters of the pedestrians. We study how the interaction of different behavioral profiles affects the needed time to evacuate completely a room and the occurrence of clogging. We find that neither fully egotistic nor fully cooperative attitudes are optimal from the point of view of the crowd. In contrast, intermediate behaviors provide lower evacuation times. This leads us to identify some phenomena closely analogous to the faster-is-slower effect. The proposed model allows for distinguishing between the role of the attitudes in the search for empty space and the attitudes in the conflicts.

  15. Design of AN Intelligent Individual Evacuation Model for High Rise Building Fires Based on Neural Network Within the Scope of 3d GIS

    NASA Astrophysics Data System (ADS)

    Atila, U.; Karas, I. R.; Turan, M. K.; Rahman, A. A.

    2013-09-01

    One of the most dangerous disaster threatening the high rise and complex buildings of today's world including thousands of occupants inside is fire with no doubt. When we consider high population and the complexity of such buildings it is clear to see that performing a rapid and safe evacuation seems hard and human being does not have good memories in case of such disasters like world trade center 9/11. Therefore, it is very important to design knowledge based realtime interactive evacuation methods instead of classical strategies which lack of flexibility. This paper presents a 3D-GIS implementation which simulates the behaviour of an intelligent indoor pedestrian navigation model proposed for a self -evacuation of a person in case of fire. The model is based on Multilayer Perceptron (MLP) which is one of the most preferred artificial neural network architecture in classification and prediction problems. A sample fire scenario following through predefined instructions has been performed on 3D model of the Corporation Complex in Putrajaya (Malaysia) and the intelligent evacuation process has been realized within a proposed 3D-GIS based simulation.

  16. Uncertainty in a spatial evacuation model

    NASA Astrophysics Data System (ADS)

    Mohd Ibrahim, Azhar; Venkat, Ibrahim; Wilde, Philippe De

    2017-08-01

    Pedestrian movements in crowd motion can be perceived in terms of agents who basically exhibit patient or impatient behavior. We model crowd motion subject to exit congestion under uncertainty conditions in a continuous space and compare the proposed model via simulations with the classical social force model. During a typical emergency evacuation scenario, agents might not be able to perceive with certainty the strategies of opponents (other agents) owing to the dynamic changes entailed by the neighborhood of opponents. In such uncertain scenarios, agents will try to update their strategy based on their own rules or their intrinsic behavior. We study risk seeking, risk averse and risk neutral behaviors of such agents via certain game theory notions. We found that risk averse agents tend to achieve faster evacuation time whenever the time delay in conflicts appears to be longer. The results of our simulations also comply with previous work and conform to the fact that evacuation time of agents becomes shorter once mutual cooperation among agents is achieved. Although the impatient strategy appears to be the rational strategy that might lead to faster evacuation times, our study scientifically shows that the more the agents are impatient, the slower is the egress time.

  17. 76 FR 81885 - Airworthiness Directives; Goodrich Evacuation Systems Approved Under Technical Standard Order...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-29

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 39 [Docket No. FAA-2011... installed on Airbus Model A330-200 and -300 series airplanes, Model A340-200 and -300 series airplanes, and Model A340-500 and -600 series airplanes. That NPRM proposed to supersede an existing AD. That NPRM...

  18. Necessity of guides in pedestrian emergency evacuation

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoxia; Dong, Hairong; Yao, Xiuming; Sun, Xubin; Wang, Qianling; Zhou, Min

    2016-01-01

    The role of guide who is in charge of leading pedestrians to evacuate in the case of emergency plays a critical role for the uninformed people. This paper first investigates the influence of mass behavior on evacuation dynamics and mainly focuses on the guided evacuation dynamics. In the extended crowd model proposed in this paper, individualistic behavior, herding behavior and environment influence are all considered for pedestrians who are not informed by the guide. According to the simulation results, herding behavior makes more pedestrians evacuate from the room in the same period of time. Besides, guided crowd demonstrates the same behavior of group dynamics which is characterized by gathering, conflicts and balance. Moreover, simulation results indicate guides with appropriate initial positions and quantity are more conducive to evacuation under a moderate initial density of pedestrians.

  19. Tsunami evacuation simulation considering differences in evacuation means depending on the household attribute

    NASA Astrophysics Data System (ADS)

    Sugiki, Nao; Hirata, Yoshiki; Matsuo, Kojiro

    2017-10-01

    Large scale earthquakes occur frequently in Japan in recent years. In the Great East Japan Earthquake that occurred in 2011 and caused major damage, more than 90% of the dead were due to the tsunami. The speed of evacuation is important in considering evacuation at the time of the attack of the tsunami, especially the elderly evacuation speed is assumed to be slower than non-elderly people. Elderly people may have different means of evacuation and speed depending on the composition of the households to which they belong because of the different possibilities of riding in families' driven cars. However, a simulation taking such a difference of evacuation into consideration has not been conducted. The purpose of this study is to conduct a tsunami evacuation simulation in consideration of evacuation measures and speed depending on the type of households belonging to in the tsunami inundation area of Toyohashi city, Japan. In order to conduct the tsunami evacuation simulation considering the household type, detailed data on individual households is necessary. However, it is difficult to obtain from aggregated data such as National Census. Therefore, detailed data on individual households is created by using the household micro data estimation system developed by Sugiki et al. [1]. Evacuation simulation is performed by shortest path search using Esri's ArcGIS Network Analyst's OD cost matrix analysis. The elderly people who cannot complete evacuation by the time of the arrival of the tsunami were found from evacuation simulation results assuming evacuation measures available for each household attribute to which the evacuees belong.

  20. Gulf Coast megaregion evacuation traffic simulation modeling and analysis.

    DOT National Transportation Integrated Search

    2015-12-01

    This paper describes a project to develop a micro-level traffic simulation for a megaregion. To : accomplish this, a mass evacuation event was modeled using a traffic demand generation process that : created a spatial and temporal distribution of dep...

  1. Modeling hurricane evacuation traffic : development of a time-dependent hurricane evacuation demand model.

    DOT National Transportation Integrated Search

    2006-04-01

    Little attention has been given to estimating dynamic travel demand in transportation planning in the past. However, when factors influencing travel are changing significantly over time such as with an approaching hurricane - dynamic demand and t...

  2. Passenger train emergency systems : review of egress variables and egress simulation models

    DOT National Transportation Integrated Search

    2013-05-20

    Federal Railroad Administration (FRA) regulations are intended to ensure the safe, timely, and effective evacuation of intercity and commuter rail passengers when necessary during passenger train emergencies. Although it is recognized that during the...

  3. Passenger train emergency systems : review of egress variables and egress simulation models.

    DOT National Transportation Integrated Search

    2013-04-01

    Federal Railroad Administration (FRA) regulations are intended to ensure the safe, timely, and effective evacuation of intercity and commuter rail passengers when necessary during passenger train emergencies. Although it is recognized that during the...

  4. Use of Subdural Evacuating Port System Following Open Craniotomy with Excision of Native Dura and Membranes for Management of Chronic Subdural Hematoma.

    PubMed

    Cage, Tene; Bach, Ashley; McDermott, Michael W

    2017-04-26

    An 86-year-old woman was admitted to the intensive care unit with a chronic subdural hematoma (CSDH) and rapid onset of worsening neurological symptoms. She was taken to the operating room for a mini-craniotomy for evacuation of the CSDH including excision of the dura and CSDH membrane. Postoperatively, a subdural evacuation port system (SEPS) was integrated into the craniotomy site and left in place rather than a traditional subdural catheter drain to evacuate the subdural space postoperatively. The patient had a good recovery and improvement of symptoms after evacuation and remained clinically well after the SEPS was removed. We offer the technique of dura and CSDH membrane excision plus SEPS drain as an effective postoperative alternative to the standard craniotomy leaving the native dura intact with traditional subdural drain that overlies the cortical surface of the brain in treating patients with CSDH.

  5. Evacuating People and Their Pets: Older Floridians' Need for and Proximity to Pet-Friendly Shelters.

    PubMed

    Douglas, Rachel; Kocatepe, Ayberk; Barrett, Anne E; Ozguven, Eren Erman; Gumber, Clayton

    2017-10-04

    Pets influence evacuation decisions, but little is known about pet-friendly emergency shelters' availability or older adults' need for them. Our study addresses this issue, focusing on the most densely populated area of Florida (Miami-Dade)-the state with the oldest population and greatest hurricane susceptibility. We use Geographic Information Systems (GIS)-based methodology to identify the shortest paths to pet-friendly shelters, based on distance and congested and uncongested travel times-taking into account the older population's spatial distribution. Logistic regression models using the 2013 American Housing Survey's Disaster Planning Module examine anticipated shelter use as a function of pet ownership and requiring pet evacuation assistance. Thirty-four percent of older adults in the Miami-Dade area have pets-35% of whom report needing pet evacuation assistance. However, GIS accessibility measures show that travel time factors are likely to impede older adults' use of the area's few pet-friendly shelters. Logistic regression results reveal that pet owners are less likely to report anticipating shelter use; however, the opposite holds for pet owners reporting they would need help evacuating their pets-they anticipate using shelters. High pet shelter need coupled with low availability exacerbates older adults' heightened vulnerability during Florida's hurricane season. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Evacuation planning for plausible worst case inundation scenarios in Honolulu, Hawaii.

    PubMed

    Kim, Karl; Pant, Pradip; Yamashita, Eric

    2015-01-01

    Honolulu is susceptible to coastal flooding hazards. Like other coastal cities, Honolulu&s long-term economic viability and sustainability depends on how well it can adapt to changes in the natural and built environment. While there is a disagreement over the magnitude and extent of localized impacts associated with climate change, it is widely accepted that by 2100 there will be at least a meter in sea level rise (SLR) and an increase in extreme weather events. Increased exposure and vulnerabilities associated with urbanization and location of human activities in coastal areas warrants serious consideration by planners and policy makers. This article has three objectives. First, flooding due to the combined effects of SLR and episodic hydro-meteorological and geophysical events in Honolulu are investigated and the risks to the community are quantified. Second, the risks and vulnerabilities of critical infrastructure and the surface transportation system are described. Third, using the travel demand software, travel distances and travel times for evacuation from inundated areas are modeled. Data from three inundation models were used. The first model simulated storm surge from a category 4 hurricane similar to Hurricane Iniki which devastated the island of Kauai in 1992. The second model estimates inundation based on five tsunamis that struck Hawaii. A 1-m increase in sea level was included in both the hurricane storm surge and tsunami flooding models. The third model used in this article generated a 500-year flood event due to riverine flooding. Using a uniform grid cell structure, the three inundation maps were used to assess the worst case flooding scenario. Based on the flood depths, the ruling hazard (hurricane, tsunami, or riverine flooding) for each grid cell was determined. The hazard layer was analyzed with socioeconomic data layers to determine the impact on vulnerable populations, economic activity, and critical infrastructure. The analysis focused both on evacuation needs and the critical elements of the infrastructure system that are needed to ensure effective response and recovery in the advent of flooding. This study shows that the coastal flooding will seriously affect the economy and employment. Extreme flooding events could affect 38 percent of the freeways, 44 percent of the highways, 69 percent of the arterial roads, and 40 percent of the local streets in the area examined. Approximately 80 percent of the economy and 76 percent of the total employment in the urban core of Honolulu is exposed to flooding. Evacuation modeling, shelter accessibility, and travel time to shelter analyses revealed that there is a significant shortage in sheltering options, as well as increases in travel times and distances as inundation depth increases. The findings are useful for evacuation and shelter planning for extreme coastal events, as well as for climate change adaptation planning in Honolulu. Recommendations for emergency responders as well as those interested in the integration of long-term SLR and low probability, high consequence coastal hazards are included. The study shows how to integrate travel demand modeling across multiple hazards and threats related to evacuating, sheltering, and disaster risk reduction.

  7. A cellular automaton model for evacuation flow using game theory

    NASA Astrophysics Data System (ADS)

    Guan, Junbiao; Wang, Kaihua; Chen, Fangyue

    2016-11-01

    Game theory serves as a good tool to explore crowd dynamic conflicts during evacuation processes. The purpose of this study is to simulate the complicated interaction behavior among the conflicting pedestrians in an evacuation flow. Two types of pedestrians, namely, defectors and cooperators, are considered, and two important factors including fear index and cost coefficient are taken into account. By combining the snowdrift game theory with a cellular automaton (CA) model, it is shown that the increase of fear index and cost coefficient will lengthen the evacuation time, which is more apparent for large values of cost coefficient. Meanwhile, it is found that the defectors to cooperators ratio could always tend to consistent states despite different values of parameters, largely owing to self-organization effects.

  8. Literature Search for Federal Highway Administration (ITS-JPO) : assessment of state of the practice and state of the art in evacuation transportation management

    DOT National Transportation Integrated Search

    2006-02-06

    Much of what is known about evacuations is based on preparations for incidents, such as hurricanes, for which there is advance warning. With advance warning, evacuations can be planned and managed using procedures and systems that have been developed...

  9. Post-tsunami outbreaks of influenza in evacuation centers in Miyagi Prefecture, Japan.

    PubMed

    Hatta, Masumitsu; Endo, Shiro; Tokuda, Koichi; Kunishima, Hiroyuki; Arai, Kazuaki; Yano, Hisakazu; Ishibashi, Noriomi; Aoyagi, Tetsuji; Yamada, Mitsuhiro; Inomata, Shinya; Kanamori, Hajime; Gu, Yoshiaki; Kitagawa, Miho; Hirakata, Yoichi; Kaku, Mitsuo

    2012-01-01

    We describe 2 post-tsunami outbreaks of influenza A in evacuation centers in Miyagi Prefecture, Japan, in 2011. Although containment of the outbreak was challenging in the evacuation settings, prompt implementation of a systemic approach with a bundle of control measures was important to control the influenza outbreaks.

  10. The impact of a major earthquake on the evacuation of the emergency planning zone of a nuclear power plant.

    PubMed

    Cohen, Rebecca; Weinisch, Kevin

    2015-01-01

    United States regulations require nuclear power plants (NPPs) to estimate the time needed to evacuate the emergency planning zone (EPZ, a circle with an approximate 10-mile radius centered at the NPP). These evacuation time estimate (ETE) studies are to be used by emergency personnel in the event of a radiological emergency. ETE studies are typically done using traffic simulation and evacuation models, based on traffic engineering algorithms that reflect congestion and delay. ETE studies are typically conducted assuming all evacuation routes are traversable. As witnessed in the Great East Japan Earthquake in March 2011, an earthquake and the ensuing tsunami can cause an incident at a NPP that requires an evacuation of the public. The earthquake and tsunami can also damage many of the available bridges and roadways and, therefore, impede evacuation and put people at risk of radiation exposure. This article presents a procedure, using traffic simulation and evacuation models, to estimate the impact on ETE due to bridge and roadway damage caused by a major earthquake, or similar hazardous event. The results of this analysis are used by emergency personnel to make protective action decisions that will minimize the exposure of radiation to the public. Additionally, the results allow emergency planners to ensure proper equipment and personnel are available for these types of events. Emergency plans are revised to ensure prompt response and recovery action during critical times.

  11. Agent based models for testing city evacuation strategies under a flood event as strategy to reduce flood risk

    NASA Astrophysics Data System (ADS)

    Medina, Neiler; Sanchez, Arlex; Nokolic, Igor; Vojinovic, Zoran

    2016-04-01

    This research explores the uses of Agent Based Models (ABM) and its potential to test large scale evacuation strategies in coastal cities at risk from flood events due to extreme hydro-meteorological events with the final purpose of disaster risk reduction by decreasing human's exposure to the hazard. The first part of the paper corresponds to the theory used to build the models such as: Complex adaptive systems (CAS) and the principles and uses of ABM in this field. The first section outlines the pros and cons of using AMB to test city evacuation strategies at medium and large scale. The second part of the paper focuses on the central theory used to build the ABM, specifically the psychological and behavioral model as well as the framework used in this research, specifically the PECS reference model is cover in this section. The last part of this section covers the main attributes or characteristics of human beings used to described the agents. The third part of the paper shows the methodology used to build and implement the ABM model using Repast-Symphony as an open source agent-based modelling and simulation platform. The preliminary results for the first implementation in a region of the island of Sint-Maarten a Dutch Caribbean island are presented and discussed in the fourth section of paper. The results obtained so far, are promising for a further development of the model and its implementation and testing in a full scale city

  12. Intelligent Exit-Selection Behaviors during a Room Evacuation

    NASA Astrophysics Data System (ADS)

    Zarita, Zainuddin; Lim Eng, Aik

    2012-01-01

    A modified version of the existing cellular automata (CA) model is proposed to simulate an evacuation procedure in a classroom with and without obstacles. Based on the numerous literature on the implementation of CA in modeling evacuation motions, it is notable that most of the published studies do not take into account the pedestrian's ability to select the exit route in their models. To resolve these issues, we develop a CA model incorporating a probabilistic neural network for determining the decision-making ability of the pedestrians, and simulate an exit-selection phenomenon in the simulation. Intelligent exit-selection behavior is observed in our model. From the simulation results, it is observed that occupants tend to select the exit closest to them when the density is low, but if the density is high they will go to an alternative exit so as to avoid a long wait. This reflects the fact that occupants may not fully utilize multiple exits during evacuation. The improvement in our proposed model is valuable for further study and for upgrading the safety aspects of building designs.

  13. PYRONES: pyro-modeling and evacuation simulation system

    NASA Astrophysics Data System (ADS)

    Kanellos, Tassos; Doulgerakis, Adam; Georgiou, Eftichia; Kountouriotis, Vassilios I.; Paterakis, Manolis; Thomopoulos, Stelios C. A.; Pappou, Theodora; Vrahliotis, Socrates I.; Rekouniotis, Thrasos; Protopsaltis, Byron; Rozenberg, Ofir; Livneh, Ofer

    2016-05-01

    Structural fires continue to pose a great threat towards human life and property. Due to the complexity and non-deterministic characteristics of a building fire disaster, it is not a straightforward task to assess the effectiveness of fire protection measures embedded in the building design, planned evacuation strategies and potential modes of response for mitigating the fire's consequences. Additionally, there is a lack of means that realistically and accurately recreate the conditions of building fire disasters for the purpose of training personnel in order to be sufficiently prepared when vis-a-vis with such an environment. The propagation of fire within a building, the diffusion of its volatile products, the behavior of the occupants and the sustained injuries not only exhibit non-linear behaviors as individual phenomena, but are also intertwined in a web of co-dependencies. The PYRONES system has been developed to address all these aspects through a comprehensive approach that relies on accurate and realistic computer simulations of the individual phenomena and their interactions. PYRONES offers innovative tools and services to strategically targeted niches in two market domains. In the domain of building design and engineering, PYRONES is seamlessly integrated within existing engineering Building Information Modelling (BIM) workflows and serves as a building performance assessment platform, able to evaluate fire protection systems. On another front, PYRONES penetrates the building security management market, serving as a holistic training platform for specialists in evacuation strategy planning, firefighters and first responders, both at a Command and Control and at an individual trainee level.

  14. 30 CFR 48.6 - Experienced miner training.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... mine; the check-in and checkout system in effect at the mine; the procedures for riding on and in mine... communication systems, warning signals, and directional signs. (5) Mine map; escapeways; emergency evacuation... escapeway system; the escape, firefighting, and emergency evacuation plans in effect at the mine; and the...

  15. 30 CFR 48.6 - Experienced miner training.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... mine; the check-in and checkout system in effect at the mine; the procedures for riding on and in mine... communication systems, warning signals, and directional signs. (5) Mine map; escapeways; emergency evacuation... escapeway system; the escape, firefighting, and emergency evacuation plans in effect at the mine; and the...

  16. Task two : literature search for Federal Highway Administration (ITS-JPO) : assessment of state of the practice and state of the art in evacuation transportation management

    DOT National Transportation Integrated Search

    2006-01-01

    Much of what is known about evacuations is based on preparations for incidents, such as hurricanes, for which there is advance warning. With advance warning, evacuations can be planned and managed using procedures and systems that have been developed...

  17. Task three : technical memorandum for Federal Highway Administration (ITS-JPO) on case studies : assessment of state of the practice and state of the art in evacuation transportation management

    DOT National Transportation Integrated Search

    2006-01-01

    Much of what is known about evacuations is based on preparations for incidents, such as hurricanes, for which there is advance warning. With advance warning, evacuations can be planned and managed using procedures and systems that have been developed...

  18. Road infrastructure resilience to tsunami in Cilegon

    NASA Astrophysics Data System (ADS)

    Arini, Srikandi Wahyu; Sumabrata, Jachrizal

    2017-11-01

    Indonesia is vulnerable to natural disasters. The highest number of natural disaster occurs on the west side of Java Island with the tsunami as the most deadly. Cilegon, a densely populated city with high industrial activity is located on the west coast of Java Island with a gently sloping topography, hence it is vulnerable to tsunami. Simulations conducted by the National Disaster Management Authority indicates that earthquakes with epicenters in the Sunda strait will cause tsunamis which can sweep away the whole industrial area in one hour. The availability of evacuation routes which can accommodate the evacuation of large numbers of people within a short time is required. Road infrastructure resilience is essential to support the performance of the evacuation routes. Poor network resilience will reduce mobility and accessibility during the evacuation. The objectives of this paper are to analyze the impact of the earthquake-generated tsunami on the evacuation routes and to simulate and analyze the performance of existing evacuation routes in Cilegon. The limitations of the modeling approaches including the current and future challenges in evacuation transport research and its applications are also discussed. The conclusion from this study is accurate data source are needed to build a more representative model and predict the areas susceptible to tsunamis vulnerable areas and to construct cogent tsunami mitigation plans and actions for the most vulnerable areas.

  19. Modeling and simulation of evacuation behavior using fuzzy logic in a goal finding application

    NASA Astrophysics Data System (ADS)

    Sharma, Sharad; Ogunlana, Kola; Sree, Swetha

    2016-05-01

    Modeling and simulation has been widely used as a training and educational tool for depicting different evacuation strategies and damage control decisions during evacuation. However, there are few simulation environments that can include human behavior with low to high levels of fidelity. It is well known that crowd stampede induced by panic leads to fatalities as people are crushed or trampled. Our proposed goal finding application can be used to model situations that are difficult to test in real-life due to safety considerations. It is able to include agent characteristics and behaviors. Findings of this model are very encouraging as agents are able to assume various roles to utilize fuzzy logic on the way to reaching their goals. Fuzzy logic is used to model stress, panic and the uncertainty of emotions. The fuzzy rules link these parts together while feeding into behavioral rules. The contributions of this paper lies in our approach of utilizing fuzzy logic to show learning and adaptive behavior of agents in a goal finding application. The proposed application will aid in running multiple evacuation drills for what-if scenarios by incorporating human behavioral characteristics that can scale from a room to building. Our results show that the inclusion of fuzzy attributes made the evacuation time of the agents closer to the real time drills.

  20. Spatial memory enhances the evacuation efficiency of virtual pedestrians under poor visibility condition

    NASA Astrophysics Data System (ADS)

    Ma, Yi; Lee, Eric Wai Ming; Shi, Meng; Kwok Kit Yuen, Richard

    2018-03-01

    Spatial memory is a critical navigation support tool for disoriented evacuees during evacuation under adverse environmental conditions such as dark or smoky conditions. Owing to the complexity of memory, it is challenging to understand the effect of spatial memory on pedestrian evacuation quantitatively. In this study, we propose a simple method to quantitatively represent the evacueeʼs spatial memory about the emergency exit, model the evacuation of pedestrians under the guidance of the spatial memory, and investigate the effect of the evacueeʼs spatial memory on the evacuation from theoretical and physical perspectives. The result shows that (i) a good memory can significantly assist the evacuation of pedestrians under poor visibility conditions, and the evacuation can always succeed when the degree of the memory exceeds a threshold (\\varphi > 0.5); (ii) the effect of memory is superior to that of “follow-the-crowd” under the same environmental conditions; (iii) in the case of multiple exits, the difference in the degree of the memory between evacuees has a significant effect (the greater the difference, the faster the evacuation) for the evacuation under poor visibility conditions. Our study provides a new quantitative insight into the effect of spatial memory on crowd evacuation under poor visibility conditions. Project supported by the Research Grants Council of the Hong Kong Special Administrative Region, China (Grant No. 11203615).

  1. A framework for developing and integrating effective routing strategies within the emergency management decision-support system.

    DOT National Transportation Integrated Search

    2012-05-01

    This report describes the modeling, calibration, and validation of a VISSIM traffic-flow simulation of the San Jos, California, downtown network and examines various evacuation scenarios and first-responder routings to assess strategies that would ...

  2. Influence of road network and population demand assumptions in evacuation modeling for distant tsunamis

    USGS Publications Warehouse

    Henry, Kevin; Wood, Nathan J.; Frazier, Tim G.

    2017-01-01

    Tsunami evacuation planning in coastal communities is typically focused on local events where at-risk individuals must move on foot in a matter of minutes to safety. Less attention has been placed on distant tsunamis, where evacuations unfold over several hours, are often dominated by vehicle use and are managed by public safety officials. Traditional traffic simulation models focus on estimating clearance times but often overlook the influence of varying population demand, alternative modes, background traffic, shadow evacuation, and traffic management alternatives. These factors are especially important for island communities with limited egress options to safety. We use the coastal community of Balboa Island, California (USA), as a case study to explore the range of potential clearance times prior to wave arrival for a distant tsunami scenario. We use a first-in–first-out queuing simulation environment to estimate variations in clearance times, given varying assumptions of the evacuating population (demand) and the road network over which they evacuate (supply). Results suggest clearance times are less than wave arrival times for a distant tsunami, except when we assume maximum vehicle usage for residents, employees, and tourists for a weekend scenario. A two-lane bridge to the mainland was the primary traffic bottleneck, thereby minimizing the effect of departure times, shadow evacuations, background traffic, boat-based evacuations, and traffic light timing on overall community clearance time. Reducing vehicular demand generally reduced clearance time, whereas improvements to road capacity had mixed results. Finally, failure to recognize non-residential employee and tourist populations in the vehicle demand substantially underestimated clearance time.

  3. Novel device and technique for minimally invasive intracerebral hematoma evacuation in the same setting of a ruptured intracranial aneurysm: combined treatment in the neurointerventional angiography suite.

    PubMed

    Turner, Raymond D; Vargas, Jan; Turk, Aquilla S; Chaudry, M Imran; Spiotta, Alejandro M

    2015-03-01

    The presence of intracerebral hematoma from aneurysm rupture is an indication for craniotomy for clot evacuation and aneurysm clipping. Some centers have begun securing aneurysms with coil embolization followed by clot evacuation in the operating room. This approach requires transporting a patient from the angiography suite to the operating room, which can take valuable time and resources. To report our experience with 3 cases in which a novel technique for minimally invasive evacuation of intracerebral hematomas after endovascular treatment of ruptured intracranial aneurysms was used. The Penumbra Apollo system can be used in the angiography suite in conjunction with neuroendovascular techniques to simultaneously address a symptomatic hematoma associated with a ruptured aneurysm. Standard preoperative computed tomography angiography was performed on arrival to the emergency department. The patients underwent diagnostic cerebral angiography followed by balloon-assisted coil embolization and then remained in the neurointerventional suite for intracerebral hematoma evacuation with the Apollo system. All patients tolerated coil embolization and hematoma evacuation well. The combined procedures lasted <3 hours in both cases. Two patients were eventually discharged to acute rehabilitation facilities less than a month after their initial insult, and 1 has been cleared to return to work. The other patient was transferred to hospice care. The Apollo aspiration system appears to be a safe and effective minimally invasive option for intracerebral hematoma evacuation, particularly when coupled with endovascular embolization of ruptured intracranial aneurysms. Future work will address which patient population is most likely to benefit from this promising technique.

  4. Simulating the effects of social networks on a population's hurricane evacuation participation

    NASA Astrophysics Data System (ADS)

    Widener, Michael J.; Horner, Mark W.; Metcalf, Sara S.

    2013-04-01

    Scientists have noted that recent shifts in the earth's climate have resulted in more extreme weather events, like stronger hurricanes. Such powerful storms disrupt societal function and result in a tremendous number of casualties, as demonstrated by recent hurricane experience in the US Planning for and facilitating evacuations of populations forecast to be impacted by hurricanes is perhaps the most effective strategy for reducing risk. A potentially important yet relatively unexplored facet of people's evacuation decision-making involves the interpersonal communication processes that affect whether at-risk residents decide to evacuate. While previous research has suggested that word-of-mouth effects are limited, data supporting these assertions were collected prior to the widespread adoption of digital social media technologies. This paper argues that the influence of social network effects on evacuation decisions should be revisited given the potential of new social media for impacting and augmenting information dispersion through real-time interpersonal communication. Using geographic data within an agent-based model of hurricane evacuation in Bay County, Florida, we examine how various types of social networks influence participation in evacuation. It is found that strategies for encouraging evacuation should consider the social networks influencing individuals during extreme events, as it can be used to increase the number of evacuating residents.

  5. Evacuation simulation with consideration of obstacle removal and using game theory

    NASA Astrophysics Data System (ADS)

    Lin, Guan-Wen; Wong, Sai-Keung

    2018-06-01

    In this paper, we integrate a cellular automaton model with game theory to simulate crowd evacuation from a room with consideration of obstacle removal. The room has one or more exits, one of which is blocked by obstacles. The obstacles at the exit can be removed by volunteers. We investigate the cooperative and defective behaviors of pedestrians during evacuation. The yielder game and volunteer's dilemma game are employed to resolve interpedestrian conflict. An anticipation floor field is proposed to guide the pedestrians to avoid obstacles that are being removed. We conducted experiments to determine how a variety of conditions affect overall crowd evacuation and volunteer evacuation times. The conditions were the start time of obstacle removal, number of obstacles, placement of obstacles, time spent in obstacle removal, strength of the anticipation floor field, and obstacle visibility distance. We demonstrate how reciprocity can be achieved among pedestrians and increases the efficiency of the entire evacuation process.

  6. Effect of authority figures for pedestrian evacuation at metro stations

    NASA Astrophysics Data System (ADS)

    Song, Xiao; Zhang, Zenghui; Peng, Gongzhuang; Shi, Guoqiang

    2017-01-01

    Most pedestrian evacuation literatures are about routing algorithm, human intelligence and behavior etc. Few works studied how to fully explore the function of authority/security figures, who know more of the environment by simply being there every day. To evaluate the effect of authority figure (AF) in complex buildings, this paper fully investigates the AF related factors that may influence the evacuation effect of crowd, such as the number and locations of AFs, their spread of direction, calming effect and distribution strategies etc. Social force based modeling and simulation results show that these factors of AFs play important roles in evacuation efficiency, which means fewer AFs with right guiding strategy can have good evacuation performance. For our case study, Zhichun Avenue station, the conclusion is that deployment of four AFs is a good choice to achieve relatively high evacuation performance yet save cost.

  7. Controlling Hazardous Releases while Protecting Passengers in Civil Infrastructure Systems

    NASA Astrophysics Data System (ADS)

    Rimer, Sara P.; Katopodes, Nikolaos D.

    2015-11-01

    The threat of accidental or deliberate toxic chemicals released into public spaces is a significant concern to public safety, and the real-time detection and mitigation of such hazardous contaminants has the potential to minimize harm and save lives. Furthermore, the safe evacuation of occupants during such a catastrophe is of utmost importance. This research develops a comprehensive means to address such scenarios, through both the sensing and control of contaminants, and the modeling of and potential communication to occupants as they evacuate. A computational fluid dynamics model is developed of a simplified public space characterized by a long conduit (e.g. airport terminal) with unidirectional ambient flow that is capable of detecting and mitigating the hazardous contaminant (via boundary ports) over several time horizons using model predictive control optimization. Additionally, a physical prototype is built to test the real-time feasibility of this computational flow control model. The prototype is a blower wind-tunnel with an elongated test section with the capability of sensing (via digital camera) an injected `contaminant' (propylene glycol smoke), and then mitigating that contaminant using actuators (compressed air operated vacuum nozzles) which are operated by a set of pressure regulators and a programmable controller. Finally, an agent-based model is developed to simulate ``agents'' (i.e. building occupants) as they evacuate a public space, and is coupled with the computational flow control model such that agents must interact with a dynamic, threatening environment. NSF-CMMI #0856438.

  8. Evacuate or Shelter-in-place? The Role of Corporate Memory and Political Environment in Hospital-evacuation Decision Making.

    PubMed

    Ricci, Karen A; Griffin, Anne R; Heslin, Kevin C; Kranke, Derrick; Dobalian, Aram

    2015-06-01

    Hospital-evacuation decisions are rarely straightforward in protracted advance-warning events. Previous work provides little insight into the decision-making process around evacuation. This study was conducted to identify factors that most heavily influenced the decisions to evacuate the US Department of Veterans Affairs (VA) New York Harbor Healthcare System's (NYHHS; New York USA) Manhattan Campus before Hurricane Irene in 2011 and before Superstorm Sandy in 2012. Semi-structured interviews with 11 senior leaders were conducted on the processes and factors that influenced the evacuation decisions prior to each event. The most influential factor in the decision to evacuate the Manhattan Campus before Hurricane Irene was New York City's (NYC's) hospital-evacuation mandate. As a federal facility, the Manhattan VA medical center (VAMC) was exempt from the city's order, but decision makers felt compelled to comply. In the case of Superstorm Sandy, corporate memory of a similar 1992 storm that crippled the Manhattan facility drove the decision to evacuate before the storm hit. Results suggest that hospital-evacuation decisions are confounded by political considerations and are influenced by past disaster experience. Greater shared situational awareness among at-risk hospitals, along with a more coordinated approach to evacuation decision making, could reduce pressure on hospitals to make these high-stakes decisions. Systematic mechanisms for collecting, documenting, and sharing lessons learned from past disasters are sorely needed at the institutional, local, and national levels.

  9. Use of Subdural Evacuating Port System Following Open Craniotomy with Excision of Native Dura and Membranes for Management of Chronic Subdural Hematoma

    PubMed Central

    Bach, Ashley; McDermott, Michael W.

    2017-01-01

    An 86-year-old woman was admitted to the intensive care unit with a chronic subdural hematoma (CSDH) and rapid onset of worsening neurological symptoms. She was taken to the operating room for a mini-craniotomy for evacuation of the CSDH including excision of the dura and CSDH membrane. Postoperatively, a subdural evacuation port system (SEPS) was integrated into the craniotomy site and left in place rather than a traditional subdural catheter drain to evacuate the subdural space postoperatively. The patient had a good recovery and improvement of symptoms after evacuation and remained clinically well after the SEPS was removed. We offer the technique of dura and CSDH membrane excision plus SEPS drain as an effective postoperative alternative to the standard craniotomy leaving the native dura intact with traditional subdural drain that overlies the cortical surface of the brain in treating patients with CSDH. PMID:28560123

  10. Experimental evaluation of blockage ratio and plenum evacuation system flow effects on pressure distribution for bodies of revolution in 0.1 scale model test section of NASA Lewis Research Center's proposed altitude wind tunnel

    NASA Technical Reports Server (NTRS)

    Burley, Richard R.; Harrington, Douglas E.

    1987-01-01

    An experimental investigation was conducted in the slotted test section of the 0.1-scale model of the proposed Altitude Wind Tunnel to evaluate wall interference effects at tunnel Mach numbers from 0.70 to 0.95 on bodies of revolution with blockage rates of 0.43, 3, 6, and 12 percent. The amount of flow that had to be removed from the plenum chamber (which surrounded the slotted test section) by the plenum evacuation system (PES) to eliminate wall interference effects was determined. The effectiveness of tunnel reentry flaps in removing flow from the plenum chamber was examined. The 0.43-percent blockage model was the only one free of wall interference effects with no PES flow. Surface pressures on the forward part of the other models were greater than interference-free results and were not influenced by PES flow. Interference-free results were achieved on the aft part of the 3- and 6-percent blockage models with the proper amount of PES flow. The required PES flow was substantially reduced by opening the reentry flaps.

  11. Loss of Life, Evacuation and Emergency Management - Application of Dutch Models to US Case Studies

    DTIC Science & Technology

    2012-12-18

    Risks to people M es o: Z on e or lo ca tio n Instability tests Jonkman 1953 D eK ay a nd M cC le lla nd G ra ha m Katrina HEC -FIA...mortality functions (Jonkman) o 2.2.2 New Orleans / Katrina mortality functions (Jonkman) o 2.2.3 HEC FIA approach (USACE) o 2.2.4. Loss of life methods...comparison (USACE) • 2.3 Dutch Evacuation and Evacuaid approach (Kolen) o 2.3.1 Evacuation approach implemented in HEC FIA (USACE) o 2.3.2 Evacuation

  12. iCrowd: agent-based behavior modeling and crowd simulator

    NASA Astrophysics Data System (ADS)

    Kountouriotis, Vassilios I.; Paterakis, Manolis; Thomopoulos, Stelios C. A.

    2016-05-01

    Initially designed in the context of the TASS (Total Airport Security System) FP-7 project, the Crowd Simulation platform developed by the Integrated Systems Lab of the Institute of Informatics and Telecommunications at N.C.S.R. Demokritos, has evolved into a complete domain-independent agent-based behavior simulator with an emphasis on crowd behavior and building evacuation simulation. Under continuous development, it reflects an effort to implement a modern, multithreaded, data-oriented simulation engine employing latest state-of-the-art programming technologies and paradigms. It is based on an extensible architecture that separates core services from the individual layers of agent behavior, offering a concrete simulation kernel designed for high-performance and stability. Its primary goal is to deliver an abstract platform to facilitate implementation of several Agent-Based Simulation solutions with applicability in several domains of knowledge, such as: (i) Crowd behavior simulation during [in/out] door evacuation. (ii) Non-Player Character AI for Game-oriented applications and Gamification activities. (iii) Vessel traffic modeling and simulation for Maritime Security and Surveillance applications. (iv) Urban and Highway Traffic and Transportation Simulations. (v) Social Behavior Simulation and Modeling.

  13. 30 CFR 56.4330 - Firefighting, evacuation, and rescue procedures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Fire Prevention and Control Firefighting Procedures/alarms/drills § 56.4330 Firefighting, evacuation... organizations. (b) Fire alarm procedures or systems shall be established to pomptly warn every person who could be endangered by a fire. (c) Fire alarm systems shall be maintained in operable condition. ...

  14. 30 CFR 56.4330 - Firefighting, evacuation, and rescue procedures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Fire Prevention and Control Firefighting Procedures/alarms/drills § 56.4330 Firefighting, evacuation... organizations. (b) Fire alarm procedures or systems shall be established to pomptly warn every person who could be endangered by a fire. (c) Fire alarm systems shall be maintained in operable condition. ...

  15. 30 CFR 56.4330 - Firefighting, evacuation, and rescue procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Fire Prevention and Control Firefighting Procedures/alarms/drills § 56.4330 Firefighting, evacuation... organizations. (b) Fire alarm procedures or systems shall be established to pomptly warn every person who could be endangered by a fire. (c) Fire alarm systems shall be maintained in operable condition. ...

  16. 30 CFR 56.4330 - Firefighting, evacuation, and rescue procedures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Fire Prevention and Control Firefighting Procedures/alarms/drills § 56.4330 Firefighting, evacuation... organizations. (b) Fire alarm procedures or systems shall be established to pomptly warn every person who could be endangered by a fire. (c) Fire alarm systems shall be maintained in operable condition. ...

  17. Usability and Visual Communication for Southern California Tsunami Evacuation Information: The importance of information design in disaster risk management

    NASA Astrophysics Data System (ADS)

    Jaenichen, C.; Schandler, S.; Wells, M.; Danielsen, T.

    2015-12-01

    Evacuation behavior, including participation and response, is rarely an individual and isolated process and the outcomes are usually systemic. Ineffective evacuation information can easily attribute to delayed evacuation response. Delays increase demands on already extended emergency personal, increase the likelihood of traffic congestion, and can cause harm to self and property. From an information design perspective, addressing issues in cognitive recall and emergency psychology, this case study examines evacuation messaging including written, audio, and visual presentation of information, and describes the application of design principles and role of visual communication for Southern California tsunami evacuation outreach. The niche of this project is the inclusion of cognitive processing as the driving influence when making formal design decisions and measurable data from a 4-year cognitive recall study to support the solution. Image included shows a tsunami evacaution map before and after the redesign.

  18. Tsunami evacuation buildings and evacuation planning in Banda Aceh, Indonesia.

    PubMed

    Yuzal, Hendri; Kim, Karl; Pant, Pradip; Yamashita, Eric

    Indonesia, a country of more than 17,000 islands, is exposed to many hazards. A magnitude 9.1 earthquake struck off the coast of Sumatra, Indonesia, on December 26, 2004. It triggered a series of tsunami waves that spread across the Indian Ocean causing damage in 11 countries. Banda Aceh, the capital city of Aceh Province, was among the most damaged. More than 31,000 people were killed. At the time, there were no early warning systems nor evacuation buildings that could provide safe refuge for residents. Since then, four tsunami evacuation buildings (TEBs) have been constructed in the Meuraxa subdistrict of Banda Aceh. Based on analysis of evacuation routes and travel times, the capacity of existing TEBs is examined. Existing TEBs would not be able to shelter all of the at-risk population. In this study, additional buildings and locations for TEBs are proposed and residents are assigned to the closest TEBs. While TEBs may be part of a larger system of tsunami mitigation efforts, other strategies and approaches need to be considered. In addition to TEBs, robust detection, warning and alert systems, land use planning, training, exercises, and other preparedness strategies are essential to tsunami risk reduction.

  19. Learning by Teaching: Undergraduate Engineering Students Improving a Community's Response Capability to an Early Warning System

    ERIC Educational Resources Information Center

    Suvannatsiri, Ratchasak; Santichaianant, Kitidech; Murphy, Elizabeth

    2015-01-01

    This paper reports on a project in which students designed, constructed and tested a model of an existing early warning system with simulation of debris flow in a context of a landslide. Students also assessed rural community members' knowledge of this system and subsequently taught them to estimate the time needed for evacuation of the community…

  20. Selfishness- and Selflessness-based models of pedestrian room evacuation

    NASA Astrophysics Data System (ADS)

    Song, Xiao; Ma, Liang; Ma, Yaofei; Yang, Chen; Ji, Hang

    2016-04-01

    Some pedestrian evacuation studies have employed game strategy to deal with moving conflicts involving two or three pedestrians. However, most of these have simply presented game strategies for pedestrians without analyzing the reasons why they choose to defect or cooperate. We believe that selfish and selfless behaviors are two main factors that should be considered in evacuation. In addition to these behaviors, human emotions such as sympathy and behaviors such as vying were also taken into account to investigate their impacts on pedestrians' strategies. Moreover, an essential objective factor, the building design factor of door width was tested and analyzed. Experimental results showed that the sense of self leads to more defectors and a longer evacuation time. However, sympathy does some good, leading to more cooperators and a shorter evacuation time. Moreover, the exit door width is an essential factor of the evacuation efficiency. When the width was less than 6 cells in a rectangular room with a size greater than 50 × 50, the evacuation time greatly decreased when the width increased. However, this effect was less obvious when the width increased.

  1. EXPERIMENTAL STUDIES ON DIFFICULTY OF EVACUATION FROM UNDERGROUND SPACES UNDER INUNDATED SITUATIONS USING REAL SCALE MODELS

    NASA Astrophysics Data System (ADS)

    Baba, Yasuyuki; Ishigaki, Taisuke; Toda, Keiichi; Nakagawa, Hajime

    Many urbanized cities in Japan are located in alluvial plains, and the vulnerability of urbanized areas to flood disaster is highlighted by flood attacks due to heavy rain fall or typhoons. Underground spaces located in the urbanized area are flood-prone areas, and the intrusion of flood watar into underground space inflicted severe damages on urban functions and infrastructures. In a similar way, low-lying areas like "bowl-shaped" depression and underpasses under highway and railroad bridges are also prone to floods. The underpasses are common sites of accidents of submerged vehicles, and severe damage including human damage occasionally occurs under flooding conditions. To reduce the damage due to inundation in underground space, needless to say, early evacuation is one of the most important countermeasures. This paper shows some experimental results of evacuation tests from underground spaces under inundated situations. The difficulities of the evacuation from underground space has been investigated by using real scale models (door, staircase and vehicle), and the limit for safety evacuation is discussed. From the results, it is found that water depth of 0.3 - 0.4m would be a critical situation for the evacuation from underground space through staircases and door and that 0.7 - 0.8m deep on the ground would be also a critical situation for safety evacuation though the doors of the vehicle. These criteria have some possibility to vary according to different inundated situations, and they are also influenced by the individual variation like the difference of physical strength. This means that these criteria requires cautious stance to use although they show a sort of an index of the limitation for saftty evacuation from underground space.

  2. 46 CFR 199.261 - Survival craft.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... a SOLAS A pack. (3) Each rigid liferaft must be approved under approval series 160.118 and be... or more. (5) Each marine evacuation system must be approved under approval series 160.175. (b) Each... least one side of the vessel being served by launching appliances or marine evacuation systems. (d...

  3. 46 CFR 199.261 - Survival craft.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... a SOLAS A pack. (3) Each rigid liferaft must be approved under approval series 160.118 and be... or more. (5) Each marine evacuation system must be approved under approval series 160.175. (b) Each... least one side of the vessel being served by launching appliances or marine evacuation systems. (d...

  4. 46 CFR 199.261 - Survival craft.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... a SOLAS A pack. (3) Each rigid liferaft must be approved under approval series 160.118 and be... or more. (5) Each marine evacuation system must be approved under approval series 160.175. (b) Each... least one side of the vessel being served by launching appliances or marine evacuation systems. (d...

  5. 46 CFR 199.261 - Survival craft.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... a SOLAS A pack. (3) Each rigid liferaft must be approved under approval series 160.118 and be... or more. (5) Each marine evacuation system must be approved under approval series 160.175. (b) Each... least one side of the vessel being served by launching appliances or marine evacuation systems. (d...

  6. 14 CFR Appendix J to Part 25 - Emergency Evacuation

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Pt. 25, App. J Appendix J to Part 25—Emergency Evacuation...-candles prior to the activation of the airplane emergency lighting system. The source(s) of the initial... airplane emergency lighting system. (b) The airplane must be in a normal attitude with landing gear...

  7. Emergency escape system uses self-braking mechanism on fixed cable

    NASA Technical Reports Server (NTRS)

    Billings, C. R.; Mc Daris, R. A.; Mc Gough, J. T.; Neal, P. F.

    1966-01-01

    Slide-wire system with a twist level slide device incorporates automatic descent and braking for the safe and rapid evacuation of personnel from tall structures. This device is used on any tall structure that might require emergency evacuation. It is also used to transfer materials and equipment.

  8. A grouping method based on grid density and relationship for crowd evacuation simulation

    NASA Astrophysics Data System (ADS)

    Li, Yan; Liu, Hong; Liu, Guang-peng; Li, Liang; Moore, Philip; Hu, Bin

    2017-05-01

    Psychological factors affect the movement of people in the competitive or panic mode of evacuation, in which the density of pedestrians is relatively large and the distance among them is small. In this paper, a crowd is divided into groups according to their social relations to simulate the actual movement of crowd evacuation more realistically and increase the attractiveness of the group based on social force model. The force of group attraction is the synthesis of two forces; one is the attraction of the individuals generated by their social relations to gather, and the other is that of the group leader to the individuals within the group to ensure that the individuals follow the leader. The synthetic force determines the trajectory of individuals. The evacuation process is demonstrated using the improved social force model. In the improved social force model, the individuals with close social relations gradually present a closer and coordinated action while following the leader. In this paper, a grouping algorithm is proposed based on grid density and relationship via computer simulation to illustrate the features of the improved social force model. The definition of the parameters involved in the algorithm is given, and the effect of relational value on the grouping is tested. Reasonable numbers of grids and weights are selected. The effectiveness of the algorithm is shown through simulation experiments. A simulation platform is also established using the proposed grouping algorithm and the improved social force model for crowd evacuation simulation.

  9. Personalized Alert Notifications and Evacuation Routes in Indoor Environments

    PubMed Central

    Aedo, Ignacio; Yu, Shuxin; Díaz, Paloma; Acuña, Pablo; Onorati, Teresa

    2012-01-01

    The preparedness phase is crucial in the emergency management process for reaching an adequate level of readiness to react to potential threats and hazards. During this phase, emergency plans are developed to establish, among other procedures, evacuation and emergency escape routes. Information and Communication Technologies (ICT) can support and improve these procedures providing appropriate, updated and accessible information to all people in the affected zone. Current emergency management and evacuation systems do not adapt information to the context and the profile of each person, so messages received in the emergency might be useless. In this paper, we propose a set of criteria that ICT-based systems could achieve in order to avoid this problem adapting emergency alerts and evacuation routes to different situations and people. Moreover, in order to prove the applicability of such criteria, we define a mechanism that can be used as a complement of traditional evacuation systems to provide personalized alerts and evacuation routes to all kinds of people during emergency situations in working places. This mechanism is composed by three main components: CAP-ONES for notifying emergency alerts, NERES for defining emergency plans and generating personalized evacuation routes, and iNeres as the interface to receive and visualize these routes on smartphones. The usability and understandability of proposed interface has been assessed through a user study performed in a fire simulation in an indoor environment. This evaluation demonstrated that users considered iNeres easy to understand, to learn and to use, and they also found very innovative the idea to use smartphones as a support for escaping instead of static signals on walls and doors. PMID:22969373

  10. A Participatory Agent-Based Simulation for Indoor Evacuation Supported by Google Glass.

    PubMed

    Sánchez, Jesús M; Carrera, Álvaro; Iglesias, Carlos Á; Serrano, Emilio

    2016-08-24

    Indoor evacuation systems are needed for rescue and safety management. One of the challenges is to provide users with personalized evacuation routes in real time. To this end, this project aims at exploring the possibilities of Google Glass technology for participatory multiagent indoor evacuation simulations. Participatory multiagent simulation combines scenario-guided agents and humans equipped with Google Glass that coexist in a shared virtual space and jointly perform simulations. The paper proposes an architecture for participatory multiagent simulation in order to combine devices (Google Glass and/or smartphones) with an agent-based social simulator and indoor tracking services.

  11. Evacuation dynamic and exit optimization of a supermarket based on particle swarm optimization

    NASA Astrophysics Data System (ADS)

    Li, Lin; Yu, Zhonghai; Chen, Yang

    2014-12-01

    A modified particle swarm optimization algorithm is proposed in this paper to investigate the dynamic of pedestrian evacuation from a fire in a public building-a supermarket with multiple exits and configurations of counters. Two distinctive evacuation behaviours featured by the shortest-path strategy and the following-up strategy are simulated in the model, accounting for different categories of age and sex of the pedestrians along with the impact of the fire, including gases, heat and smoke. To examine the relationship among the progress of the overall evacuation and the layout and configuration of the site, a series of simulations are conducted in various settings: without a fire and with a fire at different locations. Those experiments reveal a general pattern of two-phase evacuation, i.e., a steep section and a flat section, in addition to the impact of the presence of multiple exits on the evacuation along with the geographic locations of the exits. For the study site, our simulations indicated the deficiency of the configuration and the current layout of this site in the process of evacuation and verified the availability of proposed solutions to resolve the deficiency. More specifically, for improvement of the effectiveness of the evacuation from the site, adding an exit between Exit 6 and Exit 7 and expanding the corridor at the right side of Exit 7 would significantly reduce the evacuation time.

  12. Healthcare-Wide Hazards: Surgical Suite

    MedlinePlus

    ... smoke evacuators and room suction systems with inline filters. Keep the smoke evacuator or room suction hose ... all surgical or other procedures. Consider all tubing, filters, and absorbers as infectious waste and dispose of ...

  13. Performance optimization of evacuated tube collector for solar cooling of a house in hot climate

    NASA Astrophysics Data System (ADS)

    Ghoneim, Adel A.

    2018-02-01

    Evacuating the space connecting cover and absorber significantly improves evacuated tube collector (ETC) performance. So, ETCs are progressively utilised all over the world. The main goal of current study is to explore ETC thermal efficiency in hot and severe climate like Kuwait weather conditions. A collector test facility was installed to record ETC thermal performance for one-year period. An extensively developed model for ETCs is presented, employing complete optical and thermal assessment. This study analyses separately optics and heat transfer in the evacuated tubes, allowing the analysis to be extended to different configurations. The predictions obtained are in agreement with experimental. The optimum collector parameters (collector tube length and diameter, mass flow rate and collector tilt angle) are determined. The present results indicate that the optimum tube length is 1.5 m, as at this length a significant improvement is achieved in efficiency for different tube diameters studied. Finally, the heat generated from ETCs is used for solar cooling of a house. Results of the simulation of cooling system indicate that an ETC of area 54 m2, tilt angle of 25° and storage tank volume of 2.1 m3 provides 80% of air-conditioning demand in a house located in Kuwait.

  14. Efficient Egress of Escaping Ants Stressed with Temperature

    PubMed Central

    Boari, Santiago; Josens, Roxana; Parisi, Daniel R.

    2013-01-01

    In the present work we investigate the egress times of a group of Argentine ants (Linepithema humile) stressed with different heating speeds. We found that the higher the temperature ramp is, the faster ants evacuate showing, in this sense, a group-efficient evacuation strategy. It is important to note that even when the life of ants was in danger, jamming and clogging was not observed near the exit, in accordance with other experiments reported in the literature using citronella as aversive stimuli. Because of this clear difference between ants and humans, we recommend the use of some other animal models for studying competitive egress dynamics as a more accurate approach to understanding competitive egress in human systems. PMID:24312264

  15. A Study of Flood Evacuation Center Using GIS and Remote Sensing Technique

    NASA Astrophysics Data System (ADS)

    Mustaffa, A. A.; Rosli, M. F.; Abustan, M. S.; Adib, R.; Rosli, M. I.; Masiri, K.; Saifullizan, B.

    2016-07-01

    This research demonstrated the use of Remote Sensing technique and GIS to determine the suitability of an evacuation center. This study was conducted in Batu Pahat areas that always hit by a series of flood. The data of Digital Elevation Model (DEM) was obtained by ASTER database that has been used to delineate extract contour line and elevation. Landsat 8 image was used for classification purposes such as land use map. Remote Sensing incorporate with GIS techniques was used to determined the suitability location of the evacuation center from contour map of flood affected areas in Batu Pahat. GIS will calculate the elevation of the area and information about the country of the area, the road access and percentage of the affected area. The flood affected area map may provide the suitability of the flood evacuation center during the several levels of flood. The suitability of evacuation centers can be determined based on several criteria and the existing data of the evacuation center will be analysed. From the analysis among 16 evacuation center listed, there are only 8 evacuation center suitable for the usage during emergency situation. The suitability analysis was based on the location and the road access of the evacuation center toward the flood affected area. There are 10 new locations with suitable criteria of evacuation center proposed on the study area to facilitate the process of rescue and evacuating flood victims to much safer and suitable locations. The results of this study will help in decision making processes and indirectly will help organization such as fire-fighter and the Department of Social Welfare in their work. Thus, this study can contribute more towards the society.

  16. Beat-the-wave evacuation mapping for tsunami hazards in Seaside, Oregon, USA

    USGS Publications Warehouse

    Priest, George R.; Stimely, Laura; Wood, Nathan J.; Madin, Ian; Watzig, Rudie

    2016-01-01

    Previous pedestrian evacuation modeling for tsunamis has not considered variable wave arrival times or critical junctures (e.g., bridges), nor does it effectively communicate multiple evacuee travel speeds. We summarize an approach that identifies evacuation corridors, recognizes variable wave arrival times, and produces a map of minimum pedestrian travel speeds to reach safety, termed a “beat-the-wave” (BTW) evacuation analysis. We demonstrate the improved approach by evaluating difficulty of pedestrian evacuation of Seaside, Oregon, for a local tsunami generated by a Cascadia subduction zone earthquake. We establish evacuation paths by calculating the least cost distance (LCD) to safety for every grid cell in a tsunami-hazard zone using geospatial, anisotropic path distance algorithms. Minimum BTW speed to safety on LCD paths is calculated for every grid cell by dividing surface distance from that cell to safety by the tsunami arrival time at safety. We evaluated three scenarios of evacuation difficulty: (1) all bridges are intact with a 5-minute evacuation delay from the start of earthquake, (2) only retrofitted bridges are considered intact with a 5-minute delay, and (3) only retrofitted bridges are considered intact with a 10-minute delay. BTW maps also take into account critical evacuation points along complex shorelines (e.g., peninsulas, bridges over shore-parallel estuaries) where evacuees could be caught by tsunami waves. The BTW map is able to communicate multiple pedestrian travel speeds, which are typically visualized by multiple maps with current LCD-based mapping practices. Results demonstrate that evacuation of Seaside is problematic seaward of the shore-parallel waterways for those with any limitations on mobility. Tsunami vertical-evacuation refuges or additional pedestrian bridges may be effective ways of reducing loss of life seaward of these waterways.

  17. Post-nuclear disaster evacuation and survival amongst elderly people in Fukushima: A comparative analysis between evacuees and non-evacuees.

    PubMed

    Nomura, Shuhei; Blangiardo, Marta; Tsubokura, Masaharu; Nishikawa, Yoshitaka; Gilmour, Stuart; Kami, Masahiro; Hodgson, Susan

    2016-01-01

    Considering the health impacts of evacuation is fundamental to disaster planning especially for vulnerable elderly populations; however, evacuation-related mortality risks have not been well-investigated. We conducted an analysis to compare survival of evacuated and non-evacuated residents of elderly care facilities, following the Great East Japan Earthquake and subsequent Fukushima Dai-ichi nuclear power plant incident on 11th March 2011. To assess associations between evacuation and mortality after the Fukushima nuclear incident; and to present discussion points on disaster planning, with reference to vulnerable elderly populations. The study population comprised 1,215 residents admitted to seven elderly care facilities located 20-40km from the nuclear plant in the five years before the incident. Demographic and clinical characteristics were obtained from medical records. Evacuation histories were tracked until mid 2013. Main outcome measures are hazard ratios in evacuees versus non-evacuees using random-effects Cox proportional hazards models, and pre- and post-disaster survival probabilities and relative mortality incidence. Experiencing the disasters did not have a significant influence on mortality (hazard ratio 1.10, 95% confidence interval: 0.84-1.43). Evacuation was associated with 1.82 times higher mortality (95% confidence interval: 1.22-2.70) after adjusting for confounders, with the initial evacuation from the original facility associated with 3.37 times higher mortality risk (95% confidence interval: 1.66-6.81) than non evacuation. The government should consider updating its requirements for emergency planning for elderly facilities and ensure that, in a disaster setting, these facilities have the capacity and support to shelter in place for at least sufficient time to adequately prepare initial evacuation. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Fire and Heat Spreading Model Based on Cellular Automata Theory

    NASA Astrophysics Data System (ADS)

    Samartsev, A. A.; Rezchikov, A. F.; Kushnikov, V. A.; Ivashchenko, V. A.; Bogomolov, A. S.; Filimonyuk, L. Yu; Dolinina, O. N.; Kushnikov, O. V.; Shulga, T. E.; Tverdokhlebov, V. A.; Fominykh, D. S.

    2018-05-01

    The distinctive feature of the proposed fire and heat spreading model in premises is the reduction of the computational complexity due to the use of the theory of cellular automata with probability rules of behavior. The possibilities and prospects of using this model in practice are noted. The proposed model has a simple mechanism of integration with agent-based evacuation models. The joint use of these models could improve floor plans and reduce the time of evacuation from premises during fires.

  19. Human Response to Emergency Warning

    NASA Astrophysics Data System (ADS)

    Sorensen, J.

    2009-12-01

    Almost every day people evacuate from their homes, businesses or other sites, even ships, in response to actual or predicted threats or hazards. Evacuation is the primary protective action utilized in large-scale emergencies such as hurricanes, floods, tornados, tsunamis, volcanic eruptions, or wildfires. Although often precautionary, protecting human lives by temporally relocating populations before or during times of threat remains a major emergency management strategy. One of the most formidable challenges facing emergency officials is evacuating residents for a fast-moving and largely unpredictable event such as a wildfire or a local tsunami. How to issue effective warnings to those at risk in time for residents to take appropriate action is an on-going problem. To do so, some communities have instituted advanced communications systems that include reverse telephone call-down systems or other alerting systems to notify at-risk residents of imminent threats. This presentation examines the effectiveness of using reverse telephone call-down systems for warning San Diego residents of wildfires in the October of 2007. This is the first systematic study conducted on this topic and is based on interviews with 1200 households in the evacuation areas.

  20. Automatic smoke evacuation in laparoscopic surgery: a simplified method for objective evaluation.

    PubMed

    Takahashi, Hidekazu; Yamasaki, Makoto; Hirota, Masashi; Miyazaki, Yasuaki; Moon, Jeong Ho; Souma, Yoshihito; Mori, Masaki; Doki, Yuichiro; Nakajima, Kiyokazu

    2013-08-01

    Although its theoretical usefulness has been reported, the true value of automatic smoke evacuation system in laparoscopic surgery remains unknown. This is mainly due to the lack of objective evaluation. The purpose of this study was to determine the efficacy of the automatic smoke evacuator in laparoscopic surgery, by real-time objective evaluation system using an industrial smoke-detection device. Six pigs were used in this study. Three surgical ports were placed and electrosurgical smoke was generated in a standard fashion, using either a high-frequency electrosurgical unit (HF-ESU) or laparosonic coagulating shears (LCS). The smoke was evacuated immediately in the evacuation group but not in the control nonevacuation group. The laparoscopic field-of-view was subjectively evaluated by ten independent surgeons. The composition of the surgical smoke was analyzed by mass spectrometry. The residual smoke in the abdominal cavity was aspirated manually into a smoke tester, and stains on a filter paper were image captured, digitized, and semiquantified. Subjective evaluation indicated superior field-of-view in the evacuation group, compared with the control, at 15 s after activation of the HF-ESU (P < 0.05). The smoke comprised various chemical compounds, including known carcinogens. The estimated volume of intra-abdominal residual smoke after activation of HF-ESU was significantly lower in the evacuation group (47.4 ± 16.6) than the control (76.7 ± 2.4, P = 0.0018). Only marginal amount of surgical smoke was detected in both groups after LCS when the tissue pad was free from burnt tissue deposits. However, the amount was significantly lower in the evacuation group (21.3 ± 10.7) than the control (75 ± 39.9, P = 0.044) when the tissue pad contained tissue sludge. Automatic smoke evacuation provides better field-of-view and reduces the risk of exposure to harmful compounds.

  1. Initial management of hospital evacuations caused by Hurricane Rita: a systematic investigation.

    PubMed

    Downey, Erin L; Andress, Knox; Schultz, Carl H

    2013-06-01

    Hurricanes remain a major threat to hospitals throughout the world. The authors attempted to identify the planning areas that impact hospital management of evacuations and the challenges faced when sheltering-in-place. This observational, retrospective cohort study examined acute care institutions from one hospital system impacted by Hurricane Rita in 2005. Investigators used a standardized survey instrument and interview process, previously used in the hospital evacuation context, to examine hospitals' initial internal situational awareness and subsequent decision making that resulted in evacuation due to Hurricane Rita. Participants from each hospital included representatives from senior leadership and clinical and nonclinical staff that comprised the Incident Management Team (IMT). The main measured outcomes were responses to 95 questions contained in the survey. Seven of ten eligible hospitals participated in the study. All facilities evacuated the sickest patients first. The most significant factors prompting evacuation were the issuing of mandatory evacuation orders, storm dynamics (category, projected path, storm surge), and loss of regional communications. Hospitals that sheltered-in-place experienced staff shortages, interruptions to electrical power, and loss of water supplies. Three fully-evacuated institutions experienced understaffing of 40%-60%, and four hospitals sustained depressed staffing levels for over four weeks. Five hospitals lost electricity for a mean of 4.8 days (range .5-11 days). All facilities continued to receive patients to their Emergency Departments (EDs) while conducting their own evacuation. Hospital EDs should plan for continuous patient arrival during evacuation. Emergency Operation Plans (EOPs) that anticipate challenges associated with evacuation will help to maximize initial decision making and management during a crisis situation. Hospitals that shelter-in-place face critical shortages and must provide independent patient care for prolonged periods.

  2. Prototype design for a predictive model to improve evacuation operations : technical report.

    DOT National Transportation Integrated Search

    2011-08-01

    Mass evacuations of the Texas Gulf Coast remain a difficult challenge. These events are massive in scale, : highly complex, and entail an intricate, ever-changing conglomeration of technical and jurisdictional issues. : This project focused primarily...

  3. Evaluation of Neurophysiologic and Systematic Changes during Aeromedical Evacuation and en Route Care of Combat Casualties in a Swine Polytrauma

    DTIC Science & Technology

    2015-02-01

    of Combat Casualties in a Swine Polytrauma PRINCIPAL INVESTIGATOR: Richard McCarron, PhD CONTRACTING ORGANIZATION: Henry M. Jackson Foundation for the...Neurophysiologic and Systematic Changes during Aeromedical Evacuation and en Route Care of Combat Casualties in a Swine Polytrauma 5a. CONTRACT NUMBER...of neurotrauma and polytrauma . We plan to investigate the effects of aero-medical evacuation on neurophysiology and lung function in swine models of

  4. A Participatory Agent-Based Simulation for Indoor Evacuation Supported by Google Glass

    PubMed Central

    Sánchez, Jesús M.; Carrera, Álvaro; Iglesias, Carlos Á.; Serrano, Emilio

    2016-01-01

    Indoor evacuation systems are needed for rescue and safety management. One of the challenges is to provide users with personalized evacuation routes in real time. To this end, this project aims at exploring the possibilities of Google Glass technology for participatory multiagent indoor evacuation simulations. Participatory multiagent simulation combines scenario-guided agents and humans equipped with Google Glass that coexist in a shared virtual space and jointly perform simulations. The paper proposes an architecture for participatory multiagent simulation in order to combine devices (Google Glass and/or smartphones) with an agent-based social simulator and indoor tracking services. PMID:27563911

  5. Patient-driven resource planning of a health care facility evacuation.

    PubMed

    Petinaux, Bruno; Yadav, Kabir

    2013-04-01

    The evacuation of a health care facility is a complex undertaking, especially if done in an immediate fashion, ie, within minutes. Patient factors, such as continuous medical care needs, mobility, and comprehension, will affect the efficiency of the evacuation and translate into evacuation resource needs. Prior evacuation resource estimates are 30 years old. Utilizing a cross-sectional survey of charge nurses of the clinical units in an urban, academic, adult trauma health care facility (HCF), the evacuation needs of hospitalized patients were assessed periodically over a two-year period. Survey data were collected on 2,050 patients. Units with patients having low continuous medical care needs during an emergency evacuation were the postpartum, psychiatry, rehabilitation medicine, surgical, and preoperative anesthesia care units, the Emergency Department, and Labor and Delivery Department (with the exception of patients in Stage II labor). Units with patients having high continuous medical care needs during an evacuation included the neonatal and adult intensive care units, special procedures unit, and operating and post-anesthesia care units. With the exception of the neonate group, 908 (47%) of the patients would be able to walk out of the facility, 492 (25.5%) would require a wheelchair, and 530 (27.5%) would require a stretcher to exit the HCF. A total of 1,639 patients (84.9%) were deemed able to comprehend the need to evacuate and to follow directions; the remainder were sedated, blind, or deaf. The charge nurses also determined that 17 (6.9%) of the 248 adult intensive care unit patients were too ill to survive an evacuation, and that in 10 (16.4%) of the 61 ongoing surgery cases, stopping the case was not considered to be safe. Heath care facilities can utilize the results of this study to model their anticipated resource requirements for an emergency evacuation. This will permit the Incident Management Team to mobilize the necessary resources both within the facility and the community to provide for the safest evacuation of patients.

  6. Combining Computational Fluid Dynamics and Agent-Based Modeling: A New Approach to Evacuation Planning

    PubMed Central

    Epstein, Joshua M.; Pankajakshan, Ramesh; Hammond, Ross A.

    2011-01-01

    We introduce a novel hybrid of two fields—Computational Fluid Dynamics (CFD) and Agent-Based Modeling (ABM)—as a powerful new technique for urban evacuation planning. CFD is a predominant technique for modeling airborne transport of contaminants, while ABM is a powerful approach for modeling social dynamics in populations of adaptive individuals. The hybrid CFD-ABM method is capable of simulating how large, spatially-distributed populations might respond to a physically realistic contaminant plume. We demonstrate the overall feasibility of CFD-ABM evacuation design, using the case of a hypothetical aerosol release in Los Angeles to explore potential effectiveness of various policy regimes. We conclude by arguing that this new approach can be powerfully applied to arbitrary population centers, offering an unprecedented preparedness and catastrophic event response tool. PMID:21687788

  7. Anisotropic path modeling to assess pedestrian-evacuation potential from Cascadia-related tsunamis in the US Pacific Northwest

    USGS Publications Warehouse

    Wood, Nathan J.; Schmidtlein, Mathew C.

    2012-01-01

    Recent disasters highlight the threat that tsunamis pose to coastal communities. When developing tsunami-education efforts and vertical-evacuation strategies, emergency managers need to understand how much time it could take for a coastal population to reach higher ground before tsunami waves arrive. To improve efforts to model pedestrian evacuations from tsunamis, we examine the sensitivity of least-cost-distance models to variations in modeling approaches, data resolutions, and travel-rate assumptions. We base our observations on the assumption that an anisotropic approach that uses path-distance algorithms and accounts for variations in land cover and directionality in slope is the most realistic of an actual evacuation landscape. We focus our efforts on the Long Beach Peninsula in Washington (USA), where a substantial residential and tourist population is threatened by near-field tsunamis related to a potential Cascadia subduction zone earthquake. Results indicate thousands of people are located in areas where evacuations to higher ground will be difficult before arrival of the first tsunami wave. Deviations from anisotropic modeling assumptions substantially influence the amount of time likely needed to reach higher ground. Across the entire study, changes in resolution of elevation data has a greater impact on calculated travel times than changes in land-cover resolution. In particular areas, land-cover resolution had a substantial impact when travel-inhibiting waterways were not reflected in small-scale data. Changes in travel-speed parameters had a substantial impact also, suggesting the importance of public-health campaigns as a tsunami risk-reduction strategy.

  8. Aeromedical transportation and general aviation.

    DOT National Transportation Integrated Search

    1971-04-01

    The advantages of aircraft in providing military medical evacuation are well documented. Training and experience have resulted in a reliable and safe military medical evacuation system. Many studies have been done or are in process which pertain to c...

  9. Case report: treatment of subdural hematoma in the emergency department utilizing the subdural evacuating port system.

    PubMed

    Asfora, Wilson T; Klapper, Hendrik B

    2013-08-01

    Patients with acute or chronic subdural hematomas may present with rapidly deteriorating neurological function and are at risk for irreversible brainstem injury. In such cases, rapid surgical intervention is required to evacuate the hematoma and reverse critically elevated intracranial pressure. A variety of surgical drainage methods are in existence, none of which are clearly superior to the others. This report presents the case of a 74-year-old woman who suffered an acute-on-chronic subdural hematoma which was evacuated in the emergency department utilizing the subdural evacuating port system (SEPS). The SEPS provides for a minimally invasive technique to drain subdural hematomas and is advantageous in that it can be performed at the bedside. The SEPS is relatively simple to use and may be especially useful to emergency department staff in outlying areas where there is a shortage of neurosurgical coverage.

  10. Long term mental health outcomes of Finnish children evacuated to Swedish families during the second world war and their non-evacuated siblings: cohort study.

    PubMed

    Santavirta, Torsten; Santavirta, Nina; Betancourt, Theresa S; Gilman, Stephen E

    2015-01-05

    To compare the risks of admission to hospital for any type of psychiatric disorder and for four specific psychiatric disorders among adults who as children were evacuated to Swedish foster families during the second world war and their non-evacuated siblings, and to evaluate whether these risks differ between the sexes. Cohort study. National child evacuation scheme in Finland during the second world war. Children born in Finland between 1933 and 1944 who were later included in a 10% sample of the 1950 Finnish census ascertained in 1997 (n = 45,463; women: n = 22,021; men: n = 23,442). Evacuees in the sample were identified from war time government records. Adults admitted to hospital for psychiatric disorders recorded between 1971 and 2011 in the Finnish hospital discharge register. We used Cox proportional hazards models to estimate the association between evacuation to temporary foster care in Sweden during the second world war and admission to hospital for a psychiatric disorder between ages 38 and 78 years. Fixed effects methods were employed to control for all unobserved social and genetic characteristics shared among siblings. Among men and women combined, the risk of admission to hospital for a psychiatric disorder did not differ between Finnish adults evacuated to Swedish foster families and their non-evacuated siblings (hazard ratio 0.89, 95% confidence interval 0.64 to 1.26). Evidence suggested a lower risk of admission for any mental disorder (0.67, 0.44 to 1.03) among evacuated men, whereas for women there was no association between evacuation and the overall risk of admission for a psychiatric disorder (1.21, 0.80 to 1.83). When admissions for individual psychiatric disorders were analyzed, evacuated girls were significantly more likely than their non-evacuated sisters to be admitted to hospital for a mood disorder as an adult (2.19, 1.10 to 4.33). The Finnish evacuation policy was not associated with an increased overall risk of admission to hospital for a psychiatric disorder in adulthood among former evacuees. In fact, evacuation was associated with a marginally reduced risk of admission for any psychiatric disorder among men. Among women who had been evacuated, however, the risk of being admitted to hospital for a mood disorder was increased. © Santavirta et al 2014.

  11. Development of a time-dependent hurricane evacuation model for the New Orleans area.

    DOT National Transportation Integrated Search

    2013-01-01

    Revealed preference is the traditional method to collect hurricane evacuation behavior data. However, revealed preference surveys, as they are currently administered, have the disadvantage that they are unable to collect time-sensitive and policy-sen...

  12. GPSS/360 computer models to simulate aircraft passenger emergency evacuations.

    DOT National Transportation Integrated Search

    1972-09-01

    Live tests of emergency evacuation of transport aircraft are becoming increasingly expensive as the planes grow to a size seating hundreds of passengers. Repeated tests, to cope with random variations, increase these costs, as well as risks of injuri...

  13. Structuring modeling and simulation analysis for evacuation planning and operations.

    DOT National Transportation Integrated Search

    2009-06-01

    This document is intended to provide guidance to decision-makers at agencies and jurisdictions considering the role of analytical tools in evacuation planning and operations. It is often unclear what kind of analytical approach may be of most value, ...

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franzese, Oscar; Zhang, Li; Mahmoud, Anas M.

    There are many instances in which it is possible to plan ahead for an emergency evacuation (e.g., an explosion at a chemical processing facility). For those cases, if an accident (or an attack) were to happen, then the best evacuation plan for the prevailing network and weather conditions would be deployed. In other cases (e.g., the derailment of a train transporting hazardous materials), there may not be any previously developed plan to be implemented and decisions must be made ad-hoc on how to proceed with an emergency evacuation. In both situations, the availability of real-time traffic information plays a criticalmore » role in the management of the evacuation operations. To improve public safety during a vehicular emergency evacuation it is necessary to detect losses of road capacity (due to incidents, for example) as early as possible. Once these bottlenecks are identified, re-routing strategies must be determined in real-time and deployed in the field to help dissipate the congestion and increase the efficiency of the evacuation. Due to cost constraints, only large urban areas have traffic sensor deployments that permit access to some sort of real-time traffic information; any evacuation taking place in any other areas of the country would have to proceed without real-time traffic information. The latter was the focus of this SERRI/DHS (Southeast Region Research Initiative/Department of Homeland Security) sponsored project. That is, the main objective on the project was to improve the operations during a vehicular emergency evacuation anywhere by using newly developed real-time traffic-information-gathering technologies to assess traffic conditions and therefore to potentially detect incidents on the main evacuation routes. Phase A of the project consisted in the development and testing of a prototype system composed of sensors that are engineered in such a way that they can be rapidly deployed in the field where and when they are needed. Each one of these sensors is also equipped with their own power supply and a GPS (Global Positioning System) device to auto-determine its spatial location on the transportation network under surveillance. The system is capable of assessing traffic parameters by identifying and re-identifying vehicles in the traffic stream as those vehicles pass over the sensors. The system of sensors transmits, through wireless communication, real-time traffic information (travel time and other parameters) to a command and control center via an NTCIP (National Transportation Communication for ITS Protocol) -compatible interface. As an alternative, an existing NTCIP-compatible system accepts the real-time traffic information mentioned and broadcasts the traffic information to emergency managers, the media and the public via the existing channels. A series of tests, both in a controlled environment and on the field, were conducted to study the feasibility of rapidly deploying the system of traffic sensors and to assess its ability to provide real-time traffic information during an emergency evacuation. The results of these tests indicated that the prototype sensors are reliable and accurate for the type of application that is the focus of this project.« less

  15. Designing a model of patient tracking system for natural disaster in Iran

    PubMed Central

    Tavakoli, Nahid; Yarmohammadian, Mohammad H.; Safdari, Reza; Keyvanara, Mahmoud

    2017-01-01

    CONTEXT: Disaster patient tracking consists of identifying and registering patients, recording data on their medical conditions, settings priorities for evacuation of scene, locating the patients from scene to health care centers and then till completion of treatment and discharge. AIM: The aim of this study was to design a model of patient tracking system for natural disaster in Iran. MATERIALS AND METHODS: This applied study was conducted in two steps in 2016. First, data on disaster patient tracking systems used in selected countries were collected from library-printed and electronic references and then compared. Next, a preliminary model of disaster patient tracking system was provided using these systems and validated by Delphi technique and focus group. The data of the first step were analyzed by content analysis and those of the second step by descriptive statistics. RESULTS: Analysis of the comments of key information persons in three Delphi rounds, consisting of national experts, yielded three themes, i.e., content, function, and technology, ten subthemes, and 127 components, with consensus rate of over 75%, to provide a disaster patient tracking system for Iran. CONCLUSION: In Iran, there is no comprehensive process to manage the data on disaster patients. Offering a patient tracking system can be considered a humanitarian and effective measure to promote the process of identifying, caring for, evacuating, and transferring patients as well as documenting and following up their medical and location conditions from scene till completion of the treatment. PMID:28852666

  16. Tsunami Evacuation Plan for the City of Tangier-Morocco

    NASA Astrophysics Data System (ADS)

    Benchekroun, Sabah; Omira, Rachid; Baptista, Maria Ana; Arbi Toto, El

    2016-04-01

    Tsunami evacuation plan is an important tool to mitigate the tsunami impact. It is the most efficient way to save human lives, well before the waves reach the threatened coastal area, by providing evacuation routes and appropriate shelters. In this study, we propose a tsunami evacuation plan for the city of Tangier-Morocco. This plan is designed considering the tsunami threat from the tsunamigenic sources located in the SW Iberia Margin and using the inundation maps of the worst case to define the limit of flooding area. The evacuation plan is elaborated through modelling the required time for the threatened coastal population to reach the shelters. Results of this study will be useful for decision makers and local authorities in preventing the community resiliency for tsunami hazard. This work received funding from collaborative project ASTARTE - Assessment Strategy and Risk Reduction for Tsunamis in Europe Grant 603839, FP7.

  17. Evaluating coastal and river valley communities evacuation network performance using macroscopic productivity.

    DOT National Transportation Integrated Search

    2017-06-30

    The ever-increasing processing speed and computational power of computers and simulation systems has led to correspondingly larger, more sophisticated representations of evacuation traffic processes. Today, micro-level analyses can be conducted for m...

  18. Load index model: An advanced tool to support decision making during mass-casualty incidents.

    PubMed

    Adini, Bruria; Aharonson-Daniel, Limor; Israeli, Avi

    2015-03-01

    In mass-casualty events, accessing information concerning hospital congestion levels is crucial to improving patient distribution and optimizing care. The study aimed to develop a decision support tool for distributing casualties to hospitals in an emergency scenario involving multiple casualties. A comprehensive literature review and structured interviews with 20 content experts produced a shortlist of relevant criteria for inclusion in the model. A "load index model" was prepared, incorporating results of a modified Delphi survey of 100 emergency response experts. The model was tested in three simulation exercises in which an emergency scenario was presented to six groups of senior emergency managers. Information was provided regarding capacities of 11 simulated admitting hospitals in the region, and evacuation destinations were requested for 600 simulated casualties. Of the three simulation rounds, two were performed without the model and one after its presentation. Following simulation experiments and implementation during a real-life security threat, the efficacy of the model was assessed. Variability between experts concerning casualties' evacuation destinations decreased significantly following the model's introduction. Most responders (92%) supported the need for standardized data, and 85% found that the model improved policy setting regarding casualty evacuation in an emergency situation. These findings were reaffirmed in a real-life emergency scenario. The proposed model improved capacity to ensure evacuation of patients to less congested medical facilities in emergency situations, thereby enhancing lifesaving medical services. The model supported decision-making processes in both simulation exercises and an actual emergency situation.

  19. Research on evacuation in the subway station in China based on the Combined Social Force Model

    NASA Astrophysics Data System (ADS)

    Wan, Jiahui; Sui, Jie; Yu, Hua

    2014-01-01

    With the increasing number of subway stations, more and more attention has been paid to their emergency evacuation, as it plays an important part in urban emergency management. The present paper puts forward a method of crowd evacuation simulation for bioterrorism in subway station environment using the basic theory of the Social Force Model combined with the Gaussian Puff Model. A Combined Social Force Model is developed which is suitable for a real situation where there is a sudden toxic gas event. The model can also be used to demonstrate some individual behaviors in evacuation, such as competitive, grouping and herding. At last a series of experiments are conducted and the results are as follows. (1) When there is a toxic gas terroristic attack in subway stations, the influence on passengers varies according to the position that the gas source lies in and the numbers of gas sources. (2) More casualties will occur if managers do not detect the toxic gas danger and inform passengers about it. (3) The larger the wind speed is, the smaller the number of injured passengers will be. With the experiments, the number of people affected and other parameters like gas concentration can be estimated, which could support rapid and efficient emergency decisions.

  20. Preanalytical Nonconformity Management Regarding Primary Tube Mixing in Brazil.

    PubMed

    Lima-Oliveira, Gabriel; Cesare Guidi, Gian; Guimaraes, Andre Valpassos Pacifici; Abol Correa, Jose; Lippi, Giuseppe

    2017-01-01

    The multifaceted clinical laboratory process is divided in three essential phases: the preanalytical, analytical and postanalytical phase. Problems emerging from the preanalytical phase are responsible for more than 60% of laboratory errors. This report is aimed at highlighting and discussing nonconformity (e.g., nonstandardized procedures) in primary blood tube mixing immediately after blood collection by venipuncture with evacuated tube systems. From January 2015 to December 2015, fifty different laboratory quality managers from Brazil were contacted to request their internal audit reports on nonconformity regarding primary blood tube mixing immediately after blood collection by venipuncture performed using evacuated tube systems. A minority of internal audits (i.e., 4%) concluded that evacuated blood tubes were not accurately mixed after collection, whereas more than half of them reported that evacuated blood tubes were vigorously mixed immediately after collection, thus magnifying the risk of producing spurious hemolysis. Despite the vast ma jority of centers declaring that evacuated blood tubes were mixed gently and carefully, the overall number of inversions was found to be different from that recommended by the manufacturer. Since the turbulence generated by the standard vacuum pressure inside the primary evacuated tubes seems to be sufficient for providing solubilization, mixing and stabilization between additives and blood during venipuncture, avoidance of primary tube mixing probably does not introduce a major bias in tests results and may not be considered a nonconformity during audits for accreditation.

  1. Real-time micro-modelling of city evacuations

    NASA Astrophysics Data System (ADS)

    Löhner, Rainald; Haug, Eberhard; Zinggerling, Claudio; Oñate, Eugenio

    2018-01-01

    A methodology to integrate geographical information system (GIS) data with large-scale pedestrian simulations has been developed. Advances in automatic data acquisition and archiving from GIS databases, automatic input for pedestrian simulations, as well as scalable pedestrian simulation tools have made it possible to simulate pedestrians at the individual level for complete cities in real time. An example that simulates the evacuation of the city of Barcelona demonstrates that this is now possible. This is the first step towards a fully integrated crowd prediction and management tool that takes into account not only data gathered in real time from cameras, cell phones or other sensors, but also merges these with advanced simulation tools to predict the future state of the crowd.

  2. Central Dental Evacuation Systems.

    DTIC Science & Technology

    1982-05-01

    handpiece . Inlets to this system are required throughout the dental facility for all disciplines of patient treatment where coolant and irrigation liquids...speed air turbine dental handpiece is used and for practically all other procedures in the practice of modern dentistry. Performance and reliability...AD-AI16 653 SCHOOL OF AEROSPACE MEDICINE BROOKS AFR TX F/G 6/5 CENTRAL DENTAL EVACUATION SYSTEMS.(U) MAY 52 J M POWELL, J M YOUNG UNCLASSIFIED SAM-TR

  3. Unaccompanied evacuation and adult mortality: evaluating the finnish policy of evacuating children to foster care during World War II.

    PubMed

    Santavirta, Torsten

    2014-09-01

    I examined associations between evacuation of Finnish children to temporary foster care in Sweden during World War II and all-cause mortality between ages 38 and 78 years. I used a Cox proportional hazards model to estimate mortality risk according to whether the individual was evacuated during childhood or not. I used within-sibling analysis to control for all unobserved socioeconomic and genetic characteristics shared among siblings. Individual-level data for Finnish cohorts born in 1933 to 1944 were derived from wartime government records, Finnish census data from 1950 and 1970, and death cause registry from 1971 to 2011. I found no statistically significant association between evacuation and all-cause mortality when all exposed individuals were included in the analysis. However, subgroup analysis showed that men evacuated before age 4 years had a 1.31 higher mortality risk (95% confidence interval = 1.01, 1.69) than their nonevacuated counterparts. In the aggregate, individuals do not have elevated mortality risk as a consequence of foster care during early childhood owing to the onset of sudden external shocks (e.g., wars).

  4. Demographic transition and factors associated with remaining in place after the 2011 Fukushima nuclear disaster and related evacuation orders.

    PubMed

    Morita, Tomohiro; Nomura, Shuhei; Furutani, Tomoyuki; Leppold, Claire; Tsubokura, Masaharu; Ozaki, Akihiko; Ochi, Sae; Kami, Masahiro; Kato, Shigeaki; Oikawa, Tomoyoshi

    2018-01-01

    Demographic changes as a result of evacuation in the acute phase of the 2011 Fukushima nuclear disaster are not well evaluated. We estimated post-disaster demographic transitions in Minamisoma City-located 14-38 km north of the nuclear plant-in the first month of the disaster; and identified demographic factors associated with the population remaining in the affected areas. We extracted data from the evacuation behavior survey administered to participants in the city between July 11, 2011 and April 30, 2013. Using mathematical models, we estimated the total population in the city after the disaster according to sex, age group, and administrative divisions of the city. To investigate factors associated with the population remaining in place after the disaster, a probit regression model was employed, taking into account sex, age, pre-disaster dwelling area, and household composition. The overall population decline in Minamisoma City peaked 11 days after the disaster, when the population reached 7,107 people-11% of the pre-disaster level. The remaining population levels differed by area: 1.1% for mandatory evacuation zone, 12.5% for indoor sheltering zone, and 12.6% for other areas of the city. Based on multiple regression analyses, higher odds for remaining in place were observed among men (odds ratio 1.72 [95% confidence intervals 1.64-1.85]) than women; among people aged 40-64 years (1.40 [1.24-1.58]) than those aged 75 years or older; and among those living with the elderly, aged 70 years or older (1.18 [1.09-1.27]) or those living alone (1.71 [1.50-1.94]) than among those who were not. Despite the evacuation order, some residents of mandatory evacuation zones remained in place, signaling the need for preparation to respond to their post-disaster needs. Indoor sheltering instructions may have accelerated voluntary evacuation, and this demonstrates the need for preventing potentially disorganized evacuation in future nuclear events.

  5. Feasibility of negative pressure wound therapy during intercontinental aeromedical evacuation of combat casualties.

    PubMed

    Fang, Raymond; Dorlac, Warren C; Flaherty, Stephen F; Tuman, Caroline; Cain, Steven M; Popey, Tracy L C; Villard, Douglas R; Aydelotte, Jayson D; Dunne, James R; Anderson, Adam M; Powell, Elisha T

    2010-07-01

    The objective of this study was to assess the feasibility of utilizing negative pressure wound therapy (NPWT) for the treatment of wartime soft-tissue wounds during intercontinental aeromedical evacuation. Attempts to use NPWT during early phases of overseas contingency operations resulted in occasional vacuum system failures and potentially contributed to wound complications. These anecdotal episodes led to a perception that NPWT during aeromedical evacuation carried a high risk of wound complications and limited its use. As a result, NPWT was not frequently applied in the management of soft-tissue wounds before US casualty arrival in the continental United States (CONUS) for wounds sustained in the combat theaters. Concurrently, early NPWT on the traumatic wounds of host nation casualties not requiring aeromedical evacuation seemed to provide many benefits typically associated with the therapy such as decreased infection rates, earlier wound closure, and improved pain management. On a daily basis, study investigators reviewed the trauma in-patient census at Landstuhl Regional Medical Center, Germany, to identify patient candidates with soft-tissue extremity or torso wounds that required packing. Patient demographics, injuries, and previous wound treatments were recorded. Surgeons inspected wounds in the operating room and applied a NPWT dressing if deemed appropriate. NPWT was continued throughout the remainder of the patient's hospitalization and also during aeromedical evacuation to CONUS. A study investigator escorted the patient during aeromedical evacuation to educate the flight crews, to record the impact on crew workload, and to troubleshoot the system if necessary. Thirty enrolled patients with 41 separate wounds flew from Germany to CONUS with a portable NPWT system (VAC Freedom System; Kinetic Concepts Incorporated, San Antonio, TX). All 30 patients arrived at the destination facilities with intact and functional systems. No significant in-flight complications were identified, impact on flight crew workload was negligible, and subjective feedback from both flight crews and patients was uniformly positive. For 29 patients, the NPWT dressing was replaced (frequently with serial exchanges) during initial surgical treatment in CONUS; the 30th patient underwent delayed primary closure of his right forearm fasciotomy. Receiving care teams reported no complications attributable to NPWT during aeromedical evacuation. NPWT is feasible during intercontinental aeromedical evacuation of combat casualties without an increase in wound complications or a significant impact on air crew workload. Further studies are indicated to evaluate the efficacy of NPWT in combat wounds compared with other wound care techniques.

  6. The Fort McMurray, Alberta wildfires: Emergency and recovery management of healthcare services.

    PubMed

    Matear, David

    2017-01-01

    One of the largest wildfires in Canadian history raged through northern Alberta in May to July 2016, and prompted the largest emergency air evacuation in Canadian history. Central to the challenges were the evacuation of a regional hospital, and the emergency and recovery management associated with healthcare services. This paper describes multiple phases of emergency and recovery management, which employed and adapted the Incident Command System to healthcare services. There were no injuries reported throughout the medical evacuation and recovery of medical services. The leadership and management of healthcare services achieved the goals of evacuating patients and staff effectively, supporting emergency first responders and the re-entry of the population to Fort McMurray.

  7. The evacuation of cairns hospitals due to severe tropical cyclone Yasi.

    PubMed

    Little, Mark; Stone, Theona; Stone, Richard; Burns, Jan; Reeves, Jim; Cullen, Paul; Humble, Ian; Finn, Emmeline; Aitken, Peter; Elcock, Mark; Gillard, Noel

    2012-09-01

    On February 2, 2011, Tropical Cyclone Yasi, the largest cyclone to cross the Australian coast and a system the size of Hurricane Katrina, threatened the city of Cairns. As a result, the Cairns Base Hospital (CBH) and Cairns Private Hospital (CPH) were both evacuated, the hospitals were closed, and an alternate emergency medical center was established in a sports stadium 15 km from the Cairns central business district. This article describes the events around the evacuation of 356 patients, staff, and relatives to Brisbane (approximately 1,700 km away by road), closure of the hospitals, and the provision of a temporary emergency medical center for 28 hours during the height of the cyclone. Our experience highlights the need for adequate and exercised hospital evacuation plans; the need for clear command and control with identified decision-makers; early decision-making on when to evacuate; having good communication systems with redundancy; ensuring that patients are adequately identified and tracked and have their medications and notes; ensuring adequate staff, medications, and oxygen for holding patients; and planning in detail the alternate medical facility safety and its role, function, and equipment. © 2012 by the Society for Academic Emergency Medicine.

  8. Theoretical modeling and experimental analysis of solar still integrated with evacuated tubes

    NASA Astrophysics Data System (ADS)

    Panchal, Hitesh; Awasthi, Anuradha

    2017-06-01

    In this present research work, theoretical modeling of single slope, single basin solar still integrated with evacuated tubes has been performed based on energy balance equations. Major variables like water temperature, inner glass cover temperature and distillate output has been computed based on theoretical modeling. The experimental setup has been made from locally available materials and installed at Gujarat Power Engineering and Research Institute, Mehsana, Gujarat, India (23.5880°N, 72.3693°E) with 0.04 m depth during 6 months of time interval. From the series of experiments, it is found considerable increment in average distillate output of a solar still when integrated with evacuated tubes not only during daytime but also from night time. In all experimental cases, the correlation of coefficient (r) and root mean square percentage deviation of theoretical modeling and experimental study found good agreement with 0.97 < r < 0.98 and 10.22 < e < 38.4% respectively.

  9. An Evaluation of Infrastructure for Tsunami Evacuation in Padang, West Sumatra, Indonesia (Invited)

    NASA Astrophysics Data System (ADS)

    Cedillos, V.; Canney, N.; Deierlein, G.; Diposaptono, S.; Geist, E. L.; Henderson, S.; Ismail, F.; Jachowski, N.; McAdoo, B. G.; Muhari, A.; Natawidjaja, D. H.; Sieh, K. E.; Toth, J.; Tucker, B. E.; Wood, K.

    2009-12-01

    Padang has one of the world’s highest tsunami risks due to its high hazard, vulnerable terrain and population density. The current strategy to prepare for tsunamis in Padang is focused on developing early warning systems, planning evacuation routes, conducting evacuation drills, and raising local awareness. Although these are all necessary, they are insufficient. Padang’s proximity to the Sunda Trench and flat terrain make reaching safe ground impossible for much of the population. The natural warning in Padang - a strong earthquake that lasts over a minute - will be the first indicator of a potential tsunami. People will have about 30 minutes after the earthquake to reach safe ground. It is estimated that roughly 50,000 people in Padang will be unable to evacuate in that time. Given these conditions, other means to prepare for the expected tsunami must be developed. With this motivation, GeoHazards International and Stanford University’s Chapter of Engineers for a Sustainable World partnered with Indonesian organizations - Andalas University and Tsunami Alert Community in Padang, Laboratory for Earth Hazards, and the Ministry of Marine Affairs and Fisheries - in an effort to evaluate the need for and feasibility of tsunami evacuation infrastructure in Padang. Tsunami evacuation infrastructure can include earthquake-resistant bridges and evacuation structures that rise above the maximum tsunami water level, and can withstand the expected earthquake and tsunami forces. The choices for evacuation structures vary widely - new and existing buildings, evacuation towers, soil berms, elevated highways and pedestrian overpasses. This interdisciplinary project conducted a course at Stanford University, undertook several field investigations, and concluded that: (1) tsunami evacuation structures and bridges are essential to protect the people in Padang, (2) there is a need for a more thorough engineering-based evaluation than conducted to-date of the suitability of existing buildings to serve as evacuation structures, and of existing bridges to serve as elements of evacuation routes, and (3) additions to Padang’s tsunami evacuation infrastructure must carefully take into account technical matters (e.g. expected wave height, debris impact forces), social considerations (e.g. cultural acceptability, public’s confidence in the structure’s integrity), and political issues (e.g. land availability, cost, maintenance). Future plans include collaboration between U.S. and Indonesian engineers in developing designs for new tsunami evacuation structures, as well as providing training for Indonesian authorities on: (1) siting, designing, and constructing tsunami evacuation structures, and (2) evaluating the suitability of existing buildings to serve as tsunami evacuation shelters.

  10. Prototype development and demonstration for response, emergency staging, communications, uniform management, and evacuation (R.E.S.C.U.M.E.) : R.E.S.C.U.M.E. prototype system design document.

    DOT National Transportation Integrated Search

    2014-04-01

    This report documents the System Design Document (SDD) for the prototype development and demonstration of the Response, Emergency Staging, Communications, Uniform Management, and Evacuation (R.E.S.C.U.M.E.) application bundle, with a focus on the Inc...

  11. Lightweight evacuated multilayer insulation systems for the space shuttle vehicle

    NASA Technical Reports Server (NTRS)

    Barclay, D. L.; Bell, J. E.; Zimmerman, D. K.

    1973-01-01

    The elements in the evacuated multilayer insulation system were investigated, and the major weight contributors for optimization selected. Outgassing tests were conducted on candidate vacuum jacket materials and experiments were conducted to determine the vacuum and structural integrity of selected vacuum jacket configurations. A nondestructive proof test method, applicable to externally pressurized shells, was validated on this program.

  12. Minimally invasive evacuation of parenchymal and ventricular hemorrhage using the Apollo system with simultaneous neuronavigation, neuroendoscopy and active monitoring with cone beam CT.

    PubMed

    Fiorella, David; Gutman, Fredrick; Woo, Henry; Arthur, Adam; Aranguren, Ricardo; Davis, Raphael

    2015-10-01

    The Apollo system is a low profile irrigation-aspiration system which can be used for the evacuation of intracranial hemorrhage. We demonstrate the feasibility of using Apollo to evacuate intracranial hemorrhage in a series of three patients with combined neuronavigation, neuroendoscopy, and cone beam CT (CB-CT). Access to the hematoma was planned using neuronavigation software. Parietal (n=2) or frontal (1) burr holes were created and a 19 F endoscopic sheath was placed under neuronavigation guidance into the distal aspect of the hematoma along its longest accessible axis. The 2.6 mm Apollo wand was then directed through the working channel of a neuroendoscope and used to aspirate the blood products under direct visualization, working from distal to proximal. After a pass through the hematoma, the sheath, neuroendoscope, and Apollo system were removed. CB-CT was then used to evaluate for residual hematoma. When required, the CB-CT data could then be directly uploaded into the neuronavigation system and a new trajectory planned to approach the residual hematoma. Three patients with parenchymal (n=2) and mixed parenchymal-intraventricular (n=1) hematomas underwent minimally invasive evacuation with the Apollo system. The isolated parenchymal hematomas measured 93.4 and 15.6 mL and were reduced to 11.2 (two passes) and 0.9 mL (single pass), respectively. The entire parenchymal component of the mixed hemorrhage was evacuated, as was the intraventricular component within the right frontal horn (single pass). No complications were experienced. All patients showed clinical improvement after the procedure. The average presenting National Institutes of Health Stroke Scale was 19.0, which had improved to 5.7 within an average of 4.7 days after the procedure. The Apollo system can be used within the neuroangiography suite for the minimally invasive evacuation of intracranial hemorrhage using simultaneous neuronavigation for planning and intraprocedural guidance, direct visualization with neuroendoscopy, and real time monitoring of progress with CB-CT. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  13. Experimental study and numerical simulation of evacuation from a dormitory

    NASA Astrophysics Data System (ADS)

    Lei, Wenjun; Li, Angui; Gao, Ran; Zhou, Ning; Mei, Sen; Tian, Zhenguo

    2012-11-01

    The evacuation process of students from a dormitory is investigated by both experiment and modeling. We investigate the video record of pedestrian movement in a dormitory, and find some typical characteristics of evacuation, including continuous pedestrian flow, mass behavior and so on. Based on the experimental observation, we found that simulation results considering pre-movement time are closer to the experimental results. With the model considering pre-movement time, we simulate the evacuation process and compare the simulation results with the experimental results, and find that they agree with each other closely. The crowd massing phenomenon is conducted in this paper. It is found that different crowd massing phenomena will emerge due to different desired velocities. The crowd massing phenomenon could be more serious with the increase of the desired velocity. In this study, we also found the faster-is-slower effect. When the positive effect produced by increasing the desired velocity is not sufficient for making up for its negative effect, the phenomenon of the greater the desired velocity the longer the time required for evacuation will emerge. From the video record, it can be observed that the mass behavior is obvious during the evacuation process. And the mass phenomenon could also be found in simulation. The results obtained from our study are also suitable to all these buildings in which both living and resting areas occupy the majority space, such as dormitories, residential buildings, hotels (restaurants) and so on.

  14. The Effect of Person Order on Egress Time: A Simulation Model of Evacuation From a Neolithic Visitor Attraction.

    PubMed

    Stewart, Arthur; Elyan, Eyad; Isaacs, John; McEwen, Leah; Wilson, Lyn

    2017-12-01

    The aim of this study was to model the egress of visitors from a Neolithic visitor attraction. Tourism attracts increasing numbers of elderly and mobility-impaired visitors to our built-environment heritage sites. Some such sites have very limited and awkward access, were not designed for mass visitation, and may not be modifiable to facilitate disabled access. As a result, emergency evacuation planning must take cognizance of robust information, and in this study we aimed to establish the effect of visitor position on egress. Direct observation of three tours at Maeshowe, Orkney, informed typical time of able-bodied individuals and a mobility-impaired person through the 10-m access tunnel. This observation informed the design of egress and evacuation models running on the Unity gaming platform. A slow-moving person at the observed speed typically increased time to safety of 20 people by 170% and reduced the advantage offered by closer tunnel separation by 26%. Using speeds for size-specific characters of 50th, 95th, and 99th percentiles increased time to safety in emergency evacuation by 51% compared with able-bodied individuals. Larger individuals may slow egress times of a group; however, a single slow-moving mobility-impaired person exerts a greater influence on group egress, profoundly influencing those behind. Unidirectional routes in historic buildings and other visitor attractions are vulnerable to slow-moving visitors during egress. The model presented in this study is scalable, is applicable to other buildings, and can be used as part of a risk assessment and emergency evacuation plan in future work.

  15. Lessons learned from the total evacuation of a hospital after the 2016 Kumamoto Earthquake.

    PubMed

    Yanagawa, Youichi; Kondo, Hisayoshi; Okawa, Takashi; Ochi, Fumio

    The 2016 Kumamoto Earthquakes were a series of earthquakes that included a foreshock earthquake (magnitude 6.2) on April 14 and a main shock (magnitude 7.0) on April 16, 2016. A number of hospitals in Kumamoto were severely damaged by the two major earthquakes and required total evacuation. The authors retrospectively analyzed the activity data of the Disaster Medical Assistance Teams using the Emergency Medical Information System records to investigate the cases in which the total evacuation of a hospital was attempted following the 2016 Kumamoto Earthquake. Total evacuation was attempted at 17 hospitals. The evacuation of one of these hospitals was canceled. Most of the hospital buildings were more than 20 years old. The danger of collapse was the most frequent reason for evacuation. Various transportation methods were employed, some of which involved the Japan Ground Self-Defense Force; no preventable deaths occurred during transportation. The hospitals must now be renovated to improve their earthquake resistance. The coordinated and combined use of military and civilian resources is beneficial and can significantly reduce human suffering in large-scale disasters.

  16. A hospital system's response to a hurricane offers lessons, including the need for mandatory interfacility drills.

    PubMed

    Verni, Christina

    2012-08-01

    This case study explores the lessons learned when the North Shore-Long Island Jewish Health System, a large, integrated health network in New York, evacuated three hospitals at high risk of flooding from Hurricane Irene in August 2011. The episode resulted in the evacuation, transport, and placement of 947 patients without any resulting deaths or serious injuries. This case demonstrates the utility of having in place a functional evacuation plan, such as the one North Shore-Long Island Jewish Health System developed through its own full-scale exercises in the years following Hurricane Katrina in 2005. In those drills, the health system discovered that it needed to abandon its 1:1 matching of patients to available beds in the region in favor of the group transport of patients with similar needs to facilities that could accommodate them. Despite its overall success, the system identified the need for internal improvements, including automated patient tracking through the use of bar-coded wristbands and identification and training of additional backup personnel for its emergency operations center. Among other changes, policy makers at the state and federal levels should consider mandating full-scale interfacility evacuation drills to refine mechanisms to send and receive patients.

  17. Assessing the long-term impact of subsidence and global climate change on emergency evacuation routes in coastal Louisiana.

    DOT National Transportation Integrated Search

    2012-12-01

    Subsidence forecast models for coastal Louisiana were developed to estimate the change in surface elevations of evacuation routes for the years 2015, 2025, 2050, and 2100. Geophysical and anthropogenic subsidence estimates were derived from on-going ...

  18. Does colostomy irrigation affect functional outcomes and quality of life in persons with a colostomy?

    PubMed

    Kent, Dea J; Long, Mary Arnold; Bauer, Carole

    2015-01-01

    Colostomy irrigation may be used by patients with colostomies to regulate bowel evacuations by stimulating emptying of the colon at regularly scheduled times. This Evidence-Based Report Card reviews the effect of colostomy irrigation on frequency of bowel evacuation, flatus production, odor, and health-related quality of life. We systematically reviewed the literature for studies that evaluated health-related quality of life in persons aged 18 years or older with colostomies of the sigmoid or descending left colon. A professional librarian performed the literature search, which yielded 499 articles using the search terms "colostomy," "colostomies," "therapeutic irrigation," "irrigation," and "irrigator." Following title and abstract reviews, we identified and retrieved 4 studies that met inclusion criteria. Colostomy irrigation reduces the frequency of bowel evacuations when compared to spontaneous evacuation and containment using a pouching system. Regular irrigation is associated with reductions in pouch usage. This change in bowel evacuation function frequently results in absence of bowel evacuations for 24 hours or longer, enabling some to discontinue ongoing use of a pouching system. Subjects using CI report reductions in flatus and odors associated with presence of a colostomy. One study was identified that found persons using CI reported higher health-related quality of life than did those who managed their colostomies with spontaneous evacuation using the Digestive Disease Quality of Life-15, but no differences were found when health-related quality of life was measured using the more generic instrument, the Medical Outcomes Study: Short Form-36. Instruction on principles and techniques of colostomy irrigation should be considered when managing patients with a permanent, left-sided colostomy.

  19. The September 29, 2009 Earthquake and Tsunami in American Samoa: A Case Study of Household Evacuation Behavior and the Protective Action Decision Model

    NASA Astrophysics Data System (ADS)

    Apatu, E. J. I.; Gregg, C. E.; Lindell, M. K.; Sorensen, J.; Hillhouse, J.; Sorensen, B.

    2012-04-01

    In 2009, the islands of Samoa, American Samoa, and Tonga were struck by an 8.1 magnitude earthquake that triggered a tsunami. The latter claimed an estimated 149, 34, and nine lives, respectively. Preparing persons to take protective action during an earthquake and tsunami is important to help save lives, but evacuation behavior is a dynamic process, which involves many factors such as recognition and interpretation of environmental cues, characteristics of the receiver, characteristics of official and informal warnings and a person's social context during the event. Compared to individualistic cultures like that in the USA, little is known about what factors affect household evacuation behavior in collectivist cultures. The Protective Action Decision Model (PADM) of Lindell and Perry (2004) is a theoretical framework that purports to explain human response to natural hazards. This broad behavioral hazard model has been tested in several settings in the United States. However, to date, the PADM has never been tested in a collectivist culture. Thus, this study will summarize interview findings from 300 American Samoan survivors to understand household evacuation behavior in response to the 2009 tsunami and earthquake that hit American Samoa. In addition, an investigation of how well the PADM explains evacuation action behavior will be reported. Findings from this study will be useful for public health emergency professionals in planning efforts for local tsunamis in coastal communities in the Pacific and around the world.

  20. 30 CFR 57.4361 - Underground evacuation drills.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 57.4361 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire...) Involve activation of the fire alarm system; and (3) Include evacuation of all persons from their work...

  1. Implications Of The 11 March Tohoku Tsunami On Warning Systems And Vertical Evacuation Strategies

    NASA Astrophysics Data System (ADS)

    Fraser, S.; Leonard, G.; Johnston, D.

    2011-12-01

    The Mw 9.0 Tohoku earthquake and tsunami of March 11th 2011 claimed over 20,000 lives in an event which inundated over 500 km2 of land on the north-east coast of Japan. Successful execution of tsunami warning procedures and evacuation strategies undoubtedly saved thousands of lives, and there is evidence that vertical evacuation facilities were a key part of reducing the fatality rate in several municipalities in the Sendai Plains. As with all major disasters, however, post-event observations show that there are lessons to be learned in minimising life loss in future events. This event has raised or reinforced several key points that should be considered for implementation in all areas at risk from tsunami around the world. Primary areas for discussion are the need for redundant power supplies in tsunami warning systems; considerations of natural warnings when official warnings may not come; adequate understanding and estimation of the tsunami hazard; thorough site assessments for critical infrastructure, including emergency management facilities and tsunami refuges; and adequate signage of evacuation routes and refuges. This paper will present observations made on two field visits to the Tohoku region during 2011, drawing conclusions from field observations and discussions with local emergency officials. These observations will inform the enhancement of current tsunami evacuation strategies in New Zealand; it is believed discussion of these observations can also benefit continuing development of warning and evacuation strategies existing in the United States and elsewhere.

  2. Exitus: An Agent-Based Evacuation Simulation Model for Heterogeneous Populations

    ERIC Educational Resources Information Center

    Manley, Matthew T.

    2012-01-01

    Evacuation planning for private-sector organizations is an important consideration given the continuing occurrence of both natural and human-caused disasters that inordinately affect them. Unfortunately, the traditional management approach that is focused on fire drills presents several practical challenges at the scale required for many…

  3. Interactive, graphical processing unitbased evaluation of evacuation scenarios at the state scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perumalla, Kalyan S; Aaby, Brandon G; Yoginath, Srikanth B

    2011-01-01

    In large-scale scenarios, transportation modeling and simulation is severely constrained by simulation time. For example, few real- time simulators scale to evacuation traffic scenarios at the level of an entire state, such as Louisiana (approximately 1 million links) or Florida (2.5 million links). New simulation approaches are needed to overcome severe computational demands of conventional (microscopic or mesoscopic) modeling techniques. Here, a new modeling and execution methodology is explored that holds the potential to provide a tradeoff among the level of behavioral detail, the scale of transportation network, and real-time execution capabilities. A novel, field-based modeling technique and its implementationmore » on graphical processing units are presented. Although additional research with input from domain experts is needed for refining and validating the models, the techniques reported here afford interactive experience at very large scales of multi-million road segments. Illustrative experiments on a few state-scale net- works are described based on an implementation of this approach in a software system called GARFIELD. Current modeling cap- abilities and implementation limitations are described, along with possible use cases and future research.« less

  4. Optimal control of diarrhea transmission in a flood evacuation zone

    NASA Astrophysics Data System (ADS)

    Erwina, N.; Aldila, D.; Soewono, E.

    2014-03-01

    Evacuation of residents and diarrhea disease outbreak in evacuation zone have become serious problem that frequently happened during flood periods. Limited clean water supply and infrastructure in evacuation zone contribute to a critical spread of diarrhea. Transmission of diarrhea disease can be reduced by controlling clean water supply and treating diarrhea patients properly. These treatments require significant amount of budget, which may not be fulfilled in the fields. In his paper, transmission of diarrhea disease in evacuation zone using SIRS model is presented as control optimum problem with clean water supply and rate of treated patients as input controls. Existence and stability of equilibrium points and sensitivity analysis are investigated analytically for constant input controls. Optimum clean water supply and rate of treatment are found using optimum control technique. Optimal results for transmission of diarrhea and the corresponding controls during the period of observation are simulated numerically. The optimum result shows that transmission of diarrhea disease can be controlled with proper combination of water supply and rate of treatment within allowable budget.

  5. A numerical simulation strategy on occupant evacuation behaviors and casualty prediction in a building during earthquakes

    NASA Astrophysics Data System (ADS)

    Li, Shuang; Yu, Xiaohui; Zhang, Yanjuan; Zhai, Changhai

    2018-01-01

    Casualty prediction in a building during earthquakes benefits to implement the economic loss estimation in the performance-based earthquake engineering methodology. Although after-earthquake observations reveal that the evacuation has effects on the quantity of occupant casualties during earthquakes, few current studies consider occupant movements in the building in casualty prediction procedures. To bridge this knowledge gap, a numerical simulation method using refined cellular automata model is presented, which can describe various occupant dynamic behaviors and building dimensions. The simulation on the occupant evacuation is verified by a recorded evacuation process from a school classroom in real-life 2013 Ya'an earthquake in China. The occupant casualties in the building under earthquakes are evaluated by coupling the building collapse process simulation by finite element method, the occupant evacuation simulation, and the casualty occurrence criteria with time and space synchronization. A case study of casualty prediction in a building during an earthquake is provided to demonstrate the effect of occupant movements on casualty prediction.

  6. Strengthening the resiliency of the coastal transportation system through integrated simulation of storm surge, inundation, and non-recurrent congestion in Northeast Florida.

    DOT National Transportation Integrated Search

    2013-05-01

    In this study, the MTEVA (Developed as part of CMS #2009-010) has been advanced to apply storm surge and evacuation models to the greater Jacksonville area of Northeast Florida. Heuristic and time dynamic algorithms have been enhanced to work with th...

  7. Medical management of the consequences of the Fukushima nuclear power plant incident.

    PubMed

    Hachiya, Misao; Tominaga, Takako; Tatsuzaki, Hideo; Akashi, Makoto

    2014-02-01

    A huge earthquake struck the northeast coast of the main island of Japan on March 11, 2011, triggering a tsunami with 14-15 meter-high waves hitting the area. The earthquake was followed by numerous sustained aftershocks. The earthquake affected the nuclear power plant (NPP) in Fukushima prefecture, resulting in large amounts of radioactive materials being released into the environment. The major nuclides released on land were ¹³¹I, ¹³⁴Cs, and ¹³⁷Cs. Therefore, almost 170,000 people had to be evacuated or stay indoors. Besides the NPP and the telecommunications system, the earthquake also affected infrastructures such as the supplies of water and electricity as well as the radiation monitoring system. The local hospital system was dysfunctional; hospitals designated as radiation-emergency facilities were not able to function because of damage from the earthquake and tsunami, and some of them were located within a 20 km radius of the NPP, the designated evacuation zone. Local fire department personnel were also asked to evacuate. Furthermore, the affected hospitals had not established their evacuation plans at that time. We have learned from this "combined disaster" that the potential for damage to lifelines as well as the monitoring systems for radiation in case of an earthquake requires our intense focus and vigilance, and that hospitals need comprehensive plans for evacuation, including patients requiring life support equipment during and after a nuclear disaster. There is an urgent need for a "combined disaster" strategy, and this should be emphasized in current disaster planning and response. © 2013 Wiley Periodicals, Inc.

  8. Stair evacuation simulation based on cellular automata considering evacuees’ walk preferences

    NASA Astrophysics Data System (ADS)

    Ding, Ning; Zhang, Hui; Chen, Tao; Peter, B. Luh

    2015-06-01

    As a physical model, the cellular automata (CA) model is widely used in many areas, such as stair evacuation. However, existing CA models do not consider evacuees’ walk preferences nor psychological status, and the structure of the basic model is unapplicable for the stair structure. This paper is to improve the stair evacuation simulation by addressing these issues, and a new cellular automata model is established. Several evacuees’ walk preference and how evacuee’s psychology influences their behaviors are introduced into this model. Evacuees’ speeds will be influenced by these features. To validate this simulation, two fire drills held in two high-rise buildings are video-recorded. It is found that the simulation results are similar to the fire drill results. The structure of this model is simple, and it is easy to further develop and utilize in different buildings with various kinds of occupants. Project supported by the National Basic Research Program of China (Grant No. 2012CB719705) and the National Natural Science Foundation of China (Grant Nos. 91224008, 91024032, and 71373139).

  9. Building the ensemble flood prediction system by using numerical weather prediction data: Case study in Kinu river basin, Japan

    NASA Astrophysics Data System (ADS)

    Ishitsuka, Y.; Yoshimura, K.

    2016-12-01

    Floods have a potential to be a major source of economic or human damage caused by natural disasters. Flood prediction systems were developed all over the world and to treat the uncertainty of the prediction ensemble simulation is commonly adopted. In this study, ensemble flood prediction system using global scale land surface and hydrodynamic model was developed. The system requests surface atmospheric forcing and Land Surface Model, MATSIRO, calculates runoff. Those generated runoff is inputted to hydrodynamic model CaMa-Flood to calculate discharge and flood inundation. CaMa-Flood can simulate flood area and its fraction by introducing floodplain connected to river channel. Forecast leadtime was set 39hours according to forcing data. For the case study, the flood occurred at Kinu river basin, Japan in 2015 was hindcasted. In a 1761 km² Kinu river basin, 3-days accumulated average rainfall was 384mm and over 4000 people was left in the inundated area. Available ensemble numerical weather prediction data at that time was inputted to the system in a resolution of 0.05 degrees and 1hour time step. As a result, the system predicted the flood occurrence by 45% and 84% at 23 and 11 hours before the water level exceeded the evacuation threshold, respectively. Those prediction lead time may provide the chance for early preparation for the floods such as levee reinforcement or evacuation. Adding to the discharge, flood area predictability was also analyzed. Although those models were applied for Japan region, this system can be applied easily to other region or even global scale. The areal flood prediction in meso to global scale would be useful for detecting hot zones or vulnerable areas over each region.

  10. 30 CFR 56.4330 - Firefighting, evacuation, and rescue procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Fire Prevention and Control Firefighting Procedures/alarms/drills § 56.4330 Firefighting, evacuation... organizations. (b) Fire alarm procedures or systems shall be established to pomptly warn every person who could...

  11. Effects of evacuation assistant’s leading behavior on the evacuation efficiency: Information transmission approach

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Lu; Guo, Wei; Zheng, Xiao-Ping

    2015-07-01

    Evacuation assistants are expected to spread the escape route information and lead evacuees toward the exit as quickly as possible. Their leading behavior influences the evacuees’ movement directly, which is confirmed to be a decisive factor of the evacuation efficiency. The transmission process of escape information and its function on the evacuees’ movement are accurately presented by the proposed extended dynamic communication field model. For evacuation assistants and evacuees, their sensitivity parameter of static floor field (SFF), , and , are fully discussed. The simulation results indicate that the appropriate is associated with the maximum of evacuees. The optimal combinations of and were found to reach the highest evacuation efficiency. There also exists an optimal value for evacuation assistants’ information transmission radius. Project supported by the National Basic Research Program of China (Grant No. 2011CB706900), the National Natural Science Foundation of China (Grant Nos. 71225007 and 71203006), the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant No. 2012BAK13B06), the Humanities and Social Sciences Project of the Ministry of Education of China (Grant Nos. 10YJA630221 and 12YJCZH023), and the Beijing Philosophy and Social Sciences Planning Project of the Twelfth Five-Year Plan, China (Grant Nos. 12JGC090 and 12JGC098).

  12. Metalliding as an Electrochemical Process.

    DTIC Science & Technology

    1987-01-01

    heated to 550*C under vacuum to remove residual water and then was allowed to cool. Ce chips were added and the system was elevated to 610-6200 C for...the metalliding. The vacuum 8 C8256D/sn -lI O Rockwell International Science Center 5C5398.4FR treatment was necessary to remove residual water from...evacuated at 60°C and 200 mTorr. The tem- perature of the evacuated cell was gradually increased to 100°C to drive water from the salts. After being evacuated

  13. The Puerto Rico Component of the National Tsunami Hazard and Mitigation Program (PR-NTHMP)

    NASA Astrophysics Data System (ADS)

    Vanacore, E. A.; Huerfano Moreno, V. A.; Lopez, A. M.

    2015-12-01

    The Caribbean region has a documented history of damaging tsunamis that have affected coastal areas. Of particular interest is the Puerto Rico - Virgin Islands (PRVI) region, where the proximity of the coast to prominent tectonic faults would result in near-field tsunamis. Tsunami hazard assessment, detection capabilities, warning, education and outreach efforts are common tools intended to reduce loss of life and property. It is for these reasons that the PRSN is participating in an effort with local and federal agencies to develop tsunami hazard risk reduction strategies under the NTHMP. This grant supports the TsunamiReady program, which is the base of the tsunami preparedness and mitigation in PR. In order to recognize threatened communities in PR as TsunamiReady by the US NWS, the PR Component of the NTHMP have identified and modeled sources for local, regional and tele-tsunamis and the results of simulations have been used to develop tsunami response plans. The main goal of the PR-NTHMP is to strengthen resilient coastal communities that are prepared for tsunami hazards, and recognize PR as TsunamiReady. Evacuation maps were generated in three phases: First, hypothetical tsunami scenarios of potential underwater earthquakes were developed, and these scenarios were then modeled through during the second phase. The third phase consisted in determining the worst-case scenario based on the Maximum of Maximums (MOM). Inundation and evacuation zones were drawn on GIS referenced maps and aerial photographs. These products are being used by emergency managers to educate the public and develop mitigation strategies. Maps and related evacuation products, like evacuation times, can be accessed online via the PR Tsunami Decision Support Tool. Based on these evacuation maps, tsunami signs were installed, vulnerability profiles were created, communication systems to receive and disseminate tsunami messages were installed in each TWFP, and tsunami response plans were approved. Also, the existing tsunami protocol and criteria in the PR/VI was updated. This paper describes the PR-NTHMP recent outcomes, including the real time monitoring as well as the protocols used to broadcast tsunami messages. The paper highlights tsunami hazards assessment, detection, warning, education and outreach efforts in Puerto Rico.

  14. [Medical care for the burnt in modern local military conflicts].

    PubMed

    Sidel'nikov, V O; Paramonov, B A; Tatarin, S N

    2002-07-01

    The article is devoted to the experience of treatment of the servicemen who burned during the hostilities in Afghanistan (1979-1989), Tadjikistan (1992-1994) and in Republic of Chechnya (1994-2996). Medical care rendered in 18,921 cases of burns and combined trauma (the burn prevailed) is analyzed: 1201--in Afghanistan, 205--in Tadjikistan and 415--in Republic of Chechnya. In the structure of sanitary losses of surgical character the burned persons constituted 2.5% in Afghanistan, 7.0%--in Tadjikistan and 3.9%--in Republic of Chechnya. The most effective was the medical-evacuation system in Afghanistan. The optimal medical-evacuation system during the local armed conflicts and wars is the evacuation consisted of two stages: first medical aid--specialized medical care.

  15. Deaths, injuries, and evacuations from acute hazardous materials releases.

    PubMed Central

    Binder, S

    1989-01-01

    We examined reports from three surveillance systems of 587 acute releases of hazardous materials in 1986. These releases resulted in at least 115 deaths, 2,254 injuries, and 111 evacuations. Only eight (1 percent) of the 587 events were common to all three systems. Estimates of the public health consequences of hazardous materials releases could be improved by enforcing existing laws, modifying report forms, and validating collected information. PMID:2751024

  16. Effect of varying two key parameters in simulating evacuation for a dormitory in China

    NASA Astrophysics Data System (ADS)

    Lei, Wenjun; Li, Angui; Gao, Ran

    2013-01-01

    Student dormitories are both living and resting areas for students in their spare time. There are many small rooms in the dormitories. And the students are distributed densely in the dormitories. High occupant density is the main characteristic of student dormitories. Once there is an accident, such as fire or earthquake, the losses will be cruel. Computer evacuation models developed overseas are commonly applied in working out safety management schemes. The average minimum widths of corridor and exit are the two key parameters affecting the evacuation for the dormitory. The effect of varying these two parameters will be studied in this paper by taking a dormitory in our university as an example. Evacuation performance is predicted with the software FDS + Evac. The default values in the software are used and adjusted through a field survey. The effect of varying either of the two parameters is discussed. It is found that the simulated results agree well with the experimental results. From our study it seems that the evacuation time is not in proportion to the evacuation distance. And we also named a phenomenon of “the closer is not the faster”. For the building researched in this article, a corridor width of 3 m is the most appropriate. And the suitable exit width of the dormitory for evacuation is about 2.5 to 3 m. The number of people has great influence on the walking speed of people. The purpose of this study is to optimize the building, and to make the building in favor of personnel evacuation. Then the damage could be minimized.

  17. Stay or Go?

    ERIC Educational Resources Information Center

    Kroll, Karen

    2003-01-01

    Discusses whether U.S. schools equipped with fire sprinklers and fire detection and intercom systems should be able to use a delayed evacuation policy when it comes to fire drills or actual fires. A controversial project in Minnesota is examining that question. The paper discusses concerns about delayed evacuation, the impact of delayed evacuation…

  18. Status Report on Medical Materiel Items Tested and Evaluated for Use in the USAF Aeromedical Evacuation System

    DTIC Science & Technology

    1990-12-01

    Volumetric Infusion Pump is conditionally acceptable for use. The Air -In- Line detector does not sense air bubbles 0.95 cm (3/8 inch) or smaller...been fitted with an improved brushless air circulation motor, Brailsford model T- 2NFR. Using the new motor, the 185 passed EMI and is acceptable for...USAF School of Aerospace Medicine, Human Systems Division, Air Force Systems Command, Brooks Air Force Base, Texas, under job order 7930-16- 12. This

  19. Demographic transition and factors associated with remaining in place after the 2011 Fukushima nuclear disaster and related evacuation orders

    PubMed Central

    Nomura, Shuhei; Furutani, Tomoyuki; Leppold, Claire; Tsubokura, Masaharu; Ozaki, Akihiko; Ochi, Sae; Kami, Masahiro; Kato, Shigeaki; Oikawa, Tomoyoshi

    2018-01-01

    Introduction Demographic changes as a result of evacuation in the acute phase of the 2011 Fukushima nuclear disaster are not well evaluated. We estimated post-disaster demographic transitions in Minamisoma City—located 14–38 km north of the nuclear plant—in the first month of the disaster; and identified demographic factors associated with the population remaining in the affected areas. Materials and methods We extracted data from the evacuation behavior survey administered to participants in the city between July 11, 2011 and April 30, 2013. Using mathematical models, we estimated the total population in the city after the disaster according to sex, age group, and administrative divisions of the city. To investigate factors associated with the population remaining in place after the disaster, a probit regression model was employed, taking into account sex, age, pre-disaster dwelling area, and household composition. Results The overall population decline in Minamisoma City peaked 11 days after the disaster, when the population reached 7,107 people—11% of the pre-disaster level. The remaining population levels differed by area: 1.1% for mandatory evacuation zone, 12.5% for indoor sheltering zone, and 12.6% for other areas of the city. Based on multiple regression analyses, higher odds for remaining in place were observed among men (odds ratio 1.72 [95% confidence intervals 1.64–1.85]) than women; among people aged 40–64 years (1.40 [1.24–1.58]) than those aged 75 years or older; and among those living with the elderly, aged 70 years or older (1.18 [1.09–1.27]) or those living alone (1.71 [1.50–1.94]) than among those who were not. Discussion Despite the evacuation order, some residents of mandatory evacuation zones remained in place, signaling the need for preparation to respond to their post-disaster needs. Indoor sheltering instructions may have accelerated voluntary evacuation, and this demonstrates the need for preventing potentially disorganized evacuation in future nuclear events. PMID:29538442

  20. Modeling hurricane evacuation traffic : a mobile real-time traffic counter for monitoring hurricane evacuation traffic conditions.

    DOT National Transportation Integrated Search

    2006-04-01

    The objective of this part of the research study was to select and acquire a mobile traffic counter capable of providing traffic flow and average speed data in intervals of time no greater than 15 minutes and transmit the data back to a central locat...

  1. Modeling detour behavior of pedestrian dynamics under different conditions

    NASA Astrophysics Data System (ADS)

    Qu, Yunchao; Xiao, Yao; Wu, Jianjun; Tang, Tao; Gao, Ziyou

    2018-02-01

    Pedestrian simulation approach has been widely used to reveal the human behavior and evaluate the performance of crowd evacuation. In the existing pedestrian simulation models, the social force model is capable of predicting many collective phenomena. Detour behavior occurs in many cases, and the important behavior is a dominate factor of the crowd evacuation efficiency. However, limited attention has been attracted for analyzing and modeling the characteristics of detour behavior. In this paper, a modified social force model integrated by Voronoi diagram is proposed to calculate the detour direction and preferred velocity. Besides, with the consideration of locations and velocities of neighbor pedestrians, a Logit-based choice model is built to describe the detour direction choice. The proposed model is applied to analyze pedestrian dynamics in a corridor scenario with either unidirectional or bidirectional flow, and a building scenario in real-world. Simulation results show that the modified social force model including detour behavior could reduce the frequency of collision and deadlock, increase the average speed of the crowd, and predict more practical crowd dynamics with detour behavior. This model can also be potentially applied to understand the pedestrian dynamics and design emergent management strategies for crowd evacuations.

  2. Injury patterns in clashes between citizens and security forces during forced evacuation.

    PubMed

    Schwartz, D; Bar-Dayan, Y

    2008-10-01

    Clashes between state security forces and civilian populations can lead to mass casualty incidents (MCI), challenging emergency medical service (EMS) systems, hospitals and medical management systems. In January 2006, clashes erupted between Israeli security forces and settlers, around the forced evacuation of the Amona outpost. Data collected during the events and in subsequent formal debriefings were processed to identify the specifics of an MCI caused by forced evacuation. Pre-event preparedness, time and types of injuries encountered were evaluated among evacuated civilians and security forces members, their transport to hospitals, care received and follow-up. The event is described according to DISAST-CIR methodology. Data were entered on MS Excel (2003) and analysis was carried out using SPSS version 12. 4000 police personnel (backed by army forces) clashed for 12 h with approximately 5000 settlers. 229 injured (174 settlers and 55 security personnel) were cared for at six receiving hospitals. A total of 16 were evacuated by aeromedical evacuation, including one severely head-injured policeman. Settlers used sticks, stones and cement blocks, whereas police used mounted riders, batons and shields. Head injuries were the most common injuries among settlers (50%), whereas extremity injuries dominated among security forces members (72.7%). Large-scale clashes between state security forces and citizens may cause numerous injuries, even if firearms and explosives are not used. Despite the fact that almost all injuries were mild, the incident burdened local medical teams, EMS and Jerusalem hospitals. A predominance of head injuries was found among injured settlers and extremity injuries among injured security forces.

  3. Evaluation of Neurophysiologic and Systematic Changes during Aeromedical Evacuation and en Route Care of Combat Casualties in a Swine Polytrauma

    DTIC Science & Technology

    2017-02-01

    ambient conditions such as cabin pressure and temperature could potentially have detrimental effects on the already vulnerable brain. There is evidence...long-range aero-medical evacuation has adverse effects on brain blood flow and tissue oxygenation , as well as lung function in swine models of...differences in partial pressure of arterial oxygen or oxygen delivery, extraction and consumption data. This suggests that in this particular model

  4. Simulated tsunami run-up amplification factors around Penang Island for preliminary risk assessment

    NASA Astrophysics Data System (ADS)

    Lim, Yong Hui; Kh'ng, Xin Yi; Teh, Su Yean; Koh, Hock Lye; Tan, Wai Kiat

    2017-08-01

    The mega-tsunami Andaman that struck Malaysia on 26 December 2004 affected 200 kilometers of northwest Peninsular Malaysia coastline from Perlis to Selangor. It is anticipated by the tsunami scientific community that the next mega-tsunami is due to occur any time soon. This rare catastrophic event has awakened the attention of Malaysian government to take appropriate risk reduction measures, including timely and orderly evacuation. To effectively evacuate ordinary citizens to a safe ground or a nearest designated emergency shelter, a well prepared evacuation route is essential with the estimated tsunami run-up heights and inundation distances on land clearly indicated on the evacuation map. The run-up heights and inundation distances are simulated by an in-house model 2-D TUNA-RP based upon credible scientific tsunami source scenarios derived from tectonic activity around the region. To provide a useful tool for estimating the run-up heights along the entire coast of Penang Island, we computed tsunami amplification factors based upon 2-D TUNA-RP model simulations in this paper. The inundation map and run-up amplification factors in six domains along the entire coastline of Penang Island are provided. The comparison between measured tsunami wave heights for the 2004 Andaman tsunami and TUNA-RP model simulated values demonstrates good agreement.

  5. Beyond usual care: the economic consequences of expanding treatment options in early pregnancy loss.

    PubMed

    Dalton, Vanessa K; Liang, Angela; Hutton, David W; Zochowski, Melissa K; Fendrick, A Mark

    2015-02-01

    The objective of this study was to estimate the economic consequences of expanding options for early pregnancy loss (EPL) treatment beyond expectant management and operating room surgical evacuation (usual care). We constructed a decision model using a hypothetical cohort of women undergoing EPL management within a 30 day horizon. Treatment options under the usual care arm include expectant management and surgical uterine evacuation in an operating room (OR). Treatment options under the expanded care arm included all evidence-based safe and effective treatment options for EPL: expectant management, misoprostol treatment, surgical uterine evacuation in an office setting, and surgical uterine evacuation in an OR. Probabilities of entering various treatment pathways were based on previously published observational studies. The cost per case was US $241.29 lower for women undergoing treatment in the expanded care model as compared with the usual care model (US $1033.29 per case vs US $1274.58 per case, expanded care and usual care, respectively). The model was the most sensitive to the failure rate of the expectant management arm, the cost of the OR surgical procedure, the proportion of women undergoing an OR surgical procedure under usual care, and the additional cost per patient associated with implementing and using the expanded care model. This study demonstrates that expanding women's treatment options for EPL beyond what is typically available can result in lower direct medical expenditures. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Operations and Maintenance March Newsletter | Poster

    Cancer.gov

    There are many safety rules and regulations designed to keep us safe as we carry out our individual tasks at NCI, but this issue of the O&M Newsletter is all about evacuation. Specifically, it highlights the importance of the systems and components that ensure the safe evacuation of all building occupants in emergency situations.

  7. A single center's experience with the bedside subdural evacuating port system: a useful alternative to traditional methods for chronic subdural hematoma evacuation.

    PubMed

    Safain, Mina; Roguski, Marie; Antoniou, Alexander; Schirmer, Clemens M; Schirmer, Clemens S; Malek, Adel M; Riesenburger, Ron

    2013-03-01

    Object The traditional methods for managing symptomatic chronic subdural hematoma (SDH) include evacuation via a bur hole or craniotomy, both with or without drain placement. Because chronic SDH frequently occurs in elderly patients with multiple comorbidities, the bedside approach afforded by the subdural evacuating port system (SEPS) is an attractive alternative method that is performed under local anesthesia and conscious sedation. The goal of this study was to evaluate the radiographic and clinical outcomes of SEPS as compared with traditional methods. Methods A prospectively maintained database of 23 chronic SDHs treated by bur hole or craniotomy and of 23 chronic SDHs treated by SEPS drainage at Tufts Medical Center was compiled, and a retrospective chart review was performed. Information regarding demographics, comorbidities, presenting symptoms, and outcome was collected. The volume of SDH before and after treatment was semiautomatically measured using imaging software. Results There was no significant difference in initial SDH volume (94.5 cm(3) vs 112.6 cm(3), respectively; p = 0.25) or final SDH volume (31.9 cm(3) vs 28.2 cm(3), respectively; p = 0.65) between SEPS drainage and traditional methods. In addition, there was no difference in mortality (4.3% vs 9.1%, respectively; p = 0.61), length of stay (11 days vs 9.1 days, respectively; p = 0.48), or stability of subdural evacuation (94.1% vs 83.3%, respectively; p = 0.60) for the SEPS and traditional groups at an average follow-up of 12 and 15 weeks, respectively. Only 2 of 23 SDHs treated by SEPS required further treatment by bur hole or craniotomy due to inadequate evacuation of subdural blood. Conclusions The SEPS is a safe and effective alternative to traditional methods of evacuation of chronic SDHs and should be considered in patients presenting with a symptomatic chronic SDH.

  8. Postnuclear disaster evacuation and chronic health in adults in Fukushima, Japan: a long-term retrospective analysis

    PubMed Central

    Nomura, Shuhei; Blangiardo, Marta; Tsubokura, Masaharu; Ozaki, Akihiko; Morita, Tomohiro; Hodgson, Susan

    2016-01-01

    Objective Japan's 2011 Fukushima Daiichi Nuclear Power Plant incident required the evacuation of over a million people, creating a large displaced population with potentially increased vulnerability in terms of chronic health conditions. We assessed the long-term impact of evacuation on diabetes, hyperlipidaemia and hypertension. Participants We considered participants in annual public health check-ups from 2008 to 2014, administrated by Minamisoma City and Soma City, located about 10–50 km from the Fukushima nuclear plant. Methods Disease risks, measured in terms of pre-incident and post-incident relative risks, were examined and compared between evacuees and non-evacuees/temporary-evacuees. We also constructed logistic regression models to assess the impact of evacuation on the disease risks adjusted for covariates. Results Data from a total of 6406 individuals aged 40–74 years who participated in the check-ups both at baseline (2008–2010) and in one or more post-incident years were analysed. Regardless of evacuation, significant post-incident increases in risk were observed for diabetes and hyperlipidaemia (relative risk: 1.27–1.60 and 1.12–1.30, respectively, depending on evacuation status and post-incident year). After adjustment for covariates, the increase in hyperlipidaemia was significantly greater among evacuees than among non-evacuees/temporary-evacuees (OR 1.18, 95% CI 1.06 to 1.32, p<0.01). Conclusions The singularity of this study is that evacuation following the Fukushima disaster was found to be associated with a small increase in long-term hyperlipidaemia risk in adults. Our findings help identify discussion points on disaster planning, including preparedness, response and recovery measures, applicable to future disasters requiring mass evacuation. PMID:26846896

  9. A Multi-Disciplinary Approach to Tsunami Disaster Prevention in Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Horns, D. M.; Hall, S.; Harris, R. A.

    2016-12-01

    The island of Java in Indonesia is the most densely populated island on earth, and is situated within one of the most tectonically active regions on the planet. Deadly tsunamis struck Java in 1994 and 2006. We conducted an assessment of tsunami hazards on the south coast of Java using a team of geologists, public health professionals, and disaster education specialists. The social science component included tsunami awareness surveys, education in communities and schools, evacuation drills, and evaluation. We found that the evacuation routes were generally appropriate for the local hazard, and that most people were aware of the routes and knew how to use them. However, functional tsunami warning systems were lacking in most areas and knowledge of natural warning signs was incomplete. We found that while knowledge of when to evacuate improved after our educational lesson, some incorrect beliefs persisted (e.g. misconceptions about types of earthquakes able to generate tsunamis and how far inland tsunamis can reach). There was a general over-reliance on government to alert when evacuation is needed as well as reluctance on the part of local leaders to take initiative to sound tsunami alerts. Many people on earth who are at risk of tsunamis live in areas where the government lacks resources to maintain a functional tsunami warning system. The best hope for protecting those people is direct education working within the local cultural belief system. Further collaboration is needed with government agencies to design consistent and repeated messages challenging misperceptions about when to evacuate and to encourage individuals to take personal responsibility based on natural warning signs.

  10. The role of integrating natural and social science concepts for risk governance and the design of people-centred early warning systems. Case study from the German-Indonesian Tsunami Early Warning System Project (GITEWS)

    NASA Astrophysics Data System (ADS)

    Gebert, Niklas; Post, Joachim

    2010-05-01

    The development of early warning systems are one of the key domains of adaptation to global environmental change and contribute very much to the development of societal reaction and adaptive capacities to deal with extreme events. Especially, Indonesia is highly exposed to tsunami. In average every three years small and medium size tsunamis occur in the region causing damage and death. In the aftermath of the Indian Ocean Tsunami 2004, the German and Indonesian government agreed on a joint cooperation to develop a People Centered End-to-End Early Warning System (GITEWS). The analysis of risk and vulnerability, as an important step in risk (and early warning) governance, is a precondition for the design of effective early warning structures by delivering the knowledge base for developing institutionalized quick response mechanisms of organizations involved in the issuing of a tsunami warning, and of populations exposed to react to warnings and to manage evacuation before the first tsunami wave hits. Thus, a special challenge for developing countries is the governance of complex cross-sectoral and cross-scale institutional, social and spatial processes and requirements for the conceptualization, implementation and optimization of a people centered tsunami early warning system. In support of this, the risk and vulnerability assessment of the case study aims at identifying those factors that constitute the causal structure of the (dis)functionality between the technological warning and the social response system causing loss of life during an emergency situation: Which social groups are likely to be less able to receive and respond to an early warning alert? And, are people able to evacuate in due time? Here, only an interdisciplinary research approach is capable to analyze the socio-spatial and environmental conditions of vulnerability and risk and to produce valuable results for decision makers and civil society to manage tsunami risk in the early warning context. This requires the integration of natural / spatial and social science concepts, methods and data: E.g. a scenario based approach for tsunami inundation modeling was developed to provide decision makers with options to decide up to what level they aim to protect their people and territory, on the contrary household surveys were conducted for the spatial analysis of the evacuation preparedness of the population as a function of place specific hazard, risk, warning and evacuation perception; remote sensing was applied for the spatial analysis (land-use) of the socio-physical conditions of a city and region for evacuation; and existing social / population statistics were combined with land-use data for the precise spatial mapping of the population exposed to tsunami risks. Only by utilizing such a comprehensive assessment approach valuable information for risk governance can be generated. The results are mapped using GIS and designed according to the specific needs of different end-users, such as public authorities involved in the design of warning dissemination strategies, land-use planners (shelter planning, road network configuration) and NGOs mandated to provide education for the general public on tsunami risk and evacuation behavior. The case study of the city of Padang (one of the pilot areas of GITEWS), Indonesia clearly show, that only by intersecting social (vulnerability) and natural hazards research a comprehensive picture on tsunami risk can be provided with which risk governance in the early warning context can be conducted in a comprehensive, systemic and sustainable manner.

  11. Analysis of the causes of medical evacuation of injured and sick soldiers of the Polish Military Contingent in the Islamic State of Afghanistan taking part in International Security Assistance Force operations.

    PubMed

    Ziemba, Radosław

    2012-04-01

    Military casualties in Afghanistan arise in part from climatic and natural conditions that are difficult for European soldiers to endure, as well as from intense guerrilla combat with mass use of IEDs (improvised explosive devices), thus posing numerous and diverse medical problems requiring evacuation to the home country. A search of the literature revealed no comprehensive studies of the causes of medical evacuation from this theater of operations. This article is a review of medical reports of the Polish Military Contingent taking part in Operation Enduring Freedom during the period from 01 January 2010 to 31 December 2011, including an analysis of causes of all ROLE 4 medical evacuations (to the military base in Germany or to the home country). As many as 565 (5.49%) of the total of 10 294 contingent soldiers were evacuated during the analyzed period. Of these, 29% of evacuation cases were due to combat injuries, 23% to complications of respiratory tract infection, 11% to mental health problems, 11% to chronic neuralgias, 12% to complications of acute gastrointestinal infections, 4% to non-combat injuries, 3% to dental and maxillofacial problems, 2% to dermatological problems and 2% to leishmaniasis. The remaining causes included chronic organic/systemic diseases manifested during service. The main causes of medical evacuations to the home country were the consequences of combat injuries, mainly due to IED attacks. Appropriate diagnosis and early treatment of infections is also an important problem in the face of a significant number of complications resulting in evacuation of soldiers to their home country.

  12. A method for defining down-wind evacuation areas for transportation accidents involving toxic propellant spills

    NASA Technical Reports Server (NTRS)

    Siewert, R. D.

    1972-01-01

    Evacuation areas for accidental spills of toxic propellants along rail and highway shipping routes are defined to help local authorities reduce risks to people from excessive vapor concentrations. These criteria along with other emergency information are shown in propellant spill cards. The evacuation areas are based on current best estimates of propellant evaporation rates from various areas of spill puddles. These rates are used together with a continuous point-source, bi-normal model of plume dispersion. The rate at which the toxic plume disperses is based on a neutral atmospheric condition. This condition, which results in slow plume dispersion, represents the widest range of weather parameters which could occur during the day and nighttime periods. Evacuation areas are defined by the ground level boundaries of the plume within which the concentrations exceed the toxic Threshold Limit Value (TLV) or in some cases the Emergency Exposure Limit (EEL).

  13. Evacuation of a Tertiary Neonatal Centre: Lessons from the 2016 Kumamoto Earthquakes

    PubMed Central

    Iwata, Osuke; Kawase, Akihiko; Iwai, Masanori; Wada, Kazuko

    2017-01-01

    Background Newborn infants hospitalised in the neonatal intensive care unit (NICU) are vulnerable to natural disasters. However, publications on evacuation from NICUs are sparse. The 2016 Kumamoto Earthquakes caused serious damage to Kumamoto City Hospital and its level III regional core NICU. Local/neighbour NICU teams and the disaster-communication team of a neonatal academic society cooperated to evacuate 38 newborn infants from the ward. Objective The aim of this paper was to highlight potential key factors to improve emergency NICU evacuation and coordination of hospital transportation following natural disasters. Methods Background variables including clinical risk scores and timing/destination of transportation were compared between infants, who subsequently were transferred to destinations outside of Kumamoto Prefecture, and their peers. Results All but 1 of the infants were successfully evacuated from their NICU within 8 h. One very-low-birth-weight infant developed moderate hypothermia following transportation. Fourteen infants were transferred to NICUs outside of Kumamoto Prefecture, which was associated with the diagnosis of congenital heart disease, dependence on respiratory support, higher risk scores, and longer elapsed time from the decision to departure. There was difficulty in arranging helicopter transportation because the coordination office of the Disaster Medical Assistance Team had requisitioned most air/ground ambulances and only helped arrange ground transportations for 13 low-risk infants. Transportation for all 10 high-risk infants (risk scores greater than or equal to the upper quartile) was arranged by local/neighbour NICUs. Conclusions Although the overall evacuation process was satisfactory, potential risks of relying on the adult-based emergency transportation system were highlighted. A better system needs to be developed urgently to put appropriate priority on vulnerable infants. PMID:28437783

  14. Evacuation of a Tertiary Neonatal Centre: Lessons from the 2016 Kumamoto Earthquakes.

    PubMed

    Iwata, Osuke; Kawase, Akihiko; Iwai, Masanori; Wada, Kazuko

    2017-01-01

    Newborn infants hospitalised in the neonatal intensive care unit (NICU) are vulnerable to natural disasters. However, publications on evacuation from NICUs are sparse. The 2016 Kumamoto Earthquakes caused serious damage to Kumamoto City Hospital and its level III regional core NICU. Local/neighbour NICU teams and the disaster-communication team of a neonatal academic society cooperated to evacuate 38 newborn infants from the ward. The aim of this paper was to highlight potential key factors to improve emergency NICU evacuation and coordination of hospital transportation following natural disasters. Background variables including clinical risk scores and timing/destination of transportation were compared between infants, who subsequently were transferred to destinations outside of Kumamoto Prefecture, and their peers. All but 1 of the infants were successfully evacuated from their NICU within 8 h. One very-low-birth-weight infant developed moderate hypothermia following transportation. Fourteen infants were transferred to NICUs outside of Kumamoto Prefecture, which was associated with the diagnosis of congenital heart disease, dependence on respiratory support, higher risk scores, and longer elapsed time from the decision to departure. There was difficulty in arranging helicopter transportation because the coordination office of the Disaster Medical Assistance Team had requisitioned most air/ground ambulances and only helped arrange ground transportations for 13 low-risk infants. Transportation for all 10 high-risk infants (risk scores greater than or equal to the upper quartile) was arranged by local/neighbour NICUs. Although the overall evacuation process was satisfactory, potential risks of relying on the adult-based emergency transportation system were highlighted. A better system needs to be developed urgently to put appropriate priority on vulnerable infants. © 2017 S. Karger AG, Basel.

  15. Analyzing evacuation versus shelter-in-place strategies after a terrorist nuclear detonation.

    PubMed

    Wein, Lawrence M; Choi, Youngsoo; Denuit, Sylvie

    2010-09-01

    We superimpose a radiation fallout model onto a traffic flow model to assess the evacuation versus shelter-in-place decisions after the daytime ground-level detonation of a 10-kt improvised nuclear device in Washington, DC. In our model, ≈ 80k people are killed by the prompt effects of blast, burn, and radiation. Of the ≈ 360k survivors without access to a vehicle, 42.6k would die if they immediately self-evacuated on foot. Sheltering above ground would save several thousand of these lives and sheltering in a basement (or near the middle of a large building) would save of them. Among survivors of the prompt effects with access to a vehicle, the number of deaths depends on the fraction of people who shelter in a basement rather than self-evacuate in their vehicle: 23.1k people die if 90% shelter in a basement and 54.6k die if 10% shelter. Sheltering above ground saves approximately half as many lives as sheltering in a basement. The details related to delayed (i.e., organized) evacuation, search and rescue, decontamination, and situational awareness (via, e.g., telecommunications) have very little impact on the number of casualties. Although antibiotics and transfusion support have the potential to save ≈ 10k lives (and the number of lives saved from medical care increases with the fraction of people who shelter in basements), the logistical challenge appears to be well beyond current response capabilities. Taken together, our results suggest that the government should initiate an aggressive outreach program to educate citizens and the private sector about the importance of sheltering in place in a basement for at least 12 hours after a terrorist nuclear detonation. © 2010 Society for Risk Analysis.

  16. Task three: technical memorandum for Federal Highway Administration (ITS-JPO) on case studies : assessment of state of the practice and state of the art in evacuation transportation management

    DOT National Transportation Integrated Search

    2006-02-06

    for which there is advance warning. With advance warning, evacuations can be planned and managed using procedures and systems that have been developed as a result of extensive and methodical pre-planning. This approach, however, does not adequately s...

  17. 77 FR 19069 - Airworthiness Directives; Goodrich Evacuation Systems Approved Under Technical Standard Order...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-30

    ... seal and allowed the pressure in certain slides/ rafts to fall below the minimum raft mode pressure for the unit. We are issuing this AD to prevent loss of pressure in the escape slides/rafts after an emergency evacuation, which could result in inadequate buoyancy to support the raft's passenger capacity...

  18. A Real-World Network Modeling Project

    DTIC Science & Technology

    2014-02-12

    about the project, which accounts for a third of their class grade. As can be expected, giving substantial weight to the project increases active student...analysis, humanitarian aid warehouses, Israeli traffic analysis, London Olympic Games transport, medical evacuation, Monterey fire department...responsiveness, Monterey Peninsula evacuation, natural gas pipeline transport, rail transport of new cars, ski lifts for Keystone Colorado, small boat attack

  19. Modeling Altruistic and Aggressive Driver Behavior in a No-Notice Evacuation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandstetter, Tim; Garrow, Dr. Laurie; Hunter, Dr. Michael

    2007-01-01

    This study examines the impact of altruistic and aggressive driver behavior on the effectiveness of an evacuation for a section of downtown Atlanta. The study area includes 37 signalized intersections, seven ramps, and 48 parking lots that vary by size, type (lot versus garage), peak volume, and number of ingress and egress points. A detailed microscopic model of the study area was created in VISSIM. Different scenarios examined the impacts of driver behavior on parking lot discharge rates and the loading rates from side streets on primary evacuation routes. A new methodology was created to accurately represent parking lot dischargemore » rates. This study is also unique in that it assumes a "worst case scenario" that occurs with no advance notice during the morning peak period, when vehicles must transition from inbound to outbound routes. Simulation results indicate that while overall network clearance times are similar across scenarios, the distribution of delay on individual routes and across parking lots differ markedly. More equitable solutions (defined as the allocation of delay from parking lots and side streets to main evacuation routes) were observed with altruistic driver behavior.« less

  20. Means of escape provisions and evacuation simulation of public building in Malaysia and Singapore

    NASA Astrophysics Data System (ADS)

    Samad, Muna Hanim Abdul; Taib, Nooriati; Ying, Choo Siew

    2017-10-01

    The Uniform Building By-law 1984 of Malaysia is the legal document governing fire safety requirements in buildings. Its prescriptive nature has made the requirements out dated from the viewpoint of current performance based approach in most developed countries. The means of escape provisions is a critical requirement to safeguard occupants' safety in fire especially in public buildings. As stipulated in the UBBL 1984, the means of escape provisions includes sufficient escape routes, travel distance, protection of escape routes, etc. designated as means to allow occupants to escape within a safe period of time. This research aims at investigating the effectiveness of those provisions in public buildings during evacuation process involving massive crowd during emergencies. This research includes a scenario-based study on evacuation processes using two software i.e. PyroSim, a crowd modelling software to conduct smoke study and Pathfinder to stimulate evacuation model of building in Malaysia and Singapore as comparative study. The results show that the buildings used as case study were designed according to Malaysian UBBL 1984 and Singapore Firecode, 2013 respectively provide relative safe means of escape. The simulations of fire and smoke and coupled with simulation of evacuation have demonstrated that although there are adequate exits designated according to fire requirements, the impact of the geometry of atriums on the behavior of fire and smoke have significant effect on escape time especially for unfamiliar user of the premises.

  1. Epidural Hematoma Complication after Rapid Chronic Subdural Hematoma Evacuation: A Case Report.

    PubMed

    Akpinar, Aykut; Ucler, Necati; Erdogan, Uzay; Yucetas, Cem Seyho

    2015-07-06

    Chronic subdural hematoma generally occurs in the elderly. After chronic subdural hematoma evacuation surgery, the development of epidural hematoma is a very rare entity. We report the case of a 41-year-old man with an epidural hematoma complication after chronic subdural hematoma evacuation. Under general anesthesia, the patient underwent a large craniotomy with closed system drainage performed to treat the chronic subdural hematoma. After chronic subdural hematoma evacuation, there was epidural leakage on the following day. Although trauma is the most common risk factor in young CSDH patients, some other predisposing factors may exist. Intracranial hypotension can cause EDH. Craniotomy and drainage surgery can usually resolve the problem. Because of rapid dynamic intracranial changes, epidural leakages can occur. A large craniotomy flap and silicone drainage in the operation area are key safety points for neurosurgeons and hydration is essential.

  2. Should I Stay or Should I Go Now? Or Should I Wait and See? Influences on Wildfire Evacuation Decisions.

    PubMed

    McCaffrey, Sarah; Wilson, Robyn; Konar, Avishek

    2017-11-23

    As climate change has contributed to longer fire seasons and populations living in fire-prone ecosystems increase, wildfires have begun to affect a growing number of people. As a result, interest in understanding the wildfire evacuation decision process has increased. Of particular interest is understanding why some people leave early, some choose to stay and defend their homes, and others wait to assess conditions before making a final decision. Individuals who tend to wait and see are of particular concern given the dangers of late evacuation. To understand what factors might influence different decisions, we surveyed homeowners in three areas in the United States that recently experienced a wildfire. The Protective Action Decision Model was used to identify a suite of factors previously identified as potentially relevant to evacuation decisions. Our results indicate that different beliefs about the efficacy of a particular response or action (evacuating or staying to defend), differences in risk attitudes, and emphasis on different cues to act (e.g., official warnings, environmental cues) are key factors underlying different responses. Further, latent class analysis indicates there are two general classes of individuals: those inclined to evacuate and those inclined to stay, and that a substantial portion of each class falls into the wait and see category. © 2017 Society for Risk Analysis.

  3. Definition and Means of Maintaining the Emergency Notification and Evacuation System Portion of the Plutonium Finishing Plant (PFP) Safety Envelope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WHITE, W.F.

    2000-04-04

    The purpose of this document is to provide the definition and means of maintaining the safety envelope (SE) for the Emergency Notification and Evacuation System (ENES). Together with the appendices, it provides: (1) The system requirements for determining system operability (Section 3.0); (2) Evaluations of equipment to determine the safety boundary for the system (Section 4.0); (3) List of system drawings that are annotated to show the SE boundaries (Appendix A); (4) Identification of the SE equipment by reference to systems and drawings (Appendix B); (5) Requirements for the individual SE equipment (Section 4.0); and (6) A list of themore » operational and surveillance procedures necessary to operate and maintain the system equipment within the SE (Sections 5.0 and 6.0). The Private Automatic Exchange (PAX) phones and PAX switchers are outside the safety envelope defined in WHC-SD-CP-OSR-010, Section 5.4.10, ''Safety Communication and Alarm Systems,'' Section 5.4.1 0.1, ''Major Components and Operating Characteristics,'' and Section 5.4.10.1.12, ''PAX System.'' The PAX override microphone system maintains the safety envelope, and functions as a backup to the evacuation sirens during an emergency.« less

  4. Enhanced casualty care from a Global Military Orthopaedic Teleconsultation Program.

    PubMed

    Waterman, Brian R; Laughlin, Matthew D; Belmont, Philip J; Schoenfeld, Andrew J; Pallis, Mark P

    2014-11-01

    Since its advent, telemedicine has facilitated access to subspecialty medical care for the treatment of patients in remote and austere settings. The United States military introduced a formal orthopaedic teleconsultation system in 2007, but few reports have explored its scope of practice and efficacy, particularly in a deployed environment during a time of conflict. All teleconsultations placed to the orthopaedic service between April 2009 and December 2012 were obtained and retrospectively reviewed. Case files were abstracted and anatomical location of injury, type of injury, origin of consult (country or Navy Afloat), branch of service, and treatment recommendations, were recorded for descriptive analysis. The final result of the consult was also determined, with service members transported from the combat theatre or deployment location defined as medically evacuated. Instances where teleconsultations averted a medical evacuation were also documented as a separate outcome. Over a 32-month period, 597 orthopaedic teleconsultations were placed, with the majority derived from Army (46%) and Navy (32%) personnel deployed in Afghanistan, Iraq, or with Navy Afloat. Approximately 51% of consults involved the upper extremity, including 197 hand injuries, followed by lower extremity (37%) and spine (7.8%) complaints. Fractures comprised over half of all injuries, with the hand and foot most commonly affected. The average response time for teleconsultations was 7.54h. A total of 56 service members required immediate evacuation for further orthopaedic management, while at least 26 medical evacuations were prevented due to the teleconsultation system. The teleconsultation system promotes early access to orthopaedic subspecialty care in a resource-limited, deployed military setting. The telemedicine network also appears to mitigate unnecessary aeromedical evacuations, reducing healthcare costs, lost duty time, and treatment delays. These findings have important meaning for the future of telemedicine in both the military and civilian setting. IV. Published by Elsevier Ltd.

  5. Factors Affecting Hurricane Evacuation Intentions.

    PubMed

    Lazo, Jeffrey K; Bostrom, Ann; Morss, Rebecca E; Demuth, Julie L; Lazrus, Heather

    2015-10-01

    Protective actions for hurricane threats are a function of the environmental and information context; individual and household characteristics, including cultural worldviews, past hurricane experiences, and risk perceptions; and motivations and barriers to actions. Using survey data from the Miami-Dade and Houston-Galveston areas, we regress individuals' stated evacuation intentions on these factors in two information conditions: (1) seeing a forecast that a hurricane will hit one's area, and (2) receiving an evacuation order. In both information conditions having an evacuation plan, wanting to keep one's family safe, and viewing one's home as vulnerable to wind damage predict increased evacuation intentions. Some predictors of evacuation intentions differ between locations; for example, Florida respondents with more egalitarian worldviews are more likely to evacuate under both information conditions, and Florida respondents with more individualist worldviews are less likely to evacuate under an evacuation order, but worldview was not significantly associated with evacuation intention for Texas respondents. Differences by information condition also emerge, including: (1) evacuation intentions decrease with age in the evacuation order condition but increase with age in the saw forecast condition, and (2) evacuation intention in the evacuation order condition increases among those who rely on public sources of information on hurricane threats, whereas in the saw forecast condition evacuation intention increases among those who rely on personal sources. Results reinforce the value of focusing hurricane information efforts on evacuation plans and residential vulnerability and suggest avenues for future research on how hurricane contexts shape decision making. © 2015 Society for Risk Analysis.

  6. Estimation and optimization of thermal performance of evacuated tube solar collector system

    NASA Astrophysics Data System (ADS)

    Dikmen, Erkan; Ayaz, Mahir; Ezen, H. Hüseyin; Küçüksille, Ecir U.; Şahin, Arzu Şencan

    2014-05-01

    In this study, artificial neural networks (ANNs) and adaptive neuro-fuzzy (ANFIS) in order to predict the thermal performance of evacuated tube solar collector system have been used. The experimental data for the training and testing of the networks were used. The results of ANN are compared with ANFIS in which the same data sets are used. The R2-value for the thermal performance values of collector is 0.811914 which can be considered as satisfactory. The results obtained when unknown data were presented to the networks are satisfactory and indicate that the proposed method can successfully be used for the prediction of the thermal performance of evacuated tube solar collectors. In addition, new formulations obtained from ANN are presented for the calculation of the thermal performance. The advantages of this approaches compared to the conventional methods are speed, simplicity, and the capacity of the network to learn from examples. In addition, genetic algorithm (GA) was used to maximize the thermal performance of the system. The optimum working conditions of the system were determined by the GA.

  7. Ultra-high speed vacuum pump system with first stage turbofan and second stage turbomolecular pump

    DOEpatents

    Jostlein, Hans

    2006-04-04

    An ultra-high speed vacuum pump evacuation system includes a first stage ultra-high speed turbofan and a second stage conventional turbomolecular pump. The turbofan is either connected in series to a chamber to be evacuated, or is optionally disposed entirely within the chamber. The turbofan employs large diameter rotor blades operating at high linear blade velocity to impart an ultra-high pumping speed to a fluid. The second stage turbomolecular pump is fluidly connected downstream from the first stage turbofan. In operation, the first stage turbofan operates in a pre-existing vacuum, with the fluid asserting only small axial forces upon the rotor blades. The turbofan imparts a velocity to fluid particles towards an outlet at a high volume rate, but moderate compression ratio. The second stage conventional turbomolecular pump then compresses the fluid to pressures for evacuation by a roughing pump.

  8. Effects of the Fort McMurray wildfires on the health of evacuated workers: follow-up of 2 cohorts

    PubMed Central

    Cherry, Nicola; Haynes, Whitney

    2017-01-01

    Background: Wildfire engulfed Fort McMurray, Alberta on May 3, 2016, leading to a total evacuation. Access to 2 active cohorts allowed us to rapidly assess health effects in those evacuated. Methods: People working in Fort McMurray who had been recruited before the fire for 2 occupational health cohort studies completed a questionnaire (online or via telephone) 3-26 weeks after evacuation. The questionnaire asked about respiratory and mental health and experiences since the fire. Results: Of the 129 participants, 109 were in the Fort McMurray area on May 3. Thirty-seven (33.9%) of the participants who were in Fort McMurray on May 3 reported a health condition, including respiratory symptoms (n = 17) and mental ill health (n = 17), immediately after the fire. At follow-up, a mean of 102 days after the fire, 11 participants (10.1%) reported a fire-related health condition, including mental ill health (n = 8) and respiratory symptoms (n = 2). There was no difference before and after the fire in use of alcohol, cigarettes, recreational drugs or medication. One in 4 participants (32 [24.6%]) had not worked since the fire, and fewer than half (58 [44.6%]) had returned to Fort McMurray. Of the 90 participants evacuated, 15 (16.7%) had scores indicative of moderate or severe anxiety or depression on the Hospital Anxiety and Depression Scale. Those evacuated had significantly higher mean anxiety (p = 0.01) and depression (p = 0.04) scores than those not evacuated. Regression modelling showed that anxiety scores were higher for women, with longer time since the fire and with evacuation to a motel. Depression scores were higher for women and with financial loss because of lack of work. Interpretation: Although evacuation was associated with higher anxiety and depression scores, persisting ill health was not widespread at early follow-up after the fire. Although these results are encouraging, these "healthy worker" results cannot be generalized to all evacuees. PMID:28819065

  9. Effects of the Fort McMurray wildfires on the health of evacuated workers: follow-up of 2 cohorts.

    PubMed

    Cherry, Nicola; Haynes, Whitney

    2017-08-15

    Wildfire engulfed Fort McMurray, Alberta on May 3, 2016, leading to a total evacuation. Access to 2 active cohorts allowed us to rapidly assess health effects in those evacuated. People working in Fort McMurray who had been recruited before the fire for 2 occupational health cohort studies completed a questionnaire (online or via telephone) 3-26 weeks after evacuation. The questionnaire asked about respiratory and mental health and experiences since the fire. Of the 129 participants, 109 were in the Fort McMurray area on May 3. Thirty-seven (33.9%) of the participants who were in Fort McMurray on May 3 reported a health condition, including respiratory symptoms ( n = 17) and mental ill health ( n = 17), immediately after the fire. At follow-up, a mean of 102 days after the fire, 11 participants (10.1%) reported a fire-related health condition, including mental ill health ( n = 8) and respiratory symptoms ( n = 2). There was no difference before and after the fire in use of alcohol, cigarettes, recreational drugs or medication. One in 4 participants (32 [24.6%]) had not worked since the fire, and fewer than half (58 [44.6%]) had returned to Fort McMurray. Of the 90 participants evacuated, 15 (16.7%) had scores indicative of moderate or severe anxiety or depression on the Hospital Anxiety and Depression Scale. Those evacuated had significantly higher mean anxiety ( p = 0.01) and depression ( p = 0.04) scores than those not evacuated. Regression modelling showed that anxiety scores were higher for women, with longer time since the fire and with evacuation to a motel. Depression scores were higher for women and with financial loss because of lack of work. Although evacuation was associated with higher anxiety and depression scores, persisting ill health was not widespread at early follow-up after the fire. Although these results are encouraging, these "healthy worker" results cannot be generalized to all evacuees. Copyright 2017, Joule Inc. or its licensors.

  10. The FASTER Approach: A New Tool for Calculating Real-Time Tsunami Flood Hazards

    NASA Astrophysics Data System (ADS)

    Wilson, R. I.; Cross, A.; Johnson, L.; Miller, K.; Nicolini, T.; Whitmore, P.

    2014-12-01

    In the aftermath of the 2010 Chile and 2011 Japan tsunamis that struck the California coastline, emergency managers requested that the state tsunami program provide more detailed information about the flood potential of distant-source tsunamis well ahead of their arrival time. The main issue is that existing tsunami evacuation plans call for evacuation of the predetermined "worst-case" tsunami evacuation zone (typically at a 30- to 50-foot elevation) during any "Warning" level event; the alternative is to not call an evacuation at all. A solution to provide more detailed information for secondary evacuation zones has been the development of tsunami evacuation "playbooks" to plan for tsunami scenarios of various sizes and source locations. To determine a recommended level of evacuation during a distant-source tsunami, an analytical tool has been developed called the "FASTER" approach, an acronym for factors that influence the tsunami flood hazard for a community: Forecast Amplitude, Storm, Tides, Error in forecast, and the Run-up potential. Within the first couple hours after a tsunami is generated, the National Tsunami Warning Center provides tsunami forecast amplitudes and arrival times for approximately 60 coastal locations in California. At the same time, the regional NOAA Weather Forecast Offices in the state calculate the forecasted coastal storm and tidal conditions that will influence tsunami flooding. Providing added conservatism in calculating tsunami flood potential, we include an error factor of 30% for the forecast amplitude, which is based on observed forecast errors during recent events, and a site specific run-up factor which is calculated from the existing state tsunami modeling database. The factors are added together into a cumulative FASTER flood potential value for the first five hours of tsunami activity and used to select the appropriate tsunami phase evacuation "playbook" which is provided to each coastal community shortly after the forecast is provided.

  11. The Mapping of Temporary Evacuation Site (TES) and Tsunami Evacuation Route in North Pagai Island, Mentawai Islands Regency - Indonesia

    NASA Astrophysics Data System (ADS)

    Putra, Aprizon; Mutmainah, Herdiana

    2016-11-01

    Mentawai Islands Regency, especially north Pagai island, suffered two earthquakes on April 15 2016. The local government in cooperation with the relevant parties had tried to minimize casualties before the disaster or during the disaster by making an evacuation route to the TES. The purpose of this study was to the mapping of TES and tsunami evacuation route using the approach of Geographic Information Systems (GIS) for disaster mitigation of tsunami-potential earthquake in north Pagai island.The research was conducted at 3 locations in the coast of Sikakap village, 4 locations in the coast of Taikako village, 3 locations in the coast of Silabu village, 7 locations in the coast of Saumanganya village, and 3 locations in the coast of Matobe village. The effort taken was to evacuate people to the TES with an average distance of 372.62 m from the beach. The results showed that the feasibility of TES that could accommodate residents, among others, were in the hills behind Sikakap Port, Taikako Silaoinan hills, the hills near the Mapinang Silabu village chief's office and Mapinang hills, Gulukguluk Saumanganya and Panatarat Matobe hills.

  12. Acute respiratory symptoms and evacuation-related behavior after exposure to chlorine gas leakage.

    PubMed

    Han, Sung-Woo; Choi, Won-Jun; Yi, Min-Kee; Song, Seng-Ho; Lee, Dong-Hoon; Han, Sang-Hwan

    2016-01-01

    A study was performed on the accidental chlorine gas leakage that occurred in a factory of printed circuit boards manufactured without chlorine. Health examination was performed for all 52 workers suspected of exposure to chlorine gas, and their evacuation-related behaviors were observed in addition to analyzing the factors that affected the duration of their acute respiratory symptoms. Behavioral characteristics during the incidence of the accidental chlorine gas leakage, the estimated time of exposure, and the duration of subjective acute respiratory symptoms were investigated. In addition, clinical examination, chest radiography, and dental erosion test were performed. As variables that affected the duration of respiratory symptoms, dose group, body weight, age, sex, smoking, work period, and wearing a protective gear were included and analyzed by using the Cox proportional hazard model. Of 47 workers exposed to chlorine gas, 36 (77 %) developed more than one subjective symptom. The duration of the subjective symptoms according to exposure level significantly differed, with a median of 1 day (range, 0-5 days) in the low-exposure group and 2 days (range, 0-25 days) in the high-exposure group. Among the variables that affected the duration of the acute respiratory symptoms, which were analyzed by using the Cox proportional hazard model, only exposure level was significant (hazard ratio 2.087, 95 % CI = 1.119, 3.890). Regarding the evacuation-related behaviors, 22 workers (47 %) voluntarily evacuated to a safety zone immediately after recognizing the accidental exposure, but 25 workers (43 %) delayed evacuation until the start of mandatory evacuation (min 5, max 25 min). The duration of the subjective acute respiratory symptoms significantly differed between the low- and high-exposure groups. Among the 27 workers in the high-exposure group, 17 misjudged the toxicity after being aware of the gas leakage, which is a relatively high number.

  13. U. S. Army Operation Enduring Freedom Deployment Injury Surveillance Summary, 1 January-31 December 2012

    DTIC Science & Technology

    2015-06-01

    Training, American Football , and Weight Lifting) ......................... 27 8. Causes of Air Evacuated Back Injuries (NBI) Iraq and Afghanistan...American football (14 percent). (Note: These data examples are not shown in the figure.) OEF Injury Intention 1 Air Evacuations...Blood Vessel Contu- sion/Su- perficial Crush Burns Nerves Unspeci- fied System- wide & late effects Post- Concussive Total Percent Percent by Body

  14. Flood disaster preparedness: a retrospect from Grand Forks, North Dakota.

    PubMed

    Siders, C; Jacobson, R

    1998-01-01

    Natural disasters often come without warning. The clinical, financial, and business risks can be enormous. Grand Forks' (ND) healthcare systems experienced a flooding disaster of unprecedented proportions in April of 1997. Planned and practiced disaster and evacuation procedures can significantly reduce a healthcare facilities' risk to life, health, and safety. This article retrospectively analyzes disaster preparation and the complete evacuation of the facilities' patients.

  15. Influence and Modeling of Residual Stresses in Thick Walled Pressure Vessels with Through Holes

    DTIC Science & Technology

    2012-02-28

    9 FIGURE 4 ENVIRONMENTAL CRACKING OBSERVED IN EVACUATOR HOLE .......... 9 FIGURE 5 STRESSES PRESENT IN STRAIGHT EVACUATOR... ASSESMENT OF INITIAL DAMAGE Through investigation was undertaken on vessels similar in size and strength level to pressure vessels 85A and 85B...suggesting that the source of the residual stresses required to initiate and propagate these environmental cracks is not a resultant of the typical

  16. Performance of evacuated tubular solar collectors in a residential heating and cooling system. Final report, 1 October 1978-30 September 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duff, W.S.; Loef, G.O.G.

    1981-03-01

    Operation of CSU Solar House I during the heating season of 1978-1979 and during the 1979 cooling season was based on the use of systems comprising an experimental evacuated tubular solar collector, a non-freezing aqueous collection medium, heat exchange to an insulated conventional vertical cylindrical storage tank and to a built-up rectangular insulated storage tank, heating of circulating air by solar heated water and by electric auxiliary in an off-peak heat storage unit, space cooling by lithium bromide absorption chiller, and service water heating by solar exchange and electric auxiliary. Automatic system control and automatic data acquisition and computation aremore » provided. This system is compared with others evaluated in CSU Solar Houses I, II and III, and with computer predictions based on mathematical models. Of the 69,513 MJ total energy requirement for space heating and hot water during a record cold winter, solar provided 33,281 MJ equivalent to 48 percent. Thirty percent of the incident solar energy was collected and 29 percent was delivered and used for heating and hot water. Of 33,320 MJ required for cooling and hot water during the summer, 79 percent or 26,202 MJ were supplied by solar. Thirty-five percent of the incident solar energy was collected and 26 percent was used for hot water and cooling in the summer. Although not as efficient as the Corning evacuated tube collector previously used, the Philips experimental collector provides solar heating and cooling with minimum operational problems. Improved performance, particularly for cooling, resulted from the use of a very well-insulated heat storage tank. Day time (on-peak) electric auxiliary heating was completely avoided by use of off-peak electric heat storage. A well-designed and operated solar heating and cooling system provided 56 percent of the total energy requirements for heating, cooling, and hot water.« less

  17. Evacuation of Intensive Care Units During Disaster: Learning From the Hurricane Sandy Experience.

    PubMed

    King, Mary A; Dorfman, Molly V; Einav, Sharon; Niven, Alex S; Kissoon, Niranjan; Grissom, Colin K

    2016-02-01

    Data on best practices for evacuating an intensive care unit (ICU) during a disaster are limited. The impact of Hurricane Sandy on New York City area hospitals provided a unique opportunity to learn from the experience of ICU providers about their preparedness, perspective, roles, and activities. We conducted a cross-sectional survey of nurses, respiratory therapists, and physicians who played direct roles during the Hurricane Sandy ICU evacuations. Sixty-eight health care professionals from 4 evacuating hospitals completed surveys (35% ICU nurses, 21% respiratory therapists, 25% physicians-in-training, and 13% attending physicians). Only 21% had participated in an ICU evacuation drill in the past 2 years and 28% had prior training or real-life experience. Processes were inconsistent for patient prioritization, tracking, transport medications, and transport care. Respondents identified communication (43%) as the key barrier to effective evacuation. The equipment considered most helpful included flashlights (24%), transport sleds (21%), and oxygen tanks and respiratory therapy supplies (19%). An evacuation wish list included walkie-talkies/phones (26%), lighting/electricity (18%), flashlights (10%), and portable ventilators and suction (16%). ICU providers who evacuated critically ill patients during Hurricane Sandy had little prior knowledge of evacuation processes or vertical evacuation experience. The weakest links in the patient evacuation process were communication and the availability of practical tools. Incorporating ICU providers into hospital evacuation planning and training, developing standard evacuation communication processes and tools, and collecting a uniform dataset among all evacuating hospitals could better inform critical care evacuation in the future.

  18. A microcomputer-based emergency response system*.

    PubMed

    Belardo, S; Howell, A; Ryan, R; Wallace, W A

    1983-09-01

    A microcomputer-based system was developed to provide local officials responsible for disaster management with assistance during the crucial period immediately following a disaster, a period when incorrect decisions could have an adverse impact on the surrounding community. While the paper focuses on a potential disaster resulting from an accident at a commercial nuclear power generating facility, the system can be applied to other disastrous situations. Decisions involving evacuation, shelter and the deployment of resources must be made in response to floods, earthquakes, accidents in the transportation of hazardous materials, and hurricanes to name a few examples. As a decision aid, the system was designed to enhance data display by presenting the data in the form of representations (i.e. road maps, evacuation routes, etc.) as well as in list or tabular form. The potential impact of the event (i.e. the release of radioactive material) was displayed in the form of a cloud, representing the dispersion of the radioactive material. In addition, an algorithm was developed to assist the manager in assigning response resources to demands. The capability for modelling the impact of a disaster is discussed briefly, with reference to a system installed in the communities surrounding the Indian Point nuclear power plant in New York State. Results demonstrate both the technical feasibility of incorporating microcomputers indecision support systems for radiological emergency response, and the acceptance of such systems by those public officials responsible for implementing the response plans.

  19. Predictive value of impaired evacuation at proctography in diagnosing anismus.

    PubMed

    Halligan, S; Malouf, A; Bartram, C I; Marshall, M; Hollings, N; Kamm, M A

    2001-09-01

    We aimed to determine the positive predictive value of impaired evacuation during evacuation proctography for the subsequent diagnosis of anismus. Thirty-one adults with signs of impaired evacuation (defined as the inability to evacuate two thirds of a 120 mL contrast enema within 30 sec) during evacuation proctography underwent subsequent anorectal physiologic testing for anismus. A physiologic diagnosis of anismus was based on a typical clinical history of the condition combined with impaired rectal balloon expulsion or abnormal surface electromyogram. Twenty-eight (90%) of the 31 patients with impaired proctographic evacuation were found to have anismus at subsequent physiologic testing. Among the 28 were all 10 patients who evacuated no contrast medium and all 11 patients with inadequate pelvic floor descent, giving evacuation proctography a positive predictive value of 90% for the diagnosis of anismus. A prominent puborectal impression was seen in only three subjects during proctography, one of whom subsequently showed no physiologic sign of anismus. Impaired evacuation during evacuation proctography is highly predictive for diagnosis of anismus.

  20. Cellular automaton model of crowd evacuation inspired by slime mould

    NASA Astrophysics Data System (ADS)

    Kalogeiton, V. S.; Papadopoulos, D. P.; Georgilas, I. P.; Sirakoulis, G. Ch.; Adamatzky, A. I.

    2015-04-01

    In all the living organisms, the self-preservation behaviour is almost universal. Even the most simple of living organisms, like slime mould, is typically under intense selective pressure to evolve a response to ensure their evolution and safety in the best possible way. On the other hand, evacuation of a place can be easily characterized as one of the most stressful situations for the individuals taking part on it. Taking inspiration from the slime mould behaviour, we are introducing a computational bio-inspired model crowd evacuation model. Cellular Automata (CA) were selected as a fully parallel advanced computation tool able to mimic the Physarum's behaviour. In particular, the proposed CA model takes into account while mimicking the Physarum foraging process, the food diffusion, the organism's growth, the creation of tubes for each organism, the selection of optimum tube for each human in correspondence to the crowd evacuation under study and finally, the movement of all humans at each time step towards near exit. To test the model's efficiency and robustness, several simulation scenarios were proposed both in virtual and real-life indoor environments (namely, the first floor of office building B of the Department of Electrical and Computer Engineering of Democritus University of Thrace). The proposed model is further evaluated in a purely quantitative way by comparing the simulation results with the corresponding ones from the bibliography taken by real data. The examined fundamental diagrams of velocity-density and flow-density are found in full agreement with many of the already published corresponding results proving the adequacy, the fitness and the resulting dynamics of the model. Finally, several real Physarum experiments were conducted in an archetype of the aforementioned real-life environment proving at last that the proposed model succeeded in reproducing sufficiently the Physarum's recorded behaviour derived from observation of the aforementioned biological laboratory experiments.

  1. Range Systems Simulation for the NASA Shuttle: Emphasis on Disaster and Prevention Management During Lift-Off

    NASA Technical Reports Server (NTRS)

    Rabelo, Lisa; Sepulveda, Jose; Moraga, Reinaldo; Compton, Jeppie; Turner, Robert

    2005-01-01

    This article describes a decision-making system composed of a number of safety and environmental models for the launch phase of a NASA Space Shuttle mission. The components of this distributed simulation environment represent the different systems that must collaborate to establish the Expectation of Casualties (E(sub c)) caused by a failed Space Shuttle launch and subsequent explosion (accidental or instructed) of the spacecraft shortly after liftoff. This decision-making tool employs Space Shuttle reliability models, trajectory models, a blast model, weather dissemination systems, population models, amount and type of toxicants, gas dispersion models, human response functions to toxicants, and a geographical information system. Since one of the important features of this proposed simulation environment is to measure blast, toxic, and debris effects, the clear benefits is that it can help safety managers not only estimate the population at risk, but also to help plan evacuations, make sheltering decisions, establish the resources required to provide aid and comfort, and mitigate damages in case of a disaster.

  2. Epidural Hematoma Complication after Rapid Chronic Subdural Hematoma Evacuation: A Case Report

    PubMed Central

    Akpinar, Aykut; Ucler, Necati; Erdogan, Uzay; Yucetas, Cem Seyho

    2015-01-01

    Patient: Male, 41 Final Diagnosis: Healty Symptoms: Headache Medication: — Clinical Procedure: Chronic subdural hematoma Specialty: Neurosurgery Objective: Diagnostic/therapeutic accidents Background: Chronic subdural hematoma generally occurs in the elderly. After chronic subdural hematoma evacuation surgery, the development of epidural hematoma is a very rare entity. Case Report: We report the case of a 41-year-old man with an epidural hematoma complication after chronic subdural hematoma evacuation. Under general anesthesia, the patient underwent a large craniotomy with closed system drainage performed to treat the chronic subdural hematoma. After chronic subdural hematoma evacuation, there was epidural leakage on the following day. Conclusions: Although trauma is the most common risk factor in young CSDH patients, some other predisposing factors may exist. Intracranial hypotension can cause EDH. Craniotomy and drainage surgery can usually resolve the problem. Because of rapid dynamic intracranial changes, epidural leakages can occur. A large craniotomy flap and silicone drainage in the operation area are key safety points for neurosurgeons and hydration is essential. PMID:26147957

  3. Gis-Based Accessibility Analysis of Urban Emergency Shelters: the Case of Adana City

    NASA Astrophysics Data System (ADS)

    Unal, M.; Uslu, C.

    2016-10-01

    Accessibility analysis of urban emergency shelters can help support urban disaster prevention planning. Pre-disaster emergency evacuation zoning has become a significant topic on disaster prevention and mitigation research. In this study, we assessed the level of serviceability of urban emergency shelters within maximum capacity, usability, sufficiency and a certain walking time limit by employing spatial analysis techniques of GIS-Network Analyst. The methodology included the following aspects: the distribution analysis of emergency evacuation demands, the calculation of shelter space accessibility and the optimization of evacuation destinations. This methodology was applied to Adana, a city in Turkey, which is located within the Alpine-Himalayan orogenic system, the second major earthquake belt after the Pacific-Belt. It was found that the proposed methodology could be useful in aiding to understand the spatial distribution of urban emergency shelters more accurately and establish effective future urban disaster prevention planning. Additionally, this research provided a feasible way for supporting emergency management in terms of shelter construction, pre-disaster evacuation drills and rescue operations.

  4. Laboratory evaluation of 10 heat and moisture exchangers using simulated aeromedical evacuation conditions.

    PubMed

    Suliman, Huda S; Fecura, Stephen E; Baskin, Jonathan; Kalns, John E

    2011-06-01

    Heat and moisture exchangers (HMEs) are used for airway humidification in mechanically ventilated patients and have been evaluated only under hospital conditions. U.S. Air Force aeromedical evacuation transports are performed under rugged conditions further complicated by the cold and dry environment in military aircrafts, and HMEs are used to provide airway humidification for patients. This study evaluated 10 commercial HMEs using a test system that simulated aeromedical evacuation conditions. Although the American National Standards Institute recommends inspired air to be at an absolute humidity value of > or = 30 mg/L for mechanically ventilated patients, the highest absolute humidity by any HME was approximately 20 mg/L. Although none of the HMEs were able to maintain a temperature high enough to achieve the humidity standard of the American National Standards Institute, the clinical significance of this standard may be less important than the relative humidity maintained in the respired air, especially on evacuation flights of short duration.

  5. International Organization for Migration: experience on the need for medical evacuation of refugees during the Kosovo crisis in 1999.

    PubMed

    Szilard, Istvan; Cserti, Arpad; Hoxha, Ruhija; Gorbacheva, Olga; O'Rourke, Thomas

    2002-04-01

    The International Organization for Migration (IOM) developed and implemented a three-month project entitled Priority Medical Screening of Kosovar Refugees in Macedonia, within the Humanitarian Evacuation Program (HEP) for Kosovar refugees from FR Yugoslavia, which was adopted in May 1999. The project was based on an agreement with the office of United Nations High Commission for Refugees (UNHCR) and comprised the entry of registration data of refugees with medical condition (Priority Medical Database), and classification (Priority Medical Screening) and medical evacuation of refugees (Priority Medical Evacuation) in Macedonia. To realize the Priority Medical Screening project plan, IOM developed and set up a Medical Database linked to IOM/UNHCR HEP database, recruited and trained a four-member data entry team, worked out and set up a referral system for medical cases from the refugee camps, and established and staffed medical contact office for refugees in Skopje and Tetovo. Furthermore, it organized and staffed a mobile medical screening team, developed and implemented the system and criteria for the classification of referred medical cases, continuously registered and classified the incoming medical reports, contacted regularly the national delegates and referred to them the medically prioritized cases asking for acceptance and evacuation, and co-operated and continuously exchanged the information with UNHCR Medical Co-ordination and HEP team. Within the timeframe of the project, 1,032 medical cases were successfully evacuated for medical treatment to 25 host countries throughout the world. IOM found that those refugees suffering from health problems, who at the time of the termination of the program were still in Macedonia and had not been assisted by the project, were not likely to have been priority one cases, whose health problems could be solved only in a third country. The majority of these vulnerable people needed social rather than medical care and assistance a challenge that international aid agencies needed to address in Macedonia and will need to address elsewhere.

  6. Evacuation simulation using Hybrid Space Discretisation and Application to Large Underground Rail Tunnel Station

    NASA Astrophysics Data System (ADS)

    Chooramun, N.; Lawrence, P. J.; Galea, E. R.

    2017-08-01

    In all evacuation simulation tools, the space through which agents navigate and interact is represented by one the following methods, namely Coarse regions, Fine nodes and Continuous regions. Each of the spatial representation methods has its benefits and limitations. For instance, the Coarse approach allows simulations to be processed very rapidly, but is unable to represent the interactions of the agents from an individual perspective; the Continuous approach provides a detailed representation of agent movement and interaction but suffers from relatively poor computational performance. The Fine nodal approach presents a compromise between the Continuous and Coarse approaches such that it allows agent interaction to be modelled while providing good computational performance. Our approach for representing space in an evacuation simulation tool differs such that it allows evacuation simulations to be run using a combination of Coarse regions, Fine nodes and Continuous regions. This approach, which we call Hybrid Spatial Discretisation (HSD), is implemented within the buildingEXODUS evacuation simulation software. The HSD incorporates the benefits of each of the spatial representation methods whilst providing an optimal environment for representing agent movement and interaction. In this work, we demonstrate the effectiveness of the HSD through its application to a moderately large case comprising of an underground rail tunnel station with a population of 2,000 agents.

  7. Community clusters of tsunami vulnerability in the US Pacific Northwest

    USGS Publications Warehouse

    Wood, Nathan J.; Jones, Jeanne M.; Spielman, Seth; Schmidtlein, Mathew C.

    2015-01-01

    Many coastal communities throughout the world are threatened by local (or near-field) tsunamis that could inundate low-lying areas in a matter of minutes after generation. Although the hazard and sustainability literature often frames vulnerability conceptually as a multidimensional issue involving exposure, sensitivity, and resilience to a hazard, assessments often focus on one element or do not recognize the hazard context. We introduce an analytical framework for describing variations in population vulnerability to tsunami hazards that integrates (i) geospatial approaches to identify the number and characteristics of people in hazard zones, (ii) anisotropic path distance models to estimate evacuation travel times to safety, and (iii) cluster analysis to classify communities with similar vulnerability. We demonstrate this approach by classifying 49 incorporated cities, 7 tribal reservations, and 17 counties from northern California to northern Washington that are directly threatened by tsunami waves associated with a Cascadia subduction zone earthquake. Results suggest three primary community groups: (i) relatively low numbers of exposed populations with varied demographic sensitivities, (ii) high numbers of exposed populations but sufficient time to evacuate before wave arrival, and (iii) moderate numbers of exposed populations but insufficient time to evacuate. Results can be used to enhance general hazard-awareness efforts with targeted interventions, such as education and outreach tailored to local demographics, evacuation training, and/or vertical evacuation refuges.

  8. Survey and evaluation of current design of evacuated collectors. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graham, B. J.

    The general development of these collectors, is described and a description of numerous evacuated collectors is given which vary from collectors that have been widely used in various applications to others which are still being developed in the laboratory. A table summarizing all of the available collectors, along with their characteristics, is presented. There are four evacuated collectors which have been tested, used in demonstration sites, and developed for the market. These collectors are described in detail, and they are compared in performance and cost with a well-engineered, double glazed, selectively coated, flat plate collector. A rather simple model systemmore » of about 2000 ft/sup 2/ of collector area for each of the four evacuated collectors and the flat plate collector is described, along with the support structure and the piping for each. Details of the cost are presented in order to compare collector costs with component costs. All of the available efficiency curves of collectors were plotted for comparison with the efficiency curve of a good, flat plate collector. To show the extent of use of evacuated collectors, a list according to manufacturers and to location of all of the sites at which these collectors are being used is presented.« less

  9. Community clusters of tsunami vulnerability in the US Pacific Northwest.

    PubMed

    Wood, Nathan J; Jones, Jeanne; Spielman, Seth; Schmidtlein, Mathew C

    2015-04-28

    Many coastal communities throughout the world are threatened by local (or near-field) tsunamis that could inundate low-lying areas in a matter of minutes after generation. Although the hazard and sustainability literature often frames vulnerability conceptually as a multidimensional issue involving exposure, sensitivity, and resilience to a hazard, assessments often focus on one element or do not recognize the hazard context. We introduce an analytical framework for describing variations in population vulnerability to tsunami hazards that integrates (i) geospatial approaches to identify the number and characteristics of people in hazard zones, (ii) anisotropic path distance models to estimate evacuation travel times to safety, and (iii) cluster analysis to classify communities with similar vulnerability. We demonstrate this approach by classifying 49 incorporated cities, 7 tribal reservations, and 17 counties from northern California to northern Washington that are directly threatened by tsunami waves associated with a Cascadia subduction zone earthquake. Results suggest three primary community groups: (i) relatively low numbers of exposed populations with varied demographic sensitivities, (ii) high numbers of exposed populations but sufficient time to evacuate before wave arrival, and (iii) moderate numbers of exposed populations but insufficient time to evacuate. Results can be used to enhance general hazard-awareness efforts with targeted interventions, such as education and outreach tailored to local demographics, evacuation training, and/or vertical evacuation refuges.

  10. Techno-economıc Analysıs of Evacuated Tube Solar Water Heater usıng F-chart Method

    NASA Astrophysics Data System (ADS)

    Fayaz, H.; Rahim, N. A.; Saidur, R.; Hasanuzzaman, M.

    2018-05-01

    Solar thermal utilization, especially the application of solar water heater technology, has developed rapidly in recent decades. Solar water heating systems based on thermal collector alone or connected with photovoltaic called as photovoltaic-thermal (PVT) are practical applications to replace the use of electrical water heaters but weather dependent performance of these systems is not linear. Therefore on the basis of short term or average weather conditions, accurate analysis of performance is quite difficult. The objective of this paper is to show thermal and economic analysis of evacuated tube collector solar water heaters. Analysis done by F-Chart shows that evacuated tube solar water heater achieves fraction value of 1 to fulfil hot water demand of 150liters and above per day for a family without any auxiliary energy usage. Evacuated tube solar water heater show life cycle savings of RM 5200. At water set temperature of 100°C, RM 12000 is achieved and highest life cycle savings of RM 6100 at the environmental temperature of 18°C are achieved. Best thermal and economic performance is obtained which results in reduction of household greenhouse gas emissions, reduction of energy consumption and saves money on energy bills.

  11. Dog as an animal model for neurostimulation.

    PubMed

    Hassouna, M; Li, J S; Elhilali, M

    1994-01-01

    The dog provides an important model to study the effect of neural stimulation of different parts of the central and peripheral nervous systems. A multitude of experiments on neurostimulation and neuromodulation to ensure bladder evacuation have been conducted on dogs. The present article reviews the most prominent contributions in the English literature related to neurostimulation using the dog as an experimental model. The various modes of stimulation using dogs as a model and the rationale for their use as well as their shortcomings will be examined. The prominent anatomic features in the neural control of the bladder and the technical aspects involved in neurostimulation of the canine bladder will be reviewed.

  12. Prototype Tsunami Evacuation Park in Padang, West Sumatra, Indonesia

    NASA Astrophysics Data System (ADS)

    Tucker, B. E.; Cedillos, V.; Deierlein, G.; Di Mauro, M.; Kornberg, K.

    2012-12-01

    Padang, Indonesia, a city of some 900,000 people, half of whom live close to the coast and within a five-meter elevation above sea level, has one of the highest tsunami risks in the world due to its close offshore thrust-fault seismic hazard, flat terrain and dense population. There is a high probability that a tsunami will strike the shores of Padang, flooding half of the area of the city, within the next 30 years. If that tsunami occurred today, it is estimated that several hundred thousand people would die, as they could not reach safe ground in the ~30 minute interval between the earthquake's occurrence and the tsunami's arrival. Padang's needs have been amply demonstrated: after earthquakes in 2007, 2009, 2011 and 2012, citizens, thinking that those earthquakes might cause a tsunami, tried to evacuate in cars and motorbikes, which created traffic jams, and most could not reach safe ground in 30 minutes. Since 2008, GeoHazards International (GHI) and Stanford University have studied a range of options for improving this situation, including ways to accelerate evacuation to high ground with pedestrian bridges and widened roads, and means of "vertical" evacuation in multi-story buildings, mosques, pedestrian overpasses, and Tsunami Evacuation Parks (TEPs), which are man-made hills with recreation facilities on top. TEPs proved most practical and cost-effective for Padang, given the available budget, technology and time. The Earth Observatory Singapore (EOS) developed an agent-based model that simulates pedestrian and vehicular evacuation to assess tsunami risk and risk reduction interventions in Southeast Asia. EOS applied this model to analyze the effectiveness in Padang of TEPs over other tsunami risk management approaches in terms of evacuation times and the number of people saved. The model shows that only ~24,000 people (20% of the total population) in the northern part of Padang can reach safe ground within 30 minutes, if people evacuate using cars and motorbikes immediately after the earthquake. If one TEP is built, ~46,000 could reach safe ground within 30 minutes, and if three were built ~72,000 could. GHI has acquired permission to build a prototype TEP in the northern part of Padang that would accommodate about 25,000 people during the time of a tsunami. This would cost about 4.7 million, amounting to a cost-per-life-saved of ~US200, far lower than the per capita cost of the other options. The cost of replication should be less. This interdisciplinary, international effort demonstrated that TEPs offer the best option for Padang because they have the potential to save thousands of lives, are relatively simple to build and maintain, invite everyday recreational use by the community, and have attracted strong Indonesian government support as a possible means to manage the country's tsunami risk.

  13. Community disruptions and business costs for distant tsunami evacuations using maximum versus scenario-based zones

    USGS Publications Warehouse

    Wood, Nathan J.; Wilson, Rick I.; Ratliff, Jamie L.; Peters, Jeff; MacMullan, Ed; Krebs, Tessa; Shoaf, Kimberley; Miller, Kevin

    2017-01-01

    Well-executed evacuations are key to minimizing loss of life from tsunamis, yet they also disrupt communities and business productivity in the process. Most coastal communities implement evacuations based on a previously delineated maximum-inundation zone that integrates zones from multiple tsunami sources. To support consistent evacuation planning that protects lives but attempts to minimize community disruptions, we explore the implications of scenario-based evacuation procedures and use the California (USA) coastline as our case study. We focus on the land in coastal communities that is in maximum-evacuation zones, but is not expected to be flooded by a tsunami generated by a Chilean earthquake scenario. Results suggest that a scenario-based evacuation could greatly reduce the number of residents and employees that would be advised to evacuate for 24–36 h (178,646 and 159,271 fewer individuals, respectively) and these reductions are concentrated primarily in three counties for this scenario. Private evacuation spending is estimated to be greater than public expenditures for operating shelters in the area of potential over-evacuations ($13 million compared to $1 million for a 1.5-day evacuation). Short-term disruption costs for businesses in the area of potential over-evacuation are approximately $122 million for a 1.5-day evacuation, with one-third of this cost associated with manufacturing, suggesting that some disruption costs may be recouped over time with increased short-term production. There are many businesses and organizations in this area that contain individuals with limited mobility or access and functional needs that may have substantial evacuation challenges. This study demonstrates and discusses the difficulties of tsunami-evacuation decision-making for relatively small to moderate events faced by emergency managers, not only in California but in coastal communities throughout the world.

  14. Was the Risk from Nursing-Home Evacuation after the Fukushima Accident Higher than the Radiation Risk?

    PubMed

    Murakami, Michio; Ono, Kyoko; Tsubokura, Masaharu; Nomura, Shuhei; Oikawa, Tomoyoshi; Oka, Tosihiro; Kami, Masahiro; Oki, Taikan

    2015-01-01

    After the 2011 accident at the Fukushima Daiichi nuclear power plant, nursing-home residents and staff were evacuated voluntarily from damaged areas to avoid radiation exposure. Unfortunately, the evacuation resulted in increased mortalities among nursing home residents. We assessed the risk trade-off between evacuation and radiation for 191 residents and 184 staff at three nursing homes by using the same detriment indicator, namely loss of life expectancy (LLE), under four scenarios, i.e. "rapid evacuation (in accordance with the actual situation; i.e. evacuation on 22 March)," "deliberate evacuation (i.e. evacuation on 20 June)," "20-mSv exposure," and "100-mSv exposure." The LLE from evacuation-related mortality among nursing home residents was assessed with survival probability data from nursing homes in the city of Minamisoma and the city of Soma. The LLE from radiation mortality was calculated from the estimated age-specific mortality rates from leukemia and all solid cancers based on the additional effective doses and the survival probabilities. The total LLE of residents due to evacuation-related risks in rapid evacuation was 11,000 persons-d-much higher than the total LLEs of residents and staff due to radiation in the other scenarios (27, 1100, and 5800 persons-d for deliberate evacuation, 20 mSv-exposure, and 100 mSv-exposure, respectively). The latitude for reducing evacuation risks among nursing home residents is surprisingly large. Evacuation regulation and planning should therefore be well balanced with the trade-offs against radiation risks. This is the first quantitative assessment of the risk trade-off between radiation exposure and evacuation after a nuclear power plant accident.

  15. Reduction of forecast uncertainty in the context of hydropower production: a case study for two catchment in Lac-St-Jean, Canada

    NASA Astrophysics Data System (ADS)

    Brisson, Cathy; Boucher, Marie-Amélie; Latraverse, Marco

    2014-05-01

    This research focuses on the improvement of streamflow forecasts for two subcatchments in the Lac-St-Jean area, a northern part of the province of Quebec in Canada. Those two subcatchments, named Manouane and Passes-Dangereuses, are part of a bigger system, which comprises many reservoirs and six hydropower plants. This system is managed by Rio Tinto Alcan, an aluminium producer who needs this energy for its processes. Optimal management of the hydropower plants highly depends on the reliability of the inflow forecasts to the reservoirs and also on the reliability of observed streamflow. The latter are not directly measured, but rather deduced from the computation of a water balance. This water balance includes streamflow computation based on rating curves for river sections and upstream reservoirs and a modelling process using CEQUEAU hydrological model (Morin et al., 1981). In addition, mostly during the winter, the model has to account for a transfer of water from Lac Manouane reservoir to Passes-Dangereuses through Bonnard channel. Winter flow though Bonnard channel is controlled by a spillway, and represented in CEQUEAU by a transfer function and a fixed time delay (2 days). However, it is suspected that the evacuation function, as it is currently computed, is inaccurate. The main objective of this work is to reduce predictive uncertainty for Lac Manouane and Passes-Dangereuses catchment, for the one-day ahead horizon. This objective is twofold. First, the uncertainty related to the parameterization of the hydrological model had never been evaluated. It was to be investigated whether it is better to spatialize the calibration of the hydrological model. In its actual form, the calibration of the hydrological model CEQUEAU (Morin et al., 1981) is based exclusively on the downstream outflow. There is, however, intermediate streamflow measurements data available for an intermediate location. Our study shows that calibrating the model using streamflows for both locations (intermediate location and downstream) leads to improved forecasts, as measured by the Nash-Sutcliffe efficiency criterion. The parameter sets thus determined best represent the phenomena of exchange and runoff in the watershed. Second, this study aims at reducing the uncertainty associated to the evacuation function for the Bonnard channel as well as the time delay related to this transfer. Instead of using a fixed 2-day time delay for the transfer, it was attempted to represent the channel in the hydrological model CEQUEAU and compute the time delay from this model. The results show that hydrological modelling does not improve the results and that the 2-day time delay is adequate, especially for first days of opening and few days after closure of the gate. In addition, this research shows that the evacuation function of Bonnard spillway is inexact for large streamflows. It is considered the main source of uncertainty for the prediction of inflows to the reservoirs. We also show that the evacuated streamflows can be successfully corrected by hydrological modelling. This case study shows that a careful revision of the inflow forecasting process for those important watersheds can help reduce predictive uncertainty. Although the application is specific to the Lac-St-Jean area, we believe that our experience could serve other users and water managers with similar issues regarding inflow uncertainty. Reference Morin, G., J.-P. Fortin, J.-P. Lardeau, W. Sochanska and S. Paquette. 1981. Modèle CEQUEAU : Manuel d'utilisation. Rapport de recherche no R-93, INRS-Eau, Sainte-Foy

  16. Deaths associated with Hurricane Sandy - October-November 2012.

    PubMed

    2013-05-24

    On October 29, 2012, Hurricane Sandy hit the northeastern U.S. coastline. Sandy's tropical storm winds stretched over 900 miles (1,440 km), causing storm surges and destruction over a larger area than that affected by hurricanes with more intensity but narrower paths. Based on storm surge predictions, mandatory evacuations were ordered on October 28, including for New York City's Evacuation Zone A, the coastal zone at risk for flooding from any hurricane. By October 31, the region had 6-12 inches (15-30 cm) of precipitation, 7-8 million customers without power, approximately 20,000 persons in shelters, and news reports of numerous fatalities (Robert Neurath, CDC, personal communication, 2013). To characterize deaths related to Sandy, CDC analyzed data on 117 hurricane-related deaths captured by American Red Cross (Red Cross) mortality tracking during October 28-November 30, 2012. This report describes the results of that analysis, which found drowning was the most common cause of death related to Sandy, and 45% of drowning deaths occurred in flooded homes in Evacuation Zone A. Drowning is a leading cause of hurricane death but is preventable with advance warning systems and evacuation plans. Emergency plans should ensure that persons receive and comprehend evacuation messages and have the necessary resources to comply with them.

  17. Minimally invasive cone beam CT-guided evacuation of parenchymal and ventricular hemorrhage using the Apollo system: proof of concept in a cadaver model.

    PubMed

    Fiorella, David; Arthur, Adam; Schafer, Sebastian

    2015-08-01

    The Apollo system (Penumbra Inc, Alameda, California, USA) is a low profile irrigation-aspiration system designed for the evacuation of intracranial hemorrhage. To demonstrate the feasibility of using Apollo in combination with cone beam CT guidance. Parenchymal (n=1) and mixed parenchymal-intraventricular hematomas (n=1) were created in cadaver heads using a transvascular (n=1) or transcranial (n=1) approach. Hematomas were then imaged with cone beam CT (CB-CT), and the long axis of the hematoma defined. The CB-CT data were then used to guide transcranial access to the hematoma-defining the location of the burr hole and the path to the leading edge of the hematoma. An 8F vascular sheath was then placed under live fluoroscopic guidance into the hematoma. A second CB-CT was performed to confirm localization of the sheath. The hematoma was then demarcated on the CB-CT and the Apollo wand was introduced through the 8F sheath and irrigation-aspiration was performed under (periodic) live fluoroscopic guidance. The operators manipulated the wand within the visible boundaries of the hematoma. After irrigation-aspiration, a control CB-CT was performed to document reduction in hematoma volume. Transvascular and transcranial techniques were both successful in creating intracranial hematomas. Hematomas could be defined with conspicuity sufficient for localization and volumetric measurement using CB-CT. Live fluoroscopic guidance was effective in navigating a sheath into the leading aspect of a parenchymal hematoma and guiding irrigation-aspiration with the Apollo system. Irrigation-aspiration reduced the parenchymal hemorrhage volume from 14.8 to 1.7 cc in 189 s in the first case (parenchymal hemorrhage) and from 26.4 to 4.1 cc in 300 s in the second case (parenchymal and intraventricular hemorrhage). The cadaver model described is a useful means of studying interventional techniques for intracranial hemorrhage. It seems feasible to use CB-CT to guide the evacuation of intraparenchymal and intraventricular hemorrhage using the Apollo system through a minimally invasive transcranial access. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  18. Community variations in population exposure to near-field tsunami hazards as a function of pedestrian travel time to safety

    USGS Publications Warehouse

    Wood, Nathan J.; Schmidtlein, Mathew C.

    2013-01-01

    Efforts to characterize population exposure to near-field tsunami threats typically focus on quantifying the number and type of people in tsunami-hazard zones. To develop and prioritize effective risk-reduction strategies, emergency managers also need information on the potential for successful evacuations and how this evacuation potential varies among communities. To improve efforts to properly characterize and differentiate near-field tsunami threats among multiple communities, we assess community variations in population exposure to tsunamis as a function of pedestrian travel time to safety. We focus our efforts on the multiple coastal communities in Grays Harbor and Pacific Counties (State of Washington, USA), where a substantial resident and visitor population is threatened by near-field tsunamis related to a potential Cascadia subduction zone earthquake. Anisotropic, path-distance modeling is conducted to estimate travel times to safety and results are merged with various population data, including residents, employees, public venues, and dependent-care facilities. Results suggest that there is substantial variability among communities in the number of people that may have insufficient time to evacuate. Successful evacuations may be possible in some communities assuming slow-walking speeds, are plausible in others if travel speeds are increased, and are unlikely in another set of communities given the large distances and short time horizon. Emergency managers can use these results to prioritize the location and determine the most appropriate type of tsunami risk-reduction strategies, such as education and training in areas where evacuations are plausible and vertical-evacuation structures in areas where they are not.

  19. Reflection on Lessons Learned: An Analysis of the Adverse Outcomes Observed During the Hurricane Rita Evacuation.

    PubMed

    Baker, Karen

    2018-02-01

    In September 2005, nearly 3.7 million people evacuated the Texas coastline in advance of Hurricane Rita's landfall, making the event the largest emergency evacuation in US history. The Rita evacuation underscored the importance of planning for domestic mass-evacuation events, as the evacuation itself led to over 100 of the at least 119 deaths attributed to the storm. In the days preceding Rita's landfall, several cascading, interrelated circumstances precipitated such adverse outcomes. This article explores the series of events leading up to the evacuation's poor outcomes, the response following Rita to amend evacuation plans, and how Texas successfully implemented these changes during later storms to achieve better outcomes. (Disaster Med Public Health Preparedness. 2018;12:115-120).

  20. The long-term impact of war experiences and evacuation on people who were children during World War Two.

    PubMed

    Waugh, Melinda J; Robbins, Ian; Davies, Stephen; Feigenbaum, Janet

    2007-03-01

    During World War Two 1.9 million people were evacuated from British cities where the risk of bombing was perceived to be highest. 1.5 million of these were children who, often unaccompanied, were sent to live with strangers. Two hundred and forty-five people who were evacuated as children were compared with 96 of similar age who did not experience evacuation. Within this self-selected sample, significant numbers of the evacuees were found to have experienced abuse and neglect. Pre-evacuation abuse made continued abuse likely during evacuation, while abuse during evacuation led to children being more likely to continue to be abused on their return home. Abuse during evacuation led to increased scores on the Impact of Event Scale and General Health Questionnaire, and to insecure attachment patterns. The role of evacuation and abuse in the maintenance of long-term psychological problems is discussed.

  1. Nursing home evacuation plans.

    PubMed

    Castle, Nicholas G

    2008-07-01

    I examined evacuation plans from 2134 nursing homes and analyzed national data to determine the types of nursing homes cited for deficiencies in their evacuation plans. Evacuation plans were assessed according to criteria developed by an expert panel funded by the Office of the Inspector General. Deficiency citations came from the Online Survey, Certification, and Recording database, collected from 1997 to 2005. Four specific citations, for written emergency plans, staff training, written evacuation plans, and fire drills, were examined with multivariate logistic regression. Most plans had water supply provisions (96%). Only 31% specified an evacuation route. The rate of citations was relatively stable throughout the study period: each year approximately 0.6% of facilities were found to be deficient in written emergency plans, 2.1% in staff training, 1.2% in written evacuation plans, and 7.9% in fire drills. Some nursing homes need more specific evacuation plans. Water supply was the most and evacuation routes were the least well-addressed areas.

  2. Mass transfer processes in a post eruption hydrothermal system: Parameterisation of microgravity changes at Te Maari craters, New Zealand

    NASA Astrophysics Data System (ADS)

    Miller, Craig A.; Currenti, Gilda; Hamling, Ian; Williams-Jones, Glyn

    2018-05-01

    Fluid transfer and ground deformation at hydrothermal systems occur both as a precursor to, or as a result of, an eruption. Typically studies focus on pre-eruption changes to understand the likelihood of unrest leading to eruption; however, monitoring post-eruption changes is important for tracking the return of the system towards background activity. Here we describe processes occurring in a hydrothermal system following the 2012 eruption of Upper Te Maari crater on Mt Tongariro, New Zealand, from observations of microgravity change and deformation. Our aim is to assess the post-eruption recovery of the system, to provide a baseline for long-term monitoring. Residual microgravity anomalies of up to 92 ± 11 μGal per year are accompanied by up to 0.037 ± 0.01 m subsidence. We model microgravity changes using analytic solutions to determine the most likely geometry and source location. A multiobjective inversion tests whether the gravity change models are consistent with the observed deformation. We conclude that the source of subsidence is separate from the location of mass addition. From this unusual combination of observations, we develop a conceptual model of fluid transfer within a condensate layer, occurring in response to eruption-driven pressure changes. We find that depressurisation drives the evacuation of pore fluid, either exiting the system completely as vapour through newly created vents and fumaroles, or migrating to shallower levels where it accumulates in empty pore space, resulting in positive gravity changes. Evacuated pores then collapse, causing subsidence. In addition we find that significant mass addition occurs from influx of meteoric fluids through the fractured hydrothermal seal. Long-term combined microgravity and deformation monitoring will allow us to track the resealing and re-pressurisation of the hydrothermal system and assess what hazard it presents to thousands of hikers who annually traverse the volcano, within 2 km of the eruption site.

  3. Survival in Emergency Escape from Passenger Aircraft,

    DTIC Science & Technology

    ESCAPE SYSTEMS, *TRANSPORT AIRCRAFT, ESCAPE SYSTEMS, CIVIL AVIATION, STATISTICAL DATA, AIRCRAFT DOORS, EVACUATION, MORTALITY RATE, ADULTS , CHILDREN, SEX, AIRCRAFT FIRES, AIRCRAFT CABINS, FEMALES, BEHAVIOR.

  4. Practical Guide for Emergency Crime Prevention and Penal System Alternatives in Crisis Relocation Planning.

    DTIC Science & Technology

    1982-09-01

    93117____________ 11. CONTROLLING OFFICE NAMIE AND ADDRESS 12. REPORT DATE Federal Emergency Management Agency 21 September 1982 13. NUMBER OF...relocation is the controlled , orderly evacuation of a community that is a possible target for attack by a foreign power. The concept of crisis...SI s Relocation? Crisis relocation is the controlled , orderly evacuation of a comunity which is considered a possible target for foreign attack

  5. Treatment of chronic subdural hematomas with subdural evacuating port system placement in the intensive care unit: evolution of practice and comparison with bur hole evacuation in the operating room.

    PubMed

    Flint, Alexander C; Chan, Sheila L; Rao, Vivek A; Efron, Allen D; Kalani, Maziyar A; Sheridan, William F

    2017-12-01

    OBJECTIVE The aims of this study were to evaluate a multiyear experience with subdural evacuating port system (SEPS) placement for chronic subdural hematoma (cSDH) in the intensive care unit at a tertiary neurosurgical center and to compare SEPS placement with bur hole evacuation in the operating room. METHODS All cases of cSDH evacuation were captured over a 7-year period at a tertiary neurosurgical center within an integrated health care delivery system. The authors compared the performance characteristics of SEPS and bur hole placement with respect to recurrence rates, change in recurrence rates over time, complications, length of stay, discharge disposition, and mortality rates. RESULTS A total of 371 SEPS cases and 659 bur hole cases were performed (n = 1030). The use of bedside SEPS placement for cSDH treatment increased over the 7-year period, from 14% to 80% of cases. Reoperation within 6 months was higher for the SEPS (15.6%) than for bur hole drainage (9.1%) across the full 7-year period (p = 0.002). This observed overall difference was due to a higher rate of reoperation during the same hospitalization (7.0% for SEPS vs 3.2% for bur hole; p = 0.008). Over time, as the SEPS procedure became more common and modifications of the SEPS technique were introduced, the rate of in-hospital reoperation after SEPS decreased to 3.3% (p = 0.02 for trend), and the difference between SEPS and bur hole recurrence was no longer significant (p = 0.70). Complications were uncommon and were similar between the groups. CONCLUSIONS Overall performance characteristics of bedside SEPS and bur hole drainage in the operating room were similar. Modifications to the SEPS technique over time were associated with a reduced reoperation rate.

  6. Modelling water flow under glaciers and ice sheets

    PubMed Central

    Flowers, Gwenn E.

    2015-01-01

    Recent observations of dynamic water systems beneath the Greenland and Antarctic ice sheets have sparked renewed interest in modelling subglacial drainage. The foundations of today's models were laid decades ago, inspired by measurements from mountain glaciers, discovery of the modern ice streams and the study of landscapes evacuated by former ice sheets. Models have progressed from strict adherence to the principles of groundwater flow, to the incorporation of flow ‘elements’ specific to the subglacial environment, to sophisticated two-dimensional representations of interacting distributed and channelized drainage. Although presently in a state of rapid development, subglacial drainage models, when coupled to models of ice flow, are now able to reproduce many of the canonical phenomena that characterize this coupled system. Model calibration remains generally out of reach, whereas widespread application of these models to large problems and real geometries awaits the next level of development. PMID:27547082

  7. Modelling water flow under glaciers and ice sheets.

    PubMed

    Flowers, Gwenn E

    2015-04-08

    Recent observations of dynamic water systems beneath the Greenland and Antarctic ice sheets have sparked renewed interest in modelling subglacial drainage. The foundations of today's models were laid decades ago, inspired by measurements from mountain glaciers, discovery of the modern ice streams and the study of landscapes evacuated by former ice sheets. Models have progressed from strict adherence to the principles of groundwater flow, to the incorporation of flow 'elements' specific to the subglacial environment, to sophisticated two-dimensional representations of interacting distributed and channelized drainage. Although presently in a state of rapid development, subglacial drainage models, when coupled to models of ice flow, are now able to reproduce many of the canonical phenomena that characterize this coupled system. Model calibration remains generally out of reach, whereas widespread application of these models to large problems and real geometries awaits the next level of development.

  8. Modeling operators' emergency response time for chemical processing operations.

    PubMed

    Murray, Susan L; Harputlu, Emrah; Mentzer, Ray A; Mannan, M Sam

    2014-01-01

    Operators have a crucial role during emergencies at a variety of facilities such as chemical processing plants. When an abnormality occurs in the production process, the operator often has limited time to either take corrective actions or evacuate before the situation becomes deadly. It is crucial that system designers and safety professionals can estimate the time required for a response before procedures and facilities are designed and operations are initiated. There are existing industrial engineering techniques to establish time standards for tasks performed at a normal working pace. However, it is reasonable to expect the time required to take action in emergency situations will be different than working at a normal production pace. It is possible that in an emergency, operators will act faster compared to a normal pace. It would be useful for system designers to be able to establish a time range for operators' response times for emergency situations. This article develops a modeling approach to estimate the time standard range for operators taking corrective actions or following evacuation procedures in emergency situations. This will aid engineers and managers in establishing time requirements for operators in emergency situations. The methodology used for this study combines a well-established industrial engineering technique for determining time requirements (predetermined time standard system) and adjustment coefficients for emergency situations developed by the authors. Numerous videos of workers performing well-established tasks at a maximum pace were studied. As an example, one of the tasks analyzed was pit crew workers changing tires as quickly as they could during a race. The operations in these videos were decomposed into basic, fundamental motions (such as walking, reaching for a tool, and bending over) by studying the videos frame by frame. A comparison analysis was then performed between the emergency pace and the normal working pace operations to determine performance coefficients. These coefficients represent the decrease in time required for various basic motions in emergency situations and were used to model an emergency response. This approach will make hazardous operations requiring operator response, alarm management, and evacuation processes easier to design and predict. An application of this methodology is included in the article. The time required for an emergency response was roughly a one-third faster than for a normal response time.

  9. Wargame Simulation Theory and Evaluation Method for Emergency Evacuation of Residents from Urban Waterlogging Disaster Area

    PubMed Central

    Chen, Peng; Zhang, Jiquan; Sun, Yingyue; Liu, Xiaojing

    2016-01-01

    Urban waterlogging seriously threatens the safety of urban residents and properties. Wargame simulation research on resident emergency evacuation from waterlogged areas can determine the effectiveness of emergency response plans for high risk events at low cost. Based on wargame theory and emergency evacuation plans, we used a wargame exercise method, incorporating qualitative and quantitative aspects, to build an urban waterlogging disaster emergency shelter using a wargame exercise and evaluation model. The simulation was empirically tested in Daoli District of Harbin. The results showed that the wargame simulation scored 96.40 points, evaluated as good. From the simulation results, wargame simulation of urban waterlogging emergency procedures for disaster response can improve the flexibility and capacity for command, management and decision-making in emergency management departments. PMID:28009805

  10. Variable Message Signs for road tunnel emergency evacuations.

    PubMed

    Ronchi, Enrico; Nilsson, Daniel; Modig, Henric; Walter, Anders Lindgren

    2016-01-01

    This paper investigates the design of Variable Message Signs (VMS) as a way-finding aid for road tunnel emergency evacuations. The use of the Theory of Affordances is suggested to provide recommendations on the design of VMS. A preliminary evaluation of 11 selected VMS systems was performed and 6 of them were further evaluated using an affordance-based within subject stated-preference questionnaire administered to a sample of 62 participants. Results are used to provide recommendations on the characteristics of the VMS systems, such as (1) size of the sign (large or small); (2) use of flashing lights; (3) colour scheme; (4) message coding (i.e., text, pictograms or a combination of them). The best performing VMS features for road tunnel emergency evacuation included the use of larger signs, flashing lights, the combination of emergency exit pictorial symbol in green in one panel and text in amber in the other panel. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  11. High-resolution Anorectal Manometry for Identifying Defecatory Disorders and Rectal Structural Abnormalities in Women.

    PubMed

    Prichard, David O; Lee, Taehee; Parthasarathy, Gopanandan; Fletcher, Joel G; Zinsmeister, Alan R; Bharucha, Adil E

    2017-03-01

    Contrary to conventional wisdom, the rectoanal gradient during evacuation is negative in many healthy people, undermining the utility of anorectal high-resolution manometry (HRM) for diagnosing defecatory disorders. We aimed to compare HRM and magnetic resonance imaging (MRI) for assessing rectal evacuation and structural abnormalities. We performed a retrospective analysis of 118 patients (all female; 51 with constipation, 48 with fecal incontinence, and 19 with rectal prolapse; age, 53 ± 1 years) assessed by HRM, the rectal balloon expulsion test (BET), and MRI at Mayo Clinic, Rochester, Minnesota, from February 2011 through March 2013. Thirty healthy asymptomatic women (age, 37 ± 2 years) served as controls. We used principal components analysis of HRM variables to identify rectoanal pressure patterns associated with rectal prolapse and phenotypes of patients with prolapse. Compared with patients with normal findings from the rectal BET, patients with an abnormal BET had lower median rectal pressure (36 vs 22 mm Hg, P = .002), a more negative median rectoanal gradient (-6 vs -29 mm Hg, P = .006) during evacuation, and a lower proportion of evacuation on the basis of MRI analysis (median of 40% vs 80%, P < .0001). A score derived from rectal pressure and anorectal descent during evacuation and a patulous anal canal was associated (P = .005) with large rectoceles (3 cm or larger). A principal component (PC) logistic model discriminated between patients with and without prolapse with 96% accuracy. Among patients with prolapse, there were 2 phenotypes, which were characterized by high (PC1) or low (PC2) anal pressures at rest and squeeze along with higher rectal and anal pressures (PC1) or a higher rectoanal gradient during evacuation (PC2). In a retrospective analysis of patients assessed by HRM, measurements of rectal evacuation by anorectal HRM, BET, and MRI were correlated. HRM alone and together with anorectal descent during evacuation may identify rectal prolapse and large rectoceles, respectively, and also identify unique phenotypes of rectal prolapse. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

  12. A study on evacuation time from lecture halls in Faculty of Engineering, Universiti Putra Malaysia

    NASA Astrophysics Data System (ADS)

    Othman, W. N. A. W.; Tohir, M. Z. M.

    2018-04-01

    An evacuation situation in any building involves many risks. The geometry of building and high potential of occupant load may affect the efficiency of evacuation process. Although fire safety rules and regulations exist, they remain insufficient to guarantee the safety of all building occupants and do not prevent the dramatic events to be repeated. The main objective of this project is to investigate the relationship between the movement time, travel speed and occupant density during a series of evacuation drills specifically for lecture halls. Generally, this study emphasizes on the movement of crowd within a limited space and includes the aspects of human behaviour. A series of trial evacuations were conducted in selected lecture halls at Faculty of Engineering, Universiti Putra Malaysia with the aim of collecting actual data for numerical analysis. The numerical data obtained during trial evacuations were used to determine the evacuation time, crowd movement and behaviour during evacuation process particularly for lecture halls. The evacuation time and number of occupants exiting from each exit were recorded. Video camera was used to record and observe the movement behaviour of occupants during evacuations. EvacuatioNZ was used to simulate the trials evacuations of DK 5 and the results predicted were compared with experimental data. EvacuatioNZ was also used to predict the evacuation time and the flow of occupants exiting from each door for DK 4 and DK 8.

  13. Tsunami Risk in the NE Atlantic: Pilot Study for Algarve Portugal and Applications for future TWS

    NASA Astrophysics Data System (ADS)

    Omira, R.; Baptista, M. A.; Catita, C.; Carrilho, F.; Matias, L.

    2012-04-01

    Tsunami risk assessment is an essential component of any Tsunami Early Warning System due to its significant contribution to the disaster reduction by providing valuable information that serve as basis for mitigation preparedness and strategies. Generally, risk assessment combines the outputs of the hazard and the vulnerability assessment for considered exposed elements. In the NE Atlantic region, the tsunami hazard is relatively well established through compilation of tsunami historical events, evaluation of tsunamigenic sources and impact computations for site-specific coastal areas. While, tsunami vulnerability remains poorly investigated in spite of some few studies that focused on limited coastal areas of the Gulf of Cadiz region. This work seeks to present a pilot study for tsunami risk assessment that covers about 170 km of coasts of Algarve region, south of Portugal. This area of high coastal occupation and touristic activities was strongly impacted by the 1755 tsunami event as reported in various historical documents. An approach based upon a combination of tsunami hazard and vulnerability is developed in order to take into account the dynamic aspect of tsunami risk in the region that depends on the variation of hazard and vulnerability of exposed elements from a coastal point to other. Hazard study is based upon the consideration of most credible earthquake scenarios and the derivation of hazard maps through hydrodynamic modeling of inundation and tsunami arrival time. The vulnerability assessment is performed by: i) the analysis of the occupation and the population density, ii) derivation of evacuation maps and safe shelters, and iii) the analysis of population response and evacuation times. Different risk levels ranging from "low" to "high" are assigned to the coats of the studied area. Variation of human tsunami risk between the high and low touristic seasons is also considered in this study and aims to produce different tsunami risk-related scenarios. Results are presented in terms of thematic maps and GIS layers highlighting information on inundation depths and limits, evacuation plans and safe shelters, tsunami vulnerability, evacuation times and tsunami risk levels. Results can be used for national and regional tsunami disaster management and planning. This work is funded by TRIDEC (Collaborative, Complex and Critical Decision-Support in Evolving Crises) FP7, EU project and by MAREMOTI (Mareograph and field tsunami observations, modeling and vulnerability studies for Northeast Atlantic and western Mediterranean) French project. Keywords: Tsunami, Algarve-Portugal, Evacuation, Vulnerability, Risk

  14. Identification of Evacuation Routes in Tacloban City using Geographic Information System

    NASA Astrophysics Data System (ADS)

    Mendoza, Jerico; Mahar Francisco Lagmay, Alfredo; Santiago, Joy; Suarez, John Kenneth

    2016-04-01

    The Philippines is the second most at risk to natural hazards according to the 2014 World Risk Report. On 8 November 2013, category 5 Typhoon Haiyan crossed the central region of the Philippines with maximum sustained wind reaching 315 kph. Considered as one of the strongest typhoons that made landfall in recorded history, Typhoon Haiyan caused USD 8 billion damage to properties, 6,293 deaths, 28,689 injured and 1,061 missing persons. Tacloban City, located in the north-eastern part of the island of Leyte in Eastern Visayas region, is one of the area most devastated by Typhoon Haiyan. The city is susceptible to other natural hazards given its geography, topography and geology. This condition emphasizes the need for preventive measures to avoid further loss of lives and destruction to properties. Evacuation is a mitigating strategy which involves the process of moving people from dangerous places to safer locations. Using Geographic Information System (GIS), a multi-hazard map of Tacloban City was created to determine safe areas for evacuation centers. The optimal route for evacuation was identified using ArcGIS Network Analyst's routing solver based on Dijkstra's algorithm. The medium of transportation used in the analysis is by foot with an average speed of 5.0 kph. Furthermore, the study assumes that all roads are passable and fully functional during the travel period and that there are no structures, trees and other debris that may act as road blockage. The study can be used as a reference in hazard assessment for disaster risk management and evacuation planning. This can be further improved by incorporating behaviour of the affected population and other socio-economic factors, different modes of transportation and detailed analysis of topography.

  15. Influence of Spacer Systems on Heat Transfer in Evacuated Glazing

    NASA Astrophysics Data System (ADS)

    Swimm, K.; Weinläder, H.; Ebert, H.-P.

    2009-06-01

    One attractive possibility to essentially improve the insulation properties of glazing is to evacuate the space between the glass panes. This eliminates heat transport due to convection between the glass panes and suppresses the thermal conductivity of the remaining low pressure filling gas atmosphere. The glass panes can be prevented from collapsing by using a matrix of spacers. These spacers, however, increase heat transfer between the glass panes. To quantify this effect, heat transfer through samples of evacuated glazing was experimentally determined. The samples were prepared with different kinds of spacer materials and spacer distances. The measurements were performed with a guarded hot-plate apparatus under steady-state conditions and at room temperature. The measuring chamber of the guarded hot plate was evacuated to < 10-2 Pa. An external pressure load of 0.1 MPa was applied on the samples to ensure realistic system conditions. Radiative heat transfer was significantly reduced by preparing the samples with a low- ɛ coating on one of the glass panes. In a first step, measurements without any spacers allowed quantification of the amount of radiative heat transfer. With these data, the measurements with spacers could be corrected to separate the effect of the spacers on thermal heat transfer. The influence of the thermal conductivity of the spacer material, as well as the distance between the spacers and the spacer geometry, was experimentally investigated and showed good agreement with simulation results. For mechanically stable matrices with cylindrical spacers, experimental thermal conductance values ≤0.44W·m-2 ·K-1 were found. This shows that U g -values of about 0.5W · m-2 · K-1 are achievable in evacuated glazing, if highly efficient low-emissivity coatings are used.

  16. Optimization-based decision support to assist in logistics planning for hospital evacuations.

    PubMed

    Glick, Roger; Bish, Douglas R; Agca, Esra

    2013-01-01

    The evacuation of the hospital is a very complex process and evacuation planning is an important part of a hospital's emergency management plan. There are numerous factors that affect the evacuation plan including the nature of threat, availability of resources and staff the characteristics of the evacuee population, and risk to patients and staff. The safety and health of patients is of fundamental importance, but safely moving patients to alternative care facilities while under threat is a very challenging task. This article describes the logistical issues and complexities involved in planning and execution of hospital evacuations. Furthermore, this article provides examples of how optimization-based decision support tools can help evacuation planners to better plan for complex evacuations by providing real-world solutions to various evacuation scenarios.

  17. BIM based virtual environment for fire emergency evacuation.

    PubMed

    Wang, Bin; Li, Haijiang; Rezgui, Yacine; Bradley, Alex; Ong, Hoang N

    2014-01-01

    Recent building emergency management research has highlighted the need for the effective utilization of dynamically changing building information. BIM (building information modelling) can play a significant role in this process due to its comprehensive and standardized data format and integrated process. This paper introduces a BIM based virtual environment supported by virtual reality (VR) and a serious game engine to address several key issues for building emergency management, for example, timely two-way information updating and better emergency awareness training. The focus of this paper lies on how to utilize BIM as a comprehensive building information provider to work with virtual reality technologies to build an adaptable immersive serious game environment to provide real-time fire evacuation guidance. The innovation lies on the seamless integration between BIM and a serious game based virtual reality (VR) environment aiming at practical problem solving by leveraging state-of-the-art computing technologies. The system has been tested for its robustness and functionality against the development requirements, and the results showed promising potential to support more effective emergency management.

  18. 43 CFR 12.830 - Buy American Act-Construction materials.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... articles, materials or supplies. However, emergency life safety systems, such as emergency lighting, fire alarm, and audio evacuation systems, which are discrete systems incorporated into a public building or...

  19. 43 CFR 12.830 - Buy American Act-Construction materials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... articles, materials or supplies. However, emergency life safety systems, such as emergency lighting, fire alarm, and audio evacuation systems, which are discrete systems incorporated into a public building or...

  20. 43 CFR 12.830 - Buy American Act-Construction materials.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... articles, materials or supplies. However, emergency life safety systems, such as emergency lighting, fire alarm, and audio evacuation systems, which are discrete systems incorporated into a public building or...

  1. Multimodal solutions for large scale evacuations.

    DOT National Transportation Integrated Search

    2009-12-30

    In this research, a multimodal transportation model was developed attending the needs of emergency situations, : and the solutions provided by the model could be used to moderate congestion during such events. : The model incorporated features such a...

  2. Community clusters of tsunami vulnerability in the US Pacific Northwest

    PubMed Central

    Wood, Nathan J.; Jones, Jeanne; Spielman, Seth; Schmidtlein, Mathew C.

    2015-01-01

    Many coastal communities throughout the world are threatened by local (or near-field) tsunamis that could inundate low-lying areas in a matter of minutes after generation. Although the hazard and sustainability literature often frames vulnerability conceptually as a multidimensional issue involving exposure, sensitivity, and resilience to a hazard, assessments often focus on one element or do not recognize the hazard context. We introduce an analytical framework for describing variations in population vulnerability to tsunami hazards that integrates (i) geospatial approaches to identify the number and characteristics of people in hazard zones, (ii) anisotropic path distance models to estimate evacuation travel times to safety, and (iii) cluster analysis to classify communities with similar vulnerability. We demonstrate this approach by classifying 49 incorporated cities, 7 tribal reservations, and 17 counties from northern California to northern Washington that are directly threatened by tsunami waves associated with a Cascadia subduction zone earthquake. Results suggest three primary community groups: (i) relatively low numbers of exposed populations with varied demographic sensitivities, (ii) high numbers of exposed populations but sufficient time to evacuate before wave arrival, and (iii) moderate numbers of exposed populations but insufficient time to evacuate. Results can be used to enhance general hazard-awareness efforts with targeted interventions, such as education and outreach tailored to local demographics, evacuation training, and/or vertical evacuation refuges. PMID:25870283

  3. Multiple scales modelling approaches to social interaction in crowd dynamics and crisis management. Comment on "Human behaviours in evacuation crowd dynamics: From modelling to "big data" toward crisis management" by Nicola Bellomo et al.

    NASA Astrophysics Data System (ADS)

    Trucu, Dumitru

    2016-09-01

    In this comprehensive review concerning the modelling of human behaviours in crowd dynamics [3], the authors explore a wide range of mathematical approaches spanning over multiple scales that are suitable to describe emerging crowd behaviours in extreme situations. Focused on deciphering the key aspects leading to emerging crowd patterns evolutions in challenging times such as those requiring an evacuation on a complex venue, the authors address this complex dynamics at both microscale (individual level), mesoscale (probability distributions of interacting individuals), and macroscale (population level), ultimately aiming to gain valuable understanding and knowledge that would inform decision making in managing crisis situations.

  4. Burr-hole drainage for the treatment of acute epidural hematoma in coagulopathic patients: a report of eight cases.

    PubMed

    Habibi, Zohreh; Meybodi, Ali Tayebi; Haji Mirsadeghi, Seyed Mohammad; Miri, Seyed Mojtaba

    2012-07-20

    Craniotomy has been accepted as the treatment of choice for the management of acute epidural hematomas (AEDH). However, in practice, it seems possible to evacuate AEDH via a single burr hole instead of the traditional craniotomy in certain circumstances. Among 160 patients with AEDH meeting criteria for evacuation admitted to the emergency and accident division of our center between 2006 and 2009, we found 8 cases of hematoma appearing isodense to brain parenchyma on computed tomography (CT), who had concomitant coagulopathy. These patients were managed by burr-hole drainage for treatment of the liquefied AEDH. A closed drainage system was then kept in the epidural space for 3 days. In all 8 patients, AEDH was evacuated successfully via burr-hole placement over the site of hematoma. The level of consciousness and other symptoms improved within the first day, and no patient required an additional routine craniotomy. For patients with slowly-developing AEDH in the context of impaired coagulation, burr-hole evacuation and drainage might be a less invasive method of treatment compared to conventional craniotomy.

  5. Study of the ‘lifeline’ as the measure allowing for safe self-rescue of miners in conditions of lack of visibility caused by underground fire

    NASA Astrophysics Data System (ADS)

    Badura, Henryk; Grodzicka, Aneta; Musioł, Dariusz

    2017-11-01

    The article presents statistical data regarding the evacuation of miners affected by underground fire hazards. The data indicates that the hazard remains considerable. Due to the increasing lengths of escape routes, measures should be introduced in the longwall regions, which shall improve the safe evacuation of miners, especially in conditions of highly limited visibility or the lack thereof. Within the research project No. 12, entitled: ‘The development of orientation systems and systems for signalling the direction of crew withdrawal for escape routes in longwall gates’, which is a part of the Strategic Research Project entitled ‘The improvement of work safety in mines’ financed by the National Centre for Research and Development, a ‘lifeline’ was designed - that is, a measure that is very effective in the evacuation of staff. Subsequently, tests of time of passage were conducted in the ‘Krupiński’ coal mine in conditions of lack of visibility. The tests have confirmed the suitability of the ‘lifeline’ as the measure used for orientation towards the correct direction of evacuation, which increases the pace and the confidence while travelling through the escape route. The mean speed of passage through the heading with an upwards inclination of 11° was 22 m/min, while in case of a nearly horizontal longwall gate, it was 39 m/min.

  6. How prepared individuals and communities are for evacuation in tsunami-prone areas in Europe? Findings from the ASTARTE EU Programme

    NASA Astrophysics Data System (ADS)

    Lavigne, Franck; Grancher, Delphine; Goeldner-Gianella, Lydie; Karanci, Nuray; Dogulu, Nilay; Kanoglu, Utku; Zaniboni, Filippo; Tinti, Stefano; Papageorgiou, Antonia; Papadopoulos, Gerassimos; Constantin, Angela; Moldovan, Iren; El Mouraouah, Azelarab; Benchekroun, Sabah; Birouk, Abdelouahad

    2016-04-01

    Understanding social vulnerability to tsunamis provides risk managers with the required information to determine whether individuals have the capacity to evacuate, and therefore to take mitigation measures to protect their communities. In the frame of the EU programme ASTARTE (Assessment, STrategy And Risk reduction for Tsunamis in Europe), we conducted a questionnaire-based survey among 1,661 people from 41 nationalities living in, working in, or visiting 10 Test Sites from 9 different countries. The questions, which have been translated in 11 languages, focused on tsunami hazard awareness, risk perception, and knowledge of the existing warning systems. Our results confirm our initial hypothesis that low attention is paid in Europe to tsunami risk. Among all type of hazards, either natural or not, tsunami rank first in only one site (Lyngen fjord in Norway), rank third in 3 other sites (Eforie Nord in Romania, Nice and Istanbul), rank 4 in Gulluk Bay, 5 in Sines and Heraklion, and 10 in Siracusa (Sicily) and San Jordi (Balearic Islands). Whatever the respondent's status (i.e. local population, local authorities, or tourists), earthquakes and drawdown of the sea are cited as tsunami warning signs by 43% and 39% of the respondents, respectively. Therefore self-evacuation is not expected for more than half of the population. Considering that most European countries have no early warning system for tsunamis, a disaster is likely to happen in any coastal area exposed to this specific hazard. Furthermore, knowledge of past tsunami events is also very limited: only 22% of people stated that a tsunami has occurred in the past, whereas a deadly tsunami occurs every century in the Mediterranean Sea (e.g. in AD 365, 1660, 1672 or 1956 in the eastern part, 1908, 1979 or 2003 in the western part), and high tsunami waves devastated the Portugal and Moroccan coasts in 1755. Despite this lack of knowledge and awareness of past events, 62% of the respondents think that the site of the interview could be affected by a tsunami in the future. Respondents were strongly influenced by the images of catastrophic tsunamis they have seen in 2004 and 2011, leading them to consider local wave heights >10 or 15m, even in low-exposed areas such as Nice or the Balearic Islands. Such overestimation of the wave heights could lead to confusion during an evacuation. This survey at the European scale underlines the need to better mitigation strategies, including but not limited to inform residents, local workers and tourists of each site about: (1) the reality of the tsunami risk; (2) the maximal wave height that has been modelled for the worst case; and (3) where to evacuate in case of a future tsunami. Key words: tsunami, coastal risk, hazard knowledge, risk perception, vulnerability, resilience, evacuation, Europe

  7. Comparison of calculation and simulation of evacuation in real buildings

    NASA Astrophysics Data System (ADS)

    Szénay, Martin; Lopušniak, Martin

    2018-03-01

    Each building must meet requirements for safe evacuation in order to prevent casualties. Therefore methods for evaluation of evacuation are used when designing buildings. In the paper, calculation methods were tested on three real buildings. The testing used methods of evacuation time calculation pursuant to Slovak standards and evacuation time calculation using the buildingExodus simulation software. If calculation methods have been suitably selected taking into account the nature of evacuation and at the same time if correct values of parameters were entered, we will be able to obtain almost identical times of evacuation in comparison with real results obtained from simulation. The difference can range from 1% to 27%.

  8. Evacuation of Swedish survivors after the 2004 Southeast Asian tsunami: The survivors' perspective and symptoms of post-traumatic stress.

    PubMed

    Gudmundsdottir, Ragnhildur; Hultman, Christina M; Valdimarsdottir, Unnur

    2018-04-01

    Following the 2004 Southeast Asian tsunami, Swedish authorities received public criticism for slow implementation of rescue work. Meanwhile, data are scarce on survivors' perspectives and potential mental health symptoms associated with timing of evacuation. Therefore, the aim of this study was to investigate survivors' contentment with evacuation time and whether duration at disaster site following the 2004 tsunami was associated with post-traumatic stress symptoms (PTSS) and psychological morbidity. Of 10,116 Swedish tsunami survivors who returned to Sweden in the first 3 weeks post tsunami, 4910 (49%) answered a questionnaire 14 months later including questions on evacuation time, contentment with evacuation time and PTSS (Impact of Event Scale). We used logistic regression to calculate odds ratios (OR) and 95% confidence intervals (95% CI) of PTSS by timing of evacuation adjusting for gender, age, education, various indicators of trauma exposure and pre-tsunami psychiatric diagnoses. More than half of the survivors (53%) were content with evacuation time while 33% wanted later evacuation and 13% earlier evacuation. Compared with those evacuated 14-21 days post tsunami, individuals evacuated at day 1-4 presented with increased odds of PTSS (crude OR 3.0, 95% CI 2.0-4.5; and multivariable adjusted OR 2.0, 95% CI 1.3-3.0) and impaired mental health (crude OR 1.7, 95% CI 1.2-2.4; and multivariable adjusted OR 1.4 95% CI 1.0-2.0). One-third of Swedish tsunami survivors preferred a later evacuation from disaster sites. These findings call for further studies, with prospective designs, to disentangle the causal direction of the association between evacuation time and PTSS.

  9. Computer simulation-based framework for transportation evacuation in major trip generator.

    DOT National Transportation Integrated Search

    2009-01-01

    Since emergencies including both natural disasters and man-made incidents, are happening more and more : frequently, evacuation, especially transportation evacuation, is becoming a hot research focus in recent years. : Currently, transportation evacu...

  10. Multimodal Solutions for Large Scale Evacuation

    DOT National Transportation Integrated Search

    2009-12-30

    In this research, a multimodal transportation model was developed attending the needs of emergency situations, and the solutions provided by the model could be used to moderate congestion during such events. The model incorporated features such as la...

  11. Environmental chamber for in situ dynamic control of temperature and relative humidity during x-ray scattering

    NASA Astrophysics Data System (ADS)

    Salas-de la Cruz, David; Denis, Jeffrey G.; Griffith, Matthew D.; King, Daniel R.; Heiney, Paul A.; Winey, Karen I.

    2012-02-01

    We have designed, constructed, and evaluated an environmental chamber that has in situ dynamic control of temperature (25 to 90 °C) and relative humidity (0% to 95%). The compact specimen chamber is designed for x-ray scattering in transmission with an escape angle of 2θ = ±30°. The specimen chamber is compatible with a completely evacuated system such as the Rigaku PSAXS system, in which the specimen chamber is placed inside a larger evacuated chamber (flight path). It is also compatible with x-ray systems consisting of evacuated flight tubes separated by small air gaps for sample placement. When attached to a linear motor (vertical displacement), the environmental chamber can access multiple sample positions. The temperature and relative humidity inside the specimen chamber are controlled by passing a mixture of dry and saturated gas through the chamber and by heating the chamber walls. Alternatively, the chamber can be used to control the gaseous environment without humidity. To illustrate the value of this apparatus, we have probed morphology transformations in Nafion® membranes and a polymerized ionic liquid as a function of relative humidity in nitrogen.

  12. External factors impacting hospital evacuations caused by Hurricane Rita: the role of situational awareness.

    PubMed

    Downey, Erin L; Andress, Knox; Schultz, Carl H

    2013-06-01

    The 2005 Gulf Coast hurricane season was one of the most costly and deadly in US history. Hurricane Rita stressed hospitals and led to multiple, simultaneous evacuations. This study systematically identified community factors associated with patient movement out of seven hospitals evacuated during Hurricane Rita. This study represents the second of two systematic, observational, and retrospective investigations of seven acute care hospitals that reported off-site evacuations due to Hurricane Rita. Participants from each hospital included decision makers that comprised the Incident Management Team (IMT). Investigators applied a standardized interview process designed to assess evacuation factors related to external situational awareness of community activities during facility evacuation due to hurricanes. The measured outcomes were responses to 95 questions within six sections of the survey instrument. Investigators identified two factors that significantly impacted hospital IMT decision making: (1) incident characteristics affecting a facility's internal resources and challenges; and (2) incident characteristics affecting a facility's external evacuation activities. This article summarizes the latter and reports the following critical decision making points: (1) Emergency Operations Plans (EOP) were activated an average of 85 hours (3 days, 13 hours) prior to Hurricane Rita's landfall; (2) the decision to evacuate the hospital was made an average of 30 hours (1 day, 6 hours) from activation of the EOP; and (3) the implementation of the evacuation process took an average of 22 hours. Coordination of patient evacuations was most complicated by transportation deficits (the most significant of the 11 identified problem areas) and a lack of situational awareness of community response activities. All evacuation activities and subsequent evacuation times were negatively impacted by an overall lack of understanding on the part of hospital staff and the IMT regarding how to identify and coordinate with community resources. Hospital evacuation requires coordinated processes and resources, including situational awareness that reflects the condition of the community as a result of the incident. Successful hospital evacuation decision making is influenced by community-wide situational awareness and transportation deficits. Planning with the community to create realistic EOPs that accurately reflect available resources and protocols is critical to informing hospital decision making during a crisis. Knowledge of these factors could improve decision making and evacuation practices, potentially reducing evacuation times in future hurricanes.

  13. Intrarectal pressures and balloon expulsion related to evacuation proctography.

    PubMed Central

    Halligan, S; Thomas, J; Bartram, C

    1995-01-01

    Seventy four patients with constipation were examined by standard evacuation proctography and then attempted to expel a small, non-deformable rectal balloon, connected to a pressure transducer to measure intrarectal pressure. Simultaneous imaging related the intrarectal position of the balloon to rectal deformity. Inability to expel the balloon was associated proctographically with prolonged evacuation, incomplete evacuation, reduced anal canal diameter, and acute anorectal angulation during evacuation. The presence and size of rectocoele or intussusception was unrelated to voiding of paste or balloon. An independent linear combination of pelvic floor descent and evacuation time on proctography correctly predicted maximum intrarectal pressure in 74% of cases. No patient with both prolonged evacuation and reduced pelvic floor descent on proctography could void the balloon, as maximum intrarectal pressure was reduced in this group. A prolonged evacuation time on proctography, in combination with reduced pelvic floor descent, suggests defecatory disorder may be caused by inability to raise intrarectal pressure. A diagnosis of anismus should not be made on proctography solely on the basis of incomplete/prolonged evacuation, as this may simply reflect inadequate straining. PMID:7672656

  14. Status Report on Medical Materiel Items Tested and Evaluated for Use in the USAF Aeromedical Evacuation System.

    DTIC Science & Technology

    1986-06-01

    P.O. Box 2007 3101 E. Alejo Rd. Palm Springs, CA 92262 Telephone: (619) 327-1571 Date Evaluated June 1979 Summary The BABYbird Ventilator, Model 5900...air. Procurement Manufacturer 15 Product and Manufacturer Infant AIRbird Resuscitator Medical Products Oivision/3M P.O. Box 2007 3101 E. Alejo Rd. Palm...Silicone Bag Medical Products Division/3M P.O. Box 20073101 E. Alejo Rd Palm Springs, CA 92262 Telephone: (619) 327-1571 Date Evaluated July 1978 Sumary

  15. A Strategic Approach to Optimizing the U.S. Army’s Aeromedical Evacuation System in Afghanistan

    DTIC Science & Technology

    2009-07-10

    arise on distinct nodes and the facilities are restricted to a finite set of candidate locations ( Daskin 2008). Here, this problem classifies as a ...Research Logistics, 55(4), 283-294. Daskin , M. (1983) A maximum expected covering location model: formulation, properties and heuristic solution...34,," !hal notwithstan<ling any oilier provision 01 law. no person sha~ be subject to any penart)’ l or fai!;ng to comply willi a cdledion 01 inIormalion W

  16. The Urgent Need for a Comprehensive, Fully Integrated, Joint Intra-Theater Aeromedical Evacuation System

    DTIC Science & Technology

    2017-04-06

    future demands for intra-theater AE for all services and coalition partners in accordance with DoD Directive 5100.01 and the SECDEF’s Memorandum for... demand signal for AE assets approximately doubled. In 2009, the Medical Evacuation Proponency Directorate at Fort Rucker, AL conducted an...Analysis (TAA), but the Army only possessed 38 Air Ambulance Companies in its force structure to meet all of DoD’s AE demands .9 These results included nine

  17. Association of the World War II Finnish Evacuation of Children With Psychiatric Hospitalization in the Next Generation.

    PubMed

    Santavirta, Torsten; Santavirta, Nina; Gilman, Stephen E

    2018-01-01

    Although there is evidence that adverse childhood experiences are associated with worse mental health in adulthood, scarce evidence is available regarding an emerging concern that the next generation might also be affected. To compare the risk of psychiatric hospitalization in cousins whose parents were vs were not exposed to the Finnish evacuation policy that involved a mean 2-year stay with a Swedish foster family. This multigenerational, population-based cohort study of Finnish individuals and their siblings born between January 1, 1933, and December 31, 1944, analyzed the association of evacuee status as a child during World War II in the first generation with the risk of psychiatric hospitalization among offspring in the second generation. Evacuee status during World War II was determined using the Finnish National Archive's registry of participants in the Finnish evacuation. Data on evacuee status were linked to the psychiatric diagnoses in the Finnish Hospital Discharge Register from January 1, 1971, through December 31, 2012, for offspring (n = 93 391) born between January 1, 1950, and December 31, 2010. Sex-specific Cox proportional hazards regression models were used to estimate hazard ratios for risk of psychiatric hospitalization during the follow-up period. Because offspring of evacuees and their nonevacuated siblings are cousins, the Cox proportional hazards regression models included fixed effects to adjust for confounding factors in families. Data analysis was performed from June 15, 2016, to August 26, 2017. Parental participation in the evacuation during World War II (coded 1 for parents who were evacuated and placed in foster care and 0 for those not evacuated). Offspring's initial admission to the hospital for a psychiatric disorder, obtained from the Finnish Hospital Discharge Register from January 1, 1971, through December 31, 2012. Of the 93 391 study persons, 45 955 (49.2%) were women and 47 436 (50.8) were men; mean (SD) age in 2012 among survivors was 45.4 (6.58) years. Female offspring of mothers evacuated to Sweden during childhood had an elevated risk of psychiatric hospitalization (hazard ratio for any type of psychiatric disorder: 2.04 [95% CI, 1.04-4.01]; hazard ratio for mood disorder: 4.68 [95% CI, 1.92-11.42]). There was no excess risk of being hospitalized for a psychiatric disorder among women whose fathers were exposed to the Finnish evacuation policy during World War II or among men whose mothers or fathers were exposed. In a prior follow-up study of the Finnish evacuees, girls evacuated to Swedish foster families during World War II were more likely to be hospitalized for a psychiatric disorder-in particular, a mood disorder-in adulthood than their nonevacuated sisters. The present study found that the offspring of these individuals were also at risk for mental health problems that required hospitalization and suggests that early-life adversities, including war-related exposures, may be associated with mental health disorders that persist across generations.

  18. Routes to effective evacuation planning primer series : evacuating populations with special needs.

    DOT National Transportation Integrated Search

    2009-04-01

    Evacuation operations are conducted under the authority of, and based on decisions by, local and state authorities. The purpose of this primer, Evacuating Populations with Special Needs, is to provide local and state emergency managers, government of...

  19. Evidence from dynamic integrated proctography to redefine anismus.

    PubMed

    Roberts, J P; Womack, N R; Hallan, R I; Thorpe, A C; Williams, N S

    1992-11-01

    The role of anismus in the aetiology of defective rectal evacuation was investigated by dynamic integrated proctography in 20 controls and 71 constipated patients. Normal parameters were defined and compared between 21 constipated patients with poor evacuation during proctography (< 40 per cent of contrast evacuated; group 1) and 50 who evacuated fully (> 90 per cent of contrast evacuated; group 2). Nine patients in group 1 failed to evacuate. Radiological abnormalities of the rectum were recorded in all groups but obstructed evacuation was not observed. Anismus (defined as a recruitment of puborectalis electromyogram (EMG) activity of > 50 per cent) was significantly more common in group 1 than group 2 patients (14 of 21 versus 12 of 50, P < 0.01) and present in seven of those unable to evacuate. Eight patients in group 1 failed to raise intrarectal pressure > 50 cmH2O compared with two in group 2 (P < 0.001). Six patients in group 1 demonstrated both anismus and inability to raise intrarectal pressure, which may combine to cause defective evacuation. EMG recruitment alone is insufficient to diagnose anismus. Definition should be based on three criteria: demonstration of puborectalis EMG recruitment of > 50 per cent; evidence of an adequate level of intrarectal pressure (> 50 cmH2O) on straining; and presence of defective evacuation.

  20. Assessing Individual Weather Risk-Taking and Its Role in Modeling Likelihood of Hurricane Evacuation

    NASA Astrophysics Data System (ADS)

    Stewart, A. E.

    2017-12-01

    This research focuses upon measuring an individual's level of perceived risk of different severe and extreme weather conditions using a new self-report measure, the Weather Risk-Taking Scale (WRTS). For 32 severe and extreme situations in which people could perform an unsafe behavior (e. g., remaining outside with lightning striking close by, driving over roadways covered with water, not evacuating ahead of an approaching hurricane, etc.), people rated: 1.their likelihood of performing the behavior, 2. The perceived risk of performing the behavior, 3. the expected benefits of performing the behavior, and 4. whether the behavior has actually been performed in the past. Initial development research with the measure using 246 undergraduate students examined its psychometric properties and found that it was internally consistent (Cronbach's a ranged from .87 to .93 for the four scales) and that the scales possessed good temporal (test-retest) reliability (r's ranged from .84 to .91). A second regression study involving 86 undergraduate students found that taking weather risks was associated with having taken similar risks in one's past and with the personality trait of sensation-seeking. Being more attentive to the weather and perceiving its risks when it became extreme was associated with lower likelihoods of taking weather risks (overall regression model, R2adj = 0.60). A third study involving 334 people examined the contributions of weather risk perceptions and risk-taking in modeling the self-reported likelihood of complying with a recommended evacuation ahead of a hurricane. Here, higher perceptions of hurricane risks and lower perceived benefits of risk-taking along with fear of severe weather and hurricane personal self-efficacy ratings were all statistically significant contributors to the likelihood of evacuating ahead of a hurricane. Psychological rootedness and attachment to one's home also tend to predict lack of evacuation. This research highlights the contributions that a psychological approach can offer in understanding preparations for severe weather. This approach also suggests that a great deal of individual variation exists in weather-protective behaviors, which may explain in part why some people take weather-related risks despite receiving warnings for severe weather.

  1. New Science Applications Within the U.S. National Tsunami Hazard Mitigation Program

    NASA Astrophysics Data System (ADS)

    Wilson, R. I.; Eble, M. C.; Forson, C. K.; Horrillo, J. J.; Nicolsky, D.

    2017-12-01

    The U.S. National Tsunami Hazard Mitigation Program (NTHMP) is a collaborative State and Federal program which supports consistent and cost effective tsunami preparedness and mitigation activities at a community level. The NTHMP is developing a new five-year Strategic Plan based on the 2017 Tsunami Warning, Education, and Research Act as well as recommendations the 2017 NTHMP External Review Panel. Many NTHMP activities are based on the best available scientific methods through the NTHMP Mapping and Modeling Subcommittee (MMS). The primary activities for the MMS member States are to characterize significant tsunami sources, numerically model those sources, and create tsunami inundation maps for evacuation planning. This work remains a focus for many unmapped coastlines. With the lessons learned from the 2004 Indian Ocean and 2011 Tohoku Japan tsunamis, where both immediate risks and long-term recovery issues where recognized, the NTHMP MMS is expanding efforts into other areas that address community resilience. Tsunami evacuation modeling based on both pedestrian and vehicular modes of transportation are being developed by NTHMP States. Products include tools for the public to create personal evacuation maps. New tsunami response planning tools are being developed for both maritime and coastal communities. Maritime planning includes tsunami current-hazard maps for in-harbor and offshore response activities. Multi-tiered tsunami evacuation plans are being developed in some states to address local- versus distant-source tsunamis, as well as real-time evacuation plans, or "playbooks," for distant-source tsunamis forecasted to be less than the worst-case flood event. Products to assist community mitigation and recovery are being developed at a State level. Harbor Improvement Reports, which evaluate the impacts of currents, sediment, and debris on harbor infrastructure, include direct mitigation activities for Local Hazard Mitigation Plans. Building code updates in the five Pacific states will include new sections on tsunami load analysis of structures, and require Tsunami Design Zones based on probabilistic analyses. Guidance for community recovery planning has also been initiated. These new projects are being piloted by some States and will help create guidance for other States in the future.

  2. Generating tsunami risk knowledge at community level as a base for planning and implementation of risk reduction strategies

    NASA Astrophysics Data System (ADS)

    Wegscheider, Stephanie; Post, Joachim; Mück, Matthias; Zosseder, Kai; Muhari, Abdul; Anwar, Herryal Z.; Gebert, Niklas; Strunz, Günter; Riedlinger, Torsten

    2010-05-01

    More than 4 million Indonesians live in tsunami-prone areas on the southern and western coasts of Sumatra, Java and Bali. Depending on the location of the tsunamigenic earthquake, in many cases the time to reach a tsunami-safe area is as short as 15 or 20 minutes. To increase the chances of a successful evacuation a comprehensive and thorough planning and preparation is necessary. For this purpose, detailed knowledge on potential hazard impact and safe areas, exposed elements such as people, critical facilities and lifelines, deficiencies in response capabilities and evacuation routes is crucial. The major aims of this paper are (i) to assess and quantify people's response capabilities and (ii) to identify high risk areas which have a high need of action to improve the response capabilities and thus to reduce the risk. The major factor influencing people's ability to evacuate successfully is the factor time. The estimated time of arrival of a tsunami at the coast which determines the overall available time for evacuation after triggering of a tsunami can be derived by analyzing modeled tsunami scenarios for a respective area. But in most cases, this available time frame is diminished by other time components including the time until natural or technical warning signs are received and the time until reaction follows a warning (understanding a warning and decision to take appropriate action). For the time to receive a warning we assume that the early warning centre is able to fulfil the Indonesian presidential decree to issue a warning within 5 minutes. Reaction time is difficult to quantify as here human intrinsic factors as educational level, believe, tsunami knowledge and experience play a role. Although we are aware of the great importance of this factor and the importance to minimize the reaction time, it is not considered in this paper. Quantifying the needed evacuation time is based on a GIS approach. This approach is relatively simple and enables local authorities to implement it at low technical complexity and relatively low cost and time needs. Basic principle is to define the best evacuation route from a given point to the nearest safe area. Here the fastest path from that point to the shelter location has to be found. Thereby the impact of land cover, slope, population density, population age and gender distribution are taken into account as literature studies prove these factors as highly important. Knowing the fastest path and the distance to the nearest safe area together with a spatially distributed pattern of evacuation speed delivers the time needed from each location to a shelter. A shelter location can either be a horizontal area or an evacuation building (vertical evacuation). For both kinds of evacuation target points, one limiting factor can be again time: are the people able to reach the target point within the available time? Especially for evacuation buildings, there is a second possibly limiting factor, namely capacity. In the majority of cases in all of the three study areas where this approach was applied to, capacity was the critical factor instead of time. Consequently, for planning purposes it is essential to know which area can be served by an evacuation building and which areas have to be assigned to a different evacuation target point due to exhausted capacity of the nearest one. The coverage of a building is also derived on basis of a GIS approach using the beforehand derived available and needed evacuation times and detailed population distribution data. Evacuation time and derived evacuable areas are then used to identify high risk areas. In combination with detailed population distribution data, hazard probability and hazard intensity, it is possible to identify areas with high risk and large deficiencies in response capabilities. Often enough, human response capabilities can be increased by thorough disaster planning and thus, the results of this paper provide valuable information for planning authorities to decrease the risk. This paper presents results exemplarily for the study area Kuta, Bali where we tested this approach and where it is also in progress to be implemented by local authorities.

  3. Agent-Based Models in Social Physics

    NASA Astrophysics Data System (ADS)

    Quang, Le Anh; Jung, Nam; Cho, Eun Sung; Choi, Jae Han; Lee, Jae Woo

    2018-06-01

    We review the agent-based models (ABM) on social physics including econophysics. The ABM consists of agent, system space, and external environment. The agent is autonomous and decides his/her behavior by interacting with the neighbors or the external environment with the rules of behavior. Agents are irrational because they have only limited information when they make decisions. They adapt using learning from past memories. Agents have various attributes and are heterogeneous. ABM is a non-equilibrium complex system that exhibits various emergence phenomena. The social complexity ABM describes human behavioral characteristics. In ABMs of econophysics, we introduce the Sugarscape model and the artificial market models. We review minority games and majority games in ABMs of game theory. Social flow ABM introduces crowding, evacuation, traffic congestion, and pedestrian dynamics. We also review ABM for opinion dynamics and voter model. We discuss features and advantages and disadvantages of Netlogo, Repast, Swarm, and Mason, which are representative platforms for implementing ABM.

  4. Automatization of hydrodynamic modelling in a Floreon+ system

    NASA Astrophysics Data System (ADS)

    Ronovsky, Ales; Kuchar, Stepan; Podhoranyi, Michal; Vojtek, David

    2017-07-01

    The paper describes fully automatized hydrodynamic modelling as a part of the Floreon+ system. The main purpose of hydrodynamic modelling in the disaster management is to provide an accurate overview of the hydrological situation in a given river catchment. Automatization of the process as a web service could provide us with immediate data based on extreme weather conditions, such as heavy rainfall, without the intervention of an expert. Such a service can be used by non scientific users such as fire-fighter operators or representatives of a military service organizing evacuation during floods or river dam breaks. The paper describes the whole process beginning with a definition of a schematization necessary for hydrodynamic model, gathering of necessary data and its processing for a simulation, the model itself and post processing of a result and visualization on a web service. The process is demonstrated on a real data collected during floods in our Moravian-Silesian region in 2010.

  5. Three mile island. The silent disaster.

    PubMed

    Smith, J S; Fisher, J H

    1981-04-24

    From Wednesday, March 28, 1979, to Wednesday, April 4, 1979, Dauphin County, Pennsylvania, was in a state of near-panic in response to the Three Mile Island nuclear accident. The Dauphin County Office of Emergency Preparedness quickly attempted to develop a plan to evacuate not only the population of an area 20 miles in radius from the plant but the short-term and long-term care medical facilities as well. For medical evacuation, a system of classification of patients was defined and matched to needed transportation. Furthermore, a critical coordinating link was established with the Hospital Association of Pennsylvania to identify and categorize relocation beds in receiving hospitals far from the incident site in the event of evacuation. Just as this incident was unusual, so too were the planning activities unique since they were never before conceived or accomplished.

  6. 21 CFR 876.4370 - Gastroenterology-urology evacuator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Gastroenterology-urology evacuator. 876.4370... (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Surgical Devices § 876.4370 Gastroenterology-urology evacuator. (a) Identification. A gastroenterology-urology evacuator is a device used to remove...

  7. Quantifying human response capabilities towards tsunami threats at community level

    NASA Astrophysics Data System (ADS)

    Post, J.; Mück, M.; Zosseder, K.; Wegscheider, S.; Taubenböck, H.; Strunz, G.; Muhari, A.; Anwar, H. Z.; Birkmann, J.; Gebert, N.

    2009-04-01

    Decision makers at the community level need detailed information on tsunami risks in their area. Knowledge on potential hazard impact, exposed elements such as people, critical facilities and lifelines, people's coping capacity and recovery potential are crucial to plan precautionary measures for adaptation and to mitigate potential impacts of tsunamis on society and the environment. A crucial point within a people-centred tsunami risk assessment is to quantify the human response capabilities towards tsunami threats. Based on this quantification and spatial representation in maps tsunami affected and safe areas, difficult-to-evacuate areas, evacuation target points and evacuation routes can be assigned and used as an important contribution to e.g. community level evacuation planning. Major component in the quantification of human response capabilities towards tsunami impacts is the factor time. The human response capabilities depend on the estimated time of arrival (ETA) of a tsunami, the time until technical or natural warning signs (ToNW) can be received, the reaction time (RT) of the population (human understanding of a tsunami warning and the decision to take appropriate action), the evacuation time (ET, time people need to reach a safe area) and the actual available response time (RsT = ETA - ToNW - RT). If RsT is larger than ET, people in the respective areas are able to reach a safe area and rescue themselves. Critical areas possess RsT values equal or even smaller ET and hence people whin these areas will be directly affected by a tsunami. Quantifying the factor time is challenging and an attempt to this is presented here. The ETA can be derived by analyzing pre-computed tsunami scenarios for a respective area. For ToNW we assume that the early warning center is able to fulfil the Indonesian presidential decree to issue a warning within 5 minutes. RT is difficult as here human intrinsic factors as educational level, believe, tsunami knowledge and experience besides others play a role. An attempt to quantify this variable under high uncertainty is also presented. Quantifying ET is based on a GIS modelling using a Cost Weighted Distance approach. Basic principle is to define the best evacuation path from a given point to the next safe area (shelter location). Here the fastest path from that point to the shelter location has to be found. Thereby the impact of land cover, slope, population density, population age and gender distribution are taken into account as literature studies prove these factors as highly important. Knowing the fastest path and the distance to the next safe area together with a spatially distributed pattern of evacuation speed delivers the time needed from each location to a safe area. By considering now the obtained time value for RsT the coverage area of an evacuation target point (safe area) can be assigned. Incorporating knowledge on people capacity of an evacuation target point the respective coverage area is refined. Hence areas with weak, moderate and good human response capabilities can be detected. This allows calculation of potential amount of people affected (dead or injured) and amount of people dislocated. First results for Kuta (Bali) for a worst case tsunami event deliver people affected of approx. 25 000 when RT = 0 minutes (direct evacuation when receiving a tsunami warning to 120 000 when RT > ETA (no evacuation action until tsunami hits the land). Additionally fastest evacuation routes to the evacuation target points can be assigned. Areas with weak response capabilities can be assigned as priority areas to install e.g. additional evacuation target points or to increase tsunami knowledge and awareness to promote a faster reaction time. Especially in analyzing underlying socio-economic properties causing deficiencies in responding to a tsunami threat can lead to valuable information and direct planning of adaptation measures. Keywords: Community level, Risk and vulnerability assessment, Early warning, Disaster management, Tsunami, Indonesia

  8. Evacuation Priorities in Mass Casualty Terror-Related Events

    PubMed Central

    Einav, Sharon; Feigenberg, Zvi; Weissman, Charles; Zaichik, Daniel; Caspi, Guy; Kotler, Doron; Freund, Herbert R.

    2004-01-01

    Objective: To assess evacuation priorities during terror-related mass casualty incidents (MCIs) and their implications for hospital organization/contingency planning. Summary Background Data: Trauma guidelines recommend evacuation of critically injured patients to Level I trauma centers. The recent MCIs in Israel offered an opportunity to study the impositions placed on a prehospital emergency medical service (EMS) regarding evacuation priorities in these circumstances. Methods: A retrospective analysis of medical evacuations from MCIs (29.9.2000–31.9.2002) performed by the Israeli National EMS rescue teams. Results: Thirty-three MCIs yielded data on 1156 casualties. Only 57% (506) of the 1123 available and mobilized ambulances were needed to provide 612 evacuations. Rescue teams arrived on scene within <5 minutes and evacuated the last urgent casualty within 15–20 minutes. The majority of non-urgent and urgent patients were transported to medical centers close to the event. Less than half of the urgent casualties were evacuated to more distant trauma centers. Independent variables predicting evacuation to a trauma center were its being the hospital closest to the event (OR 249.2, P < 0.001), evacuation within <10 minutes of the event (OR 9.3, P = 0.003), and having an urgent patient on the ambulance (OR 5.6, P < 0.001). Conclusions: Hospitals nearby terror-induced MCIs play a major role in trauma patient care. Thus, all hospitals should be included in contingency plans for MCIs. Further research into the implications of evacuation of the most severely injured casualties to the nearest hospital while evacuating all other casualties to various hospitals in the area is needed. The challenges posed by terror-induced MCIs require consideration of a paradigm shift in trauma care. PMID:15075645

  9. Decision Processes and Determinants of Hospital Evacuation and Shelter-in-Place During Hurricane Sandy.

    PubMed

    McGinty, Meghan D; Burke, Thomas A; Resnick, Beth; Barnett, Daniel J; Smith, Katherine C; Rutkow, Lainie

    Evacuation and shelter-in-place decision making for hospitals is complex, and existing literature contains little information about how these decisions are made in practice. To describe decision-making processes and identify determinants of acute care hospital evacuation and shelter-in-place during Hurricane Sandy. Semistructured interviews were conducted from March 2014 to February 2015 with key informants who had authority and responsibility for evacuation and shelter-in-place decisions for hospitals during Hurricane Sandy in 2012. Interviews were recorded, transcribed, and thematically analyzed. Interviewees included hospital executives and state and local public health, emergency management, and emergency medical service officials from Delaware, Maryland, New Jersey, and New York. Interviewees identified decision processes and determinants of acute care hospital evacuation and shelter-in-place during Hurricane Sandy. We interviewed 42 individuals from 32 organizations. Decisions makers reported relying on their instincts rather than employing guides or tools to make evacuation and shelter-in-place decisions during Hurricane Sandy. Risk to patient health from evacuation, prior experience, cost, and ability to maintain continuity of operations were the most influential factors in decision making. Flooding and utility outages, which were predicted to or actually impacted continuity of operations, were the primary determinants of evacuation. Evacuation and shelter-in-place decision making for hospitals can be improved by ensuring hospital emergency plans address flooding and include explicit thresholds that, if exceeded, would trigger evacuation. Comparative risk assessments that inform decision making would be enhanced by improved collection, analysis, and communication of data on morbidity and mortality associated with evacuation versus sheltering-in-place of hospitals. In addition, administrators and public officials can improve their preparedness to make evacuation and shelter-in-place decisions by practicing the use of decision-making tools during training and exercises.

  10. Evaluation of Refuge Life Risk using Geographical and Social Grid-Models with Satellite-Based House Ratio and Flood Depth by Tsunami Simulation

    NASA Astrophysics Data System (ADS)

    Kaneko, D.; Hosoyamada, T.

    2017-12-01

    The authors have developed social and geographical models for evaluating and applying life risk to the Kamakura coast near the south-western part of the metropolitan areas of Tokyo. The coastline close to the seismic center of the South Kanto earthquake is in the riskiest belt in the metropolitan area with a high possibility of house collapse and tsunami run-up. Kamakura is an important historical city, visited by many tourists who are not familiar with seismic dangers. There is a high probability of loss of human life during an evacuation of the city during tsunami waves. To evaluate the distribution of life risk characteristics in the area, models for citizens and sightseers are developed that includes social data such as population density, wooden-house ratio, and geographical evacuation distance and tsunami-flooding depth. The population of Kamakura City is 174,050 and the risk of tsunami evacuation is high in the area from the southern part of Kamakura Station to Zaimokuza block, where the population is approximately 15,310 people. There are about 26,000 tourists visiting this area on weekdays and about 100,000 sightseers visiting the area on Saturdays and Sundays. On weekdays the population per mesh will increase by half of the 2,000 inhabitants. On Saturdays and Sundays the population density will be 4 thousand who will double those of the inhabitants. A disaster prevention hill is proposed as a tsunami countermeasure on the coast of Kamakura City. The hill is covered by pine forest with a high-standard road, evacuation center, and sightseeing parking lots embedded in the hilly bank. In normal times, tourists and citizens use this area as a seaside pine park. Long concrete box structures strengthen the hill inside the mound, which has two levels, the lower equipped with high-standard-width roads on the ground level. The parking areas will resolve daily traffic congestion issues along the Kamakura main streets. The evaluation of over-flooding tsunamis and evacuation measures against life risk have been created using satellite land-cover classification data in the city. The two models using tsunami-flooding simulation have been used to design the disaster prevention hill. The results obtained contribute to preparing the society for disaster prevention measures or reconstruction after tsunami disasters.

  11. Moving characteristics of single file passengers considering the effect of ship trim and heeling

    NASA Astrophysics Data System (ADS)

    Sun, Jinlu; Lu, Shouxiang; Lo, Siuming; Ma, Jian; Xie, Qimiao

    2018-01-01

    Ship listing and motion affects the movement pattern of passengers on board, thus pedestrian traffic and evacuation dynamics would be significantly different from those on level ground. To quantify the influence of ship listing and motion on passenger evacuation, we designed a ship corridor simulator, with which we performed single-file pedestrian movement experiments considering the effect of trim and heeling. Results indicated that density is not the only factor that affects pedestrian speed under ship trim or heeling conditions, for that both individual walking speed and group walking speed would be greatly attenuated due to the influence of the trim angles. However, heeling angles show less impact on speed when compared with trim angles. In addition, the speed correlation coefficient between the adjacent experimental subjects would be higher with larger angles and lower speed. Moreover, both female and male experimental subjects need similar distance headway for walking in different trim or heeling conditions. Furthermore, experimental subjects with lower individual walking speed need longer time headway to keep enough distance headway. This work will provide fundamental guidance to the development of evacuation models and the design of evacuation facilities on board.

  12. Dynamic decision making for dam-break emergency management - Part 1: Theoretical framework

    NASA Astrophysics Data System (ADS)

    Peng, M.; Zhang, L. M.

    2013-02-01

    An evacuation decision for dam breaks is a very serious issue. A late decision may lead to loss of lives and properties, but a very early evacuation will incur unnecessary expenses. This paper presents a risk-based framework of dynamic decision making for dam-break emergency management (DYDEM). The dam-break emergency management in both time scale and space scale is introduced first to define the dynamic decision problem. The probability of dam failure is taken as a stochastic process and estimated using a time-series analysis method. The flood consequences are taken as functions of warning time and evaluated with a human risk analysis model (HURAM) based on Bayesian networks. A decision criterion is suggested to decide whether to evacuate the population at risk (PAR) or to delay the decision. The optimum time for evacuating the PAR is obtained by minimizing the expected total loss, which integrates the time-related probabilities and flood consequences. When a delayed decision is chosen, the decision making can be updated with available new information. A specific dam-break case study is presented in a companion paper to illustrate the application of this framework to complex dam-breaching problems.

  13. The 9-11 Commission's invitation to imagine: a pathophysiology-based approach to critical care of nuclear explosion victims.

    PubMed

    Manthous, Constantine A; Jackson, William L

    2007-03-01

    The successful management of mass casualties arising from detonation of a nuclear device (NDD) would require significant preparation at all levels of the healthcare system. This article briefly outlines previously published models of destruction and casualties, details approaches to on-site triage and medical evacuation, and offers pathophysiology-based suggestions for treatment of the critically injured. Documentation from previous bomb blasts and nuclear accidents is reviewed to assist in forecasting needs of both systems and patients in the event of an NDD in a major metropolitan area. This review extracts data from previously published models of destruction and casualties projected from an NDD, the primary literature detailing observations of patients' pathophysiology following NDDs in Japan and relevant nuclear accidents, and available contemporary resources for first responders and healthcare providers. The blast and radiation exposures that accompany an NDD will significantly affect local and regional public resources. Morbidity and mortality likely to arise in the setting of dose-dependent organ dysfunction may be minimized by rigorous a priori planning/training for field triage decisions, coordination of medical and civil responses to effect rapid responses and medical evacuation routes, radiation-specific interventions, and modern intensive care. Although the responses of emergency and healthcare systems following NDD will vary depending on the exact mechanism, magnitude, and location of the event, dose exposures and individual pathophysiology evolution are reasonably predictable. Triage decisions, resource requirements, and bedside therapeutic plans can be evidence-based and can be developed rapidly with appropriate preparation and planning.

  14. Cross-contamination potential of saliva ejectors used in dentistry.

    PubMed

    Barbeau, J; ten Bokum, L; Gauthier, C; Prévost, A P

    1998-12-01

    It has been postulated that evacuation systems used in dentistry could be a source of cross-contamination between patients through backflow of bacteria dislodged from the saliva ejector tubings. The bacterial microflora associated with these systems was characterized using transmission electron microscopy (TEM) and microbiological cultures. The potential for backflow was investigated by a study of pressure differentials in evacuation system tubing and by the presence of bacteria in backflow samples. Evacuation lines were coated with microbial biofilms in which microcolonies of Gram-positive cocci and Gram-negative bacilli predominated, embedded in an extensive polysaccharide matrix. Most bacteria were metabolically active. Occasionally, buccal material such as collagen, fibrin and eukaryotic cell debris was observed. In other experiments, flow reversal was detected several times during saliva ejector use though each of these events was brief (less than 0.1 s). Aspiration of saliva, or occlusion of the mouthpiece opening by the oral mucosa, were the major factors leading to backflow episodes. Bacteria associated with backflow were found in almost 25% assays, with counts ranging from 1-300 cfu/occurrence. The majority of the bacteria isolated from biofilm or backflow samples were staphylococci, micrococci and non-fermentive Gram-negative rods. Pathogens such as Pseudomonas aeruginosa and Staphylococcus aureus were also isolated from backflow fluids. No oral streptococci could be recovered from biofilms in the tubing beyond 15 min from the last saliva ejector use however, suggesting that these species did not survive in the biofilms. These data suggest, although without direct proof of cross-contamination, the possible existence of an infectious risk associated with oral evacuation systems, as potential pathogens may be shed from tubing biofilms following backflow. Even if the risk of cross-contamination between patients is considered to be low, the necessity for regular disinfection of these systems must be stressed, since biofilms can serve as a reservoir for pathogens or harbor potentially infectious material.

  15. Performance analysis of a solar still coupled with evacuated heat pipes

    NASA Astrophysics Data System (ADS)

    Pramod, B. V. N.; Prudhvi Raj, J.; Krishnan, S. S. Hari; Kotebavi, Vinod

    2018-02-01

    In developing countries the need for better quality drinking water is increasing steadily. We can overcome this need by using solar energy for desalination purpose. This process includes fabrication and analysis of a pyramid type solar still coupled with evacuated heat pipes. This experiment using evacuated heat pipes are carried in mainly three modes namely 1) Still alone 2) Using heat pipe with evacuated tubes 3)Using evacuated heat pipe. For this work single basin pyramid type solar still with 1m2 basin area is fabricated. Black stones and Black paint are utilised in solar still to increase evaporation rate of water in basin. The heat pipe’s evaporator section is placed inside evacuated tube and the heat pipe’s condenser section is connected directly to the pyramid type solar still’s lower portion. The output of distillate water from still with evacuated heat pipe is found to be 40% more than the still using only evacuated tubes.

  16. 43 CFR 12.805 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., emergency life safety systems, such as emergency lighting, fire alarm, and audio evacuation systems, which... a duty-free entry certificate is issued). Components of foreign origin of the same class or kind for...

  17. 43 CFR 12.805 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., emergency life safety systems, such as emergency lighting, fire alarm, and audio evacuation systems, which... a duty-free entry certificate is issued). Components of foreign origin of the same class or kind for...

  18. MiRTE: Mixed Reality Triage and Evacuation game for Mass Casualty information systems design, testing and training.

    PubMed

    Yu, Xunyi; Ganz, Aura

    2011-01-01

    In this paper we introduce a Mixed Reality Triage and Evacuation game, MiRTE, that is used in the development, testing and training of Mass Casualty Incident (MCI) information systems for first responders. Using the Source game engine from Valve software, MiRTE creates immersive virtual environments to simulate various incident scenarios, and enables interactions between multiple players/first responders. What distinguishes it from a pure computer simulation game is that it can interface with external mass casualty incident management systems, such as DIORAMA. The game will enable system developers to specify technical requirements of underlying technology, and test different alternatives of design. After the information system hardware and software are completed, the game can simulate various algorithms such as localization technologies, and interface with an actual user interface on PCs and Smartphones. We implemented and tested the game with the DIORAMA system.

  19. Development and Verification of a Mobile Shelter Assessment System "Rapid Assessment System of Evacuation Center Condition Featuring Gonryo and Miyagi (RASECC-GM)" for Major Disasters.

    PubMed

    Ishii, Tadashi; Nakayama, Masaharu; Abe, Michiaki; Takayama, Shin; Kamei, Takashi; Abe, Yoshiko; Yamadera, Jun; Amito, Koichiro; Morino, Kazuma

    2016-10-01

    Introduction There were 5,385 deceased and 710 missing in the Ishinomaki medical zone following the Great East Japan Earthquake that occurred in Japan on March 11, 2011. The Ishinomaki Zone Joint Relief Team (IZJRT) was formed to unify the relief teams of all organizations joining in support of the Ishinomaki area. The IZJRT expanded relief activity as they continued to manually collect and analyze assessments of essential information for maintaining health in all 328 shelters using a paper-type survey. However, the IZJRT spent an enormous amount of time and effort entering and analyzing these data because the work was vastly complex. Therefore, an assessment system must be developed that can tabulate shelter assessment data correctly and efficiently. The objective of this report was to describe the development and verification of a system to rapidly assess evacuation centers in preparation for the next major disaster. Report Based on experiences with the complex work during the disaster, software called the "Rapid Assessment System of Evacuation Center Condition featuring Gonryo and Miyagi" (RASECC-GM) was developed to enter, tabulate, and manage the shelter assessment data. Further, a verification test was conducted during a large-scale Self-Defense Force (SDF) training exercise to confirm its feasibility, usability, and accuracy. The RASECC-GM comprises three screens: (1) the "Data Entry screen," allowing for quick entry on tablet devices of 19 assessment items, including shelter administrator, living and sanitary conditions, and a tally of the injured and sick; (2) the "Relief Team/Shelter Management screen," for registering information on relief teams and shelters; and (3) the "Data Tabulation screen," which allows tabulation of the data entered for each shelter, as well as viewing and sorting from a disaster headquarters' computer. During the verification test, data of mock shelters entered online were tabulated quickly and accurately on a mock disaster headquarters' computer. Likewise, data entered offline also were tabulated quickly on the mock disaster headquarters' computer when the tablet device was moved into an online environment. The RASECC-GM, a system for rapidly assessing the condition of evacuation centers, was developed. Tests verify that users of the system would be able to easily, quickly, and accurately assess vast quantities of data from multiple shelters in a major disaster and immediately manage the inputted data at the disaster headquarters. Ishii T , Nakayama M , Abe M , Takayama S , Kamei T , Abe Y , Yamadera J , Amito K , Morino K . Development and verification of a mobile shelter assessment system "Rapid Assessment System of Evacuation Center Condition featuring Gonryo and Miyagi (RASECC-GM)" for major disasters. Prehosp Disaster Med. 2016;31(5):539-546.

  20. 46 CFR 116.520 - Emergency evacuation plan.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Emergency evacuation plan. 116.520 Section 116.520... ARRANGEMENT Escape and Embarkation Station Requirements § 116.520 Emergency evacuation plan. The owner or managing operator shall prepare an evacuation plan that must: (a) Identify possible casualties involving...

  1. 46 CFR 116.520 - Emergency evacuation plan.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Emergency evacuation plan. 116.520 Section 116.520... ARRANGEMENT Escape and Embarkation Station Requirements § 116.520 Emergency evacuation plan. The owner or managing operator shall prepare an evacuation plan that must: (a) Identify possible casualties involving...

  2. 46 CFR 116.520 - Emergency evacuation plan.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Emergency evacuation plan. 116.520 Section 116.520... ARRANGEMENT Escape and Embarkation Station Requirements § 116.520 Emergency evacuation plan. The owner or managing operator shall prepare an evacuation plan that must: (a) Identify possible casualties involving...

  3. 46 CFR 116.520 - Emergency evacuation plan.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Emergency evacuation plan. 116.520 Section 116.520... ARRANGEMENT Escape and Embarkation Station Requirements § 116.520 Emergency evacuation plan. The owner or managing operator shall prepare an evacuation plan that must: (a) Identify possible casualties involving...

  4. Community resilience and volcano hazard: the eruption of Tungurahua and evacuation of the faldas in Ecuador.

    PubMed

    Tobin, Graham A; Whiteford, Linda M

    2002-03-01

    Official response to explosive volcano hazards usually involves evacuation of local inhabitants to safe shelters. Enforcement is often difficult and problems can be exacerbated when major eruptions do not ensue. Families are deprived of livelihoods and pressure to return to hazardous areas builds. Concomitantly, prevailing socio-economic and political conditions limit activities and can influence vulnerability. This paper addresses these issues, examining an ongoing volcano hazard (Tungurahua) in Ecuador where contextual realities significantly constrain responses. Fieldwork involved interviewing government officials, selecting focus groups and conducting surveys of evacuees in four locations: a temporary shelter, a permanent resettlement, with returnees and with a control group. Differences in perceptions of risk and health conditions, and in the potential for economic recovery were found among groups with different evacuation experiences. The long-term goal is to develop a model of community resilience in long-term stress environments.

  5. Population evacuations in industrial accidents: a review of the literature about four major events.

    PubMed

    Soffer, Yechiel; Schwartz, Dagan; Goldberg, Avishay; Henenfeld, Maxim; Bar-Dayan, Yaron

    2008-01-01

    This article reviews the literature describing four chemical and nuclear accidents and the lessons learned from each regarding the evacuation of civilian populations. Evacuation may save lives however, if poorly orchestrated, it may cause serious problems. For example, an inaccurate assessment of danger may lead to the evacuation of the same population twice, as the area requiring evacuation becomes larger than originally expected. Evacuation programs should focus on the vulnerable components of the populations, such as the elderly, children, and the disabled, and also should include plans for the care of pets and other animals. Training programs for civilians living near industrial centers and other high-risk areas should be considered. Finally, pre-event planning and preparation can improve the evacuation process and prevent panic behavior, and thus result in fewer casualties.

  6. Scaling an urban emergency evacuation framework : challenges and practices.

    DOT National Transportation Integrated Search

    2014-01-01

    Critical infrastructure disruption, caused by severe weather events, natural disasters, terrorist : attacks, etc., has significant impacts on urban transportation systems. We built a computational : framework to simulate urban transportation systems ...

  7. Discrete element method for emergency flow of pedestrian in S-type corridor.

    PubMed

    Song, Gyeongwon; Park, Junyoung

    2014-10-01

    Pedestrian flow in curved corridor should be modeled before design because this type of corridor can be most dangerous part during emergency evacuation. In this study, this flow is analyzed by Discrete Element Method with psychological effects. As the turning slope of corridor increases, the evacuation time is linearly increases. However, in the view of crashed death accident, the case with 90 degree turning slope can be dangerous because there are 3 dangerous points. To solve this matter, the pedestrian gathering together in curved part should be dispersed.

  8. Who evacuates when hurricanes approach? The role of risk, information, and location.

    PubMed

    Stein, Robert M; Dueñas-Osorio, Leonardo; Subramanian, Devika

    2010-01-01

    This article offers an expanded perspective on evacuation decision making during severe weather. In particular, this work focuses on uncovering determinants of individual evacuation decisions. We draw on a survey conducted in 2005 of residents in the eight-county Houston metropolitan area after Hurricane Rita made landfall on September 24, 2005. We find that evacuation decisions are influenced by a heterogeneous set of parameters, including perceived risk from wind, influence of media and neighbors, and awareness of evacuation zone, that are often at variance with one of the primary measures of risk used by public officials to order or recommend an evacuation (i.e., storm surge). We further find that perceived risk and its influence on evacuation behavior is a local phenomenon more readily communicated by and among individuals who share the same geography, as is the case with residents living inside and outside official risk areas. Who evacuates and why is partially dependent on where one lives because perceptions of risk are not uniformly shared across the area threatened by an approaching hurricane and the same sources and content of information do not have the same effect on evacuation behavior. Hence, efforts to persuade residential populations about risk and when, where, and how to evacuate or shelter in place should originate in the neighborhood rather than emanating from blanket statements from the media or public officials. Our findings also raise important policy questions (included in the discussion section) that require further study and consideration by those responsible with organizing and implementing evacuation plans.

  9. 30 CFR 57.4361 - Underground evacuation drills.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Underground evacuation drills. 57.4361 Section... Prevention and Control Firefighting Procedures/alarms/drills § 57.4361 Underground evacuation drills. (a) At least once every six months, mine evacuation drills shall be held to assess the ability of all persons...

  10. 30 CFR 57.4361 - Underground evacuation drills.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Underground evacuation drills. 57.4361 Section... Prevention and Control Firefighting Procedures/alarms/drills § 57.4361 Underground evacuation drills. (a) At least once every six months, mine evacuation drills shall be held to assess the ability of all persons...

  11. 30 CFR 57.4361 - Underground evacuation drills.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Underground evacuation drills. 57.4361 Section... Prevention and Control Firefighting Procedures/alarms/drills § 57.4361 Underground evacuation drills. (a) At least once every six months, mine evacuation drills shall be held to assess the ability of all persons...

  12. 30 CFR 57.4361 - Underground evacuation drills.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Underground evacuation drills. 57.4361 Section... Prevention and Control Firefighting Procedures/alarms/drills § 57.4361 Underground evacuation drills. (a) At least once every six months, mine evacuation drills shall be held to assess the ability of all persons...

  13. 75 FR 49507 - Recovery Policy, RP9525.4, Emergency Medical Care and Medical Evacuations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-13

    ...] Recovery Policy, RP9525.4, Emergency Medical Care and Medical Evacuations AGENCY: Federal Emergency... Management Agency (FEMA) is accepting comments on RP9525.4, Emergency Medical Care and Medical Evacuations... emergency medical care and medical evacuation expenses that are eligible for reimbursement under the...

  14. Minimally invasive evacuation of intraventricular hemorrhage with the Apollo vibration/suction device.

    PubMed

    Tan, Lee A; Lopes, Demetrius K; Munoz, Lorenzo F; Shah, Yojan; Bhabad, Sudeep; Jhaveri, Miral; Moftakhar, Roham

    2016-05-01

    Intraventricular hemorrhages (IVH) can occur as a consequence of spontaneous intracerebral hemorrhage, aneurysm rupture, arteriovenous malformation hemorrhage, trauma, or coagulopathy. IVH is a known risk factor for poor clinical outcome with up to 80% mortality. The current standard treatment strategy for IVH consists of the placement of an external ventricular drain. We report our early experience with using the Apollo suction/vibration aspiration system (Penumbra, Alameda, CA, USA) for minimally invasive evacuation of IVH with a review of the pertinent literature. Medical records of patients with IVH who were admitted to Rush University Medical Center, USA, from July to November 2014 were queried from the electronic database. Patients with Graeb Scores (GS) >6 were selected for minimally invasive IVH evacuation with the Apollo aspiration system. Patient demographics, pre- and post-operative GS, pre- and post-operative modified Graeb Score (mGS), as well procedure related complications were analyzed and recorded. A total of eight patients (five men) were identified during the study period. The average age was 55.5years. The mean GS was 9.6 pre-operatively and decreased to 4.9 post-operatively (p=0.0002). The mean mGS was 22.9 pre-operatively and decreased to 11.4 post-operatively (p=0.0001). Most of the IVH reduction occurred in the frontal horn and atrium of the lateral ventricle, as well the third ventricle. One (1/8) procedure-related complication occurred consisted of a tract hemorrhage. The Apollo system can be used for minimally invasive IVH evacuation to achieve significant blood clot volume reduction with minimal procedure-related complication. Copyright © 2016. Published by Elsevier Ltd.

  15. Mobile refrigeration system for precool and warm up of superconducting magnets

    NASA Astrophysics Data System (ADS)

    Gandla, S. K.; Longsworth, R. C.

    2017-12-01

    Conservation of helium has become more important in recent years due to global shortages in supply. Magnetic resonance imaging (MRI) superconducting magnets use approximately 20% of the world’s helium reserves in liquid form to cool down and maintain operating temperatures at 4 K. This paper describes a mobile cryogenic refrigeration system, which has been developed by Sumitomo (SHI) Cryogenics of America, Inc. to conserve helium by shipping MRI magnets warm and cooling them down or servicing them on site at a medical facility. The system can cool a typical magnet from room temperature to below 40K in less than a week. The system consists of four single stage Displex®-type Gifford-McMahon (GM) expanders in a cryostat with heat exchangers integrated on the cold ends that cool the helium gas, which is circulated in a closed-loop system through the magnet by a cryogenic fan. The system is configured with heaters on the heat exchangers to effectively warm up a magnet. The system includes a scroll vacuum pump, which is used to evacuate the helium circuit with or without the magnet and turbo pump to evacuate the cryostat. Vacuum-jacketed transfer lines connect the cryostat to the magnet. The system is designed with its own controller for continuous operation of precool, warm up and evacuation processes with automatic and manual controls. The cryostat, pumps and gas controls are mounted on a dewar cart. One compressor and the system controller are mounted on a compressor and control cart, and the other three compressors are mounted on separate carts.

  16. Impact of Smoke Evacuation on Patient Experience During Mohs Surgery.

    PubMed

    Yonan, Yousif; Ochoa, Shari

    2017-11-01

    There have been several investigations into possible health risks of surgical smoke exposure, and it has previously been associated with harboring pathogens and carcinogens. Patients in the authors' practice have expressed that the odor from the smoke created by electrosurgical equipment is unpleasant. The authors sought to determine if smoke evacuation decreases patient perception of smoke created by electrosurgery during Mohs surgery and if it subsequently improves patient satisfaction with their surgical experience by minimizing the associated odor. Thirty patients were enrolled in this comparative trial. Smoke evacuation was used during closure but not during Mohs stages. Patients were queried regarding their experience and preferences during and at the end of the procedure. 100% of patients reported the perception of a burning odor during removal of Mohs stages, compared with 40% reporting the perception of a burning odor during closure. During the Mohs stages, 66.6% of patients reported the odor as unpleasant compared with 16.6% of patients during closure. There were no statistically significant differences in patient perceptions when stratified by age, sex, or surgical site. The authors believe that using a wall suction smoke evacuation system is simple and can result in a more pleasant experience for patients undergoing Mohs surgery.

  17. Analysis of Hospital Disaster in South Korea from 1990 to 2008

    PubMed Central

    Back, Min-Ho

    2010-01-01

    Purpose The purpose of this study is to systematically review and analyze disasters involving South Korean hospitals from 1990 and to introduce a newly developed implement to manage patients' evacuation. Materials and Methods We searched for studies reporting disaster preparedness and hospital injuries in South Korean hospitals from 1990 to 2008, by using the Korean Studies Information Service System (KISS, copyright Korean Studies Information Co, Ltd, Seoul, Korea) and, simultaneously, hospital injuries which were reported and regarded as a disaster. Then, each study and injury were analyzed. Results Five studies (3 on prevention and structure, 1 on implement of new device, and 1 on basic supplement to current methods) and 8 injuries were found within this period. During the evacuations, the mean gait speed of walking patients was 0.82 m/s and the mean time of evacuation of individual patients was 38.39 seconds. Regarding structure evaluation, almost all hospitals had no balconies in patient rooms; hospital elevators were placed peripherally and were insufficient in number. As a new device, Savingsun (evacuation elevator) was introduced and had some merits as a fast and easy tool, regardless of patient status or the height of hospital. Conclusion In South Korea, preparation for hospital disasters was noted to be insufficient but has involved various departments such as architectural, clinical, and building operations. In addition, Savignsun has been shown to effectively evacuate and save patients in a hospital disaster. PMID:20879068

  18. Advanced Planning for Tsunamis in California

    NASA Astrophysics Data System (ADS)

    Miller, K.; Wilson, R. I.; Larkin, D.; Reade, S.; Carnathan, D.; Davis, M.; Nicolini, T.; Johnson, L.; Boldt, E.; Tardy, A.

    2013-12-01

    The California Tsunami Program is comprised of the California Governor's Office of Emergency Services (CalOES) and the California Geological Survey (CGS) and funded through the National Tsunami Hazard Mitigation Program (NTHMP) and the Federal Emergency Management Agency (FEMA). The program works closely with the 20 coastal counties in California, as well as academic, and industry experts to improve tsunami preparedness and mitigation in shoreline communities. Inundation maps depicting 'worst case' inundation modeled from plausible sources around the Pacific were released in 2009 and have provided a foundation for public evacuation and emergency response planning in California. Experience during recent tsunamis impacting the state (Japan 2011, Chile 2010, Samoa 2009) has brought to light the desire by emergency managers and decision makers for even more detailed information ahead of future tsunamis. A solution to provide enhanced information has been development of 'playbooks' to plan for a variety of expected tsunami scenarios. Elevation 'playbook' lines can be useful for partial tsunami evacuations when enough information about forecast amplitude and arrival times is available to coastal communities and there is sufficient time to make more educated decisions about who to evacuate for a given scenario or actual event. NOAA-issued Tsunami Alert Bulletins received in advance of a distant event will contain an expected wave height (a number) for each given section of coast. Provision of four elevation lines for possible inundation enables planning for different evacuation scenarios based on the above number potentially alleviating the need for an 'all or nothing' decision with regard to evacuation. Additionally an analytical tool called FASTER is being developed to integrate storm, tides, modeling errors, and local tsunami run-up potential with the forecasted tsunami amplitudes in real-time when a tsunami Alert is sent out. Both of these products will help communities better implement evacuations and response activities for minor to moderate (less than maximum) tsunami events. A working group comprised of federal, state, and local governmental scientists, emergency managers, first responders, and community planners has explored details and delivery of the above tools for incorporation into emergency management protocols. The eventual outcome will be inclusion in plans, testing of protocols and methods via drills and exercises and application, as appropriate, during an impending tsunami event.

  19. 3D Hydrodynamic & Radiative Transfer Models of HETG Line Profiles from Colliding Winds

    NASA Astrophysics Data System (ADS)

    Russell, Christopher

    2016-09-01

    Chandra has invested 2.52 Ms of HETG observations into 4 colliding-wind binary (CWB) systems. WR140 and eta Car are massive-star binaries with long periods that produce X-rays in a 3D, warped shock cone, while delta Ori A and HD150136 are short-period systems that show line profile changes due to embedded-wind-shock emission in the primary wind being partially evacuated by the secondary wind. HETG observations resolve the velocity structure in both types of systems. We propose 3D line-profile radiative-transfer calculations on existing 3D hydrodynamic simulations of these 4 CWBs. This is the first confrontation of these data with this level of modeling, and will provide greater understanding of their stellar, wind, and orbital properties, as well as the underlying CWB shock physics.

  20. 21 CFR 888.4220 - Cement monomer vapor evacuator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Cement monomer vapor evacuator. 888.4220 Section... (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4220 Cement monomer vapor evacuator. (a) Identification. A cement monomer vapor evacuator is a device intended for use during surgery to contain or remove...

  1. 21 CFR 888.4220 - Cement monomer vapor evacuator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Cement monomer vapor evacuator. 888.4220 Section... (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4220 Cement monomer vapor evacuator. (a) Identification. A cement monomer vapor evacuator is a device intended for use during surgery to contain or remove...

  2. 21 CFR 888.4220 - Cement monomer vapor evacuator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Cement monomer vapor evacuator. 888.4220 Section... (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4220 Cement monomer vapor evacuator. (a) Identification. A cement monomer vapor evacuator is a device intended for use during surgery to contain or remove...

  3. 21 CFR 888.4220 - Cement monomer vapor evacuator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Cement monomer vapor evacuator. 888.4220 Section... (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4220 Cement monomer vapor evacuator. (a) Identification. A cement monomer vapor evacuator is a device intended for use during surgery to contain or remove...

  4. 21 CFR 888.4220 - Cement monomer vapor evacuator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cement monomer vapor evacuator. 888.4220 Section... (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4220 Cement monomer vapor evacuator. (a) Identification. A cement monomer vapor evacuator is a device intended for use during surgery to contain or remove...

  5. Proctographic features of anismus.

    PubMed

    Halligan, S; Bartram, C I; Park, H J; Kamm, M A

    1995-12-01

    To document the proctographic features of anismus at evacuation proctography and determine the optimum radiologic measurements for diagnosis. Twenty-four patients with anismus according to clinical and multiple physiologic criteria were examined with evacuation proctography. Structural and functional measurements were compared with those of a group of 20 asymptomatic subjects. No significant difference between patients and control subjects was found with respect to pelvic descent, rectocele, or any anorectal angle measurement. In patients with anismus, initiation of evacuation was prolonged (median, 9 vs 3 seconds for control subjects; P < .0001) and anal canal width was reduced (median, 0.6 vs 1.2 cm; P = .0075). Evacuation time was increased (median, 50 vs 10 seconds; P < .0001), and the percentage of contrast material evacuated was decreased (median, 60% vs 100%; P < .0001). Only four patients were able to evacuate more than 66% of the contrast material within 30 seconds, whereas all control subjects were able to do so. Measurement of the anorectal angle to diagnose anismus should be abandoned. Patients with anismus demonstrate delayed initiation of evacuation, which is also prolonged and incomplete. Incomplete evacuation after 30 seconds is highly suggestive of anismus.

  6. Challenges to Implementing Communicable Disease Surveillance in New York City Evacuation Shelters After Hurricane Sandy, November 2012

    PubMed Central

    Ridpath, Alison D.; Bregman, Brooke; Jones, Lucretia; Reddy, Vasudha; Waechter, HaeNa

    2015-01-01

    Hurricane Sandy hit New York City (NYC) on October 29, 2012. Before and after the storm, 73 temporary evacuation shelters were established. The total census of these shelters peaked at approximately 6,800 individuals. Concern about the spread of communicable diseases in shelters prompted the NYC Department of Health and Mental Hygiene (DOHMH) to rapidly develop a surveillance system to report communicable diseases and emergency department transports from shelters. We describe the implementation of this system. Establishing effective surveillance in temporary shelters was challenging and required in-person visits by DOHMH staff to ensure reporting. After system establishment, surveillance data were used to identify some potential disease clusters. For the future, we recommend pre-event planning for disease surveillance. PMID:25552754

  7. Ergonomics intervention on an alternative design of a spinal board.

    PubMed

    Zadry, Hilma Raimona; Susanti, Lusi; Rahmayanti, Dina

    2017-09-01

    A spinal board is the evacuation tool of first aid to help the injured spinal cord. The existing spinal board has several weaknesses, both in terms of user comfort and the effectiveness and efficiency of the evacuation process. This study designs an ergonomic spinal board using the quality function deployment approach. A preliminary survey was conducted through direct observation and interviews with volunteers from the Indonesian Red Cross. Data gathered were translated into a questionnaire and answered by 47 participants in West Sumatra. The results indicate that the selection of materials, the application of strap systems as well as the addition of features are very important in designing an ergonomic spinal board. The data were used in designing an ergonomic spinal board. The use of anthropometric data ensures that this product can accommodate safety and comfort when immobilized, as well as the flexibility and speed of the rescue evacuation process.

  8. Thermal performance of multilayer insulations. [gas evacuation characteristics of three selected multilayer insulation composites

    NASA Technical Reports Server (NTRS)

    Keller, C. W.; Cunnington, G. R.; Glassford, A. P.

    1974-01-01

    Experimental and analytical studies were conducted in order to extend previous knowledge of the thermal performance and gas evacuation characteristics of three selected multilayer insulation (MLI) composites. Flat plate calorimeter heat flux measurements were obtained for 20- and 80- shield specimens using three representative layer densities over boundary temperatures ranging from 39 K (70 R) to 389 K (700 R). Laboratory gas evacuation tests were performed on representative specimens of each MLI composite after initially purging them with helium, nitrogen, or argon gases. In these tests, the specimens were maintained at temperatures between 128 K (230 R) and 300 K (540 R). Based on the results of the laboratory-scale tests, a composite MLI system consisting of 112 unperforated, double-aluminized Mylar reflective shields and 113 water preconditioned silk net spacer pairs was fabricated and installed on a 1.22-m-(4-ft-) diameter calorimeter tank.

  9. Evacuating damaged and destroyed buildings on 9/11: behavioral and structural barriers.

    PubMed

    Groeger, Justina L; Stellman, Steven D; Kravitt, Alexandra; Brackbill, Robert M

    2013-12-01

    Evacuation of the World Trade Center (WTC) twin towers and surrounding buildings damaged in the September 11, 2001 attacks provides a unique opportunity to study factors that affect emergency evacuation of high rise buildings. Problem The goal of this study is to understand the extent to which structural and behavioral barriers and limitations of personal mobility affected evacuation by occupants of affected buildings on September 11, 2001. This analysis included 5,023 civilian, adult enrollees within the World Trade Center Health Registry who evacuated the two World Trade Center towers and over 30 other Lower Manhattan buildings that were damaged or destroyed on September 11, 2001. Multinomial logistic regression was used to predict total evacuation time (<30 to ≤60 minutes, >1 hour to <2 hours relative to ≤30 minutes) in relation to number of infrastructure barriers and number of behavioral barriers, adjusted for demographic and other factors. A higher percentage of evacuees reported encountering at least one behavioral barrier (84.9%) than reported at least one infrastructure barrier (51.9%). This pattern was consistent in all buildings except WTC 1, the first building attacked, where >90% of evacuees reported encountering both types of barriers. Smoke and poor lighting were the most frequently-reported structural barriers. Extreme crowding, lack of communication with officials, and being surrounded by panicked crowds were the most frequently-reported behavioral barriers. Multivariate analyses showed evacuation time to be independently associated with the number of each type of barrier as well as gender (longer times for women), but not with the floor from which evacuation began. After adjustment, personal mobility impairment was not associated with increased evacuation time. Because most high-rise buildings have unique designs, infrastructure factors tend to be less predictable than behavioral factors, but both need to be considered in developing emergency evacuation plans in order to decrease evacuation time and, consequently, risk of injury and death during an emergency evacuation.

  10. Assessing the vulnerability of the evacuation emergency plan: the case of the El Hierro, Canary Island, Spain

    NASA Astrophysics Data System (ADS)

    Marrero, J. M.; Garcia, A.; Llinares, A.; Lopez, P.; Ortinz, R.

    2012-04-01

    On July 17, 2011 an unrest was detected in the El Hierro island. A serretian submarine eruption started on October 10th in the southern area of the island, two miles away from La Restinga village. The analysis and interpretation of seismic and deformation data show a large volume of intruded magma. These data also show a high probability of a new vent opening. One of the most complex volcanic hazard scenarios is a new open vent in the El Golfo Valley, in the north slope of the island, where more than 5,000 people live. In this area there are only two possible terrestrial evacuation routes: 1) HI-1 road NE direction, the fastest but most vulnerable one, very near a 1,000 meters height cliff and through a 2 km tunnel with a structural deficiency that had to be closed during high energy periods of seismic activity; and 2) HI-1 road SW direction, a mountain road with many curves, frequent small landslides and fog. The Emergency Plan of the island takes into account the entire evacuation of El Golfo Valley in case of eruption. This process will be carried out by means of an assisted evacuation. The evacuees will be transported to a temporally regrouping shelter outside the valley to organize the transport to Tenerife Island. Only those people who have a second residence or relatives outside the affected area will be able to remain in the island. The evacuation time estimated by authorities for the entire evacuation of El Golfo Valley is of about 4 hours. This is extremely low considering: the complexity of the area; the number of evacuees; the lack of preparedness by the population; and adverse weather conditions. To evaluate the Evacuation Plan vulnerability, a series of evacuation scenarios have been simulated: self-evacuation; assisted evacuation; both terrestrial evacuation routes. The warning time, the response time by the population and the evacuation time have been taken into account.

  11. Should We Stay Or Should We Go Now? Hazard Warnings, Risk Perception, and Evacuation Decisions at Pacaya Volcano, Guatemala During the 2010 Eruption.

    NASA Astrophysics Data System (ADS)

    Lechner, H. N.; Rouleau, M.

    2017-12-01

    Pacaya volcano, in Guatemala, presents considerable risk to nearby communities and in May 2010, the volcano experienced its largest eruption in more than a decade. The eruption damaged or destroyed hundreds of homes, injured scores of people with one fatality, and prompted the evacuation of approximately 2000 people from several communities. During this eruption crisis, people living within at-risk communities were presented with the choice to evacuate or remain in the hazard zone. Many chose not to leave. Using quantitative methodologies, this research investigates evacuation decisions through causal relationships between hazard warnings, evacuation orders, risk perception, evacuation intention and behavior, and attempts to understand why some people chose to stay in harm's-way. In October 2016, we conducted a door-to-door survey administered to 172 households in eight communities within 5 km of the active vent. Participants were asked to rank factors that influenced their decision to evacuate or not, their level of trust in emergency management agencies, and the intention to evacuate during a future crisis. Initial analysis suggests that many people have confidence in emergency management agencies and information from volcano scientists; however, during the 2010 eruption, warning messages and evacuation orders were based on previous eruption patterns and tephra distribution and therefore disseminated differentially to at-risk communities. This likely delayed evacuation decisions by households in the communities that were most affected by the eruption. The data also suggest that while many households perceive evacuation as the most effective protective action, the perceived risk to one's home and property may play a more important role in the decision making process. We will discuss these results as well as communication strategies between agencies and communities, and how to better facilitate more effective and successful evacuations during future eruption crises at Pacaya volcano.

  12. General Household Emergency Preparedness: A Comparison Between Veterans and Nonveterans

    PubMed Central

    Der-Martirosian, Claudia; Strine, Tara; Atia, Mangwi; Chu, Karen; Mitchell, Michael N.; Dobalian, Aram

    2015-01-01

    Background Despite federal and local efforts to educate the public to prepare for major emergencies, many US households remain unprepared for such occurrences. United States Armed Forces veterans are at particular risk during public health emergencies as they are more likely than the general population to have multiple health conditions. Methods This study compares general levels of household emergency preparedness between veterans and nonveterans by focusing on seven surrogate measures of household emergency preparedness (a 3-day supply of food, water, and prescription medications, a battery-operated radio and flashlight, a written evacuation plan, and an expressed willingness to leave the community during a mandatory evacuation). This study used data from the 2006 through 2010 Behavioral Risk Factor Surveillance System (BRFSS), a state representative, random sample of adults aged 18 and older living in 14 states. Results The majority of veteran and nonveteran households had a 3-day supply of food (88% vs 82%, respectively) and prescription medications (95% vs 89%, respectively), access to a working, battery-operated radio (82% vs 77%, respectively) and flashlight (97% vs 95%, respectively), and were willing to leave the community during a mandatory evacuation (91% vs 96%, respectively). These populations were far less likely to have a 3-day supply of water (61% vs 52%, respectively) and a written evacuation plan (24% vs 21%, respectively). After adjusting for various sociodemographic covariates, general health status, and disability status, households with veterans were significantly more likely than households without veterans to have 3-day supplies of food, water, and prescription medications, and a written evacuation plan; less likely to indicate that they would leave their community during a mandatory evacuation; and equally likely to have a working, battery-operated radio and fiashlight. Conclusion These findings suggest that veteran households appear to be better prepared for emergencies than do nonveteran households, although the lower expressed likelihood of veterans households to evacuate when ordered to do so may place them at a somewhat greater risk of harm during such events. Further research should examine household preparedness among other vulnerable groups including subgroups of veteran populations and the reasons why their preparedness may differ from the general population. PMID:24642181

  13. General household emergency preparedness: a comparison between veterans and nonveterans.

    PubMed

    Der-Martirosian, Claudia; Strine, Tara; Atia, Mangwi; Chu, Karen; Mitchell, Michael N; Dobalian, Aram

    2014-04-01

    Despite federal and local efforts to educate the public to prepare for major emergencies, many US households remain unprepared for such occurrences. United States Armed Forces veterans are at particular risk during public health emergencies as they are more likely than the general population to have multiple health conditions. This study compares general levels of household emergency preparedness between veterans and nonveterans by focusing on seven surrogate measures of household emergency preparedness (a 3-day supply of food, water, and prescription medications, a battery-operated radio and flashlight, a written evacuation plan, and an expressed willingness to leave the community during a mandatory evacuation). This study used data from the 2006 through 2010 Behavioral Risk Factor Surveillance System (BRFSS), a state representative, random sample of adults aged 18 and older living in 14 states. The majority of veteran and nonveteran households had a 3-day supply of food (88% vs 82%, respectively) and prescription medications (95% vs 89%, respectively), access to a working, battery-operated radio (82% vs 77%, respectively) and flashlight (97% vs 95%, respectively), and were willing to leave the community during a mandatory evacuation (91% vs 96%, respectively). These populations were far less likely to have a 3-day supply of water (61% vs 52%, respectively) and a written evacuation plan (24% vs 21%, respectively). After adjusting for various sociodemographic covariates, general health status, and disability status, households with veterans were significantly more likely than households without veterans to have 3-day supplies of food, water, and prescription medications, and a written evacuation plan; less likely to indicate that they would leave their community during a mandatory evacuation; and equally likely to have a working, battery-operated radio and flashlight. These findings suggest that veteran households appear to be better prepared for emergencies than do nonveteran households, although the lower expressed likelihood of veterans households to evacuate when ordered to do so may place them at a somewhat greater risk of harm during such events. Further research should examine household preparedness among other vulnerable groups including subgroups of veteran populations and the reasons why their preparedness may differ from the general population.

  14. External dose reconstruction for the former village of Metlino (Techa River, Russia) based on environmental surveys, luminescence measurements, and radiation transport modelling.

    PubMed

    Hiller, M M; Woda, C; Bougrov, N G; Degteva, M O; Ivanov, O; Ulanovsky, A; Romanov, S

    2017-05-01

    In the first years of its operation, the Mayak Production Association, a facility part of the Soviet nuclear weapons program in the Southern Urals, Russia, discharged large amounts of radioactively contaminated effluent into the nearby Techa River, thus exposing the people living at this river to external and internal radiations. The Techa River Cohort is a cohort intensely studied in epidemiology to investigate the correlation between low-dose radiation and health effects on humans. For the individuals in the cohort, the Techa River Dosimetry System describes the accumulated dose in human organs and tissues. In particular, organ doses from external exposure are derived from estimates of dose rate in air on the Techa River banks which were estimated from measurements and Monte Carlo modelling. Individual doses are calculated in accordance with historical records of individuals' residence histories, observational data of typical lifestyles for different age groups, and age-dependent conversion factors from air kerma to organ dose. The work here describes an experimentally independent assessment of the key input parameter of the dosimetry system, the integral air kerma, for the former village of Metlino, upper Techa River region. The aim of this work was thus to validate the Techa River Dosimetry System for the location of Metlino in an independent approach. Dose reconstruction based on dose measurements in bricks from a church tower and Monte Carlo calculations was used to model the historic air kerma accumulated in the time from 1949 to 1956 at the shoreline of the Techa River in Metlino. Main issues are caused by a change in the landscape after the evacuation of the village in 1956. Based on measurements and published information and data, two separate models for the historic pre-evacuation geometry and for the current geometry of Metlino were created. Using both models, a value for the air kerma was reconstructed, which agrees with that obtained in the Techa River Dosimetry System within a factor of two.

  15. Predictions of vacuum loss of evacuated vials from initial air leak rates.

    PubMed

    Prisco, Michael R; Ochoa, Jorge A; Yardimci, Atif M

    2013-08-01

    Container closure integrity is a critical factor for maintaining product sterility and stability. Therefore, closure systems (found in vials, syringes, and cartridges) are designed to provide a seal between rubber stoppers and glass containers. To ensure that the contained product has maintained its sterility and stability at the time of deployment, the seal must remain intact within acceptable limits. To this end, a mathematical model has been developed to describe vacuum loss in evacuated drug vials. The model computes equivalent leak diameter corresponding to initial air leak rate as well as vacuum loss as a function of time and vial size. The theory accounts for three flow regimes that may be encountered. Initial leak rates from 10(-8) to 10(3) sccm (standard cubic centimeters per minute) were investigated for vials ranging from 1 to 100 mL. Corresponding leak diameters of 0.25-173 μm were predicted. The time for a vial to lose half of its vacuum, the T50 value, ranged from many years at the lowest leak rates and largest vials, to fractions of a second at the highest leak rates and smallest vials. These results may be used to determine what level of initial vacuum leak is acceptable for a given product. Copyright © 2013 Wiley Periodicals, Inc.

  16. BIM Based Virtual Environment for Fire Emergency Evacuation

    PubMed Central

    Rezgui, Yacine; Ong, Hoang N.

    2014-01-01

    Recent building emergency management research has highlighted the need for the effective utilization of dynamically changing building information. BIM (building information modelling) can play a significant role in this process due to its comprehensive and standardized data format and integrated process. This paper introduces a BIM based virtual environment supported by virtual reality (VR) and a serious game engine to address several key issues for building emergency management, for example, timely two-way information updating and better emergency awareness training. The focus of this paper lies on how to utilize BIM as a comprehensive building information provider to work with virtual reality technologies to build an adaptable immersive serious game environment to provide real-time fire evacuation guidance. The innovation lies on the seamless integration between BIM and a serious game based virtual reality (VR) environment aiming at practical problem solving by leveraging state-of-the-art computing technologies. The system has been tested for its robustness and functionality against the development requirements, and the results showed promising potential to support more effective emergency management. PMID:25197704

  17. A fixed tilt solar collector employing reversible vee-trough reflectors and vacuum tube receivers for solar heating and cooling systems

    NASA Technical Reports Server (NTRS)

    Selcuk, M. K.

    1977-01-01

    The usefulness of vee-trough concentrators in improving the efficiency and reducing the cost of collectors assembled from evacuated tube receivers was studied in the vee-trough/vacuum tube collector (VTVTC) project. The VTVTC was analyzed rigorously and various mathematical models were developed to calculate the optical performance of the vee-trough concentrator and the thermal performance of the evacuated tube receiver. A test bed was constructed to verify the mathematical analyses and compare reflectors made out of glass, Alzak and aluminized FEP Teflon. Tests were run at temperatures ranging from 95 to 180 C. Vee-trough collector efficiencies of 35 to 40% were observed at an operating temperature of about 175 C. Test results compared well with the calculated values. Predicted daily useful heat collection and efficiency values are presented for a year's duration of operation temperatures ranging from 65 to 230 C. Estimated collector costs and resulting thermal energy costs are presented. Analytical and experimental results are discussed along with a complete economic evaluation.

  18. Experimental study on small group behavior and crowd dynamics in a tall office building evacuation

    NASA Astrophysics Data System (ADS)

    Ma, Yaping; Li, Lihua; Zhang, Hui; Chen, Tao

    2017-05-01

    It is well known that a large percentage of occupants in a building are evacuated together with their friends, families, and officemates, especially in China. Small group behaviors are therefore critical for crowd movement. This paper aims to study the crowd dynamic considering different social relations and the impacts of small groups on crowd dynamics in emergency evacuation. Three experiments are conducted in an 11-storey office building. In the first two experiments, all participants are classmates and know each other well. They are evacuated as individuals or pairs. In the third experiment, social relations among the participants are complex. Participants consist of 8 families, 6 lovers and several individuals. Space-time features, speed characteristics and density-speed relations for each experiment are analyzed and compared. Results conclude that small group behaviors can make positive impacts on crowd dynamics when evacuees know each other and are cooperative. This conclusion is also testified by four verified experiments. In the third experiment, speeds of evacuees are lowest. Small groups form automatically with the presence of intimate social relations. Small groups in this experiment slow down the average speed of the crowd and make disturbance on the crowd flow. Small groups in this case make negative impacts on the movement of the crowd. It is because that evacuees do not know each other and they are competitive to each other. Characteristics of different types of small groups are also investigated. Experimental data can provide foundational parameters for evacuation model development and are helpful for building designers.

  19. Haughton-Mars Project/NASA 2006 Lunar Medical Contingency Simulation: Equipment and Methods for Medical Evacuation of an Injured Crewmember

    NASA Technical Reports Server (NTRS)

    Chappell, S. P.; Scheuring, R. A.; Jones, J. A.; Lee, P.; Comtois, J. M.; Chase, T.; Gernhardt M.; Wilkinson, N.

    2007-01-01

    Introduction: Achieving NASA's Space Exploration Vision scientific objectives will require human access into cratered and uneven terrain for the purpose of sample acquisition to assess geological, and perhaps even biological features and experiments. Operational risk management is critical to safely conduct the anticipated tasks. This strategy, along with associated contingency plans, will be a driver of EVA system requirements. Therefore, a medical contingency EVA scenario was performed with the Haughton-Mars Project/NASA to develop belay and medical evacuation techniques for exploration and rescue respectively. Methods: A rescue system to allow two rescuer astronauts to evacuate one in incapacitated astronaut was evaluated. The systems main components were a hard-bottomed rescue litter, hand-operated winch, rope, ground picket anchors, and a rover-winch attachment adapter. Evaluation was performed on 15-25deg slopes of dirt with embedded rock. The winch was anchored either by adapter to the rover or by pickets hammered into the ground. The litter was pulled over the surface by rope attached to the winch. Results: The rescue system was utilized effectively to extract the injured astronaut up a slope and to a waiting rover for transport to a simulated habitat for advanced medical care, although several challenges to implementation were identified and overcome. Rotational stabilization of the winch was found to be important to get maximize mechanical advantage from the extraction system. Discussion: Further research and testing needs to be performed to be able to fully consider synergies with the other Exploration surface systems, in conducting contingency operations. Structural attachment points on the surface EVA suits may be critical to assist in incapacitated evacuation. Such attach points could be helpful in microgravity incapacitated crewmember transport as well. Wheeled utility carts or wheels that may be attachable to a litter may also aid in extraction and transport. Utilizing parts of the rover (e.g. seats) to deploy as a litter may be considered. Testing in simulated 1/6-g to determine feasibility of winch operation and anchor establishment will further reduce implementation uncertainties.

  20. Medical relief activities, medical resourcing, and inpatient evacuation conducted by Nippon Medical School due to the Fukushima Daiichi Nuclear Power Plant accident following the Great East Japan Earthquake 2011.

    PubMed

    Koyama, Atsushi; Fuse, Akira; Hagiwara, Jun; Matsumoto, Gaku; Shiraishi, Shinichiro; Masuno, Tomohiko; Miyauchi, Masato; Kawai, Makoto; Yokota, Hiroyuki

    2011-01-01

    On March 11, 2011, after the Great East Japan Earthquake and tsunami, the government declared a nuclear emergency following damage to the Fukushima Daiichi Nuclear Power Plant. A second hydrogen explosion occurred on March 14 at the plant's No. 3 reactor and injured 11 people. At that time the prime minister urged people living 20 to 30 km from the Daiichi plant to stay indoors. Under these circumstances, many residents of Iwaki City, which was largely outside the 30-km zone, left the city, making it difficult to get supplies to the remaining residents. The only transportation route open for supplies and medical resources was roads, and many drivers feared the rumor that the city was contaminated by radioactive materials and, so, refused to go there. Nippon Medical School (NMS) heard that medical resources were running short at Iwaki Kyoritsu Hospital, which requested water, medications, food, fuel (gasoline), medical support, and the evacuation of 300 inpatients. As a first step, NMS decided to evaluate the situation at the hospital and, on March 16, the director of the NMS Advanced Emergency Center visited the hospital and helped provide triage for about 200 patients. Critically ill patients receiving ventilatory support were given priority for evacuation because they would be most at risk of not being able to evacuate should the Japanese government order an immediate evacuation of the city. We tried to evacuate the inpatients via an official framework, such as the Disaster Medical Assistance Team (DMAT), but DMAT could not support this mission because this hospital was not within the 30-km evacuation zone. Moreover, the Iwaki City government could not support the evacuation efforts because they were fearful of the rumor that Iwaki was contaminated by radioactive material. Ultimately, we realized that we had to conduct the mission ourselves and, so, contacted our colleagues in the Tokyo metropolitan area to prepare enough hospital beds. We evacuated 15 patients to 8 hospitals over a 5-day period. As a result, we could reduce the number of patients at Iwaki Kyoritsu Hospital, and, thereby, the collapse of medical services in the city was avoided. In retrospect, someone might say the government--either central or local--should ideally have carried out this mission and created a system by which to do it. At the same time, however, to overcome any future bureaucratic issues, we should also prepare private networks, such as those used by NMS, because they can respond flexibly to unexpected large-scale disasters.

  1. [Aeromedical evacuation of critically ill patients in developing countries A retrospective study on 244 patients in Djibouti].

    PubMed

    Bordes, J; Loheas, D; Benois, A

    2015-01-01

    The pratice of intensive care in Africa is marked by a wide variety of health care delivery. Only a few centers offer specialized intensive care units, as cardiac or neurological units. That may explain the need for aeromedical evacuations for patients whose condition exceeds local capacity. Our objective was to assess whether the proportion of patients admitted to intensive care and evacuated had increased between 1997 and 2013 in a developing country, Djibouti. We examined the activity register of Bouffard Hospital intensive care unit in Djibouti to determine the number and characteristics of patients evacuated by air ambulance during a 16 years period. From January 1997 to December 2013, a total of 244 patients were evacuated. The evacuation rate was 5.74ù of the patients admitted to the entire duration of the study. The rate of patients evacuated was not different between 1997 and 2013 (5,69ù versus 8,33ù respectively, p = 0,269). However, the rate of djiboutian evacuated patients was statistically different between 1997 and 2013 (0,96ù versus 4,46ù, p = 0,02). The main causes were severe trauma injuries, cardiovascular diseases and neurological diseases. The aeromedical evacuation of a critically ill patient in a developing country is a process requiring heavy logistics and depending on the medical skills available in the area, and financial resources that can be implemented for the patient. Our study shows that medical evacuations in favor of Djiboutian patients are marginal but are increasing over the past decade.

  2. Does Non-Compliance with Route/Destination Assignment Compromise Evacuation Efficiency?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Fang; Han, Lee; Chin, Shih-Miao

    2007-01-01

    This paper documents studies of two real-world network evacuation cases, each with a different, but proven, simulation software package. The purpose of these studies was to examine whether the rate of evacuees' compliance with predetermined route/destination assignments would have an impact on the efficiency of evacuation operations. Results from both cases suggest that a rate of less than 100% compliance does not compromise evacuation efficiency. In fact, although this is counter-intuitive, evacuation efficiency would actually improve as a result of "sensible" non-compliance on the part of the evacuees. A closer observation of the results revealed that the somewhat unexpected improvementmore » results from a reduction in congestion along designated evacuation routes as evacuees spread out to less prominent parallel streets and other non-congested outbound routes. This suggests that by being limited by the zone-to-zone and one-to-one assignment framework, conventional evacuation plans may have fallen short of providing the most efficient guidance to evacuees. To address this issue, some systematic means, perhaps simulation-based, should be performed to assess the zone partitions, route designations, and destination assignments in existing evacuation plans. Thus, evacuation planning with route/destination assignments based on origin zones may be flawed and may deserve reconsideration. After all, once en route, where an evacuee is coming from is of far less consequence than where he or she is going.« less

  3. 46 CFR 199.190 - Operational readiness, maintenance, and inspection of lifesaving equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... (CONTINUED) LIFESAVING APPLIANCES AND ARRANGEMENTS LIFESAVING SYSTEMS FOR CERTAIN INSPECTED VESSELS... manufacturer's handbook. (3) The general alarm system must be tested. (e) Monthly inspections. (1) Each...) Servicing of inflatable lifesaving appliances, inflated rescue boats, and marine evacuation systems. (1...

  4. Hurricane and Monsoon Tracking with Driftsondes

    NASA Astrophysics Data System (ADS)

    Drobinski, Philippe; Cocquerez, Philippe; Doerenbecher, A.; Hock, Terrence; Lavaysse, C.; Parsons, D.; Redelsperger, J. L.

    Tropical cyclones (TCs) are a typical weather threat. The threat can apply to humans, their properties, and activities. Their prediction, particularly their trajectory and intensity, remains difficult. In addition, TCs develop above the tropical oceans where the coverage by in situ observations is poor and within cloud clusters (mesoscale convective systems MCS) that limit the ability of numerical weather prediction (NWP) models to assimilate satellite data [18]. Improved forecast of TCs trajectories is a huge benefit in terms of material costs of evacuations and damage, not being able to quantify saved life.

  5. 30 CFR 46.8 - Annual refresher training.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...; transportation controls and communication systems; escape and emergency evacuation plans, firewarning and... accidents; health; explosives; and respiratory devices. Training is also recommended on the hazards... tractors); conveyor systems; cranes; crushers; excavators; and dredges. Other recommended subjects include...

  6. 30 CFR 46.8 - Annual refresher training.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...; transportation controls and communication systems; escape and emergency evacuation plans, firewarning and... accidents; health; explosives; and respiratory devices. Training is also recommended on the hazards... tractors); conveyor systems; cranes; crushers; excavators; and dredges. Other recommended subjects include...

  7. 30 CFR 46.8 - Annual refresher training.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...; transportation controls and communication systems; escape and emergency evacuation plans, firewarning and... accidents; health; explosives; and respiratory devices. Training is also recommended on the hazards... tractors); conveyor systems; cranes; crushers; excavators; and dredges. Other recommended subjects include...

  8. 30 CFR 46.8 - Annual refresher training.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...; transportation controls and communication systems; escape and emergency evacuation plans, firewarning and... accidents; health; explosives; and respiratory devices. Training is also recommended on the hazards... tractors); conveyor systems; cranes; crushers; excavators; and dredges. Other recommended subjects include...

  9. Identifying local transit resources for evacuation : [tech summary].

    DOT National Transportation Integrated Search

    2015-12-01

    In addition to regular urban area transit systems, there are hundreds of small on demand public transit systems that : provide transportation to various categories of riders: the elderly, low-income, veterans, disabled, and those needing : acce...

  10. Microbiological contamination of compressed air used in dentistry: an investigation.

    PubMed

    Conte, M; Lynch, R M; Robson, M G

    2001-11-01

    The purpose of this preliminary investigation was twofold: 1) to examine the possibility of cross-contamination between a dental-evacuation system and the compressed air used in dental operatories and 2) to capture and identify the most common microflora in the compressed-air supply. The investigation used swab, water, and air sampling that was designed to track microorganisms from the evacuation system, through the air of the mechanical room, into the compressed-air system, and back to the patient. Samples taken in the vacuum system, the air space in the mechanical room, and the compressed-air storage tank had significantly higher total concentrations of bacteria than the outside air sampled. Samples of the compressed air returning to the operatory were found to match the outside air sample in total bacteria. It was concluded that the air dryer may have played a significant role in the elimination of microorganisms from the dental compressed-air supply.

  11. Use of computational fluid dynamics in optimization of natural smoke ventilation from a historical shopping mall - Case study

    NASA Astrophysics Data System (ADS)

    Krajewski, Grzegorz; Wegrzyński, Wojciech

    2018-01-01

    In this paper, the Authors present results of a complex case study, in which a natural smoke ventilation system was introduced into a historical mall Koszyki Market Hall located in the centre of Warsaw. As historical authorities protected the building, the only solution possible was to use a natural system - known for deficient performance in façade applications. To maximise the performance of the smoke control system, a Computational Wind Engineering exercise was performed. The goal was to find the most difficult wind attack angles, and optimise the performance at these conditions. Once the wind influence was known, a transient analysis was performed that included the growth of the fire within the building, as well as a numerical evacuation study. The resulting system was immune to the wind effects, and provided safe evacuation to users of the building, even in difficult wind conditions.

  12. Elementary students' evacuation route choice in a classroom: A questionnaire-based method

    NASA Astrophysics Data System (ADS)

    Chen, Liang; Tang, Tie-Qiao; Huang, Hai-Jun; Song, Ziqi

    2018-02-01

    Children evacuation is a critical but challenging issue. Unfortunately, existing researches fail to effectively describe children evacuation, which is likely due to the lack of experimental and empirical data. In this paper, a questionnaire-based experiment was conducted with children aged 8-12 years to study children route choice behavior during evacuation from in a classroom with two exits. 173 effective questionnaires were collected and the corresponding data were analyzed. From the statistical results, we obtained the following findings: (1) position, congestion, group behavior, and backtracking behavior have significant effects on children route choice during evacuation; (2) age only affects children backtracking behavior, and (3) no prominent effects based on gender and guidance were observed. The above findings may help engineers design some effective evacuation strategies for children.

  13. Is there one optimal medical treatment and evacuation chain for all situations: "scoop-and-run" or "stay-and-play".

    PubMed

    Hoejenbos, Maarten J J; McManus, John; Hodgetts, Timothy

    2008-01-01

    In 2006, the Ministry of Defense of the Netherlands initiated a targeted agenda program for the World Congress on Disaster and Emergency Medicine in Amsterdam in 2007 (15WCDEM). The issue to be discussed was if there is one "golden" treatment and evacuation system that is applicable for different military and civilian situations. And, if there is not such a system, which parameters are important to construct the most optimal system for each different situation. This issue is related to the applicability and evidence base of the standards of the North Atlantic Treaty Organization. A group of experts started a website discussion on the issue during December 2006. During the 15WCDEM, several other participants were active in the discussion. Using the different experiences and the outcome of the discussions, it was concluded that there is not one "golden" medical emergency system, there are no "golden" timelines, and no "golden" skills. A medical system should be flexible and be able to adjust on each specific, local situation. First responder and non-medical people with medical skills (first responders) are essential in the front line of the emergency medical systems. More research is needed on the medical techniques and skills that are most effective early in the treatment and evacuation systems. Lessons learned from the military system are relevant for the civilian emergency medical services and vice-versa. The World Association for Disaster and Emergency Medicine can be an important platform to share and exchange information between these two systems. The target of the platform should be to obtain a generic picture of the important elements in prehospital emergency medical care.

  14. Gene expression analyses of the small intestine of pigs in the ex-evacuation zone of the Fukushima Daiichi Nuclear Power Plant.

    PubMed

    Morimoto, Motoko; Kato, Ayaka; Kobayashi, Jin; Okuda, Kei; Kuwahara, Yoshikazu; Kino, Yasushi; Abe, Yasuyuki; Sekine, Tsutomu; Fukuda, Tomokazu; Isogai, Emiko; Fukumoto, Manabu

    2017-11-15

    After the accident at the Fukushima Daiichi Nuclear Power Plant, radioactive contaminants were released over a widespread area. Monitoring the biological effects of radiation exposure in animals in the ex-evacuation zone should be continued to understand the health effects of radiation exposure in humans. The present study aimed to clarify the effects of radiation by investigating whether there is any alteration in the morphology and gene expressions of immune molecules in the intestine of pigs and inobuta (wild boar and domestic pig hybrid) in the ex-evacuation zone in 2012. Gene expression analysis was performed in small intestine samples from pigs, which were collected from January to February 2012, in the ex-evacuation zone. Pigs lived freely in this zone, and their small intestine was considered to be affected by the dietary intake of radioactive contaminants. Several genes were selected by microarray analysis for further investigation using real-time polymerase chain reaction. IFN-γ, which is an important inflammatory cytokine, and TLR3, which is a pattern recognize receptor for innate immune system genes, were highly elevated in these pigs. The expressions of the genes of these proteins were associated with the radiation level in the muscles. We also examined the alteration of gene expressions in wild boars 5 years after the disaster. The expression of IFN-γ and TLR3 remained high, and that of Cyclin G1, which is important in the cell cycle, was elevated. We demonstrated that some changes in gene expression occurred in the small intestine of animals in the ex-evacuation zone after radiation. It is difficult to conclude that these alterations are caused by only artificial radionuclides from the Fukushima Daiichi Nuclear Power Plant. However, the animals in the ex-evacuation zone might have experienced some changes owing to radioactive materials, including contaminated soil, small animals, and insects. We need to continue monitoring the effects of long-term radiation exposure in living things.

  15. Case study of medical evacuation before and after the Fukushima Daiichi nuclear power plant accident in the great east Japan earthquake.

    PubMed

    Okumura, Tetsu; Tokuno, Shinichi

    2015-01-01

    In Japan, participants in the disaster-specific medical transportation system have received ongoing training since 2002, incorporating lessons learned from the Great Hanshin Earthquake. The Great East Japan Earthquake occurred on March 11, 2011, and the very first disaster-specific medical transport was performed. This article reviews in detail the central government's control and coordination of the disaster medical transportation process following the Great East Japan Earthquake and the Fukushima Daiichi Nuclear Power Plant Accident. In total, 124 patients were air transported under the coordination of the C5 team in the emergency response headquarter of the Japanese Government. C5 includes experts from the Cabinet Office, Cabinet Secretariat, Fire Defense Agency, Ministry of Health, Labour and Welfare, and Ministry of Defense. In the 20-30 km evacuation zone around the Fukushima Daiichi nuclear power plant, 509 bedridden patients were successfully evacuated without any fatalities during transportation. Many lessons have been learned in disaster-specific medical transportation. The national government, local government, police, and fire agencies have made significant progress in their mutual communication and collaboration. Fortunately, hospital evacuation from the 20-30 km area was successfully performed with the aid of local emergency physicians and Disaster Medical Assistance Teams (DMATs) who have vast experience in patient transport in the course of day-to-day activities. The emergency procedures that are required during crises are an extension of basic daily procedures that are performed by emergency medical staff and first responders, such as fire fighters, emergency medical technicians, or police officers. Medical facilities including nursing homes should have a plan for long-distance (over 100 km) evacuation, and the plan should be routinely reevaluated with full-scale exercises. In addition, hospital evacuation in disaster settings should be supervised by emergency physicians and be handled by disaster specialists who are accustomed to patient transportation on a daily basis.

  16. Frequent users of the Royal Flying Doctor Service primary clinic and aeromedical services in remote New South Wales: a quality study.

    PubMed

    Garne, David L; Perkins, David A; Boreland, Frances T; Lyle, David M

    To examine activity patterns of the Royal Flying Doctor Service of Australia (RFDS) in far western New South Wales and to determine whether frequent use of RFDS services, particularly emergency evacuations, is a useful indicator of patients who may benefit from care planning and review. We conducted a retrospective audit of the RFDS South Eastern Section's Broken Hill patient database. Patients with a residential address in the study area who had accessed at least one RFDS medical service between 1 July 2000 and 30 June 2005 were included in the study. Number of evacuations, clinic consultations and remote consultations; clinic usage by frequent evacuees; number of primary diagnoses recorded for frequent evacuees; number of frequent users who might benefit from multidisciplinary care or specialist shared care. Between July 2000 and June 2005, the number of residents requiring evacuation or remote consultations declined by 26% and 19%, respectively, and the number of residents accessing clinics declined by 6%. (Over the same period, the population of the study area fell by about 24%.) Of the 78 patients who were identified as frequent users of the evacuation service (> or = 3 evacuations/year), 34 had three or more primary diagnoses recorded; 15 were infrequent or non-users of the clinics (< or = 3 attendances/year); 53 may have benefited from multidisciplinary care, and 41 from specialist shared care. Simple, practical clinical review systems can help health care organisations in rural and remote communities to achieve better outcomes by identifying patients who may benefit from planned care.

  17. 42 CFR 73.14 - Incident response.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., security breaches (including information systems), severe weather and other natural disasters, workplace... locations, (10) Site security and control, (11) Procedures for emergency evacuation, including type of...

  18. Medical evacuation for unrecognized abdominal wall pain: a case series.

    PubMed

    Msonda, Hapu T; Laczek, Jeffrey T

    2015-05-01

    Chronic abdominal pain is a frequently encountered complaint in the primary care setting. The abdominal wall is the etiology of this pain in 10 to 30% of all cases of chronic abdominal pain. Abdominal cutaneous nerve entrapment at the lateral border of the rectus abdominis muscle has been attributed as a cause of this pain. In the military health care system, patients with unexplained abdominal pain are often transferred to military treatment facilities via the Military Medical Evacuation (MEDEVAC) system. We present two cases of patients who transferred via MEDEVAC to our facility for evaluation and treatment of chronic abdominal pain. Both patients had previously undergone extensive laboratory evaluation, imaging, and invasive procedures, such as esophagogastroduodenoscopy before transfer. Upon arrival, history and physical examinations suggested an abdominal wall source to their pain, and both patients experienced alleviation of their abdominal wall pain with lidocaine and corticosteroid injection. This case series highlights the need for military physicians to be aware of abdominal wall pain. Early diagnosis of abdominal cutaneous nerve entrapment syndrome by eliciting Carnett's sign will limit symptom chronicity, avoid unnecessary testing, and even prevent medical evacuation. Reprint & Copyright © 2015 Association of Military Surgeons of the U.S.

  19. Hyperbolic scaling and computing in social crowds: Comment on "Human behaviours in evacuation crowd dynamics: From modelling to "big data" toward crisis management" by Nicola Bellomo et al.

    NASA Astrophysics Data System (ADS)

    Outada, Nisrine

    2016-09-01

    I have read with great interest the paper [5] where the authors present an overview and critical analysis of the literature on the modeling of the crowd dynamics with special attention to evacuation dynamics. The approach developed is based on suitable development of methods of the kinetic theory. Interactions, which lead to the decision choice, are modeled by theoretical tools of stochastic evolutionary game theory [11,12]. However, the paper [5] provides not only a survey focused on topics of great interest for our society, but also it looks ahead to a variety of interesting and challenging mathematical problems. Specifically, I am interested in the derivation of macroscopic (hydrodynamic) models from the underlying description given from the kinetic theory approach, more specifically by the kinetic theory for active particles [8]. A general reference on crowd modeling is the recently published book [10].

  20. Optimizing Medical Kits for Spaceflight

    NASA Technical Reports Server (NTRS)

    Keenan, A. B,; Foy, Millennia; Myers, G.

    2014-01-01

    The Integrated Medical Model (IMM) is a probabilistic model that estimates medical event occurrences and mission outcomes for different mission profiles. IMM simulation outcomes describing the impact of medical events on the mission may be used to optimize the allocation of resources in medical kits. Efficient allocation of medical resources, subject to certain mass and volume constraints, is crucial to ensuring the best outcomes of in-flight medical events. We implement a new approach to this medical kit optimization problem. METHODS We frame medical kit optimization as a modified knapsack problem and implement an algorithm utilizing a dynamic programming technique. Using this algorithm, optimized medical kits were generated for 3 different mission scenarios with the goal of minimizing the probability of evacuation and maximizing the Crew Health Index (CHI) for each mission subject to mass and volume constraints. Simulation outcomes using these kits were also compared to outcomes using kits optimized..RESULTS The optimized medical kits generated by the algorithm described here resulted in predicted mission outcomes more closely approached the unlimited-resource scenario for Crew Health Index (CHI) than the implementation in under all optimization priorities. Furthermore, the approach described here improves upon in reducing evacuation when the optimization priority is minimizing the probability of evacuation. CONCLUSIONS This algorithm provides an efficient, effective means to objectively allocate medical resources for spaceflight missions using the Integrated Medical Model.

  1. Modelling and Simulation of Grid Connected SPV System with Active Power Filtering Features

    NASA Astrophysics Data System (ADS)

    Saroha, Jaipal; Pandove, Gitanjali; Singh, Mukhtiar

    2017-09-01

    In this paper, the detailed simulation studies for a grid connected solar photovoltaic system (SPV) have been presented. The power electronics devices like DC-DC boost converter and grid interfacing inverter are most important components of proposed system. Here, the DC-DC boost converter is controlled to extract maximum power out of SPV under different irradiation levels, while the grid interfacing inverter is utilized to evacuate the active power and feed it into grid at synchronized voltage and frequency. Moreover, the grid interfacing inverter is also controlled to sort out the issues related to power quality by compensating the reactive power and harmonics current component of nearby load at point of common coupling. Besides, detailed modeling of various component utilized in proposed system is also presented. Finally, extensive simulations have been performed under different irradiation levels with various kinds of load to validate the aforementioned claims. The overall system design and simulation have been performed by using Sim Power System toolbox available in the library of MATLAB.

  2. Pilot study of Alteplase (tissue plasminogen activator) for treatment of urinary clot retention in an in vitro model.

    PubMed

    Ritch, Chad R; Ordonez, Maria A; Okhunov, Zhamshid; Araujo, Juan; Walsh, Rhonda; Baudin, Vania; Lee, Daniel; Badani, Ketan K; Gupta, Mantu; Landman, Jaime

    2009-08-01

    The management of urinary clot retention and hematuria involves manual irrigation with sterile water or normal saline via a Foley catheter followed by continuous bladder irrigation. Irrigation may become difficult because of the formation of dense blood clots. Tissue plasminogen activator (t-PA/Alteplase) may be a useful pharmacological agent to improve the efficacy of manual irrigation of large, dense clots. The goal of the current study was to compare t-PA to sterile water for clot irrigation in an in vitro model. In vitro models of clot retention were created using 500-cc urinary leg bags each filled with 80 cc of unpreserved whole blood from a healthy volunteer. Each model was incubated at 25 degrees C for 24 hours to allow clot formation. Four models each with 25 mL solution of t-PA at concentrations of 2, 1, 0.5, and 0.25 mg/mL were evaluated and compared to a control (25 mL sterile water). Models were instilled with solution (t-PA or control) and incubated for 30 minutes at 37 degrees C, and then irrigated with sterile water via 18F Foley by a blinded investigator. Three separate experiments were conducted, and statistical analysis was performed comparing various irrigation parameters. Clot evacuation with 25 mL of t-PA at a concentration of 2 mg/mL (50 mg) was significantly easier (p = 0.05) and faster (p < 0.05) than the sterile water control. The mean time for clot evacuation in this model was 2.7 minutes for t-PA solution 2 mg/mL versus 7.3 minutes for the control (p < 0.05). Compared to the control, irrigation with t-PA solution 2 mg/mL also required less irrigant (180 mL vs. 500 mL) (p < 0.05) for complete evacuation. There was a similar trend in efficacy for the lower doses of t-PA, but this was not statistically significant. In this in vitro study, a single 25 mL instillation of t-PA solution 2 mg/mL is significantly better than sterile water alone for clot evacuation. In vivo animal studies are pending.

  3. Lessons learned from the 2010 evacuations at Merapi volcano

    NASA Astrophysics Data System (ADS)

    Mei, Estuning Tyas Wulan; Lavigne, Franck; Picquout, Adrien; de Bélizal, Edouard; Brunstein, Daniel; Grancher, Delphine; Sartohadi, Junun; Cholik, Noer; Vidal, Céline

    2013-07-01

    The rapid onset and large magnitude of the 2010 eruption of Merapi posed significant challenges for evacuations and resulted in a peak number of almost 400,000 Internally Displaced Persons (IDPs). A pre-existing hazard map and an evacuation plan based on the relatively small magnitude of previous eruptions of the 20th century were utilized by emergency officials during the initial phase of the eruption (25 October-3 November, 2010). However, when the magnitude of the eruption increased greatly on 3-5 November 2010, the initial evacuation plan had to be abandoned as danger zones were expanded rapidly and the scale and pace of the evacuation increased dramatically. Fortunately, orders to evacuate were communicated quickly through a variety of communication methods and as a result many thousands of lives were saved. However, there were also problems that resulted from this rapid and larger-than-expected evacuation; and there were lessons learned that can improve future mass evacuations at Merapi and other volcanoes. We analyzed the results of 1969 questionnaires and conducted a series of interviews with community leaders and emergency officials. Results were compiled for periods both during and after the 2010 eruption. Our results show that: (1) trust in the Indonesian government and volcanologists was very high after the eruption; (2) multiple modes of communication were used to relay warnings and evacuation orders; (3) 50% to 70% of IDPs returned to the danger zone during the crisis despite evacuation orders; (4) preparation before the eruption was critical to the successes and included improvements to roads and education programs, (5) public education about hazards and evacuation protocols before the eruption was focused in the perceived highest danger zone where it was effective yet, confusion and loss of life in other areas demonstrated that education programs in all hazard zones are needed to prepare for larger-than-normal eruptions, and (6) improvements in registration of evacuees, in providing for livestock, and in activities and work programs in evacuation camps (as well as government restrictions and policy changes) are also needed to prevent evacuees from returning to their homes during the crisis period.

  4. In Vitro Evaluation of Evacuated Blood Collection Tubes as a Closed-Suction Surgical Drain Reservoir.

    PubMed

    Heiser, Brian; Okrasinski, E B; Murray, Rebecca; McCord, Kelly

    The initial negative pressures of evacuated blood collection tubes (EBCT) and their in vitro performance as a rigid closed-suction surgical drain (CSSD) reservoir has not been evaluated in the scientific literature despite being described in both human and veterinary texts and journals. The initial negative pressures of EBCT sized 3, 6, 10, and 15 mL were measured and the stability of the system monitored. The pressure-to-volume curve as either air or water was added and maximal filling volumes were measured. Evacuated blood collection tubes beyond the manufacture's expiration date were evaluated for initial negative pressures and maximal filling volumes. Initial negative pressure ranged from -214 mm Hg to -528 mm Hg for EBCT within the manufacturer's expiration date. Different pressure-to-volume curves were found for air versus water. Optimal negative pressures of CSSD are debated in the literature. Drain purpose and type of exudates are factors that should be considered when deciding which EBCT size to implement. Evacuated blood collection tubes have a range of negative pressures and pressure-to-volume curves similar to previously evaluated CSSD rigid reservoirs. Proper drain management and using EBCT within labeled expiration date are important to ensure that expected negative pressures are generated.

  5. Aero-medical evacuation from the second Israel-Lebanon war: a descriptive study.

    PubMed

    Schwartz, Dagan; Resheff, Avram; Geftler, Alex; Weiss, Aviram; Birenbaum, Erez; Lavon, Ophir

    2009-05-01

    The second Lebanon war started as a limited operation and progressed to a large-scale campaign. Most of the fighting took place in mountainous villages and small towns inhabited with civilians. The Israeli Defense Forces (IDF) Airborne rescue and evacuation unit is charged with air evacuation of soldiers and civilians in times of peace, limited conflict, and war. We describe this unit's activities in the second Lebanon war, analyzing injury, treatment, and evacuation characteristics Data were collected from flight medical reports, debriefings of aero-medical team members (usually immediately upon return from mission), ground units medical reports and debriefings, and hospital records. 725 IDF soldiers were injured and 117 killed either in Lebanon or near the Israeli-Lebanese border during the war. A total of 338 (46%) were evacuated in 95 airlifts (averaging 4.5 evacuees per airlift) from the fighting zones or the border. Air evacuation used dedicated helicopters with advanced care capacities, and most victims were evacuated straight from the battlefield, as the fighting was ensuing. Many wounded first received advanced medical care upon the arrival of the aero-medical teams. In military operations within civilian populated areas with threats to ground transport, air evacuation can sometimes be the only readily available option. Providing timely ground advanced medical care proved difficult in many instances. Thus, for many, the rescue helicopter was the first point of access to such care. Aero-medical aircrafts and personnel faced threats from gunfire and missiles, causing both delays in evacuation and a high average number of evacuees per airlift. This article proposes ways of coping with situations in which similar rescue and evacuation problems are likely.

  6. Evacuation decisions in a chemical air pollution incident: cross sectional survey

    PubMed Central

    Kinra, S; Lewendon, G; Nelder, R; Herriott, N; Mohan, R; Hort, M; Harrison, S; Murray, V

    2005-01-01

    Objective To compare the health outcomes in sheltered and evacuated populations after a chemical incident in a plastics factory. Design Cross sectional survey. Setting Urban area in southwest England. Participants 1750 residents from the area exposed to the chemical smoke, of which 472 were evacuated and the remaining 1278 were advised to shelter indoors. Main outcome measure Number of adverse health symptoms. A case was defined by the presence of four or more symptoms. Main results 1096 residents (63%; 299 evacuated, 797 sheltered) provided data for analyses. The mean symptom score and proportion of cases were higher in evacuated people than in the sheltered population (evacuated: symptom score 1.9, cases 19.7% (n = 59); sheltered: symptom score 1.0, cases 9.5% (n = 76); P < 0.001 for both). The difference between the two groups attenuated markedly at the end of two weeks from the start of the incident. The two main modifiable risk factors for the odds of becoming a case were evacuation (odds ratio 2.5, 95% confidence interval 1.7 to 3.8) and direct exposure to smoke for more than two hours on the first day of the incident (2.0, 1.7 to 2.3). The distance of residence from the factory or level of exposure before intervention (first six hours) had little effect on the odds of a person becoming a case. Conclusions Sheltering may have been a better protective action than evacuation in this chemical incident, which is consistent with the prevailing expert view. Although this study has limitations, it is based on a real event. Evacuations carry their own risks and resource implications; increased awareness may help to reduce unnecessary evacuations in the future. PMID:15976419

  7. 32 CFR 728.42 - NATO.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... evacuation system of the holding nation. (2) Classification of patients. Different channels for disposition... acute medical and surgical conditions, exclusive of nervous, mental, or contagious diseases or those...

  8. Enhancing resource coordination for multi-modal evacuation planning.

    DOT National Transportation Integrated Search

    2013-01-01

    This research project seeks to increase knowledge about coordinating effective multi-modal evacuation for disasters. It does so by identifying, evaluating, and assessing : current transportation management approaches for multi-modal evacuation planni...

  9. Guidelines for hurricane evacuation signing and markings

    DOT National Transportation Integrated Search

    2007-12-01

    Based on focus group input and surveys of motorists who have recent hurricane evacuation experience, researchers developed guidelines for various hurricane evacuation signs and markings, including route signs, contraflow signs, emergency shoulder lan...

  10. Disentangling the Impact of Social Groups on Response Times and Movement Dynamics in Evacuations

    PubMed Central

    Bode, Nikolai W. F.; Holl, Stefan; Mehner, Wolfgang; Seyfried, Armin

    2015-01-01

    Crowd evacuations are paradigmatic examples for collective behaviour, as interactions between individuals lead to the overall movement dynamics. Approaches assuming that all individuals interact in the same way have significantly improved our understanding of pedestrian crowd evacuations. However, this scenario is unlikely, as many pedestrians move in social groups that are based on friendship or kinship. We test how the presence of social groups affects the egress time of individuals and crowds in a representative crowd evacuation experiment. Our results suggest that the presence of social groups increases egress times and that this is largely due to differences at two stages of evacuations. First, individuals in social groups take longer to show a movement response at the start of evacuations, and, second, they take longer to move into the vicinity of the exits once they have started to move towards them. Surprisingly, there are no discernible time differences between the movement of independent individuals and individuals in groups directly in front of the exits. We explain these results and discuss their implications. Our findings elucidate behavioural differences between independent individuals and social groups in evacuations. Such insights are crucial for the control of crowd evacuations and for planning mass events. PMID:25785603

  11. The effect of overwing hatch placement on evacuation from smaller transport aircraft.

    PubMed

    Wilson, Rebecca L; Muir, Helen C

    2010-02-01

    Overwing exits are installed on a number of smaller transport aircraft. With a traditional overwing exit, once released, the hatch is not attached to the fuselage and will fall into the cabin. To operate, the hatch has to be brought inwards, manoeuvred and placed in a location where it does not obstruct egress. Accidents and experimental studies have shown that the hatch is not always disposed of into an appropriate location. Evacuation trials from a smaller transport aircraft cabin were conducted. The placement of the exit hatch was manipulated. The results indicated that hatch placement had a significant effect on passenger evacuation rates from a smaller transport aircraft, with the internal placement tested resulting in slower evacuation rates. The study has highlighted the importance of operators disposing of the hatch into a location whereby it does not impede egress. One way to ensure this would be the installation of an automatically disposed hatch. Statement of Relevance: It is important that all occupants can evacuate an aircraft rapidly if required. The influence of overwing hatch placement on evacuation from smaller transport aircraft was addressed Evacuation trials concluded that an inappropriately placed hatch can negatively influence evacuation rates. Improvements to exit design and passenger education were suggested.

  12. Condition for dust evacuation from the first galaxies

    NASA Astrophysics Data System (ADS)

    Fukushima, Hajime; Yajima, Hidenobu; Omukai, Kazuyuki

    2018-06-01

    Dust enables low-mass stars to form from low-metallicity gas by inducing fragmentation of clouds via cooling by thermal emission. Dust may, however, be evacuated from star-forming clouds due to the radiation force from massive stars. We study here the condition for dust evacuation by comparing the dust evacuation time with the time of cloud destruction due to either expansion of H II regions or supernovae. The cloud destruction time has a weak dependence on cloud radius, while the dust evacuation time is shorter for a cloud with a smaller radius. Dust evacuation, thus, occurs in compact star-forming clouds whose column density is NH ≃ 1024-1026 cm-2. The critical halo mass above which dust evacuation occurs is lower for higher formation red shift, e.g. ˜109 M⊙ at red shift z ˜ 3 and ˜107 M⊙ at z ˜ 9. In addition, the metallicity of the gas should be less than ˜10-2 Z⊙, otherwise attenuation by dust reduces the radiation force significantly. From the dust-evacuated gas, massive stars are likely to form, even with a metallicity above ˜10-5 Z⊙, the critical value for low-mass star formation due to dust cooling. This can explain the dearth of ultra-metal-poor stars with a metallicity lower than ˜10-4 Z⊙.

  13. Risk of large-scale evacuation based on the effectiveness of rescue strategies under different crowd densities.

    PubMed

    Wang, Jinghong; Lo, Siuming; Wang, Qingsong; Sun, Jinhua; Mu, Honglin

    2013-08-01

    Crowd density is a key factor that influences the moving characteristics of a large group of people during a large-scale evacuation. In this article, the macro features of crowd flow and subsequent rescue strategies were considered, and a series of characteristic crowd densities that affect large-scale people movement, as well as the maximum bearing density when the crowd is extremely congested, were analyzed. On the basis of characteristic crowd densities, the queuing theory was applied to simulate crowd movement. Accordingly, the moving characteristics of the crowd and the effects of typical crowd density-which is viewed as the representation of the crowd's arrival intensity in front of the evacuation passageways-on rescue strategies was studied. Furthermore, a "risk axle of crowd density" is proposed to determine the efficiency of rescue strategies in a large-scale evacuation, i.e., whether the rescue strategies are able to effectively maintain or improve evacuation efficiency. Finally, through some rational hypotheses for the value of evacuation risk, a three-dimensional distribution of the evacuation risk is established to illustrate the risk axle of crowd density. This work aims to make some macro, but original, analysis on the risk of large-scale crowd evacuation from the perspective of the efficiency of rescue strategies. © 2012 Society for Risk Analysis.

  14. Fleeing The Storm(s): An Examination of Evacuation Behavior During Florida’s 2004 Hurricane Season

    PubMed Central

    SMITH, STANLEY K.; MCCARTY, CHRIS

    2009-01-01

    The 2004 hurricane season was the worst in Florida’s history, with four hurricanes causing at least 47 deaths and some $45 billion in damages. To collect information on the demographic impact of those hurricanes, we surveyed households throughout the state and in the local areas that sustained the greatest damage. We estimate that one-quarter of Florida’s population evacuated prior to at least one hurricane; in some areas, well over one-half of the residents evacuated at least once, and many evacuated several times. Most evacuees stayed with family or friends and were away from home for only a few days. Using logistic regression analysis, we found that the strength of the hurricane and the vulnerability of the housing unit had the greatest impact on evacuation behavior; additionally, several demographic variables had significant effects on the probability of evacuating and the choice of evacuation lodging (family/friends, public shelters, or hotels/motels). With continued population growth in coastal areas and the apparent increase in hurricane activity caused by global warming, threats posed by hurricanes are rising in the United States and throughout the world. We believe the present study will help government officials plan more effectively for future hurricane evacuations. PMID:19348112

  15. [The use of the new loads of expendable medical supplies by the medical service of the Armed Forces].

    PubMed

    Miroshnichenko, Iu V; Bunin, S A; Grebeniuk, A N; Kononov, V N; Sidorov, D A

    2014-09-01

    The new loads of expendable medical supplies adopted by the Armed Forces of the Russian Federation and included into regulating documents are the most important elements of the authorized equipment system. Nine loads of expendable medical supplies, combined into two classification groups, are provided for the medical service. The use of these loads improves the effectiveness of medical supply for all stages of medical evacuation, medical continuity during medical and evacuation procedures and allows to deliver medical aid to patients on the basis of modern and innovative medical technologies.

  16. Lightweight cryogenic-compatible pressure vessels for vehicular fuel storage

    DOEpatents

    Aceves, Salvador; Berry, Gene; Weisberg, Andrew H.

    2004-03-23

    A lightweight, cryogenic-compatible pressure vessel for flexibly storing cryogenic liquid fuels or compressed gas fuels at cryogenic or ambient temperatures. The pressure vessel has an inner pressure container enclosing a fuel storage volume, an outer container surrounding the inner pressure container to form an evacuated space therebetween, and a thermal insulator surrounding the inner pressure container in the evacuated space to inhibit heat transfer. Additionally, vacuum loss from fuel permeation is substantially inhibited in the evacuated space by, for example, lining the container liner with a layer of fuel-impermeable material, capturing the permeated fuel in the evacuated space, or purging the permeated fuel from the evacuated space.

  17. In-hospital mortality after pre-treatment with antiplatelet agents or oral anticoagulants and hematoma evacuation of intracerebral hematomas.

    PubMed

    Stein, Marco; Misselwitz, Björn; Hamann, Gerhard F; Kolodziej, Malgorzata; Reinges, Marcus H T; Uhl, Eberhard

    2016-04-01

    Pre-treatment with antiplatelet agents is described to be a risk factor for mortality after spontaneous intracerebral hemorrhage (ICH). However, the impact of antithrombotic agents on mortality in patients who undergo hematoma evacuation compared to conservatively treated patients with ICH remains controversial. This analysis is based on a prospective registry for quality assurance in stroke care in the State of Hesse, Germany. Patients' data were collected between January 2008 and December 2012. Only patients with the diagnosis of spontaneous ICH were included (International Classification of Diseases 10th Revision codes I61.0-I61.9). Predictors of in-hospital mortality were determined by univariate analysis. Predictors with P<0.1 were included in a binary logistic regression model. The binary logistic regression model was adjusted for age, initial Glasgow Coma Score (GCS), the presence of intraventricular hemorrhage (IVH), and pre-ICH disability prior to ictus. In 8,421 patients with spontaneous ICH, pre-treatment with oral anticoagulants or antiplatelet agents was documented in 16.3% and 25.1%, respectively. Overall in-hospital mortality was 23.2%. In-hospital mortality was decreased in operatively treated patients compared to conservatively treated patients (11.6% versus 24.0%; P<0.001). Patients with antiplatelet pre-treatment had a significantly higher risk of death during the hospital stay after hematoma evacuation (odds ratio [OR]: 2.5; 95% confidence interval [CI]: 1.24-4.97; P=0.010) compared to patients without antiplatelet pre-treatment treatment (OR: 0.9; 95% CI: 0.79-1.09; P=0.376). In conclusion a higher rate of in-hospital mortality after pre-treatment with antiplatelet agents in combination with hematoma evacuation after spontaneous ICH was observed in the presented cohort. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Evacuating populations with special needs

    DOT National Transportation Integrated Search

    2009-04-01

    Evacuation operations are conducted under the authority of, and based on decisions by, local and state authorities. The purpose of this primer, Evacuating Populations with Special Needs, is to provide local and state emergency managers, government of...

  19. Participatory action research methodology in disaster research: results from the World Trade Center evacuation study.

    PubMed

    Gershon, Robyn R M; Rubin, Marcie S; Qureshi, Kristine A; Canton, Allison N; Matzner, Frederick J

    2008-10-01

    Participatory action research (PAR) methodology is an effective tool in identifying and implementing risk-reduction interventions. It has been used extensively in occupational health research, but not, to our knowledge, in disaster research. A PAR framework was incorporated into the World Trade Center evacuation study, which was designed to identify the individual, organizational, and structural (environmental) factors that affected evacuation from the World Trade Center Towers 1 and 2 on September 11, 2001. PAR teams-comprising World Trade Center evacuees, study investigators, and expert consultants-worked collaboratively to develop a set of recommendations designed to facilitate evacuation from high-rise office buildings and reduce risk of injury among evacuees. Two PAR teams worked first separately and then collectively to identify data-driven strategies for improvement of high-rise building evacuation. The teams identified interventions targeting individual, organizational, and structural (environmental) barriers to safe and rapid evacuation. PAR teams were effective in identifying numerous feasible and cost-effective strategies for improvement of high-rise emergency preparedness and evacuation. This approach may have utility in other workplace disaster prevention planning and response programs.

  20. The significance of a small, level-3 'semi evacuation' hospital in a terrorist attack in a nearby town.

    PubMed

    Pinkert, Moshe; Leiba, Adi; Zaltsman, Eilon; Erez, Onn; Blumenfeld, Amir; Avinoam, Shkolnick; Laor, Daniel; Schwartz, Dagan; Goldberg, Avishay; Levi, Yehezkel; Bar-Dayan, Yaron

    2007-09-01

    Terrorist attacks can occur in remote areas causing mass-casualty incidents MCIs far away from level-1 trauma centres. This study draws lessons from an MCI pertaining to the management of primary and secondary evacuation and the operational mode practiced. Data was collected from formal debriefings during and after the event, and the medical response, interactions and main outcomes analysed using Disastrous Incidents Systematic Analysis through Components, Interactions and Results (DISAST-CIR) methodology. A total of 112 people were evacuated from the scene-66 to the nearby level 3 Laniado hospital, including the eight critically and severely injured patients. Laniado hospital was instructed to act as an evacuation hospital but the flow of patients ended rapidly and it was decided to admit moderately injured victims. We introduce a novel concept of a 'semi-evacuation hospital'. This mode of operation should be selected for small-scale events in which the evacuation hospital has hospitalization capacity and is not geographically isolated. We suggest that level-3 hospitals in remote areas should be prepared and drilled to work in semi-evacuation mode during MCIs.

Top