Fracture mechanics methodology: Evaluation of structural components integrity
NASA Astrophysics Data System (ADS)
Sih, G. C.; de Oliveira Faria, L.
1984-09-01
The application of fracture mechanics to structural-design problems is discussed in lectures presented in the AGARD Fracture Mechanics Methodology course held in Lisbon, Portugal, in June 1981. The emphasis is on aeronautical design, and chapters are included on fatigue-life prediction for metals and composites, the fracture mechanics of engineering structural components, failure mechanics and damage evaluation of structural components, flaw-acceptance methods, and reliability in probabilistic design. Graphs, diagrams, drawings, and photographs are provided.
NASA Astrophysics Data System (ADS)
Wang, C.; Winterfeld, P. H.; Wu, Y. S.; Wang, Y.; Chen, D.; Yin, C.; Pan, Z.
2014-12-01
Hydraulic fracturing combined with horizontal drilling has made it possible to economically produce natural gas from unconventional shale gas reservoirs. An efficient methodology for evaluating hydraulic fracturing operation parameters, such as fluid and proppant properties, injection rates, and wellhead pressure, is essential for the evaluation and efficient design of these processes. Traditional numerical evaluation and optimization approaches are usually based on simulated fracture properties such as the fracture area. In our opinion, a methodology based on simulated production data is better, because production is the goal of hydraulic fracturing and we can calibrate this approach with production data that is already known. This numerical methodology requires a fully-coupled hydraulic fracture propagation and multi-phase flow model. In this paper, we present a general fully-coupled numerical framework to simulate hydraulic fracturing and post-fracture gas well performance. This three-dimensional, multi-phase simulator focuses on: (1) fracture width increase and fracture propagation that occurs as slurry is injected into the fracture, (2) erosion caused by fracture fluids and leakoff, (3) proppant subsidence and flowback, and (4) multi-phase fluid flow through various-scaled anisotropic natural and man-made fractures. Mathematical and numerical details on how to fully couple the fracture propagation and fluid flow parts are discussed. Hydraulic fracturing and production operation parameters, and properties of the reservoir, fluids, and proppants, are taken into account. The well may be horizontal, vertical, or deviated, as well as open-hole or cemented. The simulator is verified based on benchmarks from the literature and we show its application by simulating fracture network (hydraulic and natural fractures) propagation and production data history matching of a field in China. We also conduct a series of real-data modeling studies with different combinations of hydraulic fracturing parameters and present the methodology to design these operations with feedback of simulated production data. The unified model aids in the optimization of hydraulic fracturing design, operations, and production.
Sabharwal, Sanjeeve; Carter, Alexander; Darzi, Lord Ara; Reilly, Peter; Gupte, Chinmay M
2015-06-01
Approximately 76,000 people a year sustain a hip fracture in the UK and the estimated cost to the NHS is £1.4 billion a year. Health economic evaluations (HEEs) are one of the methods employed by decision makers to deliver healthcare policy supported by clinical and economic evidence. The objective of this study was to (1) identify and characterize HEEs for the management of patients with hip fractures, and (2) examine their methodological quality. A literature search was performed in MEDLINE, EMBASE and the NHS Economic Evaluation Database. Studies that met the specified definition for a HEE and evaluated hip fracture management were included. Methodological quality was assessed using the Consensus on Health Economic Criteria (CHEC). Twenty-seven publications met the inclusion criteria of this study and were included in our descriptive and methodological analysis. Domains of methodology that performed poorly included use of an appropriate time horizon (66.7% of studies), incremental analysis of costs and outcomes (63%), future discounting (44.4%), sensitivity analysis (40.7%), declaration of conflicts of interest (37%) and discussion of ethical considerations (29.6%). HEEs for patients with hip fractures are increasing in publication in recent years. Most of these studies fail to adopt a societal perspective and key aspects of their methodology are poor. The development of future HEEs in this field must adhere to established principles of methodology, so that better quality research can be used to inform health policy on the management of patients with a hip fracture. Copyright © 2014 Royal College of Surgeons of Edinburgh (Scottish charity number SC005317) and Royal College of Surgeons in Ireland. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ferreira, L. E. T.; Vareda, L. V.; Hanai, J. B.; Sousa, J. L. A. O.; Silva, A. I.
2017-05-01
A modal dynamic analysis is used as the tool to evaluate the fracture toughness of concrete from the results of notched-through beam tests. The dimensionless functions describing the relation between the frequencies and specimen geometry used for identifying the variation in the natural frequency as a function of crack depth is first determined for a 150 × 150 × 500-mm notched-through specimen. The frequency decrease resulting from the propagating crack is modeled through a modal/fracture mechanics approach, leading to determination of an effective crack length. This length, obtained numerically, is used to evaluate the fracture toughness of concrete, the critical crack mouth opening displacements, and the brittleness index proposed. The methodology is applied to tests performed on high-strength concrete specimens. The frequency response for each specimen is evaluated before and after each crack propagation step. The methodology is then validated by comparison with results from the application of other methodologies described in the literature and suggested by RILEM.
Quality indicators for hip fracture care, a systematic review.
Voeten, S C; Krijnen, P; Voeten, D M; Hegeman, J H; Wouters, M W J M; Schipper, I B
2018-05-17
Quality indicators are used to measure quality of care and enable benchmarking. An overview of all existing hip fracture quality indicators is lacking. The primary aim was to identify quality indicators for hip fracture care reported in literature, hip fracture audits, and guidelines. The secondary aim was to compose a set of methodologically sound quality indicators for the evaluation of hip fracture care in clinical practice. A literature search according to the PRISMA guidelines and an internet search were performed to identify hip fracture quality indicators. The indicators were subdivided into process, structure, and outcome indicators. The methodological quality of the indicators was judged using the Appraisal of Indicators through Research and Evaluation (AIRE) instrument. For structure and process indicators, the construct validity was assessed. Sixteen publications, nine audits and five guidelines were included. In total, 97 unique quality indicators were found: 9 structure, 63 process, and 25 outcome indicators. Since detailed methodological information about the indicators was lacking, the AIRE instrument could not be applied. Seven indicators correlated with an outcome measure. A set of nine quality indicators was extracted from the literature, audits, and guidelines. Many quality indicators are described and used. Not all of them correlate with outcomes of care and have been assessed methodologically. As methodological evidence is lacking, we recommend the extracted set of nine indicators to be used as the starting point for further clinical research. Future research should focus on assessing the clinimetric properties of the existing quality indicators.
Acoustic Emission Methodology to Evaluate the Fracture Toughness in Heat Treated AISI D2 Tool Steel
NASA Astrophysics Data System (ADS)
Mostafavi, Sajad; Fotouhi, Mohamad; Motasemi, Abed; Ahmadi, Mehdi; Sindi, Cevat Teymuri
2012-10-01
In this article, fracture toughness behavior of tool steel was investigated using Acoustic Emission (AE) monitoring. Fracture toughness ( K IC) values of a specific tool steel was determined by applying various approaches based on conventional AE parameters, such as Acoustic Emission Cumulative Count (AECC), Acoustic Emission Energy Rate (AEER), and the combination of mechanical characteristics and AE information called sentry function. The critical fracture toughness values during crack propagation were achieved by means of relationship between the integral of the sentry function and cumulative fracture toughness (KICUM). Specimens were selected from AISI D2 cold-work tool steel and were heat treated at four different tempering conditions (300, 450, 525, and 575 °C). The results achieved through AE approaches were then compared with a methodology proposed by compact specimen testing according to ASTM standard E399. It was concluded that AE information was an efficient method to investigate fracture characteristics.
Audigé, Laurent; Cornelius, Carl-Peter; Ieva, Antonio Di; Prein, Joachim
2014-01-01
Validated trauma classification systems are the sole means to provide the basis for reliable documentation and evaluation of patient care, which will open the gateway to evidence-based procedures and healthcare in the coming years. With the support of AO Investigation and Documentation, a classification group was established to develop and evaluate a comprehensive classification system for craniomaxillofacial (CMF) fractures. Blueprints for fracture classification in the major constituents of the human skull were drafted and then evaluated by a multispecialty group of experienced CMF surgeons and a radiologist in a structured process during iterative agreement sessions. At each session, surgeons independently classified the radiological imaging of up to 150 consecutive cases with CMF fractures. During subsequent review meetings, all discrepancies in the classification outcome were critically appraised for clarification and improvement until consensus was reached. The resulting CMF classification system is structured in a hierarchical fashion with three levels of increasing complexity. The most elementary level 1 simply distinguishes four fracture locations within the skull: mandible (code 91), midface (code 92), skull base (code 93), and cranial vault (code 94). Levels 2 and 3 focus on further defining the fracture locations and for fracture morphology, achieving an almost individual mapping of the fracture pattern. This introductory article describes the rationale for the comprehensive AO CMF classification system, discusses the methodological framework, and provides insight into the experiences and interactions during the evaluation process within the core groups. The details of this system in terms of anatomy and levels are presented in a series of focused tutorials illustrated with case examples in this special issue of the Journal. PMID:25489387
Audigé, Laurent; Cornelius, Carl-Peter; Di Ieva, Antonio; Prein, Joachim
2014-12-01
Validated trauma classification systems are the sole means to provide the basis for reliable documentation and evaluation of patient care, which will open the gateway to evidence-based procedures and healthcare in the coming years. With the support of AO Investigation and Documentation, a classification group was established to develop and evaluate a comprehensive classification system for craniomaxillofacial (CMF) fractures. Blueprints for fracture classification in the major constituents of the human skull were drafted and then evaluated by a multispecialty group of experienced CMF surgeons and a radiologist in a structured process during iterative agreement sessions. At each session, surgeons independently classified the radiological imaging of up to 150 consecutive cases with CMF fractures. During subsequent review meetings, all discrepancies in the classification outcome were critically appraised for clarification and improvement until consensus was reached. The resulting CMF classification system is structured in a hierarchical fashion with three levels of increasing complexity. The most elementary level 1 simply distinguishes four fracture locations within the skull: mandible (code 91), midface (code 92), skull base (code 93), and cranial vault (code 94). Levels 2 and 3 focus on further defining the fracture locations and for fracture morphology, achieving an almost individual mapping of the fracture pattern. This introductory article describes the rationale for the comprehensive AO CMF classification system, discusses the methodological framework, and provides insight into the experiences and interactions during the evaluation process within the core groups. The details of this system in terms of anatomy and levels are presented in a series of focused tutorials illustrated with case examples in this special issue of the Journal.
Computation of Anisotropic Bi-Material Interfacial Fracture Parameters and Delamination Creteria
NASA Technical Reports Server (NTRS)
Chow, W-T.; Wang, L.; Atluri, S. N.
1998-01-01
This report documents the recent developments in methodologies for the evaluation of the integrity and durability of composite structures, including i) the establishment of a stress-intensity-factor based fracture criterion for bimaterial interfacial cracks in anisotropic materials (see Sec. 2); ii) the development of a virtual crack closure integral method for the evaluation of the mixed-mode stress intensity factors for a bimaterial interfacial crack (see Sec. 3). Analytical and numerical results show that the proposed fracture criterion is a better fracture criterion than the total energy release rate criterion in the characterization of the bimaterial interfacial cracks. The proposed virtual crack closure integral method is an efficient and accurate numerical method for the evaluation of mixed-mode stress intensity factors.
Residual Strength Analysis Methodology: Laboratory Coupons to Structural Components
NASA Technical Reports Server (NTRS)
Dawicke, D. S.; Newman, J. C., Jr.; Starnes, J. H., Jr.; Rose, C. A.; Young, R. D.; Seshadri, B. R.
2000-01-01
The NASA Aircraft Structural Integrity (NASIP) and Airframe Airworthiness Assurance/Aging Aircraft (AAA/AA) Programs have developed a residual strength prediction methodology for aircraft fuselage structures. This methodology has been experimentally verified for structures ranging from laboratory coupons up to full-scale structural components. The methodology uses the critical crack tip opening angle (CTOA) fracture criterion to characterize the fracture behavior and a material and a geometric nonlinear finite element shell analysis code to perform the structural analyses. The present paper presents the results of a study to evaluate the fracture behavior of 2024-T3 aluminum alloys with thickness of 0.04 inches to 0.09 inches. The critical CTOA and the corresponding plane strain core height necessary to simulate through-the-thickness effects at the crack tip in an otherwise plane stress analysis, were determined from small laboratory specimens. Using these parameters, the CTOA fracture criterion was used to predict the behavior of middle crack tension specimens that were up to 40 inches wide, flat panels with riveted stiffeners and multiple-site damage cracks, 18-inch diameter pressurized cylinders, and full scale curved stiffened panels subjected to internal pressure and mechanical loads.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dickson, T.L.; Simonen, F.A.
1992-05-01
Probabilistic fracture mechanics analysis is a major element of comprehensive probabilistic methodology on which current NRC regulatory requirements for pressurized water reactor vessel integrity evaluation are based. Computer codes such as OCA-P and VISA-II perform probabilistic fracture analyses to estimate the increase in vessel failure probability that occurs as the vessel material accumulates radiation damage over the operating life of the vessel. The results of such analyses, when compared with limits of acceptable failure probabilities, provide an estimation of the residual life of a vessel. Such codes can be applied to evaluate the potential benefits of plant-specific mitigating actions designedmore » to reduce the probability of failure of a reactor vessel. 10 refs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dickson, T.L.; Simonen, F.A.
1992-01-01
Probabilistic fracture mechanics analysis is a major element of comprehensive probabilistic methodology on which current NRC regulatory requirements for pressurized water reactor vessel integrity evaluation are based. Computer codes such as OCA-P and VISA-II perform probabilistic fracture analyses to estimate the increase in vessel failure probability that occurs as the vessel material accumulates radiation damage over the operating life of the vessel. The results of such analyses, when compared with limits of acceptable failure probabilities, provide an estimation of the residual life of a vessel. Such codes can be applied to evaluate the potential benefits of plant-specific mitigating actions designedmore » to reduce the probability of failure of a reactor vessel. 10 refs.« less
Are validated outcome measures used in distal radial fractures truly valid?
Nienhuis, R. W.; Bhandari, M.; Goslings, J. C.; Poolman, R. W.; Scholtes, V. A. B.
2016-01-01
Objectives Patient-reported outcome measures (PROMs) are often used to evaluate the outcome of treatment in patients with distal radial fractures. Which PROM to select is often based on assessment of measurement properties, such as validity and reliability. Measurement properties are assessed in clinimetric studies, and results are often reviewed without considering the methodological quality of these studies. Our aim was to systematically review the methodological quality of clinimetric studies that evaluated measurement properties of PROMs used in patients with distal radial fractures, and to make recommendations for the selection of PROMs based on the level of evidence of each individual measurement property. Methods A systematic literature search was performed in PubMed, EMbase, CINAHL and PsycINFO databases to identify relevant clinimetric studies. Two reviewers independently assessed the methodological quality of the studies on measurement properties, using the COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) checklist. Level of evidence (strong / moderate / limited / lacking) for each measurement property per PROM was determined by combining the methodological quality and the results of the different clinimetric studies. Results In all, 19 out of 1508 identified unique studies were included, in which 12 PROMs were rated. The Patient-rated wrist evaluation (PRWE) and the Disabilities of Arm, Shoulder and Hand questionnaire (DASH) were evaluated on most measurement properties. The evidence for the PRWE is moderate that its reliability, validity (content and hypothesis testing), and responsiveness are good. The evidence is limited that its internal consistency and cross-cultural validity are good, and its measurement error is acceptable. There is no evidence for its structural and criterion validity. The evidence for the DASH is moderate that its responsiveness is good. The evidence is limited that its reliability and the validity on hypothesis testing are good. There is no evidence for the other measurement properties. Conclusion According to this systematic review, there is, at best, moderate evidence that the responsiveness of the PRWE and DASH are good, as are the reliability and validity of the PRWE. We recommend these PROMs in clinical studies in patients with distal radial fractures; however, more clinimetric studies of higher methodological quality are needed to adequately determine the other measurement properties. Cite this article: Dr Y. V. Kleinlugtenbelt. Are validated outcome measures used in distal radial fractures truly valid?: A critical assessment using the COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) checklist. Bone Joint Res 2016;5:153–161. DOI: 10.1302/2046-3758.54.2000462. PMID:27132246
Hygrothermal influence on delamination behavior of graphite/epoxy laminates
NASA Technical Reports Server (NTRS)
Garg, A.; Ishai, O.
1985-01-01
The hygrothermal effect on the fracture behavior of graphite-epoxy laminates was investigated to develop a methodology for damage tolerance predictions in advanced composite materials. Several T300/934 laminates were tested using a number of specimen configurations to evaluate the effects of temperature and humidity on delamination fracture toughness under mode 1 and mode 2 loading. It is indicated that moisture has a slightly beneficial influence on fracture toughness or critical strain energy release rate during mode 1 delamination, but has a slightly deleterious effect on mode 2 delamination, and mode 1 transverse cracking. The failed specimens are examined by SEM and topographical differences due to fracture modes are identified. It is concluded that the effect of moisture on fracture topography can not be distinguished.
Hygrothermal influence on delamination behavior of graphite/epoxy laminates
NASA Technical Reports Server (NTRS)
Garg, A.; Ishai, O.
1984-01-01
The hygrothermal effect on the fracture behavior of graphite-epoxy laminates was investigated to develop a methodology for damage tolerance predictions in advanced composite materials. Several T300/934 laminates were tested using a number of specimen configurations to evaluate the effects of temperature and humidity on delamination fracture toughness under mode 1 and mode 2 loading. It is indicated that moisture has a slightly beneficial influence on fracture toughness or critical strain energy release rate during mode 1 delamination, but has a slightly deleterious effect on mode 2 delamination and mode 1 transverse cracking. The failed specimens are examined by SEM and topographical differences due to fracture modes are identified. It is concluded that the effect of moisture on fracture topography can not be distinguished.
NASA Astrophysics Data System (ADS)
Singaravelu, J.; Sundaresan, S.; Nageswara Rao, B.
2013-04-01
This article presents a methodology for evaluation of the proof load factor (PLF) for clamp band system (CBS) made of M250 Maraging steel following fracture mechanics principles.CBS is most widely used as a structural element and as a separation system. Using Taguchi's design of experiments and the response surface method (RSM) the compact tension specimens were tested to establish an empirical relation for the failure load ( P max) in terms of the ultimate strength, width, thickness, and initial crack length. The test results of P max closely matched with the developed RSM empirical relation. Crack growth rates of the maraging steel in different environments were examined. Fracture strength (σf) of center surface cracks and through-crack tension specimens are evaluated utilizing the fracture toughness ( K IC). Stress induced in merman band at flight loading conditions is evaluated to estimate the higher load factor and PLF. Statistical safety factor and reliability assessments were made for the specified flaw sizes useful in the development of fracture control plan for CBS of launch vehicles.
Application of an Elastic-Plastic Methodology to Structural Integrity Evaluation,
The elastic plastic fracture mechanics ( EPFM ) technology has advanced to the point where it can be used to make a realistic assessment of the...concepts of EPFM into a structural stability evaluation. The structure is modeled as a cracked test specimen either in series or parallel with a spring
Fracture mechanism maps in unirradiated and irradiated metals and alloys
NASA Astrophysics Data System (ADS)
Li, Meimei; Zinkle, S. J.
2007-04-01
This paper presents a methodology for computing a fracture mechanism map in two-dimensional space of tensile stress and temperature using physically-based constitutive equations. Four principal fracture mechanisms were considered: cleavage fracture, low temperature ductile fracture, transgranular creep fracture, and intergranular creep fracture. The methodology was applied to calculate fracture mechanism maps for several selected reactor materials, CuCrZr, 316 type stainless steel, F82H ferritic-martensitic steel, V4Cr4Ti and Mo. The calculated fracture maps are in good agreement with empirical maps obtained from experimental observations. The fracture mechanism maps of unirradiated metals and alloys were modified to include radiation hardening effects on cleavage fracture and high temperature helium embrittlement. Future refinement of fracture mechanism maps is discussed.
Material Characterization for Ductile Fracture Prediction
NASA Technical Reports Server (NTRS)
Hill, Michael R.
2000-01-01
The research summarized in this document provides valuable information for structural health evaluation of NASA infrastructure. Specifically, material properties are reported which will enable calibration of ductile fracture prediction methods for three high-toughness metallic materials and one aluminum alloy which can be found in various NASA facilities. The task of investigating these materials has also served to validate an overall methodology for ductile fracture prediction is currently being employed at NASA. In facilitating the ability to incorporate various materials into the prediction scheme, we have provided data to enable demonstration of the overall generality of the approach.
Influence of Natural Fractures Cohesive Properties on Geometry of Hydraulic Fracture Networks
NASA Astrophysics Data System (ADS)
Gonzalez-Chavez, M. A.; Dahi Taleghani, A.; Puyang, P.
2014-12-01
An integrated modeling methodology is proposed to analyze hydraulic fracturing jobs in the presence of the natural fracture network in the formation. A propagating hydraulic fracture may arrest, cross, or diverts into a preexisting natural crack depending on fracture properties of rock and magnitude and direction of principal rock stresses. Opening of natural fractures during fracturing treatment could define the effectiveness of the stimulation technique. Here, we present an integrated methodology initiated with lab scale fracturing properties using Double Cantilever Beam tests (DCB) to determine cohesive properties of rock and natural fractures. We used cohesive finite element models to reproduce laboratory results to verify the numerical model for the interaction of the hydraulic fracture and individual cemented natural fractures. Based on the initial investigations, we found out that distribution of pre-existing natural fractures could play a significant role in the final geometry of the induced fracture network; however in practice, there is not much information about the distribution of natural fractures in the subsurface due to the limited access. Hence, we propose a special optimization scheme to generate natural fracture geometry from the location of microseismic events. Accordingly, the criteria of evaluating the fitness of natural fracture realizations is defined as the total minimum distance squares of all microseismic events, which is the sum of minimum square distance for all microseismic events. Moreover, an additional constraint in this problem is that we need to set a minimum distance between fracture grids. Using generated natural fracture realizations, forward field-scale simulations are implemented using cohesive finite element analysis to find the best match with the recorded bottomhole pressure. To show the robustness of the proposed workflow for real field problem, we implemented this technique on available data from several well Chicontepec basin to forecast post-treatment production rate. Our results show a constructive approach to integrate microseismic maps with lab mechanical measurements and bottomhole pressure to estimate the geometry of induced fracture network in the subsurface which does not suffer from any limiting assumption about fracture geometries.
Arun, Mike W J; Yoganandan, Narayan; Stemper, Brian D; Pintar, Frank A
2014-12-01
While studies have used acoustic sensors to determine fracture initiation time in biomechanical studies, a systematic procedure is not established to process acoustic signals. The objective of the study was to develop a methodology to condition distorted acoustic emission data using signal processing techniques to identify fracture initiation time. The methodology was developed from testing a human cadaver lumbar spine column. Acoustic sensors were glued to all vertebrae, high-rate impact loading was applied, load-time histories were recorded (load cell), and fracture was documented using CT. Compression fracture occurred to L1 while other vertebrae were intact. FFT of raw voltage-time traces were used to determine an optimum frequency range associated with high decibel levels. Signals were bandpass filtered in this range. Bursting pattern was found in the fractured vertebra while signals from other vertebrae were silent. Bursting time was associated with time of fracture initiation. Force at fracture was determined using this time and force-time data. The methodology is independent of selecting parameters a priori such as fixing a voltage level(s), bandpass frequency and/or using force-time signal, and allows determination of force based on time identified during signal processing. The methodology can be used for different body regions in cadaver experiments. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skees, J.L.; Middlebrook, M.L.; Anthony, W.L.
1997-01-01
The objective of this program is to transfer the core GRI advanced stimulation technologies to Sonat Exploration Company for their continued use upon completion of the program. The methodology to accomplish the objective included seminars and training schools, offset well baseline analysis, fracture treatment design optimization, real-time and post-fracture treatment evaluation and documentation of economic benefits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanaka, T.; Shimizu, S.; Ogata, Y.
For the primary coolant piping of PWRs in Japan, cast duplex stainless steel which is excellent in terms of strength, corrosion resistance, and weldability has conventionally been used. The cast duplex stainless steel contains the ferrite phase in the austenite matrix and thermal aging after long term service is known to change its material characteristics. It is considered appropriate to apply the methodology of elastic plastic fracture mechanics for an evaluation of the integrity of the primary coolant piping after thermal aging. Therefore we evaluated the integrity of the primary coolant piping for an initial PWR plant in Japan bymore » means of elastic plastic fracture mechanics. The evaluation results show that the crack will not grow into an unstable fracture and the integrity of the piping will be secured, even when such through wall crack length is assumed to equal the fatigue crack growth length for a service period of up to 60 years.« less
NASA Technical Reports Server (NTRS)
Coats, Timothy William
1996-01-01
An investigation of translaminate fracture and a progressive damage methodology was conducted to evaluate and develop a residual strength prediction capability for laminated composites with through penetration notches. This is relevant to the damage tolerance of an aircraft fuselage that might suffer an in-flight accident such as an uncontained engine failure. An experimental characterization of several composite materials systems revealed an R-curve type of behavior. Fractographic examinations led to the postulate that this crack growth resistance could be due to fiber bridging, defined here as fractured fibers of one ply bridged by intact fibers of an adjacent ply. The progressive damage methodology is currently capable of predicting the initiation and growth of matrix cracks and fiber fracture. Using two difference fiber failure criteria, residual strength was predicted for different size panel widths and notch lengths. A ply discount fiber failure criterion yielded extremely conservative results while an elastic-perfectly plastic fiber failure criterion showed that the fiber bridging concept is valid for predicting residual strength for tensile dominated failure loads. Furthermore, the R-curves predicted by the model using the elastic-perfectly plastic fiber criterion compared very well with the experimental R-curves.
Rubin, Katrine Hass; Friis-Holmberg, Teresa; Hermann, Anne Pernille; Abrahamsen, Bo; Brixen, Kim
2013-08-01
A huge number of risk assessment tools have been developed. Far from all have been validated in external studies, more of them have absence of methodological and transparent evidence, and few are integrated in national guidelines. Therefore, we performed a systematic review to provide an overview of existing valid and reliable risk assessment tools for prediction of osteoporotic fractures. Additionally, we aimed to determine if the performance of each tool was sufficient for practical use, and last, to examine whether the complexity of the tools influenced their discriminative power. We searched PubMed, Embase, and Cochrane databases for papers and evaluated these with respect to methodological quality using the Quality Assessment Tool for Diagnostic Accuracy Studies (QUADAS) checklist. A total of 48 tools were identified; 20 had been externally validated, however, only six tools had been tested more than once in a population-based setting with acceptable methodological quality. None of the tools performed consistently better than the others and simple tools (i.e., the Osteoporosis Self-assessment Tool [OST], Osteoporosis Risk Assessment Instrument [ORAI], and Garvan Fracture Risk Calculator [Garvan]) often did as well or better than more complex tools (i.e., Simple Calculated Risk Estimation Score [SCORE], WHO Fracture Risk Assessment Tool [FRAX], and Qfracture). No studies determined the effectiveness of tools in selecting patients for therapy and thus improving fracture outcomes. High-quality studies in randomized design with population-based cohorts with different case mixes are needed. Copyright © 2013 American Society for Bone and Mineral Research.
NASA Technical Reports Server (NTRS)
Choi, Sung R.; Zhu, Dong-Ming; Miller, Robert A.
2003-01-01
Strength, fracture toughness and fatigue behavior of free-standing thick thermal barrier coatings of plasma-sprayed ZrO2-8wt % Y2O3 were determined at ambient and elevated temperatures in an attempt to establish a database for design. Strength, in conjunction with deformation (stress-strain behavior), was evaluated in tension (uniaxial and trans-thickness), compression, and uniaxial and biaxial flexure; fracture toughness was determined in various load conditions including mode I, mode II, and mixed modes I and II; fatigue or slow crack growth behavior was estimated in cyclic tension and dynamic flexure loading. Effect of sintering was quantified through approaches using strength, fracture toughness, and modulus (constitutive relations) measurements. Standardization issues on test methodology also was presented with a special regard to material's unique constitutive relations.
Nixon, Annabel; Doll, Helen; Kerr, Cicely; Burge, Russel; Naegeli, April N
2016-02-19
Regulatory guidance recommends anchor-based methods for interpretation of treatment effects measured by PRO endpoints. Methodological pros and cons of patient global ratings of change vs. patient global ratings of concept have been discussed but empirical evidence in support of either approach is lacking. This study evaluated the performance of patient global ratings of change and patient global ratings of concept for interpreting patient stability and patient improvement. Patient global ratings of change and patient global ratings of concept were included in a psychometric validation study of an osteoporosis-targeted PRO instrument (the OPAQ-PF) to assess its ability to detect change and to derive responder definitions. 144 female osteoporosis patients with (n = 37) or without (n = 107) a recent (within 6 weeks) fragility fracture completed the OPAQ-PF and global items at baseline, 2 weeks (no recent fracture), and 12 weeks (recent fracture) post-baseline. Results differed between the two methods. Recent fracture patients reported more improvement while patients without recent fracture reported more stability on ratings of change than ratings of concept. However, correlations with OPAQ-PF score change were stronger for ratings of concept than ratings of change (both groups). Effect sizes for OPAQ-PF score change increased consistently with level of change in ratings of concept but inconsistently with ratings of change, with the mean AUC for prediction of a one-point change being 0.72 vs. 0.56. This study provides initial empirical support for methodological and regulatory recommendations to use patient global ratings of concept rather than ratings of change when interpreting change captured by PRO instruments in studies evaluating treatment effects. These findings warrant being confirmed in a purpose-designed larger scale analysis.
NASA Astrophysics Data System (ADS)
Ortega Mercado, Camilo Ernesto
Horizontal drilling and hydraulic fracturing techniques have become almost mandatory technologies for economic exploitation of unconventional gas reservoirs. Key to commercial success is minimizing the risk while drilling and hydraulic fracturing these wells. Data collection is expensive and as a result this is one of the first casualties during budget cuts. As a result complete data sets in horizontal wells are nearly always scarce. In order to minimize the data scarcity problem, the research addressed throughout this thesis concentrates on using drill cuttings, an inexpensive direct source of information, for developing: 1) A new methodology for multi-stage hydraulic fracturing optimization of horizontal wells without any significant increases in operational costs. 2) A new method for petrophysical evaluation in those wells with limited amount of log information. The methods are explained using drill cuttings from the Nikanassin Group collected in the Deep Basin of the Western Canada Sedimentary Basin (WCSB). Drill cuttings are the main source of information for the proposed methodology in Item 1, which involves the creation of three 'log tracks' containing the following parameters for improving design of hydraulic fracturing jobs: (a) Brittleness Index, (b) Measured Permeability and (c) An Indicator of Natural Fractures. The brittleness index is primarily a function of Poisson's ratio and Young Modulus, parameters that are obtained from drill cuttings and sonic logs formulations. Permeability is measured on drill cuttings in the laboratory. The indication of natural fractures is obtained from direct observations on drill cuttings under the microscope. Drill cuttings are also the main source of information for the new petrophysical evaluation method mentioned above in Item 2 when well logs are not available. This is important particularly in horizontal wells where the amount of log data is almost non-existent in the vast majority of the wells. By combining data from drill cuttings and previously available empirical relationships developed from cores it is possible to estimate water saturations, pore throat apertures, capillary pressures, flow units, porosity (or cementation) exponent m, true formation resistivity Rt, distance to a water table (if present), and to distinguish the contributions of viscous and diffusion-like flow in the tight gas formation. The method further allows the construction of Pickett plots using porosity and permeability obtained from drill cuttings, without previous availability of well logs. The method assumes the existence of intervals at irreducible water saturation, which is the case of the Nikanassin Group throughout the gas column. The new methods mentioned above are not meant to replace the use of detailed and sophisticated evaluation techniques. But the proposed methods provide a valuable and practical aid in those cases where geomechanical and petrophysical information are scarce.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, P. T.; Dickson, T. L.; Yin, S.
The current regulations to insure that nuclear reactor pressure vessels (RPVs) maintain their structural integrity when subjected to transients such as pressurized thermal shock (PTS) events were derived from computational models developed in the early-to-mid 1980s. Since that time, advancements and refinements in relevant technologies that impact RPV integrity assessment have led to an effort by the NRC to re-evaluate its PTS regulations. Updated computational methodologies have been developed through interactions between experts in the relevant disciplines of thermal hydraulics, probabilistic risk assessment, materials embrittlement, fracture mechanics, and inspection (flaw characterization). Contributors to the development of these methodologies include themore » NRC staff, their contractors, and representatives from the nuclear industry. These updated methodologies have been integrated into the Fracture Analysis of Vessels -- Oak Ridge (FAVOR, v06.1) computer code developed for the NRC by the Heavy Section Steel Technology (HSST) program at Oak Ridge National Laboratory (ORNL). The FAVOR, v04.1, code represents the baseline NRC-selected applications tool for re-assessing the current PTS regulations. This report is intended to document the technical bases for the assumptions, algorithms, methods, and correlations employed in the development of the FAVOR, v06.1, code.« less
NASA Technical Reports Server (NTRS)
McGill, Preston; Wells, Doug; Morgan, Kristin
2006-01-01
Experimental evaluation of the basic fracture properties of Thermal Protection System (TPS) polyurethane foam insulation materials was conducted to validate the methodology used in estimating critical defect sizes in TPS applications on the Space Shuttle External Fuel Tank. The polyurethane foam found on the External Tank (ET) is manufactured by mixing liquid constituents and allowing them to react and expand upwards - a process which creates component cells that are generally elongated in the foam rise direction and gives rise to mechanical anisotropy. Similarly, the application of successive foam layers to the ET produces cohesive foam interfaces (knitlines) which may lead to local variations in mechanical properties. This study reports the fracture toughness of BX-265, NCFI 24-124, and PDL-1034 closed-cell polyurethane foam as a function of ambient and cryogenic temperatures and knitline/cellular orientation at ambient pressure.
Structural design methodologies for ceramic-based material systems
NASA Technical Reports Server (NTRS)
Duffy, Stephen F.; Chulya, Abhisak; Gyekenyesi, John P.
1991-01-01
One of the primary pacing items for realizing the full potential of ceramic-based structural components is the development of new design methods and protocols. The focus here is on low temperature, fast-fracture analysis of monolithic, whisker-toughened, laminated, and woven ceramic composites. A number of design models and criteria are highlighted. Public domain computer algorithms, which aid engineers in predicting the fast-fracture reliability of structural components, are mentioned. Emphasis is not placed on evaluating the models, but instead is focused on the issues relevant to the current state of the art.
Monitoring the fracture behavior of metal matrix composites by combined NDE methodologies
NASA Astrophysics Data System (ADS)
Kordatos, E. Z.; Exarchos, D. A.; Mpalaskas, A. C.; Matikas, T. E.
2015-03-01
Current work deals with the non-destructive evaluation (NDE) of the fatigue behavior of metal matrix composites (MMCs) materials using Infrared Thermography (IRT) and Acoustic Emission (AE). AE monitoring was employed to record a wide spectrum of cracking events enabling the characterization of the severity of fracture in relation to the applied load. IR thermography as a non-destructive, real-time and non-contact technique, allows the detection of heat waves generated by the thermo-mechanical coupling during mechanical loading of the sample. In this study an IR methodology, based on the monitoring of the intrinsically dissipated energy, was applied for the determination of the fatigue limit of A359/SiCp composites. The thermographic monitoring is in agreement with the AE results enabling the reliable monitoring of the MMCs' fatigue behavior.
NASA Technical Reports Server (NTRS)
1986-01-01
This publication is a compilation of abstracts and slides of papers presented at the NASA Lewis Structural Ceramics Workshop. Collectively, these papers depict the scope of NASA Lewis' structural ceramics program. The technical areas include monolithic SiC and Si3N4 development, ceramic matrix composites, tribology, design methodology, nondestructive evaluation (NDE), fracture mechanics, and corrosion.
Fracture toughness of irradiated modified 9Cr-1Mo steel
NASA Astrophysics Data System (ADS)
Kim, Sung Ho; Yoon, Ji-Hyun; Ryu, Woo Seog; Lee, Chan Bock; Hong, Jun Hwa
2009-04-01
The effects of irradiation on fracture toughness of modified 9Cr-1Mo steel in the transition region were investigated. Half size precracked Charpy specimens were irradiated up to 1.2 × 10 21n/cm 2 ( E > 0.1 MeV) at 340 °C and 400 °C in the Korean research reactor. The irradiation induced transition temperature shift for a modified 9Cr-1Mo was evaluated by using the Master Curve methodology. The T0 temperature for the unirradiated specimens were measured as -67.7 °C and -72.4 °C from the tests with standard PCVN (precracked charpy V-notch) and half sized PCVN specimens, respectively. The T0 shifts of specimens after irradiation at 340 °C and 400 °C were 70.7 °C and 66.1 °C, respectively. The Weibull slopes for the fracture toughness data obtained from the unirradiated and irradiated modified 9Cr-1Mo steels were determined to confirm the applicability of master curve methodology to modified 9Cr-1Mo steel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Augustine, Chad
Existing methodologies for estimating the electricity generation potential of Enhanced Geothermal Systems (EGS) assume thermal recovery factors of 5% or less, resulting in relatively low volumetric electricity generation potentials for EGS reservoirs. This study proposes and develops a methodology for calculating EGS electricity generation potential based on the Gringarten conceptual model and analytical solution for heat extraction from fractured rock. The electricity generation potential of a cubic kilometer of rock as a function of temperature is calculated assuming limits on the allowed produced water temperature decline and reservoir lifetime based on surface power plant constraints. The resulting estimates of EGSmore » electricity generation potential can be one to nearly two-orders of magnitude larger than those from existing methodologies. The flow per unit fracture surface area from the Gringarten solution is found to be a key term in describing the conceptual reservoir behavior. The methodology can be applied to aid in the design of EGS reservoirs by giving minimum reservoir volume, fracture spacing, number of fractures, and flow requirements for a target reservoir power output. Limitations of the idealized model compared to actual reservoir performance and the implications on reservoir design are discussed.« less
A Progressive Damage Methodology for Residual Strength Predictions of Notched Composite Panels
NASA Technical Reports Server (NTRS)
Coats, Timothy W.; Harris, Charles E.
1998-01-01
The translaminate fracture behavior of carbon/epoxy structural laminates with through-penetration notches was investigated to develop a residual strength prediction methodology for composite structures. An experimental characterization of several composite materials systems revealed a fracture resistance behavior that was very similar to the R-curve behavior exhibited by ductile metals. Fractographic examinations led to the postulate that the damage growth resistance was primarily due to fractured fibers in the principal load-carrying plies being bridged by intact fibers of the adjacent plies. The load transfer associated with this bridging mechanism suggests that a progressive damage analysis methodology will be appropriate for predicting the residual strength of laminates with through-penetration notches. A progressive damage methodology developed by the authors was used to predict the initiation and growth of matrix cracks and fiber fracture. Most of the residual strength predictions for different panel widths, notch lengths, and material systems were within about 10% of the experimental failure loads.
Fracture Mechanics for Composites: State of the Art and Challenges
NASA Technical Reports Server (NTRS)
Krueger, Ronald; Krueger, Ronald
2006-01-01
Interlaminar fracture mechanics has proven useful for characterizing the onset of delaminations in composites and has been used with limited success primarily to investigate onset in fracture toughness specimens and laboratory size coupon type specimens. Future acceptance of the methodology by industry and certification authorities however, requires the successful demonstration of the methodology on the structural level. In this paper, the state-of-the-art in fracture toughness characterization, and interlaminar fracture mechanics analysis tools are described. To demonstrate the application on the structural level, a panel was selected which is reinforced with stringers. Full implementation of interlaminar fracture mechanics in design however remains a challenge and requires a continuing development effort of codes to calculate energy release rates and advancements in delamination onset and growth criteria under mixed mode conditions.
Supracondylar fracture in children. Rehabilitation in occupational therapy. Yes or no?
NASA Astrophysics Data System (ADS)
Costa, Maria J.; Pires, Mafalda; Neves, Cassiano; Tavares, Delfin; Quintas, Alexandra M.; Ferreira, Ana I.; Espirito Santo, M. J.; Castro, Alexandra; Cabral, M. Salomé; João Gomes, J. F.
2013-10-01
The aim of this study was to evaluate the recovery time of elbow range of motion after treatment of Gartland's type II and III supracondylar fractures of distal humerus in children who attended a program of occupational therapy (OT). A randomized control design (RCD) was conducted to compare the two groups (OT group and Control group) and several statistical methodologies have been used to compare them. In all the cases the results point out to a faster recover in the OT group. All the analysis were performed using the package R version 3.0.1.
Haines, Seth S.
2015-07-13
The quantities of water and hydraulic fracturing proppant required for producing petroleum (oil, gas, and natural gas liquids) from continuous accumulations, and the quantities of water extracted during petroleum production, can be quantitatively assessed using a probabilistic approach. The water and proppant assessment methodology builds on the U.S. Geological Survey methodology for quantitative assessment of undiscovered technically recoverable petroleum resources in continuous accumulations. The U.S. Geological Survey assessment methodology for continuous petroleum accumulations includes fundamental concepts such as geologically defined assessment units, and probabilistic input values including well-drainage area, sweet- and non-sweet-spot areas, and success ratio within the untested area of each assessment unit. In addition to petroleum-related information, required inputs for the water and proppant assessment methodology include probabilistic estimates of per-well water usage for drilling, cementing, and hydraulic-fracture stimulation; the ratio of proppant to water for hydraulic fracturing; the percentage of hydraulic fracturing water that returns to the surface as flowback; and the ratio of produced water to petroleum over the productive life of each well. Water and proppant assessments combine information from recent or current petroleum assessments with water- and proppant-related input values for the assessment unit being studied, using Monte Carlo simulation, to yield probabilistic estimates of the volume of water for drilling, cementing, and hydraulic fracture stimulation; the quantity of proppant for hydraulic fracture stimulation; and the volumes of water produced as flowback shortly after well completion, and produced over the life of the well.
An analytical model for hydraulic fracturing in shallow bedrock formations.
dos Santos, José Sérgio; Ballestero, Thomas Paul; Pitombeira, Ernesto da Silva
2011-01-01
A theoretical method is proposed to estimate post-fracturing fracture size and transmissivity, and as a test of the methodology, data collected from two wells were used for verification. This method can be employed before hydrofracturing in order to obtain estimates of the potential hydraulic benefits of hydraulic fracturing. Five different pumping test analysis methods were used to evaluate the well hydraulic data. The most effective methods were the Papadopulos-Cooper model (1967), which includes wellbore storage effects, and the Gringarten-Ramey model (1974), known as the single horizontal fracture model. The hydraulic parameters resulting from fitting these models to the field data revealed that as a result of hydraulic fracturing, the transmissivity increased more than 46 times in one well and increased 285 times in the other well. The model developed by dos Santos (2008), which considers horizontal radial fracture propagation from the hydraulically fractured well, was used to estimate potential fracture geometry after hydrofracturing. For the two studied wells, their fractures could have propagated to distances of almost 175 m or more and developed maximum apertures of about 2.20 mm and hydraulic apertures close to 0.30 mm. Fracturing at this site appears to have expanded and propagated existing fractures and not created new fractures. Hydraulic apertures calculated from pumping test analyses closely matched the results obtained from the hydraulic fracturing model. As a result of this model, post-fracturing geometry and resulting post-fracturing well yield can be estimated before the actual hydrofracturing. Copyright © 2010 The Author(s). Journal compilation © 2010 National Ground Water Association.
Risk factors for stress fractures.
Bennell, K; Matheson, G; Meeuwisse, W; Brukner, P
1999-08-01
Preventing stress fractures requires knowledge of the risk factors that predispose to this injury. The aetiology of stress fractures is multifactorial, but methodological limitations and expediency often lead to research study designs that evaluate individual risk factors. Intrinsic risk factors include mechanical factors such as bone density, skeletal alignment and body size and composition, physiological factors such as bone turnover rate, flexibility, and muscular strength and endurance, as well as hormonal and nutritional factors. Extrinsic risk factors include mechanical factors such as surface, footwear and external loading as well as physical training parameters. Psychological traits may also play a role in increasing stress fracture risk. Equally important to these types of analyses of individual risk factors is the integration of information to produce a composite picture of risk. The purpose of this paper is to critically appraise the existing literature by evaluating study design and quality, in order to provide a current synopsis of the known scientific information related to stress fracture risk factors. The literature is not fully complete with well conducted studies on this topic, but a great deal of information has accumulated over the past 20 years. Although stress fractures result from repeated loading, the exact contribution of training factors (volume, intensity, surface) has not been clearly established. From what we do know, menstrual disturbances, caloric restriction, lower bone density, muscle weakness and leg length differences are risk factors for stress fracture. Other time-honoured risk factors such as lower extremity alignment have not been shown to be causative even though anecdotal evidence indicates they are likely to play an important role in stress fracture pathogenesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, P.; Olson, R.; Wilkowski, O.G.
1997-06-01
This report presents the results from Subtask 1.3 of the International Piping Integrity Research Group (IPIRG) program. The objective of Subtask 1.3 is to develop data to assess analysis methodologies for characterizing the fracture behavior of circumferentially cracked pipe in a representative piping system under combined inertial and displacement-controlled stresses. A unique experimental facility was designed and constructed. The piping system evaluated is an expansion loop with over 30 meters of 16-inch diameter Schedule 100 pipe. The experimental facility is equipped with special hardware to ensure system boundary conditions could be appropriately modeled. The test matrix involved one uncracked andmore » five cracked dynamic pipe-system experiments. The uncracked experiment was conducted to evaluate piping system damping and natural frequency characteristics. The cracked-pipe experiments evaluated the fracture behavior, pipe system response, and stability characteristics of five different materials. All cracked-pipe experiments were conducted at PWR conditions. Material characterization efforts provided tensile and fracture toughness properties of the different pipe materials at various strain rates and temperatures. Results from all pipe-system experiments and material characterization efforts are presented. Results of fracture mechanics analyses, dynamic finite element stress analyses, and stability analyses are presented and compared with experimental results.« less
NASA Astrophysics Data System (ADS)
Sathyanarayanan, S.; Moitra, A.; Sasikala, G.; Bhaduri, A. K.
2015-02-01
K IA is increasingly being regarded as a characteristic fracture toughness below which cleavage fracture does not occur. Its evaluation from small-sized Charpy specimens would be advantageous for applications in power plant industries. In this study, K IA has been evaluated for P91 steel in various cold worked and thermally aged conditions. Evaluation of K IA requires determination of crack arrest load( P arrest) and crack arrest length( a arrest). The main challenge is in the determination of a arrest due to the non-availability of standard methodologies and the absence of unequivocal microstructural signatures on the fracture surface in this steel to identify crack arrest. a arrest has been determined using the analytical Key- Curve methodology which has proven successful for this steel in unaged condition. The applicability of the Key- Curve method is validated by the good agreement of the determined final crack length with that measured optically on unbroken specimens of N&T and subsequently 15% cold-worked P91 steel which had been previously aged at 650 °C for 5000 h. Mean K IA varies from 47.46 MPa√m (NT steel aged at 600 °C for 5000 h) to 69.85 MPa√m(NT + 15% cw steel aged at 650 °C for 10000 h) for the various cold worked and aged datasets. K IA is found to be an average property unlike initiation toughness ( K Jd) which shows statistical scatter. Mean K IA is found to be in reasonable agreement with the lower bound values of cleavage initiation toughness ( K Jd) for the datasets in this study.
Delamination onset in polymeric composite laminates under thermal and mechanical loads
NASA Technical Reports Server (NTRS)
Martin, Roderick H.
1991-01-01
A fracture mechanics damage methodology to predict edge delamination is described. The methodology accounts for residual thermal stresses, cyclic thermal stresses, and cyclic mechanical stresses. The modeling is based on the classical lamination theory and a sublaminate theory. The prediction methodology determines the strain energy release rate, G, at the edge of a laminate and compares it with the fatigue and fracture toughness of the composite. To verify the methodology, isothermal static tests at 23, 125, and 175 C and tension-tension fatigue tests at 23 and 175 C were conducted on laminates. The material system used was a carbon/bismaleimide, IM7/5260. Two quasi-isotropic layups were used. Also, 24 ply unidirectional double cantilever beam specimens were tested to determine the fatigue and fracture toughness of the composite at different temperatures. Raising the temperature had the effect of increasing the value of G at the edge for these layups and also to lower the fatigue and fracture toughness of the composite. The static stress to edge delamination was not affected by temperature but the number of cycles to edge delamination decreased.
Surrogate Modeling of High-Fidelity Fracture Simulations for Real-Time Residual Strength Predictions
NASA Technical Reports Server (NTRS)
Spear, Ashley D.; Priest, Amanda R.; Veilleux, Michael G.; Ingraffea, Anthony R.; Hochhalter, Jacob D.
2011-01-01
A surrogate model methodology is described for predicting, during flight, the residual strength of aircraft structures that sustain discrete-source damage. Starting with design of experiment, an artificial neural network is developed that takes as input discrete-source damage parameters and outputs a prediction of the structural residual strength. Target residual strength values used to train the artificial neural network are derived from 3D finite element-based fracture simulations. Two ductile fracture simulations are presented to show that crack growth and residual strength are determined more accurately in discrete-source damage cases by using an elastic-plastic fracture framework rather than a linear-elastic fracture mechanics-based method. Improving accuracy of the residual strength training data does, in turn, improve accuracy of the surrogate model. When combined, the surrogate model methodology and high fidelity fracture simulation framework provide useful tools for adaptive flight technology.
Fracture Toughness to Understand Stretch-Flangeability and Edge Cracking Resistance in AHSS
NASA Astrophysics Data System (ADS)
Casellas, Daniel; Lara, Antoni; Frómeta, David; Gutiérrez, David; Molas, Sílvia; Pérez, Lluís; Rehrl, Johannes; Suppan, Clemens
2017-01-01
The edge fracture is considered as a high risk for automotive parts, especially for parts made of advanced high strength steels (AHSS). The limited ductility of AHSS makes them more sensitive to the edge damage. The traditional approaches, such as those based on ductility measurements or forming limit diagrams, are unable to predict this type of fractures. Thus, stretch-flangeability has become an important formability parameter in addition to tensile and formability properties. The damage induced in sheared edges in AHSS parts affects stretch-flangeability, because the generated microcracks propagate from the edge. Accordingly, a fracture mechanics approach may be followed to characterize the crack propagation resistance. With this aim, this work addresses the applicability of fracture toughness as a tool to understand crack-related problems, as stretch-flangeability and edge cracking, in different AHSS grades. Fracture toughness was determined by following the essential work of fracture methodology and stretch-flangeability was characterized by means of hole expansions tests. Results show a good correlation between stretch-flangeability and fracture toughness. It allows postulating fracture toughness, measured by the essential work of fracture methodology, as a key material property to rationalize crack propagation phenomena in AHSS.
Natural fracture systems studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lorenz, J.C.; Warpinski, N.R.
The objectives of this program are (1) to develop a basinal-analysis methodology for natural fracture exploration and exploitation, and (2) to determine the important characteristics of natural fracture systems for use in completion, stimulation, and production operations. Natural-fracture basinal analysis begins with studies of fractures in outcrop, core and logs in order to determine the type of fracturing and the relationship of the fractures to the lithologic environment. Of particular interest are the regional fracture systems that are pervasive in western US tight sand basins. A Methodology for applying this analysis is being developed, with the goal of providing amore » structure for rationally characterizing natural fracture systems basin-wide. Such basin-wide characterizations can then be expanded and supplemented locally, at sites where production may be favorable. Initial application of this analysis is to the Piceance basin where there is a wealth of data from the Multiwell Experiment (MWX), DOE cooperative wells, and other basin studies conducted by Sandia, CER Corporation, and the USGS (Lorenz and Finley, 1989, Lorenz et aI., 1989, and Spencer and Keighin, 1984). Such a basinal approach has been capable of explaining the fracture characteristics found throughout the southern part of the Piceance basin and along the Grand Hogback.« less
Comprehension and reproducibility of the Judet and Letournel classification
Polesello, Giancarlo Cavalli; Nunes, Marcus Aurelius Araujo; Azuaga, Thiago Leonardi; de Queiroz, Marcelo Cavalheiro; Honda, Emerson Kyoshi; Ono, Nelson Keiske
2012-01-01
Objective To evaluate the effectiveness of the method of radiographic interpretation of acetabular fractures, according to the classification of Judet and Letournel, used by a group of residents of Orthopedics at a university hospital. Methods We selected ten orthopedic residents, who were divided into two groups; one group received training in a methodology for the classification of acetabular fractures, which involves transposing the radiographic images to a graphic two-dimensional representation. We classified fifty cases of acetabular fracture on two separate occasions, and determined the intraobserver and interobserver agreement. Result The success rate was 16.2% (10-26%) for the trained group and 22.8% (10-36%) for the untrained group. The mean kappa coefficients for interobserver and intraobserver agreement in the trained group were 0.08 and 0.12, respectively, and for the untrained group, 0.14 and 0.29. Conclusion Training in the method of radiographic interpretation of acetabular fractures was not effective for assisting in the classification of acetabular fractures. Level of evidence I, Testing of previously developed diagnostic criteria on consecutive patients (with universally applied reference "gold" standard). PMID:24453583
Inverse problems in heterogeneous and fractured media using peridynamics
Turner, Daniel Z.; van Bloemen Waanders, Bart G.; Parks, Michael L.
2015-12-10
The following work presents an adjoint-based methodology for solving inverse problems in heterogeneous and fractured media using state-based peridynamics. We show that the inner product involving the peridynamic operators is self-adjoint. The proposed method is illustrated for several numerical examples with constant and spatially varying material parameters as well as in the context of fractures. We also present a framework for obtaining material parameters by integrating digital image correlation (DIC) with inverse analysis. This framework is demonstrated by evaluating the bulk and shear moduli for a sample of nuclear graphite using digital photographs taken during the experiment. The resulting measuredmore » values correspond well with other results reported in the literature. Lastly, we show that this framework can be used to determine the load state given observed measurements of a crack opening. Furthermore, this type of analysis has many applications in characterizing subsurface stress-state conditions given fracture patterns in cores of geologic material.« less
2011-03-28
CL CHEST 807.2 Closed Fracture of Sternum FRAC CL CHEST 808.8 Fracture of Pelvis Unspec, Closed FRAC CL PELVIS+UROGENITAL 810 Clavicle Fracture...of Pelvis Unspec, Open FRAC OP PELVIS+UROGENITAL 810.1 Clavicle Fracture, Open FRAC OP SHOULDER & UPPER ARM 810.12 Open Fracture of Shaft of Clavicle
Dynamic characterisation of the specific surface area for fracture networks
NASA Astrophysics Data System (ADS)
Cvetkovic, V.
2017-12-01
One important application of chemical transport is geological disposal of high-level nuclear waste for which crystalline rock is a prime candidate for instance in Scandinavia. Interconnected heterogeneous fractures of sparsely fractured rock such as granite, act as conduits for transport of dissolved tracers. Fluid flow is known to be highly channelized in such rocks. Channels imply narrow flow paths, adjacent to essentially stagnant water in the fracture and/or the rock matrix. Tracers are transported along channelised flow paths and retained by minerals and/or stagnant water, depending on their sorption properties; this mechanism is critical for rocks to act as a barrier and ultimately provide safety for a geological repository. The sorbing tracers are retained by diffusion and sorption on mineral surfaces, whereas non-sorbing tracers can be retained only by diffusion into stagnant water of fractures. The retention and transport properties of a sparsely fractured rock will primarily depend on the specific surface area (SSA) of the fracture network which is determined by the heterogeneous structure and flow. The main challenge when characterising SSA on the field-scale is its dependence on the flow dynamics. We first define SSA as a physical quantity and clarify its importance for chemical transport. A methodology for dynamic characterisation of SSA in fracture networks is proposed that relies on three sets of data: i) Flow rate data as obtained by a flow logging procedure; ii) transmissivity data as obtained by pumping tests; iii) fracture network data as obtained from outcrop and geophysical observations. The proposed methodology utilises these data directly as well as indirectly through flow and particle tracking simulations in three-dimensional discrete fracture networks. The methodology is exemplified using specific data from the Swedish site Laxemar. The potential impact of uncertainties is of particular significance and is illustrated for radionuclide attenuation. Effects of internal fracture heterogeneity vs fracture network heterogeneity, and of rock deformation, on the statistical properties of SSA are briefly discussed.
Vertebroplasty and kyphoplasty: a systematic review of 69 clinical studies.
Hulme, Paul A; Krebs, Jörg; Ferguson, Stephen J; Berlemann, Ulrich
2006-08-01
Systematic literature review. To evaluate the safety and efficacy of vertebroplasty and kyphoplasty using the data presented in published clinical studies, with respect to patient pain relief, restoration of mobility and vertebral body height, complication rate, and incidence of new adjacent vertebral fractures. Vertebroplasty and kyphoplasty have been gaining popularity for treating vertebral fractures. Current reviews provide an overview of the procedures but are not comprehensive and tend to rely heavily on personal experience. This article aimed to compile all available data and evaluate the clinical outcome of the 2 procedures. This is a systematic review of all the available data presented in peer-reviewed published clinical trials. The methodological quality of included studies was evaluated, and data were collected targeting specific standard measurements. Where possible, a quantitative aggregation of the data was performed. A large proportion of subjects had some pain relief, including 87% with vertebroplasty and 92% with kyphoplasty. Vertebral height restoration was possible using kyphoplasty (average 6.6 degrees ) and for a subset of patients using vertebroplasty (average 6.6 degrees ). Cement leaks occurred for 41% and 9% of treated vertebrae for vertebroplasty and kyphoplasty, respectively. New fractures of adjacent vertebrae occurred for both procedures at rates that are higher than the general osteoporotic population but approximately equivalent to the general osteoporotic population that had a previous vertebral fracture. The problem with stating definitely that vertebroplasty and kyphoplasty are safe and effective procedures is the lack of comparative, blinded, randomized clinical trials. Standardized evaluative methods should be adopted.
Allaire, Brett T; DePaolis Kaluza, M Clara; Bruno, Alexander G; Samelson, Elizabeth J; Kiel, Douglas P; Anderson, Dennis E; Bouxsein, Mary L
2017-01-01
Current standard methods to quantify disc height, namely distortion compensated Roentgen analysis (DCRA), have been mostly utilized in the lumbar and cervical spine and have strict exclusion criteria. Specifically, discs adjacent to a vertebral fracture are excluded from measurement, thus limiting the use of DCRA in studies that include older populations with a high prevalence of vertebral fractures. Thus, we developed and tested a modified DCRA algorithm that does not depend on vertebral shape. Participants included 1186 men and women from the Framingham Heart Study Offspring and Third Generation Multidetector CT Study. Lateral CT scout images were used to place 6 morphometry points around each vertebra at 13 vertebral levels in each participant. Disc heights were calculated utilizing these morphometry points using DCRA methodology and our modified version of DCRA, which requires information from fewer morphometry points than the standard DCRA. Modified DCRA and standard DCRA measures of disc height are highly correlated, with concordance correlation coefficients above 0.999. Both measures demonstrate good inter- and intra-operator reproducibility. 13.9 % of available disc heights were not evaluable or excluded using the standard DCRA algorithm, while only 3.3 % of disc heights were not evaluable using our modified DCRA algorithm. Using our modified DCRA algorithm, it is not necessary to exclude vertebrae with fracture or other deformity from disc height measurements as in the standard DCRA. Modified DCRA also yields identical measurements to the standard DCRA. Thus, the use of modified DCRA for quantitative assessment of disc height will lead to less missing data without any loss of accuracy, making it a preferred alternative to the current standard methodology.
Serrano, Ana Julissa; Begoña, Leire; Anitua, Eduardo; Cobos, Raquel; Orive, Gorka
2013-12-01
The aim of this meta-analysis was to evaluate the efficacy and safety of two bisphosphonates (alendronate and zoledronate) in the treatment of postmenopausal osteoporosis. The incidence of fractures was considered as primary endpoint. Only randomized trials with a follow-up period of 1 year or more were included in this systematic review and meta-analysis. We excluded studies that included patients with secondary osteoporosis especially in relation to therapy with corticosteroids or other drugs or diseases known to affect bone mineral density. Studies published as subgroup analysis, extension studies, economic evaluations, and comparisons with active control were excluded. The methodological quality of controlled clinical trials that met these inclusion criteria was evaluated. No studies were excluded from analysis due to lack of quality. The risk ratio of hip, vertebral and wrist fractures for alendronate were 0.61 [95% confidence interval (CI) 0.40-0.93], 0.54 (95% CI 0.44-0.66) and 0.65 (95% CI 0.33-1.25), respectively. Zoledronate risk ratio was 0.62 (95% CI 0.46-0.82) and 0.38 (95% CI 0.22-0.67) for hip and vertebral fractures, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobi, Rober
2007-03-28
This Topical Report (#6 of 9) consists of the figures 3.6-13 to (and including) 3.6-18 (and appropriate figure captions) that accompany the Final Technical Progress Report entitled: “Innovative Methodology for Detection of Fracture-Controlled Sweet Spots in the Northern Appalachian Basin” for DOE/NETL Award DE-AC26-00NT40698.
Investigation of Weibull statistics in fracture analysis of cast aluminum
NASA Technical Reports Server (NTRS)
Holland, Frederic A., Jr.; Zaretsky, Erwin V.
1989-01-01
The fracture strengths of two large batches of A357-T6 cast aluminum coupon specimens were compared by using two-parameter Weibull analysis. The minimum number of these specimens necessary to find the fracture strength of the material was determined. The applicability of three-parameter Weibull analysis was also investigated. A design methodology based on the combination of elementary stress analysis and Weibull statistical analysis is advanced and applied to the design of a spherical pressure vessel shell. The results from this design methodology are compared with results from the applicable ASME pressure vessel code.
Miles, Brad; Kolos, Elizabeth; Walter, William L; Appleyard, Richard; Shi, Angela; Li, Qing; Ruys, Andrew J
2015-06-01
Subject-specific finite element (FE) modeling methodology could predict peri-prosthetic femoral fracture (PFF) for cementless hip arthoplasty in the early postoperative period. This study develops methodology for subject-specific finite element modeling by using the element deactivation technique to simulate bone failure and validate with experimental testing, thereby predicting peri-prosthetic femoral fracture in the early postoperative period. Material assignments for biphasic and triphasic models were undertaken. Failure modeling with the element deactivation feature available in ABAQUS 6.9 was used to simulate a crack initiation and propagation in the bony tissue based upon a threshold of fracture strain. The crack mode for the biphasic models was very similar to the experimental testing crack mode, with a similar shape and path of the crack. The fracture load is sensitive to the friction coefficient at the implant-bony interface. The development of a novel technique to simulate bone failure by element deactivation of subject-specific finite element models could aid prediction of fracture load in addition to fracture risk characterization for PFF. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.
Optimization of Well Configuration for a Sedimentary Enhanced Geothermal Reservoir
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Mengnan; Cho, JaeKyoung; Zerpa, Luis E.
The extraction of geothermal energy in the form of hot water from sedimentary rock formations could expand the current geothermal energy resources toward new regions. From previous work, we observed that sedimentary geothermal reservoirs with relatively low permeability would require the application of enhancement techniques (e.g., well hydraulic stimulation) to achieve commercial production/injection rates. In this paper we extend our previous work to develop a methodology to determine the optimum well configuration that maximizes the hydraulic performance of the geothermal system. The geothermal systems considered consist of one vertical well doublet system with hydraulic fractures, and three horizontal well configurationsmore » with open-hole completion, longitudinal fractures and transverse fractures, respectively. A commercial thermal reservoir simulation is used to evaluate the geothermal reservoir performance using as design parameters the well spacing and the length of the horizontal wells. The results obtained from the numerical simulations are used to build a response surface model based on the multiple linear regression method. The optimum configuration of the sedimentary geothermal systems is obtained from the analysis of the response surface model. The proposed methodology is applied to a case study based on a reservoir model of the Lyons sandstone formation, located in the Wattenberg field, Denver-Julesburg basin, Colorado.« less
Surrogate Modeling of High-Fidelity Fracture Simulations for Real-Time Residual Strength Predictions
NASA Technical Reports Server (NTRS)
Spear, Ashley D.; Priest, Amanda R.; Veilleux, Michael G.; Ingraffea, Anthony R.; Hochhalter, Jacob D.
2011-01-01
A surrogate model methodology is described for predicting in real time the residual strength of flight structures with discrete-source damage. Starting with design of experiment, an artificial neural network is developed that takes as input discrete-source damage parameters and outputs a prediction of the structural residual strength. Target residual strength values used to train the artificial neural network are derived from 3D finite element-based fracture simulations. A residual strength test of a metallic, integrally-stiffened panel is simulated to show that crack growth and residual strength are determined more accurately in discrete-source damage cases by using an elastic-plastic fracture framework rather than a linear-elastic fracture mechanics-based method. Improving accuracy of the residual strength training data would, in turn, improve accuracy of the surrogate model. When combined, the surrogate model methodology and high-fidelity fracture simulation framework provide useful tools for adaptive flight technology.
NASA Astrophysics Data System (ADS)
Klepikova, Maria V.; Le Borgne, Tanguy; Bour, Olivier; Davy, Philippe
2011-09-01
SummaryTemperature profiles in the subsurface are known to be sensitive to groundwater flow. Here we show that they are also strongly related to vertical flow in the boreholes themselves. Based on a numerical model of flow and heat transfer at the borehole scale, we propose a method to invert temperature measurements to derive borehole flow velocities. This method is applied to an experimental site in fractured crystalline rocks. Vertical flow velocities deduced from the inversion of temperature measurements are compared with direct heat-pulse flowmeter measurements showing a good agreement over two orders of magnitudes. Applying this methodology under ambient, single and cross-borehole pumping conditions allows us to estimate fracture hydraulic head and local transmissivity, as well as inter-borehole fracture connectivity. Thus, these results provide new insights on how to include temperature profiles in inverse problems for estimating hydraulic fracture properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Almansouri, Hani; Foster, Benjamin; Kisner, Roger A
2016-01-01
This paper documents our progress developing an ultrasound phased array system in combination with a model-based iterative reconstruction (MBIR) algorithm to inspect the health of and characterize the composition of the near-wellbore region for geothermal reservoirs. The main goal for this system is to provide a near-wellbore in-situ characterization capability that will significantly improve wellbore integrity evaluation and near well-bore fracture network mapping. A more detailed image of the fracture network near the wellbore in particular will enable the selection of optimal locations for stimulation along the wellbore, provide critical data that can be used to improve stimulation design, andmore » provide a means for measuring evolution of the fracture network to support long term management of reservoir operations. Development of such a measurement capability supports current hydrothermal operations as well as the successful demonstration of Engineered Geothermal Systems (EGS). The paper will include the design of the phased array system, the performance specifications, and characterization methodology. In addition, we will describe the MBIR forward model derived for the phased array system and the propagation of compressional waves through a pseudo-homogenous medium.« less
NASA Astrophysics Data System (ADS)
Niu, Xiqun
Polybutylene (PB) is a semicrystalline thermoplastics. It has been widely used in potable water distribution piping system. However, field practice shows that failure occurs much earlier than the expected service lifetime. What are the causes and how to appropriately evaluate its lifetime motivate this study. In this thesis, three parts of work have been done. First is the understanding of PB, which includes material thermo and mechanical characterization, aging phenomena and notch sensitivity. The second part analyzes the applicability of the existing lifetime testing method for PB. It is shown that PB is an anomaly in terms of the temperature-lifetime relation because of the fracture mechanism transition across the testing temperature range. The third part is the development of the methodology of lifetime prediction for PB pipe. The fracture process of PB pipe consists of three stages, i.e., crack initiation, slow crack growth (SCG) and crack instability. The practical lifetime of PB pipe is primarily determined by the duration of the first two stages. The mechanism of crack initiation and the quantitative estimation of the time to crack initiation are studied by employing environment stress cracking technique. A fatigue slow crack growth testing method has been developed and applied in the study of SCG. By using Paris-Erdogan equation, a model is constructed to evaluate the time for SCG. As a result, the total lifetime is determined. Through this work, the failure mechanisms of PB pipe has been analyzed and the lifetime prediction methodology has been developed.
The First Static and Dynamic Analysis of 3-D Printed Sintered Ceramics for Body Armor Applications
2016-09-01
evaluate sintered alumina tiles produced by 3-D printing methodology. This report examines the static and quasi -static parameters (including density...Figures iv List of Tables iv Acknowledgments v 1. Introduction 1 2. Processing and Experimental Procedures 1 3. Results and Discussion 7 4...6 Fig. 8 Experimental setup for recording fracture .............................................7 Fig. 9 Rod projectile
Elastic plastic fracture mechanics methodology for surface cracks
NASA Astrophysics Data System (ADS)
Ernst, Hugo A.; Boatwright, D. W.; Curtin, W. J.; Lambert, D. M.
1993-08-01
The Elastic Plastic Fracture Mechanics (EPFM) Methodology has evolved significantly in the last several years. Nevertheless, some of these concepts need to be extended further before the whole methodology can be safely applied to structural parts. Specifically, there is a need to include the effect of constraint in the characterization of material resistance to crack growth and also to extend these methods to the case of 3D defects. As a consequence, this project was started as a 36 month research program with the general objective of developing an EPFM methodology to assess the structural reliability of pressure vessels and other parts of interest to NASA containing defects. This report covers a computer modelling algorithm used to simulate the growth of a semi-elliptical surface crack; the presentation of a finite element investigation that compared the theoretical (HRR) stress field to that produced by elastic and elastic-plastic models; and experimental efforts to characterize three dimensional aspects of fracture present in 'two dimensional', or planar configuration specimens.
Elastic plastic fracture mechanics methodology for surface cracks
NASA Technical Reports Server (NTRS)
Ernst, Hugo A.; Boatwright, D. W.; Curtin, W. J.; Lambert, D. M.
1993-01-01
The Elastic Plastic Fracture Mechanics (EPFM) Methodology has evolved significantly in the last several years. Nevertheless, some of these concepts need to be extended further before the whole methodology can be safely applied to structural parts. Specifically, there is a need to include the effect of constraint in the characterization of material resistance to crack growth and also to extend these methods to the case of 3D defects. As a consequence, this project was started as a 36 month research program with the general objective of developing an EPFM methodology to assess the structural reliability of pressure vessels and other parts of interest to NASA containing defects. This report covers a computer modelling algorithm used to simulate the growth of a semi-elliptical surface crack; the presentation of a finite element investigation that compared the theoretical (HRR) stress field to that produced by elastic and elastic-plastic models; and experimental efforts to characterize three dimensional aspects of fracture present in 'two dimensional', or planar configuration specimens.
Elastic plastic fracture mechanics methodology for surface cracks
NASA Technical Reports Server (NTRS)
Ernst, Hugo A.; Lambert, D. M.
1994-01-01
The Elastic Plastic Fracture Mechanics Methodology has evolved significantly in the last several years. Nevertheless, some of these concepts need to be extended further before the whole methodology can be safely applied to structural parts. Specifically, there is a need to include the effect of constraint in the characterization of material resistance to crack growth and also to extend these methods to the case of 3D defects. As a consequence, this project was started as a 36 month research program with the general objective of developing an elastic plastic fracture mechanics methodology to assess the structural reliability of pressure vessels and other parts of interest to NASA which may contain flaws. The project is divided into three tasks that deal with (1) constraint and thickness effects, (2) three-dimensional cracks, and (3) the Leak-Before-Burst (LBB) criterion. This report period (March 1994 to August 1994) is a continuation of attempts to characterize three dimensional aspects of fracture present in 'two dimensional' or planar configuration specimens (Chapter Two), especially, the determination of, and use of, crack face separation data. Also, included, are a variety of fracture resistance testing results (J(m)R-curve format) and a discussion regarding two materials of NASA interest (6061-T651 Aluminum alloy and 1N718-STA1 nickel-base super alloy) involving a bases for like constraint in terms of ligament dimensions, and their comparison to the resulting J(m)R-curves (Chapter Two).
A prospective, controlled clinical evaluation of surgical stabilization of severe rib fractures.
Pieracci, Fredric M; Lin, Yihan; Rodil, Maria; Synder, Madelyne; Herbert, Benoit; Tran, Dong Kha; Stoval, Robert T; Johnson, Jeffrey L; Biffl, Walter L; Barnett, Carlton C; Cothren-Burlew, Clay; Fox, Charles; Jurkovich, Gregory J; Moore, Ernest E
2016-02-01
Previous studies of surgical stabilization of rib fractures (SSRF) have been limited by small sample sizes, retrospective methodology, and inclusion of only patients with flail chest. We performed a prospective, controlled evaluation of SSRF as compared with optimal medical management for severe rib fracture patterns among critically ill trauma patients. We hypothesized that SSRF improves acute outcomes. We conducted a 2-year clinical evaluation of patients with any of the following rib fracture patterns: flail chest, three or more fractures with bicortical displacement, 30% or greater hemithorax volume loss, and either severe pain or respiratory failure despite optimal medical management. In the year 2013, all patients were managed nonoperatively. In the year 2014, all patients were managed operatively. Outcomes included respiratory failure, tracheostomy, pneumonia, ventilator days, tracheostomy, length of stay, daily maximum incentive spirometer volume, narcotic requirements, and mortality. Univariate and multivariable analyses were performed. Seventy patients were included, 35 in each group. For the operative group, time from injury to surgery was 2.4 day, operative time was 1.5 hours, and the ratio of ribs fixed to ribs fractured was 0.6. The operative group had a significantly higher RibScore (4 vs. 3, respectively, p < 0.01) and a significantly lower incidence of intracranial hemorrhage (5.7% vs. 28.6%, respectively, p = 0.01). After controlling for these differences, the operative group had a significantly lower likelihood of both respiratory failure (odds ratio, 0.24; 95% confidence interval, 0.06-0.93; p = 0.03) and tracheostomy (odds ratio, 0.18; 95% confidence interval, 0.04-0.78; p = 0.03). Duration of ventilation was significantly lower in the operative group (p < 0.01). The median daily spirometry value was 250 mL higher in the operative group (p = 0.04). Narcotic requirements were comparable between groups. There were no mortalities. In this evaluation, SSRF as compared with the best medical management improved acute outcomes among a group of critically ill trauma patients with a variety of severe fracture patterns. Therapeutic study, level II.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pugh, C.E.
2001-01-29
Numerous large-scale fracture experiments have been performed over the past thirty years to advance fracture mechanics methodologies applicable to thick-wall pressure vessels. This report first identifies major factors important to nuclear reactor pressure vessel (RPV) integrity under pressurized thermal shock (PTS) conditions. It then covers 20 key experiments that have contributed to identifying fracture behavior of RPVs and to validating applicable assessment methodologies. The experiments are categorized according to four types of specimens: (1) cylindrical specimens, (2) pressurized vessels, (3) large plate specimens, and (4) thick beam specimens. These experiments were performed in laboratories in six different countries. This reportmore » serves as a summary of those experiments, and provides a guide to references for detailed information.« less
Hydraulic Fracturing Fluid Analysis for Regulatory Parameters - A Progress Report
This presentation is a progress report on the analysis of Hydraulic Fracturing Fluids for regulatory compounds outlined in the various US EPA methodologies. Fracturing fluids vary significantly in consistency and viscosity prior to fracturing. Due to the nature of the fluids the analytical challenges will have to be addressed. This presentation also outlines the sampling issues associated with the collection of dissolved gas samples.
Filho, Geraldo Motta; Galvão, Marcus Vinicius; Monteiro, Martim; Cohen, Marcio; Brandão, Bruno
2015-01-01
The study's objective is to evaluate the characteristics and problems of patients who underwent shoulder arthroplasties between July 2004 and November 2006. Methodology: During the period of the study, 145 shoulder arthroplasties were performed. A prospective protocol was used for every patient; demographic, clinical and surgical procedure data were collected. All gathered data were included in the data base. The patients were divided in three major groups: fractures, degenerative diseases and trauma sequels. Information obtained from the data base was correlated in order to determine patients' epidemiologic, injuries, and surgical procedure profiles. Results: Of the 145 shoulder arthroplasties performed, 37% presented trauma sequels, 30% degenerative diseases, and 33% proximal humerus fracture. 12% of the cases required total arthroplasties and 88% partial arthroplasties. Five major complications were observed on early postoperative period. Conclusion: Shoulder arthroplasties have become a common procedure in orthopaedic practice. Surgical records are important in evidencing progressive evolution and in enabling future clinical outcomes evaluation. PMID:26998463
NASA Technical Reports Server (NTRS)
Sharobeam, Monir H.
1994-01-01
Load separation is the representation of the load in the test records of geometries containing cracks as a multiplication of two separate functions: a crack geometry function and a material deformation function. Load separation is demonstrated in the test records of several two-dimensional geometries such as compact tension geometry, single edge notched bend geometry, and center cracked tension geometry and three-dimensional geometries such as semi-elliptical surface crack. The role of load separation in the evaluation of the fracture parameter J-integral and the associated factor eta for two-dimensional geometries is discussed. The paper also discusses the theoretical basis and the procedure for using load separation as a simplified yet accurate approach for plastic J evaluation in semi-elliptical surface crack which is a three-dimensional geometry. The experimental evaluation of J, and particularly J(sub pl), for three-dimensional geometries is very challenging. A few approaches have been developed in this regard and they are either complex or very approximate. The paper also presents the load separation as a mean to identify the blunting and crack growth regions in the experimental test records of precracked specimens. Finally, load separation as a methodology in elastic-plastic fracture mechanics is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoak, T.E.; Klawitter, A.L.
Fractured production trends in Piceance Basin Cretaceous-age Mesaverde Group gas reservoirs are controlled by subsurface structures. Because many of the subsurface structures are controlled by basement fault trends, a new interpretation of basement structure was performed using an integrated interpretation of Landsat Thematic Mapper (TM), side-looking airborne radar (SLAR), high altitude, false color aerial photography, gas and water production data, high-resolution aeromagnetic data, subsurface geologic information, and surficial fracture maps. This new interpretation demonstrates the importance of basement structures on the nucleation and development of overlying structures and associated natural fractures in the hydrocarbon-bearing section. Grand Valley, Parachute, Rulison, Plateau,more » Shire Gulch, White River Dome, Divide Creek and Wolf Creek fields all produce gas from fractured tight gas sand and coal reservoirs within the Mesaverde Group. Tectonic fracturing involving basement structures is responsible for development of permeability allowing economic production from the reservoirs. In this context, the significance of detecting natural fractures using the intergrated fracture detection technique is critical to developing tight gas resources. Integration of data from widely-available, relatively inexpensive sources such as high-resolution aeromagnetics, remote sensing imagery analysis and regional geologic syntheses provide diagnostic data sets to incorporate into an overall methodology for targeting fractured reservoirs. The ultimate application of this methodology is the development and calibration of a potent exploration tool to predict subsurface fractured reservoirs, and target areas for exploration drilling, and infill and step-out development programs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chopra, O. K.; Rao, A. S.
The effect of thermal aging on the degradation of fracture toughness and Charpy-impact properties of austenitic stainless steel (SS) welds has been characterized at reactor temperatures. The solidification behavior and the distribution and morphology of the ferrite phase in SS welds are described. Thermal aging of the welds results in moderate decreases in Charpy-impact strength and fracture toughness. The upper-shelf Charpy-impact energy of aged welds decreases by 50–80 J/cm2. The decrease in fracture toughness J-R curve, or JIc is relatively small. Thermal aging has minimal effect on the tensile strength. The fracture properties of SS welds are insensitive to fillermore » metal; the welding process has a significant effect. The large variability in the data makes it difficult to establish the effect of the welding process on fracture properties of SS welds. Consequently, the approach used for evaluating thermal and neutron embrittlement of austenitic SS welds relies on establishing a lower-bound fracture toughness J-R curve for unaged and aged, and non-irradiated and irradiated, SS welds. The existing fracture toughness J-R curve data for SS welds have been reviewed and evaluated to define lower-bound J-R curve for submerged arc (SA)/shielded metal arc (SMA)/manual metal arc (MMA) welds and gas tungsten arc (GTA)/tungsten inert gas (TIG) welds in the unaged and aged conditions. At reactor temperatures, the fracture toughness of GTA/TIG welds is a factor of about 2.3 higher than that of SA/SMA/MMA welds. Thermal aging decreases the fracture toughness by about 20%. The potential combined effects of thermal and neutron embrittlement of austenitic SS welds are also described. Lower-bound curves are presented that define the change in coefficient C and exponent n of the power-law J-R curve and the JIc value for SS welds as a function of neutron dose. The potential effects of reactor coolant environment on the fracture toughness of austenitic SS welds are also discussed.« less
Quantitative MR imaging in fracture dating--Initial results.
Baron, Katharina; Neumayer, Bernhard; Widek, Thomas; Schick, Fritz; Scheicher, Sylvia; Hassler, Eva; Scheurer, Eva
2016-04-01
For exact age determinations of bone fractures in a forensic context (e.g. in cases of child abuse) improved knowledge of the time course of the healing process and use of non-invasive modern imaging technology is of high importance. To date, fracture dating is based on radiographic methods by determining the callus status and thereby relying on an expert's experience. As a novel approach, this study aims to investigate the applicability of magnetic resonance imaging (MRI) for bone fracture dating by systematically investigating time-resolved changes in quantitative MR characteristics after a fracture event. Prior to investigating fracture healing in children, adults were examined for this study in order to test the methodology for this application. Altogether, 31 MR examinations in 17 subjects (♀: 11 ♂: 6; median age 34 ± 15 y, scanned 1-5 times over a period of up to 200 days after the fracture event) were performed on a clinical 3T MR scanner (TimTrio, Siemens AG, Germany). All subjects were treated conservatively for a fracture in either a long bone or in the collar bone. Both, qualitative and quantitative MR measurements were performed in all subjects. MR sequences for a quantitative measurement of relaxation times T1 and T2 in the fracture gap and musculature were applied. Maps of quantitative MR parameters T1, T2, and magnetisation transfer ratio (MTR) were calculated and evaluated by investigating changes over time in the fractured area by defined ROIs. Additionally, muscle areas were examined as reference regions to validate this approach. Quantitative evaluation of 23 MR data sets (12 test subjects, ♀: 7 ♂: 5) showed an initial peak in T1 values in the fractured area (T1=1895 ± 607 ms), which decreased over time to a value of 1094 ± 182 ms (200 days after the fracture event). T2 values also peaked for early-stage fractures (T2=115 ± 80 ms) and decreased to 73 ± 33 ms within 21 days after the fracture event. After that time point, no significant changes could be detected for T2. MTR remained constant at 35.5 ± 8.0% over time. The study shows that the quantitative assessment of T1 and T2 behaviour over time in the fractured region enable the generation of a novel model allowing for an objective age determination of a fracture. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Fracture Probability of MEMS Optical Devices for Space Flight Applications
NASA Technical Reports Server (NTRS)
Fettig, Rainer K.; Kuhn, Jonathan L.; Moseley, S. Harvey; Kutyrev, Alexander S.; Orloff, Jon
1999-01-01
A bending fracture test specimen design is presented for thin elements used in optical devices for space flight applications. The specimen design is insensitive to load position, avoids end effect complications, and can be used to measure strength of membranes less than 2 microns thick. The theoretical equations predicting stress at failure are presented, and a detailed finite element model is developed to validate the equations for this application. An experimental procedure using a focused ion beam machine is outlined, and results from preliminary tests of 1.9 microns thick single crystal silicon are presented. These tests are placed in the context of a methodology for the design and evaluation of mission critical devices comprised of large arrays of cells.
NASA Technical Reports Server (NTRS)
James, Mark; Wells, Doug; Allen, Phillip; Wallin, Kim
2017-01-01
Recently proposed modifications to ASTM E399 would provide a new size-insensitive approach to analyzing the force-displacement test record. The proposed size-insensitive linear-elastic fracture toughness, KIsi, targets a consistent 0.5mm crack extension for all specimen sizes by using an offset secant that is a function of the specimen ligament length. The KIsi evaluation also removes the Pmax/PQ criterion and increases the allowable specimen deformation. These latter two changes allow more plasticity at the crack tip, prompting the review undertaken in this work to ensure the validity of this new interpretation of the force-displacement curve. This paper provides a brief review of the proposed KIsi methodology and summarizes a finite element study into the effects of increased crack tip plasticity on the method given the allowance for additional specimen deformation. The study has two primary points of investigation: the effect of crack tip plasticity on compliance change in the force-displacement record and the continued validity of linear-elastic fracture mechanics to describe the crack front conditions. The analytical study illustrates that linear-elastic fracture mechanics assumptions remain valid at the increased deformation limit; however, the influence of plasticity on the compliance change in the test record is problematic. A proposed revision to the validity criteria for the KIsi test method is briefly discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aminzadeh, Fred; Sammis, Charles; Sahimi, Mohammad
The ultimate objective of the project was to develop new methodologies to characterize the northwestern part of The Geysers geothermal reservoir (Sonoma County, California). The goal is to gain a better knowledge of the reservoir porosity, permeability, fracture size, fracture spacing, reservoir discontinuities (leaky barriers) and impermeable boundaries.
Solution-adaptive finite element method in computational fracture mechanics
NASA Technical Reports Server (NTRS)
Min, J. B.; Bass, J. M.; Spradley, L. W.
1993-01-01
Some recent results obtained using solution-adaptive finite element method in linear elastic two-dimensional fracture mechanics problems are presented. The focus is on the basic issue of adaptive finite element method for validating the applications of new methodology to fracture mechanics problems by computing demonstration problems and comparing the stress intensity factors to analytical results.
Li, Jianfeng; Zhao, Xia; Hu, Xiaojie; Tao, Chunjing; Ji, Run
2018-03-01
The unilateral external fixator has become a quick and easy application for fracture stabilization of the extremities; the main value for evaluation of mechanical stability of the external fixator is stiffness. The stiffness property of the external fixator affects the local biomechanical environment of fractured bone. In this study, a theoretical model with changing Young's modulus of the callus is established by using the Castigliano's theory, investigating compression stiffness, torsional stiffness and bending stiffness of the fixator-bone system during the healing process. The effects of pin deviation angle on three stiffness methods are also investigated. In addition, finite element simulation is discussed regarding the stress distribution between the fixator and bone. The results reveal the three stiffness evaluation methods are similar for the fixator-bone system. Finite element simulation shows that with increased healing time, the transmission of the load between the fixator and bone are different. In addition, the finite element analyses verify the conclusions obtained from the theoretical model. This work helps orthopedic doctors to monitor the progression of fracture healing and determine the appropriate time for removal of a fixation device and provide important theoretical methodology.
Clinical research on postoperative trauma care: has the position of observational studies changed?
Smeeing, D P J; Houwert, R M; Kruyt, M C; van der Meijden, O A J; Hietbrink, F
2017-02-01
The postoperative care regimes of ankle fractures are studied for over 30 years and recommendations have shifted only slightly in the last decades. However, study methodology might have evolved. The aim of this study was to evaluate the changes in time in the design, quality and outcome measures of studies investigating the postoperative care of ankle fractures. The MEDLINE and EMBASE database were searched for both RCTs and cohort studies. The original studies were divided into decades of publication over the last 30 years. The methodological quality of the studies was assessed using the 'traditional' risk of bias assessment tool provided by The Cochrane Collaboration and the 'newer' MINORS criteria. The percentage of RCTs on this subject declined from 67 to 38 % in the last decades. According to the Cochrane tool, the reported quality of RCTs has improved in the last three decades whereas the reported quality of observational studies has remained unchanged. However, when quality was evaluated with the MINORS criteria, equal improvement was observed for both RCTs and observational studies. In the 80s, 67 % of all studies used the range of motion as the primary outcome measure, which decreased to 45 % in the 90s. In the 00s, none of the studies used the range of motion as the primary outcome. For postoperative care of ankle fractures, results of this study showed a relative decrease in the published number of RCTs. The overall quality of the published articles did not decline. In addition, a gradual shift from physician measured to patient-reported outcome variables was observed. However, it should be borne in mind that the findings are based on a small sample (n = 25).
Luo, Si yang; Li, Yan; Luo, Hong; Yin, Xin hai; Lin, Du ren; Zhao, Ke; Huang, Guang lei; Song, Ju kun
2016-01-25
Association between dietary intake of vegetables and fruits and risk of hip fracture has been reported for many years. However, the findings remain inconclusive. We conducted a meta-analysis to evaluate the relationship between intake of vegetables and fruits, and risk of hip fracture. Literature search for relevant studies was performed on PubMed and Embase databases. Five observational studies were included in the meta-analysis. Summary hazard ratio (HR) with corresponding 95% confidence interval (CI) was calculated from pooled data using the random-effects model irrespective of heterogeneity. Sensitivity and subgroup analysis were performed to explore possible reasons for heterogeneity. The summary HR for hip fracture in relation to high intake vs. low intake of only vegetables, only fruits, and combined intake of fruits and vegetables, was 0.75 (95% CI, 0.61-0.92), 0.87 (95% CI, 0.74-1.04), and 0.79 (95% CI, 0.61-1.03), respectively. Subgroup analyses based on study design, geographical location, number of cases, and gender showed similar results. Increased intake of vegetables, but not fruits, was found to be associated with a lower risk of hip fracture. Large prospective clinical trials with robust methodology are required to confirm our findings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-03-01
This volume presents the following appendices: ceramic test specimen drawings and schematics, mixed-mode and biaxial stress fracture of structural ceramics for advanced vehicular heat engines (U. Utah), mode I/mode II fracture toughness and tension/torsion fracture strength of NT154 Si nitride (Brown U.), summary of strength test results and fractography, fractography photographs, derivations of statistical models, Weibull strength plots for fast fracture test specimens, and size functions.
Crack Growth Simulation and Residual Strength Prediction in Airplane Fuselages
NASA Technical Reports Server (NTRS)
Chen, Chuin-Shan; Wawrzynek, Paul A.; Ingraffea, Anthony R.
1999-01-01
This is the final report for the NASA funded project entitled "Crack Growth Prediction Methodology for Multi-Site Damage." The primary objective of the project was to create a capability to simulate curvilinear fatigue crack growth and ductile tearing in aircraft fuselages subjected to widespread fatigue damage. The second objective was to validate the capability by way of comparisons to experimental results. Both objectives have been achieved and the results are detailed herein. In the first part of the report, the crack tip opening angle (CTOA) fracture criterion, obtained and correlated from coupon tests to predict fracture behavior and residual strength of built-up aircraft fuselages, is discussed. Geometrically nonlinear, elastic-plastic, thin shell finite element analyses are used to simulate stable crack growth and to predict residual strength. Both measured and predicted results of laboratory flat panel tests and full-scale fuselage panel tests show substantial reduction of residual strength due to the occurrence of multi-site damage (MSD). Detailed comparisons of n stable crack growth history, and residual strength between the predicted and experimental results are used to assess the validity of the analysis methodology. In the second part of the report, issues related to crack trajectory prediction in thin shells; an evolving methodology uses the crack turning phenomenon to improve the structural integrity of aircraft structures are discussed, A directional criterion is developed based on the maximum tangential stress theory, but taking into account the effect of T-stress and fracture toughness orthotropy. Possible extensions of the current crack growth directional criterion to handle geometrically and materially nonlinear problems are discussed. The path independent contour integral method for T-stress evaluation is derived and its accuracy is assessed using a p- and hp-version adaptive finite element method. Curvilinear crack growth is simulated in coupon tests and in full-scale fuselage panel tests. Both T-stress and fracture toughness orthotropy are found to be essential to predict the observed crack paths. The analysis methodology and software program (FRANC3D/STAGS) developed herein allows engineers to maintain aging aircraft economically while insuring continuous airworthiness. Consequently, it will improve the technology to support the safe operation of the current aircraft fleet as well as the design of more damage-tolerant aircraft for the next generation fleet.
Progressive Fracture of Composite Structures
NASA Technical Reports Server (NTRS)
Minnetyan, Levon
2001-01-01
This report includes the results of a research in which the COmposite Durability STRuctural ANalysis (CODSTRAN) computational simulation capabilities were augmented and applied to various structures for demonstration of the new features and verification. The first chapter of this report provides an introduction to the computational simulation or virtual laboratory approach for the assessment of damage and fracture progression characteristics in composite structures. The second chapter outlines the details of the overall methodology used, including the failure criteria and the incremental/iterative loading procedure with the definitions of damage, fracture, and equilibrium states. The subsequent chapters each contain an augmented feature of the code and/or demonstration examples. All but one of the presented examples contains laminated composite structures with various fiber/matrix constituents. For each structure simulated, damage initiation and progression mechanisms are identified and the structural damage tolerance is quantified at various degradation stages. Many chapters contain the simulation of defective and defect free structures to evaluate the effects of existing defects on structural durability.
Vachhani, Kathak; Pagotto, Andrea; Wang, Yufa; Whyne, Cari; Nam, Diane
2018-01-03
Fracture healing is a lengthy process which fails in 5-10% of cases. Lithium, a low-cost therapeutic used in psychiatric medicine, up-regulates the canonical Wingless pathway crucial for osteoblastic mineralization in fracture healing. A design-of-experiments (DOE) methodology was used to optimize lithium administration parameters (dose, onset time and treatment duration) to enhance healing in a rat femoral fracture model. In the previously completed first stage (screening), onset time was found to significantly impact healing, with later (day 7 vs. day 3 post-fracture) treatment yielding improved maximum yield torque. The greatest strength was found in healing femurs treated at day 7 post fracture, with a low lithium dose (20 mg/kg) for 2 weeks duration. This paper describes the findings of the second (optimization) and third (verification) stages of the DOE investigation. Closed traumatic diaphyseal femur fractures were induced in 3-month old rats. Healing was evaluated on day 28 post fracture by CT-based morphometry and torsional loading. In optimization, later onset times of day 10 and 14 did not perform as well as day 7 onset. As such, efficacy of the best regimen (20 mg/kg dose given at day 7 onset for 2 weeks duration) was reassessed in a distinct cohort of animals to complete the DOE verification. A significant 44% higher maximum yield torque (primary outcome) was seen with optimized lithium treatment vs. controls, which paralleled the 46% improvement seen in the screening stage. Successful completion of this robustly designed preclinical DOE study delineates the optimal lithium regimen for enhancing preclinical long-bone fracture healing. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA airframe structural integrity program
NASA Technical Reports Server (NTRS)
Harris, Charles E.
1991-01-01
NASA has initiated a research program with the long-term objective of supporting the aerospace industry in addressing issues related to the aging commercial transport fleet. The interdisciplinary program combines advanced fatigue crack growth prediction methodology with innovative nondestructive examination technology with the focus on multi-site damage (MSD) at riveted connections. A fracture mechanics evaluation of the concept of pressure proof testing the fuselage to screen for MSD has been completed. Also, a successful laboratory demonstration of the ability of the thermal flux method to detect disbonds at riveted lap splice joints has been conducted. All long-term program elements have been initiated and the plans for the methodology verification program are being coordinated with the airframe manufacturers.
NASA airframe structural integrity program
NASA Technical Reports Server (NTRS)
Harris, Charles E.
1990-01-01
NASA initiated a research program with the long-term objective of supporting the aerospace industry in addressing issues related to the aging of the commercial transport fleet. The program combines advanced fatigue crack growth prediction methodology with innovative nondestructive examination technology with the focus on multi-stage damage (MSD) at rivited connections. A fracture mechanics evaluation of the concept of pressure proof testing the fuselage to screen for MSD was completed. A successful laboratory demonstration of the ability of the thermal flux method to detect disbonds at rivited lap splice joints was conducted. All long-term program elements were initiated, and the plans for the methodology verification program are being coordinated with the airframe manufacturers.
Ultrasound for Distal Forearm Fracture: A Systematic Review and Diagnostic Meta-Analysis
Douma-den Hamer, Djoke; Blanker, Marco H.; Edens, Mireille A.; Buijteweg, Lonneke N.; Boomsma, Martijn F.; van Helden, Sven H.; Mauritz, Gert-Jan
2016-01-01
Study Objective To determine the diagnostic accuracy of ultrasound for detecting distal forearm fractures. Methods A systematic review and diagnostic meta-analysis was performed according to the PRISMA statement. We searched MEDLINE, Web of Science and the Cochrane Library from inception to September 2015. All prospective studies of the diagnostic accuracy of ultrasound versus radiography as the reference standard were included. We excluded studies with a retrospective design and those with evidence of verification bias. We assessed the methodological quality of the included studies with the QUADAS-2 tool. We performed a meta-analysis of studies evaluating ultrasound to calculate the pooled sensitivity and specificity with 95% confidence intervals (CI95%) using a bivariate model with random effects. Subgroup and sensitivity analysis were used to examine the effect of methodological differences and other study characteristics. Results Out of 867 publications we included 16 studies with 1,204 patients and 641 fractures. The pooled test characteristics for ultrasound were: sensitivity 97% (CI95% 93–99%), specificity 95% (CI95% 89–98%), positive likelihood ratio (LR) 20.0 (8.5–47.2) and negative LR 0.03 (0.01–0.08). The corresponding pooled diagnostic odds ratio (DOR) was 667 (142–3,133). Apparent differences were shown for method of viewing, with the 6-view method showing higher specificity, positive LR, and DOR, compared to the 4-view method. Conclusion The present meta-analysis showed that ultrasound has a high accuracy for the diagnosis of distal forearm fractures in children when used by proper viewing method. Based on this, ultrasound should be considered a reliable alternative, which has the advantages of being radiation free. PMID:27196439
NASA Astrophysics Data System (ADS)
Ayatollahy Tafti, Tayeb
We develop a new method for integrating information and data from different sources. We also construct a comprehensive workflow for characterizing and modeling a fracture network in unconventional reservoirs, using microseismic data. The methodology is based on combination of several mathematical and artificial intelligent techniques, including geostatistics, fractal analysis, fuzzy logic, and neural networks. The study contributes to scholarly knowledge base on the characterization and modeling fractured reservoirs in several ways; including a versatile workflow with a novel objective functions. Some the characteristics of the methods are listed below: 1. The new method is an effective fracture characterization procedure estimates different fracture properties. Unlike the existing methods, the new approach is not dependent on the location of events. It is able to integrate all multi-scaled and diverse fracture information from different methodologies. 2. It offers an improved procedure to create compressional and shear velocity models as a preamble for delineating anomalies and map structures of interest and to correlate velocity anomalies with fracture swarms and other reservoir properties of interest. 3. It offers an effective way to obtain the fractal dimension of microseismic events and identify the pattern complexity, connectivity, and mechanism of the created fracture network. 4. It offers an innovative method for monitoring the fracture movement in different stages of stimulation that can be used to optimize the process. 5. Our newly developed MDFN approach allows to create a discrete fracture network model using only microseismic data with potential cost reduction. It also imposes fractal dimension as a constraint on other fracture modeling approaches, which increases the visual similarity between the modeled networks and the real network over the simulated volume.
Fracture mechanics analysis of cracked structures using weight function and neural network method
NASA Astrophysics Data System (ADS)
Chen, J. G.; Zang, F. G.; Yang, Y.; Shi, K. K.; Fu, X. L.
2018-06-01
Stress intensity factors(SIFs) due to thermal-mechanical load has been established by using weight function method. Two reference stress states sere used to determine the coefficients in the weight function. Results were evaluated by using data from literature and show a good agreement between them. So, the SIFs can be determined quickly using the weight function obtained when cracks subjected to arbitrary loads, and presented method can be used for probabilistic fracture mechanics analysis. A probabilistic methodology considering Monte-Carlo with neural network (MCNN) has been developed. The results indicate that an accurate probabilistic characteristic of the KI can be obtained by using the developed method. The probability of failure increases with the increasing of loads, and the relationship between is nonlinear.
Bone fracture healing in mechanobiological modeling: A review of principles and methods.
Ghiasi, Mohammad S; Chen, Jason; Vaziri, Ashkan; Rodriguez, Edward K; Nazarian, Ara
2017-06-01
Bone fracture is a very common body injury. The healing process is physiologically complex, involving both biological and mechanical aspects. Following a fracture, cell migration, cell/tissue differentiation, tissue synthesis, and cytokine and growth factor release occur, regulated by the mechanical environment. Over the past decade, bone healing simulation and modeling has been employed to understand its details and mechanisms, to investigate specific clinical questions, and to design healing strategies. The goal of this effort is to review the history and the most recent work in bone healing simulations with an emphasis on both biological and mechanical properties. Therefore, we provide a brief review of the biology of bone fracture repair, followed by an outline of the key growth factors and mechanical factors influencing it. We then compare different methodologies of bone healing simulation, including conceptual modeling (qualitative modeling of bone healing to understand the general mechanisms), biological modeling (considering only the biological factors and processes), and mechanobiological modeling (considering both biological aspects and mechanical environment). Finally we evaluate different components and clinical applications of bone healing simulation such as mechanical stimuli, phases of bone healing, and angiogenesis.
Some consideration for evaluation of structural integrity of aging aircraft
NASA Astrophysics Data System (ADS)
Terada, Hiroyuki; Asada, Hiroo
The objective of this paper is to examine the achievement and the limitation of state-of-the-art of the methodology of damage tolerant design and the subjects to be solved for further improvement. The topics discussed are: the basic concept of full-scale fatigue testing, fracture mechanics applications, repair of detected damages, inspection technology, and determination of inspection intervals, reliability assessment for practical application, and the importance of various kinds of data acquisition.
Ceramic Life Prediction Methodology.
1986-03-01
stress rupture data were collected on two materials, a sintered silicon nitride and a lithium-aluminum-silicate. The fast fracture data was presented...graphically in the form of Weibull plots of percent failed versus failure stress . The stress rupture results were presented in tabular form. Photo...micrographs were presented to illustrate the fracture surfaces of fast fracture and stress rupture failures. A program of specimen development was coaducted
Song, Dawei; Meng, Bin; Gan, Minfeng; Niu, Junjie; Li, Shiyan; Chen, Hao; Yuan, Chenxi; Yang, Huilin
2015-08-01
Percutaneous vertebroplasty (PVP) and balloon kyphoplasty (BKP) are minimally invasive and effective vertebral augmentation techniques for managing osteoporotic vertebral compression fractures (OVCFs). Recent meta-analyses have compared the incidence of secondary vertebral fractures between patients treated with vertebral augmentation techniques or conservative treatment; however, the inclusions were not thorough and rigorous enough, and the effects of each technique on the incidence of secondary vertebral fractures remain unclear. To perform an updated systematic review and meta-analysis of the studies with more rigorous inclusion criteria on the effects of vertebral augmentation techniques and conservative treatment for OVCF on the incidence of secondary vertebral fractures. PubMed, MEDLINE, EMBASE, SpringerLink, Web of Science, and the Cochrane Library database were searched for relevant original articles comparing the incidence of secondary vertebral fractures between vertebral augmentation techniques and conservative treatment for patients with OVCFs. Randomized controlled trials (RCTs) and prospective non-randomized controlled trials (NRCTs) were identified. The methodological qualities of the studies were evaluated, relevant data were extracted and recorded, and an appropriate meta-analysis was conducted. A total of 13 articles were included. The pooled results from included studies showed no statistically significant differences in the incidence of secondary vertebral fractures between patients treated with vertebral augmentation techniques and conservative treatment. Subgroup analysis comparing different study designs, durations of symptoms, follow-up times, races of patients, and techniques were conducted, and no significant differences in the incidence of secondary fractures were identified (P > 0.05). No obvious publication bias was detected by either Begg's test (P = 0.360 > 0.05) or Egger's test (P = 0.373 > 0.05). Despite current thinking in the field that vertebral augmentation procedures may increase the incidence of secondary fractures, we found no differences in the incidence of secondary fractures between vertebral augmentation techniques and conservative treatment for patients with OVCFs. © The Foundation Acta Radiologica 2014.
NASA Astrophysics Data System (ADS)
Karimi-Fard, M.; Durlofsky, L. J.
2016-10-01
A comprehensive framework for modeling flow in porous media containing thin, discrete features, which could be high-permeability fractures or low-permeability deformation bands, is presented. The key steps of the methodology are mesh generation, fine-grid discretization, upscaling, and coarse-grid discretization. Our specialized gridding technique combines a set of intersecting triangulated surfaces by constructing approximate intersections using existing edges. This procedure creates a conforming mesh of all surfaces, which defines the internal boundaries for the volumetric mesh. The flow equations are discretized on this conforming fine mesh using an optimized two-point flux finite-volume approximation. The resulting discrete model is represented by a list of control-volumes with associated positions and pore-volumes, and a list of cell-to-cell connections with associated transmissibilities. Coarse models are then constructed by the aggregation of fine-grid cells, and the transmissibilities between adjacent coarse cells are obtained using flow-based upscaling procedures. Through appropriate computation of fracture-matrix transmissibilities, a dual-continuum representation is obtained on the coarse scale in regions with connected fracture networks. The fine and coarse discrete models generated within the framework are compatible with any connectivity-based simulator. The applicability of the methodology is illustrated for several two- and three-dimensional examples. In particular, we consider gas production from naturally fractured low-permeability formations, and transport through complex fracture networks. In all cases, highly accurate solutions are obtained with significant model reduction.
What counts: outcome assessment after distal radius fractures in aged patients.
Goldhahn, Jörg; Angst, Felix; Simmen, Beat R
2008-09-01
Outcome of surgical interventions at the distal radius does not only depend on the type of intervention used, it also depends on the way the outcome is measured. Substantial differences in outcome assessment between different measurement tools and poor correlation among them result in the question about the best instrument for the evaluation of treatment after distal radius fractures. The aim of the review is to discuss pros and cons of the parameters that are available to assess the outcome after distal radius fractures. The review should help to choose the appropriate instruments for a given research question in aged patients with distal radius fractures. Objective and subjective measures were reviewed with respect to their suitability in outcome assessment. Radiological parameters like inclination, palmar slope, and length of the radius are most common and used to determine especially surgical success. Grip strength and range of motion are considered objective and used as study endpoints in many studies. Functional tests like the Jebsen test provide a realistic feedback about disability but require special skills and resources of the testing personnel. Patient self-assessment adds perceived patient benefit. The patient-rated wrist evaluation (PRWE) provides a reliable and valid instrument for subjective outcome assessment. A combination of objective and subjective parameters should be used to assess the outcome of different treatment strategies due to the known discrepancies. Objective parameters like shortening, radial shift, or others should be clearly defined in the study methodology.
Dingreville, Remi; Aksoy, Doruk; Spearot, Douglas E.
2017-08-21
In this study, all grain boundaries are not equal in their predisposition for fracture due to the complex coupling between lattice geometry, interfacial structure, and mechanical properties. The ability to understand these relationships is crucial to engineer materials resilient to grain boundary fracture. Here, a methodology is presented to isolate the role of grain boundary structure on interfacial fracture properties, such as the tensile strength and work of separation, using atomistic simulations. Instead of constructing sets of grain boundary models within the misorientation/structure space by simply varying the misorientation angle around a fixed misorientation axis, the proposed method creates setsmore » of grain boundary models by means of isocurves associated with important fracture-related properties of the adjoining lattices. Such properties may include anisotropic elastic moduli, the Schmid factor for primary slip, and the propensity for simultaneous slip on multiple slip systems. This approach eliminates the effect of lattice properties from the comparative analysis of interfacial fracture properties and thus enables the identification of structure-property relationships for grain boundaries. As an example, this methodology is implemented to study crack propagation along Ni grain boundaries. Segregated H is used as a means to emphasize differences in the selected grain boundary structures while keeping lattice properties fixed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dingreville, Remi; Aksoy, Doruk; Spearot, Douglas E.
In this study, all grain boundaries are not equal in their predisposition for fracture due to the complex coupling between lattice geometry, interfacial structure, and mechanical properties. The ability to understand these relationships is crucial to engineer materials resilient to grain boundary fracture. Here, a methodology is presented to isolate the role of grain boundary structure on interfacial fracture properties, such as the tensile strength and work of separation, using atomistic simulations. Instead of constructing sets of grain boundary models within the misorientation/structure space by simply varying the misorientation angle around a fixed misorientation axis, the proposed method creates setsmore » of grain boundary models by means of isocurves associated with important fracture-related properties of the adjoining lattices. Such properties may include anisotropic elastic moduli, the Schmid factor for primary slip, and the propensity for simultaneous slip on multiple slip systems. This approach eliminates the effect of lattice properties from the comparative analysis of interfacial fracture properties and thus enables the identification of structure-property relationships for grain boundaries. As an example, this methodology is implemented to study crack propagation along Ni grain boundaries. Segregated H is used as a means to emphasize differences in the selected grain boundary structures while keeping lattice properties fixed.« less
J-Resistance Curves of Aluminum Specimens Using Moire Interferometry
1989-04-01
elastic-plastic fracture mechanics ( EPFM ) methodologies are based on the J-integral or the crack opening displacement (COD) approach. The J-resistance curve...in the HRR field [13,141. In this paper, we present further application of the approximate J-evaluation procedure in large 2024-0 and 5052-H32 aluminum...Davis, J. A. Joyce, and R. A. Hays, " Application of the J-Integral and the Modified J-Integral to Cases of Large Crack Extension and High Toughness
Sulfonylureas and risk of falls and fractures: a systematic review.
Lapane, Kate L; Yang, Shibing; Brown, Monique J; Jawahar, Rachel; Pagliasotti, Caleb; Rajpathak, Swapnil
2013-07-01
Sulfonylureas have been linked to increased risk of hypoglycemia. Hypoglycemia may lead to falls, and falls may lead to fracture. However, studies quantifying the association between sulfonylureas and fractures are sparse and yield inconsistent results. The purpose of this article was to review the literature regarding sulfonylurea use and falls or fall-related fractures among older adults with type 2 diabetes mellitus and to delineate areas for future research. We searched MEDLINE (1966-March 2012) and CINAHL (1937-March 2012) for studies of patients with type 2 diabetes mellitus living in the community or nursing homes. The search algorithms combined three domains: (1) diabetic patients, (2) sulfonylurea medications, and (3) fractures or falls. We included only publications in English that pertained to human subjects. We found 9 randomized trials and 12 non-experimental studies that met the inclusion criteria. The guidelines provided by the Cochrane handbook or Agency for Healthcare Research and Quality (AHRQ) Methods Guide are too general to distinguish the quality of included non-experimental studies, so we developed several specific domains based on those general guidelines. These domains included study design, study population, follow-up time, comparison group, exposure definition, outcome definition, induction period, confounding adjustment, and attrition or missing data. The data were not amenable to a meta-analysis. No clinical trials included fracture as a primary endpoint. Most clinical trials excluded older adults. Most studies were not designed to evaluate the risk of sulfonylureas on fractures or falls. Studies did not show an increased risk of falls/fractures with sulfonylurea. The data available from existing studies suffer from methodological limitations including insufficient events, lack of primary endpoints, exclusion of older adults, and lack of clarity or inappropriate comparison groups. Future studies are needed to appropriately estimate the effect of sulfonylureas on falls or fall-related fractures in older adults who are at increased risk for hypoglycemia, the hypothesized mechanism for fractures related to sulfonylurea therapy.
Santoni, Brandon G; Aira, Jazmine R; Diaz, Miguel A; Kyle Stoops, T; Simon, Peter
2017-08-01
Distal radius fractures are common musculoskeletal injuries and many can be treated non-operatively with cast immobilization. A thermo-formable brace has been developed for management of such fractures, but no data exist regarding its comparative stabilizing efficacy to fiberglass casting. A worst-case distal radius fracture was created in 6 cadaveric forearms. A radiolucent loading fixture was created to apply cantilever bending/compression loads ranging from 4.5N to 66.7N across the simulated fracture in the: (1) non-stabilized, (2) braced; and (3) casted forearms, each forearm serving as its own control. Fracture fragment translations and rotations were measured radiographically using orthogonal radiographs and a 2D-3D, CT-based transformation methodology. Under 4.5N of load in the non-stabilized condition, average sagittal plane rotation and 3D center of mass translation of the fracture fragment were 12.3° and 5.3mm, respectively. At the 4.5N load step, fragment rotation with the brace (avg. 0.0°) and cast (0.1°) reduced sagittal plane rotation compared to the non-stabilized forearm (P<0.001). There were no significant differences in measured sagittal plane fracture fragment rotations or 3D fragment translations between the brace or cast at any of the four load steps (4.5N, 22.2N, 44.5N, and 66.7N, P≥0.138). In this in vitro radiographic study utilizing 6 cadaveric forearms with simulated severe-case, unstable and comminuted distal radius fractures, the thermo-formable brace stabilized the fracture in a manner that was not radiographically or biomechanically different from traditional fiberglass casting. Study results support the use of the thermo-formable brace clinically. Copyright © 2017 Elsevier Ltd. All rights reserved.
Anderson, Donald D; Kilburg, Anthony T; Thomas, Thaddeus P; Marsh, J Lawrence
2016-01-01
Post-traumatic osteoarthritis (PTOA) is common after intra-articular fractures of the tibial plafond. An objective CT-based measure of fracture severity was previously found to reliably predict whether PTOA developed following surgical treatment of such fractures. However, the extended time required obtaining the fracture energy metric and its reliance upon an intact contralateral limb CT limited its clinical applicability. The objective of this study was to establish an expedited fracture severity metric that provided comparable PTOA predictive ability without the prior limitations. An expedited fracture severity metric was computed from the CT scans of 30 tibial plafond fractures using textural analysis to quantify disorder in CT images. The expedited method utilized an intact surrogate model to enable severity assessment without requiring a contralateral limb CT. Agreement between the expedited fracture severity metric and the Kellgren-Lawrence (KL) radiographic OA score at two-year follow-up was assessed using concordance. The ability of the metric to differentiate between patients that did or did not develop PTOA was assessed using the Wilcoxon Ranked Sum test. The expedited severity metric agreed well (75.2% concordance) with the KL scores. The initial fracture severity of cases that developed PTOA differed significantly (p = 0.004) from those that did not. Receiver operating characteristic analysis showed that the expedited severity metric could accurately predict PTOA outcome in 80% of the cases. The time required to obtain the expedited severity metric averaged 14.9 minutes/ case, and the metric was obtained without using an intact contralateral CT. The expedited CT-based methods for fracture severity assessment present a solution to issues limiting the utility of prior methods. In a relatively short amount of time, the expedited methodology provided a severity score capable of predicting PTOA risk, without needing to have the intact contralateral limb included in the CT scan. The described methods provide surgeons an objective, quantitative representation of the severity of a fracture. Obtained prior to the surgery, it provides a reasonable alternative to current subjective classification systems. The expedited severity metric offers surgeons an objective means for factoring severity of joint insult into treatment decision-making.
Forming a Learning Culture to Promote Fracture Prevention Activities
ERIC Educational Resources Information Center
Hjalmarson, Helene V.; Strandmark, Margaretha
2012-01-01
Purpose: The purpose of this paper is to explore interprofessional experiences of incorporating fracture prevention activities in clinical practice inspired by an empowerment approach. Design/methodology/approach: Data collection consisted primarily of focus groups interviews, systematized and analyzed by the grounded theory method. The study took…
NASA Technical Reports Server (NTRS)
Starnes, James H., Jr.; Newman, James C., Jr.; Harris, Charles E.; Piascik, Robert S.; Young, Richard D.; Rose, Cheryl A.
2003-01-01
Analysis methodologies for predicting fatigue-crack growth from rivet holes in panels subjected to cyclic loads and for predicting the residual strength of aluminum fuselage structures with cracks and subjected to combined internal pressure and mechanical loads are described. The fatigue-crack growth analysis methodology is based on small-crack theory and a plasticity induced crack-closure model, and the effect of a corrosive environment on crack-growth rate is included. The residual strength analysis methodology is based on the critical crack-tip-opening-angle fracture criterion that characterizes the fracture behavior of a material of interest, and a geometric and material nonlinear finite element shell analysis code that performs the structural analysis of the fuselage structure of interest. The methodologies have been verified experimentally for structures ranging from laboratory coupons to full-scale structural components. Analytical and experimental results based on these methodologies are described and compared for laboratory coupons and flat panels, small-scale pressurized shells, and full-scale curved stiffened panels. The residual strength analysis methodology is sufficiently general to include the effects of multiple-site damage on structural behavior.
Fracture toughness testing data. A bibliography
NASA Technical Reports Server (NTRS)
Carpenter, J. L., Jr.; Moya, N.; Stuhrke, W. F.
1975-01-01
This bibliography is comprised of approximately 800 reference citations related to the mechanics of failure in aerospace structures. Most of the references are for documents that include fracture toughness testing data and its application or documents on the availability and usefulness of fracture mechanics analysis methodology. The bibliography represents a search of the literature published in the period April 1962 through April 1974 and is largely limited to documents published in the United States.
Numerical Modelling of Femur Fracture and Experimental Validation Using Bone Simulant.
Marco, Miguel; Giner, Eugenio; Larraínzar-Garijo, Ricardo; Caeiro, José Ramón; Miguélez, María Henar
2017-10-01
Bone fracture pattern prediction is still a challenge and an active field of research. The main goal of this article is to present a combined methodology (experimental and numerical) for femur fracture onset analysis. Experimental work includes the characterization of the mechanical properties and fracture testing on a bone simulant. The numerical work focuses on the development of a model whose material properties are provided by the characterization tests. The fracture location and the early stages of the crack propagation are modelled using the extended finite element method and the model is validated by fracture tests developed in the experimental work. It is shown that the accuracy of the numerical results strongly depends on a proper bone behaviour characterization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balkey, K.; Witt, F.J.; Bishop, B.A.
1995-06-01
Significant attention has been focused on the issue of reactor vessel pressurized thermal shock (PTS) for many years. Pressurized thermal shock transient events are characterized by a rapid cooldown at potentially high pressure levels that could lead to a reactor vessel integrity concern for some pressurized water reactors. As a result of regulatory and industry efforts in the early 1980`s, a probabilistic risk assessment methodology has been established to address this concern. Probabilistic fracture mechanics analyses are performed as part of this methodology to determine conditional probability of significant flaw extension for given pressurized thermal shock events. While recent industrymore » efforts are underway to benchmark probabilistic fracture mechanics computer codes that are currently used by the nuclear industry, Part I of this report describes the comparison of two independent computer codes used at the time of the development of the original U.S. Nuclear Regulatory Commission (NRC) pressurized thermal shock rule. The work that was originally performed in 1982 and 1983 to compare the U.S. NRC - VISA and Westinghouse (W) - PFM computer codes has been documented and is provided in Part I of this report. Part II of this report describes the results of more recent industry efforts to benchmark PFM computer codes used by the nuclear industry. This study was conducted as part of the USNRC-EPRI Coordinated Research Program for reviewing the technical basis for pressurized thermal shock (PTS) analyses of the reactor pressure vessel. The work focused on the probabilistic fracture mechanics (PFM) analysis codes and methods used to perform the PTS calculations. An in-depth review of the methodologies was performed to verify the accuracy and adequacy of the various different codes. The review was structured around a series of benchmark sample problems to provide a specific context for discussion and examination of the fracture mechanics methodology.« less
ADM guidance-Ceramics: Fracture toughness testing and method selection.
Cesar, Paulo Francisco; Della Bona, Alvaro; Scherrer, Susanne S; Tholey, Michael; van Noort, Richard; Vichi, Alessandro; Kelly, Robert; Lohbauer, Ulrich
2017-06-01
The objective is within the scope of the Academy of Dental Materials Guidance Project, which is to provide dental materials researchers with a critical analysis of fracture toughness (FT) tests such that the assessment of the FT of dental ceramics is conducted in a reliable, repeatable and reproducible way. Fracture mechanics theory and FT methodologies were critically reviewed to introduce basic fracture principles and determine the main advantages and disadvantages of existing FT methods from the standpoint of the dental researcher. The recommended methods for FT determination of dental ceramics were the Single Edge "V" Notch Beam (SEVNB), Single Edge Precracked Beam (SEPB), Chevron Notch Beam (CNB), and Surface Crack in Flexure (SCF). SEVNB's main advantage is the ease of producing the notch via a cutting disk, SEPB allows for production of an atomically sharp crack generated by a specific precracking device, CNB is technically difficult, but based on solid fracture mechanics solutions, and SCF involves fracture from a clinically sized precrack. The IF test should be avoided due to heavy criticism that has arisen in the engineering field regarding the empirical nature of the calculations used for FT determination. Dental researchers interested in FT measurement of dental ceramics should start with a broad review of fracture mechanics theory to understand the underlying principles involved in fast fracture of ceramics. The choice of FT methodology should be based on the pros and cons of each test, as described in this literature review. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Use of point-of-care ultrasound in long bone fractures: a systematic review and meta-analysis.
Chartier, Lucas B; Bosco, Laura; Lapointe-Shaw, Lauren; Chenkin, Jordan
2017-03-01
Long bone fractures (LBFs) are among the most frequent traumatic injuries seen in emergency departments. Reduction and immobilization is the most common form of treatment for displaced fractures. Point-of-care ultrasound (PoCUS) is a promising technique for diagnosing LBFs and assessing the success of reduction attempts. This article offers a comprehensive review of the use of PoCUS for the diagnosis and reduction of LBFs. Data source MEDLINE and EMBASE databases were searched through July 19, 2015. Study selection We included prospective studies that assessed test characteristics of PoCUS in 1) the diagnosis or 2) the reduction of LBFs. The methodological quality of the included studies was evaluated using the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. Data extraction Thirty studies met inclusion criteria (n=3,506; overall fracture rate 48.0%). Test characteristics of PoCUS for the diagnosis of LBFs were as follows: sensitivity 64.7%-100%, specificity 79.2%-100%, positive likelihood ratio (LR) 3.11-infinity, and negative LR zero-0.45. Sensitivity and specificity for the adequate reduction of LBFs with PoCUS were 94%-100% and 56%-100%, respectively. PoCUS diagnosis of pediatric forearm fractures in 10 studies showed a pooled sensitivity of 93.1% (95% confidence interval [CI], 87.2%-96.4%) and specificity of 92.9% (95% CI, 86.6%-96.4%), and PoCUS diagnosis of adult ankle fractures in four studies showed a pooled sensitivity of 89.5% (95% CI, 77.0%-95.6%) and specificity of 94.2% (95% CI, 86.1%-97.7%). PoCUS demonstrates good diagnostic accuracy in all LBFs studied, especially in pooled results of diagnosis of pediatric forearm and adult ankle fractures. PoCUS is an appropriate adjunct to plain radiographs for LBFs.
Milovanovic, Petar; Rakocevic, Zlatko; Djonic, Danijela; Zivkovic, Vladimir; Hahn, Michael; Nikolic, Slobodan; Amling, Michael; Busse, Bjoern; Djuric, Marija
2014-07-01
To unravel the origins of decreased bone strength in the superolateral femoral neck, we assessed bone structural features across multiple length scales at this cortical fracture initiating region in postmenopausal women with hip fracture and in aged-matched controls. Our combined methodological approach encompassed atomic force microscopy (AFM) characterization of cortical bone nano-structure, assessment of mineral content/distribution via quantitative backscattered electron imaging (qBEI), measurement of bone material properties by reference point indentation, as well as evaluation of cortical micro-architecture and osteocyte lacunar density. Our findings revealed a wide range of differences between the fracture group and the controls, suggesting a number of detrimental changes at various levels of cortical bone hierarchical organization that may render bone fragile. Namely, mineral crystals at external cortical bone surfaces of the fracture group were larger (65.22nm±41.21nm vs. 36.75nm±18.49nm, p<0.001), and a shift to a higher mineral content and more homogenous mineralization profile as revealed via qBEI were found in the bone matrix of the fracture group. Fracture cases showed nearly 35% higher cortical porosity and showed significantly reduced osteocyte lacunar density compared to controls (226±27 vs. 247±32#/mm(2), p=0.05). Along with increased crystal size, a shift towards higher mineralization and a tendency to increased cortical porosity and reduced osteocyte lacunar number delineate that cortical bone of the superolateral femoral neck bears distinct signs of fragility at various levels of its structural organization. These results contribute to the understanding of hierarchical bone structure changes in age-related fragility. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Sokolov, M. A.; Tanigawa, H.; Odette, G. R.; Shiba, K.; Klueh, R. L.
2007-08-01
As part of the development of candidate reduced-activation ferritic steels for fusion applications, several steels, namely F82H, 9Cr-2WVTa steels and F82H weld metal, are being investigated in the joint DOE-JAEA collaboration program. Within this program, three capsules containing a variety of specimen designs were irradiated at two design temperatures in the ORNL High Flux Isotope Reactor (HFIR). Two capsules, RB-11J and RB-12J, were irradiated in the HFIR removable beryllium positions with europium oxide (Eu 2O 3) thermal neutron shields in place. Specimens were irradiated up to 5 dpa. Capsule JP25 was irradiated in the HFIR target position to 20 dpa. The design temperatures were 300 °C and 500 °C. Precracked third-sized V-notch Charpy (3.3 × 3.3 × 25.4 mm) and 0.18 T DC(T) specimens were tested to determine transition and ductile shelf fracture toughness before and after irradiation. The master curve methodology was applied to evaluate the fracture toughness transition temperature, T0. Irradiation induced shifts of T0 and reductions of JQ were compared with Charpy V-notch impact properties. Fracture toughness and Charpy shifts were also compared to hardening results.
Numerical Homogenization of Jointed Rock Masses Using Wave Propagation Simulation
NASA Astrophysics Data System (ADS)
Gasmi, Hatem; Hamdi, Essaïeb; Bouden Romdhane, Nejla
2014-07-01
Homogenization in fractured rock analyses is essentially based on the calculation of equivalent elastic parameters. In this paper, a new numerical homogenization method that was programmed by means of a MATLAB code, called HLA-Dissim, is presented. The developed approach simulates a discontinuity network of real rock masses based on the International Society of Rock Mechanics (ISRM) scanline field mapping methodology. Then, it evaluates a series of classic joint parameters to characterize density (RQD, specific length of discontinuities). A pulse wave, characterized by its amplitude, central frequency, and duration, is propagated from a source point to a receiver point of the simulated jointed rock mass using a complex recursive method for evaluating the transmission and reflection coefficient for each simulated discontinuity. The seismic parameters, such as delay, velocity, and attenuation, are then calculated. Finally, the equivalent medium model parameters of the rock mass are computed numerically while taking into account the natural discontinuity distribution. This methodology was applied to 17 bench fronts from six aggregate quarries located in Tunisia, Spain, Austria, and Sweden. It allowed characterizing the rock mass discontinuity network, the resulting seismic performance, and the equivalent medium stiffness. The relationship between the equivalent Young's modulus and rock discontinuity parameters was also analyzed. For these different bench fronts, the proposed numerical approach was also compared to several empirical formulas, based on RQD and fracture density values, published in previous research studies, showing its usefulness and efficiency in estimating rapidly the Young's modulus of equivalent medium for wave propagation analysis.
A methodology for the investigation of toughness and crack propagation in mouse bone.
Carriero, Alessandra; Zimmermann, Elizabeth A; Shefelbine, Sandra J; Ritchie, Robert O
2014-11-01
Bone fracture is a health concern for those with aged bone and brittle bone diseases. Mouse bone is widely used as a model of human bone, especially to investigate preclinical treatment strategies. However, little is known about the mechanisms of mouse bone fracture and its similarities and differences from fracture in human bone. In this work we present a methodology to investigate the fracture toughness during crack initiation and crack propagation for mouse bone. Mouse femora were dissected, polished on their periosteal surface, notched on the posterior surface at their mid-diaphysis, and tested in three-point bending under displacement control at a rate of 0.1mm/min using an in situ loading stage within an environmental scanning electron microscope. We obtained high-resolution real-time imaging of the crack initiation and propagation in mouse bone. From the images we can measure the crack extension at each step of the crack growth and calculate the toughness of the bone (in terms of stress intensity factor (K) and work to fracture (Wf)) as a function of stable crack length (Δa), thus generating a resistance curve for the mouse bone. The technique presented here provides insight into the evolution of microdamage and the toughening mechanisms that resist crack propagation, which are essential for preclinical development of treatments to enhance bone quality and combat fracture risk. Copyright © 2014 Elsevier Ltd. All rights reserved.
Bielska, Iwona A; Wang, Xiang; Lee, Raymond; Johnson, Ana P
2017-07-01
Ankle and foot sprains and fractures are common injuries affecting many individuals, often requiring considerable and costly medical interventions. The objectives of this systematic review are to collect, assess, and critically appraise the published literature on the health economics of ankle and foot injury (sprain and fracture) treatment. A systematic literature review of Ovid MEDLINE, EMBASE, Cochrane DSR, ACP Journal Club, AMED, Ovid Healthstar, and CINAHL was conducted for English-language studies on the costs of treating ankle and foot sprains and fractures published from January 1980 to December 2014. Two reviewers assessed the articles for study quality and abstracted data. The literature search identified 2047 studies of which 32 were analyzed. A majority of the studies were published in the last decade. A number of the studies did not report full economic information, including the sources of the direct and indirect costs, as suggested in the guidelines. The perspective used in the analysis was missing in numerous studies, as was the follow-up time period of participants. Only five of the studies undertook a sensitivity analysis which is required whenever there are uncertainties regarding cost data. This systematic review found that publications do not consistently report on the components of health economics methodology, which in turn limits the quality of information. Future studies undertaking economic evaluations should ensure that their methods are transparent and understandable so as to yield accurate interpretation for assistance in forthcoming economic evaluations and policy decision-making. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Miller, Sandi G.; Roberts, Gary D.; Kohlman, Lee W.; Heimann, Paula J.; Pereira, J. Michael; Ruggeri, Charles R.; Martin, Richard E.; McCorkle, Linda S.
2015-01-01
Impact damage tolerance and damage resistance is a critical metric for application of polymer matrix composites where failure caused by impact damage could compromise structural performance and safety. As a result, several materials and/or design approaches to improve impact damage tolerance have been investigated over the past several decades. Many composite toughening methodologies impart a trade-off between increased fracture toughness and compromised in-plane strength and modulus. In large part, mechanical tests to evaluate composite damage tolerance include static methods such as Mode I, Mode II, and mixed mode failures. However, ballistic impact damage resistance does not always correlate with static properties. The intent of this paper is to evaluate the influence of a thermoplastic polyurethane veil interleave on the static and dynamic performance of composite test articles. Static coupon tests included tension, compression, double cantilever beam, and end notch flexure. Measurement of the resistance to ballistic impact damage were made to evaluate the composites response to high speed impact. The interlayer material showed a decrease of in-plane performance with only a moderate improvement to Mode I and Mode II fracture toughness. However, significant benefit to impact damage tolerance was observed through ballistic tests.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chopra, O. K.; Rao, A. S.
2016-04-28
Cast austenitic stainless steel (CASS) materials, which have a duplex structure consisting of austenite and ferrite phases, are susceptible to thermal embrittlement during reactor service. In addition, the prolonged exposure of these materials, which are used in reactor core internals, to neutron irradiation changes their microstructure and microchemistry, and these changes degrade their fracture properties even further. This paper presents a revision of the procedure and correlations presented in NUREG/CR-4513, Rev. 1 (Aug. 1994) for predicting the change in fracture toughness and tensile properties of CASS components due to thermal aging during service in light water reactors (LWRs) at 280–330more » °C (535–625 °F). The methodology is applicable to CF-3, CF-3M, CF-8, and CF-8M materials with a ferrite content of up to 40%. The fracture toughness, tensile strength, and Charpy-impact energy of aged CASS materials are estimated from known material information. Embrittlement is characterized in terms of room-temperature (RT) Charpy-impact energy. The extent or degree of thermal embrittlement at “saturation” (i.e., the minimum impact energy that can be achieved for a material after long-term aging) is determined from the chemical composition of the material. Charpy-impact energy as a function of the time and temperature of reactor service is estimated from the kinetics of thermal embrittlement, which are also determined from the chemical composition. The fracture toughness J-R curve for the aged material is then obtained by correlating RT Charpy-impact energy with fracture toughness parameters. A common “predicted lower-bound” J-R curve for CASS materials of unknown chemical composition is also defined for a given grade of material, range of ferrite content, and temperature. In addition, guidance is provided for evaluating the combined effects of thermal and neutron embrittlement of CASS materials used in the reactor core internal components. The correlations for estimating the change in tensile strength, including the Ramberg/Osgood parameters for strain hardening, are also described.« less
Adaptive finite element methods for two-dimensional problems in computational fracture mechanics
NASA Technical Reports Server (NTRS)
Min, J. B.; Bass, J. M.; Spradley, L. W.
1994-01-01
Some recent results obtained using solution-adaptive finite element methods in two-dimensional problems in linear elastic fracture mechanics are presented. The focus is on the basic issue of adaptive finite element methods for validating the new methodology by computing demonstration problems and comparing the stress intensity factors to analytical results.
Fracture mechanics approach to estimate rail wear limits
DOT National Transportation Integrated Search
2009-10-01
This paper describes a systematic methodology to estimate allowable limits for rail head wear in terms of vertical head-height loss, gage-face side wear, and/or the combination of the two. This methodology is based on the principles of engineering fr...
Novel implant for peri-prosthetic proximal tibia fractures.
Tran, Ton; Chen, Bernard K; Wu, Xinhua; Pun, Chung Lun
2018-03-01
Repair of peri-prosthetic proximal tibia fractures is very challenging in patients with a total knee replacement or arthroplasty. The tibial component of the knee implant severely restricts the fixation points of the tibial implant to repair peri-prosthetic fractures. A novel implant has been designed with an extended flange over the anterior of tibial condyle to provide additional points of fixation, overcoming limitations of existing generic locking plates used for proximal tibia fractures. Furthermore, the screws fixed through the extended flange provide additional support to prevent the problem of subsidence of tibial component of knee implant. The design methodology involved extraction of bone data from CT scans into a flexible CAD format, implant design and structural evaluation and optimisation using FEM as well as prototype development and manufacture by selective laser melting 3D printing technology with Ti6Al4 V powder. A prototype tibia implant was developed based on a patient-specific bone structure, which was regenerated from the CT images of patient's tibia. The design is described in detail and being applied to fit up to 80% of patients, for both left and right sides based on the average dimensions and shape of the bone structure from a wide range of CT images. A novel tibial implant has been developed to repair peri-prosthetic proximal tibia fractures which overcomes significant constraints from the tibial component of existing knee implant. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Frómeta, D.; Tedesco, M.; Calvo, J.; Lara, A.; Molas, S.; Casellas, D.
2017-09-01
Lightweight designs and demanding safety requirements in automotive industry are increasingly promoting the use of Advanced High Strength Steel (AHSS) sheets. Such steels present higher strength (above 800 MPa) but lower ductility than conventional steels. Their great properties allow the reduction of the thickness of automobile structural components without compromising the safety, but also introduce new challenges to parts manufacturers. The fabrication of most cold formed components starts from shear cut blanks and, due to the lower ductility of AHSS, edge cracking problems can appear during forming operations, forcing the stop of the production and slowing down the industrial process. Forming Limit Diagrams (FLD) and FEM simulations are very useful tools to predict fracture problems in zones with high localized strain, but they are not able to predict edge cracking. It has been observed that the fracture toughness, measured through the Essential Work of Fracture (EWF) methodology, is a good indicator of the stretch flangeability in AHSS and can help to foresee this type of fractures. In this work, a serial production automotive component has been studied. The component showed cracks in some flanged edges when using a dual phase steel. It is shown that the conventional approach to explain formability, based on tensile tests and FLD, fails in the prediction of edge cracking. A new approach, based on fracture mechanics, help to solve the problem by selecting steel grades with higher fracture toughness, measured by means of EWF. Results confirmed that fracture toughness, in terms of EWF, can be readily used as a material parameter to rationalize cracking related problems and select AHSS with improved edge cracking resistance.
Fracture mechanisms and fracture control in composite structures
NASA Astrophysics Data System (ADS)
Kim, Wone-Chul
Four basic failure modes--delamination, delamination buckling of composite sandwich panels, first-ply failure in cross-ply laminates, and compression failure--are analyzed using linear elastic fracture mechanics (LEFM) and the J-integral method. Structural failures, including those at the micromechanical level, are investigated with the aid of the models developed, and the critical strains for crack propagation for each mode are obtained. In the structural fracture analyses area, the fracture control schemes for delamination in a composite rib stiffener and delamination buckling in composite sandwich panels subjected to in-plane compression are determined. The critical fracture strains were predicted with the aid of LEFM for delamination and the J-integral method for delamination buckling. The use of toughened matrix systems has been recommended for improved damage tolerant design for delamination crack propagation. An experimental study was conducted to determine the onset of delamination buckling in composite sandwich panel containing flaws. The critical fracture loads computed using the proposed theoretical model and a numerical computational scheme closely followed the experimental measurements made on sandwich panel specimens of graphite/epoxy faceskins and aluminum honeycomb core with varying faceskin thicknesses and core sizes. Micromechanical models of fracture in composites are explored to predict transverse cracking of cross-ply laminates and compression fracture of unidirectional composites. A modified shear lag model which takes into account the important role of interlaminar shear zones between the 0 degree and 90 degree piles in cross-ply laminate is proposed and criteria for transverse cracking have been developed. For compressive failure of unidirectional composites, pre-existing defects play an important role. Using anisotropic elasticity, the stress state around a defect under a remotely applied compressive load is obtained. The experimentally observed complex compressive failure modes, such as shear crippling and pure compressive fiber failure of fibers are explained by the predicted stress distributions calculated in this work. These fracture analyses can be damage tolerant design methodology for composite structures. The proposed fracture criteria and the corresponding critical fracture strains provide the designer with quantitative guidelines for safe-life design. These have been incorporated into a fracture control plan for composite structures, which is also described. Currently, fracture control plans do not exist for composite structures; the proposed plan is a first step towards establishing fracture control and damage tolerant design methodology for this important class of materials.
Applicability of Fracture Mechanics Methodology to Cracking and Fracture of Concrete.
1986-02-01
Magazine of Concrete Research, Vol. 24. 1972. pp. * 185-196 - 100.0 Chir R. K. and C. M. Sangha. A Study of the Relations Between Time. Strength. Deformation...R. Clifton and E. Anderson, The Fracture Mechanics of Mortars, Cement and Concrete Researach, Vol. 6, 1976. pp. 535-548 195.0 Higgins , D. D. and J. E...Proceedings of a Conference at University of Sheffield, 1976, Cement and Concrete Association. Wexham Springs, 1976. pp. 283-296 196.0 "-’’ Higgins D. D
Koziol, Mateusz; Figlus, Tomasz
2015-12-14
The work aimed to assess the failure progress in a glass fiber-reinforced polymer laminate with a 3D-woven and (as a comparison) plain-woven reinforcement, during static bending, using acoustic emission signals. The innovative method of the separation of the signal coming from the fiber fracture and the one coming from the matrix fracture with the use of the acoustic event's energy as a criterion was applied. The failure progress during static bending was alternatively analyzed by evaluation of the vibration signal. It gave a possibility to validate the results of the acoustic emission. Acoustic emission, as well as vibration signal analysis proved to be good and effective tools for the registration of failure effects in composite laminates. Vibration analysis is more complicated methodologically, yet it is more precise. The failure progress of the 3D laminate is "safer" and more beneficial than that of the plain-woven laminate. It exhibits less rapid load capacity drops and a higher fiber effort contribution at the moment of the main laminate failure.
NASA Astrophysics Data System (ADS)
Becker, T. H.; Marrow, T. J.; Tait, R. B.
2011-07-01
The crack initiation and propagation characteristics of two medium grained polygranular graphites, nuclear block graphite (NBG10) and Gilsocarbon (GCMB grade) graphite, have been studied using the Double Torsion (DT) technique. The DT technique allows stable crack propagation and easy crack tip observation of such brittle materials. The linear elastic fracture mechanics (LEFM) methodology of the DT technique was adapted for elastic-plastic fracture mechanics (EPFM) in conjunction with a methodology for directly calculating the J-integral from in-plane displacement fields (JMAN) to account for the non-linearity of graphite deformation. The full field surface displacement measurement techniques of electronic speckle pattern interferometry (ESPI) and digital image correlation (DIC) were used to observe and measure crack initiation and propagation. Significant micro-cracking in the fracture process zone (FPZ) was observed as well as crack bridging in the wake of the crack tip. The R-curve behaviour was measured to determine the critical J-integral for crack propagation in both materials. Micro-cracks tended to nucleate at pores, causing deflection of the crack path. Rising R-curve behaviour was observed, which is attributed to the formation of the FPZ, while crack bridging and distributed micro-cracks are responsible for the increase in fracture resistance. Each contributes around 50% of the irreversible energy dissipation in both graphites.
Tracer Methods for Characterizing Fracture Creation in Engineered Geothermal Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rose, Peter; Harris, Joel
2014-05-08
The aim of this proposal is to develop, through novel high-temperature-tracing approaches, three technologies for characterizing fracture creation within Engineered Geothermal Systems (EGS). The objective of a first task is to identify, develop and demonstrate adsorbing tracers for characterizing interwell reservoir-rock surface areas and fracture spacing. The objective of a second task is to develop and demonstrate a methodology for measuring fracture surface areas adjacent to single wells. The objective of a third task is to design, fabricate and test an instrument that makes use of tracers for measuring fluid flow between newly created fractures and wellbores. In one methodmore » of deployment, it will be used to identify qualitatively which fractures were activated during a hydraulic stimulation experiment. In a second method of deployment, it will serve to measure quantitatively the rate of fluid flowing from one or more activated fracture during a production test following a hydraulic stimulation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dickson, T.L.
1993-01-01
This report discusses probabilistic fracture mechanics (PFM) analysis which is a major element of the comprehensive probabilistic methodology endorsed by the NRC for evaluation of the integrity of Pressurized Water Reactor (PWR) pressure vessels subjected to pressurized-thermal-shock (PTS) transients. It is anticipated that there will be an increasing need for an improved and validated PTS PFM code which is accepted by the NRC and utilities, as more plants approach the PTS screening criteria and are required to perform plant-specific analyses. The NRC funded Heavy Section Steel Technology (HSST) Program at Oak Ridge National Laboratories is currently developing the FAVOR (Fracturemore » Analysis of Vessels: Oak Ridge) PTS PFM code, which is intended to meet this need. The FAVOR code incorporates the most important features of both OCA-P and VISA-II and contains some new capabilities such as PFM global modeling methodology, the capability to approximate the effects of thermal streaming on circumferential flaws located inside a plume region created by fluid and thermal stratification, a library of stress intensity factor influence coefficients, generated by the NQA-1 certified ABAQUS computer code, for an adequate range of two and three dimensional inside surface flaws, the flexibility to generate a variety of output reports, and user friendliness.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dickson, T.L.
1993-04-01
This report discusses probabilistic fracture mechanics (PFM) analysis which is a major element of the comprehensive probabilistic methodology endorsed by the NRC for evaluation of the integrity of Pressurized Water Reactor (PWR) pressure vessels subjected to pressurized-thermal-shock (PTS) transients. It is anticipated that there will be an increasing need for an improved and validated PTS PFM code which is accepted by the NRC and utilities, as more plants approach the PTS screening criteria and are required to perform plant-specific analyses. The NRC funded Heavy Section Steel Technology (HSST) Program at Oak Ridge National Laboratories is currently developing the FAVOR (Fracturemore » Analysis of Vessels: Oak Ridge) PTS PFM code, which is intended to meet this need. The FAVOR code incorporates the most important features of both OCA-P and VISA-II and contains some new capabilities such as PFM global modeling methodology, the capability to approximate the effects of thermal streaming on circumferential flaws located inside a plume region created by fluid and thermal stratification, a library of stress intensity factor influence coefficients, generated by the NQA-1 certified ABAQUS computer code, for an adequate range of two and three dimensional inside surface flaws, the flexibility to generate a variety of output reports, and user friendliness.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denys, R.M.; Martin, J.T.
1995-02-01
Modern pipeline standards contain alternative methodologies for determining the acceptable defect size in pipeline welds. Through the use of fracture mechanics and plastic collapse assessments, the mechanical and toughness properties of the defective region relate to the applied stress at the defect and defect geometry. The assumptions made in these methodologies are not always representative of the situation accurring in pipeline girth welds. To determine the effect of the various input parameters on acceptable defect size, The Welding Supervisory Committee of the American Gas Association commenced in 1990, in collaboration with the Laboratorium Soete of the University Gent, Belgium, amore » series of small scale (Charpy V impact and CTOD) and large scale (fatigue pre-cracked wide plate) tests. All the experimental investigations were intended to evaluate the effects of weld metal mis-match, temperature, defect size, defect type, defect interaction, pipe wall thickness and yield to tensile ratio on girth weld fracture behaviour. The aim of this report was to determine how weld metal yield strength overmatching or undermatching influences girth weld defect size prediction. A further analysis was conducted using the newly revised PD6493:1991 to provide a critical analysis with the objective of explaining the behaviour of the wide plate tests.« less
Spatial analysis of fractured rock around fault zones based on photogrammetric data
NASA Astrophysics Data System (ADS)
Deckert, H.; Gessner, K.; Drews, M.; Wellmann, J. F.
2009-04-01
The location of hydrocarbon, geothermal or hydrothermal fluids is often bound to fault zones. The fracture systems along these faults play an important role in providing pathways to fluids in the Earth's crust. Thus an evaluation of the change in permeability due to rock deformation is of particular interest in these zones. Recent advances in digital imaging using modern techniques like photogrammetry provide new opportunities to view, analyze and present high resolution geological data in three dimensions. Our method is an extension of the one-dimensional scan-line approach to quantify discontinuities in rock outcrops. It has the advantage to take into account a larger amount of spatial data than conventional manual measurement methods. It enables to recover the entity of spatial information of a 3D fracture pattern, i.e. position, orientation, extent and frequency of fractures. We present examples of outcrop scale datasets in granitic and sedimentary rocks and analyse changes in fracture patterns across fault zones from the host rock to the damage zone. We also present a method to generate discontinuity density maps from 3D surface models generated by digital photogrammetry methods. This methodology has potential for application in rock mass characterization, structural and tectonic studies, the formation of hydrothermal mineral deposits, oil and gas migration, and hydrogeology. Our analysis methods represent important steps towards developing a toolkit to automatically detect and interpret spatial rock characteristics, by taking advantage of the large amount of data that can be collected by photogrammetric methods. This acquisition of parameters defining a 3D fracture pattern allows the creation of synthetic fracture networks following these constraints. The mathematical description of such a synethtical network can be implemented into numerical simulation tools for modeling fluid flow in fracture media. We give an outline of current and future applications of photogrammetry in rock mechanics, petroleum geology, hydrogeology, and structural geology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobi, Rober
2007-03-31
This Topical Report (#6 of 9) consists of the figures 3.6-13 to (and including) 3.6-18 (and appropriate figure captions) that accompany the Final Technical Progress Report entitled: "Fracture-Controlled Sweet Spots in the Northern Appalachian Basin” for DOE/NETL Award DE-AC26-00NT40698.
Low evaluation rate for osteoporosis among patients presenting with a rib fracture.
Kim, Whang; Gong, Hyun Sik; Lee, Seung Hoo; Park, Jin Woo; Kim, Kahyun; Baek, Goo Hyun
2017-12-01
This study in a regional hospital setting found a low evaluation rate for osteoporosis among patients presenting with a rib fracture. Increased emphasis or education for osteoporosis evaluation may be necessary in case of rib fractures. Rib fractures from a low-energy trauma are common in the elderly, and a history of rib fracture has been reported to increase the risk for a subsequent osteoporotic fracture. The purpose of this study was to evaluate how many of the patients presenting with an isolated rib fracture were being evaluated for osteoporosis and the risk for a subsequent fracture. We retrospectively reviewed all patients aged 50 years or older who were diagnosed with a rib fracture between January 2011 and April 2016 at a regional tertiary care university hospital near Seoul, South Korea. We excluded those who had been treated for osteoporosis or those with other concomitant fractures or fractures from a motor vehicle accident or cancer. We evaluated the frequency of dual energy X-ray absorptiometry (DXA) scan examinations in these patients. There were 231 patients with isolated rib fractures (132 men and 99 women). The mean age was 65 years. Rib fractures were most commonly diagnosed at the emergency department and most of the patients were referred to the department of thoracic surgery for follow-up evaluations. Of these 231 patients, 29 (12%) had DXA examinations after the injury, and only 9 (4%) of them did so within 6 months. Physicians specializing in orthopedic surgery, family medicine, internal medicine, rehabilitation medicine, and emergency medicine were ordering the examination. This study in a regional hospital setting found a low evaluation rate for osteoporosis among patients presenting with a rib fracture. This study suggests that increased emphasis or education for osteoporosis evaluation may be necessary for physicians who are often referred to for care of rib fractures.
Thomas, Thaddeus P.; Anderson, Donald D.; Willis, Andrew R.; Liu, Pengcheng; Frank, Matthew C.; Marsh, J. Lawrence; Brown, Thomas D.
2011-01-01
Reconstructing highly comminuted articular fractures poses a difficult surgical challenge, akin to solving a complicated three-dimensional (3D) puzzle. Pre-operative planning using CT is critically important, given the desirability of less invasive surgical approaches. The goal of this work is to advance 3D puzzle solving methods toward use as a pre-operative tool for reconstructing these complex fractures. Methodology for generating typical fragmentation/dispersal patterns was developed. Five identical replicas of human distal tibia anatomy, were machined from blocks of high-density polyetherurethane foam (bone fragmentation surrogate), and were fractured using an instrumented drop tower. Pre- and post-fracture geometries were obtained using laser scans and CT. A semi-automatic virtual reconstruction computer program aligned fragment native (non-fracture) surfaces to a pre-fracture template. The tibias were precisely reconstructed with alignment accuracies ranging from 0.03-0.4mm. This novel technology has potential to significantly enhance surgical techniques for reconstructing comminuted intra-articular fractures, as illustrated for a representative clinical case. PMID:20924863
2013-01-01
Background In Germany, hospitals can deliver data from patients with pelvic fractures selectively or twofold to two different trauma registries, i.e. the German Pelvic Injury Register (PIR) and the TraumaRegister DGU® (TR). Both registers are anonymous and differ in composition and content. We describe the methodological approach of linking these registries and reidentifying twofold documented patients. The aim of the approach is to create an intersection set that benefit from complementary data of each registry, respectively. Furthermore, the concordance of data entry of some clinical variables entered in both registries was evaluated. Methods PIR (4,323 patients) and TR (34,134 patients) data from 2004-2009 were linked together by using a specific match code including code of the trauma department, dates of admission and discharge, patient’s age, and sex. Data entry concordance was evaluated using haemoglobin and blood pressure levels at emergency department arrival, Injury Severity Score (ISS), and mortality. Results Altogether, 420 patients were identified as documented in both data sets. Linkage rates for the intersection set were 15.7% for PIR and 44.4% for TR. Initial fluid management for different Tile/OTA types of pelvic ring fractures and the patient’s posttraumatic course, including intensive care unit data, were now available for the PIR population. TR is benefiting from clinical use of the Tile/OTA classification and from correlation with the distinct entity “complex pelvic injury.” Data entry verification showed high concordance for the ISS and mortality, whereas initial haemoglobin and blood pressure data showed significant differences, reflecting inconsistency at the data entry level. Conclusions Individually, the PIR and the TR reflect a valid source for documenting injured patients, although the data reflect the emphasis of the particular registry. Linking the two registries enabled new insights into care of multiple-trauma patients with pelvic fractures even when linkage rates were poor. Future considerations and development of the registries should be done in close bilateral consultation with the aim of benefiting from complementary data and improving data concordance. It is also conceivable to integrate individual modules, e.g. a pelvic fracture module, into the TR likewise a modular system in the future. PMID:23496832
Evaluation for Occult Fractures in Injured Children
French, Benjamin; Song, Lihai; Feudtner, Chris
2015-01-01
OBJECTIVES: To examine variation across US hospitals in evaluation for occult fractures in (1) children <2 years old diagnosed with physical abuse and (2) infants <1 year old with injuries associated with a high likelihood of abuse and to identify factors associated with such variation. METHODS: We performed a retrospective study in children <2 years old with a diagnosis of physical abuse and in infants <1 year old with non-motor vehicle crash–related traumatic brain injury or femur fractures discharged from 366 hospitals in the Premier database from 2009 to 2013. We examined across-hospital variation and identified child- and hospital-level factors associated with evaluation for occult fractures. RESULTS: Evaluations for occult fractures were performed in 48% of the 2502 children with an abuse diagnosis, in 51% of the 1574 infants with traumatic brain injury, and in 53% of the 859 infants with femur fractures. Hospitals varied substantially with regard to their rates of evaluation for occult fractures in all 3 groups. Occult fracture evaluations were more likely to be performed at teaching hospitals than at nonteaching hospitals (all P < .001). The hospital-level annual volume of young, injured children was associated with the probability of occult fracture evaluation, such that hospitals treating more young, injured patients were more likely to evaluate for occult fractures (all P < .001). CONCLUSIONS: Substantial variation in evaluation for occult fractures among young children with a diagnosis of abuse or injuries associated with a high likelihood of abuse highlights opportunities for quality improvement in this vulnerable population. PMID:26169425
Economic evaluation of bone stimulation modalities: A systematic review of the literature.
Button, Melissa L; Sprague, Sheila; Gharsaa, Osama; Latouche, Sandra; Bhandari, Mohit
2009-04-01
Various bone stimulation modalities are commonly used in treatment of fresh fractures and nonunions; however, the effectiveness and efficiency of these modalities remain uncertain. A systematic review of trials evaluating the clinical and economical outcomes of ultrasounds, electrical stimulation, and extracorporeal sound waves on fracture healing was conducted. We searched four electronic databases for economic evaluations that assessed bone stimulation modalities using ultrasound therapy, electrical stimulation, or extracorporeal shock waves. In addition, we searched the references and related articles of eligible studies, and a content expert was contacted. Information on the clinical and economical outcomes of patients was independently extracted by reviewers. Fourteen studies met the inclusion criteria; therefore, very limited research was found on the cost associated with treatments and the corresponding outcomes. The data available focus primarily on the efficacy of newly introduced treatment methods for bone growth, but failed to incorporate the costs of implementing such treatments. One economic analysis was identified that assessed different treatment paths using ultrasound. A total cost savings of 24-40% per patient occurred when ultrasound was used for fresh fractures and nonunions (grade C recommendation). The results suggest that the ultrasound is a viable alternative for bone stimulation; however, the impacts of the other modalities are left unknown due to the lack of research available. Methodological limitations leave the overall economic and clinical impact of these modalities uncertain. Large, prospective, randomized controlled trials that include cost-effectiveness analyses are needed to further define the clinical effectiveness and financial burden associated with bone stimulation modalities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruno, Michael; Ramos, Juan; Lao, Kang
Horizontal wells combined with multi-stage hydraulic fracturing have been applied to significantly increase production from low permeability formations, contributing to expanded total US production of oil and gas. Not all applications are successful, however. Field observations indicate that poorly designed or placed fracture stages in horizontal wells can result in significant well casing deformation and damage. In some instances, early fracture stages have deformed the casing enough so that it is not possible to drill out plugs in order to complete subsequent fracture stages. Improved fracture characterization techniques are required to identify potential problems early in the development of themore » field. Over the past decade, several new technologies have been presented as alternatives to characterize the fracture geometry for unconventional reservoirs. Monitoring dynamic casing strain and deformation during hydraulic fracturing represents one of these new techniques. The objective of this research is to evaluate dynamic and static strains imposed on a well casing by single and multiple stage fractures, and to use that information in combination with numerical inversion techniques to estimate fracture characteristics such as length, orientation and post treatment opening. GeoMechanics Technologies, working in cooperation with the Department of Energy, Small Business Innovation Research through DOE SBIR Grant No: DE-SC-0017746, is conducting a research project to complete an advanced analysis of dynamic and static casing strain monitoring to characterize the orientation and dimensions of hydraulic fractures. This report describes our literature review and technical approach. The following conclusions summarize our review and simulation results to date: A literature review was performed related to the fundamental theoretical and analytical developments of stress and strain imposed by hydraulic fracturing along casing completions and deformation monitoring techniques. Analytical solutions have been developed to understand the mechanisms responsible for casing deformation induced by hydraulic fracturing operations. After reviewing a range of casing deformation techniques, including fiber optic sensors, borehole ultrasonic tools and electromagnetic tools, we can state that challenges in deployment, data acquisition and interpretation must still be overcome to ensure successful application of strain measurement and inversion techniques to characterize hydraulic fractures in the field. Numerical models were developed to analyze induced strain along casing, cement and formation interfaces. The location of the monitoring sensor around the completion, mechanical properties of the cement and its condition in the annular space can impact the strain measurement. Field data from fiber optic sensors were evaluated to compare against numerical models. A reasonable match for the fracture height characterization was obtained. Discrepancies in the strain magnitude between the field data and the numerical model was observed and can be caused by temperature effects, the cement condition in the well and the perturbation at the surface during injection. To avoid damage in the fiber optic cable during the perforation (e.g. when setting up multi stage HF scenarios), oriented perforation technologies are suggested. This issue was evidenced in the analyzed field data, where it was not possible to obtain strain measurement below the top of the perforation. This presented a limitation to characterize the entire fracture geometry. The comparison results from numerical modeling and field data for fracture characterization shows that the proposed methodology should be validated with alternative field demonstration techniques using measurements in an offset observation well to monitor and measure the induced strain. We propose to expand on this research in Phase II with a further study of multi-fracture characterization and field demonstration for horizontal wells.« less
NASA Technical Reports Server (NTRS)
Crawford, D. A.; Barnouin-Jha, O. S.; Cintala, M. J.
2003-01-01
The propagation of shock waves through target materials is strongly influenced by the presence of small-scale structure, fractures, physical and chemical heterogeneities. Pre-existing fractures often create craters that appear square in outline (e.g. Meteor Crater). Reverberations behind the shock from the presence of physical heterogeneity have been proposed as a mechanism for transient weakening of target materials. Pre-existing fractures can also affect melt generation. In this study, we are attempting to bridge the gap in numerical modeling between the micro-scale and the continuum, the so-called meso-scale. To accomplish this, we are developing a methodology to be used in the shock physics hydrocode (CTH) using Monte-Carlo-type methods to investigate the shock properties of heterogeneous materials. By comparing the results of numerical experiments at the micro-scale with experimental results and by using statistical techniques to evaluate the performance of simple constitutive models, we hope to embed the effect of physical heterogeneity into the field variables (pressure, stress, density, velocity) allowing us to directly imprint the effects of micro-scale heterogeneity at the continuum level without incurring high computational cost.
Evaluation for Occult Fractures in Injured Children.
Wood, Joanne N; French, Benjamin; Song, Lihai; Feudtner, Chris
2015-08-01
To examine variation across US hospitals in evaluation for occult fractures in (1) children <2 years old diagnosed with physical abuse and (2) infants <1 year old with injuries associated with a high likelihood of abuse and to identify factors associated with such variation. We performed a retrospective study in children <2 years old with a diagnosis of physical abuse and in infants <1 year old with non-motor vehicle crash-related traumatic brain injury or femur fractures discharged from 366 hospitals in the Premier database from 2009 to 2013. We examined across-hospital variation and identified child- and hospital-level factors associated with evaluation for occult fractures. Evaluations for occult fractures were performed in 48% of the 2502 children with an abuse diagnosis, in 51% of the 1574 infants with traumatic brain injury, and in 53% of the 859 infants with femur fractures. Hospitals varied substantially with regard to their rates of evaluation for occult fractures in all 3 groups. Occult fracture evaluations were more likely to be performed at teaching hospitals than at nonteaching hospitals (all P < .001). The hospital-level annual volume of young, injured children was associated with the probability of occult fracture evaluation, such that hospitals treating more young, injured patients were more likely to evaluate for occult fractures (all P < .001). Substantial variation in evaluation for occult fractures among young children with a diagnosis of abuse or injuries associated with a high likelihood of abuse highlights opportunities for quality improvement in this vulnerable population. Copyright © 2015 by the American Academy of Pediatrics.
A Hierarchical Approach to Fracture Mechanics
NASA Technical Reports Server (NTRS)
Saether, Erik; Taasan, Shlomo
2004-01-01
Recent research conducted under NASA LaRC's Creativity and Innovation Program has led to the development of an initial approach for a hierarchical fracture mechanics. This methodology unites failure mechanisms occurring at different length scales and provides a framework for a physics-based theory of fracture. At the nanoscale, parametric molecular dynamic simulations are used to compute the energy associated with atomic level failure mechanisms. This information is used in a mesoscale percolation model of defect coalescence to obtain statistics of fracture paths and energies through Monte Carlo simulations. The mathematical structure of predicted crack paths is described using concepts of fractal geometry. The non-integer fractal dimension relates geometric and energy measures between meso- and macroscales. For illustration, a fractal-based continuum strain energy release rate is derived for inter- and transgranular fracture in polycrystalline metals.
Fracture network created by 3D printer and its validation using CT images
NASA Astrophysics Data System (ADS)
Suzuki, A.; Watanabe, N.; Li, K.; Horne, R. N.
2017-12-01
Understanding flow mechanisms in fractured media is essential for geoscientific research and geological development industries. This study used 3D printed fracture networks in order to control the properties of fracture distributions inside the sample. The accuracy and appropriateness of creating samples by the 3D printer was investigated by using a X-ray CT scanner. The CT scan images suggest that the 3D printer is able to reproduce complex three-dimensional spatial distributions of fracture networks. Use of hexane after printing was found to be an effective way to remove wax for the post-treatment. Local permeability was obtained by the cubic law and used to calculate the global mean. The experimental value of the permeability was between the arithmetic and geometric means of the numerical results, which is consistent with conventional studies. This methodology based on 3D printed fracture networks can help validate existing flow modeling and numerical methods.
NASA Astrophysics Data System (ADS)
Sanai, L.; Chenini, I.; Ben Mammou, A.; Mercier, E.
2015-01-01
The spatial distribution of fracturing in hard rocks is extremely related to the structural profile and traduces the kinematic evolution. The quantitative and qualitative analysis of fracturing combined to GIS techniques seem to be primordial and efficient in geometric characterization of lineament's network and to reconstruct the relative timing and interaction of the folding and fracturing histories. Also a detailed study of the area geology, lithology, tectonics, is primordial for any hydrogeological study. For that purpose we used a structural approach that consist in comparison between fracture sets before and after unfolding completed by aerospace data and DEM generated from topographic map. The above methodology applied in this study carried out in J. Rebia located in Northwestern of Tunisia demonstrated the heterogeneity of fracturing network and his relation with the fold growth throught time and his importance on groundwater flow.
Does colostomy prevent infection in open blunt pelvic fractures? A systematic review.
Lunsjo, Karl; Abu-Zidan, Fikri M
2006-05-01
Open pelvic fracture is a rare injury. Our aim in this study is to systematically review the literature to define when diverting colostomy is indicated to protect the patient from infection in open blunt pelvic fractures. Papers studying open pelvic fractures and the use of colostomy were retrieved through MEDLINE and PUBMED. The papers were critically appraised regarding their methodology and conclusions. Relevant information was combined. The level of evidence for the use of colostomy in open pelvic fractures is very low. All reports are retrospective and no statistical methods have been used to support conclusions drawn. We found no difference in the overall infectious complication rate between the colostomy and noncolostomy groups. There is an assumption that patients with perineal wounds would benefit from colostomy; however, rectal involvement in these injuries was not detailed. The role of colostomy in open blunt pelvic fractures is unresolved and randomized multicenter trials are needed.
Graph Representations of Flow and Transport in Fracture Networks using Machine Learning
NASA Astrophysics Data System (ADS)
Srinivasan, G.; Viswanathan, H. S.; Karra, S.; O'Malley, D.; Godinez, H. C.; Hagberg, A.; Osthus, D.; Mohd-Yusof, J.
2017-12-01
Flow and transport of fluids through fractured systems is governed by the properties and interactions at the micro-scale. Retaining information about the micro-structure such as fracture length, orientation, aperture and connectivity in mesh-based computational models results in solving for millions to billions of degrees of freedom and quickly renders the problem computationally intractable. Our approach depicts fracture networks graphically, by mapping fractures to nodes and intersections to edges, thereby greatly reducing computational burden. Additionally, we use machine learning techniques to build simulators on the graph representation, trained on data from the mesh-based high fidelity simulations to speed up computation by orders of magnitude. We demonstrate our methodology on ensembles of discrete fracture networks, dividing up the data into training and validation sets. Our machine learned graph-based solvers result in over 3 orders of magnitude speedup without any significant sacrifice in accuracy.
Designing for fiber composite structural durability in hygrothermomechanical environment
NASA Technical Reports Server (NTRS)
Chamis, C. C.
1985-01-01
A methodology is described which can be used to design/analyze fiber composite structures subjected to complex hygrothermomechanical environments. This methodology includes composite mechanics and advanced structural analysis methods (finite element). Select examples are described to illustrate the application of the available methodology. The examples include: (1) composite progressive fracture; (2) composite design for high cycle fatigue combined with hot-wet conditions; and (3) general laminate design.
Intrinsic Nano-Ductility of Glasses: The Critical Role of Composition
NASA Astrophysics Data System (ADS)
Wang, Bu; Yu, Yingtian; Lee, Young; Bauchy, Mathieu
2015-02-01
Understanding, predicting and eventually improving the resistance to fracture for silicate materials is of primary importance to design tougher new glasses suitable for advanced applications. However, the fracture mechanism at the atomic level in amorphous silicate materials is still a topic of debate. In particular, there are some controversies about the existence of ductility at the nanoscale during crack propagation. Here, we present simulations of fracture of three archetypical silicate glasses, using molecular dynamics. The simulations clearly show that, depending on their composition, silicate glasses can exhibit different degrees of ductility at the nanoscale. Additionally, we show that the methodology used in the present work can provide realistic predictions of fracture energy and toughness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lorenz, J.C.; Warpinski, N.R.; Teufel, L.W.
The objectives of this program are (1) to use and refine a basinal analysis methodology for natural fracture exploration and exploitation, and (2) to determine the important characteritics of natural fracture systems for their use in completion, stimulation and production operations. Continuing work on this project has demonstrated that natural fracture systems and their flow characteristics can be defined by a thorough study of well and outcrop data within a basin. Outcrop data provides key information on fracture sets and lithologic controls, but some fracture sets found in the outcrop may not exist at depth. Well log and core datamore » provide the important reservoir information to obtain the correct synthesis of the fracture data. In situ stress information is then linked with the natural fracture studies to define permeability anisotropy and stimulation effectiveness. All of these elements require field data, and in the cases of logs, core, and well test data, the cooperation of an operator.« less
Geographic and ethnic disparities in osteoporotic fractures.
Cauley, Jane A; Chalhoub, Didier; Kassem, Ahmed M; Fuleihan, Ghada El-Hajj
2014-06-01
Osteoporotic fractures are a major worldwide epidemic. Here, we review global variability, ethnic differences and secular changes in osteoporotic fractures. Worldwide, age-standardized incidence rates of hip fracture vary >200-fold in women and >140-fold in men when comparing the country in which incidence rates are the highest with that in which they are the lowest. Median age-standardized rates are highest in North America and Europe, followed by Asia, Middle East, Oceania, Latin America and Africa. Globally, rates of hip fracture are greater in women than in men, with an average ratio of ∼2:1. The incidence of radiographic vertebral fractures is much higher than that of hip fractures, whereas the incidence rates of clinical vertebral fractures mirror hip fracture rates in most countries. Methodological challenges of defining and ascertaining vertebral fractures limit the interpretation of these data. Secular declines in hip fracture rates have been reported in populations from North America, Europe and Oceania. These declines are especially notable in women, suggesting that reproductive factors might contribute to this reduction. By contrast, hip fracture rates are increasing in parts of Asia and Latin America. Global indicators of health, education and socioeconomic status are positively correlated with fracture rates suggesting that lifestyles in developed countries might contribute to hip fracture. Improvements in fracture assessment, in particular for nonhip fractures, and identification of factors that contribute to this variability might substantially influence our understanding of osteoporotic fracture aetiology and provide new avenues for prevention.
Initial Probabilistic Evaluation of Reactor Pressure Vessel Fracture with Grizzly and Raven
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spencer, Benjamin; Hoffman, William; Sen, Sonat
2015-10-01
The Grizzly code is being developed with the goal of creating a general tool that can be applied to study a variety of degradation mechanisms in nuclear power plant components. The first application of Grizzly has been to study fracture in embrittled reactor pressure vessels (RPVs). Grizzly can be used to model the thermal/mechanical response of an RPV under transient conditions that would be observed in a pressurized thermal shock (PTS) scenario. The global response of the vessel provides boundary conditions for local models of the material in the vicinity of a flaw. Fracture domain integrals are computed to obtainmore » stress intensity factors, which can in turn be used to assess whether a fracture would initiate at a pre-existing flaw. These capabilities have been demonstrated previously. A typical RPV is likely to contain a large population of pre-existing flaws introduced during the manufacturing process. This flaw population is characterized stastistically through probability density functions of the flaw distributions. The use of probabilistic techniques is necessary to assess the likelihood of crack initiation during a transient event. This report documents initial work to perform probabilistic analysis of RPV fracture during a PTS event using a combination of the RAVEN risk analysis code and Grizzly. This work is limited in scope, considering only a single flaw with deterministic geometry, but with uncertainty introduced in the parameters that influence fracture toughness. These results are benchmarked against equivalent models run in the FAVOR code. When fully developed, the RAVEN/Grizzly methodology for modeling probabilistic fracture in RPVs will provide a general capability that can be used to consider a wider variety of vessel and flaw conditions that are difficult to consider with current tools. In addition, this will provide access to advanced probabilistic techniques provided by RAVEN, including adaptive sampling and parallelism, which can dramatically decrease run times.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ball, J.B. Jr.
Direct oblique sagittal CT was used to evaluate trauma to 77 orbits. Sixty-seven orbital wall fractures with intact orbital rims (36 floor, 22 medial wall, nine roof) were identified in 47 orbits. Since persistent diplopia and/or enophthalmos may warrant surgical repair of orbital floor fractures, optimal imaging should include an evaluation of extraocular muscle status, the nature and amount of displaced orbital contents, and an accurate definition of fracture margins. For orbital floor fractures, a combination of the direct oblique sagittal and direct coronal projections optimally displayed all fracture margins, the fracture's relationship to the inferior orbital rim and medialmore » orbital wall, and the amount of displacement into the maxillary sinus. Inferior rectus muscle status with 36 floor fractures was best seen on the direct oblique sagittal projection in 30 fractures (83.3%) and was equally well seen on sagittal and coronal projections in two fractures (5.5%). Floor fractures were missed on 100% of axial, 5.5% of sagittal, and 0% of coronal projections. Since the direct oblique sagittal projection complements the direct coronal projection in evaluating orbital floor fractures, it should not be performed alone. A technical approach to the CT evaluation or orbital wall fractures is presented.« less
Damage tolerance and arrest characteristics of pressurized graphite/epoxy tape cylinders
NASA Technical Reports Server (NTRS)
Ranniger, Claudia U.; Lagace, Paul A.; Graves, Michael J.
1993-01-01
An investigation of the damage tolerance and damage arrest characteristics of internally-pressurized graphite/epoxy tape cylinders with axial notches was conducted. An existing failure prediction methodology, developed and verified for quasi-isotropic graphite/epoxy fabric cylinders, was investigated for applicability to general tape layups. In addition, the effect of external circumferential stiffening bands on the direction of fracture path propagation and possible damage arrest was examined. Quasi-isotropic (90/0/plus or minus 45)s and structurally anisotropic (plus or minus 45/0)s and (plus or minus 45/90)s coupons and cylinders were constructed from AS4/3501-6 graphite/epoxy tape. Notched and unnotched coupons were tested in tension and the data correlated using the equation of Mar and Lin. Cylinders with through-thickness axial slits were pressurized to failure achieving a far-field two-to-one biaxial stress state. Experimental failure pressures of the (90/0/plus or minus 45)s cylinders agreed with predicted values for all cases but the specimen with the smallest slit. However, the failure pressures of the structurally anisotropic cylinders, (plus or minus 45/0)s and (plus or minus 45/90)s, were above the values predicted utilizing the predictive methodology in all cases. Possible factors neglected by the predictive methodology include structural coupling in the laminates and axial loading of the cylindrical specimens. Furthermore, applicability of the predictive methodology depends on the similarity of initial fracture modes in the coupon specimens and the cylinder specimens of the same laminate type. The existence of splitting which may be exacerbated by the axial loading in the cylinders, shows that this condition is not always met. The circumferential stiffeners were generally able to redirect fracture propagation from longitudinal to circumferential. A quantitative assessment for stiffener effectiveness in containing the fracture, based on cylinder radius, slit size, and bending stiffnesses of the laminates, is proposed.
Functional outcomes of conservatively treated clavicle fractures
Bajuri, Mohd Yazid; Maidin, S; Rauf, A; Baharuddin, M; Harjeet, S
2011-01-01
OBJECTIVE: The main aim of the study was to analyze the outcomes of clavicle fractures in adults treated non-surgically and to evaluate the clinical effects of displacement, fracture patterns, fracture location, fracture comminution, shortening and fracture union on shoulder function. METHODS: Seventy clavicle fractures were non-surgically treated in the Orthopedics Department at the Tuanku Ja'afar General Hospital, a tertiary care hospital in Seremban, Malaysia, an average of six months after injury. The clavicle fractures were treated conservatively with an arm sling and a figure-eight splint for three weeks. No attempt was made to reduce displaced fractures, and the patients were allowed immediate free-shoulder mobilization, as tolerated. They were prospectively evaluated clinically and radiographically. Shoulder function was evaluated using the Constant scoring technique. RESULTS: There were statistically significant functional outcome impairments in non-surgically treated clavicle fractures that correlated with the fracture type (comminution), the fracture displacement (21 mm or more), shortening (15 mm or more) and the fracture union (malunion). CONCLUSION: This article reveals the need for surgical intervention to treat clavicle fractures and improve shoulder functional outcomes. PMID:21655759
Quality indicators for hip fracture patients: a scoping review protocol
Pitzul, Kristen B; Munce, Sarah E P; Perrier, Laure; Beaupre, Lauren; Morin, Suzanne N; McGlasson, Rhona; Jaglal, Susan B
2014-01-01
Introduction Hip fractures are a significant cause of morbidity and mortality and care of hip fracture patients places a heavy burden on healthcare systems due to prolonged recovery time. Measuring quality of care delivered to hip fracture patients is important to help target efforts to improve care for patients and efficiency of the health system. The purpose of this study is to synthesise the evidence surrounding quality of care indicators for patients who have sustained a hip fracture. Using a scoping review methodology, the research question that will be addressed is: “What patient, institutional, and system-level indicators are currently in use or proposed for measuring quality of care across the continuum for individuals following a hip fracture?”. Methods and analysis We will employ the methodological frameworks used by Arksey and O'Malley and Levac et al. The synthesis will be limited to quality of care indicators for individuals who suffered low trauma hip fracture. All English peer-reviewed studies published from the year 2000-most recent will be included. Literature search strategies will be developed using medical subject headings and text words related to hip fracture quality indicators and the search will be peer-reviewed. Numerous electronic databases will be searched. Two reviewers will independently screen titles and abstracts for inclusion, followed by screening of the full text of potentially relevant articles to determine final inclusion. Abstracted data will include study characteristics and indicator definitions. Dissemination To improve quality of care for patients and create a more efficient healthcare system, mechanisms for the measurement of quality of care are required. The implementation of quality of care indicators enables stakeholders to target areas for improvement in service delivery. Knowledge translation activities will occur throughout the review with dissemination of the project goals and findings to local, national, and international stakeholders. PMID:25335964
Quality indicators for hip fracture patients: a scoping review protocol.
Pitzul, Kristen B; Munce, Sarah E P; Perrier, Laure; Beaupre, Lauren; Morin, Suzanne N; McGlasson, Rhona; Jaglal, Susan B
2014-10-21
Hip fractures are a significant cause of morbidity and mortality and care of hip fracture patients places a heavy burden on healthcare systems due to prolonged recovery time. Measuring quality of care delivered to hip fracture patients is important to help target efforts to improve care for patients and efficiency of the health system. The purpose of this study is to synthesise the evidence surrounding quality of care indicators for patients who have sustained a hip fracture. Using a scoping review methodology, the research question that will be addressed is: "What patient, institutional, and system-level indicators are currently in use or proposed for measuring quality of care across the continuum for individuals following a hip fracture?". We will employ the methodological frameworks used by Arksey and O'Malley and Levac et al. The synthesis will be limited to quality of care indicators for individuals who suffered low trauma hip fracture. All English peer-reviewed studies published from the year 2000-most recent will be included. Literature search strategies will be developed using medical subject headings and text words related to hip fracture quality indicators and the search will be peer-reviewed. Numerous electronic databases will be searched. Two reviewers will independently screen titles and abstracts for inclusion, followed by screening of the full text of potentially relevant articles to determine final inclusion. Abstracted data will include study characteristics and indicator definitions. To improve quality of care for patients and create a more efficient healthcare system, mechanisms for the measurement of quality of care are required. The implementation of quality of care indicators enables stakeholders to target areas for improvement in service delivery. Knowledge translation activities will occur throughout the review with dissemination of the project goals and findings to local, national, and international stakeholders. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Platelet-rich plasma for long bone healing
Lenza, Mário; Ferraz, Silvia de Barros; Viola, Dan Carai Maia; dos Santos, Oscar Fernando Pavão; Cendoroglo, Miguel; Ferretti, Mario
2013-01-01
ABSTRACT Objective: To evaluate effectiveness of the use of platelet-rich plasma as coadjuvant for union of long bones. Methods: The search strategy included the Cochrane Library (via Central) and MEDLINE (via PubMed). There were no limits as to language or publication media. The latest search strategy was conducted in December 2011. It included randomized clinical trials that evaluated the use of platelet-rich plasma as coadjuvant medication to accelerate union of long bones (acute fractures, pseudoarthrosis and bone defects). The outcomes of interest for this review include bone regeneration, adverse events, costs, pain, and quality of life. The authors selected eligible studies, evaluated the methodological quality, and extracted the data. It was not possible to perform quantitative analysis of the grouped studies (meta-analyses). Results: Two randomized prospective clinical trials were included, with a total of 148 participants. One of them compared recombinant human morphogenic bone protein-7 versus platelet-rich plasma for the treatment of pseudoarthrosis; the other evaluated the effects of three coadjuvant treatments for union of valgising tibial osteotomies (platelet-rich plasma, platelet-rich plasma plus bone marrow stromal cells, and no coadjuvant treatment). Both had low statistical power and moderate to high risk of bias. Conclusion: There was no conclusive evidence that sustained the use of platelet-rich plasma as a coadjuvant to aid bone regeneration of fractures, pseudoarthrosis, or bone defects. PMID:23579757
Ceramic Technology Project semiannual progress report, October 1992--March 1993
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, D.R.
1993-09-01
This project was developed to meet the ceramic technology requirements of the OTS`s automotive technology programs. Although progress has been made in developing reliable structural ceramics, further work is needed to reduce cost. The work described in this report is organized according to the following work breakdown structure project elements: Materials and processing (monolithics [Si nitride, carbide], ceramic composites, thermal and wear coatings, joining, cost effective ceramic machining), materials design methodology (contact interfaces, new concepts), data base and life prediction (structural qualification, time-dependent behavior, environmental effects, fracture mechanics, nondestructive evaluation development), and technology transfer.
Outcome of limb fracture repair in rabbits: 139 cases (2007-2015).
Sasai, Hiroshi; Fujita, Daisuke; Seto, Eiko; Denda, Yuki; Imai, Yutaro; Okamoto, Kanako; Okamura, Kensaku; Furuya, Masaru; Tani, Hiroyuki; Sasai, Kazumi
2018-02-15
OBJECTIVE To evaluate outcome of limb fracture repair in rabbits. DESIGN Retrospective case series. ANIMALS 139 client-owned rabbits with limb fractures treated between 2007 and 2015. PROCEDURES Medical records were reviewed for information on fracture location, fracture treatment, and time to fracture healing. RESULTS 25 rabbits had fractures involving the distal aspects of the limbs (ie, metacarpal or metatarsal bones, phalanges, and calcaneus or talus). Fractures were treated in 23 of these 25 rabbits (external coaptation, n = 17; external skeletal fixation, 4; and intramedullary pinning, 2) and healed in all 23, with a median healing time of 28 days (range, 20 to 45 days). One hundred ten rabbits had long bone fractures, and fractures were treated in 100 of the 110 (external skeletal fixation, n = 89; bone plating, 1; intramedullary pinning, 3; and external coaptation, 7). The percentage of fractures that healed was significantly lower for open (14/18) than for closed (26/26) tibial fractures and was significantly lower for femoral (19/26) and treated humeral (4/6) fractures than for radial (23/24) or closed tibial (26/26) fractures. Micro-CT was used to assess fracture realignment during external skeletal fixator application and to evaluate fracture healing. CONCLUSIONS AND CLINICAL RELEVANCE The prognosis for rabbits with limb fractures was good, with fractures healing in most rabbits following fracture repair (109/123). Micro-CT was useful in assessing fracture realignment and evaluating fracture healing.
Isolated tympanic plate fracture frequency and its relationship to mandibular trauma.
Altay, Canan; Erdoğan, Nezahat; Batkı, Ozan; Eren, Erdem; Altay, Sedat; Karasu, Sebnem; Mete, Berna; Uluç, Engin
2014-11-01
This study evaluated the prevalence of isolated tympanic fractures and their correlation with mandibular fractures by using maxillofacial computed tomography (CT). We retrospectively evaluated the maxillofacial CT of 1590 patients who presented to our emergency department with maxillofacial trauma between December 2010 and December 2012. Maxillofacial CT was used as the criterion standard for evaluating patients with maxillofacial fractures. The CT images were evaluated by using an electronic picture archiving and communications system and interpreted independently by 2 radiologists. The maxillofacial CT images revealed mandibular fractures in 167 of the patients and isolated tympanic plate fractures in 35 of these 167 patients. Four patients (11%) had a bilateral tympanic plate fracture, and 31 patients (89%) had unilateral tympanic plate fracture. Of all the tympanic plate fractures, 19 (54%) were on the right side and 16 (46%) were on the left side (P > .05). In our results, a significant correlation between the presence of a right-sided tympanic plate fracture and fracture of the ipsilateral condylar process was found (P = .036). However, a statistically significant difference between the presence of a tympanic plate fracture and other mandible fractures, additional soft-tissue findings, or the number of fractures was not determined (P > .05). Sex had no impact on the presence of tympanic plate fracture (P > .05). The frequency of isolated tympanic plate fractures in maxillofacial trauma is low, but it is an important anatomic location. Condyle fractures are significantly associated with isolated tympanic plate fractures. The presence of these injuries should raise suspicion of a concomitant isolated tympanic plate fracture. Copyright © 2014 Canadian Association of Radiologists. Published by Elsevier Inc. All rights reserved.
Numerical simulation and fracture identification of dual laterolog in organic shale
NASA Astrophysics Data System (ADS)
Maojin, Tan; Peng, Wang; Qiong, Liu
2012-09-01
Fracture is one of important spaces in shale oil and shale gas reservoirs, and fractures identification and evaluation are an important part in organic shale interpretation. According to the fractured shale gas reservoir, a physical model is set up to study the dual laterolog logging responses. First, based on the principle of dual laterolog, three-dimensional finite element method (FEM) is used to simulate the dual laterolog responses in various formation models with different fractures widths, different fracture numbers, different fractures inclination angle. All the results are extremely important for the fracture identification and evaluation in shale reservoirs. Appointing to different base rock resistivity models, the fracture models are constructed respectively through a number of numerical simulation, and the fracture porosity can be calculated by solving the corresponding formulas. A case study about organic shale formation is analyst and discussed, and the fracture porosity is calculated from dual laterolog. The fracture evaluation results are also be validated right by Full borehole Micro-resistivity Imaging (FMI). So, in case of the absence of borehole resistivity imaging log, the dual laterolog resistivity can be used to estimate the fracture development.
Fu, Pengcheng; Johnson, Scott M.; Carrigan, Charles R.
2011-01-01
Hydraulic fracturing is currently the primary method for stimulating low-permeability geothermal reservoirs and creating Enhanced (or Engineered) Geothermal Systems (EGS) with improved permeability and heat production efficiency. Complex natural fracture systems usually exist in the formations to be stimulated and it is therefore critical to understand the interactions between existing fractures and newly created fractures before optimal stimulation strategies can be developed. Our study aims to improve the understanding of EGS stimulation-response relationships by developing and applying computer-based models that can effectively reflect the key mechanisms governing interactions between complex existing fracture networks and newly created hydraulic fractures. In this paper, we first briefly describe the key modules of our methodology, namely a geomechanics solver, a discrete fracture flow solver, a rock joint response model, an adaptive remeshing module, and most importantly their effective coupling. After verifying the numerical model against classical closed-form solutions, we investigate responses of reservoirs with different preexisting natural fractures to a variety of stimulation strategies. The factors investigated include: the in situ stress states (orientation of the principal stresses and the degree of stress anisotropy), pumping pressure, and stimulation sequences of multiple wells.
NASA Astrophysics Data System (ADS)
Lo, Hung-Chieh; Chen, Po-Jui; Chou, Po-Yi; Hsu, Shih-Meng
2014-06-01
This paper presents an improved borehole prospecting methodology based on a combination of techniques in the hydrogeological characterization of fractured rock aquifers. The approach is demonstrated by on-site tests carried out in the Hoshe Experimental Forest site and the Tailuge National Park, Taiwan. Borehole televiewer logs are used to obtain fracture location and distribution along boreholes. The heat-pulse flow meter log is used to measure vertical velocity flow profiles which can be analyzed to estimate fracture transmissivity and to indicate hydraulic connectivity between fractures. Double-packer hydraulic tests are performed to determine the rock mass transmissivity. The computer program FLASH is used to analyze the data from the flowmeter logs. The FLASH program is confirmed as a useful tool which quantitatively predicts the fracture transmissivity in comparison to the hydraulic properties obtained from packer tests. The location of conductive fractures and their transmissivity is identified, after which the preferential flow paths through the fracture network are precisely delineated from a cross-borehole test. The results provide robust confirmation of the use of combined flowmeter and packer methods in the characterization of fractured-rock aquifers, particularly in reference to the investigation of groundwater resource and contaminant transport dynamics.
Admittance Survey of Type 1 Coronae on Venus: Implications for Elastic Thickness
NASA Technical Reports Server (NTRS)
Hoogenboom, T.; Smrekar, S. E.; Anderson, F. S.; Houseman, G.
2003-01-01
Coronae are volcano-tectonic features on Venus which range from 60km to 2600km and are defined by their nearly circular patterns of fractures. Type 1 (regular) coronae are classified as having >50% complete fracture annuli. Previous work has examined the factors controlling the morphology, size, and fracture pattern of coronae, using lithospheric properties, loading signature and geologic characteristics. However, these studies have been limited to Type 2 (topographic) coronae (e.g. coronaes with <50% fracture annuli), and the factors controlling the formation of Type 1 coronae remain poorly understood. In this study, we apply the methodology of to survey the admittance signature for Type 1 coronae to determine the controlling parameters which govern Type 1 coronae formation.
Sabharwal, S; Carter, A W; Rashid, A; Darzi, A; Reilly, P; Gupte, C M
2016-02-01
The aims of this study were to estimate the cost of surgical treatment of fractures of the proximal humerus using a micro-costing methodology, contrast this cost with the national reimbursement tariff and establish the major determinants of cost. A detailed inpatient treatment pathway was constructed using semi-structured interviews with 32 members of hospital staff. Its content validity was established through a Delphi panel evaluation. Costs were calculated using time-driven activity-based costing (TDABC) and sensitivity analysis was performed to evaluate the determinants of cost The mean cost of the different surgical treatments was estimated to be £3282. Although this represented a profit of £1138 against the national tariff, hemiarthroplasty as a treatment choice resulted in a net loss of £952. Choice of implant and theatre staffing were the largest cost drivers. Operating theatre delays of more than one hour resulted in a loss of income Our findings indicate that the national tariff does not accurately represent the cost of treatment for this condition. Effective use of the operating theatre and implant discounting are likely to be more effective cost containment approaches than control of bed-day costs. This cost analysis of fractures of the proximal humerus reinforces the limitations of the national tariff within the English National Health Service, and underlines the importance of effective use of the operating theatre, as well as appropriate implant procurement where controlling costs of treatment is concerned. ©2016 The British Editorial Society of Bone & Joint Surgery.
Reyes, Mauricio; Zysset, Philippe
2017-01-01
Osteoporosis leads to hip fractures in aging populations and is diagnosed by modern medical imaging techniques such as quantitative computed tomography (QCT). Hip fracture sites involve trabecular bone, whose strength is determined by volume fraction and orientation, known as fabric. However, bone fabric cannot be reliably assessed in clinical QCT images of proximal femur. Accordingly, we propose a novel registration-based estimation of bone fabric designed to preserve tensor properties of bone fabric and to map bone fabric by a global and local decomposition of the gradient of a non-rigid image registration transformation. Furthermore, no comprehensive analysis on the critical components of this methodology has been previously conducted. Hence, the aim of this work was to identify the best registration-based strategy to assign bone fabric to the QCT image of a patient’s proximal femur. The normalized correlation coefficient and curvature-based regularization were used for image-based registration and the Frobenius norm of the stretch tensor of the local gradient was selected to quantify the distance among the proximal femora in the population. Based on this distance, closest, farthest and mean femora with a distinction of sex were chosen as alternative atlases to evaluate their influence on bone fabric prediction. Second, we analyzed different tensor mapping schemes for bone fabric prediction: identity, rotation-only, rotation and stretch tensor. Third, we investigated the use of a population average fabric atlas. A leave one out (LOO) evaluation study was performed with a dual QCT and HR-pQCT database of 36 pairs of human femora. The quality of the fabric prediction was assessed with three metrics, the tensor norm (TN) error, the degree of anisotropy (DA) error and the angular deviation of the principal tensor direction (PTD). The closest femur atlas (CTP) with a full rotation (CR) for fabric mapping delivered the best results with a TN error of 7.3 ± 0.9%, a DA error of 6.6 ± 1.3% and a PTD error of 25 ± 2°. The closest to the population mean femur atlas (MTP) using the same mapping scheme yielded only slightly higher errors than CTP for substantially less computing efforts. The population average fabric atlas yielded substantially higher errors than the MTP with the CR mapping scheme. Accounting for sex did not bring any significant improvements. The identified fabric mapping methodology will be exploited in patient-specific QCT-based finite element analysis of the proximal femur to improve the prediction of hip fracture risk. PMID:29176881
Hein, L R O; Campos, K A; Caltabiano, P C R O; Kostov, K G
2013-01-01
The methodology for fracture analysis of polymeric composites with scanning electron microscopes (SEM) is still under discussion. Many authors prefer to use sputter coating with a conductive material instead of applying low-voltage (LV) or variable-pressure (VP) methods, which preserves the original surfaces. The present work examines the effects of sputter coating with 25 nm of gold on the topography of carbon-epoxy composites fracture surfaces, using an atomic force microscope. Also, the influence of SEM imaging parameters on fractal measurements is evaluated for the VP-SEM and LV-SEM methods. It was observed that topographic measurements were not significantly affected by the gold coating at tested scale. Moreover, changes on SEM setup leads to nonlinear outcome on texture parameters, such as fractal dimension and entropy values. For VP-SEM or LV-SEM, fractal dimension and entropy values did not present any evident relation with image quality parameters, but the resolution must be optimized with imaging setup, accompanied by charge neutralization. © Wiley Periodicals, Inc.
Geological Mapping Uses Landsat 4-5TM Satellite Data in Manlai Soum of Omnogovi Aimag
NASA Astrophysics Data System (ADS)
Norovsuren, B.
2014-12-01
Author: Bayanmonkh N1, Undram.G1, Tsolmon.R2, Ariunzul.Ya1, Bayartungalag B31 Environmental Research Information and Study Center 2NUM-ITC-UNESCO Space Science and Remote Sensing International Laboratory, National University of Mongolia 3Geology and Hydrology School, Korea University KEY WORDS: geology, mineral resources, fracture, structure, lithologyABSTRACTGeologic map is the most important map for mining when it does exploration job. In Mongolia geological map completed by Russian geologists which is done by earlier technology. Those maps doesn't satisfy for present requirements. Thus we want to study improve geological map which includes fracture, structural map and lithology use Landsat TM4-5 satellite data. If we can produce a geological map from satellite data with more specification then geologist can explain or read mineralogy very easily. We searched all methodology and researches of every single element of geological mapping. Then we used 3 different remote sensing methodologies to produce structural and lithology and fracture map based on geographic information system's softwares. There can be found a visible lithology border improvement and understandable structural map and we found fracture of the Russian geological map has a lot of distortion. The result of research geologist can read mineralogy elements very easy and discovered 3 unfound important elements from satellite image.
Crack Growth Simulation and Residual Strength Prediction in Airplane Fuselages
NASA Technical Reports Server (NTRS)
Chen, Chuin-Shan; Wawrzynek, Paul A.; Ingraffea, Anthony R.
1999-01-01
The objectives were to create a capability to simulate curvilinear crack growth and ductile tearing in aircraft fuselages subjected to widespread fatigue damage and to validate with tests. Analysis methodology and software program (FRANC3D/STAGS) developed herein allows engineers to maintain aging aircraft economically, while insuring continuous airworthiness, and to design more damage-tolerant aircraft for the next generation. Simulations of crack growth in fuselages were described. The crack tip opening angle (CTOA) fracture criterion, obtained from laboratory tests, was used to predict fracture behavior of fuselage panel tests. Geometrically nonlinear, elastic-plastic, thin shell finite element crack growth analyses were conducted. Comparisons of stress distributions, multiple stable crack growth history, and residual strength between measured and predicted results were made to assess the validity of the methodology. Incorporation of residual plastic deformations and tear strap failure was essential for accurate residual strength predictions. Issue related to predicting crack trajectory in fuselages were also discussed. A directional criterion, including T-stress and fracture toughness orthotropy, was developed. Curvilinear crack growth was simulated in coupon and fuselage panel tests. Both T-stress and fracture toughness orthotropy were essential to predict the observed crack paths. Flapping of fuselages were predicted. Measured and predicted results agreed reasonable well.
Evaluation of production tests in oil wells stimulated by massive acid fracturing offshore Qatar
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDonald, S.W.
This paper presents the evaluation of pressure-buildup data from production tests in wells that have been stimulated by massive acid fracturing. Fracture type curves are used in combination with conventional semilog analysis techniques. Fracture characteristics are calculated from a match of the early-time pressure data with the type curves, and reservoir characteristics are calculated from a conventional semilog plot of late-time data. Unexpectedly high formation permeabilities are evaluated, and fracture half-lengths are much shorter than design values.
Lifetime Reliability Prediction of Ceramic Structures Under Transient Thermomechanical Loads
NASA Technical Reports Server (NTRS)
Nemeth, Noel N.; Jadaan, Osama J.; Gyekenyesi, John P.
2005-01-01
An analytical methodology is developed to predict the probability of survival (reliability) of ceramic components subjected to harsh thermomechanical loads that can vary with time (transient reliability analysis). This capability enables more accurate prediction of ceramic component integrity against fracture in situations such as turbine startup and shutdown, operational vibrations, atmospheric reentry, or other rapid heating or cooling situations (thermal shock). The transient reliability analysis methodology developed herein incorporates the following features: fast-fracture transient analysis (reliability analysis without slow crack growth, SCG); transient analysis with SCG (reliability analysis with time-dependent damage due to SCG); a computationally efficient algorithm to compute the reliability for components subjected to repeated transient loading (block loading); cyclic fatigue modeling using a combined SCG and Walker fatigue law; proof testing for transient loads; and Weibull and fatigue parameters that are allowed to vary with temperature or time. Component-to-component variation in strength (stochastic strength response) is accounted for with the Weibull distribution, and either the principle of independent action or the Batdorf theory is used to predict the effect of multiaxial stresses on reliability. The reliability analysis can be performed either as a function of the component surface (for surface-distributed flaws) or component volume (for volume-distributed flaws). The transient reliability analysis capability has been added to the NASA CARES/ Life (Ceramic Analysis and Reliability Evaluation of Structures/Life) code. CARES/Life was also updated to interface with commercially available finite element analysis software, such as ANSYS, when used to model the effects of transient load histories. Examples are provided to demonstrate the features of the methodology as implemented in the CARES/Life program.
Application of Discrete Fracture Modeling and Upscaling Techniques to Complex Fractured Reservoirs
NASA Astrophysics Data System (ADS)
Karimi-Fard, M.; Lapene, A.; Pauget, L.
2012-12-01
During the last decade, an important effort has been made to improve data acquisition (seismic and borehole imaging) and workflow for reservoir characterization which has greatly benefited the description of fractured reservoirs. However, the geological models resulting from the interpretations need to be validated or calibrated against dynamic data. Flow modeling in fractured reservoirs remains a challenge due to the difficulty of representing mass transfers at different heterogeneity scales. The majority of the existing approaches are based on dual continuum representation where the fracture network and the matrix are represented separately and their interactions are modeled using transfer functions. These models are usually based on idealized representation of the fracture distribution which makes the integration of real data difficult. In recent years, due to increases in computer power, discrete fracture modeling techniques (DFM) are becoming popular. In these techniques the fractures are represented explicitly allowing the direct use of data. In this work we consider the DFM technique developed by Karimi-Fard et al. [1] which is based on an unstructured finite-volume discretization. The mass flux between two adjacent control-volumes is evaluated using an optimized two-point flux approximation. The result of the discretization is a list of control-volumes with the associated pore-volumes and positions, and a list of connections with the associated transmissibilities. Fracture intersections are simplified using a connectivity transformation which contributes considerably to the efficiency of the methodology. In addition, the method is designed for general purpose simulators and any connectivity based simulator can be used for flow simulations. The DFM technique is either used standalone or as part of an upscaling technique. The upscaling techniques are required for large reservoirs where the explicit representation of all fractures and faults is not possible. Karimi-Fard et al. [2] have developed an upscaling technique based on DFM representation. The original version of this technique was developed to construct a dual-porosity model from a discrete fracture description. This technique has been extended and generalized so it can be applied to a wide range of problems from reservoirs with a few or no fracture to highly fractured reservoirs. In this work, we present the application of these techniques to two three-dimensional fractured reservoirs constructed using real data. The first model contains more than 600 medium and large scale fractures. The fractures are not always connected which requires a general modeling technique. The reservoir has 50 wells (injectors and producers) and water flooding simulations are performed. The second test case is a larger reservoir with sparsely distributed faults. Single-phase simulations are performed with 5 producing wells. [1] Karimi-Fard M., Durlofsky L.J., and Aziz K. 2004. An efficient discrete-fracture model applicable for general-purpose reservoir simulators. SPE Journal, 9(2): 227-236. [2] Karimi-Fard M., Gong B., and Durlofsky L.J. 2006. Generation of coarse-scale continuum flow models from detailed fracture characterizations. Water Resources Research, 42(10): W10423.
Tarsal navicular stress fractures: radiographic evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pavlov, H.; Torg, J.S.; Freiberger, R.H.
1983-09-01
Tarsal navicular stress fractures are a potential source of disabling foot pain in physically active individuals. The diagnosis of tarsal navicular stress fracture requires a high index of clinical and radiographic suspicion because the fracture is only rarely evident on routine radiographs or standard tomograms. The radiographic diagnosis of a tarsal navicular stress fracture may require anatomic anteroposterior tomograms or a radionuclide bone scan with plantar views. Radiographic examinations of 23 fractures in 21 patients are evaluated.
Evaluation of selective vs. point-source perforating for hydraulic fracturing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Underwood, P.J.; Kerley, L.
1996-12-31
This paper is a case history comparing and evaluating the effects of fracturing the Reef Ridge Diatomite formation in the Midway-Sunset Field, Kern County, California, using {open_quotes}select-fire{close_quotes} and {open_quotes}point-source{close_quotes} perforating completions. A description of the reservoir, production history, and fracturing techniques used leading up to this study is presented. Fracturing treatment analysis and production history matching were used to evaluate the reservoir and fracturing parameters for both completion types. The work showed that single fractures were created with the point-source (PS) completions, and multiple fractures resulted from many of the select-fire (SF) completions. A good correlation was developed between productivitymore » and the product of formation permeability, net fracture height, bottomhole pressure, and propped fracture length. Results supported the continued development of 10 wells using the PS concept with a more efficient treatment design, resulting in substantial cost savings.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McLing, Travis; Carpenter, Michael; Brandon, William
The Environmental Protection Agency (EPA) has teamed with Battelle Energy Alliance, LLC (BEA) at Idaho National Laboratory (INL) to facilitate further testing of geologic-fracture-identification methodology at a field site near the Monsanto Superfund Site located in Soda Springs, Idaho. INL has the necessary testing and technological expertise to perform this work. Battelle Memorial Institute (BMI) has engaged INL to perform this work through a Work for Others (WFO) Agreement. This study continues a multi-year collaborative effort between INL and EPA to test the efficacy of using field deployed Cr-39 radon in soil portals. This research enables identification of active fracturesmore » capable of transporting contaminants at sites where fractures are suspected pathways into the subsurface. Current state of the art methods for mapping fracture networks are exceedingly expensive and notoriously inaccurate. The proposed WFO will evaluate the applicability of using cheap, readily available, passive radon detectors to identify conductive geologic structures (i.e. fractures, and fracture networks) in the subsurface that control the transport of contaminants at fracture-dominated sites. The proposed WFO utilizes proven off-the-shelf technology in the form of CR-39 radon detectors, which have been widely deployed to detect radon levels in homes and businesses. In an existing collaborative EPA/INL study outside of this workscope,. CR-39 detectors are being utilized to determine the location of active transport fractures in a fractured granitic upland adjacent to a landfill site at the Fort Devens, MA that EPA-designated as National Priorities List (NPL) site. The innovative concept of using an easily deployed port that allows the CR-39 to measure the Rn-222 in the soil or alluvium above the fractured rock, while restricting atmospheric Rn-222 and soil sourced Ra from contaminating the detector is unique to INL and EPA approach previously developed. By deploying a series of these inexpensive detector-casing combinations statistical samples of the Rn-222 flux can be measured, elucidating the most communicative fractures (i.e. fractures that are actively transporting water and gasses). The Rn-222 measurements can then be used as an input to create a more accurate conceptual model to be used for transport modeling and related cleanup activities. If the team’s approach is demonstrated to be applicable to a wide variety of rock types and soil conditions it might potentially offer significant cost saving without a reduction in data quality at Monsanto Superfund and other sites underlain by fracture-dominated bedrock.« less
NASA Astrophysics Data System (ADS)
Cornaton, F.; Park, Y.; Normani, S.; Sudicky, E.; Sykes, J.
2005-12-01
Long-term solutions for the disposal of toxic wastes usually involve isolation of the wastes in a deep subsurface geologic environment. In the case of spent nuclear fuel, the safety of the host repository depends on two main barriers: the engineered barrier and the natural geological barrier. If radionuclide leakage occurs from the engineered barrier, the geological medium represents the ultimate barrier that is relied upon to ensure safety. Consequently, an evaluation of radionuclide travel times from the repository to the biosphere is critically important in a performance assessment analysis. In this study, we develop a travel time framework based on the concept of groundwater lifetime expectancy as a safety indicator. Lifetime expectancy characterizes the time radionuclides will spend in the subsurface after their release from the repository and prior to discharging into the biosphere. The probability density function of lifetime expectancy is computed throughout the host rock by solving the backward-in-time solute transport equation subject to a properly posed set of boundary conditions. It can then be used to define optimal repository locations. In a second step, the risk associated with selected sites can be evaluated by simulating an appropriate contaminant release history. The proposed methodology is applied in the context of a typical Canadian Shield environment. Based on a statistically-generated three-dimension network of fracture zones embedded in the granitic host rock, the sensitivity and the uncertainty of lifetime expectancy to the hydraulic and dispersive properties of the fracture network, including the impact of conditioning via their surface expressions, is computed in order to demonstrate the utility of the methodology.
NASA Astrophysics Data System (ADS)
Rizzo, R. E.; Healy, D.; De Siena, L.
2015-12-01
The success of any model prediction is largely dependent on the accuracy with which its parameters are known. In characterising fracture networks in naturally fractured rocks, the main issues are related with the difficulties in accurately up- and down-scaling the parameters governing the distribution of fracture attributes. Optimal characterisation and analysis of fracture attributes (fracture lengths, apertures, orientations and densities) represents a fundamental step which can aid the estimation of permeability and fluid flow, which are of primary importance in a number of contexts ranging from hydrocarbon production in fractured reservoirs and reservoir stimulation by hydrofracturing, to geothermal energy extraction and deeper Earth systems, such as earthquakes and ocean floor hydrothermal venting. This work focuses on linking fracture data collected directly from outcrops to permeability estimation and fracture network modelling. Outcrop studies can supplement the limited data inherent to natural fractured systems in the subsurface. The study area is a highly fractured upper Miocene biosiliceous mudstone formation cropping out along the coastline north of Santa Cruz (California, USA). These unique outcrops exposes a recently active bitumen-bearing formation representing a geological analogue of a fractured top seal. In order to validate field observations as useful analogues of subsurface reservoirs, we describe a methodology of statistical analysis for more accurate probability distribution of fracture attributes, using Maximum Likelihood Estimators. These procedures aim to understand whether the average permeability of a fracture network can be predicted reducing its uncertainties, and if outcrop measurements of fracture attributes can be used directly to generate statistically identical fracture network models.
Townsend, Kevin C; Thomas-Aitken, Holly D; Rudert, M James; Kern, Andrew M; Willey, Michael C; Anderson, Donald D; Goetz, Jessica E
2018-01-23
Evaluation of abnormalities in joint contact stress that develop after inaccurate reduction of an acetabular fracture may provide a potential means for predicting the risk of developing post-traumatic osteoarthritis. Discrete element analysis (DEA) is a computational technique for calculating intra-articular contact stress distributions in a fraction of the time required to obtain the same information using the more commonly employed finite element analysis technique. The goal of this work was to validate the accuracy of DEA-computed contact stress against physical measurements of contact stress made in cadaveric hips using Tekscan sensors. Four static loading tests in a variety of poses from heel-strike to toe-off were performed in two different cadaveric hip specimens with the acetabulum intact and again with an intentionally malreduced posterior wall acetabular fracture. DEA-computed contact stress was compared on a point-by-point basis to stress measured from the physical experiments. There was good agreement between computed and measured contact stress over the entire contact area (correlation coefficients ranged from 0.88 to 0.99). DEA-computed peak contact stress was within an average of 0.5 MPa (range 0.2-0.8 MPa) of the Tekscan peak stress for intact hips, and within an average of 0.6 MPa (range 0-1.6 MPa) for fractured cases. DEA-computed contact areas were within an average of 33% of the Tekscan-measured areas (range: 1.4-60%). These results indicate that the DEA methodology is a valid method for accurately estimating contact stress in both intact and fractured hips. Copyright © 2017 Elsevier Ltd. All rights reserved.
Testing postural control among various osteoporotic patient groups: a literature review.
de Groot, Maartje H; van der Jagt-Willems, Hanna C; van Campen, Jos P C M; Lems, Willem F; Lamoth, Claudine J C
2012-10-01
Osteoporosis can cause vertebral fractures, which might lead to a flexed posture, impaired postural control and consequently increased fall risk. Therefore, the aim of the present review was to examine whether postural control of patients with osteoporosis, vertebral fractures, thoracic kyphosis and flexed posture is affected. Furthermore, instruments measuring postural control were evaluated and examined for sensitivity and easy clinical use. Until February 2011, electronic databases were systematically searched for cross-sectional studies. Methodological quality was assessed with a modified Downs & Black scale. Of the 518 found studies, 18 studies were included. Postural control was generally affected for patients with vertebral fractures, thoracic kyphosis and flexed posture. Patients with osteoporosis had impaired postural control when assessed with computerized instruments. Easy performance-based tests did not show any impairments. There is evidence for an impaired postural control in all patient groups included. Impaired postural control is an important risk factor for falls. Functional performance tests are not sensitive and specific enough to detect affected postural control in patients with osteoporosis. To detect impaired postural control among osteoporotic patients and to obtain more insight into the underlying mechanisms of postural control, computerized instruments are recommended, such as easy-to-use ambulant motion-sensing (accelerometry) technology. © 2012 Japan Geriatrics Society.
NASA Astrophysics Data System (ADS)
Sheng, Guanglong; Su, Yuliang; Wang, Wendong; Javadpour, Farzam; Tang, Meirong
According to hydraulic-fracturing practices conducted in shale reservoirs, effective stimulated reservoir volume (ESRV) significantly affects the production of hydraulic fractured well. Therefore, estimating ESRV is an important prerequisite for confirming the success of hydraulic fracturing and predicting the production of hydraulic fracturing wells in shale reservoirs. However, ESRV calculation remains a longstanding challenge in hydraulic-fracturing operation. In considering fractal characteristics of the fracture network in stimulated reservoir volume (SRV), this paper introduces a fractal random-fracture-network algorithm for converting the microseismic data into fractal geometry. Five key parameters, including bifurcation direction, generating length (d), deviation angle (α), iteration times (N) and generating rules, are proposed to quantitatively characterize fracture geometry. Furthermore, we introduce an orthogonal-fractures coupled dual-porosity-media representation elementary volume (REV) flow model to predict the volumetric flux of gas in shale reservoirs. On the basis of the migration of adsorbed gas in porous kerogen of REV with different fracture spaces, an ESRV criterion for shale reservoirs with SRV is proposed. Eventually, combining the ESRV criterion and fractal characteristic of a fracture network, we propose a new approach for evaluating ESRV in shale reservoirs. The approach has been used in the Eagle Ford shale gas reservoir, and results show that the fracture space has a measurable influence on migration of adsorbed gas. The fracture network can contribute to enhancement of the absorbed gas recovery ratio when the fracture space is less than 0.2 m. ESRV is evaluated in this paper, and results indicate that the ESRV accounts for 27.87% of the total SRV in shale gas reservoirs. This work is important and timely for evaluating fracturing effect and predicting production of hydraulic fracturing wells in shale reservoirs.
Matsuura, Yusuke; Kuniyoshi, Kazuki; Suzuki, Takane; Ogawa, Yasufumi; Sukegawa, Koji; Rokkaku, Tomoyuki; Takahashi, Kazuhisa
2014-11-01
Distal radius fracture, which often occurs in the setting of osteoporosis, can lead to permanent deformity and disability. Great effort has been directed toward developing noninvasive methods for evaluating the distal radius strength, with the goal of assessing fracture risk. The aim of this study was to evaluate distal radius strength using a finite element model and to gauge the accuracy of finite element model measurement using cadaver material. Ten wrists were obtained from cadavers with a mean age of 89.5 years at death. CT images of each wrist in an extended position were obtained. CT-based finite element models were prepared with Mechanical Finder software. Fracture on the models was simulated by applying a mechanical load to the palm in a direction parallel to the forearm axis, after which the fracture load and the site at which the fracture began were identified. For comparison, the wrists were fractured using a universal testing machine and the fracture load and the site of fracture were identified. The fracture load was 970.9 N in the finite element model group and 990.0 N in the actual measurement group. The site of the initial fracture was extra-articular to the distal radius in both groups. The finite element model was predictive for distal radius fracture when compared to the actual measurement. In this study, a finite element model for evaluation of distal radius strength was validated and can be used to predict fracture risk. We conclude that a finite element model is useful for the evaluation of distal radius strength. Knowing distal radius strength might avoid distal radius fracture because appropriate antiosteoporotic treatment can be initiated.
Cho, S H; Sung, Y M; Kim, M S
2012-10-01
The objective of this study was to review the prevalence and radiological features of rib fractures missed on initial chest CT evaluation, and to examine the diagnostic value of additional coronal images in a large series of trauma patients. 130 patients who presented to an emergency room for blunt chest trauma underwent multidetector row CT of the thorax within the first hour during their stay, and had follow-up CT or bone scans as diagnostic gold standards. Images were evaluated on two separate occasions: once with axial images and once with both axial and coronal images. The detection rates of missed rib fractures were compared between readings using a non-parametric method of clustered data. In the cases of missed rib fractures, the shapes, locations and associated fractures were evaluated. 58 rib fractures were missed with axial images only and 52 were missed with both axial and coronal images (p=0.088). The most common shape of missed rib fractures was buckled (56.9%), and the anterior arc (55.2%) was most commonly involved. 21 (36.2%) missed rib fractures had combined fractures on the same ribs, and 38 (65.5%) were accompanied by fracture on neighbouring ribs. Missed rib fractures are not uncommon, and radiologists should be familiar with buckle fractures, which are frequently missed. Additional coronal imagescan be helpful in the diagnosis of rib fractures that are not seen on axial images.
FracPaQ: a MATLAB™ Toolbox for the Quantification of Fracture Patterns
NASA Astrophysics Data System (ADS)
Healy, D.; Rizzo, R. E.; Cornwell, D. G.; Timms, N.; Farrell, N. J.; Watkins, H.; Gomez-Rivas, E.; Smith, M.
2016-12-01
The patterns of fractures in deformed rocks are rarely uniform or random. Fracture orientations, sizes, shapes and spatial distributions often exhibit some kind of order. In detail, there may be relationships among the different fracture attributes e.g. small fractures dominated by one orientation, larger fractures by another. These relationships are important because the mechanical (e.g. strength, anisotropy) and transport (e.g. fluids, heat) properties of rock depend on these fracture patterns and fracture attributes. This presentation describes an open source toolbox to quantify fracture patterns, including distributions in fracture attributes and their spatial variation. Software has been developed to quantify fracture patterns from 2-D digital images, such as thin section micrographs, geological maps, outcrop or aerial photographs or satellite images. The toolbox comprises a suite of MATLAB™ scripts based on published quantitative methods for the analysis of fracture attributes: orientations, lengths, intensity, density and connectivity. An estimate of permeability in 2-D is made using a parallel plate model. The software provides an objective and consistent methodology for quantifying fracture patterns and their variations in 2-D across a wide range of length scales. Our current focus for the application of the software is on quantifying the fracture patterns in and around fault zones. There is a large body of published work on the quantification of relatively simple joint patterns, but fault zones present a bigger, and arguably more important, challenge. The method presented is inherently scale independent, and a key task will be to analyse and integrate quantitative fracture pattern data from micro- to macro-scales. Planned future releases will incorporate multi-scale analyses based on a wavelet method to look for scale transitions, and combining fracture traces from multiple 2-D images to derive the statistically equivalent 3-D fracture pattern.
Barrett-Connor, Elizabeth; Nielson, Carrie M; Orwoll, Eric; Bauer, Douglas C; Cauley, Jane A
2010-03-15
To study the causes and consequences of radiologically confirmed rib fractures (seldom considered in the context of osteoporosis) in community dwelling older men. Prospective cohort study (Osteoporotic Fractures in Men (MrOS) Study). 5995 men aged 65 or over recruited in 2000-2 from six US sites; 99% answered mailed questionnaires about falls and fractures every four months for a mean 6.2 (SD 1.3) year follow-up. New fractures validated by radiology reports; multivariate Cox proportional hazard ratios were used to evaluate factors independently associated with time to incident rib fracture; associations between baseline rib fracture and incident hip and wrist fracture were also evaluated. The incidence of rib fracture was 3.5/1000 person years, and 24% (126/522) of all incident non-spine fractures were rib fractures. Nearly half of new rib fractures (48%; n=61) followed falling from standing height or lower. Independent risk factors for an incident rib fracture were age 80 or above, low bone density, difficulty with instrumental activities of daily living, and a baseline history of rib/chest fracture. Men with a history of rib/chest fracture had at least a twofold increased risk of an incident rib fracture (adjusted hazard ratio 2.71, 95% confidence interval 1.86 to 3.95), hip fracture (2.05, 1.33 to 3.15), and wrist fracture (2.06, 1.14 to 3.70). Only 14/82 of men reported being treated with bone specific drugs after their incident rib fracture. Rib fracture, the most common incident clinical fracture in men, was associated with classic risk markers for osteoporosis, including old age, low hip bone mineral density, and history of fracture. A history of rib fracture predicted a more than twofold increased risk of future fracture of the rib, hip, or wrist, independent of bone density and other covariates. Rib fractures should be considered to be osteoporotic fractures in the evaluation of older men for treatment to prevent future fracture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Arvind S.
2001-03-05
A new methodology to predict the Upper Shelf Energy (USE) of standard Charpy specimens (Full size) based on subsize specimens has been developed. The prediction methodology uses Finite Element Modeling (FEM) to model the fracture behavior. The inputs to FEM are the tensile properties of material and subsize Charpy specimen test data.
Susceptibility to keel bone fractures in laying hens and the role of genetic variation.
Candelotto, Laura; Stratmann, Ariane; Gebhardt-Henrich, Sabine G; Rufener, Christina; van de Braak, Teun; Toscano, Michael J
2017-10-01
Keel bone fractures are a well-known welfare problem in modern commercial laying hen systems. The present study sought to identify genetic variation in relation to keel bone fracture susceptibility of 4 distinct crossbred and one pure line, and by extension, possible breeding traits. Susceptibility to fractures were assessed using an ex vivo impact testing protocol in combination with a study design that minimized environmental variation to focus on genetic differences. The 5 crossbred/pure lines differed in their susceptibility to keel bone fractures with the greatest likelihood of fracture in one of the 3 commercial lines and the lowest susceptibility to fractures in one of the experimental lines. Egg production at the hen-level did not differ between the crossbred/pure lines (P > 0.05), though an increased susceptibility to keel bone fractures was associated with thinner eggshells and reduced egg breaking strength, a pattern consistent among all tested crossbred/pure lines. Our findings suggest an association between egg quality and bone strength which appeared to be independent of crossbred/pure line. The findings indicate the benefit of the impact methodology to identify potential breeding characteristics to reduce incidence of keel fracture as well as the potential relationship with eggshell quality. © 2017 Poultry Science Association Inc.
Characterization of fracture aperture for groundwater flow and transport
NASA Astrophysics Data System (ADS)
Sawada, A.; Sato, H.; Tetsu, K.; Sakamoto, K.
2007-12-01
This paper presents experiments and numerical analyses of flow and transport carried out on natural fractures and transparent replica of fractures. The purpose of this study was to improve the understanding of the role of heterogeneous aperture patterns on channelization of groundwater flow and dispersion in solute transport. The research proceeded as follows: First, a precision plane grinder was applied perpendicular to the fracture plane to characterize the aperture distribution on a natural fracture with 1 mm of increment size. Although both time and labor were intensive, this approach provided a detailed, three dimensional picture of the pattern of fracture aperture. This information was analyzed to provide quantitative measures for the fracture aperture distribution, including JRC (Joint Roughness Coefficient) and fracture contact area ratio. These parameters were used to develop numerical models with corresponding synthetic aperture patterns. The transparent fracture replica and numerical models were then used to study how transport is affected by the aperture spatial pattern. In the transparent replica, transmitted light intensity measured by a CCD camera was used to image channeling and dispersion due to the fracture aperture spatial pattern. The CCD image data was analyzed to obtain the quantitative fracture aperture and tracer concentration data according to Lambert-Beer's law. The experimental results were analyzed using the numerical models. Comparison of the numerical models to the transparent replica provided information about the nature of channeling and dispersion due to aperture spatial patterns. These results support to develop a methodology for defining representative fracture aperture of a simplified parallel fracture model for flow and transport in heterogeneous fractures for contaminant transport analysis.
Li, Ying; Liu, Dan; Xu, Kailiang; Le, Lawrence H.; Wang, Weiqi
2017-01-01
Ultrasonic guided waves have recently been used in fracture evaluation and fracture healing monitoring. An axial transmission technique has been used to quantify the impact of the gap breakage width and fracture angle on the amplitudes of low order guided wave modes S0 and A0 under a 100 kHz narrowband excitation. In our two dimensional finite-difference time-domain (2D-FDTD) simulation, the long bones are modeled as three layers with a soft tissue overlay and marrow underlay. The simulations of the transversely and obliquely fractured long bones show that the amplitudes of both S0 and A0 decrease as the gap breakage widens. Fixing the crack width, the increase of the fracture angle relative to the cross section perpendicular to the long axis enhances the amplitude of A0, while the amplitude of S0 shows a nonmonotonic trend with the decrease of the fracture angle. The amplitude ratio between the S0 and A0 modes is used to quantitatively evaluate the fracture width and angles. The study suggests that the low order guided wave modes S0 and A0 have potentials for transverse and oblique bone fracture evaluation and fracture healing monitoring. PMID:28182135
Li, Ying; Liu, Dan; Xu, Kailiang; Ta, Dean; Le, Lawrence H; Wang, Weiqi
2017-01-01
Ultrasonic guided waves have recently been used in fracture evaluation and fracture healing monitoring. An axial transmission technique has been used to quantify the impact of the gap breakage width and fracture angle on the amplitudes of low order guided wave modes S 0 and A 0 under a 100 kHz narrowband excitation. In our two dimensional finite-difference time-domain (2D-FDTD) simulation, the long bones are modeled as three layers with a soft tissue overlay and marrow underlay. The simulations of the transversely and obliquely fractured long bones show that the amplitudes of both S 0 and A 0 decrease as the gap breakage widens. Fixing the crack width, the increase of the fracture angle relative to the cross section perpendicular to the long axis enhances the amplitude of A 0, while the amplitude of S 0 shows a nonmonotonic trend with the decrease of the fracture angle. The amplitude ratio between the S 0 and A 0 modes is used to quantitatively evaluate the fracture width and angles. The study suggests that the low order guided wave modes S 0 and A 0 have potentials for transverse and oblique bone fracture evaluation and fracture healing monitoring.
A method to evaluate hydraulic fracture using proppant detection.
Liu, Juntao; Zhang, Feng; Gardner, Robin P; Hou, Guojing; Zhang, Quanying; Li, Hu
2015-11-01
Accurate determination of the proppant placement and propped fracture height are important for evaluating and optimizing stimulation strategies. A technology using non-radioactive proppant and a pulsed neutron gamma energy spectra logging tool to determine the placement and height of propped fractures is proposed. Gd2O3 was incorporated into ceramic proppant and a Monte Carlo method was utilized to build the logging tools and formation models. Characteristic responses of the recorded information of different logging tools to fracture widths, proppant concentrations and influencing factors were studied. The results show that Gd capture gamma rays can be used to evaluate propped fractures and it has higher sensitivity to the change of fracture width and traceable proppant content compared with the exiting non-radioactive proppant evaluation techniques and only an after-fracture measurement is needed for the new method; The changes in gas saturation and borehole size have a great impact on determining propped fractures when compensated neutron and pulsed neutron capture tool are used. A field example is presented to validate the application of the new technique. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Nemeth, Noel N.; Jadaan, Osama M.; Palfi, Tamas; Baker, Eric H.
Brittle materials today are being used, or considered, for a wide variety of high tech applications that operate in harsh environments, including static and rotating turbine parts, thermal protection systems, dental prosthetics, fuel cells, oxygen transport membranes, radomes, and MEMS. Designing brittle material components to sustain repeated load without fracturing while using the minimum amount of material requires the use of a probabilistic design methodology. The NASA CARES/Life 1 (Ceramic Analysis and Reliability Evaluation of Structure/Life) code provides a general-purpose analysis tool that predicts the probability of failure of a ceramic component as a function of its time in service. This capability includes predicting the time-dependent failure probability of ceramic components against catastrophic rupture when subjected to transient thermomechanical loads (including cyclic loads). The developed methodology allows for changes in material response that can occur with temperature or time (i.e. changing fatigue and Weibull parameters with temperature or time). For this article an overview of the transient reliability methodology and how this methodology is extended to account for proof testing is described. The CARES/Life code has been modified to have the ability to interface with commercially available finite element analysis (FEA) codes executed for transient load histories. Examples are provided to demonstrate the features of the methodology as implemented in the CARES/Life program.
Houwert, Roderick M; Smeeing, Diederik P J; Ahmed Ali, Usama; Hietbrink, Falco; Kruyt, Moyo C; van der Meijden, Olivier A
2016-07-01
The last decade has shown a shift toward operative treatment of a subset of midshaft clavicle fractures. However, it is unclear whether there are differences between plate fixation and intramedullary fixation regarding complications and functional outcome. The aim of this systematic review and meta-analysis was to compare plate fixation and intramedullary fixation for midshaft clavicle fractures. The Medline, Embase, and Cochrane databases were searched for both randomized controlled trials and observational studies. The methodologic quality of all included studies was assessed using the Methodological Index for Non-Randomized Studies. Twenty studies were included. Ten of the 20 included studies used a fracture classification. Seven of these studies reported exclusion of patients with comminuted fractures. No difference in the total re-intervention rate was found (odds ratio [OR], 1.21; 95% confidence interval [CI], 0.71 to 2.04). Major re-interventions occurred more often after plate fixation (OR, 1.88; 95% CI, 1.02 to 3.46). The mean implant removal rates were 38% after plate fixation and 73% after intramedullary fixation. Re-fracture after implant removal occurred more often after plate fixation (OR, 3.42; 95% CI, 1.12 to 10.42). The Constant-Murley scores showed no differences at both short term (mean difference, -1.18; 95% CI, -13.41 to 11.05) and long term (mean difference, 0.15; 95% CI, -1.57 to 1.87). No differences were observed regarding nonunion (OR, 1.50; 95% CI, 0.82 to 2.75). The rate of infections showed no differences when outlier studies were excluded (OR, 1.54; 95% CI, 0.88 to 2.69). Major re-intervention and re-fracture after implant removal occurred more frequently after plate fixation of non-comminuted, displaced midshaft clavicle fractures. No differences in terms of function and nonunion between plate fixation and intramedullary fixation were observed. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
Nonequilibrium capillarity effects in multiphase flow through small volume fractured porous media
NASA Astrophysics Data System (ADS)
Tang, M.; Zhan, H.; Lu, S.
2017-12-01
Analyzing and understanding the capillary pressure curves in fractured porous media is a crucial subject in a number of industrial applications, such as crude oil recovery in the fractured reservoir, CO2 sequestration in fractured brine aquifers and shale gas development. Many studies have observed the significant nonequilibrium capillarity effects in multiphase flow through porous media and proposed that conventional equilibrium capillary pressure may not accurately describe transient two-phase flow behavior under dynamical conditions. To date, only several laboratory experiments and numerical models have been conducted into investigating the characteristic of nonequilibrium capillary pressure in unfractured porous media, a clear picture of the effects of fractures on the dynamic capillary pressure in fractured porous media remains elusive. In this study, four digital porous models were built based on CT image data from ZEISS Xradia 520 Versa CT scanning, a series of direct simulations of multiphase flow in fractured porous media were carried out based on lattice Boltzmann method and three-dimensional porous models. The results show that both the aperture and orientation of the fractures have significant effects on the nonequilibrium capillary pressure coefficients and multiphase flow behaviors. The nonequilibrium capillary pressure coefficients in fractured porous media are one to two orders of magnitude lower than unfractured porous media. This study presents a new direct simulation based methodology for the detailed analysis of nonequilibrium capillary pressure in fractured porous media.
Cho, S H; Sung, Y M; Kim, M S
2012-01-01
Objective The objective of this study was to review the prevalence and radiological features of rib fractures missed on initial chest CT evaluation, and to examine the diagnostic value of additional coronal images in a large series of trauma patients. Methods 130 patients who presented to an emergency room for blunt chest trauma underwent multidetector row CT of the thorax within the first hour during their stay, and had follow-up CT or bone scans as diagnostic gold standards. Images were evaluated on two separate occasions: once with axial images and once with both axial and coronal images. The detection rates of missed rib fractures were compared between readings using a non-parametric method of clustered data. In the cases of missed rib fractures, the shapes, locations and associated fractures were evaluated. Results 58 rib fractures were missed with axial images only and 52 were missed with both axial and coronal images (p=0.088). The most common shape of missed rib fractures was buckled (56.9%), and the anterior arc (55.2%) was most commonly involved. 21 (36.2%) missed rib fractures had combined fractures on the same ribs, and 38 (65.5%) were accompanied by fracture on neighbouring ribs. Conclusion Missed rib fractures are not uncommon, and radiologists should be familiar with buckle fractures, which are frequently missed. Additional coronal imagescan be helpful in the diagnosis of rib fractures that are not seen on axial images. PMID:22514102
Noninvasive evaluation system of fractured bone based on speckle interferometry
NASA Astrophysics Data System (ADS)
Yamanada, Shinya; Murata, Shigeru; Tanaka, Yohsuke
2010-11-01
This paper presents a noninvasive evaluation system of fractured bone based on speckle interferometry using a modified evaluation index for higher performance, and the experiments are carried out to examine the feasibility in evaluating bone fracture healing and the influence of some system parameters on the performance. From experimental results, it is shown that the presence of fractured part of bone and the state of bone fracture healing are successfully estimated by observing fine speckle fringes on the object surface. The proposed evaluation index also can successfully express the difference between the cases with cut and without it. Since most system parameters are found not to affect the performance of the present technique, the present technique is expected to be applied to various patients that have considerable individual variability.
LORENZ: a system for planning long-bone fracture reduction
NASA Astrophysics Data System (ADS)
Birkfellner, Wolfgang; Burgstaller, Wolfgang; Wirth, Joachim; Baumann, Bernard; Jacob, Augustinus L.; Bieri, Kurt; Traud, Stefan; Strub, Michael; Regazzoni, Pietro; Messmer, Peter
2003-05-01
Long bone fractures belong to the most common injuries encountered in clinical routine trauma surgery. Preoperative assessment and decision making is usually based on standard 2D radiographs of the injured limb. Taking into account that a 3D - imaging modality such as computed tomography (CT) is not used for diagnosis in clinical routine, we have designed LORENZ, a fracture reduction planning tool based on such standard radiographs. Taking into account the considerable success of so-called image free navigation systems for total knee replacement in orthopaedic surgery, we assume that a similar tool for long bone fracture reposition should have considerable impact on computer-aided trauma surgery in a standard clinical routine setup. The case for long bone fracture reduction is, however, somewhat more complicated since not only scale independent angles indicating biomechanical measures such as varus and valgus are involved. Reduction path planning requires that the individual anatomy and the classification of the fracture is taken into account. In this paper, we present the basic ideas of this planning tool, it's current state, and the methodology chosen. LORENZ takes one or more conventional radiographs of the broken limb as input data. In addition, one or more x-rays of the opposite healthy bone are taken and mirrored if necessary. A most adequate CT model is being selected from a database; currently, this is achieved by using a scale space approach on the digitized x-ray images and comparing standard perspective renderings to these x-rays. After finding a CT-volume with a similar bone, a triangulated surface model is generated, and the surgeon can break the bone and arrange the fragments in 3D according to the x-ray images of the broken bone. Common osteosynthesis plates and implants can be loaded from CAD-datasets and are visualized as well. In addition, LORENZ renders virtual x-ray views of the fracture reduction process. The hybrid surface/voxel rendering engine of LORENZ also features full collision detection of fragments and implants by using the RAPID collision detection library. The reduction path is saved, and a TCP/IP interface to a robot for executing the reduction was added. LORENZ is platform independent and was programmed using Qt, AVW and OpenGL. We present a prototype for computer-aided fracture reduction planning based on standard radiographs. First test on clinical CT-Xray image pairs showed good performance; a current effort focuses on improving the speed of model retrieval by using orthonormal image moment decomposition, and on clinical evaluation for both training and surgical planning purposes. Furthermore, user-interface aspects are currently under evaluation and will be discussed.
Visualization and Hierarchical Analysis of Flow in Discrete Fracture Network Models
NASA Astrophysics Data System (ADS)
Aldrich, G. A.; Gable, C. W.; Painter, S. L.; Makedonska, N.; Hamann, B.; Woodring, J.
2013-12-01
Flow and transport in low permeability fractured rock is primary in interconnected fracture networks. Prediction and characterization of flow and transport in fractured rock has important implications in underground repositories for hazardous materials (eg. nuclear and chemical waste), contaminant migration and remediation, groundwater resource management, and hydrocarbon extraction. We have developed methods to explicitly model flow in discrete fracture networks and track flow paths using passive particle tracking algorithms. Visualization and analysis of particle trajectory through the fracture network is important to understanding fracture connectivity, flow patterns, potential contaminant pathways and fast paths through the network. However, occlusion due to the large number of highly tessellated and intersecting fracture polygons preclude the effective use of traditional visualization methods. We would also like quantitative analysis methods to characterize the trajectory of a large number of particle paths. We have solved these problems by defining a hierarchal flow network representing the topology of particle flow through the fracture network. This approach allows us to analyses the flow and the dynamics of the system as a whole. We are able to easily query the flow network, and use paint-and-link style framework to filter the fracture geometry and particle traces based on the flow analytics. This allows us to greatly reduce occlusion while emphasizing salient features such as the principal transport pathways. Examples are shown that demonstrate the methodology and highlight how use of this new method allows quantitative analysis and characterization of flow and transport in a number of representative fracture networks.
Sasai, Hiroshi; Fujita, Daisuke; Tagami, Yukari; Seto, Eiko; Denda, Yuki; Hamakita, Hideaki; Ichihashi, Tomonori; Okamura, Kensaku; Furuya, Masaru; Tani, Hiroyuki; Sasai, Kazumi; Yamate, Jyoji
2015-06-15
To characterize bone fractures and the usefulness of micro-CT for imaging fractures in pet rabbits. Retrospective case series. 210 client-owned rabbits with bone fractures. Medical records of rabbits evaluated for bone fractures from 2007 through 2013 were examined. Information was collected on signalment and nature of fractures, and radiographic and micro-CT images of fractures were reviewed. Almost half (n = 95 [47.7%]) of fractures were in rabbits < 3 years old. Accidental fall was the most common cause. Vertebral fracture was the most common type of fracture with a nonneoplastic cause (n = 46 [23.2%]) and was most common in the L4-L7 region. The tibia was the most common site for limb fracture among all fractures with a nonneoplastic cause (45 [22.7%]). Twelve (5.7%) fractures had a neoplastic cause, and 7 of these were associated with metastatic uterine adenocarcinoma. Females were significantly more likely to have a fracture caused by neoplasia than were males. Compared with radiography, micro-CT provided more detailed fracture information, particularly for complicated fractures or structures (eg, skull, pelvic, vertebral, and comminuted limb fractures). Findings were useful for understanding the nature of fractures in pet rabbits and supported the use of micro-CT versus radiography for fracture detection and evaluation.
Segmentation of radiographic images under topological constraints: application to the femur.
Gamage, Pavan; Xie, Sheng Quan; Delmas, Patrice; Xu, Wei Liang
2010-09-01
A framework for radiographic image segmentation under topological control based on two-dimensional (2D) image analysis was developed. The system is intended for use in common radiological tasks including fracture treatment analysis, osteoarthritis diagnostics and osteotomy management planning. The segmentation framework utilizes a generic three-dimensional (3D) model of the bone of interest to define the anatomical topology. Non-rigid registration is performed between the projected contours of the generic 3D model and extracted edges of the X-ray image to achieve the segmentation. For fractured bones, the segmentation requires an additional step where a region-based active contours curve evolution is performed with a level set Mumford-Shah method to obtain the fracture surface edge. The application of the segmentation framework to analysis of human femur radiographs was evaluated. The proposed system has two major innovations. First, definition of the topological constraints does not require a statistical learning process, so the method is generally applicable to a variety of bony anatomy segmentation problems. Second, the methodology is able to handle both intact and fractured bone segmentation. Testing on clinical X-ray images yielded an average root mean squared distance (between the automatically segmented femur contour and the manual segmented ground truth) of 1.10 mm with a standard deviation of 0.13 mm. The proposed point correspondence estimation algorithm was benchmarked against three state-of-the-art point matching algorithms, demonstrating successful non-rigid registration for the cases of interest. A topologically constrained automatic bone contour segmentation framework was developed and tested, providing robustness to noise, outliers, deformations and occlusions.
Simulation Study of CO2-EOR in Tight Oil Reservoirs with Complex Fracture Geometries
Zuloaga-Molero, Pavel; Yu, Wei; Xu, Yifei; Sepehrnoori, Kamy; Li, Baozhen
2016-01-01
The recent development of tight oil reservoirs has led to an increase in oil production in the past several years due to the progress in horizontal drilling and hydraulic fracturing. However, the expected oil recovery factor from these reservoirs is still very low. CO2-based enhanced oil recovery is a suitable solution to improve the recovery. One challenge of the estimation of the recovery is to properly model complex hydraulic fracture geometries which are often assumed to be planar due to the limitation of local grid refinement approach. More flexible methods like the use of unstructured grids can significantly increase the computational demand. In this study, we introduce an efficient methodology of the embedded discrete fracture model to explicitly model complex fracture geometries. We build a compositional reservoir model to investigate the effects of complex fracture geometries on performance of CO2 Huff-n-Puff and CO2 continuous injection. The results confirm that the appropriate modelling of the fracture geometry plays a critical role in the estimation of the incremental oil recovery. This study also provides new insights into the understanding of the impacts of CO2 molecular diffusion, reservoir permeability, and natural fractures on the performance of CO2-EOR processes in tight oil reservoirs. PMID:27628131
Medial joint space widening of the ankle in displaced Tillaux and Triplane fractures in children.
Gourineni, Prasad; Gupta, Asheesh
2011-10-01
Tillaux and Triplane fractures occur in children predominantly from external rotation mechanism. We hypothesized that in displaced fractures, the talus would shift laterally along with the distal fibula and the distal tibial epiphyseal fragment increasing the medial joint space. Consecutive cases evaluated retrospectively. Level I and Level II centers. Twenty-two skeletally immature patients with 14 displaced Triplane fractures and eight displaced Tillaux fractures were evaluated for medial joint space widening. Measurement of fracture displacement and medial joint space widening before and after intervention. Thirteen Triplane and six Tillaux fractures (86%) showed medial space widening of 1 to 9 mm and equal to the amount of fracture displacement. Reduction of the fracture reduced the medial space to normal. There were no known complications. Medial space widening of the ankle may be a sign of ankle fracture displacement. Anatomic reduction of the fracture reduces the medial space and may improve the results in Tillaux and Triplane fractures.
NASA Astrophysics Data System (ADS)
Guo, Junxin; Rubino, J. Germán; Glubokovskikh, Stanislav; Gurevich, Boris
2018-05-01
The dispersion and attenuation of seismic waves are potentially important attributes for the non-invasive detection and characterization of fracture networks. A primary mechanism for these phenomena is wave-induced fluid flow (WIFF), which can take place between fractures and their embedding background (FB-WIFF), as well as within connected fractures (FF-WIFF). In this work, we propose a theoretical approach to quantify seismic dispersion and attenuation related to these two manifestations of WIFF in saturated porous rocks permeated by two orthogonal sets of fractures. The methodology is based on existing theoretical models for rocks with aligned fractures, and we consider three types of fracture geometries, namely, periodic planar fractures, randomly spaced planar fractures and penny-shaped cracks. Synthetic 2-D rock samples with different degrees of fracture intersections are then explored by considering both the proposed theoretical approach and a numerical upscaling procedure that provides the effective seismic properties of generic heterogeneous porous media. The results show that the theoretical predictions are in overall good agreement with the numerical simulations, in terms of both the stiffness coefficients and the anisotropic properties. For the seismic dispersion and attenuation caused by FB-WIFF, the theoretical model for penny-shaped cracks matches the numerical simulations best, whereas for representing the effects due to FF-WIFF the periodic planar fractures model turns out to be the most suitable one. The proposed theoretical approach is easy to apply and is applicable not only to 2-D but also to 3-D fracture systems. Hence, it has the potential to constitute a useful framework for the seismic characterization of fractured reservoirs, especially in the presence of intersecting fractures.
NASA Technical Reports Server (NTRS)
Liu, A. F.
1974-01-01
A systematic approach for applying methods for fracture control in the structural components of space vehicles consists of four major steps. The first step is to define the primary load-carrying structural elements and the type of load, environment, and design stress levels acting upon them. The second step is to identify the potential fracture-critical parts by means of a selection logic flow diagram. The third step is to evaluate the safe-life and fail-safe capabilities of the specified part. The last step in the sequence is to apply the control procedures that will prevent damage to the fracture-critical parts. The fracture control methods discussed include fatigue design and analysis methods, methods for preventing crack-like defects, fracture mechanics analysis methods, and nondestructive evaluation methods. An example problem is presented for evaluation of the safe-crack-growth capability of the space shuttle crew compartment skin structure.
Burke, Lauri
2012-01-01
Additionally, this research establishes a methodology to calculate the injectivity of a target formation. Because injectivity describes the pressure increase due to the introduction of fluids into a formation, the relevant application of injectivity is to determine the pressure increase, due to an injection volume and flow rate, that will induce fractures in the reservoir rocks. This quantity is defined mathematically as the maximum pressure differential between the hydrostatic gradient and the fracture gradient of the target formation. Injectivity is mathematically related to the maximum pressure differential of the formation, and can be used to determine the upper limit for the pressure increase that an injection target can withstand before fracturing.
ERIC Educational Resources Information Center
Wootton-Gorges, Sandra L.; Stein-Wexler, Rebecca; Walton, John W.; Rosas, Angela J.; Coulter, Kevin P.; Rogers, Kristen K.
2008-01-01
Purpose: Chest radiographs (CXR) are the standard method for evaluating rib fractures in abused infants. Computed tomography (CT) is a sensitive method to detect rib fractures. The purpose of this study was to compare CT and CXR in the evaluation of rib fractures in abused infants. Methods: This retrospective study included all 12 abused infants…
Multiwell fracturing experiments. [Nitrogen foam fracture treatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warpinski, N.
The objective of the Multiwell fracturing experiments is to test and develop the technology for the efficient stimulation of tight, lenticular gas sands. This requires basic understanding of: (1) fracture behavior and geometry in this complex lithologic environment, and (2) subsequent production into the created fracture. The intricate interplay of the hydraulic fracture with the lens geometry, the internal reservoir characteristics (fractures, reservoir breaks, etc.), the in situ stresses, and the mechanical defects (fracture, bedding, etc.) need to be defined in order to develop a successful stimulation program. The stimulation phase of the Multiwell Experiment is concerned with: (1) determiningmore » important rock/reservoir properties that influence or control fracture geometry and behavior, (2) designing fracture treatments to achieve a desired size and objectives, and (3) conducting post-treatment analyses to evaluate the effectiveness of the treatment. Background statement, project description, results and evaluation of future plans are presented. 5 refs., 2 figs., 2 tabs.« less
FracPaQ: a MATLAB™ toolbox for the quantification of fracture patterns
NASA Astrophysics Data System (ADS)
Healy, David; Rizzo, Roberto; Farrell, Natalie; Watkins, Hannah; Cornwell, David; Gomez-Rivas, Enrique; Timms, Nick
2017-04-01
The patterns of fractures in deformed rocks are rarely uniform or random. Fracture orientations, sizes, shapes and spatial distributions often exhibit some kind of order. In detail, there may be relationships among the different fracture attributes e.g. small fractures dominated by one orientation, larger fractures by another. These relationships are important because the mechanical (e.g. strength, anisotropy) and transport (e.g. fluids, heat) properties of rock depend on these fracture patterns and fracture attributes. This presentation describes an open source toolbox to quantify fracture patterns, including distributions in fracture attributes and their spatial variation. Software has been developed to quantify fracture patterns from 2-D digital images, such as thin section micrographs, geological maps, outcrop or aerial photographs or satellite images. The toolbox comprises a suite of MATLAB™ scripts based on published quantitative methods for the analysis of fracture attributes: orientations, lengths, intensity, density and connectivity. An estimate of permeability in 2-D is made using a parallel plate model. The software provides an objective and consistent methodology for quantifying fracture patterns and their variations in 2-D across a wide range of length scales. Our current focus for the application of the software is on quantifying crack and fracture patterns in and around fault zones. There is a large body of published work on the quantification of relatively simple joint patterns, but fault zones present a bigger, and arguably more important, challenge. The methods presented are inherently scale independent, and a key task will be to analyse and integrate quantitative fracture pattern data from micro- to macro-scales. New features in this release include multi-scale analyses based on a wavelet method to look for scale transitions, support for multi-colour traces in the input file processed as separate fracture sets, and combining fracture traces from multiple 2-D images to derive the statistically equivalent 3-D fracture pattern expressed as a 2nd rank crack tensor.
Blank, Robert D
2011-01-01
The 2010 Position Development Conference addressed four questions related to the impact of previous fractures on 10-year fracture risk as calculated by FRAX(®). To address these questions, PubMed was searched on the keywords "fracture, epidemiology, osteoporosis." Titles of retrieved articles were reviewed for an indication that risk for future fracture was discussed. Abstracts of these articles were reviewed for an indication that one or more of the questions listed above was discussed. For those that did, the articles were reviewed in greater detail to extract the findings and to find additional past work and citing works that also bore on the questions. The official positions and the supporting literature review are presented here. FRAX(®) underestimates fracture probability in persons with a history of multiple fractures (good, A, W). FRAX(®) may underestimate fracture probability in individuals with prevalent severe vertebral fractures (good, A, W). While there is evidence that hip, vertebral, and humeral fractures appear to confer greater risk of subsequent fracture than fractures at other sites, quantification of this incremental risk in FRAX(®) is not possible (fair, B, W). FRAX(®) may underestimate fracture probability in individuals with a parental history of non-hip fragility fracture (fair, B, W). Limitations of the methodology include performance by a single reviewer, preliminary review of the literature being confined to titles, and secondary review being limited to abstracts. Limitations of the evidence base include publication bias, overrepresentation of persons of European descent in the published studies, and technical differences in the methods used to identify prevalent and incident fractures. Emerging topics for future research include fracture epidemiology in non-European populations and men, the impact of fractures in family members other than parents, and the genetic contribution to fracture risk. Copyright © 2011 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.
Yang, Kyung-Moo; Lynch, Matthew; O'Donnell, Chris
2011-09-01
Buckle rib fractures are incomplete fractures involving the inner cortex alone, and are rarely detected on routine chest X-ray or at autopsy. The characteristics of these fractures have not been well evaluated in situ although they are commonly observed on postmortem CT images especially following CPR. The postmortem CT findings in 42 cases showing buckle rib fractures caused by CPR were reviewed. The cause of death in all cases was non-traumatic. The shape, number, location, and distribution of these buckle rib fractures and their relationship to other types of rib fractures were evaluated using a novel oblique axial multiplanar reconstruction technique. Almost all incomplete rib fractures associated with CPR are buckle rib fractures (90.5%). All rib fractures were distributed from the second to ninth ribs with over 95% being within the second to seventh ribs. Buckle rib fractures are dominant in the seventh to ninth ribs and the proportion of buckle rib fractures located in the vicinity of the costochondral junctions increases with the lower ribs. Over 97% of all CPR associated rib fractures are located in the anterior one third of the ribs based on a new measurement method utilizing oblique axial multiplanar reconstruction of the CT data. When recognition of incomplete or buckle rib fractures on postmortem CT is taken into account, detection of symmetry and continuity of rib fractures typically associated with CPR is improved compared with the detection of complete fractures alone. Recognition of buckle rib fractures and their characteristics on postmortem CT is of benefit to the forensic pathologist in evaluating the possibility of CPR and the differentiation of resuscitative artifact from forensically significant visceral injury observed at autopsy. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Pickrell, Brent B.; Serebrakian, Arman T.; Maricevich, Renata S.
2017-01-01
Mandible fractures account for a significant portion of maxillofacial injuries and the evaluation, diagnosis, and management of these fractures remain challenging despite improved imaging technology and fixation techniques. Understanding appropriate surgical management can prevent complications such as malocclusion, pain, and revision procedures. Depending on the type and location of the fractures, various open and closed surgical reduction techniques can be utilized. In this article, the authors review the diagnostic evaluation, treatment options, and common complications of mandible fractures. Special considerations are described for pediatric and atrophic mandibles. PMID:28496390
Pickrell, Brent B; Serebrakian, Arman T; Maricevich, Renata S
2017-05-01
Mandible fractures account for a significant portion of maxillofacial injuries and the evaluation, diagnosis, and management of these fractures remain challenging despite improved imaging technology and fixation techniques. Understanding appropriate surgical management can prevent complications such as malocclusion, pain, and revision procedures. Depending on the type and location of the fractures, various open and closed surgical reduction techniques can be utilized. In this article, the authors review the diagnostic evaluation, treatment options, and common complications of mandible fractures. Special considerations are described for pediatric and atrophic mandibles.
Progressive Fracture of Composite Structures
NASA Technical Reports Server (NTRS)
Chamis, Christos C.; Minnetyan, Levon
2008-01-01
A new approach is described for evaluating fracture in composite structures. This approach is independent of classical fracture mechanics parameters like fracture toughness. It relies on computational simulation and is programmed in a stand-alone integrated computer code. It is multiscale, multifunctional because it includes composite mechanics for the composite behavior and finite element analysis for predicting the structural response. It contains seven modules; layered composite mechanics (micro, macro, laminate), finite element, updating scheme, local fracture, global fracture, stress based failure modes, and fracture progression. The computer code is called CODSTRAN (Composite Durability Structural ANalysis). It is used in the present paper to evaluate the global fracture of four composite shell problems and one composite built-up structure. Results show that the composite shells and the built-up composite structure global fracture are enhanced when internal pressure is combined with shear loads.
CARES/Life Ceramics Durability Evaluation Software Enhanced for Cyclic Fatigue
NASA Technical Reports Server (NTRS)
Nemeth, Noel N.; Powers, Lynn M.; Janosik, Lesley A.
1999-01-01
The CARES/Life computer program predicts the probability of a monolithic ceramic component's failure as a function of time in service. The program has many features and options for materials evaluation and component design. It couples commercial finite element programs--which resolve a component's temperature and stress distribution--to reliability evaluation and fracture mechanics routines for modeling strength-limiting defects. The capability, flexibility, and uniqueness of CARES/Life have attracted many users representing a broad range of interests and has resulted in numerous awards for technological achievements and technology transfer. Recent work with CARES/Life was directed at enhancing the program s capabilities with regards to cyclic fatigue. Only in the last few years have ceramics been recognized to be susceptible to enhanced degradation from cyclic loading. To account for cyclic loads, researchers at the NASA Lewis Research Center developed a crack growth model that combines the Power Law (time-dependent) and the Walker Law (cycle-dependent) crack growth models. This combined model has the characteristics of Power Law behavior (decreased damage) at high R ratios (minimum load/maximum load) and of Walker law behavior (increased damage) at low R ratios. In addition, a parameter estimation methodology for constant-amplitude, steady-state cyclic fatigue experiments was developed using nonlinear least squares and a modified Levenberg-Marquardt algorithm. This methodology is used to give best estimates of parameter values from cyclic fatigue specimen rupture data (usually tensile or flexure bar specimens) for a relatively small number of specimens. Methodology to account for runout data (unfailed specimens over the duration of the experiment) was also included.
A critical evaluation of the enhancement of mechanical properties of epoxy modified using CNTs
NASA Astrophysics Data System (ADS)
Bedsole, Robert W.; Park, Cheol; Bogert, Philip B.; Tippur, Hareesh V.
2015-09-01
Carbon nanotubes (CNTs) have been widely shown in the literature to improve mechanical properties of epoxy, such as tensile strength, elastic modulus, strain to failure, and fracture toughness. These improvements in nanocomposite properties have been attributed to the extraordinary properties of the nanotubes, as well as the quality of their dispersion within and adhesion to the epoxy matrix. However, many authors have also struggled to show significant mechanical improvements using similar methodologies and despite, in some cases, showing qualitative improvements in dispersion with optical microscopy. These authors have frequently resorted to other methods for improving the mechanical properties of CNT/epoxy, such as electrically aligning CNTs, using different types of CNTs, or modifying the stoichiometry. The current work examines many different dispersion techniques, types of CNTs, types of epoxies, curing cycles, and other variables in an attempt to improve the mechanical properties of neat epoxy with CNTs. Despite seeing significant changes in the microscopy, no significant improvements in tensile or fracture properties have been attributed to CNTs in this work.
Fracture identification based on remote detection acoustic reflection logging
NASA Astrophysics Data System (ADS)
Zhang, Gong; Li, Ning; Guo, Hong-Wei; Wu, Hong-Liang; Luo, Chao
2015-12-01
Fracture identification is important for the evaluation of carbonate reservoirs. However, conventional logging equipment has small depth of investigation and cannot detect rock fractures more than three meters away from the borehole. Remote acoustic logging uses phase-controlled array-transmitting and long sound probes that increase the depth of investigation. The interpretation of logging data with respect to fractures is typically guided by practical experience rather than theory and is often ambiguous. We use remote acoustic reflection logging data and high-order finite-difference approximations in the forward modeling and prestack reverse-time migration to image fractures. First, we perform forward modeling of the fracture responses as a function of the fracture-borehole wall distance, aperture, and dip angle. Second, we extract the energy intensity within the imaging area to determine whether the fracture can be identified as the formation velocity is varied. Finally, we evaluate the effect of the fracture-borehole distance, fracture aperture, and dip angle on fracture identification.
Unconventional Liquid Flow in Low-Permeability Media: Theory and Revisiting Darcy's Law
NASA Astrophysics Data System (ADS)
Liu, H. H.; Chen, J.
2017-12-01
About 80% of fracturing fluid remains in shale formations after hydraulic fracturing and the flow back process. It is critical to understand and accurately model the flow process of fracturing fluids in a shale formation, because the flow has many practical applications for shale gas recovery. Owing to the strong solid-liquid interaction in low-permeability media, Darcy's law is not always adequate for describing liquid flow process in a shale formation. This non-Darcy flow behavior (characterized by nonlinearity of the relationship between liquid flux and hydraulic gradient), however, has not been given enough attention in the shale gas community. The current study develops a systematic methodology to address this important issue. We developed a phenomenological model for liquid flow in shale (in which liquid flux is a power function of pressure gradient), an extension of the conventional Darcy's law, and also a methodology to estimate parameters for the phenomenological model from spontaneous imbibition tests. The validity of our new developments is verified by satisfactory comparisons of theoretical results and observations from our and other research groups. The relative importance of this non-Darcy liquid flow for hydrocarbon production in unconventional reservoirs remains an issue that needs to be further investigated.
Fractography: determining the sites of fracture initiation.
Mecholsky, J J
1995-03-01
Fractography is the analysis of fracture surfaces. Here, it refers to quantitative fracture surface analysis (FSA) in the context of applying the principles of fracture mechanics to the topography observed on the fracture surface of brittle materials. The application of FSA is based on the principle that encoded on the fracture surface of brittle materials is the entire history of the fracture process. It is our task to develop the skills and knowledge to decode this information. There are several motivating factors for applying our knowledge of FSA. The first and foremost is that there is specific, quantitative information to be obtained from the fracture surface. This information includes the identification of the size and location of the fracture initiating crack or defect, the stress state at failure, the existence, or not, of local or global residual stress, the existence, or not, of stress corrosion and a knowledge of local processing anomalies which affect the fracture process. The second motivating factor is that the information is free. Once a material is tested to failure, the encoded information becomes available. If we decide to observe the features produced during fracture then we are rewarded with much information. If we decide to ignore the fracture surface, then we are left to guess and/or reason as to the cause of the failure without the benefit of all of the possible information available. This paper addresses the application of quantitative fracture surface analysis to basic research, material and product development, and "trouble-shooting" of in-service failures. First, the basic principles involved will be presented. Next, the methodology necessary to apply the principles will be presented. Finally, a summary of the presentation will be made showing the applicability to design and reliability.
McDonough, Christine M; Colla, Carrie H; Carmichael, Donald; Tosteson, Anna N A; Tosteson, Tor D; Bell, John-Erik; Cantu, Robert V; Lurie, Jonathan D; Bynum, Julie P W
2017-03-01
Clinical practice guidelines recommend fall risk assessment and intervention for older adults who sustain a fall-related injury to prevent future injury and mobility decline. The aim of this study was to describe how often Medicare beneficiaries with upper extremity fracture receive evaluation and treatment for fall risk. Observational cohort. Participants were fee-for-service beneficiaries age 66 to 99 treated as outpatients for proximal humerus or distal radius/ulna ("wrist") fragility fractures. -Participants were studied using Carrier and Outpatient Hospital files. The proportion of patients evaluated or treated for fall risk up to 6 months after proximal humerus or wrist fracture from 2007-2009 was examined based on evaluation, treatment, and diagnosis codes. Time to evaluation and number of treatment sessions were calculated. Logistic regression was used to analyze patient characteristics that predicted receiving evaluation or treatment. Narrow (gait training) and broad (gait training or therapeutic exercise) definitions of service were used. There were 309,947 beneficiaries who sustained proximal humerus (32%) or wrist fracture (68%); 10.7% received evaluation or treatment for fall risk or gait issues (humerus: 14.2%; wrist: 9.0%). Using the broader definition, the percentage increased to 18.5% (humerus: 23.4%; wrist: 16.3%). Factors associated with higher likelihood of services after fracture were: evaluation or treatment for falls or gait prior to fracture, more comorbidities, prior nursing home stay, older age, humerus fracture (vs wrist), female sex, and white race. Claims analysis may underestimate physician and physical therapist fall assessments, but it is not likely to qualitatively change the results. A small proportion of older adults with upper extremity fracture received fall risk assessment and treatment. Providers and health systems must advance efforts to provide timely evidence-based management of fall risk in this population. © 2017 American Physical Therapy Association
Colla, Carrie H.; Carmichael, Donald; Tosteson, Anna N. A.; Tosteson, Tor D.; Bell, John-Erik; Cantu, Robert V.; Lurie, Jonathan D.; Bynum, Julie P. W.
2017-01-01
Abstract Background: Clinical practice guidelines recommend fall risk assessment and intervention for older adults who sustain a fall-related injury to prevent future injury and mobility decline. Objective: The aim of this study was to describe how often Medicare beneficiaries with upper extremity fracture receive evaluation and treatment for fall risk. Design: Observational cohort. Methods: Participants were fee-for-service beneficiaries age 66 to 99 treated as outpatients for proximal humerus or distal radius/ulna (“wrist”) fragility fractures. -Participants were studied using Carrier and Outpatient Hospital files. The proportion of patients evaluated or treated for fall risk up to 6 months after proximal humerus or wrist fracture from 2007–2009 was examined based on evaluation, treatment, and diagnosis codes. Time to evaluation and number of treatment sessions were calculated. Logistic regression was used to analyze patient characteristics that predicted receiving evaluation or treatment. Narrow (gait training) and broad (gait training or therapeutic exercise) definitions of service were used. Results: There were 309,947 beneficiaries who sustained proximal humerus (32%) or wrist fracture (68%); 10.7% received evaluation or treatment for fall risk or gait issues (humerus: 14.2%; wrist: 9.0%). Using the broader definition, the percentage increased to 18.5% (humerus: 23.4%; wrist: 16.3%). Factors associated with higher likelihood of services after fracture were: evaluation or treatment for falls or gait prior to fracture, more comorbidities, prior nursing home stay, older age, humerus fracture (vs wrist), female sex, and white race. Limitations: Claims analysis may underestimate physician and physical therapist fall assessments, but it is not likely to qualitatively change the results. Conclusions: A small proportion of older adults with upper extremity fracture received fall risk assessment and treatment. Providers and health systems must advance efforts to provide timely evidence-based management of fall risk in this population. PMID:28340130
Nondestructive damage evaluation in ceramic matrix composites for aerospace applications.
Dassios, Konstantinos G; Kordatos, Evangelos Z; Aggelis, Dimitrios G; Matikas, Theodore E
2013-01-01
Infrared thermography (IRT) and acoustic emission (AE) are the two major nondestructive methodologies for evaluating damage in ceramic matrix composites (CMCs) for aerospace applications. The two techniques are applied herein to assess and monitor damage formation and evolution in a SiC-fiber reinforced CMC loaded under cyclic and fatigue loading. The paper explains how IRT and AE can be used for the assessment of the material's performance under fatigue. IRT and AE parameters are specifically used for the characterization of the complex damage mechanisms that occur during CMC fracture, and they enable the identification of the micromechanical processes that control material failure, mainly crack formation and propagation. Additionally, these nondestructive parameters help in early prediction of the residual life of the material and in establishing the fatigue limit of materials rapidly and accurately.
High prevalence of simultaneous rib and vertebral fractures in patients with hip fracture.
Lee, Bong-Gun; Sung, Yoon-Kyoung; Kim, Dam; Choi, Yun Young; Kim, Hunchul; Kim, Yeesuk
2017-02-01
The purpose was to evaluate the prevalence and location of simultaneous fracture using bone scans in patients with hip fracture and to determine the risk factors associated with simultaneous fracture. One hundred eighty two patients with hip fracture were reviewed for this study. Clinical parameters and bone mineral density (BMD) of the lumbar vertebra and femoral neck were investigated. To identify acute simultaneous fracture, a bone scan was performed at 15.4±4.1days after hip fracture. The prevalence and location of simultaneous fracture were evaluated, and multivariate logistic regression analysis was performed to determine the risk factors. Simultaneous fracture was observed in 102 of 182 patients, a prevalence of 56.0%. Rib fracture was the most common type of simultaneous fracture followed by rib with vertebral fracture. The BMD of the lumbar vertebra was significantly lower in patients with simultaneous fracture (p=0.044) and was identified as an independent risk factor (odds ratio: OR 0.05, 95% confidence interval: CI 0.01-0.57). The prevalence of simultaneous fracture was relatively high among patients with hip fracture, and BMD was significantly lower in patients with simultaneous fracture than in patients without it. Surgeons should be aware of the possibility of simultaneous fracture in patients with hip fracture. Copyright © 2016 Elsevier Ltd. All rights reserved.
Literature review of outcome parameters used in studies of Geriatric Fracture Centers.
Liem, I S L; Kammerlander, C; Suhm, N; Kates, S L; Blauth, M
2014-02-01
A variety of multidisciplinary treatment models have been described to improve outcome after osteoporotic hip fractures. There is a tendency toward better outcomes after implementation of the most sophisticated model with a shared leadership for orthopedic surgeons and geriatricians; the Geriatric Fracture Center. The purpose of this review is to evaluate the use of outcome parameters in published literature on the Geriatric Fracture Center evaluation studies. A literature search was performed using Medline and the Cochrane Library to identify Geriatric Fracture Center evaluation studies. The outcome parameters used in the included studies were evaluated. A total of 16 outcome parameters were used in 11 studies to evaluate patient outcome in 8 different Geriatric Fracture Centers. Two of these outcome parameters are patient-reported outcome measures and 14 outcome parameters were objective measures. In-hospital mortality, length of stay, time to surgery, place of residence and complication rate are the most frequently used outcome parameters. The patient-reported outcomes included activities of daily living and mobility scores. There is a need for generally agreed upon outcome measures to facilitate comparison of different care models.
[Imaging of traumatic injuries of the knee].
Blin, D; Cyteval, C; Kamba, C; Blondel, M; Lopez, F M
2007-05-01
Traumatic injuries to the knee are frequent (road or sports related accidents, falls in elderly people). The Ottawa knee rules are applied and dictate the need for additional evaluation. Some fractures are adequately assessed on plain radiographs alone whereas other fractures (tibial plateau fracture) require additional evaluation with CT. Some fractures may be occult: the significance of lipohemarthrosis (indirect sign of intra-articular fracture on the lateral radiograph with horizontal beam) must be known. Benign appearing avulsion fractures suggest the presence of underlying capsuloligamentous injuries requiring further evaluation with MRI. The imaging work-up of sprains is usually negative. MRI may show areas of bone contusion that further the understanding of the mechanism of injury, predict and confirm the presence of capsuloligamentous injuries. Angiography is performed to detect popliteal artery injuries after knee dislocation which is associated with a risk of ischemia.
Multiscale Multifunctional Progressive Fracture of Composite Structures
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Minnetyan, L.
2012-01-01
A new approach is described for evaluating fracture in composite structures. This approach is independent of classical fracture mechanics parameters like fracture toughness. It relies on computational simulation and is programmed in a stand-alone integrated computer code. It is multiscale, multifunctional because it includes composite mechanics for the composite behavior and finite element analysis for predicting the structural response. It contains seven modules; layered composite mechanics (micro, macro, laminate), finite element, updating scheme, local fracture, global fracture, stress based failure modes, and fracture progression. The computer code is called CODSTRAN (Composite Durability Structural ANalysis). It is used in the present paper to evaluate the global fracture of four composite shell problems and one composite built-up structure. Results show that the composite shells. Global fracture is enhanced when internal pressure is combined with shear loads. The old reference denotes that nothing has been added to this comprehensive report since then.
Fracture properties of concrete specimens made from alkali activated binders
NASA Astrophysics Data System (ADS)
Šimonová, Hana; Kucharczyková, Barbara; Topolář, Libor; Bílek, Vlastimil, Jr.; Keršner, Zbyněk
2017-09-01
The aim of this paper is to quantify crack initiation and other fracture properties - effective fracture toughness and specific fracture energy - of two types of concrete with an alkali activated binder. The beam specimens with a stress concentrator were tested in a three-point bending test after 28, 90, and 365 days of maturing. Records of fracture tests in the form of load versus deflection (P-d) diagrams were evaluated using effective crack model and work-of-fracture method and load versus mouth crack opening displacement (P-CMOD) diagrams were evaluated using the Double-K fracture model. The initiation of cracks during the fracture tests for all ages was also monitored by the acoustic emission method. The higher value of monitored mechanical fracture parameters of concrete with alkali activated blast furnace slag were achieved with substitution blast furnace slag by low calcium fly ash in comparison with substitution by cement kiln dust.
Residual Strength Analyses of Monolithic Structures
NASA Technical Reports Server (NTRS)
Forth, Scott (Technical Monitor); Ambur, Damodar R. (Technical Monitor); Seshadri, B. R.; Tiwari, S. N.
2003-01-01
Finite-element fracture simulation methodology predicts the residual strength of damaged aircraft structures. The methodology uses the critical crack-tip-opening-angle (CTOA) fracture criterion to characterize the fracture behavior of the material. The CTOA fracture criterion assumes that stable crack growth occurs when the crack-tip angle reaches a constant critical value. The use of the CTOA criterion requires an elastic- plastic, finite-element analysis. The critical CTOA value is determined by simulating fracture behavior in laboratory specimens, such as a compact specimen, to obtain the angle that best fits the observed test behavior. The critical CTOA value appears to be independent of loading, crack length, and in-plane dimensions. However, it is a function of material thickness and local crack-front constraint. Modeling the local constraint requires either a three-dimensional analysis or a two-dimensional analysis with an approximation to account for the constraint effects. In recent times as the aircraft industry is leaning towards monolithic structures with the intention of reducing part count and manufacturing cost, there has been a consistent effort at NASA Langley to extend critical CTOA based numerical methodology in the analysis of integrally-stiffened panels.In this regard, a series of fracture tests were conducted on both flat and curved aluminum alloy integrally-stiffened panels. These flat panels were subjected to uniaxial tension and during the test, applied load-crack extension, out-of-plane displacements and local deformations around the crack tip region were measured. Compact and middle-crack tension specimens were tested to determine the critical angle (wc) using three-dimensional code (ZIP3D) and the plane-strain core height (hJ using two-dimensional code (STAGS). These values were then used in the STAGS analysis to predict the fracture behavior of the integrally-stiffened panels. The analyses modeled stable tearing, buckling, and crack branching at the integral stiffener using different values of critical CTOA for different material thicknesses and orientation. Comparisons were made between measured and predicted load-crack extension, out-of-plane displacements and local deformations around the crack tip region. Simultaneously, three-dimensional capabilities to model crack branching and to monitor stable crack growth of multiple cracks in a large thick integrally-stiffened flat panels were implemented in three-dimensional finite element code (ZIP3D) and tested by analyzing the integrally-stiffened panels tested at Alcoa. The residual strength of the panels predicted from STAGS and ZP3D code compared very well with experimental data. In recent times, STAGS software has been updated with new features and now one can have combinations of solid and shell elements in the residual strength analysis of integrally-stiffened panels.
NASA Astrophysics Data System (ADS)
Klepikova, M.; Le Borgne, T.; Bour, O.; Lavenant, N.
2011-12-01
In fractured aquifers flow generally takes place in a few fractured zones. The identification of these main flow paths is critical as it controls the transfer of fluids in the subsurface. For realistic modeling of the flow the knowledge about the spatial variability of hydraulic properties is required. Inverse problems based on hydraulic head data are generally strongly underconstrained. A possible way of reducing the uncertainty is to combine different type of data, such as flow measurements, temperature profiles or tracer test data. Here, we focus on the use of temperature, which can be seen as a natural tracer of ground water flow. Previous studies used temperature anomalies to quantify vertical or horizontal regional groundwater flow velocities. Most of these studies assume that water in the borehole is stagnant, and, thus, the temperature profile in the well is representative of the temperature in the aquifer. In fractured media, differences in hydraulic head between flow paths connected to a borehole generally create ambient vertical flow within the borehole. These differences in hydraulic head are in general due to regional flow conditions. Estimation of borehole vertical flow is of interest as it can be used to derive large scale hydraulic connections. Under a single-borehole configuration, the estimation of vertical flow can be used to estimate the local transimissivities and the hydraulic head differences driving the flow through the borehole. Under a cross-borehole set up, it can be used to characterize hydraulic connections and estimate their hydraulic properties. Using a flow and heat transfer numerical model, we find that the slope of the temperature profile is related directly to vertical borehole flow velocity. Thus, we propose a method to invert temperature measurements to derive borehole flow velocities and subsequently the fracture zone hydraulic and connectivity properties. The advantage of temperature measurements compared to flowmeter measurements is that temperature can be measured easily and very accurately, continuously in space and time. To test the methodology, we have performed a field experiment at a crystalline rocks field site, located in Ploemeur, Brittany (France). The site is composed of three 100 meters deep boreholes, located at 6-10 m distances from each other. The experiment consisted in measuring the borehole temperature profiles under all possible pumping configurations. Hence, the pumping and monitoring wells were successively changed. The thermal response in observation well induced by changes in pumping conditions is related to changes in vertical flow velocities and thus to the inter-borehole fracture connectivity. Based on this dataset, we propose a methodology to include temperature profiles in inverse problem for characterizing the spatial distribution of fracture zone hydraulic properties.
Payne, Brian S; Kutz, Timothy J; Di Maio, Ann; Gerard, James M
2016-10-01
Fractures are a frequent reason for emergency department visits and evaluation for abusive head trauma is an associated concern in infants. Recent guidelines have suggested that retinal examination may not be necessary in the absence of intracranial injury, but there is a lack of empirical evidence in infants < 1 year of age. Our aim was to evaluate the prevalence of retinal hemorrhages in infants with isolated long bone fractures. Retrospective chart review of infants < 1 year of age who presented to an urban, tertiary care pediatric hospital between January 2004 and April 2014 with the diagnosis of an acute long bone fracture or retinal hemorrhages. Patients were excluded for head injury, altered mental status, injury mechanism of motor vehicle accident, multiple fractures or injuries outside the fracture area. Patients were identified through trauma registry data and International Classification of Diseases codes. One hundred and forty-six patients had isolated long bone fractures, of which 68 patients did not undergo a retinal examination and 78 patients had dilated eye examinations, with no patients identified as having retinal hemorrhages. There were 46 patients identified with retinal hemorrhages concerning for abuse. No patients with retinal hemorrhages had isolated long bone fractures. In infants < 1 year of age presenting with isolated long bone fractures, a dilated eye examination to evaluate for retinal hemorrhages is not likely to yield additional information. Our results support recent studies that a subset of children and infants may not require dilated eye examinations in the evaluation of possible abuse. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Khanikar, Prasenjit
Different aluminum alloys can be combined, as composites, for tailored dynamic applications. Most investigations pertaining to metallic alloy layered composites, however, have been based on quasi-static approaches. The dynamic failure of layered metallic composites, therefore, needs to be characterized in terms of strength, toughness, and fracture response. A dislocation-density based crystalline plasticity formulation, finite-element techniques, rational crystallographic orientation relations and a new fracture methodology were used to predict the failure modes associated with the high strain rate behavior of aluminum layered composites. Two alloy layers, a high strength alloy, aluminum 2195, and an aluminum alloy 2139, with high toughness, were modeled with representative microstructures that included precipitates, dispersed particles, and different grain boundary (GB) distributions. The new fracture methodology, based on an overlap method and phantom nodes, is used with a fracture criteria specialized for fracture on different cleavage planes. One of the objectives of this investigation, therefore, was to determine the optimal arrangements of the 2139 and 2195 aluminum alloys for a metallic layered composite that would combine strength, toughness and fracture resistance for high strain-rate applications. Different layer arrangements were investigated for high strain-rate applications, and the optimal arrangement was with the high toughness 2139 layer on the bottom, which provided extensive shear strain localization, and the high strength 2195 layer on the top for high strength resistance. The layer thickness of the bottom high toughness layer also affected the bending behavior of the roll-boned interface and the potential delamination of the layers. Shear strain localization, dynamic cracking and delamination were the mutually competing failure mechanisms for the layered metallic composite, and control of these failure modes can be optimized for high strain-rate applications. The second major objective of this investigation was the use of recently developed dynamic fracture formulations to model and analyze the crack nucleation and propagation of aluminum layered composites subjected to high strain rate loading conditions and how microstructural effects, such as precipitates, dispersed particles, and GB orientations affect failure evolution. This dynamic fracture approach is used to investigate crack nucleation and crack growth as a function of the different microstructural characteristics of each alloy in layered composites with and without pre-existing cracks. The zigzag nature of the crack paths were mainly due to the microstructural features, such as precipitates and dispersed particles distributions and orientations ahead of the crack front, and it underscored the capabilities of the fracture methodology. The evolution of dislocation density and the formation of localized shear slip contributed to the blunting of the propagating crack. Extensive geometrical and thermal softening due to the localized plastic slip also affected crack path orientations and directions. These softening mechanisms resulted in the switching of cleavage planes, which affected crack path orientations. Interface delamination can also have an important role in the failure and toughening of the layered composites. Different scenarios of delamination were investigated, such as planar crack growth and crack penetration into the layers. The presence of brittle surface oxide platelets in the interface region also significantly influenced the interface delamination process. Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM) and Optical Microscopy (OM) characterization provided further physical insights and validation of the predictive capabilities. The inherent microstructural features of each alloy play a significant role in the dynamic fracture, shear strain localization, and interface delamination of the layered metallic composite. These microstructural features, such as precipitates, dispersed particles, and GB orientations and distributions can be optimized for desired behavior of metallic composites.
Parreira, Patrícia C S; Maher, Chris G; Megale, Rodrigo Z; March, Lyn; Ferreira, Manuela L
2017-12-01
Vertebral compression fractures (VCFs) are the most common type of osteoporotic fracture comprising approximately 1.4 million cases worldwide. Clinical practice guidelines can be powerful tools for promoting evidence-based practice as they integrate research findings to support decision making. However, currently available clinical guidelines and recommendations, established by different medical societies, are sometimes contradictory. The aim of this study was to appraise the recommendations and the methodological quality of international clinical guidelines for the management of VCFs. This is a systematic review of clinical guidelines for the management of VCF. Guidelines were selected by searching MEDLINE and PubMed, PEDro, CINAHL, and EMBASE electronic databases between 2010 and 2016. We also searched clinical practice guideline databases, including the National Guideline Clearinghouse and the Canadian Medical Association InfoBase. The methodological quality of the guidelines was assessed by two authors independently using the Appraisal of Guidelines, Research and Evaluation (AGREE) II Instrument. We also classified the strength of each recommendation as either strong (ie, based on high-quality studies with consistent findings for recommending for or against the intervention), weak (ie, based on a lack of compelling evidence resulting in uncertainty for benefit or potential harm), or expert consensus (ie, based on expert opinion of the working group rather than on scientific evidence). Guideline recommendations were grouped into diagnostic, conservative care, interventional care, and osteoporosis treatment and prevention of future fractures. Our study was prospectively registered on PROSPERO. Four guidelines from three countries, published in the period 2010-2013, were included. In general, the quality was not satisfactory (50% or less of the maximum possible score). The domains scoring 50% or less of the maximum possible score were rigor of development, clarity of presentation, and applicability. The use of plain radiography or dual-energy X-ray absorptiometry for diagnosis was recommended in two of the four guidelines. Vertebroplasty or kyphoplasty was recommended in three of the four guidelines. The recommendation for bed rest, trunk orthoses, electrical stimulation, and supervised or unsupervised exercise was inconsistent across the included guidelines. The comparison of clinical guidelines for the management of VCF showed that diagnostic and therapeutic recommendations were generally inconsistent. The evidence available to guideline developers was limited in quantity and quality. Greater efforts are needed to improve the quality of the majority of guidelines. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Holford, Karen M.; Eaton, Mark J.; Hensman, James J.; Pullin, Rhys; Evans, Sam L.; Dervilis, Nikolaos; Worden, Keith
2017-04-01
The acoustic emission (AE) phenomenon has many attributes that make it desirable as a structural health monitoring or non-destructive testing technique, including the capability to continuously and globally monitor large structures using a sparse sensor array and with no dependency on defect size. However, AE monitoring is yet to fulfil its true potential, due mainly to limitations in location accuracy and signal characterisation that often arise in complex structures with high levels of background noise. Furthermore, the technique has been criticised for a lack of quantitative results and the large amount of operator interpretation required during data analysis. This paper begins by introducing the challenges faced in developing an AE based structural health monitoring system and then gives a review of previous progress made in addresing these challenges. Subsequently an overview of a novel methodology for automatic detection of fatigue fractures in complex geometries and noisy environments is presented, which combines a number of signal processing techniques to address the current limitations of AE monitoring. The technique was developed for monitoring metallic landing gear components during pre-flight certification testing and results are presented from a full-scale steel landing gear component undergoing fatigue loading. Fracture onset was successfully identify automatically at 49,000 fatigue cycles prior to final failure (validated by the use of dye penetrant inspection) and the fracture position was located to within 10 mm of the actual location.
NASA Astrophysics Data System (ADS)
Koseski, Ryan P.
Small, roughly spherical ceramic particles, approximately 1mm in size are used for a number of applications including casting sands, catalysts, and cement fillers. The oil and natural gas industry utilizes such materials in tonnage quantities yearly as extraction aids. Particles intended for this application are referred to as proppants. Proppants are composed of materials that differ by density, strength and cost, and are selected on a site by site basis. Recently, competing usage and depletion of reserves of one of the most popular category of proppant materials, sintered aluminosilicates (e.g. kaolinite, bauxite) have driven the need for alternative raw materials for proppant manufacturing. Andesite, a by-product of mining operations in the south-west United States was identified as an abundant, readily available, and low cost alternative proppant material that can be fused and net-shaped into a glass which when crystallized results in microstructures which may offer substantial toughening and fracture characteristics which may serve to their advantage for use as proppants that do not decrease the permeability ("blind") the particle bed. This study addressed the devitrification behavior and its role on the mechanical properties of andesite-based glass-ceramic spheres for use as proppants. Timetemperature- transformation studies were performed to evaluate the devitrification behavior of andesite glass. Crystalline phase evolution and microstructural development were evaluated using quantitative x-ray diffraction, scanning electron microscopy, differential thermal analysis, and spectrophotometry. The andesite glass devitrification commenced with the precipitation of iron oxides (magnetite) which served as seeds for the epitaxial growth of dendritic pyroxenes. Mechanical properties, such as diametral compressive strength, fracture toughness, hardness, and fracture morphology were correlated with crystalline phase evolution. Selected heat treatments resulting in the desired combination of high strength, toughness, and coarse fragmentation of crystallized spheres were performed for subsequent evaluation of performance as a proppant using American Petroleum Institute test methodologies. For nominally 1mm diameter devitrified proppants, diametral compressive strengths of 150MPa were observed, while results of indentation fracture resistance measurements showed values of 1.5-2.0MPa˙;m. Combinations of these mechanical properties resulted in nearly 80% incidence of coarse fragmentation compared with 40% incidence in amorphous andesite proppants. Results corroborated the hypothesis that controlled devitrification resulted in substantial improvement in toughness and fracture morphology which in turn contributed to enhanced permeability of packed particle beds relative to state of the art glass proppants, and comparable to the present state of the art sintered bauxite- and kaolinite-based proppants.
Franzone, Jeanne M; Finkelstein, Mark S; Rogers, Kenneth J; Kruse, Richard W
2017-09-08
Evaluation of the union of osteotomies and fractures in patients with osteogenesis imperfecta (OI) is a critical component of patient care. Studies of the OI patient population have so far used varied criteria to evaluate bony union. The radiographic union score for tibial fractures (RUST), which was subsequently revised to the modified RUST, is an objective standardized method of evaluating fracture healing. We sought to evaluate the reliability of the modified RUST in the setting of the tibias of patients with OI. Tibial radiographs of 30 patients with OI fractures, or osteotomies were scored by 3 observers on 2 separate occasions. Each of the 4 cortices was given a score (1=no callus, 2=callus present, 3=bridging callus, and 4=remodeled, fracture not visible) and the modified RUST is the sum of these scores (range, 4 to 16). The interobserver and intraobserver reliabilities were evaluated using intraclass coefficients (ICC) with 95% confidence intervals. The ICC representing the interobserver reliability for the first iteration of scores was 0.926 (0.864 to 0.962) and for the second series was 0.915 (0.845 to 0.957). The ICCs representing the intraobserver reliability for each of the 3 reviewers for the measurements in series 1 and 2 were 0.860 (0.707 to 0.934), 0.994 (0.986 to 0.997), and 0.974 (0.946 to 0.988). The modified RUST has excellent interobserver and intraobserver reliability in the setting of OI despite challenges related to the poor quality of the bone and its dysplastic nature. The application and routine use of the modified RUST in the OI population will help standardize our evaluation of osteotomy and fracture healing. Level III-retrospective study of nonconsecutive patients.
Gupta, Pushpender; Barnwell, Jonathan C; Lenchik, Leon; Wuertzer, Scott D; Miller, Anna N
2016-06-01
The objective of the present study is to evaluate multidetector computed tomographic (MDCT) fracture patterns and associated injuries in patients with spinopelvic dissociation (SPD). Our institutional trauma registry database was reviewed from Jan. 1, 2006, to Sept. 30, 2012, specifically evaluating patients with sacral fractures. MDCT scans of patients with sacral fractures were reviewed to determine the presence of SPD. SPD cases were characterized into the following fracture patterns: U-shaped, Y-shaped, T-shaped, H-shaped, and burst. The following MDCT features were recorded: level of the horizontal fracture, location of vertical fracture, kyphosis between major fracture fragments, displacement of fracture fragment, narrowing of central spinal canal, narrowing of neural foramina, and extension into sacroiliac joints. Quantitative evaluation of the sacral fractures was performed in accordance with the consensus statement by the Spine Trauma Study Group. Medical records were reviewed to determine associated pelvic and non-pelvic fractures, bladder and bowel injuries, nerve injuries, and type of surgical intervention. Twenty-one patients had SPD, of whom 13 were men and eight were women. Mean age was 41.8 years (range 18.8 to 87.7). Five fractures (24 %) were U-shaped, six (29 %) H-shaped, four (19 %) Y-shaped, and six (29 %) burst. Nine patients (43 %) had central canal narrowing, and 19 (90 %) had neural foramina narrowing. Eleven patients (52 %) had kyphotic angulation between major fracture fragments, and seven patients (33 %) had either anterior (24 %) or posterior (10 %) displacement of the proximal fracture fragment. Fourteen patients (67 %) had associated pelvic fractures, and 20 (95 %) had associated non-pelvic fractures. Two patients (10 %) had associated urethral injuries, and one (5 %) had an associated colon injury. Seven patients (33 %) had associated nerve injuries. Six patients (29 %) had surgical fixation while 15 (71 %) were managed non-operatively. On trauma MDCT examinations, patients with SPD have characteristic fracture patterns. It is important to differentiate SPD from other pelvic ring injuries due to high rate of associated injuries. Although all SPD injuries are unstable and need fixation, the decision for operative management in an individual patient depends on the systemic injury pattern, specific fracture pattern, and the ability to attain stable screw fixation.
Lin, Mau-Chin; Lin, Sheng-Chieh; Wang, Yu-Tsai; Hu, Suh-Woan; Lee, Tzu-Hsin; Chen, Li-Kai; Huang, Her-Hsiung
2007-05-01
The purpose of this study was to evaluate the fracture resistance of Nd:YAG laser-welded cast titanium (Ti) joints with various clinical thicknesses and welding pulse energies. A four-point bending test was used to assess the effects of various specimen thicknesses (1-3 mm) and welding pulse energies (11-24 J) on the fracture resistance of Nd:YAG laser-welded Ti dental joints. Fracture resistance was evaluated in terms of the ratio of the number of fractured specimens to the number of tested specimens. As for the fracture frequencies, they were compared using the Cochran-Mantel-Haenszel test. Morphology of the fractured Ti joints was observed using a scanning electron microscope. Results showed that decreasing the specimen thickness and/or increasing the welding pulse energy, i.e., increasing the welded area percentage, resulted in an increase in the fracture resistance of the Ti joint. Where fracture occurred, the fracture site would be at the center of the weld metal.
Analysis of Composite Panel-Stiffener Debonding Using a Shell/3D Modeling Technique
NASA Technical Reports Server (NTRS)
Krueger, Ronald; Minguet, Pierre J.
2006-01-01
Interlaminar fracture mechanics has proven useful for characterizing the onset of delaminations in composites and has been used with limited success primarily to investigate onset in fracture toughness specimens and laboratory size coupon type specimens. Future acceptance of the methodology by industry and certification authorities however, requires the successful demonstration of the methodology on structural level. For this purpose a panel was selected that was reinforced with stringers. Shear loading cases the panel to buckle and the resulting out-of-plane deformations initiate skin/stringer separation at the location of an embedded defect. For finite element analysis, the panel and surrounding load fixture were modeled with shell element. A small section of the stringer foot and the panel in the vicinity of the embedded defect were modeled with a local 3D solid model. A failure index was calculated by correlating computed mixed-mode failure criterion of the graphite/epoxy material.
Systemic Delivery of Free Chitosan Accelerates Femur Fracture Healing in Rats.
Shao, Peng; Wei, Yongzhong; Dass, Crispin R; Zhang, Guoying; Wu, Zhisheng
2018-01-01
Chitosan-containing compounds have been shown to be suitable for bone replacement, but few studies demonstrate the impact of the chitosan as a free drug on the fracture.In this study, we aimed to evaluate possible effects of free chitosan on fracture healing. Thirty adult male Sprague-Dawley rats with a mean body weight of 205 g (range from 200g to 210g) were randomly and equally divided into two groups. Standardized femur fractures were created in all rats. Treatments were administered intraperitoneally twice weekly at 1 mg chitosan per injection and the controls were administered physiological saline. The site of the fracture was compared with the control group at 1, 2 and 4 weeks after surgery (n=5 in each group). The weight, activity and reaction of the rats were observed at all the timepoints. Anterior-posterior radiographs and micro-CT scans of all fractures were taken after surgery, and the parameters included: the volume of callus that was calculated using the Perkins volume formula, BV/TV, BV, BMD of cortical bone, cortical thickness, and cortical number at the fracture sites. After sacrifice, fractured femurs from rats were dissected and carefully cleaned of muscle around the fracture callus to preserve callus integrity. Sections were stained with haematoxylin and eosin for histological evaluation of healing. Radiological (X-ray and micro-CT) evaluation showed that fracture healing of the experimental group was better than control group at the second week and fourth week. Histological evaluation revealed fracture healing of the experimental group was better than control group at the same time. There was no statistically significant difference in fracture healing between the two groups at the first week. Systemic delivery of free chitosan can accelerate the bone healing process in rat femur fracture at the early-middle stage. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
NASA Astrophysics Data System (ADS)
Qian, Guian; Lei, Wei-Sheng; Niffenegger, M.; González-Albuixech, V. F.
2018-04-01
The work relates to the effect of temperature on the model parameters in local approaches (LAs) to cleavage fracture. According to a recently developed LA model, the physical consensus of plastic deformation being a prerequisite to cleavage fracture enforces any LA model of cleavage fracture to observe initial yielding of a volume element as its threshold stress state to incur cleavage fracture in addition to the conventional practice of confining the fracture process zone within the plastic deformation zone. The physical consistency of the new LA model to the basic LA methodology and the differences between the new LA model and other existing models are interpreted. Then this new LA model is adopted to investigate the temperature dependence of LA model parameters using circumferentially notched round tensile specimens. With the published strength data as input, finite element (FE) calculation is conducted for elastic-perfectly plastic deformation and the realistic elastic-plastic hardening, respectively, to provide stress distributions for model calibration. The calibration results in temperature independent model parameters. This leads to the establishment of a 'master curve' characteristic to synchronise the correlation between the nominal strength and the corresponding cleavage fracture probability at different temperatures. This 'master curve' behaviour is verified by strength data from three different steels, providing a new path to calculate cleavage fracture probability with significantly reduced FE efforts.
Osteoporotic fragility fractures in African Americans: under-recognized and undertreated.
Alam, Neelofar M.; Archer, Juanita A.; Lee, Euni
2004-01-01
PURPOSE: To determine the frequency of diagnosing and treating osteoporosis in patients with fragility fractures. METHODOLOGY: Retrospective review of medical records from January 1992 to December 2002 at Howard University Hospital, an urban tertiary care teaching hospital with a predominantly African-American population. Men 50 years old and women 45 years old with fractures caused by low impact falls (fragility fractures) were included. The diagnosis of osteoporosis was based on history, x-rays and pathology reports as indicated by ICD-9 codes (733.00-733.09) and review of medical records. MAIN FINDINGS: Of 58,841 patients who were admitted during the study period, 1,248 patients (2.1%) had fractures. There were 323 patients (65%) who had fractures secondary to low-impact falls. However, only 29 (8.9%) of these had a diagnosis of osteoporosis. Of these, only five (19%) patients were discharged on antiosteoporotic medications, and only one patient was discharged with a bisphosphonate therapy. No patient had DXA scans. CONCLUSIONS: In the population studied, osteoporosis was missed in the majority of the patients as an underlying cause for fragility fractures in African Americans. These results strongly suggest that physicians should be more aware of osteoporosis as an essential cause of fragility fractures. Early recognition and treatment in African Americans and other ethnic groups can significantly decrease the morbidity, mortality and the healthcare costs. PMID:15624249
Ojeda-Reyes, Ángel Jesús; Barragán-Hervella, Rodolfo Gregorio; Vallecillo-Velázquez, Hernán; Alvarado-Ortega, Iván; Romero-Figueroa, María Socorro; Montiel-Jarquín, Álvaro José
2016-01-01
Functional and radiographic evaluation at midshaft clavicle fractures is better with surgical than conservative management. The aim of this paper is to describe the functional and radiological evaluation of patients with midshaft clavicle fracture surgery at the Hospital de Traumatología y Ortopedia of the Instituto Mexicano del Seguro Social. Descriptive studies, conducted during the period June 2014 to June 2015, patients undergoing surgical treatment for midshaft clavicle fracture were included. Constant-Murley and Montoya Scales were used to evaluate the functionality and radiological consolidation 6 months after the treatment. There were 90 patients, average age was 33.63 years, 78.9% were men, left side affected in 53.3% patients. At 6 months after surgery, functional results were excellent in 87.8% of patients, in 91% there was disappearance of fracture line regardless callus. The group of patients aged 18 and 40 years present better functional and radiographic results compared to the other groups (p <0.05). The management of patients with diaphyseal clavicle fracture should be surgical, ages between 18 to 40 years and between 61 to 76 years have better functional outcomes with greater consolidation of fracture line regardless of the callus.
Stieger-Vanegas, S M; Senthirajah, S K J; Nemanic, S; Baltzer, W; Warnock, J; Bobe, G
2015-01-01
The purpose of our study was (1) to determine whether four-view radiography of the pelvis is as reliable and accurate as computed tomography (CT) in diagnosing sacral and pelvic fractures, in addition to coxofemoral and sacroiliac joint subluxation or luxation, and (2) to evaluate the effect of the amount of training in reading diagnostic imaging studies on the accuracy of diagnosing sacral and pelvic fractures in dogs. Sacral and pelvic fractures were created in 11 canine cadavers using a lateral impactor. In all cadavers, frog-legged ventro-dorsal, lateral, right and left ventro-45°-medial to dorsolateral oblique frog leg ("rollover 45-degree view") radiographs and a CT of the pelvis were obtained. Two radiologists, two surgeons and two veterinary students classified fractures using a confidence scale and noted the duration of evaluation for each imaging modality and case. The imaging results were compared to gross dissection. All evaluators required significantly more time to analyse CT images compared to radiographic images. Sacral and pelvic fractures, specifically those of the sacral body, ischiatic table, and the pubic bone, were more accurately diagnosed using CT compared to radiography. Fractures of the acetabulum and iliac body were diagnosed with similar accuracy (at least 86%) using either modality. Computed tomography is a better method for detecting canine sacral and some pelvic fractures compared to radiography. Computed tomography provided an accuracy of close to 100% in persons trained in evaluating CT images.
The direct and indirect costs of long bone fractures in a working age US population.
Bonafede, Machaon; Espindle, Derek; Bower, Anthony G
2013-01-01
Information regarding the burden of fractures is limited, especially among working age patients. The objective of this study was to evaluate the direct and indirect costs associated with long bone fractures in a working age population using real-world claims data. This was a claims-based retrospective analysis, comparing adult patients in the 6 months before and 6 months after a long bone fracture between 1/1/2001 and 12/31/2008 using the MarketScan Research Databases. Outcomes included direct medical costs and utilization, as well as work absenteeism and short term disability, which was available for a sub-set of the patients. Observed and adjusted incremental costs (i.e., the difference in costs before and after a fracture) were evaluated and reported in 2008 US$. A total of 208,094 patients with at least one fracture were included in the study. Six, mutually exclusive fracture cohorts were evaluated: tibia shaft (n = 49,839), radius (n = 97,585), hip (n = 11,585), femur (n = 6788), humerus (n = 29,884), and those with multiple long bone fractures (n = 12,413). Average unadjusted direct costs in the 6-months before a long bone fracture ranged from $3291 (radius) to $12,923 (hip). The average incremental direct cost increase in the 6-months following a fracture ranged from $5707 (radius) to $39,041 (multiple fractures). Incremental absenteeism costs ranged from $950 (radius) to $2600 (multiple fractures), while incremental short-term disability costs ranged from $2050 (radius) to $4600 (multiple fractures). The results of this study indicate that long bone fractures are costly, both in terms of direct medical costs and lost productivity. Workplace absences and short-term disability represent a significant component of the burden of long bone fractures. These results may not be generalizable to all patients with fractures in the US, and do not reflect the burden of undiagnosed or sub-clinical fractures.
Accounting for Uncertainties in Strengths of SiC MEMS Parts
NASA Technical Reports Server (NTRS)
Nemeth, Noel; Evans, Laura; Beheim, Glen; Trapp, Mark; Jadaan, Osama; Sharpe, William N., Jr.
2007-01-01
A methodology has been devised for accounting for uncertainties in the strengths of silicon carbide structural components of microelectromechanical systems (MEMS). The methodology enables prediction of the probabilistic strengths of complexly shaped MEMS parts using data from tests of simple specimens. This methodology is intended to serve as a part of a rational basis for designing SiC MEMS, supplementing methodologies that have been borrowed from the art of designing macroscopic brittle material structures. The need for this or a similar methodology arises as a consequence of the fundamental nature of MEMS and the brittle silicon-based materials of which they are typically fabricated. When tested to fracture, MEMS and structural components thereof show wide part-to-part scatter in strength. The methodology involves the use of the Ceramics Analysis and Reliability Evaluation of Structures Life (CARES/Life) software in conjunction with the ANSYS Probabilistic Design System (PDS) software to simulate or predict the strength responses of brittle material components while simultaneously accounting for the effects of variability of geometrical features on the strength responses. As such, the methodology involves the use of an extended version of the ANSYS/CARES/PDS software system described in Probabilistic Prediction of Lifetimes of Ceramic Parts (LEW-17682-1/4-1), Software Tech Briefs supplement to NASA Tech Briefs, Vol. 30, No. 9 (September 2006), page 10. The ANSYS PDS software enables the ANSYS finite-element-analysis program to account for uncertainty in the design-and analysis process. The ANSYS PDS software accounts for uncertainty in material properties, dimensions, and loading by assigning probabilistic distributions to user-specified model parameters and performing simulations using various sampling techniques.
Stieger-Vanegas, Susanne M; Senthirajah, Sri Kumar Jamie; Nemanic, Sarah; Baltzer, Wendy; Warnock, Jennifer; Hollars, Katelyn; Lee, Scott S; Bobe, Gerd
2015-08-01
To determine, using 3 groups of evaluators of varying experience reading orthopedic CT studies, if 3-dimensional computed tomography (3D-CT) provides a more accurate and time efficient method for diagnosis of canine sacral and pelvic fractures, and displacements of the sacroiliac and coxofemoral joints compared with 2-dimensional computed tomography (2D-CT). Retrospective clinical and prospective study. Dogs (n = 23): 12 dogs with traumatic pelvic fractures, 11 canine cadavers with pelvic trauma induced by a lateral impactor. All dogs had a 2D-CT exam of the pelvis and subsequent 3D-CT reconstructions from the 2D-CT images. Both 2D-CT and 3D-CT studies were anonymized and randomly presented to 2 veterinary radiologists, 2 veterinary orthopedic surgeons, and 2 veterinary medical students. Evaluators classified fractures using a confidence scale and recorded the duration of evaluation for each modality and case. 3D-CT was a more time-efficient technique for evaluation of traumatic sacral and pelvic injuries compared with 2D-CT in all evaluator groups irrespective of experience level reading orthopedic CT studies. However, for radiologists and surgeons, 2D-CT was the more accurate technique for evaluating sacral and pelvic fractures. 3D-CT improves sacral and pelvic fracture diagnosis when added to 2D-CT; however, 3D-CT has a reduced accuracy for evaluation of sacral and pelvic fractures if used without concurrent evaluation of 2D-CT images. © Copyright 2014 by The American College of Veterinary Surgeons.
Heavy-section steel technology and irradiation programs-retrospective and prospective views
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nanstad, Randy K; Bass, Bennett Richard; Rosseel, Thomas M
In 1965, the Atomic Energy Commission (AEC), at the advice of the Advisory Committee on Reactor Safeguards (ACRS), initiated the process that resulted in the establishment of the Heavy Section Steel Technology (HSST) Program at Oak Ridge National Laboratory (ORNL). Dr. Spencer H. Bush of Battelle Northwest Laboratory, the man being honored by this symposium, representing the ACRS, was one of the Staff Advisors for the program and helped to guide its technical direction. In 1989, the Heavy-Section Steel Irradiation (HSSI) Program, formerly the HSST task on irradiation effects, was formed as a separate program, and this year the HSST/HSSImore » Programs, sponsored by the U.S. Nuclear Regulatory Commission (USNRC), celebrate 40 years of continuous research oriented toward the safety of light-water nuclear reactor pressure vessels. This paper presents a summary of results from those programs with a view to future activities. The HSST Program was established in 1967 and initially included extensive investigations of heavy-section low-alloy steel plates, forgings, and welds, including metallurgical studies, mechanical properties, fracture toughness (quasi-static and dynamic), fatigue crack-growth, and crack arrest toughness. Also included were irradiation effects studies, thermal shock analyses, testing of thick-section tensile and fracture specimens, and non-destructive testing. In the subsequent decades, the HSST Program conducted extensive large-scale experiments with intermediate-size vessels (with varying size flaws) pressurized to failure, similar experiments under conditions of thermal shock and even pressurized thermal shock (PTS), wide-plate crack arrest tests, and biaxial tests with cruciform-shaped specimens. Extensive analytical and numerical studies accompanied these experiments, including the development of computer codes such as the recent Fracture Analysis of Vessels Oak Ridge (FAVOR) code currently being used for PTS evaluations. In the absence of radiation damage to the RPV, fracture of the vessel is improbable. However, exposure to high energy neutrons can result in embrittlement of radiation-sensitive RPV materials. The HSSI Program has conducted a series of experiments to assess the effects of neutron irradiation on RPV material behavior, especially fracture toughness. These studies have included RPV plates and welds, varying chemical compositions, and fracture toughness specimens up to 4 in. thickness. The results of these investigations, in conjunction with results from commercial reactor surveillance programs, are used to develop a methodology for the prediction of radiation effects on RPV materials. Results from the HSST and HSSI Program are used by the USNRC in the evaluation of RPV integrity and regulation of overall nuclear plant safety.« less
A C, Unger; E, Wilde; B, Kienast; C, Jürgens; A P, Schulz
2014-01-01
There is only sparse data on clinical results and complications of the third-generation Gamma nailing system (Gamma3, Stryker). Therefore, we started a large multi-centre case series in 2008. The aim of this paper is to present the study design and early results of a single arm of a prospective, consecutive, monitored, post-market follow-up evaluation of Gamma3 nails. From September 2009 to January 2012, 154 consecutive patients with an average age of 80 ± 1.43 years (50-99 years) and a trochanteric femoral fracture were included in the local arm of the trial. All patients that fulfilled the inclusion criteria were treated with a Gamma3 nail. Preoperative variables included age, gender, fracture classification, walking ability (Merle d'Aubigné score), daily activity level (retrospective Zuckerman score), ASA rating of operative risk, waiting time for operation, use of walker or crutches and body mass index (BMI). Skin-to-skin time, fluoroscopy time, blood loss, intraoperative complications and device information were recorded for each patient. Follow-up postoperative assessment was undertaken at 4, 12 and 24 months. Hip range of motion, pain around the hip and the tight, walking ability (Merle d'Aubigné score, Sahlgrenska mobility score) and management of daily life (Zuckerman score) were used to evaluate the outcome. The descriptive data of age, gender, BMI, ASA classification, fracture type and skin-to-skin time is similar to other studies. Median fluoroscopy time was 62 seconds (range: 4-225 seconds) and significantly shorter in closed reductions. No intraoperative implant-related complication was recorded. A cut-out of the leg-screw during assessment period occurred in 2.6% patients (n = 4). At the 12-month assessment two (1.8%) non-unions were identified and two patients (1.8%) had broken the femoral shaft below the 180 mm nail after a fall. Analysis of the scores showed significantly declined mobility and activity in daily life four months after operation which increased significantly from four to 12 months and increased slightly between 12 and 24 months after fracture. A low implant-associated complication rate was achieved in geriatric patients with trochanteric femoral fractures using the Gamma3 nail. A better outcome concerning mobility, activity in daily life and complications compared to the Gamma2 nail could not be found in comparison to historic data.
Discussion of examination of a cored hydraulic fracture in a deep gas well
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nolte, K.G.
Warpinski et al. document information found from a core through a formation after a hydraulic fracture treatment. As they indicate, the core provides the first detailed evaluation of an actual propped hydraulic fracture away from the well and at a significant depth, and this evaluation leads to findings that deviate substantially from the assumptions incorporated into current fracturing models. In this discussion, a defense of current fracture design assumptions is developed. The affirmation of current assumptions, for general industry applications, is based on an assessment of the global impact of the local complexity found in the core. The assessment leadsmore » to recommendations for the evolution of fracture design practice.« less
Corrective Septorhinoplasty in Acute Nasal Bone Fractures.
Kim, Jisung; Jung, Hahn Jin; Shim, Woo Sub
2018-03-01
Closed reduction is generally recommended for acute nasal bone fractures, and rhinoplasty is considered in cases with an unsatisfactory outcome. However, concomitant rhinoplasty with fracture reduction might achieve better surgical outcomes. This study investigated the surgical techniques and outcomes in patients who underwent rhinoplasty and fracture reduction concomitantly, during the acute stage of nasal bone fracture. Forty-five patients who underwent concomitant rhinoplasty and fracture reduction were enrolled. Nasal bone fractures were classified into three major types (type I, simple fracture; type II, fracture line that mimics nasal osteotomy; and type III, comminuted fracture) based on computed tomography images and preoperative facial images. Two independent otolaryngology-head and neck surgeons evaluated the surgical outcomes and telephone based survey were made to evaluate patients satisfaction. Among 45 patients, there were 39 males and 6 females. Type I was the commonest type of fracture with 18 patients (40%), while the most frequently used surgical technique for corrective surgery was dorsal augmentation with 44 patients (97.8%). The mean visual analogue scale satisfaction score of the surgeons and patients were 7.62 and 8, respectively, with no significant differences between fracture types. Concomitant rhinoplasty with fracture reduction can be performed for acute nasal bone fracture patients, and it might lead to better aesthetic outcomes.
Utilization of Additive Manufacturing in Evaluating the Performance of Internally Defected Materials
NASA Astrophysics Data System (ADS)
Mourad, A.-H. I.; Ghazal, A. M.; Syam, M. M.; Qadi, O. D. Al; Jassmi, H. Al
2018-05-01
The elimination of internal defects in a material present in the raw material or generated during the manufacturing or service is difficult. The inclusions of the defects have an adverse effect on the load bearing capacity. The presence of the cracks subjected to a specific orientation in materials or machinery can cause devastating unexpected failure during operation. Analysis of the failure in the components with cracks is more confined to analytical and numerical evaluation. The experimental evaluation has been tedious due to the complexity of replicating the actual defected component. The potential of additive manufacturing in developing user-defined components with cracks for the experimental evaluation is explored in this research. The present research investigated the effect of the internal elliptical cracks aligned at different orientations on the mechanical performance of polylactic acid (Green filament). The Fusion Deposition Method was utilized for the development of the standard tensile specimens with internal elliptical crack oriented at 0°, 45° and 90° using UltiMaker 2. The results proved that there is a considerable reduction in the load bearing capacity due to the presence of the cracks. The maximum load bearing capacity decreased by 15.01% for the specimen with crack inclined at 0° to the lateral axis compared to crack- free specimen. The nature of the fracture and the stress-strain graph evidently showcase the brittle nature of the material. The SEM image of the fractured region proved the phenomenal characteristics such as strong adhesion between the layers and the proper material flow. In the light of the results of this work, it can be concluded that the 3-D printing methodology is effective for evaluating the mechanical performance of the internally defected material.
Goldhahn, Jörg; Beaton, Dorcas; Ladd, Amy; Macdermid, Joy; Hoang-Kim, Amy
2014-02-01
Lack of standardization of outcome measurement has hampered an evidence-based approach to clinical practice and research. We adopted a process of reviewing evidence on current use of measures and appropriate theoretical frameworks for health and disability to inform a consensus process that was focused on deriving the minimal set of core domains in distal radius fracture. We agreed on the following seven core recommendations: (1) pain and function were regarded as the primary domains, (2) very brief measures were needed for routine administration in clinical practice, (3) these brief measures could be augmented by additional measures that provide more detail or address additional domains for clinical research, (4) measurement of pain should include measures of both intensity and frequency as core attributes, (5) a numeric pain scale, e.g. visual analogue scale or visual numeric scale or the pain subscale of the patient-reported wrist evaluation (PRWE) questionnaires were identified as reliable, valid and feasible measures to measure these concepts, (6) for function, either the Quick Disability of the arm, shoulder and hand questionnaire or PRWE-function subscale was identified as reliable, valid and feasible measures, and (7) a measure of participation and treatment complications should be considered core outcomes for both clinical practice and research. We used a sound methodological approach to form a comprehensive foundation of content for outcomes in the area of distal radius fractures. We recommend the use of symptom and function as separate domains in the ICF core set in clinical research or practice for patients with wrist fracture. Further research is needed to provide more definitive measurement properties of measures across all domains.
Clinical features and radiological evaluation of otic capsule sparing temporal bone fractures.
Song, S W; Jun, B C; Kim, H
2017-03-01
To evaluate the clinical and radiological aspects of otic capsule sparing temporal bone fractures. Using medical records, 188 temporal bones of 173 patients with otic capsule sparing temporal bone fractures were evaluated. Otoscopic findings and symptoms, facial paralysis, and hearing loss were assessed. Using regional analysis, 7 fractures were classified as type I, 85 as type II, 169 as type III and 114 as type IV. Fourteen of the 17 facial paralysis cases improved to House-Brackmann grade II or lower at an average of 57.6 days after the initial evaluation. Thirty-one patients underwent initial and follow-up pure tone audiometry examinations. The air-bone gap closed significantly from 27.2 dB at an average of 21.8 days post-trauma to 19.6 dB at an average of 79.9 days post-trauma, without the need for surgical intervention. Initial conservative treatment for facial paralysis or conductive hearing loss is possible in otic capsule sparing fracture cases after careful evaluation of the patient.
1978-03-01
for the risk of rupture for a unidirectionally laminat - ed composite subjected to pure bending. (5D This equation can be simplified further by use of...C EVALUATION OF THE THREE PARAMETER WEIBULL DISTRIBUTION FUNCTION FOR PREDICTING FRACTURE PROBABILITY IN COMPOSITE MATERIALS. THESIS / AFIT/GAE...EVALUATION OF THE THREE PARAMETER WE1BULL DISTRIBUTION FUNCTION FOR PREDICTING FRACTURE PROBABILITY IN COMPOSITE MATERIALS THESIS Presented
Mucha, Matthew D; Caldwell, Wade; Schlueter, Emily L; Walters, Carly; Hassen, Amy
2017-04-01
Determine the association between hip abduction strength and lower extremity running related injury in distance runners. Systematic review. Prospective longitudinal and cross sectional studies that quantified hip abduction strength and provided diagnosis of running related injury in distance runners were included and assessed for quality. Effect size was calculated for between group differences in hip abduction strength. Of the 1841 articles returned in the initial search, 11 studies matched all inclusion criteria. Studies were grouped according to injury: iliotibial band syndrome, patellofemoral pain syndrome, medial tibial stress syndrome, tibial stress fracture, and Achilles tendinopathy, and examined for strength differences between injured and non-injured groups. Meaningful differences were found in the studies examining iliotibial band syndrome. Three of five iliotibial band syndrome articles found weakness in runners with iliotibial band syndrome; two were of strong methodological rigor and both of those found a relationship between weakness and injury. Other results did not form associative or predictive relationships between weakness and injury in distance runners. Hip abduction weakness evaluated by hand held dynamometer may be associated with iliotibial band syndrome in distance runners as suggested by several cross sectional studies but is unclear as a significant factor for the development of patellofemoral pain syndrome, medial tibial stress syndrome, tibial stress fracture or Achilles tendinopathy according to the current literature. Future studies are needed with consistent methodology and inclusion of all distance running populations to determine the significance of hip abduction strength in relationship to lower extremity injury. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Pandey, Rupesh Kumar; Panda, Sudhansu Sekhar
2014-11-01
Drilling of bone is a common procedure in orthopedic surgery to produce hole for screw insertion to fixate the fracture devices and implants. The increase in temperature during such a procedure increases the chances of thermal invasion of bone which can cause thermal osteonecrosis resulting in the increase of healing time or reduction in the stability and strength of the fixation. Therefore, drilling of bone with minimum temperature is a major challenge for orthopedic fracture treatment. This investigation discusses the use of fuzzy logic and Taguchi methodology for predicting and minimizing the temperature produced during bone drilling. The drilling experiments have been conducted on bovine bone using Taguchi's L25 experimental design. A fuzzy model is developed for predicting the temperature during orthopedic drilling as a function of the drilling process parameters (point angle, helix angle, feed rate and cutting speed). Optimum bone drilling process parameters for minimizing the temperature are determined using Taguchi method. The effect of individual cutting parameters on the temperature produced is evaluated using analysis of variance. The fuzzy model using triangular and trapezoidal membership predicts the temperature within a maximum error of ±7%. Taguchi analysis of the obtained results determined the optimal drilling conditions for minimizing the temperature as A3B5C1.The developed system will simplify the tedious task of modeling and determination of the optimal process parameters to minimize the bone drilling temperature. It will reduce the risk of thermal osteonecrosis and can be very effective for the online condition monitoring of the process. © IMechE 2014.
Lisiecki, Jeffrey; Zhang, Peng; Wang, Lu; Rinkinen, Jacob; De La Rosa, Sara; Enchakalody, Binu; Brownley, Robert Cameron; Wang, Stewart C; Buchman, Steven R; Levi, Benjamin
2013-09-01
Patients with mandibular fracture often have comorbidities and concomitant injuries making the decision for when and how to operate a challenge. Physicians describe "temporalis wasting" as a finding that indicates frailty; however, this is a subjective finding without quantitative values. In this study, we demonstrate that decreased morphomic values of the temporalis muscle and zygomatic bone are an objective measure of frailty associated with increased injury-induced morbidity as well as negative impact on overall hospital-based clinical outcomes in patients with mandible fracture. Computed tomographic (CT) scans from all patients with a diagnosis of a mandible fracture in the University of Michigan trauma registry and with a hospital admission were collected from the years 2004 to 2011. Automated, high-throughput CT analysis was used to reconstruct the anatomy and quantify morphomic values (temporalis volume, area and thickness, and zygomatic thickness) in these patients using MATLAB v13.0 (MathWorks Inc, Natick, MA, USA). Subsequently, a subset of 16 individuals with a Glasgow Coma Scale of 14 or 15 was analyzed to control for brain injury. Clinical data were obtained, and the association between morphomic measurements and clinical outcomes was evaluated using Pearson correlation for unadjusted analysis and multiple regression for adjusted analysis. The mean age of patients in the study was 47.1 years. Unadjusted analysis using Pearson correlation revealed that decreases in zygomatic bone thickness correlated strongly with increases in hospital, intensive care unit, and ventilator days (P < 0.0001, P = 0.0003, and P = 0.0017, respectively). Furthermore, we found that decreases in temporalis mean thickness correlated with increases in hospital and ventilator days (P = 0.0264 and P = 0.0306, respectively). Similarly, decreases in temporalis local mean thickness are significantly correlated with increases in hospital and ventilator days (P = 0.0232 and P = 0.0472, respectively). Decreased thicknesses of the zygomatic bone and temporalis muscle are significantly correlated with higher hospital, ventilator, and intensive care unit days in patients with mandibular fracture receiving reconstructive operations. This morphomic methodology provides an accurate, quantitative means to evaluate craniofacial trauma patient frailty, injury, and outcomes using routinely obtained CT scans. In the future, we plan to apply this approach to determine preoperative risk stratification and assist in surgical planning.
NASA Astrophysics Data System (ADS)
McCray, J. E.; Kanno, C.; McLaughlin, M.; Blotevogel, J.; Borch, T.
2016-12-01
Hydraulic fracturing has revolutionized the U.S.'s energy portfolio by making shale reservoirs productive and commercially viable. However, the public is concerned that the chemical constituents in hydraulic fracturing fluid, produced water, or natural gas itself could potentially impact groundwater. Here, we present fate and transport simulations of aqueous fluid surface spills. Surface spills are the most likely contamination pathway to occur during oil and gas production operations. We have three primary goals: 1) evaluate whether or not these spills pose risks to groundwater quality in the South Platte aquifer system, 2) develop a screening level methodology that could be applied at other sites and for various pollutants, and 3) demonstrate the potential importance of co-contaminant interactions using selected chemicals. We considered two types of fluid that can be accidentally released at oil and gas sites: produced water and hydraulic fracturing fluid. Benzene was taken to be a representative contaminant of interest for produced water. Glutaraldehyde, polyethylene glycol, and polyacrylamide were the chemical additives considered for spills of hydraulic fracturing fluid. We focused on the South Platte Alluvial Aquifer, which is located in the greater Denver metro area and overlaps a zone of high-density oil and gas development. Risk of groundwater pollution was based on predicted concentration at the groundwater table. In general, results showed groundwater contamination due to produced water and hydraulic fracturing fluid spills is low in most areas of the South Platte system for the contaminants and spill conditions investigated. Substantial risk may exist in certain areas where the groundwater table is shallow (less than 10 ft below ground surface) and when large spills and large post-spill storms occur. Co-chemical interactions are an important consideration in certain cases when modeling hydraulic fracturing fluid spills. By helping to identify locations in the Front Range of Colorado that are at low or high risk for groundwater contamination due to a surface spill, this work will aid in improving prevention and mitigation practices so that decision-makers can be better prepared to address accidental releases in Colorado.
Principles of management of thoracolumbar fractures.
Dai, Li-yang
2012-05-01
There is little consensus on treatment of thoracolumbar fractures, which are one of the most controversial areas in spine surgery. The great variations in clinical decision making may come from differences in evaluation of spine stability with these fractures. Few high-quality studies concerning optimal treatment of thoracolumbar fractures have been conducted. This article reviews the conflicting results and recommendations for management of thoracolumbar fractures of currently published reports. Specifically, it addresses issues regarding evaluation of stability, indications for operative treatment, timing of surgery, surgical approach, and fusion length. © 2012 Tianjin Hospital and Blackwell Publishing Asia Pty Ltd.
Silva, F G A; de Moura, M F S F; Dourado, N; Xavier, J; Pereira, F A M; Morais, J J L; Dias, M I R; Lourenço, P J; Judas, F M
2017-08-01
Fracture characterization of human cortical bone under mode II loading was analyzed using a miniaturized version of the end-notched flexure test. A data reduction scheme based on crack equivalent concept was employed to overcome uncertainties on crack length monitoring during the test. The crack tip shear displacement was experimentally measured using digital image correlation technique to determine the cohesive law that mimics bone fracture behavior under mode II loading. The developed procedure was validated by finite element analysis using cohesive zone modeling considering a trapezoidal with bilinear softening relationship. Experimental load-displacement curves, resistance curves and crack tip shear displacement versus applied displacement were used to validate the numerical procedure. The excellent agreement observed between the numerical and experimental results reveals the appropriateness of the proposed test and procedure to characterize human cortical bone fracture under mode II loading. The proposed methodology can be viewed as a novel valuable tool to be used in parametric and methodical clinical studies regarding features (e.g., age, diseases, drugs) influencing bone shear fracture under mode II loading.
Hamidi, Maryam S; Gajic-Veljanoski, Olga; Cheung, Angela M
2013-01-01
Vitamin K has been purported to play an important role in bone health. It is required for the gamma-carboxylation of osteocalcin (the most abundant noncollagenous protein in bone), making osteocalcin functional. There are 2 main forms (vitamin K1 and vitamin K2), and they come from different sources and have different biological activities. Epidemiologic studies suggest a diet high in vitamin K is associated with a lower risk of hip fractures in aging men and women. However, randomized controlled trials of vitamin K1 or K2 supplementation in white populations did not increase bone mineral density at major skeletal sites. Supplementation with vitamin K1 and K2 may reduce the risk of fractures, but the trials that examined fractures as an outcome have methodological limitations. Large well-designed trials are needed to compare the efficacies of vitamin K1 and K2 on fractures. We conclude that currently there is not enough evidence to recommend the routine use of vitamin K supplements for the prevention of osteoporosis and fractures in postmenopausal women. Copyright © 2013 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.
The Evaluation of Root Fracture with Cone Beam Computed Tomography (CBCT): An Epidemiological Study.
Doğan, Mehmet-Sinan; Callea, Michele; Kusdhany, Lindawati S; Aras, Ahmet; Maharani, Diah-Ayu; Mandasari, Masita; Adiatman, Melissa; Yavuz, Izzet
2018-01-01
The aim of this study was evaluation of the cone-beam computed tomography (CBCT) image of 50 patients at the ages of 8-15 suspecting root fracture and root fracture occurred, exposed to dental traumatic. In additionally, this study was showed effect of crown fracture on root fracture healing. All of the individuals included in the study were obtained images with the cone-beam computed tomography range of 0,3 voxel and 8.9 seconds.(i-CAT®, Model 17-19, Imaging SciencesInternational, Hatfield, Pa USA).The information obtained from the history and CBCT images of patients were evaluated using chi-square test statistical method the mean and the distribution of the independent variables. 50 children, have been exposed to trauma, was detected root fracture injury in 97 teeth. Horizontal root fracture 63.9% of the 97 tooth, the oblique in 31.9%, both the horizontal and oblique in 1.03%, partial fracture in 2.06% ,and both horizontally and vertical in 1.03% was observed.The most affected teeth, respectively of, are the maxillary central incisor (41.23% left, right, 37.11%), maxillary left lateral incisor (9.27%), maxillary right lateral incisor (11.34%), and mandibular central incisor (1.03%). Crown fractures have negative effects on spontaneous healing of root fractures. CBCT are used selected as an alternative to with conventional radiography for diagnosis of root fractures. In particular, ıt's cross-sectional image is quite useful and has been provided more conveniences seeing the results of diagnosis and treatment for clinician. Key words: Root fracture, CBCT, Epidemiolog.
Reactor Pressure Vessel Fracture Analysis Capabilities in Grizzly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spencer, Benjamin; Backman, Marie; Chakraborty, Pritam
2015-03-01
Efforts have been underway to develop fracture mechanics capabilities in the Grizzly code to enable it to be used to perform deterministic fracture assessments of degraded reactor pressure vessels (RPVs). Development in prior years has resulted a capability to calculate -integrals. For this application, these are used to calculate stress intensity factors for cracks to be used in deterministic linear elastic fracture mechanics (LEFM) assessments of fracture in degraded RPVs. The -integral can only be used to evaluate stress intensity factors for axis-aligned flaws because it can only be used to obtain the stress intensity factor for pure Mode Imore » loading. Off-axis flaws will be subjected to mixed-mode loading. For this reason, work has continued to expand the set of fracture mechanics capabilities to permit it to evaluate off-axis flaws. This report documents the following work to enhance Grizzly’s engineering fracture mechanics capabilities for RPVs: • Interaction Integral and -stress: To obtain mixed-mode stress intensity factors, a capability to evaluate interaction integrals for 2D or 3D flaws has been developed. A -stress evaluation capability has been developed to evaluate the constraint at crack tips in 2D or 3D. Initial verification testing of these capabilities is documented here. • Benchmarking for axis-aligned flaws: Grizzly’s capabilities to evaluate stress intensity factors for axis-aligned flaws have been benchmarked against calculations for the same conditions in FAVOR. • Off-axis flaw demonstration: The newly-developed interaction integral capabilities are demon- strated in an application to calculate the mixed-mode stress intensity factors for off-axis flaws. • Other code enhancements: Other enhancements to the thermomechanics capabilities that relate to the solution of the engineering RPV fracture problem are documented here.« less
Pariser, Joseph J; Pearce, Shane M; Patel, Sanjay G; Bales, Gregory T
2015-07-01
To examine the epidemiology and timing of penile fracture, patterns of urethral evaluation, and risk factors for concomitant urethral injury. The National Inpatient Sample (2003-2011) was used to identify patients with penile fractures. Clinical data included age, race, comorbidity, insurance, hospital factors, timing, hematuria, and urinary symptoms. Rates of formal urethral evaluation (cystoscopy or urethrogram) and urethral injury were calculated. Multivariate logistic regression was used to identify predictors of urethral evaluation and risk factors for urethral injury. A weighted population of 3883 patients with penile fracture was identified. Presentations during weekends (37%) and summers (30%) were overrepresented (both P <.001). Urethral evaluation was performed in 882 patients (23%). Urethral injury was diagnosed in 813 patients (21%) with penile fracture. There was an increased odds of urethral evaluation with hematuria (odds ratio [OR] = 2.99; 95% confidence interval [CI], 1.03-8.73; P = .045) and a decrease for Hispanics (OR = 0.42; 95% CI, 0.22-0.82; P = .011). Older age (32-41 years: OR = 1.84; 95% CI, 1.07-3.16; P = .027; >41 years: OR = 2.25; 95% CI, 1.25-4.05; P = .007), black race (OR = 1.93; 95% CI, 1.12-3.34; P = .018), and hematuria (OR = 17.03; 95% CI, 3.20-90.54; P = .001) were independent risk factors for urethral injury. Penile fractures, which occur disproportionately during summer and weekends, were associated with a 21% risk of urethral injury. Urethral evaluations were performed in a minority of patients. Even in patients with hematuria, 55% of patients underwent formal urethral evaluation. On multivariate analysis of patients with penile fracture, hematuria as well as older age and black race were independently associated with concomitant urethral injury. Copyright © 2015 Elsevier Inc. All rights reserved.
Damage Progression in Bolted Composites
NASA Technical Reports Server (NTRS)
Minnetyan, Levon; Chamis, Christos C.; Gotsis, Pascal K.
1998-01-01
Structural durability, damage tolerance, and progressive fracture characteristics of bolted graphite/epoxy composite laminates are evaluated via computational simulation. Constituent material properties and stress and strain limits are scaled up to the structure level to evaluate the overall damage and fracture propagation for bolted composites. Single and double bolted composite specimens with various widths and bolt spacings are evaluated. The effect of bolt spacing is investigated with regard to the structural durability of a bolted joint. Damage initiation, growth, accumulation, and propagation to fracture are included in the simulations. Results show the damage progression sequence and structural fracture resistance during different degradation stages. A procedure is outlined for the use of computational simulation data in the assessment of damage tolerance, determination of sensitive parameters affecting fracture, and interpretation of experimental results with insight for design decisions.
Damage Progression in Bolted Composites
NASA Technical Reports Server (NTRS)
Minnetyan, Levon; Chamis, Christos; Gotsis, Pascal K.
1998-01-01
Structural durability,damage tolerance,and progressive fracture characteristics of bolted graphite/epoxy composite laminates are evaluated via computational simulation. Constituent material properties and stress and strain limits are scaled up to the structure level to evaluate the overall damage and fracture propagation for bolted composites. Single and double bolted composite specimens with various widths and bolt spacings are evaluated. The effect of bolt spacing is investigated with regard to the structural durability of a bolted joint. Damage initiation, growth, accumulation, and propagation to fracture are included in the simulations. Results show the damage progression sequence and structural fracture resistance during different degradation stages. A procedure is outlined for the use of computational simulation data in the assessment of damage tolerance, determination of sensitive parameters affecting fracture, and interpretation of experimental results with insight for design decisions.
Automated analysis of art object surfaces using time-averaged digital speckle pattern interferometry
NASA Astrophysics Data System (ADS)
Lukomski, Michal; Krzemien, Leszek
2013-05-01
Technical development and practical evaluation of a laboratory built, out-of-plane digital speckle pattern interferometer (DSPI) are reported. The instrument was used for non-invasive, non-contact detection and characterization of early-stage damage, like fracturing and layer separation, of painted objects of art. A fully automated algorithm was developed for recording and analysis of vibrating objects utilizing continuous-wave laser light. The algorithm uses direct, numerical fitting or Hilbert transformation for an independent, quantitative evaluation of the Bessel function at every point of the investigated surface. The procedure does not require phase modulation and thus can be implemented within any, even the simplest, DSPI apparatus. The proposed deformation analysis is fast and computationally inexpensive. Diagnosis of physical state of the surface of a panel painting attributed to Nicolaus Haberschrack (a late-mediaeval painter active in Krakow) from the collection of the National Museum in Krakow is presented as an example of an in situ application of the developed methodology. It has allowed the effectiveness of the deformation analysis to be evaluated for the surface of a real painting (heterogeneous colour and texture) in a conservation studio where vibration level was considerably higher than in the laboratory. It has been established that the methodology, which offers automatic analysis of the interferometric fringe patterns, has a considerable potential to facilitate and render more precise the condition surveys of works of art.
NASA Technical Reports Server (NTRS)
Panontin, Tina L.; Sheppard, Sheri D.
1994-01-01
The use of small laboratory specimens to predict the integrity of large, complex structures relies on the validity of single parameter fracture mechanics. Unfortunately, the constraint loss associated with large scale yielding, whether in a laboratory specimen because of its small size or in a structure because it contains shallow flaws loaded in tension, can cause the breakdown of classical fracture mechanics and the loss of transferability of critical, global fracture parameters. Although the issue of constraint loss can be eliminated by testing actual structural configurations, such an approach can be prohibitively costly. Hence, a methodology that can correct global fracture parameters for constraint effects is desirable. This research uses micromechanical analyses to define the relationship between global, ductile fracture initiation parameters and constraint in two specimen geometries (SECT and SECB with varying a/w ratios) and one structural geometry (circumferentially cracked pipe). Two local fracture criteria corresponding to ductile fracture micromechanisms are evaluated: a constraint-modified, critical strain criterion for void coalescence proposed by Hancock and Cowling and a critical void ratio criterion for void growth based on the Rice and Tracey model. Crack initiation is assumed to occur when the critical value in each case is reached over some critical length. The primary material of interest is A516-70, a high-hardening pressure vessel steel sensitive to constraint; however, a low-hardening structural steel that is less sensitive to constraint is also being studied. Critical values of local fracture parameters are obtained by numerical analysis and experimental testing of circumferentially notched tensile specimens of varying constraint (e.g., notch radius). These parameters are then used in conjunction with large strain, large deformation, two- and three-dimensional finite element analyses of the geometries listed above to predict crack initiation loads and to calculate the associated (critical) global fracture parameters. The loads are verified experimentally, and microscopy is used to measure pre-crack length, crack tip opening displacement (CTOD), and the amount of stable crack growth. Results for A516-70 steel indicate that the constraint-modified, critical strain criterion with a critical length approximately equal to the grain size (0.0025 inch) provides accurate predictions of crack initiation. The critical void growth criterion is shown to considerably underpredict crack initiation loads with the same critical length. The relationship between the critical value of the J-integral for ductile crack initiation and crack depth for SECT and SECB specimens has been determined using the constraint-modified, critical strain criterion, demonstrating that this micromechanical model can be used to correct in-plane constraint effects due to crack depth and bending vs. tension loading. Finally, the relationship developed for the SECT specimens is used to predict the behavior of circumferentially cracked pipe specimens.
Vitamin K to prevent fractures in older women: systematic review and economic evaluation.
Stevenson, M; Lloyd-Jones, M; Papaioannou, D
2009-09-01
To determine the clinical and cost-effectiveness of vitamin K in preventing osteoporotic fractures in postmenopausal women. Searches were conducted in May 2007 in MEDLINE, MEDLINE In-Process, EMBASE, Cochrane Database of Systematic Reviews, Cochrane Controlled Trials Register, BIOSIS, CINAHL, DARE, NHS EED and HTA databases, AMED, NRR, Science Citation Index and Current Controlled Trials. The MEDLINE search was updated in March 2009. Selected studies were assessed and subjected to data extraction and quality assessment using standard methods. Where appropriate, meta-analysis was carried out. A mathematical model was constructed to estimate the cost-effectiveness of vitamin K1. The electronic literature searches identified 1078 potentially relevant articles. Of these, 14 articles relating to five trials that compared vitamin K with a relevant comparator in postmenopausal women with osteoporosis or osteopenia met the review inclusion criteria. The double-blind ECKO trial compared 5 mg of phylloquinone (vitamin K1) with placebo in Canadian women with osteopenia but without osteoporosis. Four open-label trials used 45 mg of menatetrenone (vitamin K2) in Japanese women with osteoporosis; the comparators were no treatment, etidronate or calcium. The methodological quality of the ECKO trial was good; however, all four menatetrenone trials were poorly reported and three were very small (n < 100 in each group). Phylloquinone was associated with a statistically significant reduction in the risk of clinical fractures relative to placebo [relative risk 0.46, 95% confidence interval (CI) 0.22 to 0.99]; morphometric vertebral fractures were not reported. The smaller menatetrenone trials found that menatetrenone was associated with a reduced risk of morphometric vertebral fractures relative to no treatment or calcium; however, the larger Osteoporosis Fracture (OF) study found no evidence of a reduction in vertebral fracture risk. The three smaller trials found no significant difference between treatment groups in non-vertebral fracture incidence. In the ECKO trial, phylloquinone was not associated with an increase in adverse events. In the menatetrenone trials, adverse event reporting was generally poor; however, in the OF study, menatetrenone was associated with a significantly higher incidence of skin and skin appendage lesions. No published economic evaluations of vitamin K were found and a mathematical model was thus constructed to estimate the cost-effectiveness of vitamin K1. Comparators were alendronate, risedronate and strontium ranelate. Vitamin K1 and alendronate were markedly more cost-effective than either risedronate or strontium ranelate. The base-case results favoured vitamin K1, but this relied on many assumptions, particularly on the efficacy of preventing hip and vertebral fractures. Calculation of the expected value of sampled information was conducted assuming a randomised controlled trial of 5 years' duration comparing alendronate with vitamin K1. The costs incurred in obtaining updated efficacy data from a trial with 2000 women per arm were estimated to be a cost-effective use of resources. There is currently large uncertainty over whether vitamin K1 is more cost-effective than alendronate; further research is required. It is unlikely that the present prescribing policy (i.e. alendronate as first-line treatment) would be altered.
Si, L; Winzenberg, T M; Palmer, A J
2014-01-01
This review was aimed at the evolution of health economic models used in evaluations of clinical approaches aimed at preventing osteoporotic fractures. Models have improved, with medical continuance becoming increasingly recognized as a contributor to health and economic outcomes, as well as advancements in epidemiological data. Model-based health economic evaluation studies are increasingly used to investigate the cost-effectiveness of osteoporotic fracture preventions and treatments. The objective of this study was to carry out a systematic review of the evolution of health economic models used in the evaluation of osteoporotic fracture preventions. Electronic searches within MEDLINE and EMBASE were carried out using a predefined search strategy. Inclusion and exclusion criteria were used to select relevant studies. References listed of included studies were searched to identify any potential study that was not captured in our electronic search. Data on country, interventions, type of fracture prevention, evaluation perspective, type of model, time horizon, fracture sites, expressed costs, types of costs included, and effectiveness measurement were extracted. Seventy-four models were described in 104 publications, of which 69% were European. Earlier models focused mainly on hip, vertebral, and wrist fracture, but later models included multiple fracture sites (humerus, pelvis, tibia, and other fractures). Modeling techniques have evolved from simple decision trees, through deterministic Markov processes to individual patient simulation models accounting for uncertainty in multiple parameters. Treatment continuance has been increasingly taken into account in the models in the last decade. Models have evolved in their complexity and emphasis, with medical continuance becoming increasingly recognized as a contributor to health and economic outcomes. This evolution may be driven in part by the desire to capture all the important differentiating characteristics of medications under scrutiny, as well as the advancement in epidemiological data relevant to osteoporosis fractures.
NASA Astrophysics Data System (ADS)
Seyum, S.
2017-12-01
This study is a description of the fracture distribution in laterally discontinuous chalk and chert layers, with an investigation on how fracture lengths and apertures vary as a function of applied stresses, material properties, and interface properties. Natural fractures intersect laterally extensive, discontinuous, chalk-chert material interfaces in 62 million-year old to 72 million-year old Chalk Group formations exposed at Stevns Klint, Denmark. Approximately one-third of Denmark's fresh water use is from chalk and limestone regional aquifers of the Chalk Group formations, where rock permeability is dominantly a function of open fracture connectivities. Fractured, centimeter- to decimeter-thick chert layers and inclusions (101 GPa elastic stiffness) are interlayered with fractured, meter-thick chalk layers (100 GPa elastic stiffness). Fractures are observed to terminate against and cross chalk-chert interfaces, affecting the vertical flow of water and pollutants between aquifers. The discontinuous and variably thin nature of chert layers at Stevns Klint effectively merges adjacent fracture-confining layers of chalk along discrete position intervals, resulting in lateral variability of fracture spacing. Finite element numerical models are designed to describe fracture interactions with stiff, chert inclusions of various shapes, thicknesses, widths, orientations, and interface friction and fracture toughness values. The models are two-dimensional with isotropic, continuous material in plane strain and uniformly applied remote principal stresses. These characteristics are chosen based on interpretations of the petrophysics of chalk and chert, the burial history of the rock, and the scale of investigation near fracture tips relative to grain sizes. The result are value ranges for relative stiffness contrasts, applied stresses, and material interface conditions that would cause fractures to cross, terminate at, or form along chalk-chert interfaces, with emphasis on conditions that reproduce measured fracture geometries. The results of this study provide predictive, field-supported fracture geometries for flow models and, with appropriate changes to the parameters, the methodology is applicable to describing fracture geometries in chalk hydrocarbon systems.
Investigation of Mechanical Properties and Fracture Simulation of Solution-Treated AA 5754
NASA Astrophysics Data System (ADS)
Kumar, Pankaj; Singh, Akhilendra
2017-10-01
In this work, mechanical properties and fracture toughness of as-received and solution-treated aluminum alloy 5754 (AA 5754) are experimentally evaluated. Solution heat treatment of the alloy is performed at 530 °C for 2 h, and then, quenching is done in water. Yield strength, ultimate tensile strength, impact toughness, hardness, fatigue life, brittle fracture toughness (K_{Ic} ) and ductile fracture toughness (J_{Ic} ) are evaluated for as-received and solution-treated alloy. Extended finite element method has been used for the simulation of tensile and fracture behavior of material. Heaviside function and asymptotic crack tip enrichment functions are used for modelling of the crack in the geometry. Ramberg-Osgood material model coupled with fracture energy is used to simulate the crack propagation. Fracture surfaces obtained from various mechanical tests are characterized by scanning electron microscopy.
Quan, Guo-zheng; Luo, Gui-chang; Mao, An; Liang, Jian-ting; Wu, Dong-sen
2014-01-01
Fracturing by ductile damage occurs quite naturally in metal forming processes, and ductile fracture of strain-softening alloy, here 42CrMo steel, cannot be evaluated through simple procedures such as tension testing. Under these circumstances, it is very significant and economical to find a way to evaluate the ductile fracture criteria (DFC) and identify the relationships between damage evolution and deformation conditions. Under the guidance of the Cockcroft-Latham fracture criteria, an innovative approach involving hot compression tests, numerical simulations, and mathematic computations provides mutual support to evaluate ductile damage cumulating process and DFC diagram along with deformation conditions, which has not been expounded by Cockcroft and Latham. The results show that the maximum damage value appears in the region of upsetting drum, while the minimal value appears in the middle region. Furthermore, DFC of 42CrMo steel at temperature range of 1123~1348 K and strain rate of 0.01~10 s−1 are not constant but change in a range of 0.160~0.226; thus, they have been defined as varying ductile fracture criteria (VDFC) and characterized by a function of temperature and strain rate. In bulk forming operations, VDFC help technicians to choose suitable process parameters and avoid the occurrence of fracture. PMID:24592175
Quan, Guo-zheng; Luo, Gui-chang; Mao, An; Liang, Jian-ting; Wu, Dong-sen
2014-01-01
Fracturing by ductile damage occurs quite naturally in metal forming processes, and ductile fracture of strain-softening alloy, here 42CrMo steel, cannot be evaluated through simple procedures such as tension testing. Under these circumstances, it is very significant and economical to find a way to evaluate the ductile fracture criteria (DFC) and identify the relationships between damage evolution and deformation conditions. Under the guidance of the Cockcroft-Latham fracture criteria, an innovative approach involving hot compression tests, numerical simulations, and mathematic computations provides mutual support to evaluate ductile damage cumulating process and DFC diagram along with deformation conditions, which has not been expounded by Cockcroft and Latham. The results show that the maximum damage value appears in the region of upsetting drum, while the minimal value appears in the middle region. Furthermore, DFC of 42CrMo steel at temperature range of 1123~1348 K and strain rate of 0.01~10 s(-1) are not constant but change in a range of 0.160~0.226; thus, they have been defined as varying ductile fracture criteria (VDFC) and characterized by a function of temperature and strain rate. In bulk forming operations, VDFC help technicians to choose suitable process parameters and avoid the occurrence of fracture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crandall, Dustin M.; Moore, Johnathan E.; Tudek, John K.
Evaluation of the fate and transport of carbon dioxide (CO 2) in deep reservoirs is crucial to the development of long-term geologic carbon sequestration (GCS) technologies. In this report, various studies using computed tomography (CT) scanning are utilized in conjunction with traditional flow tests to observe the multi-scale phenomena associated with CO 2 injection in geologic media. Pore scale analyses were performed to determine the infiltration characteristics of CO 2 into a brine saturated reservoir rock. Multiphase floods were performed to evaluate the saturation of CO 2 into a brine-saturated reservoir rock and determine how structural changes within the lithologymore » affect such interactions. Additionally, CO 2 induced swelling of unconventional reservoir rock was evaluated with respect to reductions in fracture transmissivity due to matrix swelling. These studies are just a few examples of the benefits of multi-scale CT imaging in conjunction with traditional laboratory methodology to gain a better understanding of the interactions between CO 2 and the lithologies it interacts with during GCS.« less
Kurtulmuş, Tuhan; Sağlam, Necdet; Saka, Gursel; Avcı, Cem Coşkun; Uğurlar, Meriç; Türker, Mehmet
2014-10-01
At first presentation of paediatric humeral lateral condyle fractures, radiological methods such as computerised tomography, ultrasonography, magnetic resonance imaging, arthrography, and internal oblique radiography are used to determine stability. Very few studies show which radiological method should be used to evaluate displacement at follow-up for conservatively treated patients. This study aimed to show that internal oblique radiography is a simple, effective method to determine the subsequent development of fracture displacement in patients with an initially non-displaced or minimally displaced fracture. In this retrospective study, 27 paediatric patients with non-displaced or minimally displaced (<2 mm) humerus lateral condyle fracture were evaluated by elbow anteroposterior radiograph. The degree of fracture displacement was evaluated by anteroposterior then by internal oblique radiographs. The first follow-up was made between the 5th and 8th day and thereafter at intervals of 7-10 days. Of the 27 patients identified with non-displaced or minimally displaced (<2 mm) fracture from the initial anteroposterior radiograph, 16 were accepted as displacement >2 mm as a result of the evaluation of the internal oblique radiography and underwent surgery. At follow-up, 2 of 11 patients were defined with displacement from anteroposterior and internal oblique radiographs and 4 from the internal oblique radiographs and underwent surgery. Conservative treatment was applied to 5 patients. Internal oblique radiography is the best imaging showing subsequent fracture displacement in initially non-displaced or minimally displaced humerus lateral condyle fractures. At the first week follow-up, anteroposterior and particularly internal oblique radiographs should be taken of conservatively treated patients.
Prevalence of Jones Fracture Repair and Impact on Short-Term NFL Participation.
Tu, Leigh-Anne; Knapik, Derrick M; Sheehan, Joseph; Salata, Michael J; Voos, James E
2018-01-01
Elite American football athletes are at high risk for Jones fractures. Fixation is recommended to minimize nonunion and allow early return to play. The purpose of this investigation was to evaluate the prevalence of Jones fracture repair in athletes invited to the National Football League (NFL) Combine and the impact of fracture repair on short-term NFL participation compared to athletes with no history of repair. A total of 1311 athletes participating in the Combine from 2012 to 2015 were evaluated. Athletes with history of Jones fracture repair were identified. Athlete demographic information was collected while physical examination findings were recorded. Radiographs were evaluated to determine fixation type and the presence of nonunion. Future participation in the NFL was evaluated based on draft status, games played, and games started in the athlete's first season following the Combine. Fixation was performed for 41 Jones fractures in 40 athletes (3.1%). The highest prevalence was in defensive linemen (n = 10 athletes), with the greatest rate in tight ends (5.1%, n = 4 of 79 athletes). Intramedullary screw fixation was used for all fractures. Incomplete bony union was present in 3 (8%) fractures. Athletes with a history of repair were not at significant risk for going undrafted ( P = .61), playing ( P = .23), or starting ( P = .76) fewer NFL games compared to athletes with no history of repair during athletes' first NFL season. Athletes with a history of Jones fracture repair were not at significant risk of going undrafted or for diminished participation during their first season in the NFL. Level IV, case series.
Impact fracture toughness evaluation for high-density polyethylene materials
NASA Astrophysics Data System (ADS)
Cherief, M. N. D.; Elmeguenni, M.; Benguediab, M.
2017-03-01
The impact fracture behavior of a high-density polyethylene (HDPE) material is investigated experimentally and theoretically. Single-edge notched bending (SENB) specimens are tested in experiments with three-point bending and in the Charpy impact tests. An energy model is proposed for evaluating the HDPE impact toughness, which provides a description of both brittle and ductile fracture.
Prediction of fracture profile using digital image correlation
NASA Astrophysics Data System (ADS)
Chaitanya, G. M. S. K.; Sasi, B.; Kumar, Anish; Babu Rao, C.; Purnachandra Rao, B.; Jayakumar, T.
2015-04-01
Digital Image Correlation (DIC) based full field strain mapping methodology is used for mapping strain on an aluminum sample subjected to tensile deformation. The local strains on the surface of the specimen are calculated at different strain intervals. Early localization of strain is observed at a total strain of 0.050ɛ; itself, whereas a visually apparent localization of strain is observed at a total strain of 0.088ɛ;. Orientation of the line of fracture (12.0°) is very close to the orientation of locus of strain maxima (11.6°) computed from the strain mapping at 0.063ɛ itself. These results show the efficacy of the DIC based method to predict the location as well as the profile of the fracture, at an early stage.
Integration of Water Resource Models with Fayetteville Shale Decision Support and Information System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cothren, Jackson; Thoma, Greg; DiLuzio, Mauro
2013-06-30
Significant issues can arise with the timing, location, and volume of surface water withdrawals associated with hydraulic fracturing of gas shale reservoirs as impacted watersheds may be sensitive, especially in drought years, during low flow periods, or during periods of the year when activities such as irrigation place additional demands on the surface supply of water. Significant energy production and associated water withdrawals may have a cumulative impact to watersheds over the short-term. Hence, hydraulic fracturing based on water withdrawal could potentially create shifts in the timing and magnitude of low or high flow events or change the magnitude ofmore » river flow at daily, monthly, seasonal, or yearly time scales. These changes in flow regimes can result in dramatically altered river systems. Currently little is known about the impact of fracturing on stream flow behavior. Within this context the objective of this study is to assess the impact of the hydraulic fracturing on the water balance of the Fayetteville Shale play area and examine the potential impacts of hydraulic fracturing on river flow regime at subbasin scale. This project addressed that need with four unique but integrated research and development efforts: 1) Evaluate the predictive reliability of the Soil and Water Assessment Tool (SWAT) model based at a variety of scales (Task/Section 3.5). The Soil and Water Assessment Tool (SWAT) model was used to simulate the across-scale water balance and the respective impact of hydraulic fracturing. A second hypothetical scenario was designed to assess the current and future impacts of water withdrawals for hydraulic fracturing on the flow regime and on the environmental flow components (EFCs) of the river. The shifting of these components, which present critical elements to water supply and water quality, could influence the ecological dynamics of river systems. For this purpose, we combined the use of SWAT model and Richter et al.’s (1996) methodology to assess the shifting and alteration of the flow regime within the river and streams of the study area. 2) Evaluate the effect of measurable land use changes related to gas development (well-pad placement, access road completion, etc.) on surface water flow in the region (Task/Section 3.7). Results showed that since the upsurge in shale-gas related activities in the Fayetteville Shale Play (between 2006 and 2010), shale-gas related infrastructure in the region have increase by 78%. This change in land-cover in comparison with other land-cover classes such as forest, urban, pasture, agricultural and water indicates the highest rate of change in any land-cover category for the study period. A Soil and Water Assessment Tool (SWAT) flow model of the Little Red River watershed simulated from 2000 to 2009 showed a 10% increase in storm water runoff. A forecast scenario based on the assumption that 2010 land-cover does not see any significant change over the forecast period (2010 to 2020) also showed a 10% increase in storm water runoff. Further analyses showed that this change in the stream-flow regime for the forecast period is attributable to the increase in land-cover as introduced by the shale-gas infrastructure. 3) Upgrade the Fayetteville Shale Information System to include information on watershed status. (Tasks/Sections 2.1 and 2.2). This development occurred early in the project period, and technological improvements in web-map API’s have made it possible to further improve the map. The current sites (http://lingo.cast.uark.edu) is available but is currently being upgraded to a more modern interface and robust mapping engine using funds outside this project. 4) Incorporate the methodologies developed in Tasks/Sections 3.5 and 3.7 into a Spatial Decision Support System for use by regulatory agencies and producers in the play. The resulting system is available at http://fayshale.cast.uark.edu and is under review the Arkansas Natural Resources Commission.« less
Identification of modes of fracture in a 2618-T6 aluminum alloy using stereophotogrammetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salas Zamarripa, A., E-mail: a.salaszamarripa@gmail.com; Pinna, C.; Brown, M.W.
2011-12-15
The identification and the development of a quantification technique of the modes of fracture in fatigue fracture surfaces of a 2618-T6 aluminum alloy were developed during this research. Fatigue tests at room and high temperature (230 Degree-Sign C) were carried out to be able to compare the microscopic fractographic features developed by this material under these testing conditions. The overall observations by scanning electron microscopy (SEM) of the fracture surfaces showed a mixture of transgranular and ductile intergranular fracture. The ductile intergranular fracture contribution appears to be more significant at room temperature than at 230 Degree-Sign C. A quantitative methodologymore » was developed to identify and to measure the contribution of these microscopic fractographic features. The technique consisted of a combination of stereophotogrammetry and image analysis. Stereo-pairs were randomly taken along the crack paths and were then analyzed using the profile module of MeX software. The analysis involved the 3-D surface reconstruction, the trace of primary profile lines in both vertical and horizontal directions within the stereo-pair area, the measurements of the contribution of the modes of fracture in each profile, and finally, the calculation of the average contribution in each stereo-pair. The technique results confirmed a higher contribution of ductile intergranular fracture at room temperature than at 230 Degree-Sign C. Moreover, there was no indication of a direct relationship between this contribution and the strain amplitudes range applied during the fatigue testing. - Highlights: Black-Right-Pointing-Pointer Stereophotogrammetry and image analysis as a measuring tool of modes of fracture in fatigue fracture surfaces. Black-Right-Pointing-Pointer A mixture of ductile intergranular and transgranular fracture was identified at room temperature and 230 Degree-Sign C testing. Black-Right-Pointing-Pointer Development of a quantitative methodology to obtain the percentage of modes of fracture within the fracture surface.« less
FracPaQ: A MATLAB™ toolbox for the quantification of fracture patterns
NASA Astrophysics Data System (ADS)
Healy, David; Rizzo, Roberto E.; Cornwell, David G.; Farrell, Natalie J. C.; Watkins, Hannah; Timms, Nick E.; Gomez-Rivas, Enrique; Smith, Michael
2017-02-01
The patterns of fractures in deformed rocks are rarely uniform or random. Fracture orientations, sizes, and spatial distributions often exhibit some kind of order. In detail, relationships may exist among the different fracture attributes, e.g. small fractures dominated by one orientation, larger fractures by another. These relationships are important because the mechanical (e.g. strength, anisotropy) and transport (e.g. fluids, heat) properties of rock depend on these fracture attributes and patterns. This paper describes FracPaQ, a new open source, cross-platform toolbox to quantify fracture patterns, including distributions in fracture attributes and their spatial variation. Software has been developed to quantify fracture patterns from 2-D digital images, such as thin section micrographs, geological maps, outcrop or aerial photographs or satellite images. The toolbox comprises a suite of MATLAB™ scripts based on previously published quantitative methods for the analysis of fracture attributes: orientations, lengths, intensity, density and connectivity. An estimate of permeability in 2-D is made using a parallel plate model. The software provides an objective and consistent methodology for quantifying fracture patterns and their variations in 2-D across a wide range of length scales, rock types and tectonic settings. The implemented methods presented are inherently scale independent, and a key task where applicable is analysing and integrating quantitative fracture pattern data from micro-to macro-scales. The toolbox was developed in MATLAB™ and the source code is publicly available on GitHub™ and the Mathworks™ FileExchange. The code runs on any computer with MATLAB installed, including PCs with Microsoft Windows, Apple Macs with Mac OS X, and machines running different flavours of Linux. The application, source code and sample input files are available in open repositories in the hope that other developers and researchers will optimise and extend the functionality for the benefit of the wider community.
NASA Astrophysics Data System (ADS)
Assari, Amin; Mohammadi, Zargham
2017-09-01
Karst systems show high spatial variability of hydraulic parameters over small distances and this makes their modeling a difficult task with several uncertainties. Interconnections of fractures have a major role on the transport of groundwater, but many of the stochastic methods in use do not have the capability to reproduce these complex structures. A methodology is presented for the quantification of tortuosity using the single normal equation simulation (SNESIM) algorithm and a groundwater flow model. A training image was produced based on the statistical parameters of fractures and then used in the simulation process. The SNESIM algorithm was used to generate 75 realizations of the four classes of fractures in a karst aquifer in Iran. The results from six dye tracing tests were used to assign hydraulic conductivity values to each class of fractures. In the next step, the MODFLOW-CFP and MODPATH codes were consecutively implemented to compute the groundwater flow paths. The 9,000 flow paths obtained from the MODPATH code were further analyzed to calculate the tortuosity factor. Finally, the hydraulic conductivity values calculated from the dye tracing experiments were refined using the actual flow paths of groundwater. The key outcomes of this research are: (1) a methodology for the quantification of tortuosity; (2) hydraulic conductivities, that are incorrectly estimated (biased low) with empirical equations that assume Darcian (laminar) flow with parallel rather than tortuous streamlines; and (3) an understanding of the scale-dependence and non-normal distributions of tortuosity.
NASA Astrophysics Data System (ADS)
Gholizadeh Doonechaly, N.; Rahman, S. S.
2012-05-01
Simulation of naturally fractured reservoirs offers significant challenges due to the lack of a methodology that can utilize field data. To date several methods have been proposed by authors to characterize naturally fractured reservoirs. Among them is the unfolding/folding method which offers some degree of accuracy in estimating the probability of the existence of fractures in a reservoir. Also there are statistical approaches which integrate all levels of field data to simulate the fracture network. This approach, however, is dependent on the availability of data sources, such as seismic attributes, core descriptions, well logs, etc. which often make it difficult to obtain field wide. In this study a hybrid tectono-stochastic simulation is proposed to characterize a naturally fractured reservoir. A finite element based model is used to simulate the tectonic event of folding and unfolding of a geological structure. A nested neuro-stochastic technique is used to develop the inter-relationship between the data and at the same time it utilizes the sequential Gaussian approach to analyze field data along with fracture probability data. This approach has the ability to overcome commonly experienced discontinuity of the data in both horizontal and vertical directions. This hybrid technique is used to generate a discrete fracture network of a specific Australian gas reservoir, Palm Valley in the Northern Territory. Results of this study have significant benefit in accurately describing fluid flow simulation and well placement for maximal hydrocarbon recovery.
Oh, Daemyung; Yun, Taebin; Kim, Junhyung; Choi, Jaehoon; Jeong, Woonhyeok; Chu, Hojun; Lee, Soyoung
2016-09-01
Facial hypoesthesia is one of the most troublesome complaints in the management of facial bone fractures. However, there is a lack of literature on facial sensory recovery after facial trauma. The purpose of this study was to evaluate the facial sensory recovery period for facial bone fractures using Neurometer. Sixty-three patients who underwent open reduction of zygomatic and blowout fractures between December 2013 and July 2015 were included in the study. The facial sensory status of the patients was repeatedly examined preoperatively and postoperatively by Neurometer current perception threshold (CPT) until the results were normalized. Among the 63 subjects, 30 patients had normal Neurometer results preoperatively and postoperatively. According to fracture types, 17 patients with blowout fracture had a median recovery period of 0.25 months. Twelve patients with zygomatic fracture had a median recovery period of 1.00 month. Four patients with both fracture types had a median recovery period of 0.625 months. The median recovery period of all 33 patients was 0.25 months. There was no statistically significant difference in the sensory recovery period between types and subgroups of zygomatic and blowout fractures. In addition, there was no statistically significant difference in the sensory recovery period according to Neurometer results and the patients' own subjective reports. Neurometer CPT is effective for evaluating and comparing preoperative and postoperative facial sensory status and evaluating the sensory recovery period in facial bone fracture patients.
Zhang, Yijia; Jia, Zhenshan; Yuan, Hongjiang; Dusad, Anand; Ren, Ke; Wei, Xin; Fehringer, Edward V.; Purdue, P. Edward; Daluiski, Aaron; Goldring, Steven R.; Wang, Dong
2016-01-01
Purpose To evaluate the therapeutic efficiency of a micellar prodrug formulation of simvastatin (SIM/SIM-mPEG) and explore its safety in a closed femoral fracture mouse model. Methods The amphiphilic macromolecular prodrug of simvastatin (SIM-mPEG) was synthesized and formulated together with free simvastatin into micelles. It was also labeled with a near infrared dye for in vivo imaging purpose. A closed femoral fracture mouse model was established using a three-point bending device. The mice with established closed femoral fracture were treated with SIM/SIM-mPEG micelle, using free simvastatin and saline as controls. The therapeutic efficacy of the micelles was evaluated using a high-resolution micro-CT. Serum biochemistry and histology analyses were performed to explore the potential toxicity of the micelle formulation. Results Near Infrared Fluorescence (NIRF) imaging confirmed the passive targeting of SIM/SIM-mPEG micelles to the bone lesion of the mice with closed femoral fracture. The micelle was found to promote fracture healing with an excellent safety profile. In addition, the accelerated healing of the femoral fracture also helped to prevent disuse-associated same-side tibia bone loss accompanying the femur fracture. Conclusion SIM/SIM-mPEG micelle was found to be an effective and safe treatment for closed femoral fracture repair in mice. The evidence obtained in this study suggests that it may have the potential to be translated into a novel therapy for clinical management of skeletal fractures and non-union. PMID:27164897
A FRAX model for the estimation of osteoporotic fracture probability in Portugal.
Marques, Andréa; Mota, António; Canhão, Helena; Romeu, José Carlos; Machado, Pedro; Ruano, Afonso; Barbosa, Ana Paula; Dias, António Aroso; Silva, Daniel; Araújo, Domingos; Simões, Eugénia; Aguas, Fernanda; Rosendo, Inês; Silva, Inês; Crespo, Jorge; Alves, José Delgado; Costa, Lúcia; Mascarenhas, Mário; Lourenço, Óscar; Ferreira, Pedro Lopes; Lucas, Raquel; Roque, Raquel; Branco, Jaime Cunha; Tavares, Viviana; Johansson, Helena; Kanis, Jonh; Pereira da Silva, José António
2013-01-01
The objective of this study was to develop a Portuguese version of the World Health Organization fracture risk assessment tool (FRAX®). All cases of hip fracture occurred at or after 40 years of age were extracted from the Portuguese National Hospital Discharge Register from 2006 to 2010. Age and sex-ranked population estimates and mortality rates were obtained from National Statistics. Age- and gender stratified incidences were computed and the average of the five years under consideration was taken. Rates for other major fractures were imputed from the epidemiology of Sweden, as undertaken for most national FRAX® models. All methodological aspects and results were submitted to critical appraisal by a wide panel of national experts and representatives of the different stakeholders, including patients. Hip fracture incidence rates were higher in women than in men and increased with age. The lowest incidence was observed in 40-44 years group (14.1 and 4.0 per 100,000 inhabitants for men and women, respectively). The highest rate was observed among the 95-100 age-group (2,577.6 and 3,551.8/100,000 inhabitants, for men and women, respectively). The estimated ten-year probability for major osteoporotic fracture or hip fracture increased with decreasing T-score and with increasing age. Portugal has one of the lowest fracture incidences among European countries. The FRAX® tool has been successfully calibrated to the Portuguese population, and can now be used to estimate the ten-year risk of osteoporotic fractures in this country. All major stakeholders officially endorsed the Portuguese FRAX® model and co-authored this paper.
A QI Initiative to Reduce Hospitalization for Children With Isolated Skull Fractures.
Lyons, Todd W; Stack, Anne M; Monuteaux, Michael C; Parver, Stephanie L; Gordon, Catherine R; Gordon, Caroline D; Proctor, Mark R; Nigrovic, Lise E
2016-06-01
Although children with isolated skull fractures rarely require acute interventions, most are hospitalized. Our aim was to safely decrease the hospitalization rate for children with isolated skull fractures. We designed and executed this multifaceted quality improvement (QI) initiative between January 2008 and July 2015 to reduce hospitalization rates for children ≤21 years old with isolated skull fractures at a single tertiary care pediatric institution. We defined an isolated skull fracture as a skull fracture without intracranial injury. The QI intervention consisted of 2 steps: (1) development and implementation of an evidence-based guideline, and (2) dissemination of a provider survey designed to reinforce guideline awareness and adherence. Our primary outcome was hospitalization rate and our balancing measure was hospital readmission within 72 hours. We used standard statistical process control methodology to assess change over time. To assess for secular trends, we examined admission rates for children with an isolated skull fracture in the Pediatric Health Information System administrative database. We identified 321 children with an isolated skull fracture with a median age of 11 months (interquartile range 5-16 months). The baseline admission rate was 71% (179/249, 95% confidence interval, 66%-77%) and decreased to 46% (34/72, 95% confidence interval, 35%-60%) after implementation of our QI initiative. No child was readmitted after discharge. The admission rate in our secular trend control group remained unchanged at 78%. We safely reduced the hospitalization rate for children with isolated skull fractures without an increase in the readmissions. Copyright © 2016 by the American Academy of Pediatrics.
A Comprehensive Numerical Model for Simulating Fluid Transport in Nanopores
Zhang, Yuan; Yu, Wei; Sepehrnoori, Kamy; Di, Yuan
2017-01-01
Since a large amount of nanopores exist in tight oil reservoirs, fluid transport in nanopores is complex due to large capillary pressure. Recent studies only focus on the effect of nanopore confinement on single-well performance with simple planar fractures in tight oil reservoirs. Its impacts on multi-well performance with complex fracture geometries have not been reported. In this study, a numerical model was developed to investigate the effect of confined phase behavior on cumulative oil and gas production of four horizontal wells with different fracture geometries. Its pore sizes were divided into five regions based on nanopore size distribution. Then, fluid properties were evaluated under different levels of capillary pressure using Peng-Robinson equation of state. Afterwards, an efficient approach of Embedded Discrete Fracture Model (EDFM) was applied to explicitly model hydraulic and natural fractures in the reservoirs. Finally, three fracture geometries, i.e. non-planar hydraulic fractures, non-planar hydraulic fractures with one set natural fractures, and non-planar hydraulic fractures with two sets natural fractures, are evaluated. The multi-well performance with confined phase behavior is analyzed with permeabilities of 0.01 md and 0.1 md. This work improves the analysis of capillarity effect on multi-well performance with complex fracture geometries in tight oil reservoirs. PMID:28091599
A Comprehensive Numerical Model for Simulating Fluid Transport in Nanopores
NASA Astrophysics Data System (ADS)
Zhang, Yuan; Yu, Wei; Sepehrnoori, Kamy; di, Yuan
2017-01-01
Since a large amount of nanopores exist in tight oil reservoirs, fluid transport in nanopores is complex due to large capillary pressure. Recent studies only focus on the effect of nanopore confinement on single-well performance with simple planar fractures in tight oil reservoirs. Its impacts on multi-well performance with complex fracture geometries have not been reported. In this study, a numerical model was developed to investigate the effect of confined phase behavior on cumulative oil and gas production of four horizontal wells with different fracture geometries. Its pore sizes were divided into five regions based on nanopore size distribution. Then, fluid properties were evaluated under different levels of capillary pressure using Peng-Robinson equation of state. Afterwards, an efficient approach of Embedded Discrete Fracture Model (EDFM) was applied to explicitly model hydraulic and natural fractures in the reservoirs. Finally, three fracture geometries, i.e. non-planar hydraulic fractures, non-planar hydraulic fractures with one set natural fractures, and non-planar hydraulic fractures with two sets natural fractures, are evaluated. The multi-well performance with confined phase behavior is analyzed with permeabilities of 0.01 md and 0.1 md. This work improves the analysis of capillarity effect on multi-well performance with complex fracture geometries in tight oil reservoirs.
Spatially offset raman spectroscopy for non-invasive assessment of fracture healing
NASA Astrophysics Data System (ADS)
Ding, Hao; Lu, Guijin; West, Christopher; Gogola, Gloria; Kellam, James; Ambrose, Catherine; Bi, Xiaohong
2016-02-01
Fracture non-unions and bone re-fracture are common challenges for post-fracture management. To achieve better prognosis and treatment evaluation, it is important to be able to assess the quality of callus over the time course of healing. This study evaluated the potential of spatially offset Raman spectroscopy for assessing the fracture healing process in situ. We investigated a rat model of fracture healing at two weeks and 4 weeks post fracture with a fractured femur and a contralateral control in each animal. Raman spectra were collected from the depilated thighs on both sides transcutaneously in situ with various source/detection offsets. Bone signals were recovered from SORS spectra, and then compared with those collected from bare bones. The relative intensity of mineral from fractured bone was markedly decreased compared to the control. The fractured bones demonstrated lower mineral and carbonate level and higher collagen content in the callus at the early time point. Compared to week 2, collagen mineralization and mineral carbonation increased at 4 weeks post fracture. Similarly, the material properties of callus determined by reference point indentation also increased in the 4-week group, indicating improved callus quality with time. The results from Raman analysis are in agreement with radiographic and material testing, indicating the potential of this technique in assessing fracture healing in vivo.
Mandible Fracture Complications and Infection: The Influence of Demographics and Modifiable Factors.
Odom, Elizabeth B; Snyder-Warwick, Alison K
2016-08-01
Mandible fractures account for 36 to 70 percent of all facial fractures. Despite their high prevalence, the literature lacks a comprehensive review of demographics, fracture patterns, timing of management, antibiotic selection, and outcomes, particularly when evaluating pediatric versus adult patients. The authors aim to determine the complication and infection rates after surgical treatment of mandibular fractures and the bacterial isolates and antibiotic sensitivities from mandible infections after open reduction and internal fixation at their institution. Data were collected retrospectively for all mandible fractures treated at the authors' institution between 2003 and 2013. Patients were divided into pediatric (younger than 16 years) and adult (16 years or older) subgroups. Demographics, fracture location, fracture cause, comorbidities, antibiotic choice, and subsequent complications and infections were analyzed. Data were evaluated using appropriate statistical tests for each variable. Three hundred ninety-five patients were evaluated. Demographics and fracture cause were similar to those reported in current literature. Of the 56 pediatric patients, complications occurred in 5.6 percent. Time from injury to operative intervention did not affect outcome. The complication rate was 17.5 percent and the infection rate was 9.4 percent in the adult subgroup. Time from injury to operative intervention, sex, and edentulism were not significant predictors of complication or infection. Tobacco use, number of fractures, number of fractures fixated, and surgical approach were predictors of complication and infection. Perioperative ampicillin-sulbactam had a significantly lower risk of infection. Certain demographic and operative factors lead to significantly higher risks of complications after surgical management of mandibular fractures. Ampicillin-sulbactam provides effective antibiotic prophylaxis. Risk factor modification may improve outcomes. Risk, IV.
The Evaluation of Root Fracture with Cone Beam Computed Tomography (CBCT): An Epidemiological Study
Doğan, Mehmet-Sinan; Callea, Michele; Kusdhany, Lindawati S.; Aras, Ahmet; Maharani, Diah-Ayu; Mandasari, Masita; Adiatman, Melissa
2018-01-01
Background The aim of this study was evaluation of the cone-beam computed tomography (CBCT) image of 50 patients at the ages of 8-15 suspecting root fracture and root fracture occurred, exposed to dental traumatic. In additionally, this study was showed effect of crown fracture on root fracture healing. Material and Methods All of the individuals included in the study were obtained images with the cone-beam computed tomography range of 0,3 voxel and 8.9 seconds.(i-CAT®, Model 17-19, Imaging SciencesInternational, Hatfield, Pa USA).The information obtained from the history and CBCT images of patients were evaluated using chi-square test statistical method the mean and the distribution of the independent variables. Results 50 children, have been exposed to trauma, was detected root fracture injury in 97 teeth. Horizontal root fracture 63.9% of the 97 tooth, the oblique in 31.9%, both the horizontal and oblique in 1.03%, partial fracture in 2.06% ,and both horizontally and vertical in 1.03% was observed.The most affected teeth, respectively of, are the maxillary central incisor (41.23% left, right, 37.11%), maxillary left lateral incisor (9.27%), maxillary right lateral incisor (11.34%), and mandibular central incisor (1.03%). Conclusions Crown fractures have negative effects on spontaneous healing of root fractures. CBCT are used selected as an alternative to with conventional radiography for diagnosis of root fractures. In particular, ıt’s cross-sectional image is quite useful and has been provided more conveniences seeing the results of diagnosis and treatment for clinician. Key words:Root fracture, CBCT, Epidemiolog. PMID:29670714
Inferring biological evolution from fracture patterns in teeth.
Lawn, Brian R; Bush, Mark B; Barani, Amir; Constantino, Paul J; Wroe, Stephen
2013-12-07
It is hypothesised that specific tooth forms are adapted to resist fracture, in order to accommodate the high bite forces needed to secure, break down and consume food. Three distinct modes of tooth fracture are identified: longitudinal fracture, where cracks run vertically between the occlusal contact and the crown margin (or vice versa) within the enamel side wall; chipping fracture, where cracks run from near the edge of the occlusal surface to form a spall in the enamel at the side wall; and transverse fracture, where a crack runs horizontally through the entire section of the tooth to break off a fragment and expose the inner pulp. Explicit equations are presented expressing critical bite force for each fracture mode in terms of characteristic tooth dimensions. Distinctive transitions between modes occur depending on tooth form and size, and loading location and direction. Attention is focussed on the relatively flat, low-crowned molars of omnivorous mammals, including humans and other hominins and the elongate canines of living carnivores. At the same time, allusion to other tooth forms - the canines of the extinct sabre-tooth (Smilodon fatalis), the conical dentition of reptiles, and the columnar teeth of herbivores - is made to highlight the generality of the methodology. How these considerations impact on dietary behaviour in fossil and living taxa is discussed. © 2013 Elsevier Ltd. All rights reserved.
Ochi, Kensuke; Furuya, Takefumi; Ikari, Katsunori; Taniguchi, Atsuo; Yamanaka, Hisashi; Momohara, Shigeki
2013-01-01
Sites, frequencies, and causes of self-reported fractures in Japanese patients with rheumatoid arthritis (RA) were evaluated in a prospective, observational cohort study. The incidence and cause of fracture differ by anatomical site, sex, and age. These differences may be considered in establishing custom strategies for preventing fractures in RA patients in the future. The literature contains limited data describing the details of fractures at different skeletal sites in patients with RA. We evaluated the details of fractures in Japanese RA patients on the basis of our Institute of Rheumatology Rheumatoid Arthritis cohort study in 9,720 RA patients (82 % women; mean age, 56 years) who were enrolled from 2000 to 2010. The details of fractures were obtained through biannual patient self-report questionnaires. Over a mean duration of 5.2 years, 1,317 patients (13.5 %) reported 2,323 incident fractures comprising 563 (24.2 %) clinical vertebral fractures and 1,760 (75.8 %) nonvertebral fractures. Rib fractures were the most common fractures in men, followed by clinical vertebral and hip fractures; the most common fractures in women were clinical vertebral fractures, followed by rib, foot, and hip fractures. There was a significant difference between sexes in the rates of rib, clavicle, shoulder, and ankle fractures. Spontaneous event was the primary cause of clinical vertebral fracture (65.4 %), whereas falls were the primary cause of upper extremity (76.5 %) and lower extremity (57.8 %) fractures. Rates of clinical vertebral and hip fractures increased, while those of rib and foot fractures decreased with increasing age. Incidence of falls, as causes of nonvertebral fractures, also increased in older age groups. Our results suggest that the causes of fractures may differ depending on anatomical site and that prevention of falls may be the most effective way to reduce upper and lower extremity fractures, especially in older patients with RA.
Fracture network evaluation program (FraNEP): A software for analyzing 2D fracture trace-line maps
NASA Astrophysics Data System (ADS)
Zeeb, Conny; Gomez-Rivas, Enrique; Bons, Paul D.; Virgo, Simon; Blum, Philipp
2013-10-01
Fractures, such as joints, faults and veins, strongly influence the transport of fluids through rocks by either enhancing or inhibiting flow. Techniques used for the automatic detection of lineaments from satellite images and aerial photographs, LIDAR technologies and borehole televiewers significantly enhanced data acquisition. The analysis of such data is often performed manually or with different analysis software. Here we present a novel program for the analysis of 2D fracture networks called FraNEP (Fracture Network Evaluation Program). The program was developed using Visual Basic for Applications in Microsoft Excel™ and combines features from different existing software and characterization techniques. The main novelty of FraNEP is the possibility to analyse trace-line maps of fracture networks applying the (1) scanline sampling, (2) window sampling or (3) circular scanline and window method, without the need of switching programs. Additionally, binning problems are avoided by using cumulative distributions, rather than probability density functions. FraNEP is a time-efficient tool for the characterisation of fracture network parameters, such as density, intensity and mean length. Furthermore, fracture strikes can be visualized using rose diagrams and a fitting routine evaluates the distribution of fracture lengths. As an example of its application, we use FraNEP to analyse a case study of lineament data from a satellite image of the Oman Mountains.
Structural design considerations for micromachined solid-oxide fuel cells
NASA Astrophysics Data System (ADS)
Srikar, V. T.; Turner, Kevin T.; Andrew Ie, Tze Yung; Spearing, S. Mark
Micromachined solid-oxide fuel cells (μSOFCs) are among a class of devices being investigated for portable power generation. Optimization of the performance and reliability of such devices requires robust, scale-dependent, design methodologies. In this first analysis, we consider the structural design of planar, electrolyte-supported, μSOFCs from the viewpoints of electrochemical performance, mechanical stability and reliability, and thermal behavior. The effect of electrolyte thickness on fuel cell performance is evaluated using a simple analytical model. Design diagrams that account explicitly for thermal and intrinsic residual stresses are presented to identify geometries that are resistant to fracture and buckling. Analysis of energy loss due to in-plane heat conduction highlights the importance of efficient thermal isolation in microscale fuel cell design.
Repair of long-bone fractures in cats and small dogs with the Unilock mandible locking plate system.
Voss, K; Kull, M; Hässig, M; Montavon, P
2009-01-01
To retrospectively evaluate stabilisation of long-bone fractures in cats and small dogs using the Unilock system. Medical histories and radiographs of consecutive patients with long-bone fractures stabilised with the Unilock system were reviewed. Cases with follow-up radiographs taken at least four weeks postoperatively were included. Signalment of the patient, fracture localisation and type, primary fracture repair or revision surgery, single or double plating, and complications for each patient were noted. Additionally, implant size, number of screws, number of cortices engaged with screws, and number of empty holes across the fracture were evaluated in fractures where a single plate had been applied. Eighteen humeral, 18 radial, 20 femoral, and 10 tibial fractures were treated. The Unilock system was used for primary repair in 44 fractures and for revision surgery in 22 fractures. Two plates were applied in 17 fractures, and a single plate was applied in 49 fractures. Follow-up radiographs were taken four to 109 weeks postoperatively. Complications were seen in 12 animals and 13 fractures (19.7%). Fixation failure occurred in seven fractures (10.6%). Cases with a single plate that suffered fixation failure had thinner screws in relation to bone diameter than cases with double plates, and more screws in a main fragment than those without fixation failure. The Unilock system is a suitable implant for fracture fixation of long bones in cats and small dogs.
NASA Astrophysics Data System (ADS)
Colombero, C.; Baillet, L.; Comina, C.; Jongmans, D.; Vinciguerra, S.
2017-08-01
The characterization of the fracturing state of a potentially unstable rock cliff is a crucial requirement for stability assessments and mitigation purposes. Classical measurements of fracture location and orientation can however be limited by inaccessible rock exposures. The steep topography and high-rise morphology of these cliffs, together with the widespread presence of fractures, can additionally condition the success of geophysical prospecting on these sites. In order to mitigate these limitations, an innovative approach combining noncontact geomechanical measurements, active and passive seismic surveys, and 3-D numerical modeling is proposed in this work to characterize the 3-D fracture setting of an unstable rock mass, located in NW Italian Alps (Madonna del Sasso, VB). The 3-D fracture geometry was achieved through a combination of field observations and noncontact geomechanical measurements on oriented pictures of the cliff, resulting from a previous laser-scanning and photogrammetric survey. The estimation of fracture persistence within the rock mass was obtained from surface active seismic surveys. Ambient seismic noise and earthquakes recordings were used to assess the fracture control on the site response. Processing of both data sets highlighted the resonance properties of the unstable rock volume decoupling from the stable massif. A finite element 3-D model of the site, including all the retrieved fracture information, enabled both validation and interpretation of the field measurements. The integration of these different methodologies, applied for the first time to a complex 3-D prone-to-fall mass, provided consistent information on the internal fracturing conditions, supplying key parameters for future monitoring purposes and mitigation strategies.
2014-01-01
Compromised bone-regenerating capability following a long bone fracture is often the result of reduced host bone marrow (BM) progenitor cell numbers and efficacy. Without surgical intervention, these malunions result in mobility restrictions, deformities, and disability. The clinical application of BM-derived mesenchymal stem cells (MSCs) is a feasible, minimally invasive therapeutic option to treat non-union fractures. This review focuses on novel, newly identified cell surface markers in both the mouse and human enabling the isolation and purification of osteogenic progenitor cells as well as their direct and indirect contributions to fracture repair upon administration. Furthermore, clinical success to date is summarized with commentary on autologous versus allogeneic cell sources and the methodology of cell administration. Given our clinical success to date in combination with recent advances in the identification, isolation, and mechanism of action of MSCs, there is a significant opportunity to develop improved technologies for defining therapeutic MSCs and potential to critically inform future clinical strategies for MSC-based bone regeneration. PMID:25099622
Fracture toughness of Alloy 690 and EN52 weld in air and water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, C.M.; Mills, W.J.
1999-06-01
The effect of low and high temperature water with high hydrogen on the fracture toughness of Alloy 690 and its weld, EN52, was characterized using elastic-plastic J{sub IC} methodology. While both materials display excellent fracture resistance in air and elevated temperature (>93 C) water, a dramatic degradation in toughness is observed in 54 C water. The loss of toughness is associated with a hydrogen-induced intergranular cracking mechanism where hydrogen is picked up from the water. Comparison of the cracking behavior in low temperature water with that for hydrogen-precharged specimens tested in air indicates that the critical local hydrogen content requiredmore » to cause low temperature embrittlement is on the order of 120 to 160 ppm. Loading rate studies show that the cracking resistance is significantly improved at rates above ca. 1000 MPa{radical}m/h because there is insufficient time to produce grain boundary embrittlement. Electron fractographic examinations were performed to correlate cracking behavior with microstructural features and operative fracture mechanics.« less
Fracture toughness of alloy 690 and EN52 welds in air and water
NASA Astrophysics Data System (ADS)
Brown, C. M.; Mills, W. J.
2002-06-01
The effect of low- and high-temperature water with high hydrogen on the fracture toughness of alloy 690 and its weld, EN52, was characterized using elastic-plastic J IC methodology. While both materials display excellent fracture resistance in air and elevated-temperature (>93 °C) water, a dramatic degradation in toughness is observed in 54 °C water. The loss of toughness is associated with a hydrogen-induced intergranular cracking mechanism, where hydrogen is picked up from the water. Comparison of the cracking behavior in low-temperature water with that for hydrogen-precharged specimens tested in air indicates that the critical local hydrogen content required to cause low-temperature embrittlement is on the order of 120 to 160 ppm. Loading-rate studies show that cracking resistance is improved at rates above ˜ 1000 MPa √m/h, because there is insufficient time to produce grain-boundary embrittlement. Electron fractographic examinations were performed to correlate cracking behavior with microstructural features and operative fracture mechanisms.
Classification of fracture and non-fracture groups by analysis of coherent X-ray scatter
Dicken, A. J.; Evans, J. P. O.; Rogers, K. D.; Stone, N.; Greenwood, C.; Godber, S. X.; Clement, J. G.; Lyburn, I. D.; Martin, R. M.; Zioupos, P.
2016-01-01
Osteoporotic fractures present a significant social and economic burden, which is set to rise commensurately with the aging population. Greater understanding of the physicochemical differences between osteoporotic and normal conditions will facilitate the development of diagnostic technologies with increased performance and treatments with increased efficacy. Using coherent X-ray scattering we have evaluated a population of 108 ex vivo human bone samples comprised of non-fracture and fracture groups. Principal component fed linear discriminant analysis was used to develop a classification model to discern each condition resulting in a sensitivity and specificity of 93% and 91%, respectively. Evaluating the coherent X-ray scatter differences from each condition supports the hypothesis that a causal physicochemical change has occurred in the fracture group. This work is a critical step along the path towards developing an in vivo diagnostic tool for fracture risk prediction. PMID:27363947
Internal strain analysis of ceramics using scanning laser acoustic microscopy
NASA Technical Reports Server (NTRS)
Kent, Renee M.
1993-01-01
Quantitative studies of material behavior characteristics are essential for predicting the functionality of a material under its operating conditions. A nonintrusive methodology for measuring the in situ strain of small dimeter (to 11 microns) ceramic fibers under uniaxial tensile loading and the local internal strains of ceramics and ceramic composites under flexural loading is introduced. The strain measurements and experimentally observed mechanical behavior are analyzed in terms of the microstructural development and fracture behavior of each test specimen evaluated. Measurement and analysis of Nicalon silicon carbide (SiC) fiber (15 microns diameter) indicate that the mean elastic modulus of the individual fiber is 185.3 GPa. Deviations observed in the experimentally determined elastic modulus values between specimens were attributed to microstructural variations which occur during processing. Corresponding variations in the fracture surface morphology were also observed. The observed local mechanical behavior of a lithium alumino-silicate (LAS) glass ceramic, a LAS/SiC monofilament composite, and a calcium alumino-silicate (CAS)/SiC fully reinforced composite exhibits nonlinearities and apparent hysteresis due to the subcritical mechanical loading. Local hysteresis in the LAS matrices coincided with the occurrence of multiple fracture initiation sites, localized microcracking, and secondary cracking. The observed microcracking phenomenon was attributed to stress relaxation of residual stresses developed during processing, and local interaction of the crack front with the microstructure. The relaxation strain and stress predicted on apparent mechanical hysteresis effects were defined and correlated with the magnitude of the measured fracture stress for each specimen studied. This quantitative correlation indicated a repeatable measure of the stress at which matrix microcracking occurred for stress relief of each material system. Stress relaxation occurred prior to the onset of steady state cracking conditions. The relaxation stress occurred at 18.5 percent of the fracture stress in LAS and 11.0 percent of the yield stress in CAS/SiC. The relaxation stress ratio was dependent upon the dominant fracture mode of the LAS/SiC specimens. Relaxation stress ratios greater than 0.30 were observed for specimens which fractured due to shear at the fiber matrix interface; specimens which fracture due to tensile cracking had relaxation stress ratios less than 0.30. The stress relaxation ratio appeared to be a specific characteristic of the glass ceramic material. The measured stress relaxation for LAS indicated a measure of the inherent residual stresses in the material due to processing and suggested localized toughening mechanisms for brittle material structures.
Fráter, Mark; Forster, András; Jantyik, Ádám; Braunitzer, Gábor; Nagy, Katalin
2015-12-01
The purpose of this in vitro investigation was to evaluate the reinforcing effect of different fibre-reinforced composite (FRC) posts and insertion techniques in premolar teeth when using minimal invasive post space preparation. Thirty two extracted and endodontically treated premolar teeth were used and divided into four groups (n = 8) depending on the post used (Group 1-4). 1: one single conventional post, 2: one main conventional and one collateral post, 3: one flexible post, 4: one main flexible and one collateral post. After cementation and core build-up the specimens were submitted to static fracture toughness test. Fracture thresholds and fracture patterns were recorded and evaluated. The multi-post techniques (group 2 and 4) showed statistically higher fracture resistance compared to group one. Regarding fracture patterns there was no statistically significant difference between the tested groups. The application of multiple posts seems to be beneficial regarding fracture resistance independent from the used FRC post. Fracture pattern was not influenced by the elasticity of the post.
Frail Older People as Participants in Research
ERIC Educational Resources Information Center
Peel, Nancye M.; Wilson, Cecilia
2008-01-01
This article describes the experience of interviewing frail older people in a research project investigating hip fracture risk factors. Specific methodological strategies to maximize participation and data quality and to facilitate the interview process related to participant inclusion criteria, initial approach, questionnaire format, and…
Jonasson, Grethe; Billhult, Annika
2013-09-01
To compare three mandibular trabeculation evaluation methods, clinical variables, and osteoporosis as fracture predictors in women. One hundred and thirty-six female dental patients (35-94 years) answered a questionnaire in 1996 and 2011. Using intra-oral radiographs from 1996, five methods were compared as fracture predictors: (1) mandibular bone structure evaluated with a visual radiographic index, (2) bone texture, (3) size and number of intertrabecular spaces calculated with Jaw-X software, (4) fracture probability calculated with a fracture risk assessment tool (FRAX), and (5) osteoporosis diagnosis based on dual-energy-X-ray absorptiometry. Differences were assessed with the Mann-Whitney test and relative risk calculated. Previous fracture, gluco-corticoid medication, and bone texture were significant indicators of future and total (previous plus future) fracture. Osteoporosis diagnosis, sparse trabeculation, Jaw-X, and FRAX were significant predictors of total but not future fracture. Clinical and oral bone variables may identify individuals at greatest risk of fracture. Copyright © 2013 Elsevier Inc. All rights reserved.
Damage Tolerant Analysis of Cracked Al 2024-T3 Panels repaired with Single Boron/Epoxy Patch
NASA Astrophysics Data System (ADS)
Mahajan, Akshay D.; Murthy, A. Ramachandra; Nanda Kumar, M. R.; Gopinath, Smitha
2018-06-01
It is known that damage tolerant analysis has two objectives, namely, remaining life prediction and residual strength evaluation. To achieve the these objectives, determination of accurate and reliable fracture parameter is very important. XFEM methodologies for fatigue and fracture analysis of cracked aluminium panels repaired with different patch shapes made of single boron/epoxy have been developed. Heaviside and asymptotic crack tip enrichment functions are employed to model the crack. XFEM formulations such as displacement field formulation and element stiffness matrix formulation are presented. Domain form of interaction integral is employed to determine Stress Intensity Factor of repaired cracked panels. Computed SIFs are incorporated in Paris crack growth model to predict the remaining fatigue life. The residual strength has been computed by using the remaining life approach, which accounts for both crack growth constants and no. of cycles to failure. From the various studies conducted, it is observed that repaired panels have significant effect on reduction of the SIF at the crack tip and hence residual strength as well as remaining life of the patched cracked panels are improved significantly. The predicted remaining life and residual strength will be useful for design of structures/components under fatigue loading.
Mittal, Chikul; Lee, Hsien Chieh Daniel; Goh, Kiat Sern; Lau, Cheng Kiang Adrian; Tay, Leeanna; Siau, Chuin; Loh, Yik Hin; Goh, Teck Kheng Edward; Sandi, Chit Lwin; Lee, Chien Earn
2018-05-30
To test a population health program which could, through the application of process redesign, implement multiple evidence-based practices across the continuum of care in a functionally integrated health delivery system and deliver highly reliable and consistent evidence-based surgical care for patients with fragility hip fractures in an acute tertiary general hospital. The ValuedCare (VC) program was developed in three distinct phases as an ongoing collaboration between the Geisinger Health System (GHS), USA, and Changi General Hospital (CGH), Singapore, modelled after the GHS ProvenCare® Fragile Hip Fracture Program. Clinical outcome data on consecutive hip fracture patients seen in 12 months pre-intervention were then compared with the post-intervention group. Both pre- and post-intervention groups were followed up across the continuum of care for a period of 12 months. VC patients showed significant improvement in median time to surgery (97 to 50.5 h), as well as proportion of patients operated within 48 h from hospital admission (48% from 18.8%) as compared to baseline pre-intervention data. These patients also had significant reduction (p value < 0.001) of acute inpatient complications such as delirium, pneumonia, urinary tract infections, and pressure sores. VC program has shown significant reduction in median length of stay for acute hospital (13 to 9 days) as well as median combined length of stay for acute and sub-acute rehabilitation hospital (46 to 39 days), thus reducing the total duration of hospitalization and saving total hospital bed days. Operative and inpatient mortality, together with readmission rates, remained low and comparable to international Geriatric Fracture Centers (GFCs). The implementation of VC methodology has enabled consistent delivery of high-quality, reliable and comprehensive evidence-based care for hip fracture patients at Changi General Hospital. This has also reflected successful change management and interdisciplinary collaboration within the organization through the program. There is potential for testing this methodology as a quality improvement framework replicable to other disease groups in a functionally integrated healthcare system.
Visser, Marike; Hespel, Adrien-Maxence; de Swarte, Marie; Bellah, Jamie R
2015-11-01
To evaluate use of a caudoventral-craniodorsal oblique radiographic view made at 45° to the frontal plane (H view) for assessment of the pectoral (thoracic) girdle in raptors. Retrospective cross-sectional analysis. 24 raptors suspected to have a fracture of the thoracic girdle. Standard ventrodorsal and H views were obtained for all birds. Radiographs were evaluated twice by a radiologist blinded to the final diagnosis, with each view first evaluated independently and views then evaluated in combination. Sensitivity, specificity, positive predictive value, and negative predictive value were calculated, with results of surgery or necropsy used as the gold standard. 9 birds had thoracic girdle fractures; fractures were correctly identified in 8 of these 9 birds on the ventrodorsal view alone, 7 of these 9 birds on the H view alone, and all 9 birds on the 2 views in combination. Fifteen birds did not have thoracic girdle fractures; radiographs were correctly classified in 12 of these 15 birds when the ventrodorsal view was evaluated alone, all 15 birds when the H view was evaluated alone, and 14 of these 15 birds when the 2 views were evaluated in combination. Results suggested that the H view or the addition of the H view to the VD view could be useful in raptors suspected to have fractures of the thoracic girdle. Agreement with the gold standard (ie, fracture present or absent) was higher with the H view and combination of views than with the ventrodorsal view alone.
Tympanic plate fractures in temporal bone trauma: prevalence and associated injuries.
Wood, C P; Hunt, C H; Bergen, D C; Carlson, M L; Diehn, F E; Schwartz, K M; McKenzie, G A; Morreale, R F; Lane, J I
2014-01-01
The prevalence of tympanic plate fractures, which are associated with an increased risk of external auditory canal stenosis following temporal bone trauma, is unknown. A review of posttraumatic high-resolution CT temporal bone examinations was performed to determine the prevalence of tympanic plate fractures and to identify any associated temporal bone injuries. A retrospective review was performed to evaluate patients with head trauma who underwent emergent high-resolution CT examinations of the temporal bone from July 2006 to March 2012. Fractures were identified and assessed for orientation; involvement of the tympanic plate, scutum, bony labyrinth, facial nerve canal, and temporomandibular joint; and ossicular chain disruption. Thirty-nine patients (41.3 ± 17.2 years of age) had a total of 46 temporal bone fractures (7 bilateral). Tympanic plate fractures were identified in 27 (58.7%) of these 46 fractures. Ossicular disruption occurred in 17 (37.0%). Fractures involving the scutum occurred in 25 (54.4%). None of the 46 fractured temporal bones had a mandibular condyle dislocation or fracture. Of the 27 cases of tympanic plate fractures, 14 (51.8%) had ossicular disruption (P = .016) and 18 (66.6%) had a fracture of the scutum (P = .044). Temporomandibular joint gas was seen in 15 (33%) but was not statistically associated with tympanic plate fracture (P = .21). Tympanic plate fractures are commonly seen on high-resolution CT performed for evaluation of temporal bone trauma. It is important to recognize these fractures to avoid the preventable complication of external auditory canal stenosis and the potential for conductive hearing loss due to a fracture involving the scutum or ossicular chain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narr, W.; Currie, J.B.
The occurrence of natural fracture systems in subsurface rock can be predicted if careful evaluation is made of the ecologic processes that affect sedimentary strata during their cycle of burial, diagenesis, uplift, and erosional unloading. Variations in the state of stress within rock arise, for example, from changes in temperature, pore pressure, weight of overburden, or tectonic loading. Hence geologic processes acting on a sedimentary unit should be analyzed for their several contributions to the state of stress, and this information used to compute a stress history. From this stress history, predictions may be made as to when in themore » burial cycle to expect fracture (joint) formation, what type of fractures (extension or shear) may occur, and which geologic factors are most favorable to development of fractures. A stress history is computed for strata of the naturally fractured Altamont oil field in Utah's Uinta basin. Calculations suggest that fractures formed in extension, that the well-cemented rocks are those most likely to be fractured, that fractures began to develop only after stata were uplifted and denuded of overburden. Geologic evidence on fracture genesis and development is in accord with the stress history prediction. Stress history can be useful in evaluating a sedimentary basin for naturally fractured reservoir exploration plays.« less
NASA Astrophysics Data System (ADS)
Bonachera Martin, Francisco Javier
The characterization of fatigue resistance is one of the main concerns in structural engineering, a concern that is particularly important in the evaluation of existing bridge members designed or erected before the development of fatigue design provisions. The ability of a structural member to develop alternate load paths after the failure of a component is known as member-level or internal redundancy. In fastened built-up members, these alternate load paths are affected by the combination of fastener pre-tension and friction between the structural member components in contact. In this study, a finite element methodology to model and analyze riveted and bolted built-up members was developed in ABAQUS and validated with experimental results. This methodology was used to created finite element models of three fastened plates subjected to tension, in which the middle plate had failed, in order to investigate the fundamental effects of combined fastener pre-tension and friction on their mechanical behavior. Detailed finite element models of riveted and bolted built-up flexural members were created and analyze to understand the effect of fastener pre-tension in member-level redundancy and resistance to fatigue and fracture. The obtained results showed that bolted members are able to re-distribute a larger portion of the load away from the failing component into the rest of the member than riveted members, and that this transfer of load also took place over a smaller length. Superior pre-tension of bolts, in comparison to rivets, results in larger frictional forces that develop at the contact interfaces between components and constitute additional alternate load paths that increase member-level redundancy which increase the fatigue and fracture resistance of the structural member during the failure of one of its components. Although fatigue and fracture potential may be mitigated by compressive stresses developing around the fastener hole due to fastener pre-tension, it was also observed, that at the surface of the fastener hole and at the contact interface with another plate, tensional stresses could develop; however, further computational and experimental work should be performed to verify this claim.
Peltola, Erno K; Lindahl, Jan; Koskinen, Seppo K
2014-06-01
The aims of this study were to assess the incidence of reverse Segond fracture, to examine the associated ligamentous injuries, and to examine how often reverse Segond fracture coexists with a knee dislocation. At a level 1 trauma center, an 11-year period of emergency department multidetector-row computed tomography (MDCT) examinations for knee trauma was evaluated for reverse Segond and Segond fractures. Surgical findings served as the reference standard for intra-articular injuries. The hospital discharge register was searched for the diagnosis of knee dislocation from August 2000 through the end of August 2011. A total of 1,553 knee MDCT examinations were evaluated. Ten patients with a reverse Segond fracture were found, comprising 0.64 % of emergency room acute knee trauma MDCT examinations. Seven patients who had a reverse Segond fracture were operated: Three had an avulsion fracture of the anterior cruciate ligament, one had an avulsion fracture of posterior cruciate ligament, two had a lateral meniscal tear, and two had a medial collateral ligament tear. The ratio of reverse Segond fractures to Segond fractures was 1:4. None of the 71 knee dislocation patients had a reverse Segond fracture. Reverse Segond fracture is a rare finding even in a level 1 trauma center. Cruciate ligament injuries appear to be associated with avulsion fracture, but every patient does not have PCL injury, as previously reported. Our results do not support the association of knee dislocation with reverse Segond fracture.
ACR Appropriateness Criteria Low Back Pain.
Patel, Nandini D; Broderick, Daniel F; Burns, Judah; Deshmukh, Tejaswini K; Fries, Ian Blair; Harvey, H Benjamin; Holly, Langston; Hunt, Christopher H; Jagadeesan, Bharathi D; Kennedy, Tabassum A; O'Toole, John E; Perlmutter, Joel S; Policeni, Bruno; Rosenow, Joshua M; Schroeder, Jason W; Whitehead, Matthew T; Cornelius, Rebecca S; Corey, Amanda S
2016-09-01
Most patients presenting with uncomplicated acute low back pain (LBP) and/or radiculopathy do not require imaging. Imaging is considered in those patients who have had up to 6 weeks of medical management and physical therapy that resulted in little or no improvement in their back pain. It is also considered for those patients presenting with red flags raising suspicion for serious underlying conditions, such as cauda equina syndrome, malignancy, fracture, and infection. Many imaging modalities are available to clinicians and radiologists for evaluating LBP. Application of these modalities depends largely on the working diagnosis, the urgency of the clinical problem, and comorbidities of the patient. When there is concern for fracture of the lumbar spine, multidetector CT is recommended. Those deemed to be interventional candidates, with LBP lasting for > 6 weeks having completed conservative management with persistent radiculopathic symptoms, may seek MRI. Patients with severe or progressive neurologic deficit on presentation and red flags should be evaluated with MRI. The ACR Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision include an extensive analysis of current medical literature from peer-reviewed journals and the application of well-established methodologies (the RAND/UCLA Appropriateness Method and the Grading of Recommendations Assessment, Development, and Evaluation) to rate the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances in which evidence is lacking or equivocal, expert opinion may supplement the available evidence to recommend imaging or treatment. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.
Pruthi, Varun; Talwar, Sangeeta; Nawal, Ruchika Roongta; Pruthi, Preeti Jain; Choudhary, Sarika; Yadav, Seema
2018-01-01
The aim of this study was to evaluate retention & fracture resistance of different fibre posts. 90 extracted human permanent maxillary central incisors were used in this study. For retention evaluation, after obturation, post space preparation was done in all root canals and posts were cemented under three groups. Later, the posts were grasped & pulled out from the roots with the help of a three-jaw chuck at a cross-head speed of 5mm/min. Force required to dislodge each post was recorded in Newtons. To evaluate the fracture behavior of posts, artificial root canals were drilled into aluminium blocks and posts were cemented. Load required to fracture each post was recorded in Newtons. The results of the present study show the mean retention values for Fibrekleer Parallel post were significantly greater than those for Synca Double tapered post & Bioloren Tapered post. The mean retention values of the Double tapered post & the tapered post were not statistically different. The Synca Double tapered post had the highest mean load to fracture, and this value was significantly higher than those of FibreKleer Parallel & Bioloren Tapered post. The mean fracture resistance values of Parallel & tapered post were not statistically different. This study showed parallel posts to have better retention than tapered and double tapered posts. Regarding the fracture resistance, double tapered posts were found to be better than parallel and tapered posts.
Characterization of Subsurface Defects in Ceramic Rods by Laser Scattering and Fractography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, J. M.; Sun, J. G.; Andrews, M. J.
2006-03-06
Silicon nitride ceramics are leading materials being evaluated for valve train components in diesel engine applications. The surface and subsurface defects and damage induced by surface machining can significantly affect component strength and lifetime. In this study, a nondestructive evaluation (NDE) technique based upon laser scattering has been utilized to analyze eight transversely ground silicon nitride cylindrical rods before fracture tests. The fracture origins (machining cracks or material-inherent flaws) identified by fractography after fracture testing were correlated with laser scattering images. The results indicate that laser scattering is able to identify possible fracture origin in the silicon nitride subsurface withoutmore » the need for destructive fracture tests.« less
Scale Model Simulation of Enhanced Geothermal Reservoir Creation
NASA Astrophysics Data System (ADS)
Gutierrez, M.; Frash, L.; Hampton, J.
2012-12-01
Geothermal energy technology has successfully provided a means of generating stable base load electricity for many years. However, implementation has been spatially limited to limited availability of high quality traditional hydro-thermal resources possessing the combination of a shallow high heat flow anomaly and an aquifer with sufficient permeability and continuous fluid recharge. Enhanced Geothermal Systems (EGS) has been proposed as a potential solution to enable additional energy production from the non-conventional hydro-thermal resources. Hydraulic fracturing is considered the primary means of creating functional EGS reservoirs at sites where the permeability of the rock is too limited to allow cost effective heat recovery. EGS reservoir creation requires improved fracturing methodology, rheologically controllable fracturing fluids, and temperature hardened proppants. Although large fracture volumes (several cubic km) have been created in the field, circulating fluid through these full volumes and maintaining fracture volumes have proven difficult. Stimulation technology and methodology as used in the oil and gas industry for sedimentary formations are well developed; however, they have not sufficiently been demonstrated for EGS reservoir creation. Insufficient data and measurements under geothermal conditions make it difficult to directly translate experience from the oil and gas industries to EGS applications. To demonstrate the feasibility of EGS reservoir creation and subsequent geothermal energy production, and to improve the understanding of hydraulic and propping in EGS reservoirs, a heated true-triaxial load cell with a high pressure fluid injection system was developed to simulate an EGS system from stimulation to production. This apparatus is capable of loading a 30x30x30 cubic cm rock sample with independent principal stresses up to 13 MPa while simultaneously providing heating up to 180 degree C. Multiple orientated boreholes of 5 to 10 mm diameter may be drilled into the sample while at reservoir conditions. This allows for simulation of borehole damage as well as injector-producer schemes. Dual 70 MPa syringe pumps set to flow rates between 10 nL/min and 60 mL/min injecting into a partially cased borehole allow for fully contained fracturing treatments. A six sensor acoustic emission (AE) array is used for geometric fracture location estimation during intercept borehole drilling operations. Hydraulic sensors and a thermocouple array allow for additional monitoring and data collection as relevant to computer model validation as well as field test comparisons. The results from preliminary tests inside and outside of the cell demonstrate the functionality of the equipment while also providing some novel data on the propagation and flow characteristics of hydraulic fractures themselves.
Fracture mechanics data for 2024-T861 and 2124-T851 aluminum
NASA Technical Reports Server (NTRS)
Pionke, L. J.; Linback, R. K.
1974-01-01
The fracture toughness and fatigue flaw growth characteristics of 2024-T861 and 2124-T851 aluminum were evaluated under plane stress conditions. Center cracked tension specimens were employed to evaluate these properties under a number of different test conditions which included variations in specimen thickness, specimen orientation, test environment, and initial flaw size. The effect of buckling was also investigated for all tests of thin gage specimens, and the effect of frequency and stress ratio was evaluated for the cyclic tests. Fracture toughness test results were analyzed and presented in terms of fracture resistance curves; fatigue flaw growth data was analyzed using empirical rate models. The results of the study indicate that both fracture toughness and resistance to fatigue crack growth improve with increasing temperature and decreasing thickness. The presence of buckling during testing of thin gage panels was found to degrade the resistance to fatigue flaw growth only at elevated temperatures.
Mapping Surface Features Produced by an Active Landslide
NASA Astrophysics Data System (ADS)
Parise, Mario; Gueguen, Erwan; Vennari, Carmela
2016-10-01
A large landslide reactivated on December 2013, at Montescaglioso, southern Italy, after 56 hours of rainfall. The landslide disrupted over 500 m of a freeway, involved a few warehouses, a supermarket, and private homes. After the event, it has been performed field surveys, aided by visual analysis of terrestrial and helicopter photographs, to compile a map of the surface deformations. The geomorphological features mapped included single fractures, sets of fractures, tension cracks, trenches, and pressure ridges. In this paper we present the methodology used, the map obtained through the intensive field work, and discuss the main surface features produced by the landslide.
Disease clusters, exact distributions of maxima, and P-values.
Grimson, R C
1993-10-01
This paper presents combinatorial (exact) methods that are useful in the analysis of disease cluster data obtained from small environments, such as buildings and neighbourhoods. Maxwell-Boltzmann and Fermi-Dirac occupancy models are compared in terms of appropriateness of representation of disease incidence patterns (space and/or time) in these environments. The methods are illustrated by a statistical analysis of the incidence pattern of bone fractures in a setting wherein fracture clustering was alleged to be occurring. One of the methodological results derived in this paper is the exact distribution of the maximum cell frequency in occupancy models.
Fragility non-hip fracture patients are at risk.
Gosch, M; Druml, T; Nicholas, J A; Hoffmann-Weltin, Y; Roth, T; Zegg, M; Blauth, M; Kammerlander, C
2015-01-01
Fragility fractures are a growing worldwide health care problem. Hip fractures have been clearly associated with poor outcomes. Fragility fractures of other bones are common reasons for hospital admission and short-term disability, but specific long-term outcome studies of non-hip fragility fractures are rare. The aim of our trial was to evaluate the 1-year outcomes of non-hip fragility fracture patients. This study is a retrospective cohort review of 307 consecutive older inpatient non-hip fracture patients. Patient data for analysis included fracture location, comorbidity prevalence, pre-fracture functional status, osteoporosis treatments and sociodemographic characteristics. The main outcomes evaluated were 1-year mortality and post-fracture functional status. As compared to the expected mortality, the observed 1-year mortality was increased in the study group (17.6 vs. 12.2 %, P = 0.005). After logistic regression, three variables remained as independent risk factors for 1-year mortality among non-hip fracture patients: malnutrition (OR 3.3, CI 1.5-7.1), Charlson comorbidity index (CCI) (OR 1.3, CI 1.1-1.5) and the Parker Mobility Score (PMS) (OR 0.85, CI 0.74-0.98). CCI and PMS were independent risk factors for a high grade of dependency after 1 year. Management of osteoporosis did not significantly improve after hospitalization due to a non-hip fragility fracture. The outcomes of older non-hip fracture patients are comparable to the poor outcomes of older hip fracture patients, and appear to be primarily related to comorbidities, pre-fracture function and nutritional status. The low rate of patients on osteoporosis medications likely reflects the insufficient recognition of the importance of osteoporosis assessment and treatment in non-hip fracture patients. Increased clinical and academic attention to non-hip fracture patients is needed.
Relevance of adjacent joint imaging in the evaluation of ankle fractures.
Antoci, Valentin; Patel, Shaun P; Weaver, Michael J; Kwon, John Y
2016-10-01
Routinely obtaining adjacent joint radiographs when evaluating patients with ankle fractures may be of limited clinical utility and an unnecessary burden, particularly in the absence of clinical suspicion for concomitant injuries. One thousand, three hundred and seventy patients who sustained ankle fractures over a 5-year period presenting to two level 1 trauma centers were identified. Medical records were retrospectively reviewed for demographics, physical examination findings, and radiographic information. Analyses included descriptive statistics along with sensitivity and predictive value calculations for the presence of adjacent joint fracture. Adjacent joint imaging (n=1045 radiographs) of either the knee or foot was obtained in 873 patients (63.7%). Of those, 75/761 patients (9.9%) demonstrated additional fractures proximal to the ankle joint, most commonly of the proximal fibula. Twenty-two of 284 (7.7%) demonstrated additional fractures distal to the ankle joint, most commonly of the metatarsals. Tenderness to palpation demonstrated sensitivities of 0.92 and 0.77 and positive predictive values of 0.94 and 0.89 for the presence of proximal and distal fractures, respectively. Additionally, 19/22 (86.4%) of patients sustaining foot fractures had their injury detectable on initial ankle X-rays. Overall, only 5.5% (75/1370) of patients sustained fractures proximal to the ankle and only 0.2% (3/1370) of patients had additional foot fractures not evident on initial ankle X-rays. The addition of adjacent joint imaging for the evaluation of patients sustaining ankle fractures is low yield. As such, patient history, physical examination, and clinical suspicion should direct the need for additional X-rays. Level IV. Copyright © 2016 Elsevier Ltd. All rights reserved.
THE EFFECT OF STRAIN RATE ON FRACTURE TOUGHNESS OF HUMAN CORTICAL BONE: A FINITE ELEMENT STUDY
Ural, Ani; Zioupos, Peter; Buchanan, Drew; Vashishth, Deepak
2011-01-01
Evaluating the mechanical response of bone under high loading rates is crucial to understanding fractures in traumatic accidents or falls. In the current study, a computational approach based on cohesive finite element modeling was employed to evaluate the effect of strain rate on fracture toughness of human cortical bone. Two-dimensional compact tension specimen models were simulated to evaluate the change in initiation and propagation fracture toughness with increasing strain rate (range: 0.08 to 18 s−1). In addition, the effect of porosity in combination with strain rate was assessed using three-dimensional models of microcomputed tomography-based compact tension specimens. The simulation results showed that bone’s resistance against the propagation of fracture decreased sharply with increase in strain rates up to 1 s−1 and attained an almost constant value for strain rates larger than 1 s−1. On the other hand, initiation fracture toughness exhibited a more gradual decrease throughout the strain rates. There was a significant positive correlation between the experimentally measured number of microcracks and the fracture toughness found in the simulations. Furthermore, the simulation results showed that the amount of porosity did not affect the way initiation fracture toughness decreased with increasing strain rates, whereas it exacerbated the same strain rate effect when propagation fracture toughness was considered. These results suggest that strain rates associated with falls lead to a dramatic reduction in bone’s resistance against crack propagation. The compromised fracture resistance of bone at loads exceeding normal activities indicates a sharp reduction and/or absence of toughening mechanisms in bone during high strain conditions associated with traumatic fracture. PMID:21783112
ARC Collaborative Research Seminar Series
been used to formulate design rules for hydration-based TES systems. Don Siegel is an Associate structural-acoustics, design of complex systems, and blast event simulations. Technology that he developed interests includes advanced fatigue and fracture assessment methodologies, computational methods for
Resistance Curves in the Tensile and Compressive Longitudinal Failure of Composites
NASA Technical Reports Server (NTRS)
Camanho, Pedro P.; Catalanotti, Giuseppe; Davila, Carlos G.; Lopes, Claudio S.; Bessa, Miguel A.; Xavier, Jose C.
2010-01-01
This paper presents a new methodology to measure the crack resistance curves associated with fiber-dominated failure modes in polymer-matrix composites. These crack resistance curves not only characterize the fracture toughness of the material, but are also the basis for the identification of the parameters of the softening laws used in the analytical and numerical simulation of fracture in composite materials. The method proposed is based on the identification of the crack tip location by the use of Digital Image Correlation and the calculation of the J-integral directly from the test data using a simple expression derived for cross-ply composite laminates. It is shown that the results obtained using the proposed methodology yield crack resistance curves similar to those obtained using FEM-based methods in compact tension carbon-epoxy specimens. However, it is also shown that the Digital Image Correlation based technique can be used to extract crack resistance curves in compact compression tests for which FEM-based techniques are inadequate.
Mini Nutritional Assessment predicts gait status and mortality 6 months after hip fracture.
Gumieiro, David N; Rafacho, Bruna P M; Gonçalves, Andrea F; Tanni, Suzana E; Azevedo, Paula S; Sakane, Daniel T; Carneiro, Carlos A S; Gaspardo, David; Zornoff, Leonardo A M; Pereira, Gilberto J C; Paiva, Sergio A R; Minicucci, Marcos F
2013-05-01
The aim of the present study was to evaluate the Mini Nutritional Assessment (MNA), the Nutritional Risk Screening (NRS) 2002 and the American Society of Anesthesiologists Physical Status Score (ASA) as predictors of gait status and mortality 6 months after hip fracture. A total of eighty-eight consecutive patients over the age of 65 years with hip fracture admitted to an orthopaedic unit were prospectively evaluated. Within the first 72 h of admission, each patient's characteristics were recorded, and the MNA, the NRS 2002 and the ASA were performed. Gait status and mortality were evaluated 6 months after hip fracture. Of the total patients, two were excluded because of pathological fractures. The remaining eighty-six patients (aged 80·2 (sd 7·3) years) were studied. Among these patients 76·7 % were female, 69·8 % walked with or without support and 12·8 % died 6 months after the fracture. In a multivariate analysis, only the MNA was associated with gait status 6 months after hip fracture (OR 0·773, 95 % CI 0·663, 0·901; P= 0·001). In the Cox regression model, only the MNA was associated with mortality 6 months after hip fracture (hazard ratio 0·869, 95 % CI 0·757, 0·998; P= 0·04). In conclusion, the MNA best predicts gait status and mortality 6 months after hip fracture. These results suggest that the MNA should be included in the clinical stratification of patients with hip fracture to identify and treat malnutrition in order to improve the outcomes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1989-01-01
Papers on rotorcraft and fatigue methodology are presented, covering topics such as reliability design for rotorcraft, a comparison between theory and fatigue test data on stress concentration factors, the retirement lives of rolling element bearings, hydrogen embrittlement risk analysis for high hardness steel parts, and rotating system load monitoring with minimum fixed system instrumentation. Additional topics include usage data collection to improve structural integrity of operational helicopters, usage monitory of military helicopters, improvements to the fatigue substantiation of the H-60 composite tail rotor blade, helicopter surviellance programs, and potential application of automotive fatigue technology in rotorcraft design. Also, consideration ismore » given to fatigue evaluation of C/MH-53 E main rotor damper threaded joints, SH-2F airframe fatigue test program, a ply termination concept for improving fracture and fatigue strength of composite laminates, the analysis and testing of composite panels subject to muzzle blast effects, the certification plan for an all-composite main rotor flexbeam, and the effects of stacking sequence on the flexural strength of composite beams.« less
High serum total cholesterol is a long-term cause of osteoporotic fracture.
Trimpou, P; Odén, A; Simonsson, T; Wilhelmsen, L; Landin-Wilhelmsen, K
2011-05-01
Risk factors for osteoporotic fractures were evaluated in 1,396 men and women for a period of 20 years. Serum total cholesterol was found to be an independent osteoporotic fracture risk factor whose predictive power improves with time. The purpose of this study was to evaluate long-term risk factors for osteoporotic fracture. A population random sample of men and women aged 25-64 years (the Gothenburg WHO MONICA project, N = 1,396, 53% women) was studied prospectively. The 1985 baseline examination recorded physical activity at work and during leisure time, psychological stress, smoking habits, coffee consumption, BMI, waist/hip ratio, blood pressure, total, HDL and LDL cholesterol, triglycerides, and fibrinogen. Osteoporotic fractures over a period of 20 years were retrieved from the Gothenburg hospital registers. Poisson regression was used to analyze the predictive power for osteoporotic fracture of each risk factor. A total number of 258 osteoporotic fractures occurred in 143 participants (10.2%). As expected, we found that previous fracture, smoking, coffee consumption, and lower BMI each increase the risk for osteoporotic fracture independently of age and sex. More unexpectedly, we found that the gradient of risk of serum total cholesterol to predict osteoporotic fracture significantly increases over time (p = 0.0377). Serum total cholesterol is an independent osteoporotic fracture risk factor whose predictive power improves with time. High serum total cholesterol is a long-term cause of osteoporotic fracture.
Uzun, Metin; Kara, Adnan; Adaş, Müjdat; Karslioğlu, Bülent; Bülbül, Murat; Beksaç, Burak
2014-01-01
Purpose. We evaluated whether intramedullary nail fixation for tibial diaphysis fractures with concomitant fibula fractures (except at the distal one-third level) managed conservatively with an associated fibula fracture resulted in ankle deformity and assessed the impact of the ankle deformity on lower extremity function. Methods. Sixty middle one-third tibial shaft fractures with associated fibular fractures, except the distal one-third level, were included in this study. All tibial shaft fractures were anatomically reduced and fixed with interlocking intramedullary nails. Fibular fractures were managed conservatively. Hindfoot alignment was assessed clinically. Tibia and fibular lengths were compared to contralateral measurements using radiographs. Functional results were evaluated using the Knee Injury and Osteoarthritis Outcome Score (KOOS) and the Foot and Ankle Disability Index Score (FADI). Results. Anatomic union, defined as equal length in operative and contralateral tibias, was achieved in 60 fractures (100%). Fibular shortening was identified in 42 fractures (68%). Mean fibular shortening was 1.2 cm (range, 0.5–2 cm). Clinical exams showed increased hindfoot valgus in 42 fractures (68%). The mean KOOS was 88.4, and the mean FADI score was 90. Conclusion. Fibular fractures in the middle or proximal one-third may need to be stabilized at the time of tibial intramedullary nail fixation to prevent development of hindfoot valgus due to fibular shortening. PMID:25544899
Fractures of the proximal fifth metatarsal: percutaneous bicortical fixation.
Mahajan, Vivek; Chung, Hyun Wook; Suh, Jin Soo
2011-06-01
Displaced intraarticular zone I and displaced zone II fractures of the proximal fifth metatarsal bone are frequently complicated by delayed nonunion due to a vascular watershed. Many complications have been reported with the commonly used intramedullary screw fixation for these fractures. The optimal surgical procedure for these fractures has not been determined. All these observations led us to evaluate the effectiveness of percutaneous bicortical screw fixation for treating these fractures. Twenty-three fractures were operatively treated by bicortical screw fixation. All the fractures were evaluated both clinically and radiologically for the healing. All the patients were followed at 2 or 3 week intervals till fracture union. The patients were followed for an average of 22.5 months. Twenty-three fractures healed uneventfully following bicortical fixation, with a mean healing time of 6.3 weeks (range, 4 to 10 weeks). The average American Orthopaedic Foot & Ankle Society (AOFAS) score was 94 (range, 90 to 99). All the patients reported no pain at rest or during athletic activity. We removed the implant in all cases at a mean of 23.2 weeks (range, 18 to 32 weeks). There was no refracture in any of our cases. The current study shows the effectiveness of bicortical screw fixation for displaced intraarticular zone I fractures and displaced zone II fractures. We recommend it as one of the useful techniques for fixation of displaced zone I and II fractures.
Annual National Test and Evaluation Conference (27th) Held in Tampa, Florida on March 14-17, 2011
2011-03-17
Based Test & Evaluation PETALLINGFRAGMENTATION RADIAL FRACTUREBRITTLE FRACTURE DUCTILE HOLE GROWTH PLUGGING THREAT VELOCITY MATERIAL MATERIAL V50 TYPE...Less Complex Less Costly Testing More Complex More Costly PETALLINGFRAGMENTATION RADIAL FRACTUREBRITTLE FRACTURE DUCTILE HOLE GROWTH PLUGGING...Reversible injuries; medical attention required 3 Serious Fracture of skull, penetration < 2 cm Reversible injuries; hospitalization required 4 Severe
Fan, Ke-Jie; Chen, Ke; Ma, Wen-Long; Tian, Ke-Wei; Ye, Ye; Chen, Hong-Gan; Tang, Yan-Feng; Cai, Hong-Min
2018-05-25
To investigate the effect of minimally invasive mini-incision and instrumented reduction combined with interlocking intramedullary nailing in the treatment of patients with multi-segment fracture of complex femoral shaft. From January 2013 to January 2016, 32 patients with multiple fractures segments of femoral shaft were treated with instrumentation-assisted reduction combined with interlocking intramedullary nailing, including 22 males and 10 females with an average age of 45 years old ranging 17 to 68 years old. The time from injured to operation was 5 to 10 days with an average of 7 days. After admission, routine tibial tubercle or supracondylar bone traction was performed. The patient's general condition was evaluated, the operation time and intraoperative blood loss were recorded. According to Thorsen femoral fracture morphology evaluation criteria and Hohl knee function evaluation of postoperative efficacy, postoperative fracture healing, complications and postoperative recovery of limb function were observed. All patients were followed up for 6 to 24 months with an average of 12 months. The operative time ranged from 48 to 76 minutes with an average of 67 min. The intraoperative blood loss was 150 to 400 ml with an average of 220 ml. The surgical incisions all achieved grade A healing. The fractures reached the clinical standard of healing. The fracture healing time ranged from 4.2 to 10.8 months with an average of 5.7 months. There were no nonunion, incision infection and internal fixation fracture, failure and other complications. According to Thorsen femoral fracture morphology evaluation criteria, the result was excellent in 28 cases, good in 3 cases, fair in 1 case. According to Hohl knee function evaluation criteria, the result was excellent in 30 cases, good in 2 cases. Instrument-assisted reduction combined with interlocking intramedullary nail fixation is a safe and effective method for the treatment of complex femoral shaft fractures. It has advantages of small trauma, fixed fixation, quick recovery, early postoperative functional exercise. Copyright© 2018 by the China Journal of Orthopaedics and Traumatology Press.
Sajjan, S. G.; Barrett-Connor, E.; McHorney, C. A.; Miller, P. D.; Sen, S. S.; Siris, E.
2013-01-01
Summary A rib fracture history after age 45 was associated with a 5.4-fold increase in new rib fracture risk and a 2.4-fold increase in risk of any new clinical fracture in 155,031 postmenopausal women. A rib fracture history suggests osteoporosis and should be considered when evaluating patients for interventions to prevent fractures. Introduction Until recently, little attention was paid to rib fracture as an osteoporosis marker. Emerging evidence suggests rib fracture may be an osteoporotic fracture in men and women. We report the 5-year independent association between baseline rib fracture histories and self-reported future fractures by age (decade) in the NORA cohort (155,031 postmenopausal women, 50–99 years). Methods Participants reported fracture history and responded to follow-up surveys at years 1, 3, or 6. Women with a baseline rib fracture history without other fractures were compared with women with no fracture. Results At baseline, 4,758 (3.07%) women reported a rib fracture history without other fractures; 6,300 women reported 6,830 new clinical fractures, including wrist (2,271), rib (1,891), spine (1,136), hip (941), and forearm (591). Adjusted relative risk (ARR) values (95% confidence interval [CI]) for future fractures in women with rib fracture history versus women with no fracture history were 5.4 (4.8–6.1) at the rib, 2.1 (1.7–2.6) at the spine, and 1.4 (1.1–1.7) at the wrist, and not significant for forearm or hip fractures. Future fracture risk was at least doubled in women with a rib fracture history in all ages: ARR (95% CI) 3.4 (2.8–4.0) for ages 50–59, 2.5 (2.1–3.0) for ages 60–69, 2.0 (1.7–2.3) for ages 70–79, and 2.0 (1.6–2.6) for ages >80. Conclusions Rib fracture, the second most common clinical fracture in women (after wrist fracture), predicted future fractures of the rib, wrist, and spine at all ages. Women presenting with rib fractures should be evaluated for appropriate management to prevent future fractures. PMID:21904951
Managing the Pediatric Facial Fracture
Cole, Patrick; Kaufman, Yoav; Hollier, Larry H.
2009-01-01
Facial fracture management is often complex and demanding, particularly within the pediatric population. Although facial fractures in this group are uncommon relative to their incidence in adult counterparts, a thorough understanding of issues relevant to pediatric facial fracture management is critical to optimal long-term success. Here, we discuss several issues germane to pediatric facial fractures and review significant factors in their evaluation, diagnosis, and management. PMID:22110800
Fractographic study of epoxy fractured under mode I loading and mixed mode I/III loading
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Fei; Wang, Jy-An John; Bertelsen, Williams D.
2011-01-01
Fiber reinforced polymeric composite materials are widely used in structural components such as wind turbine blades, which are typically subject to complicated loading conditions. Thus, material response under mixed mode loading is of great significance to the reliability of these structures. Epoxy is a thermosetting polymer that is currently used in manufacturing wind turbine blades. The fracture behavior of epoxy is relevant to the mechanical integrity of the wind turbine composite materials. In this study, a novel fracture testing methodology, the spiral notch torsion test (SNTT), was applied to study the fracture behavior of an epoxy material. SNTT samples weremore » tested using either monotonic loading or cyclic loading, while both mode I and mixed mode I/III loading conditions were used. Fractographic examination indicated the epoxy samples included in this study were prone to mode I failure even when the samples were subject to mixed mode loading. Different fatigue precracks were observed on mode I and mixed mode samples, i.e. precracks appeared as a uniform band under mode I loading, and a semi-ellipse under mixed mode loading. Fracture toughness was also estimated using quantitative fractography.« less
References and conference proceedings towards the understanding of fracture mechanics
NASA Technical Reports Server (NTRS)
Toor, P. M.; Hudson, C. M.
1986-01-01
A list of books, reports, periodicals, and conference proceedings, as well as individual papers, centered on specific aspects of fracture phenomenon has been compiled by the ASTM Committee E-24 on Fracture Testing. A list of basic references includes the articles on the development of fracture toughness, evaluation of stress intensity factors, fatigue crack growth, fracture testing, fracture of brittle materials, and fractography. Special attention is given to the references on application of fracture mechanics to new designs and on reevaluation of failed designs, many of them concerned with naval and aircraft structures.
Interlaminar fracture of random short-fiber SMC composite
NASA Technical Reports Server (NTRS)
Wang, S. S.; Suemasu, H.; Zahlan, N. M.
1984-01-01
In the experimental phase of the present study of the interlaminar fracture behavior of a randomly oriented short fiber sheet molding compound (SMC) composite, the double cantilever beam fracture test is used to evaluate the mode I interlaminar fracture toughness of different composite thicknesses. In the analytical phase of this work, a geometrically nonlinear analysis is introduced in order to account for large deflections and nonlinear load deflection curves in the evaluation of interlaminar fracture toughness. For the SMC-R50 material studied, interlaminar toughness is an order of magnitude higher than that of unreinforced neat resin, due to unusual damage mechanisms ahead of the crack tip, together with significant fiber bridging across crack surfaces. Composite thickness effects on interlaminar fracture are noted to be appreciable, and a detailed discussion is given on the influence of SMC microstructure.
Cultrera, Pina; Pratelli, Elisa; Petrai, Veronica; Postiglione, Marco; Zambelan, Giulia; Pasquetti, Pietro
2010-05-01
Osteoporosis is a systemic disease with reduced bone mass and qualitative alterations of the bone, associated to increased risk of fracture. Pathogenesis of osteoporosis fractures is multifactorial. Main risk factor is falls (except for vertebral fragility fractures which occurs often in absence of trauma). Aging by itself produces physiological changes: muscular hypotrophy with asthenia, deficit of visus and hearing together with associated pathologies and multi-drug therapies. In osteoporosis patients with vertebral fractures posture change occurs which reduces balance. After clinical postural evaluation it is possible to carry out instrumental evaluation of posture with computerized methods such as stabilometry, baropodometry, dynanometry and gait analysis. Examination carried out with use of stabilometric computerized platform allows stabilometric (body sway assessment) as well as posturometric examination (center of pressure assessment during quiet standing). Fundamental parameters obtained are: position of the body center of gravity, area and shape of sway density curve and velocity variables. Protocol of evaluation includes assessment of examination in standard condition and in condition of temporary sensorial deprivation (to investigate the influence of various afferent systems on the maintenance of posture and balance). Accurate evaluation of postural control in osteoporosis patients constitutes a fundamental tool in fracture risk evaluation due to fall and in identification and correction of modifiable factors responsible for balance defect. This approach, together with adequate drug therapy, may lead to significant reduction of fractures in osteoporosis patients with subsequent reduction of hospitalization and residual consequent disabilities.
High-Volume Hydraulic Fracturing and Human Health Outcomes: A Scoping Review.
Wright, Rosemary; Muma, Richard D
2018-05-01
Examine extent of peer-reviewed literature exploring human health effects of hydraulic fracturing (HVHF). A scoping review methodology was used to examine peer-reviewed studies published from 2000 through 2017 that empirically examine direct health impacts of hydraulic fracturing. Through September 2017, only 18 studies were found published in peer-reviewed journals that met our requirements for inclusion in the review. Most of these studies resulted in positive or mixed findings of health outcomes. The paucity of studies reflects the difficulty in drawing direct connections between HVHF and human health outcomes. Many health outcomes may take years to emerge, exposure often occurs in lightly populated rural areas with older, poorer, and sicker residents, and diagnosis is difficult without physician knowledge of prior exposure. Primary care providers should record thorough histories to help guide future treatment.
Strudwick, Kirsten; Nelson, Mark; Martin-Khan, Melinda; Bourke, Michael; Bell, Anthony; Russell, Trevor
2015-02-01
There is increasing importance placed on quality of health care for musculoskeletal injuries in emergency departments (EDs). This systematic review aimed to identify existing musculoskeletal quality indicators (QIs) developed for ED use and to critically evaluate their methodological quality. MEDLINE, EMBASE, CINAHL, and the gray literature, including relevant organizational websites, were searched in 2013. English-language articles were included that described the development of at least one QI related to the ED care of musculoskeletal injuries. Data extraction of each included article was conducted. A quality assessment was then performed by rating each relevant QI against the Appraisal of Indicators through Research and Evaluation (AIRE) Instrument. QIs with similar definitions were grouped together and categorized according to the health care quality frameworks of Donabedian and the Institute of Medicine. The search revealed 1,805 potentially relevant articles, of which 15 were finally included in the review. The number of relevant QIs per article ranged from one to 11, resulting in a total of 71 QIs overall. Pain (n = 17) and fracture management (n = 13) QIs were predominant. Ten QIs scored at least 50% across all AIRE Instrument domains, and these related to pain management and appropriate imaging of the spine. Methodological quality of the development of most QIs is poor. Recommendations for a core set of QIs that address the complete spectrum of musculoskeletal injury management in emergency medicine is not possible, and more work is needed. Currently, QIs with highest methodological quality are in the areas of pain management and medical imaging. © 2015 by the Society for Academic Emergency Medicine.
Proximal Humerus Fractures: Evaluation and Management in the Elderly Patient
Grawe, Brian
2018-01-01
Introduction: Proximal humerus fractures are common in the elderly. The evaluation and management of these injuries is often controversial. The purpose of this study is to review recent evidence and provide updated recommendations for treating proximal humerus fractures in the elderly. Methods: A literature review of peer-reviewed publications related to the evaluation and management of proximal humerus fractures in the elderly was performed. There was a focus on randomized controlled trials and systematic reviews published within the last 5 years. Results: The incidence of proximal humerus fractures is increasing. It is a common osteoporotic fracture. Bone density is a predictor of reduction quality and can be readily assessed with anteroposterior views of the shoulder. Social independence is a predictor of outcome, whereas age is not. Many fractures are minimally displaced and respond acceptably to nonoperative management. Displaced and severe fractures are most frequently treated operatively with intramedullary nails, locking plates, percutaneous techniques, or arthroplasty. Discussion: Evidence from randomized controlled trials and systematic reviews is insufficient to recommend a treatment; however, most techniques have acceptable or good outcomes. Evaluation should include an assessment of the patient’s bone quality, social independence, and surgical risk factors. With internal fixation, special attention should be paid to medial comminution, varus angulation, and restoration of the calcar. With arthroplasty, attention should be paid to anatomic restoration of the tuberosities and proper placement of the prosthesis. Conclusion: A majority of minimally displaced fractures can be treated conservatively with early physical therapy. Treatment for displaced fractures should consider the patient’s level of independence, bone quality, and surgical risk factors. Fixation with percutaneous techniques, intramedullary nails, locking plates, and arthroplasty are all acceptable treatment options. There is no clear evidence-based treatment of choice, and the surgeon should consider their comfort level with various procedures during the decision-making process. PMID:29399372
Cronier, P; Frin, J-M; Steiger, V; Bigorre, N; Talha, A
2013-06-01
Tarsal navicular fractures are rare and treatment of comminuted fractures is especially difficult. Since 2007, the authors have had access to 3D reconstruction from CT scan images and specific locking plates, and they decided to evaluate whether these elements improved management of these severe cases. Between 2007 and 2011, 10 comminuted tarsal navicular fractures were treated in a prospective study. All of the fractures were evaluated by 3D reconstruction from CT scan images, with suppression of the posterior tarsal bones. The surgical approach was chosen according to the type of lesion. Reduction was achieved with a mini-distractor when necessary, and stabilized by AO locking plate fixation (Synthes™). Patient follow-up included a clinical and radiological evaluation (Maryland Foot score, AOFAS score). Eight patients underwent postoperative CT scan. All patients were followed up after a mean 20.5 months. Union was obtained in all patients and arthrodesis was not necessary in any of them. The mean Maryland Foot score was 92.8/100, and the AOFAS score 90.6/100. One patient with an associated comminuted calcaneal fracture had minimal sequella from a compartment syndrome of the foot. The authors did not find any series in the literature that reported evaluating tarsal navicular fractures by 3D reconstruction from CT scan images. The images obtained after suppression of the posterior tarsal bones systematically showed a lateral plantar fragment attached to the plantar calcaneonavicular ligament, which is essential for stability, and which helped determine the reduction technique. Locking plate fixation of these fractures has never been reported. Comminuted fractures of the tarsal navicular were successfully treated with specific imaging techniques in particular 3D reconstructions of CT scan images to choose the surgical approach and the reduction technique. Locking plate fixation of the navicular seems to be a satisfactory solution for the treatment of these particularly difficult fractures. Level IV. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Dumitrescu, Bianca; van Helden, Svenjhalmar; ten Broeke, Rene; Nieuwenhuijzen-Kruseman, Arie; Wyers, Caroline; Udrea, Gabriela; Linden, Sjef van der; Geusens, Piet
2008-01-01
The aetiology of osteoporotic fractures is multifactorial, but little is known about the way to evaluate patients with a recent clinical fracture for the presence of secondary osteoporosis. The purpose of this study was to determine the prevalence of contributors to secondary osteoporosis in patients presenting with a clinical vertebral or non-vertebral fracture. Identifying and correcting these contributors will enhance treatment effect aimed at reducing the risk of subsequent fractures. In a multidisciplinary approach, including evaluation of bone and fall-related risk factors, 100 consecutive women (n = 73) and men (n = 27) older than 50 years presenting with a clinical vertebral or non-vertebral fracture and having osteoporosis (T-score ≤-2.5) were further evaluated clinically and by laboratory testing for the presence of contributors to secondary osteoporosis. In 27 patients, 34 contributors were previously known, in 50 patients 52 new contributors were diagnosed (mainly vitamin D deficiency in 42) and 14 needed further exploration because of laboratory abnormalities (mainly abnormal thyroid stimulating hormone in 9). The 57 patients with contributors were older (71 vs. 64 yrs, p < 0.01), had more vertebral deformities (67% vs. 44%, p < 0.05) and a higher calculated absolute 10-year risk for major (16.5 vs. 9.9%, p < 0.01) and for hip fracture (6.9 vs. 2.4%, p < 0.01) than patients without contributors. The presence of contributors was similar between women and men and between patients with fractures associated with a low or high-energy trauma. We conclude that more than one in two patients presenting with a clinical vertebral or non-vertebral fracture and BMD-osteoporosis have secondary contributors to osteoporosis, most of which were correctable. Identifying and correcting these associated disorders will enhance treatment effect aimed at reducing the risk of subsequent fractures in patients older than 50 years. PMID:18680609
Subclinical Thyroid Dysfunction and the Risk for Fractures
Wirth, Christina D.; Blum, Manuel R.; da Costa, Bruno R.; Baumgartner, Christine; Collet, Tinh-Hai; Medici, Marco; Peeters, Robin P.; Aujesky, Drahomir; Bauer, Douglas C.; Rodondi, Nicolas
2015-01-01
Background Data on the association between subclinical thyroid dysfunction and fractures conflict. Purpose To assess the risk for hip and nonspine fractures associated with subclinical thyroid dysfunction among prospective cohorts. Data Sources Search of MEDLINE and EMBASE (1946 to 16 March 2014) and reference lists of retrieved articles without language restriction. Study Selection Two physicians screened and identified prospective cohorts that measured thyroid function and followed participants to assess fracture outcomes. Data Extraction One reviewer extracted data using a standardized protocol, and another verified data. Both reviewers independently assessed methodological quality of the studies. Data Synthesis The 7 population-based cohorts of heterogeneous quality included 50 245 participants with 1966 hip and 3281 nonspine fractures. In random-effects models that included the 5 higher-quality studies, the pooled adjusted hazard ratios (HRs) of participants with subclinical hyperthyroidism versus euthyrodism were 1.38 (95% CI, 0.92 to 2.07) for hip fractures and 1.20 (CI, 0.83 to 1.72) for nonspine fractures without statistical heterogeneity (P = 0.82 and 0.52, respectively; I2 = 0%). Pooled estimates for the 7 cohorts were 1.26 (CI, 0.96 to 1.65) for hip fractures and 1.16 (CI, 0.95 to 1.42) for nonspine fractures. When thyroxine recipients were excluded, the HRs for participants with subclinical hyperthyroidism were 2.16 (CI, 0.87 to 5.37) for hip fractures and 1.43 (CI, 0.73 to 2.78) for nonspine fractures. For participants with subclinical hypothyroidism, HRs from higher-quality studies were 1.12 (CI, 0.83 to 1.51) for hip fractures and 1.04 (CI, 0.76 to 1.42) for nonspine fractures (P for heterogeneity = 0.69 and 0.88, respectively; I2 = 0%). Limitations Selective reporting cannot be excluded. Adjustment for potential common confounders varied and was not adequately done across all studies. Conclusion Subclinical hyperthyroidism might be associated with an increased risk for hip and nonspine fractures, but additional large, high-quality studies are needed. Primary Funding Source Swiss National Science Foundation. PMID:25089863
Upscaling Multiphase Fluid Flow in Naturally Fractured Reservoirs
NASA Astrophysics Data System (ADS)
Matthai, S.; Maghami-Nick, H.; Belayneh, M.; Geiger, S.
2009-04-01
Hydrocarbon recovery from fractured porous reservoirs is difficult to predict as it depends on the focusing of the flow and the local balance of viscous, gravitational, and capillary forces. Hecto-metre scale sub-volumes of fractured oil reservoirs contain thousands of fractures with highly variable flow properties, dimensions and orientations. This complexity precludes direct geometric incorporation into field scale multiphase flow models. Macroscopic laws of their integral effects on multiphase flow are required. These can be investigated by DFM (discrete fracture and matrix) numerical simulations based on discrete fracture models representing fractured reservoir analogues. Here we present DFM results indicating that hecto-metre-scale relative permeability, the time to water breakthrough, and the subsequent water cut primarily depend on the fracture-to-rock matrix flux ratio, qf/qm, quantifying the proportion of the cross-sectional flux that occurs through the fractures. Relative permeability during imbibition runs is best approximated by a rate-dependent new model taking into account capillary fracture-matrix transfer. The up-scaled fractional flow function fo(sw) derived from this new kri formulation is convex with a near-infinity slope at the residual water saturation. This implies that the hector-metre scale spatially averaged Buckley-Leverett equation for fractured porous media does not contain a shock, but a long leading edge in the averaged profile of the invading phase. This dispersive behaviour marks the progressively widening saturation front and an early water breakthrough observed in the discrete fracture reservoir analogues. Since fracture porosity φf is usually only a fraction of a percent, a cross-over from krw < kro to krw/kro ≈ qf/qm occurs after the first few percent of recovery, and because qf/qm ranges between 10-1,000, sweep efficiency ignoring the positive influence of counter-current imbibition is extremely low. The accuracy of reservoir performance predictions by the proposed fo(sw) up-scaling methodology depends on how well φf , qf/qm and a new parameter termed fraction of fracture matrix interface area in contact with the invading fluid, XA,if(si) can be constrained under in situ conditions.
Fractures and handicap in an adult population: A clinical study.
Chevrel, Guillaume; Limouzin, Anne; Garnero, Patrick; de Montalivet, Caroline; Loubier, Dominique
2007-12-01
To evaluate the bone status of ambulatory patients with physical and mental handicaps before a program of fracture prevention. We recruited 58 walking adults. We retrospectively collected the past episodes of fractures, essentially peripheral, and epilepsy. The serum calcium, albumin, 25-hydroxyvitamin D, parathormone, CTX-1 and P1NP levels were prospectively measured in 36 consecutive patients. Each patient received daily calcium and vitamin D. The vertebral status has been not evaluated. Twenty-one patients had presented at least one fracture. Thirty nine per cent of the fractures were minor (nasal bone, hands, feet). The age of patients with fractures was significantly higher than patients without fracture (46 versus 40years, respectively; p=0.04). Patients with fractures had a significantly increased S-P1NP (63.5ng/ml+/-32.0 versus 41.9ng/ml+/-20.0, respectively; p=0.02). Nineteen patients suffered from epilepsy. We listed 23 fractures among 9 patients treated by phenobarbital and 8 fractures, which tended to be less severe among 5 patients epileptics without this drug. Minor fracture was often followed by severe fracture in case of phenobarbital treatment. This treatment was associated with a significantly lower serum calcium level (2.16mmol/l+/-0.05, versus epileptic patients without phenobarbital 2.32mmol/l+/-0.08, p<0.0004). The presence of a fracture, even minor, must encourage to improve the preventive and curative measures among patients with handicaps.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Josse, Florent; Lefebvre, Yannick; Todeschini, Patrick
2006-07-01
Assessing the structural integrity of a nuclear Reactor Pressure Vessel (RPV) subjected to pressurized-thermal-shock (PTS) transients is extremely important to safety. In addition to conventional deterministic calculations to confirm RPV integrity, Electricite de France (EDF) carries out probabilistic analyses. Probabilistic analyses are interesting because some key variables, albeit conventionally taken at conservative values, can be modeled more accurately through statistical variability. One variable which significantly affects RPV structural integrity assessment is cleavage fracture initiation toughness. The reference fracture toughness method currently in use at EDF is the RCCM and ASME Code lower-bound K{sub IC} based on the indexing parameter RT{submore » NDT}. However, in order to quantify the toughness scatter for probabilistic analyses, the master curve method is being analyzed at present. Furthermore, the master curve method is a direct means of evaluating fracture toughness based on K{sub JC} data. In the framework of the master curve investigation undertaken by EDF, this article deals with the following two statistical items: building a master curve from an extract of a fracture toughness dataset (from the European project 'Unified Reference Fracture Toughness Design curves for RPV Steels') and controlling statistical uncertainty for both mono-temperature and multi-temperature tests. Concerning the first point, master curve temperature dependence is empirical in nature. To determine the 'original' master curve, Wallin postulated that a unified description of fracture toughness temperature dependence for ferritic steels is possible, and used a large number of data corresponding to nuclear-grade pressure vessel steels and welds. Our working hypothesis is that some ferritic steels may behave in slightly different ways. Therefore we focused exclusively on the basic french reactor vessel metal of types A508 Class 3 and A 533 grade B Class 1, taking the sampling level and direction into account as well as the test specimen type. As for the second point, the emphasis is placed on the uncertainties in applying the master curve approach. For a toughness dataset based on different specimens of a single product, application of the master curve methodology requires the statistical estimation of one parameter: the reference temperature T{sub 0}. Because of the limited number of specimens, estimation of this temperature is uncertain. The ASTM standard provides a rough evaluation of this statistical uncertainty through an approximate confidence interval. In this paper, a thorough study is carried out to build more meaningful confidence intervals (for both mono-temperature and multi-temperature tests). These results ensure better control over uncertainty, and allow rigorous analysis of the impact of its influencing factors: the number of specimens and the temperatures at which they have been tested. (authors)« less
Moriwaki, K; Noto, S
2017-02-01
A model-based cost-effectiveness analysis was performed to evaluate the cost-effectiveness of secondary fracture prevention by osteoporosis liaison service (OLS) relative to no therapy in patients with osteoporosis and a history of hip fracture. Secondary fracture prevention by OLS is cost-effective in Japanese women with osteoporosis who have suffered a hip fracture. The purpose of this study was to estimate, from the perspective of Japan's healthcare system, the cost-effectiveness of secondary fracture prevention by OLS relative to no therapy in patients with osteoporosis and a history of hip fracture. A patient-level state transition model was developed to predict lifetime costs and quality-adjusted life years (QALYs) in patients with or without secondary fracture prevention by OLS. The incremental cost-effectiveness ratio (ICER) of secondary fracture prevention compared with no therapy was estimated. Sensitivity analyses were performed to examine the influence of parameter uncertainty on the base case results. Compared with no therapy, secondary fracture prevention in patients aged 65 with T-score of -2.5 resulted in an additional lifetime cost of $3396 per person and conferred an additional 0.118 QALY, resulting in an ICER of $28,880 per QALY gained. Deterministic sensitivity analyses showed that treatment duration and offset time strongly affect the cost-effectiveness of OLS. According to the results of scenario analyses, secondary fracture prevention by OLS was cost-saving compared with no therapy in patients with a family history of hip fracture and high alcohol intake. Secondary fracture prevention by OLS is cost-effective in Japanese women with osteoporosis who have suffered a hip fracture. In addition, secondary fracture prevention is less expensive than no therapy in high-risk patients with multiple risk factors.
Effects of foot posture on fifth metatarsal fracture healing: a finite element study.
Brilakis, Emmanuel; Kaselouris, Evaggelos; Xypnitos, Frank; Provatidis, Christopher G; Efstathopoulos, Nicolas
2012-01-01
The goal of this study was to evaluate the effects of maintaining different foot postures during healing of proximal fifth metatarsal fractures for each of 3 common fracture types. A 3-dimensional (3D) finite element model of a human foot was developed and 3 loading situations were evaluated, including the following: (1) normal weightbearing, (2) standing with the affected foot in dorsiflexion at the ankle, and (3) standing with the affected foot in eversion. Three different stages of the fracture-healing process were studied, including: stage 1, wherein the material interposed between the fractured edges was the initial connective tissue; stage 2, wherein connective tissue had been replaced by soft callus; and stage 3, wherein soft callus was replaced by mature bone. Thus, 30 3D finite element models were analyzed that took into account fracture type, foot posture, and healing stage. Different foot postures did not statistically significantly affect the peak-developed strains on the fracture site. When the fractured foot was everted or dorsiflexed, it developed a slightly higher strain within the fracture than when it was in the normal weightbearing position. In Jones fractures, eversion of the foot caused further torsional strain and we believe that this position should be avoided during foot immobilization during the treatment of fifth metatarsal base fractures. Tuberosity avulsion fractures and Jones fractures seem to be biomechanically stable fractures, as compared with shaft fractures. Our understanding of the literature and experience indicate that current clinical observations and standard therapeutic options are in accordance with the results that we observed in this investigation, with the exception of Jones fractures. Copyright © 2012 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Aminzadeh, Fred; Tafti, Tayeb A.; Maity, Debotyam
2013-04-01
Geothermal and unconventional hydrocarbon reservoirs are often characterized by low permeability and porosity. So, they are difficult to produce and require stimulation techniques, such as thermal shear deactivation and hydraulic fracturing. Fractures provide porosity for fluid storage and permeability for fluid movement and play an important role in production from this kind of reservoirs. Hence, characterization of fractures has become a vitally important consideration in every aspect of exploration, development and production so as to provide additional energy resources for the world. During the injection or production of fluid, induced seismicity (micro-seismic events) can be caused by reactivated shears created fractures or the natural fractures in shear zones and faults. Monitoring these events can help visualize fracture growth during injection stimulation. Although the locations of microseismic events can be a useful characterization tool and have been used by many authors, we go beyond these locations to characterize fractures more reliably. Tomographic inversion, fuzzy clustering, and shear wave splitting are three methods that can be applied to microseismic data to obtain reliable characteristics about fractured areas. In this article, we show how each method can help us in the characterization process. In addition, we demonstrate how they can be integrated with each other or with other data for a more holistic approach. The knowledge gained might be used to optimize drilling targets or stimulation jobs to reduce costs and maximize production. Some of the concepts discussed in this paper are general in nature, and may be more applicable to unconventional hydrocarbon reservoirs than the metamorphic and igneous reservoir rocks at The Geysers geothermal field.
Le Fort Fractures: A Collective Review
Phillips, Bradley J.; Turco, Lauren M.
2017-01-01
Le Fort fractures constitute a pattern of complex facial injury that occurs secondary to blunt facial trauma. The most common mechanisms of injury for these fractures, which are frequently associated with drug and alcohol use, include motor vehicle collisions, assault, and falls. A thorough search of the world’s literature following PRISMA guidelines was conducted through PubMed and EBSCO databases. Search terms included “Le Fort fracture”, “facial”, “craniofacial”, and “intracranial.” Articles were selected based on relevance and examined regarding etiology, epidemiology, diagnosis, treatment, complications, and outcomes in adults. The analyzed studies were published between 1980 and 2016. Initial data search yielded 186 results. The search was narrowed to exclude articles lacking in specificity for Le Fort fractures. Fifty-one articles were selected, the majority of which were large case studies, and collectively reported that Le Fort fractures are most commonly due to high-velocity MVC and that the severity of fracture type sustained occurred with increasing frequency. It was also found that there is a general lack of published Level I, Level II, and Level III studies regarding Le Fort fracture management, surgical management, and outcomes. The limitation of this study, similar to all PRISMA-guided review articles, is the dependence on previously published research and availability of references as outlined in our methodology. While mortality rates for Le Fort fractures are low, these complex injuries seldom occur in isolation and are associated with other severe injuries to the head and neck. Quick and accurate diagnosis of Le Fort fractures and associated injuries is crucial to the successful management of blunt head trauma. PMID:29177168
Brunner, Alexander; Gühring, Markus; Schmälzle, Traude; Weise, Kuno; Badke, Andreas
2009-01-01
Evaluation of the kyphosis angle in thoracic and lumbar burst fractures is often used to indicate surgical procedures. The kyphosis angle could be measured as vertebral, segmental and local kyphosis according to the method of Cobb. The vertebral, segmental and local kyphosis according to the method of Cobb were measured at 120 lateral X-rays and sagittal computed tomographies of 60 thoracic and 60 lumbar burst fractures by 3 independent observers on 2 separate occasions. Osteoporotic fractures were excluded. The intra- and interobserver reliability of these angles in X-ray and computed tomogram, using the intra class correlation coefficient (ICC) were evaluated. Highest reproducibility showed the segmental kyphosis followed by the vertebral kyphosis. For thoracic fractures segmental kyphosis shows in X-ray “excellent” inter- and intraobserver reliabilities (ICC 0.826, 0.802) and for lumbar fractures “good” to “excellent” inter- and intraobserver reliabilities (ICC = 0.790, 0.803). In computed tomography, the segmental kyphosis showed “excellent” inter- and intraobserver reliabilities (ICC = 0.824, 0.801) for thoracic and “excellent” inter- and intraobserver reliabilities (ICC = 0.874, 0.835) for the lumbar fractures. Regarding both diagnostic work ups (X-ray and computed tomography), significant differences were evaluated in interobserver reliabilities for vertebral kyphosis measured in lumbar fracture X-rays (p = 0.035) and interobserver reliabilities for local kyphosis, measured in thoracic fracture X-rays (p = 0.010). Regarding both fracture localizations (thoracic and lumbar fractures), significant differences could only be evaluated in interobserver reliabilities for the local kyphosis measured in computed tomographies (p = 0.045) and in intraobserver reliabilities for the vertebral kyphosis measured in X-rays (p = 0.024). “Good” to “excellent” inter- and intraobserver reliabilities for vertebral, segmental and local kyphosis in X-ray make these angles to a helpful tool, indicating surgical procedures. For the practical use in lateral X-ray, we emphasize the determination of the segmental kyphosis, because of the highest reproducibility of this angle. “Good” to “excellent” inter- and intraobserver reliabilities for these three angles could also be evaluated in computed tomographies. Therefore, also in computed tomography, the use of these three angles seems to be generally possible. For a direct correlation of the results in lateral X-ray and in computed tomography, further studies should be needed. PMID:19953277
Becker, M.W.; Reimus, P.W.; Vilks, P.
1999-01-01
Understanding colloid transport in ground water is essential to assessing the migration of colloid-size contaminants, the facilitation of dissolved contaminant transport by colloids, in situ bioremediation, and the health risks of pathogen contamination in drinking water wells. Much has been learned through laboratory and field-scale colloid tracer tests, but progress has been hampered by a lack of consistent tracer testing methodology at different scales and fluid velocities. This paper presents laboratory and field tracer tests in fractured rock that use the same type of colloid tracer over an almost three orders-of-magnitude range in scale and fluid velocity. Fluorescently-dyed carboxylate-modified latex (CML) microspheres (0.19 to 0.98 ??m diameter) were used as tracers in (1) a naturally fractured tuff sample, (2) a large block of naturally fractured granite, (3) a fractured granite field site, and (4) another fractured granite/schist field site. In all cases, the mean transport time of the microspheres was shorter than the solutes, regardless of detection limit. In all but the smallest scale test, only a fraction of the injected microsphere mass was recovered, with the smaller microspheres being recovered to a greater extent than the larger microspheres. Using existing theory, we hypothesize that the observed microsphere early arrival was due to volume exclusion and attenuation was due to aggregation and/or settling during transport. In most tests, microspheres were detected using flow cytometry, which proved to be an excellent method of analysis. CML microspheres appear to be useful tracers for fractured rock in forced gradient and short-term natural gradient tests, but longer residence times may result in small microsphere recoveries.Understanding colloid transport in ground water is essential to assessing the migration of colloid-size contaminants, the facilitation of dissolved contaminant transport by colloids, in situ bioremediation, and the health risks of pathogen contamination in drinking water wells. Much has been learned through laboratory and field-scale colloid tracer tests, but progress has been hampered by a lack of consistent tracer testing methodology at different scales and fluid velocities. This paper presents laboratory and field tracer tests in fractured rock that use the same type of colloid tracer over an almost three orders-of-magnitude range in scale and fluid velocity. Fluorescently-dyed carboxylate-modified latex (CML) microspheres (0.19 to 0.98 ??m diameter) were used as tracers in (1) a naturally fractured tuff sample, (2) a large block of naturally fractured granite, (3) a fractured granite field site, and (4) another fractured granite/schist field site. In all cases, the mean transport time of the microspheres was shorter than the solutes, regardless of detection limit. In all but the smallest scale test, only a fraction of the injected microsphere mass was recovered, with the smaller microspheres being recovered to a greater extent than the larger microspheres. Using existing theory, we hypothesize that the observed microsphere early arrival was due to volume exclusion and attenuation was due to aggregation and/or settling during transport. In most tests, microspheres were detected using flow cytometry, which proved to be an excellent method of analysis. CML microspheres appear to be useful tracers for fractured rock in forced gradient and short-term natural gradient tests, but longer residence times may result in small microsphere recoveries.
Eccentric loading of microtensile specimens
NASA Technical Reports Server (NTRS)
Trapp, Mark A.
2004-01-01
Ceramic materials have a lower density than most metals and are capable of performing at extremely high temperatures. The utility of these materials is obvious; however, the fracture strength of brittle materials is not easily predicted and often varies greatly. Characteristically, brittle materials lack ductility and do not yield as other materials. Ceramics materials are naturally populated with microscopic cracks due to fabrication techniques. Upon application of a load, stress concentration occurs at the root of these cracks and fracture will eventually occur at some not easily predicted strength. In order to use ceramics in any application some design methodology must exist from which a component can be placed into service. This design methodology is CARES/LIFE (Ceramics Analysis and Reliability Evaluation of Structures) which has been developed and refined at NASA over the last several decades. The CARES/LIFE computer program predicts the probability of failure of a ceramic component over its service life. CARES combines finite element results from a commercial FE (finite element) package such as ANSYS and experimental results to compute the abovementioned probability of failure. Over the course of several tests CARES has had great success in predicting the life of various ceramic components and has been used throughout industry. The latest challenge is to verify that CARES is valid for MEMS (Micro-Electro Mechanical Systems). To investigate a series of microtensile specimens were fractured in the laboratory. From this data, material parameters were determined and used to predict a distribution of strength for other specimens that exhibit a known stress concentration. If the prediction matches the experimental results then these parameters can be applied to a desired component outside of the laboratory. During testing nearly half of the tensile Specimens fractured at a location that was not expected and hence not captured in the FE model. It has been my duty to investigate the nature of this phenomenon in hopes of finding a better correlation between theory and empirical results. To investigate I built complete FE models of all of the tensile specimens using ANSYS. It is suspected that some misalignment naturally occurs during testing and thus additional bending stresses are present in the specimens. I modeled this eccentric loading and ran several FE trials using ANSYS/PDS (a probabilistic design system in ANSYS). My objective this summer has been familiarize myself with the CARES/LIFE program in hopes of using it in conjunction with ANSYS to help verify that CARES is applicable to MEMS-scale (greater that 1 micron, less than 1 millimeter) components.
Field Evaluation of Fracture Control in Tunnel Blasting
DOT National Transportation Integrated Search
1979-12-01
The objective of this research was to implement fracture control procedures in a tunnel project and to assess the practicality, advantages, disadvantages, performance and cost effectiveness of fracture control methods against smooth blasting procedur...
Luo, Huasong; Chen, Liaobin; Liu, Kebin; Peng, Songming; Zhang, Jien; Yi, Yang
2016-01-01
The aim of this study was to evaluate the clinical outcome of tibial pilon fractures treated with arthroscopy and assisted reduction with an external fixator. Thirteen patients with tibial pilon fractures underwent assisted reduction for limited lower internal fixation with an external fixator under arthroscopic guidance. The weight-bearing time was decided on the basis of repeat radiography of the tibia 3 months after surgery. Postoperative ankle function was evaluated according to the Mazur scoring system. Healing of fractures was achieved in all cases, with no complications such as severe infection, skin necrosis, or an exposed plate. There were 9 excellent, 2 good, and 2 poor outcomes, scored according to the Mazur system. The acceptance rate was 85%. Arthroscopy and external fixator-assisted reduction for the minimally invasive treatment of tibial pilon fractures not only produced less trauma but also protected the soft tissues and blood supply surrounding the fractures. External fixation could indirectly provide reduction and effective operative space for arthroscopic implantation, especially for AO type B fractures and partial AO type C1 fractures.
Risk factors for clavicle fracture concurrent with brachial plexus injury.
Karahanoglu, Ertugrul; Kasapoglu, Taner; Ozdemirci, Safak; Fadıloglu, Erdem; Akyol, Aysegul; Demirdag, Erhan; Yalvac, E Serdar; Kandemir, N Omer
2016-04-01
The aim of this study was to evaluate the risk factors for clavicle fracture concurrent with brachial plexus injuries. A retrospective study was conducted at a tertiary centre. The hospital records of 62,288 vaginal deliveries were evaluated retrospectively. There were 35 cases of brachial plexus injury. Of these patients, nine had brachial plexus injuries with clavicle fracture and 26 without clavicle fracture. The analysed risk factors for clavicle fracture concurrent with brachial plexus injury were gestational diabetes, labour induction and augmentation, prolonged second stage of labour, estimated foetal weight above 4000 g, birth weight above 4000 g, risky working hours, and the requirement of manoeuvres to free the impacted shoulder from behind the symphysis pubis. Labour augmentation with oxytocin increased the risk of clavicle fracture in cases of brachial plexus injury (OR 6.67; 95% CI 1.26-35.03). A birth weight higher than 4000 g also increased the risk of clavicle fracture. Risky working hours, gestational diabetes, estimated foetal weight higher than 4000 g, and requirement of shoulder dystocia manoeuvres did not increase the risk of clavicle fracture. Labour augmentation and actual birth weight higher than 4000 g were identified as risk factors for clavicle fracture in cases of brachial plexus injury.
Modeling flow and transport in fracture networks using graphs
NASA Astrophysics Data System (ADS)
Karra, S.; O'Malley, D.; Hyman, J. D.; Viswanathan, H. S.; Srinivasan, G.
2018-03-01
Fractures form the main pathways for flow in the subsurface within low-permeability rock. For this reason, accurately predicting flow and transport in fractured systems is vital for improving the performance of subsurface applications. Fracture sizes in these systems can range from millimeters to kilometers. Although modeling flow and transport using the discrete fracture network (DFN) approach is known to be more accurate due to incorporation of the detailed fracture network structure over continuum-based methods, capturing the flow and transport in such a wide range of scales is still computationally intractable. Furthermore, if one has to quantify uncertainty, hundreds of realizations of these DFN models have to be run. To reduce the computational burden, we solve flow and transport on a graph representation of a DFN. We study the accuracy of the graph approach by comparing breakthrough times and tracer particle statistical data between the graph-based and the high-fidelity DFN approaches, for fracture networks with varying number of fractures and degree of heterogeneity. Due to our recent developments in capabilities to perform DFN high-fidelity simulations on fracture networks with large number of fractures, we are in a unique position to perform such a comparison. We show that the graph approach shows a consistent bias with up to an order of magnitude slower breakthrough when compared to the DFN approach. We show that this is due to graph algorithm's underprediction of the pressure gradients across intersections on a given fracture, leading to slower tracer particle speeds between intersections and longer travel times. We present a bias correction methodology to the graph algorithm that reduces the discrepancy between the DFN and graph predictions. We show that with this bias correction, the graph algorithm predictions significantly improve and the results are very accurate. The good accuracy and the low computational cost, with O (104) times lower times than the DFN, makes the graph algorithm an ideal technique to incorporate in uncertainty quantification methods.
Modeling flow and transport in fracture networks using graphs.
Karra, S; O'Malley, D; Hyman, J D; Viswanathan, H S; Srinivasan, G
2018-03-01
Fractures form the main pathways for flow in the subsurface within low-permeability rock. For this reason, accurately predicting flow and transport in fractured systems is vital for improving the performance of subsurface applications. Fracture sizes in these systems can range from millimeters to kilometers. Although modeling flow and transport using the discrete fracture network (DFN) approach is known to be more accurate due to incorporation of the detailed fracture network structure over continuum-based methods, capturing the flow and transport in such a wide range of scales is still computationally intractable. Furthermore, if one has to quantify uncertainty, hundreds of realizations of these DFN models have to be run. To reduce the computational burden, we solve flow and transport on a graph representation of a DFN. We study the accuracy of the graph approach by comparing breakthrough times and tracer particle statistical data between the graph-based and the high-fidelity DFN approaches, for fracture networks with varying number of fractures and degree of heterogeneity. Due to our recent developments in capabilities to perform DFN high-fidelity simulations on fracture networks with large number of fractures, we are in a unique position to perform such a comparison. We show that the graph approach shows a consistent bias with up to an order of magnitude slower breakthrough when compared to the DFN approach. We show that this is due to graph algorithm's underprediction of the pressure gradients across intersections on a given fracture, leading to slower tracer particle speeds between intersections and longer travel times. We present a bias correction methodology to the graph algorithm that reduces the discrepancy between the DFN and graph predictions. We show that with this bias correction, the graph algorithm predictions significantly improve and the results are very accurate. The good accuracy and the low computational cost, with O(10^{4}) times lower times than the DFN, makes the graph algorithm an ideal technique to incorporate in uncertainty quantification methods.
Modeling flow and transport in fracture networks using graphs
Karra, S.; O'Malley, D.; Hyman, J. D.; ...
2018-03-09
Fractures form the main pathways for flow in the subsurface within low-permeability rock. For this reason, accurately predicting flow and transport in fractured systems is vital for improving the performance of subsurface applications. Fracture sizes in these systems can range from millimeters to kilometers. Although modeling flow and transport using the discrete fracture network (DFN) approach is known to be more accurate due to incorporation of the detailed fracture network structure over continuum-based methods, capturing the flow and transport in such a wide range of scales is still computationally intractable. Furthermore, if one has to quantify uncertainty, hundreds of realizationsmore » of these DFN models have to be run. To reduce the computational burden, we solve flow and transport on a graph representation of a DFN. We study the accuracy of the graph approach by comparing breakthrough times and tracer particle statistical data between the graph-based and the high-fidelity DFN approaches, for fracture networks with varying number of fractures and degree of heterogeneity. Due to our recent developments in capabilities to perform DFN high-fidelity simulations on fracture networks with large number of fractures, we are in a unique position to perform such a comparison. We show that the graph approach shows a consistent bias with up to an order of magnitude slower breakthrough when compared to the DFN approach. We show that this is due to graph algorithm's underprediction of the pressure gradients across intersections on a given fracture, leading to slower tracer particle speeds between intersections and longer travel times. We present a bias correction methodology to the graph algorithm that reduces the discrepancy between the DFN and graph predictions. We show that with this bias correction, the graph algorithm predictions significantly improve and the results are very accurate. In conclusion, the good accuracy and the low computational cost, with O(10 4) times lower times than the DFN, makes the graph algorithm an ideal technique to incorporate in uncertainty quantification methods.« less
Modeling flow and transport in fracture networks using graphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karra, S.; O'Malley, D.; Hyman, J. D.
Fractures form the main pathways for flow in the subsurface within low-permeability rock. For this reason, accurately predicting flow and transport in fractured systems is vital for improving the performance of subsurface applications. Fracture sizes in these systems can range from millimeters to kilometers. Although modeling flow and transport using the discrete fracture network (DFN) approach is known to be more accurate due to incorporation of the detailed fracture network structure over continuum-based methods, capturing the flow and transport in such a wide range of scales is still computationally intractable. Furthermore, if one has to quantify uncertainty, hundreds of realizationsmore » of these DFN models have to be run. To reduce the computational burden, we solve flow and transport on a graph representation of a DFN. We study the accuracy of the graph approach by comparing breakthrough times and tracer particle statistical data between the graph-based and the high-fidelity DFN approaches, for fracture networks with varying number of fractures and degree of heterogeneity. Due to our recent developments in capabilities to perform DFN high-fidelity simulations on fracture networks with large number of fractures, we are in a unique position to perform such a comparison. We show that the graph approach shows a consistent bias with up to an order of magnitude slower breakthrough when compared to the DFN approach. We show that this is due to graph algorithm's underprediction of the pressure gradients across intersections on a given fracture, leading to slower tracer particle speeds between intersections and longer travel times. We present a bias correction methodology to the graph algorithm that reduces the discrepancy between the DFN and graph predictions. We show that with this bias correction, the graph algorithm predictions significantly improve and the results are very accurate. In conclusion, the good accuracy and the low computational cost, with O(10 4) times lower times than the DFN, makes the graph algorithm an ideal technique to incorporate in uncertainty quantification methods.« less
Sawada, Hideyoshi; Shinohara, Takaaki; Natsume, Tadahiro; Hirata, Hitoshi
2016-11-01
Ulnar styloid fractures are often associated with distal radius fractures. However, controversy exists regarding whether to treat ulnar styloid fractures. This study aimed to evaluate clinical effects of internal fixation for ulnar styloid fractures after distal radius fractures were treated with the volar locking plate system. We used prospectively collected data of distal radius fractures. 111 patients were enrolled in this study. A matched case-control study design was used. We selected patients who underwent fixation for ulnar styloid fractures (case group). Three control patients for each patient of the case group were matched on the basis of age, sex, and fracture type of distal radius fractures from among patients who did not undergo fixation for ulnar styloid fractures (control group). The case group included 16 patients (7 men, 9 women; mean age: 52.6 years; classification of ulnar styloid fractures: center, 3; base, 11; and proximal, 2). The control group included 48 patients (15 men, 33 women; mean age: 61.1 years; classification of ulnar styloid fractures: center, 10; base, 31; and proximal, 7). For radiographic examination, the volar tilt angle, radial inclination angle, and ulnar variance length were measured, and the union of ulnar styloid fractures was judged. For clinical examination, the range of motions, grip strength, Hand20 score, and Numeric Rating Scale score were evaluated. There was little correction loss for each radiological parameter of fracture reduction, and these parameters were not significantly different between the groups. The bone-healing rate of ulnar styloid fractures was significantly higher in the case group than in the control group, but the clinical results were not significantly different. We revealed that there was no need to fix ulnar styloid fractures when distal radius fractures were treated via open reduction and internal fixation with a volar locking plate system. Copyright © 2016 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.
Stogov, V M; Kireeva, E A; Karasev, A G
2014-12-01
The study was carried out to comparatively analyze metabolic profile and content of growth factors in blood serum of patients with retarded consolidation of fractures of bones of lower extremities. The evaluation was applied to concentration of metabolites, growth factors and enzyme activity of blood serum in 13 patients with retarded consolidation of fractures of thigh and shank bones (main group). The comparative group included 14 patients with solid fractures of thigh and shank bones. The analysis established that as compared to patients with solid fractures of bones, in patients with retarded consolidation of fractures blood serum contained reliably higher concentration of triglycerides, products of glycolysis, epidermal growth factor and transforming growth factors TGF-α and TGF-β2. The content of vitamin E and insullin-like growth factor (IGF-1) was decreased The given markers can be labeled as potential markers of diagnostic and prognosis of development of retarded consolidation of fractures.
Kumar, Sanjay; Roy, Sandip Kumar; Jha, Amrish Kumar; Chatterjee, Debdutta; Banerjee, Debabrata; Garg, Anant Kumar
2011-06-01
Sixty-two femoral shaft fractures in 60 patients treated by elastic intramedullary nailing with mean age of the patients being 9.2 years (range 5 years to 12 years) and average follow-up of 15 months (range 7 months to 60 months) are evaluated. Twenty-eight fractures were fixed with titanium elastic nail while 34 fractures were fixed with Enders nail. There were 40 midshaft fractures, 18 proximal femoral and 4 were fractures of distal third. Fracture patterns were transverse in 35, short oblique in 14 cases and 13 were spiral fractures. Mean age of union in this series was 17 weeks (range 12 weeks to 28 weeks). Ten cases had complications, 5 had nail tip irritation, 3 varus or valgus malalignment and 2 had delayed union. In this series, we did not have any non-union, refracture, limb length discrepancy or any major infection. The result demonstrates 100% union rate irrespective of the age, weight and height of the patient. Regardless of the site of fracture and their pattern, it united every time with elastic nail fixation. We did not find and mismatch in the results of fractures stabilised with titanium elastic nail with that of elastic stainless steel nail.
Ultrasound for diagnosing radiographically occult scaphoid fracture.
Kwee, Robert M; Kwee, Thomas C
2018-04-04
To systematically review the literature on the performance of ultrasound in diagnosing radiographically occult scaphoid fracture. A systematic search was performed in the MEDLINE and Embase databases. Original studies investigating the performance of ultrasound in diagnosing radiographically occult scaphoid fracture in more than 10 patients were eligible for inclusion. Studies that included both radiographically apparent and occult scaphoid fractures (at initial radiography) were only included if independent data on radiographically occult fractures were reported. Methodological quality of the studies included was assessed using the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) tool. Accuracy data were extracted. Sensitivity and specificity were pooled with a bivariate random-effects model. The inclusion criteria were met by 7 studies; total sample size comprised 314 patients. All studies, except 1, included cortical disruption of the scaphoid in their diagnostic criteria. The sensitivity and specificity of ultrasound in diagnosing radiographically occult scaphoid fracture ranged from 77.8% to 100% and from 71.4% to 100% respectively, with pooled estimates of 85.6% (95% CI: 73.9%, 92.6%) and 83.3% % (95% CI: 72.0%, 90.6%) respectively. Exclusion of two studies with a high risk of bias in any QUADAS-2 domain did not affect the pooled results. Ultrasound can diagnose radiographically occult scaphoid fracture with a fairly high degree of accuracy. Because of its relatively low costs and fairly high sensitivity, ultrasound seems more cost-effective than empiric cast immobilization and may be used when CT and MRI are not readily available.
ACR Appropriateness Criteria® rib fractures.
Henry, Travis S; Kirsch, Jacobo; Kanne, Jeffrey P; Chung, Jonathan H; Donnelly, Edwin F; Ginsburg, Mark E; Heitkamp, Darel E; Kazerooni, Ella A; Ketai, Loren H; McComb, Barbara L; Parker, J Anthony; Ravenel, James G; Restrepo, Carlos Santiago; Saleh, Anthony G; Shah, Rakesh D; Steiner, Robert M; Suh, Robert D; Mohammed, Tan-Lucien H
2014-11-01
Rib fracture is the most common thoracic injury, present in 10% of all traumatic injuries and almost 40% of patients who sustain severe nonpenetrating trauma. Although rib fractures can produce significant morbidity, the diagnosis of associated complications (such as pneumothorax, hemothorax, pulmonary contusion, atelectasis, flail chest, cardiovascular injury, and injuries to solid and hollow abdominal organs) may have a more significant clinical impact. When isolated, rib fractures have a relatively low morbidity and mortality, and failure to detect isolated rib fractures does not necessarily alter patient management or outcome in uncomplicated cases. A standard posteroanterior chest radiograph should be the initial, and often the only, imaging test required in patients with suspected rib fracture after minor trauma. Detailed radiographs of the ribs rarely add additional information that would change treatment, and, although other imaging tests (eg, computed tomography, bone scan) have increased sensitivity for detection of rib fractures, there are little data to support their use. The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed every 3 years by a multidisciplinary expert panel. The guideline development and review process include an extensive analysis of current medical literature from peer-reviewed journals and the application of a well-established consensus methodology (modified Delphi) to rate the appropriateness of imaging and treatment procedures by the panel. In those instances in which evidence is lacking or not definitive, expert opinion may be used to recommend imaging or treatment.
Estimating the hydraulic conductivity of two-dimensional fracture networks
NASA Astrophysics Data System (ADS)
Leung, C. T.; Zimmerman, R. W.
2010-12-01
Most oil and gas reservoirs, as well as most potential sites for nuclear waste disposal, are naturally fractured. In these sites, the network of fractures will provide the main path for fluid to flow through the rock mass. In many cases, the fracture density is so high as to make it impractical to model it with a discrete fracture network (DFN) approach. For such rock masses, it would be useful to have recourse to analytical, or semi-analytical, methods to estimate the macroscopic hydraulic conductivity of the fracture network. We have investigated single-phase fluid flow through stochastically generated two-dimensional fracture networks. The centres and orientations of the fractures are uniformly distributed, whereas their lengths follow either a lognormal distribution or a power law distribution. We have considered the case where the fractures in the network each have the same aperture, as well as the case where the aperture of each fracture is directly proportional to the fracture length. The discrete fracture network flow and transport simulator NAPSAC, developed by Serco (Didcot, UK), is used to establish the “true” macroscopic hydraulic conductivity of the network. We then attempt to match this conductivity using a simple estimation method that does not require extensive computation. For our calculations, fracture networks are represented as networks composed of conducting segments (bonds) between nodes. Each bond represents the region of a single fracture between two adjacent intersections with other fractures. We assume that the bonds are arranged on a kagome lattice, with some fraction of the bonds randomly missing. The conductance of each bond is then replaced with some effective conductance, Ceff, which we take to be the arithmetic mean of the individual conductances, averaged over each bond, rather than over each fracture. This is in contrast to the usual approximation used in effective medium theories, wherein the geometric mean is used. Our explanation is that the conductivities of the bonds that meet at a given node in a fracture network do not satisfy the usual assumption of being uncorrelated; rather, the conductances of at least two of these bonds are highly correlated, as they represent the incoming and outgoing branches of the same fracture. The effective conductance of our idealized “equivalent network” is then trivial to calculate. We find that this estimate of the hydraulic conductivity agrees very closely with the numerically computed value, essentially for all fracture densities that are not too close to the percolation threshold. Moreover, the same methodology applies regardless of whether the fracture lengths are distributed lognormally, or according to a power law.
Hydromechanical modeling of clay rock including fracture damage
NASA Astrophysics Data System (ADS)
Asahina, D.; Houseworth, J. E.; Birkholzer, J. T.
2012-12-01
Argillaceous rock typically acts as a flow barrier, but under certain conditions significant and potentially conductive fractures may be present. Fracture formation is well-known to occur in the vicinity of underground excavations in a region known as the excavation disturbed zone. Such problems are of particular importance for low-permeability, mechanically weak rock such as clays and shales because fractures can be relatively transient as a result of fracture self-sealing processes. Perhaps not as well appreciated is the fact that natural fractures can form in argillaceous rock as a result of hydraulic overpressure caused by phenomena such as disequlibrium compaction, changes in tectonic stress, and mineral dehydration. Overpressure conditions can cause hydraulic fracturing if the fluid pressure leads to tensile effective stresses that exceed the tensile strength of the material. Quantitative modeling of this type of process requires coupling between hydrogeologic processes and geomechanical processes including fracture initiation and propagation. Here we present a computational method for three-dimensional, hydromechanical coupled processes including fracture damage. Fractures are represented as discrete features in a fracture network that interact with a porous rock matrix. Fracture configurations are mapped onto an unstructured, three-dimensonal, Voronoi grid, which is based on a random set of spatial points. Discrete fracture networks (DFN) are represented by the connections of the edges of a Voronoi cells. This methodology has the advantage that fractures can be more easily introduced in response to coupled hydro-mechanical processes and generally eliminates several potential issues associated with the geometry of DFN and numerical gridding. A geomechanical and fracture-damage model is developed here using the Rigid-Body-Spring-Network (RBSN) numerical method. The hydrogelogic and geomechanical models share the same geometrical information from a 3D Voronoi grid and associated nodes, where the scalar field quantities (e.g. temperature, pressure, and saturation) and the generalized displacements are obtained by an integral finite difference method (e.g., TOUGH2) and RBSN, respectively. Fractures propagate along Voronoi cell boundaries as induced stresses evolve and exceed the material strength. Examples of fracture propagation in clay rock are examined for the excavation disturbed zone and for cases in which hydraulic overpressure leads to hydraulic fracture. Fluid flow behavior in these evolving fracture networks and eventual fracture closing and self-sealing are investigated. Funding for this work was provided by the Used Fuel Disposition Campaign, Office of Nuclear Energy, of the U.S. Department of Energy under Contract NumberDE-AC02-05CH11231 with Berkeley Lab.
NASA Technical Reports Server (NTRS)
Fu, L. S. W.
1982-01-01
Developments in fracture mechanics and elastic wave theory enhance the understanding of many physical phenomena in a mathematical context. Available literature in the material, and fracture characterization by NDT, and the related mathematical methods in mechanics that provide fundamental underlying principles for its interpretation and evaluation are reviewed. Information on the energy release mechanism of defects and the interaction of microstructures within the material is basic in the formulation of the mechanics problems that supply guidance for nondestructive evaluation (NDE).
Peterson, Margaret G.E.; Cornell, Charles N.; MacKenzie, C. Ronald; Robbins, Laura; Horton, Roberta; Ganz, Sandy B.; Ruchlin, Hirsch S.; Russo, Pamela Williams; Paget, Stephen A.; Charlson, Mary E.
2006-01-01
We conducted a randomized controlled trial to assess the efficacy and safety of a multiple-component intervention designed to improve functional recovery after hip fracture. One hundred seventy-six patients who underwent surgery for a primary unilateral hip fracture were assigned randomly to receive usual care (control arm, n = 86) or a brief motivational videotape, supportive peer counseling, and high-intensity muscle-strength training (intervention arm, n = 90). Between-group differences on the physical functioning, role-physical, and social functioning domains of the SF-36 were assessed postoperatively at 6 months. At the end of the trial, 32 intervention and 27 control patients (34%) completed the 6-month outcome assessment. Although patient compliance with all three components of the intervention was uneven, over 90% of intervention patients were exposed to the motivational videotape. Intervention patients experienced a significant (P = 0.03) improvement in the role-physical domain (mean change, −11 ± 33) compared to control patients (mean change, −37 ± 41). Change in general health (P = 0.2) and mental health (P = 0.1) domain scores was also directionally consistent with the study hypothesis. Although our findings are consistent with previous reports of comprehensive rehabilitation efforts for hip fracture patients, the trial was undermined by high attrition and the possibility of self-selection bias at 6-month follow-up. We discuss the methodological challenges and lessons learned in conducting a randomized controlled trial that sought to implement and assess the impact of a complex intervention in a population that proved difficult to follow up once they had returned to the community. PMID:18751772
Hand function evaluation: a factor analysis study.
Jarus, T; Poremba, R
1993-05-01
The purpose of this study was to investigate hand function evaluations. Factor analysis with varimax rotation was used to assess the fundamental characteristics of the items included in the Jebsen Hand Function Test and the Smith Hand Function Evaluation. The study sample consisted of 144 subjects without disabilities and 22 subjects with Colles fracture. Results suggest a four factor solution: Factor I--pinch movement; Factor II--grasp; Factor III--target accuracy; and Factor IV--activities of daily living. These categories differentiated the subjects without Colles fracture from the subjects with Colles fracture. A hand function evaluation consisting of these four factors would be useful. Such an evaluation that can be used for current clinical purposes is provided.
Shibuya, Naohiro; Liu, George T; Davis, Matthew L; Grossman, Jordan P; Jupiter, Daniel C
2016-01-01
A limited number of studies have described the epidemiology of open fractures, and the epidemiology of open ankle fractures is not an exception. Therefore, the risk factors associated with open ankle fractures have not been extensively evaluated. The frequencies and proportions of open ankle fractures among all the recorded malleolar fractures in the US National Trauma Data Bank data set from January 2007 to December 2011 were analyzed. Clinically relevant variables captured in the data set were also used to evaluate the risk factors associated with open ankle fractures, adjusting for other covariates. The entire cohort was further subdivided into "lower" and "higher" energy trauma groups and the same analysis performed for each group separately. We found that a body mass index of >40 kg/m(2) and farm location were risk factors for open ankle fractures and impaired sensorium was protective against open ankle fractures. In the "lower energy" group, male gender, alcohol use, peripheral vascular disease, other injuries, and injury occurring at a farm location were risk factors for open fractures. In the "higher energy" group, female gender, work-related injury, and injury at a farm or industry location demonstrated statistically significantly associations with open fractures. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.
Bueno, Irene; Redig, Patrick T; Rendahl, Aaron K
2015-11-15
To evaluate the outcome of the application of an external skeletal fixator intramedullary pin tie-in (TIF) to tibiotarsal fractures in raptors. Retrospective case series. Thirty-four raptors with 37 tibiotarsal fractures. Medical records and radiographs for raptors with tibiotarsal fractures that were treated at The Raptor Center at the University of Minnesota between 1995 and 2011 were reviewed. Descriptive statistics were generated and univariate logistic regression analyses were used to assess whether age, sex, body weight, location and nature of the fracture, and type of surgical reduction were significantly associated with whether the fracture healed following surgical reduction and TIF application. 31 of 37 (84%) tibiotarsal fractures successfully healed following surgical reduction and TIF application. The mean healing time was 38 days (range, 15 to 70 days). None of the variables assessed were significantly associated with whether the tibiotarsal fracture healed. Twenty of the 34 (59%) raptors were eventually rehabilitated and released. Results indicated that most tibiotarsal fractures were successfully managed by surgical reduction and stabilization with a TIF. However, other comorbidities (eg, systemic infections and visual deficits) negatively affected the rehabilitation of raptors and sometimes resulted in euthanasia despite the fact that the tibiotarsal fracture had healed, and those comorbidities, along with the variables evaluated (eg, age, sex, and nature of the fracture), should be used as triage criteria and prognostic indicators.
Kim, Tae-Young; Jang, Sunmee; Park, Chan-Mi; Lee, Ahreum; Lee, Young-Kyun; Kim, Ha-Young; Cho, Eun-Hee; Ha, Yong-Chan
2016-05-01
Spinal fractures have been recognized as a major health concern. Our purposes were to evaluate the trends in the incidence and mortality of spinal fractures between 2008 and 2012 and predict the number of spinal fractures that will occur in Korea up to 2025, using nationwide data from the National Health Insurance Service (NHIS). A nationwide data set was evaluated to identify all new visits to medical institutes for spinal fractures in men and women aged 50 years or older between 2008 and 2012. The incidence, mortality rates and estimates of the number of spinal fractures were calculated using Poisson regression. The number of spinal fractures increased over the time span studied. Men and women experienced 14,808 and 55,164 vertebral fractures in 2008 and 22,739 and 79,903 in 2012, respectively. This reflects an increase in the incidence of spinal fractures for both genders (men, 245.3/100,000 in 2008 and 312.5/100,000 in 2012; women, 780.6/100,000 in 2008 and 953.4/100,000 in 2012). The cumulative mortality rate in the first year after spinal fractures decreased from 8.51% (5,955/69,972) in 2008 to 7.0% (7,187/102,642) in 2012. The overall standardized mortality ratio (SMR) of spinal fractures at 1 year post-fracture was higher in men (7.76, 95% CI: 7.63-7.89) than in women (4.70, 95% CI: 4.63-4.76). The total number of spinal fractures is expected to reach 157,706 in 2025. The incidence of spinal fractures increased in Korea in the last 5 years, and the socioeconomic burden of spinal fractures will continue to increase in the near future.
Yeganeh, Ali; Otoukesh, Babak; Kaghazian, Peyman; Yeganeh, Nima; Boddohi, Bahram; Moghtadaei, Mehdi
2015-01-01
Background: Orthopedics implants are important tools for treatment of bone fractures. Despite available recommendations for designing and making the implants, there are multiple cases of fracture of these implants in the body. Hence, in this study the frequency of failure of implants in long bones of lower extremities was evaluated. Methods and Materials: In this cross-sectional study, two types of fractured implants in the body were analyzed and underwent metalogical, mechanical, and modeling and stress-bending analysis. Results: The results revealed that the main cause of fractures was decreased mechanical resistance due to inappropriate chemical composition (especially decreased percentages of Nickel and Molybdenum). Conclusions: It may be concluded that following the standard chemical composition and use of optimal making method are the most important works for prevention of failure of implants. PMID:26843735
NASA Technical Reports Server (NTRS)
Wang, J.; Magee, D.; Schneider, J. A.
2009-01-01
The dynamic mechanical properties and fracture surface morphologies were evaluated for a commercial epoxy resin toughened with two types of core-shell rubber (CSR) toughening agents (Kane Ace(Registered TradeMark) MX130 and MX960). The impact resistance (R) was evaluated by the resulting breaking energy measured in Charpy impact tests conducted on an instrumented drop tower. The resulting fracture surface morphologies were examined using Scanning Electron Microscopy (SEM). Fractographic observations of the CSR toughened epoxy tested at ambient temperature, showed a fracture as characterized by slender dendrite textures with large voids. The increasing number of dendrites and decreasing size of scale-like texture with more CSR particles corresponded with increased R. As the temperature decreased to Liquid Nitrogen (LN 2), the fracture surfaces showed a fracture characterized by a rough, torn texture containing many river markings and deep furrows.
Christopoulos, Panos; Stathopoulos, Panagiotis; Alexandridis, Constantinos; Shetty, Vivek; Caputo, Angelo
2012-10-01
Fractures of the condyle account for 20-30% of all mandibular fractures, and are therefore one of the most common facial injuries. Precise evaluation of the mechanical stresses that develop in a fractured mandible is essential, particularly for the testing of systems currently used for stabilisation of the condylar fragment. Photoelastic stress analysis can be used to visualise alterations in the strain that is induced in the mandible by a fracture, and in the osteosynthesis materials used to stabilise it. This method, used on currently used osteosynthesis materials, showed that stabilisation of a subcondylar fracture with a single miniplate does not provide enough stability, whereas the use of two miniplates - properly positioned - offers sufficient stability in all loading conditions. A microplate may be used as a tension-resisting plate with equally good results. Copyright © 2011 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Periprosthetic fractures around the femoral stem: overcoming challenges and avoiding pitfalls
Chen, Antonia F.
2015-01-01
Management of periprosthetic fractures around the femoral stem after total hip arthroplasty (THA) represents a significant challenge and optimal treatment remains controversial. The most common treatment paradigm involves treating fractures around a well-fixed stem with osteosynthesis, whereas fractures around a loose stem require revision arthroplasty and those with poor bone require augmentation with bone graft. Paradoxically, the literature reports a higher rate of failure for osteosynthesis around prostheses considered to be well-fixed. Such a high rate of poor outcomes may result not only from difficult fracture fixation and compromised biologic healing, but also from unrecognized peri-implant pathology. Therefore, proper preoperative and intraoperative evaluation is key, and a subset of patients may benefit from alternative management. We review the appropriate methods for evaluation and treatment of Vancouver type B fractures with particular emphasis on avoiding missteps that can lead to failure. PMID:26539451
Treatment of Thoracolumbar Fracture
Kim, Byung-Guk; Shin, Dong-Eun
2015-01-01
The most common fractures of the spine are associated with the thoracolumbar junction. The goals of treatment of thoracolumbar fracture are leading to early mobilization and rehabilitation by restoring mechanical stability of fracture and inducing neurologic recovery, thereby enabling patients to return to the workplace. However, it is still debatable about the treatment methods. Neurologic injury should be identified by thorough physical examination for motor and sensory nerve system in order to determine the appropriate treatment. The mechanical stability of fracture also should be evaluated by plain radiographs and computed tomography. In some cases, magnetic resonance imaging is required to evaluate soft tissue injury involving neurologic structure or posterior ligament complex. Based on these physical examinations and imaging studies, fracture stability is evaluated and it is determined whether to use the conservative or operative treatment. The development of instruments have led to more interests on the operative treatment which saves mobile segments without fusion and on instrumentation through minimal invasive approach in recent years. It is still controversial for the use of these treatments because there have not been verified evidences yet. However, the morbidity of patients can be decreased and good clinical and radiologic outcomes can be achieved if the recent operative treatments are used carefully considering the fracture pattern and the injury severity. PMID:25705347
NASA Astrophysics Data System (ADS)
Pastoriza, L. R.; Holdsworth, R.; McCaffrey, K. J. W.; Dempsey, E. D.; Walker, R. J.; Gluyas, J.; Reyes, J. K.
2016-12-01
Fluid flow pathway characterization is critical to geothermal exploration and exploitation. It requires a good understanding of the structural evolution, fault distribution and fluid flow properties. A dominantly fieldwork-based approach has been used to evaluate the potential fracture permeability characteristics of a typical high-temperature geothermal reservoir in the Southern Negros Geothermal Field, Philippines. This is a liquid-dominated geothermal resource hosted in the andesitic to dacitic Quaternary Cuernos de Negros Volcano in Negros Island. Fieldwork reveals two main fracture groups based on fault rock characteristics, alteration type, relative age of deformation, and associated thermal manifestation, with the younger fractures mainly related to the development of the modern geothermal system. Palaeostress analyses of cross-cutting fault and fracture arrays reveal a progressive counterclockwise rotation of stress axes from the (?)Pliocene up to the present-day, which is consistent with the regional tectonic models. A combined slip and dilation tendency analysis of the mapped faults indicates that NW-SE structures should be particularly promising drilling targets. Frequency versus length and aperture plots of fractures across six to eight orders of magnitude show power-law relationships with a change in scaling exponent in the region of 100 to 500m length-scales. Finally, evaluation of the topology of the fracture branches shows the dominance of Y-nodes that are mostly doubly connected suggesting good connectivity and permeability within the fracture networks. The results obtained in this study illustrate the value of methods that can be globally applied during exploration to better characterize fracture systems in geothermal reservoirs using multiscale datasets.
NASA Astrophysics Data System (ADS)
Pastoriza, Loraine; Holdsworth, Robert; McCaffrey, Kenneth; Dempsey, Eddie; Walker, Richard; Gluyas, Jon; Reyes, Jonathan
2017-04-01
Fluid flow pathway characterisation is critical to geothermal exploration and exploitation. It requires a good understanding of the structural evolution, fault distribution and fluid flow properties. A dominantly fieldwork-based approach has been used to evaluate the potential fracture permeability characteristics of a typical high-temperature geothermal reservoir in the Southern Negros Geothermal Field, Philippines. This is a liquid-dominated geothermal resource hosted in the andesitic to dacitic Quaternary Cuernos de Negros Volcano in Negros Island. Fieldwork reveals two main fracture groups based on fault rock characteristics, alteration type, relative age of deformation, and associated thermal manifestation, with the younger fractures mainly related to the development of the modern geothermal system. Palaeostress analyses of cross-cutting fault and fracture arrays reveal a progressive counterclockwise rotation of stress axes from the (?)Pliocene up to the present-day, which is consistent with the regional tectonic models. A combined slip and dilation tendency analysis of the mapped faults indicates that NW-SE structures should be particularly promising drilling targets. Frequency versus length and aperture plots of fractures across six to eight orders of magnitude show power-law relationships with a change in scaling exponent in the region of 100 to 500m length-scales. Finally, evaluation of the topology of the fracture branches shows the dominance of Y-nodes that are mostly doubly connected suggesting good connectivity and permeability within the fracture networks. The results obtained in this study illustrate the value of methods that can be globally applied during exploration to better characterize fracture systems in geothermal reservoirs using multiscale datasets.
Missed Fractures in Infants Presenting to the Emergency Department With Fussiness.
Kondis, Jamie S; Muenzer, Jared; Luhmann, Janet D
2017-08-01
The aim of this study was to evaluate incidence of prior fussy emergency visits in infants with subsequently diagnosed fractures suggestive of abuse. This was a retrospective chart review of infants younger than 6 months who presented to the pediatric emergency department (ED) between January 1, 2006, and December 31, 2011. Inclusion criteria included age 0 to 6 months, discharge diagnosis including "fracture," "broken" (or break), or "trauma" or any child abuse diagnosis or chief complaint of "fussy" or "crying" as documented in the electronic medical record by the triage nurse. Three thousand seven hundred thirty-two charts were reviewed, and 279 infants with fractures were identified. Eighteen (6.5%) of 279 infants had a prior ED visit for fussiness without an obvious source. Of these, 2 had a witnessed event causing their fracture, and therefore the fracture was not considered concerning for abuse. The remaining 16 had fractures concerning for abuse. Mean age was 2.5 (SD, 1.2) months. Fifteen (83%) of 18 infants were 3 months or younger at the time of the fussy visit. The mean interval between the first and second ED visits was 27 days (median, 20 days). Thirty-nine percent were evaluated by a pediatric emergency medicine-trained physician during their initial fussy visit, whereas 78% were evaluated by pediatric emergency medicine-trained physician during their subsequent visit. Most common injuries were multiple types of fractures followed by extremity and rib fractures. Fractures concerning for child abuse are an important cause of unexplained fussiness in infants presenting to the pediatric ED. A high index of suspicion is essential for prompt diagnosis and likely prevention of other abuse.
NASA Astrophysics Data System (ADS)
Tene, Yair; Tene, Noam; Tene, G.
1993-08-01
An interactive data fusion methodology of video, audio, and nonlinear structural dynamic analysis for potential application in forensic engineering is presented. The methodology was developed and successfully demonstrated in the analysis of heavy transportable bridge collapse during preparation for testing. Multiple bridge elements failures were identified after the collapse, including fracture, cracks and rupture of high performance structural materials. Videotape recording by hand held camcorder was the only source of information about the collapse sequence. The interactive data fusion methodology resulted in extracting relevant information form the videotape and from dynamic nonlinear structural analysis, leading to full account of the sequence of events during the bridge collapse.
Surrogate-based optimization of hydraulic fracturing in pre-existing fracture networks
NASA Astrophysics Data System (ADS)
Chen, Mingjie; Sun, Yunwei; Fu, Pengcheng; Carrigan, Charles R.; Lu, Zhiming; Tong, Charles H.; Buscheck, Thomas A.
2013-08-01
Hydraulic fracturing has been used widely to stimulate production of oil, natural gas, and geothermal energy in formations with low natural permeability. Numerical optimization of fracture stimulation often requires a large number of evaluations of objective functions and constraints from forward hydraulic fracturing models, which are computationally expensive and even prohibitive in some situations. Moreover, there are a variety of uncertainties associated with the pre-existing fracture distributions and rock mechanical properties, which affect the optimized decisions for hydraulic fracturing. In this study, a surrogate-based approach is developed for efficient optimization of hydraulic fracturing well design in the presence of natural-system uncertainties. The fractal dimension is derived from the simulated fracturing network as the objective for maximizing energy recovery sweep efficiency. The surrogate model, which is constructed using training data from high-fidelity fracturing models for mapping the relationship between uncertain input parameters and the fractal dimension, provides fast approximation of the objective functions and constraints. A suite of surrogate models constructed using different fitting methods is evaluated and validated for fast predictions. Global sensitivity analysis is conducted to gain insights into the impact of the input variables on the output of interest, and further used for parameter screening. The high efficiency of the surrogate-based approach is demonstrated for three optimization scenarios with different and uncertain ambient conditions. Our results suggest the critical importance of considering uncertain pre-existing fracture networks in optimization studies of hydraulic fracturing.
Similarity in Bilateral Isolated Internal Orbital Fractures.
Chen, Hung-Chang; Cox, Jacob T; Sanyal, Abanti; Mahoney, Nicholas R
2018-04-13
In evaluating patients sustaining bilateral isolated internal orbital fractures, the authors have observed both similar fracture locations and also similar expansion of orbital volumes. In this study, we aim to investigate if there is a propensity for the 2 orbits to fracture in symmetrically similar patterns when sustaining similar trauma. A retrospective chart review was performed studying all cases at our institution of bilateral isolated internal orbital fractures involving the medial wall and/or the floor at the time of presentation. The similarity of the bilateral fracture locations was evaluated using the Fisher's exact test. The bilateral expanded orbital volumes were analyzed using the Wilcoxon signed-rank test to assess for orbital volume similarity. Twenty-four patients with bilateral internal orbital fractures were analyzed for fracture location similarity. Seventeen patients (70.8%) had 100% concordance in the orbital subregion fractured, and the association between the right and the left orbital fracture subregion locations was statistically significant (P < 0.0001). Fifteen patients were analyzed for orbital volume similarity. The average orbital cavity volume was 31.2 ± 3.8 cm on the right and 32.0 ± 3.7 cm on the left. There was a statistically significant difference between right and left orbital cavity volumes (P = 0.0026). The data from this study suggest that an individual who suffers isolated bilateral internal orbital fractures has a statistically significant similarity in the location of their orbital fractures. However, there does not appear to be statistically significant similarity in the expansion of the orbital volumes in these patients.
Bali, Rishi K.; Sharma, Parveen; Jindal, Shalu; Gaba, Shivani
2013-01-01
Aims: The present study was undertaken to evaluate the efficacy of biodegradable plating system for fixation of maxillofacial fractures and to study the morbidity associated with the use of biodegradable plates and screws. Materials and Methods: This prospective study consisted of 10 patients with maxillofacial fractures requiring open reduction and internal fixation. Fractures with infection, comminuted and pathological fractures were excluded. All were plated with biodegradable system (Inion CPS) using standard plating principles and observed for a total period of 24 weeks. Characteristics of the fractures, ease of use of bioresorbable plate/screw system and post operative complications were assessed. Results: Of total 10 patients, eight patients were of midface fracture and two pediatric patients with mandibular fracture, with nine male and one female. The mean age was 32.8 years. Out of 20 plates and 68 screws applied to the 10 fractures sites; there were three incidences of screw breakage with no other intraoperative difficulties. Paresthesia of the infraorbital nerve was present in two patients, and recovered completely in four weeks after surgery. Fracture reduction was considered to be satisfactory in all cases. One patient developed postsurgical infection and was managed with oral antibiotics and analgesics. Conclusions: Favorable healing can be observed through the use of biodegradable plates and screws to stabilize selected midface fractures in patients of all ages, as well as mandible fractures in early childhood, however further studies with more sample size are required. PMID:24665170
Bali, Rishi K; Sharma, Parveen; Jindal, Shalu; Gaba, Shivani
2013-07-01
The present study was undertaken to evaluate the efficacy of biodegradable plating system for fixation of maxillofacial fractures and to study the morbidity associated with the use of biodegradable plates and screws. This prospective study consisted of 10 patients with maxillofacial fractures requiring open reduction and internal fixation. Fractures with infection, comminuted and pathological fractures were excluded. All were plated with biodegradable system (Inion CPS) using standard plating principles and observed for a total period of 24 weeks. Characteristics of the fractures, ease of use of bioresorbable plate/screw system and post operative complications were assessed. Of total 10 patients, eight patients were of midface fracture and two pediatric patients with mandibular fracture, with nine male and one female. The mean age was 32.8 years. Out of 20 plates and 68 screws applied to the 10 fractures sites; there were three incidences of screw breakage with no other intraoperative difficulties. Paresthesia of the infraorbital nerve was present in two patients, and recovered completely in four weeks after surgery. Fracture reduction was considered to be satisfactory in all cases. One patient developed postsurgical infection and was managed with oral antibiotics and analgesics. Favorable healing can be observed through the use of biodegradable plates and screws to stabilize selected midface fractures in patients of all ages, as well as mandible fractures in early childhood, however further studies with more sample size are required.
Pires, RES; Pereira, AA; Abreu-e-Silva, GM; Labronici, PJ; Figueiredo, LB; Godoy-Santos, AL; Kfuri, M
2014-01-01
Background: Foot and ankle injuries are frequent in emergency departments. Although only a few patients with foot and ankle sprain present fractures and the fracture patterns are almost always simple, lack of fracture diagnosis can lead to poor functional outcomes. Aim: The present study aims to evaluate the reliability of the Ottawa ankle rules and the orthopedic surgeon subjective perception to assess foot and ankle fractures after sprains. Subjects and Methods: A cross-sectional study was conducted from July 2012 to December 2012. Ethical approval was granted. Two hundred seventy-four adult patients admitted to the emergency department with foot and/or ankle sprain were evaluated by an orthopedic surgeon who completed a questionnaire prior to radiographic assessment. The Ottawa ankle rules and subjective perception of foot and/or ankle fractures were evaluated on the questionnaire. Results: Thirteen percent (36/274) patients presented fracture. Orthopedic surgeon subjective analysis showed 55.6% sensitivity, 90.1% specificity, 46.5% positive predictive value and 92.9% negative predictive value. The general orthopedic surgeon opinion accuracy was 85.4%. The Ottawa ankle rules presented 97.2% sensitivity, 7.8% specificity, 13.9% positive predictive value, 95% negative predictive value and 19.9% accuracy respectively. Weight-bearing inability was the Ottawa ankle rule item that presented the highest reliability, 69.4% sensitivity, 61.6% specificity, 63.1% accuracy, 21.9% positive predictive value and 93% negative predictive value respectively. Conclusion: The Ottawa ankle rules showed high reliability for deciding when to take radiographs in foot and/or ankle sprains. Weight-bearing inability was the most important isolated item to predict fracture presence. Orthopedic surgeon subjective analysis to predict fracture possibility showed a high specificity rate, representing a confident method to exclude unnecessary radiographic exams. PMID:24971221
Daglar, Bulent; Gungor, Ertugrul; Delialioglu, Onder M; Karakus, Dilek; Ersoz, Murat; Tasbas, Bulent Adil; Bayrakci, Kenan; Gunel, Ugur
2009-10-01
To evaluate knee function in patients having femoral diaphyseal fractures treated with antegrade or retrograde intramedullary nail insertion. Prospective. Level I referral center. Seventy patients having 71 OTA 32 fractures were randomly allocated into 2 groups to be treated with either antegrade or retrograde intramedullary nails inserted with reaming. Antegrade nail in 41 fractures and retrograde femoral intramedullary nails in 30 fractures. Postoperative knee range of motion, Lysholm Knee Score, and isokinetic knee muscle function testing at least 6 months after documented fracture healing, minimum 1 year postoperatively. Groups had similar data with regard to demographics and injury patterns. Mean follow-up time was 44 (range: 25-80) months. Mean knee flexion angle was 132 and 134 degrees, and mean Lysholm Score was 84 and 83.1 in antegrade and retrograde groups, respectively (P = 0.893 and P = 0.701). Isokinetic evaluation revealed similar results for peak torque deficiencies at 30 and 180 degrees per second and total work deficiencies at 180 degrees per second (P > 0.05). Age affected the knee functioning as the higher the age of the patient is, the lower the Lysholm Score and knee flexion angle (r = -0.449, P = 0.0321 and r = -0.568, P = 0.001, respectively). Knee function seems to have similar clinical results after either antegrade or retrograde nail insertion for femoral diaphyseal fractures when knee range of motion, Lysholm Scores, and isokinetic knee evaluation are considered as outcome measures. With increasing patient age, a decrease in knee functioning should be anticipated in patients with femoral fractures treated with intramedullary nails regardless of technique.
Deformation and fracture of Mtwo rotary nickel-titanium instruments after clinical use.
Inan, Ugur; Gonulol, Nihan
2009-10-01
In recent years, a number of rotary nickel titanium (NiTi) systems have been developed to provide better, faster, and easier cleaning and shaping of the root canal system. Although the NiTi instruments are more flexible than the stainless steel files, the main problem with the rotary NiTi instruments is the failure of the instruments. The aim of this study was to evaluate the deformation and fracture rate of Mtwo rotary nickel-titanium instruments (VDW, Munich, Germany) discarded after routine clinical use. A total of 593 Mtwo rotary NiTi instruments were collected after clinical use from the clinic of endodontics over 12 months. The length of the files was measured using a digital caliper to determine any fracture, and then all the files were evaluated under a stereomicroscope for defects such as unwinding, curving, or bending and fracture. The fracture faces of separated files were also evaluated under a scanning electron microscope. The data were analyzed using a chi-square and z test. A percentage of all files (25.80%) showed defects, and the major defect was fracture (16.02%). The most frequently fractured file was #10.04 (30.39%). Deformations without fracture were mostly observed on #15.05 files (25.47%). A higher rate of deformation was observed for #10.04 and #15.05 files. Therefore, these files should be considered as single-use instruments. Because cyclic fatigue was the cause of 71.58% of the instrument fractures, it is also important not to exceed the maximum number of usage recommended by the manufacturer and discard the instruments on a regular basis.
Evaluation of permeable fractures in rock aquifers
NASA Astrophysics Data System (ADS)
Bok Lee, Hang
2015-04-01
In this study, the practical usefulness and fundamental applicability of a self-potential (SP) method for identifying the permeable fractures were evaluated by a comparison of SP methods with other geophysical logging methods and hydraulic tests. At a 10 m-shallow borehole in the study site, the candidates of permeable fractures crossing the borehole were first determined by conventional geophysical methods such as an acoustic borehole televiwer, temperature, electrical conductivity and gamma-gamma loggings, which was compared to the analysis by the SP method. Constant pressure injection and recovery tests were conducted for verification of the hydraulic properties of the fractures identified by various logging methods. The acoustic borehole televiwer and gamma-gamma loggings detected the open space or weathering zone within the borehole, but they cannot prove the possibility of a groundwater flow through the detected fractures. The temperature and electrical conductivity loggings had limitations to detect the fractured zones where groundwater in the borehole flows out to the surrounding rock aquifers. Comparison of results from different methods showed that there is a best correlation between the distribution of hydraulic conductivity and the variation of the SP signals, and the SP logging can estimate accurately the hydraulic activity as well as the location of permeable fractures. Based on the results, the SP method is recommended for determining the hydraulically-active fractures rather than other conventional geophysical loggings. This self-potential method can be effectively applied in the initial stage of a site investigation which selects the optimal location and evaluates the hydrogeological property of fractures in target sites for the underground structure including the geothermal reservoir and radioactive waste disposal.
Trampoline related injuries in children: risk factors and radiographic findings.
Klimek, Peter Michael; Juen, David; Stranzinger, Enno; Wolf, Rainer; Slongo, Theddy
2013-05-01
Backyard trampolines are immensely popular among children, but are associated with an increase of trampoline-related injuries. The aim of this study was to evaluate radiographs of children with trampoline related injuries and to determine the risk factors. Between 2003 and 2009, 286 children under the age of 16 with backyard trampoline injuries were included in the study. The number of injuries increased from 13 patients in 2003 to 86 in 2009. The median age of the 286 patients was 7 years (range: 1-15 years). Totally 140 (49%) patients were males, and 146 (51%) females. Medical records and all available diagnostic imaging were reviewed. A questionnaire was sent to the parents to evaluate the circumstances of each injury, the type of trampoline, the protection equipment and the experience of the children using the trampoline. The study was approved by the Institutional Ethics Committee of the University Hospital of Bern. The questionnaires and radiographs of the 104 patients were available for evaluation. A fracture was sustained in 51 of the 104 patients. More than 75% of all patients sustaining injuries and in 90% of patients with fractures were jumping on the trampoline with other children at the time of the accident. The most common fractures were supracondylar humeral fractures (29%) and forearm fractures (25%). Fractures of the proximal tibia occurred especially in younger children between 2-5 years of age. Children younger than 5 years old are at risk for specific proximal tibia fractures ("Trampoline Fracture"). A child jumping simultaneously with other children has a higher risk of suffering from a fracture.
Glemser, Philip A; Pfleiderer, Michael; Heger, Anna; Tremper, Jan; Krauskopf, Astrid; Schlemmer, Heinz-Peter; Yen, Kathrin; Simons, David
2017-03-01
The aim of this multi-reader feasibility study was to evaluate new post-processing CT imaging tools in rib fracture assessment of forensic cases by analyzing detection time and diagnostic accuracy. Thirty autopsy cases (20 with and 10 without rib fractures in autopsy) were randomly selected and included in this study. All cases received a native whole body CT scan prior to the autopsy procedure, which included dissection and careful evaluation of each rib. In addition to standard transverse sections (modality A), CT images were subjected to a reconstruction algorithm to compute axial labelling of the ribs (modality B) as well as "unfolding" visualizations of the rib cage (modality C, "eagle tool"). Three radiologists with different clinical and forensic experience who were blinded to autopsy results evaluated all cases in a random manner of modality and case. Rib fracture assessment of each reader was evaluated compared to autopsy and a CT consensus read as radiologic reference. A detailed evaluation of relevant test parameters revealed a better accordance to the CT consensus read as to the autopsy. Modality C was the significantly quickest rib fracture detection modality despite slightly reduced statistic test parameters compared to modalities A and B. Modern CT post-processing software is able to shorten reading time and to increase sensitivity and specificity compared to standard autopsy alone. The eagle tool as an easy to use tool is suited for an initial rib fracture screening prior to autopsy and can therefore be beneficial for forensic pathologists.
Analysis of 809 Facial Bone Fractures in a Pediatric and Adolescent Population
Kim, Sang Hun; Lee, Soo Hyang
2012-01-01
Background Facial fractures are infrequent in children and adolescents and have different clinical features from those in adults. The low incidence in children and adolescents reflects the flexibility and underdevelopment of their facial skeletons, as well as their more protected environments. Only a few reports have reviewed such patients in Korea. The authors performed a retrospective study to analyze the characteristics of facial fractures in the Korean pediatric population. Methods We conducted a retrospective review on a series of 741 patients, aged <18 years, with facial fractures who had been treated at our hospital between 2006 and 2010. The following parameters were evaluated: age, sex, cause, location and type of fractures, associated injuries, treatment and complications. Results A total of 741 consecutive patients met the inclusion criteria. The ratio of boys to girls was 5.7:1. Facial fractures most commonly occurred in patients between 13 and 15 years of age (36.3%). The most common causes of injury was violence. The nasal fracture was the most common type of fracture (69%) and the blowout fracture was the second most common (20%). Associated injuries occurred in 156 patients (21%). Conclusions The incidence of pediatric facial fractures caused by violence is high in Korea. Our results show that as age increases, etiological factors and fracture patterns gradually shift towards those found in adults. This study provides an overview of facial fractures in these age groups that helps illustrate the trends and characteristics of the fractures and may be helpful in further evaluation and management. PMID:23233885
New Isotopic Tracers for Shale Gas and Hydraulic Fracturing Fluids
The combined application of geochemistry, stable isotopes (δ18O, δ2H), strontium isotopes (87Sr/86Sr), boron isotopes (δ11B), and radium isotopes (228Ra/226Ra) provides a unique methodology for tracing and monitoring shale gas and fracking fluids in the environment.
IPS Empress crown system: three-year clinical trial results.
Sorensen, J A; Choi, C; Fanuscu, M I; Mito, W T
1998-02-01
The IPS Empress system is a highly esthetic hot pressed glass ceramic material for fabrication of single crowns. Adhesive cementation of the system not only contributes to the esthetics but is necessary for increased strength of the crown. The purpose of this prospective clinical trials was to evaluate the longevity of 75 adhesively cemented Empress full crowns. An additional aim was to assess the adhesive cementation methodology and potential side effects. At the three-year point, one molar crown fractured for a 1.3 percent failure rate. The resin cementation technique that was employed exhibited a low incidence of microleakage with few clinical side effects. There was a 5.6 percent incidence of post-cementation sensitivity, with all symptoms subsiding by eight weeks. None of the crowns in the study required endodontic therapy.
Elevated Temperature Crack Growth Behavior in HSCT Structural Materials
NASA Technical Reports Server (NTRS)
Saxena, Ashok
1998-01-01
Structures in super-sonic aircraft are subjected to conditions of high temperature and cyclic and sustained loading for extended periods of time. The durability of structures fabricated from aluminum and certain titanium alloys in such demanding conditions is of primary concern to the designers and manufacturers of futuristic transport aircraft. Accordingly, the major goal of this project was to evaluate the performance and durability of high temperature aluminum and titanium alloys for use in high speed civil transport (HSCT) structures. Additional goals were to develop time-dependent fracture mechanics methodology and test methods for characterizing and predicting elevated temperature crack growth behavior in creep-brittle materials such as ones being considered for use in HSCT structures and to explore accelerated methods of simulating microstructural degradation during service and measuring degraded properties in these materials.
Guo, Qunfeng; Wang, Liang; Lu, Xuhua; Guo, Xiang; Ni, Bin
2017-04-01
To evaluate differences in radiologic and functional outcomes between C1-C2 posterior temporary fixation (PTF) and cephalocervicothoracic cast fixation for type III odontoid fractures. Data from 13 patients who underwent PTF and 13 cases who underwent cephalocervicothoracic cast fixation due to fresh type III odontoid fractures were reviewed retrospectively. All patients with fracture healing underwent a functional computed tomography scan at the final follow-up to evaluate the range of motion in C1-C2 rotation. Functional outcomes were evaluated in the form of visual analog scale for neck pain, neck stiffness, patient satisfaction, and Neck Disability Index. The outcomes were compared between the 2 groups. At the final follow up, all 26 patients achieved healing of their fractures. There were no complications associated with either treatment. The left-to-right ranges of motion of C1-C2 rotation were 41.9° ± 11.9° in the PTF group and 43.5° ± 12.0° in the cephalocervicothoracic cast fixation group. There was no statistical difference between the 2 groups regarding the C1-C2 rotation angle (P > 0.05). There also were no significant differences between 2 groups in functional outcomes evaluated by visual analog scale for neck pain, neck stiffness, Neck Disability Index, and patient satisfaction (all P > 0.05). The outcomes of PTF and cephalocervicothoracic cast fixation were comparable in the treatment of type III odontoid fractures. For type III odontoid fractures that cannot be managed by nonoperative fixation or anterior screw fixation, PTF may be the treatment of choice, because it spares the motion of the C1-C2 complex. Copyright © 2016 Elsevier Inc. All rights reserved.
Comprehensive evaluation of fracture critical bridges.
DOT National Transportation Integrated Search
2014-02-01
Two-girder steel bridges are classified as fracture critical bridges based on the definition given in the AASHTO LRFD Bridge Design Specifications. In a fracture critical bridge a failure of a tension member leads to collapse of the bridge. However, ...
Chun, Young Soo; Juh, Hyung Suk; Cho, Yoon Je; Rhyu, Kee Hyung
2015-09-01
Femoral stem fracture is an uncommon reason for the failure of total hip arthroplasty, with only 16 cases of fully coated stem fractures reported to date. Here we report a case in which a fully coated primary femoral stem fracture occurred after conversion to total hip arthroplasty for the non-union of an intertrochanteric fracture of the femur. Metallurgic evaluation of the etiology and mechanism revealed that the fracture was initiated by fatigue-related failure and completed by ductile failure on the posterior side of the fracture. Considering the recent trend of treating an intertrochanteric fracture with hip arthroplasty, possible stem failure should be considered, since most patients will have at least one of the known risk factors for stem fracture.
Chun, Young Soo; Juh, Hyung Suk; Cho, Yoon Je
2015-01-01
Femoral stem fracture is an uncommon reason for the failure of total hip arthroplasty, with only 16 cases of fully coated stem fractures reported to date. Here we report a case in which a fully coated primary femoral stem fracture occurred after conversion to total hip arthroplasty for the non-union of an intertrochanteric fracture of the femur. Metallurgic evaluation of the etiology and mechanism revealed that the fracture was initiated by fatigue-related failure and completed by ductile failure on the posterior side of the fracture. Considering the recent trend of treating an intertrochanteric fracture with hip arthroplasty, possible stem failure should be considered, since most patients will have at least one of the known risk factors for stem fracture. PMID:27536622
Online Studies on Variation in Orthopedic Surgery: Computed Tomography in MPEG4 Versus DICOM Format.
Mellema, Jos J; Mallee, Wouter H; Guitton, Thierry G; van Dijk, C Niek; Ring, David; Doornberg, Job N
2017-10-01
The purpose of this study was to compare the observer participation and satisfaction as well as interobserver reliability between two online platforms, Science of Variation Group (SOVG) and Traumaplatform Study Collaborative, for the evaluation of complex tibial plateau fractures using computed tomography in MPEG4 and DICOM format. A total of 143 observers started with the online evaluation of 15 complex tibial plateau fractures via either the SOVG or Traumaplatform Study Collaborative websites using MPEG4 videos or a DICOM viewer, respectively. Observers were asked to indicate the absence or presence of four tibial plateau fracture characteristics and to rate their satisfaction with the evaluation as provided by the respective online platforms. The observer participation rate was significantly higher in the SOVG (MPEG4 video) group compared to that in the Traumaplatform Study Collaborative (DICOM viewer) group (75 and 43%, respectively; P < 0.001). The median observer satisfaction with the online evaluation was seven (range, 0-10) using MPEG4 video compared to six (range, 1-9) using DICOM viewer (P = 0.11). The interobserver reliability for recognition of fracture characteristics in complex tibial plateau fractures was higher for the evaluation using MPEG4 video. In conclusion, observer participation and interobserver reliability for the characterization of tibial plateau fractures was greater with MPEG4 videos than with a standard DICOM viewer, while there was no difference in observer satisfaction. Future reliability studies should account for the method of delivering images.
Evaluation and management of pediatric proximal humerus fractures.
Popkin, Charles A; Levine, William N; Ahmad, Christopher S
2015-02-01
In the pediatric population, sports participation, falls, and motor vehicle accidents can result in proximal humerus fractures. Because the proximal humeral growth plate is responsible for up to 80% of the growth of the humerus, the remodeling of these fractures in children is tremendous. Most of these injuries can be treated with a sling or hanging arm cast, although older children with decreased remodeling capacity may require surgery. Special considerations should be taken for management of proximal humerus fractures that occur in the context of Little League shoulder, lesser tuerosity avulsion fractures, fracture-dislocations, birth fractures, and fractures associated with cysts. Most pediatric patients with proximal humerus fractures have favorable results, and complications are infrequent. Copyright 2015 by the American Academy of Orthopaedic Surgeons.
Gliatis, John; Megas, Panagiotis; Panagiotopoulos, Elias; Lambiris, Elias
2005-03-01
Although the short-term results of supracondylar periprosthetic fractures treated with retrograde nailing have been satisfactory, there is always a concern about the long-term survival of the prosthesis. The aim of the study was to evaluate fracture healing and knee functional outcome with a follow-up time of at least 2 years in periprosthetic fractures of the knee treated with a supracondylar nail. Cohort study. There were 9 patients with 10 periprosthetic fractures. In 1 patient, the fracture occurred intraoperatively. In the others, the time between the total knee arthroplasty and the periprosthetic fracture ranged between 2 weeks and 7 years (average time: 2.78 years). The mean follow-up was 34.5 months (25-52 months). The Western Ontario and McMaster Universities index was used to evaluate the functional result postoperatively using the paired t test as the statistical test. Fracture union was assessed with plain x-rays. All the fractures united within 3 months. One fracture united in extreme valgus (35 degrees) and was revised to a stemmed total knee replacement. There were no infections and no prosthesis loosening. The paired t test before the fracture and after the operation demonstrated no statistically significant differences; however, there was a trend toward lower functional score postoperatively. It appears that retrograde nailing is a reliable technique to treat periprosthetic supracondylar fractures. It provides adequate stability until fracture union. The morbidity of the operation is minimal, and the complication rate is low. The midterm results in our study showed that none of the prostheses required revision. In our opinion, it is the treatment of choice for a periprosthetic fracture when the prosthesis is stable.
Effects of exercise on fracture reduction in older adults: a systematic review and meta-analysis.
Kemmler, W; Häberle, L; von Stengel, S
2013-07-01
In this meta-analysis, we evaluated the effect of exercise on fracture reduction in the elderly. Our results determined a significantly positive effect on overall fractures, whereas the possibility of a publication bias indicates the need for well-designed (multi-center) trials that generate enough power to focus on osteoporotic fractures. The preventive effect of exercise on fracture incidence has not been clearly determined yet. Thus, the purpose of this study is to evaluate the effectiveness of exercise in preventing overall and vertebral fractures in older adults by meta-analyses technique. This study followed the PRISMA recommendations for systematic reviews and meta-analyses. A systematic review of English articles between 1980 and March 2012 was performed. Terms used were: "exercise", "fractures", "bone", "falls", "osteoporosis", "BMD", "BMC", "bone turnover", while the search was limited to "clinical trial" and "humans". Controlled exercise trials that reported fracture number as endpoint or observation in subjects 45 years and older were included. Ten controlled exercise trials that reported overall fractures and three exercise trials that reported vertebral fractures met our inclusion criteria. Overall fracture number in the exercise group was 36 (n = 754) compared with 73 fractures in the CG (n = 670) (relative risk [RR] = 0.49; 95 % confidence interval [CI], 0.31-0.76). No significant heterogeneity of trial results (p = 0.28; I (2) = 17) was determined; however, there was some evidence to suggest a publication bias. The overall RR for vertebral fracture number (0.56; 95 % CI, 0.30-1.04) (EG: 19 fractures/103 subjects vs. CG: 31 fractures/102 subjects) was borderline non-significant while the heterogeneity of trial results also cannot be ruled out. Although there is evidence that exercise reduces overall and, to a lesser degree, vertebral fractures in the elderly, the possibility of publication bias weakens our result and demonstrates the imperative for large exercise studies with dedicated exercise protocols that focus on fractures as a primary endpoint.
Sagray, Bryan A; Stapleton, John J; Zgonis, Thomas
2013-01-01
Calcaneal fractures among the diabetic population are severe and complex injuries that warrant careful evaluation in an effort to carry out adequate conservative or surgical management. The complication rates associated with diabetic fracture management are increased and may include poor wound healing, deep infection, malunion, and Charcot neuroarthropathy, each of which can pose a risk for limb loss. The significant surgery-associated morbidity accompanying diabetic calcaneal fractures has led to improved methods of calcaneal fracture management. This article reviews the overall management of diabetic calcaneal fractures, complications, and outcomes. Copyright © 2013 Elsevier Inc. All rights reserved.
Carlos, Fernando; Clark, Patricia; Maciel, Humberto; Tamayo, Juan A
2009-01-01
To compare costs of diagnosis and annual treatment of osteoporosis and hip fracture between the Instituto Nacional de Rehabilitación (INR) and the protocol used by the Seguro Popular de Salud (SPSS). Direct costs gathered in a prospective study with real cases at the INR are presented, and then this data is re-analyzed with the methodology and protocol for the SPSS to estimate the costs of those cases if treated with the SPSS protocol. Important differences were found in the cost of hip fracture: the SPSS estimates ($37,363.73 MXN) almost double the INR cost ($20,286.86 MXN ). This discrepancy was caused by the different types of surgeries the INR and SPSS protocols call for (the SPSS assumes that all hip fractures will necessitate a hip replacement) and the cost of subsequent hospitalization. A prospective study at the SPSS is needed to validate these results. Important differences were found between treatment of the same osteoporosis related problems at the INR and SPSS. We recommend revising the SPSS protocol to include less costly surgical treatments.
dfnWorks: A discrete fracture network framework for modeling subsurface flow and transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hyman, Jeffrey D.; Karra, Satish; Makedonska, Nataliia
DFNWORKS is a parallelized computational suite to generate three-dimensional discrete fracture networks (DFN) and simulate flow and transport. Developed at Los Alamos National Laboratory over the past five years, it has been used to study flow and transport in fractured media at scales ranging from millimeters to kilometers. The networks are created and meshed using DFNGEN, which combines FRAM (the feature rejection algorithm for meshing) methodology to stochastically generate three-dimensional DFNs with the LaGriT meshing toolbox to create a high-quality computational mesh representation. The representation produces a conforming Delaunay triangulation suitable for high performance computing finite volume solvers in anmore » intrinsically parallel fashion. Flow through the network is simulated in dfnFlow, which utilizes the massively parallel subsurface flow and reactive transport finite volume code PFLOTRAN. A Lagrangian approach to simulating transport through the DFN is adopted within DFNTRANS to determine pathlines and solute transport through the DFN. Example applications of this suite in the areas of nuclear waste repository science, hydraulic fracturing and CO 2 sequestration are also included.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jadaan, O.M.; Powers, L.M.; Nemeth, N.N.
1995-08-01
A probabilistic design methodology which predicts the fast fracture and time-dependent failure behavior of thermomechanically loaded ceramic components is discussed using the CARES/LIFE integrated design computer program. Slow crack growth (SCG) is assumed to be the mechanism responsible for delayed failure behavior. Inert strength and dynamic fatigue data obtained from testing coupon specimens (O-ring and C-ring specimens) are initially used to calculate the fast fracture and SCG material parameters as a function of temperature using the parameter estimation techniques available with the CARES/LIFE code. Finite element analysis (FEA) is used to compute the stress distributions for the tube as amore » function of applied pressure. Knowing the stress and temperature distributions and the fast fracture and SCG material parameters, the life time for a given tube can be computed. A stress-failure probability-time to failure (SPT) diagram is subsequently constructed for these tubes. Such a diagram can be used by design engineers to estimate the time to failure at a given failure probability level for a component subjected to a given thermomechanical load.« less
NASA Technical Reports Server (NTRS)
Yost, William T.; Cramer, K. Elliott; Estes, Linda R.; Salem, Jonathan A.; Lankford, James, Jr.; Lesniak, Jon
2011-01-01
A commercially available grey-field polariscope (GFP) instrument for photoelastic examination is used to assess impact damage inflicted upon the outermost pane of the orbiter windows. Four categories of damage: hyper-velocity impacts that occur during space-flight (HVI); hypervelocity impacts artificially made at the Hypervelocity Impact Technology Facility (HIT-F); impacts made by larger objects falling onto the pane surface to simulate dropped items on the window during service/storage of vehicle (Bruises); and light scratches from dull objects designed to mimic those that might occur by dragging a dull object across the glass surface (Chatter Checks) are examined. The damage sites are cored from fused silica window carcasses, examined with the GFP and other methodologies, and broken using the ASTM Standard C1499-09 to measure the fracture strength. A correlation is made between the fracture strength and damage-site measurements including geometrical measurements and GFP measurements of photoelastic retardation (stress patterns) surrounding the damage sites. An analytical damage model to predict fracture strength from photoelastic retardation measurements is presented and compared with experimental results.
dfnWorks: A discrete fracture network framework for modeling subsurface flow and transport
Hyman, Jeffrey D.; Karra, Satish; Makedonska, Nataliia; ...
2015-11-01
DFNWORKS is a parallelized computational suite to generate three-dimensional discrete fracture networks (DFN) and simulate flow and transport. Developed at Los Alamos National Laboratory over the past five years, it has been used to study flow and transport in fractured media at scales ranging from millimeters to kilometers. The networks are created and meshed using DFNGEN, which combines FRAM (the feature rejection algorithm for meshing) methodology to stochastically generate three-dimensional DFNs with the LaGriT meshing toolbox to create a high-quality computational mesh representation. The representation produces a conforming Delaunay triangulation suitable for high performance computing finite volume solvers in anmore » intrinsically parallel fashion. Flow through the network is simulated in dfnFlow, which utilizes the massively parallel subsurface flow and reactive transport finite volume code PFLOTRAN. A Lagrangian approach to simulating transport through the DFN is adopted within DFNTRANS to determine pathlines and solute transport through the DFN. Example applications of this suite in the areas of nuclear waste repository science, hydraulic fracturing and CO 2 sequestration are also included.« less
Mydriasis during Orbital Floor Fracture Reconstruction: A Novel Diagnostic and Treatment Algorithm
Yeo, Matthew S.; Al-Mousa, Radwan; Sundar, Gangadhara; Lim, Thiam Chye
2010-01-01
Orbital floor fractures are the most commonly encountered traumatic fractures in the facial skeleton. Mydriasis that is detected during orbital floor fracture reconstruction may cause significant distress to surgeons, as it may be associated with sinister events such as visual loss. It is not an uncommon problem; previous studies have shown the incidence of mydriasis to be 2.1%. The combination of careful preoperative evaluation and planning, as well as specific intraoperative investigations when mydriasis is encountered, can be immensely valuable in allaying surgeons' anxiety during orbital floor fracture reconstruction. In this review article, the authors discuss the common causes of mydriasis and present a novel systematic approach to its diagnostic evaluation devised by our unit that has been successfully implemented since 2008. PMID:22132259
Evaluation of Oil-Industry Stimulation Practices for Engineered Geothermal Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peter Van Dyke; Leen Weijers; Ann Robertson-Tait
Geothermal energy extraction is typically achieved by use of long open-hole intervals in an attempt to connect the well with the greatest possible rock mass. This presents a problem for the development of Enhanced (Engineered) Geothermal Systems (EGS), owing to the challenge of obtaining uniform stimulation throughout the open-hole interval. Fluids are often injected in only a fraction of that interval, reducing heat transfer efficiency and increasing energy cost. Pinnacle Technologies, Inc. and GeothermEx, Inc. evaluated a variety of techniques and methods that are commonly used for hydraulic fracturing of oil and gas wells to increase and evaluate stimulation effectivenessmore » in EGS wells. Headed by Leen Weijers, formerly Manager of Technical Development at Pinnacle Technologies, Inc., the project ran from August 1, 2004 to July 31, 2006 in two one-year periods to address the following tasks and milestones: 1) Analyze stimulation results from the closest oil-field equivalents for EGS applications in the United States (e.g., the Barnett Shale in North Texas) (section 3 on page 8). Pinnacle Technologies, Inc. has collected fracture growth data from thousands of stimulations (section 3.1 on page 12). This data was further evaluated in the context of: a) Identifying techniques best suited to developing a stimulated EGS fracture network (section 3.2 on page 29), and b) quantifying the growth of the network under various conditions to develop a calibrated model for fracture network growth (section 3.3 on page 30). The developed model can be used to design optimized EGS fracture networks that maximize contact with the heat source and minimize short-circuiting (section 3.4 on page 38). 2) Evaluate methods used in oil field applications to improve fluid diversion and penetration and determine their applicability to EGS (section 4 on page 50). These methods include, but are not limited to: a) Stimulation strategies (propped fracturing versus water fracturing versus injecting fluid below fracturing gradients) (section 4.1 on page 50); b) zonal isolation methods (by use of perforated casing or packers) (section 4.2 on page 57); c) fracture re-orientation and fracture network growth techniques (e.g., by use of alternating high- and low-rate injections) (section 4.4 on page 74); and d) fluid diversion methods (by use of the SurgiFrac technique, the StimGun perforation technique, or stress shadowing). This project task is to be completed in the first project year, enabling the most promising techniques to be field tested and evaluated in the second project year. 3) Study the applicability of the methods listed above by utilizing several techniques (section 5 on page 75) including, but not limited to: a) Hydraulic Impedance Testing (HIT) to determine the location of open hydraulic fractures along a open-hole interval; b) pressure transient testing to determine reservoir permeability, pore pressure, and closure stress; and c) treatment well tilt mapping or microseismic mapping to evaluate fracture coverage. These techniques were reviewed for their potential application for EGS in the first project year (section 5.1 on page 75). This study also includes further analysis of any field testing that will be conducted in the Desert Peak area in Nevada for ORMAT Nevada, Inc. (section 5.2 on page 86), with the aim to close the loop to provide reliable calibrated fracture model results. Developed through its hydraulic fracture consulting business, techniques of Pinnacle Technologies, Inc. for stimulating and analyzing fracture growth have helped the oil and gas industry to improve hydraulic fracturing from both a technical and economic perspective. In addition to more than 30 years of experience in the development of geothermal energy for commercial power generation throughout the world, GeothermEx, Inc. brings to the project: 1) Detailed information about specific developed and potential EGS reservoirs, 2) experience with geothermal well design, completion, and testing practices, and 3) a direct connection to the Desert Peak EGS project.« less
[Distal radius fractures--retrospective quality control after conservative and operative therapy].
Sommer, C; Brendebach, L; Meier, R; Leutenegger, A
2001-01-01
The distal radius fracture is the most frequent fracture in the adult patient. The wide spectrum of different types of fracture and the coexisting factors make the choice for the optimal treatment difficult. As an interne quality control we retrospectively evaluated all patients with distal radius fractures treated in 1995 at our institution. The study included 69 adult patients with 71 distal radius fractures. After on average 26 months 58 patients with 59 fractures were clinically and radiologically evaluated. The patients were asked to give supplementary information about their follow-up treatment as well as any remaining physical difficulties and limitations in the daily life. All x-rays of the broken radius were carefully analysed and compared with the opposite side. The final results were evaluated according to the "Demerit Point System". Patients were treated with five different therapeutical methods. 76.3% of the patients showed a very good/good final result. In 56.7% of the cases secondary fracture dislocation occurred; the dislocation-rate of fractures treated with percutaneous k-wires was 93.3%! A clear correlation between secondary displacement and final results was found. A main factor for an optimal outcome is the anatomic restoration of length and axis of the distal radius as well as of joint congruency, also moderate angular deformities are well tolerated. Our collective showed an unexpected high rate of secondary displacement, especially in the k-wire group. The reasons for this unsatisfactory event are manifold: too optimistic indication, insufficient follow-up examination in the first four to six weeks, inconsequent change to a more stable fixation method in case of a secondary dislocation. The results of this retrospective evaluation had a major impact on our concept of treatment. The dorso-radial double-plate technique combined with bone graft will be more used in the future especially in younger patients. The new standardised concept is the base of a present prospective study.
Predictions of first passage times in sparse discrete fracture networks using graph-based reductions
NASA Astrophysics Data System (ADS)
Hyman, J.; Hagberg, A.; Srinivasan, G.; Mohd-Yusof, J.; Viswanathan, H. S.
2017-12-01
We present a graph-based methodology to reduce the computational cost of obtaining first passage times through sparse fracture networks. We derive graph representations of generic three-dimensional discrete fracture networks (DFNs) using the DFN topology and flow boundary conditions. Subgraphs corresponding to the union of the k shortest paths between the inflow and outflow boundaries are identified and transport on their equivalent subnetworks is compared to transport through the full network. The number of paths included in the subgraphs is based on the scaling behavior of the number of edges in the graph with the number of shortest paths. First passage times through the subnetworks are in good agreement with those obtained in the full network, both for individual realizations and in distribution. Accurate estimates of first passage times are obtained with an order of magnitude reduction of CPU time and mesh size using the proposed method.
Predictions of first passage times in sparse discrete fracture networks using graph-based reductions
NASA Astrophysics Data System (ADS)
Hyman, Jeffrey D.; Hagberg, Aric; Srinivasan, Gowri; Mohd-Yusof, Jamaludin; Viswanathan, Hari
2017-07-01
We present a graph-based methodology to reduce the computational cost of obtaining first passage times through sparse fracture networks. We derive graph representations of generic three-dimensional discrete fracture networks (DFNs) using the DFN topology and flow boundary conditions. Subgraphs corresponding to the union of the k shortest paths between the inflow and outflow boundaries are identified and transport on their equivalent subnetworks is compared to transport through the full network. The number of paths included in the subgraphs is based on the scaling behavior of the number of edges in the graph with the number of shortest paths. First passage times through the subnetworks are in good agreement with those obtained in the full network, both for individual realizations and in distribution. Accurate estimates of first passage times are obtained with an order of magnitude reduction of CPU time and mesh size using the proposed method.
Yoo, Jun Il; Ha, Yong Chan; Lim, Jae Young; Kang, Hyun; Yoon, Byung Ho; Kim, Hyunho
2017-05-01
The purpose of this study was to compare the outcomes focusing on the functional outcome and clinical results of replacement arthroplasty (AP) vs. internal fixation (IF) for the treatment of unstable intertrochanteric femoral fracture in elderly. Systematic review and meta-analysis were performed on 10 available clinical studies (2 randomized controlled trials and 8 comparative studies). Subgroup analysis was performed by type of methodological quality. Partial weight bearing time in AP group was earlier than that in IF group (SMD = -0.86; 95% CI = -0.42, 1.29; P = 0.050). The overall outcomes such as mortality, reoperation rate, and complication showed no significant diffrence between the 2 groups (AP vs. IF). Therefore, this systematic review demonstrates that AP provides superior functional outcomes especially earlier mobilization, as compared to IF in elderly patients with an unstable intertrochanteric femoral fracture. © 2017 The Korean Academy of Medical Sciences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cox, James V.; Wellman, Gerald William; Emery, John M.
2011-09-01
Fracture or tearing of ductile metals is a pervasive engineering concern, yet accurate prediction of the critical conditions of fracture remains elusive. Sandia National Laboratories has been developing and implementing several new modeling methodologies to address problems in fracture, including both new physical models and new numerical schemes. The present study provides a double-blind quantitative assessment of several computational capabilities including tearing parameters embedded in a conventional finite element code, localization elements, extended finite elements (XFEM), and peridynamics. For this assessment, each of four teams reported blind predictions for three challenge problems spanning crack initiation and crack propagation. After predictionsmore » had been reported, the predictions were compared to experimentally observed behavior. The metal alloys for these three problems were aluminum alloy 2024-T3 and precipitation hardened stainless steel PH13-8Mo H950. The predictive accuracies of the various methods are demonstrated, and the potential sources of error are discussed.« less
RECONSIDERATIONS REGARDING TIME OF FRACTURE HEALING IN PYCNODYSOSTOSIS
Rabelo, Flávio Dorcilo; do Prado, Carlos Henrique Ribeiro; Rabelo, Flávio Leão; Martins, Letícia
2015-01-01
Objective: To discuss what has been described so far in the literature regarding the time taken for fracture consolidation in pycnodysostosis. Materials and Methods: Thirteen new cases were studied, as available from the medical records and radiographic examinations, thus encompassing a total of 44 fractures in patients evaluated between November 1970 and August 2004 at the Orthopedics Hospital, Goiânia. Field research, simultaneous clinical monitoring for new fractures in two patients and retrospective evaluation of medical records were undertaken. The purpose was to determine the total number of fractures in each patient and to determine which of these were viable for this study. The patient group was composed of three women and two men of mean age 51.4 years. The tibia was the bone most affected, followed by the femur. Fractures for which the follow-up was done at another clinic were excluded. Results: Out of the 12 fractures that were considered fully suitable for the study, nine occurred in femurs (six in the left femur and three in the right femur); one in the right tibia; one in the right clavicle; and one in the left ulna. Among these 12 fractures, eight developed pseudarthrosis after an average of 29.25 months; three consolidated well after an average of 5.83 months; and one evolved with delayed consolidation in just 2 months. Conclusion: In combination with genetic and micromorphological evaluations, further studies are awaited for reconfirmation of the diagnosis of such a rare clinical entity. PMID:27026972
Cook, J L; Tomlinson, J L; Reed, A L
1999-01-01
To report a technique for fluoroscopically guided closed reduction with internal fixation of fractures of the lateral portion of the humeral condyle (FLHC) and determine the long-term results in 10 clinical cases. Prospective clinical case study. Ten dogs with 11 fractures. Fractures of the lateral portion of the humeral condyle were stabilized with transcondylar screws and Kirschner wires. Closed reduction and implant placement were achieved using intraoperative fluoroscopic guidance. After fracture repair, postoperative radiographs were evaluated for articular alignment and implant placement. Dogs were evaluated after surgery by means of lameness scores, elbow range of motion (ROM), radiographic assessment, and owner evaluation of function. Postoperative reduction was considered anatomic in 6 fractures with all other fractures having <1.5 mm of malreduction. Follow-up was available for 9 patients from 9 to 21 months after surgery. All of the fractures had healed. One minor (wire migration) and one major (implant failure) complication occurred. Mean lameness scores were 0 (n = 6), 0.5 (n = 2), and 1 (n = 1) at the time of final follow-up. No significant differences were found in follow-up ROM values between affected and unaffected elbows. All of the dogs in this study regained 90-100% of full function, based on owner assessment. Fluoroscopic guidance for closed reduction and internal fixation of FLHC in dogs is an effective technique.
Kumar, Sanjay; Khan, A N; Sonanis, S V
2016-12-01
Fracture of the distal radius is a common clinical problem. Complex fracture requires open reduction and stabilization with plating to restore anatomy. Dorsal plating has advantages of buttressing the fracture better but often complicated with tendon problems as per literature. The rate of complications however, was not compared between the low-profile dorsal and the volar plates. This was a retrospective study on seventy one patients with dorsally angulated or displaced distal radius fractures, who underwent fixation of fractures with either dorsal or volar locking plate from Jan - Nov 2012. Preoperative radiographs were classified based on Universal and Fernandez classification. Postoperative radiographs were assessed for anatomical restoration of Radial length, radial inclination and volar tilt. Tendon and nerve related complications were assessed and functional evaluation was performed on the basis of PRWE (Patient related wrist evaluation) score. Both groups were matched for their demographic profile and fracture types (p 0.033). Dorsal plating group had 89% excellent/good restoration and fair in 11%. Volar group had 96% excellent/good restoration and fair in 4%. Statistical analysis was performed with unpaired t test for radiographic parameters. Three patients had tendon related complications in dorsal plating group; two patients in volar group had nerve related complications. Functional outcome with PRWE was comparable between two groups. Results with low profile dorsal plating were comparable to volar plating. Therefore dorsal plating can be used as an alternative method when dorsal buttressing of comminuted fracture is required, especially with concomitant osteoporosis.
Kotsianos, D; Rock, C; Wirth, S; Linsenmaier, U; Brandl, R; Fischer, T; Euler, E; Mutschler, W; Pfeifer, K J; Reiser, M
2002-01-01
To analyze a prototype mobile C-arm 3D image amplifier in the detection and classification of experimental tibial condylar fractures with multiplanar reconstructions (MPR). Human knee specimens (n = 22) with tibial condylar fractures were examined with a prototype C-arm (ISO-C-3D, Siemens AG), plain films (CR) and spiral CT (CT). The motorized C-arm provides fluoroscopic images during a 190 degrees orbital rotation computing a 119 mm data cube. From these 3D data sets MP reconstructions were obtained. All images were evaluated by four independent readers for the detection and assessment of fracture lines. All fractures were classified according to the Müller AO classification. To confirm the results, the specimens were finally surgically dissected. 97 % of the tibial condylar fractures were easily seen and correctly classified according to the Müller AO classification on MP reconstruction of the ISO-C-3D. There is no significant difference between ISO-C and CT in detection and correct classification of fractures, but ISO-CD-3D is significant by better than CR. The evaluation of fractures with the ISO-C is better than with plain films alone and comparable to CT scans. The three-dimensional reconstruction of the ISO-C can provide important information which cannot be obtained from plain films. The ISO-C-3D may be useful in planning operative reconstructions and evaluating surgical results in orthopaedic surgery of the limbs.
Yamaguchi, Toru
2012-09-01
Drug treatment for osteoporosis is intended to prevent osteoporotic fractures. Physicians should assess fracture risk in patients with diabetes not only by measuring bone mineral density (BMD) but also by taking a fracture history and evaluating prior vertebral fractures using spinal X-rays when starting drug therapy. Accumulating evidence shows that patients with diabetes (DM) have a high risk for fragility fractures independent of BMD. Thus, when DM patients have osteopenia, fracture risk could become higher than non-DM counterparts, and drug therapy should be considered to prevent fragility fractures. The criteria for starting drug treatment to prevent fragility fractures in DM patients, albeit tentative, are shown in this article.
A New Numerical Simulation technology of Multistage Fracturing in Horizontal Well
NASA Astrophysics Data System (ADS)
Cheng, Ning; Kang, Kaifeng; Li, Jianming; Liu, Tao; Ding, Kun
2017-11-01
Horizontal multi-stage fracturing is recognized the effective development technology of unconventional oil resources. Geological mechanics in the numerical simulation of hydraulic fracturing technology occupies very important position, compared with the conventional numerical simulation technology, because of considering the influence of geological mechanics. New numerical simulation of hydraulic fracturing can more effectively optimize the design of fracturing and evaluate the production after fracturing. This paper studies is based on the three-dimensional stress and rock physics parameters model, using the latest fluid-solid coupling numerical simulation technology to engrave the extension process of fracture and describes the change of stress field in fracturing process, finally predict the production situation.
Chen, H; Hu, X; Yang, G; Xiang, M
2017-04-01
Minimal invasive plate osteosynthesis (MIPO) is one of the most important techniques in the treatment for humeral shaft fractures. This study was performed to evaluate the efficacy of MIPO technique for the treatment for humeral shaft fractures. We retrospectively evaluated 128 cases with humeral shaft fractures that were treated with MIPO technique from March 2005 to August 2008. All the patients were followed up by routine radiological imaging and clinical examinations. Constant-Murley score and HSS elbow joint score were used to evaluate the treatment outcome. The average duration of the surgery was 60 min (range 40-95 min) without blood transfusion. All fractures healed without infection. All cases recovered carrying angle except four cases with 10°-15° cubitus varus. After the average follow-up of 23 (13-38) months, satisfactory function was achieved according to Constant-Murley score and HSS elbow joint score. Constant-Murley score was 80 on average (range 68-91). According to HSS elbow joint score, there were 123 cases of excellent clinical outcome and five cases of effective outcome. It seems to be a safe and effective method for managing humeral shaft fractures with MIPO technique.
Pakuła, Grzegorz; Kwiatkowski, Krzysztof; Kuczmera, Piotr; Fudalej, Piotr
2015-10-01
The aim of this paper is to evaluate the results of treatment of distal femoral fractures (DFF) fixed with locking plates and analysis of factors that influence the final outcome. The patients were treated at the Department of Traumatology and Orthopedics, Military Medical Institute in Warsaw, and the Department of Orthopedics and Traumatology, 4th Military Research Hospital in Wroclaw. We analysed 39 patients with 42 fractures of the distal femur. Treatment results were analysed using the KOOS and KSS scales. Factors influencing the outcome were also investigated. Statistical analysis was performed using STATISTICA v. 10. Mean KOOS scores indicate a predominance of poor outcomes, while mean KSS scores indicate good outcomes. Treatment outcomes were significantly influenced by pain and limited mobility. 1. Subjective evaluation of treatment of fractures of the distal femur using the KOOS scale per form edworse than a clinical evaluation using the KSS. 2. Post-operative management should emphasise pain relief and restoration of the performance of the treated lower limb to ensure good mobility without crutches. 3. Despite the use of modern operational methods of fracture fixation, treatment of distal femur fractures is still a challenge.
Bilateral femoral neck stress fractures in a fire academy student.
Wright, Russell C; Salzman, Garrett A; Yacoubian, Stephan V; Yacoubian, Shahan V
2010-10-11
Unilateral femoral neck stress fractures are well documented in active patients; however, the risk of a subsequent contralateral stress fracture remains unknown in patients who continue to be active. This article describes a 24-year-old male fire academy student who sustained a left femoral neck stress fracture, followed approximately 11 months later by a right femoral neck stress fracture, both of which went on to completely displace. A review of the index radiographs of each hip from outside institutions revealed femoral neck stress fractures that went undiagnosed until they displaced. The patient was referred to our institution and underwent closed reduction and internal fixation using cannulated screws in both cases. A full endocrine evaluation was performed in the following weeks and proved unremarkable. Although it is difficult to extrapolate the results from 1 patient beyond the case studied, there is cause for concern in patients who remain active following femoral neck stress fractures. Our case highlights the significance of obtaining a complete and thorough medical history on physical examination and appropriately counseling patients regarding activity level. Until further research explores this possible relationship, physicians evaluating patients with a history of a stress fracture are encouraged to be vigilant of subsequent contralateral fractures and educate patients of this potentially avoidable injury. Copyright 2010, SLACK Incorporated.
Burge, Russel; Yang, Yicheng; Du, Fen; Lu, Tie; Huang, Qiang; Ye, Wenyu; Xu, Weihua
2015-01-01
Objectives. This study collected and evaluated data on the costs of outpatient medical care and family burden associated with osteoporosis-related fracture rehabilitation following hospital discharge in China. Materials and Methods. Data were collected using a patient questionnaire from osteoporosis-related fracture patients (N = 123) who aged 50 years and older who were discharged between January 2011 and January 2013 from 3 large hospitals in China. The survey captured posthospital discharge direct medical costs, indirect medical costs, lost work time for caregivers, and patient ambulatory status. Results. Hip fracture was the most frequent fracture site (62.6%), followed by vertebral fracture (34.2%). The mean direct medical care costs per patient totaled 3,910¥, while mean indirect medical costs totaled 743¥. Lost work time for unpaid family caregivers was 16.4 days, resulting in an average lost income of 3,233¥. The average posthospital direct medical cost, indirect medical cost, and caregiver lost income associated with a fracture patient totaled 7,886¥. Patients' ambulatory status was negatively impacted following fracture. Conclusions. Significant time and cost of care are placed on patients and caregivers during rehabilitation after discharge for osteoporotic fracture. It is important to evaluate the role and responsibility for creating the growing and inequitable burden placed on patients and caregivers following osteoporotic fracture. PMID:26221563
DOT National Transportation Integrated Search
2002-09-01
This report presents the results of an evaluation of concrete slab fracturing techniques as a means of arresting or retarding reflective cracking through asphalt overlays placed on severely distressed portland cement concrete pavement. The study invo...
Evaluation of new binders using newly developed fracture energy test.
DOT National Transportation Integrated Search
2013-07-01
This study evaluated a total of seven asphalt binders with various additives : using the newly developed binder fracture energy test. The researchers prepared and : tested PAV-aged and RTFO-plus-PAV-aged specimens. This study confirmed previous : res...
Jesse K. Kreye; J. Morgan Varner; Eric E. Knapp
2011-01-01
Mechanical mastication is a fuels treatment that converts shrubs and small trees into dense fuelbeds composed of fractured woody particles. Although compaction is thought to reduce fireline intensity, the added particle surface area due to fracturing could also influence fire behavior. We evaluated effects of particle fracturing and moisture content (ranging from 2.5...
Lopes, Hélio P; Elias, Carlos N; Vieira, Victor T L; Moreira, Edson J L; Marques, Raquel V L; de Oliveira, Julio C Machado; Debelian, Gilberto; Siqueira, José F
2010-10-01
This study evaluated the influence of electropolishing surface treatment on the number of cycles to fracture of BioRace rotary nickel-titanium endodontic instruments. BioRace size BR5C instruments with or without electropolishing surface treatment were used in an artificial curved canal under rotational speed of 300 rpm until fracture. Fractured surfaces and the helical shafts of fractured instruments were analyzed by scanning electron microscopy (SEM). Polished instruments displayed a significantly higher number of cycles to fracture when compared with nonpolished instruments (P < .001). Actually, the number of cycles to fracture of a polished BR5C instrument was 124% higher than that of a nonpolished instrument. SEM analysis showed that the fractured surface of both polished and nonpolished BR5C instruments had ductile morphologic characteristics. Evaluation of the separated fragments after cyclic fatigue testing showed the presence of microcracks near the fracture surface. Polished instruments exhibited fine cracks that assumed an irregular path (zigzag crack pattern), whereas nonpolished instruments showed cracks running along the machining grooves. Electropolishing surface treatment of BioRace endodontic instruments significantly increased the cyclic fatigue resistance. Copyright © 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Simon, P; Goldzak, M; Eschler, A; Mittlmeier, T
2015-10-01
The best treatment for intra-articular fractures of the calcaneus is still debated. The aims of this study were to determine whether intrafocal reduction of thalamic fractures is effective, to evaluate whether a locking nail is able to maintain reduction of the articular surface and to analyse the functional results of this original method. This prospective study assessed 69 fractures treated with a locking fracture nail in 63 cases and with primary subtalar fusion in six (Calcanail (®), FH). Articular congruity and global reduction of the calcaneus was assessed in all patients by computed tomography (CT) scan three months postoperatively. Functional results were evaluated according to the American Orthopaedic Foot and Ankle Society Ankle-Hindfoot Score (AOFAS-AHS) and all complications recorded. For the 63 fracture nails, the average AOFAS score was 85.9 at a mean final follow-up of 12 months. Only three secondary fusions were performed. For the six comminuted fractures requiring primary fusion, the average AOFAS score was 75.9 at the last follow-up. The posterior intrafocal approach for both reduction and locked nailing of intra-articular calcaneal fractures has been proven as an effective and reliable procedure.
Aqua splint suture technique in isolated zygomatic arch fractures.
Kim, Dong-Kyu; Kim, Seung Kyun; Lee, Jun Ho; Park, Chan Hum
2014-04-01
Various methods have been used to treat zygomatic arch fractures, but no optimal modality exists for reducing these fractures and supporting the depressed bone fragments without causing esthetic problems and discomfort for life. We developed a novel aqua splint and suture technique for stabilizing isolated zygomatic arch fractures. The objective of this study is to evaluate the effect of novel aqua splint and suture technique in isolated zygomatic arch fractures. Patients with isolated zygomatic arch fractures were treated by a single surgeon in a single center from January 2000 through December 2012. Classic Gillies approach without external fixation was performed from January 2000 to December 2003, while the novel technique has been performed since 2004. 67 consecutive patients were included (Classic method, n = 32 and Novel method, n = 35). An informed consent was obtained from all patients. The novel aqua splint and suture technique was performed by the following fashion: first, we evaluated intraoperatively the bony alignment by ultrasonography and then, reduced the depressed fracture surgically using the Gillies approach. Thereafter, to stabilize the fracture and obtain the smooth facial figure, we made an aqua splint that fit the facial contour and placed monofilament nonabsorbable sutures around the fractured zygomatic arch. The novel aqua splint and suture technique showed significantly correlated with better cosmetic and functional results. In conclusion, the aqua splint suture technique is very simple, quick, safe, and effective for stabilizing repositioned zygomatic arch fractures. The aqua splint suture technique can be a good alternative procedure in isolated zygomatic arch fractures.
2013-01-01
Background and purpose Guidelines for fracture treatment and evaluation require a valid classification. Classifications especially designed for children are available, but they might lead to reduced accuracy, considering the relative infrequency of childhood fractures in a general orthopedic department. We tested the reliability and accuracy of the Müller classification when used for long bone fractures in children. Methods We included all long bone fractures in children aged < 16 years who were treated in 2008 at the surgical ward of Stavanger University Hospital. 20 surgeons recorded 232 fractures. Datasets were generated for intra- and inter-rater analysis, as well as a reference dataset for accuracy calculations. We present proportion of agreement (PA) and kappa (K) statistics. Results For intra-rater analysis, overall agreement (κ) was 0.75 (95% CI: 0.68–0.81) and PA was 79%. For inter-rater assessment, K was 0.71 (95% CI: 0.61–0.80) and PA was 77%. Accuracy was estimated: κ = 0.72 (95% CI: 0.64–0.79) and PA = 76%. Interpretation The Müller classification (slightly adjusted for pediatric fractures) showed substantial to excellent accuracy among general orthopedic surgeons when applied to long bone fractures in children. However, separate knowledge about the child-specific fracture pattern, the maturity of the bone, and the degree of displacement must be considered when the treatment and the prognosis of the fractures are evaluated. PMID:23245225
Fractures of the talus: experience of two level 1 trauma centers.
Elgafy, H; Ebraheim, N A; Tile, M; Stephen, D; Kase, J
2000-12-01
Fifty-eight patients with 60 talar fractures were retrospectively reviewed. There were 39 men and 19 women. The age average was 32 (range, 14-74). Eighty six percent of the patients had multiple injuries. The most common mechanism of injury was a motor vehicle accident. Twenty-seven (45%) of the fractures were neck, 22 (36.7%) process, and 11 (18.3%) body. Forty-eight fractures had operative treatment and 12 had non-operative management. The average follow-up period was 30 months (range, 24-65). Thirty-two fractures (53.3%) developed subtalar arthritis. Two patients had subsequent subtalar fusion. Fifteen fractures (25%) developed ankle arthritis. None of these patients required ankle fusion. Fractures of the body of the talus were associated with the highest incidence of degenerative joint disease of both the subtalar and ankle joints. Ten fractures (16.6%) developed avascular necrosis (AVN), only one of which had subsequent slight collapse. Avascular necrosis occurred mostly after Hawkins Type 3 and 2 fractures of the talar neck. Three rating scores were used in this series to assess the outcome: the American Orthopedic Foot and Ankle Society (AOFAS) Ankle-Hindfoot Score, Maryland Foot Score, and Hawkins Evaluation Criteria. The outcome was different with every rating system. However, the outcome with AOFAS Ankle-Hindfoot Score and Hawkins Evaluation Criteria were almost equivalent. Assessment with the three rating scores showed that the process fractures had the best results followed by the neck and then the body fractures.
Laboratory Simulation of Flow through Single Fractured Granite
NASA Astrophysics Data System (ADS)
Singh, K. K.; Singh, D. N.; Ranjith, P. G.
2015-05-01
Laboratory simulation on fluid flow through fractured rock is important in addressing the seepage/fluid-in-rush related problems that occur during the execution of any civil or geological engineering projects. To understand the mechanics and transport properties of fluid through a fractured rock in detail and to quantify the sources of non-linearity in the discharge and base pressure relationship, fluid flow experiments were carried out on a cylindrical sample of granite containing a `single rough walled fracture'. These experiments were performed under varied conditions of confining pressures, σ 3 (5-40 MPa), which can simulate the condition occurring about 1,000 m below in the earth crust, with elevated base pressure, b p (up to 25 MPa) and by changing fracture roughness. The details of the methodologies involved and the observations are discussed here. The obtained results indicate that most of the data in the Q verses b p plot, fall on the straight line and the flow through the single fracture in granite obeys Darcy's law or the well-known "cubic law" even at high value of b p (=4 MPa) and σ 3 (=5 MPa) combination. The Reynolds number is quite sensitive to the b p, σ 3 and fracture roughness, and there is a critical b p, beyond which transition in flow occurs from laminar to turbulent. It is believed that such studies will be quite useful in identifying the limits of applicability of well know `cubic law', which is required for precise calculation of discharge and/or aperture in any practical issues and in further improving theoretical/numerical models associated with fluid flow through a single fracture.
Fall risk: the clinical relevance of falls and how to integrate fall risk with fracture risk.
Peeters, G; van Schoor, Natasja M; Lips, Paul
2009-12-01
In old age, 5-10% percent of all falls result in a fracture, and up to 90% of all fractures result from a fall. This article describes the link between fall risk and fracture risk in community-dwelling older persons. Which factors attribute to both the fall risk and the fracture risk? Which falls result in a fracture? Which tools are available to predict falls and fractures? Directions for the use of prediction tools in clinical practice are given. Challenges for future research include further validation of existing prediction tools and evaluation of the cost-effectiveness of treatment after screening.
Foot and Ankle Stress Fractures in Athletes.
Greaser, Michael C
2016-10-01
The incidence of stress fractures in the general athletic population is less than 1%, but may be as high as 15% in runners. Stress fractures of the foot and ankle account for almost half of bone stress injuries in athletes. These injuries occur because of repetitive submaximal stresses on the bone resulting in microfractures, which may coalesce to form complete fractures. Advanced imaging such as MRI and triple-phase bone scans is used to evaluate patients with suspected stress fracture. Low-risk stress fractures are typically treated with rest and protected weight bearing. High-stress fractures more often require surgical treatment. Copyright © 2016 Elsevier Inc. All rights reserved.
Hsieh, Paul A.; Neuman, Shlomo P.; Stiles, Gary K.; Simpson, Eugene S.
1985-01-01
The analytical solutions developed in the first paper can be used to interpret the results of cross-hole tests conducted in anisotropic porous or fractured media. In the particular case where the injection and monitoring intervals are short relative to the distance between them, the test results can be analyzed graphically. From the transient variation of hydraulic head in a given monitoring interval, one can determine the directional hydraulic diffusivity, Kd(e)/Ss, and the quantity D/Ss, by curve matching. (Here Kd(e) is directional hydraulic conductivity parallel to the unit vector, e, pointing from the injection to the monitoring interval, Ss is specific storage, and D is the determinant of the hydraulic conductivity tensor, K.) The principal values and directions of K, together with Ss, can then be evaluated by fitting an ellipsoid to the square roots of the directional diffusivities. Ideally, six directional measurements are required. In practice, a larger number of measurements is often necessary to enable fitting an ellipsoid to the data by least squares. If the computed [Kd(e)/ss]½ values fluctuate so severely that a meaningful least squares fit is not possible, one has a direct indication that the subsurface does not behave as a uniform anisotropic medium on the scale of the test. Test results from a granitic rock near Oracle in southern Arizona are presented to illustrate how the method works for fractured rocks. At the site, the Oracle granite is shown to respond as a near-uniform, anisotropic medium, the hydraulic conductivity of which is strongly controlled by the orientations of major fracture sets. The cross-hole test results are shown to be consistent with the results of more than 100 single-hole packer tests conducted at the site.
Griffiths, Frances; Mason, Victoria; Boardman, Felicity; Dennick, Katherine; Haywood, Kirstie; Achten, Juul; Parsons, Nicholas; Griffin, Xavier; Costa, Matthew
2015-01-06
To explore what patients consider important when evaluating their recovery from hip fracture and to consider how these priorities could be used in the evaluation of the quality of hip fracture services. Semistructured interviews exploring the experience of recovery from hip fracture at two time points-4 weeks and 4 months postoperative hip fixation. Two approaches to analysis: thematic analysis of data specifically related to recovery from hip fracture; summarising the participant's experience overall. 31 participants were recruited, of whom 20 were women and 12 were cognitively impaired. Mean age was 81.5 years. Interviews were provided by 19 patients, 14 carers and 8 patient/carer dyad; 10 participants were interviewed twice. Single major trauma centre in the West Midlands of the UK. Stable mobility (without falls or fear of falls) for valued activities was considered most important by participants who had some prefracture mobility and were able to articulate what they valued during recovery. Mobility was important for managing personal care, for day-to-day activities such as shopping and gardening, and for maintenance of mental well-being. Some participants used assistive mobility devices or adapted to their limitations. Others maintained their previous limited function through increased care provision. Many participants were unable to articulate what they valued as hip fracture was perceived as part of their decline with age. The fracture and problems from other health conditions were an inseparable part of one health experience. Prefracture mobility, adaptations to reduced mobility before or after fracture, and whether or not patients perceive themselves to be declining with age influence what patients consider important during recovery from hip fracture. No single patient-reported outcome measure could evaluate quality of care for all patients following hip fracture. General health-related quality of life tools may provide useful information within clinical trials. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
NASA Technical Reports Server (NTRS)
Ernst, Hugo A. (Editor); Saxena, Ashok (Editor); Mcdowell, David L. (Editor); Atluri, Satya N. (Editor); Newman, James C., Jr. (Editor); Raju, Ivatury S. (Editor); Epstein, Jonathan S. (Editor)
1992-01-01
Current research on fracture mechanics is reviewed, focusing on ductile fracture; high-temperature and time-dependent fracture; 3D problems; interface fracture; microstructural aspects of fatigue and fracture; and fracture predictions and applications. Particular attention is given to the determination and comparison of crack resistance curves from wide plates and fracture mechanics specimens; a relationship between R-curves in contained and uncontained yield; the creep crack growth behavior of titanium alloy Ti-6242; a crack growth response in three heat resistant materials at elevated temperature; a crack-surface-contact model for determining effective-stress-intensity factors; interfacial dislocations in anisotropic bimaterials; an effect of intergranular crack branching on fracture toughness evaluation; the fracture toughness behavior of exservice chromium-molybdenum steels; the application of fracture mechanics to assess the significance of proof loading; and a load ratio method for estimating crack extension.
Location of civilian ballistic femoral fracture indicates likelihood of arterial injury.
Gitajn, Leah; Perdue, Paul; Hardcastle, John; O'Toole, Robert V
2014-10-01
We evaluated whether the location of a ballistic femoral fracture helps predict the presence of arterial injury. We hypothesized that fractures located in the distal third of the femur are associated with a higher rate of arterial injury. We conducted a retrospective review of electronic medical records at our level I trauma centre and found 133 consecutive patients with femoral fractures from civilian gunshots from 2002 to 2007, 14 of whom sustained arterial injury. Fracture extent was measured with computerized viewing software and recorded with a standard technique, calculating proximal, distal, and central locations of the fracture as a function of overall length of the bone. Analyses were conducted with Student's t, Chi-squared, and Fisher's exact tests. The location of any fracture line in the distal third of the femur was associated with increased risk of arterial injury (P<0.05). The odds ratio for the presence of arterial injury when the proximal fracture line was in the distal third of the femur was 5.63 (95% confidence interval, 1.7-18.6; P<0.05) and when the distal fracture line was in the distal third of the femur was 6.72 (95% confidence interval, 1.78-25.44; P<0.05). A fracture line in the distal third of the femur after ballistic injury is six times more likely to be associated with arterial injury and warrants careful evaluation. Our data show that fracture location can help alert clinicians to possible arterial injury after ballistic femoral fracture. Copyright © 2014 Elsevier Ltd. All rights reserved.
Koksal, Ismet; Alagoz, Fatih; Celik, Haydar; Yildirim, Ali Erdem; Akin, Tezcan; Guvenc, Yahya; Karatay, Mete; Erdem, Yavuz
An underestimated evaluation of systemic organs in cases with spinal fractures might jeopardize the intervention for treatment and future complications with an increased morbidity and mortality are almost warranted. In the present study, a retrospective analysis of spinal fracture cases associated with systemic trauma was performed to assess surgical success. A retrospective analysis of patients with thoracolumbar fractures who were admitted to the emergency unit between September 2012 and September 2014 was used for the study. The cases were categorized according to age, sex, reason of trauma, associated trauma, neurological condition and treatment details and results were analysed using SPSS 14.0 for Windows. The most common reason of trauma is detected as falls in 101 cases (64.3%). Radiological evaluation of spinal fractures revealed a compression fracture in 106 cases (67.5%) and other fractures in 51 cases (32.5%). Surgical treatment for spinal fracture was performed in 60.5% of the cases and conservative approach was preferred in 39.5% cases. In non-compressive spinal fractures, an associated pathology like head trauma, lower extremity fracture or neurological deficit was found to be higher in incidence (p < 0.05). Necessity for surgical intervention was found to be more prominent in this group (p < 0.05). However, the fracture type was not found to be associated with morbidity and mortality (p < 0.05). A surgical intervention for a spinal fracture necessitating surgery should rather be performed right after stabilization of the systemic condition which might be associated with decreased morbidity and mortality.
Ioannidis, G.; Flahive, J.; Pickard, L.; Papaioannou, A.; Chapurlat, R. D.; Saag, K. G.; Silverman, S.; Anderson, F. A.; Gehlbach, S. H.; Hooven, F. H.; Boonen, S.; Compston, J. E.; Cooper, C.; Díez-Perez, A.; Greenspan, S. L.; LaCroix, A. Z.; Lindsay, R.; Netelenbos, J. C.; Pfeilschifter, J.; Rossini, M.; Roux, C.; Sambrook, P. N.; Siris, E. S.; Watts, N. B.
2016-01-01
Summary We evaluated healthcare utilization associated with treating different fracture types in over 51,000 women aged ≥55 years. Over the course of 1 year, there were five times more non-hip, non-spine fractures than hip or spine fractures, resulting in twice as many days of hospitalization and rehabilitation/nursing home care for non-hip, non-spine fractures. Purpose To evaluate the medical healthcare utilization associated with treating several types of fractures in women aged 55 years or older from various geographic regions. Methods Information from the Global Longitudinal study of Osteoporosis in Women (GLOW) was collected via self-administered patient questionnaires at baseline and year 1 (n=51,491). Self-reported clinically recognized low-trauma fractures at year 1 were classified as incident spine, hip, wrist/hand, arm/shoulder, pelvis, rib, leg, and other fractures. Healthcare utilization data were self-reported and included whether the fracture was treated at a doctor’s office/clinic or at a hospital. Patients were also asked if they had undergone surgery or been treated at a rehabilitation center or nursing home. Results Over the 1-year study period, there were 195 spine, 134 hip, and 1,654 non-hip, non-spine fractures. In the GLOW cohort, clinical vertebral fractures resulted in 617 days of hospitalization and 512 days of rehabilitation/nursing home care, while hip fractures accounted for 1,306 days of hospitalization and 1,650 days of rehabilitation/nursing home care. Of particular interest is the result that non-hip, non-spine fractures resulted in 3,805 days in hospital and 5,186 days of rehabilitation/nursing home care. Conclusions While hip and vertebral fractures are well recognized for their associated increase in health resource utilization, non-hip, non-spine fractures, by virtue of their 5-fold greater number, require significantly more healthcare resources. PMID:22525976
Teeth in the Line of Fracture: To Retain or Remove?
Samson, Jimson; John, Reena; Jayakumar, Shalini
2010-01-01
The purpose of this study was to analyze mandibular fracture site, relationship of the fracture line to the periodontium, vitality of teeth, displacement of the fracture segments and their implications, and determine whether to retain or remove the teeth in the fracture line. Fifty patients with 62 fractures were involved in this study. An electric pulp tester was used to measure the pulpal response. The degree of fracture displacement and the relationship of the fracture line to the periodontium were evaluated using panoramic radiographs. Fractures of the parasymphysis region constituted a majority of 60.87% in the gross displacement category. Four of 50 patients showed no response presurgically and minimal response postoperatively on pulp vitality testing. Patients with teeth in the fracture line showing no response on pulp vitality testing should be advised extraction to avoid further complications. PMID:22132255
NASA Astrophysics Data System (ADS)
Pappalardo, Giovanna
2018-03-01
An innovative methodological approach using infrared thermography (IRT) provides a potential contribution to the indirect assessment of hydraulic conductivity of jointed rock masses. This technique proved a suitable tool to evaluate the degree of fracturing of rock masses along with their discontinuity systems, which expedite water flow within the rock mass itself. First, based on the latest scientific outcomes on the application of IRT to the geomechanics of rock systems, rock mass surveys were carried out at different outcrops (dolostone, limestone and porphyroid) and hydraulic conductivity was empirically assessed through approaches well known in the international literature. Then, IRT campaigns were performed at each surveyed rock mass, with the purpose of evaluating the corresponding Cooling Rate Index, strictly linked to the cooling attitude of the rock. Such index was correlated with the assessed hydraulic conductivity and satisfactory regression equations were achieved. The interesting results show that hydraulic conductivity values are likely to be linked with the cooling behavior of rock masses, which, in turn, is affected by spacing, aperture and persistence of discontinuities.
Haptic computer-assisted patient-specific preoperative planning for orthopedic fractures surgery.
Kovler, I; Joskowicz, L; Weil, Y A; Khoury, A; Kronman, A; Mosheiff, R; Liebergall, M; Salavarrieta, J
2015-10-01
The aim of orthopedic trauma surgery is to restore the anatomy and function of displaced bone fragments to support osteosynthesis. For complex cases, including pelvic bone and multi-fragment femoral neck and distal radius fractures, preoperative planning with a CT scan is indicated. The planning consists of (1) fracture reduction-determining the locations and anatomical sites of origin of the fractured bone fragments and (2) fracture fixation-selecting and placing fixation screws and plates. The current bone fragment manipulation, hardware selection, and positioning processes based on 2D slices and a computer mouse are time-consuming and require a technician. We present a novel 3D haptic-based system for patient-specific preoperative planning of orthopedic fracture surgery based on CT scans. The system provides the surgeon with an interactive, intuitive, and comprehensive, planning tool that supports fracture reduction and fixation. Its unique features include: (1) two-hand haptic manipulation of 3D bone fragments and fixation hardware models; (2) 3D stereoscopic visualization and multiple viewing modes; (3) ligaments and pivot motion constraints to facilitate fracture reduction; (4) semiautomatic and automatic fracture reduction modes; and (5) interactive custom fixation plate creation to fit the bone morphology. We evaluate our system with two experimental studies: (1) accuracy and repeatability of manual fracture reduction and (2) accuracy of our automatic virtual bone fracture reduction method. The surgeons achieved a mean accuracy of less than 1 mm for the manual reduction and 1.8 mm (std [Formula: see text] 1.1 mm) for the automatic reduction. 3D haptic-based patient-specific preoperative planning of orthopedic fracture surgery from CT scans is useful and accurate and may have significant advantages for evaluating and planning complex fractures surgery.
Real-world effectiveness of osteoporosis therapies for fracture reduction in post-menopausal women.
Yusuf, Akeem A; Cummings, Steven R; Watts, Nelson B; Feudjo, Maurille Tepie; Sprafka, J Michael; Zhou, Jincheng; Guo, Haifeng; Balasubramanian, Akhila; Cooper, Cyrus
2018-03-21
Studies examining real-world effectiveness of osteoporosis therapies are beset by limitations due to confounding by indication. By evaluating longitudinal changes in fracture incidence, we demonstrated that osteoporosis therapies are effective in reducing fracture risk in real-world practice settings. Osteoporosis therapies have been shown to reduce incidence of vertebral and non-vertebral fractures in placebo-controlled randomized clinical trials. However, information on the real-world effectiveness of these therapies is limited. We examined fracture risk reduction in older, post-menopausal women treated with osteoporosis therapies. Using Medicare claims, we identified 1,278,296 women age ≥ 65 years treated with zoledronic acid, oral bisphosphonates, denosumab, teriparatide, or raloxifene. Fracture incidence rates before and after treatment initiation were described to understand patients' fracture risk profile, and fracture reduction effectiveness of each therapy was evaluated as a longitudinal change in incidence rates. Fracture incidence rates increased during the period leading up to treatment initiation and were highest in the 3-month period most proximal to treatment initiation. Fracture incidence rates following treatment initiation were significantly lower than before treatment initiation. Compared with the 12-month pre-index period, there were reductions in clinical vertebral fractures for denosumab (45%; 95% confidence interval [CI] 39-51%), zoledronic acid (50%; 95% CI 47-52%), oral bisphosphonates (24%; 95% CI 22-26%), and teriparatide (72%; 95% CI 69-75%) during the subsequent 12 months. Relative to the first 3 months after initiation, clinical vertebral fractures were reduced for denosumab (51%; 95% CI 42-59%), zoledronic acid (25%; 95% CI 17-32%), oral bisphosphonates (23%; 95% CI 20-26%), and teriparatide (64%; 95% CI 58-69%) during the subsequent 12 months. In summary, reductions in fracture incidence over time were observed in cohorts of patients treated with osteoporosis therapies.
Gunshot-induced fractures of the extremities: a review of antibiotic and debridement practices.
Sathiyakumar, Vasanth; Thakore, Rachel V; Stinner, Daniel J; Obremskey, William T; Ficke, James R; Sethi, Manish K
2015-09-01
The use of antibiotic prophylaxis and debridement is controversial when treating low- and high-velocity gunshot-induced fractures, and established treatment guidelines are currently unavailable. The purpose of this review was to evaluate the literature for the prophylactic antibiotic and debridement policies for (1) low-velocity gunshot fractures of the extremities, joints, and pelvis and (2) high-velocity gunshot fractures of the extremities. Low-velocity gunshot fractures of the extremities were subcategorized into operative and non-operative cases, whereas low-velocity gunshot fractures of the joints and pelvis were evaluated based on the presence or absence of concomitant bowel injury. In the absence of surgical necessity for fracture care such as concomitant absence of gross wound contamination, vascular injury, large soft-tissue defect, or associated compartment syndrome, the literature suggests that superficial debridement for low-velocity ballistic fractures with administration of antibiotics is a satisfactory alternative to extensive operative irrigation and debridement. In operative cases or those involving bowel injuries secondary to pelvic fractures, the literature provides support for and against extensive debridement but does suggest the use of intravenous antibiotics. For high-velocity ballistic injuries, the literature points towards the practice of extensive immediate debridement with prophylactic intravenous antibiotics. Our systematic review demonstrates weak evidence for superficial debridement of low-velocity ballistic fractures, extensive debridement for high-velocity ballistic injuries, and antibiotic use for both types of injury. Intra-articular fractures seem to warrant debridement, while pelvic fractures with bowel injury have conflicting evidence for debridement but stronger evidence for antibiotic use. Given a relatively low number of studies on this subject, we recommend that further high-quality research on the debridement and antibiotic use for gunshot-induced fractures of the extremities should be conducted before definitive recommendations and guidelines are developed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, Carlon R.; Nash, Gregory D.; Sorkhabi, Rasoul
This report summarizes the activities and key findings of the project team occurring during Phase 1 (August 2014-October 2015) of the Tularosa Basin Geothermal Play Fairway Analysis Project. The Tularosa Basin Play Fairway Analysis (PFA) project tested two distinct geothermal exploration methodologies covering the entire basin within South Central New Mexico and Far West Texas. Throughout the initial phase of the project, the underexplored basin proved to be a challenging, yet ideal test bed to evaluate effectiveness of the team’s data collection techniques as well as the effectiveness of our innovative PFA. Phase 1 of the effort employed a low-cost,more » pragmatic approach using two methods to identify potential geothermal plays within the study area and then compared and contrasted the results of each method to rank and evaluate potential plays. Both methods appear to be very effective and highly transferable to other areas.« less
Complex proximal humerus fractures: Hertel's criteria reliability to predict head necrosis.
Campochiaro, G; Rebuzzi, M; Baudi, P; Catani, F
2015-09-01
The risk of post-traumatic humeral head avascular necrosis (AVN), regardless of the treatment, has a high reported incidence. In 2004, Hertel et al. stated that the most relevant predictors of ischemia after intracapsular fracture treated with osteosynthesis are the calcar length, medial hinge integrity and some specific fracture types. Based on Hertel's model, the purpose of this study is to evaluate both its reliability and weaknesses in our series of 267 fractures, assessing how the anatomical configuration of fracture, the quality of reduction and its maintenance were predictive of osteonecrosis development, and so to suggest a treatment choice algorithm. A retrospective study, level of evidence IV, was conducted to duly assess the radiographic features of 267 fractures treated from 2004 to 2010 following Hertel's criteria treated with open reduction and internal fixation by angular stability plates and screws. The average age was 65.2 years. The average follow-up was 28.3 ± 17.0 months. The percentage of AVN, the quality and maintenance of reduction obtained during surgery were evaluated. The AVN incidence was 3.7 %. No significant correlation with gender, age and fracture type was found. At the last follow-up X-ray, only 30 % presented all Hertel's good predictors in the AVN group, 4.7 % in the non-AVN group (p < 0.05). About quality of reduction in the AVN group, it was poor in 50 %; while in the non-AVN group, it was poor in 3.4 % (p < 0.05). Four patients with AVN were symptomatic, and three needed a second surgery. Hertel's criteria are important in the surgical planning, but they are not sufficient: an accurate evaluation of the calcar area fracture in three planes is required. All fractures involving calcar area should be studied with CT.
Harsha, Madhavareddy Sri; Praffulla, Mynampati; Babu, Mandava Ramesh; Leneena, Gudugunta; Krishna, Tejavath Sai; Divya, G
2017-05-01
Cavity preparations of posterior teeth have been frequently associated with decreased fracture strength of the teeth. Choosing the correct indirect restoration and the cavity design when restoring the posterior teeth i.e., premolars was difficult as it involves aesthetic, biomechanical and anatomical considerations. To evaluate the fracture resistance and failure pattern of three different cavity designs restored with monolithic zirconia. Human maxillary premolars atraumatically extracted for orthodontic reasons were chosen. A total of 40 teeth were selected and divided into four groups (n=10). Group I-Sound teeth (control with no preparation). Group II-MOD Inlay, Group III-Partial Onlay, Group IV-Complete Onlay. Restorations were fabricated with monolithic partially sintered zirconia CAD (SAGEMAX- NexxZr). All the 30 samples were cemented using Multilink Automix (Ivoclar) and subjected to fracture resistance testing using Universal Testing Machine (UTM) (Instron) with a steel ball of 3.5 mm diameter at crosshead speed of 0.5 mm/minute. Stereomicroscope was used to evaluate the modes of failure of the fractured specimen. Fracture resistance was tested using parametric one way ANOVA test, unpaired t-test and Tukey test. Fracture patterns were assessed using non-parametric Chi-square test. Group IV (Complete Onlay) presented highest fracture resistance and showed statistical significant difference. Group II (MOD Inlay) and Group III (Partial Onlay) showed significantly lower values than the Group I (Sound teeth). However, Groups I, II and III presented no significant difference from each other. Coming to the modes of failure, Group II (MOD Inlay) and Group III (Partial Onlay) presented mixed type of failures; Group IV (Complete Onlay) demonstrated 70% Type I failures. Of the three cavity designs evaluated, Complete Onlay had shown a significant increase in the fracture resistance than the Sound teeth.
2017 GTO Project review Laboratory Evaluation of EGS Shear Stimulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauer, Stephen J.
The objectives and purpose of this research has been to produce laboratory-based experimental and numerical analyses to provide a physics-based understanding of shear stimulation phenomena (hydroshearing) and its evolution during stimulation. Water was flowed along fractures in hot and stressed fractured rock, to promote slip. The controlled laboratory experiments provide a high resolution/high quality data resource for evaluation of analysis methods developed by DOE to assess EGS “behavior” during this stimulation process. Segments of the experimental program will provide data sets for model input parameters, i.e., material properties, and other segments of the experimental program will represent small scale physicalmore » models of an EGS system, which may be modeled. The coupled lab/analysis project has been a study of the response of a fracture in hot, water-saturated fractured rock to shear stress experiencing fluid flow. Under this condition, the fracture experiences a combination of potential pore pressure changes and fracture surface cooling, resulting in slip along the fracture. The laboratory work provides a means to assess the role of “hydroshearing” on permeability enhancement in reservoir stimulation. Using the laboratory experiments and results to define boundary and input/output conditions of pore pressure, thermal stress, fracture shear deformation and fluid flow, and models were developed and simulations completed by the University of Oklahoma team. The analysis methods are ones used on field scale problems. The sophisticated numerical models developed contain parameters present in the field. The analysis results provide insight into the role of fracture slip on permeability enhancement-“hydroshear” is to be obtained. The work will provide valuable input data to evaluate stimulation models, thus helping design effective EGS.« less
NASA Astrophysics Data System (ADS)
Fekete, Tamás
2018-05-01
Structural integrity calculations play a crucial role in designing large-scale pressure vessels. Used in the electric power generation industry, these kinds of vessels undergo extensive safety analyses and certification procedures before deemed feasible for future long-term operation. The calculations are nowadays directed and supported by international standards and guides based on state-of-the-art results of applied research and technical development. However, their ability to predict a vessel's behavior under accidental circumstances after long-term operation is largely limited by the strong dependence of the analysis methodology on empirical models that are correlated to the behavior of structural materials and their changes during material aging. Recently a new scientific engineering paradigm, structural integrity has been developing that is essentially a synergistic collaboration between a number of scientific and engineering disciplines, modeling, experiments and numerics. Although the application of the structural integrity paradigm highly contributed to improving the accuracy of safety evaluations of large-scale pressure vessels, the predictive power of the analysis methodology has not yet improved significantly. This is due to the fact that already existing structural integrity calculation methodologies are based on the widespread and commonly accepted 'traditional' engineering thermal stress approach, which is essentially based on the weakly coupled model of thermomechanics and fracture mechanics. Recently, a research has been initiated in MTA EK with the aim to review and evaluate current methodologies and models applied in structural integrity calculations, including their scope of validity. The research intends to come to a better understanding of the physical problems that are inherently present in the pool of structural integrity problems of reactor pressure vessels, and to ultimately find a theoretical framework that could serve as a well-grounded theoretical foundation for a new modeling framework of structural integrity. This paper presents the first findings of the research project.
Tanaka, Ryo; Umehara, Takuya; Fujimura, Takafumi; Ozawa, Junya
2016-12-01
To develop and assess a clinical prediction rule (CPR) to predict declines in activities of daily living (ADL) at 6 months after surgery for hip fracture repair. Prospective, cohort study. From hospital to home. Patients (N=104) with hip fractures after surgery. Not applicable. ADL were assessed using the Barthel Index at 6 months after surgery. At 6 months after surgery, 86 patients (82.6%) were known to be alive, 1 patient (1.0%) had died, and 17 (16.3%) were lost to follow-up. Thirty-two patients (37.2%) did not recover their ADL at 6 months after surgery to levels before fracture. The classification and regression trees methodology was used to develop 2 models to predict a decline in ADL: (1) model 1 included age, type of fracture, and care level before fracture (sensitivity=75.0%, specificity=81.5%, positive predictive value=70.6%, positive likelihood ratio=4.050); and (2) model 2 included the degree of independence 2 weeks postsurgery for ADL chair transfer, ADL ambulation, and age (sensitivity=65.6%, specificity=87.0%, positive predictive value=75.0%, positive likelihood ratio=5.063). The areas under the receiver operating characteristic curves of both CPR models were .825 (95% confidential interval, .728-.923) and .790 (95% confidence interval, .683-.897), respectively. CPRs with moderate accuracy were developed to predict declines in ADL at 6 months after surgery for hip fracture repair. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Donado-Garzon, L. D.; Pardo, Y.
2013-12-01
Fractured media are very heterogeneous systems where occur complex physical and chemical processes to model. One of the possible approaches to conceptualize this type of massifs is the Discrete Fracture Network (DFN). Donado et al., modeled flow and transport in a granitic batholith based on this approach and found good fitting with hydraulic and tracer tests, but the computational cost was excessive due to a gigantic amount of elements to model. We present in this work a methodology based on percolation theory for reducing the number of elements and in consequence, to reduce the bandwidth of the conductance matrix and the execution time of each network. DFN poses as an excellent representation of all the set of fractures of the media, but not all the fractures of the media are part of the conductive network. Percolation theory is used to identify which nodes or fractures are not conductive, based on the occupation probability or percolation threshold. In a fractured system, connectivity determines the flow pattern in the fractured rock mass. This volume of fluid is driven through connection paths formed by the fractures, when the permeability of the rock is negligible compared to the fractures. In a population of distributed fractures, each of this that has no intersection with any connected fracture do not contribute to generate a flow field. This algorithm also permits us to erase these elements however they are water conducting and hence, refine even more the backbone of the network. We used 100 different generations of DFN that were optimized in this study using percolation theory. In each of the networks calibrate hydrodynamic parameters as hydraulic conductivity and specific storage coefficient, for each of the five families of fractures, yielding a total of 10 parameters to estimate, at each generation. Since the effects of the distribution of fault orientation changes the value of the percolation threshold, but not the universal laws of classical percolation theory, the latter is applicable to such networks. Under these conditions, percolation theory permit us to reduced the number of elements (90% in average) that form clusters of the 100 DFNs, preserving the so-called backbone. In this way the calibration runs in these networks changed from several hours to just a second obtaining much better results.
Katapally, Tarun R; Rainham, Daniel; Muhajarine, Nazeem
2016-06-27
While active living interventions focus on modifying urban design and built environment, weather variation, a phenomenon that perennially interacts with these environmental factors, is consistently underexplored. This study's objective is to develop a methodology to link weather data with existing cross-sectional accelerometry data in capturing weather variation. Saskatoon's neighbourhoods were classified into grid-pattern, fractured grid-pattern and curvilinear neighbourhoods. Thereafter, 137 Actical accelerometers were used to derive moderate to vigorous physical activity (MVPA) and sedentary behaviour (SB) data from 455 children in 25 sequential one-week cycles between April and June, 2010. This sequential deployment was necessary to overcome the difference in the ratio between the sample size and the number of accelerometers. A data linkage methodology was developed, where each accelerometry cycle was matched with localized (Saskatoon-specific) weather patterns derived from Environment Canada. Statistical analyses were conducted to depict the influence of urban design on MVPA and SB after factoring in localized weather patterns. Integration of cross-sectional accelerometry with localized weather patterns allowed the capture of weather variation during a single seasonal transition. Overall, during the transition from spring to summer in Saskatoon, MVPA increased and SB decreased during warmer days. After factoring in localized weather, a recurring observation was that children residing in fractured grid-pattern neighbourhoods accumulated significantly lower MVPA and higher SB. The proposed methodology could be utilized to link globally available cross-sectional accelerometry data with place-specific weather data to understand how built and social environmental factors interact with varying weather patterns in influencing active living.
A comprehensive study on the damage tolerance of ultrafine-grained copper
Hohenwarter, A.; Pippan, R.
2012-01-01
In this study the fracture behavior of ultrafine-grained copper was assessed by means of elasto-plastic fracture mechanics. For the synthesis of the material high pressure torsion was used. The fracture toughness was quantitatively measured by JIC as a global measure by recording the crack growth resistance curve. Additionally, the initiation toughness in terms of the crack opening displacement (CODi) was evaluated as a local fracture parameter. The results presented here exhibit a low fracture initiation toughness but simultaneously a remarkably high fracture toughness in terms of JIC. The origin of the large difference between these two parameters, peculiarities of the fracture surface and the fracture mechanical performance compared to coarse grained copper will be discussed. PMID:23471016
Value of lateral blood pool imaging in patients with suspected stress fractures of the tibia.
Mohan, Hosahalli K; Clarke, Susan E M; Centenara, Martin; Lucarelli, Amanda; Baron, Daniel; Fogelman, Ignac
2011-03-01
To critically evaluate the use of lateral blood pool imaging in athletes with lower limb pain and with a clinical suspicion of stress fracture. Two experienced nuclear medicine physicians evaluated 3-phase bone scans using 99mTc-methylene diphosphonate performed in 50 consecutive patients referred from a specialist sports injury clinic for suspected tibial stress fracture. The vascularity to the tibia as seen on the blood pool (second phase) images in the anterior/posterior views was compared with the lateral/medial view assessments. Stress fractures were presumed to be present when on the delayed images (third phase) there was a focal or fusiform area of increased tracer uptake involving the tibial cortex. Shin splints which are a recognized cause of lower limb pain in athletes mimicking stress fracture were diagnosed if increased tracer uptake was seen extending along the posterior tibial surface with no significant focal or fusiform area of uptake within this. Inter-reviewer agreement for the assessment of vascularity was also assessed using Cohen's Kappa scores. Twenty-four stress fractures in 24 patients and 66 shin splints in 40 patients were diagnosed. In 18 patients stress fracture and shin splints coexisted. In 10 patients no tibial pathology was identified. Of the 24 patients diagnosed with stress fractures, lateral/medial blood pool imaging was superior in the assessment of blood pool activity (P < 0.001) identifying increased vascularity in 21 cases compared with the anterior/posterior views positive in only 11 cases. The inter-reviewer agreement was near perfect for lateral/medial views, κ = 0.86 while very good for anterior/posterior views, κ = 0.68. In patients with suspected tibial stress fractures, lateral views of the tibia provide the optimal method for evaluation of vascularity. Prospective studies with quantitative or semi-quantitative assessment of skeletal vascularity could provide supplementary information relating to the pathophysiology of stress fractures, for example, the time scale of vascular changes after a tibial stress fracture, and potentially could have clinical relevance as to the assessment of the severity of stress fractures and their prognosis.
Technical Presentation Session 6: Monitoring slides to presentation by Denbury on tracking water movement through fracture systems in the Barnett shale. This includes information on micro-seismic well evaluation, well plans, and a fracture map.
Investigation of flaw geometry and loading effects on plane strain fracture in metallic structures
NASA Technical Reports Server (NTRS)
Hall, L. R.; Finger, R. W.
1971-01-01
The effects on fracture and flaw growth of weld-induced residual stresses, combined bending and tension stresses, and stress fields adjacent to circular holes in 2219-T87 aluminum and 5AI-2.5Sn(ELI) titanium alloys were evaluated. Static fracture tests were conducted in liquid nitrogen; fatigue tests were performed in room air, liquid nitrogen, and liquid hydrogen. Evaluation of results was based on linear elastic fracture mechanics concepts and was directed to improving existing methods of estimating minimum fracture strength and fatigue lives for pressurized structure in spacecraft and booster systems. Effects of specimen design in plane-strain fracture toughness testing were investigated. Four different specimen types were tested in room air, liquid nitrogen and liquid hydrogen environments using the aluminum and titanium alloys. Interferometry and holograph were used to measure crack-opening displacements in surface-flawed plexiglass test specimens. Comparisons were made between stress intensities calculated using displacement measurements, and approximate analytical solutions.
Mechanical evaluation of hip pads to protect against fracture of elderly femurs in falls.
Tadano, Shigeru; Nakatsuchi, Hiroki; Goto, Naoko; Fujisaki, Kazuhiro; Nakatsuchi, Yukio
2011-01-01
Hip fracture in the aged easily occurs by falls and may cause these persons to become bedridden. Hip pads are effective in protecting hip fracture as they directly deflect and absorb the impact forces by falls. It is necessary for the material and the structure of hip pads to be designed to realize both high impact absorption and compliance (comfort during wearing). In this report, an impact testing system was developed to test the impact absorbing performance of hip pad with air cushions designed by the research group. The impact absorbing performance was evaluated by the impact load, collision time, and maximum load. To confirm the effectiveness in protecting against hip fracture, an impact force was applied to the greater trochanter of the human femur and the degree of fracture was measured by X-ray examination. As a result, the hip pad with air cushions had a high impact absorbing performance and was sufficiently effective to protect against hip fracture.
Goal-directed ultrasound in the detection of long-bone fractures
NASA Technical Reports Server (NTRS)
Marshburn, Thomas H.; Legome, Eric; Sargsyan, Ashot; Li, Shannon Melton James; Noble, Vicki A.; Dulchavsky, Scott A.; Sims, Carrie; Robinson, David
2004-01-01
BACKGROUND: New portable ultrasound (US) systems are capable of detecting fractures in the remote setting. However, the accuracy of ultrasound by physicians with minimal ultrasound training is unknown. METHODS: After one hour of standardized training, physicians with minimal US experience clinically evaluated patients presenting with pain and trauma to the upper arm or leg. The investigators then performed a long-bone US evaluation, recording their impression of fracture presence or absence. Results of the examination were compared with routine plain or computer aided radiography (CT). RESULTS: 58 patients were examined. The sensitivity and specificity of US were 92.9% and 83.3%, and of the physical examination were 78.6% and 90.0%, respectively. US provided improved sensitivity with less specificity compared with physical examination in the detection of fractures in long bones. CONCLUSION: Ultrasound scans by minimally trained clinicians may be used to rule out a long-bone fracture in patients with a medium to low probability of fracture.
Ultrasound Fracture Diagnosis in Space
NASA Technical Reports Server (NTRS)
Dulchavsky, Scott A.; Amponsah, David; Sargsyan, Ashot E.; Garcia, Kathleen M.; Hamilton, Douglas R.; vanHolsbeeck, Marnix
2010-01-01
Introduction: This ground-based investigation accumulated high-level clinical evidence on the sensitivity and specificity of point of care ultrasound performed by expert and novice users for the rapid diagnosis of musculoskeletal (MSK) injuries. We developed preliminary educational methodologies to provide just-in-time training of novice users by creating multi-media training tools and imaging procedures for non expert operators and evaluated the sensitivity and specificity of non-expert performed musculoskeletal ultrasound to diagnose acute injuries in a Level 1 Trauma Center. Methods: Patients with potential MSK injuries were identified in the emergency room. A focused MSK ultrasound was performed by expert operators and compared to standard radiographs. A repeat examination was performed by non-expert operators who received a short, just-in-time multimedia education aid. The sensitivity and specificity of the expert and novice ultrasound examinations were compared to gold standard radiography. Results: Over 800 patients were enrolled in this study. The sensitivity and specificity of expert performed ultrasound exceeded 98% for MSK injuries. Novice operators achieved 97% sensitivity and 99% specificity for targeted examinations with the greatest error in fractures involving the hand and foot. Conclusion: Point of care ultrasound is a sensitive and specific diagnostic test for MSK injury when performed by experts and just-in-time trained novice operators.
Vitamin D and Osteoporosis in HIV/HCV Coinfected Patients: A Literature Review.
Di Carlo, Paola; Siracusa, Lucia; Mazzola, Giovanni; Colletti, Piero; Soresi, Maurizio; Giannitrapani, Lydia; Li Vecchi, Valentina; Montalto, Giuseppe
2015-01-01
Vitamin D deficiency further increases the risk of osteoporosis in HIV-positive patients coinfected with hepatitis C virus (HCV); however, it is still unclear whether HCV-related increased fracture risk is a function of the severity of liver disease. The aim of this review was to identify studies on associative vitamin D deficiency patterns in high-risk populations such as HIV/HCV coinfected patients. We did this by searching MEDLINE and EMBASE databases, from inception to August 2014, and included bibliographies. The final 12 articles selected are homogeneous in terms of age but heterogeneous in terms of sample size, participant recruitment, and data source. Most of the HIV/HCV coinfected patients have less than adequate levels of vitamin D. After reviewing the selected articles, we concluded that vitamin D deficiency should be regarded as a continuum and that the lower limit of the ideal range is debatable. We found that vitamin D deficiency might influence liver disease progression in HIV/HCV coinfected patients. Methodological issues in evaluating vitamin D supplementation as a relatively inexpensive therapeutic option are discussed, as well as the need for future research, above all on its role in reducing the risk of HCV-related fracture by modifying liver fibrosis progression.
The usefulness of lean six sigma to the development of a clinical pathway for hip fractures.
Niemeijer, Gerard C; Flikweert, Elvira; Trip, Albert; Does, Ronald J M M; Ahaus, Kees T B; Boot, Anja F; Wendt, Klaus W
2013-10-01
The objective of this study was to show the usefulness of lean six sigma (LSS) for the development of a multidisciplinary clinical pathway. A single centre, both retrospective and prospective, non-randomized controlled study design was used to identify the variables of a prolonged length of stay (LOS) for hip fractures in the elderly and to measure the effect of the process improvements--with the aim of improving efficiency of care and reducing the LOS. The project identified several variables influencing LOS, and interventions were designed to improve the process of care. Significant results were achieved by reducing both the average LOS by 4.2 days (-31%) and the average duration of surgery by 57 minutes (-36%). The average LOS of patients discharged to a nursing home reduced by 4.4 days. The findings of this study show a successful application of LSS methodology within the development of a clinical pathway. Further research is needed to explore the effect of the use of LSS methodology at clinical outcome and quality of life. © 2012 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Zhang, Kai; Ma, Xiaopeng; Li, Yanlai; Wu, Haiyang; Cui, Chenyu; Zhang, Xiaoming; Zhang, Hao; Yao, Jun
Hydraulic fracturing is an important measure for the development of tight reservoirs. In order to describe the distribution of hydraulic fractures, micro-seismic diagnostic was introduced into petroleum fields. Micro-seismic events may reveal important information about static characteristics of hydraulic fracturing. However, this method is limited to reflect the distribution area of the hydraulic fractures and fails to provide specific parameters. Therefore, micro-seismic technology is integrated with history matching to predict the hydraulic fracture parameters in this paper. Micro-seismic source location is used to describe the basic shape of hydraulic fractures. After that, secondary modeling is considered to calibrate the parameters information of hydraulic fractures by using DFM (discrete fracture model) and history matching method. In consideration of fractal feature of hydraulic fracture, fractal fracture network model is established to evaluate this method in numerical experiment. The results clearly show the effectiveness of the proposed approach to estimate the parameters of hydraulic fractures.
Jankar, Ajit S; Kale, Yogesh; Kangane, Suresh; Ambekar, Anand; Sinha, Manish; Chaware, Sachin
2014-02-01
Ceramic veneer fracture has occurred mainly at the incisal edge of the veneer because of greater stress. This study compares and evaluates the fracture resistance ceramic veneers with three different incisal preparations. 15 human permanent maxillary central incisor extracted were selected which were divided into three groups of 5 each having a different Incial design Preparation. Group 1: No Incisal reduction with facio- incisal bevel, Group 2 : 1 mm incisal reduction with butt joint, Group 3 : 1 mm incisal reduction with 1 mm height of Palatal chamfer. It was found that Group III had greater fracture resistance as compared to Group I and Group II. Group I had least fracture resistance as compared to Group II and III. Group II had greater fracture resistance as compared to Group I but less than Group III. Ceramic veneer with 1mm incisal reduction with 1mm height of palatal chamfer showed highest fracture resistance as compared to 1mm incisal reduction with butt joint and no incisal reduction with facial-incisal bevel, in order to achieve better esthetic and functional results. The palatal chamfer margin results in preservation of some peripheral enamel layer, which eliminates the micro leakage at the palatal margin-restoration interface and also effectively counteracting shear stress. This design provides a definite seat for cementation. How to cite the article: Jankar AS, Kale Y, Kangane S, Ambekar A, Sinha M, Chaware S. Comparative evaluation of fracture resistance of Ceramic Veneer with three different incisal design preparations - An In-vitro Study. J Int Oral Health 2014;6(1):48-54.
Acetabular fractures: anatomic and clinical considerations.
Lawrence, David A; Menn, Kirsten; Baumgaertner, Michael; Haims, Andrew H
2013-09-01
Classifying acetabular fractures can be an intimidating topic. However, it is helpful to remember that there are only three basic types of acetabular fractures: column fractures, transverse fractures, and wall fractures. Within this framework, acetabular fractures are classified into two broad categories: elementary or associated fractures. We will review the osseous anatomy of the pelvis and provide systematic approaches for reviewing both radiographs and CT scans to effectively evaluate the acetabulum. Although acetabular fracture classification may seem intimidating, the descriptions and distinctions discussed and shown in this article hopefully make the topic simpler to understand. Approach the task by recalling that there are only three basic types of acetabular fractures: column fractures (coronally oriented on CT images), transverse fractures (sagittally oriented on CT images), and wall fractures (obliquely oriented on CT images). We have provided systematic approaches for reviewing both conventional radiographs and CT scans to effectively assess the acetabulum. The clinical implications of the different fracture patterns have also been reviewed because it is critically important to include pertinent information for our clinical colleagues to provide the most efficient and timely clinical care.
NASA Astrophysics Data System (ADS)
Kim, Kunhwi; Rutqvist, Jonny; Nakagawa, Seiji; Birkholzer, Jens
2017-11-01
This paper presents coupled hydro-mechanical modeling of hydraulic fracturing processes in complex fractured media using a discrete fracture network (DFN) approach. The individual physical processes in the fracture propagation are represented by separate program modules: the TOUGH2 code for multiphase flow and mass transport based on the finite volume approach; and the rigid-body-spring network (RBSN) model for mechanical and fracture-damage behavior, which are coupled with each other. Fractures are modeled as discrete features, of which the hydrological properties are evaluated from the fracture deformation and aperture change. The verification of the TOUGH-RBSN code is performed against a 2D analytical model for single hydraulic fracture propagation. Subsequently, modeling capabilities for hydraulic fracturing are demonstrated through simulations of laboratory experiments conducted on rock-analogue (soda-lime glass) samples containing a designed network of pre-existing fractures. Sensitivity analyses are also conducted by changing the modeling parameters, such as viscosity of injected fluid, strength of pre-existing fractures, and confining stress conditions. The hydraulic fracturing characteristics attributed to the modeling parameters are investigated through comparisons of the simulation results.
Modeling and simulation of Charpy impact test of maraging steel 300 using Abaqus
NASA Astrophysics Data System (ADS)
Madhusudhan, D.; Chand, Suresh; Ganesh, S.; Saibhargavi, U.
2018-03-01
This work emphasizes the modeling and simulation of Charpy impact test to evaluate fracture energy at different pendulum velocities of armor maraging steel 300 using ABAQUS. To evaluate the fracture energy, V-notch specimen is fractured using the Johnson and Cook Damage model. The Charpy impact tests are of great importance related to fracture properties of steels. The objective of this work is to present absorbed energy variation at pendulum velocities of 5 m/sec, 6 m/sec, 7 m/sec and 9 m/sec in addition to stress distribution at v-notch. Finite Element Method of modeling for three dimensional specimens is used for simulation in commercial software of ABAQUS.
Rotor Systems Research Aircraft /RSRA/ canopy explosive severance/fracture
NASA Technical Reports Server (NTRS)
Bement, L. J.
1976-01-01
The Rotor Systems Research Aircraft (RSRA), a compound rotor/fixed-wing aircraft, incorporates an emergency escape system for the three crew members; to achieve unobstructed egress, the overhead acrylic canopies of each crew member will be explosively severed and fractured into predictably small, low-mass pieces. A canopy explosive severance/fracture system was developed under this investigation that included the following system design considerations: selection of canopy and explosive materials, determining the acrylic's explosive severance and fracture characteristics, evaluating the effects of installation variables and temperature, determining the most effective explosive patterns, conducting full-scale, flat and double-curvature canopy tests, and evaluating the effects of back-blast of the explosive into the cockpit.
Computational Simulation of Composite Structural Fatigue
NASA Technical Reports Server (NTRS)
Minnetyan, Levon; Chamis, Christos C. (Technical Monitor)
2005-01-01
Progressive damage and fracture of composite structures subjected to monotonically increasing static, tension-tension cyclic, pressurization, and flexural cyclic loading are evaluated via computational simulation. Constituent material properties, stress and strain limits are scaled up to the structure level to evaluate the overall damage and fracture propagation for composites. Damage initiation, growth, accumulation, and propagation to fracture due to monotonically increasing static and cyclic loads are included in the simulations. Results show the number of cycles to failure at different temperatures and the damage progression sequence during different degradation stages. A procedure is outlined for use of computational simulation data in the assessment of damage tolerance, determination of sensitive parameters affecting fracture, and interpretation of results with insight for design decisions.
Computational Simulation of Composite Structural Fatigue
NASA Technical Reports Server (NTRS)
Minnetyan, Levon
2004-01-01
Progressive damage and fracture of composite structures subjected to monotonically increasing static, tension-tension cyclic, pressurization, and flexural cyclic loading are evaluated via computational simulation. Constituent material properties, stress and strain limits are scaled up to the structure level to evaluate the overall damage and fracture propagation for composites. Damage initiation, growth, accumulation, and propagation to fracture due to monotonically increasing static and cyclic loads are included in the simulations. Results show the number of cycles to failure at different temperatures and the damage progression sequence during different degradation stages. A procedure is outlined for use of computational simulation data in the assessment of damage tolerance, determination of sensitive parameters affecting fracture, and interpretation of results with insight for design decisions.
Review of fatigue and fracture research at NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Everett, Richard A., Jr.
1988-01-01
Most dynamic components in helicopters are designed with a safe-life constant-amplitude testing approach that has not changed in many years. In contrast, the fatigue methodology in other industries has advanced significantly in the last two decades. Recent research at the NASA Langley Research Center and the U.S. Army Aerostructures Directorate at Langley are reviewed relative to fatigue and fracture design methodology for metallic components. Most of the Langley research was directed towards the damage tolerance design approach, but some work was done that is applicable to the safe-life approach. In the areas of testing, damage tolerance concepts are concentrating on the small-crack effect in crack growth and measurement of crack opening stresses. Tests were conducted to determine the effects of a machining scratch on the fatigue life of a high strength steel. In the area of analysis, work was concentrated on developing a crack closure model that will predict fatigue life under spectrum loading for several different metal alloys including a high strength steel that is often used in the dynamic components of helicopters. Work is also continuing in developing a three-dimensional, finite-element stress analysis for cracked and uncracked isotropic and anisotropic structures. A numerical technique for solving simultaneous equations called the multigrid method is being pursued to enhance the solution schemes in both the finite-element analysis and the boundary element analysis. Finally, a fracture mechanics project involving an elastic-plastic finite element analysis of J-resistance curve is also being pursued.
Skin-Stiffener Debond Prediction Based on Computational Fracture Analysis
NASA Technical Reports Server (NTRS)
Krueger, Ronald; Minguet, Pierre J.; Gates, Tom (Technical Monitor)
2005-01-01
Interlaminar fracture mechanics has proven useful for characterizing the onset of delaminations in composites and has been used with limited success primarily to investigate onset in fracture toughness specimens and laboratory size coupon type specimens. Future acceptance of the methodology by industry and certification authorities however, requires the successful demonstration of the methodology on structural level. For this purpose a panel was selected that is reinforced with stringers. Shear loading causes the panel to buckle and the resulting out-of-plane deformations initiate skin/stringer separation at the location of an embedded defect. For finite element analysis, the panel and surrounding load fixture were modeled with shell elements. A small section of the stringer foot and the panel in the vicinity of the embedded defect were modeled with a local 3D solid model. Across the width of the stringer foot the mixed-mode strain energy release rates were calculated using the virtual crack closure technique. A failure index was calculated by correlating the results with the mixed-mode failure criterion of the graphite/epoxy material. For small applied loads the failure index is well below one across the entire width. With increasing load the failure index approaches one first near the edge of the stringer foot from which delamination is expected to grow. With increasing delamination lengths the buckling pattern of the panel changes and the failure index increases which suggests that rapid delamination growth from the initial defect is to be expected.
Robust human body model injury prediction in simulated side impact crashes.
Golman, Adam J; Danelson, Kerry A; Stitzel, Joel D
2016-01-01
This study developed a parametric methodology to robustly predict occupant injuries sustained in real-world crashes using a finite element (FE) human body model (HBM). One hundred and twenty near-side impact motor vehicle crashes were simulated over a range of parameters using a Toyota RAV4 (bullet vehicle), Ford Taurus (struck vehicle) FE models and a validated human body model (HBM) Total HUman Model for Safety (THUMS). Three bullet vehicle crash parameters (speed, location and angle) and two occupant parameters (seat position and age) were varied using a Latin hypercube design of Experiments. Four injury metrics (head injury criterion, half deflection, thoracic trauma index and pelvic force) were used to calculate injury risk. Rib fracture prediction and lung strain metrics were also analysed. As hypothesized, bullet speed had the greatest effect on each injury measure. Injury risk was reduced when bullet location was further from the B-pillar or when the bullet angle was more oblique. Age had strong correlation to rib fractures frequency and lung strain severity. The injuries from a real-world crash were predicted using two different methods by (1) subsampling the injury predictors from the 12 best crush profile matching simulations and (2) using regression models. Both injury prediction methods successfully predicted the case occupant's low risk for pelvic injury, high risk for thoracic injury, rib fractures and high lung strains with tight confidence intervals. This parametric methodology was successfully used to explore crash parameter interactions and to robustly predict real-world injuries.
Ulivieri, Fabio M; Piodi, Luca P; Grossi, Enzo; Rinaudo, Luca; Messina, Carmelo; Tassi, Anna P; Filopanti, Marcello; Tirelli, Anna; Sardanelli, Francesco
2018-01-01
The consolidated way of diagnosing and treating osteoporosis in order to prevent fragility fractures has recently been questioned by some papers, which complained of overdiagnosis and consequent overtreatment of this pathology with underestimating other causes of the fragility fractures, like falls. A new clinical approach is proposed for identifying the subgroup of patients prone to fragility fractures. This retrospective observational study was conducted from January to June 2015 at the Nuclear Medicine-Bone Metabolic Unit of the of the Fondazione IRCCS Ca' Granda, Milan, Italy. An Italian population of 125 consecutive postmenopausal women was investigated for bone quantity and bone quality. Patients with neurological diseases regarding balance and vestibular dysfunction, sarcopenia, past or current history of diseases and use of drugs known to affect bone metabolism were excluded. Dual X-ray absorptiometry was used to assess bone quantity (bone mineral density) and bone quality (trabecular bone score and bone strain). Biochemical markers of bone turnover (type I collagen carboxy-terminal telopeptide, alkaline phosphatase, vitamin D) have been measured. Morphometric fractures have been searched by spine radiography. Balance was evaluated by the Romberg test. The data were evaluated with the neural network analysis using the Auto Contractive Map algorithm. The resulting semantic map shows the Minimal Spanning Tree and the Maximally Regular Graph of the interrelations between bone status parameters, balance conditions and fractures of the studied population. A low fracture risk seems to be related to a low carboxy-terminal cross-linking telopeptide of type I collagen level, whereas a positive Romberg test, together with compromised bone trabecular microarchitecture DXA parameters, appears to be strictly connected with fragility fractures. A simple assessment of the risk of fragility fracture is proposed in order to identify those frail patients at risk for osteoporotic fractures, who may have the best benefit from a pharmacological and physiotherapeutic approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwards, D.A.
1990-05-01
This study relates geophysical and geological data to the detection of fractures and their influence on the movement of fluid in the Atco Member of the Austin Chalk in central Texas. In areas of production, the Austin Chalk has very low matrix permeabilities, with hydrocarbons confined to zones of near-vertical, stress-aligned fractures. Horizontal drilling has been estimated to increase per well reserves in the Austin Chalk from 75,000 bbl and 82 mmcf to 500,000 bbl and 500 mmcf. The objective of deviated wells in the Austin Chalk is to intersect at right angles as many of the hydrocarbon-prone fracture zonesmore » as possible. Therefore, the detection and description of these fracture zones prior to drilling is critical. Fractures have been proven to influence the velocities of shear waves. To assess shear wave velocities in different directions, several shear wave refraction and three-component vertical seismic profiles have been acquired. These data provided a measure of the fracture-induced shear wave anisotropy and an indication of the dominant fracture trend. Other data, including azimuthal resistivity surveys, cores, and aerial photographs, provided additional control for evaluating the fractures. The final phase of the study compares the geophysical and geological interpretations to the result of shallow groundwater pumping tests. The pumping tests have been conducted in vertical boreholes and were designed to evaluate the influence of the fracturing on fluid movement.« less
Pediatric temporal bone fractures: A case series.
Waissbluth, S; Ywakim, R; Al Qassabi, B; Torabi, B; Carpineta, L; Manoukian, J; Nguyen, L H P
2016-05-01
Temporal bone fractures are relatively common findings in patients with head trauma. The aim of this study was to evaluate the characteristics of temporal bone fractures in the pediatric population. Retrospective case series. Tertiary care pediatric academic medical center. The medical records of patients aged 18 years or less diagnosed with a temporal bone fracture at the Montreal Children's Hospital from January 2000 to August 2014 were reviewed. Patient demographics, clinical presentation, mechanism of injury and complications were analyzed. Imaging studies and audiograms were also evaluated. Out of 323 patients presenting to the emergency department with a skull fracture, 61 presented with a temporal bone fracture. Of these, 5 presented with bilateral fractures. 47 patients had associated fractures, and 3 patients deceased. We observed a male to female ratio of 2.8:1, and the average age was 9.5 years. Motor vehicle accidents were the primary mechanism of injury (53%), followed by falls (21%) and bicycle or skateboard accidents (10%). The most common presenting signs included hemotympanum, decreased or loss of consciousness, facial swelling and nausea and vomiting. 8 patients had otic involvement on computed tomography scans, and 30 patients had documented hearing loss near the time of accident with a majority being conductive hearing loss. 17 patients underwent surgical management of intracranial pressure. In children, fractures of the temporal bone were most often caused by motor vehicle accidents and falls. It is common for these patients to have associated fractures. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Diagnosis and Management of Common Foot Fractures.
Bica, David; Sprouse, Ryan A; Armen, Joseph
2016-02-01
Foot fractures are among the most common foot injuries evaluated by primary care physicians. They most often involve the metatarsals and toes. Patients typically present with varying signs and symptoms, the most common being pain and trouble with ambulation. Diagnosis requires radiographic evaluation, although emerging evidence demonstrates that ultrasonography may be just as accurate. Management is determined by the location of the fracture and its effect on balance and weight bearing. Metatarsal shaft fractures are initially treated with a posterior splint and avoidance of weight-bearing activities; subsequent treatment consists of a short leg walking cast or boot for four to six weeks. Proximal fifth metatarsal fractures have different treatments depending on the location of the fracture. A fifth metatarsal tuberosity avulsion fracture can be treated acutely with a compressive dressing, then the patient can be transitioned to a short leg walking boot for two weeks, with progressive mobility as tolerated after initial immobilization. A Jones fracture has a higher risk of nonunion and requires at least six to eight weeks in a short leg non-weight-bearing cast; healing time can be as long as 10 to 12 weeks. Great toe fractures are treated with a short leg walking boot or cast with toe plate for two to three weeks, then a rigid-sole shoe for an additional three to four weeks. Lesser toe fractures can be treated with buddy taping and a rigid-sole shoe for four to six weeks.
Non-destructive evaluation of laboratory scale hydraulic fracturing using acoustic emission
NASA Astrophysics Data System (ADS)
Hampton, Jesse Clay
The primary objective of this research is to develop techniques to characterize hydraulic fractures and fracturing processes using acoustic emission monitoring based on laboratory scale hydraulic fracturing experiments. Individual microcrack AE source characterization is performed to understand the failure mechanisms associated with small failures along pre-existing discontinuities and grain boundaries. Individual microcrack analysis methods include moment tensor inversion techniques to elucidate the mode of failure, crack slip and crack normal direction vectors, and relative volumetric deformation of an individual microcrack. Differentiation between individual microcrack analysis and AE cloud based techniques is studied in efforts to refine discrete fracture network (DFN) creation and regional damage quantification of densely fractured media. Regional damage estimations from combinations of individual microcrack analyses and AE cloud density plotting are used to investigate the usefulness of weighting cloud based AE analysis techniques with microcrack source data. Two granite types were used in several sample configurations including multi-block systems. Laboratory hydraulic fracturing was performed with sample sizes ranging from 15 x 15 x 25 cm3 to 30 x 30 x 25 cm 3 in both unconfined and true-triaxially confined stress states using different types of materials. Hydraulic fracture testing in rock block systems containing a large natural fracture was investigated in terms of AE response throughout fracture interactions. Investigations of differing scale analyses showed the usefulness of individual microcrack characterization as well as DFN and cloud based techniques. Individual microcrack characterization weighting cloud based techniques correlated well with post-test damage evaluations.
Lower limb fractures associated with multiligament knee injury
Stagnaro, Joaquin; Yacuzzi, Carlos; Barla, Jorge; Zicaro, Juan Pablo; Costa-Paz, Matias
2017-01-01
Objectives: Knee ligament injuries related to lower limb fractures are common and frequently unnoticed. Management of acute polytrauma is usually focused in the bone lesion and a complete physical examination might be really difficult. The purpose of this study was to analyze a series of patients who suffered multiligament knee injuries associated to a lower limb fracture. Hypothesis: The use of magnetic resonance imaging (MRI) during the initial management can lead to an early diagnosis of ligament injuries. Methods: A retrospective search was conducted from our hospital´s electronic database. We evaluated the initial diagnosis and acute surgical treatment, and management and functional outcomes after the ligament lesion was diagnosed. Results: Seven patients who presented a knee multiligament injury associated with a lower limb fracture were evaluated. The average age was 29 years. Primary diagnoses were: four tibial plateau fractures; one open fracture-dislocation of the knee; one open leg fracture and ipsilateral hip dislocation; and one bifocal femur fracture. Only three patients had an MRI during the initial management of trauma. Six out of seven patients had to be operated on for the multiligament knee injury. The period between the resolution of the fracture and the ligamentous repair was from 3 to 24 months. Conclusion: Poor functional outcomes are reported in patients with multiligament knee injuries associated with high-energy lower limb fractures. We consider an MRI during the initial management can lead to better outcomes. A trauma surgeon working alongside an arthroscopic surgeon might optimize the results for these lesions.
What is the effect of the weather on trauma workload? A systematic review of the literature.
Ali, A M; Willett, K
2015-01-01
Hospital admission rates for a number of conditions have been linked to variations in the weather. It is well established that trauma workload displays significant seasonal variation. A reliable predictive model might enable targeting of high-risk groups for intervention and planning of hospital staff levels. To our knowledge there have been no systematic reviews of the literature on the relationship between weather and trauma workload, and predictive models have thus far been informed by the results of single studies. We conducted a systematic review of bibliographic databases and reference lists up to June 2014 to identify primary research papers assessing the effect of specified weather conditions including temperature, rainfall, snow, fog, hail, humidity and wind speed on trauma workload, defined as admission to hospital, fracture or a Road Traffic Accident (RTA) resulting in a seriously injured casualty or fatality. 11,083 papers were found through electronic and reference search. 83 full papers were assessed for eligibility. 28 met inclusion criteria and were included in the final review; 6 of these related to the effect of the weather on trauma admissions, one to ambulance call out for trauma, 13 to fracture rate and 8 to RTAs. Increased temperature is positively correlated with trauma admissions. The rate of distal radius fractures is more sensitive to adverse weather than the rate of hip fractures. Paediatric trauma, both in respect of trauma admissions and fracture rate, is more sensitive to the weather than adult trauma. Adverse weather influences both RTA frequency and severity, but the nature of the relationship is dependent upon the timecourse of the weather event and the population studied. Important methodological differences between studies limit the value of the existing literature in building consensus for a generalisable predictive model. Weather conditions may have a substantial effect on trauma workload independent of the effects of seasonal variation; the population studied and timecourse of weather events appear critical in determining this relationship. Methodological differences between studies limit the validity of conclusions drawn from analysis of the literature, and we identify a number of areas that future research might address. Copyright © 2015 Elsevier Ltd. All rights reserved.
Svatoš, F; Bartoška, R; Skála-Rosenbaum, J; Douša, P; Pacovský, V; Krbec, M
2011-01-01
In a prospective study of patients with calcaneal fractures treated by open reduction from an extensile lateral approach and LCP osteosynthesis, the authors evaluated the basic epidemiological data, mechanism of injury, type of fracture, essential data on surgery, days of hospital stay and the number of complications. In the period from September 1, 2006 to July 31, 2010, a total of 230 patients with 243 calcaneal fractures were treated. The fractures were classified as either open or closed and according to the Essex-Lopresti system. Of the total number of patients, 135 (55.6 % of all fractures) were indicated for conservative treatment and 108 (44.4% of all fractures) for surgical intervention. Indications for surgery based on the generally accepted criteria enabled us to select 77 patients with 82 fractures (33.7 % of all fractures) for treatment by the method of open reduction and LCP osteosynthesis. These patients constituted the group evaluated here. The other patients were treated using other techniques (21 fractures, i.e., 8.6 % of all fractures, by the Stehlík-Štulík transfixation method and further five [2.1 %] by screw osteosynthesis). Six surgeons were involved in the treatment of this group. For the diagnosis of fractures, plain radiographs in lateral and axial projection and axial and coronal CT images were used. All fractures were treated after subsidence of oedema by the method of open reduction and LCP fixation from an extensile lateral approach, with the use of a tourniquet. The follow-up period for the evaluation of functional outcome and bone union was 3 to 48 months. Fifty patients were followed up for over one year. The group evaluated comprised 58 men (75.3 %) with 63 fractures (76.8 %) and 19 women (24.7 %) with 19 fractures (23.2 %). The average age of the group was 42 years, with 41 years (range, 22-61 years) in men and 47 years (range, 30-70 years) in women. The most frequent cause of injury was a fall from a height below 1 metre and this was recorded in 38 patients (49.4 %); 18 patients (24.3 %) had a fall from a height below 3 metres. Eight fractures were caused by a fall from the window, seven calcaneal fractures, as part of .polytrauma, were sustained in road accidents (9.1 %) and six calcaneal bones were injured due to ankle sprain in walking on a flat surface (7.8 %). Bilateral fractures occurred in five (6.5 %) patients, the right and left heel bones were injured in 31 (40.3 %) and 41 (53.2 %) fracture cases, respectively. An open fracture was recorded on three occasions (3.7 %). Of the 82 evaluated fractures, 23 were type IIa fractures (28 %) and 59 were type IIb fractures (72 %) according to the Essex-Lopresti classification system. The average injury-surgery interval was 10 days (range, 1 - 23 days). The average operative time was 77 minutes (range, 45-175 min) and the average duration of tourniquet application was 61 minutes (range, 20-130 min). The average length of hospital stay was 18 days (range, 7-61 days). In 15 patients (18.3 % of osteosynthesis cases) wound healing was delayed. Deep wound infection developed in three cases (3.7 %); these required revision surgery which involved implant removal before bone union in two cases and healing of the wound after revision without implant removal in one case. A necrotic lesion in one case (1.2 %) was treated by muscle flap transfer. Complications which varied in type and severity were recorded in 22 % of the patients. The Rowe score was used to evaluate functional outcomes, which were excellent in 44 %, good in 46 %, satisfactory in 4 % and poor in 6 % of the surgically treated patients.. Only about one-third of the patients with calcaneal fractures were indicated for open LCP osteosynthesis. This is in agreement with the strict indication criteria established by the foreign authors with Professors Zwipp and Sanders at the head. It appears that this fracture chiefly occurs in the population of young active men (Kočiš reported only men and no woman with this fracture in his study). The authors focus on exact radiographic diagnosis including CT examination, as recommended by Stehlík and Štulík in their book. They recommend to use the Essex-Lopresti system for primary classification and, because of the frequency of LCP osteosynthesis procedures performed, also recommend to carry out this treatment in specialised institutions. The rate of serious complications in this study was relatively low and in accordance with the findings of Zwipp, Zeman and others. The analysis of basic data on the group of patients with calcaneal fractures treated by open reduction and LCP fixation showed the following: chiefly young active men sustained this fracture; calcaneal fracture was usually due to a fall or jump from a level not too high; X-ray examination (lateral and axial projection) was sufficient to make a diagnosis; for a decision to operate it was useful to complete the diagnosis by CT examination; the prerequisite for minimising post-operative complications was strict adherence to the established indication criteria, surgery only after oedema had subsided and use of the correct surgical technique. The number of complications and their nature did not differ from the data reported by other authors.
Zoledronic Acid for the Treatment and Prevention of Primary and Secondary Osteoporosis
Rizzoli, René
2010-01-01
There is increasing interest in therapies that can be administered less frequently and/or avoid gastrointestinal irritation. The efficacy of once-yearly zoledronic acid (5 mg) in the treatment and prevention of osteoporosis has been evaluated in different patient populations. In the 3-year HORIZON-Pivotal Fracture Trial in postmenopausal women with osteoporosis, zoledronic acid reduced the risk of vertebral and hip fracture by 70% and 41%, respectively, versus placebo. The efficacy of zoledronic acid in preventing subsequent fracture in patients with a hip fracture was evaluated in the HORIZON-Recurrent Fracture Trial. New vertebral and nonvertebral fractures were significantly reduced by treatment initiated within 90 days of incident hip fracture, without evidence of delayed fracture healing. Data from a 1-year study show that a single zoledronic acid 5-mg infusion is superior to oral risedronate 5 mg/day for treatment and prevention of glucocorticoid-induced osteoporosis. Increases in bone mineral density and decreases in bone turnover markers were significantly greater with zoledronic acid than with risedronate. Two different treatment regimens of zoledronic acid were found to be more effective than placebo for prevention of bone loss in postmenopausal women and reducing markers of bone turnover after 2 years. In conclusion, zoledronic acid 5 mg once-yearly infusion has demonstrated marked efficacy in the treatment and prevention of primary and secondary osteoporosis, with a combination of fracture risk reduction and prevention of bone loss at key sites. It is the only agent shown to reduce the incidence of fracture and mortality in patients with a previous low-trauma hip fracture. PMID:22870433
Li, Ying; Donohue, Kyna S; Robbins, Christopher B; Pennock, Andrew T; Ellis, Henry B; Nepple, Jeffrey J; Pandya, Nirav; Spence, David D; Willimon, Samuel Clifton; Heyworth, Benton E
2017-09-01
There is a recent trend toward increased surgical treatment of displaced midshaft clavicle fractures in adolescents. The primary purpose of this study was to evaluate the intrarater and interrater reliability of clavicle fracture classification systems and measurements of displacement, shortening, and angulation in adolescents. The secondary purpose was to compare 2 different measurement methods for fracture shortening. This study was performed by a multicenter study group conducting a prospective, comparative, observational cohort study of adolescent clavicle fractures. Eight raters evaluated 24 deidentified anteroposterior clavicle radiographs selected from patients 10-18 years of age with midshaft clavicle fractures. Two clavicle fracture classification systems were used, and 2 measurements for shortening, 1 measurement for superior-inferior displacement, and 2 measurements for fracture angulation were performed. A minimum of 2 weeks after the first round, the process was repeated. Intraclass correlation coefficients were calculated. Good to excellent intrarater and interrater agreement was achieved for the descriptive classification system of fracture displacement, direction of angulation, presence of comminution, and all continuous variables, including both measurements of shortening, superior-inferior displacement, and degrees of angulation. Moderate agreement was achieved for the Arbeitsgemeinschaft für Osteosynthesefragen classification system overall. Mean shortening by 2 different methods were significantly different from each other (P < 0.0001). Most radiographic measurements performed by investigators in a multicenter, prospective cohort study of adolescent clavicle fractures demonstrated good-to-excellent intrarater and interrater reliability. Future consensus on the most accurate and clinically appropriate measurement method for fracture shortening is critical.
X-ray fractography on fatigue fractured surface of austenitic stainless steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yajima, Zenjiro; Tokuyama, Hideki; Kibayashi, Yasuo
1995-12-31
X-ray diffraction observation of the material internal structure beneath fracture surfaces provide fracture analysis with useful information to investigate the conditions and mechanisms of fracture. X-ray fractography is a generic name given to this technique. In the present study, X-ray fractography was applied to fatigue fracture surfaces of austenitic stainless steel (AISI 304) which consisted of solution treatment. The fatigue tests were carried out on compact tension (CT) specimens. The plastic strain on the fracture surface was estimated from measuring the line broadening of X-ray diffraction profiles. The line broadening of X-ray diffraction profiles was measured on and beneath fatiguemore » fracture surfaces. The depth of the plastic zone left on fracture surfaces was evaluated from the line broadening. The results are discussed on the basis of fracture mechanics.« less
Evaluation of fracture toughness of human dentin using elastic-plastic fracture mechanics.
Yan, Jiahau; Taskonak, Burak; Platt, Jeffrey A; Mecholsky, John J
2008-01-01
Dentin, the mineralized tissue forming the bulk of the tooth, lies between the enamel and the pulp chamber. It is a rich source of inspiration for designing novel synthetic materials due to its unique microstructure. Most of the previous studies investigating the fracture toughness of dentin have used linear-elastic fracture mechanics (LEFM) that ignores plastic deformation and could underestimate the toughness of dentin. With the presence of collagen (approximately 30% by volume) aiding the toughening mechanisms in dentin, we hypothesize that there is a significant difference between the fracture toughness estimated using LEFM (Kc) and elastic-plastic fracture mechanics (EPFM) (KJc). Single-edge notched beam specimens with in-plane (n=10) and anti-plane (n=10) parallel fractures were prepared following ASTM standard E1820 and tested in three-point flexure. KJc of the in-plane parallel and anti-plane parallel specimens were found to be 3.1 and 3.4 MPa m 1/2 and Kc were 2.4 and 2.5 MPa m 1/2, respectively. The fracture toughness estimated based on KJc is significantly greater than that estimated based on Kc (32.5% on average; p<0.001). In addition, KJc of anti-plane parallel specimens is significantly greater than that of in-plane parallel specimens. We suggest that, in order to critically evaluate the fracture toughness of human dentin, EPFM should be employed.
Effects of water saturation on P-wave propagation in fractured coals: An experimental perspective
NASA Astrophysics Data System (ADS)
Liu, Jie; Liu, Dameng; Cai, Yidong; Gan, Quan; Yao, Yanbin
2017-09-01
Internal structure of coalbed methane (CBM) reservoirs can be evaluated through ultrasonic measurements. The compressional wave that propagates in a fractured coal reservoir may indicate the internal coal structure and fluid characteristics. The P-wave propagation was proposed to study the relations between petrophysical parameters (including water saturation, fractures, porosity and permeability) of coals and the P-wave velocity (Vp), using a KON-NM-4A ultrasonic velocity meter. In this study, the relations between Vps and water saturations were established: Type I is mainly controlled by capillary of developed seepage pores. The controlling factors on Type II and Type III are internal homogeneity of pores/fractures and developed micro-fractures, respectively. Micro-fractures density linearly correlates with the Vp due to the fracture volume and dispersion of P-wave; and micro-fractures of types C and D have a priority in Vp. For dry coals, no clear relation exists between porosity, permeability and the Vp. However, as for water-saturated coals, the correlation coefficients of porosity, permeability and Vp are slightly improved. The Vp of saturated coals could be predicted with the equation of Vp-saturated = 1.4952Vp-dry-26.742 m/s. The relation between petrophysical parameters of coals and Vp under various water saturations can be used to evaluate the internal structure in fractured coals. Therefore, these relations have significant implications for coalbed methane (CBM) exploration.
Park, Jung-Min; Jang, Yong-Wook; Kim, Seong-Gon; Park, Young-Wook; Rotaru, Horatiu; Baciut, Grigore; Hurubeanu, Lucia
2010-12-01
The objective of this study was a comparison of the prognosis between an extracorporeal reduction technique and closed treatment of a mandibular condyle fracture. The relationship between condylar resorption and several clinical variables was also studied. Seventy-one patients who had a mandibular condyle fracture took part in this study. Thirty-five patients (female: 7, male: 28, age: 30.46 ± 14.27 years) were treated by extracorporeal reduction, and 36 patients (male: 24, female: 12, age: 24.28 ± 9.99 years) were treated using a closed treatment. The presence of complications such as condylar resorption, malocclusion, nerve disorder, and disc displacement was evaluated with panoramic radiographs and clinical examinations 12 months after treatment. The relationships between the complications and other clinical variables were evaluated statistically. The anatomic site and fracture type were closely related to condyle resorption in the bivariate analysis. Condylar head fractures showed significantly higher condyle resorption than condylar neck fractures (P = .023). A complex or compound fracture showed significantly higher condyle resorption compared with a simple fracture (P = .006). Patients who had a complex/compound fracture were 34.366 times more likely to have condyle resorption compared with those who had a simple fracture (P = .002). The patient's age and treatment method were also significant predictors for condyle resorption. Fracture type was the strongest predictor of condylar resorption. Because treatment method and patient age were also related to the prognosis, the optimal treatment for mandibular condylar head and/or neck fractures should be individualized according to the patient's condition. Copyright © 2010 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Imai, T; Tanaka, S; Kawakami, K; Miyazaki, T; Hagino, H; Shiraki, M
2017-06-01
We assessed the health state utility value (HSUV) reductions associated with vertebral fractures using data collected in the Japanese Osteoporosis Intervention Trial-03 (JOINT-03). Our analysis revealed that assessment of HSUVs after morphometric vertebral fracture is important to capture the burden of vertebral fractures. Evaluation of the HSUV after fracture is important to calculate the quality-adjusted life years (QALYs) of osteoporosis patients, which is essential information in the context of health economic evaluation. JOINT-03 study patients were aged ≥65 years and treated with risedronate and vitamin K 2 or risedronate alone. Radiographic information and patient-reported outcomes measured by EQ-5D and a visual analogue scale (VAS) were assessed at registration and followed up after 6, 12, and 24 months. According to differences among the dates of these assessments and the radiographic information, we classified the follow-up HSUVs calculated based on EQ-5D results into before or after fracture categories regardless of clinical symptoms. Among 2922 follow-up HSUVs, 201 HSUVs were categorized as HSUVs that were observed after incident vertebral fractures on X-ray films. The median time from the detection of an incident vertebral fracture until the EQ-5D assessment was 53 days (25th percentile, 0 day; 75th percentile, 357 days). The impact of incident vertebral fractures on HSUVs was quantified as -0.03. Among the five health profile domains on the EQ-5D, an incident vertebral fracture had significant effects on anxiety/depression, self-care, and usual activities. The results suggest that incident morphometric vertebral fracture was associated with impairment of the HSUV for patients with osteoporosis not only immediately but also several months after the fracture.
Usala, Rachel L; Fernandez, Stephen J; Mete, Mihriye; Cowen, Laura; Shara, Nawar M; Barsony, Julianna; Verbalis, Joseph G
2015-08-01
The significance of studies suggesting an increased risk of bone fragility fractures with hyponatremia through mechanisms of induced bone loss and increased falls has not been demonstrated in large patient populations with different types of hyponatremia. This matched case-control study evaluated the effect of hyponatremia on osteoporosis and fragility fractures in a patient population of more than 2.9 million. Osteoporosis (n = 30 517) and fragility fracture (n = 46 256) cases from the MedStar Health database were matched on age, sex, race, and patient record length with controls without osteoporosis (n = 30 517) and without fragility fractures (n = 46 256), respectively. Cases without matched controls or serum sodium (Na(+)) data or with Na(+) with a same-day blood glucose greater than 200 mg/dL were excluded. Incidence of diagnosis of osteoporosis and fragility fractures of the upper or lower extremity, pelvis, and vertebrae were the outcome measures. Multivariate conditional logistic regression models demonstrated that hyponatremia was associated with osteoporosis and/or fragility fractures, including chronic [osteoporosis: odds ratio (OR) 3.97, 95% confidence interval (CI) 3.59-4.39; fracture: OR 4.61, 95% CI 4.15-5.11], recent (osteoporosis: OR 3.06, 95% CI 2.81-3.33; fracture: OR 3.05, 95% CI 2.83-3.29), and combined chronic and recent hyponatremia (osteoporosis: OR 12.09, 95% CI 9.34-15.66; fracture: OR 11.21, 95% CI 8.81-14.26). Odds of osteoporosis or fragility fracture increased incrementally with categorical decrease in median serum Na(+). These analyses support the hypothesis that hyponatremia is a risk factor for osteoporosis and fracture. Additional studies are required to evaluate whether correction of hyponatremia will improve patient outcomes.
Comparison of surgical techniques of 111 medial malleolar fractures classified by fracture geometry.
Ebraheim, Nabil A; Ludwig, Todd; Weston, John T; Carroll, Trevor; Liu, Jiayong
2014-05-01
Evaluation of operative techniques used for medial malleolar fractures by classifying fracture geometry has not been well documented. One hundred eleven patients with medial malleolar fractures (transverse n = 63, oblique n = 29, vertical n = 7, comminuted n = 12) were included in this study. Seventy-two patients had complicating comorbidities. All patients were treated with buttress plate, lag screw, tension band, or K-wire fixation. Treatment outcomes were evaluated on the basis of radiological outcome (union, malunion, delayed union, or nonunion), need for operative revision, presence of postoperative complications, and AOFAS Ankle-Hindfoot score. For transverse fractures, tension band fixation showed the highest rate of union (79%), highest average AOFAS score (86), lowest revision rate (5%), and lowest complication rate (16%). For oblique fractures, lag screws showed the highest rate of union (71%), highest average AOFAS score (80), lowest revision rate (19%), and lowest complication rate (33%) of the commonly used fixation techniques. For vertical fractures, buttress plating was used in every case but 1, achieving union (whether normal or delayed) in all cases with an average AOFAS score of 84, no revisions, and a 17% complication rate. Comminuted fractures had relatively poor outcomes regardless of fixation method. The results of this study suggest that both tension bands and lag screws result in similar rates of union for transverse fractures of the medial malleolus, but that tension band constructs are associated with less need for revision surgery and fewer complications. In addition, our data demonstrate that oblique fractures were most effectively treated with lag screws and that vertical fractures attained superior outcomes with buttress plating. Level III, retrospective comparative series.
Fracture history in osteoporosis: risk factors and its effect on quality of life.
Kuru, Pınar; Akyüz, Gülseren; Cerşit, Hülya Peynirci; Çelenlioğlu, Alp Eren; Cumhur, Ahmet; Biricik, Şefikcan; Kozan, Seda; Gökşen, Aylin; Özdemir, Mikail; Lüleci, Emel
2014-12-01
Fractures are one of the main outcomes in osteoporosis and have an important effect on the general health status. The purpose of this study was to determine the effect of major fracture history on quality of life. We also investigated the important risk factors and their effect on bone mineral density and fracture history. Cross-sectional study. We recruited 105 patients who were admitted to an osteoporosis outpatient clinic. Medical history, family history, calcium intake, physical activity level and biochemical tests were evaluated. Lumbar spine and femur neck bone mineral density were measured. The Qualeffo-41 questionnaire was also used for evaluating quality of life. The average age of the 105 patients included in the study was 56.04±13.73 and 89% of them were post-menopausal women. The average body mass index was 26.84±5.99, which means that the women were overweight. Also, 48.5% of the patients were diagnosed with osteoporosis and 51.5% of them were diagnosed as low bone density. A total of 34 patients had a fracture history with minor trauma and some of the patients had more than one fracture (12 ankle and foot, 10 forearm, 9 vertebral, 4 hand, 3 hip, 2 rib, 1 tibial). When the patients with and without fracture history were compared, the mean Qualeffo-41 score in patients with fracture was 43.85±2.57 and in the non-fracture group was 36.27±2.01. Forearm, ankle and foot fractures can be commonly seen in osteoporosis patients with fracture history. We suggest that it is important to recognise osteoporosis prior to first fracture and disease-specific quality of life assessment should be done.
Evaluation of hip fracture risk factors in older adults in the Lebanese population.
Bawab, Wafa; Saad, Mohamad; Hajjar, Nour; Rachidi, Samar; Al Hajje, Amal; Awada, Sanaa; Salameh, Pascale
2014-01-01
Hip fractures are serious fall injuries that often result in long-term functional impairment and increased mortality. As the population ages, the number of hip fractures is likely to increase worldwide. The main objective of this pilot study was to evaluate the risk factors of hip fracture among the older adults in the Lebanese population. This pilot epidemiological, prospective, and case-control study was performed in 6 hospitals in Great Beirut and South Lebanon. Subjects who met the inclusion criteria filled out a questionnaire consisting on the socio- demographic characteristics, health status, drugs intake and cigarette smoking. Overall, 195 subjects were recruited, with 65 cases of hip fracture and 130 controls all aged over 50 yr. Females represented around two third of the studied population. The logistic regression, using adjusted odds ratio (ORa), showed a significant relationship between hip fracture and chronic diseases (ORa=3.02; 95% CI: 1.63, 6.66), antihypertensive drugs intake (ORa=2.72; 95% CI: 1.56, 6.42), fall (ORa=2.79; 95% CI: 1.82, 7.06) previous fracture (ORa=3.80; 95% CI: 1.57, 9.23) and family history of fracture (ORa=4.82; 95% CI: (2.29, 10.86). Besides, smoking increased the risk of hip fracture (ORa=2.55; 95% CI: (1.96, 5.80). Having a bow was associated with the highest risk for hip fracture (ORa=5.18; 95% CI: 2.30, 12.24). Elderly people in Lebanon are exposed to many risk factors contributing to hip fracture. Our finding has implication in geriatric health improvement by preventing hip fracture in the Lebanese population.
Penile Fracture: Our Experience in a Tertiary Care Hospital.
Mahapatra, Rajkumar Singha; Kundu, Anup Kumar; Pal, Dilip Kumar
2015-08-01
Penile fracture is rare, but it is a urological emergency that always requires immediate attention. Moreover, penile fracture has been reported more frequently in recent years. It may have devastating physical, functional, and psychological consequences if not properly managed in time. The objective of this study was to highlight the causes, clinical presentation, and outcomes of cases of penile fracture. This was a prospective observational study extending from November 2012 to November 2014. Each patient underwent a thorough clinical evaluation and received proper treatment. Twenty patients with penile fracture, aged 19 to 56 years (mean, 28 years) were evaluated in this study. Vaginal intercourse was the most common mechanism of injury. Most of the patients (95%) were diagnosed clinically with a proper history and clinical examination. Nineteen patients were treated surgically. The patients underwent six months of follow-up, and were evaluated with local examinations, questionnaires, and colour Doppler ultrasonography as necessary. Although penile fracture is an under-reported urological emergency, its incidence is increasing. It is usually diagnosed based on a clinical examination, but ultrasonography can be very helpful in diagnosis. Especially in cases where treatment is delayed, surgery is preferable to conservative management, because it is associated with better outcomes and fewer long-term complications.
Penile Fracture: Our Experience in a Tertiary Care Hospital
Mahapatra, Rajkumar Singha; Kundu, Anup Kumar
2015-01-01
Purpose Penile fracture is rare, but it is a urological emergency that always requires immediate attention. Moreover, penile fracture has been reported more frequently in recent years. It may have devastating physical, functional, and psychological consequences if not properly managed in time. Materials and Methods The objective of this study was to highlight the causes, clinical presentation, and outcomes of cases of penile fracture. This was a prospective observational study extending from November 2012 to November 2014. Each patient underwent a thorough clinical evaluation and received proper treatment. Results Twenty patients with penile fracture, aged 19 to 56 years (mean, 28 years) were evaluated in this study. Vaginal intercourse was the most common mechanism of injury. Most of the patients (95%) were diagnosed clinically with a proper history and clinical examination. Nineteen patients were treated surgically. The patients underwent six months of follow-up, and were evaluated with local examinations, questionnaires, and colour Doppler ultrasonography as necessary. Conclusions Although penile fracture is an under-reported urological emergency, its incidence is increasing. It is usually diagnosed based on a clinical examination, but ultrasonography can be very helpful in diagnosis. Especially in cases where treatment is delayed, surgery is preferable to conservative management, because it is associated with better outcomes and fewer long-term complications. PMID:26331126
Mui, Leonora W; Engelsohn, Eliyahu; Umans, Hilary
2007-02-01
(1) To determine the accuracy of computed tomography (CT) in the evaluation of ligament tear and avulsion in patients with tibial plateau fracture. (2) To evaluate whether the presence or severity of fracture gap and articular depression can predict meniscal injury. A fellowship-trained musculoskeletal radiologist retrospectively reviewed knee CT and MRI examinations of 41 consecutive patients presenting to a level 1 trauma center with tibial plateau fractures. Fracture gap, articular depression, ligament tear and footprint avulsions were assessed on CT examinations. The MRI studies were examined for osseous and soft tissue injuries, including meniscal tear, meniscal displacement, ligament tear, and ligament avulsion. CT demonstrated torn ligaments with 80% sensitivity and 98% specificity. Only 2% of ligaments deemed intact on careful CT evaluation had partial or complete tears on MRI. Although the degree of fracture gap and articular depression was significantly greater in patients with meniscal injury compared with those without meniscal injury, ROC analysis demonstrated no clear threshold for gap or depression that yielded a combination of high sensitivity and specificity. In the acute setting, CT offers high sensitivity and specificity for depicting osseous avulsions, as well as high negative predictive value for excluding ligament injury. However, MRI remains necessary for the preoperative detection of meniscal injury.
de Waure, Chiara; Specchia, Maria Lucia; Cadeddu, Chiara; Capizzi, Silvio; Capri, Stefano; Di Pietro, Maria Luisa; Veneziano, Maria Assunta; Gualano, Maria Rosaria; Kheiraoui, Flavia; La Torre, Giuseppe; Nicolotti, Nicola; Sferrazza, Antonella; Ricciardi, Walter
2014-01-01
The Health Technology Assessment (HTA) approach was applied to denosumab in the prevention of osteoporotic fractures in postmenopausal women. Epidemiological, clinical, technical, economic, organizational, and ethical aspects were considered. Medical electronic databases were accessed to evaluate osteoporosis epidemiology and therapeutical approaches. A budget impact and a cost-effectiveness analyses were performed to assess economic implications. Clinical benefits and patient needs were considered with respect to organizational and ethical evaluation. In Italy around four millions women are affected by osteoporosis and have a higher risk for fractures with 70,000 women being hospitalized every year. Bisphosphonates and strontium ranelate are recommended as first line treatment for the prevention of osteoporotic fractures. Denosumab is effective in reducing vertebral, nonvertebral, and hip/femoral fractures with an advantage of being administered subcutaneously every six months. The budget impact analysis estimated a reduction in costs for the National Health Service with the introduction of denosumab. Furthermore, the economic analysis demonstrated that denosumab is cost-effective in comparison to oral bisphosphonates and strontium ranelate. Denosumab can be administered in outpatients by involving General Practitioners in the management. Ethical evaluation is positive because of its efficacy and compliance. Denosumab could add value in the prevention of osteoporotic fractures.
Sørensen, Vibeke Neergaard; Wojtek, Piotr; Pedersen, Dorthe S; Andersen, Stig
2015-08-01
Osteoporosis is a debilitating condition with rising frequency of fragility fractures with advancing age. Life expectancy increases in developing societies with the emergence of osteoporosis. There is a need for a simple protocol to diagnose fractures that merit treatment for osteoporosis. Evaluation of all consecutive lateral chest radiographs performed at the National Hospital in the capital city in Greenland over a 3-month period for vertebral body heights at the anterior, middle and posterior regions. Use of anti-osteoporotic drug was evaluated from records of dispensed drugs from Greenland National Pharmacy. 1869 vertebrae were evaluated on radiographs from 203 subjects. On average 9.2 vertebrae (range 5-13) qualified for evaluation in each individual. Median (range) age was 55 (30-82) years. Any vertebral deformity above 25 (20) % was seen in 28.6 (50.2) %. More than one fracture was seen in 10.3 (27.1) %. Fractures occurred in 18.5 (36.9) % of patients from the General Medicine Clinic and in 33.3 (56.5) % of inpatients (p = 0.029). The occurrence of vertebral fractures increased with age (p < 0.001) and hosting more than one vertebral fracture was markedly more frequent after the age of 60 years [OR, 95 % CI 9.6, 3.1-30 (5.7, 2.9-11); p < 0.001] after correction for gender in logistic regressions. The National Pharmacy handed out anti-osteoporotic drugs equal to the treatment of 36 individuals. Vertebral fractures that merit treatment can be readily diagnosed from lateral chest radiographs taken in routine clinical work-up. They are common in Greenland as demonstrated by this simple protocol to improve diagnosis and treatment of osteoporosis in a developing society.
Maffezzoni, Filippo; Maddalo, Michele; Frara, Stefano; Mezzone, Monica; Zorza, Ivan; Baruffaldi, Fabio; Doglietto, Francesco; Mazziotti, Gherardo; Maroldi, Roberto; Giustina, Andrea
2016-11-01
Vertebral fractures are an emerging complication of acromegaly but their prediction is still difficult occurring even in patients with normal bone mineral density. In this study we evaluated the ability of high-resolution cone-beam computed tomography to provide information on skeletal abnormalities associated with vertebral fractures in acromegaly. 40 patients (24 females, 16 males; median age 57 years, range 25-72) and 21 healthy volunteers (10 females, 11 males; median age 60 years, range: 25-68) were evaluated for trabecular (bone volume/trabecular volume ratio, mean trabecular separation, and mean trabecular thickness) and cortical (thickness and porosity) parameters at distal radius using a high-resolution cone-beam computed tomography system. All acromegaly patients were evaluated for morphometric vertebral fractures and for mineral bone density by dual-energy X-ray absorptiometry at lumbar spine, total hip, femoral neck, and distal radius. Acromegaly patients with vertebral fractures (15 cases) had significantly (p < 0.05) lower bone volume/trabecular volume ratio, greater mean trabecular separation, and higher cortical porosity vs. nonfractured patients, without statistically significant differences in mean trabecular thickness and cortical thickness. Fractured and nonfractured acromegaly patients did not have significant differences in bone density at either skeletal site. Patients with acromegaly showed lower bone volume/trabecular volume ratio (p = 0.003) and mean trabecular thickness (p < 0.001) and greater mean trabecular separation (p = 0.02) as compared to control subjects, without significant differences in cortical thickness and porosity. This study shows for the first time that abnormalities of bone microstructure are associated with radiological vertebral fractures in acromegaly. High-resolution cone-beam computed tomography at the distal radius may be useful to evaluate and predict the effects of acromegaly on bone microstructure.
Sjögren, G; Lantto, R; Granberg, A; Sundström, B O; Tillberg, A
1999-01-01
The purpose of this study was to retrospectively evaluate leucite reinforced-glass ceramic crowns (Empress) placed in patients who regularly visit general practices. One hundred ten Empress crowns, placed in 29 patients who visited a general practice on a regular basis, were evaluated according to the California Dental Association's (CDA) quality evaluation system. In addition, the occurrence of plaque and certain gingival conditions was evaluated. All crowns were luted with resin composite cement. The mean and median years in function for the crowns were 3.6 and 3.9 years, respectively. Based on the CDA criteria, 92% of the 110 crowns were rated "satisfactory." Eighty-six percent were given the CDA rating "excellent" for margin integrity. Fracture was registered in 6% of the 110 crowns. Of the remaining 103 crowns, the CDA rating excellent was given to 74% for anatomic form, 86% for color, and 90% for surface. No significant differences (P > 0.05) were observed regarding fracture rates between anterior and posterior crowns. With regard to the occurrence of plaque and bleeding on probing, no significant differences (P > 0.05) were observed between the Empress crowns and the controls. Most of the fractured crowns had been placed on molars or premolars. Although the difference between anterior and posterior teeth was not statistically significant with respect to the fracture rates obtained, the number of fractured crowns placed on posterior teeth exceeded that of those placed on anterior teeth. The difference between the fracture rates may have clinical significance, and the risk of fracture has to be taken into consideration when placing crowns on teeth that are likely to be subjected to high stress levels.