Assessing humoral and cell-mediated immune response in Hawaiian green turtles, Chelonia mydas
Work, Thierry M.; Balazs, George H.; Rameyer, Robert; Chang, S.P.; Berestecky, J.
2000-01-01
Seven immature green turtles, Chelonia mydas, captured from Kaneohe Bay on the island of Oahu were used to evaluate methods for assessing their immune response. Two turtles each were immunized intramuscularly with egg white lysozyme (EWL) in Freund’s complete adjuvant, Gerbu, or ISA-70; a seventh turtle was immunized with saline only and served as a control. Humoral immune response was measured with an indirect enzyme linked immunosorbent assay (ELISA). Cell-mediated immune response was measured using in vitro cell proliferation assays (CPA) using whole blood or peripheral blood mononuclear cells (PBM) cultured with concanavalin A (ConA), phytohaemagglutinin (PHA), or soluble egg EWL antigen. All turtles, except for one immunized with Gerbu and the control, produced a detectable humoral immune response by 6 weeks which persisted for at least 14 weeks after a single immunization. All turtles produced an anamnestic humoral immune response after secondary immunization. Antigen specific cell-mediated immune response in PBM was seen in all turtles either after primary or secondary immunization, but it was not as consistent as humoral immune response; antigen specific cell-mediated immune response in whole blood was rarely seen. Mononuclear cells had significantly higher stimulation indices than whole blood regardless of adjuvant, however, results with whole blood had lower variability. Both Gerbu and ISA-70 appeared to potentiate the cell-mediated immune response when PBM or whole blood were cultured with PHA. This is the first time cell proliferation assays have been compared between whole blood and PBM for reptiles. This is also the first demonstration of antigen specific cell-mediated response in reptiles. Cell proliferation assays allowed us to evaluate the cell-mediated immune response of green turtles. However, CPA may be less reliable than ELISA for detecting antigen specific immune response. Either of the three adjuvants appears suitable to safely elicit a detectable immune response in green turtles.
Immune Impact Induced by PROSTVAC (PSA-TRICOM), a Therapeutic Vaccine for Prostate Cancer
Gulley, James L.; Madan, Ravi A.; Tsang, Kwong Y.; Jochems, Caroline; Marté, Jennifer L.; Farsaci, Benedetto; Tucker, Jo A.; Hodge, James W.; Liewehr, David J.; Steinberg, Seth M.; Heery, Christopher R.; Schlom, Jeffrey
2013-01-01
PSA-TRICOM (PROSTVAC) is a novel vector-based vaccine designed to generate a robust immune response against prostate-specific antigen (PSA)–expressing tumor cells. The purpose of this report is to present an overview of both published studies and new data in the evaluation of immune responses to the PSA-TRICOM vaccine platform, currently in phase III testing. Of 104 patients tested for T-cell responses, 57% (59/104) demonstrated a ≥ 2-fold increase in PSA-specific T cells 4 weeks after vaccine (median 5-fold increase) compared with pre-vaccine, and 68% (19/28) of patients tested mounted post-vaccine immune responses to tumor-associated antigens not present in the vaccine (antigen-spreading). The PSA-specific immune responses observed 28 days after vaccine (i.e., likely memory cells) are quantitatively similar to the levels of circulating T cells specific for influenza seen in the same patients. Measurements of systemic immune response to PSA may underestimate the true therapeutic immune response (as this does not account for cells that have trafficked to the tumor) and does not include antigen-spreading. Furthermore, while the entire PSA gene is the vaccine, only one epitope of PSA is evaluated in the T-cell responses. Since this therapeutic vaccine is directed at generating a cellular/Th1 immune response (T-cell costimulatory molecules and use of a viral vector), it is not surprising that < 0.6% of patients (2/349) tested have evidence of PSA antibody-induction following vaccine. This suggests that post-vaccine PSA kinetics were not affected by PSA antibodies. An ongoing phase III study will evaluate the systemic immune responses and correlation with clinical outcomes. PMID:24778277
Colavecchia, S B; Jolly, A; Fernández, B; Fontanals, A M; Fernández, E; Mundo, S L
2012-02-01
The aim of the present study was to determine whether lipoarabinomannan (LAM), in combination with Freund's incomplete adjuvant (FIA), was able to improve cell-mediated and antibody-mediated immune responses against ovalbumin (OVA) in cattle. Twenty-three calves were assigned to four treatment groups, which were subcutaneously immunized with either OVA plus FIA, OVA plus FIA and LAM from Mycobacterium avium subsp avium, FIA plus LAM, or FIA alone. Lymphoproliferation, IFN-γ production and cell subpopulations on peripheral blood mononuclear cells before and 15 days after treatment were evaluated. Delayed hypersensitivity was evaluated on day 57. Specific humoral immune response was measured by ELISA. Inoculation with LAM induced higher levels of lymphoproliferation and IFN-γ production in response to ConA and OVA (P < 0.05). Specific antibody titers were similar in both OVA-immunized groups. Interestingly, our results showed that the use of LAM in vaccine preparations improved specific cell immune response evaluated by lymphoproliferation and IFN-γ production by at least 50 and 25%, respectively, in cattle without interfering with tuberculosis and paratuberculosis diagnosis.
Colavecchia, S.B.; Jolly, A.; Fernández, B.; Fontanals, A.M.; Fernández, E.; Mundo, S.L.
2012-01-01
The aim of the present study was to determine whether lipoarabinomannan (LAM), in combination with Freund's incomplete adjuvant (FIA), was able to improve cell-mediated and antibody-mediated immune responses against ovalbumin (OVA) in cattle. Twenty-three calves were assigned to four treatment groups, which were subcutaneously immunized with either OVA plus FIA, OVA plus FIA and LAM from Mycobacterium avium subsp avium, FIA plus LAM, or FIA alone. Lymphoproliferation, IFN-γ production and cell subpopulations on peripheral blood mononuclear cells before and 15 days after treatment were evaluated. Delayed hypersensitivity was evaluated on day 57. Specific humoral immune response was measured by ELISA. Inoculation with LAM induced higher levels of lymphoproliferation and IFN-γ production in response to ConA and OVA (P < 0.05). Specific antibody titers were similar in both OVA-immunized groups. Interestingly, our results showed that the use of LAM in vaccine preparations improved specific cell immune response evaluated by lymphoproliferation and IFN-γ production by at least 50 and 25%, respectively, in cattle without interfering with tuberculosis and paratuberculosis diagnosis. PMID:22286534
2015-09-01
Award Number: W81XWH-11-1-0384 TITLE: Evaluation of Immune Responses Mediated by Listeria-Stimulated Human Dendritic Cells : Implications for...Immune Responses Mediated by Listeria-Stimulated Human Dendritic Cells : Implications for Cancer Vaccine Therapy 5b. GRANT NUMBER CA100463 5c...Listeria monocytogenes (Lm) on human dendritic cells (DCs) to optimize Lm-based DC cancer vaccines. The project aims are: 1) Compare the activation and
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-11
... for Therapeutic Protein Products.'' Therapeutic protein products may elicit immune responses, and... evaluate and mitigate immune responses that may adversely affect their safety and efficacy. DATES: Although... these factors that may reduce the likelihood that these products will generate an immune response. In...
Feio, Danielle Cristinne Azevedo; Muniz, José Augusto Pereira Carneiro; Montenegro, Raquel Carvalho; Burbano, Rommel Rodriguez; De Brito Junior, Lacy Cardoso; De Lima, Patrícia Danielle Lima
2014-01-01
The immune response modifier Canova® is a homeopathic remedy indicated for patients with depressed immune system, since this drug appears to increase adaptive immunity and induce an immune response against multiple and severe pathological conditions, including cancer. We evaluated the pattern of immune cellular response in non-human primates of the species Cebus apella exposed to N-methyl-N-nitrosourea (MNU) with and without Canova®. Twelve animals were divided into four groups, with three animals each: negative control and three experimental groups, MNU-alone (35 days); MNU (35 days)-plus-Canova® (3 days) and Canova®-alone (3 days). The animals received MNU orally and Canova® by three intravenous injections. Evaluation of the cellular immune response was performed by immunophenotyping of T-lymphocytes (CD4(+), CD8(+)), B-lymphocytes and natural killer cells. Analysis was also performed of the cell cycle. Our results suggest an increase of T-lymphocytes (CD4(+)CD3(+)) only in the Canova® group, while in the MNU-plus-Canova® group only B-lymphocytes increased. Copyright © 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Belij, Sandra; Marinkovic, Emilija; Stojicevic, Ivana; Montanaro, Jacqueline; Stein, Elisabeth; Bintner, Nora; Stojanovic, Marijana
2013-01-01
Background In a quest for a needle-free vaccine administration strategy, we evaluated the ocular conjunctiva as an alternative mucosal immunization route by profiling and comparing the local and systemic immune responses to the subcutaneous or conjunctival administration of tetanus toxoid (TTd), a model antigen. Materials and methods BALB/c and C57BL/6 mice were immunized either subcutaneously with TTd alone or via the conjunctiva with TTd alone, TTd mixed with 2% glycerol or TTd with merthiolate-inactivated whole-cell B. pertussis (wBP) as adjuvants. Mice were immunized on days 0, 7 and 14 via both routes, and an evaluation of the local and systemic immune responses was performed two weeks after the last immunization. Four weeks after the last immunization, the mice were challenged with a lethal dose (2 × LD50) of tetanus toxin. Results The conjunctival application of TTd in BALB/c mice induced TTd-specific secretory IgA production and skewed the TTd-specific immune response toward a Th1/Th17 profile, as determined by the stimulation of IFNγ and IL-17A secretion and/or the concurrent pronounced reduction of IL-4 secretion, irrespective of the adjuvant. In conjunctivaly immunized C57BL/6 mice, only TTd administered with wBP promoted the establishment of a mixed Th1/Th17 TTd-specific immune response, whereas TTd alone or TTd in conjunction with glycerol initiated a dominant Th1 response against TTd. Immunization via the conjunctiva with TTd plus wBP adjuvant resulted in a 33% survival rate of challenged mice compared to a 0% survival rate in non-immunized animals (p<0.05). Conclusion Conjunctival immunization with TTd alone or with various adjuvants induced TTd-specific local and systemic immune responses, predominantly of the Th1 type. The strongest immune responses developed in mice that received TTd together with wBP, which implies that this alternative route might tailor the immune response to fight intracellular bacteria or viruses more effectively. PMID:23637758
Barisani-Asenbauer, Talin; Inic-Kanada, Aleksandra; Belij, Sandra; Marinkovic, Emilija; Stojicevic, Ivana; Montanaro, Jacqueline; Stein, Elisabeth; Bintner, Nora; Stojanovic, Marijana
2013-01-01
In a quest for a needle-free vaccine administration strategy, we evaluated the ocular conjunctiva as an alternative mucosal immunization route by profiling and comparing the local and systemic immune responses to the subcutaneous or conjunctival administration of tetanus toxoid (TTd), a model antigen. BALB/c and C57BL/6 mice were immunized either subcutaneously with TTd alone or via the conjunctiva with TTd alone, TTd mixed with 2% glycerol or TTd with merthiolate-inactivated whole-cell B. pertussis (wBP) as adjuvants. Mice were immunized on days 0, 7 and 14 via both routes, and an evaluation of the local and systemic immune responses was performed two weeks after the last immunization. Four weeks after the last immunization, the mice were challenged with a lethal dose (2 × LD50) of tetanus toxin. The conjunctival application of TTd in BALB/c mice induced TTd-specific secretory IgA production and skewed the TTd-specific immune response toward a Th1/Th17 profile, as determined by the stimulation of IFNγ and IL-17A secretion and/or the concurrent pronounced reduction of IL-4 secretion, irrespective of the adjuvant. In conjunctivaly immunized C57BL/6 mice, only TTd administered with wBP promoted the establishment of a mixed Th1/Th17 TTd-specific immune response, whereas TTd alone or TTd in conjunction with glycerol initiated a dominant Th1 response against TTd. Immunization via the conjunctiva with TTd plus wBP adjuvant resulted in a 33% survival rate of challenged mice compared to a 0% survival rate in non-immunized animals (p<0.05). Conjunctival immunization with TTd alone or with various adjuvants induced TTd-specific local and systemic immune responses, predominantly of the Th1 type. The strongest immune responses developed in mice that received TTd together with wBP, which implies that this alternative route might tailor the immune response to fight intracellular bacteria or viruses more effectively.
2014-07-01
and J.W. Young, Human dendritic cells : potent antigen-presenting cells at the crossroads of innate and adaptive immunity. J Immunol, 2005. 175(3): p...by Listeria-Stimulated Human Dendritic Cells : Implications for Cancer Vaccine Therapy PRINCIPAL INVESTIGATOR: David J. Chung, MD, PhD...5a. CONTRACT NUMBER Evaluation of Immune Responses Mediated by Listeria-Stimulated Human Dendritic Cells : Implications for Cancer Vaccine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Zhihong; China Institute of Veterinary Drug Control, Beijing 100081; Zhang, Quan
Highlights: Black-Right-Pointing-Pointer We investigated the immunoadjuvant effects of HVJ-E on killed PRRSV vaccine. Black-Right-Pointing-Pointer HVJ-E enhanced the humoral and cellular responses of the piglets to PRRSV. Black-Right-Pointing-Pointer It is suggested that HVJ-E could be developed as a new-type adjuvant for mammals. -- Abstract: Porcine reproductive and respiratory syndrome virus (PRRSV) is an economically detrimental pig pathogen that causes significant losses for the pig industry. The immunostimulatory effects of hemagglutinating virus of Japan envelope (HVJ-E) in cancer therapy and the adjuvant efficacy of HVJ-E have been previously evaluated. The objective of this study was to investigate the adjuvant effects of HVJ-Emore » on immunization with killed PRRSV vaccine, and to evaluate the protective effects of this immunization strategy against virulent PRRSV infection in piglets. Next, the PRRSV-specific antibody response, lymphocyte proliferation, PRRSV-specific IL-2, IL-10 and IFN-{gamma} production, and the overall protection efficacy were evaluated to assess the immune responses of the piglets. The results showed that the piglets inoculated simultaneously with killed PRRSV vaccine and HVJ-E had a significantly stronger immune response than those inoculated with killed PRRSV vaccine alone. Our results suggest that HVJ-E could be employed as an effective adjuvant to enhance the humoral and cellular responses of piglets to PRRSV.« less
Solinas, Cinzia; Porcu, Michele; Hlavata, Zuzana; De Silva, Pushpamali; Puzzoni, Marco; Willard-Gallo, Karen; Scartozzi, Mario; Saba, Luca
2017-12-01
Manipulating an individual's immune system through immune checkpoint blockade is revolutionizing the paradigms of cancer treatment. Peculiar patterns and kinetics of response have been observed with these new drugs, rendering the assessment of tumor burden particularly challenging in cancer immunotherapy. The mechanisms of action for immune checkpoint blockade, based upon engagement of the adaptive immune system, can generate unusual response patterns, including pseudoprogression, hyperprogression, atypical and delayed responses. In patients treated with immune checkpoint blockade and radiotherapy, a reduction in tumor burden at metastatic sites distant from the irradiation field (abscopal effect) has been observed, with synergistic systemic immune effects provoked by this combination. New toxicities have also been observed, due to excessive immune activity in several organs, including lung, colon, liver and endocrine glands. Efforts to standardize assessment of cancer immunotherapy responses include novel consensus guidelines derived by modifying World Health Organization (WHO) and Response Evaluation Criteria In Solid Tumors (RECIST) criteria. The aim of this review is to evaluate imaging techniques currently used routinely in the clinic and those being used as investigational tools in immunotherapy clinical trials. Copyright © 2017 Elsevier B.V. All rights reserved.
Specific T cell induction using iron oxide based nanoparticles as subunit vaccine adjuvant.
Neto, Lázaro Moreira Marques; Zufelato, Nicholas; de Sousa-Júnior, Ailton Antônio; Trentini, Monalisa Martins; da Costa, Adeliane Castro; Bakuzis, Andris Figueiroa; Kipnis, André; JunqueiraKipnis, Ana Paula
2018-06-18
Metal-based nanoparticles (NPs) stimulate innate immunity; however, they have never been demonstrated to be capable of aiding the generation of specific cellular immune responses. Therefore, our objective was to evaluate whether iron oxide-based NPs have adjuvant properties in generating cellular Th1, Th17 and TCD8 (Tc1) immune responses. For this purpose, a fusion protein (CMX) composed of Mycobacterium tuberculosis antigens was used as a subunit vaccine. Citrate-coated MnFe 2 O 4 NPs were synthesized by co-precipitation and evaluated by transmission electron microscopy. The vaccine was formulated by homogenizing NPs with the recombinant protein, and protein corona formation was determined by dynamic light scattering and field-emission scanning electron microscopy. The vaccine was evaluated for the best immunization route and strategy using subcutaneous and intranasal routes with 21-day intervals between immunizations. When administered subcutaneously, the vaccine generated specific CD4 + IFN-γ + (Th1) and CD8 + IFN-γ + responses. Intranasal vaccination induced specific Th1, Th17 (CD4 + IL-17 + ) and Tc1 responses, mainly in the lungs. Finally, a mixed vaccination strategy (2 subcutaneous injections followed by one intranasal vaccination) induced a Th1 (in the spleen and lungs) and splenic Tc1 response but was not capable of inducing a Th17 response in the lungs. This study shows for the first time a subunit vaccine with iron oxide based NPs as an adjuvant that generated cellular immune responses (Th1, Th17 and TCD8), thereby exhibiting good adjuvant qualities. Additionally, the immune response generated by the subcutaneous administration of the vaccine diminished the bacterial load of Mtb challenged animals, showing the potential for further improvement as a vaccine against tuberculosis.
Liu, Heng; Patil, Harshad P.; de Vries-Idema, Jacqueline; Wilschut, Jan; Huckriede, Anke
2013-01-01
Vaccines for protection against respiratory infections should optimally induce a mucosal immune response in the respiratory tract in addition to a systemic immune response. However, current parenteral immunization modalities generally fail to induce mucosal immunity, while mucosal vaccine delivery often results in poor systemic immunity. In order to find an immunization strategy which satisfies the need for induction of both mucosal and systemic immunity, we compared local and systemic immune responses elicited by two mucosal immunizations, given either by the intranasal (IN) or the intrapulmonary (IPL) route, with responses elicited by a mucosal prime followed by a systemic boost immunization. The study was conducted in BALB/c mice and the vaccine formulation was an influenza subunit vaccine supplemented with GPI-0100, a saponin-derived adjuvant. While optimal mucosal antibody titers were obtained after two intrapulmonary vaccinations, optimal systemic antibody responses were achieved by intranasal prime followed by intramuscular boost. The latter strategy also resulted in the best T cell response, yet, it was ineffective in inducing nose or lung IgA. Successful induction of secretory IgA, IgG and T cell responses was only achieved with prime-boost strategies involving intrapulmonary immunization and was optimal when both immunizations were given via the intrapulmonary route. Our results underline that immunization via the lungs is particularly effective for priming as well as boosting of local and systemic immune responses. PMID:23936066
Watarai, Shinobu; Iwase, Tana; Tajima, Tomoko; Yuba, Eiji; Kono, Kenji; Sekiya, Yukio
2014-03-15
To evaluate the usefulness of pH-sensitive fusogenic polymer (succinylated poly(glycidol) (SucPG) and 3-methylglutarylated poly(glycidol) (MGluPG))-modified liposomes as mucosal vaccine in the induction of a protective immune responses was evaluated. Mice were nasally immunized with OVA-containing SucPG-modified liposomes. After immunization, significant Ag-specific Abs were detected in the serum and intestine. When sera were analyzed for isotype distribution, antigen-specific IgG1 Ab responses were noted in mice immunized with OVA-containing polymer-unmodified liposomes, whereas immunization with OVA-containing SucPG-modified liposomes resulted in the induction of OVA-specific IgG1, IgG2a and IgG3 Ab responses. In spleen lymphocytes from mice immunized with OVA-containing SucPG-modified liposomes, both IFN-γ and IL-4 mRNA were detected. The same result was obtained also in the mouse immunized with OVA-containing MGluPG-modified liposomes. Furthermore, we examined the induction of immune responses in chickens following intraocular immunization with Salmonella Enteritidis Ag-containing MGluPG-modified liposomes, and the protective effect against the challenge with S. Enteritidis. Immunization with S. Enteritidis Ag-containing MGluPG-modified liposomes induced significant Ab responses against S. Enteritidis in the serum and intestine. Less fecal excretion of bacteria was observed in chickens immunized with S. Enteritidis Ag-containing MGluPG-modified liposomes after challenge. The numbers of bacteria in the caecum were also lower in immunized chickens than in unimmunized controls. Copyright © 2013 Elsevier B.V. All rights reserved.
Nguyen, Ut V; Melkebeek, Vesna; Devriendt, Bert; Goetstouwers, Tiphanie; Van Poucke, Mario; Peelman, Luc; Goddeeris, Bruno M; Cox, Eric
2015-06-23
F4 enterotoxigenic Escherichia coli (ETEC) cause diarrhoea and mortality in piglets leading to severe economic losses. Oral immunization of piglets with F4 fimbriae induces a protective intestinal immune response evidenced by an F4-specific serum and intestinal IgA response. However, successful oral immunization of pigs with F4 fimbriae in the presence of maternal immunity has not been demonstrated yet. In the present study we aimed to evaluate the effect of maternal immunity on the induction of a systemic immune response upon oral immunization of piglets. Whereas F4-specific IgG and IgA could be induced by oral immunization of pigs without maternal antibodies and by intramuscular immunization of pigs with maternal antibodies, no such response was seen in the orally immunized animals with maternal antibodies. Since maternal antibodies can mask an antibody response, we also looked by ELIspot assays for circulating F4-specific antibody secreting cells (ASCs). Enumerating the F4-specific ASCs within the circulating peripheral blood mononuclear cells, and the number of F4-specific IgA ASCs within the circulating IgA(+) B-cells revealed an F4-specific immune response in the orally immunized animals with maternal antibodies. Interestingly, results suggest a more robust IgA booster response by oral immunization of pigs with than without maternal antibodies. These results demonstrate that oral immunization of piglets with F4-specific maternal antibodies is feasible and that these maternal antibodies seem to enhance the secondary systemic immune response. Furthermore, our ELIspot assay on enriched IgA(+) B-cells could be used as a screening procedure to optimize mucosal immunization protocols in pigs with maternal immunity.
Effect of antipyretic analgesics on immune responses to vaccination.
Saleh, Ezzeldin; Moody, M Anthony; Walter, Emmanuel B
2016-09-01
While antipyretic analgesics are widely used to ameliorate vaccine adverse reactions, their use has been associated with blunted vaccine immune responses. Our objective was to review literature evaluating the effect of antipyretic analgesics on vaccine immune responses and to highlight potential underlying mechanisms. Observational studies reporting on antipyretic use around the time of immunization concluded that their use did not affect antibody responses. Only few randomized clinical trials demonstrated blunted antibody response of unknown clinical significance. This effect has only been noted following primary vaccination with novel antigens and disappears following booster immunization. The mechanism by which antipyretic analgesics reduce antibody response remains unclear and not fully explained by COX enzyme inhibition. Recent work has focused on the involvement of nuclear and subcellular signaling pathways. More detailed immunological investigations and a systems biology approach are needed to precisely define the impact and mechanism of antipyretic effects on vaccine immune responses.
Effect of antipyretic analgesics on immune responses to vaccination
Saleh, Ezzeldin; Moody, M. Anthony; Walter, Emmanuel B.
2016-01-01
ABSTRACT While antipyretic analgesics are widely used to ameliorate vaccine adverse reactions, their use has been associated with blunted vaccine immune responses. Our objective was to review literature evaluating the effect of antipyretic analgesics on vaccine immune responses and to highlight potential underlying mechanisms. Observational studies reporting on antipyretic use around the time of immunization concluded that their use did not affect antibody responses. Only few randomized clinical trials demonstrated blunted antibody response of unknown clinical significance. This effect has only been noted following primary vaccination with novel antigens and disappears following booster immunization. The mechanism by which antipyretic analgesics reduce antibody response remains unclear and not fully explained by COX enzyme inhibition. Recent work has focused on the involvement of nuclear and subcellular signaling pathways. More detailed immunological investigations and a systems biology approach are needed to precisely define the impact and mechanism of antipyretic effects on vaccine immune responses. PMID:27246296
Arnett, Andrea L H; Garikipati, Dilip; Wang, Zejing; Tapscott, Stephen; Chamberlain, Jeffrey S
2011-01-01
Recombinant adeno-associated viral (rAAV) vectors promote long-term gene transfer in many animal species. Significant effort has focused on the evaluation of rAAV delivery and the immune response in both murine and canine models of neuromuscular disease. However, canines provided for research purposes are routinely vaccinated against canine parvovirus (CPV). rAAV and CPV possess significant homology and are both parvoviruses. Thus, any immune response generated to CPV vaccination has the potential to cross-react with rAAV vectors. In this study, we investigated the immune response to rAAV6 delivery in a cohort of CPV-vaccinated canines and evaluated multiple vaccination regimens in a mouse model of CPV-vaccination. We show that CPV-vaccination stimulates production of neutralizing antibodies with minimal cross-reactivity to rAAV6. In addition, no significant differences were observed in the magnitude of the rAAV6-directed immune response between CPV-vaccinated animals and controls. Moreover, CPV-vaccination did not inhibit rAAV6-mediated transduction. We also evaluated the immune response to early rAAV6-vaccination in neonatal mice. The influence of maternal hormones and cytokines leads to a relatively permissive state in the neonate. We hypothesized that immaturity of the immune system would permit induction of tolerance to rAAV6 when delivered during the neonatal period. Mice were vaccinated with rAAV6 at 1 or 5 days of age, and subsequently challenged with rAAV6 exposure during adulthood via two sequential IM injections, 1 month apart. All vaccinated animals generated a significant neutralizing antibody response to rAAV6-vaccination that was enhanced following IM injection in adulthood. Taken together, these data demonstrate that the immune response raised against rAAV6 is distinct from that which is elicited by the standard parvoviral vaccines and is sufficient to prevent stable tolerization in neonatal mice.
Arnett, Andrea L. H.; Garikipati, Dilip; Wang, Zejing; Tapscott, Stephen; Chamberlain, Jeffrey S.
2011-01-01
Recombinant adeno-associated viral (rAAV) vectors promote long-term gene transfer in many animal species. Significant effort has focused on the evaluation of rAAV delivery and the immune response in both murine and canine models of neuromuscular disease. However, canines provided for research purposes are routinely vaccinated against canine parvovirus (CPV). rAAV and CPV possess significant homology and are both parvoviruses. Thus, any immune response generated to CPV vaccination has the potential to cross-react with rAAV vectors. In this study, we investigated the immune response to rAAV6 delivery in a cohort of CPV-vaccinated canines and evaluated multiple vaccination regimens in a mouse model of CPV-vaccination. We show that CPV-vaccination stimulates production of neutralizing antibodies with minimal cross-reactivity to rAAV6. In addition, no significant differences were observed in the magnitude of the rAAV6-directed immune response between CPV-vaccinated animals and controls. Moreover, CPV-vaccination did not inhibit rAAV6-mediated transduction. We also evaluated the immune response to early rAAV6-vaccination in neonatal mice. The influence of maternal hormones and cytokines leads to a relatively permissive state in the neonate. We hypothesized that immaturity of the immune system would permit induction of tolerance to rAAV6 when delivered during the neonatal period. Mice were vaccinated with rAAV6 at 1 or 5 days of age, and subsequently challenged with rAAV6 exposure during adulthood via two sequential IM injections, 1 month apart. All vaccinated animals generated a significant neutralizing antibody response to rAAV6-vaccination that was enhanced following IM injection in adulthood. Taken together, these data demonstrate that the immune response raised against rAAV6 is distinct from that which is elicited by the standard parvoviral vaccines and is sufficient to prevent stable tolerization in neonatal mice. PMID:22065964
Mast cell activators as novel immune regulators.
Johnson-Weaver, Brandi; Choi, Hae Woong; Abraham, Soman N; Staats, Herman F
2018-05-26
Mast cells are an important cell type of the innate immune system that when activated, play a crucial role in generating protective innate host responses after bacterial and viral infection. Additionally, activated mast cells influence lymph node composition to regulate the induction of adaptive immune responses. The recognition that mast cells play a beneficial role in host responses to microbial infection and induction of adaptive immunity has provided the rationale to evaluate mast cell activators for use as antimicrobials or vaccine adjuvants. This review summarizes the role of mast cell activators in antimicrobial responses while also discussing the use of different classes of mast cell activators as potent vaccine adjuvants that enhance the induction of protective immune responses. Copyright © 2018 Elsevier Ltd. All rights reserved.
Jayashankar, Bindhya; Singh, Divya; Tanwar, Himanshi; Mishra, K P; Murthy, Swetha; Chanda, Sudipta; Mishra, Jigni; Tulswani, R; Misra, K; Singh, S B; Ganju, Lilly
2017-03-01
Hippophae rhamnoides L. commonly known as Seabuckthorn (SBT), a wild shrub of family Elaegnacea, has extensively used for treating various ailments like skin diseases, jaundice, asthma, lung troubles. SBT leaves have been reported to possess several pharmacological properties including immunomodulatory, antioxidant, anti-inflammatory, antimicrobial and tissue regeneration etc. The present study was undertaken to evaluate the adjuvant property of supercritical carbon dioxide extracts (SCEs 300ET and 350ET) of SBT leaves in balb/c mice immunized with Tetanus and Diphtheria toxoids. The dynamic changes in the immune response were measured in terms of humoral and cell-mediated immune responses. We have seen the effect of SCEs on immunoglobulin subtypes and secondary immune response generation. In addition, the effect of SCEs on antigen specific cellular immunity was evaluated. Our results show that SCEs 300ET and 350ET significantly enhanced antibody titers in response to both TT and DT antigens. The secondary immune response generated was significantly increased in case of TT immunized animals. SCEs also enhanced cytokine levels (IFN-γ, IL-4, TNF-α and IL-1β) and increased lymphoproliferation. Besides, both SCEs did not show any toxic effects. Therefore, the study suggests that SCEs are safe and have potent immunostimulatory activity and hence, seems to be a promising balanced Th1 and Th2 directing immunological adjuvant for various veterinary as well as human vaccines. Copyright © 2017. Published by Elsevier B.V.
USDA-ARS?s Scientific Manuscript database
This study evaluated the effect of genetic selection for markers related to marbling deposition in Angus heifers on the immune response following a lipopolysaccharide (LPS) challenge. Fall-born heifers (n = 19; ~7 months of age, 274 +/- 24 kg) with genetic variation for marbling were utilized inclu...
Ni, Wei-Ya; Wu, Ming-Fanf; Liao, Nien-Chieh; Yeh, Ming-Yang; Lu, Hsu-Feng; Hsueh, Shu-Ching; Liu, Jia-You; Huang, Yi-Ping; Chang, Chuan-Hsun; Chung, Jing-Gung
2013-01-01
Agaricus blazei Murill (AbM) is traditionally used against a wide range of conditions such as ulcerative colitis, Crohn's disease, foot-and-mouth disease and chronic hepatitis C infection. In this study, we evaluated the immunomodulatory effects of AbM. For the non-specific immune response experiments, a total of 40 female BALB/c mice were divided into control (group 1) and experimental (groups 2-4) groups of 10 animals each. Groups 2, 3 and 4 were orally-administered high (819 mg/kg), medium (273 mg/kg) and low (136.5 mg/kg) doses of AbM daily for six weeks and then six parameters related to non-specific immune response were detected. For the adaptive immune response experiments, 40 female mice were similarly divided into four groups. After six weeks of treatment, animals were immunized with the OVA immunogen. Two weeks later, splenocytes and sera were collected. Four parameters related to adaptive immune response were evaluated. We found that feeding mice with AbM extract increased the IgG level in serum, promoted phagocytosis of peritoneal macrophages and elevated the activity of Natural killer cells. We also found that the highest dose of AbM increased interleukin-2 (IL-2) levels in splenocytes and that a medium dose increased interferon-γ. The levels of interleukin-4 (IL-4) were reduced or unchanged. T-helper type 1 cytokine levels were increased. AbM increased the humoral immune response and also affected the cellular immune response. These results provide evidence that AbM can modulate innate and adaptive immunity.
76 FR 49776 - The Development and Evaluation of Next-Generation Smallpox Vaccines; Public Workshop
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-11
... antibodies and cell- mediated immune responses, with both clinical and immunological outcomes similar to... appropriate, and to comparative human immune response data. As for any biologic product, licensure of new...
Pegu, Poonam; Helmus, Ruth; Gupta, Phalguni; Tarwater, Patrick; Caruso, Lori; Shen, Chengli; Ross, Ted; Chen, Yue
2011-12-01
The lower gastrointestinal tract is a major mucosal site of HIV entry and initial infection. Thus, the induction of strong cellular immune responses at this mucosal site will be an important feature of an effective HIV vaccine. We have used a novel prime-boost vaccination approach to induce immune responses at mucosal sites. Orally delivered recombinant Clostridium perfringens expressing HIV-1 gag (Cp-Gag) was evaluated for induction of HIV-1 Gag specific T cell responses in a prime-boost model with intranasal inoculation of HIV-1 virus like particles (VLP). HIV-1 specific cellular immune responses in both the effector (Lamina propria) and inductive sites (Peyer's patches) of the gastrointestinal (GI) tract were significantly higher in mice immunized using Cp-Gag and VLPs in a prime-boost approach compared to mice immunized with either Cp-Gag or VLPs alone. Such cellular immune response was found to be mediated by both CD8(+) and CD4(+) T cells. Such a strong mucosal immune response could be very useful in developing a mucosal vaccine against HIV-1.
Evaluation of the humoral immune response of children with low level lead exposure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reigart, J.R.; Graber, C.D.
1976-07-01
Twelve lead-exposed children, with evidence of metabolic impairment, and seven non-lead exposed children were examined for evidence of impairment of their immunological response. There were no differences between the control group and the lead exposed group with reference to complement levels, immunoglobulins, or anamnestic response to the tetanus toxoid antigen. It remains to be demonstrated whether or not there is deficient response to primary immunization, whether other antigens are more affected by lead, or whether impairment of humoral immune response requires a more serious degree of lead intoxication.
LeBlanc, Jason; Fliss, Ismail; Matar, Chantal
2004-01-01
Numerous beneficial effects have been attributed to probiotic lactic acid bacteria (LAB), such as the stimulation of the immune system, the prevention of enteric infections by enteropathogens, and the regression of immunodependent tumors. It has been shown that biologically active metabolites released during fermentation, in particular biopeptides, could act as immunomodulatory agents. However, no studies have been conducted to evaluate the implication of these bioactive peptides in the induction of a protective immune response against enteric infections. The present study aimed to evaluate the possible immunomodulatory and anti-infectious effects of a peptidic fraction released in milk fermented by Lactobacillus helveticus. The immune response in the mucosa-associated lymphoid tissue was monitored following an administration of the potentially bioactive peptidic fraction. The total immunoglobulin A (IgA) immune response was evaluated after an Escherichia coli O157:H7 infection in a BALB/c murine model. Immunohistochemical and enzyme-linked immunosorbent assays revealed an increase in the number of IgA-secreting B lymphocytes in the intestinal lamina propria and an enhanced total secretory and systemic IgA response. Cytokine profiling also revealed stimulation of a Th2 response in mice fed the peptidic fraction, whereas infected controls demonstrated a proinflammatory Th1 response. These results indicate that bioactive peptides released during fermentation by LAB could contribute to the known immunomodulatory effects of probiotic bacteria. PMID:15539524
Improved Endpoints for Cancer Immunotherapy Trials
Eggermont, Alexander M. M.; Janetzki, Sylvia; Hodi, F. Stephen; Ibrahim, Ramy; Anderson, Aparna; Humphrey, Rachel; Blumenstein, Brent; Wolchok, Jedd
2010-01-01
Unlike chemotherapy, which acts directly on the tumor, cancer immunotherapies exert their effects on the immune system and demonstrate new kinetics that involve building a cellular immune response, followed by changes in tumor burden or patient survival. Thus, adequate design and evaluation of some immunotherapy clinical trials require a new development paradigm that includes reconsideration of established endpoints. Between 2004 and 2009, several initiatives facilitated by the Cancer Immunotherapy Consortium of the Cancer Research Institute and partner organizations systematically evaluated an immunotherapy-focused clinical development paradigm and created the principles for redefining trial endpoints. On this basis, a body of clinical and laboratory data was generated that supports three novel endpoint recommendations. First, cellular immune response assays generate highly variable results. Assay harmonization in multicenter trials may minimize variability and help to establish cellular immune response as a reproducible biomarker, thus allowing investigation of its relationship with clinical outcomes. Second, immunotherapy may induce novel patterns of antitumor response not captured by Response Evaluation Criteria in Solid Tumors or World Health Organization criteria. New immune-related response criteria were defined to more comprehensively capture all response patterns. Third, delayed separation of Kaplan–Meier curves in randomized immunotherapy trials can affect results. Altered statistical models describing hazard ratios as a function of time and recognizing differences before and after separation of curves may allow improved planning of phase III trials. These recommendations may improve our tools for cancer immunotherapy trials and may offer a more realistic and useful model for clinical investigation. PMID:20826737
Li, Li; Wang, Wei; Pan, Hong; Ma, Ge; Shi, Xinyi; Xie, Hui; Liu, Xiaoan; Ding, Qiang; Zhou, Wenbin; Wang, Shui
2017-01-31
Minimally invasive therapies, such as microwave ablation (MWA), are widely used for the treatment of solid tumors. Previous studies suggest that MWA is feasible for the treatment of small breast cancer, and thermal ablation may induce adaptive antitumor immunity. However, the induced immune responses are mostly weak, and the immunomodulation effects of MWA in breast cancer are unclear. Immunostimulant OK-432 can induce tumor-specific T-cell responses and may augment the immunity induced by MWA. We treated 4T1 breast cancer bearing BALB/c mice with MWA, OK-432, MWA plus OK-432, or left without treatment. Survival time was evaluated with the Kaplan-Meyer method comparing survival curves by log-rank test. On day 25 after ablation, surviving mice received tumor rechallenge, and the rechallenged tumor volumes were calculated every 5 days. Immunohistochemistry and flow cytometry were used to evaluate the T-cell immune responses in ablated tissues and spleens. The tumor-specific immunity was assessed by enzyme-linked immunospot assays. Besides, the cytokine patterns were identified from enzyme-linked immunosorbent assay. Microwave ablation plus OK-432 resulted in longer survival than single treatment and protect most surviving mice from tumor rechallenge. Both local and systemic T-cell responses were induced by MWA and were further enhanced by subsequent administration of OK-432. Moreover, the combination of MWA and OK-432 induced stronger tumor-specific immune responses than MWA alone. In addition, OK-432 and MWA synergistically promoted the production of Th1-type but not Th2-type cytokines, and polarized T-cell responses to Th1-dominant state. The T-cell immune responses were activated by MWA in breast cancer. Furthermore, the combination of MWA and OK-432 induced Th1-type response and elicited specific antitumor immunity.
Almeida, Freya M Freyre; Blanco, Aracelys; Trujillo, Heidy; Hernández, Dunia; García, Daymir; Alba, José S; Abad, Matilde López; Merino, Nelson; Lobaina, Yadira
2016-01-01
ABSTRACT The development of therapeutic vaccines against chronic hepatitis B requires the capacity of the formulation to subvert a tolerated immune response as well as the evaluation of histopathological damage resulting from the treatment. In the present study, the dynamicity of induced immune response to hepatitis B surface antigen (HBsAg) was evaluated in transgenic mice that constitutively express the HBsAg gene (HBsAg-tg mice). After immunization with a vaccine candidate containing both surface (HBsAg) and core (HBcAg) antigens of hepatitis B virus (HBV), the effect of vaccination on clearance of circulating HBsAg and the potential histological alterations were examined. Transgenic (tg) and non-transgenic (Ntg) mice were immunized by intranasal (IN) and subcutaneous (SC) routes simultaneously. A control group received phosphate-buffered saline (PBS) by IN route and aluminum by SC route. Positive responses, at both humoral and cellular levels, were obtained after five immunizations in HBsAg-tg mice. Such responses were delayed and of lower intensity in tg mice, compared to vaccinated Ntg mice. Serum IgG response was characterized by a similar IgG subclass pattern. Even when HBsAg-specific CD8+ T cell responses were clearly detectable by gamma-interferon ELISPOT assay, histopathological alterations were not detected in any organ, including the liver and kidneys. Our study demonstrated, that it is possible to subvert the immune tolerance against HBsAg in tg mice, opening a window for new studies to optimize the schedule, dose, and formulation to improve the immune response to the therapeutic vaccine candidate. These results can be considered a safety proof to support clinical developments for the formulation under study. How to cite this article Freyre FM, Blanco A, Trujillo H, Hernández D, García D, Alba JS, Lopez M, Merino N, Lobaina Y, Aguilar JC. Dynamic of Immune Response induced in Hepatitis B Surface Antigen-transgenic Mice Immunized with a Novel Therapeutic Formulation. Euroasian J Hepato-Gastroenterol 2016;6(1):25-30. PMID:29201720
Carrasco, Fábio Ricardo; Schmidt, Gustavo; Romero, Adriano Lopez; Sartoretto, Juliano Luiz; Caparroz-Assef, Silvana Martins; Bersani-Amado, Ciomar Aparecida; Cuman, Roberto Kenji Nakamura
2009-07-01
The immunomodulatory effect of ginger, Zingiber officinale (Zingiberaceae), sage, Salvia officinalis (Lamiaceae) and clove, Syzygium aromaticum (Myrtaceae), essential oils were evaluated by studying humor- and cell-mediated immune responses. Essential oils were administered to mice (once a day, orally, for a week) previously immunized with sheep red blood cells (SRBCs). Clove essential oil increased the total white blood cell (WBC) count and enhanced the delayed-type hypersensitivity (DTH) response in mice. Moreover, it restored cellular and humoral immune responses in cyclophosphamide-immunosuppressed mice in a dose-dependent manner. Ginger essential oil recovered the humoral immune response in immunosuppressed mice. Contrary to the ginger essential oil response, sage essential oil did not show any immunomodulatory activity. Our findings establish that the immunostimulatory activity found in mice treated with clove essential oil is due to improvement in humor- and cell-mediated immune response mechanisms.
Genetic polymorphism and immune response to tuberculosis in indigenous populations: a brief review.
Longhi, Renata Maronna Praça; Zembrzuski, Verônica Marques; Basta, Paulo Cesar; Croda, Julio
2013-01-01
We systematically reviewed studies of the immune response to tuberculosis and the genetic polymorphisms associated with Th1- or Th2-mediated cytokine expression in indigenous populations. A bibliographic search was performed on the Medline and ISI databases and included studies published between January 1980 and October 2011. The search terms were tuberculosis, American Indians, Amerindian, indigenous, Indians, native people, aboriginal, immun*, host immune, immune response, cytokine*, polymorphism*, and gene. Regardless of their design, studies that evaluated immunoglobulin, cytokine levels and genetic polymorphisms that altered cytokine expression were included. Thirteen studies met the inclusion criteria. The majority of studies were performed in Latin America, and five investigated the Warao ethnic group of Venezuela. Most of the investigations indirectly evaluated the immune response. Higher anergy to the tuberculin skin test, higher IgG4 and IgM levels, higher IL-5 production and lower TNF-α, IL-12p40 and IFN-γ production were found in the indigenous populations. The studies also reported a predominantly Th2-type response in these populations and a possibly higher susceptibility to tuberculosis. A better understanding of the relevant genetic polymorphisms and their role in immune regulation would help to clarify the immunogenetic mechanisms of TB infection in these populations. This information would be useful for identifying new treatments and preventing infection and progression to active disease. Copyright © 2013 Elsevier Editora Ltda. All rights reserved.
Seasonal changes in the relationship between ornamentation and immune response in red jungle fowl
Zuk, M.; Johnsen, T. S.
1998-01-01
Resistance to disease is frequently suggested to be important in mate choice, but information about how immune status can be conveyed is lacking. During the breeding season, male red jungle fowl with large combs, a sexually selected trait, have lower levels of lymphocytes, but greater cell-mediated immunity, indicated by a cutaneous hypersensitivity response. Before the breeding season, however, both cell-mediated immunity and proportion of lymphocytes are positively correlated with comb length. Cell-mediated immunity is particularly important to jungle fowl during the breeding season, because the likelihood of injury during sexual competition is high and cell-mediated immunity is essential for healing wounds and resisting infection. This seasonal change in one aspect of immunity but not another suggests that the birds adaptively maintain certain immune system abilities, and that it can be misleading to use a single aspect of immune response in evaluating immunocompetence.
Baril, L; Dietemann, J; Essevaz-Roulet, M; Béniguel, L; Coan, P; Briles, D E; Guy, B; Cozon, G
2006-01-01
Humoral immune response is essential for protection against invasive pneumococcal disease and this property is the basis of the polysaccharide-based anti-pneumococcal vaccines. Pneumococcal surface protein A (PspA), a cell-wall-associated surface protein, is a promising component for the next generation of pneumococcal vaccines. This PspA antigen has been shown to stimulate an antibody-based immunity. In the present study, we evaluated the capacity of PspA to stimulate CD4+ T cells which are needed for the correct development of a B cell based immune response in humans. Cellular immunity to PspA was evaluated by whole-blood culture with different pneumococcal antigens, followed by flow cytometric detection of activated CD4+CD25+ T cells. T cell-mediated immune responses to recombinant PspA proteins were assessed in acute-phase and convalescent blood from adults with invasive pneumococcal disease and in blood from healthy subjects. All cases had detectable antibodies against PspA on admission. We found that invasive pneumococcal disease induced transient T cell depletion but adaptive immune responses strengthened markedly during convalescence. The increased production of both interleukin (IL)-10 and interferon (IFN)-γ during convalescence suggests that these cytokines may be involved in modulating antibody-based immunity to pneumococcal disease. We demonstrated that PspA is efficient at eliciting T cell immune responses and antibodies to PspA. This study broadens the applicability of recombinant PspA as potent pneumococcal antigen for vaccination against S. pneumoniae. PMID:16879247
Dimier-Poisson, Isabelle; Aline, Fleur; Bout, Daniel; Mévélec, Marie-Noëlle
2006-03-06
Toxoplasma gondii enters the mucosal surfaces of the host, and so immunity at these sites is of major interest. Due to the compartmentalization of the immune response, systemic immunization does not induce high levels of immunity at mucosal surfaces. Intranasal immunization has been shown to be very effective in inducing both systemic and mucosal immune responses. Immunization with mRNA can induce both humoral and cell-mediated immune responses, both of which are important in conferring immunity to T. gondii. The efficacy of RNA vaccination by the nasal route with T. gondii RNA was evaluated. We assessed the percentage of cumulative survival after an oral challenge with a lethal dose of T. gondii cysts (40 cysts), and the number of brain cysts following a challenge with a sublethal dose of T. gondii 76 K cysts (15 cysts). Vaccinated mice were found to be significantly better protected than non-immunized mice after a challenge with a lethal dose of cysts; and a challenge with a sublethal dose also resulted in fewer brain cysts than in non-immunized mice. Sera and intestinal secretions of immunized mice recognized T. gondii antigens, suggesting that a specific humoral immune response may occur. Moreover, a specific lymphoproliferative response observed in cervical lymph nodes may confer protection. These preliminary findings suggest that RNA vaccination by a mucosal route could be feasible.
Eskandari, Faeze; Talesh, Ghazal Alipour; Parooie, Maryam; Jaafari, Mahmoud Reza; Khamesipour, Ali; Saberi, Zahra; Abbasi, Azam; Badiee, Ali
2014-11-01
Development of new generation of vaccines against leishmaniasis requires adjuvants to elicit the type and intensity of immune response needed for protection. The coupling of target-specific antibodies to the liposomal surface to create immunoliposomes has appeared as a promising way in achieving a liposome active targeting. In this study, immunoliposomes were prepared by grafting non-immune mouse IgG onto the liposomal surface. The influence of active targeted immunoliposomes on the type and intensity of generated immune response against Leishmania was then investigated and compared with that of liposomes and control groups which received either SLA or HEPES buffer alone. All formulations contained SLA and were used to immunize the mice in the left hind footpad three times in 3-week intervals. Evaluation of lesion development and parasite burden in the foot and spleen after challenge with Leishmania major, evaluation of Th1 cytokine (IFN-γ), and titration of IgG isotypes were carried out to assess the type of generated immune response and the extent of protection. The results indicated that liposomes might be effective adjuvant systems to induce protection against L. major challenge in BALB/c mice, but stronger cell mediated immune responses were induced when immunoliposomes were utilized. Thus, immune modulation using immunoliposomes might be a practical approach to improve the immunization against L. major. Copyright © 2014 Elsevier Inc. All rights reserved.
Evaluation of mucoadhesive carrier adjuvant: toward an oral anthrax vaccine.
Mangal, Sharad; Pawar, Dilip; Agrawal, Udita; Jain, Arvind K; Vyas, Suresh P
2014-02-01
The aim of present study was to evaluate the potential of mucoadhesive alginate-coated chitosan microparticles (A-CHMp) for oral vaccine against anthrax. The zeta potential of A-CHMp was -29.7 mV, and alginate coating could prevent the burst release of antigen in simulated gastric fluid. The results indicated that A-CHMp was mucoadhesive in nature and transported it to the peyer's patch upon oral delivery. The immunization studies indicated that A-CHMp resulted in the induction of potent systemic and mucosal immune responses, whereas alum-adjuvanted rPA could induce only systemic immune response. Thus, A-CHMp represents a promising acid carrier adjuvant for oral immunization against anthrax.
Obanewa, Olayinka; Newell, Marie-Louise
2017-09-01
To systematically review the association between maternal nutritional status in pregnancy and infant immune response to childhood vaccines. We reviewed literature on maternal nutrition during pregnancy, fetal immune system and vaccines and possible relationships. Thereafter, we undertook a systematic review of the literature of maternal nutritional status and infant vaccine response, extracted relevant information, assessed quality of the nine papers identified and present findings in a narrative format. From limited evidence of average quality, intrauterine nutrition deficiency could lead to functional deficit in the infant's immune function; child vaccine response may thus be negatively affected by maternal malnutrition. Response to childhood vaccination may be associated with fetal and early life environment; evaluation of programs should take this into account.
Wander, Katherine; O'Connor, Kathleen; Shell-Duncan, Bettina
2012-01-01
Background Multiple lines of evidence suggest that infections in early life prevent the development of pathological immune responses to allergens and autoantigens (the hygiene hypothesis). Early infections may also affect later immune responses to pathogen antigen. Methods To evaluate an association between early infections and immune responses to pathogen antigen, delayed-type hypersensitivity (DTH) to Candida albicans was evaluated among 283 2- to 7-year-old children in Kilimanjaro, Tanzania. A questionnaire and physical examination were used to characterize variables reflecting early exposure to infectious agents (family size, house construction materials, BCG vaccination, hospitalization history). Logistic regression was used to evaluate the association between early exposure to infectious agents and DTH to C. albicans. Results Triceps skinfold thickness (OR: 1.11; 95% CI: 1.01, 1.22) and age (OR: 1.27; 95% CI: 1.04, 1.55) were positively associated with DTH to C. albicans. Adjusted for age and sex, large family size (OR: 2.81; 95% CI: 1.04, 7.61), BCG vaccination scar (OR: 3.10; 95% CI: 1.10, 8.71), and hospitalization during infancy with an infectious disease (OR: 4.67; 95% CI: 1.00, 21.74) were positively associated with DTH to C. albicans. Conclusions Early life infections were positively associated with later DTH to C. albicans. This result supports an expansion of the hygiene hypothesis to explain not only pathological immune responses to allergens, but also appropriate immune responses to pathogens. Immune system development may be responsive to early infections as an adaptive means to tailor reactivity to the local infectious disease ecology. PMID:22616000
NASA Technical Reports Server (NTRS)
Guthrie, R. K.
1976-01-01
The effects of increased concentrations of PSEUDOMONAS AERUGINOSA AND STAPHYLOCOCCUS in the total bacterial flora of small animals exposed to simulated spacecraft environments were evaluated. Tests to detect changes in infectivity, effects of antibiotic treatments, immune responses to bacterial antigens, and effectiveness of immune responses in the experimental environment were conducted. The most significant results appear to be the differences in immune responses at simulated altitudes and the production of infection in the presence of a specific antibody.
Jaramillo Ortiz, José Manuel; Del Médico Zajac, María Paula; Zanetti, Flavia Adriana; Molinari, María Paula; Gravisaco, María José; Calamante, Gabriela; Wilkowsky, Silvina Elizabeth
2014-08-06
In this study, a recombinant modified vaccinia virus Ankara vector expressing a chimeric multi-antigen was obtained and evaluated as a candidate vaccine in homologous and heterologous prime-boost immunizations with a recombinant protein cocktail. The chimeric multi-antigen comprises immunodominant B and T cell regions of three Babesia bovis proteins. Humoral and cellular immune responses were evaluated in mice to compare the immunogenicity induced by different immunization schemes. The best vaccination scheme was achieved with a prime of protein cocktail and a boost with the recombinant virus. This scheme induced high level of specific IgG antibodies and secreted IFN and a high degree of activation of IFNγ(+) CD4(+) and CD8(+) specific T cells. This is the first report in which a novel vaccine candidate was constructed based on a rationally designed multi-antigen and evaluated in a prime-boost regime, optimizing the immune response necessary for protection against bovine babesiosis. Copyright © 2014 Elsevier Ltd. All rights reserved.
Qu, Daofeng; Han, Jianzhong; Du, Aifang
2013-07-01
The high incidence and severe damage caused by Toxoplasma gondii infection clearly indicates the need for the development of a vaccine. In this study, we evaluated the immune responses and protection against toxoplasmosis by immunizing ICR mice with a multiantigenic DNA vaccine. To develop the multiantigenic vaccine, two T. gondii antigens, MIC3 and ROP18, selected on the basis of previous studies were chosen. ICR mice were immunized subcutaneously with PBS, empty pcDNA3.1 vector, pMIC3, pROP18, and pROP18-MIC3, respectively. The results of lymphocyte proliferation assay, cytokine, and antibody determinations showed that mice immunized with pROP18-MIC3 elicited stronger humoral and Th1-type cellular immune responses than those immunized with single-gene plasmids, empty plasmid, or phosphate-buffered saline. After a lethal challenge with the highly virulent T. gondii RH strain, a prolonged survival time in pROP18-MIC3-immunized mice was observed in comparison to control groups. Our study indicates that the introduction of multiantigenic DNA vaccine is more powerful and efficient than single-gene vaccine, and deserves further evaluation and development.
Interplay between behavioural thermoregulation and immune response in mealworms.
Catalán, Tamara P; Niemeyer, Hermann M; Kalergis, Alexis M; Bozinovic, Francisco
2012-11-01
Since the preferential body temperature should positively correlate with physiological performance, behavioural fever should enhance an organism's immune response under an immune challenge. Here we have studied the preferential body temperature (T(p)) and its consequences on immune response performance after an immune challenge in larvae of Tenebrio molitor. We evaluated T(p) and immune responses of larvae following a challenge with various concentrations of lipopolysaccharide (LPS), and we studied the correlation between T(p) and two immune traits, namely antibacterial and phenoloxidase (PO) activities. Larvae that were immune challenged with higher LPS concentrations (C(50) and C(100)) preferred in average, warmer temperatures than did larvae challenged with lower concentrations (C(0) and C(25)). T(p) of C(25)-C(100) (challenged)-mealworms was 2.3°C higher than of C(0) (control) larvae. At lower LPS concentration immune challenge (C(0) and C(25)) antibacterial activity correlated positively with T(p), but at C(50) and C(100) correlation was lose. PO activity was higher at higher LPS concentration, but its magnitude of response did not correlate with T(p) Our data suggest that behavioural fever may have a positive effect on host performance by enhancing antibacterial response under a low pathogen load situation. Copyright © 2012 Elsevier Ltd. All rights reserved.
Pedersen, Ida J; Pors, Susanne E; Bager Skjerning, Ragnhild J; Nielsen, Søren S; Bojesen, Anders M
2015-10-01
Gallibacterium anatis is a major cause of reproductive tract infections in chickens. Here, we aimed to evaluate the efficacy of the recombinant protein GtxA-N at protecting hens, by addressing three objectives; (i) evaluating the antibody response following immunization (ii) scoring and comparing lesions, following challenge with G. anatis, in immunized and non-immunized hens and (iii) investigating if the anti-GtxA-N antibody titre in individual hens correlated with the observed lesions. Two consecutive experiments were performed in hens. In the first experiment hens were immunized with GtxA-N on day 0 and day 14, infected with G. anatis on day 28 and euthanized on day 56. The GtxA-N antibody response was assessed in pooled serum samples throughout the experiment, using an indirect enzyme-linked immunosorbent assay (ELISA). In the second experiment the GtxA-N antibody titres were assessed in individual hens before and after immunization. Subsequently, the hens were inoculated with G. anatis and finally all hens where euthanized and submitted for post mortem examination 48 h after inoculation. Immunization elicited strong antibody responses that lasted at least 8 weeks (P < .0001). The individual antibody titres observed in response to immunization varied considerably among hens (range: 174,100-281,500). Lesion scores following G. anatis infection were significantly lower in immunized hens compared to non-immunized hens (P = .004). Within the immunized group, no correlation was found between the individual antibody titres and the lesion scores. This study clearly demonstrated GtxA-N as a vaccine antigen able of inducing protective immunity against G. anatis.
2012-07-01
Mediated by Listeria -Stimulated Human Dendritic Cells: Implications for Cancer Vaccine Therapy PRINCIPAL INVESTIGATOR: David J. Chung, M D , Ph D...CONTRACT NUMBER Evaluation of Immune Responses Mediated by Listeria -Stimulated Human Dendritic Cells: Implications for Cancer Vaccine Therapy 5b...Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The purpose of this project is to study the immunomodulatory effect of Listeria on
Khalifeh, M S; Amawi, M M; Abu-Basha, E A; Yonis, I Bani
2009-10-01
The effect of tilmicosin, florfenicol, or enrofloxacin on humoral and cell-mediated immune response induced by Newcastle disease (ND) vaccination was evaluated in 20-wk-old specific-pathogen-free layer chickens. Humoral immunity was measured by detection of ND virus (NDV) antibody titer and anti-NDV IgG response using the hemagglutination inhibition (HI) test and ELISA, respectively, whereas cell-mediated immunity was evaluated by measurement of chicken interferon gamma (ChIFN-gamma) produced in splenocytes cell culture stimulated with concanavalin A, inactivated NDV antigen, or live attenuated La Sota strain using ELISA. Florfenicol hampered the ND antibody production measured by both HI and ELISA. Tilmicosin and enrofloxacin reduced the production of ND antibody in the first 3 wk after the last ND vaccination measured by HI test, which suggests that these antibiotics exert their effect mainly on the IgM isotype. The ND-vaccinated, but not treated group, showed an increase in ChIFN-gamma production after NDV antigen-specific stimulation above the nonstimulated cell culture, whereas this effect was masked in all the antibiotic-treated groups due to the stronger ChIFN-gamma production background value reported in the nonstimulated cell culture. In conclusion, our results showed, for the first time, that tilmicosin, florfenicol, or enrofloxacin reduced the humoral immune response and had beneficial effects on the cell-mediated immune response. In addition, we demonstrated that the combination of both inactivated and attenuated ND vaccine gave a strong immune response at both the humoral and cellular level.
Size, Shape, and Sequence-Dependent Immunogenicity of RNA Nanoparticles.
Guo, Sijin; Li, Hui; Ma, Mengshi; Fu, Jian; Dong, Yizhou; Guo, Peixuan
2017-12-15
RNA molecules have emerged as promising therapeutics. Like all other drugs, the safety profile and immune response are important criteria for drug evaluation. However, the literature on RNA immunogenicity has been controversial. Here, we used the approach of RNA nanotechnology to demonstrate that the immune response of RNA nanoparticles is size, shape, and sequence dependent. RNA triangle, square, pentagon, and tetrahedron with same shape but different sizes, or same size but different shapes were used as models to investigate the immune response. The levels of pro-inflammatory cytokines induced by these RNA nanoarchitectures were assessed in macrophage-like cells and animals. It was found that RNA polygons without extension at the vertexes were immune inert. However, when single-stranded RNA with a specific sequence was extended from the vertexes of RNA polygons, strong immune responses were detected. These immunostimulations are sequence specific, because some other extended sequences induced little or no immune response. Additionally, larger-size RNA square induced stronger cytokine secretion. 3D RNA tetrahedron showed stronger immunostimulation than planar RNA triangle. These results suggest that the immunogenicity of RNA nanoparticles is tunable to produce either a minimal immune response that can serve as safe therapeutic vectors, or a strong immune response for cancer immunotherapy or vaccine adjuvants. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Mucosal immune response to poliovirus vaccines in childhood.
Ogra, P L
1984-01-01
Comparative evaluation of the systemic and secretory antibody response to live attenuated (oral) poliovirus vaccine ( OPV ) or inactivated poliovirus vaccine (IPV) has suggested that both vaccines are highly effective in inducing seroconversion and in preventing paralytic poliomyelitis. However, parenteral immunization with IPV does not appear to be highly effective in inducing secretory antibody response in the nasopharynx or alimentary tract during primary immunization. Reimmunization with IPV in subjects previously primed with parenterally administered IPV appears to result in a mild booster effect on the development of secretory antibody response. More significantly, rechallenge by the oral route with OPV in IPV-primed subjects resulted in a marked enhancement of secretory antibody response. In general, no suppression of systemic or secretory response to poliovirus was observed with either form ( OPV vs. IPV) or with route of immunization. These observations are discussed in relation to the immune response observed with other mucosally or parenterally administered antigens. Their implications in the development of oral tolerance are briefly reviewed.
Downham, M R; Auton, T R; Rosul, A; Sharp, H L; Sjöström, L; Rushton, A; Richards, J P; Mant, T G K; Gardiner, S M; Bennett, T; Glover, J F
2003-01-01
Aims We aim to modulate the renin–angiotensin system (RAS) by active immunization against angiotensin I hormone (AI), potentially providing a novel conjugate vaccine treatment for hypertension in man. Methods Immunization studies in rat and human subjects compare the effectiveness of tetanus toxoid (TT) and keyhole limpet haemocyanin (KLH) vaccines for immunotherapy following conjugation with an AI peptide analogue (AI). Cardiovascular responses were assessed in immunized rats and human subjects (two-dose trial only), following increasing i.v. infusions of either AI or angiotensin II hormone (AII). Results The AI–TT and AI–KLH conjugate vaccines induced an equivalent immune response, and inhibition of the pressor effects to exogenous AI in rats. Single-dose clinical trials with both conjugate vaccines only resulted in an immune response to the KLH carrier protein. A two-dose clinical trial of AI–KLH conjugate vaccine resulted in a significant immune response to AI. A shift in diastolic blood pressure (DBP) dose–response was demonstrated following challenge with AI and AII for the study volunteer showing the largest anti-AI IgG induction. Conclusion KLH was shown to be a suitable alternative to TT as a carrier protein for AI, thus supporting continued evaluation of our AI–KLH conjugate vaccine for treatment of hypertension in man. PMID:14651724
Evaluation of outbreak response immunization in the control of pertussis using agent-based modeling.
Doroshenko, Alexander; Qian, Weicheng; Osgood, Nathaniel D
2016-01-01
Pertussis control remains a challenge due to recently observed effects of waning immunity to acellular vaccine and suboptimal vaccine coverage. Multiple outbreaks have been reported in different ages worldwide. For certain outbreaks, public health authorities can launch an outbreak response immunization (ORI) campaign to control pertussis spread. We investigated effects of an outbreak response immunization targeting young adolescents in averting pertussis cases. We developed an agent-based model for pertussis transmission representing disease mechanism, waning immunity, vaccination schedule and pathogen transmission in a spatially-explicit 500,000-person contact network representing a typical Canadian Public Health district. Parameters were derived from literature and calibration. We used published cumulative incidence and dose-specific vaccine coverage to calibrate the model's epidemiological curves. We endogenized outbreak response by defining thresholds to trigger simulated immunization campaigns in the 10-14 age group offering 80% coverage. We ran paired simulations with and without outbreak response immunization and included those resulting in a single ORI within a 10-year span. We calculated the number of cases averted attributable to outbreak immunization campaign in all ages, in the 10-14 age group and in infants. The count of cases averted were tested using Mann-Whitney U test to determine statistical significance. Numbers needed to vaccinate during immunization campaign to prevent a single case in respective age groups were derived from the model. We varied adult vaccine coverage, waning immunity parameters, immunization campaign eligibility and tested stronger vaccination boosting effect in sensitivity analyses. 189 qualified paired-runs were analyzed. On average, ORI was triggered every 26 years. On a per-run basis, there were an average of 124, 243 and 429 pertussis cases averted across all age groups within 1, 3 and 10 years of a campaign, respectively. During the same time periods, 53, 96, and 163 cases were averted in the 10-14 age group, and 6, 11, 20 in infants under 1 (p < 0.001, all groups). Numbers needed to vaccinate ranged from 49 to 221, from 130 to 519 and from 1,031 to 4,903 for all ages, the 10-14 age group and for infants, respectively. Most sensitivity analyses resulted in minimal impact on a number of cases averted. Our model generated 30 years of longitudinal data to evaluate effects of outbreak response immunization in a controlled study. Immunization campaign implemented as an outbreak response measure among adolescents may confer benefits across all ages accruing over a 10-year period. Our inference is dependent on having an outbreak of significant magnitude affecting predominantly the selected age and achieving a comprehensive vaccine coverage during the campaign. Economic evaluations and comparisons with other control measures can add to conclusions generated by our work.
PEG-PLA-PEG block copolymeric nanoparticles for oral immunization against hepatitis B.
Jain, Arvind K; Goyal, Amit K; Mishra, Neeraj; Vaidya, Bhuvaneshwar; Mangal, Sharad; Vyas, Suresh P
2010-03-15
PLA/PLGA nanoparticles are well known as efficient vaccine delivery systems, but they have got limitation in oral vaccine delivery because of their sensitivity to harsh gastric environment. The aim of present study was to improve the stability of PLA nanoparticles in such environment by copolymerizing PLA with PEG. Nanoparticles were formulated using different block copolymers AB, ABA and BAB (where 'A' is PLA and 'B' is PEG) encapsulating hepatitis B surface antigen (HBsAg) to evaluate their efficacy as oral vaccine delivery system. The results of in vitro studies engrave the efficiency of copolymeric nanoparticles to retain encapsulated antigen and average particle size even after 2 h incubation in simulated gastric fluid and simulated intestinal fluid. Fluorescence microscopic studies indicated efficient uptake of copolymeric nanoparticles by gut mucosa of immunized mice model as compared to control. Finally copolymeric and PLA nanoparticles, encapsulating HBsAg, were evaluated for their adjuvancity in generating immune response after oral administration. PLA nanoparticles could not generate an effective immune response due to stability issues. On the other hand, oral administration of copolymeric nanoparticles exhibited effective levels of humoral immunity along with the mucosal (sIgA) and cellular immune response (T(H)1). The results of in vitro and in vivo studies demonstrate that BAB nanoparticles depict enhanced mucosal uptake leading to effective immune response as compared to other copolymeric nanoparticles. Present study indicates the efficacy of BAB nanoparticles as a promising carrier for oral immunization. 2009 Elsevier B.V. All rights reserved.
Cibulski, Samuel Paulo; Silveira, Fernando; Mourglia-Ettlin, Gustavo; Teixeira, Thais Fumaco; dos Santos, Helton Fernandes; Yendo, Anna Carolina; de Costa, Fernanda; Fett-Neto, Arthur Germano; Gosmann, Grace; Roehe, Paulo Michel
2016-04-01
A saponin fraction extracted from Quillaja brasiliensis leaves (QB-90) and a semi-purified aqueous extract (AE) were evaluated as adjuvants in a bovine viral diarrhea virus (BVDV) vaccine in mice. Animals were immunized on days 0 and 14 with antigen plus either QB-90 or AE or an oil-adjuvanted vaccine. Two-weeks after boosting, antibodies were measured by ELISA; cellular immunity was evaluated by DTH, lymphoproliferation, cytokine release and single cell IFN-γ production. Serum anti-BVDV IgG, IgG1 and IgG2b were significantly increased in QB-90- and AE-adjuvanted vaccines. A robust DTH response, increased splenocyte proliferation, Th1-type cytokines and enhanced production of IFN-γ by CD4(+) and CD8(+) T lymphocytes were detected in mice that received QB-90-adjuvanted vaccine. The AE-adjuvanted preparation stimulated humoral responses but not cellular immune responses. These findings reveal that QB-90 is capable of stimulating both cellular and humoral immune responses when used as adjuvant. Copyright © 2016 Elsevier Ltd. All rights reserved.
Immunological evaluation of chitosan nanoparticles loaded with tetanus toxoid.
Ghalavand, M; Saadati, M; Ahmadi, A; Abbasi, E; Salimian, J
2018-01-01
The present study was aimed at comparing tetanus toxoid (TT)‑loaded-chitosan nanoparticles with aluminum hydroxide as a common vaccine adjuvant. Tetanus remains to be a major public health problem. Nanoparticles have been extensively used as immune adjuvants. Tetanus toxoid (TT) encapsulated in chitosan nanoparticles is considered to be a promising tetanus vaccine candidate. TT‑loaded chitosan nanoparticles were prepared by the ionic gelation method. The nanoparticles were studied by SEM for their size and morphology. In vivo study was conducted to evaluate the immunity response using mice divided into 4 groups and injected with encapsulated toxoid. The immune responses were then measured using indirect ELISA. The purity and integrity of antigen were confirmed by SDS-PAGE electrophoresis. The size of nanoparticles was estimated at 100 nm. As a result, the IgG antibody levels were 1.9, 1.76, and 0.87 in chitosan nanoparticles, aluminum hydroxide, and TT alone groups, respectively. Also, the immune responses were significantly higher in immunized groups compared to control groups vaccinated with free adjuvant vaccines (p < 0.05). The quality and efficacy of toxoid‑loaded chitosan nanoparticles were reasonable. It enhanced the immune responses as much as aluminum hydroxide adjuvant does and thus may be a good alternative candidate (Tab. 1, Fig. 3, Ref. 16).
Bovine response to lipoarabinomannan vaccination and challenge with Mycobacterium paratuberculosis.
Jolly, Ana; Morsella, Claudia; Bass, Laura; Fiorentino, María Andrea; Paolicchi, Fernando Alberto; Mundo, Silvia Leonor
2013-01-01
This study aimed to evaluate the immune response in bovines following immunization with a mycobaterial Lipoarabinomannan extract (LAMe) and the effect of Map challenge. LAMe vaccine induced specific antibody levels that diminished after the challenge and affected Map excretion at least for 100 days thereafter.
Bliss, Carly M; Drammeh, Abdoulie; Bowyer, Georgina; Sanou, Guillaume S; Jagne, Ya Jankey; Ouedraogo, Oumarou; Edwards, Nick J; Tarama, Casimir; Ouedraogo, Nicolas; Ouedraogo, Mireille; Njie-Jobe, Jainaba; Diarra, Amidou; Afolabi, Muhammed O; Tiono, Alfred B; Yaro, Jean Baptiste; Adetifa, Uche J; Hodgson, Susanne H; Anagnostou, Nicholas A; Roberts, Rachel; Duncan, Christopher J A; Cortese, Riccardo; Viebig, Nicola K; Leroy, Odile; Lawrie, Alison M; Flanagan, Katie L; Kampmann, Beate; Imoukhuede, Egeruan B; Sirima, Sodiomon B; Bojang, Kalifa; Hill, Adrian V S; Nébié, Issa; Ewer, Katie J
2017-02-01
Heterologous prime-boosting with viral vectors encoding the pre-erythrocytic antigen thrombospondin-related adhesion protein fused to a multiple epitope string (ME-TRAP) induces CD8 + T cell-mediated immunity to malaria sporozoite challenge in European malaria-naive and Kenyan semi-immune adults. This approach has yet to be evaluated in children and infants. We assessed this vaccine strategy among 138 Gambian and Burkinabe children in four cohorts: 2- to 6-year olds in The Gambia, 5- to 17-month-olds in Burkina Faso, and 5- to 12-month-olds and 10-week-olds in The Gambia. We assessed induction of cellular immunity, taking into account the distinctive hematological status of young infants, and characterized the antibody response to vaccination. T cell responses peaked 7 days after boosting with modified vaccinia virus Ankara (MVA), with highest responses in infants aged 10 weeks at priming. Incorporating lymphocyte count into the calculation of T cell responses facilitated a more physiologically relevant comparison of cellular immunity across different age groups. Both CD8 + and CD4 + T cells secreted cytokines. Induced antibodies were up to 20-fold higher in all groups compared with Gambian and United Kingdom (UK) adults, with comparable or higher avidity. This immunization regimen elicited strong immune responses, particularly in young infants, supporting future evaluation of efficacy in this key target age group for a malaria vaccine. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Dubinsky, Marla C.; Lin, Ying-Chao; Dutridge, Debra; Picornell, Yoana; Landers, Carol J.; Farrior, Sharmayne; Wrobel, Iwona; Quiros, Antonio; Vasiliauskas, Eric A.; Grill, Bruce; Israel, David; Bahar, Ron; Christie, Dennis; Wahbeh, Ghassan; Silber, Gary; Dallazadeh, Saied; Shah, Praful; Thomas, Danny; Kelts, Drew; Hershberg, Robert M.; Elson, Charles O.; Targan, Stephan R.; Taylor, Kent D.; Rotter, Jerome I.; Yang, Huiying
2007-01-01
BACKGROUND AND AIM Crohn’s disease (CD) is a heterogeneous disorder characterized by diverse clinical phenotypes. Childhood-onset CD has been described as a more aggressive phenotype. Genetic and immune factors may influence disease phenotype and clinical course. We examined the association of immune responses to microbial antigens with disease behavior and prospectively determined the influence of immune reactivity on disease progression in pediatric CD patients. METHODS Sera were collected from 196 pediatric CD cases and tested for immune responses: anti-I2, anti-outer membrane protein C (anti-OmpC), anti-CBir1 flagellin (anti-CBir1), and anti-Saccharomyces-cerevisiae (ASCA) using ELISA. Associations between immune responses and clinical phenotype were evaluated. RESULTS Fifty-eight patients (28%) developed internal penetrating and/or stricturing (IP/S) disease after a median follow-up of 18 months. Both anti-OmpC (p < 0.0006) and anti-I2 (p < 0.003) were associated with IP/S disease. The frequency of IP/S disease increased with increasing number of immune responses (p trend = 0.002). The odds of developing IP/S disease were highest in patients positive for all four immune responses (OR (95% CI): 11 (1.5–80.4); p = 0.03). Pediatric CD patients positive for ≥1 immune response progressed to IP/S disease sooner after diagnosis as compared to those negative for all immune responses (p < 0.03). CONCLUSIONS The presence and magnitude of immune responses to microbial antigens are significantly associated with more aggressive disease phenotypes among children with CD. This is the first study to prospectively demonstrate that the time to develop a disease complication in children is significantly faster in the presence of immune reactivity, thereby predicting disease progression to more aggressive disease phenotypes among pediatric CD patients. PMID:16454844
2013-07-01
by Listeria -Stimulated Human Dendritic Cells: Implications for Cancer Vaccine Therapy PRINCIPAL INVESTIGATOR: David J. Chung, MD, PhD...2013 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER W81XWH-11-1-0384 Evaluation of Immune Responses Mediated by Listeria -Stimulated Human Dendritic...Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The purpose of this project is to study the immunomodulatory effect of Listeria on human
Solanki, Amit Kumar; Bhatia, Bharati; Kaushik, Himani; Deshmukh, Sachin K; Dixit, Aparna; Garg, Lalit C
2017-07-01
Clostridium perfringens beta toxin (CPB) is the primary pathogenic factor responsible for necrotic enteritis in sheep, cattle and humans. Owing to rapid progression of the disease, vaccination is the only possible recourse to avoid high mortality in animal farms and huge economic losses. The present study reports evaluation of a cpb gene-based DNA vaccine encoding the beta toxin of C. perfringens with homologous as well as heterologous booster strategy. Immunization strategy employing heterologous booster with heat-inactivated rCPB mounted stronger immune response when compared to that generated by homologous booster. Antibody isotyping and cytokine ELISA demonstrated the immune response to be Th1-biased mixed immune response. While moderate protection of immunized BALB/c and C57BL/6 mice against rCPB challenge was observed with homologous booster strategy, heterologous booster strategy led to complete protection. Thus, beta toxin-based DNA vaccine using the heterologous prime-boosting strategy was able to generate better immune response and conferred greater degree of protection against high of dose rCPB challenge than homologous booster regimen, making it an effective vaccination approach against C. perfringens beta toxin.
Kowalczyk, Aleksandra; Doener, Fatma; Zanzinger, Kai; Noth, Janine; Baumhof, Patrick; Fotin-Mleczek, Mariola; Heidenreich, Regina
2016-07-19
mRNA represents a new platform for the development of therapeutic and prophylactic vaccines with high flexibility with respect to production and application. We have previously shown that our two component self-adjuvanted mRNA-based vaccines (termed RNActive® vaccines) induce balanced immune responses comprising both humoral and cellular effector as well as memory responses. Here, we evaluated the early events upon intradermal application to gain more detailed insights into the underlying mode of action of our mRNA-based vaccine. We showed that the vaccine is taken up in the skin by both non-leukocytic and leukocytic cells, the latter being mostly represented by antigen presenting cells (APCs). mRNA was then transported to the draining lymph nodes (dLNs) by migratory dendritic cells. Moreover, the encoded protein was expressed and efficiently presented by APCs within the dLNs as shown by T cell proliferation and immune cell activation, followed by the induction of the adaptive immunity. Importantly, the immunostimulation was limited to the injection site and lymphoid organs as no proinflammatory cytokines were detected in the sera of the immunized mice indicating a favorable safety profile of the mRNA-based vaccines. Notably, a substantial boostability of the immune responses was observed, indicating that mRNA can be used effectively in repetitive immunization schedules. The evaluation of the immunostimulation following prime and boost vaccination revealed no signs of exhaustion as demonstrated by comparable levels of cytokine production at the injection site and immune cell activation within dLNs. In summary, our data provide mechanistic insight into the mode of action and a rational for the use of mRNA-based vaccines as a promising immunization platform. Copyright © 2016 Elsevier Ltd. All rights reserved.
Rybacka-Mossakowska, J; Ramlau, R; Gazdulska, J; Gołda-Gocka, I; Kozubski, W; Michalak, S
2016-01-01
Cognitive impairment develops as a clinical manifestation of immune-mediated indirect effects of malignancy in lung cancer patients. This study aimed to evaluate the effects of humoral immune response on cognition in lung cancer patients. Fifty-one lung cancer patients were subjected to neurological examination: Mini Mental State Examination (MMSE), Trail Making Test (TMT), and Hamilton scale. The Psychology Experiment Building Language software was used for the evaluation of digit span, simple reaction time (SRT), and choice reaction time (CRT) tests. Serum samples were tested for the presence of onconeuronal antibodies and antineural antibodies. The results demonstrate that autoantibodies were found in 31 % patients. MMSE scores were lower (26.7 ± 2.7) in seropositive patients than in seronegative subjects (28.7 ± 1.2; p = 0.013). Executive functions were also influenced by the presence of autoantibodies. The humoral immune response in lung cancer patients affected both SRT and CRT. We conclude that the humoral immune response in lung cancer patients is associated with cognitive impairment. Cognitive impairment is associated with both specific reactions against onconeuronal or antineural antigens and non-organ specific reactions against nucleosome antigens.
Phaswana, P H; Ndumnego, O C; Koehler, S M; Beyer, W; Crafford, J E; van Heerden, H
2017-09-07
The Sterne live spore vaccine (34F2) is the most widely used veterinary vaccine against anthrax in animals. Antibody responses to several antigens of Bacillus anthracis have been described with a large focus on those against protective antigen (PA). The focus of this study was to evaluate the protective humoral immune response induced by the live spore anthrax vaccine in goats. Boer goats vaccinated twice (week 0 and week 12) with the Sterne live spore vaccine and naive goats were used to monitor the anti-PA and toxin neutralizing antibodies at week 4 and week 17 (after the second vaccine dose) post vaccination. A/J mice were passively immunized with different dilutions of sera from immune and naive goats and then challenged with spores of B. anthracis strain 34F2 to determine the protective capacity of the goat sera. The goat anti-PA ELISA titres indicated significant sero-conversion at week 17 after the second doses of vaccine (p = 0.009). Mice receiving undiluted sera from goats given two doses of vaccine (twice immunized) showed the highest protection (86%) with only 20% of mice receiving 1:1000 diluted sera surviving lethal challenge. The in vitro toxin neutralization assay (TNA) titres correlated to protection of passively immunized A/J mice against lethal infection with the vaccine strain Sterne 34F2 spores using immune goat sera up to a 1:10 dilution (r s ≥ 0.522, p = 0.046). This study suggests that the passive mouse protection model could be potentially used to evaluate the protective immune response in livestock animals vaccinated with the current live vaccine and new vaccines.
Bovine response to lipoarabinomannan vaccination and challenge with Mycobacterium paratuberculosis
Jolly, Ana; Morsella, Claudia; Bass, Laura; Fiorentino, María Andrea; Paolicchi, Fernando Alberto; Mundo, Silvia Leonor
2013-01-01
This study aimed to evaluate the immune response in bovines following immunization with a mycobaterial Lipoarabinomannan extract (LAMe) and the effect of Map challenge. LAMe vaccine induced specific antibody levels that diminished after the challenge and affected Map excretion at least for 100 days thereafter. PMID:24294248
Arginine and vitamin E improve the immune response after a Salmonella challenge in broiler chicks
USDA-ARS?s Scientific Manuscript database
Two experiments were conducted to evaluate the effects of arginine (ARG), vitamin E (VE), and mannanoligosaccharide (MOS) on the immune response and clearance of Salmonella in broiler chickens. In each experiment, chicks were randomly distributed into 4 groups: antibiotic-free diet (negative contro...
Jung, Bock-Gie; Lee, Jin-A; Lee, Bong-Joo
2012-12-01
It has been considered that drinking oxygenated water improves oxygen availability, which may increase vitality and improve immune functions. The present study evaluated the effects of oxygenated drinking water on immune function in pigs. Continuous drinking of oxygenated water markedly increased peripheral blood mononuclear cell proliferation, interleukin-1β expression level and the CD4(+):CD8(+) cell ratio in pigs. During Salmonella Typhimurium infection, total leukocytes and relative cytokines expression levels were significantly increased in pigs consuming oxygenated water compared with pigs consuming tap water. These findings suggest that oxygenated drinking water enhances immune activity in pigs and increases immune responses of pigs during S. Typhimurium Infection.
Shishkina, L N; Mazurkova, N A; Ternovoĭ, V A; Bulychev, L E; Tumanov, Iu V; Skarnovich, M O; Kabanov, A S; Ryndiuk, N N; Kuzubov, V I; Mironov, A N; Stavskiĭ, E A; Drozdov, I G
2011-01-01
Evaluate reactogenicity, safety and immunogenicity in phase 2 clinical trials of 2 immunization schedules with Ultragrivac--an allantoic intranasal life influenza vaccine based on A/17/ duck/Potsdam/86/92 [17/H5] reassortant strain. 4 groups of volunteers participated in the study: group 1--40 individuals were vaccinated twice with a 10 day interval; group 2--40 individuals were vaccinated twice with a 21 day interval; group 3 (control)--10 individuals received placebo twice with a 10 day interval; group 4 (control)--10 individuals received placebo twice with a 21 day interval. Local (secretory IgA), cellular and humoral immune response were evaluated. Humoral immunity was evaluated by the intensity of increase of geometric mean antibody titers against 2 influenza virus strains A/17/duck/Potsdam/86/92 [17/H5] and A/chicken/Suzdalka/Nov-1 1/2005 (H5N1), and by the level of significant (4 times or more) antibody seroconversions after the vaccination. After the use of Ultragrivac the level of secretory IgA in the nasal cavity of vaccinated volunteers in the groups with revaccination intervals of 10 and 21 days increased significantly. The second immunization with 10 or 21 day intervals significantly increased postvaccinal humoral immune response. Humoral immune response induction after 2 vaccinations with 10 day interval was no less effective than with 21 day interval. Ultragrivac allantoic intranasal live influenza vaccine is areactogenic, harmless for vaccinated individuals, safe for those around, and has immunogenic properties against not only homologous virus A(H5N2), but also against influenza strain A(H5N1).
Shin, T-S; Kim, J H; Kim, Y-S; Jeon, S G; Zhu, Z; Gho, Yong Song; Kim, Yoon-Keun
2010-10-01
Previous evidence indicates that inhalation of lipopolysaccharide (LPS)-containing with allergens induced mixed Th1 and Th17 cell responses in the airways. Extracellular vesicles (EVs) are nanometer-sized spherical, lipid-bilayered structures and are recently in the public eye as an intercellular communicator in immune responses. To evaluate the role of EVs secreted by LPS inhalation in the development of airway immune dysfunction in response to allergens. Extracellular vesicles in bronchoalveolar lavage fluids of BALB/c mice were isolated and characterized 24 h after applications to the airway of 10 μg of LPS for 3 days. To evaluate the role of LPS-induced EVs on the development of airway immune dysfunction, in vivo and in vitro experiments were performed using the isolated LPS-induced EVs. The inhalation of LPS enhanced EVs release into the BAL fluid, when compared to the application of PBS. Airway sensitization with allergens and LPS-induced EVs resulted in a mixed Th1 and Th17 cell responses, although that with allergens and PBS-induced EVs induced immune tolerance. In addition, LPS-induced EVs enhanced the production of Th1- and Th17-polarizing cytokines (IL-12p70 and IL-6, respectively) by lung dendritic cells. Moreover, the immune responses induced by the LPS-induced EVs were blocked by denaturation of the EV-bearing proteins. These data suggest that EVs (especially, the protein components) secreted by LPS inhalation are a key intercellular communicator in the development of airway immune dysfunction to inhaled LPS-containing allergens.
Shin, T-S; Kim, J H; Kim, Y-S; Jeon, S G; Zhu, Z; Gho, Y S; Kim, Y-K
2010-01-01
Background Previous evidence indicates that inhalation of lipopolysaccharide (LPS)-containing with allergens induced mixed Th1 and Th17 cell responses in the airways. Extracellular vesicles (EVs) are nanometer-sized spherical, lipid-bilayered structures and are recently in the public eye as an intercellular communicator in immune responses. Objective To evaluate the role of EVs secreted by LPS inhalation in the development of airway immune dysfunction in response to allergens. Methods Extracellular vesicles in bronchoalveolar lavage fluids of BALB/c mice were isolated and characterized 24 h after applications to the airway of 10 μg of LPS for 3 days. To evaluate the role of LPS-induced EVs on the development of airway immune dysfunction, in vivo and in vitro experiments were performed using the isolated LPS-induced EVs. Results The inhalation of LPS enhanced EVs release into the BAL fluid, when compared to the application of PBS. Airway sensitization with allergens and LPS-induced EVs resulted in a mixed Th1 and Th17 cell responses, although that with allergens and PBS-induced EVs induced immune tolerance. In addition, LPS-induced EVs enhanced the production of Th1- and Th17-polarizing cytokines (IL-12p70 and IL-6, respectively) by lung dendritic cells. Moreover, the immune responses induced by the LPS-induced EVs were blocked by denaturation of the EV-bearing proteins. Conclusion These data suggest that EVs (especially, the protein components) secreted by LPS inhalation are a key intercellular communicator in the development of airway immune dysfunction to inhaled LPS-containing allergens. PMID:20337607
Multiple Vaccinations: Friend or Foe
Church, Sarah E.; Jensen, Shawn M.; Twitty, Chris; Bahjat, Keith; Hu, Hong-Ming; Urba, Walter J.; Fox, Bernard A.
2013-01-01
Few immunotherapists would accept the concept of a single vaccination inducing a therapeutic anti-cancer immune response in a patient with advanced cancer. But what is the evidence to support the “more-is-better” approach of multiple vaccinations? Since we are unaware of trials comparing the effect of a single vaccine versus multiple vaccinations on patient outcome, we considered that an anti-cancer immune response might provide a surrogate measure of the effectiveness of vaccination strategies. Since few large trials include immunological monitoring, the majority of information is gleaned from smaller trials in which an evaluation of immune responses to vaccine or tumor, before and at one or more times following the first vaccine was performed. In some studies there is convincing evidence that repeated administration of a specific vaccine can augment the immune response to antigens contained in the vaccine. In other settings multiple vaccinations can significantly reduce the immune response to one or more targets. Results from three large adjuvant vaccine studies support the potential detrimental effect of multiple vaccinations as clinical outcomes in the control arms were significantly better than that for treatment groups. Recent research has provided insights into mechanisms that are likely responsible for the reduced responses in the studies noted above, but supporting evidence from clinical specimens is generally lacking. Interpretation of these results is further complicated by the possibility that the dominant immune response may evolve to recognize epitopes not present in the vaccine. Nonetheless, the FDA-approval of the first therapeutic cancer vaccine and recent developments from preclinical models and clinical trials provide a substantial basis for optimism and a critical evaluation of cancer vaccine strategies. PMID:21952289
Kaulfuß, Meike; Wensing, Ina; Windmann, Sonja; Hrycak, Camilla Patrizia; Bayer, Wibke
2017-02-06
In the Friend retrovirus mouse model we developed potent adenovirus-based vaccines that were designed to induce either strong Friend virus GagL 85-93 -specific CD8 + T cell or antibody responses, respectively. To optimize the immunization outcome we evaluated vaccination strategies using combinations of these vaccines. While the vaccines on their own confer strong protection from a subsequent Friend virus challenge, the simple combination of the vaccines for the establishment of an optimized immunization protocol did not result in a further improvement of vaccine effectivity. We demonstrate that the co-immunization with GagL 85-93 /leader-gag encoding vectors together with envelope-encoding vectors abrogates the induction of GagL 85-93 -specific CD8 + T cells, and in successive immunization protocols the immunization with the GagL 85-93 /leader-gag encoding vector had to precede the immunization with an envelope encoding vector for the efficient induction of GagL 85-93 -specific CD8 + T cells. Importantly, the antibody response to envelope was in fact enhanced when the mice were adenovirus-experienced from a prior immunization, highlighting the expedience of this approach. To circumvent the immunosuppressive effect of envelope on immune responses to simultaneously or subsequently administered immunogens, we developed a two immunizations-based vaccination protocol that induces strong immune responses and confers robust protection of highly Friend virus-susceptible mice from a lethal Friend virus challenge.
Lopez, Wilfredo; Page, Alexis M; Carlson, Darby J; Ericson, Brad L; Cserhati, Matyas F; Guda, Chittibabu; Carlson, Kimberly A
2018-01-01
Drosophila melanogaster depends upon the innate immune system to regulate and combat viral infection. This is a complex, yet widely conserved process that involves a number of immune pathways and gene interactions. In addition, expression of genes involved in immunity are differentially regulated as the organism ages. This is particularly true for viruses that demonstrate chronic infection, as is seen with Nora virus. Nora virus is a persistent non-pathogenic virus that replicates in a horizontal manner in D. melanogaster . The genes involved in the regulation of the immune response to Nora virus infection are largely unknown. In addition, the temporal response of immune response genes as a result of infection has not been examined. In this study, D. melanogaster either infected with Nora virus or left uninfected were aged for 2, 10, 20 and 30 days. The RNA from these samples was analyzed by next generation sequencing (NGS) and the resulting immune-related genes evaluated by utilizing both the PANTHER and DAVID databases, as well as comparison to lists of immune related genes and FlyBase. The data demonstrate that Nora virus infected D. melanogaster exhibit an increase in immune related gene expression over time. In addition, at day 30, the data demonstrate that a persistent immune response may occur leading to an upregulation of specific immune response genes. These results demonstrate the utility of NGS in determining the potential immune system genes involved in Nora virus replication, chronic infection and involvement of antiviral pathways.
USDA-ARS?s Scientific Manuscript database
Two phytonutrient mixtures, VAC (carvacrol, cinnamaldehyde, and Capsicum oleoresin), and MC (Capsicum oleoresin and turmeric oleoresin), were evaluated for their effects on local and systemic immune responses following immunization of chickens with an Eimeria recombinant protein. Chickens were fed ...
García-León, Miguel L; Bonifaz, Laura C; Espinosa-Torres, Bogart; Hernández-Pérez, Brenda; Cardiel-Marmolejo, Lino; Santos-Preciado, José I; Wong-Chew, Rosa M
2015-01-01
Measles virus (MeV) represents one of the main causes of death among young children, particularly in developing countries. Upon infection, MeV controls both interferon induction (IFN) and the interferon signaling pathway which results in a severe host immunosuppression that can persists for up to 6 mo after infection. Despite the global biology of MeV infection is well studied, the role of the plasmacytoid dendritic cells (pDCs) during the host innate immune response after measles vaccination remains largely uncharacterized. Here we investigated the role of pDCs, the major producers of interferon in response to viral infections, in the development of adaptive immune response against MeV vaccine. We report that there is a strong correlation between pDCs population and the humoral immune response to Edmonston Zagreb (EZ) measles vaccination in 9-month-old mexican infants. Five infants were further evaluated after vaccination, showing a clear increase in pDCs at baseline, one week and 3 months after immunization. Three months postvaccination they showed increase in memory T-cells and pDCs populations, high induction of adaptive immunity and also observed a correlation between pDCs number and the humoral immune response. These findings suggest that the development and magnitude of the adaptive immune response following measles immunization is directly dependent on the number of pDCs of the innate immune response. PMID:26075901
Repurposing Ospemifene for Potentiating an Antigen-Specific Immune Response
Kao, Chiao-Jung; Wurz, Gregory T.; Lin, Yi-Chen; Vang, Daniel P.; Phong, Brian; DeGregorio, Michael W.
2016-01-01
Objective Ospemifene, an estrogen receptor agonist/antagonist approved for treatment of dyspareunia and vaginal dryness in postmenopausal women, has potential new indications as an immune modulator. The overall objective of the present series of preclinical studies was to evaluate the immunomodulatory activity of ospemifene in combination with a peptide cancer vaccine. Methods Immune regulating effects, mechanism of action and structure activity relationships of ospemifene and related compounds were evaluated by examining expression of T cell activating cytokines in vitro, and antigen-specific immune response and cytotoxic T-lymphocyte activity in vivo. The effects of ospemifene (OSP) on the immune response to a peptide cancer vaccine (PV) were evaluated following chronic [control (n=22); OSP 50 mg/kg (n=16); PV (n=6); OSP+PV (n=11)], intermittent [control (n=10); OSP 10 and 50 mg/kg (n=11); PV (n=11); combination treatment (n=11 each dose)] and pretreatment [control; OSP 100 mg/kg; PV 100 µg; combination treatment (n=8 all groups)] ospemifene oral dosing schedules in a total of 317 mixed-sex tumor-bearing and non-tumor-bearing mice. Results The results showed that ospemifene induced expression of the key TH1 cytokines interferon gamma and interleukin-2 in vitro, which may be mediated by stimulating T cells through phosphoinositide 3-kinase and calmodulin signaling pathways. In combination with an antigen-specific peptide cancer vaccine, ospemifene increased antigen-specific immune response and increased cytotoxic T-lymphocyte activity in tumor-bearing and non-tumor-bearing mice. The pretreatment, intermittent, and chronic dosing schedules of ospemifene activate naïve T cells, modulate antigen-induced tolerance and reduce tumor-associated, pro-inflammatory cytokines, respectively. Conclusions Taken together, ospemifene’s dose response and schedule-dependent immune modulating activity offers a method of tailoring and augmenting the efficacy of previously failed antigen-specific cancer vaccines for a wide range of malignancies. PMID:27922937
Andrianaivoarimanana, Voahangy; Telfer, Sandra; Rajerison, Minoarisoa; Ranjalahy, Michel A; Andriamiarimanana, Fehivola; Rahaingosoamamitiana, Corinne; Rahalison, Lila; Jambou, Ronan
2012-01-01
Plague is endemic within the central highlands of Madagascar, where its main reservoir is the black rat, Rattus rattus. Typically this species is considered susceptible to plague, rapidly dying after infection inducing the spread of infected fleas and, therefore, dissemination of the disease to humans. However, persistence of transmission foci in the same area from year to year, supposes mechanisms of maintenance among which rat immune responses could play a major role. Immunity against plague and subsequent rat survival could play an important role in the stabilization of the foci. In this study, we aimed to investigate serological responses to plague in wild black rats from endemic areas of Madagascar. In addition, we evaluate the use of a recently developed rapid serological diagnostic test to investigate the immune response of potential reservoir hosts in plague foci. We experimentally infected wild rats with Yersinia pestis to investigate short and long-term antibody responses. Anti-F1 IgM and IgG were detected to evaluate this antibody response. High levels of anti-F1 IgM and IgG were found in rats one and three weeks respectively after challenge, with responses greatly differing between villages. Plateau in anti-F1 IgM and IgG responses were reached for as few as 500 and 1500 colony forming units (cfu) inoculated respectively. More than 10% of rats were able to maintain anti-F1 responses for more than one year. This anti-F1 response was conveniently followed using dipsticks. Inoculation of very few bacteria is sufficient to induce high immune response in wild rats, allowing their survival after infection. A great heterogeneity of rat immune responses was found within and between villages which could heavily impact on plague epidemiology. In addition, results indicate that, in the field, anti-F1 dipsticks are efficient to investigate plague outbreaks several months after transmission.
Higher whole-blood selenium is associated with improved immune responses in footrot-affected sheep.
Hall, Jean A; Sendek, Rachel L; Chinn, Rachel M; Bailey, D Paul; Thonstad, Katie N; Wang, Yongqiang; Forsberg, Neil E; Vorachek, William R; Stang, Bernadette V; Van Saun, Robert J; Bobe, Gerd
2011-09-06
We reported previously that sheep affected with footrot (FR) have lower whole-blood selenium (WB-Se) concentrations and that parenteral Se-supplementation in conjunction with routine control practices accelerates recovery from FR. The purpose of this follow-up study was to investigate the mechanisms by which Se facilitates recovery from FR. Sheep affected with FR (n = 38) were injected monthly for 15 months with either 5 mg Se (FR-Se) or saline (FR-Sal), whereas 19 healthy sheep received no treatment. Adaptive immune function was evaluated after 3 months of Se supplementation by immunizing all sheep with a novel protein, keyhole limpet hemocyanin (KLH). The antibody titer and delayed-type hypersensitivity (DTH) skin test to KLH were used to assess humoral immunity and cell-mediated immunity, respectively. Innate immunity was evaluated after 3 months of Se supplementation by measuring intradermal responses to histamine 30 min after injection compared to KLH and saline, and after 15 months of Se supplementation by isolating neutrophils and measuring their bacterial killing ability and relative abundance of mRNA for genes associated with neutrophil migration. Compared to healthy sheep, immune responses to a novel protein were suppressed in FR-affected sheep with smaller decreases in FR-affected sheep that received Se or had WB-Se concentrations above 250 ng/mL at the time of the immune assays. Neutrophil function was suppressed in FR-affected sheep, but was not changed by Se supplementation or WB-Se status. Sheep FR is associated with depressed immune responses to a novel protein, which may be partly restored by improving WB-Se status (> 250 ng/mL).
Higher whole-blood selenium is associated with improved immune responses in footrot-affected sheep
2011-01-01
We reported previously that sheep affected with footrot (FR) have lower whole-blood selenium (WB-Se) concentrations and that parenteral Se-supplementation in conjunction with routine control practices accelerates recovery from FR. The purpose of this follow-up study was to investigate the mechanisms by which Se facilitates recovery from FR. Sheep affected with FR (n = 38) were injected monthly for 15 months with either 5 mg Se (FR-Se) or saline (FR-Sal), whereas 19 healthy sheep received no treatment. Adaptive immune function was evaluated after 3 months of Se supplementation by immunizing all sheep with a novel protein, keyhole limpet hemocyanin (KLH). The antibody titer and delayed-type hypersensitivity (DTH) skin test to KLH were used to assess humoral immunity and cell-mediated immunity, respectively. Innate immunity was evaluated after 3 months of Se supplementation by measuring intradermal responses to histamine 30 min after injection compared to KLH and saline, and after 15 months of Se supplementation by isolating neutrophils and measuring their bacterial killing ability and relative abundance of mRNA for genes associated with neutrophil migration. Compared to healthy sheep, immune responses to a novel protein were suppressed in FR-affected sheep with smaller decreases in FR-affected sheep that received Se or had WB-Se concentrations above 250 ng/mL at the time of the immune assays. Neutrophil function was suppressed in FR-affected sheep, but was not changed by Se supplementation or WB-Se status. Sheep FR is associated with depressed immune responses to a novel protein, which may be partly restored by improving WB-Se status (> 250 ng/mL). PMID:21896161
Suppressed plasmablast responses in febrile infants, including children with Kawasaki disease
Martin, Meghan; Wrotniak, Brian H.
2018-01-01
Background Kawasaki disease (KD), the leading cause of acquired heart disease in children, primarily affects infants and toddlers. Investigations on immune responses during KD are hampered by a limited understanding of normal immune responses in these ages. It’s well known that Infants have poorer vaccine responses and difficulty with maintaining prolonged serum immunity, but there are few studies on human infants detailing immune deficiencies. Limited studies propose an inability to maintain life-long bone marrow plasma cells. Plasmablasts are a transitional cell form of B cells that lead to long-term Plasma cells. Plasmablasts levels rise in the peripheral blood after exposure to a foreign antigen. In adult studies, these responses are both temporally and functionally well characterized. To date, there have been few studies on plasmablasts in the predominant age range of KD. Methods Children presenting to an urban pediatric emergency room undergoing laboratory evaluation, who had concern of KD or had fever and symptoms overlapping those of KD, were recruited. Peripheral blood mononuclear cells were isolated and evaluated utilizing flow cytometry with specific B cell markers from 18 KD subjects and 69 febrile controls. Results Plasmablast numbers and temporal formation are similar between infectious disease controls and KD subjects. In both groups, infants have diminished plasmablast responses compared to older children. Conclusion In this single-time point survey, infants have a blunted peripheral plasmablast response. Overall, similar plasmablast responses in KD and controls support an infectious disease relationship to KD. Future time-course studies of plasmablasts in infants are warranted as this phenomenon may contribute to observed immune responses in this age group. PMID:29579044
Effects of BRAF mutations and BRAF inhibition on immune responses to melanoma
Ilieva, Kristina M.; Correa, Isabel; Josephs, Debra H.; Karagiannis, Panagiotis; Egbuniwe, Isioma U.; Cafferkey, Michiala J.; Spicer, James F.; Harries, Mark; Nestle, Frank O.; Lacy, Katie E.; Karagiannis, Sophia N.
2014-01-01
Malignant melanoma is associated with poor clinical prognosis; however, novel molecular and immune therapies are now improving patient outcomes. Almost 50% of melanomas harbor targetable activating mutations of BRAF which promote RAS-RAF-MEK-ERK pathway activation and melanoma proliferation. Recent evidence also indicates that melanomas bearing mutant BRAF may also have altered immune responses, suggesting additional avenues for treatment of this patient group. The small molecule inhibitors selective for mutant BRAF induce significant but short-lived clinical responses in a proportion of patients, but also lead to immune stimulatory bystander events, which then subside with the emergence of resistance to inhibition. Simultaneous BRAF and MEK inhibition, and especially combination of BRAF inhibitors with new immunotherapies such as checkpoint blockade antibodies, may further enhance immune activation, or counteract immunosuppressive signals. Pre-clinical evaluation and ongoing clinical trials should provide novel insights into the role of immunity in the therapy of BRAF-mutant melanoma. PMID:25385327
Corridoni, Daniele; Chapman, Thomas; Ambrose, Tim; Simmons, Alison
2018-01-01
Activation of the innate immune system through pattern-recognition receptor (PRR) signaling plays a pivotal role in the early induction of host defense following exposure to pathogens. Loss of intestinal innate immune regulation leading aberrant immune responses has been implicated in the pathogenesis of inflammatory bowel disease (IBD). The precise role of PRRs in gut inflammation is not well understood, but considering their role as bacterial sensors and their genetic association with IBD, they likely contribute to dysregulated immune responses to the commensal microbiota. The purpose of this review is to evaluate the emerging functions of PRRs including their functional cross-talk, how they respond to mitochondrial damage, induce mitophagy or autophagy, and influence adaptive immune responses by interacting with the antigen presentation machinery. The review also summarizes some of the recent attempts to harness these pathways for therapeutic approaches in intestinal inflammation. PMID:29515999
Wu, Hong-Yin; Abdu, Samira; Stinson, Dana; Russell, Michael W.
2000-01-01
Genital antibody responses were compared in female mice immunized intravaginally (i.vag.) or intranasally (i.n.) with a bacterial protein antigen (AgI/II of Streptococcus mutans) coupled to the B subunit of cholera toxin. Serum and salivary antibodies were also evaluated as measures of disseminated mucosal and systemic responses. Although i.vag. immunization induced local vaginal immunoglobulin A (IgA) and IgG antibody responses, these were not disseminated to a remote secretion, the saliva, and only modest levels of serum antibodies were generated. In contrast, i.n. immunization was substantially more effective at inducing IgA and IgG antibody responses in the genital tract and in the circulation, as well as at inducing IgA antibodies in the saliva. Moreover, mucosal and systemic antibodies induced by i.n. immunization persisted for at least 12 months. Analysis of the molecular form of genital IgA indicated that the majority of both total IgA and specific IgA antibody was polymeric, and likely derived from the common mucosal immune system. PMID:10992451
Goettel, Jeremy A.; Biswas, Subhabrata; Lexmond, Willem S.; Yeste, Ada; Passerini, Laura; Patel, Bonny; Yang, Siyoung; Sun, Jiusong; Ouahed, Jodie; Shouval, Dror S.; McCann, Katelyn J.; Horwitz, Bruce H.; Mathis, Diane; Milford, Edgar L.; Notarangelo, Luigi D.; Roncarolo, Maria-Grazia; Fiebiger, Edda; Marasco, Wayne A.; Bacchetta, Rosa; Quintana, Francisco J.; Pai, Sung-Yun; Klein, Christoph; Muise, Aleixo M.
2015-01-01
Mice reconstituted with a human immune system provide a tractable in vivo model to assess human immune cell function. To date, reconstitution of murine strains with human hematopoietic stem cells (HSCs) from patients with monogenic immune disorders have not been reported. One obstacle precluding the development of immune-disease specific “humanized” mice is that optimal adaptive immune responses in current strains have required implantation of autologous human thymic tissue. To address this issue, we developed a mouse strain that lacks murine major histocompatibility complex class II (MHC II) and instead expresses human leukocyte antigen DR1 (HLA-DR1). These mice displayed improved adaptive immune responses when reconstituted with human HSCs including enhanced T-cell reconstitution, delayed-type hypersensitivity responses, and class-switch recombination. Following immune reconstitution of this novel strain with HSCs from a patient with immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome, associated with aberrant FOXP3 function, mice developed a lethal inflammatory disorder with multiorgan involvement and autoantibody production mimicking the pathology seen in affected humans. This humanized mouse model permits in vivo evaluation of immune responses associated with genetically altered HSCs, including primary immunodeficiencies, and should facilitate the study of human immune pathobiology and the development of targeted therapeutics. PMID:25833964
Souza, Anselmo; Santos, Silvane; Carvalho, Lucas P.; Grassi, Maria Fernanda R.; Carvalho, Edgar M.
2016-01-01
T cells from HTLV-1-infected individuals have a decreased ability to proliferate after stimulation with recall antigens. This abnormality may be due to the production of regulatory cytokine or a dysfunctional antigen presentation. The aims of this study were to evaluate the antibody production and cytokine expression by lymphocytes before and after immunization with tetanus toxoid (TT) and to evaluate the immune response of monocytes after stimulation with TT and frequency of dendritic cells (DC) subsets. HTLV-1 carriers (HC) and uninfected controls with negative serology for TT were immunized with TT, and the antibody titers were determined by ELISA as well as the cell activation markers expression by monocytes. The frequencies of DC subsets were determined by flow cytometry. Following immunization, the IgG anti-TT titers and the frequency of CD4+ T cells expressing IFN-γ, TNF and IL-10 in response to TT were lower in the (HC) than in the controls. Additionally, monocytes from HC did not exhibit increased HLA-DR expression after stimulation with TT, and presented low numbers of DC subsets, therefore, it’s necessary to perform functional studies with antigen-presenting cells. Collectively, our finding suggests that HC present an impairment of the humoral and CD4+ T cell immune responses after vaccination. PMID:27282836
Lokhandwala, Shehnaz; Waghela, Suryakant D; Bray, Jocelyn; Martin, Cameron L; Sangewar, Neha; Charendoff, Chloe; Shetti, Rashmi; Ashley, Clay; Chen, Chang-Hsin; Berghman, Luc R; Mwangi, Duncan; Dominowski, Paul J; Foss, Dennis L; Rai, Sharath; Vora, Shaunak; Gabbert, Lindsay; Burrage, Thomas G; Brake, David; Neilan, John; Mwangi, Waithaka
2016-11-01
The African swine fever virus (ASFV) causes a fatal hemorrhagic disease in domestic swine, and at present no treatment or vaccine is available. Natural and gene-deleted, live attenuated strains protect against closely related virulent strains; however, they are yet to be deployed and evaluated in the field to rule out chronic persistence and a potential for reversion to virulence. Previous studies suggest that antibodies play a role in protection, but induction of cytotoxic T lymphocytes (CTLs) could be the key to complete protection. Hence, generation of an efficacious subunit vaccine depends on identification of CTL targets along with a suitable delivery method that will elicit effector CTLs capable of eliminating ASFV-infected host cells and confer long-term protection. To this end, we evaluated the safety and immunogenicity of an adenovirus-vectored ASFV (Ad-ASFV) multiantigen cocktail formulated in two different adjuvants and at two immunizing doses in swine. Immunization with the cocktail rapidly induced unprecedented ASFV antigen-specific antibody and cellular immune responses against all of the antigens. The robust antibody responses underwent rapid isotype switching within 1 week postpriming, steadily increased over a 2-month period, and underwent rapid recall upon boost. Importantly, the primed antibodies strongly recognized the parental ASFV (Georgia 2007/1) by indirect fluorescence antibody (IFA) assay and Western blotting. Significant antigen-specific gamma interferon-positive (IFN-γ + ) responses were detected postpriming and postboosting. Furthermore, this study is the first to demonstrate induction of ASFV antigen-specific CTL responses in commercial swine using Ad-ASFV multiantigens. The relevance of the induced immune responses in regard to protection needs to be evaluated in a challenge study. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Waghela, Suryakant D.; Bray, Jocelyn; Martin, Cameron L.; Sangewar, Neha; Charendoff, Chloe; Shetti, Rashmi; Ashley, Clay; Chen, Chang-Hsin; Berghman, Luc R.; Mwangi, Duncan; Dominowski, Paul J.; Foss, Dennis L.; Rai, Sharath; Vora, Shaunak; Gabbert, Lindsay; Burrage, Thomas G.; Brake, David; Neilan, John
2016-01-01
The African swine fever virus (ASFV) causes a fatal hemorrhagic disease in domestic swine, and at present no treatment or vaccine is available. Natural and gene-deleted, live attenuated strains protect against closely related virulent strains; however, they are yet to be deployed and evaluated in the field to rule out chronic persistence and a potential for reversion to virulence. Previous studies suggest that antibodies play a role in protection, but induction of cytotoxic T lymphocytes (CTLs) could be the key to complete protection. Hence, generation of an efficacious subunit vaccine depends on identification of CTL targets along with a suitable delivery method that will elicit effector CTLs capable of eliminating ASFV-infected host cells and confer long-term protection. To this end, we evaluated the safety and immunogenicity of an adenovirus-vectored ASFV (Ad-ASFV) multiantigen cocktail formulated in two different adjuvants and at two immunizing doses in swine. Immunization with the cocktail rapidly induced unprecedented ASFV antigen-specific antibody and cellular immune responses against all of the antigens. The robust antibody responses underwent rapid isotype switching within 1 week postpriming, steadily increased over a 2-month period, and underwent rapid recall upon boost. Importantly, the primed antibodies strongly recognized the parental ASFV (Georgia 2007/1) by indirect fluorescence antibody (IFA) assay and Western blotting. Significant antigen-specific gamma interferon-positive (IFN-γ+) responses were detected postpriming and postboosting. Furthermore, this study is the first to demonstrate induction of ASFV antigen-specific CTL responses in commercial swine using Ad-ASFV multiantigens. The relevance of the induced immune responses in regard to protection needs to be evaluated in a challenge study. PMID:27628166
Ferrari, Luca; Borghetti, Paolo; De Angelis, Elena; Martelli, Paolo
2014-04-16
Porcine circovirus type 2 (PCV2) vaccination represents an important measure to cope with PCV2 infection; however, data regarding the modulation of the immune cell compartment are still limited, especially under field conditions. This study is aimed at investigating the features of the cellular immune response in conventional piglets induced by vaccination using a capsid (Cap) protein-based PCV2 vaccine compared to unvaccinated animals when exposed to PCV2 natural infection. Immune reactivity was evaluated by quantifying peripheral cell subsets involved in the anti-viral response and characterizing the interferon-gamma (IFN-γ) secreting cell (SC) responsiveness both in vivo and upon in vitro whole PCV2 recall. The vaccination triggered an early and intense IFN-γ secreting cell response and induced the activation of peripheral lymphocytes. The early increase of IFN-γ SC frequencies resulted in a remarkable and transient tendency to increased IFN-γ productivity in vaccinated pigs. In vaccinated animals, soon before the onset of infection occurred 15-16 weeks post-vaccination, the recalled PCV2-specific immune response was characterized by moderate PCV2-specific IFN-γ secreting cell frequencies and augmented productivity together with reactive CD4+CD8+ memory T cells. Conversely, upon infection, unvaccinated animals showed very high frequencies of IFN-γ secreting cells and a tendency to lower productivity, which paralleled with effector CD4-CD8+ cytotoxic cell responsiveness. The study shows that PCV2 vaccination induces a long-lasting immunity sustained by memory T cells and IFN-γ secreting cells that potentially played a role in preventing the onset of infection; the extent and duration of this reactivity can be an important feature for evaluating the protective immunity induced by vaccination.
pH-Responsive Micelle-Based Cytoplasmic Delivery System for Induction of Cellular Immunity.
Yuba, Eiji; Sakaguchi, Naoki; Kanda, Yuhei; Miyazaki, Maiko; Koiwai, Kazunori
2017-11-04
(1) Background: Cytoplasmic delivery of antigens is crucial for the induction of cellular immunity, which is an important immune response for the treatment of cancer and infectious diseases. To date, fusogenic protein-incorporated liposomes and pH-responsive polymer-modified liposomes have been used to achieve cytoplasmic delivery of antigen via membrane rupture or fusion with endosomes. However, a more versatile cytoplasmic delivery system is desired for practical use. For this study, we developed pH-responsive micelles composed of dilauroyl phosphatidylcholine (DLPC) and deoxycholic acid and investigated their cytoplasmic delivery performance and immunity-inducing capability. (2) Methods: Interaction of micelles with fluorescence dye-loaded liposomes, intracellular distribution of micelles, and antigenic proteins were observed. Finally, antigen-specific cellular immune response was evaluated in vivo using ELIspot assay. (3) Results: Micelles induced leakage of contents from liposomes via lipid mixing at low pH. Micelles were taken up by dendritic cells mainly via macropinocytosis and delivered ovalbumin (OVA) into the cytosol. After intradermal injection of micelles and OVA, OVA-specific cellular immunity was induced in the spleen. (4) Conclusions: pH-responsive micelles composed of DLPC and deoxycholic acid are promising as enhancers of cytosol delivery of antigens and the induction capability of cellular immunity for the treatment of cancer immunotherapy and infectious diseases.
Transcriptome characterization of immune suppression from battlefield-like stress
Muhie, S; Hammamieh, R; Cummings, C; Yang, D; Jett, M
2013-01-01
Transcriptome alterations of leukocytes from soldiers who underwent 8 weeks of Army Ranger training (RASP, Ranger Assessment and Selection Program) were analyzed to evaluate impacts of battlefield-like stress on the immune response. About 1400 transcripts were differentially expressed between pre- and post-RASP leukocytes. Upon functional analysis, immune response was the most enriched biological process, and most of the transcripts associated with the immune response were downregulated. Microbial pattern recognition, chemotaxis, antigen presentation and T-cell activation were among the most downregulated immune processes. Transcription factors predicted to be stress-inhibited (IRF7, RELA, NFκB1, CREB1, IRF1 and HMGB) regulated genes involved in inflammation, maturation of dendritic cells and glucocorticoid receptor signaling. Many altered transcripts were predicted to be targets of stress-regulated microRNAs. Post-RASP leukocytes exposed ex vivo to Staphylococcal enterotoxin B showed a markedly impaired immune response to this superantigen compared with pre-RASP leukocytes, consistent with the suppression of the immune response revealed by transcriptome analyses. Our results suggest that suppression of antigen presentation and lymphocyte activation pathways, in the setting of normal blood cell counts, most likely contribute to the poor vaccine response, impaired wound healing and infection susceptibility associated with chronic intense stress. PMID:23096155
Restrepo, B I; Aguilar, M I; Melby, P C; Teale, J M
2001-10-01
In neurocysticercosis (NCC), it is thought that the long-term survival of the parasite within the human brain is due in part to the ability of the cestode to suppress the local immune response. When the parasite dies, the immunosuppression is apparently lost and a strong local inflammatory response then develops. In contrast, little is known about the immunologic response that may occur in the peripheral immune system of these patients. In this study, the status of the peripheral (extracerebral) cellular and humoral response was evaluated in patients with a history of NCC. The in vitro proliferation of peripheral blood mononuclear cells to mitogens and foreign antigens was similar in patients and controls. Importantly, a substantive response was elicited by two Taenia solium metacestode antigens. In addition, 8 of 10 patients had a detectable humoral response to the antigenic glycoproteins of the cestode. Considering both the cellular and humoral response, all of the patients with NCC presented an active peripheral immunity.
Jordán-Villegas, Alejandro; Perdomo, Anilza Bonelo; Epstein, Judith E.; López, Jesús; Castellanos, Alejandro; Manzano, María R.; Hernández, Miguel A.; Soto, Liliana; Méndez, Fabián; Richie, Thomas L.; Hoffman, Stephen L.; Arévalo-Herrera, Myriam; Herrera, Sócrates
2011-01-01
A non-human primate model for the induction of protective immunity against the pre-erythrocytic stages of Plasmodium vivax malaria using radiation-attenuated P. vivax sporozoites may help to characterize protective immune mechanisms and identify novel malaria vaccine candidates. Immune responses and protective efficacy induced by vaccination with irradiated P. vivax sporozoites were evaluated in malaria-naive Aotus monkeys. Three groups of six monkeys received two, five, or ten intravenous inoculations, respectively, of 100,000 irradiated P. vivax sporozoites; control groups received either 10 doses of uninfected salivary gland extract or no inoculations. Immunization resulted in the production low levels of antibodies that specifically recognized P. vivax sporozoites and the circumsporozoite protein. Additionally, immunization induced low levels of antigen-specific IFN-γ responses. Intravenous challenge with viable sporozoites resulted in partial protection in a dose-dependent manner. These findings suggest that the Aotus monkey model may be able to play a role in preclinical development of P. vivax pre-erythrocytic stage vaccines. PMID:21292877
Sedgmen, B. J.; Papalia, L.; Wang, L.; Dyson, A. R.; McCallum, H. A.; Simson, C. M.; Pearse, M. J.; Maraskovsky, E.; Hung, D.; Eomois, P. P.; Hartel, G.; Barnden, M. J.; Rockman, S. P.
2013-01-01
The measurement of vaccine-induced humoral and CD4+ and CD8+ cellular immune responses represents an important correlate of vaccine efficacy. Accurate and reliable assays evaluating such responses are therefore critical during the clinical development phase of vaccines. T cells play a pivotal role both in coordinating the adaptive and innate immune responses and as effectors. During the assessment of cell-mediated immunity (CMI) in subjects participating in a large-scale influenza vaccine trial, we identified the expansion of an IFN-γ-producing CD3+CD4−CD8− γδ + T cell population in the peripheral blood of 90/610 (15%) healthy subjects. The appearance of CD3+CD4−CD8− γδ + T cells in the blood of subjects was transient and found to be independent of the study cohort, vaccine group, subject gender and ethnicity, and ex vivo restimulation conditions. Although the function of this population and relevance to vaccination are unclear, their inclusion in the total vaccine-specific T-cell response has the potential to confound data interpretation. It is thus recommended that when evaluating the induction of IFN-γ-producing CD4+ and CD8+ immune responses following vaccination, the CD3+CD4−CD8− γδ + T cells are either excluded or separately enumerated from the overall frequency determination. PMID:24066003
Oliveira, Thaís Larré; Collares, Thaís Farias; Monte, Leonardo Garcia; Inda, Guilherme Roig; Moreira, Angelita da Silveira
2017-01-01
The successful production of new, safe, and effective vaccines that generate immunological memory is directly related to adjuvant feature, which is responsible for increasing and/or modulating the immune response. Several compounds display adjuvant activity, including carbohydrates. These compounds play important roles in the immune response, as well as having biocompatible properties in vaccine formulations. One such carbohydrate is xanthan gum, a polysaccharide that is produced by the plant-pathogenic bacterium Xanthomonas spp., which has adjuvant attributes. This study evaluated the immune response induced by xanthan gum associated with ovalbumin in BALB/c mice, which were subcutaneously immunized, in terms of antibody production (IgG1, IgG2a, IgG2b, and IgG3), and assessed the levels of IFN-γ in the splenocyte culture using indirect ELISA. Furthermore, we investigated in vitro cytotoxicity of xanthan in the embryo fibroblasts cell line of the NIH/3T3 mouse by MTT assay and propidium iodide uptake assay. The mice immunized with ovalbumin plus xanthan gum exhibited higher antibody IgG1 responses than control groups. Furthermore, the xanthan polysaccharide was capable of increasing the immunogenicity of antigens by producing IFN-γ and did not exhibit cytotoxicity effects in NIH/3T3 mouse fibroblast cells, considered a promising candidate for vaccine adjuvant. PMID:28555192
A multiherbal formulation influencing immune response in vitro.
Menghini, L; Leporini, L; Scanu, N; Pintore, G; Ferrante, C; Recinella, L; Orlando, G; Vacca, M; Brunetti, L
2012-02-01
Aim of this study was to evaluate the effects of phytocomplexes of Uncaria, Shiitake and Ribes in terms of viability and inflammatory response on immune cell-derived cultures. Standardized extracts of Uncaria, Shitake and Ribes and their commercial formulation were tested on cell lines PBMC, U937 and macrophage. The activity was evaluated in terms of cell viability (MTT test), variations of oxidative marker release (ROS and PGE2) and modulatory effects on immune response (gene expression of IL-6, IL-8 and TNFα, RT-PCR). Cell viability was not affected by extracts, except subtle variations observed only at higher doses (>250 µg/mL). The extract mixture was well tolerated, with no effects on cell viability up to doses of 500 µg/mL. Pre-treatment of macrophages with subtoxic doses of the extracts reduced the basal release of oxidative markers and enhanced the cell response to exogenous oxidant stimulation, as revealed by ROS and PGE2 release reduction. The same treatment on macrophage resulted in a selective modulation of the immune response, as shown by an increase of IL-6 mRNA and, partially, IL-8 mRNA, while a reduction was observed for TNFα mRNA. Data confirm that extracts and their formulations can act as regulator of the immune system with mechanisms involving the oxidative stress and the release of selected proinflammatory cytokines.
Tae, Donghyun; Seok, Junhee
2018-05-29
In this paper, we introduce multiple-matching Evidence-based Translator (mEBT) to discover genomic responses from murine expression data for human immune studies, which are significant in the given condition of mice and likely have similar responses in the corresponding condition of human. mEBT is evaluated over multiple data sets and shows improved inter-species agreement. mEBT is expected to be useful for research groups who use murine models to study human immunity. http://cdal.korea.ac.kr/mebt/. jseok14@korea.ac.kr. Supplementary data are available at Bioinformatics online.
da Silva, Tatiana Pereira; Giacoia-Gripp, Carmem Beatriz Wagner; Schmaltz, Carolina A; Sant'Anna, Flavia Marinho; Saad, Maria Helena; Matos, Juliana Arruda de; de Lima E Silva, Julio Castro Alves; Rolla, Valeria Cavalcanti; Morgado, Mariza Gonçalves
2017-09-06
Little is known regarding the restoration of the specific immune response after combined antiretroviral therapy (cART) and anti-tuberculosis (TB) therapy introduction among TB-HIV patients. In this study, we examined the immune response of TB-HIV patients to Mycobacterium tuberculosis (Mtb) antigens to evaluate the response dynamics to different antigens over time. Moreover, we also evaluated the influence of two different doses of efavirenz and the factors associated with immune reconstitution. This is a longitudinal study nested in a clinical trial, where cART was initiated during the baseline visit (D0), which occurred 30 ± 10 days after the introduction of anti-TB therapy. Follow-up visits were performed at 30, 60, 90 and 180 days after cART initiation. The production of IFN-γ upon in vitro stimulation with Mtb antigens purified protein derivative (PPD), ESAT-6 and 38 kDa/CFP-10 using ELISpot was examined at baseline and follow-up visits. Sixty-one patients, all ART-naïve, were selected and included in the immune reconstitution analysis; seven (11.5%) developed Immune Reconstitution Inflammatory Syndrome (IRIS). The Mtb specific immune response was higher for the PPD antigen followed by 38 kDa/CFP-10 and increased in the first 60 days after cART initiation. In multivariate analysis, the variables independently associated with increased IFN-γ production in response to PPD antigen were CD4 + T cell counts <200 cells/mm 3 at baseline, age, site of tuberculosis, 800 mg efavirenz dose and follow-up CD4 + T cell counts. Moreover, the factors associated with the production of IFN-γ in response to 38 kDa/CFP-10 were detectable HIV viral load (VL) and CD4 + T cell counts at follow-up visits of ≥200 cells/mm 3 . These findings highlight the differences in immune response according to the specificity of the Mtb antigen, which contributes to a better understanding of TB-HIV immunopathogenesis. IFN-γ production elicited by PPD and 38 kDa/CFP-10 antigens have a greater magnitude compared to ESAT-6 and are associated with different factors. The low response to ESAT-6, even during immune restoration, suggests that this antigen is not adequate to assess the immune response of immunosuppressed TB-HIV patients.
Wang, Rui-ning; Wang, Ya-bin; Geng, Jing-wei; Guo, Dong-hui; Liu, Fang; Chen, Hong-ying; Zhang, Hong-ying; Cui, Bao-an; Wei, Zhan-yong
2012-07-27
Inactivated porcine parvovirus (PPV) vaccines are available commercially and widely used in the breeding herds. However, inactivated PPV vaccines have deficiencies in induction of specific cellular immune response. Transfer factor (TF) is a material that obtained from the leukocytes, and is a novel immune-stimulatory reagent that as a modulator of the immune system. In this study, the immunogenicity of PPV oil emulsion vaccine and the immuno-regulatory activities of TF were investigated. The inactivated PPV oil emulsion vaccines with or without TF were inoculated into BALB/c mice by subcutaneous injection. Then humoral and cellular immune responses were evaluated by indirect enzyme-linked immunosorbent assays (ELISA), fluorescence-activated cell sorter analyses (FACS). The results showed that the PPV specific immune responses could be evoked in mice by inoculating with PPV oil emulsion vaccine alone or by co-inoculation with TF. The cellular immune response levels in the co-inoculation groups were higher than those groups receiving the PPV oil emulsion vaccine alone, with the phenomena of higher level of IFN-γ, a little IL-6 and a trace of IL-4 in serum, and a vigorous T-cell response. However, there was no significant difference in antibody titers between TF synergy inactivated vaccine and the inactivated vaccine group (P>0.05). In conclusion, these results suggest that TF possess better cellular immune-enhancing capability and would be exploited into an effective immune-adjuvant for inactivated vaccines. Copyright © 2012 Elsevier Ltd. All rights reserved.
An evaluation of immunization education resources by family medicine residency directors.
Nowalk, Mary Patricia; Zimmerman, Richard K; Middleton, Donald B; Sherwood, Roger A; Ko, Feng-Shou; Kimmel, Sanford R; Troy, Judith A
2007-01-01
Immunization is a rapidly evolving field, and teachers of family medicine are responsible for ensuring that they and their students are knowledgeable about the latest vaccine recommendations. A survey was mailed to 456 family medicine residency directors across the United States to obtain their evaluation of immunization resources developed by the Society of Teachers of Family Medicine's Group on Immunization Education. Frequencies, measures of central tendency, and differences between responses from 2001 to 2005 were analyzed. Directors of 261 (57%) family medicine residencies responded, with >80% reporting satisfaction with immunization teaching resources. The popularity of bound resources decreased from 2001 to 2005, while immunization Web sites increased in importance. The journal supplement, "Vaccines Across the Lifespan, 2005" was less frequently read in 2005 than its predecessor published in 2001, but quality ratings remained high. Use of the Web site, www.ImmunizationEd.org, and the Shots software for both desktop and handheld computers has increased since their creation. Electronic immunization teaching resources are increasingly popular among family medicine residencies. As the field continues to change, the use of electronic resources is expected to continue, since they are easily updated and, in the case of www.ImmunizationEd.org and Shots software, are available free of charge.
Lopez, Wilfredo; Page, Alexis M.; Carlson, Darby J.; Ericson, Brad L.; Cserhati, Matyas F.; Guda, Chittibabu; Carlson, Kimberly A.
2018-01-01
Drosophila melanogaster depends upon the innate immune system to regulate and combat viral infection. This is a complex, yet widely conserved process that involves a number of immune pathways and gene interactions. In addition, expression of genes involved in immunity are differentially regulated as the organism ages. This is particularly true for viruses that demonstrate chronic infection, as is seen with Nora virus. Nora virus is a persistent non-pathogenic virus that replicates in a horizontal manner in D. melanogaster. The genes involved in the regulation of the immune response to Nora virus infection are largely unknown. In addition, the temporal response of immune response genes as a result of infection has not been examined. In this study, D. melanogaster either infected with Nora virus or left uninfected were aged for 2, 10, 20 and 30 days. The RNA from these samples was analyzed by next generation sequencing (NGS) and the resulting immune-related genes evaluated by utilizing both the PANTHER and DAVID databases, as well as comparison to lists of immune related genes and FlyBase. The data demonstrate that Nora virus infected D. melanogaster exhibit an increase in immune related gene expression over time. In addition, at day 30, the data demonstrate that a persistent immune response may occur leading to an upregulation of specific immune response genes. These results demonstrate the utility of NGS in determining the potential immune system genes involved in Nora virus replication, chronic infection and involvement of antiviral pathways. PMID:29707694
Lambracht-Washington, Doris; Fu, Min; Frost, Pat; Rosenberg, Roger N
2017-04-26
Aggregated amyloid-β peptide 1-42 (Aβ42), derived from the cellular amyloid precursor protein, is one of the pathological hallmarks of Alzheimer's disease (AD). Although active immunization against Aβ42 peptide was successful in AD mouse models and led to removal of plaques and improved memory, a similar clinical trial in humans (Aβ42 peptide immunization with QS-21 adjuvant) was stopped in phase II, when 6% of the treated patients developed encephalitis. Currently ongoing passive immunizations with the injection of preformed monoclonal antibodies against different epitopes within the Aβ 1-42 peptide, which do not lead to activation of the immune system, have shown some effects in slowing AD pathology. Active DNA Aβ42 immunizations administered with the gene gun into the skin are noninflammatory because they activate a different T-cell population (Th2) with different cytokine responses eliciting a different humoral immune response. We present our findings in rhesus macaques that underwent the DNA Aβ42 immunization via gene gun delivery into the skin. Six rhesus monkeys received two different doses of a DNA Aβ42 trimer vaccine. The humoral immune response was analyzed from blood throughout the study, and cellular immune responses were determined in peripheral blood mononuclear cells (PBMCs) after three and six immunizations. DNA Aβ42 trimer immunization led to high titer antibody responses in the nonhuman primate (NHP) model. Antibodies generated in the rhesus monkeys following DNA Aβ42 immunization detected amyloid plaques consisting of human Aβ42 peptide in the brain of the triple-transgenic AD mouse model. T-cell responses showed no interferon (IFN)-γ- and interleukin (IL)-17-producing cells from PBMCs in Enzyme-Linked ImmunoSpot assays after three immunization time points. At six immunization time points, IFN-γ- and IL-17-producing cells were found in immunized animals as well as in control animals and were thus considered nonspecific and not due to the immunization regimen. IFN-γ and IL-17 secretion in response to Aβ42 peptide restimulation became undetectable after a 3-month rest period. Intradermal DNA Aβ42 immunization delivered with the gene gun produces a high antibody response in NHPs and is highly likely to be effective and safe in a clinical AD prevention trial in patients.
Denies, Sofie; Cicchelero, Laetitia; Polis, Ingeborgh; Sanders, Niek N.
2016-01-01
Vascular endothelial growth factor receptor-2 (VEGFR-2) is an attractive target in oncology due to its crucial role in angiogenesis. In this study a DNA vaccine coding for human VEGFR-2 was evaluated in healthy mice and dogs, administered by intradermal injection and electroporation. In mice, three doses and vaccination schedules were evaluated. Cellular immune responses were measured by intracellular IFN-gamma staining and a cytotoxicity assay and antibodies by ELISA. Safety was assessed by measuring regulatory T cells and myeloid derived suppressor cells and a wound healing assay. The vaccine was subsequently evaluated in dogs, which were vaccinated three times with 100μg. Cellular immune responses were measured by intracellular IFN-gamma staining and antibodies by a flow cytometric assay. In mice, maximal cellular responses were observed after two vaccinations with 5μg. Humoral responses continued to increase with higher dose and number of vaccinations. No abnormalities in the measured safety parameters were observed. The vaccine was also capable of eliciting a cellular and humoral immune response in dogs. No adverse effects were observed, but tolerability of the electroporation was poor. This study will facilitate the evaluation of the vaccine in tumor bearing animals, ranging from rodent models to dogs with spontaneous tumors. PMID:26871296
Coplan, Paul M; Gupta, Swati B; Dubey, Sheri A; Pitisuttithum, Punnee; Nikas, Alex; Mbewe, Bernard; Vardas, Efthyia; Schechter, Mauro; Kallas, Esper G; Freed, Dan C; Fu, Tong-Ming; Mast, Christopher T; Puthavathana, Pilaipan; Kublin, James; Brown Collins, Kelly; Chisi, John; Pendame, Richard; Thaler, Scott J; Gray, Glenda; Mcintyre, James; Straus, Walter L; Condra, Jon H; Mehrotra, Devan V; Guess, Harry A; Emini, Emilio A; Shiver, John W
2005-05-01
The genetic diversity of human immunodeficiency virus type 1 (HIV-1) raises the question of whether vaccines that include a component to elicit antiviral T cell immunity based on a single viral genetic clade could provide cellular immune protection against divergent HIV-1 clades. Therefore, we quantified the cross-clade reactivity, among unvaccinated individuals, of anti-HIV-1 T cell responses to the infecting HIV-1 clade relative to other major circulating clades. Cellular immune responses to HIV-1 clades A, B, and C were compared by standardized interferon- gamma enzyme-linked immunospot assays among 250 unvaccinated individuals, infected with diverse HIV-1 clades, from Brazil, Malawi, South Africa, Thailand, and the United States. Cross-clade reactivity was evaluated by use of the ratio of responses to heterologous versus homologous (infecting) clades of HIV-1. Cellular immune responses were predominantly focused on viral Gag and Nef proteins. Cross-clade reactivity of cellular immune responses to HIV-1 clade A, B, and C proteins was substantial for Nef proteins (ratio, 0.97 [95% confidence interval, 0.89-1.05]) and lower for Gag proteins (ratio, 0.67 [95% confidence interval, 0.62-0.73]). The difference in cross-clade reactivity to Nef and Gag proteins was significant (P<.0001). Cross-clade reactivity of cellular immune responses can be substantial but varies by viral protein.
Guirola, María; Urquiza, Dioslaida; Alvarez, Anabel; Cannan-Haden, Leonardo; Caballero, Evelin; Guillén, Gerardo
2006-03-01
In this study, we used an adoptive lymphocyte transfer experiment to evaluate the ability of the P64k recombinant protein to recruit T-helper activity and induce immunologic memory response to the polysaccharide moiety in a meningococcal serogroup C conjugate vaccine. Adoptive transfer of splenocytes from mice immunized with the glycoconjugate conferred antipolysaccharide immunologic memory to naive recipient mice. The observed anamnestic immune response was characterized by more rapid kinetics, isotype switching from IgM to IgG and higher antipolysaccharide antibody titers compared with those reached in groups transferred with splenocytes from plain polysaccharide or phosphate-immunized mice. The memory response generated was also long lasting. Sera from mice transferred with cells from conjugate-immunized mice were the only protective in the infant rat passive protection assay, and also showed higher bactericidal titers. We demonstrated that priming the mice immune system with the glycoconjugate using the P64k protein as carrier induced a memory response to the polysaccharide, promoting a switch of the T-cell-independent response to a T-cell dependent one.
USDA-ARS?s Scientific Manuscript database
This study was conducted to evaluate the effects of dietary Allium hookeri (AH) root on host intestinal immune response in necrotic enteritis (NE)-afflicted young broiler chickens. Three hundred birds (one-day-old) were randomly assigned to 6 groups (n =50 birds/treatment) and fed with basal diet (c...
USDA-ARS?s Scientific Manuscript database
We evaluated the effects of probiotics included in dairy cattle and mice feed on ruminal fermentation, immune responses, and resistance to Johne’s disease. To unveil the underlying mechanisms, dairy cattle were either fed Bovamine (1.04 x 10**9 cfu of Lactobacillus acidophilus NP51 plus 2.04 x 10**...
USDA-ARS?s Scientific Manuscript database
Purpose: To evaluate and compare humoral and cellular immune responses to inactivated swine influenza virus (SIV) vaccine. Methods: Fifty 3-week-old weaned pigs from a herd free of SIV and PRRSV were randomly divided into the non-vaccinated control group and vaccinated group containing 25 pigs each....
USDA-ARS?s Scientific Manuscript database
Humoral and cellular immune responses to inactivated swine influenza virus (SIV) vaccine were evaluated and compared. Fifty 3-week-old weaned pigs from a herd free of SIV and PRRSV were randomly divided into the non-vaccinated control group and vaccinated group containing 25 pigs each. Pigs were va...
USDA-ARS?s Scientific Manuscript database
A study was conducted to evaluate the role of bacteriophage (BP) against Salmonella enterica serovar Enteritidis (SE) internal organs colonization and ileum immune response in laying hens. Hens were challenged both orally and intracloacally with 108 cfu/mL cells of nalidixic acid resistant Salmonell...
USDA-ARS?s Scientific Manuscript database
Background. The implications of sequential prime and challenge with mismatched influenza A viruses is a concern in mammals including humans. We evaluated the ability of pigs affected with vaccine associated enhanced respiratory disease (VAERD) to generate a humoral immune response against the hetero...
Straubinger, Kathrin; Paul, Sabine; Prazeres da Costa, Olivia; Ritter, Manuel; Buch, Thorsten; Busch, Dirk H; Layland, Laura E; Prazeres da Costa, Clarissa U
2014-12-01
Schistosomiasis, a chronic helminth infection, elicits distinct immune responses within the host, ranging from an initial TH1 and subsequent TH2 phase to a regulatory state, and is associated with dampened allergic reactions within the host. We sought to evaluate whether non-transplacental helminth infection during pregnancy alters the offspring's susceptibility to allergy. Ovalbumin-induced allergic airway inflammation was analyzed in offspring from Schistosoma mansoni-infected mothers mated during the TH1, TH2, or regulatory phase of infection. Embryos derived from in vitro fertilized oocytes of acutely infected females were transferred into uninfected foster mice to determine the role of placental environment. The fetomaternal unit was further characterized by helminth-specific immune responses and microarray analyses. Eventually, IFN-γ-deficient mice were infected to evaluate the role of this predominant cytokine on the offspring's allergy phenotype. We demonstrate that offspring from schistosome-infected mothers that were mated in the TH1 and regulatory phases, but not the TH2 immune phase, are protected against the onset of allergic airway inflammation. Interestingly, these effects were associated with distinctly altered schistosome-specific cytokine and gene expression profiles within the fetomaternal interface. Furthermore, we identified that it is not the transfer of helminth antigens but rather maternally derived IFN-γ during the acute phase of infection that is essential for the progeny's protective immune phenotype. Overall, we present a novel immune phase-dependent coherency between the maternal immune responses during schistosomiasis and the progeny's predisposition to allergy. Therefore, we propose to include helminth-mediated transmaternal immune modulation into the expanded hygiene hypothesis. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Khan, Shahneaz Ali; Desclozeaux, Marion; Waugh, Courtney; Hanger, Jon; Loader, Jo; Gerdts, Volker; Potter, Andrew; Polkinghorne, Adam; Beagley, Kenneth; Timms, Peter
2016-01-01
Developing a vaccine against Chlamydia is key to combating widespread mortalities and morbidities associated with this infection in koalas (Phascolarctos cinereus). In previous studies, we have shown that two or three doses of a Recombinant Major Outer Membrane Protein (rMOMP) antigen-based vaccine, combined with immune stimulating complex (ISC) adjuvant, results in strong cellular and humoral immune responses in koalas. We have also separately evaluated a single dose vaccine, utilising a tri-adjuvant formula that comprises polyphosphazine based poly I: C and host defense peptides, with the same antigen. This formulation also produced strong cellular and humoral immune responses in captive koalas. In this current study, we directly compared the host immune responses of two sub-groups of wild Chlamydia negative koalas in one population vaccinated with the rMOMP protein antigen and adjuvanted with either the ISC or tri-adjuvant formula. Overall, both adjuvants produced strong Chlamydia-specific cellular (IFN-γ and IL-17A) responses in circulating PBMCs as well as MOMP-specific and functional, in vitro neutralising antibodies. While the immune responses were similar, there were adjuvant-specific immune differences between the two adjuvants, particularly in relation to the specificity of the MOMP epitope antibody responses. PMID:27219467
Guo, Yuanyuan; Xun, Zhe; Coffman, Stephanie R; Chen, Feng
2017-01-01
The status of intestinal microbiota is a determinant of host health. However, the alteration of the gut microbiota caused by the innate immune response to virus infection is unclear. Caenorhabditis elegans and its natural virus Orsay provide an excellent model of host-virus interactions. We evaluated the intestinal microbial community complexity of the wild-type N2 and the innate immunity-deficient mutant rde-1 ( ne219 ) strains of C. elegans upon Orsay virus infection. The gut microbiota diversity was decreased in rde-1 ( ne219 ) mutant animals, and a large number of genes were associated with the difference between infected and uninfected rde-1 ( ne219 ) mutant animals. Therefore, this study provides the first evaluation of the alterations caused by Orsay virus on intestinal microbiota in wildtype and innate immunity-deficient animals using C. elegans as the model species. Our findings indicate that virus infection may alters the microbiome in animals with defective immune response.
Guo, Yuanyuan; Xun, Zhe; Coffman, Stephanie R.; Chen, Feng
2017-01-01
The status of intestinal microbiota is a determinant of host health. However, the alteration of the gut microbiota caused by the innate immune response to virus infection is unclear. Caenorhabditis elegans and its natural virus Orsay provide an excellent model of host–virus interactions. We evaluated the intestinal microbial community complexity of the wild-type N2 and the innate immunity-deficient mutant rde-1 (ne219) strains of C. elegans upon Orsay virus infection. The gut microbiota diversity was decreased in rde-1 (ne219) mutant animals, and a large number of genes were associated with the difference between infected and uninfected rde-1 (ne219) mutant animals. Therefore, this study provides the first evaluation of the alterations caused by Orsay virus on intestinal microbiota in wildtype and innate immunity-deficient animals using C. elegans as the model species. Our findings indicate that virus infection may alters the microbiome in animals with defective immune response. PMID:28611740
Immune response to measles vaccine in Peruvian children.
Bautista-López, N. L.; Vaisberg, A.; Kanashiro, R.; Hernández, H.; Ward, B. J.
2001-01-01
OBJECTIVE: To evaluate the immune response in Peruvian children following measles vaccination. METHODS: Fifty-five Peruvian children received Schwarz measles vaccine (about 10(3) plaque forming units) at about 9 months of age. Blood samples were taken before vaccination, then twice after vaccination: one sample at between 1 and 4 weeks after vaccination and the final sample 3 months post vaccination for evaluation of immune cell phenotype and lymphoproliferative responses to measles and non-measles antigens. Measles-specific antibodies were measured by plaque reduction neutralization. FINDINGS: The humoral response developed rapidly after vaccination; only 4 of the 55 children (7%) had plaque reduction neutralization titres <200 mlU/ml 3 months after vaccination. However, only 8 out of 35 children tested (23%) had lymphoproliferative responses to measles antigens 3-4 weeks after vaccination. Children with poor lymphoproliferative responses to measles antigens had readily detectable lymphoproliferative responses to other antigens. Flow cytometric analysis of peripheral blood mononuclear cells revealed diffuse immune system activation at the time of vaccination in most children. The capacity to mount a lymphoproliferative response to measles antigens was associated with expression of CD45RO on CD4+ T-cells. CONCLUSION: The 55 Peruvian children had excellent antibody responses after measles vaccination, but only 23% (8 out of 35) generated detectable lymphoproliferative responses to measles antigens (compared with 55-67% in children in the industrialized world). This difference may contribute to the less than uniform success of measles vaccination programmes in the developing world. PMID:11731811
Wang, Long-Jiang; Xiao, Ting; Xu, Chao; Li, Jin; Liu, Gong-Zhen; Yin, Kun; Cui, Yong; Wei, Qing-Kuan; Huang, Bing-Cheng; Sun, Hui
2018-06-22
Toxoplasma gondii is an obligate intracellular protozoan that can invade all eukaryotic cells and infect all warm-blood animals, causing the important zoonosis toxoplasmosis. Invasion of host cells is the key step necessary for T. gondii to complete its life cycle and microneme proteins play an important role in attachment and invasion of host cells. Microneme protein 16 (TgMIC16) is a new protective protein in T. gondii and belongs to transmembrane microneme proteins (TM-MIC). The TM-MICs are released onto the parasite's surface as complexes capable of interacting with host cell receptors. In the present study, we expressed the TgMIC16 protein on the surface of Saccharomyce cerevisiae (pCTCON2-TgMIC16/EBY100) and evaluated it as a potential vaccine for BALB/c mice against challenge infection with the RH strain of T. gondii. We immunized BALB/c mice both orally and intraperitoneally. After three immunizations, the immune response was evaluated by measuring antibody levels, lymphocyte proliferative responses, percentages of CD4 + and CD8 + T lymphocytes, cytokine production, and the survival times of challenged mice. The results showed that the pCTCON2-TgMIC16/EBY100 vaccine stimulated humoral and cellular immune responses. In addition, mice immunized with the pCTCON2-TgMIC16/EBY100 vaccine showed increased survival times compared with non-immunized controls. In summary, TgMIC16 displayed on the cell surface of S. cerevisiae could be used as potential vaccine against toxoplasmosis. Copyright © 2018 Elsevier Ltd. All rights reserved.
Evaluation of YadC protein delivered by live attenuated Salmonella as a vaccine against plague.
Sun, Wei; Olinzock, Joseph; Wang, Shifeng; Sanapala, Shilpa; Curtiss, Roy
2014-03-01
Yersinia pestis YadB and YadC are two new outer membrane proteins related to its pathogenicity. Here, codon-optimized yadC, yadC810 (aa 32-551), or yadBC antigen genes delivered by live attenuated Salmonella strains are evaluated in mice for induction of protective immune responses against Y. pestis CO92 through subcutaneous or intranasal challenge. Our findings indicate that mice immunized with Salmonella synthesizing YadC, YadC810, or YadBC develop significant serum IgG responses to purified recombinant YadC protein. For subcutaneous challenge (approximately 230 LD50 of Y. pestis CO92), mice immunized with Salmonella synthesizing YadC or YadC810 are afforded 50% protection, but no protection by immunization with the Salmonella strain synthesizing YadBC. None of these antigens provided protection against intranasal challenge (approximately 31 LD50 of Y. pestis CO92). In addition, subcutaneous immunization with purified YadC810 protein emulsified with alum adjuvant does not elicit a protective response against Y. pestis administered by either challenge route. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Kumar, Amit; Li, Xinran; Sandoval, Michael A; Rodriguez, B Leticia; Sloat, Brian R; Cui, Zhengrong
2011-01-01
Background: The present study was designed to evaluate the extent to which pretreatment with microneedles can enhance skin permeation of nanoparticles in vitro and in vivo. Permeation of live bacteria, which are physically nanoparticles or microparticles, through mouse skin pretreated with microneedles was also studied to evaluate the potential risk of microbial infection. Methods and results: It was found that pretreatment of mouse skin with microneedles allowed permeation of solid lipid nanoparticles, size 230 nm, with ovalbumin conjugated on their surface. Transcutaneous immunization in a mouse skin area pretreated with microneedles with ovalbumin nanoparticles induced a stronger antiovalbumin antibody response than using ovalbumin alone. The dose of ovalbumin antigen determined whether microneedle-mediated transcutaneous immunization with ovalbumin nanoparticles induced a stronger immune response than subcutaneous injection of the same ovalbumin nanoparticles. Microneedle treatment permitted skin permeation of live Escherichia coli, but the extent of the permeation was not greater than that enabled by hypodermic injection. Conclusion: Transcutaneous immunization on a microneedle-treated skin area with antigens carried by nanoparticles can potentially induce a strong immune response, and the risk of bacterial infection associated with microneedle treatment is no greater than that with a hypodermic injection. PMID:21753877
Giardiasis in mice: analysis of humoral and cellular immune responses to Giardia muris.
Anders, R F; Roberts-Thomson, I C; Mitchell, G F
1982-01-01
Humoral and cellular immune responses have been evaluated in two inbred strains of mice which differ markedly in their susceptibility to infection with Giardia muris. Serum IgG and IgA antibody levels and IgA levels in intestinal washes were determined by a solid-phase radioimmunoassay using G. muris antigen prepared by sonication of trophozoites, while cell-mediated immunity was assessed by a radiometric ear-assay for delayed-type hypersensitivity. Following infection of BALB/c mice (resistant) and C3H/He mice (susceptible), the IgG and IgA antibody levels in serum progressively increased over the period of study with C3H/He mice having significantly higher titres of IgA antibodies than BALB/c late in the infection. Systemic immunization with G. muris trophozoites resulted in high titres of IgG antibodies in the serum. IgA antibodies were detected in intestinal washes 2 weeks after infection with a subsequent fall in levels in BALB/c mice but a progressive increase levels in C3H/He mice. Prior immunization resulted in IgA antibodies being detected earlier in the intestinal washings after a challenge infection. Delayed-type hypersensitivity to G. muris antigens could not be detected during an infection but a positive response was elicited following antigen priming in mice pretreated with cyclophosphamide. The immune responses evaluated in this study were assessed using a whole G. muris trophozoite sonicate and variations in the quantitative aspects of the responses did not account for observed differences in the course of infection in the two strains of mice.
Cao, Pengxing; Yan, Ada W C; Heffernan, Jane M; Petrie, Stephen; Moss, Robert G; Carolan, Louise A; Guarnaccia, Teagan A; Kelso, Anne; Barr, Ian G; McVernon, Jodie; Laurie, Karen L; McCaw, James M
2015-08-01
Influenza is an infectious disease that primarily attacks the respiratory system. Innate immunity provides both a very early defense to influenza virus invasion and an effective control of viral growth. Previous modelling studies of virus-innate immune response interactions have focused on infection with a single virus and, while improving our understanding of viral and immune dynamics, have been unable to effectively evaluate the relative feasibility of different hypothesised mechanisms of antiviral immunity. In recent experiments, we have applied consecutive exposures to different virus strains in a ferret model, and demonstrated that viruses differed in their ability to induce a state of temporary immunity or viral interference capable of modifying the infection kinetics of the subsequent exposure. These results imply that virus-induced early immune responses may be responsible for the observed viral hierarchy. Here we introduce and analyse a family of within-host models of re-infection viral kinetics which allow for different viruses to stimulate the innate immune response to different degrees. The proposed models differ in their hypothesised mechanisms of action of the non-specific innate immune response. We compare these alternative models in terms of their abilities to reproduce the re-exposure data. Our results show that 1) a model with viral control mediated solely by a virus-resistant state, as commonly considered in the literature, is not able to reproduce the observed viral hierarchy; 2) the synchronised and desynchronised behaviour of consecutive virus infections is highly dependent upon the interval between primary virus and challenge virus exposures and is consistent with virus-dependent stimulation of the innate immune response. Our study provides the first mechanistic explanation for the recently observed influenza viral hierarchies and demonstrates the importance of understanding the host response to multi-strain viral infections. Re-exposure experiments provide a new paradigm in which to study the immune response to influenza and its role in viral control.
Cao, Pengxing; Yan, Ada W. C.; Heffernan, Jane M.; Petrie, Stephen; Moss, Robert G.; Carolan, Louise A.; Guarnaccia, Teagan A.; Kelso, Anne; Barr, Ian G.; McVernon, Jodie; Laurie, Karen L.; McCaw, James M.
2015-01-01
Influenza is an infectious disease that primarily attacks the respiratory system. Innate immunity provides both a very early defense to influenza virus invasion and an effective control of viral growth. Previous modelling studies of virus–innate immune response interactions have focused on infection with a single virus and, while improving our understanding of viral and immune dynamics, have been unable to effectively evaluate the relative feasibility of different hypothesised mechanisms of antiviral immunity. In recent experiments, we have applied consecutive exposures to different virus strains in a ferret model, and demonstrated that viruses differed in their ability to induce a state of temporary immunity or viral interference capable of modifying the infection kinetics of the subsequent exposure. These results imply that virus-induced early immune responses may be responsible for the observed viral hierarchy. Here we introduce and analyse a family of within-host models of re-infection viral kinetics which allow for different viruses to stimulate the innate immune response to different degrees. The proposed models differ in their hypothesised mechanisms of action of the non-specific innate immune response. We compare these alternative models in terms of their abilities to reproduce the re-exposure data. Our results show that 1) a model with viral control mediated solely by a virus-resistant state, as commonly considered in the literature, is not able to reproduce the observed viral hierarchy; 2) the synchronised and desynchronised behaviour of consecutive virus infections is highly dependent upon the interval between primary virus and challenge virus exposures and is consistent with virus-dependent stimulation of the innate immune response. Our study provides the first mechanistic explanation for the recently observed influenza viral hierarchies and demonstrates the importance of understanding the host response to multi-strain viral infections. Re-exposure experiments provide a new paradigm in which to study the immune response to influenza and its role in viral control. PMID:26284917
Souza, Anselmo; Santos, Silvane; Carvalho, Lucas P; Grassi, Maria Fernanda R; Carvalho, Edgar M
2016-08-01
T cells from HTLV-1-infected individuals have a decreased ability to proliferate after stimulation with recall antigens. This abnormality may be due to the production of regulatory cytokine or a dysfunctional antigen presentation. The aims of this study were to evaluate the antibody production and cytokine expression by lymphocytes before and after immunization with tetanus toxoid (TT) and to evaluate the immune response of monocytes after stimulation with TT and frequency of dendritic cells (DC) subsets. HTLV-1 carriers (HC) and uninfected controls (UC) with negative serology for TT were immunized with TT, and the antibody titers were determined by ELISA as well as the cell activation markers expression by monocytes. The frequencies of DC subsets were determined by flow cytometry. Following immunization, the IgG anti-TT titers and the frequency of CD4(+) T cells expressing IFN-γ, TNF-α and IL-10 in response to TT were lower in the HC than in the UC. Additionally, monocytes from HC did not exhibit increased HLA-DR expression after stimulation with TT, and presented low numbers of DC subsets, therefore, it's necessary to perform functional studies with antigen-presenting cells. Collectively, our finding suggests that HC present an impairment of the humoral and CD4(+) T cell immune responses after vaccination. Copyright © 2016 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.
Efficiency of pH-Sensitive Fusogenic Polymer-Modified Liposomes as a Vaccine Carrier
Watarai, Shinobu; Iwase, Tana; Tajima, Tomoko; Yuba, Eiji; Kono, Kenji
2013-01-01
The usefulness of pH-sensitive fusogenic polymer-(succinylated poly(glycidol)-(SucPG-) modified liposomes as a vaccine carrier in the induction of immune responses was evaluated. Mice were intraperitoneally immunized with ovalbumin- (OVA-) containing SucPG-modified liposomes. After immunization, significant OVA-specific antibodies were detected in the serum. When sera were analyzed for isotype distribution, OVA-specific IgG1 antibody responses were noted in mice immunized with OVA-containing polymer-unmodified liposomes, whereas immunization with OVA-containing SucPG-modified liposomes resulted in the induction of OVA-specific IgG1, IgG2a, and IgG3 Ab responses. In spleen lymphocytes from mice immunized with OVA-containing SucPG-modified liposomes, both IFN-γ-(Th1-type-) and IL-4-(Th2 type-) specific mRNA were detected. Moreover, substantial production of IFN-γ and IL-4 was demonstrated in spleen cells from OVA-containing SucPG-modified liposomes in vitro. These results suggest that the pH-sensitive fusogenic polymer-(SucPG-) modified liposomes would serve effectively as an antigen delivery vehicle for inducing Th1 and Th2 immune responses. PMID:23431260
Efficiency of pH-sensitive fusogenic polymer-modified liposomes as a vaccine carrier.
Watarai, Shinobu; Iwase, Tana; Tajima, Tomoko; Yuba, Eiji; Kono, Kenji
2013-01-01
The usefulness of pH-sensitive fusogenic polymer-(succinylated poly(glycidol)-(SucPG-) modified liposomes as a vaccine carrier in the induction of immune responses was evaluated. Mice were intraperitoneally immunized with ovalbumin- (OVA-) containing SucPG-modified liposomes. After immunization, significant OVA-specific antibodies were detected in the serum. When sera were analyzed for isotype distribution, OVA-specific IgG1 antibody responses were noted in mice immunized with OVA-containing polymer-unmodified liposomes, whereas immunization with OVA-containing SucPG-modified liposomes resulted in the induction of OVA-specific IgG1, IgG2a, and IgG3 Ab responses. In spleen lymphocytes from mice immunized with OVA-containing SucPG-modified liposomes, both IFN-γ-(Th1-type-) and IL-4-(Th2 type-) specific mRNA were detected. Moreover, substantial production of IFN-γ and IL-4 was demonstrated in spleen cells from OVA-containing SucPG-modified liposomes in vitro. These results suggest that the pH-sensitive fusogenic polymer-(SucPG-) modified liposomes would serve effectively as an antigen delivery vehicle for inducing Th1 and Th2 immune responses.
Effect of adjuvants on the humoral immune response to congopain in mice and cattle.
Kateregga, John; Lubega, George W; Lindblad, Erik B; Authié, Edith; Coetzer, Theresa Helen Taillefer; Boulangé, Alain François Vincent
2012-05-23
We investigated several adjuvants for their effects on the humoral immune response in both mice and cattle using the central domain of congopain (C2), the major cysteine protease of Trypanosoma congolense, as a model for developing a vaccine against animal trypanosomosis. The magnitude and sustainability of the immune response against C2 and the occurrence of a booster effect of infection, an indirect measure of the presence of memory cells, were determined by ELISA, while spectrofluorometry was used to determine and measure the presence of enzyme-inhibiting antibodies. Mice immunized with recombinant C2 in TiterMax™, Adjuphos™, purified saponin Quil A™ or Gerbu™ showed the best response according to the evaluation criteria and the latter three were chosen for the cattle vaccination study. The cattle were challenged with T. congolense four and a half months after the last booster. Cattle immunized with recombinant C2 in purified saponin Quil A™ showed the best antibody response according to the measured parameters. We identified purified saponin Quil A™ as a good adjuvant for immunizations with C2. The results from this study will be useful in future attempts to develop an effective anti-disease vaccine against African trypanosomosis.
Probiotics, antibiotics and the immune responses to vaccines
Praharaj, Ira; John, Sushil M.; Bandyopadhyay, Rini; Kang, Gagandeep
2015-01-01
Orally delivered vaccines have been shown to perform poorly in developing countries. There are marked differences in the structure and the luminal environment of the gut in developing countries resulting in changes in immune and barrier function. Recent studies using newly developed technology and analytic methods have made it increasingly clear that the intestinal microbiota activate a multitude of pathways that control innate and adaptive immunity in the gut. Several hypotheses have been proposed for the underperformance of oral vaccines in developing countries, and modulation of the intestinal microbiota is now being tested in human clinical trials. Supplementation with specific strains of probiotics has been shown to have modulatory effects on intestinal and systemic immune responses in animal models and forms the basis for human studies with vaccines. However, most studies published so far that have evaluated the immune response to vaccines in children and adults have been small and results have varied by age, antigen, type of antibody response and probiotic strain. Use of anthelminthic drugs in children has been shown to possibly increase immunogenicity following oral cholera vaccination, lending further support to the rationale for modulation of the immune response to oral vaccination through the intestinal microbiome. PMID:25964456
Nelson, Michelle; Prior, Joann L; Lever, M Stephen; Jones, Helen E; Atkins, Timothy P; Titball, Richard W
2004-12-01
Burkholderia pseudomallei is the causative agent of melioidosis, which is a major cause of morbidity and mortality in endemic regions. Currently there is no human vaccine against melioidosis. In this study, LPS or capsular polysaccharide was used to immunize BALB/c mice. The different polysaccharide antigens induced antibody responses. Mice vaccinated with LPS developed predominantly IgM and IgG3 responses. Contrastingly, mice vaccinated with capsular polysaccharide developed a predominantly IgG2b response. After immunization, mice were challenged by the intra-peritoneal route and an increased mean time to death was observed compared with unvaccinated controls. Immunization with LPS provided an optimal protective response. Mice challenged by the aerosol route showed a small increase in the mean time to death compared with the unvaccinated controls. The passive transfer of antigen from immunized into naive mice provided protection against a subsequent challenge. This study is the first time antigens protective by active immunization have been identified and suggests that polysaccharides have potential as vaccine candidates against melioidosis.
Wu, Yu-Sheng; Liau, Shu-Yu; Huang, Cheng-Ting; Nan, Fan-Hua
2016-10-01
This study mainly evaluated the effects of orally administered beta 1,3/1,6-glucan and vitamin C on the nonspecific immune responses of white shrimp (Litopenaeus vannamei). In this study, we found that the white shrimp oral administration with 1 g/kg of beta 1,3/1,6-glucan effectively enhanced O2(-) production and phenoloxidase and superoxide dismutase activity. Shrimp were oral administration with 0.2 g/kg of vitamin C presented beneficial nonspecific immune responses and enzyme activity and also observed in the beta 1,3/1,6-glucan treatment groups. Consequently, we compared the alterations in the immune activity between the beta 1,3/1,6-glucan and vitamin C groups and the evidence illustrated that combination of beta 1,3/1,6-glucan and vitamin C presented an additive effect on inducing the nonspecific immune responses of white shrimp. Copyright © 2016 Elsevier Ltd. All rights reserved.
Human T cell responses to Dengue and Zika virus infection compared to Dengue/Zika coinfection.
Badolato-Corrêa, Jessica; Sánchez-Arcila, Juan Camilo; Alves de Souza, Thiara Manuele; Santos Barbosa, Luciana; Conrado Guerra Nunes, Priscila; da Rocha Queiroz Lima, Monique; Gandini, Mariana; Bispo de Filippis, Ana Maria; Venâncio da Cunha, Rivaldo; Leal de Azeredo, Elzinandes; de-Oliveira-Pinto, Luzia Maria
2018-06-01
Zika virus (ZIKV) and dengue virus (DENV) co-circulated during latest outbreaks in Brazil, hence, it is important to evaluate the host cross-reactive immune responses to these viruses. So far, little is known about human T cell responses to ZIKV and no reports detail adaptive immune responses during DENV/ZIKV coinfection. Here, we studied T cells responses in well-characterized groups of DENV, ZIKV, or DENV/ZIKV infected patients and DENV-exposed healthy donors. We evaluated chemokine receptors expression and single/multifunctional frequencies of IFNγ, TNF, and IL2-producing T cells during these infections. Even without antigenic stimulation, it was possible to detect chemokine receptors and IFNγ, TNF, and IL2-producing T cells from all individuals by flow cytometry. Additionally, PBMCs' IFNγ response to DENV NS1 protein and to polyclonal stimuli was evaluated by ELISPOT. DENV and ZIKV infections and DENV/ZIKV coinfections similarly induced expression of CCR5, CX3CR1, and CXCR3 on CD4 and CD8 T cells. DENV/ZIKV coinfection decreased the ability of CD4 + T cells to produce IFNγ + , TNF + , TNF + IFNγ + , and TNF + IL2 + , compared to DENV and ZIKV infections. A higher magnitude of IFNγ response to DENV NS1 was found in donors with a history of dengue infection, however, a hyporesponsiveness was found in acute DENV, ZIKV, or DENV/ZIKV infected patients, even previously infected with DENV. Therefore, we emphasize the potential impact of coinfection on the immune response from human hosts, mainly in areas where DENV and ZIKV cocirculate. © 2017 The Authors. Immunity, Inflammation and Disease Published by John Wiley & Sons Ltd.
Im, Young Bin; Park, Woo Bin; Jung, Myunghwan; Kim, Suk; Yoo, Han Sang
2016-06-28
Brucellosis is a zoonotic disease caused by Brucella, a genus of gram-negative bacteria. Cytokines have key roles in the activation of innate and acquired immunities. Despite several research attempts to reveal the immune responses, the mechanism of Brucella infection remains unclear. Therefore, immune responses were analyzed in mice immunized with nine recombinant proteins. Cytokine production profiles were analyzed in the RAW 264.7 cells and naive splenocytes after stimulation with three recombinant proteins, metal-dependent hydrolase (r0628), bacterioferritin (rBfr), and thiamine transporter substrate-binding protein (rTbpA). Immune responses were analyzed by ELISA and ELISpot assay after immunization with proteins in mice. The production levels of NO, TNF-α, and IL-6 were time-dependently increased after having been stimulated with proteins in the RAW 264.7 cells. In naive splenocytes, the production of IFN-γ and IL-2 was increased after stimulation with the proteins. It was concluded that two recombinant proteins, r0628 and rTbpA, showed strong immunogenicity that was induced with Th1-related cytokines IFN-γ, IL-2, and TNF-α more than Th2-related cytokines IL-6, IL-4, and IL-5 in vitro. Conversely, a humoral immune response was activated by increasing the number of antigen-secreting cells specifically. Furthermore, these could be candidate diagnosis antigens for better understanding of brucellosis.
Waning of vaccine-induced immunity to measles in kidney transplanted children.
Rocca, Salvatore; Santilli, Veronica; Cotugno, Nicola; Concato, Carlo; Manno, Emma Concetta; Nocentini, Giulia; Macchiarulo, Giulia; Cancrini, Caterina; Finocchi, Andrea; Guzzo, Isabella; Dello Strologo, Luca; Palma, Paolo
2016-09-01
Vaccine-preventable diseases are a significant cause of morbidity and mortality in solid organ transplant recipients who undergo immunosuppression after transplantation. Data on immune responses and long-term maintenance after vaccinations in such population are still limited.We cross-sectionally evaluated the maintenance of immune response to measles vaccine in kidney transplanted children on immunosuppressive therapy. Measles-specific enzyme-linked immunosorbent assay and B-cell enzyme-linked immunosorbent spot were performed in 74 kidney transplant patients (Tps) and in 23 healthy controls (HCs) previously vaccinated and tested for humoral protection against measles. The quality of measles antibody response was measured by avidity test. B-cell phenotype, investigated via flow cytometry, was further correlated to the ability of Tps to maintain protective humoral responses to measles over time.We observed the loss of vaccine-induced immunity against measles in 19% of Tps. Nonseroprotected children showed signs of impaired B-cell distribution as well as immune senescence and lower antibody avidity. We further reported as time elapsed between vaccination and transplantation, as well as the vaccine administration during dialysis are clinical factors affecting the maintenance of the immune memory response against measles.Tps present both quantitative and qualitative alterations in the maintenance of protective immunity to measles vaccine. Prospective studies are needed to optimize the vaccination schedules in kidney transplant recipients in order to increase the immunization coverage over time in this population.
Qu, Baoxi; Rosenberg, Roger N; Li, Liping; Boyer, Philip J; Johnston, Stephen A
2004-12-01
The amyloid-beta (Abeta) peptide has a central role in the neurodegeneration of Alzheimer disease (AD). Immunization of AD transgenic mice with Abeta(1-42) (Abeta(42)) peptide reduces both the spatial memory impairments and AD-like neuropathologic changes in these mice. Therapeutic immunization with Abeta in patients with AD was shown to be effective in reducing Abeta deposition, but studies were discontinued owing to the development of an autoimmune, cell-mediated meningoencephalitis. We hypothesized that gene vaccination could be used to generate an immune response to Abeta(42) that produced antibody response but avoided an adverse cell-mediated immune effect. To develop an effective genetic immunization approach for treatment and prevention of AD without causing an autoimmune, cell-mediated meningoencephalitis. Mice were vaccinated with a plasmid that encodes Abeta(42), administered by gene gun. The immune response of the mice to Abeta(42) was monitored by measurement of (1) antibody levels by enzyme-linked immunosorbent assay (ELISA) and Western blot and (2) Abeta(42)-specific T-cell response as measured by interferon-gamma enzyme-linked immunospot (ELISPOT) assay. Gene-gun delivery of the mouse Abeta(42) dimer gene induced significant humoral immune responses in BALB/c wild-type mice after 3 vaccinations in 10-day intervals. All 3 mice in the treated group showed significant humoral immune responses. The ELISPOT assay for interferon-gamma release with mouse Abeta(42) peptide and Abeta(9-18) showed no evident cytotoxic T-lymphocyte response. We further tested the responses of wild-type BALB/c mice to the monomer Abeta(42) gene vaccine. Western blot evaluation showed both human and mouse Abeta monomer gene vaccine elicited detectable humoral immune responses. We also introduced the human Abeta(42) monomer gene vaccine into AD double transgenic mice APPswe/PSEN1(A246E). Mice were vaccinated with plasmids that encode Abeta(1-42) and Abeta(1-16), or with plasmid without the Abeta gene. Treated mice showed significant humoral immune responses as demonstrated by ELISA and by Western blot. These mice also showed no significant cellular immune response as tested by ELISPOT. One of the treated mice was killed at 7 months of age for histological observations, and scattered amyloid plaques were noted in all layers of the cerebral cortex and in the hippocampus in both Abeta(42)- and control-vaccinated mice. No definite difference was discerned between the experimental and control animals. Gene-gun-administered genetic immunization with the Abeta(42) gene in wild-type BALB/c and AD transgenic mice can effectively elicit humoral immune responses without a significant T-cell-mediated immune response to the Abeta peptide. This immunotherapeutic approach could provide an alternative active immunization method for therapy and prevention of AD.
Acute injury in the peripheral nervous system triggers an alternative macrophage response
2012-01-01
Background The activation of the immune system in neurodegeneration has detrimental as well as beneficial effects. Which aspects of this immune response aggravate the neurodegenerative breakdown and which stimulate regeneration remains an open question. To unravel the neuroprotective aspects of the immune system we focused on a model of acute peripheral nerve injury, in which the immune system was shown to be protective. Methods To determine the type of immune response triggered after axotomy of the sciatic nerve, a model for Wallerian degeneration in the peripheral nervous system, we evaluated markers representing the two extremes of a type I and type II immune response (classical vs. alternative) using real-time quantitative polymerase chain reaction (RT-qPCR), western blot, and immunohistochemistry. Results Our results showed that acute peripheral nerve injury triggers an anti-inflammatory and immunosuppressive response, rather than a pro-inflammatory response. This was reflected by the complete absence of classical macrophage markers (iNOS, IFNγ, and IL12p40), and the strong up-regulation of tissue repair markers (arginase-1, Ym1, and Trem2). The signal favoring the alternative macrophage environment was induced immediately after nerve damage and appeared to be established within the nerve, well before the infiltration of macrophages. In addition, negative regulators of the innate immune response, as well as the anti-inflammatory cytokine IL-10 were induced. The strict regulation of the immune system dampens the potential tissue damaging effects of an over-activated response. Conclusions We here demonstrate that acute peripheral nerve injury triggers an inherent protective environment by inducing the M2 phenotype of macrophages and the expression of arginase-1. We believe that the M2 phenotype, associated with a sterile inflammatory response and tissue repair, might explain their neuroprotective capacity. As such, shifting the neurodegeneration-induced immune responses towards an M2/Th2 response could be an important therapeutic strategy. PMID:22818207
Gurung, Ratna B.; Purdie, Auriol C.; Whittington, Richard J.; Begg, Douglas J.
2014-01-01
Control of Johne's disease, caused by Mycobacterium avium subspecies paratuberculosis (MAP) in ruminants using commercially available vaccine reduces production losses, mortality, fecal shedding and histopathological lesions but does not provide complete protection from infection and interferes with serological diagnosis of Johne's disease and bovine tuberculosis. At this time no recombinant antigens have been found to provide superior protection compared to whole killed or live-attenuated MAP vaccines. Therefore, there is a need to evaluate more candidate MAP antigens. In this study recombinant MAP antigens MAP2698c and MAP3567 were formulated with four different MONTANIDE™ (ISA 50V2, 61VG, 71VG, and 201VG) adjuvants and evaluated for their ability to produce specific immune responses in vaccinated sheep. The cellular immune response was measured with an interferon-gamma (IFN-γ) release assay and the humoral immune response was measured by antibody detection enzyme linked immunosorbent assay. Recombinant vaccine formulation with the antigen MAP2698c and MONTANIDE™ ISA 201VG adjuvant produced strong whole-MAP as well as MAP2698c-specific IFN-γ responses in a high proportion of the vaccinated sheep. The formulation caused less severe injection site lesions in comparison to other formulations. The findings from this study suggest that the MAP2698c + 201VG should be evaluated in a challenge trial to determine the efficacy of this vaccine candidate. PMID:25077074
Immune Response to Human Metapneumovirus Infection: What We Have Learned from the Mouse Model
Cheemarla, Nagarjuna R.; Guerrero-Plata, Antonieta
2015-01-01
Human Metapneumovirus (hMPV) is a leading respiratory viral pathogen associated with bronchiolitis, pneumonia, and asthma exacerbation in young children, the elderly and immunocompromised individuals. The development of a potential vaccine against hMPV requires detailed understanding of the host immune system, which plays a significant role in hMPV pathogenesis, susceptibility and vaccine efficacy. As a result, animal models have been developed to better understand the mechanisms by which hMPV causes disease. Several animal models have been evaluated and established so far to study the host immune responses and pathophysiology of hMPV infection. However, inbred laboratory mouse strains have been one of the most used animal species for experimental modeling and therefore used for the studies of immunity and immunopathogenesis to hMPV. This review summarizes the contributions of the mouse model to our understanding of the immune response against hMPV infection. PMID:26393657
Immune Response to Human Metapneumovirus Infection: What We Have Learned from the Mouse Model.
Cheemarla, Nagarjuna R; Guerrero-Plata, Antonieta
2015-09-18
Human Metapneumovirus (hMPV) is a leading respiratory viral pathogen associated with bronchiolitis, pneumonia, and asthma exacerbation in young children, the elderly and immunocompromised individuals. The development of a potential vaccine against hMPV requires detailed understanding of the host immune system, which plays a significant role in hMPV pathogenesis, susceptibility and vaccine efficacy. As a result, animal models have been developed to better understand the mechanisms by which hMPV causes disease. Several animal models have been evaluated and established so far to study the host immune responses and pathophysiology of hMPV infection. However, inbred laboratory mouse strains have been one of the most used animal species for experimental modeling and therefore used for the studies of immunity and immunopathogenesis to hMPV. This review summarizes the contributions of the mouse model to our understanding of the immune response against hMPV infection.
Del Medico Zajac, María Paula; Zanetti, Flavia Adriana; Esusy, María Soledad; Federico, Carlos Rodolfo; Zabal, Osvaldo; Valera, Alejandro Rafael; Calamante, Gabriela
In this study, we evaluated the immunogenicity and efficacy of mucosal delivery of a recombinant modified vaccinia Ankara virus (MVA) expressing the secreted version of bovine herpesvirus type 1 (BoHV-1) glycoprotein D (MVA-gDs) without addition of adjuvant in two animal models. First, we demonstrated the capability of MVA-gDs of inducing both local and systemic anti-gD humoral immune response after intranasal immunization of mice. Then, we confirmed that two doses of MVA-gDs administered intranasally to rabbits induced systemic anti-gD antibodies and conferred protection against BoHV-1 challenge. Our results show the potential of using MVA as a vector for the rational design of veterinary vaccines capable of inducing specific and protective immune responses both at local and systemic level.
USDA-ARS?s Scientific Manuscript database
Two treatments were evaluated in commercial feedlot heifers to determine the effects of a yeast supplement on immune and metabolic responses to a combined viral-bacterial respiratory disease challenge. Thirty-two beef heifers (324 ± 19.2 kg BW) were selected and randomly assigned to one of two treat...
USDA-ARS?s Scientific Manuscript database
Objectives were to evaluate how dietary energy intake and source affect immune competence and response to an infectious bovine rhinotracheitis virus (IBRV) challenge in cattle. Forty-eight crossbred beef steers were stratified by body weight within 2 periods and randomized to 1 of 3 dietary treatmen...
USDA-ARS?s Scientific Manuscript database
Objectives were to evaluate how dietary energy level and source affect immune competence and response to a viral challenge in cattle. Forty-eight crossbred beef steers were stratified by BW within 2 periods and randomized to 1 of 3 dietary treatments (8 steers/treatment within period). Treatments we...
USDA-ARS?s Scientific Manuscript database
The effects of active dry yeast, Saccharomyces cerevisiae boulardii (Scb), on the immune/cortisol response and subsequent mortality to E. coli lipopolysaccharide (LPS) administration were evaluated in newly weaned piglets (26.1 +/- 3.4 d of age). Barrows were assigned to 1 of 2 treatment groups, wit...
Shah, Javeed A; Musvosvi, Munyaradzi; Shey, Muki; Horne, David J; Wells, Richard D; Peterson, Glenna J; Cox, Jeffery S; Daya, Michelle; Hoal, Eileen G; Lin, Lin; Gottardo, Raphael; Hanekom, Willem A; Scriba, Thomas J; Hatherill, Mark; Hawn, Thomas R
2017-08-15
The molecular mechanisms that regulate tuberculosis susceptibility and bacillus Calmette-Guérin (BCG)-induced immunity are mostly unknown. However, induction of the adaptive immune response is a critical step in host control of Mycobacterium tuberculosis. Toll-interacting protein (TOLLIP) is a ubiquitin-binding protein that regulates innate immune responses, including Toll-like receptor signaling, which initiate adaptive immunity. TOLLIP variation is associated with susceptibility to tuberculosis, but the mechanism by which it regulates tuberculosis immunity is poorly understood. To identify functional TOLLIP variants and evaluate the role of TOLLIP variation on innate and adaptive immune responses to mycobacteria and susceptibility to tuberculosis. We used human cellular immunology approaches to characterize the role of a functional TOLLIP variant on monocyte mRNA expression and M. tuberculosis-induced monocyte immune functions. We also examined the association of TOLLIP variation with BCG-induced T-cell responses and susceptibility to latent tuberculosis infection. We identified a functional TOLLIP promoter region single-nucleotide polymorphism, rs5743854, which was associated with decreased TOLLIP mRNA expression in infant monocytes. After M. tuberculosis infection, TOLLIP-deficient monocytes demonstrated increased IL-6, increased nitrite, and decreased bacterial replication. The TOLLIP-deficiency G/G genotype was associated with decreased BCG-specific IL-2 + CD4 + T-cell frequency and proliferation. This genotype was also associated with increased susceptibility to latent tuberculosis infection. TOLLIP deficiency is associated with decreased BCG-specific T-cell responses and increased susceptibility to tuberculosis. We hypothesize that the heightened antibacterial monocyte responses after vaccination of TOLLIP-deficient infants are responsible for decreased BCG-specific T-cell responses. Activating TOLLIP may provide a novel adjuvant strategy for BCG vaccination.
Giardia-specific cellular immune responses in post-giardiasis chronic fatigue syndrome.
Hanevik, Kurt; Kristoffersen, Einar; Mørch, Kristine; Rye, Kristin Paulsen; Sørnes, Steinar; Svärd, Staffan; Bruserud, Øystein; Langeland, Nina
2017-01-28
The role of pathogen specific cellular immune responses against the eliciting pathogen in development of post-infectious chronic fatigue syndrome (PI-CFS) is not known and such studies are difficult to perform. The aim of this study was to evaluate specific anti-Giardia cellular immunity in cases that developed CFS after Giardia infection compared to cases that recovered well. Patients reporting chronic fatigue in a questionnaire study three years after a Giardia outbreak were clinically evaluated five years after the outbreak and grouped according to Fukuda criteria for CFS and idiopathic chronic fatigue. Giardia specific immune responses were evaluated in 39 of these patients by proliferation assay, T cell activation and cytokine release analysis. 20 Giardia exposed non-fatigued individuals and 10 healthy unexposed individuals were recruited as controls. Patients were clinically classified into CFS (n = 15), idiopathic chronic fatigue (n = 5), fatigue from other causes (n = 9) and recovered from fatigue (n = 10). There were statistically significant antigen specific differences between these Giardia exposed groups and unexposed controls. However, we did not find differences between the Giardia exposed fatigue classification groups with regard to CD4 T cell activation, proliferation or cytokine levels in 6 days cultured PBMCs. Interestingly, sCD40L was increased in patients with PI-CFS and other persons with fatigue after Giardia infection compared to the non-fatigued group, and correlated well with fatigue levels at the time of sampling. Our data show antigen specific cellular immune responses in the groups previously exposed to Giardia and increased sCD40L in fatigued patients.
How Does Optimism Suppress Immunity? Evaluation of Three Affective Pathways
Segerstrom, Suzanne C.
2005-01-01
Studies have linked optimism to poorer immunity during difficult stressors. In the present report, when first-year law students (N = 46) relocated to attend law school, reducing conflict among curricular and extracurricular goals, optimism predicted larger delayed type hypersensitivity responses, indicating more robust in vivo cellular immunity. However, when students did not relocate, increasing goal conflict, optimism predicted smaller responses. Although this effect has been attributed to negative affect when difficult stressors violate optimistic expectancies, distress did not mediate optimism’s effects on immunity. Alternative affective mediators related to engagement – engaged affect and fatigue – likewise failed to mediate optimism’s effects, although all three types of affect independently influenced in vivo immunity. Alternative pathways include effort or self-regulatory depletion. PMID:17014284
Lin, Ruqin; Zhu, Bo; Zhang, Yiduo; Bai, Yang; Zhi, Fachao; Long, Beiguo; Li, Yawen; Wu, Yuhua; Wu, Xianbo; Fan, Hongying
2017-04-01
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 causes hemorrhagic colitis and hemolytic uremic syndrome in humans. Due to the risks associated with antibiotic treatment against EHEC O157:H7 infection, vaccines represent a promising method for prevention of EHEC O157:H7 infection. Therefore, we constructed the novel bivalent antigen EspA-Tir-M as a candidate EHEC O157:H7 subunit vaccine. We then evaluated the immunogenicity of this novel EHEC O157:H7 subunit vaccine. Immune responses to the fusion protein administered by intranasal and subcutaneous routes were compared in mice. Results showed higher levels of specific mucosal and systemic antibody responses induced by intranasal as compared to subcutaneous immunization. Intranasal immunization enhanced the concentration of interleukin-4, interleukin-10, and interferon-γ, while subcutaneous immunization enhanced only the latter two. In addition, intranasal immunization protected against EHEC O157:H7 colonization and infection in mice at a rate of 90%.Histopathological analysis revealed that vaccination reduced colon damage, especially when administered intranasally. In contrast, subcutaneous immunization elicited a weak immune response and exhibited a low protection rate. These findings demonstrate that intranasal immunization with the fusion protein induces both humoral and cellular immune (Th1/Th2) responses in mice. The novel EspA-Tir-M novel fusion protein therefore represents a promising subunit vaccine against EHEC O157:H7 infection. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ikematsu, Hideyuki; Nagai, Hideaki; Kawashima, Masahiro; Kawakami, Yasunobu; Tenjinbaru, Kazuyoshi; Li, Ping; Walravens, Karl; Gillard, Paul; Roman, François
2012-02-01
Background Long-term persistence of immune response and safety of two doses of an A/California/07/2009 H1N1 pandemic influenza vaccine adjuvanted with AS03 (an α-tocopherol oil-in-water emulsion-based Adjuvant System) administered 21 d apart was evaluated in Japanese adults [NCT00989612]. Methods One-hundred healthy subjects aged 20-64 y (stratified [1:1] into two age strata 20-40 y and 41-64 y) received 21 d apart, two doses of AS03-adjuvanted 3.75µg haemagglutinin (HA) H1N1 2009 vaccine. Immunogenicity data by haemagglutination inhibition (HI) assay six months after the first vaccine dose (Day 182) and microneutralization assay following each of the two vaccine doses (Days 21 and 42) and at Day 182 are reported here. Results Persistence of strong HI immune response was observed at Day 182 that met the US and European regulatory thresholds for pandemic influenza vaccines (seroprotection rate: 95%; seroconversion rate: 93%; geometric mean fold-rise: 20). The neutralizing antibody response against the A/Netherlands/602/2009 strain (antigenically similar to vaccine-strain) persisted for at least up to Day 182 (vaccine response rate: 76%; geometric mean titer: 114.4) and paralleled the HI immune response at all time points. No marked difference was observed in HI antibody persistence and neutralising antibody response between the two age strata. The vaccine had a clinically-acceptable safety profile. Conclusion Two priming doses of H1N1 2009 pandemic influenza vaccine induced an immune response persisting for at least six months after the first vaccine dose. This could be beneficial in evaluating the importance and effect of vaccination with this AS03-adjuvanted pandemic influenza vaccine.
Recent advances in our understanding of human host responses to tuberculosis
Schluger, Neil W
2001-01-01
Tuberculosis remains one of the world's greatest public health challenges: 2 billion persons have latent infection, 8 million people develop active tuberculosis annually, and 2–3 million die. Recently, significant advances in our understanding of the human immune response against tuberculosis have occurred. The present review focuses on recent work in macrophage and T-cell biology that sheds light on the human immune response to tuberculosis. The role of key cytokines such as interferon-γ is discussed, as is the role of CD4+ and CD8+ T cells in immune regulation in tuberculosis, particularly with regard to implications for vaccine development and evaluation. PMID:11686880
Kilhamn, J.; Jertborn, M.; Svennerholm, A.-M.
1998-01-01
The possibility that a mucolytic drug, i.e., acetylcysteine, given orally may enhance the gut mucosal or systemic immune response to an oral B-subunit–whole-cell (B-WC) cholera vaccine was evaluated for 40 adult Swedish volunteers, and the kinetics of the immune responses were monitored for responding volunteers. Two doses of vaccine induced similar frequencies of immunoglobulin A (IgA) and IgG antitoxin responses (80 to 90%) and vibriocidal titer increases (60 to 65%) in serum irrespective of whether the vaccine was given alone or together with 2 g of acetylcysteine. In feces the frequencies of IgA antitoxin (67%) and antibacterial (33 to 40%) antibody responses were also comparable in the two immunization groups. Six months after vaccination, IgA and IgG antitoxin as well as vibriocidal antibody titer increases in serum could still be detected in approximately 80% of initially responding vaccinees. Significantly elevated fecal antitoxin and antibacterial IgA antibody levels were found in, respectively, 50 and 43% of those volunteers who initially had responded to the vaccine. Determination of IgA antibodies in feces does not seem to offer any advantages compared to determination in serum for assessment of immune responses after immunization with inactivated cholera vaccine. PMID:9521151
Frick, Chris; Dietz, Andrew C; Merritt, Katharine; Umbreit, Thomas H; Tomazic-Jezic, Vesna J
2006-01-01
The main causes for the long-term prosthetic implants' failure are the body's reaction to the implanted material or mechanical stress on the device resulting in the formation of wear particles. Particulate wear debris attracts macrophages, and depending on the chemical composition of the material and particle size, various levels of inflammatory response may occur. While transient inflammation is common, development of chronic inflammation may have serious consequences, leading to implant failure. Such a process may also cause systemic changes to immune functions and long-term effects on the host immune responses. In this study, we evaluated the effects of polystyrene (PS), polyethylene (PE), and polymethylmethacrylate (PMMA) particles on macrophage function and the generation of T-cell responses. Particles of various diameters were injected intraperitoneally into Balb/c mice, and immune functions were examined at 3, 10, and 21 days after the injection. The intensity of phagocytosis by peritoneal exudate cells (PECs) and the proliferative response of spleen cells from treated mice were evaluated. Enumeration of PECs revealed an increase in the total number of cells. Mice injected with PS or PE particles had a higher percentage of cells containing particles than PMMA-injected mice. Macrophages with PS or PE particles tended to adhere to and/or infiltrate peritoneal fibro-fatty tissues surrounding the spleen and pancreas, while the PMMA-carrying macrophages infiltrated the spleen, resulting in an increase of spleen size and "weight. The spleen cell proliferation assay revealed only mild and transient effects on the mitogen response in both PE and PS particle-injected mice. However, in the PMMA-injected mice we observed a lasting increase of the Con A response and a decrease of the LPS response. In vitro exposure of PECs from untreated mice showed a dose-response pattern in nitric oxide (NO) and TNFalpha production. While exposure to either PMMA or PE induced comparable levels of NO, exposure to PMMA induced a markedly higher production of TNFalpha than exposure to PE. The results indicate that particulate biomaterials may, in addition to the initial activation of phagocytes, significantly affect immune functions and compromise the host response to other antigenic stimuli.
Vaccine Adjuvants: from 1920 to 2015 and Beyond
Di Pasquale, Alberta; Preiss, Scott; Tavares Da Silva, Fernanda; Garçon, Nathalie
2015-01-01
The concept of stimulating the body’s immune response is the basis underlying vaccination. Vaccines act by initiating the innate immune response and activating antigen presenting cells (APCs), thereby inducing a protective adaptive immune response to a pathogen antigen. Adjuvants are substances added to vaccines to enhance the immunogenicity of highly purified antigens that have insufficient immunostimulatory capabilities, and have been used in human vaccines for more than 90 years. While early adjuvants (aluminum, oil-in-water emulsions) were used empirically, rapidly increasing knowledge on how the immune system interacts with pathogens means that there is increased understanding of the role of adjuvants and how the formulation of modern vaccines can be better tailored towards the desired clinical benefit. Continuing safety evaluation of licensed vaccines containing adjuvants/adjuvant systems suggests that their individual benefit-risk profile remains favorable. Adjuvants contribute to the initiation of the innate immune response induced by antigens; exemplified by inflammatory responses at the injection site, with mostly localized and short-lived effects. Activated effectors (such as APCs) then move to draining lymph nodes where they direct the type, magnitude and quality of the adaptive immune response. Thus, the right match of antigens and adjuvants can potentiate downstream adaptive immune responses, enabling the development of new efficacious vaccines. Many infectious diseases of worldwide significance are not currently preventable by vaccination. Adjuvants are the most advanced new technology in the search for new vaccines against challenging pathogens and for vulnerable populations that respond poorly to traditional vaccines. PMID:26343190
Malkevich, Nina V; Basu, Subhendu; Rudge, Thomas L; Clement, Kristin H; Chakrabarti, Ajoy C; Aimes, Ronald T; Nabors, Gary S; Skiadopoulos, Mario H; Ionin, Boris
2013-11-01
Development of anthrax countermeasures that may be used concomitantly in a postexposure setting requires an understanding of the interaction between these products. Anthrax immune globulin intravenous (AIGIV) is a candidate immunotherapeutic that contains neutralizing antibodies against protective antigen (PA), a component of anthrax toxins. We evaluated the interaction between AIGIV and BioThrax (anthrax vaccine adsorbed) in rabbits. While pharmacokinetics of AIGIV were not altered by vaccination, the vaccine-induced immune response was abrogated in AIGIV-treated animals.
[Prokaryotic expression and immunological characteristics of Mycobacterium tuberculosis Rv1886c].
Tao, Chengwu; Zhao, Dan; Dong, Hui; Shan, Fa; Lian, Kai; Pan, Zhiming; Chen, Xiang; Yin, Yuelan; Jiao, Xin'an
2014-03-04
Ag85B (Rv1886c) is secreted during the early stages of infection by Mycobacterium tuberculosis. The purpose of this study was probed into the immune response against Ag85B in vivo. Ag85B was prokaryotic expressed and identified, its immunological characteristics were evaluated with indirect-ELSIA, Sandwich-ELISA and Ag85B was mainly expressed in form of inclusion body enzyme-linked immunospot assay (ELISPOT). confirmed by SDS-PAGE. Western blot analysis shows that the fusion protein had good specific reaction with serum of tuberculosis patient and serum of mice immunized with LM-Ag85B. C57BL/6 mice were subcutaneously immunized with Ag85B, the production of IFN-gamma and IL-4 in the spleen cells was determined by Sandwich ELISA, the level of IFN-gamma was significantly higher than that of IL-4 (P < 0.001) in the Ag85B immunization group, it indicated the protein induced Th1-tendency immune responses. Furthermore, purified protein derivative (PPD) used as coating antigen, antibody titer against Ag85B in murine serum reached 1:6400, it was demonstrated that Ag85B could also induce humoral immune responses. Additionally, C57BL/6 mice were intravenously immunized with M. tb H37Rv and bacillus Calmette-Guérin (BCG) respectively for 42 days, M. tb H37Rv group intended to induce Ag85B specific Th1 type immune response, and its ability of eliciting cellular immunity was significantly stronger than BCG group (P < 0.001). Ag85B can affectively induce strongly Th1-tendency immune response and humoral response. Whereas, BCG prime vaccination only can elicit low levels of Ag85B(240-259) specific immune response. The study laid foundation for probing the pathogenic mechanism, the development of novel vaccine and the establishment of clinical diagnostic method.
Gonçalves de Assis, Natan Raimundo; Batistoni de Morais, Suellen; Figueiredo, Bárbara Castro Pimentel; Ricci, Natasha Delaqua; de Almeida, Leonardo Augusto; da Silva Pinheiro, Carina; Martins, Vicente de Paulo; Oliveira, Sergio Costa
2015-01-01
Schistosomiasis is an important parasitic disease worldwide that affects more than 207 million people in 76 countries and causes approximately 250,000 deaths per year. The best long-term strategy to control schistosomiasis is through immunization combined with drug treatment. Due to the ability of DNA vaccines to generate humoral and cellular immune responses, such vaccines are considered a promising approach against schistosomiasis. Sm29 and tetraspanin-2 (Sm-TSP2) are two proteins that are located in the S. mansoni tegument of adult worms and schistosomula and induce high levels of protection through recombinant protein immunization. In this study, we transfected BHK-21 cells with plasmids encoding Sm29, Sm-TSP2 or a chimera containing both genes. Using RT-PCR analysis and western blot, we confirmed that the DNA vaccine constructs were transcribed and translated, respectively, in BHK-21 cells. After immunization of mice, we evaluated the reduction in worm burden. We observed worm burden reductions of 17-22%, 22%, 31-32% and 24-32% in animals immunized with the pUMVC3/Sm29, pUMVC3/SmTSP-2, pUMVC3/Chimera and pUMVC3/Sm29 + pUMVC3/SmTSP-2 plasmids, respectively. We evaluated the humoral response elicited by DNA vaccines, and animals immunized with pUMVC3/Sm29 and pUMVC3/Sm29 + pUMVC3/SmTSP-2 showed higher titers of anti-Sm29 antibodies. The cytokine profile produced by the spleen cells of immunized mice was then evaluated. We observed higher production of Th1 cytokines, such as TNF-α and IFN-γ, in vaccinated mice and no significant production of IL-4 and IL-5. The DNA vaccines tested in this study showed the ability to generate a protective immune response against schistosomiasis, probably through the production of Th1 cytokines. However, future strategies aiming to optimize the protective response induced by a chimeric DNA construct need to be developed. PMID:25942636
Espinosa-Viñals, Carlos; García-Rivera, Dagmar; Rodríguez Noda, Laura; Amador Gómez, Aylín; Nicot, Milagros; Valle, Orialys; Núñez, Juan F; Martin, Yanet; Santana, Darielys; Valdés, Yury; Vérez Bencomo, Vicente
2017-05-01
Finlay Vaccine Institute is developing a new heptavalent conjugate vaccine against Streptococcus pneumoniae. As infants are the target population, PCV7-TT will be necessarily co-administered with other vaccines, and then, the interactions represent a concern. The aim of this work is to evaluate the possible immunological interferences in rabbits as animal experimental model. Rabbits were immunized with Heberpenta®-L, VA-MENGOC-BC®, and PCV7-TT. Blood samples were taken fourteen days after final immunization for obtaining sera. Antibody responses to all antigens were evaluated by indirect ELISA. Functional responses against diphtheria and tetanus toxoid were done by in vivo seroneutralization assay. No interference was observed by PCV7-TT over the humoral response against diphtheria toxoid and meningococcal antigens (p > 0.05). A nonstatistically significant reduction (p > 0.05) was observed in the case of the humoral response against Haemophilus influenzae type b oligosaccharide. Concomitant administration of Heberpenta®-L and PCV7-TT increased twice the antibody titers as well as the protective activity against tetanus toxoid, but no statistical differences were found. The co-administration did not induce a reduction in the percent of responders against pneumococcal polysaccharides contained in PCV7-TT vaccine. Concomitant administration of PCV7-TT did not induce interferences over the evaluated antigens of Heberpenta®-L and VA-MENGOC-BC®. Also, no interference was observed on the immune response elicited by PCV7-TT. These preclinical results suggest that PCV7-TT will not result in a serious problem over the immune response elicited by the licensed vaccines Heberpenta®-L and VA-MENGOC-BC®. However, the clinical interference could be strictly studied during clinical trials in infants.
Khattar, Sunil K; DeVico, Anthony L; LaBranche, Celia C; Panda, Aruna; Montefiori, David C; Samal, Siba K
2016-02-01
Newcastle disease virus (NDV) expressing HIV-1 BaL gp160 was evaluated either alone or with monomeric BaL gp120 and BaL SOSIP gp140 protein in a prime-boost combination in guinea pigs to enhance envelope (Env)-specific humoral and mucosal immune responses. We showed that a regimen consisting of an NDV prime followed by a protein boost elicited stronger serum and mucosal Th-1-biased IgG responses and neutralizing antibody responses than NDV-only immunizations. Additionally, these responses were higher after the gp120 than after the SOSIP gp140 protein boost. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Cargnelutti, Diego Esteban; Salomón, María Cristina; Celedon, Verónica; García Bustos, María Fernanda; Morea, Gastón; Cuello-Carrión, Fernando Darío; Scodeller, Eduardo Alberto
2016-02-01
A proper adjuvant has a relevant role in vaccine formulations to generate an effective immune response. In this study, total Leishmania antigen (TLA) formulated with Montanide ISA 763 or R848 as adjuvants were evaluated as a first generation Leishmania vaccine in a murine model. Immunization protocols were tested in BALB/c mice with a subcutaneous prime/boost regimen with an interval of 3 weeks. Mice immunized with unadjuvanted TLA and phosphate-buffered saline (PBS) served as control groups. On Day 21 and Day 36 of the protocol, we evaluated the humoral immune response induced by each formulation. Fifteen days after the boost, the immunized mice were challenged with 1 × 10(5) promastigotes of Leishmania (Leishmania) amazonensis in the right footpad (RFP). The progress of the infection was followed for 10 weeks; at the end of this period, histopathological studies were performed in the RFP. Vaccines formulated with Montanide ISA 763 generated an increase in the production of immunoglobulin G (IgG; p < 0.05) compared with the control group. There were no statistically significant differences in IgG1 production between the study groups. However, immunization with TLA-Montanide ISA 763 resulted in an increase in IgG2a compared to the unadjuvanted control (p < 0.001). Also noteworthy was the fact that a significant reduction in swelling and histopathological damage of the RFP was recorded with the Montanide ISA 763 formulation. We conclude that the immunization of BALB/c mice with a vaccine formulated with TLA and Montanide ISA 763 generated a protective immune response against L. (L.) amazonensis, characterized by an intense production of IgG2a. Copyright © 2014. Published by Elsevier B.V.
Díaz, A M; Almozni, B; Molina, M A; Sparo, M D; Manghi, M A; Canellada, A M; Castro, M S
2018-04-10
Vaccination against pathogens involved in bovine respiratory disease (BRD) is a useful tool to reduce the risk of this disease however, it has been observed that the commercially available vaccines only partially prevent the infections caused by Pasteurella multocida and Mannheimia haemolytica. Therefore, it is recommended to search for new adjuvant strategies to minimise the economic impact of this respiratory syndrome. A possibility to improve the conventional vaccine response is to modulate the immune system with probiotics, since there is accumulating evidence that certain immunomodulatory strains administered around the time of vaccination can potentiate the immune response. Considering veterinary vaccines are frequently tested in murine models, we have developed an immunisation schedule in BALB/c mice that allows us to study the immune response elicited by BRD vaccine. In order to evaluate a potential strategy to enhance vaccine efficacy, the adjuvant effect of Enterococcus faecalis CECT7121 on the murine specific humoral immune response elicited by a commercial vaccine against BRD was studied. Results indicate that the intragastric administration of E. faecalis CECT7121 was able to induce an increase in the specific antibody titres against the bacterial components of the BRD vaccines (P. multocida and M. haemolytica). The quality of the humoral immune response, in terms of antibody avidity, was also improved. Regarding the cellular immune response, although the BRD vaccination induced a low specific secretion of cytokines in the spleen cell culture supernatants, E. faecalis CECT7121-treated mice showed higher interferon-γ production than immunised control mice. Our results allowed us to conclude that the administration of E. faecalis CECT7121 could be employed as an adjuvant strategy to potentiate humoral immune responses.
Burton, C T; Goodall, R L; Samri, A; Autran, B; Kelleher, A D; Poli, G; Pantaleo, G; Gotch, F M; Imami, N
2008-05-01
INITIO is an open-labelled randomized trial evaluating first-line therapeutic strategies for human immunodeficiency virus-1 (HIV-1) infection. In an immunology substudy a tetanus toxoid booster (TTB) immunization was planned for 24 weeks after initiation of highly active antiretroviral therapy (HAART). All patients had received tetanus toxoid immunization in childhood. Generation of proliferative responses to tetanus toxoid was compared in two groups of patients, those receiving a protease inhibitor (PI)-sparing regimen (n = 21) and those receiving a PI-containing (n = 54) regimen. Fifty-two participants received a TTB immunization [PI-sparing (n = 15), PI-containing (n = 37)] and 23 participants did not [PI-sparing (n = 6) or PI-containing (n = 17)]. Cellular responses to tetanus antigen were monitored by lymphoproliferation at time of immunization and every 24 weeks to week 156. Proportions with a positive response (defined as stimulation index > or = 3 and Delta counts per minute > or = 3000) were compared at weeks 96 and 156. All analyses were intent-to-treat. Fifty-two participants had a TTB immunization at median 25 weeks; 23 patients did not. At weeks 96 and 156 there was no evidence of a difference in tetanus-specific responses, between those with or without TTB immunization (P = 0.2, P = 0.4). There was no difference in the proportion with response between those with PI-sparing or PI-containing regimens at both time-points (P = 0.8, P = 0.7). The proliferative response to tetanus toxoid was unaffected by initial HAART regimen. Anti-tetanus responses appear to reconstitute eventually in most patients over 156 weeks when treated successfully with HAART, irrespective of whether or not a TTB immunization has been administered.
Burton, C T; Goodall, R L; Samri, A; Autran, B; Kelleher, A D; Poli, G; Pantaleo, G; Gotch, F M; Imami, N; Imami, N
2008-01-01
INITIO is an open-labelled randomized trial evaluating first-line therapeutic strategies for human immunodeficiency virus-1 (HIV-1) infection. In an immunology substudy a tetanus toxoid booster (TTB) immunization was planned for 24 weeks after initiation of highly active antiretroviral therapy (HAART). All patients had received tetanus toxoid immunization in childhood. Generation of proliferative responses to tetanus toxoid was compared in two groups of patients, those receiving a protease inhibitor (PI)-sparing regimen (n = 21) and those receiving a PI-containing (n = 54) regimen. Fifty-two participants received a TTB immunization [PI-sparing (n = 15), PI-containing (n = 37)] and 23 participants did not [PI-sparing (n = 6) or PI-containing (n = 17)]. Cellular responses to tetanus antigen were monitored by lymphoproliferation at time of immunization and every 24 weeks to week 156. Proportions with a positive response (defined as stimulation index ≥ 3 and Δ counts per minute ≥ 3000) were compared at weeks 96 and 156. All analyses were intent-to-treat. Fifty-two participants had a TTB immunization at median 25 weeks; 23 patients did not. At weeks 96 and 156 there was no evidence of a difference in tetanus-specific responses, between those with or without TTB immunization (P = 0·2, P = 0·4). There was no difference in the proportion with response between those with PI-sparing or PI-containing regimens at both time-points (P = 0·8, P = 0·7). The proliferative response to tetanus toxoid was unaffected by initial HAART regimen. Anti-tetanus responses appear to reconstitute eventually in most patients over 156 weeks when treated successfully with HAART, irrespective of whether or not a TTB immunization has been administered. PMID:18410636
Yu, Zhen; Chung, Woon-Gye; Sloat, Brian R.; Löhr, Christiane V.; Weiss, Richard; Rodriguez, B. Leticia; Li, Xinran; Cui, Zhengrong
2011-01-01
Objectives Non-invasive immunization by applying plasmid DNA topically onto the skin is an attractive immunization approach. However, the immune responses induced are generally weak. Previously, we showed that the antibody responses induced by topical DNA vaccine were significantly enhanced when hair follicles in the application area were induced into anagen (growth) stage by hair plucking. In the present study, we further investigated the mechanism of immune enhancement. Methods Three different methods, hair plucking or treatment with retinoic acid (RA) or O- tetradecanoylphorbol-13-acetate (TPA), were used to induce hair follicles into anagen stage before mice were dosed with a β-galactosidase-encoding plasmid, and the specific antibody responses induced were evaluated. Key findings The hair plucking method was more effective at enhancing the resultant antibody responses. Treatment with RA or TPA caused more damages to the skin and induced more severe local inflammations than hair plucking. However, hair plucking was most effective at enhancing the uptake or retention of the DNA in the application area. Conclusions The uptake of plasmid DNA in the application area correlated with the antibody responses induced by a topically applied DNA. PMID:21235583
Mojadadi, Shafi; Jamali, Abbas; Khansarinejad, Behzad; Soleimanjahi, Hoorieh; Bamdad, Taravat
2009-01-01
Acute morphine administration is known to alter the course of herpes simplex virus infection. In this study, the effect of acute morphine administration on the reactivation of latent herpes was investigated in a mouse model. Because of the important role of cytolytic T lymphocyte (CTL) activity in the inhibition of herpes simplex virus type 1 (HSV-1) reactivation, the effect of acute morphine administration on CTL responses was also evaluated. Furthermore, lymphocyte proliferation and IFN-γ production were evaluated for their roles in the induction of the CTL response. The findings showed that acute morphine administration significantly reduced CTL responses, lymphocyte proliferation, and IFN-γ production. Furthermore, acute morphine administration has been shown to reactivate latent HSV-1. Previous studies have shown that cellular immune responses have important roles in the inhibition of HSV reactivation. These findings suggest that suppression of a portion of the cellular immune response after acute morphine administration may constitute one part of the mechanism that induces HSV reactivation. PMID:19403060
Torres, J F; Lyerly, D M; Hill, J E; Monath, T P
1995-01-01
Clostridium difficile produces toxins that cause inflammation, necrosis, and fluid in the intestine and is the most important cause of nosocomial antibiotic-associated diarrhea and colitis. We evaluated C. difficile antigens as vaccines to protect against systemic and intestinal disease in a hamster model of clindamycin colitis. Formalin-inactivated culture filtrates from a highly toxigenic strain were administered by mucosal routes (intranasal, intragastric, and rectal) with cholera toxin as a mucosal adjuvant. A preparation of culture filtrate and killed whole cells was also tested rectally. The toxoid was also tested parenterally (subcutaneously and intraperitoneally) and by a combination of three intranasal immunizations followed by a combined intranasal-intraperitoneal boost. Serum antibodies against toxins A and B and whole-cell antigen were measured by enzyme-linked immunosorbent assay, neutralization of cytotoxic activity, and bacterial agglutination. The two rectal immunization regimens induced low antibody responses and protected only 20% of hamsters against death and 0% against diarrhea. The intragastric regimen induced high antibody responses but low protection, 40% against death and 0% against diarrhea. Hamsters immunized by the intranasal, intraperitoneal, and subcutaneous routes were 100% protected against death and partially protected (40, 40, and 20%, respectively) against diarrhea. Among the latter groups, intraperitoneally immunized animals had the highest serum anticytotoxic activity and the highest agglutinating antibody responses. Hamsters immunized intranasally and revaccinated intraperitoneally were 100% protected against both death and diarrhea. Protection against death and diarrhea correlated with antibody responses to all antigens tested. The results indicate that optimal protection against C. difficile disease can be achieved with combined parenteral and mucosal immunization. PMID:7591115
Fujiyuki, T; Hamamoto, H; Ishii, K; Urai, M; Kataoka, K; Takeda, T; Shibata, S; Sekimizu, K
2012-04-01
In silkworm larvae, the mature form of paralytic peptide (PP), an insect cytokine, is produced from pro-PP in association with activation of innate immune responses, resulting in slow muscle contraction. We utilized this reaction, muscle contraction in silkworms coupled with innate immunity stimulation, to quantitatively measure the innate immune stimulating activity of various natural polysaccharides. β-Glucan of Gyrophora esculenta (GE-3), fucoidan from sporophyll of Undaria pinnatifida, and curldan induced silkworm muscle contraction. We further demonstrated that GE-3 had therapeutic effects on silkworms infected by baculovirus. Based on these findings, we propose that the silkworm muscle contraction assay is useful for screening substances that stimulate innate immunity before evaluating therapeutic effectiveness in mammals.
Immune response of patients with recurrent aphthous stomatitis challenged with a symbiotic.
Mimura, Maria Angela Martins; Borra, Ricardo Carneiro; Hirata, Cleonice Hitomi Watashi; de Oliveira Penido, Norma
2017-10-01
There are indications that Th1 polarization of immune response plays an important role in the pathogenesis of recurrent aphthous stomatitis (RAS), and that the use of probiotics can stimulate immune regulatory activity, influencing the course of the disease. The aim of this study was to characterize the initial immune profile of RAS patients and evaluate clinical and serological response following a challenge with symbiotic treatment containing fructooligosaccharide, Lactobacillus, and Bifidobacterium. The immune responses of the 45 patients with RAS, submitted to symbiotic or placebo for 120 days, in relation to 30 RAS-free controls, were evaluated over a period of 6 months. Peripheral blood was collected from all patients at 0 (T0), 120 (T4), and 180 days (T6) after the start of treatment and Th1 (IL12-p70, IFN-γ), Th2 (IL-4), Treg (IL-10), Th17 (IL-17A), inflammatory (TNF-α, IL-6)-associated cytokines, and clinical parameters were quantified. At T0, significant differences were found in the serological levels of the IFN-γ, IL-4, and IL-6 cytokines of the RAS patients in comparison with the controls. It was observed that the cytokine profile of the RAS group was comprised of 2 distinct clusters: a pure Th2 and a Mixed (Th1/Th2) subtype and that symbiotic treatment induced an improvement in pain and an increase in IFN-γ levels, producing a reduction in Th2 response. In RAS, symbiotic treatment based on a fructooligosaccharide, Lactobacillus, and Bifidobacterium composition produced an alteration in the Th2 serological immune profile in the direction of Th1 and improved pain symptomatology. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
USDA-ARS?s Scientific Manuscript database
This study was conducted to evaluate the effect of supplemental levels of vitamin A (0, 2,500, 5,000, 10,000, and 20,000 IU/kg diet) on the growth performance, hematology, immune response and resistance of Nile tilapia, Oreochromis niloticus to Streptococcus iniae challenge. Each diet was fed to Nil...
Chlibek, Roman; Pauksens, Karlis; Rombo, Lars; van Rijckevorsel, Gini; Richardus, Jan H; Plassmann, Georg; Schwarz, Tino F; Catteau, Grégory; Lal, Himal; Heineman, Thomas C
2016-02-03
An investigational subunit vaccine containing the varicella-zoster virus (VZV) glycoprotein E (gE) and the AS01B adjuvant system is being evaluated for the prevention of herpes zoster (HZ) in older adults. A phase II trial evaluating different formulations of this vaccine (containing 25μg, 50μg, or 100μg gE) was conducted in adults ≥60 years of age and showed that all formulations elicited robust cellular and humoral immune responses for up to 3 years after vaccination. In this follow-up study in subjects who received two doses of the 50μg gE/AS01B formulation (HZ/su), we assessed the persistence of the immune responses for up to 6 years after vaccination. This phase II, open-label, multicenter, single-group trial conducted in the Czech Republic, Germany, Sweden, and the Netherlands followed 129 subjects who had received two doses (2 months apart) of HZ/su during the initial trial. Vaccine-induced immune responses (frequencies of gE-specific CD4(+) T cells expressing ≥2 activation markers and serum anti-gE antibody concentrations) were evaluated at 48, 60, and 72 months after the first HZ/su dose. Six years after vaccination with HZ/su, gE-specific cell-mediated immune responses and anti-gE antibody concentrations had decreased by 20-25% from month 36, but remained higher than the prevaccination values. At month 72, the gE-specific cell-mediated immune response was 3.8 times higher than the prevaccination value (477.3 vs. 119.4 activated gE-specific CD4(+) T cells per 10(6) cells), and the anti-gE antibody concentration was 7.3 times higher than the prevaccination value (8159.0 vs. 1121.3mIU/mL). No vaccine-related serious adverse events were reported between months 36 and 72. gE-specific cellular and humoral immune responses persisted for 6 years after two-dose vaccination with HZ/su in healthy older adults. No safety concerns were identified. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
2014-01-01
Porcine circovirus type 2 (PCV2) vaccination represents an important measure to cope with PCV2 infection; however, data regarding the modulation of the immune cell compartment are still limited, especially under field conditions. This study is aimed at investigating the features of the cellular immune response in conventional piglets induced by vaccination using a capsid (Cap) protein-based PCV2 vaccine compared to unvaccinated animals when exposed to PCV2 natural infection. Immune reactivity was evaluated by quantifying peripheral cell subsets involved in the anti-viral response and characterizing the interferon-gamma (IFN-γ) secreting cell (SC) responsiveness both in vivo and upon in vitro whole PCV2 recall. The vaccination triggered an early and intense IFN-γ secreting cell response and induced the activation of peripheral lymphocytes. The early increase of IFN-γ SC frequencies resulted in a remarkable and transient tendency to increased IFN-γ productivity in vaccinated pigs. In vaccinated animals, soon before the onset of infection occurred 15-16 weeks post-vaccination, the recalled PCV2-specific immune response was characterized by moderate PCV2-specific IFN-γ secreting cell frequencies and augmented productivity together with reactive CD4+CD8+ memory T cells. Conversely, upon infection, unvaccinated animals showed very high frequencies of IFN-γ secreting cells and a tendency to lower productivity, which paralleled with effector CD4–CD8+ cytotoxic cell responsiveness. The study shows that PCV2 vaccination induces a long-lasting immunity sustained by memory T cells and IFN-γ secreting cells that potentially played a role in preventing the onset of infection; the extent and duration of this reactivity can be an important feature for evaluating the protective immunity induced by vaccination. PMID:24735253
ERIC Educational Resources Information Center
Bustos, Theona; Jaaniste, Tiina; Salmon, Karen; Champion, G. David
2008-01-01
This study was designed to investigate whether a brief intervention encouraging parental coping-promoting talk within the treatment room would have beneficial effects on infant pain responses to an immunization injection. Infant-parent dyads were recruited from a 6-month immunization clinic and randomized to an intervention group (n = 25) or…
HCV-specific immune responses induced by CIGB-230 in combination with IFN-α plus ribavirin
Amador-Cañizares, Yalena; Martínez-Donato, Gillian; Álvarez-Lajonchere, Liz; Vasallo, Claudia; Dausá, Mariacarla; Aguilar-Noriega, Daylen; Valenzuela, Carmen; Raíces, Ivette; Dubuisson, Jean; Wychowski, Czeslaw; Cinza-Estévez, Zurina; Castellanos, Marlén; Núñez, Magdalys; Armas, Anny; González, Yaimé; Revé, Ismariley; Guerra, Ivis; Pérez Aguiar, Ángel; Dueñas-Carrera, Santiago
2014-01-01
AIM: To analyze hepatitis C virus (HCV)-specific immune responses in chronically infected patients under triple therapy with interferon-α (IFN-α) plus ribavirin and CIGB-230. METHODS: CIGB-230 was administered in different schedules with respect to IFN-α plus ribavirin therapy. Paired serum and peripheral blood mononuclear cells (PBMC) samples from baseline and end of treatment were analyzed. The HCV-specific humoral response was tested by enzyme-linked immunosorbent assay, neutralizing antibodies were evaluated by cell culture HCV neutralization assays, PBMC proliferation was assayed by carboxyfluorescein succinimidyl ester staining and IFN-γ secretion was assessed by enzyme-linked immunospot. Data on virological and histological response and their association with immune variables are also provided. RESULTS: From week 12 to week 48, all groups of patients showed a significant reduction in mean leukocyte counts. Statistically significant reductions in antibody titers were frequent, but only individuals immunized with CIGB-230 as early add-on treatment sustained the core-IgG response, and the neutralizing antibody response was enhanced only in patients receiving CIGB-230. Cell-mediated immune responses also tended to decline, but significant reductions in IFN-γ secretion and total absence of core-specific lymphoproliferation were exclusive of the control group. Only CIGB-230-immunized individuals showed de novo induced lymphoproliferative responses against the structural antigens. Importantly, it was demonstrated that the quality of the CIGB-230-induced immune response depended on the number of doses and timing of administration in relation to the antiviral therapy. Specifically, the administration of 6 doses of CIGB-230 as late add-on to therapy increased the neutralizing antibody activity and the de novo core-specific IFN-γ secretion, both of which were associated with the sustained virological response. CONCLUSION: CIGB-230, combined with IFN-α-based therapy, modifies the immune response in chronic patients. The study provides evidence for the design of more effective therapeutic vaccine interventions against HCV. PMID:24415868
Huang, Ya-Shu; Fisher, Morly; Nasrawi, Ziyad; Eichenbaum, Zehava
2011-06-01
The worldwide burden of the Group A Streptococcus (GAS) primary infection and sequelae is considerable, although immunization programs with broad coverage of the hyper variable GAS are still missing. We evaluate the streptococcal hemoprotein receptor (Shr), a conserved streptococcal protein, as a vaccine candidate against GAS infection. Mice were immunized intraperitoneally with purified Shr or intranasally with Shr-expressing Lactococcus lactis. The resulting humoral response in serum and secretions was determined. We evaluated protection from GAS infection in mice after active or passive vaccination with Shr, and Shr antiserum was tested for bactericidal activity. A robust Shr-specific immunoglobulin (Ig) G response was observed in mouse serum after intraperitoneal vaccination with Shr. Intranasal immunization elicited both a strong IgG reaction in the serum and a specific IgA reaction in secretions. Shr immunization in both models allowed enhanced protection from systemic GAS challenge. Rabbit Shr antiserum was opsonizing, and mice that were administrated with Shr antiserum prior to the infection demonstrated a significantly higher survival rate than did mice treated with normal rabbit serum. Shr is a promising vaccine candidate that is capable of eliciting bactericidal antibody response and conferring immunity against systemic GAS infection in both passive and active vaccination models.
Liu, Lanxia; Ma, Pingchuan; Wang, Hai; Zhang, Chao; Sun, Hongfan; Wang, Chun; Song, Cunxian; Leng, Xigang; Kong, Deling; Ma, Guilei
2016-03-10
In this study, we used cationic lipid-poly(lactide-co-glycolide) acid (PLGA) hybrid nanoparticles as antigen delivery carriers to investigate how antigen-loading methods affect antigen exposure to the immune system and evaluated the resulting antigen-specific immune responses. We formulated three classes of antigen adsorbed and/or encapsulated cationic lipid-PLGA hybrid nanoparticles; we designated antigen-adsorbed (out), antigen-encapsulated (in), and antigen-adsorbed/encapsulated (both) nanoparticles. Our results demonstrate significantly more efficient lysosomal escape and cross-presentation of antigen from dendritic cells (DCs) that were exposed to "both" and "in" nanoparticles. In vivo experiments further revealed that "both" nanoparticles significantly more effectively provided not only adequate initial antigen exposure but also long-term antigen persistence at the injection site. Data from flow cytometry and ELISA analyses demonstrated elevated in vivo immune responses from mice that were immunized with nanoparticles-delivered OVA when compared with free OVA. In addition, "in" and "both" nanoparticles elicited significantly higher antigen-specific immune response than "out" nanoparticles and free OVA. These results suggest that the location of antigen entrapment is an important factor in modulating the immune responses of antigens delivered by nanoparticles. Overall, we propose here a promising approach for the future design of vaccines using cationic lipid-PLGA nanoparticles. Copyright © 2016 Elsevier B.V. All rights reserved.
Lambracht-Washington, Doris; Qu, Bao-xi; Fu, Min; Anderson, Larry D; Eagar, Todd N; Stüve, Olaf; Rosenberg, Roger N
2013-01-15
Immunotherapy has the potential to provide a possible treatment therapy to prevent or delay Alzheimer disease. In a clinical trial (AN1792) in which patients received this immunotherapy and received active Aβ1-42 peptide immunizations, treatment was stopped when 6% of patients showed signs of meningoencephalitis. Follow up on these patients led to the conclusion that the antibody response was beneficial in removing Aβ1-42 from brain but an accompanying inflammatory Th1 T cell response was harmful. As a safe alternative treatment targeting the same self protein, Aβ1-42, in brain, we and others are working on a DNA Aβ1-42 immunization protocol as the immune response to DNA immunizations differs in many aspects from immunizations with peptide antigens. Because the immune response to DNA vaccination has different kinetics and has a significantly lower antibody production, we evaluated two different prime boost regimens, Aβ1-42 DNA prime/Aβ1-42 peptide boost and Aβ1-42 peptide prime/Aβ1-42 DNA boost for their effectiveness in antibody production and possible side effects due to inflammatory T cell responses. While both boost regimes significantly enhanced the specific antibody production with comparable antibody concentrations, the absence of the Aβ1-42 T cell response (no proliferation and no cytokine production) is consistent with our previous findings using this DNA Aβ1-42 trimer immunization and greatly enhances the safety aspect for possible clinical use. Copyright © 2012 Elsevier B.V. All rights reserved.
Maspi, Nahid; Ghaffarifar, Fatemeh; Sharifi, Zohreh; Dalimi, Abdolhossein; Dayer, Mohammad Saaid
2018-02-01
In the present study, we evaluated induced immune responses following DNA vaccine containing cocktail or fusion of LeIF, LACK and TSA genes or each gene alone. Mice were injected with 100 µg of each plasmid containing the gene of insert, plasmid DNA alone as the first control group or phosphate buffer saline as the second control group. Then, cellular and humoral responses, lesion size were measured for all groups. All vaccinated mice induced Th1 immune responses against Leishmania characterized by higher IFN-γ and IgG2a levels compared with control groups (p < 0.05). In addition, IFN-γ levels increased in groups immunized with fusion and cocktail vaccines in comparison with LACK (p < 0.001) and LeIF (p < 0.01) groups after challenge. In addition, fusion and cocktail groups produced higher IgG2a values than groups vaccinated with a gene alone (p < 0.05). Lesion progression delayed for all immunized groups compared with control groups from 5th week post-infection (p < 0.05). Mean lesion size decreased in immunized mice with fusion DNA than three groups vaccinated with one gene alone (p < 0.05). While, lesion size decreased significantly in cocktail recipient group than LeIF recipient group (p < 0.05). There was no difference in lesion size between fusion and cocktail groups. Overall, immunized mice with cocktail and fusion vaccines showed stronger Th1 response by production of higher IFN-γ and IgG2a and showed smaller mean lesion size. Therefore, use of multiple antigens can improve induced immune responses by DNA vaccination.
Deng, Shu-xuan; Cai, Ming-sheng; Cui, Wei; Huang, Jin-lu; Li, Mei-li
2014-01-01
Goose parvovirus (GPV) is a highly contagious and deadly disease for goslings and Muscovy ducklings. To compare the differences in immune response of geese immunized with GPV-VP1 DNA-based and live attenuated vaccines. Shitou geese were immunized once with either 20 μg pcDNA-GPV-VP1 DNA gene vaccine by gene gun bombardment via intramuscular injection, or 300 μg by i.m. injection, or 300 μL live attenuated vaccine by i.m. injection, whereas 300 μg pcDNA3.1 (+) i.m. or 300 μL saline i.m. were used as positive and negative controls, respectively. Each group comprised 28 animals. Peripheral blood samples were collected from 2-210 days after immunization and the proliferation of T lymphocytes, the number of CD4(+) and CD8(+) T cells and the level of IgG assessed. Statistical analysis was performed using a one-way analysis of variance with group multiple comparisons via Tukey's test. The pcDNA-GPV-VP1 DNA and attenuated vaccine induced cellular and humoral responses, and there were no differences between the 20 and 300 μg group in the responses of proliferation of T lymphocyte and the CD8(+) T-cell. However, as to CD4(+) T-cell response and humoral immunity, the 20 μg group performed better than the 300 μg group, which induced better cellular and humoral immunity than live attenuated vaccine. This study showed that it is possible to induce both cellular and humoral response using DNA-based vaccines and that the pcDNA-GPV-VP1 DNA gene vaccine induced better cellular and humoral immunity than live attenuated vaccine.
Meza-Sánchez, David; Pérez-Montesinos, Gibrán; Sánchez-García, Javier; Moreno, José; Bonifaz, Laura C
2011-10-01
The nature of CD4(+) T-cell responses after skin immunization and the role of migrating DCs in the presence of adjuvants in the elicited response are interesting issues to be investigated. Here, we evaluated the priming of CD4(+) T cells following ear immunization with low doses of model antigens in combination with either cholera toxin (CT) or the non-toxic β CT subunit (CTB) as an adjuvant. Following immunization with CT, we found efficient antigen presentation that is reflected in the production of IFN-γ and IL-17 by CD4(+) T cells over IL-4 or IL-5 production. The CTB-induced activation of DCs in the ear occurred without visible inflammation, which reflects a similar type of CD4(+) T-cell differentiation. In both cases, the elicited response was dependent on the presence of migrating skin cells. Remarkably, immunization with CT or with CTB led to the induction of a delayed-type hypersensitivity (DTH) response in the ear. The DTH response that was induced by CT immunization was dependent on IL-17 and partially dependent on IFN-γ activity. These results indicate that both CT and CTB induce an efficient CD4(+) T-cell response to a co-administered antigen following ear immunization that is dependent on migrating DCs. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Group 2 ILCs: A way of enhancing immune protection against human helminths?
Nausch, N; Mutapi, F
2018-02-01
Group 2 innate lymphoid cells (ILC2s) play crucial roles in type 2 immune responses associated with allergic and autoimmune diseases, viral and helminth infections and tissue homoeostasis. Experimental models show that in helminth infections ILC2s provide an early source of type 2 cytokines and therefore are essential for the induction of potentially protective type 2 responses. Much of our knowledge of ILC2s in helminth infections has come from experimental mouse models with very few studies analysing ILC2s in natural human infections. In attempts to harness knowledge from paradigms of the development of protective immunity in human helminth infections for vaccine development, the role of ILC2 cells could be pivotal. So far, potential vaccines against human helminth infections have failed to provide effective protection when evaluated in human studies. In addition to appropriate antigen selection, it is apparent that more detailed knowledge on mechanisms of induction and maintenance of protective immune responses is required. Therefore, there is need to understand how ILC2 cells induce type 2 responses and subsequently support the development of a protective immune response in the context of immunizations. Within this review, we summarize the current knowledge of the biology of ILC2s, discuss the importance of ILC2s in human helminth infections and explore how ILC2 responses could be boosted to efficiently induce protective immunity. © 2017 The Authors. Parasite Immunology Published by John Wiley & Sons Ltd.
Immune Response and Function: Exercise Conditioning Versus Bed-Rest and Spaceflight Deconditioning
NASA Technical Reports Server (NTRS)
Greenleaf, J. E.; Jackson, C. G. R.; Lawless, D.
1994-01-01
Immune responses measured at rest immediately or some hours after exercise training (some with and some without increase in maximal oxygen uptake) gave variable and sometimes conflicting results; therefore, no general conclusions can be drawn. On the other hand, most immune responses were either unchanged (immunoglobulin, T cells, CD4+, and natural killer activity) or decreased (blood properdin, neutrophil phagocytic activity, salivary lysozymes, brain immunoglobulin A and G, and liver B lymphocytes and phytohemagglutinin activity) during prolonged bed rest. Some data suggested that exercise training during bed rest may partially ameliorate the decreased functioning of the immune system. Exercise and change in body position, especially during prolonged bed rest with plasma fluid shifts and diuresis, may induce a change in plasma protein concentration and content, which can influence drug metabolism as well as immune function. Leukocytosis, accompanied by lymphopenia and a depressed lymphocyte response, occurs in astronauts on return to Earth from spaceflight; recovery may depend on time of exposure to microgravity. It is clear that the effect of drugs and exercise used as countermeasures for microgravity deconditioning should be evaluated for their effect on an astronaut's immune system to assure optimal health and performance on long-duration space missions.
[Effect of immune modulation on immunogenic and protective activity of a live plague vaccine].
Karal'nik, B V; Ponomareva, T S; Deriabin, P N; Denisova, T G; Mel'nikova, N N; Tugambaev, T I; Atshabar, B B; Zakarian, S B
2014-01-01
Comparative evaluation of the effect of polyoxidonium and betaleukin on immunogenic and protective activity of a live plague vaccine in model animal experiments. Plague vaccine EV, polyoxidonium, betaleukin, erythrocytic antigenic diagnosticum for determination of F1 antibodies and immune reagents for detection of lymphocytes with F1 receptors (LFR) in adhesive test developed by the authors were used. The experiments were carried out in 12 rabbits and 169 guinea pigs. Immune modulation accelerated the appearance and disappearance of LFR (early phase) and ensured a more rapid and intensive antibody formation (effector phase). Activation by betaleukin is more pronounced than by polyoxidonium. The more rapid and intensive was the development of early phase, the more effective was antibody response to the vaccine. Immune modulation in the experiment with guinea pigs significantly increased protective activity of the vaccine. The use of immune modulators increased immunogenic (in both early and effector phases of antigen-specific response) and protective activity of the EV vaccine. A connection between the acceleration of the first phase of antigen-specific response and general intensity of effector phase of immune response to the EV vaccine was detected. ,
Watson, Douglas S.; Endsley, Aaron N.; Huang, Leaf
2012-01-01
Liposomes (phospholipid bilayer vesicles) are versatile and robust delivery systems for induction of antibody and T lymphocyte responses to associated subunit antigens. In the last 15 years, liposome vaccine technology has matured and now several vaccines containing liposome-based adjuvants have been approved for human use or have reached late stages of clinical evaluation. Given the intensifying interest in liposome-based vaccines, it is important to understand precisely how liposomes interact with the immune system and stimulate immunity. It has become clear that the physicochemical properties of liposomal vaccines – method of antigen attachment, lipid composition, bilayer fluidity, particle charge, and other properties – exert dramatic effects on the resulting immune response. Here, we present a comprehensive review of the physicochemical properties of liposomal vaccines and how they influence immune responses. A discussion of novel and emerging immunomodulators that are suitable for inclusion in liposomal vaccines is also presented. Through a comprehensive analysis of the body of liposomal vaccine literature, we enumerate a series of principles that can guide the rational design of liposomal vaccines to elicit immune responses of a desired magnitude and quality. We also identify major unanswered questions in the field, pointing the direction for future study. PMID:22306376
Effect of adjuvants on the humoral immune response to congopain in mice and cattle
2012-01-01
Background We investigated several adjuvants for their effects on the humoral immune response in both mice and cattle using the central domain of congopain (C2), the major cysteine protease of Trypanosoma congolense, as a model for developing a vaccine against animal trypanosomosis. The magnitude and sustainability of the immune response against C2 and the occurrence of a booster effect of infection, an indirect measure of the presence of memory cells, were determined by ELISA, while spectrofluorometry was used to determine and measure the presence of enzyme-inhibiting antibodies. Results Mice immunized with recombinant C2 in TiterMax™, Adjuphos™, purified saponin Quil A™ or Gerbu™ showed the best response according to the evaluation criteria and the latter three were chosen for the cattle vaccination study. The cattle were challenged with T. congolense four and a half months after the last booster. Cattle immunized with recombinant C2 in purified saponin Quil A™ showed the best antibody response according to the measured parameters. Conclusions We identified purified saponin Quil A™ as a good adjuvant for immunizations with C2. The results from this study will be useful in future attempts to develop an effective anti-disease vaccine against African trypanosomosis. PMID:22621378
Probiotics, antibiotics and the immune responses to vaccines.
Praharaj, Ira; John, Sushil M; Bandyopadhyay, Rini; Kang, Gagandeep
2015-06-19
Orally delivered vaccines have been shown to perform poorly in developing countries. There are marked differences in the structure and the luminal environment of the gut in developing countries resulting in changes in immune and barrier function. Recent studies using newly developed technology and analytic methods have made it increasingly clear that the intestinal microbiota activate a multitude of pathways that control innate and adaptive immunity in the gut. Several hypotheses have been proposed for the underperformance of oral vaccines in developing countries, and modulation of the intestinal microbiota is now being tested in human clinical trials. Supplementation with specific strains of probiotics has been shown to have modulatory effects on intestinal and systemic immune responses in animal models and forms the basis for human studies with vaccines. However, most studies published so far that have evaluated the immune response to vaccines in children and adults have been small and results have varied by age, antigen, type of antibody response and probiotic strain. Use of anthelminthic drugs in children has been shown to possibly increase immunogenicity following oral cholera vaccination, lending further support to the rationale for modulation of the immune response to oral vaccination through the intestinal microbiome. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Dendritic cell activation enhances anti-PD-1 mediated immunotherapy against glioblastoma.
Garzon-Muvdi, Tomas; Theodros, Debebe; Luksik, Andrew S; Maxwell, Russell; Kim, Eileen; Jackson, Christopher M; Belcaid, Zineb; Ganguly, Sudipto; Tyler, Betty; Brem, Henry; Pardoll, Drew M; Lim, Michael
2018-04-17
The glioblastoma (GBM) immune microenvironment is highly suppressive as it targets and hinders multiple components of the immune system. Checkpoint blockade (CB) is being evaluated for GBM patients. However, biomarker analyses suggest that CB monotherapy may be effective only in a small fraction of GBM patients. We hypothesized that activation of antigen presentation would increase the therapeutic response to PD-1 blockade. We show that activating DCs through TLR3 agonists enhances the anti-tumor immune response to CB and increases survival in GBM. Mice treated with TLR3 agonist poly(I:C) and anti-PD-1 demonstrated increased DC activation and increased T cell proliferation in tumor draining lymph nodes. We show that DCs are necessary for the improved anti-tumor immune response. This study suggests that augmenting antigen presentation is an effective multimodal immunotherapy strategy that intensifies anti-tumor responses in GBM. Specifically, these data represent an expanded role for TLR3 agonists as adjuvants to CB. Using a preclinical model of GBM, we tested the efficacy of combinatorial immunotherapy with anti-PD-1 and TLR3 agonist, poly(I:C). Characterization of the immune response in tumor infiltrating immune cells and in secondary lymphoid organs was performed. Additionally, dendritic cell (DC) depletion experiments were performed.
Belderok, Sanne-Meike; Sonder, Gerard J B; van Rossum, Marion; van Dijk-Hummelman, Annette; Hartwig, Nico; Scherpbier, Henriette; Geelen, Sibyl; Speksnijder, Arjen G C L; Baaten, Gijs; van den Hoek, Anneke
2013-08-28
A phase IV interventional study with a combined hepatitis A and B vaccine was conducted in HIV-infected children and children receiving immunosuppressive medication for treatment of rheumatic diseases to evaluate immune responses. Both groups (1-16 years of age) received combined (inactivated) HAV and (rDNA) HBV vaccine Ambirix(®) at months 0 and 6. Serum samples were taken at four time points and tested for anti-HAV and anti-HBs antibodies. Anti-HAV concentrations ≥20 mIU/mL or anti-HBs concentrations ≥10 mIU/mL were considered protective. Seropositivity percentages were calculated and geometric mean concentrations (GMCs) were compared by nonparametric Mann-Whitney U-test or Kruskal-Wallis one-way-analysis-of-variance. Of 80 HIV-infected children who completed the study, 67 were HAV-susceptible and 68 HBV-susceptible at enrolment. Of 80 children with rheumatic diseases who completed the study, 65 were HAV-susceptible and 74 HBV-susceptible at enrolment. Immune responses to HAV after first dose of vaccine in both study groups were low: 71% and 55% respectively, whereas immune responses after the second dose were 99% and 100% respectively. Immune response to HBV after first dose of vaccine in both groups was also low: 27% and 17% respectively. Immune responses after the second dose were 97% and 93%, respectively. A larger proportion of children on combination antiretroviral therapy (cART) and of children with viral load <50 copies/mL responded to HBV, and also showed a significantly higher GMC. Although immune response after full series of combined HAV and HBV vaccine in both groups was excellent and comparable to healthy children, a substantial proportion of both groups was not protected for HAV after first dose of vaccine. This protection gap is especially important for HAV in travel health and postexposure prophylactic treatment: both groups of children should be serologically tested for anti-HAV prior to travel to ensure protection if there is no time to await second dose of vaccine. Copyright © 2013 Elsevier Ltd. All rights reserved.
Wern, Jeanette Erbo; Sorensen, Maria Rathmann; Olsen, Anja Weinreich; Andersen, Peter; Follmann, Frank
2017-01-01
The selection of any specific immunization route is critical when defining future vaccine strategies against a genital infection like Chlamydia trachomatis (C.t.). An optimal Chlamydia vaccine needs to elicit mucosal immunity comprising both neutralizing IgA/IgG antibodies and strong Th1/Th17 responses. A strategic tool to modulate this immune profile and mucosal localization of vaccine responses is to combine parenteral and mucosal immunizations routes. In this study, we investigate whether this strategy can be adapted into a two-visit strategy by simultaneous subcutaneous (SC) and nasal immunization. Using a subunit vaccine composed of C.t. antigens (Ags) adjuvanted with CAF01, a Th1/Th17 promoting adjuvant, we comparatively evaluated Ag-specific B and T cell responses and efficacy in mice following SC and simultaneous SC and nasal immunization (SIM). We found similar peripheral responses with regard to interferon gamma and IL-17 producing Ag-specific splenocytes and IgG serum levels in both vaccine strategies but in addition, the SIM protocol also led to Ag-specific IgA responses and increased B and CD4+ T cells in the lung parenchyma, and in lower numbers also in the genital tract (GT). Following vaginal infection with C.t., we observed that SIM immunization gave rise to an early IgA response and IgA-secreting plasma cells in the GT in contrast to SC immunization, but we were not able to detect more rapid recruitment of mucosal T cells. Interestingly, although SIM vaccination in general improved mucosal immunity we observed no improved efficacy against genital infection compared to SC, a finding that warrants for further investigation. In conclusion, we demonstrate a novel vaccination strategy that combines systemic and mucosal immunity in a two-visit strategy. PMID:28567043
Bolton, Diane L; Santra, Sampa; Swett-Tapia, Cindy; Custers, Jerome; Song, Kaimei; Balachandran, Harikrishnan; Mach, Linh; Naim, Hussein; Kozlowski, Pamela A; Lifton, Michelle; Goudsmit, Jaap; Letvin, Norman; Roederer, Mario; Radošević, Katarina
2012-09-07
Licensed live attenuated virus vaccines capable of expressing transgenes from other pathogens have the potential to reduce the number of childhood immunizations by eliciting robust immunity to multiple pathogens simultaneously. Recombinant attenuated measles virus (rMV) derived from the Edmonston Zagreb vaccine strain was engineered to express simian immunodeficiency virus (SIV) Gag protein for the purpose of evaluating the immunogenicity of rMV as a vaccine vector in rhesus macaques. rMV-Gag immunization alone elicited robust measles-specific humoral and cellular responses, but failed to elicit transgene (Gag)-specific immune responses, following aerosol or intratracheal/intramuscular delivery. However, when administered as a priming vaccine to a heterologous boost with recombinant adenovirus serotype 5 expressing the same transgene, rMV-Gag significantly enhanced Gag-specific T lymphocyte responses following rAd5 immunization. Gag-specific humoral responses were not enhanced, however, which may be due to either the transgene or the vector. Cellular response priming by rMV against the transgene was highly effective even when using a suboptimal dose of rAd5 for the boost. These data demonstrate feasibility of using rMV as a priming component of heterologous prime-boost vaccine regimens for pathogens requiring strong cellular responses. Copyright © 2012 Elsevier Ltd. All rights reserved.
Rigato, Paula Ordonhez; Maciel, Milton; Goldoni, Adriana Letícia; Piubelli, Orlando Guerra; Orii, Noemia Mie; Marques, Ernesto Torres; August, Joseph Thomas; Duarte, Alberto José da Silva; Sato, Maria Notomi
2012-01-01
Infants born to HIV-infected mothers are at high risk of becoming infected during gestation or the breastfeeding period. A search is thus warranted for vaccine formulations that will prevent mother-to-child HIV transmission. The LAMP/gag DNA chimeric vaccine encodes the HIV-1 p55gag fused to the lysosome-associated membrane protein-1 (LAMP-1) and has been shown to enhance anti-Gag antibody (Ab) and cellular immune responses in adult and neonatal mice; such a vaccine represents a new concept in antigen presentation. In this study, we evaluated the effect of LAMP/gag DNA immunization on neonates either before conception or during pregnancy. LAMP/gag immunization of BALB/c mice before conception by the intradermal route led to the transfer of anti-Gag IgG1 Ab through the placenta and via breastfeeding. Furthermore, there were an increased percentage of CD4+CD25+Foxp3+T cells in the spleens of neonates. When offspring were immunized with LAMP/gag DNA, the anti-Gag Ab response and the Gag-specific IFN-γ-secreting cells were decreased. Inhibition of anti-Gag Ab production and cellular responses were not observed six months after immunization, indicating that maternal immunization did not interfere with the long-lasting memory response in offspring. Injection of purified IgG in conjunction with LAMP/gag DNA immunization decreased humoral and cytotoxic T-cell responses. LAMP/gag DNA immunization by intradermal injection prior to conception promoted the transfer of Ab, leading to a diminished response to Gag without interfering with the development of anti-Gag T- and B-cell memory. Finally, we assessed responses after one intravenous injection of LAMP/gag DNA during the last five days of pregnancy. The intravenous injection led to in utero immunization. In conclusion, DNA vaccine enconding LAMP-1 with Gag and other HIV-1 antigens should be considered in the development of a protective vaccine for the maternal/fetal and newborn periods.
Rigato, Paula Ordonhez; Maciel, Milton; Goldoni, Adriana Letícia; Piubelli, Orlando Guerra; Orii, Noemia Mie; Marques, Ernesto Torres; August, Joseph Thomas; Duarte, Alberto José da Silva; Sato, Maria Notomi
2012-01-01
Infants born to HIV-infected mothers are at high risk of becoming infected during gestation or the breastfeeding period. A search is thus warranted for vaccine formulations that will prevent mother-to-child HIV transmission. The LAMP/gag DNA chimeric vaccine encodes the HIV-1 p55gag fused to the lysosome-associated membrane protein-1 (LAMP-1) and has been shown to enhance anti-Gag antibody (Ab) and cellular immune responses in adult and neonatal mice; such a vaccine represents a new concept in antigen presentation. In this study, we evaluated the effect of LAMP/gag DNA immunization on neonates either before conception or during pregnancy. LAMP/gag immunization of BALB/c mice before conception by the intradermal route led to the transfer of anti-Gag IgG1 Ab through the placenta and via breastfeeding. Furthermore, there were an increased percentage of CD4+CD25+Foxp3+T cells in the spleens of neonates. When offspring were immunized with LAMP/gag DNA, the anti-Gag Ab response and the Gag-specific IFN-γ-secreting cells were decreased. Inhibition of anti-Gag Ab production and cellular responses were not observed six months after immunization, indicating that maternal immunization did not interfere with the long-lasting memory response in offspring. Injection of purified IgG in conjunction with LAMP/gag DNA immunization decreased humoral and cytotoxic T-cell responses. LAMP/gag DNA immunization by intradermal injection prior to conception promoted the transfer of Ab, leading to a diminished response to Gag without interfering with the development of anti-Gag T- and B-cell memory. Finally, we assessed responses after one intravenous injection of LAMP/gag DNA during the last five days of pregnancy. The intravenous injection led to in utero immunization. In conclusion, DNA vaccine enconding LAMP-1 with Gag and other HIV-1 antigens should be considered in the development of a protective vaccine for the maternal/fetal and newborn periods. PMID:22355381
Choi, Young-Jun; Fuchs, Jeremy F.; Mayhew, George F.; Yu, Helen E.; Christensen, Bruce M.
2012-01-01
Hemocytes are integral components of mosquito immune mechanisms such as phagocytosis, melanization, and production of antimicrobial peptides. However, our understanding of hemocyte-specific molecular processes and their contribution to shaping the host immune response remains limited. To better understand the immunophysiological features distinctive of hemocytes, we conducted genome-wide analysis of hemocyte-enriched transcripts, and examined how tissue-enriched expression patterns change with the immune status of the host. Our microarray data indicate that the hemocyte-enriched trascriptome is dynamic and context-dependent. Analysis of transcripts enriched after bacterial challenge in circulating hemocytes with respect to carcass added a dimension to evaluating infection-responsive genes and immune-related gene families. We resolved patterns of transcriptional change unique to hemocytes from those that are likely shared by other immune responsive tissues, and identified clusters of genes preferentially induced in hemocytes, likely reflecting their involvement in cell type specific functions. In addition, the study revealed conserved hemocyte-enriched molecular repertoires which might be implicated in core hemocyte function by cross-species meta-analysis of microarray expression data from Anopheles gambiae and Drosophila melanogaster. PMID:22796331
2018-01-01
The acute phase response (APR) is the first line of defense of the vertebrate immune system against pathogens. Mounting an immune response is believed to be energetically costly but direct measures of metabolic rate during immune challenges contradict this assumption. The energetic cost of APR for birds is higher than for rodents, suggesting that this response is less expensive for mammals. However, the particularly large increase in metabolic rate after APR activation for a piscivorous bat (Myotis vivesi) suggests that immune response might be unusually costly for bats. Here we quantified the energetic cost and body mass change associated with APR for the nectarivorous Pallas’s long-tongued bat (Glossophaga soricina). Activation of the APR resulted in a short-term decrease in body mass and an increase in resting metabolic rate (RMR) with a total energy cost of only 2% of the total energy expenditure estimated for G. soricina. This increase in RMR was far from the large increase measured for piscivorous bats; rather, it was similar to the highest values reported for birds. Overall, our results suggest that the costs of APR for bats may vary interspecifically. Measurement of the energy cost of vertebrate immune response is limited to a few species and further work is warranted to evaluate its significance for an animal’s energy budget. PMID:29888121
Hemmink, Johanneke D; Morgan, Sophie B; Aramouni, Mario; Everett, Helen; Salguero, Francisco J; Canini, Laetitia; Porter, Emily; Chase-Topping, Margo; Beck, Katy; Loughlin, Ronan Mac; Carr, B Veronica; Brown, Ian H; Bailey, Mick; Woolhouse, Mark; Brookes, Sharon M; Charleston, Bryan; Tchilian, Elma
2016-10-20
Influenza virus infection in pigs is a major farming problem, causing considerable economic loss and posing a zoonotic threat. In addition the pig is an excellent model for understanding immunity to influenza viruses as this is a natural host pathogen system. Experimentally, influenza virus is delivered to pigs intra-nasally, by intra-tracheal instillation or by aerosol, but there is little data comparing the outcome of different methods. We evaluated the shedding pattern, cytokine responses in nasal swabs and immune responses following delivery of low or high dose swine influenza pdmH1N1 virus to the respiratory tract of pigs intra-nasally or by aerosol and compared them to those induced in naturally infected contact pigs. Our data shows that natural infection by contact induces remarkably high innate and adaptive immune response, although the animals were exposed to a very low virus dose. In contacts, the kinetics of virus shedding were slow and prolonged and more similar to the low dose directly infected animals. In contrast the cytokine profile in nasal swabs, antibody and cellular immune responses of contacts more closely resemble immune responses in high dose directly inoculated animals. Consideration of these differences is important for studies of disease pathogenesis and assessment of vaccine protective efficacy.
Veazey, Ronald S; Siddiqui, Asna; Klein, Katja; Buffa, Viviana; Fischetti, Lucia; Doyle-Meyers, Lara; King, Deborah F; Tregoning, John S; Shattock, Robin J
2015-01-01
Delivering vaccine antigens to mucosal surfaces is potentially very attractive, especially as protection from mucosal infections may be mediated by local immune responses. However, to date mucosal immunization has had limited successes, with issues of both safety and poor immunogenicity. One approach to improve immunogenicity is to develop adjuvants that are effective and safe at mucosal surfaces. Differences in immune responses between mice and men have overstated the value of some experimental adjuvants which have subsequently performed poorly in the clinic. Due to their closer similarity, non-human primates can provide a more accurate picture of adjuvant performance. In this study we immunised rhesus macaques (Macaca mulatta) using a unique matrix experimental design that maximised the number of adjuvants screened while reducing the animal usage. Macaques were immunised by the intranasal, sublingual and intrarectal routes with the model protein antigens keyhole limpet haemocyanin (KLH), β-galactosidase (β-Gal) and ovalbumin (OVA) in combination with the experimental adjuvants Poly(I:C), Pam3CSK4, chitosan, Thymic Stromal Lymphopoietin (TSLP), MPLA and R848 (Resiquimod). Of the routes used, only intranasal immunization with KLH and R848 induced a detectable antibody response. When compared to intramuscular immunization, intranasal administration gave slightly lower levels of antigen specific antibody in the plasma, but enhanced local responses. Following intranasal delivery of R848, we observed a mildly inflammatory response, but no difference to the control. From this we conclude that R848 is able to boost antibody responses to mucosally delivered antigen, without causing excess local inflammation.
Flores, Jose; DuPont, Herbert L; Paredes-Paredes, Mercedes; Aguirre-Garcia, M Magdalena; Rojas, Araceli; Gonzalez, Alexei; Okhuysen, Pablo C
2010-05-01
Enterotoxigenic Escherichia coli (ETEC), which produces heat-labile toxin (LT), is a common cause of travelers' diarrhea (TD). The B subunit of ETEC LT is immunologically related to the B subunit of Vibrio cholerae toxin (CT). In this pilot study we evaluated the whole-blood gamma interferon response to CT B in 17 U.S. adults traveling to Mexico. Only one of nine subjects who demonstrated a cellular immune response as determined by whole-blood gamma interferon production to CT B on arrival to Mexico developed diarrhea, whereas five of eight without a cellular response developed diarrhea. Markers of the cellular immune response to ETEC LT could help in identifying individuals immune to ETEC LT, and these markers deserve additional study.
Cytokines in the management of rotavirus infection: A systematic review of in vivo studies.
Gandhi, Gopalsamy Rajiv; Santos, Victor Santana; Denadai, Marina; da Silva Calisto, Valdete Kaliane; de Souza Siqueira Quintans, Jullyana; de Oliveira E Silva, Ana Mara; de Souza Araújo, Adriano Antunes; Narain, Narendra; Cuevas, Luis Eduardo; Júnior, Lucindo José Quintans; Gurgel, Ricardo Queiroz
2017-08-01
Rotavirus is a leading cause of childhood diarrhoea. Rotavirus vaccines are effective against severe rotavirus gastroenteritis, but have lower efficacy in low income countries in Africa. Anti-rotavirus treatment is not available. This study reviews the literature of animal studies evaluating whether cytokine mediated pathways of immune activation could improve rotavirus therapy. We performed a systematic review of articles in English published from 2010 to 2016 reporting agents with in vivo antirotavirus activity for the management of rotavirus infection. The search was carried in PubMed, EMBASE, Scopus and Web of Science. Animal experiments where cytokines were investigated to assess the outcome of rotavirus therapy were included. A total of 869 publications were identified. Of these, 19 pertained the objectives of the review, and 11 articles described the effect of probiotics/commensals on rotavirus infection and immune responses in animals. Eight further in vivo studies evaluated the immunomodulating effects of herbs, secondary metabolites and food-derived products on cytokine responses of rotavirus-infected animals. Studies extensively reported the regulatory roles for T-helper (Th)1 (interferon gamma (IFN-γ), interleukin (IL)-2, IL-12) and Th2 (IL-4, IL-6, IL-10) cytokines responses to rotavirus pathogenesis and immunity, inhibiting rotavirus infection through suppression of inflammation by viral inhibition. Th1 and Th2 cytokines stimulate the immune system, inhibiting rotavirus binding and/or replication in animal models. Th1/Th2 cytokine responses have optimal immunomodulating effects to reduce rotavirus diarrhoea and enhance immune responses in experimental rotavirus infection. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gasparini, Roberto; Tregnaghi, Miguel; Keshavan, Pavitra; Ypma, Ellen; Han, Linda; Smolenov, Igor
2016-01-01
Given the broad age range across which the quadrivalent meningococcal conjugate vaccine MenACWY-CRM is used, coadministration with routine vaccines should be evaluated across age groups for possible immunologic interference and impact on vaccine reactogenicity and safety. We summarize data from a large population of infants, adolescents and international travelers from 10 phase 3 or 4 clinical studies to evaluate coadministration of MenACWY-CRM with commonly administered vaccines. Noninferiority analyses of immune responses were performed across studies and age groups for each vaccine. Reactogenicity and safety were also assessed. In infants, MenACWY-CRM coadministered with routine vaccines did not reduce immune responses to diphtheria, tetanus, poliovirus, hepatitis B, Haemophilus influenzae type b, pneumococcal conjugate, measles-mumps-rubella, varicella or pertussis antigens. Noninferiority criteria were not met for some pneumococcal conjugate serotypes at 7 months of age, but no consistent trends were observed. In adolescents, coadministration did not reduce immune responses to tetanus, diphtheria and human papilloma virus vaccine antigens. Noninferiority criteria for pertussis antigens were not uniformly met in infant and adolescent studies, although the clinical relevance is unclear. In adults, coadministration did not reduce immune responses to hepatitis A/B, typhoid fever, yellow fever, Japanese encephalitis and rabies antigens. Immune responses to MenACWY-CRM were not impacted by coadministration of commonly administered vaccines. Coadministration did not increase frequencies of postvaccination adverse events in any age group. With no clinically relevant vaccine interactions or impact on vaccine reactogenicity or safety, these results support the coadministration of MenACWY-CRM with routine vaccines in all age groups.
Adverse Events After Routine Immunization of Extremely Low Birth Weight Infants
DeMeo, Stephen D.; Raman, Sudha R.; Hornik, Christoph P.; Wilson, Catherine C.; Clark, Reese; Smith, P. Brian
2015-01-01
Importance Immunization of extremely low birth weight (ELBW) infants in the neonatal intensive care unit (NICU) is associated with adverse events including fever and apnea/bradycardia in the immediate post-immunization period. This presents a diagnostic dilemma for clinicians, leading to the potential for immunization delay and sepsis evaluations. Objective To compare the incidence of sepsis evaluations, need for increased respiratory support, intubation, seizures, and death among immunized ELBW infants in the 3 days pre- and post-immunization. Design Multicenter retrospective cohort study. Setting 348 NICUs managed by the Pediatrix Medical Group. Participants 13,926 ELBW infants ≤28 weeks gestation who were discharged between 2007 and 2012. Exposure At least one immunization between day of life 53 and 110. Main Outcomes and Measures Incidence of sepsis evaluations, need for increased respiratory support, intubation, seizures, and death. Results Most (91%) of the infants received 3 or more immunizations. The incidence of sepsis evaluations increased from 5.4/1000 patient days in the pre-immunization period to 19.3/1000 patient days post-immunization (adjusted rate ratio [ARR], 3.7; 95% CI, 3.2–4.4). The need for increased respiratory support increased from 6.6/1000 patient days in the pre-immunization period to 14.0/1000 patient days post-immunization (ARR, 2.1; 95% CI, 1.9–2.5), and intubation increased from 2.0/1000 patient days to 3.6/1000 patient days (ARR, 1.7; 95% CI, 1.3–2.2). The post-immunization incidence of adverse events was similar across immunization types, including combination vaccines when compared to single-dose vaccines. Infants who were 23–24 weeks gestation had a higher risk of sepsis evaluation and intubation post-immunization. A prior history of sepsis was associated with higher risk of sepsis evaluation post-immunization. Conclusion ELBW infants in the NICU had an increased incidence of sepsis evaluations as well as increased respiratory support and intubation after routine immunization. Our findings provide no evidence to suggest that clinicians should not use combination vaccines in ELBW infants. Further studies are needed to determine whether timing or spacing of immunization administrations confers risk for the developing adverse events and whether a prior history of sepsis confers risk for an altered immune response in ELBW infants. PMID:26030302
Shima, Fumiaki; Akagi, Takami; Uto, Tomofumi; Akashi, Mitsuru
2013-12-01
The new generation vaccines are safe but poorly immunogenic, and thus they require the use of adjuvants. However, conventional vaccine adjuvants fail to induce potent cellular immunity, and their toxicity and side-effects hinder the clinical use. Therefore, a vaccine adjuvant which is safe and can induce an antigen-specific cellular immunity-biased immune response is urgently required. In the development of nanoparticle-based vaccine adjuvants, the hydrophobicity is one of the most important factors. It could control the interaction between the encapsulated antigens and/or nanoparticles with immune cells. In this study, nanoparticles (NPs) composed of amphiphilic poly(γ-glutamic acid)-graft-L-phenylalanine ethyl ester (γ-PGA-Phe) with various grafting degrees of hydrophobic side chains were prepared to evaluate the effect of hydrophobicity of vaccine carriers on the antigen encapsulation behavior, cellular uptake, activation of dendritic cells (DCs), and induction of antigen-specific cellular immunity-biased immune responses. These NPs could efficiently encapsulate antigens, and the uptake amount of the encapsulated antigen by DCs was dependent on the hydrophobicity of γ-PGA-Phe NPs. Moreover, the activation potential of the DCs and the induction of antigen-specific cellular immunity were correlated with the hydrophobicity of γ-PGA-Phe NPs. By controlling the hydrophobicity of antigen-encapsulated γ-PGA-Phe NPs, the activation potential of DCs was able to manipulate about 5 to 30-hold than the conventional vaccine, and the cellular immunity was about 10 to 40-hold. These results suggest that the hydrophobicity of NPs is a key factor for changing the interaction between NPs and immune cells, and thus the induction of cellular immunity-biased immune response could be achieved by controlling the hydrophobicity of them. Copyright © 2013 Elsevier Ltd. All rights reserved.
Leshem, Onir; Kashino, Suely S.; Gonçalves, Reginaldo B.; Suzuki, Noriyuki; Onodera, Masao; Fujimura, Akira; Sasaki, Hajime; Stashenko, Philip; Campos-Neto, Antonio
2013-01-01
In previous studies we showed that biasing the immune response to Porphyromonas gingivalis antigens to the Th1 phenotype increases inflammatory bone resorption caused by this organism. Using a T cell screening strategy we identified eight P. gingivalis genes coding for proteins that appear to be involved in T-helper cell responses. In the present study we characterized the protein, encoded by PG_1841 gene and evaluated its relevance in the in bone resorption caused by P. gingivalis because subcutaneous infection of mice with this organism resulted in the induction of Th1 biased response to the recombinant PG1841 antigen molecule. Using an immunization regime that strongly biases toward the Th1 phenotype followed by challenge with P. gingivalis in dental pulp tissue, we demonstrate that mice pre-immunized with rPG1841 developed severe bone loss compared with control immunized mice. Pre-immunization of mice with the antigen using a Th2 biasing regime resulted in no exacerbation of the disease. These results support the notion that selected antigens of P. gingivalis are involved in a biased Th1 host response that leads to the severe bone loss caused by this oral pathogen. PMID:18457976
Infant Sleep After Immunization: Randomized Controlled Trial of Prophylactic Acetaminophen
Gay, Caryl L.; Lynch, Mary; Lee, Kathryn A.
2011-01-01
OBJECTIVE: To determine the effects of acetaminophen and axillary temperature responses on infant sleep duration after immunization. METHODS: We conducted a prospective, randomized controlled trial to compare the sleep of 70 infants monitored by using ankle actigraphy for 24 hours before and after their first immunization series at ∼2 months of age. Mothers of infants in the control group received standard care instructions from their infants' health care provider, and mothers of infants in the intervention group were provided with predosed acetaminophen and instructed to administer a dose 30 minutes before the scheduled immunization and every 4 hours thereafter, for a total of 5 doses. Infant age and birth weight and immunization factors, such as acetaminophen use and timing of administration, were evaluated for changes in infant sleep times after immunization. RESULTS: Sleep duration in the first 24 hours after immunization was increased, particularly for infants who received their immunizations after 1:30 pm and for those who experienced elevated temperatures in response to the vaccines. Infants who received acetaminophen at or after immunization had smaller increases in sleep duration than did infants who did not. However, acetaminophen use was not a significant predictor of sleep duration when other factors were controlled. CONCLUSIONS: If further research confirms the relationship between time of day of vaccine administration, increased sleep duration after immunization, and antibody responses, then our findings suggest that afternoon immunizations should be recommended to facilitate increased sleep in the 24 hours after immunization, regardless of acetaminophen administration. PMID:22123869
Dias, Daniel S; Ribeiro, Patrícia A F; Martins, Vívian T; Lage, Daniela P; Portela, Áquila S B; Costa, Lourena E; Salles, Beatriz C S; Lima, Mariana P; Ramos, Fernanda F; Santos, Thaís T O; Caligiorne, Rachel B; Chávez-Fumagalli, Miguel A; Silveira, Julia A G; Magalhães-Soares, Danielle F; Gonçalves, Denise U; Oliveira, Jamil S; Roatt, Bruno M; Duarte, Mariana C; Menezes-Souza, Daniel; Silva, Eduardo S; Galdino, Alexsandro S; Machado-de-Ávila, Ricardo A; Teixeira, Antonio L; Coelho, Eduardo A F
2017-11-01
Different Leishmania proteins have been evaluated in order to find a potential vaccine candidate or diagnostic marker capable of providing long lasting protection against infection or helping to identify infected mammalian hosts, respectively. However, just few molecules have fulfilled all the requirements to be evaluated. In the current study, we evaluated the prophylactic and diagnostic value against visceral leishmaniasis (VL) of a small glutamine-rich tetratricopeptide repeat-containing (SGT) protein from Leishmania infantum species. In a first step, the immune response elicited by the immunization using the recombinant protein (rSGT) plus saponin was evaluated in BALB/c mice. Immunized animals had a low parasitism in all evaluated organs. They developed a specific Th1 immune response, which was based on protein-specific production of IFN-γ, IL-12 and GM-CSF, and a humoral response dominated by antibodies of the IgG2a isotype. Both CD4 + and CD8 + T cells contributed to the IFN-γ production, showing that both T cell subtypes contribute to the resistance against infection. Regarding its value as a diagnostic marker, rSGT showed maximum sensitivity and specificity to serologically identify L. infantum-infected dog and human sera. No cross-reactivity with sera from humans or dogs that had other diseases was found. Although further studies are necessary to validate these findings, data showed here suggest immunogenicity of rSGT and its protective effect against murine VL, as well as its potential for the serodiagnosis of human and canine VL. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bröker, Michael
2016-03-03
When tetanus toxoid (TT), diphtheria toxoid (DT) or Cross Reacting Material 197 (CRM197), a non-toxic diphtheria toxin mutant protein, are used as carrier proteins in glycoconjugate vaccines, these carriers induce a protein specific antibody response as measured by in vitro assays. Here, it was evaluated whether or not glycoconjugates based on TT, DT or CRM197 can induce a protective immune response as measured by potency tests according to the European Pharmacopoeia. It could be shown, that the conjugate carriers TT and DT can induce a protective immune response against a lethal challenge by toxins in animals, while glycoconjugates based on CRM197 failed to induce a protective immune response. Opportunities for new applications of glycoconjugates are discussed.
Dietary nucleotides prevent decrease in cellular immunity in ground-based microgravity analog
NASA Technical Reports Server (NTRS)
Yamauchi, Keiko; Hales, Nathan W.; Robinson, Sandra M.; Niehoff, Michael L.; Ramesh, Vani; Pellis, Neal R.; Kulkarni, Anil D.
2002-01-01
Microgravity and stress of spaceflights result in immune dysfunction. The role of nutrition, especially nucleotide supplementation, has become an area of intensive research and significant interest in immunomodulation for maintenance of cellular immune responses. The studies presented here evaluate the plausibility of administering nucleotides to obviate immune dysfunction in an Earth-based in vivo analog of microgravity as studied in anti-orthostatic tail suspension (AOS) of mice. Mice were divided into three housing groups: group, isolation, and AOS. Mice were fed either control chow diet (CD), or RNA-, adenine-, or uracil-supplemented CD for the 1-wk duration of the experiments. In AOS mice, supplemental nucleotides significantly increased in vivo lymph node proliferation and ex vivo lymphoproliferation response to alloantigen and mitogens, respectively, and interleukin-2 and interferon-gamma production. A lower corticosterone level was observed in uracil-supplemented CD compared with CD. These results suggest that exogenous nucleotide supplementation, especially uracil, of normal diet is beneficial in the maintenance and restoration of the immune response during the microgravity analog conditions.
Ching, Natascha; Deville, Jaime G; Nielsen, Karin A; Ank, Bonnie; Wei, Lian S; Sim, Myung Shin; Wolinsky, Steven M; Bryson, Yvonne J
2007-01-01
Human immunodeficiency virus type 1 (HIV-1) infected children treated with highly active antiretroviral therapy (HAART) may develop a significant reduction of plasma viremia associated with an increase in CD4+ T-cell counts. Functional capacity of this reconstituted immune system in response to recall antigens is important to maintain protective immunity to vaccine-preventable diseases. We therefore determined cellular and humoral immune responses to tetanus toxoid (TT) booster in perinatally HIV-1-infected children and adolescents receiving HAART. Immune responses were prospectively evaluated pre- and post-tetanus booster using lymphocyte proliferation assay (LPA) stimulation index (SI > or = 3.0) and tetanus antibody (TAb > or = 0.15) in 15 patients. The median interval from primary tetanus immunization series was 6 years (range 2-12 years). We compared patients by their virological response to HAART (complete responders, CR, n=7; incomplete responders, ICR, n=8). There were no significant differences in median age 12.6 years (CR: 12.9; ICR: 10.6) or median CD4 T-cell pre-booster (CR: 35%/819; ICR: 26%/429) between groups. Tetanus LPA responses were observed in one patient prior to booster and in seven patients post-booster. In contrast, 38% of patients had protective TAb pre-booster, but 92% developed protective TAb post-booster. All of the CR and 5/6 ICR patients developed protective TAb. HIV-1-infected children and adolescents had modest LPA responses to tetanus following booster, similar to HIV-1-infected adults. However, the majority of patients developed protective TAb levels after booster and maintained the response. Shorter intervals may need to be considered for TT immunization boosters in HIV-1-infected pediatric patients, as only 38% had protective TAb at baseline.
Wang, Cong-Cong; Zhang, Min; Li, Heng; Li, Xiao-Li; Yue, Long-Tao; Zhang, Peng; Liu, Ru-Tao; Chen, Hui; Li, Yan-Bin; Duan, Rui-Sheng
2017-08-24
We have previously demonstrated that Cysteinyl aspartate-specific proteinase-1 (caspase-1) inhibitor ameliorates experimental autoimmune myasthenia gravis (EAMG) by inhibited cellular immune response, via suppressing DC IL-1 β, CD4 + T and γdT cells IL-17 pathways. In this study, we investigated the effect of caspase-1 inhibitor on humoral immune response of EAMG and further explore the underlying mechanisms. An animal model of MG was induced by region 97-116 of the rat AChR α subunit (R97-116 peptide) in Lewis rats. Rats were treated with caspase-1 inhibitor Ac-YVAD-cmk intraperitoneally (i.p.) every second day from day 13 after the first immunization. Flow cytometry, western blot, immunofluorescence, and enzyme-linked immunosorbent assay (ELISA) were performed to evaluate the neuroprotective effect of caspase-1 inhibitor on humoral immune response of EAMG. The results showed that caspase-1 inhibitor reduced the relative affinity of anti-R97-116 IgG, suppressed germinal center response, decreased follicular helper T cells, and increased follicular regulatory T cells and regulatory B cells. In addition, we found that caspase-1 inhibitor inhibited humoral immunity response in EAMG rats via suppressing IL-6-STAT3-Bcl-6 pathways. These results suggest that caspase-1 inhibitor ameliorates EAMG by regulating humoral immune response, thus providing new insights into the development of myasthenia gravis and other autoimmune diseases therapies. Copyright © 2017 Elsevier B.V. All rights reserved.
Nganou-Makamdop, Krystelle; van Gemert, Geert-Jan; Arens, Theo; Hermsen, Cornelus C; Sauerwein, Robert W
2012-01-01
Protection against P. berghei malaria can successfully be induced in mice by immunization with both radiation attenuated sporozoites (RAS) arresting early during liver stage development, or sporozoites combined with chloroquine chemoprophylaxis (CPS), resulting in complete intra-hepatic parasite development before killing of blood-stages by chloroquine takes place. We assessed the longevity of protective cellular immune responses by RAS and CPS P. berghei immunization of C57BL/6j mice. Strong effector and memory (T(EM)) CD8+ T cell responses were induced predominantly in the liver of both RAS and CPS immunized mice while CD4+ T cells with memory phenotype remained at base line levels. Compared to unprotected naïve mice, we found high sporozoite-specific IFNγ ex vivo responses that associated with induced levels of in vivo CD8+ T(EM) cells in the liver but not spleen. Long term evaluation over a period of 9 months showed a decline of malaria-specific IFNγ responses in RAS and CPS mice that significantly correlated with loss of protection (r(2) = 0.60, p<0.0001). The reducing IFNγ response by hepatic memory CD8+ T cells could be boosted by re-exposure to wild-type sporozoites. Our data show that sustainable protection against malaria associates with distinct intra-hepatic immune responses characterized by strong IFNγ producing CD8+ memory T cells.
Anugraha, Gandhirajan; Jeyaprita, Parasurama Jawaharlal; Madhumathi, Jayaprakasam; Sheeba, Tamilvanan; Kaliraj, Perumal
2013-12-01
Although multiple vaccine strategy for lymphatic filariasis has provided tremendous hope, the choice of antigens used in combination has determined its success in the previous studies. Multiple antigens comprising key vaccine candidates from different life cycle stages would provide a promising strategy if the antigenic combination is chosen by careful screening. In order to analyze one such combination, we have used a chimeric construct carrying the well studied B. malayi antigens thioredoxin (BmTRX) and venom allergen homologue (BmVAH) as a fusion protein (TV) and evaluated its immune responses in mice model. The efficacy of fusion protein vaccine was explored in comparison with the single antigen vaccines and their cocktail. In mice, TV induced significantly high antibody titer of 1,28,000 compared to cocktail vaccine TRX+VAH (50,000) and single antigen vaccine TRX (16,000) or VAH (50,000). Furthermore, TV elicited higher level of cellular proliferative response together with elevated levels of IFN-γ, IL-4 and IL-5 indicating a Th1/Th2 balanced response. The isotype antibody profile showed significantly high level of IgG1 and IgG2b confirming the balanced response elicited by TV. Immunization with TV antigen induced high levels of both humoral and cellular immune responses compared to either cocktail or antigen given alone. The result suggests that TV is highly immunogenic in mice and hence the combination needs to be evaluated for its prophylactic potential.
Yacon effects in immune response and nutritional status of iron and zinc in preschool children.
Vaz-Tostes, Maria das Graças; Viana, Mirelle Lomar; Grancieri, Mariana; Luz, Tereza Cecília dos Santos; Paula, Heberth de; Pedrosa, Rogério Graça; Costa, Neuza Maria Brunoro
2014-06-01
The aim of this study was to evaluate the effect of yacon flour on iron and zinc nutritional status and immune response biomarkers in preschool children. Preschool children ages 2 to 5 y were selected from two nurseries and were placed into a control group (n = 58) or a yacon group (n = 59). The yacon group received yacon flour in preparations for 18 wk at a quantity to provide 0.14 g of fructooligosaccharides/kg of body weight daily. Anthropometric parameters were measured before and after the intervention and dietary intake was measured during the intervention. To assess iron and zinc status, erythrograms, serum iron, ferritin, and plasma, and erythrocyte zinc were evaluated. Systemic immune response was assessed by the biomarkers interleukin IL-4, IL-10, IL-6, and tumor necrosis factor-alfa (TNF-α). Intestinal immune response was analyzed by secretory IgA (sIgA) levels before and after the intervention. Statistical significance was evaluated using the paired t test (α = 5%). Before and after the study, the children presented a high prevalence of overweight and an inadequate dietary intake of zinc and fiber. The yacon group presented with lower hemoglobin, mean corpuscular hemoglobin, and mean corpuscular hemoglobin concentration at the end of the study (P < 0.05). Erythrocyte zinc was reduced in both groups at the end of the study (P < 0.05). Yacon intake increased the serum levels of IL-4 and fecal sIgA (P < 0.05). The control group had lower serum TNF-α after the study period (P < 0.05). Yacon improved intestinal immune response but demonstrated no effect on the nutritional status of iron and zinc in preschool children. Copyright © 2014 Elsevier Inc. All rights reserved.
Immune checkpoint inhibitors in small cell lung cancer.
Pakkala, Suchita; Owonikoko, Taofeek K
2018-02-01
Small cell lung cancer (SCLC) is a rapidly progressive cancer that often debilitates patients within months of detection and quickly becomes refractory to the limited options of therapy. While SCLC is not generally considered an immunogenic tumor, clinical experience suggests that patients with robust immune response manifesting as paraneoplastic syndrome are more likely to present with limited stage of the disease and tend to have a better prognosis. Monoclonal antibodies targeting critical negative regulators of immune response, so called immune checkpoints, such as cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed death 1 (PD-1) have expanded the application of immune-based therapies to increasing number of advanced stage cancers. These agents overcome the inhibitory immune signals leading to a heightened immune response against cancer cells. These immune checkpoint inhibitors have established efficacy leading to regulatory approval for their use in many cancer types including non-small cell lung cancer (NSCLC). Evaluation of the CTLA-4 inhibitor, ipilimumab and PD-1 inhibitors, nivolumab and pembrolizumab in SCLC have shown encouraging signal but definitive studies are still ongoing. In this review, we discuss the rationale behind the use of checkpoint inhibitors in SCLC, contextualize the results of early trials of immunotherapy agents in SCLC and project the future evolution of this strategy.
Kennedy, Richard; Pankratz, V. Shane; Swanson, Eric; Watson, David; Golding, Hana; Poland, Gregory A.
2009-01-01
Because of the bioterrorism threat posed by agents such as variola virus, considerable time, resources, and effort have been devoted to biodefense preparation. One avenue of this research has been the development of rapid, sensitive, high-throughput assays to validate immune responses to poxviruses. Here we describe the adaptation of a β-galactosidase reporter-based vaccinia virus neutralization assay to large-scale use in a study that included over 1,000 subjects. We also describe the statistical methods involved in analyzing the large quantity of data generated. The assay and its associated methods should prove useful tools in monitoring immune responses to next-generation smallpox vaccines, studying poxvirus immunity, and evaluating therapeutic agents such as vaccinia virus immune globulin. PMID:19535540
Effects of water extract of Curcuma longa (L.) roots on immunity and telomerase function.
Pan, Min-Hsiung; Wu, Jia-Ching; Ho, Chi-Tang; Badmaev, Vladimir
2017-05-12
Background Immunity and Longevity Methods A water extract of Curcuma longa (L.) [vern. Turmeric] roots (TurmericImmune™) standardized for a minimum 20 % of turmeric polysaccharides ukonan A, B, C and D was evaluated for its biological properties in in vitro tissue culture studies. Results The water extract of turmeric (TurP) exhibited induced-nitric oxide (NO) production in RAW264.7 macrophages. These results suggested the immunomodulatory effects of TurP. In addition, the polysaccharides up-regulated function of telomerase reverse transcriptase (TERT) equally to the phenolic compound from turmeric, curcumin. Conclusions The ukonan family of polysaccharides may assist in promoting cellular immune responses, tissue repair and lifespan by enhancing immune response and telomere function.
Potential Suppressive Effects of Two C60 Fullerene Derivatives on Acquired Immunity
NASA Astrophysics Data System (ADS)
Hirai, Toshiro; Yoshioka, Yasuo; Udaka, Asako; Uemura, Eiichiro; Ohe, Tomoyuki; Aoshima, Hisae; Gao, Jian-Qing; Kokubo, Ken; Oshima, Takumi; Nagano, Kazuya; Higashisaka, Kazuma; Mashino, Tadahiko; Tsutsumi, Yasuo
2016-10-01
The therapeutic effects of fullerene derivatives on many models of inflammatory disease have been demonstrated. The anti-inflammatory mechanisms of these nanoparticles remain to be elucidated, though their beneficial roles in allergy and autoimmune diseases suggest their suppressive potential in acquired immunity. Here, we evaluated the effects of C60 pyrrolidine tris-acid (C60-P) and polyhydroxylated fullerene (C60(OH)36) on the acquired immune response in vitro and in vivo. In vitro, both C60 derivatives had dose-dependent suppressive effects on T cell receptor-mediated activation of T cells and antibody production by B cells under anti-CD40/IL-4 stimulation, similar to the actions of the antioxidant N-acetylcysteine. In addition, C60-P suppressed ovalbumin-specific antibody production and ovalbumin-specific T cell responses in vivo, although T cell-independent antibodies responses were not affected by C60-P. Together, our data suggest that fullerene derivatives can suppress acquired immune responses that require T cells.
Villanueva-Lizama, Liliana E; Cruz-Chan, Julio V; Aguilar-Cetina, Amarú Del C; Herrera-Sanchez, Luis F; Rodriguez-Perez, Jose M; Rosado-Vallado, Miguel E; Ramirez-Sierra, Maria J; Ortega-Lopez, Jaime; Jones, Kathryn; Hotez, Peter; Bottazzi, Maria Elena; Dumonteil, Eric
2018-01-01
Trypanosoma cruzi antigens TSA-1 and Tc24 have shown promise as vaccine candidates in animal studies. We evaluated here the recall immune response these antigens induce in Chagasic patients, as a first step to test their immunogenicity in humans. We evaluated the in vitro cellular immune response after stimulation with recombinant TSA-1 (rTSA-1) or recombinant Tc24 (rTc24) in mononuclear cells of asymptomatic Chagasic chronic patients (n = 20) compared to healthy volunteers (n = 19) from Yucatan, Mexico. Proliferation assays, intracellular cytokine staining, cytometric bead arrays, and memory T cell immunophenotyping were performed by flow cytometry. Peripheral blood mononuclear cells (PBMC) from Chagasic patients showed significant proliferation after stimulation with rTc24 and presented a phenotype of T effector memory cells (CD45RA-CCR7-). These cells also produced IFN-γ and, to a lesser extent IL10, after stimulation with rTSA-1 and rTc24 proteins. Overall, both antigens recalled a broad immune response in some Chagasic patients, confirming that their immune system had been primed against these antigens during natural infection. Analysis of HLA-A and HLA-B allele diversity by PCR-sequencing indicated that HLA-A03 and HLA-B07 were the most frequent supertypes in this Mexican population. Also, there was a significant difference in the frequency of HLA-A01 and HLA-A02 supertypes between Chagasic patients and controls, while the other alleles were evenly distributed. Some aspects of the immune response, such as antigen-induced IFN-γ production by CD4+ and CD8+ T cells and CD8+ proliferation, showed significant association with specific HLA-A supertypes, depending on the antigen considered. In conclusion, our results confirm the ability of both TSA-1 and Tc24 recombinant proteins to recall an immune response induced by the native antigens during natural infection in at least some patients. Our data support the further development of these antigens as therapeutic vaccine against Chagas disease.
Improved proliferation of antigen-specific cytolytic T lymphocytes using a multimodal nanovaccine
Li, Bo; Siuta, Michael; Bright, Vanessa; Koktysh, Dmitry; Matlock, Brittany K; Dumas, Megan E; Zhu, Meiying; Holt, Alex; Stec, Donald; Deng, Shenglou; Savage, Paul B; Joyce, Sebastian; Pham, Wellington
2016-01-01
The present study investigated the immunoenhancing property of our newly designed nanovaccine, that is, its ability to induce antigen-specific immunity. This study also evaluated the synergistic effect of a novel compound PBS-44, an α-galactosylceramide analog, in boosting the immune response induced by our nanovaccine. The nanovaccine was prepared by encapsulating ovalbumin (ova) and an adjuvant within the poly(lactic-co-glycolic acid) nanoparticles. Quantitative analysis of our study data showed that the encapsulated vaccine was physically and biologically stable; the core content of our nanovaccine was found to be released steadily and slowly, and nearly 90% of the core content was slowly released over the course of 25 days. The in vivo immunization studies exhibited that the nanovaccine induced stronger and longer immune responses compared to its soluble counterpart. Similarly, intranasal inhalation of the nanovaccine induced more robust antigen-specific CD8+ T cell response than intraperitoneal injection of nanovaccine. PMID:27895483
Pre-existing immunity against vaccine vectors – friend or foe?
Saxena, Manvendra; Van, Thi Thu Hao; Baird, Fiona J.; Coloe, Peter J.
2013-01-01
Over the last century, the successful attenuation of multiple bacterial and viral pathogens has led to an effective, robust and safe form of vaccination. Recently, these vaccines have been evaluated as delivery vectors for heterologous antigens, as a means of simultaneous vaccination against two pathogens. The general consensus from published studies is that these vaccine vectors have the potential to be both safe and efficacious. However, some of the commonly employed vectors, for example Salmonella and adenovirus, often have pre-existing immune responses in the host and this has the potential to modify the subsequent immune response to a vectored antigen. This review examines the literature on this topic, and concludes that for bacterial vectors there can in fact, in some cases, be an enhancement in immunogenicity, typically humoral, while for viral vectors pre-existing immunity is a hindrance for subsequent induction of cell-mediated responses. PMID:23175507
NASA Astrophysics Data System (ADS)
Barrett, John Christopher
Inducing a strong and specific immune response is the hallmark of a successful vaccine. Nanoparticles have emerged as promising vaccine delivery devices to discover and elicit immune responses. Modular platforms are attractive for their engineerability and broad potential applications. Fine-tuning a nanoparticle vaccine to create an immune response with specific antibody and other cellular responses is influenced by many factors such as shape, size and composition. Peptide amphiphile micelles are a unique biomaterials platform that can function as a modular vaccine delivery system, enabling control over many of these important factors. Peptide amphiphiles (PAs) consist of a hydrophilic peptide antigen conjugated to a hydrophobic lipid tail. The PAs then self-assemble into micelles, with the micelle characteristics determined by the chemical composition of the PA and micelle preparation methods. PA micelles contain a large design space, so it is important to have a basic understanding of how each design feature can affect the platform's interaction with the immune system. In this dissertation, the structure, composition, and biodistribution properties of PA micelles are evaluated for their ability to impact an immune response against a Group A Streptococcus B cell antigen (J8). Through structural design and physical characterization, micelles are shown to self-assemble into either short rod-like or long cylindrical shapes. Analyzing these shape effects on the immune response showed that cylindrical micelles induced higher antibody titers than rod-like micelles, providing evidence that the cylindrical micelle shape is important to induce immune responses and a possible mechanism of action. Shape was also seen to impact the activation profile of dendritic cells, B cells and T cells. Assembly into cylindrical micelles also stabilizes the secondary structure of peptide antigens, which may impact the immune response raised. In composition, the hydrophobic/hydrophilic interface of PA micelles enabled the precise entrapment of amphiphilic adjuvants which were found to not alter micelle formation or shape. These heterogeneous micelles significantly enhanced murine antibody responses when compared to animals vaccinated with non-adjuvanted micelles or soluble J8 peptide supplemented with a classical adjuvant. PAs were also shown to traffic more efficiently to the lymph node than free peptide. Characterization of these design features and their impact on an immune response provides a valuable foundation of knowledge to apply when expanding the peptide amphiphile micelle platform to other vaccine applications.
Role of Innate Immunity in a Model of Histidyl-tRNA Synthetase (Jo-1)-mediated Myositis
Soejima, Makoto; Kang, Eun Ha; Gu, Xinyan; Katsumata, Yasuhiro; Clemens, Paula R.; Ascherman, Dana P.
2010-01-01
Objectives Previous work in humans and in animal models supports a key role for histidyl-tRNA synthetase (HRS=Jo-1) in the pathogenesis of idiopathic inflammatory myopathy. While most investigations have focused on the ability of HRS to trigger adaptive immune responses, in vitro studies clearly indicate that HRS possesses intrinsic chemokine-like properties capable of activating the innate immune system. The purpose of this study was therefore to examine the ability of HRS to direct innate immune responses in a murine model of myositis. Methods Following intramuscular immunization with soluble HRS in the absence of exogenous adjuvant, selected strains of mice were evaluated at different time points for histopathologic evidence of myositis. ELISA-based assessment of autoantibody formation and CFSE proliferation studies provided complementary measures of B and T cell responses triggered by HRS immunization. Results Compared to appropriate control proteins, a murine HRS fusion protein induced robust, statistically significant muscle inflammation in multiple congenic strains of C57BL/6 and NOD mice. Time course experiments revealed that this inflammatory response occurred as early as 7 days post immunization and persisted for up to 7 weeks. Parallel immunization strategies in DO11.10/Rag2−/− and C3H/HeJ (TLR4−/−) mice indicated that the ability of murine HRS to drive muscle inflammation was not dependent on B cell receptor or T cell receptor recognition and did not require TLR4 signaling. Conclusion Collectively, these experiments support a model in which HRS can trigger both innate and adaptive immune responses which culminate in severe muscle inflammation that is the hallmark of idiopathic inflammatory myopathy. PMID:21280002
Núñez, Ivanna Novotny; Galdeano, Carolina Maldonado; de LeBlanc, Alejandra de Moreno; Perdigón, Gabriela
2014-01-01
Obesity is associated with alterations in intestinal microbiota and immunity. The aim of this study was to determine the effect of probiotic Lactobacillus casei CRL 431 administration on intestinal and humoral immune response, clinical parameters, and gut microbiota was evaluated using a high-fat diet to induce obesity in a mouse model. Adult mice received a conventional balanced diet or a high-fat diet supplemented with milk, milk fermented by Lactobacillus casei (FM), L. casei as suspension, or water over 60 d. Histology of liver and small intestine (SI), immunoglobulin A-positive cells and macrophages in SI, phagocytic activity of spleen and peritoneal macrophages, and humoral immune response to ovalbumin were studied. Clinical parameters in serum and gut microbiota were also analyzed. FM was the most effective supplement for decreasing body weight and clinical parameters in serum. The histology of liver and SI was also improved in obese mice given FM. These animals had increased numbers of immunoglobulin A-positive cells and macrophages in SI. The gut microbiota showed that obese mice given probiotics had increased Bacteroides and bifidobacteria. Administration of FM or L. casei as suspension enhanced the phagocytic activity of macrophages. The anti-ovalbumin specific immune response was not increased by any supplement assayed. Administration of probiotics to obese hosts improved the gut microbiota and the mucosal immunity altered by obesity, down-regulated some biochemical parameters in blood associated with metabolic syndrome, and decreased liver steatosis. These results demonstrate the potential use of probiotics in obese individuals to decrease the body weight and to improve the biochemical and immunologic parameters altered by obesity. Copyright © 2014 Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
The objectives of this study were to determine the effects of switching Holstein calves to once-a-day feeding during the 4th week of life (24 ± 2.3 d of age; once-fed n = 22; twice-fed n = 22) on innate immune responses, and also evaluate whether there were any carry-over effects when the calves wer...
Adverse Reactions to Vaccination: From Anaphylaxis to Autoimmunity.
Gershwin, Laurel J
2018-03-01
Vaccines are important for providing protection from infectious diseases. Vaccination initiates a process that stimulates development of a robust and long-lived immune response to the disease agents in the vaccine. Side effects are sometimes associated with vaccination. These vary from development of acute hypersensitivity responses to vaccine components to local tissue reactions that are annoying but not significantly detrimental to the patient. The pathogenesis of these responses and the consequent clinical outcomes are discussed. Overstimulation of the immune response and the potential relationship to autoimmunity is evaluated in relation to genetic predisposition. Copyright © 2017 Elsevier Inc. All rights reserved.
Cherukuri, Anu; Servat, Esteban; Woo, Jennifer
2012-01-05
Currently, a robust set of immune correlates for live attenuated influenza vaccine (LAIV) efficacy in humans has not been fully elucidated. The serum hemagglutination inhibition (HAI) assay has been historically used to measure humoral immune responses to injectable inactivated influenza vaccination. However, serum antibody titers do not reliably reflect the complete mechanism of action of LAIV, which is an intranasally delivered vaccine and is expected to induce local mucosal and cellular immune responses in addition to humoral immune responses. Therefore, we designed a study to evaluate potential immune correlates of LAIV vaccination in the ferret animal model of influenza infection. Ferrets were vaccinated with increasing doses of LAIV and four weeks later challenged with a homologous wild-type (wt) H1N1 strain. Humoral immune responses measured following LAIV vaccination included HAI, serum antibodies and antibody secreting cells (ASC); and the responses were found to correlate with the dose level of LAIV administered in this model. Protection from wt virus challenge was determined by measuring inhibition of wt viral replication in nasal washes and in lung tissue. Results demonstrated that LAIV doses ≥ 5.0 log(10) Plaque Forming Units (PFU) elicited vaccine-specific IgG and IgA ASC frequencies and induced complete protection in the lungs. Further, we developed a novel model utilizing seropositive older ferrets to demonstrate that in the background of previous wt influenza infection LAIV induces a robust vaccine-specific B-cell response even in the absence of serum antibody response, a result that suggests that effector B-cell responses generated by LAIV are not inhibited by prior viral exposure. Finally, we demonstrated that LAIV elicits strain-specific memory B-cell responses that are measurable in a background of wt influenza infections. Taken together, results from these studies identified the antigen-specific ASC frequency as a useful early biomarker of LAIV-induced B-cell immune response. Copyright © 2011 Elsevier Ltd. All rights reserved.
Vora, Kalpit A; Porter, Gene; Peng, Roche; Cui, Yan; Pryor, Kellyann; Eiermann, George; Zaller, Dennis M
2009-01-01
Background Current literature suggests that dipeptidyl peptidase IV (DPP-IV; CD26) plays an essential role in T-dependent immune responses, a role that could have important clinical consequences. To rigorously define the role of DPP-IV in the immune system, we evaluated genetic and pharmacological inhibition of the enzyme on T-dependent immune responses in vivo. Results The DPP-IV null animals mounted robust primary and secondary antibody responses to the T dependent antigens, 4-hydroxy-3-nitrophenylacetyl-ovalbumin (NP-Ova) and 4-hydroxy-3-nitrophenylacetyl-chicken gamma globulin (NP-CGG), which were comparable to wild type mice. Serum levels of antigen specific IgM, IgG1, IgG2a, IgG2b and IgG3 were similar between the two groups of animals. DPP-IV null animals mounted an efficient germinal center reaction by day 10 after antigen stimulation that was comparable to wild type mice. Moreover, the antibodies produced by DPP-IV null animals after repeated antigenic challenge were affinity matured. Similar observations were made using wild type animals treated with a highly selective DPP-IV inhibitor during the entire course of the experiments. T cell recall responses to ovalbumin and MOG peptide, evaluated by measuring proliferation and IL-2 release from cells isolated from draining lymph nodes, were equivalent in DPP-IV null and wild type animals. Furthermore, mice treated with DPP-IV inhibitor had intact T-cell recall responses to MOG peptide. In addition, female DPP-IV null and wild type mice treated with DPP-IV inhibitor exhibited normal and robust in vivo cytotoxic T cell responses after challenge with cells expressing the male H-Y minor histocompatibility antigen. Conclusion These data indicate Selective inhibition of DPP-IV does not impair T dependent immune responses to antigenic challenge. PMID:19358731
Lehmer, Erin M; Lavengood, Kathryn; Miller, Mason; Rodgers, Jacob; Fenster, Steven D
2018-01-01
: Simultaneous infections with multiple pathogens can alter the function of the host's immune system, often resulting in additive or synergistic morbidity. We examined how coinfection with the common pathogens Sin Nombre virus (SNV) and Bartonella sp. affected aspects of the adaptive and innate immune responses of wild deer mice ( Peromyscus maniculatus). Adaptive immunity was assessed by measuring SNV antibody production; innate immunity was determined by measuring levels of C-reactive protein (CRP) in blood and the complement activity of plasma. Coinfected mice had reduced plasma complement activity and higher levels of CRP compared to mice infected with either SNV or Bartonella. However, antibody titers of deer mice infected with SNV were more than double those of coinfected mice. Plasma complement activity and CRP levels did not differ between uninfected deer mice and those infected with only Bartonella, suggesting that comorbid SNV and Bartonella infections act synergistically, altering the innate immune response. Collectively, our results indicated that the immune response of deer mice coinfected with both SNV and Bartonella differed substantially from individuals infected with only one of these pathogens. Results of our study provided unique, albeit preliminary, insight into the impacts of coinfection on immune system function in wild animal hosts and underscore the complexity of the immune pathways that exist in coinfected hosts.
Branger, Christine G; Sun, Wei; Torres-Escobar, Ascención; Perry, Robert; Roland, Kenneth L; Fetherston, Jacqueline; Curtiss, Roy
2010-12-16
We evaluated the ability of Yersinia pestis antigens HmuR, Psn and modified forms of LcrV delivered by live attenuated Salmonella strains to stimulate a protective immune response against subcutaneous or intranasal challenge with Y. pestis CO92. LcrV196 is a previously described truncated protein that includes aa 131-326 of LcrV and LcrV5214 has been modified to replace five key amino acids required for interaction with the TLR2 receptor. Psn is the outer membrane receptor for the siderophore, yersiniabactin, and the bacteriocin, pesticin. Mice immunized with Salmonella synthesizing Psn, LcrV196 or LcrV5214 developed serum IgG responses to the respective Yersinia antigen and were protected against pneumonic challenge with Y. pestis. Immunization with Salmonella synthesizing Psn or LcrV196 was sufficient to afford nearly full protection against bubonic challenge, while immunization with the strain synthesizing LcrV5214 was not protective. Immunization with Salmonella synthesizing HmuR, an outer membrane protein involved in heme acquisition in Y. pestis, was poorly immunogenic and did not elicit a protective response against either challenge route. These findings indicate that both Psn and LcrV196 delivered by Salmonella provide protection against both bubonic and pneumonic plague. Copyright © 2010 Elsevier Ltd. All rights reserved.
Gálvez, Nicolás M S; Soto, Jorge A; Kalergis, Alexis M
2017-08-11
Human Respiratory Syncytial Virus (hRSV) is one of the major causes of acute lower respiratory tract infections (ALRTI) worldwide, leading to significant levels of immunocompromisation as well as morbidity and mortality in infants. Its main target of infection is the ciliated epithelium of the lungs and the host immune responses elicited is ineffective at achieving viral clearance. It is thought that the lack of effective immunity against hRSV is due in part to the activity of several viral proteins that modulate the host immune response, enhancing a Th2-like pro-inflammatory state, with the secretion of cytokines that promote the infiltration of immune cells to the lungs, with consequent damage. Furthermore, the adaptive immunity triggered by hRSV infection is characterized by weak cytotoxic T cell responses and secretion of low affinity antibodies by B cells. These features of hRSV infection have meant that, to date, no effective and safe vaccines have been licensed. In this article, we will review in detail the information regarding hRSV characteristics, pathology, and host immune response, along with several prophylactic treatments and vaccine prototypes. We will also expose significant data regarding the newly developed BCG-based vaccine that promotes protective cellular and humoral response against hRSV infection, which is currently undergoing clinical evaluation.
Boltaña, Sebastian; Sanchez, Marcos; Valenzuela, Valentina; Gallardo-Escárate, Cristian
2016-12-01
Sea lice infestations are a particular concern in the salmonid aquaculture industry due to damaging effects on fish growth, disease/infection susceptibility, and survival. Despite the impacts of sea lice parasitism, few studies have determined corresponding physiological thresholds, or the quantity of sea lice that can trigger measurable effects in the host immune response. The present study evaluated the mRNA expressions of immune-related genes in Salmo salar (Atlantic salmon) under infestation challenges with contrasting loads of the sea louse Caligus rogercresseyi. Specifically, two groups of S. salar were infected with either 35 (i.e. low parasitic load) or 100 (i.e. high parasitic load) copepodids per fish. At 14 days post-infestation, the mRNA levels of immune-related genes (e.g. related to oxidative stress, pro- and inflammatory responses, and the adaptive T H 1/T H 2 pathways) were assessed through RT-qPCR. Significant differences were found in relation to parasitic load, suggesting density-dependent effects that activated the S. salar immune system. Higher parasitic load promoted strong inflammatory and oxidative stress responses that were correlated with the T H 1 immune response. This study highlights the molecular signatures for distinct parasitic loads, providing new perspectives towards fully understanding parasite-host interactions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Maspi, N; Ghaffarifar, F; Sharifi, Z; Dalimi, A; Khademi, S Z
2017-12-01
Vaccination would be the most important strategy for the prevention and elimination of leishmaniasis. The aim of the present study was to compare the immune responses induced following DNA vaccination with LACK (Leishmania analogue of the receptor kinase C), TSA (Thiol-specific-antioxidant) genes alone or LACK-TSA fusion against cutaneous leishmaniasis (CL). Cellular and humoral immune responses were evaluated before and after challenge with Leishmania major (L. major). In addition, the mean lesion size was also measured from 3th week post-infection. All immunized mice showed a partial immunity characterized by higher interferon (IFN)-γ and Immunoglobulin G (IgG2a) levels compared to control groups (p<0.05). IFN-γ/ Interleukin (IL)-4 and IgG2a/IgG1 ratios demonstrated the highest IFN-γ and IgG2a levels in the group receiving LACK-TSA fusion. Mean lesion sizes reduced significantly in all immunized mice compared with control groups at 7th week post-infection (p<0.05). In addition, there was a significant reduction in mean lesion size of LACK-TSA and TSA groups than LACK group after challenge (p<0.05). In the present study, DNA immunization promoted Th1 immune response and confirmed the previous observations on immunogenicity of LACK and TSA antigens against CL. Furthermore, this study demonstrated that a bivalent vaccine can induce stronger immune responses and protection against infectious challenge with L. major.
Immune activation alters cellular and humoral responses to yellow fever 17D vaccine
Muyanja, Enoch; Ssemaganda, Aloysius; Ngauv, Pearline; Cubas, Rafael; Perrin, Helene; Srinivasan, Divya; Canderan, Glenda; Lawson, Benton; Kopycinski, Jakub; Graham, Amanda S.; Rowe, Dawne K.; Smith, Michaela J.; Isern, Sharon; Michael, Scott; Silvestri, Guido; Vanderford, Thomas H.; Castro, Erika; Pantaleo, Giuseppe; Singer, Joel; Gillmour, Jill; Kiwanuka, Noah; Nanvubya, Annet; Schmidt, Claudia; Birungi, Josephine; Cox, Josephine; Haddad, Elias K.; Kaleebu, Pontiano; Fast, Patricia; Sekaly, Rafick-Pierre; Trautmann, Lydie
2014-01-01
Background. Defining the parameters that modulate vaccine responses in African populations will be imperative to design effective vaccines for protection against HIV, malaria, tuberculosis, and dengue virus infections. This study aimed to evaluate the contribution of the patient-specific immune microenvironment to the response to the licensed yellow fever vaccine 17D (YF-17D) in an African cohort. Methods. We compared responses to YF-17D in 50 volunteers in Entebbe, Uganda, and 50 volunteers in Lausanne, Switzerland. We measured the CD8+ T cell and B cell responses induced by YF-17D and correlated them with immune parameters analyzed by flow cytometry prior to vaccination. Results. We showed that YF-17D–induced CD8+ T cell and B cell responses were substantially lower in immunized individuals from Entebbe compared with immunized individuals from Lausanne. The impaired vaccine response in the Entebbe cohort associated with reduced YF-17D replication. Prior to vaccination, we observed higher frequencies of exhausted and activated NK cells, differentiated T and B cell subsets and proinflammatory monocytes, suggesting an activated immune microenvironment in the Entebbe volunteers. Interestingly, activation of CD8+ T cells and B cells as well as proinflammatory monocytes at baseline negatively correlated with YF-17D–neutralizing antibody titers after vaccination. Additionally, memory T and B cell responses in preimmunized volunteers exhibited reduced persistence in the Entebbe cohort but were boosted by a second vaccination. Conclusion. Together, these results demonstrate that an activated immune microenvironment prior to vaccination impedes efficacy of the YF-17D vaccine in an African cohort and suggest that vaccine regimens may need to be boosted in African populations to achieve efficient immunity. Trial registration. Registration is not required for observational studies. Funding. This study was funded by Canada’s Global Health Research Initiative, Defense Threat Reduction Agency, National Institute of Allergy and Infectious Diseases, Bill & Melinda Gates Foundation, and United States Agency for International Development. PMID:24911151
Immune activation alters cellular and humoral responses to yellow fever 17D vaccine.
Muyanja, Enoch; Ssemaganda, Aloysius; Ngauv, Pearline; Cubas, Rafael; Perrin, Helene; Srinivasan, Divya; Canderan, Glenda; Lawson, Benton; Kopycinski, Jakub; Graham, Amanda S; Rowe, Dawne K; Smith, Michaela J; Isern, Sharon; Michael, Scott; Silvestri, Guido; Vanderford, Thomas H; Castro, Erika; Pantaleo, Giuseppe; Singer, Joel; Gillmour, Jill; Kiwanuka, Noah; Nanvubya, Annet; Schmidt, Claudia; Birungi, Josephine; Cox, Josephine; Haddad, Elias K; Kaleebu, Pontiano; Fast, Patricia; Sekaly, Rafick-Pierre; Trautmann, Lydie; Gaucher, Denis
2014-07-01
Defining the parameters that modulate vaccine responses in African populations will be imperative to design effective vaccines for protection against HIV, malaria, tuberculosis, and dengue virus infections. This study aimed to evaluate the contribution of the patient-specific immune microenvironment to the response to the licensed yellow fever vaccine 17D (YF-17D) in an African cohort. We compared responses to YF-17D in 50 volunteers in Entebbe, Uganda, and 50 volunteers in Lausanne, Switzerland. We measured the CD8+ T cell and B cell responses induced by YF-17D and correlated them with immune parameters analyzed by flow cytometry prior to vaccination. We showed that YF-17D-induced CD8+ T cell and B cell responses were substantially lower in immunized individuals from Entebbe compared with immunized individuals from Lausanne. The impaired vaccine response in the Entebbe cohort associated with reduced YF-17D replication. Prior to vaccination, we observed higher frequencies of exhausted and activated NK cells, differentiated T and B cell subsets and proinflammatory monocytes, suggesting an activated immune microenvironment in the Entebbe volunteers. Interestingly, activation of CD8+ T cells and B cells as well as proinflammatory monocytes at baseline negatively correlated with YF-17D-neutralizing antibody titers after vaccination. Additionally, memory T and B cell responses in preimmunized volunteers exhibited reduced persistence in the Entebbe cohort but were boosted by a second vaccination. Together, these results demonstrate that an activated immune microenvironment prior to vaccination impedes efficacy of the YF-17D vaccine in an African cohort and suggest that vaccine regimens may need to be boosted in African populations to achieve efficient immunity. Registration is not required for observational studies. This study was funded by Canada's Global Health Research Initiative, Defense Threat Reduction Agency, National Institute of Allergy and Infectious Diseases, Bill & Melinda Gates Foundation, and United States Agency for International Development.
Lack of effect of a booster dose of influenza vaccine in hemodialysis patients.
Tanzi, Elisabetta; Amendola, Antonella; Pariani, Elena; Zappa, Alessandra; Colzani, Daniela; Logias, Franco; Perego, Angelo; Zanetti, Alessandro R
2007-08-01
To assess whether the administration of a booster dose of influenza vaccine may enhance immune response in hemodialysis patients, 58 subjects were given two doses of the 2003/2004 season influenza vaccine, 1 month apart. "European Agency for the Evaluation of Medicinal Products" (EMEA) criteria were fully met in terms of percentage of response and of mean-fold increase of hemagglutination inhibiting (HI) antibody titer, but not in terms of seroprotection rates (HI antibody titers > or =1:40). The second vaccine administration did not result in additional increase in seroprotection rate or in geometric mean titers. Protective immune response against the epidemic A/H3N2 Fujian-like strain, antigenically distant from that included in the vaccine (A/Panama/2007/99) was observed in 94.7% of vaccinees protected against the A/H3N2 vaccine strain 1 month after immunization. No adverse reactions were reported during follow-up. The study findings suggest that immune response to influenza vaccination may be suboptimal in hemodialysis patients and that the administration of an additional second dose of vaccine does not improve the humoral response.
Manocha, Monika; Pal, Pramod Chandra; Chitralekha, K T; Thomas, Beena Elizabeth; Tripathi, Vinita; Gupta, Siddhartha Dutta; Paranjape, Ramesh; Kulkarni, Smita; Rao, D Nageswara
2005-12-01
The predominant route of HIV infection is through the sexual transmission via M cells. Most of the peptide and protein vaccines show poor transport across the epithelial barrier and are commonly administered by parenteral route. In the present study four HIV peptides from envelope (gp 41-LZ (leucine zipper), gp 41-FD (fusion domain) and gp120-C2) and regulatory (Nef) region in poly lactic-co-glycolide (PLG) micro-particle delivery were evaluated in mice of outbred and with different genetic background to compare immune response versus MHC restriction. Out of the combinational and single routes of immunization attempted, the single route maintained the IgG, IgA and sIgA in sera and washes for longer duration as compared to combinational routes in which the response was declined. The study demonstrated that single intranasal immunization offered significantly higher immune response (p<0.05) over oral and rectal mucosal routes in terms of inducing systemic as well as mucosal response. Also, the specific activity measurement of IgA and IgG in sera and sIgA in washes were correlating to the antibody titers. However, the intramuscular route of immunization generated systemic response only. The entrapment of plant lectin UEA-1 a ligand specific for M cells in micro-particle further enhanced the immune response in all the mucosal routes. The IgG isotypes generated were of IgG1 and IgG2a/2b in sera for all the peptides. The T cell proliferation response study with and without UEA-1 lectin in micro-particles showed significantly high (p<0.05) stimulation index (SI) with intranasal immunization for all the peptides from cells collected from spleen (SP), peyer's patches (PP) and lamina propria (LP) with SI in the order LP cells>PP>or=SP. The cytokine measurement profile of IL-2, IFN-gamma and IL-6 and low levels of IL-4 in the cultural supernatants of SP, PP and LP showed mixed CD4(+) Th1 and Th2 immune response. The p24 assay showed high percent inhibition of HIV-IIIB virus with sera and washes obtained from intranasal route. Thus, overall the study highlighted the combination of UEA-1 lectin with HIV peptides in micro-particles through intranasal immunization generated systemic as well as mucosal immune response.
Saubi, Narcís; Im, Eung-Jun; Fernández-Lloris, Raquel; Gil, Olga; Cardona, Pere-Joan; Gatell, Josep Maria; Hanke, Tomáš; Joseph, Joan
2011-01-01
We have evaluated the influence of age and immunization routes for induction of HIV-1- and M. tuberculosis-specific immune responses after neonatal (7 days old) and adult (7 weeks old) BALB/c mice immunization with BCG.HIVA222 prime and MVA.HIVA boost. The specific HIV-1 cellular immune responses were analyzed in spleen cells. The body weight of the newborn mice was weekly recorded. The frequencies of HIV-specific CD8+ T cells producing IFN-γ were higher in adult mice vaccinated intradermally and lower in adult and newborn mice vaccinated subcutaneously. In all cases the IFN-γ production was significantly higher when mice were primed with BCG.HIVA222 compared with BCGwt. When the HIV-specific CTL activity was assessed, the frequencies of specific killing were higher in newborn mice than in adults. The prime-boost vaccination regimen which includes BCG.HIVA222 and MVA.HIVA was safe when inoculated to newborn mice. The administration of BCG.HIVA222 to newborn mice is safe and immunogenic and increased the HIV-specific responses induced by MVA.HIVA vaccine. It might be a good model for infant HIV and Tuberculosis bivalent vaccine. PMID:21603216
Evaluation of porcine epidemic diarrhea virus transmission and the immune response in growing pigs
USDA-ARS?s Scientific Manuscript database
Clinical disease associated with porcine epidemic diarrhea virus (PEDV) infection in naïve pigs is well chronicled; however, information on endemic PEDV infection is limited. To characterize chronic PEDV infection, the duration of infectious virus shedding and development of protective immunity was ...
Hou, Jue; Zhang, Qicheng; Liu, Zheng; Wang, Shuhui; Li, Dan; Liu, Chang; Liu, Ying; Shao, Yiming
2016-01-01
Previous research has shown that host Cyclophilin A (CyPA) can promote dendritic cell maturation and the subsequent innate immune response when incorporated into an HIV-1 Gag protein to circumvent the resistance of dendritic cells to HIV-1 infection. This led us to hypothesize that CyPA may improve HIV-1 Gag-specific vaccine immunogenicity via binding with Gag antigen. The adjuvant effect of CyPA was evaluated using a DNA vaccine with single or dual expression cassettes. Mouse studies indicated that CyPA specifically and markedly promoted HIV-1 Gag-specific cellular immunity but not an HIV-1 Env-specific cellular response. The Gag/CyPA dual expression cassettes stimulated a greater Gag-specific cellular immune response, than Gag immunization alone. Furthermore, CyPA induced a broad Gag-specific T cell response and strong cellular immunity that lasted up to 5 months. In addition, CyPA skewed to cellular rather than humoral immunity. To investigate the mechanisms of the adjuvant effect, site-directed mutagenesis in CyPA, including active site residues H54Q and F60A resulted in mutants that were co-expressed with Gag in dual cassettes. The immune response to this vaccine was analyzed in vivo. Interestingly, the wild type CyPA markedly increased Gag cellular immunity, but the H54Q and F60A mutants drastically reduced CyPA adjuvant activation. Therefore, we suggest that the adjuvant effect of CyPA was based on Gag-CyPA-specific interactions. Herein, we report that Cyclophilin A can augment HIV-1 Gag-specific cellular immunity as a genetic adjuvant in multiplex DNA immunization strategies, and that activity of this adjuvant is specific, broad, long-term, and based on Gag-CyPA interaction.
Destefanis, Simona; Giretto, Daniela; Muscolo, Maria Cristina; Di Cerbo, Alessandro; Guidetti, Gianandrea; Canello, Sergio; Giovazzino, Angela; Centenaro, Sara; Terrazzano, Giuseppe
2016-09-22
Canine keratoconjunctivitis sicca (cKCS) is an inflammatory eye condition related to a deficiency in the tear aqueous fraction. Etiopathogenesis of such disease is substantially multifactorial, combining the individual genetic background with environmental factors that contribute to the process of immunological tolerance disruption and, as a consequence, to the emergence of autoimmunity disease. In this occurrence, it is of relevance the role of the physiological immune-dysregulation that results in immune-mediated processes at the basis of cKCS. Current therapies for this ocular disease rely on immunosuppressive treatments. Clinical response to treatment frequently varies from poor to good, depending on the clinical-pathological status of eyes at diagnosis and on individual response to therapy. In the light of the variability of clinical response to therapies, we evaluated the use of an anti-inflammatory/antioxidant nutraceutical diet with potential immune-modulating activity as a therapeutical adjuvant in cKCS pharmacological treatment. Such combination was administered to a cohort of dogs affected by cKCS in which the only immunosuppressive treatment resulted poorly responsive or ineffective in controlling the ocular symptoms. Fifty dogs of different breeds affected by immune-mediated cKCS were equally distributed and randomly assigned to receive either a standard diet (control, n = 25) or the nutraceutical diet (treatment group, n = 25) both combined with standard immunosuppressive therapy over a 60 days period. An overall significant improvement of all clinical parameters (tear production, conjunctival inflammation, corneal keratinization, corneal pigment density and mucus discharge) and the lack of food-related adverse reactions were observed in the treatment group (p < 0.0001). Our results showed that the association of traditional immune-suppressive therapy with the antioxidant/anti-inflammatory properties of the nutraceutical diet resulted in a significant amelioration of clinical signs and symptoms in cKCS. The beneficial effects, likely due to the presence of supplemented nutraceuticals in the diet, appeared to specifically reduce the immune-mediated ocular symptoms in those cKCS-affected dogs that were poorly responsive or unresponsive to classical immunosuppressive drugs. These data suggest that metabolic changes could affect the immune response orchestration in a model of immune-mediated ocular disease, as represented by cKCS.
Thakur, Tarun; Gulati, Kavita; Rai, Nishant; Ray, Arunabha
2017-09-01
The present study was designed to investigate the effects of chronic predictable stress (CPS) and chronic unpredictable stress (CUS) on immunological responses in KLH-sensitized rats and involvement of NOergic signaling pathways mediating such responses. Male Wistar rats (200-250g) were exposed to either CPS or CUS for 14days and IgG antibody levels and delayed type hypersensitivity (DTH) response was determined to assess changes in adaptive immunity. To evaluate the role of nitric oxide during such immunomodulation, biochemical estimation of stable metabolite of nitric oxide (NOx) and 3-nitrotyrosine (3-NT, a marker of peroxynitrite formation) were done in both blood and brain. Chronic stress exposure resulted in suppression of IgG and DTH response and elevated NOx and 3-NT levels, with a difference in magnitude of response in CPS vs CUS. Pretreatment with aminoguanidine (iNOS inhibitor) caused further reduction of adaptive immune responses and attenuated the increased NOx and 3-NT levels in CPS or CUS exposed rats. On the other hand 7-NI (nNOS inhibitor) did not significantly affect these estimated parameters. The results suggest involvement of iNOS and lesser/no role of nNOS during modulation of adaptive immunity to stress. Thus, the result showed that predictability of stressors results in differential degree of modulation of immune responses and complex NO-mediated signaling mechanisms may be involved during responses. Copyright © 2017. Published by Elsevier B.V.
Bröker, Michael
2016-01-01
abstract When tetanus toxoid (TT), diphtheria toxoid (DT) or Cross Reacting Material 197 (CRM197), a non-toxic diphtheria toxin mutant protein, are used as carrier proteins in glycoconjugate vaccines, these carriers induce a protein specific antibody response as measured by in vitro assays. Here, it was evaluated whether or not glycoconjugates based on TT, DT or CRM197 can induce a protective immune response as measured by potency tests according to the European Pharmacopoeia. It could be shown, that the conjugate carriers TT and DT can induce a protective immune response against a lethal challenge by toxins in animals, while glycoconjugates based on CRM197 failed to induce a protective immune response. Opportunities for new applications of glycoconjugates are discussed. PMID:26327602
NASA Astrophysics Data System (ADS)
Hardi, E. H.; Saptiani, G.; Kusuma, I. W.; Suwinarti, W.; Nugroho, R. A.
2018-03-01
The purposes of this study were to evaluate effect of ethanol herbal extracts of Boesenbergia pandurata, Solanum ferox and Zingimber zerumbet on Tilapia (Oreochromis nilaticus) innate immune mechanisms and disease resistance against Aeromonas hydrophila and Pseudomonas sp. Fish were intramuscularly injected with 0.1 mL/fish (1010 CFU mL-1) of each bacterium on the day 6th of post treatment using extract by several methods (injection, oral administration and immersion). The doses of extract were 600 ppm of B. pandurata, 900 ppm S. ferox and 200 ppm of Z. zerumbet. The percentage mortality, Relative Percent Survival (RPS) and innate immune response were assessed on weeks 1, 2, 3 and 4. All the methods were effective to enhance the immune parameters after 2 weeks application and the RPS of treatment reached more than 90 %. The results showed that the injection method of extracts was the most effective method to control A. hydrophila and Pseudomonas sp. The result indicated that all the doses of extracts could be significantly influence the immune response and protect the health status of tilapia against A. hydrophila and Pseudomonas sp. infections.
Polyanhydride nanovaccine against swine influenza virus in pigs.
Dhakal, Santosh; Goodman, Jonathan; Bondra, Kathryn; Lakshmanappa, Yashavanth S; Hiremath, Jagadish; Shyu, Duan-Liang; Ouyang, Kang; Kang, Kyung-Il; Krakowka, Steven; Wannemuehler, Michael J; Won Lee, Chang; Narasimhan, Balaji; Renukaradhya, Gourapura J
2017-02-22
We have recently demonstrated the effectiveness of an influenza A virus (IAV) subunit vaccine based on biodegradable polyanhydride nanoparticles delivery in mice. In the present study, we evaluated the efficacy of ∼200nm polyanhydride nanoparticles encapsulating inactivated swine influenza A virus (SwIAV) as a vaccine to induce protective immunity against a heterologous IAV challenge in pigs. Nursery pigs were vaccinated intranasally twice with inactivated SwIAV H1N2 (KAg) or polyanhydride nanoparticle-encapsulated KAg (KAg nanovaccine), and efficacy was evaluated against a heterologous zoonotic virulent SwIAV H1N1 challenge. Pigs were monitored for fever daily. Local and systemic antibody responses, antigen-specific proliferation of peripheral blood mononuclear cells, gross and microscopic lung lesions, and virus load in the respiratory tract were compared among the groups of animals. Our pre-challenge results indicated that KAg nanovaccine induced virus-specific lymphocyte proliferation and increased the frequency of CD4 + CD8αα + T helper and CD8 + cytotoxic T cells in peripheral blood mononuclear cells. KAg nanovaccine-immunized pigs were protected from fever following SwIAV challenge. In addition, pigs immunized with the KAg nanovaccine presented with lower viral antigens in lung sections and had 6 to 8-fold reduction in nasal shedding of SwIAV four days post-challenge compared to control animals. Immunologically, increased IFN-γ secreting T lymphocyte populations against both the vaccine and challenge viruses were detected in KAg nanovaccine-immunized pigs compared to the animals immunized with KAg alone. However, in the KAg nanovaccine-immunized pigs, hemagglutination inhibition, IgG and IgA antibody responses, and virus neutralization titers were comparable to that in the animals immunized with KAg alone. Overall, our data indicated that intranasal delivery of polyanhydride-based SwIAV nanovaccine augmented antigen-specific cellular immune response in pigs, with promise to induce cross-protective immunity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Verma, Harish; Sharma, Prashant; Yang, Jae Seung; Saletti, Giulietta; Ahmad, Mohammad; Bahl, Sunil K.; Wierzba, Thomas F.; Nandy, Ranjan K.; Deshpande, Jagadish M.; Sutter, Roland W.; Czerkinsky, Cecil
2016-01-01
Background The “gold standard” for assessing mucosal immunity after vaccination with poliovirus vaccines consists in measuring virus excretion in stool after challenge with oral poliovirus vaccine (OPV). This testing is time and resource intensive, and development of alternative methods is a priority for accelerating polio eradication. We therefore evaluated circulating antibody-secreting cells (ASCs) as a potential means to evaluate mucosal immunity to poliovirus vaccine. Methods 199 subjects, aged 10 years, and previously immunized repeatedly with OPV, were selected. Subjects were assigned to receive either a booster dose of inactivated poliovirus vaccine (IPV), bivalent OPV (bOPV), or no vaccine. Using a micro-modified whole blood-based ELISPOT assay designed for field setting, circulating poliovirus type-specific IgA- and IgG-ASCs, including gut homing α4β7+ ASCs, were enumerated on days 0 and 7 after booster immunization. In addition, serum samples collected on days 0, 28 and 56 were tested for neutralizing antibody titers against poliovirus types 1, 2, and 3. Stool specimens were collected on day 28 (day of bOPV challenge), and on days 31, 35 and 42 and processed for poliovirus isolation. Results An IPV dose elicited blood IgA- and IgG-ASC responses in 84.8 to 94.9% of subjects, respectively. In comparison, a bOPV dose evoked corresponding blood ASC responses in 20.0 to 48.6% of subjects. A significant association was found between IgA- and IgG-ASC responses and serum neutralizing antibody titers for poliovirus type 1, 2, 3 (p<0.001). In the IPV group, α4β7+ ASCs accounted for a substantial proportion of IgA-ASCs and the proportion of subjects with a positive α4β7+ IgA-ASC response to poliovirus types 1, 2 and 3 was 62.7%, 89.8% and 45.8%, respectively. A significant association was observed between virus excretion and α4β7+ IgA- and/or IgG-ASC responses to poliovirus type 3 among immunized children; however, only a weak association was found for type 1 poliovirus. Discussion Our results suggest that virus-specific blood ASCs, especially for type 3 poliovirus, can serve as surrogate of mucosal immunity after vaccination. Further studies are needed to evaluate the duration of such memory responses and to assess the programmatic utility of this whole blood-based mucosal ASC testing for the polio eradication program. PMID:26730586
Dey, Ayan; Molodecky, Natalie A; Verma, Harish; Sharma, Prashant; Yang, Jae Seung; Saletti, Giulietta; Ahmad, Mohammad; Bahl, Sunil K; Wierzba, Thomas F; Nandy, Ranjan K; Deshpande, Jagadish M; Sutter, Roland W; Czerkinsky, Cecil
2016-01-01
The "gold standard" for assessing mucosal immunity after vaccination with poliovirus vaccines consists in measuring virus excretion in stool after challenge with oral poliovirus vaccine (OPV). This testing is time and resource intensive, and development of alternative methods is a priority for accelerating polio eradication. We therefore evaluated circulating antibody-secreting cells (ASCs) as a potential means to evaluate mucosal immunity to poliovirus vaccine. 199 subjects, aged 10 years, and previously immunized repeatedly with OPV, were selected. Subjects were assigned to receive either a booster dose of inactivated poliovirus vaccine (IPV), bivalent OPV (bOPV), or no vaccine. Using a micro-modified whole blood-based ELISPOT assay designed for field setting, circulating poliovirus type-specific IgA- and IgG-ASCs, including gut homing α4β7+ ASCs, were enumerated on days 0 and 7 after booster immunization. In addition, serum samples collected on days 0, 28 and 56 were tested for neutralizing antibody titers against poliovirus types 1, 2, and 3. Stool specimens were collected on day 28 (day of bOPV challenge), and on days 31, 35 and 42 and processed for poliovirus isolation. An IPV dose elicited blood IgA- and IgG-ASC responses in 84.8 to 94.9% of subjects, respectively. In comparison, a bOPV dose evoked corresponding blood ASC responses in 20.0 to 48.6% of subjects. A significant association was found between IgA- and IgG-ASC responses and serum neutralizing antibody titers for poliovirus type 1, 2, 3 (p<0.001). In the IPV group, α4β7+ ASCs accounted for a substantial proportion of IgA-ASCs and the proportion of subjects with a positive α4β7+ IgA-ASC response to poliovirus types 1, 2 and 3 was 62.7%, 89.8% and 45.8%, respectively. A significant association was observed between virus excretion and α4β7+ IgA- and/or IgG-ASC responses to poliovirus type 3 among immunized children; however, only a weak association was found for type 1 poliovirus. Our results suggest that virus-specific blood ASCs, especially for type 3 poliovirus, can serve as surrogate of mucosal immunity after vaccination. Further studies are needed to evaluate the duration of such memory responses and to assess the programmatic utility of this whole blood-based mucosal ASC testing for the polio eradication program.
Bernstein, Henry H; Seyferth, Elisabeth R
2017-12-04
While combination vaccines have contributed to improved vaccine uptake rates in children, studies have documented varied immunogenicity to specific vaccine components. We studied whether varying the amount of tetanus toxoid (TT) in a DTaP and Hib combination vaccine would result in immunogenicity comparable with separate, concurrent administration. We evaluated the immunogenicity of Massachusetts Biologic Laboratories (MBL) diphtheria, tetanus, and acellular pertussis (mDTaP) vaccine combined with tetanus-conjugated MBL Haemophilus influenzae type b vaccine (mHib) in a single injection (DTaPH). We compared four DTaPH vaccines containing varying concentrations of TT. We also evaluated the immune response to the DTaP vaccine manufactured by Connaught Laboratories (now known as Sanofi Pasteur) given with mHib and with Wyeth Hib-CRM 197 (HbOC) as separate injections. Vaccines were administered to 240 healthy infants at 2, 4, and 6 months of age, and blood specimens for antibody determination were obtained before each immunization and one month after the third immunization. We found no significant differences in immune response to the vaccines between the four DTaPH groups. Hib antibody responses were similar in the mHib and the HbOC groups but significantly lower in the DTaPH groups, as measured by Chinese Hamster Ovary (CHO) cell neutralization titers and filamentous hemagglutinin antigen (FHA) geometric mean concentrations (GMC) of anti-Hib antibodies. There were no significant differences between the groups in pertussis or tetanus toxoid antibody levels. Reducing tetanus toxoid amounts did not produce comparable immunogenicity for Hib. The nature of the interaction between immune responses to DTaPH components should be explored further to enable the development of better Hib-containing combination vaccines. Copyright © 2017 Elsevier Ltd. All rights reserved.
Boggiano, Cesar; Eichelberg, Katrin; Ramachandra, Lakshmi; Shea, Jaqueline; Ramakrishnan, Lalita; Behar, Samuel; Ernst, Joel D; Porcelli, Steven A; Maeurer, Markus; Kornfeld, Hardy
2017-06-14
Tuberculosis (TB) is the major cause of death from infectious diseases around the world, particularly in HIV infected individuals. TB vaccine design and development have been focused on improving Bacille Calmette-Guérin (BCG) and evaluating recombinant and viral vector expressed Mycobacterium tuberculosis (Mtb) proteins, for boosting BCG-primed immunity, but these approaches have not yet yielded significant improvements over the modest effects of BCG in protecting against infection or disease. On March 7-8, 2016, the National Institute of Allergy and Infectious Diseases (NIAID) convened a workshop on "The Impact of Mtb Immune Evasion on Protective Immunity: Implications for TB Vaccine Design" with the goal of defining immune mechanisms that could be targeted through novel research approaches, to inform vaccine design and immune therapeutic interventions for prevention of TB. The workshop addressed early infection events, the impact of Mtb evolution on the development and maintenance of an adaptive immune response, and the factors that influence protection against and progression to active disease. Scientific gaps and areas of study to revitalize and accelerate TB vaccine design were discussed and prioritized. These included a comprehensive evaluation of innate and Mtb-specific adaptive immune responses in the lung at different stages of disease; determining the role of B cells and antibodies (Abs) during Mtb infection; development of better assays to measure Mtb burden following exposure, infection, during latency and after treatment, and approaches to improving current animal models to study Mtb immunogenicity, TB disease and transmission. Copyright © 2017.
Shin, Hee Soon; See, Hye-Jeong; Jung, Sun Young; Choi, Dae Woon; Kwon, Da-Ae; Bae, Min-Jung; Sung, Ki-Seung; Shon, Dong-Hwa
2015-12-04
Turmeric (Curcuma longa) has traditionally been used to treat pain, fever, allergic and inflammatory diseases such as bronchitis, arthritis, and dermatitis. In particular, turmeric and its active component, curcumin, were effective in ameliorating immune disorders including allergies. However, the effects of turmeric and curcumin have not yet been tested on food allergies. Mice were immunized with intraperitoneal ovalbumin (OVA) and alum. The mice were orally challenged with 50mg OVA, and treated with turmeric extract (100mg/kg), curcumin (3mg/kg or 30 mg/kg) for 16 days. Food allergy symptoms including decreased rectal temperature, diarrhea, and anaphylaxis were evaluated. In addition, cytokines, immunoglobulins, and mouse mast cell protease-1 (mMCP-1) were evaluated using ELISA. Turmeric significantly attenuated food allergy symptoms (decreased rectal temperature and anaphylactic response) induced by OVA, but curcumin showed weak improvement. Turmeric also inhibited IgE, IgG1, and mMCP-1 levels increased by OVA. Turmeric reduced type 2 helper cell (Th2)-related cytokines and enhanced a Th1-related cytokine. Turmeric ameliorated OVA-induced food allergy by maintaining Th1/Th2 balance. Furthermore, turmeric was confirmed anti-allergic effect through promoting Th1 responses on Th2-dominant immune responses in immunized mice. Turmeric significantly ameliorated food allergic symptoms in a mouse model of food allergy. The turmeric as an anti-allergic agent showed immune regulatory effects through maintaining Th1/Th2 immune balance, whereas curcumin appeared immune suppressive effects. Therefore, we suggest that administration of turmeric including various components may be useful to ameliorate Th2-mediated allergic disorders such as food allergy, atopic dermatitis, and asthma. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Immune response to second vaccination series of hepatitis B virus among booster dose non-responders.
Salama, Iman I; Sami, Samia M; Salama, Somaia I; Rabah, Thanaa Mahmoud; El Etreby, Lobna Ahmed; Abdel Hamid, Amany T; Elmosalami, Dalia; El Hariri, Hazem; Said, Zeinab N
2016-04-07
To evaluate the response to second vaccination series among post-booster sero-negative children who had previously received compulsory HBV vaccination. After given a booster dose to 1070 children, 103 of them failed to generate anamnestic response (anti-HBs <10 IU/L). Only 91/103 children received additional two doses of recombinant HBV vaccine (i.e. 2(nd) vaccination series) after 1 and 6 months post-booster. Blood sample was withdrawn aseptically one month later for quantitative assessment of anti-HBs to detect development of protective immune response (≥10 IU/L). Immunological vaccination failure was assigned to children who did not develop protective immune response after 2(nd) vaccination series. Protective immune response was detected among 84/91 children (92.3%). While 7/91 (7.7%) whose age were ≥10 years did not respond and had post-booster undetectable anti-HBs. About 80% of children with post-booster detectable anti-HBs showed significant protective immune response (anti-HBs ≥100 IU/L) and higher GMT (299.1 ± 3.6 IU/L) compared to those with undetectable 60% and 106.2 ± 12.9 IU/L respectively (P<0.05). No significant difference was detected as regards gender or residence, P>0.05. All children with history of rheumatic fever (7 children) or diabetes mellitus (1 child) developed immune response after 2(nd) vaccination series. A booster dose of HB vaccine may be unable to induce sufficient immunological response in children who had undetectable anti-HBs titers. Revaccination for non-responders is an important procedure to increase HBV protection rate. Copyright © 2016 Elsevier Ltd. All rights reserved.
Tang, F; Xu, L; Yan, R; Song, X; Li, X
2012-12-01
Plasmids expressing macrophage migration inhibitory factor (MIF) of Trichinella spiralis (TsMIF), multi-cystatin-like domain protein (MCD-1) of T. spiralis (TsMCD-1), or co-expressing TsMIF and TsMCD-1 were constructed with a pVAX1 vector. Their ability to generate a protective immune response against T. spiralis infection was evaluated in BALB/c mice. Groups of mice were immunized twice at 2-week intervals with 100 μg of recombinant plasmids pVAX1-Tsmif, pVAX1-Tsmcd-1 or pVAX1-Tsmif-Tsmcd-1. Control animals were immunized with phosphate-buffered saline (PBS) or blank vector plasmid. Specific antibody levels (IgG, IgG1, IgG2a, IgG2b, IgM, IgA, IgE) against the recombinant protein TsMIF-TsMCD-1, serum cytokines (interferon (IFN)-γ, interleukin (IL)-4, IL-5, transforming growth factor (TGF)-β1 and IL-17) and CD4+/CD8+ T cells were monitored. Challenge infection was performed 2 weeks following the second immunization and worm burden was assayed at 35 days post-challenge. Vaccination with pVAX1-Tsmif induced moderate serum IFN-γ and increases of CD4+ and CD8+ T cells, but no specific immunoglobulin antibody response. Vaccination with pVAX1-Tsmcd-1 induced a predominant Th1 antibody (IgG2a and IgG2b) response and strong levels of serum IFN-γ, and increases of CD4+ T cells. Importantly, co-expression of TsMIF and TsMCD-1 in DNA immunization produced more serum IFN-γ and markedly enhanced CD4+ and CD8+ T cells than the single DNA vaccine of the two genes. Challenge infection demonstrated that immunization with pVAX1-Tsmif-Tsmcd-1 reduced worm burdens (by 23.17%; P < 0.05).
Intestinal infection with Trichinella spiralis induces distinct, regional immune responses
Blum, L.K.; Mohanan, S.; Fabre, M.V.; Yafawi, R.E.; Appleton, J.A.
2013-01-01
The aim of this study was to evaluate differences between the small and large intestines (SI and LI) with regard to colonization and immunity during infection with Trichinella spiralis. In orally infected C57BL/6 mice, the gender ratios of worms differed among the SI, cecum, and LI. Mucosal mastocytosis developed in the SI but not in the LI, consistent with reduced IL-9 and IL-13 production by explants from the LI. Despite these differences, worms were cleared at the same rate from both sites. Furthermore, IL-10 production was reduced in the LI, yet it was instrumental in limiting local inflammation. Finally, passive immunization of rat pups with tyvelose-specific antibodies effectively cleared fist-stage larvae from all intestinal regions. We conclude that despite regional differences in immune responsiveness and colonization, immune mechanisms that clear T. spiralis operate effectively throughout the intestinal tract. PMID:23465441
A Danger-Theory-Based Immune Network Optimization Algorithm
Li, Tao; Xiao, Xin; Shi, Yuanquan
2013-01-01
Existing artificial immune optimization algorithms reflect a number of shortcomings, such as premature convergence and poor local search ability. This paper proposes a danger-theory-based immune network optimization algorithm, named dt-aiNet. The danger theory emphasizes that danger signals generated from changes of environments will guide different levels of immune responses, and the areas around danger signals are called danger zones. By defining the danger zone to calculate danger signals for each antibody, the algorithm adjusts antibodies' concentrations through its own danger signals and then triggers immune responses of self-regulation. So the population diversity can be maintained. Experimental results show that the algorithm has more advantages in the solution quality and diversity of the population. Compared with influential optimization algorithms, CLONALG, opt-aiNet, and dopt-aiNet, the algorithm has smaller error values and higher success rates and can find solutions to meet the accuracies within the specified function evaluation times. PMID:23483853
Li, Hongjiao; Lu, Yiming; Xiang, Jingjie; Jiang, Hailong; Zhong, Yanqiang; Lu, Ying
2016-06-01
To construct anticaries DNA vaccine and evaluate its ability to elicit mucosal and systemic immune responses in rats. wapA fragment was cloned into pVAX1 plasmid to generate pVAX1-wapA. The pVAX1-wapA/trimethyl chitosan nanoparticles were prepared by complex coacervation method. Significantly higher specific IgG antibody titers were observed in rats immunized with nanoparticles compared with rats immunized with naked pVAX1-wapA. Anti-WapA IgA and IgG antibody levels after intranasal immunization were significantly higher than those following intramuscular delivery of nanoparticles or naked pVAX1-wapA. Furthermore, fewer enamel, slight dentin and dentin moderate lesions were observed in rats immunized with nanoparticles. The results implicate WapA as an excellent candidate for anticaries vaccine development and nanoparticles as an effective delivery system.
Immune barriers of Ebola virus infection.
McElroy, Anita K; Mühlberger, Elke; Muñoz-Fontela, César
2018-02-01
Since its initial emergence in 1976 in northern Democratic Republic of Congo (DRC), Ebola virus (EBOV) has been a global health concern due to its virulence in humans, the mystery surrounding the identity of its host reservoir and the unpredictable nature of Ebola virus disease (EVD) outbreaks. Early after the first clinical descriptions of a disease resembling a 'septic-shock-like syndrome', with coagulation abnormalities and multi-system organ failure, researchers began to evaluate the role of the host immune response in EVD pathophysiology. In this review, we summarize how data gathered during the last 40 years in the laboratory as well as in the field have provided insight into EBOV immunity. From molecular mechanisms involved in EBOV recognition in infected cells, to antigen processing and adaptive immune responses, we discuss current knowledge on the main immune barriers of infection as well as outstanding research questions. Copyright © 2018 Elsevier B.V. All rights reserved.
Grover, Ajay; Troy, Amber; Rowe, Jenny; Troudt, JoLynn M; Creissen, Elizabeth; McLean, Jennifer; Banerjee, Prabal; Feuer, Gerold; Izzo, Angelo A
2017-09-01
The humanized mouse model has been developed as a model to identify and characterize human immune responses to human pathogens and has been used to better identify vaccine candidates. In the current studies, the humanized mouse was used to determine the ability of a vaccine to affect the immune response to infection with Mycobacterium tuberculosis. Both human CD4 + and CD8 + T cells responded to infection in humanized mice as a result of infection. In humanized mice vaccinated with either BCG or with CpG-C, a liposome-based formulation containing the M. tuberculosis antigen ESAT-6, both CD4 and CD8 T cells secreted cytokines that are known to be required for induction of protective immunity. In comparison to the C57BL/6 mouse model and Hartley guinea pig model of tuberculosis, data obtained from humanized mice complemented the data observed in the former models and provided further evidence that a vaccine can induce a human T-cell response. Humanized mice provide a crucial pre-clinical platform for evaluating human T-cell immune responses in vaccine development against M. tuberculosis. © 2017 John Wiley & Sons Ltd.
Hashemi, Hamidreza; Bamdad, Taravat; Jamali, Abbas; Pouyanfard, Somayeh; Mohammadi, Masoumeh Gorgian
2010-02-01
Phage display is based on expressing peptides as a fusion to one of the phage coat proteins. To date, many vaccine researches have been conducted to display immunogenic peptides or mimotopes of various pathogens and tumors on the surface of filamentous bacteriophages. In recent years as a new approach to application of phages, recombinant bacteriophage lambda particles were used as DNA delivery vehicles to mammalian cells. In this study, recombinant filamentous phage whole particles were used for vaccination of mice. BALB/c mice were inoculated with filamentous phage particles containing expression cassette of Herpes simplex virus 1 (HSV-1) glycoprotein D that has essential roles in the virus attachment and entry. Both humoral and cellular immune responses were measured in the immunized mice and compared to conventional DNA vaccination. A dose-response relationship was observed in both arms of immune responses induced by recombinant filamentous phage inoculation. The results were similar to those from DNA vaccination. Filamentous phages can be considered as suitable alternative candidate vaccines because of easier and more cost-effective production and purification over plasmid DNA or bacteriophage lambda particles. 2009 Elsevier B.V. All rights reserved.
Effects of chemotherapy on immune responses in dogs with cancer.
Walter, Claudia U; Biller, Barbara J; Lana, Susan E; Bachand, Annette M; Dow, Steven W
2006-01-01
Chemotherapy is assumed to be immunosuppressive; yet to the authors' knowledge, the effects of common chemotherapy protocols on adaptive immune responses in dogs with cancer have not been fully evaluated. Therefore, a study was conducted to evaluate the effects of 2 common chemotherapy protocols on T- and B-cell numbers and humoral immune responses to de novo vaccination in dogs with cancer. Twenty-one dogs with cancer (12 with lymphoma, 9 with osteosarcoma) were enrolled in a prospective study to assess effects of doxorubicin versus multi-drug chemotherapy on adaptive immunity. Numbers of circulating T and B cells were assessed by flow cytometry, and antibody responses to de novo vaccination were assessed before, during, and after chemotherapy. The T- and B-cell numbers before treatment also were compared with those of healthy, age-matched, control dogs. Prior to treatment, dogs with cancer had significantly fewer (P < .05) CD4+ T cells and CD8+ T cells than did healthy dogs. Doxorubicin treatment did not cause a significant decrease in T- or B-cell numbers, whereas treatment with combination chemotherapy caused a significant and persistent decrease in B-cell numbers. Antibody titers after vaccination were not significantly different between control and chemotherapy-treated dogs. These findings suggest that chemotherapy may have less impact on T-cell numbers and ability to mount antibody responses in dogs with cancer than was previously anticipated, though dogs with lymphoma or osteosarcoma appear to be relatively T-cell deficient before initiation of chemotherapy.
Khattar, Sunil K; Palaniyandi, Senthilkumar; Samal, Sweety; LaBranche, Celia C; Montefiori, David C; Zhu, Xiaoping; Samal, Siba K
2015-01-01
The combination of multiple HIV antigens in a vaccine can broaden antiviral immune responses. In this study, we used NDV vaccine strain LaSota to generate rNDV (rLaSota/optGag) expressing human codon optimized p55 Gag protein of HIV-1. We examined the effect of co-immunization of rLaSota/optGag with rNDVs expressing different forms of Env protein gp160, gp120, gp140L [a version of gp140 that lacked cytoplasmic tail and contained complete membrane-proximal external region (MPER)] and gp140S (a version of gp140 that lacked cytoplasmic tail and distal half of MPER) on magnitude and breadth of humoral, mucosal and cellular immune responses in guinea pigs and mice. Our results showed that inclusion of rLaSota/optGag with rNDVs expressing different forms of Env HIV Gag did not affect the Env-specific humoral and mucosal immune responses in guinea pigs and that the potent immune responses generated against Env persisted for at least 13 weeks post immunization. The highest Env-specific humoral and mucosal immune responses were observed with gp140S+optGag group. The neutralizing antibody responses against HIV strains BaL.26 and MN.3 induced by gp140S+optGag and gp160+optGag were higher than those elicited by other groups. Inclusion of Gag with gp160, gp140S and gp140L enhanced the level of Env-specific IFN-γ-producing CD8+ T cells in mice. Inclusion of Gag with gp160 and gp140L also resulted in increased Env-specific CD4+ T cells. The level of Gag-specific CD8+ and CD4+ T cells was also enhanced in mice immunized with Gag along with gp140S and gp120. These results indicate lack of antigen interference in a vaccine containing rNDVs expressing Env and Gag proteins. PMID:25695657
St Pierre, Cristina; Guo, Jane; Shin, John D; Engstrom, Laura W; Lee, Hyun-Hee; Herbert, Alan; Surdi, Laura; Baker, James; Salmon, Michael; Shah, Sanjiv; Ellis, J Michael; Houshyar, Hani; Crackower, Michael A; Kleinschek, Melanie A; Jones, Dallas C; Hicks, Alexandra; Zaller, Dennis M; Alves, Stephen E; Ramadas, Ravisankar A
2017-01-01
While the immune system is essential for the maintenance of the homeostasis, health and survival of humans, aberrant immune responses can lead to chronic inflammatory and autoimmune disorders. Pharmacological modulation of drug targets in the immune system to ameliorate disease also carry a risk of immunosuppression that could lead to adverse outcomes. Therefore, it is important to understand the 'immune fingerprint' of novel therapeutics as they relate to current and, clinically used immunological therapies to better understand their potential therapeutic benefit as well as immunosuppressive ability that might lead to adverse events such as infection risks and cancer. Since the mechanistic investigation of pharmacological modulators in a drug discovery setting is largely compound- and mechanism-centric but not comprehensive in terms of immune system impact, we developed a human tissue based functional assay platform to evaluate the impact of pharmacological modulators on a range of innate and adaptive immune functions. Here, we demonstrate that it is possible to generate a qualitative and quantitative immune system impact of pharmacological modulators, which might help better understand and predict the benefit-risk profiles of these compounds in the treatment of immune disorders.
Sarkar, Koustav; Goswami, Shyamal; Roy, Soumyabrata; Mallick, Atanu; Chakraborty, Krishnendu; Bose, Anamika; Baral, Rathindranath
2010-08-01
Vaccination with neem leaf glycoprotein matured carcinoembryonic antigen (CEA) pulsed dendritic cells (DCs) enhances antigen-specific humoral and cellular immunity against CEA and restricts the growth of CEA(+) murine tumors. NLGP helps better CEA uptake, processing and presentation to T/B cells. This vaccination (DCNLGPCEA) elicits mitogen induced and CEA specific T cell proliferation, IFN gamma secretion and induces specific cytotoxic reactions to CEA(+) colon tumor cells. In addition to T cell response, DCNLGPCEA vaccine generates anti-CEA antibody response, which is principally IgG2a in nature. This antibody participates in cytotoxicity of CEA(+) cells in antibody-dependent manner. This strong anti-CEA cellular and humoral immunity protects mice from tumor development and these mice remained tumor free following second tumor inoculation, indicating generation of effector memory response. Evaluation of underlying mechanism suggests vaccination generates strong CEA specific CTL and antibody response that can completely prevent the tumor growth following adoptive transfer. In support, significant upregulation of CD44 on the surface of lymphocytes from DCNLGPCEA immunized mice was noticed with a substantial reduction in L-selectin (CD62L). (c) 2010 Elsevier B.V. All rights reserved.
Human adaptive immune system Rag2-/-gamma(c)-/- mice.
Chicha, Laurie; Tussiwand, Roxane; Traggiai, Elisabetta; Mazzucchelli, Luca; Bronz, Lucio; Piffaretti, Jean-Claude; Lanzavecchia, Antonio; Manz, Markus G
2005-06-01
Although many biologic principles are conserved in mice and humans, species-specific differences exist, for example, in susceptibility and response to pathogens, that often do not allow direct implementation of findings in experimental mice to humans. Research in humans, however, for ethical and practical reasons, is largely restricted to in vitro assays that lack components and the complexity of a living organism. To nevertheless study the human hematopoietic and immune system in vivo, xenotransplantation assays have been developed that substitute human components to small animals. Here, we summarize our recent findings that transplantation of human cord blood CD34(+) cells to newborn Rag2(-/-)gamma(c)(-/-) mice leads to de novo development of major functional components of the human adaptive immune system. These human adaptive immune system Rag2(-/-)gamma(c)(-/-) (huAIS-RG) mice can now be used as a technically straightforward preclinical model to evaluate in vivo human adaptive immune system development as well as immune responses, for example, to vaccines or live infectious pathogens.
Hester, Shelly N.; Comstock, Sarah S.; Thorum, Shannon C.; Monaco, Marcia H.; Pence, Brandt D.; Woods, Jeffrey A.
2012-01-01
Infants are susceptible to infections in early life and must rely on their innate immune system for protection. β-Glucans potentiate immune responses. Therefore, we evaluated the influence of purified yeast (1,3/1,6)-β-d-glucan (Wellmune WGP, here referred to as WGP) on the development of the gastrointestinal tract and the intestinal and systemic immune systems in neonatal piglets. Piglets were fed formula containing 0 (control), 1.8, 18, or 90 mg WGP/kg body weight (BW) and were vaccinated against human influenza. Piglets were euthanized at 7 or 21 days of age. Piglet weight and small intestinal length and weight were unaffected by dietary WGP. In addition, WGP did not affect ileal crypt depth, villus height, or ascending colon cuff depth. Immune parameters not affected by WGP supplementation included T cell phenotypes, cytokine gene expression, and cell proliferation. However, vaccination and developmental effects were seen. Overall, the doses of 1.8, 18, and 90 mg/kg BW of dietary WGP had no effect on intestinal or immune development and did not improve the antibody response to vaccination in neonatal piglets. PMID:22815151
Immunoprotection of recombinant Eg.P29 against Echinococcus granulosus in sheep.
Wang, Hao; Li, Zihua; Gao, Fu; Zhao, Jiaqing; Zhu, Mingxing; He, Xin; Niu, Nan; Zhao, Wei
2016-06-01
This study aims to investigate the immunoprotection of recombinant Eg.P29 (rEg.P29) vaccine and analyze the underlying mechanism in sheep. Three groups of male sheep were immunized subcutaneously with rEg.P29 and PBS, Freund's complete adjuvant as controls, respectively. After prime-boost vaccination, the sheep were challenged with encapsulated Echinococcus granulosus eggs. The percentage of protection in sheep was determined 36 weeks after the infection. Humoral immune response was analyzed for specific IgG, IgG1, IgG2, IgM and IgE levels. Moreover, cytokines including interferon (IFN)-γ, interleukin (IL)-2, IL-4,and IL-10 were also evaluated. Immunization with rEg.P29 induced protective immune responses up to 94.5 %, compared with immunoadjuvant group. The levels of specific IgG, IgG1, IgG2, and IgE as well as IFN-γ, IL-2, and IL-4 significantly increased after two immunizations (P < 0.05); however, the levels of IgM and IL-10 did not show difference. rEg.P29 showed Immunoprotection and induced Th1 and Th2 immune responses; hence, rEg.P29 is a potential vaccine for E. granulosus infection.
Immunosuppressive activity of tilmicosin on the immune responses in mice.
Guan, Shuang; Song, Yu; Guo, Weixiao; Chu, Xiao; Zhang, Xiaozhe; Wang, Dacheng; Lu, Jing; Deng, Xuming
2011-06-01
Tilmicosin, a semi-synthetic macrolide antibiotic that is only used in the veterinary clinic, was evaluated for its immunosuppressive activity on the immune responses to ovalbumin (OVA) in mice. Tilmicosin suppressed concanavalin A (Con A)- and lipopolysaccharide (LPS)-stimulated splenocyte proliferation in vitro. BALB/c mice were immunized subcutaneously with OVA on day 1 and 4. Beginning on the day of boosting immunization, the mice were administered intraperitoneally with tilmicosin at a single dose of 10, 30, and 90 mg/kg for 10 consecutive days. On day 14, blood samples were collected for measuring specific total-immunoglobulin G (total-IgG), IgG1, IgG2b, and splenocytes were harvested for determining lymphocyte proliferation and interleukin-2 (IL-2), interferon-γ (IFN-γ), IL-4 production. The results demonstrated that tilmicosin could significantly suppress Con A-induced splenocyte proliferation in a dose-dependent manner, decrease LPS-and OVA-induced splenocyte proliferation only at high concentration, produced less IL-2, IL-4, and IFN-γ as compared to the control in the OVA-immunized mice. Moreover, the OVA-specific IgG, IgG1, and IgG2b levels in the OVA-immunized mice were reduced by tilmicosin. These results suggest that tilmicosin could suppress the cellular and humoral immune response in mice.
Immunologic and gene expression profiles of spontaneous canine oligodendrogliomas.
Filley, Anna; Henriquez, Mario; Bhowmik, Tanmoy; Tewari, Brij Nath; Rao, Xi; Wan, Jun; Miller, Margaret A; Liu, Yunlong; Bentley, R Timothy; Dey, Mahua
2018-05-01
Malignant glioma (MG), the most common primary brain tumor in adults, is extremely aggressive and uniformly fatal. Several treatment strategies have shown significant preclinical promise in murine models of glioma; however, none have produced meaningful clinical responses in human patients. We hypothesize that introduction of an additional preclinical animal model better approximating the complexity of human MG, particularly in interactions with host immune responses, will bridge the existing gap between these two stages of testing. Here, we characterize the immunologic landscape and gene expression profiles of spontaneous canine glioma and evaluate its potential for serving as such a translational model. RNA in situ hybridization, flowcytometry, and RNA sequencing were used to evaluate immune cell presence and gene expression in healthy and glioma-bearing canines. Similar to human MGs, canine gliomas demonstrated increased intratumoral immune cell infiltration (CD4+, CD8+ and CD4+Foxp3+ T cells). The peripheral blood of glioma-bearing dogs also contained a relatively greater proportion of CD4+Foxp3+ regulatory T cells and plasmacytoid dendritic cells. Tumors were strongly positive for PD-L1 expression and glioma-bearing animals also possessed a greater proportion of immune cells expressing the immune checkpoint receptors CTLA-4 and PD-1. Analysis of differentially expressed genes in our canine populations revealed several genetic changes paralleling those known to occur in human disease. Naturally occurring canine glioma has many characteristics closely resembling human disease, particularly with respect to genetic dysregulation and host immune responses to tumors, supporting its use as a translational model in the preclinical testing of prospective anti-glioma therapies proven successful in murine studies.
Russi, Romina; García, María Inés; Vignatti, Paulina; Veiga, María Florencia; Vazquez-Levin, Mónica Hebe; Veaute, Carolina
2016-11-01
The immune response has relevant physiological functions both in the male and female reproductive system, and must be tightly controlled to achieve a successful pregnancy. Several immune factors have been related to infertility, among them humoral and cellular immune responses triggered by sperm antigens. The present study was aimed at evaluating the immune profile induced by DNA immunization against the sperm protease proacrosin in CF1 male mice and its effect upon fertility. Immunized animals exhibited higher anti-proacrosin antibodies levels than controls (indirect ELISA), both in serum (p<0.01) and in seminal vesicle fluid (SVF; p<0.05). IgG2a levels were higher than IgG1 in serum (p<0.01) and similar in SVF. IL-10 and TGF-β1 mRNA levels were lower in testis (p<0.05), whereas TNF-α and IFN-γ transcript levels were increased in SV tissue (p<0.05). Immunized mice showed a trend toward higher IFN-γ concentration in serum and SVF than controls. Male fertility rate was diminished in immunized mice (p<0.01) and inversely correlated with serum and SVF anti-proacrosin IgG levels (p<0.001). Immunized animals also had fewer pups born than controls (p<0.01). To our knowledge, this is the first report on DNA immunization done in CF1 mice. Injection of proacrosin DNA induces an immune response in the male reproductive tract characterized by high levels of specific antibodies and cytokine changes. These factors may alter the crucial balance of the genital tract microenvironment required for adequate fertilization and pregnancy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Lee, David J.; Meehan, Richard T.; Robinson, Christine; Mabry, Thomas R.; Smith, Morey L.
1992-01-01
It has been proposed, but not confirmed, that environmental stressors alter immune function and increase the risk of viral infection among healthy individuals. This hypothesis was evaluated by examining the relationship among stress, immune function, and illness in 96 first-year U.S. Air Force Academy cadets during orientation and four weeks later during the stressful environment of basic cadet training (BCT). Perceived stress and well-being levels of cadets were assessed via questionnaire. Immune responsiveness was analyzed by PHA-stimulated thymidine uptake in mononuclear leucocytes and by serologic evidence of reactivation of the Epstein-Barr virus (EBV). Results showed significant declines in in vitro PHA-induced lymphocyte transformation (-35 percent)and subjective well-being (-19 percent) from orientation to BCT with corresponding, significant increases in perceived stress (+32 percent). Despite significantly altered in vitro immune responsiveness, there was no serologic evidence of EBV reactivation nor was there an association between these measures and risk of illness as determined by medical chart review and self-reported symptoms.
Estradiol and progesterone influence on influenza infection and immune response in a mouse model.
Davis, Sarah M; Sweet, Leigh M; Oppenheimer, Karen H; Suratt, Benjamin T; Phillippe, Mark
2017-10-01
Influenza infection severity may be mediated by estradiol and/or progesterone. An exploratory study was designed to evaluate 17-β-estradiol and progesterone on influenza infection and examine immune-mediated response in a mouse model. Inoculation with placebo or mouse-adapted H1N1 influenza virus occurred. Treatment groups included 17-β-estradiol, progesterone, ovariectomy, and pregnancy. Mice were assessed for morbidity and mortality. Toll-like receptor gene studies and airspace cell differentials were performed. Onset of morbidity was earlier and morbidity duration greater for progesterone. Absence of morbidity/mortality and overall survival was greater for 17-β-estradiol. Airspace cell differentials suggest improved immune cell recruitment for 17-β-estradiol. Pregnant mouse data demonstrate significant mortality during the period of increased progesterone. Select immune cell markers demonstrate patterns of regulation that may promote proper immune response to influenza infection for 17-β-estradiol. Estradiol may play a protective and progesterone a detrimental role in the pathophysiology of influenza infection. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Muñoz-Carrillo, J L; Contreras-Cordero, J F; Muñoz-López, J L; Maldonado-Tapia, C H; Muñoz-Escobedo, J J; Moreno-García, M A
2017-09-01
In the early stage of the intestinal phase of Trichinella spiralis infection, the host triggers a Th1-type immune response with the aim of eliminating the parasite. However, this response damages the host which favours the survival of the parasite. In the search for novel pharmacological strategies that inhibit the Th1 immune response and assist the host against T. spiralis infection, a recent study showed that resiniferatoxin had anti-inflammatory activity contributed to the host in T. spiralis infection. In this study, we evaluated whether RTX modulates the host immune response through the inhibition of Th1 cytokines in the intestinal phase. In addition, it was determined whether the treatment with RTX affects the infectivity of T. spiralis-L1 and the development of the T. spiralis life cycle. Our results show that RTX decreased serum levels of IL-12, INF-γ, IL-1β, TNF-α and parasite burden on muscle tissue. It was observed that T. spiralis-L1 treated with RTX decreased their infectivity affecting the development of the T. spiralis life cycle in mouse. These results demonstrate that RTX is able to inhibit the production of Th1 cytokines, contributing to the defence against T. spiralis, which places it as a potential drug modulator of the immune response. © 2017 John Wiley & Sons Ltd.
Choi, Dae-Woon; Jung, Sun Young; Kang, Jisu; Nam, Young-Do; Lim, Seong-Il; Kim, Ki Tae; Shin, Hee Soon
2018-02-28
Nanometric Lactobacillus plantarum nF1 (nLp-nF1) is a biogenics consisting of dead L. plantarum cells pretreated with heat and a nanodispersion process. In this study, we investigated the immune-enhancing effects of nLp-nF1 in vivo and in vitro. To evaluate the immunostimulatory effects of nLp-nF1, mice immunosuppressed by cyclophosphamide (CPP) treatment were administered with nLp-nF1. As expected, CPP restricted the immune response of mice, whereas oral administration of nLp-nF1 significantly increased the total IgG in the serum, and cytokine production (interleukin-12 (IL-12) and tumor necrosis factor alpha (TNF-α)) in bone marrow cells. Furthermore, nLp-nF1 enhanced the production of splenic cytokines such as IL-12, TNF-α, and interferon gamma (IFN-γ). In vitro, nLp-nF1 stimulated the immune response by enhancing the production of cytokines such as IL-12, TNF-α, and IFN-γ. Moreover, nLp-nF1 given a food additive enhanced the immune responses when combined with various food materials in vitro. These results suggest that nLp-nF1 could be used to strengthen the immune system and recover normal immunity in people with a weak immune system, such as children, the elderly, and patients.
Sanborn, Rachel E; Ross, Helen J; Aung, Sandra; Acheson, Anupama; Moudgil, Tarsem; Puri, Sachin; Hilton, Traci; Fisher, Brenda; Coffey, Todd; Paustian, Christopher; Neuberger, Michael; Walker, Edwin; Hu, Hong-Ming; Urba, Walter J; Fox, Bernard A
2017-12-19
Tumor-derived autophagosome vaccines (DRibbles) have the potential to broaden immune response to poorly immunogenic tumors. Autologous vaccine generated from tumor cells harvested from pleural effusions was administered to patients with advanced NSCLC with the objectives of assessing safety and immune response. Four patients were vaccinated and evaluable for immune response; each received two to four doses of vaccine. Study therapy included two cycles of docetaxel 75 mg/m 2 on days 1 and 29 to treat the tumor, release hidden antigens and produce lymphopenia. DRibbles were to be administered intradermally on days 14, 43, 57, 71, and 85, together with GM-CSF (50 μg/d x 6d, administered via SQ mini pump). Peripheral blood was tested for immune parameters at baseline and at each vaccination. Three of four patients had tumor cells available for testing. Autologous tumor-specific immune response was seen in two of the three, manifested by IL-5 (1 patient after 3 doses), and IFN-γ, TNF-α, IL-5, IL-10 (after 4 doses in one patient). All 4 patients had evidence of specific antibody responses against potential tumor antigens. All patients came off study after 4 or fewer vaccine treatments due to progression of disease. No significant immune toxicities were seen during the course of the study. DRibble vaccine given with GM-CSF appeared safe and capable of inducing an immune response against tumor cells in this small, pilot study. There was no evidence of efficacy in this small poor-prognosis patient population, with treatment not feasible. Trial registration NCT00850785, initial registration date February 23, 2009.
Milani, Alireza; Bolhassani, Azam; Shahbazi, Sepideh; Motevalli, Fatemeh; Sadat, Seyed Mehdi; Soleymani, Sepehr
2017-11-01
Novel vaccine modalities have been designed to improve the efficiency of vaccines against HIV infections. In this way, the HIV-1 Nef protein has been known as an attractive antigenic candidate in therapeutic vaccine development. Moreover, the endogenous adjuvants such as heat shock proteins (HSPs) and high mobility group box 1 protein (HMGB1) have been suggested effectively to induce antigen-specific humoral and cellular immune responses. In this study, different Nef DNA and protein constructs were produced in eukaryotic and prokaryotic expression systems, and their immunostimulatory properties were evaluated using small heat shock protein 27 (Hsp27) and the HMGB1-derived peptide (Hp91) in a mouse model. Generally, our results indicated that the Hsp27-Nef fusion DNA or protein could significantly elicit higher humoral and cellular immune responses than Nef DNA or protein, respectively. Analysis of the immune responses demonstrated that the Hsp27-Nef fusion protein, and also the mixture of Nef and Hp91 significantly enhanced the Nef-specific T cell responses. Indeed, these regimens induced high levels of IgG2a and IFN-γ directed toward Th1 responses and also Granzyme B secretion as compared to other immunization strategies. The immunostimulatory properties of Freund's adjuvant were significantly less than Hsp27 and Hp91 peptide in various immunization strategies. These findings showed that the use of Hsp27 and Hp91 in protein strategy could improve HIV-1 Nef-specific B- and T-cell immune responses, and also represent a promising HIV-1 vaccine candidate in future. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.
Giglio, Anita; Giulianini, Piero Giulio
2013-04-01
In ecological immunology is of great importance the study of the immune defense plasticity as response to a variable environment. In holometabolous insects the fitness of each developmental stage depends on the capacity to mount a response (i.e. physiological, behavioral) under environmental pressure. The immune response is a highly dynamic trait closely related to the ecology of organism and the variation in the expression of an immune system component may affect another fitness relevant trait of organism (i.e. growth, reproduction). The present research quantified immune function (total and differential number of hemocytes, phagocytosis in vivo and activity of phenoloxidase) in the pupal stage of Carabus (Chaetocarabus) lefebvrei. Moreover, the cellular and humoral immune function was compared across the larval, pupal and adult stages to evaluate the changes in immunocompetence across the developmental stages. Four types of circulating hemocytes were characterized via transmission electron microscopy in the pupal stage: prohemocytes, plasmatocytes, granulocytes and oenocytoids. The artificial non-self-challenge treatments performed in vivo have shown that plasmatocytes and granulocytes are responsible for phagocytosis. The level of active phenoloxidase increases with the degree of pigmentation of the cuticle in each stage. In C. lefebvrei, there are different strategies in term of immune response to enhance the fitness of each life stage. The results have shown that the variation in speed and specificity of immune function across the developmental stages is correlated with differences in infection risk, life expectancy and biological function of the life cycle. Copyright © 2013 Elsevier Ltd. All rights reserved.
Zhang, Haihong; Liu, Chenlu; Zhang, Fangfang; Geng, Fei; Xia, Qiu; Lu, Zhenzhen; Xu, Ping; Xie, Yu; Wu, Hui; Yu, Bin; Wu, Jiaxin; Yu, Xianghui; Kong, Wei
2016-05-23
MUC1 and survivin are ideal tumor antigens. Although many cancer vaccines targeting survivin or MUC1 have entered clinical trials, no vaccine combining MUC1 and survivin have been reported. Due to tumor heterogeneity, vaccines containing a combination of antigens may have improved efficacy and coverage of a broader spectrum of cancer targets. Here, cellular responses and anti-tumor activities induced by a combination of DNA vaccine targeting MUC1 and survivin (MS) were evaluated. Results showed that CTL activity and inhibition of tumor growth were obviously enhanced in mice immunized with the combined vaccine in a protection assay. However, in order to enhance the therapeutic effect in the treatment assay, a recombinant adenovirus (rAd) vaccine expressing MUC1 and survivin (Ad-MS) was used as a booster following the DNA vaccine prime. Meanwhile, IL-2 promoting T cell proliferation was used as an immunoadjuvant for the DNA vaccine. Results showed that the CTL activity response to the DNA vaccine was enhanced nearly 200% when boosted by the rAd vaccine and was further enhanced by nearly 60% when combined with the IL-2 adjuvant. Therefore, DNA prime combined with rAd boost and IL-2 (MS/IL2/Ad-MS) adjuvant was considered as the best strategy and further evaluated. Multiple cytokines promoting cellular immune responses were shown to be greatly enhanced in mice immunized with MS/IL2/Ad-MS. Moreover, in the treatment assay, the tumor inhibition rate of MS/IL2/Ad-MS reached up to 50.1%, which may be attributed to the enhancement of immune responses and reduction of immunosuppressive factors in tumor-bearing mice. These results suggested that immunization with the combination vaccine targeting MUC1 and survivin using a DNA prime-rAd boost strategy along with IL-2 adjuvant may be an effective method for breaking through immune tolerance to tumors expressing these antigens with potential therapeutic benefits in melanoma cancer. Copyright © 2016. Published by Elsevier Ltd.
Kines, Rhonda C.; Zarnitsyn, Vladimir; Johnson, Teresa R.; Pang, Yuk-Ying S.; Corbett, Kizzmekia S.; Nicewonger, John D.; Gangopadhyay, Anu; Chen, Man; Liu, Jie; Prausnitz, Mark R.; Schiller, John T.; Graham, Barney S.
2015-01-01
Human papilloma virus-like particles (HPV VLP) serve as the basis of the current licensed vaccines for HPV. We have previously shown that encapsidation of DNA expressing the model antigen M/M2 from respiratory syncytial virus (RSV) in HPV pseudovirions (PsV) is immunogenic when delivered intravaginally. Because the HPV capsids confer tropism for basal epithelium, they represent attractive carriers for vaccination targeted to the skin using microneedles. In this study we asked: 1) whether HPV16 VLP administered by microneedles could induce protective immune responses to HPV16 and 2) whether HPV16 PsV-encapsidated plasmids delivered by microneedles could elicit immune responses to both HPV and the antigen delivered by the transgene. Mice immunized with HPV16 VLP coated microneedles generated robust neutralizing antibody responses and were protected from HPV16 challenge. Microneedle arrays coated with HPV16-M/M2 or HPV16-F protein (genes of RSV) were then tested and dose-dependent HPV and F-specific antibody responses were detected post-immunization, and M/M2-specific T-cell responses were detected post RSV challenge, respectively. HPV16 PsV-F immunized mice were fully protected from challenge with HPV16 PsV and had reduced RSV viral load in lung and nose upon intranasal RSV challenge. In summary, HPV16 PsV-encapsidated DNA delivered by microneedles induced neutralizing antibody responses against HPV and primed for antibody and T-cell responses to RSV antigens encoded by the encapsidated plasmids. Although the immunogenicity of the DNA component was just above the dose response threshold, the HPV-specific immunity was robust. Taken together, these data suggest microneedle delivery of lyophilized HPV PsV could provide a practical, thermostable combined vaccine approach that could be developed for clinical evaluation. PMID:25785935
Kines, Rhonda C; Zarnitsyn, Vladimir; Johnson, Teresa R; Pang, Yuk-Ying S; Corbett, Kizzmekia S; Nicewonger, John D; Gangopadhyay, Anu; Chen, Man; Liu, Jie; Prausnitz, Mark R; Schiller, John T; Graham, Barney S
2015-01-01
Human papilloma virus-like particles (HPV VLP) serve as the basis of the current licensed vaccines for HPV. We have previously shown that encapsidation of DNA expressing the model antigen M/M2 from respiratory syncytial virus (RSV) in HPV pseudovirions (PsV) is immunogenic when delivered intravaginally. Because the HPV capsids confer tropism for basal epithelium, they represent attractive carriers for vaccination targeted to the skin using microneedles. In this study we asked: 1) whether HPV16 VLP administered by microneedles could induce protective immune responses to HPV16 and 2) whether HPV16 PsV-encapsidated plasmids delivered by microneedles could elicit immune responses to both HPV and the antigen delivered by the transgene. Mice immunized with HPV16 VLP coated microneedles generated robust neutralizing antibody responses and were protected from HPV16 challenge. Microneedle arrays coated with HPV16-M/M2 or HPV16-F protein (genes of RSV) were then tested and dose-dependent HPV and F-specific antibody responses were detected post-immunization, and M/M2-specific T-cell responses were detected post RSV challenge, respectively. HPV16 PsV-F immunized mice were fully protected from challenge with HPV16 PsV and had reduced RSV viral load in lung and nose upon intranasal RSV challenge. In summary, HPV16 PsV-encapsidated DNA delivered by microneedles induced neutralizing antibody responses against HPV and primed for antibody and T-cell responses to RSV antigens encoded by the encapsidated plasmids. Although the immunogenicity of the DNA component was just above the dose response threshold, the HPV-specific immunity was robust. Taken together, these data suggest microneedle delivery of lyophilized HPV PsV could provide a practical, thermostable combined vaccine approach that could be developed for clinical evaluation.
USDA-ARS?s Scientific Manuscript database
We evaluated the immune modulatory effects as well as effects on productivity of Bovamine® (Lactobacillus acidophilus strain NP51 and Probionibacterium freudenreichii) fed to Holstein and Jersey dairy cows during late lactation (average DIM = 202.44 days on wk-0). Cows were randomized to treatment g...
USDA-ARS?s Scientific Manuscript database
Demand for arginine (Arg) is reported to increase during immune challenges. This study evaluated effects of lipopolysaccharide (LPS) and abomasal Arg infusion on nitrogen (N) metabolism and immune response of 20 ruminally cannulated steers (369 ± 46 kg BW) in a randomized block design. Each block co...
Mawas, Fatme; Dickinson, Robert; Douglas-Bardsley, Alexandra; Xing, Dorothy K L; Sesardic, Dorothea; Corbel, Michael J
2006-04-24
We have previously shown that, consistent with clinical trial results, the immune response to a Haemophilus influenzae b (Hib) conjugate vaccine in a rat model was compromised and modulated when given combined with a DTaP3 vaccine, as compared to both vaccines given separately. The present study extended our investigation to evaluate the immunogenicity of all DTaP3 components in combined versus separate administration of Hib with DTaP3 and investigated immune interactions between Hib and individual components of DTaP3. Rats were immunised with Hib and DTaP3 or with Hib and individual DTaP3 components. Cellular and humoral immune responses to Hib and DTaP3 components were evaluated. Our results indicate that the immunogenicity of DTaP3 components was similar or greater in combined versus separate administration of Hib and DTaP3. Moreover, combined administration of Hib and TT reduced immunogenicity of both Hib and TT. Hib immunogenicity was also significantly reduced when given combined with FHA and following adsorption to Al(OH)3.
DeWitt, Jamie C; Peden-Adams, Margie M; Keil, Deborah E; Dietert, Rodney R
2012-02-01
Developmental immunotoxicity (DIT) occurs when exposure to environmental risk factors prior to adulthood, including chemical, biological, physical, or physiological factors, alters immune system development. DIT may elicit suppression, hyperactivation, or misregulation of immune responses and may present clinically as decreased resistance to pathogens, allergic and autoimmune diseases, and inflammatory diseases. Immunotoxicity testing guidelines established by the Environmental Protection Agency for adult animals (OPPTS 8703.7800) require functional tests and immunophenotyping that are suitable for detecting immunomodulation, especially immunosuppression. However, evaluating immune function in offspring that are not fully immunocompetent yields results that are challenging to interpret. Therefore, this unit will describe an optimum exposure scenario, reference two assays (immunophenotyping and histopathology) appropriate for detecting immunomodulation in weaning-age offspring, and reference four assays (immunophenotyping, histopathology, T cell-dependent antibody responses, and delayed-type hypersensitivity) appropriate for detecting immunomodulation in immunocompetent offspring. The protocol also will reference other assays (natural killer cell and cytotoxic T lymphocyte) with potential utility for assessing DIT. © 2012 by John Wiley & Sons, Inc.
Reyes-Becerril, Martha; Maldonado-García, Minerva; Guluarte, Crystal; León-Gallo, Amalia; Rosales-Mendoza, Sergio; Ascencio, Felipe; Hirono, Ikuo; Angulo, Carlos
2016-09-01
Immunogenicity of ToxA and Vibrio parahaemolyticus lysate was evaluated in a double immunostimulation scheme in Pacific red snapper after V. parahaemolyticus infection. Three groups of Pacific red snapper were intraperitonealy (i.p.) injected with phosphate-buffered saline (PBS group), ToxA of V. parahaemolyticus (ToxA-Vp group) or V. parahaemolyticus lysate (lysate-Vp group) (first injection, day 1; second injection, day 7). Fish were subsequently infected with live V. parahaemolyticus. Humoral immune parameters in skin mucus and serum were evaluated on days 1, 7, 8 and 14 days post-immunostimulation and 7 days post-infection. Moreover expression of immune-related genes was quantified by real time PCR in head-kidney leukocytes, spleen, liver, and intestine. The ToxA-Vp-treated group showed a higher anti-protease and catalase activity in skin mucus when compared with the PBS group. Measurements of SOD and CAT activities showed an increment in both activities a day after the second boost with ToxA-Vp or lysate-Vp. Interestingly, IgM levels in mucus and transcripts were enhanced followed the ToxA-Vp treatment even after challenge. Furthermore, IL-1β was strongly expressed in all analyzed cell or tissues followed ToxA-Vp or Vp-lysate treatments. Finally, SOD and CAT gene expression was up-regulated in fish immunostimulated with either treatment ToxA-Vp or lysate-Vp, mainly after infection in head-kidney leukocytes and intestine. This is the first study where the effects of ToxA from V. parahaemolyticus in the immune system of Pacific red snapper was evaluated. These results suggest that ToxA-Vp would positively affect humoral immune response and up-regulate expression of genes involved in the immune system function; and could help in the control of V. parahaemolyticus infection in Pacific red snapper Lutjanus peru, an economic important fish in Mexico. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mukherjee, Pinku; Tinder, Teresa L; Basu, Gargi D; Pathangey, Latha B; Chen, Lieping; Gendler, Sandra J
2004-01-01
To study immunology in breast tumors, we have utilized a mammary gland adenocarcinoma model in which mice develop spontaneous tumors of the mammary gland which are initiated at puberty and express a human tumor antigen, MUC1. MUC1 (CD227) is over-expressed in 90% of human breast cancers and its glycosylation status and pattern of expression in cancer cells is altered. Humoral and cellular responses to MUC1 have been reported in breast cancer patients and therefore, MUC1 is being evaluated as a target for immune intervention. This mouse model of spontaneous breast cancer allows the evaluation of anti-MUC1 immune responses at all stages of the disease. In this report, we review the model as it pertains to a) the development of the tumor, b) MUC1 expression, and the native immune responses against MUC1 as tumors progress, and c) the immune suppressive microenvironment within the developing tumor. Finally, we report our latest findings describing the therapeutic efficacy of adoptively transferred MUC1-specific cytotoxic T lymphocytes (MUC1-CTL) in these mice and discuss ways to increase their effectiveness by agonistic monoclonal antibody against CD137 T cell costimulatory molecule.
Likelihood-based methods for evaluating principal surrogacy in augmented vaccine trials.
Liu, Wei; Zhang, Bo; Zhang, Hui; Zhang, Zhiwei
2017-04-01
There is growing interest in assessing immune biomarkers, which are quick to measure and potentially predictive of long-term efficacy, as surrogate endpoints in randomized, placebo-controlled vaccine trials. This can be done under a principal stratification approach, with principal strata defined using a subject's potential immune responses to vaccine and placebo (the latter may be assumed to be zero). In this context, principal surrogacy refers to the extent to which vaccine efficacy varies across principal strata. Because a placebo recipient's potential immune response to vaccine is unobserved in a standard vaccine trial, augmented vaccine trials have been proposed to produce the information needed to evaluate principal surrogacy. This article reviews existing methods based on an estimated likelihood and a pseudo-score (PS) and proposes two new methods based on a semiparametric likelihood (SL) and a pseudo-likelihood (PL), for analyzing augmented vaccine trials. Unlike the PS method, the SL method does not require a model for missingness, which can be advantageous when immune response data are missing by happenstance. The SL method is shown to be asymptotically efficient, and it performs similarly to the PS and PL methods in simulation experiments. The PL method appears to have a computational advantage over the PS and SL methods.
Lou, David; Steiner, Stephanie; Rezwanul, Tasmia; Guo, Qin; Picking, William D.; Nene, Vishvanath; Sztein, Marcelo B.
2017-01-01
Salmonella enterica serovar Typhi (S. Typhi), the causative agent of the typhoid fever, is a pathogen of great public health importance. Typhoid vaccines have the potential to be cost-effective measures towards combating this disease, yet the antigens triggering host protective immune responses are largely unknown. Given the key role of cellular-mediated immunity in S. Typhi protection, it is crucial to identify S. Typhi proteins involved in T-cell responses. Here, cells from individuals immunized with Ty21a typhoid vaccine were collected before and after immunization and used as effectors. We also used an innovative antigen expressing system based on the infection of B-cells with recombinant Escherichia coli (E. coli) expressing one of four S. Typhi gene products (i.e., SifA, OmpC, FliC, GroEL) as targets. Using flow cytometry, we found that the pattern of response to specific S. Typhi proteins was variable. Some individuals responded to all four proteins while others responded to only one or two proteins. We next evaluated whether T-cells responding to recombinant E. coli also possess the ability to respond to purified proteins. We observed that CD4+ cell responses, but not CD8+ cell responses, to recombinant E. coli were significantly associated with the responses to purified proteins. Thus, our results demonstrate the feasibility of using an E. coli expressing system to uncover the antigen specificity of T-cells and highlight its applicability to vaccine studies. These results also emphasize the importance of selecting the stimuli appropriately when evaluating CD4+ and CD8+ cell responses. PMID:28873442
Chitradevi, Sekar Tamil Selvi; Kaur, Gurpreet; Uppalapati, Sivaramakrishna; Yadav, Anandprakash; Singh, Dependrapratap; Bansal, Anju
2015-11-01
Shigella species cause severe bacillary dysentery in humans and are associated with high morbidity and mortality. The Invasion plasmid antigen (IpaB) protein, which is conserved across all Shigella spp., induces macrophage cell death and is required to invade host cells. The present study evaluates the immunogenicity and protective efficacy of the recombinant (r) domain region of IpaB (rIpaB) of S. flexneri. rIpaB was administered either alone or was co-administered with the rGroEL (heat shock protein 60) protein from S. Typhi as an adjuvant in a mouse model of intranasal immunization. The IpaB domain region (37 kDa) of S. flexneri was amplified from an invasion plasmid, cloned, expressed in BL21 Escherichia coli cells and purified. Immunization with the rIpaB domain alone stimulated both humoral and cell-mediated immune responses. Furthermore, robust antibody (IgG, IgA) and T-cell responses were induced when the rIpaB domain was co-administered with rGroEL. Antibody isotyping revealed higher IgG1 and IgG2a antibody titers and increased interferon-gamma (IFN-γ) secretion in the co-administered group. Immunization of mice with the rIpaB domain alone protected 60%-70% of the mice from lethal infection by S. flexneri, S. boydii and S. sonnei, whereas co-administration with rGroEL increased the protective efficacy to 80%-85%. Organ burden and histopathological studies also revealed a significant reduction in lung infection in the co-immunized mice compared with mice immunized with the rIpaB domain alone. This study emphasizes that the co-administration of the rIpaB domain and rGroEL protein improves immune responses in mice and increases protective efficacy against Shigella infection. This is also the first report to evaluate the potential of the GroEL (Hsp 60) protein of S. Typhi as an adjuvant molecule, thereby overcoming the need for commercial adjuvants.
Immunostimulation in the era of the metagenome
Proal, Amy D; Albert, Paul J; Blaney, Greg P; Lindseth, Inge A; Benediktsson, Chris; Marshall, Trevor G
2011-01-01
Microbes are increasingly being implicated in autoimmune disease. This calls for a re-evaluation of how these chronic inflammatory illnesses are routinely treated. The standard of care for autoimmune disease remains the use of medications that slow the immune response, while treatments aimed at eradicating microbes seek the exact opposite—stimulation of the innate immune response. Immunostimulation is complicated by a cascade of sequelae, including exacerbated inflammation, which occurs in response to microbial death. Over the past 8 years, we have collaborated with American and international clinical professionals to research a model-based treatment for inflammatory disease. This intervention, designed to stimulate the innate immune response, has required a reevaluation of disease progression and amelioration. Paramount is the inherent conflict between palliation and microbicidal efficacy. Increased microbicidal activity was experienced as immunopathology—a temporary worsening of symptoms. Further studies are needed, but they will require careful planning to manage this immunopathology. PMID:21278764
Madakkannu, Boothapandi; Ravichandran, Ramanibai
2017-01-01
Indigofera tinctoria and Scoparia dulcis are being widely used in Indian folk medicine for the treatment of various disorders. Environmental noise pollution is thought to be an important factor for many health problems and it causes immune abnormalities. In the present study immune-regulating potential of I. tinctoria and S. dulcis aqueous extracts on innate and adaptive immune system of wistar albino rats was evaluated during normal and chronic noise induced stress conditions. The results demonstrated that both I. tinctoria and S. dulcis aqueous extracts (200 mg/kg b.w) showed immunostimulant effect on both innate and adaptive immune response of wistar albino rat compared to control group under normal condition. The noise stress (100 dB for 1 h, 20 days) induced animals showed suppressive effects on immune response by decreasing macrophage phagocytosis, antibody secretion by spleen cells, humoral immune response, proliferation of lymphocytes, cytotoxicity, TNF α expression, granzyme B and perforin expression in splenic NK cells. Similarly, noise stress also caused DNA damage in tissues. However, the suppressed effects induced by noise stress on rat immune system were significantly prevented by oral administration of both I. tinctoria and S. dulcis aqueous extracts. Considering all these results it is suggested that the selected medicinal plant's aqueous extracts have the potential to prevent the effects of noise stress induced rat immune system and explore a strong immunostimulant potential applicable to clinical practices.
Ridolfi, Laura; de Rosa, Francesco; Ridolfi, Ruggero; Gentili, Giorgia; Valmorri, Linda; Scarpi, Emanuela; Parisi, Elisabetta; Romeo, Antonino; Guidoboni, Massimo
2014-09-23
Tumor cells killed by radiation therapy (RT) are a potentially good source of antigens for dendritic cell (DC) uptake and presentation to T-cells. RT upregulates cell death receptors such as Fas/CD95 and MHC-I, induces the expression of co-stimulatory molecules on tumor cells, and promotes production of pro-inflammatory cytokines. High-dose interleukin-2 (HD-IL-2) bolus has been shown to obtain objective response rates ranging from 15% to 17% in patients with metastatic melanoma or renal cell carcinoma (RCC), with 6% to 8% of cases experiencing a durable complete response. However, HD-IL-2 is also associated with severe side-effects; if it is to remain a component of the curative treatment strategy in patients with metastatic melanoma or RCC, its therapeutic efficacy must be improved and patients who are most likely to benefit from treatment must be identified a priori. We designed a clinical study combining immunomodulating RT and HD-IL-2 to evaluate their clinical and immunological efficacy and to explore the predictive and prognostic value of 1) tumor-specific immune response and 2) serum levels of proangiogenic cytokines. The primary endpoint of this proof-of-principle phase II study is immune response. Secondary endpoints are the identification of biomarkers potentially predictive of response, toxicity, response rate and overall survival. Three daily doses of booster radiotherapy (XRT) at 6-12 Gy will be administered to at least one metastatic field on days -3 to -1 before the first and third cycle. Treatment with IL-2 (dose 18 MIU/m2/day by continuous IV infusion for 72 hours) will start on day +1 and will be repeated every 3 weeks for up to 4 cycles and then every 4 weeks for a further 2 cycles. Immune response against tumor antigens expressed by melanoma and/or RCC will be evaluated during treatment. Circulating immune effectors and regulators, e.g. cytotoxic T lymphocytes and regulatory T cells, as well as serum levels of proangiogenic/proinflammatory cytokines will also be quantified. This study aims to evaluate the potential immunological synergism between HD-IL-2 and XRT, and to identify biomarkers that are predictive of response to IL-2 in order to spare potentially non responding patients from toxicity. EudraCT no. 2012-001786-32.
Fontes, Jillian A; Barin, Jobert G; Talor, Monica V; Stickel, Natalie; Schaub, Julie; Rose, Noel R; Čiháková, Daniela
2017-06-01
Complete Freund's Adjuvant (CFA) emulsified with an antigen is a widely used method to induce autoimmune disease in animal models, yet the contribution of CFA to the immune response is not well understood. We compared the effectiveness of CFA with Incomplete Freund's Adjuvant (IFA) or TiterMax Gold Adjuvant (TMax) in experimental autoimmune myocarditis (EAM) in male mice. EAM was induced in A/J, BALB/c, and IL6KO BALB/c male mice by injection of the myocarditogenic peptide in CFA, IFA, or TMax on days 0 and 7. EAM severity was analyzed by histology on day 21. In addition, specific flow cytometry outcomes were evaluated on day 21. Only mice immunized with CFA and myocarditogenic peptide on both days 0 and 7 developed substantial myocarditis as measured by histology. We observed a significantly increased level of IL6 in the spleen 3 days after CFA immunization. In the spleen and heart on day 21, there was an expansion of myeloid cells in CFA-immunized mice, as compared to IFA or TMax-immunized animals. Recombinant IL-6 at the time of IFA immunization partially restored susceptibility of the mice to EAM. We also treated EAM-resistant IL-6 knockout mice with recombinant IL-6 around the time of the first immunization, on days -1 to 2, completely restoring disease susceptibility, showing that the requirement for IL-6 coincides with primary immunization. Examining APC populations in the lymph node draining the immunization site evidenced the contribution of IL-6 to the CFA-dependence of EAM was through controlling local dendritic cell (DC) trafficking. CFA used with myocarditogenic peptide twice is required to induce EAM in both A/J and Balb/c mice. Although IFA and TiterMax induce antibody responses, only CFA preferentially induced autoantigen-specific responses. CFA expands monocytes in the heart and in the spleen. IL-6 signaling is required during short window around primary immunization to induce EAM. In addition, IL-6 deficient mice resistance to EAM could be reversed by injecting IL-6 around first immunization. IL-6 expands dendritic cell and monocytic populations and ultimately leads to a robust T-cell driven immune response in CFA immunized mice. © 2017 The Authors. Immunity, Inflammation and Disease Published by John Wiley & Sons Ltd.
Nonlinear response of the immune system to power-frequency magnetic fields.
Marino, A A; Wolcott, R M; Chervenak, R; Jourd'Heuil, F; Nilsen, E; Frilot, C
2000-09-01
Studies of the effects of power-frequency electromagnetic fields (EMFs) on the immune and other body systems produced positive and negative results, and this pattern was usually interpreted to indicate the absence of real effects. However, if the biological effects of EMFs were governed by nonlinear laws, deterministic responses to fields could occur that were both real and inconsistent, thereby leading to both types of results. The hypothesis of real inconsistent effects due to EMFs was tested by exposing mice to 1 G, 60 Hz for 1-105 days and observing the effect on 20 immune parameters, using flow cytometry and functional assays. The data were evaluated by means of a novel statistical procedure that avoided averaging away oppositely directed changes in different animals, which we perceived to be the problem in some of the earlier EMF studies. The reliability of the procedure was shown using appropriate controls. In three independent experiments involving exposure for 21 or more days, the field altered lymphoid phenotype even though the changes in individual immune parameters were inconsistent. When the data were evaluated using traditional linear statistical methods, no significant difference in any immune parameter was found. We were able to mimic the results by sampling from known chaotic systems, suggesting that deterministic chaos could explain the effect of fields on the immune system. We conclude that exposure to power-frequency fields produced changes in the immune system that were both real and inconsistent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veyret, B.; Bouthet, C.; Deschaux, P.
Irradiation by pulsed microwaves (9.4 GHz, 1 microsecond pulses at 1,000/s), both with and without concurrent amplitude modulation (AM) by a sinusoid at discrete frequencies between 14 and 41 MHz, was assessed for effects on the immune system of Balb/C mice. The mice were immunized either by sheep red blood cells (SRBC) or by glutaric-anhydride conjugated bovine serum albumin (GA-BSA), then exposed to the microwaves at a low rms power density (30 microW/cm2; whole-body-averaged SAR approximately 0.015 W/kg). Sham exposure or microwave irradiation took place during each of five contiguous days, 10 h/day. The antibody response was evaluated by themore » plaque-forming cell assay (SRBC experiment) or by the titration of IgM and IgG antibodies (GA-BSA experiment). In the absence of AM, the pulsed field did not greatly alter immune responsiveness. In contrast, exposure to the field under the combined-modulation condition resulted in significant, AM-frequency-dependent augmentation or weakening of immune responses.« less
Unique human immune signature of Ebola virus disease in Guinea.
Ruibal, Paula; Oestereich, Lisa; Lüdtke, Anja; Becker-Ziaja, Beate; Wozniak, David M; Kerber, Romy; Korva, Miša; Cabeza-Cabrerizo, Mar; Bore, Joseph A; Koundouno, Fara Raymond; Duraffour, Sophie; Weller, Romy; Thorenz, Anja; Cimini, Eleonora; Viola, Domenico; Agrati, Chiara; Repits, Johanna; Afrough, Babak; Cowley, Lauren A; Ngabo, Didier; Hinzmann, Julia; Mertens, Marc; Vitoriano, Inês; Logue, Christopher H; Boettcher, Jan Peter; Pallasch, Elisa; Sachse, Andreas; Bah, Amadou; Nitzsche, Katja; Kuisma, Eeva; Michel, Janine; Holm, Tobias; Zekeng, Elsa-Gayle; García-Dorival, Isabel; Wölfel, Roman; Stoecker, Kilian; Fleischmann, Erna; Strecker, Thomas; Di Caro, Antonino; Avšič-Županc, Tatjana; Kurth, Andreas; Meschi, Silvia; Mély, Stephane; Newman, Edmund; Bocquin, Anne; Kis, Zoltan; Kelterbaum, Anne; Molkenthin, Peter; Carletti, Fabrizio; Portmann, Jasmine; Wolff, Svenja; Castilletti, Concetta; Schudt, Gordian; Fizet, Alexandra; Ottowell, Lisa J; Herker, Eva; Jacobs, Thomas; Kretschmer, Birte; Severi, Ettore; Ouedraogo, Nobila; Lago, Mar; Negredo, Anabel; Franco, Leticia; Anda, Pedro; Schmiedel, Stefan; Kreuels, Benno; Wichmann, Dominic; Addo, Marylyn M; Lohse, Ansgar W; De Clerck, Hilde; Nanclares, Carolina; Jonckheere, Sylvie; Van Herp, Michel; Sprecher, Armand; Xiaojiang, Gao; Carrington, Mary; Miranda, Osvaldo; Castro, Carlos M; Gabriel, Martin; Drury, Patrick; Formenty, Pierre; Diallo, Boubacar; Koivogui, Lamine; Magassouba, N'Faly; Carroll, Miles W; Günther, Stephan; Muñoz-Fontela, César
2016-05-05
Despite the magnitude of the Ebola virus disease (EVD) outbreak in West Africa, there is still a fundamental lack of knowledge about the pathophysiology of EVD. In particular, very little is known about human immune responses to Ebola virus. Here we evaluate the physiology of the human T cell immune response in EVD patients at the time of admission to the Ebola Treatment Center in Guinea, and longitudinally until discharge or death. Through the use of multiparametric flow cytometry established by the European Mobile Laboratory in the field, we identify an immune signature that is unique in EVD fatalities. Fatal EVD was characterized by a high percentage of CD4(+) and CD8(+) T cells expressing the inhibitory molecules CTLA-4 and PD-1, which correlated with elevated inflammatory markers and high virus load. Conversely, surviving individuals showed significantly lower expression of CTLA-4 and PD-1 as well as lower inflammation, despite comparable overall T cell activation. Concomitant with virus clearance, survivors mounted a robust Ebola-virus-specific T cell response. Our findings suggest that dysregulation of the T cell response is a key component of EVD pathophysiology.
Abouel-Nour, Mohamed F; EL-Shewehy, Dina Magdy M; Hamada, Shadia F; Morsy, Tosson A
2015-12-01
Cryptosporidisis parvum is a zoonotic protozoan parasite infects intestinal epithelial cells causing a major health problem for man and animals. Experimentally the immunologic mediated elimination of C. parvum requires CD4+ T cells and IFN-gamma. But, the innate immune responses also have a significant protective role in both man and animals. the mucosal immune response to C. parvum in C57BL/6 neonatal and GKO mice shows a concomitant Thl and Th2 cytokine mRNA expression, with a crucial role for IFN-gamma in the resolution of the infection. NK cells and IFN-gamma have been shown to be important components in immunity in T and B cell-deficient mice, but IFN-gamma-dependent resistance is demonstrated in alymphocytic mice. Epithelial cells may play a vital role in immunity as once infected these cells have increased expression of inflammatory chemokines and cytokines and demonstrate anti-infection killing mechanisms. C. parvum immunological response was used to evaluate the efficacy of anti-cryptosporidisis agents of Garlic, Ginger, Mirazid and Metronidazole in experimentally infected mice.
Branched-chain amino acid supplementation and the immune response of long-distance athletes.
Bassit, Reinaldo A; Sawada, Letícia A; Bacurau, Reury F P; Navarro, Franciso; Martins, Eivor; Santos, Ronaldo V T; Caperuto, Erico C; Rogeri, Patrícia; Costa Rosa, Luís F B P
2002-05-01
Intense long-duration exercise has been associated with immunosuppression, which affects natural killer cells, lymphokine-activated killer cells, and lymphocytes. The mechanisms involved, however, are not fully determined and seem to be multifactorial, including endocrine changes and alteration of plasma glutamine concentration. Therefore, we evaluated the effect of branched-chain amino acid supplementation on the immune response of triathletes and long-distance runners. Peripheral blood was collected prior to and immediately after an Olympic Triathlon or a 30k run. Lymphocyte proliferation, cytokine production by cultured cells, and plasma glutamine were measured. After the exercise bout, athletes from the placebo group presented a decreased plasma glutamine concentration that was abolished by branched-chain amino acid supplementation and an increased proliferative response in their peripheral blood mononuclear cells. Those cells also produced, after exercise, less tumor necrosis factor, interleukins-1 and -4, and interferon and 48% more interleukin-2. Supplementation stimulated the production of interleukin-2 and interferon after exercise and a more pronounced decrease in the production of interleukin-4, indicating a diversion toward a Th1 type immune response. Our results indicate that branched-chain amino acid (BCAA) supplementation recovers the ability of peripheral blood mononuclear cells proliferate in response to mitogens after a long distance intense exercise, as well as plasma glutamine concentration. The amino acids also modify the pattern of cytokine production leading to a diversion of the immune response toward a Th1 type of immune response.
Zhou, Hongyan; Zhang, Wensong; Bi, Miaomiao; Wu, Jie
2016-01-01
Corneal alkali burns (CAB) are characterized by injury-induced inflammation, fibrosis and neovascularization (NV), and may lead to blindness. This review evaluates the current knowledge of the molecular mechanisms responsible for CAB. The processes of cytokine production, chemotaxis, inflammatory responses, immune response, cell signal transduction, matrix metalloproteinase production and vascular factors in CAB are discussed. Previous evidence indicates that peroxisome proliferator-activated receptor γ (PPAR-γ) agonists suppress immune responses, inflammation, corneal fibrosis and NV. This review also discusses the role of PPAR-γ as an anti-inflammatory, anti-fibrotic and anti-angiogenic agent in the treatment of CAB, as well as the potential role of PPAR-γ in the pathological process of CAB. There have been numerous studies evaluating the clinical profiles of CAB, and the aim of this systematic review was to summarize the evidence regarding the treatment of CAB with PPAR-γ agonists. PMID:27499172
Age-related immune response to experimental infection with Eimeria ninakohlyakimovae in goat kids.
Matos, L; Muñoz, M C; Molina, J M; Rodríguez, F; Pérez, D; López, A M; Hermosilla, C; Taubert, A; Ruiz, A
2018-06-01
Both the immune response developed in ruminants against Eimeria spp. and the ability to bear patent infections seems to be dependent on the age of the host. In the present study we have evaluated the influence of the age in the development of protective immune responses against Eimeria ninakohlyakimovae. For this purpose, 3, 4 and 5-week-old goat kids were infected with sporulated oocysts and subjected to a homologous challenge 3 weeks later. Goat kids primary infected at 6, 7 and 8 weeks of age served as challenge controls, and uninfected animals were used as negative controls. The protective immunity was assessed by clinical, haematological, parasitological, immunological and pathological parameters. Altogether, the results demonstrate that goat kids of either 3, 4 or 5 weeks of age are able to develop patent infections and immunoprotective responses against E. ninakohlyakimovae, as all age groups: (i) released significantly less oocysts after challenge, which was associated to milder clinical signs; (ii) displayed a local immune response, with significant increase of numerous cellular populations; and (iii) had increased levels of IgG and IgM, and mainly of local IgA. Nevertheless, detailed analysis of the data showed some differences between the three age groups, related both to the Eimeria infection outcome and the resulting immune response, suggesting that youngest goat kids are not fully immunocompetent. This finding may be of interest for the design of immunoprophylactic approaches and/or prophylactic/methaphylactic treatments against goat coccidiosis. Copyright © 2018 Elsevier Ltd. All rights reserved.
Piret, Jocelyne; Boivin, Guy
2015-09-01
Herpes simplex viruses are large double-stranded DNA viruses. These viruses have the ability to establish a lifelong latency in sensory ganglia and to invade and replicate in the CNS. Apart from relatively benign mucosal infections, HSV is responsible for severe illnesses including HSV encephalitis (HSE). HSE is the most common cause of sporadic, potentially fatal viral encephalitis in Western countries. If left untreated, the mortality rate associated with HSE is approximately 70%. Despite antiviral therapy, the mortality is still higher than 30%, and almost 60% of surviving individuals develop neurological sequelae. It is suggested that direct virus-related and indirect immune-mediated mechanisms contribute to the damages occurring in the CNS during HSE. In this manuscript, we describe the innate immune response to HSV, the development of HSE in mice knock-out for proteins of the innate immune system as well as inherited deficiencies in key components of the signaling pathways involved in the production of type I interferon that could predispose individuals to develop HSE. Finally, we review several immunomodulatory strategies aimed at modulating the innate immune response at a critical time after infection that were evaluated in mouse models and could be combined with antiviral therapy to improve the prognosis of HSE. In conclusion, the cerebral innate immune response that develops during HSE is a "double-edged sword" as it is critical to control viral replication in the brain early after infection, but, if left uncontrolled, may also result in an exaggerated inflammatory response that could be detrimental to the host. Copyright © 2015 John Wiley & Sons, Ltd.
OKAZAKI, Seiji; IWASAKI, Tadashi; YUBA, Eiji; WATARAI, Shinobu
2017-01-01
pH-Sensitive fusogenic polymer-modified (pH-sensitive) liposomes co-loaded with tumor model antigen, ovalbumin (OVA), and adjuvant, α-galactosylceramide (α-GalCer) were fabricated and administered subcutaneously into mice. The ability of pH-sensitive liposomes containing OVA and α-GalCer to stimulate cellular and humoral immune responses in vivo was compared with OVA-encapsulating pH-sensitive liposomes as well as with OVA alone. After immunization, significant OVA-specific antibodies were detected in the serum. When sera were analyzed for isotype distribution, antigen-specific IgG1 antibody responses were noted in mice immunized with OVA alone, whereas immunization with OVA-containing pH-sensitive liposomes and with pH-sensitive liposomes containing OVA and α-GalCer resulted in the induction of OVA-specific IgG1 and IgG2b antibody responses. Moreover, more substantial production of IFN-γ and IL-4 was demonstrated in spleen cells from mice immunized with pH-sensitive liposomes having OVA and α-GalCer than OVA-containing pH-sensitive liposomes in vitro. Spleen cells from the immunized mice showed strong cytotoxic activity against E.G7-OVA tumor cells. In addition, prophylactic vaccination efficacy against tumor formation was evaluated. In all mice immunized with pH-sensitive liposomes having OVA and α-GalCer, immunization provided substantial protection from tumor formation. The therapeutic efficacy of pH-sensitive liposomes containing OVA and α-GalCer against already established E.G7-OVA tumors was also investigated. Tumor growth was reduced significantly in all mice treated with pH-sensitive liposomes having OVA and α-GalCer. The provided evidence on the advantage of antigen and α-GalCer co-encapsulation into pH-sensitive liposomes should be considered in the design of future cancer vaccines for prophylactic and therapeutic purposes. PMID:29311431
Okazaki, Seiji; Iwasaki, Tadashi; Yuba, Eiji; Watarai, Shinobu
2018-02-09
pH-Sensitive fusogenic polymer-modified (pH-sensitive) liposomes co-loaded with tumor model antigen, ovalbumin (OVA), and adjuvant, α-galactosylceramide (α-GalCer) were fabricated and administered subcutaneously into mice. The ability of pH-sensitive liposomes containing OVA and α-GalCer to stimulate cellular and humoral immune responses in vivo was compared with OVA-encapsulating pH-sensitive liposomes as well as with OVA alone. After immunization, significant OVA-specific antibodies were detected in the serum. When sera were analyzed for isotype distribution, antigen-specific IgG1 antibody responses were noted in mice immunized with OVA alone, whereas immunization with OVA-containing pH-sensitive liposomes and with pH-sensitive liposomes containing OVA and α-GalCer resulted in the induction of OVA-specific IgG1 and IgG2b antibody responses. Moreover, more substantial production of IFN-γ and IL-4 was demonstrated in spleen cells from mice immunized with pH-sensitive liposomes having OVA and α-GalCer than OVA-containing pH-sensitive liposomes in vitro. Spleen cells from the immunized mice showed strong cytotoxic activity against E.G7-OVA tumor cells. In addition, prophylactic vaccination efficacy against tumor formation was evaluated. In all mice immunized with pH-sensitive liposomes having OVA and α-GalCer, immunization provided substantial protection from tumor formation. The therapeutic efficacy of pH-sensitive liposomes containing OVA and α-GalCer against already established E.G7-OVA tumors was also investigated. Tumor growth was reduced significantly in all mice treated with pH-sensitive liposomes having OVA and α-GalCer. The provided evidence on the advantage of antigen and α-GalCer co-encapsulation into pH-sensitive liposomes should be considered in the design of future cancer vaccines for prophylactic and therapeutic purposes.
Khalil, Samah R; Reda, Rasha M; Awad, Ashraf
2017-08-01
The present study evaluated the immunotoxicological effects of the herbicide atrazine (ATZ) at sub-lethal concentrations and the potential ameliorative influence of Spirulina platensis (SP) over a sub-chronic exposure period on Cyprinus carpio L., also known as common carp. Common carp was sampled after a 40-days exposure to ATZ (428 μg/L) and SP (1%), individually or in combination to assess the non-specific immune response, changes in mRNA expression of immune-related genes [lysozyme (LYZ), immunoglobulin M (IgM), and complement component 3 (C3)] in the spleen, and inflammatory cytokines (interleukins IL-1ß and IL-10) in the head kidney using real-time PCR. Additionally, disease resistance to Aeromonas sobria was evaluated. The results revealed that ATZ exposure caused a significant decline in most of the hematological variables, lymphocyte viability, and lysozyme and bactericidal activity. Moreover, ATZ increased the susceptibility to disease, reflected by a significantly lower post-challenge survival rate of the carp. ATZ may induce dysregulated expression of immune-related genes leading to downregulation of mRNA levels of IgM and LYZ in the spleen. However, expression of C3 remained unaffected. Of the cytokine-related genes examined, IL-1B was up-regulated in the head kidney. In contrast, the expression of IL-10 gene was down-regulated in the ATZ-exposed group. The SP supplementation resulted in a significant improvement in most indices; however, these values did not match with that of the controls. These results may conclude that ATZ affects both innate and adaptive immune responses through the negative transcriptional effect on genes involved in immunity and also due to the inflammation of the immune organs. In addition, dietary supplements with SP could be useful for modulation of the immunity in response to ATZ exposure, thereby presenting a promising feed additive for carps in aquaculture. Copyright © 2017 Elsevier Ltd. All rights reserved.
van Doorn, Eva; Pleguezuelos, Olga; Liu, Heng; Fernandez, Ana; Bannister, Robin; Stoloff, Gregory; Oftung, Fredrik; Norley, Stephen; Huckriede, Anke; Frijlink, Henderik W; Hak, Eelko
2017-04-04
Current influenza vaccines, based on antibodies against surface antigens, are unable to provide protection against newly emerging virus strains which differ from the vaccine strains. Therefore the population has to be re-vaccinated annually. It is thus important to develop vaccines which induce protective immunity to a broad spectrum of influenza viruses. This trial is designed to evaluate the immunogenicity and safety of FLU-v, a vaccine composed of four synthetic peptides with conserved epitopes from influenza A and B strains expected to elicit both cell mediated immunity (CMI) and humoral immunity providing protection against a broad spectrum of influenza viruses. In a single-center, randomized, double-blind and placebo-controlled phase IIb trial, 222 healthy volunteers aged 18-60 years will be randomized (2:2:1:1) to receive two injections of a suspension of 500 μg FLU-v in saline (arm 1), one dose of emulsified 500 μg FLU-v in Montanide ISA-51 and water for injection (WFI) followed by one saline dose (arm 2), two saline doses (arm 3), or one dose of Montanide ISA-51 and WFI emulsion followed by one saline dose (arm 4). All injections will be given subcutaneously. Primary endpoints are safety and FLU-v induced CMI, evaluated by cytokine production by antigen specific T cell populations (flow-cytometry and ELISA). Secondary outcomes are measurements of antibody responses (ELISA and multiplex), whereas exploratory outcomes include clinical efficacy and additional CMI assays (ELISpot) to show cross-reactivity. Broadly protective influenza vaccines able to provide protection against multiple strains of influenza are urgently needed. FLU-v is a promising vaccine which has shown to trigger the cell-mediated immune response. The dosages and formulations tested in this current trial are also estimated to induce antibody response. Therefore, both cellular and humoral immune responses will be evaluated. EudraCT number 2015-001932-38 ; retrospectively registered clinicaltrials.gov NCT02962908 (November 7th 2016).
Sunyakumthorn, Piyanate; Somponpun, Suwit J.; Im-erbsin, Rawiwan; Anantatat, Tippawan; Jenjaroen, Kemajittra; Dunachie, Susanna J.; Lombardini, Eric D.; Burke, Robin L.; Blacksell, Stuart D.; Jones, James W.; Mason, Carl J.; Richards, Allen L.; Day, Nicholas P. J.
2018-01-01
Background Scrub typhus is an important endemic disease in tropical Asia caused by Orientia tsutsugamushi for which no effective broadly protective vaccine is available. The successful evaluation of vaccine candidates requires well-characterized animal models and a better understanding of the immune response against O. tsutsugamushi. While many animal species have been used to study host immunity and vaccine responses in scrub typhus, only limited data exists in non-human primate (NHP) models. Methodology/Principle findings In this study we evaluated a NHP scrub typhus disease model based on intradermal inoculation of O. tsutsugamushi Karp strain in rhesus macaques (n = 7). After an intradermal inoculation with 106 murine LD50 of O. tsutsugamushi at the anterior thigh (n = 4) or mock inoculum (n = 3), a series of time course investigations involving hematological, biochemical, molecular and immunological assays were performed, until day 28, when tissues were collected for pathology and immunohistochemistry. In all NHPs with O. tsutsugamushi inoculation, but not with mock inoculation, the development of a classic eschar with central necrosis, regional lymphadenopathy, and elevation of body temperature was observed on days 7–21 post inoculation (pi); bacteremia was detected by qPCR on days 6–18 pi; and alteration of liver enzyme function and increase of white blood cells on day 14 pi. Immune assays demonstrated raised serum levels of soluble cell adhesion molecules, anti-O. tsutsugamushi-specific antibody responses (IgM and IgG) and pathogen-specific cell-mediated immune responses in inoculated macaques. The qPCR assays detected O. tsutsugamushi in eschar, spleen, draining and non-draining lymph nodes, and immuno-double staining demonstrated intracellular O. tsutsugamushi in antigen presenting cells of eschars and lymph nodes. Conclusions/Significance These data show the potential of using rhesus macaques as a scrub typhus model, for evaluation of correlates of protection in both natural and vaccine induced immunity, and support the evaluation of future vaccine candidates against scrub typhus. PMID:29522521
Effectiveness of Brucella abortus lipopolysaccharide as an adjuvant for tuberculin PPD.
Jamalan, Mostafa; Ardestani, Susan Kaboudanian; Zeinali, Majid; Mosaveri, Nader; Mohammad Taheri, Mohammad
2011-01-01
Bacterial lipopolysaccharide (LPS) has T-helper 1 (Th1) immunostimulatory activities but because of toxicity and pyrogenicity cannot be used as an adjuvant. Brucella abortus LPS has less toxicity and no pyrogenic properties in comparison to other bacterial LPS. In the current study, the immunostimulatory properties of B. abortus LPS were evaluated for its adjuvant activity. Tuberculin purified protein derivative (PPD) from Mycobacterium tuberculosis was extracted and after anion-exchange chromatography on Q-sepharose column, two fractions (17 and 23), which dominantly contained 30- and 70-kDa antigens, were collected for immunological studies. BALB/c mice were immunized with four different antigen preparations (BCG, PPD, 17th and 23rd PPD fractions) along with complete Freund's adjuvant or B. abortus LPS. The T-cell immune response of mice was assessed by measurement of Th1-type cytokine (IFN-γ) and Th2-type cytokines (IL-5 and IL-10) levels. Also, the humoral immunity was evaluated by measuring the specific IgG levels. Our results showed that immunization of mice with 17th PPD fraction along with B. abortus LPS can induce a Th1-type cytokine response characterized with a high IFN-γ/IL-5 ratio, while immunization with PPD or 23rd PPD fraction along with the same adjuvant resulted to a mixed Th1/Th2-type cytokine response. Copyright © 2010 The International Association for Biologicals. Published by Elsevier Ltd. All rights reserved.
Sable, Suraj B.; Cheruvu, Mani; Nandakumar, Subhadra; Sharma, Sunita; Bandyopadhyay, Kakali; Kellar, Kathryn L.; Posey, James E.; Plikaytis, Bonnie B.; Amara, Rama Rao; Shinnick, Thomas M.
2011-01-01
Background The identification of Mycobacterium tuberculosis vaccines that elicit a protective immune response in the lungs is important for the development of an effective vaccine against tuberculosis. Methods and Principal Findings In this study, a comparison of intranasal (i.n.) and subcutaneous (s.c.) vaccination with the BCG vaccine demonstrated that a single moderate dose delivered intranasally induced a stronger and sustained M. tuberculosis-specific T-cell response in lung parenchyma and cervical lymph nodes of BALB/c mice than vaccine delivered subcutaneously. Both BCG and a multicomponent subunit vaccine composed of nine M. tuberculosis recombinant proteins induced strong antigen-specific T-cell responses in various local and peripheral immune compartments. Among the nine recombinant proteins evaluated, the alanine proline rich antigen (Apa, Rv1860) was highly antigenic following i.n. BCG and immunogenic after vaccination with a combination of the nine recombinant antigens. The Apa-induced responses included induction of both type 1 and type 2 cytokines in the lungs as evaluated by ELISPOT and a multiplexed microsphere-based cytokine immunoassay. Of importance, i.n. subunit vaccination with Apa imparted significant protection in the lungs and spleen of mice against M. tuberculosis challenge. Despite observed differences in the frequencies and location of specific cytokine secreting T cells both BCG vaccination routes afforded comparable levels of protection in our study. Conclusion and Significance Overall, our findings support consideration and further evaluation of an intranasally targeted Apa-based vaccine to prevent tuberculosis. PMID:21799939
Torkashvand, Ali; Bahrami, Fariborz; Adib, Minoo; Ajdary, Soheila
2018-05-05
We constructed a food-grade expression system harboring a F1S1 fusion protein of Bordetella pertussis to be produced in Lactococcus lactis NZ3900 as a new oral vaccine model against whooping cough, caused by B. pertussis. F1S1 was composed of N-terminally truncated S1 subunit of pertussis toxin and type I immunodominant domain of filamentous hemagglutinin which are both known as protective immunogens against pertussis. The recombinant L. lactis was administered via oral or intranasal routes to BALB/c mice and the related specific systemic and mucosal immune responses were then evaluated. The results indicated significantly higher levels of specific IgA in the lung extracts and IgG in sera of mucosally-immunized mice, compared to their controls. It was revealed that higher levels of IgG2a, compared to IgG1, were produced in all mucosally-immunized mice. Moreover, immunized mice developed Th1 responses with high levels of IFN-γ production by the spleen cells. These findings provide evidence for L. lactis to be used as a suitable vehicle for expression and delivery of F1S1 fusion protein to mucosa and induction of appropriate systemic and mucosal immune responses against pertussis. Copyright © 2018 Elsevier Ltd. All rights reserved.
Rauta, Pradipta Ranjan; Nayak, Bismita
2015-05-01
Advanced vaccine research approaches needs to explore on biodegradable nanoparticles (NPs) based vaccine carrier that can serve as antigen delivery systems as well as immuno-stimulatory action to induce both innate and adaptive immune response in fish. Immunogenicity of PLA and PLGA NPs encapsulating outer membrane protein (Omp) antigen of Aeromonas hydrophila were evaluated through intra-peritoneal injection in fish, Labeo rohita. Antigen loaded PLA-Omp (223.5 ± 13.19 nm) and PLGA-Omp (166.4 ± 21.23 nm) NPs were prepared using double emulsion method by efficiently encapsulating the antigen reaching the encapsulation efficiency 44 ± 4.58% and 59.33 ± 5.13% respectively. Our formulated PLA Omp and PLGA-Omp NPs were in nanometer range (<500 nm) and could be successfully endocyted in the body. Despite low antigen loading in PLA-Omp, it showed considerably slower antigen release in vitro than PLGA-Omp NPs. Other physical properties like zetapotential values and poly dispersity index (PDI) confirmed the stability as well as monodisperse nature of the formulated nanoparticles. The spherical and isolated nature of PLA-Omp and PLGA-Omp NPs were revealed by SEM analysis. Upon immunization of all antigenic formulations (PLA-Omp NP, PLGA-Omp NP, FIA-Omp, PLA NP, PLGA NP, PBS as control), significant higher bacterial agglutination titre and haemolytic activity were observed in case of PLA-Omp and PLGA-Omp immunized groups than rest groups at both 21 days and 42 days. The specific antibody response was significantly increased and persisted up to 42 days of post immunization by PLA-Omp, PLGA-Omp, FIA-Omp. PLA-Omp NPs showed better immune response (higher bacterial agglutination titre, haemolytic activity, specific antibody titre, higher percent survival upon A. hydrophila challenge) than PLGA-Omp in L. rohita confirming its better efficacy. Comparable antibody response of PLA-Omp and PLGA-Omp with FIA-Omp treated groups suggested that PLA and PLGA could be replacement for Freund's adjuvant (for stimulating antibody response) to overcome many side effects offering long lasting immunity. Our encouraging results suggest that PLA/PLGA nanoparticles based delivery system could be a novel antigen carrier for parenteral immunization in fish. Copyright © 2015 Elsevier Ltd. All rights reserved.
Asbach, Benedikt; Kliche, Alexander; Köstler, Josef; Perdiguero, Beatriz; Esteban, Mariano; Jacobs, Bertram L.; Montefiori, David C.; LaBranche, Celia C.; Yates, Nicole L.; Tomaras, Georgia D.; Ferrari, Guido; Foulds, Kathryn E.; Roederer, Mario; Landucci, Gary; Forthal, Donald N.; Seaman, Michael S.; Hawkins, Natalie; Self, Steven G.; Sato, Alicia; Gottardo, Raphael; Phogat, Sanjay; Tartaglia, James; Barnett, Susan W.; Burke, Brian; Cristillo, Anthony D.; Weiss, Deborah E.; Francis, Jesse; Galmin, Lindsey; Ding, Song; Heeney, Jonathan L.; Pantaleo, Giuseppe
2016-01-01
ABSTRACT In a follow-up to the modest efficacy observed in the RV144 trial, researchers in the HIV vaccine field seek to substantiate and extend the results by evaluating other poxvirus vectors and combinations with DNA and protein vaccines. Earlier clinical trials (EuroVacc trials 01 to 03) evaluated the immunogenicity of HIV-1 clade C GagPolNef and gp120 antigens delivered via the poxviral vector NYVAC. These showed that a vaccination regimen including DNA-C priming prior to a NYVAC-C boost considerably enhanced vaccine-elicited immune responses compared to those with NYVAC-C alone. Moreover, responses were improved by using three as opposed to two DNA-C primes. In the present study, we assessed in nonhuman primates whether such vaccination regimens can be streamlined further by using fewer and accelerated immunizations and employing a novel generation of improved DNA-C and NYVAC-C vaccine candidates designed for higher expression levels and more balanced immune responses. Three different DNA-C prime/NYVAC-C+ protein boost vaccination regimens were tested in rhesus macaques. All regimens elicited vigorous and well-balanced CD8+ and CD4+ T cell responses that were broad and polyfunctional. Very high IgG binding titers, substantial antibody-dependent cellular cytotoxicity (ADCC), and modest antibody-dependent cell-mediated virus inhibition (ADCVI), but very low neutralization activity, were measured after the final immunizations. Overall, immune responses elicited in all three groups were very similar and of greater magnitude, breadth, and quality than those of earlier EuroVacc vaccines. In conclusion, these findings indicate that vaccination schemes can be simplified by using improved antigens and regimens. This may offer a more practical and affordable means to elicit potentially protective immune responses upon vaccination, especially in resource-constrained settings. IMPORTANCE Within the EuroVacc clinical trials, we previously assessed the immunogenicity of HIV clade C antigens delivered in a DNA prime/NYVAC boost regimen. The trials showed that the DNA prime crucially improved the responses, and three DNA primes with a NYVAC boost appeared to be optimal. Nevertheless, T cell responses were primarily directed toward Env, and humoral responses were modest. The aim of this study was to assess improved antigens for the capacity to elicit more potent and balanced responses in rhesus macaques, even with various simpler immunization regimens. Our results showed that the novel antigens in fact elicited larger numbers of T cells with a polyfunctional profile and a good Env-GagPolNef balance, as well as high-titer and Fc-functional antibody responses. Finally, comparison of the different schedules indicates that a simpler regimen of only two DNA primes and one NYVAC boost in combination with protein may be very efficient, thus showing that the novel antigens allow for easier immunization protocols. PMID:26865719
Valdés-Tovar, Marcela; Escobar, Carolina; Solís-Chagoyán, Héctor; Asai, Miguel; Benítez-King, Gloria
2015-03-01
The light-dark cycle is an environmental factor that influences immune physiology, and so, variations of the photoperiod length result in altered immune responsivity. Macrophage physiology comprises a spectrum of functions that goes from host defense to immune down-regulation, in addition to their homeostatic activities. Macrophages also play a key role in the transition from innate to adaptive immune responses. Met-enkephalin (MEnk) has been recognized as a modulator of macrophage physiology acting in an autocrine or paracrine fashion to influence macrophage activation, phenotype polarization and production of cytokines that would enhance lymphocyte activation at early stages of an immune response. Previously it was shown that splenic MEnk tissue content is reduced in rats exposed to constant light. In this work, we explored whether production of Met-enkephalin-containing peptides (MECPs) in cultured splenic macrophages is affected by exposure of rats to a constant light regime. In addition, we explored whether primary immune response was impaired under this condition. We found that in rats, 15 days in constant light was sufficient to disrupt their general activity rhythm. Splenic MEnk content oscillations and levels were also blunted throughout a 24-h period in animals subjected to constant light. In agreement, de novo synthesis of MECPs evaluated through incorporation of (35)S-methionine was reduced in splenic macrophages from rats exposed to constant light. Moreover, MECPs immunocytochemistry showed a decrease in the intracellular content and lack of granule-like deposits in this condition. Furthermore, we found that primary T-dependent antibody response was compromised in rats exposed to constant light. In those animals, pharmacologic treatment with MEnk increased IFN-γ-secreting cells. Also, IL-2 secretion from antigen-stimulated splenocytes was reduced after incubation with naloxone, suggesting that immune-derived opioid peptides and stimulation of opioid receptors are involved in this process. Thus, the immune impairment observed from early stages of the response in constant light-subjected rats, could be associated with reduced production of macrophage-derived enkephalins, leading to a sub-optimal interaction between macrophages and lymphocytes in the spleen and the subsequent deficiency in antibody production.
Tierney, Rob; Beignon, Anne-Sophie; Rappuoli, Rino; Muller, Sylviane; Sesardic, Dorothea; Partidos, Charalambos D
2003-09-01
In this study, the adjuvanticity of 2 nontoxic derivatives (LTK63 and LTR72) of heat-labile enterotoxin of Escherichia coli (LT) was evaluated and was compared with that of a cytosine phosphodiester-guanine (CpG) motif, after transcutaneous immunization with tetanus toxoid (TT). TT plus LTR72 elicited the strongest antibody responses, compared with those elicited by the other vaccines (TT, TT plus LTK63, TT plus CpG, and TT plus LTK63 plus CpG); it neutralized the toxin and conferred full protection after passive transfer in mice. Preexisting immunity to LT mutants did not adversely affect their adjuvant potency. Both LTK63 and LTR72 promoted the induction of IgG1 antibodies. In contrast, mice receiving either CpG motif alone or CpG motif plus LTK63 produced strong IgG2a anti-TT antibody responses. Overall, these findings demonstrate that mutants of enterotoxins with reduced toxicity are effective adjuvants for transcutaneous immunization.
Werner, Lael; Paclik, Daniela; Fritz, Christina; Reinhold, Dirk; Roggenbuck, Dirk; Sturm, Andreas
2012-09-15
Pancreatic autoantibodies are Crohn disease-specific serologic markers. The function and immunological role of their recently identified autoantigen, glycoprotein 2 (GP2), are unknown. We therefore investigated the impact of GP2 on modulation of innate and adaptive immune responses to evaluate its potential therapeutic use in mucosal inflammation. Our data indicate a previously unknown function for GP2 as an immunomodulator. GP2 was ubiquitously expressed on cells vital to mucosal immune responses. The expression of GP2 was upregulated on activated human T cells, and it was further influenced by pharmaceutical TNF-α inhibitors. Recombinant GP2 significantly decreased human intestinal epithelial cells, mucosal and peripheral T cell proliferation, apoptosis, and activation, and it distinctly modulated cytokine secretion. Furthermore, intestinal epithelial cells stimulated with GP2 potently attracted T cells. In conclusion, we demonstrate a novel role for GP2 in immune regulation that could provide a platform for new therapeutic interventions in the treatment of Crohn disease.
Verma, Subhash; Thakur, Aneesh; Katoch, Shailja; Shekhar, Chander; Wani, Aasim Habib; Kumar, Sandeep; Dohroo, Shweta; Singh, Geetanjali; Sharma, Mandeep
2017-10-01
Cattle are an integral part of the largely agrarian economy of India. Indigenous breeds of cattle comprise about 80% of total cattle population of the country and contribute significantly to the overall milk production. There are 40 recognized indigenous breeds of cattle and a number of uncharacterized non-descript cattle. Pahari cattle of Himachal Pradesh in Northern India are one such non-descript indigenous breed. Here we describe a comprehensive evaluation of haematobiochemical parameters and innate and adaptive immune response traits of Pahari cattle and a comparison with Jersey crossbred cattle. The study shows demonstrable differences in the two breeds with respect to some innate and adaptive immunological traits. This is a first attempt to characterize immune response traits of Pahari cattle and the results of the study provide an understanding of breed differences in immune status of cattle which could be useful for their breeding and conservations programs. Copyright © 2017 Elsevier B.V. All rights reserved.
Desjardins, M; Filion, L G; Robertson, S; Kobylinski, L; Cameron, D W
1996-01-01
To study the mechanisms of inducible immunity to Haemophilus ducreyi infection in the temperature-dependent rabbit model of chancroid, we conducted passive immunization experiments and characterized the inflammatory infiltrate of chancroidal lesions. Polyclonal immunoglobulin G was purified from immune sera raised against H. ducreyi 35000 whole-cell lysate or a pilus preparation and from naive control rabbits. Rabbits were passively immunized with 24 or 48 mg of purified polyclonal immunoglobulin G intravenously, followed 24 h after infusion by homologous titered infectious challenge. Despite titratable antibody, no significant difference in infection or disease was observed. We then evaluated the immunohistology of lesions produced by homologous-strain challenge in sham-immunized rabbits and those protectively vaccinated by pilus preparation immunization. Immunohistochemical stains for CD5 and CD4 T-lymphocyte markers were performed on lesion sections 4, 10, 15, and 21 days from infection. Lesions of pilus preparation vaccinees compared with those of controls had earlier infiltration with significantly more T lymphocytes (CD5+) and with a greater proportion of CD4+ T lymphocytes at day 4 (33% +/- 55% versus 9.7% +/- 2%; P = 0.002), corroborating earlier sterilization (5.0 +/- 2 versus 13.7 +/- 0.71 days; P < 0.001) and lesion resolution. Intraepithelial challenge of pilus-vaccinated rabbits with 100 micrograms of the pilus preparation alone produced indurated lesions within 48 h with lymphoid and plasmacytoid infiltration, edema, and extravasation of erythrocytes. We conclude that passive immunization may not confer a vaccine effect in this model and that active vaccination with a pilus preparation induces a delayed-type hypersensitivity skin test response and confers protection through cell-mediated immunity seen as an amplified lymphocytic infiltrate and accelerated maturation of the T-lymphocyte response. PMID:8613391
Liu, Ko-Jiunn; Chao, Tsu-Yi; Chang, Jang-Yang; Cheng, Ann-Lii; Ch'ang, Hui-Ju; Kao, Woei-Yau; Wu, Yu-Chen; Yu, Wei-Lan; Chung, Tsai-Rong; Whang-Peng, Jacqueline
2016-08-24
To better evaluate and improve the efficacy of dendritic cell (DC)-based cancer immunotherapy, we conducted a clinical study of patients with advanced colorectal cancer using carcinoembryonic antigen (CEA)-pulsed DCs mixed with tetanus toxoid and subsequent interleukin-2 treatment. The tetanus toxoid in the vaccine preparation serves as an adjuvant and provides a non-tumor specific immune response to enhance vaccine efficacy. The aims of this study were to (1) evaluate the toxicity of this treatment, (2) observe the clinical responses of vaccinated patients, and (3) investigate the immune responses of patients against CEA before and after treatment. Twelve patients were recruited and treated in this phase I clinical study. These patients all had metastatic colorectal cancer and failed standard chemotherapy. We first subcutaneously immunized patients with metastatic colorectal cancer with 1 × 10(6) CEA-pulsed DCs mixed with tetanus toxoid as an adjuvant. Patients received 3 successive injections with 1 × 10(6) CEA-pulsed DCs alone. Low-dose interleukin-2 was administered subcutaneously following the final DC vaccination to boost the growth of T cells. Patients were evaluated for adverse event and clinical status. Blood samples collected before, during, and after treatment were analyzed for T cell proliferation responses against CEA. No severe treatment-related side effects or toxicity was observed in patients who received the regular 4 DC vaccine injections. Two patients had stable disease and 10 patients showed disease progression. A statistically significant increase in proliferation against CEA by T cells collected after vaccination was observed in 2 of 9 patients. The results of this study indicate that it is feasible and safe to treat colorectal cancer patients using this protocol. An increase in the anti-CEA immune response and a clinical benefit was observed in a small fraction of patients. This treatment protocol should be further evaluated in additional colorectal cancer patients with modifications to enhance T cell responses. ClinicalTrials.gov (identifier NCT00154713 ), September 8, 2005.
Fazio, V M; Ria, F; Franco, E; Rosati, P; Cannelli, G; Signori, E; Parrella, P; Zaratti, L; Iannace, E; Monego, G; Blogna, S; Fioretti, D; Iurescia, S; Filippetti, R; Rinaldi, M
2004-03-01
Infections occurring at the end of pregnancy, during birth or by breastfeeding are responsible for the high toll of death among first-week infants. In-utero DNA immunization has demonstrated the effectiveness in inducing specific immunity in newborns. A major contribution to infant immunization would be achieved if a vaccine proved able to be protective as early as at the birth, preventing the typical 'first-week infections'. To establish its potential for use in humans, in-utero DNA vaccination efficiency has to be evaluated for short- and long-term safety, protection at delivery, efficacy of boosts in adults and effective window/s for modulation of immune response during pregnancy, in an animal model suitable with human development. Here we show that a single intramuscular in-utero anti-HBV DNA immunization at two-thirds of pig gestation produces, at birth, antibody titers considered protective in humans. The boost of antibody titers in every animal following recall at 4 and 10 months demonstrates the establishment of immune memory. The safety of in-utero fetus manipulation is guaranteed by short-term (no fetus loss, lack of local alterations, at-term spontaneous delivery, breastfeeding) and long-term (2 years) monitoring. Treatment of fetuses closer to delivery results in immune ignorance without induction of tolerance. This result highlights the repercussion of selecting the appropriate time point when this approach is used to deliver therapeutic genes. All these findings illustrate the relevance of naked DNA-based vaccination technology in therapeutic efforts aimed to prevent the high toll of death among first-week infants.
Targeting the Tumor Microenvironment with Immunotherapy for Genitourinary Malignancies.
Marciscano, Ariel E; Madan, Ravi A
2018-03-08
Bacillus Calmette-Guérin in urothelial carcinoma, high-dose interleukin-2 in renal cell carcinoma, and sipuleucel-T in prostate cancer serve as enduring examples that the host immune response can be harnessed to promote effective anti-tumor immunity in genitourinary malignancies. Recently, cancer immunotherapy with immune checkpoint inhibitors has transformed the prognostic landscape leading to durable responses in a subset of urothelial carcinoma and renal cell carcinoma patients with traditionally poor prognosis. Despite this success, many patients fail to respond to immune checkpoint inhibitors and progression/relapse remains common. Furthermore, modest clinical activity has been observed with ICIs as a monotherapy in advanced PCa. As such, novel treatment approaches are warranted and improved biomarkers for patient selection and treatment response are desperately needed. Future efforts should focus on exploring synergistic and rational combinations that safely and effectively boost response rates and survival in genitourinary malignancies. Specific areas of interest include (1) evaluating the optimal sequencing, disease burden, and timing of immuno-oncology agents with other anti-cancer therapeutics and (2) validating novel biomarkers of response to immunotherapy to optimize patient selection and to identify individuals most likely to benefit from immunotherapy across the heterogenous spectrum of genitourinary malignancies.
Immunotoxicity evaluation of jet a jet fuel in female rats after 28-day dermal exposure.
Mann, Cynthia M; Peachee, Vanessa L; Trimmer, Gary W; Lee, Ji-Eun; Twerdok, Lorraine E; White, Kimber L
2008-01-01
The potential for jet fuel to modulate immune functions has been reported in mice following dermal, inhalation, and oral routes of exposure; however, a functional evaluation of the immune system in rats following jet fuel exposure has not been conducted. In this study potential effects of commercial jet fuel (Jet A) on the rat immune system were assessed using a battery of functional assays developed to screen potential immunotoxic compounds. Jet A was applied to the unoccluded skin of 6- to 7-wk-old female Crl:CD (SD)IGS BR rats at doses of 165, 330, or 495 mg/kg/d for 28 d. Mineral oil was used as a vehicle to mitigate irritation resulting from repeated exposure to jet fuel. Cyclophosphamide and anti-asialo GM1 were used as positive controls for immunotoxic effects. In contrast to reported immunotoxic effects of jet fuel in mice, dermal exposure of rats to Jet A did not result in alterations in spleen or thymus weights, splenic lymphocyte subpopulations, immunoglobulin (Ig) M antibody-forming cell response to the T-dependent antigen, sheep red blood cells (sRBC), spleen cell proliferative response to anti-CD3 antibody, or natural killer (NK) cell activity. In each of the immunotoxicological assays conducted, the positive control produced the expected results, demonstrating the assay was capable of detecting an effect if one had occurred. Based on the immunological parameters evaluated under the experimental conditions of the study, Jet A did not adversely affect immune responses of female rats. It remains to be determined whether the observed difference between this study and some other studies reflects a difference in the immunological response of rats and mice or is the result of other factors.
Vallejo, Alejandro; Monge-Maillo, Begoña; Gutiérrez, Carolina; Norman, Francesca F; López-Vélez, Rogelio; Pérez-Molina, José A
2016-12-01
Symptomatic chronic Chagas disease affects up to 40% of patients infected with Trypanosoma cruzi. The lack of reliable early markers of cure after therapy hinders disease management and clinical trials with new drugs. We performed a study with 18 months of follow-up to compare changes in immune parameters and T. cruzi-specific immune responses as surrogate markers of response to therapy between patients treated with benznidazole and untreated patients. This was a pilot, open-label, randomised clinical trial of treatment with benznidazole versus no treatment in patients with indeterminate chronic T. cruzi infection. In both groups we investigated changes in T-cell activation, T-cell subpopulations, regulatory T-cell counts, IL6, and sCD14 levels, and T. cruzi-specific immune responses (Th1, Th2, and Th17 responses). Fourteen patients were included in the study (seven in each group). Median age was 35 years (P 25-75 31-43), 57% were female, and 93% were Bolivian. Benznidazole was administered at 5mg/kg/day for 60days. Three patients discontinued benznidazole owing to adverse reactions and were not evaluated. At the end of the follow-up period, treated patients showed significantly less immune activation and lower regulatory T-cell counts, with an increased Th17 and Th1 response. This randomised pilot clinical trial administering benznidazole to patients with indeterminate chronic Chagas disease brings about changes in the adaptive immunity, leading to a general decrease in inflammatory status. This apparently beneficial response could act as the basis for monitoring new antiparasitic drugs. Copyright © 2016 Elsevier B.V. All rights reserved.
Maximizing protection from use of oral cholera vaccines in developing country settings
Desai, Sachin N; Cravioto, Alejandro; Sur, Dipika; Kanungo, Suman
2014-01-01
When oral vaccines are administered to children in lower- and middle-income countries, they do not induce the same immune responses as they do in developed countries. Although not completely understood, reasons for this finding include maternal antibody interference, mucosal pathology secondary to infection, malnutrition, enteropathy, and previous exposure to the organism (or related organisms). Young children experience a high burden of cholera infection, which can lead to severe acute dehydrating diarrhea and substantial mortality and morbidity. Oral cholera vaccines show variations in their duration of protection and efficacy between children and adults. Evaluating innate and memory immune response is necessary to understand V. cholerae immunity and to improve current cholera vaccine candidates, especially in young children. Further research on the benefits of supplementary interventions and delivery schedules may also improve immunization strategies. PMID:24861554
Whary, M T; Palley, L S; Batchelder, M; Murphy, J C; Yan, L; Taylor, N S; Fox, J G
1997-06-01
The purpose of this study was to determine whether oral immunization of ferret kits with a whole-cell sonicate of Helicobacter mustelae lysate (Hml) and the adjuvant muramyl dipeptide (MDP) would reduce the incidence of natural colonization with H. mustelae and the extent of Helicobacter-associated gastritis by enhancing the host mucosal immune response. Between the ages of 4 and 11 weeks, 44 ferret kits were gavaged with Hml and various doses of MDP. The extent of gastritis and duodenitis and the immune response to H. mustelae were evaluated. All kits became colonized naturally with H. mustelae and the majority developed mild to severe gastritis and duodenitis. Kits that received Hml with MDP developed significantly greater inflammation of the gastric antrum and duodenum, as compared to kits vaccinated with Hml alone. Vaccination with Hml and 50 micrograms of MDP was associated with severe lesions in the proximal duodenum characterized by accumulation of mononuclear inflammatory cells, mucosal erosion, and ulceration. Although serum antibody specific for H. mustelae in 4-week-old kits was approximately 50% of adult levels, a finding attributable to passively acquired maternal antibody, both systemic and mucosal antibody levels became depressed over time despite oral vaccination. The humoral immune response was sufficiently low to prevent detection of any significant dose effect of MDP on antibody levels among experimental groups. Oral vaccination of young ferrets with Hml and 50 micrograms MDP increased the risk of Helicobacter-associated mucosal ulceration in the proximal duodenum, which was associated with low humoral (but significant cell-mediated) immune responses to H. mustelae. In retrospect, the frequency of vaccination may have suppressed the systemic humoral immune response, thereby promoting mucosal damage by H. mustelae. The 50-microgram dose of MDP enhanced the cell-mediated immune response, which indirectly contributed to development of severe lesions. The increased frequency of mucosal damage associated with this vaccination regimen enhances the value of the ferret model for studying duodenal ulceration secondary to Helicobacter infection.
In Vitro Evaluation of Glycoengineered RSV-F in the Human Artificial Lymph Node Reactor.
Radke, Lars; Sandig, Grit; Lubitz, Annika; Schließer, Ulrike; von Horsten, Hans Henning; Blanchard, Veronique; Keil, Karolin; Sandig, Volker; Giese, Christoph; Hummel, Michael; Hinderlich, Stephan; Frohme, Marcus
2017-08-15
Subunit vaccines often require adjuvants to elicit sustained immune activity. Here, a method is described to evaluate the efficacy of single vaccine candidates in the preclinical stage based on cytokine and gene expression analysis. As a model, the recombinant human respiratory syncytial virus (RSV) fusion protein (RSV-F) was produced in CHO cells. For comparison, wild-type and glycoengineered, afucosylated RSV-F were established. Both glycoprotein vaccines were tested in a commercial Human Artificial Lymph Node in vitro model (HuALN ® ). The analysis of six key cytokines in cell culture supernatants showed well-balanced immune responses for the afucosylated RSV-F, while immune response of wild-type RSV-F was more Th1 accentuated. In particular, stronger and specific secretion of interleukin-4 after each round of re-stimulation underlined higher potency and efficacy of the afucosylated vaccine candidate. Comprehensive gene expression analysis by nCounter gene expression assay confirmed the stronger onset of the immunologic reaction in stimulation experiments with the afucosylated vaccine in comparison to wild-type RSV-F and particularly revealed prominent activation of Th17 related genes, innate immunity, and comprehensive activation of humoral immunity. We, therefore, show that our method is suited to distinguish the potency of two vaccine candidates with minor structural differences.
Solnick, Jay V.; Canfield, Don R.; Hansen, Lori M.; Torabian, Sima Z.
2000-01-01
Immunization with urease can protect mice from challenge with Helicobacter pylori, though results vary depending on the particular vaccine, challenge strain, and method of evaluation. Unlike mice, rhesus monkeys are naturally colonized with H. pylori and so may provide a better estimate of vaccine efficacy in humans. The purpose of this study was to examine the effectiveness of H. pylori urease as a vaccine in specific-pathogen (H. pylori)-free rhesus monkeys. Monkeys raised from birth and documented to be free of H. pylori were vaccinated with orogastric (n = 4) or intramuscular (n = 5) urease. Two control monkeys were sham vaccinated. All monkeys were challenged with a rhesus monkey-derived strain of H. pylori, and the effects of vaccination were evaluated by use of quantitative cultures of gastric tissue, histology, and measurement of serum immunoglobulin G (IgG) and salivary IgA. Despite a humoral immune response, all monkeys were infected after H. pylori challenge, and there were no differences in the density of colonization. Immunization with urease therefore does not fully protect against challenge with H. pylori. An effective vaccine to prevent H. pylori infection will require different or more likely additional antigens, as well as improvements in the stimulation of the host immune response. PMID:10768944
Can probiotics enhance vaccine-specific immunity in children and adults?
Kwak, J Y; Lamousé-Smith, E S N
2017-10-13
The growing use of probiotics by the general public has heightened the interest in understanding the role of probiotics in promoting health and preventing disease. General practitioners and specialists often receive inquiries from their patients regarding probiotic products and their use to ward off systemic infection or intestinal maladies. Enhanced immune function is among the touted health benefits conferred by probiotics but has not yet been fully established. Results from recent clinical trials in adults suggest a potential role for probiotics in enhancing vaccine-specific immunity. Although almost all vaccinations are given during infancy and childhood, the numbers of and results from studies using probiotics in pediatric subjects are limited. This review evaluates recent clinical trials of probiotics used to enhance vaccine-specific immune responses in adults and infants. We highlight meaningful results and the implications of these findings for designing translational and clinical studies that will evaluate the potential clinical role for probiotics. We conclude that the touted health claims of probiotics for use in children to augment immunity warrant further investigation. In order to achieve this goal, a consensus should be reached on common study designs that apply similar treatment timelines, compare well-characterised probiotic strains and monitor effective responses against different classes of vaccines.
Gurung, Ratna B.; Begg, Douglas J.; Purdie, Auriol C.; de Silva, Kumudika; Bannantine, John P.
2014-01-01
Johne's disease in ruminants is a chronic infection of the intestines caused by Mycobacterium avium subsp. paratuberculosis. An important strategy to control disease is early detection, and a potentially efficient method for early detection is measurement of cell-mediated immune responses developed by the host in response to exposure or infection. One method is to measure lymphoproliferation and cytokine release from the host cells when exposed to the organism or parts of the organism. In this study, 10 recombinant M. avium subsp. paratuberculosis proteins known to be upregulated under in vitro stress conditions were evaluated by examining their ability to evoke memory as a result of exposure by vaccination or oral challenge with live Mycobacterium avium subsp. paratuberculosis. Out of 10 proteins, MAP2698c was found to induce higher cell-mediated immune responses in vaccinated and challenged sheep in comparison to healthy controls. The findings suggest that not all stress-regulated proteins have the diagnostic potential to detect cell-mediated immune responses in ovine paratuberculosis. PMID:24695774
PREFERENTIAL SECRETION OF INDUCIBLE HSP70 BY VITILIGO MELANOCYTES UNDER STRESS
Mosenson, Jeffrey A.; Flood, Kelsey; Klarquist, Jared; Eby, Jonathan M.; Koshoffer, Amy; Boissy, Raymond E.; Overbeck, Andreas; C.Tung, Rebecca; Poole, I. Caroline Le
2014-01-01
SUMMARY Inducible HSP70 (HSP70i) chaperones peptides from stressed cells, protecting them from apoptosis. Upon extracellular release, HSP70i serves an adjuvant function, enhancing immune responses to bound peptides. We questioned whether HSP70i differentially protects control and vitiligo melanocytes from stress and subsequent immune responses. We compared expression of HSP70i in skin samples, evaluated the viability of primary vitiligo and control melanocytes exposed to bleaching phenols, and measured secreted HSP70i. We determined whether HSP70i traffics to melanosomes to contact immunogenic proteins by cell fractionation, western blotting, electron microscopy and confocal microscopy. Viability of vitiligo and control melanocytes was equally affected under stress. However, vitiligo melanocytes secreted increased amounts of HSP70i in response to MBEH, corroborating with aberrant HSP70i expression in patient skin. Intracellular HSP70i colocalized with melanosomes, and more so in response to MBEH in vitiligo melanocytes. Thus whereas either agent is cytotoxic to melanocytes, MBEH preferentially induces immune responses to melanocytes. PMID:24354861
USDA-ARS?s Scientific Manuscript database
Demand for Arg is reported to increase during immune challenge. This study evaluated the effects of lipopolysaccharide (LPS) and abomasal Arg infusion on N metabolism and immune response of 20 ruminally cannulated steers (369 ± 46 kg BW) in a randomized block design. Each block was 20 d and consiste...
Talib, Wamidh H.; Saleh, Suhair
2015-01-01
Breast cancer is one of the most invasive cancers with high mortality. The immune stimulating Propionibacterium acnes is a Gram positive bacterium that has the ability to cause inflammation and activate Th1-type cytokine immune response. Antitumor response was associated with the inflammation induced by P. acnes, but the antitumor effect of this bacterium was not evaluated in combination with other agents. The aim of this study was to test the antitumor potential of a combination of melatonin and P. acnes against breast cancer implanted in mice. Balb/C mice were transplanted with EMT6/P cell line and in vivo antitumor effect was assessed for P. acnes, melatonin, and a combination of melatonin and P. acnes. Tumor and organs sections were examined using hematoxylin/eosin staining protocol, and TUNEL colorimetric assay was used to detect apoptosis. The expression of vascular endothelial growth factor (VEGF) was measured in tumor sections and serum levels of INF-γ, and IL-4 were measured to evaluate the immune system function. To evaluate the toxicity of our combination, AST and ALT levels were measured in the serum of treated mice. The combination of melatonin and P. acnes has high efficiency in targeting breast cancer in mice. Forty percent of treated mice were completely cured using this combination and the combination inhibited metastasis of cancer cells to other organs. The combination therapy reduced angiogenesis, exhibited no toxicity, induced apoptosis, and stimulates strong Th1-type cytokine antitumor immune response. The combination of melatonin and P. acnes represents a promising option to treat breast cancer. However, carful preclinical and clinical evaluation is needed before considering this combination for human therapy. PMID:25919398
Chapat, Ludivine; Hilaire, Florence; Bouvet, Jérome; Pialot, Daniel; Philippe-Reversat, Corinne; Guiot, Anne-Laure; Remolue, Lydie; Lechenet, Jacques; Andreoni, Christine; Poulet, Hervé; Day, Michael J; De Luca, Karelle; Cariou, Carine; Cupillard, Lionel
2017-07-01
The assessment of vaccine combinations, or the evaluation of the impact of minor modifications of one component in well-established vaccines, requires animal challenges in the absence of previously validated correlates of protection. As an alternative, we propose conducting a multivariate analysis of the specific immune response to the vaccine. This approach is consistent with the principles of the 3Rs (Refinement, Reduction and Replacement) and avoids repeating efficacy studies based on infectious challenges in vivo. To validate this approach, a set of nine immunological parameters was selected in order to characterize B and T lymphocyte responses against canine rabies virus and to evaluate the compatibility between two canine vaccines, an inactivated rabies vaccine (RABISIN ® ) and a combined vaccine (EURICAN ® DAPPi-Lmulti) injected at two different sites in the same animals. The analysis was focused on the magnitude and quality of the immune response. The multi-dimensional picture given by this 'immune fingerprint' was used to assess the impact of the concomitant injection of the combined vaccine on the immunogenicity of the rabies vaccine. A principal component analysis fully discriminated the control group from the groups vaccinated with RABISIN ® alone or RABISIN ® +EURICAN ® DAPPi-Lmulti and confirmed the compatibility between the rabies vaccines. This study suggests that determining the immune fingerprint, combined with a multivariate statistical analysis, is a promising approach to characterizing the immunogenicity of a vaccine with an established record of efficacy. It may also avoid the need to repeat efficacy studies involving challenge infection in case of minor modifications of the vaccine or for compatibility studies. Copyright © 2017 Elsevier B.V. All rights reserved.
Hernández-Aguas, Jorday; Montiel-Hernández, José Luis; Ruiz-Ramos, Rosa Velia; Escamilla García, Erandi; Guzmán-García, Mario Alberto; Ayón-Haro, Esperanza Raquel; Garza-Elizondo, Mario Alberto
2017-01-01
Studies have proposed that Porphyromonas gingivalis (Pg) and Tannerella forsythia (Tf) promote a nonspecific inflammatory response that could produce systemic disease. Oral inoculation of Pg and Tf on the immune and arthritis response was evaluated in BALB/C mice divided into four groups: (1) sham; (2) food contaminated with Pg/Tf; (3) complete Freund's adjuvant (CFA) + Pg/Tf; and (4) CFA alone. CFA was administered subcutaneously on days 1 and 14. The arthritis response was monitored for 21 days after day 14 of CFA administration. IL-1β and IL-6 were determined in serum. T cell activation was evaluated by CD25 in salivary lymph nodes or mouse spleen. Pad inflammation appeared by day 19 in the CFA group, but animals with bacteria inoculation presented a delay. A significant increase in IL-6 was found in Groups 3 and 4, but not with respect to IL-1β. We observed an increase in CD25 in cells derived from cervical nodes and in animals with bacteria inoculation and CFA. A local immune response was observed in mice inoculated with Pg and Tf (T cell activation); a systemic response was observed with CFA. Since pad inflammation was delayed by bacterial inoculation this suggests that local T cell activation could decrease pad inflammation. PMID:28676826
Molrine, D C; Polk, D B; Ciamarra, A; Phillips, N; Ambrosino, D M
1995-01-01
Vitamin A deficiency is associated with increased childhood morbidity and mortality from respiratory and diarrheal diseases. In order to evaluate the effect of vitamin A on human antibody responses, we developed a vitamin A-deficient severe combined immunodeficient (SCID) mouse model. Vitamin A-deficient mice were produced by depriving them of vitamin A at day 7 of gestation. Mice were reconstituted with human peripheral blood lymphocytes (huPBL) from tetanus toxoid immune donors at 6 weeks of age and immunized with tetanus toxoid at 6 and 8 weeks of age. Secondary human antibody responses were determined 10 days later. The geometric mean human anti-tetanus toxoid immunoglobulin G concentrations were 3.75 micrograms/ml for the deficient mice and 148 micrograms/ml for controls (P = 0.0005). Vitamin A-deficient mice had only a 2.9-fold increase in human anti-tetanus toxoid antibody compared with a 74-fold increase in controls (P < 0.01). Supplementation with vitamin A prior to reconstitution restored human antibody responses to normal. These data suggest that vitamin A deficiency impairs human antibody responses. We speculate that impaired responses could increase susceptibility to certain infections. Furthermore, we propose that effects of other nutritional deficiencies on the human immune system could be evaluated in the SCID-huPBL model. PMID:7622207
Doucoure, Souleymane; Mouchet, François; Cornelie, Sylvie; DeHecq, Jean Sébastien; Rutee, Abdul Hamid; Roca, Yelin; Walter, Annie; Hervé, Jean Pierre; Misse, Dorothée; Favier, François; Gasque, Philippe; Remoue, Franck
2012-01-01
Background The spread of Aedes albopictus, a vector for re-emergent arbovirus diseases like chikungunya and dengue, points up the need for better control strategies and new tools to evaluate transmission risk. Human antibody (Ab) responses to mosquito salivary proteins could represent a reliable biomarker for evaluating human-vector contact and the efficacy of control programs. Methodology/Principal Findings We used ELISA tests to evaluate specific immunoglobulin G (IgG) responses to salivary gland extracts (SGE) in adults exposed to Aedes albopictus in Reunion Island. The percentage of immune responders (88%) and levels of anti-SGE IgG Abs were high in exposed individuals. At an individual level, our results indicate heterogeneity of the exposure to Aedes albopictus bites. In addition, low-level immune cross-reactivity between Aedes albopictus and Aedes aegypti SGEs was observed, mainly in the highest responders. Conclusion/Significance Ab responses to saliva could be used as an immuno-epidemiological tool for evaluating exposure to Aedes albopictus bites. Combined with entomological and epidemiological methods, a “salivary” biomarker of exposure to Aedes albopictus could enhance surveillance of its spread and the risk of arbovirus transmission, and could be used as a direct tool for the evaluation of Aedes albopictus control strategies. PMID:22363823
Pantic, Igor; Pantic, Senka
2012-10-01
In this article, we present the results indicating that spleen germinal center (GC) texture entropy determined by gray-level co-occurrence matrix (GLCM) method is related to humoral immune response. Spleen tissue was obtained from eight outbred male short-haired guinea pigs previously immunized by sheep red blood cells (SRBC). A total of 312 images from 39 germinal centers (156 GC light zone images and 156 GC dark zone images) were acquired and analyzed by GLCM method. Angular second moment, contrast, correlation, entropy, and inverse difference moment were calculated for each image. Humoral immune response to SRBC was measured using T cell-dependent antibody response (TDAR) assay. Statistically highly significant negative correlation was detected between light zone entropy and the number of TDAR plaque-forming cells (r (s) = -0.86, p < 0.01). The entropy decreased as the plaque-forming cells increased and vice versa. A statistically significant negative correlation was also detected between dark zone entropy values and the number of plaque-forming cells (r (s) = -0.69, p < 0.05). Germinal center texture entropy may be a powerful indicator of humoral immune response. This study is one of the first to point out the potential scientific value of GLCM image texture analysis in lymphoid tissue cytoarchitecture evaluation. Lymphoid tissue texture analysis could become an important and affordable addition to the conventional immunophysiology techniques.
Total Leishmania antigens with Poly(I:C) induce Th1 protective response.
Sanchez, M V; Eliçabe, R J; Di Genaro, M S; Germanó, M J; Gea, S; García Bustos, M F; Salomón, M C; Scodeller, E A; Cargnelutti, D E
2017-11-01
Our proposal was to develop a vaccine based on total Leishmania antigens (TLA) adjuvanted with polyinosinic-polycytidylic acid [Poly(I:C)] able to induce a Th1 response which can provide protection against Leishmania infection. Mice were vaccinated with two doses of TLA-Poly(I:C) administered by subcutaneous route at 3-week interval. Humoral and cellular immune responses induced by the immunization were measured. The protective efficacy of the vaccine was evaluated by challenging mice with infective promastigotes of Leishmania (Leishmania) amazonensis into the footpad. Mice vaccinated with TLA-Poly(I:C) showed a high anti-Leishmania IgG titre, as well as increased IgG1 and IgG2a subclass titres compared with mice vaccinated with the TLA alone. The high IgG2a indicated a Th1 bias response induced by the TLA-Poly(I:C) immunization. Accordingly, the cellular immune response elicited by the formulation was characterized by an increased production of IFN-γ and no significant production of IL-4. The TLA-Poly(I:C) immunization elicited good protection, which was associated with decreased footpad swelling, a lower parasite load and a reduced histopathological alteration in the footpad. Our findings demonstrate a promising vaccine against cutaneous leishmaniasis that is relatively economic and easy to develop and which should be taken into account for preventing leishmaniasis in developing countries. © 2017 John Wiley & Sons Ltd.
Lopes, Priscila Diniz; Okino, Cintia Hiromi; Fernando, Filipe Santos; Pavani, Caren; Casagrande, Viviane Mariguela; Lopez, Renata F V; Montassier, Maria de Fátima Silva; Montassier, Helio José
2018-05-03
Avian infectious bronchitis virus (IBV) is one of the most important viral diseases of poultry. The mucosa of upper respiratory tract, specially the trachea, is the primary replication site for this virus. However, conventional inactivate IBV vaccines usually elicit reduced mucosal immune responses and local protection. Thus, an inactivated IBV vaccine containing BR-I genotype strain encapsulated in chitosan nanoparticles (IBV-CS) was produced by ionic gelation method to be administered by oculo-nasal route to chickens. IBV-CS vaccine administered alone resulted in markedly mucosal immune responses, characterized by high levels of anti-IBV IgA isotype antibodies and IFNγ gene expression at 1dpi. The association of live attenuated Massachusetts IBV and IBV-CS vaccine also induced strong mucosal immune responses, though a switch from IgA isotype to IgG was observed, and IFNγ gene expression peak was late (at 5 dpi). Efficacy of IBV-CS was evaluated by tracheal ciliostasis analysis, histopathology examination, and viral load determination in the trachea and kidney. The results indicated that IBV-CS vaccine administered alone or associated with a live attenuated heterologous vaccine induced both humoral and cell-mediated immune responses at the primary site of viral replication, and provided an effective protection against IBV infection at local (trachea) and systemic (kidney) sites. Copyright © 2018 Elsevier Ltd. All rights reserved.
Wallace, Aaron; West, Kim; Rothman, Alan L; Ennis, Francis A; Lu, Shan; Wang, Shixia
2013-10-01
In the current study, immune responses induced by Gag DNA vaccines with different designs were evaluated in Balb/C mice. The results demonstrated that the DNA vaccine with the full length wild type gag gene (Wt-Gag) mainly produced Gag antigens intracellularly and induced a higher level of cell-mediated immune (CMI) responses, as measured by IFN-gamma ELISPOT, intracellular cytokine staining (ICS), and cytotoxic T lymphocytes (CTL) assays against a dominant CD8(+) T cell epitope (AMQMLKETI). In contrast, the addition of a tissue plasminogen activator (tPA) leader sequence significantly improved overall Gag protein expression/secretion and Gag-specific antibody responses; however, Gag-specific CMI responses were decreased. The mutation of zinc-finger motif changed Gag protein expression patterns and reduced the ability to generate both CMI and antibody responses against Gag. These findings indicate that the structure and post-translational processing of antigens expressed by DNA vaccines play a critical role in eliciting optimal antibody or CMI responses.
Ferris, Robert L; Lenz, Heinz-Josef; Trotta, Anna Maria; García-Foncillas, Jesús; Schulten, Jeltje; Audhuy, François; Merlano, Marco; Milano, Gerard
2018-02-01
Immunoglobulin (Ig) G1 antibodies stimulate antibody-dependent cell-mediated cytotoxicity (ADCC). Cetuximab, an IgG1 isotype monoclonal antibody, is a standard-of-care treatment for locally advanced and recurrent and/or metastatic squamous cell carcinoma of the head and neck (SCCHN) and metastatic colorectal cancer (CRC). Here we review evidence regarding the clinical relevance of cetuximab-mediated ADCC and other immune functions and provide a biological rationale concerning why this property positions cetuximab as an ideal partner for immune checkpoint inhibitors (ICIs) and other emerging immunotherapies. We performed a nonsystematic review of available preclinical and clinical data involving cetuximab-mediated immune activity and combination approaches of cetuximab with other immunotherapies, including ICIs, in SCCHN and CRC. Indeed, cetuximab mediates ADCC activity in the intratumoral space and primes adaptive and innate cellular immunity. However, counterregulatory mechanisms may lead to immunosuppressive feedback loops. Accordingly, there is a strong rationale for combining ICIs with cetuximab for the treatment of advanced tumors, as targeting CTLA-4, PD-1, and PD-L1 can ostensibly overcome these immunosuppressive counter-mechanisms in the tumor microenvironment. Moreover, combining ICIs (or other immunotherapies) with cetuximab is a promising strategy for boosting immune response and enhancing response rates and durability of response. Cetuximab immune activity-including, but not limited to, ADCC-provides a strong rationale for its combination with ICIs or other immunotherapies to synergistically and fully mobilize the adaptive and innate immunity against tumor cells. Ongoing prospective studies will evaluate the clinical effect of these combination regimens and their immune effect in CRC and SCCHN and in other indications. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Lorenzen, Emma; Follmann, Frank; Bøje, Sarah; Erneholm, Karin; Olsen, Anja Weinreich; Agerholm, Jørgen Steen; Jungersen, Gregers; Andersen, Peter
2015-01-01
International efforts in developing a vaccine against Chlamydia trachomatis have highlighted the need for novel immunization strategies for the induction of genital immunity. In this study, we evaluated an intramuscular (IM) prime/intranasal boost vaccination strategy in a Göttingen Minipig model with a reproductive system very similar to humans. The vaccine was composed of C. trachomatis subunit antigens formulated in the Th1/Th17 promoting CAF01 adjuvant. IM priming immunizations with CAF01 induced a significant cell-mediated interferon gamma and interleukin 17A response and a significant systemic high-titered neutralizing IgG response. Following genital challenge, intranasally boosted groups mounted an accelerated, highly significant genital IgA response that correlated with enhanced bacterial clearance on day 3 post infection. By detecting antigen-specific secretory component (SC), we showed that the genital IgA was locally produced in the genital mucosa. The highly significant inverse correlation between the vaginal IgA SC response and the chlamydial load suggests that IgA in the minipig model is involved in protection against C. trachomatis. This is important both for our understanding of protective immunity and future vaccination strategies against C. trachomatis and genital pathogens in general. PMID:26734002
Just-in-time training of dental responders in a simulated pandemic immunization response exercise.
Colvard, Michael D; Hirst, Jeremy L; Vesper, Benjamin J; DeTella, George E; Tsagalis, Mila P; Roberg, Mary J; Peters, David E; Wallace, Jimmy D; James, James J
2014-06-01
The reauthorization of the Pandemic and All-Hazards Preparedness Act in 2013 incorporated the dental profession and dental professionals into the federal legislation governing public health response to pandemics and all-hazard situations. Work is now necessary to expand the processes needed to incorporate and train oral health care professionals into pandemic and all-hazard response events. A just-in-time (JIT) training exercise and immunization drill using an ex vivo porcine model system was conducted to demonstrate the rapidity to which dental professionals can respond to a pandemic influenza scenario. Medical history documentation, vaccination procedures, and patient throughput and error rates of 15 dental responders were evaluated by trained nursing staff and emergency response personnel. The average throughput (22.33/hr) and medical error rates (7 of 335; 2.08%) of the dental responders were similar to those found in analogous influenza mass vaccination clinics previously conducted using certified public health nurses. The dental responder immunization drill validated the capacity and capability of dental professionals to function as a valuable immunization resource. The ex vivo porcine model system used for JIT training can serve as a simple and inexpensive training tool to update pandemic responders' immunization techniques and procedures supporting inoculation protocols.
Gorse, Geoffrey J; Newman, Mark J; deCamp, Allan; Hay, Christine Mhorag; De Rosa, Stephen C; Noonan, Elizabeth; Livingston, Brian D; Fuchs, Jonathan D; Kalams, Spyros A; Cassis-Ghavami, Farah L
2012-05-01
We evaluated a DNA plasmid-vectored vaccine and a recombinant modified vaccinia virus Ankara vaccine (MVA-mBN32), each encoding cytotoxic and helper T-lymphocyte epitopes of human immunodeficiency virus type 1 (HIV-1) in a randomized, double-blinded, placebo-controlled trial in 36 HIV-1-uninfected adults using a heterologous prime-boost schedule. HIV-1-specific cellular immune responses, measured as interleukin-2 and/or gamma interferon production, were induced in 1 (4%) of 28 subjects after the first MVA-mBN32 immunization and in 3 (12%) of 25 subjects after the second MVA-mBN32 immunization. Among these responders, polyfunctional T-cell responses, including the production of tumor necrosis factor alpha and perforin, were detected. Vaccinia virus-specific antibodies were induced to the MVA vector in 27 (93%) of 29 and 26 (93%) of 28 subjects after the first and second immunizations with MVA-mBN32. These peptide-based vaccines were safe but were ineffective at inducing HIV-1-specific immune responses and induced much weaker responses than MVA vaccines expressing the entire open reading frames of HIV-1 proteins.
Toro, Haroldo; van Ginkel, Frederik W.; Tang, De-chu C.; Schemera, Bettina; Rodning, Soren; Newton, Joseph
2010-01-01
SUMMARY Protective immunity to avian influenza (AI) virus can be elicited in chickens by in ovo or intramuscular vaccination with replication-competent adenovirus (RCA)-free human recombinant adenovirus serotype 5 (Ad5) encoding AI virus H5 (AdTW68.H5) or H7 (AdCN94.H7) hemagglutinins. We evaluated bivalent in ovo vaccination with AdTW68.H5 and AdCN94.H7 and determined that vaccinated chickens developed robust hemagglutination inhibition (HI) antibody levels to both H5 and H7 AI strains. Additionally, we evaluated immune responses of 1-day-old chickens vaccinated via spray with AdCN94.H7. These birds showed increased immunoglobulin A responses in lachrymal fluids and increased interleukin-6 expression in Harderian gland–derived lymphocytes. However, specific HI antibodies were not detected in the sera of these birds. Because pigs might play a role as a “mixing vessel” for the generation of pandemic influenza viruses we explored the use of RCA-free adenovirus technology to immunize pigs against AI virus. Weanling piglets vaccinated intramuscularly with a single dose of RCA-free AdTW68.H5 developed strong systemic antibody responses 3 wk postvaccination. Intranasal application of AdTW68.H5 in piglets resulted in reduced vaccine coverage, i.e., 33% of pigs (2/6) developed an antibody response, but serum antibody levels in those successfully immunized animals were similar to intramuscularly vaccinated animals. PMID:20521636
Immune Privilege and Eye-Derived T-Regulatory Cells.
Keino, Hiroshi; Horie, Shintaro; Sugita, Sunao
2018-01-01
Certain cellular components of the eye, such as neural retina, are unable to regenerate and replicate after destructive inflammation. Ocular immune privilege provides the eye with immune protection against intraocular inflammation in order to minimize the risk to vision integrity. The eye and immune system use strategies to maintain the ocular immune privilege by regulating the innate and adaptive immune response, which includes immunological ignorance, peripheral tolerance to eye-derived antigens, and intraocular immunosuppressive microenvironment. In this review, we summarize current knowledge regarding the molecular mechanism responsible for the development and maintenance of ocular immune privilege via regulatory T cells (Tregs), which are generated by the anterior chamber-associated immune deviation (ACAID), and ocular resident cells including corneal endothelial (CE) cells, ocular pigment epithelial (PE) cells, and aqueous humor. Furthermore, we examined the therapeutic potential of Tregs generated by RPE cells that express transforming growth factor beta (TGF- β ), cytotoxic T lymphocyte-associated antigen-2 alpha (CTLA-2 α ), and retinoic acid for autoimmune uveoretinitis and evaluated a new strategy using human RPE-induced Tregs for clinical application in inflammatory ocular disease. We believe that a better understanding of the ocular immune privilege associated with Tregs might offer a new approach with regard to therapeutic interventions for ocular autoimmunity.
Guardiola, Francisco Antonio; Barroso, Carolina; Enes, Paula; Couto, Ana; Díaz-Rosales, Patricia; Afonso, António; Kanashiro, Erika; Peres, Helena; Matos, Elisabete; Oliva-Teles, Aires; Pousão-Ferreira, Pedro; Costas, Benjamín
2018-05-18
Many studies have assessed the effects of incorporation of plant feedstuffs in fish diets on growth performance, whereas few studies have addressed the effects of fish meal replacement by plant protein sources on fish immune parameters. Thus, the aim of this study was to evaluate the effects on immune response of different inclusion levels of carob seed germ meal (CSGM) as partial replacement for fish meal in diets for meagre (Argyrosomus regius) juveniles. Fish were fed four experimental diets with increased CSGM inclusion levels [0% (control), 7.5% (CSGM7.5), 15% (CSGM15) and 22.5% (CSGM22.5)]. After 1, 2, and 8 weeks of feeding fish were sampled to determine haematological profile and several humoral parameters in plasma and intestine. Results showed that dietary inclusion of CSGM did not negatively affect the immune parameters of meagre. In addition, total numbers of red and white blood cells, as well as thrombocytes, lymphocytes, monocytes, and neutrophils counts were not affected by dietary treatments. All parameters evaluated in plasma were unaffected by dietary CSGM inclusion after 1 and 2 weeks of feeding, with only the haemolytic complement activity showing an increase in fish fed diets with CSGM after 1 week and in fish fed CSGM22.5 diet after 2 weeks. Regarding the innate immune parameters analysed in the intestine, it could be highlighted the increase in alkaline phosphatase and antiprotease activities in fish fed the diet with the higher inclusion of CSGM at 8 weeks. Overall, results suggest that high dietary CSGM inclusion do not compromise immune status or induce an inflammatory response in meagre juveniles. Copyright © 2018 Elsevier Ltd. All rights reserved.
Duperret, Elizabeth K; Trautz, Aspen; Ammons, Dylan; Perales-Puchalt, Alfredo; Wise, Megan C; Yan, Jian; Reed, Charles; Weiner, David B
2018-03-01
Purpose: Fibroblast activation protein (FAP) is overexpressed in cancer-associated fibroblasts and is an interesting target for cancer immune therapy, with prior studies indicating a potential to affect the tumor stroma. Our aim was to extend this earlier work through the development of a novel FAP immunogen with improved capacity to break tolerance for use in combination with tumor antigen vaccines. Experimental Design: We used a synthetic consensus (SynCon) sequence approach to provide MHC class II help to support breaking of tolerance. We evaluated immune responses and antitumor activity of this novel FAP vaccine in preclinical studies, and correlated these findings to patient data. Results: This SynCon FAP DNA vaccine was capable of breaking tolerance and inducing both CD8 + and CD4 + immune responses. In genetically diverse, outbred mice, the SynCon FAP DNA vaccine was superior at breaking tolerance compared with a native mouse FAP immunogen. In several tumor models, the SynCon FAP DNA vaccine synergized with other tumor antigen-specific DNA vaccines to enhance antitumor immunity. Evaluation of the tumor microenvironment showed increased CD8 + T-cell infiltration and a decreased macrophage infiltration driven by FAP immunization. We extended this to patient data from The Cancer Genome Atlas, where we find high FAP expression correlates with high macrophage and low CD8 + T-cell infiltration. Conclusions: These results suggest that immune therapy targeting tumor antigens in combination with a microconsensus FAP vaccine provides two-fisted punch-inducing responses that target both the tumor microenvironment and tumor cells directly. Clin Cancer Res; 24(5); 1190-201. ©2018 AACR . ©2018 American Association for Cancer Research.
Xu, Yi-Gang; Guan, Xue-Ting; Liu, Zhong-Mei; Tian, Chang-Yong
2015-01-01
Classical swine fever, caused by classical swine fever virus (CSFV), is a highly contagious disease that results in enormous economic losses in pig industries. The E2 protein is one of the main structural proteins of CSFV and is capable of inducing CSFV-neutralizing antibodies and cytotoxic T lymphocyte (CTL) activities in vivo. Thymosin α-1 (Tα1), an immune-modifier peptide, plays a very important role in the cellular immune response. In this study, genetically engineered Lactobacillus plantarum bacteria expressing CSFV E2 protein alone (L. plantarum/pYG-E2) and in combination with Tα1 (L. plantarum/pYG-E2-Tα1) were developed, and the immunogenicity of each as an oral vaccine to induce protective immunity against CSFV in pigs was evaluated. The results showed that recombinant L. plantarum/pYG-E2 and L. plantarum/pYG-E2-Tα1 were both able to effectively induce protective immune responses in pigs against CSFV infection by eliciting immunoglobulin A (IgA)-based mucosal, immunoglobulin G (IgG)-based humoral, and CTL-based cellular immune responses via oral vaccination. Significant differences (P < 0.05) in the levels of immune responses were observed between L. plantarum/pYG-E2-Tα1 and L. plantarum/pYG-E2, suggesting a better immunogenicity of L. plantarum/pYG-E2-Tα1 as a result of the Tα1 molecular adjuvant that can enhance immune responsiveness and augment specific lymphocyte functions. Our data suggest that the recombinant Lactobacillus microecological agent expressing CSFV E2 protein combined with Tα1 as an adjuvant provides a promising strategy for vaccine development against CSFV. PMID:25819954
2014-12-11
modulation in several innate immunity markers particularly associated with NK cells and Th1/Th2 specific cytokines and chemokines in immunized guinea pigs...reduced antigen-specific activation (IL-12 and IFN-c production) of CD4+ T cells isolated from lymphoid tissues and genital tract, and an associated...CD4+ T cells [12, 13]. However, due to differences in immunological responses [23, 24, 25, 26], and chlamydial strain susceptibilities between mice
Schwaab, T; Heaney, J A; Schned, A R; Harris, R D; Cole, B F; Noelle, R J; Phillips, D M; Stempkowski, L; Ernstoff, M S
2000-04-01
The clinical observation of spontaneous regression in patients with renal cell carcinoma (RCC) and the response to various immunotherapeutic therapies strongly suggest a role for the host immune system in this disease. Prior studies showed that sequential administration of interferon (IFN) gamma and IFN alpha to RCC patients was safe. Clinical responses as well as immune changes in the peripheral blood mononuclear cell compartment were observed. Autologous tumor cell vaccines (AV) have also demonstrated activity in renal cell carcinoma. We hypothesize that the addition of AV to sequential IFN gamma and a therapy might improve the tumor-specific immune response by providing an appropriate source of antigen in the appropriate cytokine environment. To our knowledge, this is the first trial using AV combined with IFN alpha and IFN gamma. The purpose of this study was to evaluate the feasibility of manufacturing and administering (AV) from resected tumor samples, and administration of AV with combination IFN gamma and IFN alpha therapy. Finally, the impact on immunological parameters of these treatment options was assessed. Patients with metastatic RCC were randomly assigned to receive AV plus bCG along with a sequential administration of IFN gamma and a either together or after initiation of vaccine. Toxicity and clinical responses were evaluated. Modulations of the immune system were investigated by analyzing phenotype, cytokine mRNA expression, T cell proliferation and cytotoxicity in the peripheral blood mononuclear cell compartment. Fourteen patients with metastatic renal cell carcinoma were enrolled in this study; 9 were available for response evaluation. In a 70 day period, 3 (33%) showed mixed responses, 5 (56%) stable disease and 1 (11%) progression of disease. Toxicities were consistent with previous clinical reports. In the flow-cytometry phenotype analysis, stimulation of distinct subsets of circulating T-lymphocytes and a decrease of CD8+ T cell subsets was demonstrated. T-cell proliferation to allogeneic tumor cell stimulation improved following treatment. IL-4 and IL-5 mRNA levels were reduced in all patients after treatment. Patients who responded to treatment did not produce any IL-4 mRNA at all, before or after treatment. AV with IFNgamma and IFNalpha therapy might induce a MHC class-mediated cytotoxic T lymphocyte (CTL) response. We suggest that adequate therapy might direct T cell response toward a Th1 type response. We hypothesize a state of improved immune readiness in patients who might eventually respond to immunotherapy.
Immune-responsiveness of CD4+ T cells during Streptococcus suis serotype 2 infection
Lecours, Marie-Pier; Letendre, Corinne; Clarke, Damian; Lemire, Paul; Galbas, Tristan; Benoit-Biancamano, Marie-Odile; Thibodeau, Jacques; Gottschalk, Marcelo; Segura, Mariela
2016-01-01
The pathogenesis of Streptococcus suis infection, a major swine and human pathogen, is only partially understood and knowledge on the host adaptive immune response is critically scarce. Yet, S. suis virulence factors, particularly its capsular polysaccharide (CPS), enable this bacterium to modulate dendritic cell (DC) functions and potentially impair the immune response. This study aimed to evaluate modulation of T cell activation during S. suis infection and the role of DCs in this response. S. suis-stimulated total mouse splenocytes readily produced TNF-α, IL-6, IFN-γ, CCL3, CXCL9, and IL-10. Ex vivo and in vivo analyses revealed the involvement of CD4+ T cells and a Th1 response. Nevertheless, during S. suis infection, levels of the Th1-derived cytokines TNF-α and IFN-γ were very low. A transient splenic depletion of CD4+ T cells and a poor memory response were also observed. Moreover, CD4+ T cells secreted IL-10 and failed to up-regulate optimal levels of CD40L and CD69 in coculture with DCs. The CPS hampered release of several T cell-derived cytokines in vitro. Finally, a correlation was established between severe clinical signs of S. suis disease and impaired antibody responses. Altogether, these results suggest S. suis interferes with the adaptive immune response. PMID:27905502
The occurrence of immune priming can be species-specific in entomopathogens.
Medina Gomez, Héctor; Adame Rivas, Galia; Hernández-Quintero, Angélica; González Hernández, Angélica; Torres Guzmán, Juan Carlos; Mendoza, Humberto Lanz; Contreras-Garduño, Jorge
2018-05-01
Immune priming in invertebrates refers to an improved immune response (and therefore a better chance of survival) upon a second encounter with a specific pathogen. Although the existence of immune priming has been evaluated in invertebrate hosts, the ability of a particular entomopathogen species or strain to influence the occurrence of immune priming has not been thoroughly evaluated. The aim of the current study was to compare the occurrence of immune priming in Tenebrio molitor larvae after homologous challenges (a dual exposure to similar entomopathogens) with Serratia marcescens, Bacillus thuringiensis and Metarhizium anisopliae. Larvae presented more effective immune priming (measured as survival rates) when exposed to M. anisopliae or B. thuringiensis than when exposed to S. marcescens. We hypothesize that the toll pathway may help T. molitor survive these enemies and that the IMD pathway may be expressed to a lesser degree in this species, which may explain why they succumb to Gram-negative bacteria. This and other recent evidence suggest that the occurrence of immune priming in these organisms must not be ruled out until this phenomenon is tested with different entomopathogens. Copyright © 2018 Elsevier Ltd. All rights reserved.
Anelone, Anet J N; Spurgeon, Sarah K
2016-01-01
Experimental and mathematical studies in immunology have revealed that the dynamics of the programmed T cell response to vigorous infection can be conveniently modelled using a sigmoidal or a discontinuous immune response function. This paper hypothesizes strong synergies between this existing work and the dynamical behaviour of engineering systems with a variable structure control (VSC) law. These findings motivate the interpretation of the immune system as a variable structure control system. It is shown that dynamical properties as well as conditions to analytically assess the transition from health to disease can be developed for the specific T cell response from the theory of variable structure control. In particular, it is shown that the robustness properties of the specific T cell response as observed in experiments can be explained analytically using a VSC perspective. Further, the predictive capacity of the VSC framework to determine the T cell help required to overcome chronic Lymphocytic Choriomeningitis Virus (LCMV) infection is demonstrated. The findings demonstrate that studying the immune system using variable structure control theory provides a new framework for evaluating immunological dynamics and experimental observations. A modelling and simulation tool results with predictive capacity to determine how to modify the immune response to achieve healthy outcomes which may have application in drug development and vaccine design.
A Review of Intra- and Extracellular Antigen Delivery Systems for Virus Vaccines of Finfish
Munang'andu, Hetron Mweemba; Evensen, Øystein
2015-01-01
Vaccine efficacy in aquaculture has for a long time depended on evaluating relative percent survival and antibody responses after vaccination. However, current advances in vaccine immunology show that the route in which antigens are delivered into cells is deterministic of the type of adaptive immune response evoked by vaccination. Antigens delivered by the intracellular route induce MHC-I restricted CD8+ responses while antigens presented through the extracellular route activate MHC-II restricted CD4+ responses implying that the route of antigen delivery is a conduit to induction of B- or T-cell immune responses. In finfish, different antigen delivery systems have been explored that include live, DNA, inactivated whole virus, fusion protein, virus-like particles, and subunit vaccines although mechanisms linking these delivery systems to protective immunity have not been studied in detail. Hence, in this review we provide a synopsis of different strategies used to administer viral antigens via the intra- or extracellular compartments. Further, we highlight the differences in immune responses induced by antigens processed by the endogenous route compared to exogenously processed antigens. Overall, we anticipate that the synopsis put together in this review will shed insights into limitations and successes of the current vaccination strategies used in finfish vaccinology. PMID:26065009
Evaluation of abdominal pain in the AIDS patient.
Potter, D A; Danforth, D N; Macher, A M; Longo, D L; Stewart, L; Masur, H
1984-01-01
Acquired immune deficiency syndrome (AIDS) is a recently recognized entity characterized by a deficiency in cell mediated immune response. The syndrome is manifested by the development of otherwise rare malignant neoplasms and severe life-threatening opportunistic infections. Case histories of five AIDS patients evaluated for abdominal pain are presented to demonstrate the unusual spectrum of intra-abdominal pathology that may be encountered in the AIDS patient. As the number of patients with AIDS continues to escalate, surgical evaluation and intervention will be required more frequently. An understanding of this syndrome and its complications is mandatory for the surgeon to adequately evaluate AIDS patients with abdominal pain. PMID:6322708
Salmonella Fecal Shedding and Immune Responses are Dose- and Serotype- Dependent in Pigs
Ivanek, Renata; Österberg, Julia; Gautam, Raju; Sternberg Lewerin, Susanna
2012-01-01
Despite the public health importance of Salmonella infection in pigs, little is known about the associated dynamics of fecal shedding and immunity. In this study, we investigated the transitions of pigs through the states of Salmonella fecal shedding and immune response post-Salmonella inoculation as affected by the challenge dose and serotype. Continuous-time multistate Markov models were developed using published experimental data. The model for shedding had four transient states, of which two were shedding (continuous and intermittent shedding) and two non-shedding (latency and intermittent non-shedding), and one absorbing state representing permanent cessation of shedding. The immune response model had two transient states representing responses below and above the seroconversion level. The effects of two doses [low (0.65×106 CFU/pig) and high (0.65×109 CFU/pig)] and four serotypes (Salmonella Yoruba, Salmonella Cubana, Salmonella Typhimurium, and Salmonella Derby) on the models' transition intensities were evaluated using a proportional intensities model. Results indicated statistically significant effects of the challenge dose and serotype on the dynamics of shedding and immune response. The time spent in the specific states was also estimated. Continuous shedding was on average 10–26 days longer, while intermittent non-shedding was 2–4 days shorter, in pigs challenged with the high compared to low dose. Interestingly, among pigs challenged with the high dose, the continuous and intermittent shedding states were on average up to 10–17 and 3–4 days longer, respectively, in pigs infected with S. Cubana compared to the other three serotypes. Pigs challenged with the high dose of S. Typhimurium or S. Derby seroconverted on average up to 8–11 days faster compared to the low dose. These findings highlight that Salmonella fecal shedding and immune response following Salmonella challenge are dose- and serotype-dependent and that the detection of specific Salmonella strains and immune responses in pigs are time-sensitive. PMID:22523553
Luo, Yu; Van Nguyen, Ut; de la Fe Rodriguez, Pedro Y; Devriendt, Bert; Cox, Eric
2015-10-21
Enterotoxigenic Escherichia coli (ETEC) are an important cause of post-weaning diarrhea (PWD) in piglets. Porcine-specific ETEC strains possess different fimbrial subtypes of which F4 fimbriae are the most frequently associated with ETEC-induced diarrhea in piglets. These F4 fimbriae are potent oral immunogens that induce protective F4-specific IgA antibody secreting cells at intestinal tissues. Recently, T-helper 17 (Th17) cells have been implicated in the protection of the host against extracellular pathogens. However, it remains unknown if Th17 effector responses are needed to clear ETEC infections. In the present study, we aimed to elucidate if ETEC elicits a Th17 response in piglets and if F4 fimbriae trigger a similar response. F4(+) ETEC infection upregulated IL-17A, IL-17F, IL-21 and IL-23p19, but not IL-12 and IFN-γ mRNA expression in the systemic and mucosal immune system. Similarly, oral immunization with F4 fimbriae triggered a Th17 signature evidenced by an upregulated mRNA expression of IL-17F, RORγt, IL-23p19 and IL-21 in the peripheral blood mononuclear cells (PBMCs). Intriguingly, IL-17A mRNA levels were unaltered. To further evaluate this difference between systemic and mucosal immune responses, we assayed the cytokine mRNA profile of F4 fimbriae stimulated PBMCs. F4 fimbriae induced IL-17A, IL-17F, IL-22 and IL-23p19, but downregulated IL-17B mRNA expression. Altogether, these data indicate a Th17 dominated response upon oral immunization with F4 fimbriae and F4(+) ETEC infection. Our work also highlights that IL-17B and IL-17F participate in the immune response to protect the host against F4(+) ETEC infection and could aid in the design of future ETEC vaccines.
Hepatitis B Vaccine Antibody Response and the Risk of Clinical AIDS or Death
Landrum, Michael L.; Hullsiek, Katherine Huppler; O'Connell, Robert J.; Chun, Helen M.; Ganesan, Anuradha; Okulicz, Jason F.; Lalani, Tahaniyat; Weintrob, Amy C.; Crum-Cianflone, Nancy F.; Agan, Brian K.
2012-01-01
Background Whether seroresponse to a vaccine such as hepatitis B virus (HBV) vaccine can provide a measure of the functional immune status of HIV-infected persons is unknown.This study evaluated the relationship between HBV vaccine seroresponses and progression to clinical AIDS or death. Methods and Findings From a large HIV cohort, we evaluated those who received HBV vaccine only after HIV diagnosis and had anti-HBs determination 1–12 months after the last vaccine dose. Non-response and positive response were defined as anti-HBs <10 and ≥10 IU/L, respectively. Participants were followed from date of last vaccination to clinical AIDS, death, or last visit. Univariate and multivariable risk of progression to clinical AIDS or death were evaluated with Cox regression models. A total of 795 participants vaccinated from 1986–2010 were included, of which 41% were responders. During 3,872 person-years of observation, 122 AIDS or death events occurred (53% after 1995). Twenty-two percent of non-responders experienced clinical AIDS or death compared with 5% of responders (p<0.001). Non-response to HBV vaccine was associated with a greater than 2-fold increased risk of clinical AIDS or death (HR 2.47; 95% CI, 1.38–4.43) compared with a positive response, after adjusting for CD4 count, HIV viral load, HAART use, and delayed type hypersensitivity skin test responses (an in vivo marker of cell-mediated immunity). This association remained evident among those with CD4 count ≥500 cells/mm3 (HR 3.40; 95% CI, 1.39–8.32). Conclusions HBV vaccine responses may have utility in assessing functional immune status and risk stratificating HIV-infected individuals, including those with CD4 count ≥500 cells/mm3. PMID:22457767
A modified live canine parvovirus vaccine. II. Immune response.
Carmichael, L E; Joubert, J C; Pollock, R V
1983-01-01
The safety and efficacy of an attenuated canine parvovirus (A-CPV) vaccine was evaluated in both experimental and in field dogs. After parenteral vaccination, seronegative dogs developed hemagglutination-inhibition (HI) antibody titers as early as postvaccination (PV) day 2. Maximal titers occurred within 1 week. Immunity was associated with the persistence of HI antibody titers (titers greater than 80) that endured at least 2 years. Immune dogs challenged with virulent CPV did not shed virus in their feces. The A-CPV vaccine did not cause illness alone or in combination with living canine distemper (CD) and canine adenovirus type-2 (CAV-2) vaccines, nor did it interfere with the immune response to the other viruses. A high rate (greater than 98%) of immunity was engendered in seronegative pups. In contrast, maternal antibody interfered with the active immune response to the A-CPV. More than 95% of the dogs with HI titers less than 10 responded to the vaccine, but only 50% responded when titers were approximately 20. No animal with a titer greater than 80 at the time of vaccination became actively immunized. Susceptibility to virulent CPV during that period when maternal antibody no longer protects against infection, but still prevents active immunization, is the principal cause of vaccinal failure in breeding kennels where CPV is present. Reduction, but not complete elimination, of CPV disease in large breeding kennels occurred within 1-2 months of instituting an A-CPV vaccination program.
Vattem, DA; Lester, CE; DeLeon, RC; Jamison, BY; Maitin, V
2013-01-01
Introduction: Lamiaceae herbs have are well known for their immunomodulatory effects, however, the mechanism by which they effect innate immune system is not clearly understood. Objective: The effect of dietary supplementation with two Lamiaceae herbs (oregano and sage) modulation of on innate immunological parameters was investigated in Lumbricus terrestris. Materials and Methods: Animals were fed (ad libitum) on herbs supplemented diet [(0.1% (w/v) and 0.5% (w/v)] for 6 days. Changes in immune competent cell counts, viability, and relative neutrophil-like cell counts were determined in response to herb treatment. Changes in nitric oxide, phagocytic activity, and respiratory burst index were also determined in response to herb treatment relative to control. Additionally, effect of herb co-treatment cyclophosphamide (50 mg/kg-BW) induced immunosuppression was also evaluated. Results: Our results suggested abrogation of CP-induced immunosuppression in response to co-treatment with herbs. Significant increase in nitric oxide-mediated immune-competent cell counts, viability, and differentiation into neutrophil-like cells were observed in response to dietary supplementation with Lamiaceae herbs. Significantly higher phagocytic activity relative to control was also noted in response to dietary intake of oregano and sage. However, the respiratory burst index did not increase exponentially in response to herb treatments, suggesting a potential enhancement in pathogen recognition and antioxidant defenses. Conclusion: Lamiaceae herbs may have potential immune-modulatory properties important for human health and merits further investigation. PMID:23598918
Galluzzi, Lorenzo; Vacchelli, Erika; Eggermont, Alexander; Fridman, Wolf Hervé; Galon, Jerome; Sautès-Fridman, Catherine; Tartour, Eric; Zitvogel, Laurence; Kroemer, Guido
2012-01-01
Toll-like receptors (TLRs) are prototypic pattern recognition receptors (PRRs) best known for their ability to activate the innate immune system in response to conserved microbial components such as lipopolysaccharide and double-stranded RNA. Accumulating evidence indicates that the function of TLRs is not restricted to the elicitation of innate immune responses against invading pathogens. TLRs have indeed been shown to participate in tissue repair and injury-induced regeneration as well as in adaptive immune responses against cancer. In particular, TLR4 signaling appears to be required for the efficient processing and cross-presentation of cell-associated tumor antigens by dendritic cells, which de facto underlie optimal therapeutic responses to some anticancer drugs. Thus, TLRs constitute prominent therapeutic targets for the activation/intensification of anticancer immune responses. In line with this notion, long-used preparations such as the Coley toxin (a mixture of killed Streptococcus pyogenes and Serratia marcescens bacteria) and the bacillus Calmette-Guérin (BCG, an attenuated strain of Mycobacterium bovis originally developed as a vaccine against tuberculosis), both of which have been associated with consistent anticancer responses, potently activate TLR2 and TLR4 signaling. Today, besides BCG, only one TLR agonist is FDA-approved for therapeutic use in cancer patients: imiquimod. In this Trial Watch, we will briefly present the role of TLRs in innate and cognate immunity and discuss the progress of clinical studies evaluating the safety and efficacy of experimental TLR agonists as immunostimulatory agents for oncological indications. PMID:22934262
Lehrer, Axel T; Wong, Teri-Ann S; Lieberman, Michael M; Humphreys, Tom; Clements, David E; Bakken, Russell R; Hart, Mary Kate; Pratt, William D; Dye, John M
2018-05-24
Infections with filoviruses in humans are highly virulent, causing hemorrhagic fevers which result in up to 90% mortality. In addition to natural infections, the ability to use these viruses as bioterrorist weapons is of significant concern. Currently, there are no licensed vaccines or therapeutics available to combat these infections. The pathogenesis of disease involves the dysregulation of the host's immune system, which results in impairment of the innate and adaptive immune responses, with subsequent development of lymphopenia, thrombocytopenia, hemorrhage, and death. Questions remain with regard to the few survivors of infection, who manage to mount an effective adaptive immune response. These questions concern the humoral and cellular components of this response, and whether such a response can be elicited by an appropriate prophylactic vaccine. The data reported herein describe the production and evaluation of a recombinant subunit Ebola virus vaccine candidate consisting of insect cell expressed Zaire ebolavirus (EBOV) surface glycoprotein (GP) and the matrix proteins VP24 and VP40. The recombinant subunit proteins are shown to be highly immunogenic in mice, yielding both humoral and cellular responses, as well as highly efficacious, providing up to 100% protection against a lethal challenge with live virus. These results demonstrate proof of concept for such a recombinant non-replicating vaccine candidate in the mouse model of EBOV which helps to elucidate immune correlates of protection and warrants further development. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bahi, A; Guardiola, F A; Esteban, M A
2018-06-01
Clove oil is used as an anaesthetic for many species of fish worldwide; however, relatively few studies have assessed its effects on the innate immune response on these species. The present work aimed to investigate the effects of clove oil-eugenol derived anaesthetic on some humoral and cellular immune response in gilthead seabream (Sparus aurata L.). To compare with an unexposed control group, fish were exposed to 55 ppm clove oil for 5 min, before being sampled at 1, 24 and 48 h post-exposure. Serum glucose level was also measured to obtain information on the fish physiological response after clove oil anaesthesia. One hour after exposure the haemolytic complement activity of fish was lower than in the unexposed group. By contrast, the leucocyte peroxidase activity in head-kidney was significantly stimulated 24 h after exposure to clove oil-eugenol. The rest of innate immune parameters evaluated and the glucose levels not were affected by clove oil exposure at any sampling point. Overall, the use of clove oil at 55 ppm as anaesthetic did not seem to alter the innate immune response and neither did it trigger a stress response. The use of clove oil-eugenol derived had become common practice in aquaculture, and its use with gilthead seabream can be considered safe as it does not cause immunodepression in anesthetized fish. Copyright © 2018 Elsevier Ltd. All rights reserved.
Valenzuela, Cristián A; Escobar, Daniela; Perez, Lorena; Zuloaga, Rodrigo; Estrada, Juan Manuel; Mercado, Luis; Valdés, Juan Antonio; Molina, Alfredo
2015-11-01
The effects of stress on immune activity and growth in early vertebrates have not been studied in detail. The present study used fine flounder (Paralichthys adspersus) skeletal muscle as a model to evaluate molecules involved in the stress response, including the glucocorticoid receptors, foxo1/3, and the target genes of these. Additionally, immune markers (il-1β and tnfα) and effector molecules of atrophy (bnip3, caspase-3, and lc3) were assessed. These molecules were analyzed during periods of long-term fasting and refeeding. During fasting, gene expression related to the stress response and atrophy increased; whereas immune markers were down-regulated. During refeeding, atrophy- and stress-related gene expression significantly decreased. In contrast, immune markers were up-regulated. These results provide novel insight on the control of growth in the skeletal muscle of a non-mammalian species under a stressful condition, suggesting that growth, stress, and immune activity in muscle are closely related and coordinated by orchestrated transcriptional dynamics. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sadeghi, Mostafa; Najafpanah, Mohammad Javad
2013-12-01
Chromium is a biologically important element for humans and laboratory animals. Although the favorable effects of trivalent chromiumon immune responses of studied animals have been well documented, the precise mechanisms by which the chromium acts on immune system is relatively poor studied. In this study, real-time qPCR technique was employed to evaluate the expression profiles of four immune-related genes (B2M, MHCA, MHCB, and Rap2A) in spleens of the domestic goats, Capra hircus, feeding on four different levels of supplemental chromium (0, 0.5, 1, and 1.5 mg/day) as chromium– methionine. The results showed that 1.5 mg/day of supplemental chromium significantly increased the expression of the four studied genes (P <0.01). Since the studied genes play important roles in development, activation, and migration of lymphocytes, their increased expression seems to be an unknown mechanism by which chromium impose reinforcing effects on immune system. Therefore, supplemental chromium can be potentially used to improve immune responses especially in animals experiencing any type of stress such as invasion by a pathogen.
Cha, Seung Bin; Kim, Woo Sik; Kim, Jong-Seok; Kim, Hongmin; Kwon, Kee Woong; Han, Seung Jung; Cho, Sang-Nae; Coler, Rhea N; Reed, Steven G; Shin, Sung Jae
2016-04-27
The majority of tuberculosis (TB) vaccine candidates advanced to clinical trials have been evaluated preclinically using laboratory-adapted strains. However, it has been proposed that challenge with clinical isolates in preclinical vaccine testing could provide further and more practical validation. Here, we tested the ID93/GLA-SE TB vaccine candidate against the clinical Mycobacterium tuberculosis (Mtb) strain K (Mtb K) belonging to the Beijing family, the most prevalent Mtb strain in South Korea. Mice immunized with ID93/GLA-SE exhibited a significant reduction in bacteria and reduced lung inflammation against Mtb K when compared to non-immunized controls. In addition, we analyzed the immune responses in the lungs of ID93/GLA-SE-immunized mice, and showed that ID93/GLA-SE was able to elicit sustained Th1-biased immune responses including antigen-specific multifunctional CD4(+) T cell co-producing IFN-γ, TNF-α, and IL-2 as well as a high magnitude of IFN-γ response for up to 10 weeks post-challenge. Notably, further investigation of T cell subsets in the lung following challenge showed remarkable generation of CD8(+) central memory T cells by ID93/GLA-SE-immunization. Our findings showed that ID93/GLA-SE vaccine confers a high level of robust protection against the hypervirulent Mtb Beijing infection which was characterized by pulmonary Th1-polarized T-cell immune responses. These findings may also provide relevant information for potential utility of this vaccine candidate in East-Asian countries where the Beijing genotype is highly prevalent. Copyright © 2016 Elsevier Ltd. All rights reserved.
The Effects of Mind-Body Therapies on the Immune System: Meta-Analysis
Morgan, Nani; Irwin, Michael R.; Chung, Mei; Wang, Chenchen
2014-01-01
Importance Psychological and health-restorative benefits of mind-body therapies have been investigated, but their impact on the immune system remain less defined. Objective To conduct the first comprehensive review of available controlled trial evidence to evaluate the effects of mind-body therapies on the immune system, focusing on markers of inflammation and anti-viral related immune responses. Methods Data sources included MEDLINE, CINAHL, SPORTDiscus, and PsycINFO through September 1, 2013. Randomized controlled trials published in English evaluating at least four weeks of Tai Chi, Qi Gong, meditation, or Yoga that reported immune outcome measures were selected. Studies were synthesized separately by inflammatory (n = 18), anti-viral related immunity (n = 7), and enumerative (n = 14) outcomes measures. We performed random-effects meta-analyses using standardized mean difference when appropriate. Results Thirty-four studies published in 39 articles (total 2, 219 participants) met inclusion criteria. For inflammatory measures, after 7 to 16 weeks of mind-body intervention, there was a moderate effect on reduction of C-reactive protein (effect size [ES], 0.58; 95% confidence interval [CI], 0.04 to 1.12), a small but not statistically significant reduction of interleukin-6 (ES, 0.35; 95% CI, −0.04 to 0.75), and negligible effect on tumor necrosis factor-α (ES, 0.21; 95% CI, −0.15 to 0.58). For anti-viral related immune and enumerative measures, there were negligible effects on CD4 counts (ES, 0.15; 95% CI, −0.04 to 0.34) and natural killer cell counts (ES, 0.12, 95% CI −0.21 to 0.45). Some evidence indicated mind-body therapies increase immune responses to vaccination. Conclusions Mind-body therapies reduce markers of inflammation and influence virus-specific immune responses to vaccination despite minimal evidence suggesting effects on resting anti-viral or enumerative measures. These immunomodulatory effects, albeit incomplete, warrant further methodologically rigorous studies to determine the clinical implications of these findings for inflammatory and infectious disease outcomes. PMID:24988414
USDA-ARS?s Scientific Manuscript database
There are concerns about antagonisms between immunity and animal productivity in livestock production. The objective of this study was to evaluate the effect of antibody levels through a response to vaccination protocol, weaning timing, and their interaction on performance and carcass quality traits...
Bhattacharya, Parna; Dey, Ranadhir; Dagur, Pradeep K; Joshi, Amritanshu B; Ismail, Nevien; Gannavaram, Sreenivas; Debrabant, Alain; Akue, Adovi D; KuKuruga, Mark A; Selvapandiyan, Angamuthu; McCoy, John Philip; Nakhasi, Hira L
2016-08-01
Visceral leishmaniasis (VL) caused by the protozoan parasite Leishmania donovani causes severe disease. Age appears to be critical in determining the clinical outcome of VL and at present there is no effective vaccine available against VL for any age group. Previously, we showed that genetically modified live attenuated L. donovani parasites (LdCen-/-) induced a strong protective innate and adaptive immune response in young mice. In this study we analyzed LdCen-/- parasite mediated modulation of innate and adaptive immune response in aged mice (18 months) and compared to young (2 months) mice. Analysis of innate immune response in bone marrow derived dendritic cells (BMDCs) from both young and aged mice upon infection with LdCen-/- parasites, showed significant enhancement of innate effector responses, which consequently augmented CD4+ Th1 cell effector function compared to LdWT infected BMDCs in vitro. Similarly, parasitized splenic dendritic cells from LdCen-/- infected young and aged mice also revealed induction of proinflammatory cytokines (IL-12, IL-6, IFN-γ and TNF) and subsequent down regulation of anti-inflammatory cytokine (IL-10) genes compared to LdWT infected mice. We also evaluated in vivo protection of the LdCen-/- immunized young and aged mice against virulent L. donovani challenge. Immunization with LdCen-/- induced higher IgG2a antibodies, lymphoproliferative response, pro- and anti-inflammatory cytokine responses and stimulated splenocytes for heightened leishmanicidal activity associated with nitric oxide production in young and aged mice. Furthermore, upon virulent L. donovani challenge, LdCen-/- immunized mice from both age groups displayed multifunctional Th1-type CD4 and cytotoxic CD8 T cells correlating to a significantly reduced parasite burden in the spleen and liver compared to naïve mice. It is interesting to note that even though there was no difference in the LdCen-/- induced innate response in dendritic cells between aged and young mice; the adaptive response specifically in terms of T cell and B cell activation in aged animals was reduced compared to young mice which correlated with less protection in old mice compared to young mice. Taken together, LdCen-/- immunization induced a significant but diminished host protective response in aged mice after challenge with virulent L. donovani parasites compared to young mice.
Bhattacharya, Parna; Dey, Ranadhir; Dagur, Pradeep K.; Joshi, Amritanshu B.; Ismail, Nevien; Gannavaram, Sreenivas; Debrabant, Alain; Akue, Adovi D.; KuKuruga, Mark A.; Selvapandiyan, Angamuthu; McCoy, John Philip; Nakhasi, Hira L.
2016-01-01
Background Visceral leishmaniasis (VL) caused by the protozoan parasite Leishmania donovani causes severe disease. Age appears to be critical in determining the clinical outcome of VL and at present there is no effective vaccine available against VL for any age group. Previously, we showed that genetically modified live attenuated L. donovani parasites (LdCen-/-) induced a strong protective innate and adaptive immune response in young mice. In this study we analyzed LdCen-/- parasite mediated modulation of innate and adaptive immune response in aged mice (18 months) and compared to young (2 months) mice. Methodology Analysis of innate immune response in bone marrow derived dendritic cells (BMDCs) from both young and aged mice upon infection with LdCen-/- parasites, showed significant enhancement of innate effector responses, which consequently augmented CD4+ Th1 cell effector function compared to LdWT infected BMDCs in vitro. Similarly, parasitized splenic dendritic cells from LdCen-/- infected young and aged mice also revealed induction of proinflammatory cytokines (IL-12, IL-6, IFN-γ and TNF) and subsequent down regulation of anti-inflammatory cytokine (IL-10) genes compared to LdWT infected mice. We also evaluated in vivo protection of the LdCen-/- immunized young and aged mice against virulent L. donovani challenge. Immunization with LdCen-/- induced higher IgG2a antibodies, lymphoproliferative response, pro- and anti-inflammatory cytokine responses and stimulated splenocytes for heightened leishmanicidal activity associated with nitric oxide production in young and aged mice. Furthermore, upon virulent L. donovani challenge, LdCen-/- immunized mice from both age groups displayed multifunctional Th1-type CD4 and cytotoxic CD8 T cells correlating to a significantly reduced parasite burden in the spleen and liver compared to naïve mice. It is interesting to note that even though there was no difference in the LdCen-/- induced innate response in dendritic cells between aged and young mice; the adaptive response specifically in terms of T cell and B cell activation in aged animals was reduced compared to young mice which correlated with less protection in old mice compared to young mice. Conclusions Taken together, LdCen-/- immunization induced a significant but diminished host protective response in aged mice after challenge with virulent L. donovani parasites compared to young mice. PMID:27580076
Gilbert, Peter B; Gabriel, Erin E; Miao, Xiaopeng; Li, Xiaoming; Su, Shu-Chih; Parrino, Janie; Chan, Ivan S F
2014-11-15
The phase III Zostavax Efficacy and Safety Trial of 1 dose of licensed zoster vaccine (ZV; Zostavax; Merck) in 50-59-year-olds showed approximately 70% vaccine efficacy (VE) to reduce the incidence of herpes zoster (HZ). An objective of the trial was to assess immune response biomarkers measuring antibodies to varicella zoster virus (VZV) by glycoprotein-based enzyme-linked immunosorbent assay as correlates of protection (CoPs) against HZ. The principal stratification vaccine efficacy curve framework for statistically evaluating immune response biomarkers as CoPs was applied. The VE curve describes how VE against the clinical end point (HZ) varies across participant subgroups defined by biomarker readout measuring vaccine-induced immune response. The VE curve was estimated using several subgroup definitions. The fold rise in VZV antibody titers from the time before immunization to 6 weeks after immunization was an excellent CoP, with VE increasing sharply with fold rise: VE was estimated at 0% for the subgroup with no rise and at 90% for the subgroup with 5.26-fold rise. In contrast, VZV antibody titers measured 6 weeks after immunization did not predict VE, with similar estimated VEs across titer subgroups. The analysis illustrates the value of the VE curve framework for assessing immune response biomarkers as CoPs in vaccine efficacy trials. NCT00534248. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Ji, Zhiwei; Su, Jing; Wu, Dan; Peng, Huiming; Zhao, Weiling; Nlong Zhao, Brian; Zhou, Xiaobo
2017-01-31
Multiple myeloma is a malignant still incurable plasma cell disorder. This is due to refractory disease relapse, immune impairment, and development of multi-drug resistance. The growth of malignant plasma cells is dependent on the bone marrow (BM) microenvironment and evasion of the host's anti-tumor immune response. Hence, we hypothesized that targeting tumor-stromal cell interaction and endogenous immune system in BM will potentially improve the response of multiple myeloma (MM). Therefore, we proposed a computational simulation of the myeloma development in the complicated microenvironment which includes immune cell components and bone marrow stromal cells and predicted the effects of combined treatment with multi-drugs on myeloma cell growth. We constructed a hybrid multi-scale agent-based model (HABM) that combines an ODE system and Agent-based model (ABM). The ODEs was used for modeling the dynamic changes of intracellular signal transductions and ABM for modeling the cell-cell interactions between stromal cells, tumor, and immune components in the BM. This model simulated myeloma growth in the bone marrow microenvironment and revealed the important role of immune system in this process. The predicted outcomes were consistent with the experimental observations from previous studies. Moreover, we applied this model to predict the treatment effects of three key therapeutic drugs used for MM, and found that the combination of these three drugs potentially suppress the growth of myeloma cells and reactivate the immune response. In summary, the proposed model may serve as a novel computational platform for simulating the formation of MM and evaluating the treatment response of MM to multiple drugs.
Antitumor Activity of Human Hydatid Cyst Fluid in a Murine Model of Colon Cancer
Russo, Sofía; Berois, Nora; Fernández, Gabriel; Freire, Teresa; Osinaga, Eduardo
2013-01-01
This study evaluates the antitumor immune response induced by human hydatic cyst fluid (HCF) in an animal model of colon carcinoma. We found that anti-HCF antibodies were able to identify cell surface and intracellular antigens in CT26 colon cancer cells. In prophylactic tumor challenge experiments, HCF vaccination was found to be protective against tumor formation for 40% of the mice (P = 0.01). In the therapeutic setting, HCF vaccination induced tumor regression in 40% of vaccinated mice (P = 0.05). This vaccination generated memory immune responses that protected surviving mice from tumor rechallenge, implicating the development of an adaptive immune response in this process. We performed a proteomic analysis of CT26 antigens recognized by anti-HCF antibodies to analyze the immune cross-reactivity between E. granulosus (HCF) and CT26 colon cancer cells. We identified two proteins: mortalin and creatine kinase M-type. Interestingly, CT26 mortalin displays 60% homology with E. granulosus hsp70. In conclusion, our data demonstrate the capacity of HCF vaccination to induce antitumor immunity which protects from tumor growth in an animal model. This new antitumor strategy could open new horizons in the development of highly immunogenic anticancer vaccines. PMID:24023528
Mannosylated poly(beta-amino esters) for targeted antigen presenting cell immune modulation
Jones, Charles H.; Chen, Mingfu; Ravikrishnan, Anitha; Reddinger, Ryan; Zhang, Guojian; Hakansson, Anders P.; Pfeifer, Blaine A.
2014-01-01
Given the rise of antibiotic resistance and other difficult-to-treat diseases, genetic vaccination is a promising preventative approach that can be tailored and scaled according to the vector chosen for gene delivery. However, most vectors currently utilized rely on ubiquitous delivery mechanisms that ineffectively target important immune effectors such as antigen presenting cells (APCs). As such, APC targeting allows the option for tuning the direction (humoral vs cell-mediated) and strength of the resulting immune responses. In this work, we present the development and assessment of a library of mannosylated poly(beta-amino esters) (PBAEs) that represent a new class of easily synthesized APC-targeting cationic polymers. Polymeric characterization and assessment methodologies were designed to provide a more realistic physiochemical profile prior to in vivo evaluation. Gene delivery assessment in vitro showed significant improvement upon PBAE mannosylation and suggested that mannose-mediated uptake and processing influence the magnitude of gene delivery. Furthermore, mannosylated PBAEs demonstrated a strong, efficient, and safe in vivo humoral immune response without use of adjuvants when compared to genetic and protein control antigens. In summary, the gene delivery effectiveness provided by mannosylated PBAE vectors offers specificity and potency in directing APC activation and subsequent immune responses. PMID:25453962
Blaney, Joseph E; Marzi, Andrea; Willet, Mallory; Papaneri, Amy B; Wirblich, Christoph; Feldmann, Friederike; Holbrook, Michael; Jahrling, Peter; Feldmann, Heinz; Schnell, Matthias J
2013-01-01
We have previously described the generation of a novel Ebola virus (EBOV) vaccine platform based on (a) replication-competent rabies virus (RABV), (b) replication-deficient RABV, or (c) chemically inactivated RABV expressing EBOV glycoprotein (GP). Mouse studies demonstrated safety, immunogenicity, and protective efficacy of these live or inactivated RABV/EBOV vaccines. Here, we evaluated these vaccines in nonhuman primates. Our results indicate that all three vaccines do induce potent immune responses against both RABV and EBOV, while the protection of immunized animals against EBOV was largely dependent on the quality of humoral immune response against EBOV GP. We also determined if the induced antibodies against EBOV GP differ in their target, affinity, or the isotype. Our results show that IgG1-biased humoral responses as well as high levels of GP-specific antibodies were beneficial for the control of EBOV infection after immunization. These results further support the concept that a successful EBOV vaccine needs to induce strong antibodies against EBOV. We also showed that a dual vaccine against RABV and filoviruses is achievable; therefore addressing concerns for the marketability of this urgently needed vaccine.
Rahma, Osama E; Hamilton, J Michael; Wojtowicz, Malgorzata; Dakheel, Omar; Bernstein, Sarah; Liewehr, David J; Steinberg, Seth M; Khleif, Samir N
2014-02-24
Mutant Ras oncogenes produce proteins that are unique to cancer cells and represent attractive targets for vaccine therapy. We have shown previously that vaccinating cancer patients with mutant ras peptides is feasible and capable of inducing a specific immune response against the relevant mutant proteins. Here, we tested the mutant ras peptide vaccine administered in combination with low dose interleukin-2 (IL-2) or/and granulocyte-macrophage colony-stimulating factor (GM-CSF) in order to enhance the vaccine immune response. 5000 μg of the corresponding mutant ras peptide was given subcutaneously (SQ) along with IL-2 (Arm A), GM-CSF (Arm B) or both (Arm C). IL-2 was given SQ at 6.0 million IU/m²/day starting at day 5, 5 days/week for 2 weeks. GM-CSF was given SQ in a dose of 100 μg/day one day prior to each ras peptide vaccination for 4 days. Vaccines were repeated every 5 weeks on arm A and C, and every 4 weeks on arm B, for a maximum of 15 cycles or until disease progression. We treated 53 advanced cancer patients (38 with colorectal, 11 with pancreatic, 1 with common bile duct and 3 with lung) on 3 different arms (16 on arm A, 18 on arm B, and 19 on arm C). The median progression free survival (PFS) and overall survival (OS) was 3.6 and 16.9 months, respectively, for all patients evaluable for clinical response (n = 48). There was no difference in PFS or OS between the three arms (P = 0.73 and 0.99, respectively). Most adverse events were grade 1-2 toxicities and resolved spontaneously. The vaccine induced an immune response to the relevant ras peptide in a total of 20 out of 37 evaluable patients (54%) by ELISPOT, proliferative assay, or both. While 92.3% of patients on arm B had a positive immune response, only 31% of patients on arm A and 36% of patients on arm C had positive immune responses (P = 0.003, Fisher's exact test). The reported data showed that IL-2 might have a negative effect on the specific immune response induced by the relevant mutant ras vaccine in patients with advanced cancer. This observation deserves further investigations. NCI97C0141.
Xu, Qingyu; Gu, Junfei; Lv, You; Yuan, Jiarui; Yang, Nan; Chen, Juan; Wang, Chunfei; Hou, Xuefeng; Jia, Xiaobin; Feng, Liang; Yin, Guowen
2018-03-01
Tumor vascular normalization involved in immune response is beneficial to the chemotherapy of tumors. Recombinant human endostatin (Endostar), an angiogenesis inhibitor, has been demonstrated to be effective in hepatocellular cancer (HCC). However, its vascular normalization in HCC and the role of the immune response in angiogenesis were unclear. In the present study, effects of Endostar on tumor vascular normalization were evaluated in hepatoma 22 (H22) tumor-bearing mice. Endostar was able to inhibit the proliferation and infiltration of tumor cells and improve α-fetoprotein, tumor necrosis factor-α and cyclic adenosine 5'-phosphate levels in the serum of H22-bearing mice, as well as the protein expression levels of the immune factors interferon-γ and cluster of differentiation (CD)86 in liver tissue. Endostar also exhibited more marked downregulation of the levels of vascular endothelial growth factor, CD31, matrix metalloproteinase (MMP)-2, MMP-9 and interleukin-17 during day 3-9 treatment, resulting in short-term normalization of tumor blood vessels. The period of vascular normalization was 3-9 days. The results of the present study demonstrated that Endostar was able to induce the period of vascular normalization, contributing to a more efficacious means of HCC treatment combined with other chemotherapy, and this effect was associated with the immune response. It may be concluded that Endostar inhibited immunity-associated angiogenesis behaviors of vascular endothelial cells in response to HCC. The results of the present study provided more reasonable possibility for the combination therapy of Endostar for the treatment of HCC.
Methods and Protocols for Developing Prion Vaccines.
Marciniuk, Kristen; Taschuk, Ryan; Napper, Scott
2016-01-01
Prion diseases denote a distinct form of infectivity that is based in the misfolding of a self-protein (PrP(C)) into a pathological, infectious conformation (PrP(Sc)). Efforts to develop vaccines for prion diseases have been complicated by the potential dangers that are associated with induction of immune responses against a self-protein. As a consequence, there is considerable appeal for vaccines that specifically target the misfolded prion conformation. Such conformation-specific immunotherapy is made possible through the identification of vaccine targets (epitopes) that are exclusively presented as a consequence of misfolding. An immune response directed against these targets, termed disease-specific epitopes (DSEs), has the potential to spare the function of the native form of the protein while clearing, or neutralizing, the infectious isomer. Although identification of DSEs represents a critical first step in the induction of conformation-specific immune responses, substantial efforts are required to translate these targets into functional vaccines. Due to the poor immunogenicity that is inherent to self-proteins, and that is often associated with short peptides, substantial efforts are required to overcome tolerance-to-self and maximize the resultant immune response following DSE-based immunization. This often includes optimization of target sequences in terms of immunogenicity and development of effective formulation and delivery strategies for the associated peptides. Further, these vaccines must satisfy additional criteria from perspectives of specificity (PrP(C) vs. PrP(Sc)) and safety (antibody-induced template-driven misfolding of PrP(C)). The emphasis of this report is on the steps required to translate DSEs into prion vaccines and subsequent evaluation of the resulting immune responses.
Immunity in the spleen and blood of mice immunized with irradiated Toxoplasma gondii tachyzoites.
Zorgi, Nahiara Esteves; Galisteo, Andrés Jimenez; Sato, Maria Notomi; do Nascimento, Nanci; de Andrade, Heitor Franco
2016-08-01
Toxoplasma gondii infection induces a strong and long-lasting immune response that is able to prevent most reinfections but allows tissue cysts. Irradiated, sterilized T. gondii tachyzoites are an interesting vaccine, and they induce immunity that is similar to infection, but without cysts. In this study, we evaluated the cellular immune response in the blood and spleen of mice immunized with this preparation by mouth (v.o.) or intraperitoneally (i.p.) and analyzed the protection after challenge with viable parasites. BALB/c mice were immunized with three i.p. or v.o. doses of irradiated T. gondii tachyzoites. Oral challenge with ten cysts of the ME-49 or VEG strain at 90 days after the last dose resulted in high levels of protection with low parasite burden in the immunized animals. There were higher levels of specific IgG, IgA and IgM antibodies in the serum, and the i.p. immunized mice had higher levels of the high-affinity IgG and IgM antibodies than the orally immunized mice, which had more high-affinity IgA antibodies. B cells (CD19(+)), plasma cells (CD138(+)) and the CD4(+) and CD8(+) T cell populations were increased in both the blood and spleen. Cells from the spleen of the i.p. immunized mice also showed antigen-induced production of interleukin-10 (IL-10), interferon gamma (IFN-γ) and interleukin 4 (IL-4). The CD4(+) T cells, B cells and likely CD8(+) T cells from the spleens of the i.p. immunized mice proliferated with a specific antigen. The protection was correlated with the spleen and blood CD8(+) T cell, high-affinity IgG and IgM and antigen-induced IL-10 and IL-4 production. Immunization with irradiated T. gondii tachyzoites induces an immune response that is mediated by B cells and CD4(+) and CD8(+) T cells, with increased humoral and cellular immune responses that are necessary for host protection after infection. The vaccine is similar to natural infection, but free of tissue cysts; this immunity restrains infection at challenge and can be an attractive and efficient model for vaccine development in toxoplasmosis.
Gabitzsch, Elizabeth S; Balint-Junior, Joseph P; Xu, Younong; Balcaitis, Stephanie; Sanders-Beer, Brigitte; Karl, Julie; Weinhold, Kent J; Paessler, Slobodan; Jones, Frank R
2012-11-26
Anti-vector immunity mitigates immune responses induced by recombinant adenovirus vector vaccines, limiting their prime-boost capabilities. We have developed a novel gene delivery and expression platform (Ad5 [E1-, E2b-]) that induces immune responses despite pre-existing and/or developed concomitant Ad5 immunity. In the present study, we evaluated if this new Ad5 platform could overcome the adverse condition of pre-existing Ad5 immunity to induce effective immune responses in prime-boost immunization regimens against two different infectious diseases in the same animal. Ad5 immune rhesus macaques (RM) were immunized multiple times with the Ad5 [E1-, E2b-] platform expressing antigens from simian immunodeficiency virus (SIV). Immunized RM developed cell-mediated immunity against SIV antigens Gag, Pol, Nef and Env as well as antibody against Env. Vaccinated and vector control RMs were challenged intra-rectally with homologous SIVmac239. During a 7-week follow-up, there was perturbation of SIV load in some immunized RM. At 7 weeks post-challenge, eight immunized animals (53%) did not have detectable SIV, compared to two RM controls (13%) (P<0.02; log-rank Mantel-Cox test). There was no correlation of protective MHC contributing to infection control. The RM without detectable circulating SIV, now hyper immune to Ad5, were then vaccinated with the same Ad5 [E1-, E2b-] platform expressing H1N1 influenza hemagglutinin (HA). Thirty days post Ad5 [E1-, E2b-]-HA vaccination, significant levels of influenza neutralizing antibody were induced in all animals that increased after an Ad5 [E1-, E2b-]-HA homologous boost. These data demonstrate the versatility of this new vector platform to immunize against two separate disease targets in the same animal despite the presence of immunity against the delivery platform, permitting homologous repeat immunizations with an Ad5 gene delivery platform. Copyright © 2012 Elsevier Ltd. All rights reserved.
Systems integration of innate and adaptive immunity.
Zak, Daniel E; Aderem, Alan
2015-09-29
The pathogens causing AIDS, malaria, and tuberculosis have proven too complex to be overcome by classical approaches to vaccination. The complexities of human immunology and pathogen-induced modulation of the immune system mandate new approaches to vaccine discovery and design. A new field, systems vaccinology, weds holistic analysis of innate and adaptive immunity within a quantitative framework to enable rational design of new vaccines that elicit tailored protective immune responses. A key step in the approach is to discover relationships between the earliest innate inflammatory responses to vaccination and the subsequent vaccine-induced adaptive immune responses and efficacy. Analysis of these responses in clinical studies is complicated by the inaccessibility of relevant tissue compartments (such as the lymph node), necessitating reliance upon peripheral blood responses as surrogates. Blood transcriptomes, although indirect to vaccine mechanisms, have proven very informative in systems vaccinology studies. The approach is most powerful when innate and adaptive immune responses are integrated with vaccine efficacy, which is possible for malaria with the advent of a robust human challenge model. This is more difficult for AIDS and tuberculosis, given that human challenge models are lacking and efficacy observed in clinical trials has been low or highly variable. This challenge can be met by appropriate clinical trial design for partially efficacious vaccines and by analysis of natural infection cohorts. Ultimately, systems vaccinology is an iterative approach in which mechanistic hypotheses-derived from analysis of clinical studies-are evaluated in model systems, and then used to guide the development of new vaccine strategies. In this review, we will illustrate the above facets of the systems vaccinology approach with case studies. Copyright © 2015. Published by Elsevier Ltd.
Immune responses to mumps vaccine in adults who were vaccinated in childhood.
Hanna-Wakim, Rima; Yasukawa, Linda L; Sung, Phillip; Arvin, Ann M; Gans, Hayley A
2008-06-15
In a mumps outbreak in the United States, many infected individuals were adults who had received 2 doses of mumps vaccine. The persistence of cellular immunity to mumps vaccine has not been defined. This was an observational, nonrandomized cohort study evaluating cell-mediated and humoral immunity to mumps in 10 vaccinated and 10 naturally immune adults. Mumps-specific T cell activation and interferon (IFN)-gamma production were measured using lymphoproliferative and flow cytometry assays, and mumps immunoglobulin (Ig) G was measured using enzyme-linked immunosorbent assay. T cell immunity to mumps was high in both groups; 70% of vaccinated and 80% of naturally immune individuals had a positive (> or =3) stimulation index (SI) (P = 1.0). The mean percentages of mumps-specific CD4+ T cells that expressed CD69 and produced IFN-gamma were equivalent in the 2 groups: 0.06% and 0.12%, respectively (P = .11). The mean SIs in the groups were also equivalent, although IFN-gamma concentrations from cultures stimulated with mumps antigen were higher in naturally immune adults than in vaccinated adults (P < or = .01). All adults were positive for mumps IgG. T and B cell immunity to mumps was detected in adults at least 10 years after immunization. Except for IFN-gamma release, responses in vaccinated adults paralleled those observed in naturally immune individuals.
Immune Responses to Mumps Vaccine in Adults Who Were Vaccinated in Childhood
Hanna-Wakim, Rima; Yasukawa, Linda L.; Sung, Phillip; Arvin, Ann M.; Gans, Hayley A.
2008-01-01
Background In a mumps outbreak in the United States, many infected individuals were adults who had received 2 doses of mumps vaccine. The persistence of cellular immunity to mumps vaccine has not been defined. Methods This was an observational, nonrandomized cohort study evaluating cell-mediated and humoral immunity to mumps in 10 vaccinated and 10 naturally immune adults. Mumps-specific T cell activation and interferon (IFN)–γ production were measured using lymphoproliferative and flow cytometry assays, and mumps immunoglobulin (Ig) G was measured using enzyme-linked immunosorbent assay. Results T cell immunity to mumps was high in both groups; 70% of vaccinated and 80% of naturally immune individuals had a positive (≥3) stimulation index (SI) (P = 1.0). The mean percentages of mumps-specific CD4+ T cells that expressed CD69 and produced IFN-γ were equivalent in the 2 groups: 0.06% and 0.12%, respectively (P = .11). The mean SIs in the groups were also equivalent, although IFN-γ concentrations from cultures stimulated with mumps antigen were higher in naturally immune adults than in vaccinated adults (P ≤ .01). All adults were positive for mumps IgG. Conclusion T and B cell immunity to mumps was detected in adults at least 10 years after immunization. Except for IFN-γ release, responses in vaccinated adults paralleled those observed in naturally immune individuals. PMID:18419345
Le Moignic, A; Malard, V; Benvegnu, T; Lemiègre, L; Berchel, M; Jaffrès, P-A; Baillou, C; Delost, M; Macedo, R; Rochefort, J; Lescaille, G; Pichon, C; Lemoine, F M; Midoux, P; Mateo, V
2018-05-28
Clinical trials with direct administration of synthetic mRNAs encoding tumor antigens demonstrated safety and induction of tumor-specific immune responses. Their proper delivery to dendritic cells (DCs) requires their protection against RNase degradation and more specificity for dose reduction. Lipid-Polymer-RNA lipopolyplexes (LPR) are attractive mRNA delivery systems and their equipment with mannose containing glycolipid, specific of endocytic receptors present on the membrane of DCs is a valuable strategy. In this present work, we evaluated the capacity of LPR functionalized with a tri-antenna of α-d-mannopyranoside (triMN-LPR) concerning (i) their binding to CD209/DC-SIGN and CD207/Langerin expressing cell lines, human and mouse DCs and other hematopoietic cell populations, (ii) the nature of induced immune response after in vivo immunization and (iii) their therapeutic anti-cancer vaccine efficiency. We demonstrated that triMN-LPR provided high induction of a local inflammatory response two days after intradermal injection to C57BL/6 mice, followed by the recruitment and activation of DCs in the corresponding draining lymph nodes. This was associated with skin production of CCR7 and CXCR4 at vaccination sites driving DC migration. High number of E7-specific T cells was detected after E7-encoded mRNA triMN-LPR vaccination. When evaluated in three therapeutic pre-clinical murine tumor models such as E7-expressing TC1 cells, OVA-expressing EG7 cells and MART-1-expressing B16F0 cells, triMN-LPR carrying mRNA encoding the respective antigens significantly exert curative responses in mice vaccinated seven days after initial tumor inoculation. These results provide evidence that triMN-LPR give rise to an efficient stimulatory immune response allowing for therapeutic anti-cancer vaccination in mice. This mRNA formulation should be considered for anti-cancer vaccination in Humans. Copyright © 2018 Elsevier B.V. All rights reserved.
Wang, Zhen-Zi; Gao, Yu-Hua; Lu, Wei; Jin, Cun-Duo; Zeng, Ying; Yan, Ling; Ding, Feng; Li, Tong; Liu, Xue-En; Zhuang, Hui
2017-04-03
To evaluate the persistence of protection from hepatitis B (HB) vaccination among adolescents immunized with a primary series of HB vaccine as infants, and the immune response to booster doses. Healthy adolescents aged 15-17 y vaccinated with HB vaccine only at birth were enrolled. Baseline serum hepatitis B surface antigen (HBsAg), antibody against hepatitis B surface antigen (anti-HBs) and antibody against hepatitis B core antigen (anti-HBc) were detected by Enzyme-Linked Immunosorbent Assay (ELISA) and anti-HBs level was measured using Chemiluminescent Microparticle Immunoassay (CMIA). The rate of HBV infection was calculated. The seroprotection rate of anti-HBs (≥ 10 mIU/ml) and GMC level were used to evaluate the persistence of immunity from HB vaccination. Those with anti-HBs < 10 mIU/ml were immunized with booster doses of HB vaccine and the anamnestic response was assessed. Of 180 adolescents who received a primary series of HB vaccinations as infants, 3 (1.7%) had HBV infection and 74 (41.1%) had anti-HBs ≥ 10 mIU/ml with a GMC of 145.11 mIU/ml. The remaining 103 (57.2%) with anti-HBs < 10 mIU/ml received a booster dose of 20 μg HB vaccine and achieved the seroprotection rate of 84% (84/100) and a GMC of 875.19 mIU/ml at one month post-booster. An additional dose of 60 μg HB vaccine was administered to the 16 adolescents with anti-HBs < 10 mIU/ml after the first booster. All of them obtained anti-HBs seroprotection with a GMC of 271.02 mIU/ml at 1.5 months after an additional dose. Vaccine-induced immunity persisted for up to 15-17 y in 89.3% (158/177) of participants after a primary HB vaccination in infancy. Administering a booster dose of 20μg HB vaccine elicited an anamnestic immune responses in the majority of individuals with baseline anti-HBs <10 mIU/ml.
Zhang, Lei; Li, Hongyong; Hai, Yan; Yin, Wei; Li, Wenjian; Zheng, Boyang; Du, Xiaomin; Li, Na; Zhang, Zhengzheng; Deng, Yuqing; Zeng, Ruihong; Wei, Lin
2017-05-15
Respiratory syncytial virus (RSV) is the leading cause of childhood hospitalizations. The formalin-inactivated RSV (FI-RSV) vaccine-enhanced respiratory disease (ERD) has been an obstacle to the development of a safe and effective killed RSV vaccine. Agonists of Toll-like receptor (TLR) have been shown to regulate immune responses induced by FI-RSV. Notch signaling plays critical roles during the differentiation and effector function phases of innate and adaptive immune responses. Cross talk between TLR and Notch signaling pathways results in fine-tuning of TLR-triggered innate inflammatory responses. We evaluated the impact of TLR and Notch signaling on ERD in a murine model by administering CpG, an agonist of TLR9, in combination with L685,458, an inhibitor of Notch signaling during FI-RSV immunization. Activation with CpG or deficiency of MyD88-dependent TLR signaling did not alleviate airway inflammation in FI-RSV-immunized mice. Activation or inhibition of Notch signaling with Dll4, one of the Notch ligands, or L685,458 did not suppress FI-RSV-enhanced airway inflammation either. However, the CpG together with L685,458 markedly inhibited FI-RSV-enhanced airway hyperresponsiveness, weight loss, and lung inflammation. Interestingly, CpG plus L685,458 completely inhibited FI-RSV-associated Th17 and Th17-associated proinflammatory chemokine responses in lungs following RSV challenge but not Th1 or Th2, memory responses. In addition, FI-RSV plus CpG plus L685,458 promoted protective CD8 + lung tissue-resident memory (TRM) cells. These results indicate that activation of TLR signaling combined with inhibition of Notch signaling prevent FI-RSV ERD, and the mechanism appears to involve suppressing proinflammatory Th17 memory responses and promoting protective TRM in lungs. IMPORTANCE RSV is the most important cause of lower respiratory tract infections in infants. The FI-RSV-enhanced respiratory disease (ERD) is a major impediment to the development of a safe and effective killed RSV vaccine. Using adjuvants to regulate innate and adaptive immune responses could be an effective method to prevent ERD. We evaluated the impact of TLR and Notch signaling on ERD by administering CpG, an agonist of TLR9, in combination with L685,458, an inhibitor of Notch signaling, during FI-RSV immunization. The data showed that treatment of TLR or Notch signaling alone did not suppress FI-RSV-enhanced airway inflammation, while CpG plus L685,458 markedly inhibited ERD. The mechanism appears to involve suppressing Th17 memory responses and promoting tissue-resident memory cells. Moreover, these results suggest that regulation of lung immune memory with adjuvant compounds containing more than one immune-stimulatory molecule may be a good strategy to prevent FI-RSV ERD. Copyright © 2017 American Society for Microbiology.
Zhang, Lei; Li, Hongyong; Hai, Yan; Yin, Wei; Li, Wenjian; Zheng, Boyang; Du, Xiaomin; Li, Na; Zhang, Zhengzheng; Deng, Yuqing
2017-01-01
ABSTRACT Respiratory syncytial virus (RSV) is the leading cause of childhood hospitalizations. The formalin-inactivated RSV (FI-RSV) vaccine-enhanced respiratory disease (ERD) has been an obstacle to the development of a safe and effective killed RSV vaccine. Agonists of Toll-like receptor (TLR) have been shown to regulate immune responses induced by FI-RSV. Notch signaling plays critical roles during the differentiation and effector function phases of innate and adaptive immune responses. Cross talk between TLR and Notch signaling pathways results in fine-tuning of TLR-triggered innate inflammatory responses. We evaluated the impact of TLR and Notch signaling on ERD in a murine model by administering CpG, an agonist of TLR9, in combination with L685,458, an inhibitor of Notch signaling during FI-RSV immunization. Activation with CpG or deficiency of MyD88-dependent TLR signaling did not alleviate airway inflammation in FI-RSV-immunized mice. Activation or inhibition of Notch signaling with Dll4, one of the Notch ligands, or L685,458 did not suppress FI-RSV-enhanced airway inflammation either. However, the CpG together with L685,458 markedly inhibited FI-RSV-enhanced airway hyperresponsiveness, weight loss, and lung inflammation. Interestingly, CpG plus L685,458 completely inhibited FI-RSV-associated Th17 and Th17-associated proinflammatory chemokine responses in lungs following RSV challenge but not Th1 or Th2, memory responses. In addition, FI-RSV plus CpG plus L685,458 promoted protective CD8+ lung tissue-resident memory (TRM) cells. These results indicate that activation of TLR signaling combined with inhibition of Notch signaling prevent FI-RSV ERD, and the mechanism appears to involve suppressing proinflammatory Th17 memory responses and promoting protective TRM in lungs. IMPORTANCE RSV is the most important cause of lower respiratory tract infections in infants. The FI-RSV-enhanced respiratory disease (ERD) is a major impediment to the development of a safe and effective killed RSV vaccine. Using adjuvants to regulate innate and adaptive immune responses could be an effective method to prevent ERD. We evaluated the impact of TLR and Notch signaling on ERD by administering CpG, an agonist of TLR9, in combination with L685,458, an inhibitor of Notch signaling, during FI-RSV immunization. The data showed that treatment of TLR or Notch signaling alone did not suppress FI-RSV-enhanced airway inflammation, while CpG plus L685,458 markedly inhibited ERD. The mechanism appears to involve suppressing Th17 memory responses and promoting tissue-resident memory cells. Moreover, these results suggest that regulation of lung immune memory with adjuvant compounds containing more than one immune-stimulatory molecule may be a good strategy to prevent FI-RSV ERD. PMID:28275186
Jolly, Ana; Lompardía, Silvina; Hajos, Silvia E; Mundo, Silvia L
2016-01-01
Mycobacterium avium subspecies paratuberculosis (MAP) is the causative agent of Johne's disease (JD), a chronic granulomatous enteritis in ruminants. Understanding the protective immune response following infection is crucial to improve the diagnosis and the development of vaccines against this disease. The goal of this work was to assess whether specific antibodies were able to modulate the macrophage response to MAP infection by evaluating apoptosis and TNF-α secretion in an in vitro model. Sera from healthy (n=2), MAP-infected (n=3) and lipoarabinomannan (LAM)-immunized (n=3) bovines were evaluated. LAM was chosen as immunogen due to its relevant role in mycobacterial pathogenesis. We demonstrated by two different techniques (Acridine Orange/Ethidium Bromide microscopy and Annexin V/7-Amino-Actinomycin D flow cytometry) that the immune sera from both, MAP-infected and LAM-immunized bovines, significantly increased macrophage apoptosis in infected cultures. Comparable levels of apoptosis were detected when MAP was pre-incubated with purified specific antibodies instead of whole serum. Furthermore, this effect was accompanied by a significantly higher secretion of TNF-α. These results strongly suggest that specific antibodies could limit the impact of MAP on the apoptosis of bovine cells. This work would contribute to elucidate the role of the specific antibody response in bovine JD and its prevention. Copyright © 2015 Elsevier B.V. All rights reserved.
Evaluation of immunomodulatory activity of methanolic extract of Piper betel.
Kanjwani, D G; Marathe, T P; Chiplunkar, S V; Sathaye, S S
2008-06-01
Many of the disorders today are based on the imbalances of immunological processes. This necessitates the search for newer and safer immunomodulators. Thus, the objective of the present study was to explore the immunomodulatory activity of the methanolic extract of Piper betel L. (MPb) (Family: Piperaceae). The MPb consists of mixture of phenols, flavonoids, tannins and polysaccharides. Both in vitro as well as in vivo evaluation was carried out. The effects of MPb on lymphocyte proliferation, interferon-gamma receptors and the production of nitric oxide were measured in vitro. Further, the extract at different dose levels was studied in vivo for the humoral and cellular immune responses on mice immunized with sheep red blood cells. P. betel significantly suppressed phytohaemagglutinin stimulated peripheral blood lymphocyte proliferation in a dose-dependent manner. The decrease in antibody titre and increased suppression of inflammation suggests possible immunosuppressive effect of extract on cellular and humoral response in mice. Thus, the MPb could be explored extensively as a therapeutic agent to treat various immune disorders including autoimmune disorders.
Induction of humoral responses to BHV-1 glycoprotein D expressed by HSV-1 amplicon vectors
Blanc, Andrea Maria; Berois, Mabel Beatriz; Tomé, Lorena Magalí; Epstein, Alberto L.
2012-01-01
Herpes simplex virus type-1 (HSV-1) amplicon vectors are versatile and useful tools for transferring genes into cells that are capable of stimulating a specific immune response to their expressed antigens. In this work, two HSV-1-derived amplicon vectors were generated. One of these expressed the full-length glycoprotein D (gD) of bovine herpesvirus 1 while the second expressed the truncated form of gD (gDtr) which lacked the trans-membrane region. After evaluating gD expression in the infected cells, the ability of both vectors to induce a specific gD immune response was tested in BALB/c mice that were intramuscularly immunized. Specific serum antibody responses were detected in mice inoculated with both vectors, and the response against truncated gD was higher than the response against full-length gD. These results reinforce previous findings that HSV-1 amplicon vectors can potentially deliver antigens to animals and highlight the prospective use of these vectors for treating infectious bovine rhinotracheitis disease. PMID:22437537
Patterson, Shane B.; Landrum, Michael L; Okulicz, Jason F.
2014-01-01
Background Delayed-type hypersensitivity (DTH) test responsiveness is associated with HIV disease progression; however it is unknown whether other immune markers, such as hepatitis B virus (HBV) vaccine seroresponse, also predict HIV outcomes. Methods Eligible participants received HBV vaccine after HIV diagnosis, had non-anergic DTH testing at the time of last HBV vaccination, and available post-vaccine HBV antibody responses. The risk of progression to AIDS or death from the time of last HBV vaccination was evaluated. Results Of 369 eligible participants with non-anergic DTH responses, 148 (40%) were HBV vaccine responders. In a multivariate model adjusted for age, CD4 count, viral load, and number of vaccinations, HBV vaccine non-responders had an increased risk of progression to AIDS or death (HR 1.81; 95% CI, 1.03–3.19). Conclusions HBV vaccine seroresponses were independent of DTH responses which suggest that non-response to HBV vaccine is not solely due to cell-mediated immune dysfunction in HIV-infected persons. PMID:24793945
Minang, Jacob T; Inglefield, Jon R; Harris, Andrea M; Lathey, Janet L; Alleva, David G; Sweeney, Diane L; Hopkins, Robert J; Lacy, Michael J; Bernton, Edward W
2014-11-28
NuThrax™ (Anthrax Vaccine Adsorbed with CPG 7909 Adjuvant) (AV7909) is in development. Samples obtained in a phase Ib clinical trial were tested to confirm biomarkers of innate immunity and evaluate effects of CPG 7909 (PF-03512676) on adaptive immunity. Subjects received two intramuscular doses of commercial BioThrax(®) (Anthrax Vaccine Adsorbed, AVA), or two intramuscular doses of one of four formulations of AV7909. IP-10, IL-6, and C-reactive protein (CRP) levels were elevated 24-48 h after administration of AV7909 formulations, returning to baseline by Day 7. AVA (no CPG 7909) resulted in elevated IL-6 and CRP, but not IP-10. Another marker of CpG, transiently decreased absolute lymphocyte counts (ALCs), correlated with transiently increased IP-10. Cellular recall responses to anthrax protective antigen (PA) or PA peptides were assessed by IFN-γ ELISpot assay performed on cryopreserved PBMCs obtained from subjects prior to immunization and 7 days following the second immunization (study day 21). One-half of subjects that received AV7909 with low-dose (0.25mg/dose) CPG 7909 possessed positive Day 21 T cell responses to PA. In contrast, positive T cell responses occurred at an 11% average rate (1/9) for AVA-treated subjects. Differences in cellular responses due to dose level of CPG 7909 were not associated with differences in humoral anti-PA IgG responses, which were elevated for recipients of AV7909 compared to recipients of AVA. Serum markers at 24 or 48 h (i.e. % ALC decrease, or increase in IL-6, IP-10, or CRP) correlated with the humoral (antibody) responses 1 month later, but did not correlate with cellular ELISpot responses. In summary, biomarkers of early responses to CPG 7909 were confirmed, and adding a CpG adjuvant to a vaccine administered twice resulted in increased T cell effects relative to vaccine alone. Changes in early biomarkers correlated with subsequent adaptive humoral immunity but not cellular immunity. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
The influence of physical activity in the anti-tumor immune response in experimental breast tumor.
Bianco, Thiago M; Abdalla, Douglas R; Desidério, Chamberttan S; Thys, Sofie; Simoens, Cindy; Bogers, John-Paul; Murta, Eddie F C; Michelin, Márcia A
2017-10-01
This study aimed to investigate the influence of physical activity in innate immunity to conduce to an effective antitumoral immune response analyzing the phenotype and activation status of infiltrating cells. We analysed the intracellular cytokines and the transcription factors of tumor infiltrating lymphocytes (TILS) and spleen leukocytes. The Nos2 gene expression was evaluated in spleen cells and futhermore the ROS production was measured and spleen cells; another cell evaluated was dendritic cells (TIDCs), their cytokines expression and membrane molecules; finally to understood the results obtained, we analysed the dendritic cells obtained from bone marrow. Were used female Balb/c mice divided into 4 groups: two controls without tumor, sedentary (GI) and trained (GII) and two groups with tumor, sedentary (GIII) or trained (GIV). The physical activity (PA) was realized acoording swimming protocol. Tumor was induced by injection of 4T1 cells. All experiments were performed in biological triplicate. After the experimental period, the tumor was removed and the cells were identified by flow cytometry with labeling to CD4, CD8, CD11c, CD11b, CD80, CD86 and Ia, and intracelular staining IL-10, IL-12, TNF-α, IFN-γ, IL-17, Tbet, GATA3, RORγt and FoxP3. The bone marrow of the animals was obtained to analyse the derivated DCs by flow cytometry and culture cells to obtain the supernatant to measure the cytokines. Our results demonstrated that the PA inhibit the tumoral growth although not to change the number of TILS, but reduced expression of GATA-3, ROR-γT, related with poor prognosis, and TNF-α intracellular; however occur one significantly reduction in TIDCS, but these cells expressed more co-stimulatory and presentation molecules. Furthermore, we observed that the induced PA stimulated the gene expression of Tbet and the production of inflammatory cytokines suggesting an increase of Th1 systemic response. The results evaluating the systemic influence in DCs showed that the PA improve significantly the number of those cells in bone marrow as well the number of co-stimulatory molecules. Therefore, we could conclude that PA influence the innate immunity by interfering to promote in process of maturation of DCs both in tumor and systemically, that by its turn promote a modification in acquired immune cells, representing by T helper to induce an important alteration transcription factors that are responsible to maintain a suppressive microenviroment, and thereby, allowing the latter cells can thus activate antitumor immune response. The PA was able improve the Th1 systemic response by enhance to Tbet gene expression, promote a slightly increased of Th1-type cytokines and decrease Gata3 and Foxp3 gene expression in which can inhibit the Th1 immune response. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.
Improving the MVA Vaccine Potential by Deleting the Viral Gene Coding for the IL-18 Binding Protein
Pascutti, María Fernanda; Rodríguez, Ana María; Maeto, Cynthia; Perdiguero, Beatriz; Gómez, Carmen E.; Esteban, Mariano; Calamante, Gabriela; Gherardi, María Magdalena
2012-01-01
Background Modified Vaccinia Ankara (MVA) is an attenuated strain of Vaccinia virus (VACV) currently employed in many clinical trials against HIV/AIDS and other diseases. MVA still retains genes involved in host immune response evasion, enabling its optimization by removing some of them. The aim of this study was to evaluate cellular immune responses (CIR) induced by an IL-18 binding protein gene (C12L) deleted vector (MVAΔC12L). Methodology/Principal Findings BALB/c and C57BL/6 mice were immunized with different doses of MVAΔC12L or MVA wild type (MVAwt), then CIR to VACV epitopes in immunogenic proteins were evaluated in spleen and draining lymph nodes at acute and memory phases (7 and 40 days post-immunization respectively). Compared with parental MVAwt, MVAΔC12L immunization induced a significant increase of two to three-fold in CD8+ and CD4+ T-cell responses to different VACV epitopes, with increased percentage of anti-VACV cytotoxic CD8+ T-cells (CD107a/b+) during the acute phase of the response. Importantly, the immunogenicity enhancement was also observed after MVAΔC12L inoculation with different viral doses and by distinct routes (systemic and mucosal). Potentiation of MVA's CIR was also observed during the memory phase, in correlation with a higher protection against an intranasal challenge with VACV WR. Of note, we could also show a significant increase in the CIR against HIV antigens such as Env, Gag, Pol and Nef from different subtypes expressed from two recombinants of MVAΔC12L during heterologous DNA prime/MVA boost vaccination regimens. Conclusions/Significance This study demonstrates the relevance of IL-18 bp contribution in the immune response evasion during MVA infection. Our findings clearly show that the deletion of the viral IL-18 bp gene is an effective approach to increase MVA vaccine efficacy, as immunogenicity improvements were observed against vector antigens and more importantly to HIV antigens. PMID:22384183
Calvet, Christophe Y; Thalmensi, Jessie; Liard, Christelle; Pliquet, Elodie; Bestetti, Thomas; Huet, Thierry; Langlade-Demoyen, Pierre; Mir, Lluis M
2014-01-01
DNA vaccination consists in administering an antigen-encoding plasmid in order to trigger a specific immune response. This specific vaccine strategy is of particular interest to fight against various infectious diseases and cancer. Gene electrotransfer is the most efficient and safest non-viral gene transfer procedure and specific electrical parameters have been developed for several target tissues. Here, a gene electrotransfer protocol into the skin has been optimized in mice for efficient intradermal immunization against the well-known telomerase tumor antigen. First, the luciferase reporter gene was used to evaluate gene electrotransfer efficiency into the skin as a function of the electrical parameters and electrodes, either non-invasive or invasive. In a second time, these parameters were tested for their potency to generate specific cellular CD8 immune responses against telomerase epitopes. These CD8 T-cells were fully functional as they secreted IFNγ and were endowed with specific cytotoxic activity towards target cells. This simple and optimized procedure for efficient gene electrotransfer into the skin using the telomerase antigen is to be used in cancer patients for the phase 1 clinical evaluation of a therapeutic cancer DNA vaccine called INVAC-1. PMID:26015983
Ahmed, Tanvir; Svennerholm, Ann-Mari; Al Tarique, Abdullah; Sultana, Gazi N N; Qadri, Firdausi
2009-02-25
The killed oral cholera vaccine Dukoral is recommended for adults and only children over 2 years of age, although cholera is seen frequently in younger children and there is an urgent need for a vaccine for them. Since decreased immunogenicity of oral vaccines in children in developing countries is a critical problem, we tested interventions to enhance responses to Dukoral. We evaluated the effect on the immune responses by temporarily withholding breast-feeding or by giving zinc supplementation. Two doses of Dukoral consisting of killed cholera vibrios and cholera B subunit were given to 6-18 months old Bangladeshi children (n=340) and safety and immunogenicity studied. Our results showed that two doses of the vaccine were safe and induced antibacterial (vibriocidal) antibody responses in 57% and antitoxin responses in 85% of the children. Immune responses were comparable after intake of one and two doses. Temporary withholding breast-feeding for 3 h before immunization or supplementation with 20 mg of zinc per day for 42 days resulted in increased magnitude of vibriocidal antibodies (77% and 79% responders, respectively). Administration of vaccines without buffer or in water did not result in reduction of vibriocidal responses. This study demonstrates that the vaccine is safe and immunogenic in children under 2 years of age and that simple interventions can enhance immune responses in young children.
Lynch, Michelle M; Cernetich-Ott, Amy; Weidanz, William P; Burns, James M
2009-03-01
For the development of blood-stage malaria vaccines, there is a clear need to establish in vitro measures of the antibody-mediated and the cell-mediated immune responses that correlate with protection. In this study, we focused on establishing correlates of antibody-mediated immunity induced by immunization with apical membrane antigen 1 (AMA1) and merozoite surface protein 1(42) (MSP1(42)) subunit vaccines. To do so, we exploited the Plasmodium chabaudi rodent model, with which we can immunize animals with both protective and nonprotective vaccine formulations and allow the parasitemia in the challenged animals to peak. Vaccine formulations were varied with regard to the antigen dose, the antigen conformation, and the adjuvant used. Prechallenge antibody responses were evaluated by enzyme-linked immunosorbent assay and were tested for a correlation with protection against nonlethal P. chabaudi malaria, as measured by a reduction in the peak level of parasitemia. The analysis showed that neither the isotype profile nor the avidity of vaccine-induced antibodies correlated with protective efficacy. However, high titers of antibodies directed against conformation-independent epitopes were associated with poor vaccine performance and may limit the effectiveness of protective antibodies that recognize conformation-dependent epitopes. We were able to predict the efficacies of the P. chabaudi AMA1 (PcAMA1) and P. chabaudi MSP1(42) (PcMSP1(42)) vaccines only when the prechallenge antibody titers to both refolded and reduced/alkylated antigens were considered in combination. The relative importance of these two measures of vaccine-induced responses as predictors of protection differed somewhat for the PcAMA1 and the PcMSP1(42) vaccines, a finding confirmed in our final immunization and challenge study. A similar approach to the evaluation of vaccine-induced antibody responses may be useful during clinical trials of Plasmodium falciparum AMA1 and MSP1(42) vaccines.
Fairley, Stacie J; Singh, Shree R; Yilma, Abebayehu N; Waffo, Alain B; Subbarayan, Praseetha; Dixit, Saurabh; Taha, Murtada A; Cambridge, Chino D; Dennis, Vida A
2013-01-01
We recently demonstrated by in vitro experiments that PLGA (poly D, L-lactide-co-glycolide) potentiates T helper 1 (Th1) immune responses induced by a peptide derived from the recombinant major outer membrane protein (rMOMP) of Chlamydia trachomatis, and may be a promising vaccine delivery system. Herein we evaluated the immune-potentiating potential of PLGA by encapsulating the full-length rMOMP (PLGA-rMOMP), characterizing it in vitro, and investigating its immunogenicity in vivo. Our hypothesis was that PLGA-rMOMP triggers Th1 immune responses in mice, which are desirable prerequisites for a C. trachomatis candidate nanovaccine. Physical-structural characterizations of PLGA-rMOMP revealed its size (approximately 272 nm), zeta potential (-14.30 mV), apparent spherical smooth morphology, and continuous slow release pattern. PLGA potentiated the ability of encapsulated rMOMP to trigger production of cytokines and chemokines by mouse J774 macrophages. Flow cytometric analyses revealed that spleen cells from BALB/c mice immunized with PLGA-rMOMP had elevated numbers of CD4+ and CD8+ T cell subsets, and secreted more rMOMP-specific interferon-gamma (Th1) and interleukin (IL)-12p40 (Th1/Th17) than IL-4 and IL-10 (Th2) cytokines. PLGA-rMOMP-immunized mice produced higher serum immunoglobulin (Ig)G and IgG2a (Th1) than IgG1 (Th2) rMOMP-specific antibodies. Notably, sera from PLGA-rMOMP-immunized mice had a 64-fold higher Th1 than Th2 antibody titer, whereas mice immunized with rMOMP in Freund's adjuvant had only a four-fold higher Th1 than Th2 antibody titer, suggesting primarily induction of a Th1 antibody response in PLGA-rMOMP-immunized mice. Our data underscore PLGA as an effective delivery system for a C. trachomatis vaccine. The capacity of PLGA-rMOMP to trigger primarily Th1 immune responses in mice promotes it as a highly desirable candidate nanovaccine against C. trachomatis.
Zhang, Ming; Dong, Chunsheng; Xiong, Sidong
2017-01-01
Tuberculosis (TB) remains a serious health problem worldwide, and an urgent need exists to improve or replace the available vaccine, Mycobacterium bovis bacillus Calmette-Guérin (BCG). Most vaccination protocols adapt two or three doses to induce long-term lasting immunity. Our previous study showed that the naked DNA encoding the triple-antigen fusion TFP846 (Rv3615c-Mtb10.4-Rv2660c) induced robust T cellular immune responses accompanying four inoculations against mycobacteria infection. However, a number of compliance issues exist in some areas lacking the appropriate medical infrastructure with multiple administrations. In this study, a novel vesicular stomatitis virus expressing TFP846 (VSV-846) was developed and the immune responses elicited by VSV-846 were evaluated. We observed that intranasal delivery of VSV-846 induced a potent antigen-specific T cell response following a single dose and VSV-846 efficiently controlled bacterial growth to levels ~10-fold lower than that observed in the mock group 6 weeks post-infection in BCG-infected mice. Importantly, mice immunized with VSV-846 provided long-term protection against mycobacteria infection compared with those receiving p846 or BCG immunization. Increased memory T cells were also observed in the spleens of VSV-846-vaccinated mice, which could be a potential mechanism associated with long-term protective immune response. These findings supported the use of VSV as an antigen delivery vector with the potential for TB vaccine development. PMID:28224119
The clinical syndrome of specific antibody deficiency in children.
Boyle, R J; Le, C; Balloch, A; Tang, M L-K
2006-12-01
Specific antibody deficiency (SAD) is an immune deficiency which has been reported in adults and children with recurrent respiratory tract infections; however, the clinical features of SAD are not well described. This study evaluated formally the clinical syndrome of SAD, by comparing the clinical features of children with SAD and those of children with recurrent infection but normal immune function tests. SAD was defined as an adequate IgG antibody response to less than 50% of 12 pneumococcal serotypes tested following 23-valent unconjugated pneumococcal immunization. An adequate IgG antibody response was defined as a post-immunization titre of >or= 1.3 microg/ml or >or= four times the preimmunization value. Seventy-four children with recurrent infection were evaluated where immune deficiencies other than SAD had been excluded. Eleven (14.9%) of these children had SAD. Clinical features differed between the group with SAD and the group with normal antibody responses. A history of otitis media, particularly in association with chronic otorrhoea was associated with SAD [relative risk (RR) of SAD in those with chronic otorrhoea 4.64 (P = 0.02)]. SAD was associated with allergic disease, particularly allergic rhinitis [RR of SAD in those with allergic rhinitis 3.77 (P = 0.04)]. These two clinical associations of SAD were independent in this study [RR of chronic otorrhoea in those with allergic rhinitis 0.85 (P = 0.28)]. SAD was not an age-related phenomenon in this population. SAD has a distinct clinical phenotype, presenting as recurrent infection associated with chronic otorrhoea and/or allergic disease, and the condition should be sought in children with these features.
Co-delivery of PSA and PSMA DNA vaccines with electroporation induces potent immune responses.
Ferraro, Bernadette; Cisper, Neil J; Talbott, Kendra T; Philipson-Weiner, Lindsey; Lucke, Colleen E; Khan, Amir S; Sardesai, Niranjan Y; Weiner, David B
2011-01-01
Prostate cancer (PCa) remains a significant public health problem. Current treatment modalities for PCa can be useful, but may be accompanied by deleterious side effects and often do not confer long-term control. Accordingly, additional modalities, such as immunotherapy, may represent an important approach for PCa treatment. The identification of tissue-specific antigens engenders PCa an attractive target for immunotherapeutic approaches. Delivery of DNA vaccines with electroporation has shown promising results for prophylactic and therapeutic targets in a variety of species including humans. Application of this technology for PCa immunotherapy strategies has been limited to single antigen and epitope targets. We sought to test the hypothesis that a broader collection of antigens would improve the breadth and effectiveness of a PCa immune therapy approach. We therefore developed highly optimized DNA vaccines encoding prostate-specific antigen (PSA) and prostate-specific membrane antigen (PSMA) as a dual antigen approach to immune therapy of PCa. PSA-and PSMA-specific cellular immunogenicity was evaluated in a mouse model for co-delivery and single antigen vaccination. Mice received 2 immunizations spaced 2 weeks apart and immunogenicity was evaluated 1 week after the second vaccination. Both the PSA and PSMA vaccines induced robust antigen-specific IFNγ responses by ELISpot. Further characterization of cellular immunogenicity by flow cytometry indicated strong antigen-specific TNFα production by CD4+ T cells and IFNγ and IL-2 secretion by both CD4+ and CD8+ T cells. There was also a strong humoral response as determined by PSA-specific seroconversion. These data support further study of this novel approach to immune therapy of PCa.
Lundgren, Anna; Jertborn, Marianne; Svennerholm, Ann-Mari
2016-06-08
We have evaluated the capacity of an oral multivalent enterotoxigenic Escherichia coli (ETEC) vaccine (MEV) to induce mucosal immunological memory. MEV consists of four inactivated E. coli strains over-expressing the major colonization factors (CFs) CFA/I, CS3, CS5 and CS6 and the LTB-related toxoid LCTBA. Memory responses were analyzed by comparing the magnitudes and kinetics of intestine-derived antibody-secreting cell responses to a single dose of MEV in three groups of adult Swedish volunteers (n=16-19 subjects per group) in a Phase I trial: non-immunized controls (I) and subjects who in a previous Phase I trial 13-23 months earlier had received two biweekly doses of MEV (II) or MEV+double mutant LT (dmLT) adjuvant (III). Responses against CFs and LTB were analyzed in antibodies in lymphocyte secretions (ALS) of blood mononuclear cells collected before (day 0) and 4/5 and 7 days after immunization. Specific circulating memory B cells present at the time of the single dose vaccination were also studied to determine if such cells may reflect mucosal memory. Considerably higher and significantly more frequent IgA ALS responses against all CFs and LTB were induced by the single vaccine dose in the previously immunized than in non-immunized volunteers. Furthermore, peak IgA ALS responses against all antigens were observed on days 4/5 in most of the previously immunized subjects whereas only a few previously non-vaccinated individuals responded before day 7. Priming with adjuvant did not influence memory responses. Circulating vaccine specific IgA memory B cells were not detected, whereas anti-toxin IgG memory B cells were identified 13-23 months after priming vaccination. We conclude that MEV induces functional mucosal immunological memory which remains at least 1-2 years. Furthermore, our results support that analysis of antibody-secreting cell responses after booster vaccination may be a useful approach to evaluate longstanding mucosal immunological memory in humans. ISRCTN27096290. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
McDermott, David F; Sosman, Jeffrey A; Sznol, Mario; Massard, Christophe; Gordon, Michael S; Hamid, Omid; Powderly, John D; Infante, Jeffrey R; Fassò, Marcella; Wang, Yan V; Zou, Wei; Hegde, Priti S; Fine, Gregg D; Powles, Thomas
2016-03-10
The objective was to determine the safety and clinical activity of atezolizumab (MPDL3280A), a humanized programmed death-ligand 1 (PD-L1) antibody, in renal cell carcinoma (RCC). Exploratory biomarkers were analyzed and associated with outcomes. Seventy patients with metastatic RCC, including clear cell (ccRCC; n = 63) and non-clear cell (ncc; n = 7) histologies, received atezolizumab intravenously every 3 weeks. PD-L1 expression was scored at four diagnostic levels (0/1/2/3) that were based on PD-L1 staining on tumor cells and tumor-infiltrating immune cells (IC) with the SP142 assay. Primary end points were safety and toxicity; secondary end points assessed clinical activity per Response Evaluation Criteria in Solid Tumors version 1.1 and immune-related response criteria. Plasma and tissue were analyzed for potential biomarkers of atezolizumab response. Grade 3 treatment-related and immune-mediated adverse events occurred in 17% and 4% of patients, respectively, and there were no grade 4 or 5 events. Sixty-three patients with ccRCC were evaluable for overall survival (median, 28.9 months; 95% CI, 20.0 months to not reached) and progression-free survival (median, 5.6 months; 95% CI, 3.9 to 8.2 months), and 62 patients were evaluable for objective response rate (ORR; 15%; 95% CI, 7% to 26%). ORR was evaluated on the basis of PD-L1 IC expression (IC1/2/3: n = 33; 18%; 95% CI, 7% to 35%; and IC0: n = 22; 9%; 95% CI, 1% to 29%). The ORR for patients with Fuhrman grade 4 and/or sarcomatoid histology was 22% (n = 18; 95% CI, 6% to 48%). Decreases in circulating plasma markers and acute-phase proteins and an increased baseline effector T-cell-to-regulatory T-cell gene expression ratio correlated with response to atezolizumab. Atezolizumab demonstrated a manageable safety profile and promising antitumor activity in patients with metastatic RCC. Correlative studies identified potential predictive and pharmacodynamic biomarkers. These results have guided ongoing studies and combinations with atezolizumab in RCC. © 2016 by American Society of Clinical Oncology.
Molesti, Eleonora; Ferrara, Francesca; Lapini, Giulia; Montomoli, Emanuele; Temperton, Nigel
2014-01-01
The human population is constantly exposed to multiple influenza A subtypes due to zoonotic spillover and rapid viral evolution driven by intrinsic error-prone replication and immunological pressure. In this context, antibody responses directed against the HA protein are of importance since they have been shown to correlate with protective immunity. Serological techniques, detecting these responses, play a critical role for influenza surveillance, vaccine development, and assessment. As the recent human pandemics and avian influenza outbreaks have demonstrated, there is an urgent need to be better prepared to assess the contribution of the antibody response to protection against newly emerged viruses and to evaluate the extent of preexisting heterosubtypic immunity in populations. In this study, 68 serum samples collected from the Italian population between 1992 and 2007 were found to be positive for antibodies against H5N1 as determined by single radial hemolysis (SRH), but most were negative when evaluated using haemagglutination inhibition (HI) and microneutralisation (MN) assays. As a result of these discordant serological findings, the increased sensitivity of lentiviral pseudotypes was exploited in pseudotype-based neutralisation (pp-NT) assays and the results obtained provide further insight into the complex nature of humoral immunity against influenza A viruses.
Shiu, Ya-Li; Lin, Hsueh-Li; Chi, Chia-Chun; Yeh, Shinn-Pyng; Liu, Chun-Hung
2016-08-01
The present study was conducted to evaluate the dietary supplementation of leaf meal from Citrus depressa Hayata on the growth, innate immune response, and disease resistance of juvenile barramundi, Lates calcarifer. Four diets were formulated to contain 0% (control), 1% (C1), 3% (C3), and 5% (C5) leaf meal, respectively. During a 56 d feeding trial, fish survival, growth performance, and feed efficiency were not significantly different among all groups. For immune response, respiratory burst, superoxide dismutase and lysozyme activities were not significantly different among all groups. However, fish fed the C5 diet for 56 d had significantly higher phagocytic activity. Also, fish fed C3 and C5 diets had significantly higher Mx gene expressions in spleens and head kidneys with nerve necrosis virus injections after 24 h. Disease resistance against Aeromonas hydrophila was increased by the C5 diet. In this study, barramundi fed on a diet containing 5% C. depressa Hayata leaf meal had significantly better innate immune response and disease resistance against A. hydrophila. Copyright © 2016 Elsevier Ltd. All rights reserved.
A., Raza; G., Muhammad; S. U., Rahman; I., Rashid; K., Hanif; A., Atta; S., Sharif
2015-01-01
Mastitis is a one of the major diseases of dairy animals. Staphylococcus aureus is the most common microorganism associated with this dairy scourge. Cure rates of mastitis associated with this pathogen are appallingly low. Biofilm is an important virulence factor and immunogenic structure of S. aureus that makes it resistant to phagocytosis and antibiotics. Reports on the efficacy of vaccine prepared from a biofilm producing S. aureus are infrequent. The present study was designed to evaluate the role of a bacterin-toxoid prepared from a strong biofilm producing S. aureus in effective immunization of rabbits. The strong biofilm producing S. aureus selected from 64 isolates of staphylococci was used to prepare bacterin-toxoid and aluminum hydroxide gel was added as an adjuvant. The vaccine was evaluated in rabbits by challenge protection assay and humoral immune response. The mortality rates in control and vaccinated groups were 80% and 10% at day 7 post challenge and 100% and 20% at day 15 post challenge, respectively. Serum antibody titer (GMT) was significantly higher (294.0) in vaccinated group as compared to control group of rabbits (2.63) at day 45. The results showed that the vaccine has significantly elicited humoral immune response in rabbit and developed protective efficacy against new infections. PMID:27175154
Waag, D M; Galloway, A; Sandstrom, G; Bolt, C R; England, M J; Nelson, G O; Williams, J C
1992-01-01
Tularemia is a disease caused by the facultative intracellular bacterium Francisella tularensis. We evaluated a new lot of live F. tularensis vaccine for its immunogenicity in human volunteers. Scarification vaccination induced humoral and cell-mediated immune responses. Indications of a positive immune response after vaccination included an increase in specific antibody levels, which were measured by enzyme-linked immunosorbent and immunoblot assays, and the ability of peripheral blood lymphocytes to respond to whole F. tularensis bacteria as recall antigens. Vaccination caused a significant rise (P less than 0.05) in immunoglobulin A (IgA), IgG, and IgM titers. Lymphocyte stimulation indices were significantly increased (P less than 0.01) in vaccinees 14 days after vaccination. These data verify that this new lot of live F. tularensis vaccine is immunogenic. Images PMID:1400988
USDA-ARS?s Scientific Manuscript database
The physiological response of the preruminant calf to sustained exposure to cold has not been studied extensively. Effects of cold on growth performance and health of preruminant calves as well as functional measures of energy metabolism, fat-soluble vitamin, and immune responsiveness were evaluate...
Mansilla, F C; Czepluch, W; Malacari, D A; Hecker, Y P; Bucafusco, D; Franco-Mahecha, O L; Moore, D P; Capozzo, A V
2013-10-18
Mice immunized with a soluble extract of Neospora caninum tachyzoites (sNcAg) formulated with Providean-AVEC, an aqueous soy-based adjuvant, are fully protected from N. caninum multiplication. Here we evaluated the dose-dependent immunogenicity of this vaccine formulation in cattle. Cattle (N=3 per group) were immunized with two applications (30 days apart) of formulations containing Providean-AVEC and different payloads of sNcAg (100, 50 and 10 μg), that were five to fifty times lower than the only reported study using this same antigen in cattle. Kinetics and magnitude of the vaccine-induced immune responses were dose-dependent. Cattle immunized with 100 μg-sNcAg elicited high-avidity specific antibodies 3 weeks after the primary vaccination while those that received 50 μg of antigen had maximum levels of specific high-avidity antibodies 5 days after the day 30 boost. Vaccination with 10 μg of sNcAg induced comparable antibody responses after 2 weeks post re-vaccination. IgG1 was the predominant isotype in all vaccinated animals. Maximum systemic IFN-γ levels were measured in cattle immunized with 50 and 100 μg-sNcAg (14 ± 2.8 ng/ml). CD4(+)-T cells from vaccinated animals proliferated after sNcAg stimulation in vitro, producing IFN-γ. Recall IFN-γ responses mediated by CD4(+)-T cells were detected up to 140 days post vaccination. Formulations containing Providean-AVEC and 50 μg of sNcAg stimulated broad cellular and humoral immune responses against N. caninum in cattle. The profile and magnitude of the immune response elicited by this vaccine can be modified by the antigen-dose and vaccination schedule. This is the first dose-response study performed in cattle using sNcAg as antigen. Copyright © 2013 Elsevier B.V. All rights reserved.
Hassan, I A; Wang, S; Xu, L; Yan, R; Song, X; XiangRui, L
2014-12-01
Toxoplasma gondii Malate dehydrogenase (TgMDH) plays an important role as part of the energy production cycle. In this investigation, immunological changes and protection efficiency of this protein delivered as a DNA vaccine have been evaluated. Mice were intramuscularly immunized with pTgMDH, followed by challenge with virulent T. gondii RH strain, 2 weeks after the booster immunization. Compared to the control groups, the results showed that pTgMDH has stimulated specific humoral response as demonstrated by significant high titers of total IgG and subclasses IgG1 and IgG2a , beside IgA and IgM, but not IgE. Analysis of cytokine profiles revealed significant increases of IFN-γ, IL-4 and IL-17, while no significant changes were detected in TGF-β1. In cell-mediated response, both T lymphocytes subpopulations CD4(+) and CD8(+) were positively recruited as significant percentages were recorded in response to immunization with TgMDH. Significant long survival rate, 17 days, has been observed in the TgMDH vaccinated group, in contrast with control groups which died within 8-9 days after challenge. These results demonstrated that TgMDH could induce significant immunological responses leading to a considerable level of protection against acute toxoplasmosis infection. © 2014 John Wiley & Sons Ltd.
Epitope Capsid-Incorporation: New Effective Approach for Vaccine Development for Chagas Disease
Matthews, Qiana L.; Farrow, Anitra L.; Rachakonda, Girish; Gu, Linlin; Nde, Pius; Krendelchtchikov, Alexandre; Pratap, Siddharth; Sakhare, Shruti S.; Sabbaj, Steffanie; Lima, Maria F.; Villalta, Fernando
2016-01-01
Background Previously we reported that a hexon-modified adenovirus (Ad) vector containing the invasive neutralizing epitope of Trypanosoma cruzi (T. cruzi) trypomastigote gp83 (Ad5-gp83) provided immunoprotection against T. cruzi infection. The purpose of this work was to design an improved vaccine for T. cruzi using a novel epitope capsid incorporation strategy. Thus, we evaluated the immunoprotection raised by co-immunization with Ad5-gp83 and an Ad vector containing an epitope (ASP-M) of the T. cruzi amastigote surface protein 2. Methods Protein IX (pIX)-modified Ad vector (Ad5-pIX-ASP-M) was generated, characterized, and validated. C3H/He mice were immunized with Ad5-pIX-ASP-M and Ad5-gp83 and the cell-mediated responses were evaluated by enzyme-linked immunospot (ELISPOT) assay and intracellular staining. Immunized mice were challenged with T. cruzi to evaluate the vaccine efficacy. Results Our findings indicate that Ad5-pIX-ASP-M was viable. Specific CD8+ T-cell mediated responses prior to the challenge show an increase in IFNγ and TNFα production. A single immunization with Ad5-pIX-ASP-M provided protection from T. cruzi infection, but co-immunizations with Ad5-pIX-ASP-M and Ad5-gp83 provided a higher immunoprotection and increased survival rate of mice. Conclusions Overall, these results suggest that the combination of gp83 and ASP-M specific epitopes onto the capsid-incorporated adenoviruses would provide superior protection against Chagas disease as compared with Ad5-gp83 alone. PMID:27709126
Bargieri, Daniel Y; Rosa, Daniela S; Braga, Catarina J M; Carvalho, Bruna O; Costa, Fabio T M; Espíndola, Noeli Maria; Vaz, Adelaide José; Soares, Irene S; Ferreira, Luis C S; Rodrigues, Mauricio M
2008-11-11
The present study evaluated the immunogenicity of new malaria vaccine formulations based on the 19kDa C-terminal fragment of Plasmodium vivax Merozoite Surface Protein-1 (MSP1(19)) and the Salmonella enterica serovar Typhimurium flagellin (FliC), a Toll-like receptor 5 (TLR5) agonist. FliC was used as an adjuvant either admixed or genetically linked to the P. vivax MSP1(19) and administered to C57BL/6 mice via parenteral (s.c.) or mucosal (i.n.) routes. The recombinant fusion protein preserved MSP1(19) epitopes recognized by sera collected from P. vivax infected humans and TLR5 agonist activity. Mice parenterally immunized with recombinant P. vivax MSP1(19) in the presence of FliC, either admixed or genetically linked, elicited strong and long-lasting MSP1(19)-specific systemic antibody responses with a prevailing IgG1 subclass response. Incorporation of another TLR agonist, CpG ODN 1826, resulted in a more balanced response, as evaluated by the IgG1/IgG2c ratio, and higher cell-mediated immune response measured by interferon-gamma secretion. Finally, we show that MSP1(19)-specific antibodies recognized the native protein expressed on the surface of P. vivax parasites harvested from infected humans. The present report proposes a new class of malaria vaccine formulation based on the use of malarial antigens and the innate immunity agonist FliC. It contains intrinsic adjuvant properties and enhanced ability to induce specific humoral and cellular immune responses when administered alone or in combination with other adjuvants.
Zahn, Roland; Gillisen, Gert; Roos, Anna; Koning, Marina; van der Helm, Esmeralda; Spek, Dirk; Weijtens, Mo; Grazia Pau, Maria; Radošević, Katarina; Weverling, Gerrit Jan; Custers, Jerome; Vellinga, Jort; Schuitemaker, Hanneke; Goudsmit, Jaap; Rodríguez, Ariane
2012-01-01
Filoviruses cause sporadic but highly lethal outbreaks of hemorrhagic fever in Africa in the human population. Currently, no drug or vaccine is available for treatment or prevention. A previous study with a vaccine candidate based on the low seroprevalent adenoviruses 26 and 35 (Ad26 and Ad35) was shown to provide protection against homologous Ebola Zaire challenge in non human primates (NHP) if applied in a prime-boost regimen. Here we have aimed to expand this principle to construct and evaluate Ad26 and Ad35 vectors for development of a vaccine to provide universal filovirus protection against all highly lethal strains that have caused major outbreaks in the past. We have therefore performed a phylogenetic analysis of filovirus glycoproteins to select the glycoproteins from two Ebola species (Ebola Zaire and Ebola Sudan/Gulu,), two Marburg strains (Marburg Angola and Marburg Ravn) and added the more distant non-lethal Ebola Ivory Coast species for broadest coverage. Ad26 and Ad35 vectors expressing these five filovirus glycoproteins were evaluated to induce a potent cellular and humoral immune response in mice. All adenoviral vectors induced a humoral immune response after single vaccination in a dose dependent manner that was cross-reactive within the Ebola and Marburg lineages. In addition, both strain-specific as well as cross-reactive T cell responses could be detected. A heterologous Ad26–Ad35 prime-boost regime enhanced mainly the humoral and to a lower extend the cellular immune response against the transgene. Combination of the five selected filovirus glycoproteins in one multivalent vaccine potentially elicits protective immunity in man against all major filovirus strains that have caused lethal outbreaks in the last 20 years. PMID:23236343
Salazar, Soraya; Oliver, Cristian; Yáñez, Alejandro J; Avendaño-Herrera, Ruben
2016-04-01
Streptococcus phocae subsp. salmonis is a Gram-positive bacterium that causes mortality only in Atlantic salmon (Salmo salar) farmed in Chile, even when this species is co-cultured with rainbow trout (Oncorhynchus mykiss). This susceptibility could be determined by innate immune response components and their responses to bacterial infection. This fish pathogen shares subspecies status with Streptococcus phocae subsp. phocae isolated from seals. The present study compared innate immune system mechanisms in Atlantic salmon and rainbow trout when challenged with different S. phocae, including two isolates from Atlantic salmon (LM-08-Sp and LM-13-Sp) and two from seal (ATCC 51973(T) and P23). Streptococcus phocae growth was evaluated in the mucus and serum of both species, with rainbow trout samples evidencing inhibitory effects. Lysozyme activity supported this observation, with significantly higher (p < 0.01) expression in rainbow trout serum and mucus as compared to Atlantic salmon. No differences were found in phagocytic capacity between fish species when stimulated with ATCC 51973(T) and P23. Against all S. phocae strains, rainbow trout and Atlantic salmon showed up to two-fold increased bactericidal activity, and rainbow trout demonstrated up to three-fold greater reactive oxygen species production in macrophages. In conclusion, the non-specific humoral and cellular barriers of Atlantic salmon were immunologically insufficient against S. phocae subsp. salmonis, thereby facilitating streptococcosis. Moreover, the more robust response of rainbow trout to S. phocae could not be attributed to any specific component of the innate immune system, but was rather the consequence of a combined response by the evaluated components. Copyright © 2016 Elsevier Ltd. All rights reserved.
Yazdanian, Maryam; Memarnejadian, Arash; Mahdavi, Mehdi; Sadat, Seyed Mehdi; Motevali, Fatemeh; Vahabpour, Rouhollah; Khanahmad, Hossein; Siadat, Seyed Davar; Aghasadeghi, Mohammad Reza; Roohvand, Farzin
2013-01-01
Background A supreme vaccine for Hepatitis C virus (HCV) infection should elicit strong Th1-oriented cellular responses. In the absence of a Th1-specific adjuvant, immunizations by protein antigens generally induce Th2-type and weak cellular responses. Objectives To evaluate the adjuvant effect of BCG in comparison with nonionic copolymer-Pluronic F127 (F127) as a classic adjuvant in the formulation of HCV core protein (HCVcp) as a candidate vaccine for induction of Th1 immune responses. Materials and Methods Expression of N-terminally His-Tagged HCVcp (1-122) by pIVEX2.4a-core vector harboring the corresponding gene under the control of arabinose-inducible (araBAD) promoter was achieved in BL21-AI strain of E.coli and purified through application of nitrilotriacetic acid (Ni-NTA) chromatography. Mice were immunized subcutaneously (s.c.) in base of the tail with 100 μl of immunogen (F127+HCVcp or BCG+HCVcp; 5 μgHCVcp/mouse/dose) or control formulations (PBS, BCG, F127) at weeks 0, 3, 6. Total and subtypes of IgG, as well as cellular immune responses (Proliferation, In vivo CTL and IFN-γ/IL-4 ELISpot assays against a strong and dominant H2-d restricted, CD8+-epitopic peptide, core 39-48; RRGPRLGVRA of HCVcp) were compared in each group of immunized animals. Results Expression and purification of core protein around the expected size (21 kDa) was confirmed by Western blotting. The HCVcp + BCG vaccinated mice showed significantly higher lymphocyte proliferation and IFN-γ production but lower levels of cell lysis (45% versus 62% in CTL assay) than the HCVcp+F127 immunized animals. “Besides, total anti-core IgG and IgG1 levels were significantly higher in HCVcp + F127 immunized mice as compared to HCVcp + BCG vaccinated animals, indicating relatively higher efficacy of F127 for the stimulation of humoral and Th2-oriented immune responses”. Conclusions Results showed that HCVcp + BCG induced a moderate CTL and mixed Th1/Th2 immune responses with higher levels of cell proliferation and IFN-γ secretion, indicating that BCG may have a better outcome when formulated in HCVcp-based subunit vaccines. PMID:24348641
Innate immunity; Humoral immunity; Cellular immunity; Immunity; Inflammatory response; Acquired (adaptive) immunity ... normal and usually does not react against them. INNATE IMMUNITY Innate, or nonspecific, immunity is the defense ...
Protective Immunity and Safety of a Genetically Modified Influenza Virus Vaccine
Garcia, Cristiana Couto; Filho, Bruno Galvão; Gonçalves, Ana Paula de Faria; Lima, Braulio Henrique Freire; Lopes, Gabriel Augusto Oliveira; Rachid, Milene Alvarenga; Peixoto, Andiara Cristina Cardoso; de Oliveira, Danilo Bretas; Ataíde, Marco Antônio; Zirke, Carla Aparecida; Cotrim, Tatiane Marques; Costa, Érica Azevedo; Almeida, Gabriel Magno de Freitas; Russo, Remo Castro; Gazzinelli, Ricardo Tostes; Machado, Alexandre de Magalhães Vieira
2014-01-01
Recombinant influenza viruses are promising viral platforms to be used as antigen delivery vectors. To this aim, one of the most promising approaches consists of generating recombinant viruses harboring partially truncated neuraminidase (NA) segments. To date, all studies have pointed to safety and usefulness of this viral platform. However, some aspects of the inflammatory and immune responses triggered by those recombinant viruses and their safety to immunocompromised hosts remained to be elucidated. In the present study, we generated a recombinant influenza virus harboring a truncated NA segment (vNA-Δ) and evaluated the innate and inflammatory responses and the safety of this recombinant virus in wild type or knock-out (KO) mice with impaired innate (Myd88 -/-) or acquired (RAG -/-) immune responses. Infection using truncated neuraminidase influenza virus was harmless regarding lung and systemic inflammatory response in wild type mice and was highly attenuated in KO mice. We also demonstrated that vNA-Δ infection does not induce unbalanced cytokine production that strongly contributes to lung damage in infected mice. In addition, the recombinant influenza virus was able to trigger both local and systemic virus-specific humoral and CD8+ T cellular immune responses which protected immunized mice against the challenge with a lethal dose of homologous A/PR8/34 influenza virus. Taken together, our findings suggest and reinforce the safety of using NA deleted influenza viruses as antigen delivery vectors against human or veterinary pathogens. PMID:24927156
Campos, Viviane C; Barrios, Mônica R; Salvatori, Roberto; de Almeida, Roque Pacheco; de Melo, Enaldo V; Nascimento, Ana C S; de Jesus, Amélia Ribeiro; Aguiar-Oliveira, Manuel H
2016-10-01
Growth hormone is important for the development and function of the immune system, but there is controversy on whether growth hormone deficiency is associated to immune disorders. A model of isolated growth hormone deficiency may clarify if the lack of growth hormone is associated with increased susceptibility to infections, or with an altered responsiveness of the immune system. We have studied the frequency of infectious diseases and the immune function in adults with congenital, untreated isolated growth hormone deficiency. In a cross-sectional study, 35 adults with isolated growth hormone deficiency due to a homozygous mutation in the growth hormone releasing hormone receptor gene and 31 controls were submitted to a clinical questionnaire, physical examination serology for tripanosomiasis, leishmaniasis, HIV, tetanus, hepatitis B and C, and serum total immunoglobulin G, M, E and A measurement. The immune response was evaluated in a subset of these subjects by skin tests and response to vaccination for hepatitis B, tetanus, and bacillus Calmette-Guérin. There was no difference between the groups in history of infectious diseases and baseline serology. Isolated growth hormone deficiency subjects had lower total IgG, but within normal range. There was no difference in the response to any of the vaccinations or in the positivity to protein Purified Derived, streptokinase or candidin. Adult untreated isolated growth hormone deficiency does not cause an increased frequency of infectious diseases, and does not alter serologic tests, but is associated with lower total IgG levels, without detectable clinical impact.
Golshani, Maryam; Rafati, Sima; Nejati-Moheimani, Mehdi; Ghasemian, Melina; Bouzari, Saeid
2016-12-25
In the present study, immunogenicity and protective efficacy of the Brucella outer membrane protein 2b (Omp2b) was evaluated in BALB/c mice using Protein/Protein, DNA/DNA and DNA/Protein vaccine strategies. Immunization of mice with three vaccine regimens elicited a strong specific IgG response (higher IgG2a titers over IgG1 titers) and provided Th1-oriented immune response. Vaccination of BALB/c mice with the DNA/Pro regimen induced higher levels of IFN-γ/IL-2 and conferred more protection levels against B. melitenisis and B. abortus challenge than did the protein or DNA alone. In conclusion, Omp2b is able to stimulate specific immune responses and to confer cross protection against B. melitensis and B. abortus infection. Therefore, it could be introduced as a new potential candidate for the development of a subunit vaccine against Brucella infection. Copyright © 2016 Elsevier B.V. All rights reserved.
Wang, Yicun; Su, Quanping; Dong, Shuai; Shi, Hongxi; Gao, Xiang; Wang, Li
2014-01-01
The polymorphic fungus Candida albicans (C. albicans) can live as an aggressive pathogen and cause many diseases in hosts, for which no effective vaccine exists. The secreted aspartyl proteinase 2 (Sap2) plays a protective role in systemically infected BALB/c mice. Protective cellular immune responses can be preferentially induced when antigens are displayed on small particles. Therefore, the emphasis is placed on developing new phage vaccine to inhibit C. albicans infection. In this study, the ability of the hybrid phage displaying the epitope SLAQVKYTSASSI and recombinant protein of Sap2 (rSap2) for inducing immune protective responses against C. albicans infection was evaluated by lymphoproliferative assay, to gather cytokine and antibody measurements in BALB/c mice. Our results showed that, strong cellular and humoral immune responses were induced in a mouse model immunized with hybrid phage or rSap2. Furthermore, the protection against lethal challenge with C. albicans was observed in mice vaccinated hybrid phage without adjuvant. These findings demonstrate that the hybrid phage displaying the epitope SLAQVKYTSASSI might be a potential vaccine against C. albicans infections.
Khattar, Sunil K; Samal, Sweety; Devico, Anthony L; Collins, Peter L; Samal, Siba K
2011-10-01
Human immunodeficiency virus type 1 (HIV-1) is transmitted mainly through mucosal sites. Optimum strategies to elicit both systemic and mucosal immunity are critical for the development of vaccines against HIV-1. We therefore sought to evaluate the induction of systemic and mucosal immune responses by the use of Newcastle disease virus (NDV) as a vaccine vector. We generated a recombinant NDV, designated rLaSota/gp160, expressing the gp160 envelope (Env) protein of HIV-1 from an added gene. The gp160 protein expressed by rLaSota/gp160 virus was detected on an infected cell surface and was incorporated into the NDV virion. Biochemical studies showed that gp160 present in infected cells and in the virion formed a higher-order oligomer that retained recognition by conformationally sensitive monoclonal antibodies. Expression of gp160 did not increase the virulence of recombinant NDV (rNDV) strain LaSota. Guinea pigs were administered rLaSota/gp160 via the intranasal (i.n.) or intramuscular (i.m.) route in different prime-boost combinations. Systemic and mucosal antibody responses specific to the HIV-1 envelope protein were assessed in serum and vaginal washes, respectively. Two or three immunizations via the i.n. or i.m. route induced a more potent systemic and mucosal immune response than a single immunization by either route. Priming by the i.n. route was more immunogenic than by the i.m. route, and the same was true for the boosts. Furthermore, immunization with rLaSota/gp160 by any route or combination of routes induced a Th1-type response, as reflected by the induction of stronger antigen-specific IgG2a than IgG1 antibody responses. Additionally, i.n. immunization elicited a stronger neutralizing serum antibody response to laboratory-adapted HIV-1 strain MN.3. These data illustrate that it is feasible to use NDV as a vaccine vector to elicit potent humoral and mucosal responses to the HIV-1 envelope protein.
Evaluating Principal Surrogate Markers in Vaccine Trials in the Presence of Multiphase Sampling
Huang, Ying
2017-01-01
Summary This paper focuses on the evaluation of vaccine-induced immune responses as principal surrogate markers for predicting a given vaccine’s effect on the clinical endpoint of interest. To address the problem of missing potential outcomes under the principal surrogate framework, we can utilize baseline predictors of the immune biomarker(s) or vaccinate uninfected placebo recipients at the end of the trial and measure their immune biomarkers. Examples of good baseline predictors are baseline immune responses when subjects enrolled in the trial have been previously exposed to the same antigen, as in our motivating application of the Zostavax Efficacy and Safety Trial (ZEST). However, laboratory assays of these baseline predictors are expensive and therefore their subsampling among participants is commonly performed. In this paper we develop a methodology for estimating principal surrogate values in the presence of baseline predictor subsampling. Under a multiphase sampling framework, we propose a semiparametric pseudo-score estimator based on conditional likelihood and also develop several alternative semiparametric pseudo-score or estimated likelihood estimators. We derive corresponding asymptotic theories and analytic variance formulas for these estimators. Through extensive numeric studies, we demonstrate good finite sample performance of these estimators and the efficiency advantage of the proposed pseudo-score estimator in various sampling schemes. We illustrate the application of our proposed estimators using data from an immune biomarker study nested within the ZEST trial. PMID:28653408
Motamedi-Sedeh, Farahnaz; Soleimanjahi, Hoorieh; Jalilian, Amir Reza; Mahravani, Homayoon; Shafaee, Kamalodin; Sotoodeh, Masood; Taherkarami, Hamdolah; Jairani, Faramarz
2015-01-01
Foot-and-mouth disease virus (FMDV) causes a highly contagious disease in cloven-hoofed animals and is the most damaging disease of livestock worldwide, leading to great economic losses. The aim of this research was the inactivation of FMDV type O/IRN/1/2007 to produce a gamma ray-irradiated (GRI) vaccine in order to immunize mice and guinea pigs. In this research, the Iranian isolated FMDV type O/IRN/1/2007 was irradiated by gamma ray to prepare an inactivated whole virus antigen and formulated as a GRI vaccine with unaltered antigenic characteristics. Immune responses against this vaccine were evaluated on mice and guinea pigs. The comparison of the immune responses between the GRI vaccine and conventional vaccine did not show any significant difference in neutralizing antibody titer, memory spleen T lymphocytes or IFN-γ, IL-4, IL-2 and IL-10 concentrations (p > 0.05). In contrast, there were significant differences in all of the evaluated immune factors between the two vaccinated groups of mice and negative control mice (p < 0.05). The protective dose 50 for the conventional and GRI vaccines obtained were 6.28 and 7.07, respectively, which indicated the high potency of both vaccines. GRI vaccine is suitable for both routine vaccination and control of FMDV in emergency outbreaks.
Vo, Manh-Cuong; Lee, Hyun-Ju; Kim, Jong-Seok; Hoang, My-Dung; Choi, Nu-Ri; Rhee, Joon Haeng; Lakshmanan, Vinoth-Kumar; Shin, Sung-Jae; Lee, Je-Jung
2015-10-20
Dendritic cell (DC)-based vaccines are considered useful in cancer immunotherapy, and the interaction of DC and adjuvants is important in the design of the next generation vaccines. In this study, whether DC combined with Rv2299c derived from mycobacteria could improve anti-tumor immune responses in a colon cancer mouse model was evaluated. MC38 cell lines were injected subcutaneously to establish colon-cancer-bearing mice and the following four groups were evaluated: PBS control, tumor antigen (TA) loaded-DC, Rv2299c, and a combination of TA-loaded-DC and Rv2299c. The combination treatment with TA-loaded-DC and Rv2299c exhibited greater inhibition of tumor growth compared to other groups. These effects were associated with the reduction of suppressor cells, such as myeloid-derived suppressor cells and regulatory T cells, and the induction of effector cells, such as CD4+ T cells and CD8+ T cells, in spleen, and with the activation of cytotoxic T Lymphocytes and NK cells. These results suggest that TA-loaded-DC vaccination with Rv2299c derived from mycobacteria enhanced anti-tumor immunity in a mouse colon cancer model by inhibiting the generation of immune-suppressive cells and recovering numbers of effector cells, and demonstrated superior polarization of the Th1/Th2 balance in favor of the Th1 immune response.
Singh, Shirene M; Alkie, Tamiru N; Abdelaziz, Khaled Taha; Hodgins, Douglas C; Novy, Anastasia; Nagy, Éva; Sharif, Shayan
2016-06-01
Avian influenza virus (AIV), a mucosal pathogen, gains entry into host chickens through respiratory and gastrointestinal routes. Most commercial AIV vaccines for poultry consist of inactivated, whole virus with adjuvant, delivered by parenteral administration. Recent advances in vaccine development have led to the application of nanoparticle emulsion delivery systems, such as poly (d,l-lactic-co-glycolic acid) (PLGA) nanoparticles to enhance antigen-specific immune responses. In chickens, the Toll-like receptor 21 ligand, CpG oligodeoxynucleotides (ODNs), have been demonstrated to be immunostimulatory. The objective of this study was to compare the adjuvant potential of CpG ODN 2007 encapsulated in PLGA nanoparticles with nonencapsulated CpG ODN 2007 when combined with a formalin-inactivated H9N2 virus, through intramuscular and aerosol delivery routes. Chickens were vaccinated at days 7 and 21 posthatch for the intramuscular route and at days 7, 21, and 35 for the aerosol route. Antibody-mediated responses were evaluated weekly in sera and lacrimal secretions in specific pathogen-free chickens. The results indicate that nonencapsulated CpG ODN 2007 in inactivated AIV vaccines administered by the intramuscular route generated higher antibody responses compared to the encapsulated CpG ODN 2007 formulation by the same route. Additionally, encapsulated CpG ODN 2007 in AIV vaccines administered by the aerosol route elicited higher mucosal responses compared to nonencapsulated CpG ODN 2007. Future studies may be aimed at evaluating protective immune responses induced with PLGA encapsulation of AIV and adjuvants.
Welter, Áurea; Mineo, José Roberto; de Oliveira Silva, Deise Aparecida; Lourenço, Elaine Vicente; Ferro, Eloísa Amália Vieira; Roque-Barreira, Maria Cristina; da Silva, Neide Maria
2007-01-01
Summary The immune response induced by Toxoplasma gondii is characterized by Th1 immune mechanisms. We previously demonstrated that C57BL/6 mice infested with Myocoptes musculinus and infected with T. gondii by intraperitoneal route undergo accelerated mortality according to Th2 immune mechanisms induced by the acarian. To evaluate whether infection with M. musculinus influences T. gondii-induced Th1 response in a resistant mouse lineage, BALB/c, which develops latent chronic toxoplasmosis in a way similar to that observed in immunocompetent humans, this study was done. The animals were infected with T. gondii ME-49 strain 1 month after M. musculinus infestation, being the survival and the immune response monitored. The double-infected displayed higher mortality rate if compared with the mono-infected mice. In addition, infection with M. musculinus changed the T. gondii-specific immune response, converting BALB/c host to a susceptible phenotype. Spleen cells had increased the levels of IL-4 in double-infected mice. This alteration was associated with severe pneumonia, encephalitis and wasting condition. In addition, a higher tissue parasitism was observed in double-infected animals. It can be concluded that infection with these two contrasting parasites, M. musculinus and T. gondii, may convert an immunocompetent host into a susceptible one, and such a host will develop severe toxoplasmosis. PMID:17877534
Airway fungal colonization compromises the immune system allowing bacterial pneumonia to prevail.
Roux, Damien; Gaudry, Stéphane; Khoy-Ear, Linda; Aloulou, Meryem; Phillips-Houlbracq, Mathilde; Bex, Julie; Skurnik, David; Denamur, Erick; Monteiro, Renato C; Dreyfuss, Didier; Ricard, Jean-Damien
2013-09-01
To study the correlation between fungal colonization and bacterial pneumonia and to test the effect of antifungal treatments on the development of bacterial pneumonia in colonized rats. Experimental animal investigation. University research laboratory. Pathogen-free male Wistar rats weighing 250-275 g. Rats were colonized by intratracheal instillation of Candida albicans. Fungal clearance from the lungs and immune response were measured. Both colonized and noncolonized animals were secondarily instilled with different bacterial species (Pseudomonas aeruginosa, Escherichia coli, or Staphylococcus aureus). Bacterial phagocytosis by alveolar macrophages was evaluated in the presence of interferon-gamma, the main cytokine produced during fungal colonization. The effect of antifungal treatments on fungal colonization and its immune response were assessed. The prevalence of P. aeruginosa pneumonia was compared in antifungal treated and control colonized rats. C. albicans was slowly cleared and induced a Th1-Th17 immune response with very high interferon-gamma concentrations. Airway fungal colonization favored the development of bacterial pneumonia. Interferon-gamma was able to inhibit the phagocytosis of unopsonized bacteria by alveolar macrophages. Antifungal treatment decreased airway fungal colonization, lung interferon-gamma levels and, consequently, the prevalence of subsequent bacterial pneumonia. C. albicans airway colonization elicited a Th1-Th17 immune response that favored the development of bacterial pneumonia via the inhibition of bacterial phagocytosis by alveolar macrophages. Antifungal treatment decreased the risk of bacterial pneumonia in colonized rats.
Lee, Jin-A; Kim, Yun-Mi; Kim, Tae-Hoon; Lee, Sang-Ho; Lee, Cho-A; Cho, Cheong-Weon; Jeon, Jong-Woon; Park, Jin-Kyu; Kim, Sang-Ki; Jung, Bock-Gie; Lee, Bong-Joo
2016-10-01
Nasal delivery is a convenient and acceptable route for drug administration, and has been shown to elicit a much more potent local and systemic response compared with other drug delivery routes. We previously demonstrated that rectal administration of poly(lactide-co-glycolide)-encapsulated honeybee venom (P-HBV) could enhance systemic Th 1-specific immune responses. We therefore synthesized chitosan-coated P-HBV (CP-HBV) and then evaluated the immune-boosting efficacy of nasally administered CP-HBV on systemic and local intestinal immunity compared with non-chitosan-coated P-HBV. The nasally delivered CP-HBV effectively enhanced Th 1-specific responses, eliciting a significant increase in the CD3(+)CD4(+)CD8(-) Th cell population, lymphocyte proliferation capacity, and expression of Th 1 cytokines (IFN-γ, IL-12, and IL-2) in peripheral blood mononuclear cells. Furthermore, these immune-boosting effects persisted up to 21days post CP-HBV administration. Nasal administration of CP-HBV also led to an increase of not only the CD4(+) Th 1 and IFN-γ secreting CD4(+) Th 1 cell population but also Th 1-specific cytokines and transcription factors, including IL-12, IFN-γ, STAT4, and T-bet, in isolated mononuclear cells from the spleen and ileum. Copyright © 2016 Elsevier B.V. All rights reserved.
Chichilichi, Biswal; Mohanty, G P; Mishra, S K; Pradhan, C R; Behura, N C; Das, A; Behera, K
2015-09-01
The present study was conducted to evaluate the effect of partial supplementation of sun-dried Azolla as a protein source on the immunity of commercial broilers in coastal Odisha. A 180 day-old broiler chicks were distributed in six dietary treatments viz. C1: Basal diet, C2: Basal diet + enzyme, T1: Basal diet +5% protein from Azolla, T2: Basal diet + 5% protein from Azolla + enzyme, T3: Basal diet +10% protein from Azolla, and T4: Basal diet + 10% protein from Azolla + enzyme. Cutaneous basophilc hypersensitivity (CBH) and humoral immunity response were determined at the 38(th) day of age. At 42(nd) day, the weight of lymphoid organs, an antioxidant enzyme, and lipid peroxidation activity were determined. The CBH response did not differ significantly among the treated groups, but the sheep red blood cells response was significantly higher in T4. The weight of lymphoid organs or immune organs of all the treated groups did not differ significantly (p>0.05). The erythrocyte catalase level of T4 group was found to be significantly higher than rest of the treated groups except T3. It may be concluded that supplementation of Azolla at 10% of dietary protein requirement along with enzyme supplementation in an isonitrogenous diet showed a better immune response in broilers.
Chichilichi, Biswal; Mohanty, G. P.; Mishra, S. K.; Pradhan, C. R.; Behura, N. C.; Das, A.; Behera, K.
2015-01-01
Aim: The present study was conducted to evaluate the effect of partial supplementation of sun-dried Azolla as a protein source on the immunity of commercial broilers in coastal Odisha. Materials and Methods: A 180 day-old broiler chicks were distributed in six dietary treatments viz. C1: Basal diet, C2: Basal diet + enzyme, T1: Basal diet +5% protein from Azolla, T2: Basal diet + 5% protein from Azolla + enzyme, T3: Basal diet +10% protein from Azolla, and T4: Basal diet + 10% protein from Azolla + enzyme. Cutaneous basophilc hypersensitivity (CBH) and humoral immunity response were determined at the 38th day of age. At 42nd day, the weight of lymphoid organs, an antioxidant enzyme, and lipid peroxidation activity were determined. Results: The CBH response did not differ significantly among the treated groups, but the sheep red blood cells response was significantly higher in T4. The weight of lymphoid organs or immune organs of all the treated groups did not differ significantly (p>0.05). The erythrocyte catalase level of T4 group was found to be significantly higher than rest of the treated groups except T3. Conclusion: It may be concluded that supplementation of Azolla at 10% of dietary protein requirement along with enzyme supplementation in an isonitrogenous diet showed a better immune response in broilers. PMID:27047208
Khalili, Ahmad; Hassan, Zuhair Muhammad; Shahabi, Shahram; Pourfathollah, Ali Akbar; Ostad, Seyed Nasser; Noori, Shokoofe; Mahdavi, Mehdi; Haybar, Habib; Langroudi, Ladan
2013-06-01
Noradrenaline (NA), the principal neurotransmitter released from sympathetic nerve terminals, influences T-cell maturation, not only directly in developing T cells, but also indirectly, by acting on the thymic nonlymphoid cells. In vitro and in vivo studies have demonstrated the anti-proliferative, anti-migratory, anti-angiogenic and cytotoxic properties of propranolol, β-AR blocker, against various cancers. To evaluate the effect of propranolol on efficacy of HSP-70 rich lysate vaccine in immunotherapy of fibrosarcoma. Mouse fibrosarcoma WEHI-164 cells were used to immunize tumor-bearing mice with or without propranolol and HSP-70. Splenocytes proliferation, cytotoxicity activity of the splenocytes, naturally occurring CD4+ CD25high T-reg cells and IFN-γ and IL-4 secretion as well as tumor size, were assessed to describe the anti-tumor immune response. A significant increase in the level of IFN-γ in the mice vaccinated with WEHI-164 cells enriched with HSP-70 and co-treated with propranolol was observed compared to controls. However, HSP enrichment or propranolol treatment alone did not enhance the immune response as measured by the level of IFN-γ. Likewise, a decrease in tumor growth in the test group (p<0.01) and a significant increase in CTL activity (p<0.05) was observed. HSP enriched vaccine shows anti-tumor activity, probably due to the modulation of immune responses.
Waugh, Courtney A; Timms, Peter; Andrew, Dean; Rawlinson, Galit; Brumm, Jacqui; Nilsson, Karen; Beagley, Kenneth W
2015-02-11
Chlamydia pecorum infections are debilitating in the koala, contributing significantly to morbidity and mortality, with current antibiotic treatments having minimal success and adversely affecting gut microflora. This, combined with the sometimes-asymptomatic nature of the infection, suggests that an efficacious anti-chlamydial vaccine is required to control chlamydial infections in the koala. To date vaccination studies have focused primarily on female koalas, however, given the physiological differences between male and female reproductive tracts, we tested the efficacy of a vaccine in 12 captive male koalas. We evaluated the potential of both subcutaneous and intranasal vaccine delivery to elicit mucosal immunity in male koalas. Our results showed that both intranasal and subcutaneous delivery of a vaccine consisting of C. pecorum major outer membrane protein (MOMP) and the adjuvant immunostimulating complex (ISC) induced significant immune responses in male koalas. Subcutaneous immunization elicited stronger cell-mediated responses in peripheral blood lymphocytes (PBL), and greater plasma antibody levels whereas the intranasal immunization elicited stronger humoral responses in urogenital tract (UGT) secretions. This is the first time a Chlamydia vaccine has been tested in the male koala and the first assessment of a mucosal vaccination route in this species. Our results suggest that vaccination of male koalas can elicit mucosal immunity and could contribute to the long-term survivability of wild populations of the koala. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ghaffarifar, Fatemeh; Jorjani, Ogholniaz; Sharifi, Zohreh; Dalimi, Abdolhossein; Hassan, Zuhair M; Tabatabaie, Fatemeh; Khoshzaban, Fariba; Hezarjaribi, Hajar Ziaei
2013-04-01
Leishmaniasis is an important disease in humans. Leishmania homologue of receptor for Activated C Kinase (LACK) and thiol specific antioxidant (TSA) as immuno-dominant antigens of Leishmania major are considered the most promising molecules for a DNA vaccine. We constructed a DNA cocktail, containing plasmids encoding LACK and TSA genes of Leishmania major and evaluated the immune response and survival rate in BALB/c mice. IgG and Interferon gamma values were noticeably increased in the immunized group with DNA cocktail vaccine, which were significantly higher than those in the single-gene vaccinated and control groups (p < 0.05) following the immunization and after challenging with Leishmania major. Interleukin 4 values were decreased in all immunized groups, but only in DNA vaccine cocktail and single-gene vaccination with pc-LACK there were statistical differences with control groups (p > 0.05). The immunized mice with the cocktail DNA vaccine presented a considerable reduction in diameter of lesion compared to other groups and a significant difference was observed (p < 0.05) in this regard. The survival time of the immunized mice with the cocktail DNA vaccine was significantly higher than that in the other groups (p < 0.05) after their being challenged with Leishmania major. The findings of this study indicated that the cocktail DNA vaccine increased the cellular response and survival rate and induced protection against infection with Leishmania in the mice. © 2012 The Authors © 2012 APMIS.
de Jesus Pereira, Nathália Cristina; Régis, Wiliam César Bento; Costa, Lourena Emanuele; de Oliveira, Jamil Silvano; da Silva, Alanna Gomes; Martins, Vivian Tamietti; Duarte, Mariana Costa; de Souza, José Roberto Rodrigues; Lage, Paula Sousa; Schneider, Mônica Santos; Melo, Maria Norma; Soto, Manuel; Soares, Sandra Aguiar; Tavares, Carlos Alberto Pereira; Chávez-Fumagalli, Miguel Angel; Coelho, Eduardo Antonio Ferraz
2015-06-01
The development of effective prophylactic strategies to prevent leishmaniasis has become a high priority. No less important than the choice of an antigen, the association of an appropriate adjuvant is necessary to achieve a successful vaccination, as the majority of the tested antigens contain limited immunogenic properties, and need to be supplemented with immune response adjuvants in order to boost their immunogenicity. However, few effective adjuvants that can be used against leishmaniasis exist on the market today; therefore, it is possible to speculate that the research aiming to identify new adjuvants could be considered relevant. Recently, Agaricus blazei extracts have proved to be useful in enhancing the immune response to DNA vaccines against some diseases. This was based on the Th1 adjuvant activity of the polysaccharide-rich fractions from this mushroom. In this context, the present study evaluated purified fractions derived from Agaricus blazei as Th1 adjuvants through in vitro assays of their immune stimulation of spleen cells derived from naive BALB/c mice. Two of the tested six fractions (namely F2 and F4) were characterized as polysaccharide-rich fractions, and were able to induce high levels of IFN-γ, and low levels of IL-4 and IL-10 in the spleen cells. The efficacy of adjuvant action against L. infantum was evaluated in BALB/c mice, with these fractions being administered together with a recombinant antigen, LiHyp1, which was previously evaluated as a vaccine candidate, associated with saponin, against visceral leishmaniasis (VL). The associations between LiHyp1/F2 and LiHyp1/F4 were able to induce an in vivo Th1 response, which was primed by high levels of IFN-γ, IL-12, and GM-CSF, by low levels of IL-4 and IL-10; as well as by a predominance of IgG2a antibodies in the vaccinated animals. After infection, the immune profile was maintained, and the vaccines proved to be effective against L. infantum. The immune stimulatory effects in the BALB/c mice proved to be similar when comparing the F2 and F4 fractions with a known Th1 adjuvant (saponin), though animals vaccinated with saponin did present a slight to moderate inflammatory edema on their hind footpads. In conclusion, the F2 and F4 fractions appear to induce a Th1-type immune response and, in this context, they could be evaluated in association with other protective antigens against Leishmania, as well as in other disease models. Copyright © 2015 Elsevier Inc. All rights reserved.
Robust TLR4-induced gene expression patterns are not an accurate indicator of human immunity
2010-01-01
Background Activation of Toll-like receptors (TLRs) is widely accepted as an essential event for defence against infection. Many TLRs utilize a common signalling pathway that relies on activation of the kinase IRAK4 and the transcription factor NFκB for the rapid expression of immunity genes. Methods 21 K DNA microarray technology was used to evaluate LPS-induced (TLR4) gene responses in blood monocytes from a child with an IRAK4-deficiency. In vitro responsiveness to LPS was confirmed by real-time PCR and ELISA and compared to the clinical predisposition of the child and IRAK4-deficient mice to Gram negative infection. Results We demonstrated that the vast majority of LPS-responsive genes in IRAK4-deficient monocytes were greatly suppressed, an observation that is consistent with the described role for IRAK4 as an essential component of TLR4 signalling. The severely impaired response to LPS, however, is inconsistent with a remarkably low incidence of Gram negative infections observed in this child and other children with IRAK4-deficiency. This unpredicted clinical phenotype was validated by demonstrating that IRAK4-deficient mice had a similar resistance to infection with Gram negative S. typhimurium as wildtype mice. A number of immunity genes, such as chemokines, were expressed at normal levels in human IRAK4-deficient monocytes, indicating that particular IRAK4-independent elements within the repertoire of TLR4-induced responses are expressed. Conclusions Sufficient defence to Gram negative immunity does not require IRAK4 or a robust, 'classic' inflammatory and immune response. PMID:20105294
Atsmon, Jacob; Caraco, Yoseph; Ziv-Sefer, Sagit; Shaikevich, Dimitry; Abramov, Ester; Volokhov, Inna; Bruzil, Svetlana; Haima, Kirsten Y; Gottlieb, Tanya; Ben-Yedidia, Tamar
2014-10-07
A new vaccine, "Multimeric-001" (M-001) has been recently developed, containing conserved, common linear influenza epitopes that activate both cellular and humoral arms of the immune system against a wide variety of influenza A and B strains. Apart from its direct action, M-001 is an attractive candidate for priming immune responses to seasonal influenza vaccine for the elderly population. The current clinical study was designed to assess M-001's standalone and priming action in participants over 65 years old. Evaluation of standalone action is based on induction of cell mediated immunity (CMI), since M-001 alone does not induce hemagglutinin inhibition (HAI) antibodies. This was a two-center, randomized, placebo-controlled study. 120 participants were randomized 1:1:1:1 into four groups to receive either two sequential non-adjuvanted or a single non-adjuvanted or a single adjuvanted intramuscular injection of 500 mcg M-001 (treatment), or one placebo (saline) injection, before receiving the trivalent inactivated influenza vaccine (TIV). Due to visual differences between placebo and treatment the study was partially blinded. HAI was evaluated at baseline and 3 weeks after standard TIV vaccination as a measure of M-001's efficacy. CMI responses were evaluated in a subset (10/group) of the participants. Participants were monitored for safety throughout the study. Overall the treatment was well-tolerated and safe, though sample sizes allowed only limited statistical analysis. M-001 priming resulted in enhanced seroconversion towards all three TIV strains, compared to priming with placebo. Significant elevation of influenza-specific CMI was observed following immunization with M-001 alone. The standalone and priming actions of M-001 were demonstrated in elderly participants despite the limitations of small population size and pre-existing HAI antibody titers in some participants. As a standalone vaccine, M-001 induced significant CMI to multiple strains and as a primer, M-001 enhanced HAI responses. Larger scale studies are warranted. NCT01419925. Copyright © 2014 Elsevier Ltd. All rights reserved.
Construction and comparison of gene co-expression networks shows complex plant immune responses
López, Camilo; López-Kleine, Liliana
2014-01-01
Gene co-expression networks (GCNs) are graphic representations that depict the coordinated transcription of genes in response to certain stimuli. GCNs provide functional annotations of genes whose function is unknown and are further used in studies of translational functional genomics among species. In this work, a methodology for the reconstruction and comparison of GCNs is presented. This approach was applied using gene expression data that were obtained from immunity experiments in Arabidopsis thaliana, rice, soybean, tomato and cassava. After the evaluation of diverse similarity metrics for the GCN reconstruction, we recommended the mutual information coefficient measurement and a clustering coefficient-based method for similarity threshold selection. To compare GCNs, we proposed a multivariate approach based on the Principal Component Analysis (PCA). Branches of plant immunity that were exemplified by each experiment were analyzed in conjunction with the PCA results, suggesting both the robustness and the dynamic nature of the cellular responses. The dynamic of molecular plant responses produced networks with different characteristics that are differentiable using our methodology. The comparison of GCNs from plant pathosystems, showed that in response to similar pathogens plants could activate conserved signaling pathways. The results confirmed that the closeness of GCNs projected on the principal component space is an indicative of similarity among GCNs. This also can be used to understand global patterns of events triggered during plant immune responses. PMID:25320678
Pourhossein, Zohreh; Qotbi, Ali Ahmad Alaw; Seidavi, Alireza; Laudadio, Vito; Centoducati, Gerardo; Tufarelli, Vincenzo
2015-01-01
This experiment was conducted to evaluate the effects of different levels of sweet orange (Citrus sinensis) peel extract (SOPE) on humoral immune system responses in broiler chickens. Three hundred 1-day broilers (Ross-308) were randomly allocated to treatments varying in supplemental SOPE added in the drinking water. The experimental groups consisted of three treatments fed for 42 days as follows: a control treatment without feed extract, a treatment containing 1000 ppm of SOPE and a treatment containing 1250 ppm of SOPE. All treatments were isocaloric and isonitrogenous. Broilers were vaccinated with Newcastle disease virus (NDV), avian influenza (AI), infectious bursal disease (IBD) and infectious bronchitis virus (IBV) vaccines. Antibody titer response to sheep red blood cells (SRBC) was higher in the group fed 1250 ppm of SOPE (P < 0.05) as well as for immunoglobulin G (IgG) and IgM. Similarly, antibody titer responses to all vaccines were constantly elevated (P < 0.05) by SOPE enrichment in a dose-dependent manner. Relative weights of spleen and bursa of Fabricius were unaffected by treatments. Dietary SOPE supplementation may improve the immune response and diseases resistance, indicating that it can constitute a useful additive in broiler feeding. Thus, supplying SOPE in rations may help to improve relative immune response in broiler chickens. © 2014 Japanese Society of Animal Science.
Th1 and Th17 Immunocompetence in Humanized NOD/SCID/γC-KO mice
Rajesh, Deepika; Zhou, Ying; Jankowska-Gan, Ewa; Ronneburg, Drew Allan; Dart, Melanie M; Torrealba, Jose; Burlingham, William J
2010-01-01
We evaluated the immunocompetence of human T cells in humanized NOD-scid IL2r-γ-null (Hu—NSG) mice bearing a human thymic organoid, after multilinegage reconstitution with isogeneic human leukocytes. Delayed type hypersensitivity (DTH) response was assessed by a direct footpad challenge of the immunized hu-NSG host, or by transfer of splenocytes from immunized hu-NSG, along with antigen, into footpads of CB17 SCID mice [trans-vivo (tv) DTH]. Both methods revealed cellular immunity to tetanus toxoid (TT) or collagen type V (ColV). Immunohistochemical analysis of the swollen footpads revealed infiltration of human CD45+ cells, including CD3+ T cells, CD68+ macrophages and murine Ly6G+ neutrophils. We observed a significant correlation between % circulating human CD4+ cells and the direct DTH swelling response to TT. The tvDTH response to TT was inhibited by anti-IFNγ, while the tvDTH response to collagen V was inhibited by anti IL-17 antibody, mimicking the cytokine bias of adult human T cells to these antigens. Hu-NSG mice were also capable of mounting a B cell response (primarily IgM) to TT antigen. The activation of either Th1- or Th17 - dependent cellular immune response supports the utility of Hu-NSG mice as a surrogate model of allograft rejection and autoimmunity. PMID:20298731
Ravindran, Rajesh; Maji, Mithun; Ali, Nahid
2012-01-01
The development of a long-term protective subunit vaccine against visceral leishmaniasis depends on antigens and adjuvants that can induce an appropriate immune response. The immunization of leishmanial antigens alone shows limited efficacy in the absence of an appropriate adjuvant. Earlier we demonstrated sustained protection against Leishmania donovani with leishmanial antigens entrapped in cationic liposomes through an intraperitoneal route. However, this route is not applicable for human administration. Herein, we therefore evaluated the immune response and protection induced by liposomal soluble leishmanial antigen (SLA) formulated with monophosphoryl lipid-trehalose dicorynomycolate (MPL-TDM) through a subcutaneous route. Subcutaneous immunization of BALB/c mice with SLA entrapped in liposomes or with MPL-TDM elicited partial protection against experimental visceral leishmaniasis. In contrast, liposomal SLA adjuvanted with MPL-TDM induced significantly higher levels of protection in liver and spleen in BALB/c mice challenged 10 days post-vaccination. Protection conferred by this formulation was sustained up to 12 weeks of immunization, and infection was controlled for at least 4 months of the challenge, similar to liposomal SLA immunization administered intraperitoneally. An analysis of cellular immune responses of liposomal SLA + MPL-TDM immunized mice demonstrated the induction of IFN-γ and IgG2a antibody production not only 10 days or 12 weeks post-vaccination but also 4 months after the challenge infection and a down regulation of IL-4 production after infection. Moreover, long-term immunity elicited by this formulation was associated with IFN-γ production also by CD8⁺ T cells. Taken together, our results suggest that liposomal SLA + MPL-TDM represent a good vaccine formulation for the induction of durable protection against L. donovani through a human administrable route.
Ma, Michelle W.; Medicherla, Ratna C.; Qian, Meng; de Miera, Eleazar Vega-Saenz; Friedman, Erica B.; Berman, Russell S.; Shapiro, Richard L.; Pavlick, Anna C.; Ott, Patrick A.; Bhardwaj, Nina; Shao, Yongzhao; Osman, Iman; Darvishian, Farbod
2013-01-01
The sentinel lymph node is the initial site of metastasis. Down-regulation of anti-tumor immunity plays a role in nodal progression. Our objective was to investigate the relationship between immune modulation and sentinel lymph node positivity, correlating it with outcome in melanoma patients. Lymph node/primary tissues from melanoma patients prospectively accrued and followed at New York University Medical Center were evaluated for the presence of regulatory T-cells (Foxp3+) and dendritic cells (conventional: CD11c+, mature: CD86+) using immunohistochemistry. Primary melanoma immune cell profiles from sentinel lymph node-positive/-negative patients were compared. Logistic regression models inclusive of standard-of-care/immunologic primary tumor characteristics were constructed to predict the risk of sentinel lymph node positivity. Immunological responses in the positive sentinel lymph node were also compared to those in the negative non-sentinel node from the same nodal basin and matched negative sentinel lymph node. Decreased immune response was defined as increased regulatory T-cells or decreased dendritic cells. Associations between the expression of these immune modulators, clinicopathologic variables, and clinical outcome were evaluated using univariate/multivariate analyses. Primary tumor conventional dendritic cells and regression were protective against sentinel lymph node metastasis (odds ratio=0.714, 0.067; P=0.0099, 0.0816, respectively). Anti-tumor immunity was down-regulated in the positive sentinel lymph node with an increase in regulatory T-cells compared to the negative non-sentinel node from the same nodal basin (P=0.0005) and matched negative sentinel lymph node (P=0.0002). The positive sentinel lymph node also had decreased numbers of conventional dendritic cells compared to the negative sentinel lymph node (P<0.0001). Adding sentinel lymph node regulatory T-cell expression improved the discriminative power of a recurrence risk assessment model using clinical stage. Primary tumor regression was associated with prolonged disease-free (P=0.025) and melanoma-specific (P=0.014) survival. Our results support an assessment of local immune profiles in both the primary tumor and sentinel lymph node to help guide therapeutic decisions. PMID:22425909
Mobergslien, Anne; Vasovic, Vlada; Mathiesen, Geir; Fredriksen, Lasse; Westby, Phuong; Eijsink, Vincent GH; Peng, Qian; Sioud, Mouldy
2015-01-01
Given their safe use in humans and inherent adjuvanticity, Lactic Acid Bacteria may offer several advantages over other mucosal delivery strategies for cancer vaccines. The objective of this study is to evaluate the immune responses in mice after oral immunization with Lactobacillus (L) plantarum WCFS1 expressing a cell-wall anchored tumor antigen NY-ESO-1. And to investigate the immunostimulatory potency of this new candidate vaccine on human dendritic cells (DCs). L. plantarum displaying NY-ESO-1 induced NY-ESO-1 specific antibodies and T-cell responses in mice. By contrast, L. plantarum displaying conserved proteins such as heat shock protein-27 and galectin-1, did not induce immunity, suggesting that immune tolerance to self-proteins cannot be broken by oral administration of L. plantarum. With respect to immunomodulation, immature DCs incubated with wild type or L. plantarum-NY-ESO-1 upregulated the expression of co-stimulatory molecules and secreted a large amount of interleukin (IL)-12, TNF-α, but not IL-4. Moreover, they upregulated the expression of immunosuppressive factors such as IL-10 and indoleamine 2,3-dioxygenase. Although L. plantarum-matured DCs expressed inhibitory molecules, they stimulated allogeneic T cells in-vitro. Collectively, the data indicate that L. plantarum-NY-ESO-1 can evoke antigen-specific immunity upon oral administration and induce DC maturation, raising the potential of its use in cancer immunotherapies. PMID:26185907
Li, Xiao-Hua; Zhao, Guo-Zhen; Qiu, Long-Xin; Dai, Ai-Ling; Wu, Wang-Wei; Yang, Xiao-Yan
2015-01-01
Haemophilus parasuis can cause Glässer's disease characterized by fibrinous polyserositis, polyarthritis, and meningitis. The current prevention of Glässer's disease is mainly based on the inactive vaccines; however, the protective efficacy usually fails in heterogeneous or homologous challenges. Here, the predominant lineage of H. parasuis (LY02 strain) in Fujian province, China, characterized as serovar 5, was used to evaluate the protective immunity against acute H. parasuis infection in piglets after inactivation. Following challenging with H. parasuis, only mild lesions in the pigs immunized with the killed vaccine were observed, whereas the typical symptoms of Glässer's disease presented in the nonimmunized piglets. A strong IgG immune response was induced by the inactive vaccine. CD4(+) and CD8(+) T lymphocyte levels were increased, indicating the potent cellular immune responses were elicited. The significantly high levels of IL-2, IL-4, TGF-β, and IFN-γ in sera from pigs immunized with this killed vaccine suggested that the mixed Th1 and Th2 immune responses were induced, associated with the high protection against H. parasuis infection compared to the nonimmunized animals. This study indicated that the inactivated LY02 strain of H. parasuis could serve as a potential vaccine candidate to prevent the prevalence of H. parasuis in Fujian province, China.
Evaluation of the immune responses of the brown mussel Perna perna as indicators of fecal pollution.
Silva Dos Santos, Fernanda; Neves, Raquel Almeida Ferrando; Carvalho, Wanderson Fernandes de; Krepsky, Natascha; Crapez, Mirian Araújo Carlos
2018-06-01
The mussel Perna perna is an intertidal bivalve that is widely distributed, cultivated and consumed in South Africa, Brazil and Venezuela. Among marine resources, bivalve mollusks are one of the most impacted by anthropogenic pollution, as they can accumulate pathogenic bacteria and water pollutants. Hemocytes are molluscan defense cells, and their abundance and functions can be affected in response to contaminants, such as bacterial load. However, no previous study has investigated the immune response of P. perna hemocytes. The aim of this study was to evaluate several immune parameters in P. perna as indicators of fecal pollution in mussel hemolymph and in seawater. We collected mussels and adjacent seawater from beaches with different levels of fecal contamination in Rio de Janeiro state (Brazil): Vermelha Beach (VB); Icaraí Beach (IB); Urca Beach (UB); and Jurujuba Beach (JB). Hemocyte parameters (density, morphology, phagocytic activity and production of Reactive Oxygen Species - ROS) were evaluated using flow cytometry. We quantified Fecal Indicator Bacteria (FIB) in seawater by the multiple tubes technique for each beach and for hemolymph by the spread-plate technique. In agreement with historical evaluation of fecal contamination levels, UB presented the highest FIB abundance in seawater (thermotolerant coliforms, TEC = 1600 NMP 100 mL -1 ), whereas VB exhibited the lowest (TEC = 17 NMP 100 mL -1 ). UB mussels had six and eight times higher hemocyte density and phagocytic activity, respectively, than mussels from VB. Mussels from VB and IB presented a significantly lower number of total coliforms in hemolymph and a significantly higher relative internal complexity of hemocytes than those from UB and JB (p ≤ 0.01, PERMANOVA). ROS production by hemocytes was significantly lower in mussels from VB compared to those from JB (p = 0.04, ANOVA). Our results indicate a significant relationship between the level of fecal contamination in aquatic environments and the immune response of mussel hemocytes. Immune-related parameters may therefore be useful as indicators of bivalve health and environmental quality. Our flow cytometric analysis of P. perna hemocytes represents a new approach for studying Perna perna biology and might represent a novel tool for measuring organic pollution and water quality. Copyright © 2018 Elsevier Ltd. All rights reserved.
Literature-Related Discovery: Potential Treatments and Preventives for SARS
2010-01-01
evaluated the immunomodulatory effects of probiotic Bacillus cereus var. toyoi on the systemic immunity of piglets……Blood samples of probiotic ...and IFN-gamma production of polyclonally stimulated PBMCs was on average higher in the probiotic group. Specific proliferative responses of PBMCs...average higher in the probiotic group. In conclusion, B. cereus var. toyoi therefore alters the immune status of piglets as indicated by changes in
Bombeiro, André L.; Santini, Júlio C.; Thomé, Rodolfo; Ferreira, Elisângela R. L.; Nunes, Sérgio L. O.; Moreira, Bárbara M.; Bonet, Ivan J. M.; Sartori, Cesar R.; Verinaud, Liana; Oliveira, Alexandre L. R.
2016-01-01
Injuries to peripheral nerves cause loss of motor and sensory function, greatly affecting life quality. Successful repair of the lesioned nerve requires efficient cell debris removal, followed by axon regeneration and reinnervation of target organs. Such process is orchestrated by several cellular and molecular events in which glial and immune cells actively participate. It is known that tissue clearance is largely improved by macrophages, which activation is potentiated by cells and molecules of the acquired immune system, such as T helper lymphocytes and antibodies, respectively. In the present work, we evaluated the contribution of lymphocytes in the regenerative process of crushed sciatic nerves of immunocompetent (wild-type, WT) and T and B-deficient (RAG-KO) mice. In Knockout animals, we found increased amount of macrophages under basal conditions and during the initial phase of the regenerative process, that was evaluated at 2, 4, and 8 weeks after lesion (wal). That parallels with faster axonal regeneration evidenced by the quantification of neurofilament and a growth associated protein immunolabeling. The motor function, evaluated by the sciatic function index, was fully recovered in both mouse strains within 4 wal, either in a progressive fashion, as observed for RAG-KO mice, or presenting a subtle regression, as seen in WT mice between 2 and 3 wal. Interestingly, boosting the immune response by early adoptive transference of activated WT lymphocytes at 3 days after lesion improved motor recovery in WT and RAG-KO mice, which was not ameliorated when cells were transferred at 2 wal. When monitoring lymphocytes by in vivo imaging, in both mouse strains, cells migrated to the lesion site shortly after transference, remaining in the injured limb up to its complete motor recovery. Moreover, a first peak of hyperalgesia, determined by von-Frey test, was coincident with increased lymphocyte infiltration in the damaged paw. Overall, the present results suggest that a wave of immune cell infiltration takes place during subacute phase of axonal regeneration, resulting in transient set back of motor recovery following peripheral axonal injury. Moreover, modulation of the immune response can be an efficient approach to speed up nerve regeneration. PMID:27378849
Anderson, Jenna; Hägglund, Sara; Bréard, Emmanuel; Comtet, Loic; Lövgren Bengtsson, Karin; Pringle, John; Zientara, Stéphan; Valarcher, Jean Francois
2013-08-01
Bluetongue virus (BTV), the causative agent of bluetongue in ruminants, is an emerging virus in northern Europe. The 2006 outbreak of BTV serotype 8 (BTV-8) in Europe was marked by an unusual teratogenic effect and a high frequency of clinical signs in cattle. Conventional control strategies targeting small ruminants were therefore extended to include cattle. Since cattle were not routinely vaccinated before 2006, the immune responses to BTV have not been studied extensively in this species. With the aims of developing a subunit vaccine against BTV-8 for differentiation between infected and vaccinated animals based on viral protein 7 (VP7) antibody detection and of improving the current understanding of the immunogenicity of BTV proteins in cattle, the immune responses induced by recombinant VP2 (BTV-8) and nonstructural protein 1 (NS1) and NS2 (BTV-2) were studied. Cows were immunized twice (with a 3-week interval) with the experimental vaccine, a commercial inactivated vaccine, or a placebo. The two vaccines induced similar neutralizing antibody responses to BTV-8. Furthermore, the antibody responses detected against VP2, NS1, and NS2 were strongest in the animals immunized with the experimental vaccine, and for the first time, a serotype cross-reactive antibody response to NS2 was shown in cattle vaccinated with the commercial vaccine. The two vaccines evoked measurable T cell responses against NS1, thereby supporting a bovine cross-reactive T cell response. Finally, VP7 seroconversion was observed after vaccination with the commercial vaccine, as in natural infections, but not after vaccination with the experimental vaccine, indicating that the experimental vaccine may allow the differentiation of vaccinated animals from infected animals regardless of BTV serotype. The experimental vaccine will be further evaluated during a virulent challenge in a high-containment facility.
Hägglund, Sara; Bréard, Emmanuel; Comtet, Loic; Lövgren Bengtsson, Karin; Pringle, John; Zientara, Stéphan
2013-01-01
Bluetongue virus (BTV), the causative agent of bluetongue in ruminants, is an emerging virus in northern Europe. The 2006 outbreak of BTV serotype 8 (BTV-8) in Europe was marked by an unusual teratogenic effect and a high frequency of clinical signs in cattle. Conventional control strategies targeting small ruminants were therefore extended to include cattle. Since cattle were not routinely vaccinated before 2006, the immune responses to BTV have not been studied extensively in this species. With the aims of developing a subunit vaccine against BTV-8 for differentiation between infected and vaccinated animals based on viral protein 7 (VP7) antibody detection and of improving the current understanding of the immunogenicity of BTV proteins in cattle, the immune responses induced by recombinant VP2 (BTV-8) and nonstructural protein 1 (NS1) and NS2 (BTV-2) were studied. Cows were immunized twice (with a 3-week interval) with the experimental vaccine, a commercial inactivated vaccine, or a placebo. The two vaccines induced similar neutralizing antibody responses to BTV-8. Furthermore, the antibody responses detected against VP2, NS1, and NS2 were strongest in the animals immunized with the experimental vaccine, and for the first time, a serotype cross-reactive antibody response to NS2 was shown in cattle vaccinated with the commercial vaccine. The two vaccines evoked measurable T cell responses against NS1, thereby supporting a bovine cross-reactive T cell response. Finally, VP7 seroconversion was observed after vaccination with the commercial vaccine, as in natural infections, but not after vaccination with the experimental vaccine, indicating that the experimental vaccine may allow the differentiation of vaccinated animals from infected animals regardless of BTV serotype. The experimental vaccine will be further evaluated during a virulent challenge in a high-containment facility. PMID:23720365
Gurung, Ratna B; Begg, Douglas J; Purdie, Auriol C; de Silva, Kumudika; Bannantine, John P; Whittington, Richard J
2014-06-01
Johne's disease in ruminants is a chronic infection of the intestines caused by Mycobacterium avium subsp. paratuberculosis. An important strategy to control disease is early detection, and a potentially efficient method for early detection is measurement of cell-mediated immune responses developed by the host in response to exposure or infection. One method is to measure lymphoproliferation and cytokine release from the host cells when exposed to the organism or parts of the organism. In this study, 10 recombinant M. avium subsp. paratuberculosis proteins known to be upregulated under in vitro stress conditions were evaluated by examining their ability to evoke memory as a result of exposure by vaccination or oral challenge with live Mycobacterium avium subsp. paratuberculosis. Out of 10 proteins, MAP2698c was found to induce higher cell-mediated immune responses in vaccinated and challenged sheep in comparison to healthy controls. The findings suggest that not all stress-regulated proteins have the diagnostic potential to detect cell-mediated immune responses in ovine paratuberculosis. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Sahu, Kantrol Kumar; Pandey, Ravi Shankar
2016-10-01
Hepatitis B is one of the leading liver diseases and remains a major global health problem. Currently available vaccines provide protection but often results in weaker/minimal mucosal immunity. Thus the present study is devoted to the development and in-vivo exploration of the colonically delivered biomimetic nanoparticles which capably enhance humoral as well as cellular immune response. In present work, Hepatitis B surface antigen (HBsAg) entrapped nanoparticles containing Monophosphoryl lipid A (MPLA) (HB+L-NP) were prepared by solvent evaporation method and characterized for particle size (~210nm), shape, zeta potential (-24mV±0.68), entrapment efficiency (58.45±1.68%), in-vitro release and antigen integrity. Dose escalation study was done to confirm prophylactic immune response following defined doses of prepared nanoparticulate formulations with or without MPLA. Intramuscular administered alum based marketed HBsAg (Genevac B) was used as standard (10μg) and were able to induce significant systemic (IgG) but remarkably low mucosal immune (IgA) response. Notably, HB+L-NP (0.5ml-10μg) induced strong systemic and robust mucosal immunity (510 and 470 mIU/ml respectively, p<0.001) from which mucosal was more significant due to the involvement of Common Mucosal Immune System (CMIS). Likewise, significant cellular immune response was elicited by HB+L-NP through T-cell activation (mixed Th1 and Th2) as confirmed by significantly increased cytokines level (IL-2 and Interferon-γ) in spleen homogenates. This study supports that delivery of HBsAg to the colon may open new vista in designing oral vaccines later being one of most accepted route for potential vaccines in future. Copyright © 2016 Elsevier B.V. All rights reserved.
Effects of different cytokines on immune responses of rainbow trout in a virus DNA vaccination model
Cao, Yongsheng; Zhang, Qiya; Xu, Liming; Li, Shaowu; Wang, Di; Zhao, Jingzhuang; Liu, Hongbai; Feng, Jian; Lu, Tongyan
2017-01-01
Seven rainbow trout cytokine genes (interleukin (IL)-2, IL-8, IL-15, IL-17, IL-1β, intracellular interferon (iIFN) 1a, and IFN-γ2) were evaluated for their adjuvant effects on a DNA vaccine, called pG, containing the glycoprotein gene of infectious hematopoietic necrosis virus (IHNV). Distinct DNA constructs in expression plasmid pcDNA3.1 encoding a cytokine gene were generated. Immunofluorescence assays in rainbow trout gonadal cells demonstrated successful protein expression from all these constructs. Subsequently, fish were immunized with pG alone or together with a cytokine expression plasmid. Results showed that each cytokine plasmids at an appropriate dose showed notable effects on immune gene expression. IL-17 and IFN-γ2 can enhance early specific IgM response. All cytokines, except IL-8, can benefit initial neutralizing antibody (NAb) titers. At 35 days post immunization (dpi), NAb titers of fish immunized with pG and IL-2, iIFN1a, or IFN-γ2 plasmids remained at high levels (1:160). NAb titers of fish immunized with pG alone decreased to 1:40. IL-8 or IL-1β can enhance antigen-specific proliferative T-cell responses at 14 dpi. At 28 dpi, coinjection of pG with IL-2, IL-8, IL-15, or IL-17 plasmids induced considerably stronger lymphocyte proliferation than that with injection of pG alone. All cytokine plasmids delivered with pG plasmid enhanced protection of trout against IHNV-mediated mortality. These results indicate that the type and dose of trout cytokine genes injected into fish affect quality of immune response to DNA vaccination. PMID:29348820
Chen, Zhaochun; Schneerson, Rachel; Lovchik, Julie A; Dai, Zhongdong; Kubler-Kielb, Joanna; Agulto, Liane; Leppla, Stephen H; Purcell, Robert H
2015-08-01
The immunogenicity of Bacillus anthracis capsule (poly-γ-D-glutamic acid [PGA]) conjugated to recombinant B. anthracis protective antigen (rPA) or to tetanus toxoid (TT) was evaluated in two anthrax-naive juvenile chimpanzees. In a previous study of these conjugates, highly protective monoclonal antibodies (MAbs) against PGA were generated. This study examines the polyclonal antibody response of the same animals. Preimmune antibodies to PGA with titers of >10(3) were detected in the chimpanzees. The maximal titer of anti-PGA was induced within 1 to 2 weeks following the 1st immunization, with no booster effects following the 2nd and 3rd immunizations. Thus, the anti-PGA response in the chimpanzees resembled a secondary immune response. Screening of sera from nine unimmunized chimpanzees and six humans revealed antibodies to PGA in all samples, with an average titer of 10(3). An anti-PA response was also observed following immunization with PGA-rPA conjugate, similar to that seen following immunization with rPA alone. However, in contrast to anti-PGA, preimmune anti-PA antibody titers and those following the 1st immunization were ≤300, with the antibodies peaking above 10(4) following the 2nd immunization. The polyclonal anti-PGA shared the MAb 11D epitope and, similar to the MAbs, exerted opsonophagocytic killing of B. anthracis. Most important, the PGA-TT-induced antibodies protected mice from a lethal challenge with virulent B. anthracis spores. Our data support the use of PGA conjugates, especially PGA-rPA targeting both toxin and capsule, as expanded-spectrum anthrax vaccines. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Alizadeh, M; Rodriguez-Lecompte, J C; Echeverry, H; Crow, G H; Slominski, B A
2016-04-01
This study evaluated the effect of yeast-derived products on innate and antibody mediated immune response in broiler chickens following immunization with sheep red blood cells (SRBC) and bovine serum albumin (BSA). One-day-old male broiler chickens (Ross-308) were randomly assigned to 6 dietary treatments of 9 replicate cages of 5 birds each per treatment. Dietary treatments consisted of a Control diet without antibiotic, and diets containing 11 mg/kg of virginiamycin, 0.25% of yeast cell wall (YCW), 0.2% of a commercial product Maxi-Gen Plus containing processed yeast and nucleotides, 0.05% of nucleotides, or a diet containing 10% of DDGS. On days 21 and 28 post-hatching, 5 birds per treatment were immunized intramuscularly with both SRBC and BSA. One week after each immunization, blood samples were collected. Serum samples were analyzed by hemagglutination test for antibody response to SRBC, and by ELISA for serum IgM and IgG response to BSA. On d 35, 5 birds per treatment were euthanized and the tissue samples from the cecal tonsils were collected to assess the gene expression of toll-like receptors TLR2b, TLR4, and TLR21, monocyte mannose receptor (MMR), and cytokines IL-10, IL-13, IL-4, IL-12p35, and IFN-γ. The results for gene expression analysis demonstrated that the diet supplemented with YCW increased the expression of TLR2b and T-helper type 2 cytokines IL-10, IL-4, and IL-13 relative to the Control; and the expression of TLR4 and IL-13 was upregulated in the nucleotide-containing diet. However, the diets containing antibiotics or Maxi-Gen Plus downregulated the expression of IFN-γ compared to the control. The primary antibody response to SRBC was not affected by diets. However, the diet containing YCW increased the secondary antibody response to SRBC compared to the antibiotic treatment. Neither primary nor secondary IgG and IgM response against BSA were affected by diets. In conclusion, supplementation of the diet with YCW stimulated Th2 cell-mediated immune response indicating the immunomodulatory activities of these products following immunization with non-inflammatory antigens. © 2016 Poultry Science Association Inc.
Zhang, Xiaolan; Song, Yingli; Li, Yuanmeng; Cai, Minghui; Meng, Yuan; Zhu, Hui
2017-01-01
Streptococcal heme binding protein (Shp) is a surface protein of the heme acquisition system that is an essential iron nutrient in Group A Streptococcus (GAS). Here, we tested whether Shp immunization protects mice from subcutaneous infection. Mice were immunized subcutaneously with recombinant Shp and then challenged with GAS. The protective effects against GAS challenge were evaluated two weeks after the last immunization. Immunization with Shp elicited a robust IgG response, resulting in high anti-Shp IgG titers in the serum. Immunized mice had a higher survival rate and smaller skin lesions than adjuvant control mice. Furthermore, immunized mice had lower GAS numbers at the skin lesions and in the liver, spleen and lung. Histological analysis with Gram staining showed that GAS invaded the surrounding area of the inoculation sites in the skin in control mice, but not in immunized mice. Thus, Shp immunization enhances GAS clearance and reduces GAS skin invasion and systemic dissemination. These findings indicate that Shp is a protective antigen.
Pasetti, Marcela F; Barry, Eileen M; Losonsky, Genevieve; Singh, Mahender; Medina-Moreno, Sandra M; Polo, John M; Ulmer, Jeffrey; Robinson, Harriet; Sztein, Marcelo B; Levine, Myron M
2003-05-01
Measles remains a leading cause of child mortality in developing countries. Residual maternal measles antibodies and immunologic immaturity dampen immunogenicity of the current vaccine in young infants. Because cotton rat respiratory tract is susceptible to measles virus (MV) replication after intranasal (i.n.) challenge, this model can be used to assess the efficacy of MV vaccines. Pursuing a new measles vaccine strategy that might be effective in young infants, we used attenuated Salmonella enterica serovar Typhi CVD 908-htrA and Shigella flexneri 2a CVD 1208 vaccines to deliver mucosally to cotton rats eukaryotic expression plasmid pGA3-mH and Sindbis virus-based DNA replicon pMSIN-H encoding MV hemagglutinin (H). The initial i.n. dose-response with bacterial vectors alone identified a well-tolerated dosage (1 x 10(9) to 7 x 10(9) CFU) and a volume (20 micro l) that elicited strong antivector immune responses. Animals immunized i.n. on days 0, 28, and 76 with bacterial vectors carrying DNA plasmids encoding MV H or immunized parenterally with these naked DNA vaccine plasmids developed MV plaque reduction neutralizing antibodies and proliferative responses against MV antigens. In a subsequent experiment of identical design, cotton rats were challenged with wild-type MV 1 month after the third dose of vaccine or placebo. MV titers were significantly reduced in lung tissue of animals immunized with MV DNA vaccines delivered either via bacterial live vectors or parenterally. Since attenuated serovar Typhi and S. flexneri can deliver measles DNA vaccines mucosally in cotton rats, inducing measles immune responses (including neutralizing antibodies) and protection, boosting strategies can now be evaluated in animals primed with MV DNA vaccines.
Daniel, C; Repa, A; Wild, C; Pollak, A; Pot, B; Breiteneder, H; Wiedermann, U; Mercenier, A
2006-07-01
Probiotic lactic acid bacteria (LAB) are able to modulate the host immune system and clinical trials have demonstrated that specific strains have the capacity to reduce allergic symptoms. Therefore, we aimed to evaluate the potential of recombinant LAB producing the major birch pollen allergen Bet v 1 for mucosal vaccination against birch pollen allergy. Recombinant Bet v 1-producing Lactobacillus plantarum and Lactococcus lactis strains were constructed. Their immunogenicity was compared with purified Bet v 1 by subcutaneous immunization of mice. Intranasal application of the live recombinant strains was performed to test their immunomodulatory potency in a mouse model of birch pollen allergy. Bet v 1 produced by the LAB was recognized by monoclonal anti-Bet v 1 and IgE antibodies from birch pollen-allergic patients. Systemic immunization with the recombinant strains induced significantly lower IgG1/IgG2a ratios compared with purified Bet v 1. Intranasal pretreatment led to reduced allergen-specific IgE vs enhanced IgG2a levels and reduced interleukin (IL)-5 production of splenocytes in vitro, indicating a shift towards non-allergic T-helper-1 (Th1) responses. Airway inflammation, i.e. eosinophils and IL-5 in lung lavages, was reduced using either Bet v 1-producing or control strains. Allergen-specific secretory IgA responses were enhanced in lungs and intestines after pretreatment with only the Bet v 1-producing strains. Mucosal vaccination with live recombinant LAB, leading to a shift towards non-allergic immune responses along with enhanced allergen-specific mucosal IgA levels offers a promising approach to prevent systemic and local allergic immune responses.
Hu, R L; Liu, Y; Zhang, S F; Zhang, F; Fooks, A R
2007-07-20
During the past decade, human rabies caused by cats has ranked the second highest in China. Several recombinant rabies vaccines have been developed for dogs. However, seldom have these vaccines been assessed or used in cats. In this trial, we report the experimental immunization of a recombinant canine adenovirus-rabies vaccine, CAV-2-E3Delta-RGP, in cats. Thirty cats were inoculated with the recombinant vaccine intramuscularly, orally and intranasally, respectively. Safety and efficacy studies were undertaken using the fluorescent antibody virus neutralization (FAVN) test and evaluated. Results showed that this recombinant vaccine is safe for cats as demonstrated by the three different routes of administration. The vaccine stimulated an efficient humoral response in the vaccinated cats when 10(8.5)PFU/ml of the recombinant vaccine was injected intramuscularly in a single dose. The neutralizing antibody level increased above 0.5IU/ml at 4 weeks after the vaccination. The mean antibody level ranged from 0.96+/-0.26 to 4.47+/-1.57IU/ml among individuals, and the antibody levels were elicited for at least 12 months. After this period, the immunized cats survived the challenge of CVS-24 and an obvious anemnestic and protective immune response was stimulated after the challenge. The immune response occurred later than the inactivated vaccine and the overall antibody level in the vaccinated cats was lower, but it was sufficient to confer protection of cats against infection. This demonstrated that a single, intramuscular dose of CAV-2-E3Delta-RGP stimulated a long-lasting protective immune response in cats and suggested that CAV-2-E3Delta-RGP could be considered as a potential rabies vaccine candidate for cats.
Randomized phase II clinical trial of chemo-immunotherapy in advanced nonsmall cell lung cancer
Lasalvia-Prisco, Eduardo; Garcia-Giralt, Emilio; Vázquez, Jesús; Aghazarian, Marta; Lasalvia-Galante, Eduardo; Larrañaga, Joshemaria; Spera, Gonzalo
2008-01-01
The purpose of this study was to compare chemotherapy-naive patients with stage IV nonsmall cell lung cancer patients treated with chemotherapy or chemoimmunotherapy. We tested doxetacel plus cisplatinum as chemotherapy protocol. An immunomodulatory adjuvant system was added as chemoimmunotherapy to the previously mentioned protocol. This system contains three well-known and complementary conditioners of protective immune-responses: cyclophosphamide low-dose, granulocyte macrophage-colony stimulant factor and magnesium silicate granuloma. Eighty-eight patients were randomly assigned to receive every 3-weeks one of the treatments under comparison. Patients received four cycles of treatment unless disease progression or unacceptable toxicity was documented. The maximum follow-up was one year. In each arm, tumor response (rate,duration), median survival time, 1-year overall survival, safety, and immunity modifications were assessed. Immunity was evaluated by submitting peripheral blood mononuclear cells to laboratory tests for nonspecific immunity: a) phytohemaglutinin-induced lymphocyte proliferation, b) prevalence of T-Regulatory (CD4+CD25+) cells and for specific immunity: a) lymphocyte proliferation induced by tumor-associated antigens (TAA) contained in a previously described autologous thermostable hemoderivative. The difference (chemotherapy vs. chemoimmunotherapy) in response rate induced by the two treatments (39.0% and 35.0%) was not statistically significant. However, the response duration (22 and 31 weeks), the median survival time (32 and 44 weeks) and 1-year survival (33.3% and 39.1%) were statistically higher with chemoimmunotherapy. No difference in toxicity between both arms was demonstrated. A switch in the laboratory immunity profile, nonspecific and specific, was associated with the chemoimmunotherapy treatment: increase of proliferative lymphocyte response, decrease of tolerogenic T-regulatory cells and eliciting TAA-sensitization. PMID:19707385
Matias, Wilfredo R; Falkard, Brie; Charles, Richelle C; Mayo-Smith, Leslie M; Teng, Jessica E; Xu, Peng; Kováč, Pavol; Ryan, Edward T; Qadri, Firdausi; Franke, Molly F; Ivers, Louise C; Harris, Jason B
2016-06-01
The bivalent whole-cell (BivWC) oral cholera vaccine (Shanchol) is effective in preventing cholera. However, evaluations of immune responses following vaccination with BivWC have been limited. To determine whether BivWC induces significant mucosal immune responses, we measured V. cholerae O1 antigen-specific antibody secreting cell (ASC) responses following vaccination. We enrolled 24 Haitian adults in this study, and administered doses of oral BivWC vaccine 14 days apart (day 0 and day 14). We drew blood at baseline, and 7 days following each vaccine dose (day 7 and 21). Peripheral blood mononuclear cells (PBMCs) were isolated, and ASCs were enumerated using an ELISPOT assay. Significant increases in Ogawa (6.9 cells per million PBMCs) and Inaba (9.5 cells per million PBMCs) OSP-specific IgA ASCs were detected 7 days following the first dose (P < 0.001), but not the second dose. The magnitude of V. cholerae-specific ASC responses did not appear to be associated with recent exposure to cholera. ASC responses measured against the whole lipolysaccharide (LPS) antigen and the OSP moiety of LPS were equivalent, suggesting that all or nearly all of the LPS response targets the OSP moiety. Immunization with the BivWC oral cholera vaccine induced ASC responses among a cohort of healthy adults in Haiti after a single dose. The second dose of vaccine resulted in minimal ASC responses over baseline, suggesting that the current dosing schedule may not be optimal for boosting mucosal immune responses to V. cholerae antigens for adults in a cholera-endemic area.
Warshaw, Meredith G; Siberry, George K; Williams, Paige; Decker, Michael D; Jean-Philippe, Patrick; Lujan-Zilbermann, Jorge
2017-09-01
The US Advisory Committee on Immunization Practices recommends a booster dose of quadrivalent meningococcal conjugate vaccine (MCV4) after initial immunization for patients at high risk for meningococcal infection. The International Maternal Pediatric Adolescents AIDS Clinical Trials (IMPAACT) P1065 trial evaluated the use of MCV4 in human immunodeficiency virus (HIV)-infected children and youth. The final step of this trial was an open-label study of an MCV4 booster dose 3.5 years after primary MCV4 immunization. Antibody titers were evaluated at the time of the booster vaccine and 1, 4, and 24 weeks after the booster. Immunogenicity was measured by rabbit serum bactericidal antibody (rSBA) against each meningococcal serogroup. Immunologic memory was defined as either seroprotection (rSBA titer ≥1:128) or a ≥4-fold increase 1 week after the booster dose. Primary response was defined as either a ≥4-fold response or seropositivity 4 weeks after the booster in the absence of immunologic memory. Adverse events were assessed for 4 weeks after the booster dose. Of 174 participants with serology results at entry and 1 and 4 weeks later, the percentage with protective antibody levels at entry varied according to serogroup, ranging from a low of 26% for serogroup C to a high of 68% for serogroup A. A memory response to at least 1 serogroup occurred in 98% of the participants: 93% each for serogroups A and Y, 88% for serogroup C, and 94% for serogroup W-135; 83% had a memory response to all 4 serogroups. Overall, rates of any memory or primary response were ≥90% for all serogroups. No serious adverse events were encountered. A booster dose of MCV4 elicited a memory response in 88% to 94% of previously immunized HIV-infected participants depending on serogroup, including those who lacked a protective titer level for that serogroup before booster vaccination. © The Author 2017. Published by the Oxford University Press on behalf of The Journal of the Pediatric Infectious Diseases Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Natuk, Robert J; Cooper, David; Guo, Min; Calderon, Priscilla; Wright, Kevin J; Nasar, Farooq; Witko, Susan; Pawlyk, Diane; Lee, Margaret; DeStefano, Joanne; Tummolo, Donna; Abramovitz, Aaron S; Gangolli, Seema; Kalyan, Narender; Clarke, David K; Hendry, R Michael; Eldridge, John H; Udem, Stephen A; Kowalski, Jacek
2006-05-01
Recombinant vesicular stomatitis virus (rVSV) vectors offer an attractive approach for the induction of robust cellular and humoral immune responses directed against human pathogen target antigens. We evaluated rVSV vectors expressing full-length glycoprotein D (gD) from herpes simplex virus type 2 (HSV-2) in mice and guinea pigs for immunogenicity and protective efficacy against genital challenge with wild-type HSV-2. Robust Th1-polarized anti-gD immune responses were demonstrated in the murine model as measured by induction of gD-specific cytotoxic T lymphocytes and increased gamma interferon expression. The isotype makeup of the serum anti-gD immunoglobulin G (IgG) response was consistent with the presence of a Th1-CD4+ anti-gD response, characterized by a high IgG2a/IgG1 IgG subclass ratio. Functional anti-HSV-2 neutralizing serum antibody responses were readily demonstrated in both guinea pigs and mice that had been immunized with rVSV-gD vaccines. Furthermore, guinea pigs and mice were prophylactically protected from genital challenge with high doses of wild-type HSV-2. In addition, guinea pigs were highly protected against the establishment of latent infection as evidenced by low or absent HSV-2 genome copies in dorsal root ganglia after virus challenge. In summary, rVSV-gD vectors were successfully used to elicit potent anti-gD Th1-like cellular and humoral immune responses that were protective against HSV-2 disease in guinea pigs and mice.
Cheng, Liang; Zhang, Zheng; Li, Guangming; Li, Feng; Wang, Li; Zhang, Liguo; Zurawski, Sandra M; Zurawski, Gerard; Levy, Yves; Su, Lishan
2017-10-27
TLR ligands (TLR-Ls) represent a class of novel vaccine adjuvants. However, their immunologic effects in humans remain poorly defined in vivo. Using a humanized mouse model with a functional human immune system, we investigated how different TLR-Ls stimulated human innate immune response in vivo and their applications as vaccine adjuvants for enhancing human cellular immune response. We found that splenocytes from humanized mice showed identical responses to various TLR-Ls as human PBMCs in vitro. To our surprise, various TLR-Ls stimulated human cytokines and chemokines differently in vivo compared to that in vitro. For example, CpG-A was most efficient to induce IFN-α production in vitro. In contrast, CpG-B, R848 and Poly I:C stimulated much more IFN-α than CpG-A in vivo. Importantly, the human innate immune response to specific TLR-Ls in humanized mice was different from that reported in C57BL/6 mice, but similar to that reported in nonhuman primates. Furthermore, we found that different TLR-Ls distinctively activated and mobilized human plasmacytoid dendritic cells (pDCs), myeloid DCs (mDCs) and monocytes in different organs. Finally, we showed that, as adjuvants, CpG-B, R848 and Poly I:C can all enhance antigen specific CD4 + T cell response, while only R848 and Poly I:C induced CD8 + cytotoxic T cells response to a CD40-targeting HIV vaccine in humanized mice, correlated with their ability to activate human mDCs but not pDCs. We conclude that humanized mice serve as a highly relevant model to evaluate and rank the human immunologic effects of novel adjuvants in vivo prior to testing in humans. Copyright © 2017 Elsevier Ltd. All rights reserved.
Plant-based vaccines for Alzheimer's disease: an overview.
Rosales-Mendoza, Sergio; Rubio-Infante, Néstor; Zarazúa, Sergio; Govea-Alonso, Dania O; Martel-Gallegos, Guadalupe; Moreno-Fierros, Leticia
2014-03-01
Plants are considered advantageous platforms for biomanufacturing recombinant vaccines. This constitutes a field of intensive research and some plant-derived vaccines are expected to be marketed in the near future. In particular, plant-based production of immunogens targeting molecules with implications on the pathology of Alzheimer's has been explored over the last decade. These efforts involve targeting amyloid beta and β-secretase with several immunogen configurations that have been evaluated in test animals. The results of these developments are analyzed in this review. Perspectives on the topic are identified, such as exploring additional antigen configurations and adjuvants in order to improve immunization schemes, characterizing in detail the elicited immune responses, and immunological considerations in the achievement of therapeutic humoral responses via mucosal immunization. Safety concerns related to these therapies will also be discussed.
“Let There Be Light”: The Role of Vitamin D in the Immune Response to Vaccines
Sadarangani, Sapna; Whitaker, Jennifer A.; Poland, Gregory A.
2016-01-01
Vitamin D’s non-skeletal actions, including immunomodulatory role, have been increasingly recognized. Of significance, many immune cells are able to synthesize a biologically active form of vitamin D from circulating 25-(OH) D with subsequent intracrine actions, and the vitamin D receptor (VDR) is broadly distributed. In this review, we discuss vitamin D’s potent role in innate and adaptive immune responses and published studies evaluating the impact of serum vitamin D, vitamin D gene pathway polymorphisms or empiric vitamin D supplementation on vaccine immunogenicity. We highlight existing knowledge gaps and propose the steps needed to advance the science and answer the question of whether vitamin D may prove valuable as a vaccine adjuvant for certain vaccines against infectious diseases. PMID:26325349
Carvalho-Queiroz, Claudia; Cook, Rosemary; Wang, Ching C.; Correa-Oliveira, Rodrigo; Bailey, Nicola A.; Egilmez, Nejat K.; Mathiowitz, Edith; LoVerde, Philip T.
2004-01-01
Schistosoma mansoni, an intravascular parasite, has evolved a number of immune evasion mechanisms to establish itself in the host, such as antioxidant enzymes. Our laboratory has demonstrated that the highest levels of certain antioxidant enzymes are found in adult worms, which are the least susceptible to immune killing. Vaccination of mice with naked DNA constructs containing the gene encoding Cu/Zn cytosolic superoxide dismutase (SmCT-SOD) showed significant levels of protection compared to a control group, and our data demonstrate that the adult worms are a target of the immune response that confers resistance in SmCT-SOD DNA-vaccinated mice. Because SmCT-SOD shows significant identity with the human homologue, we evaluated the reactivity of anti-SmCT-SOD antibodies derived from SmCT-SOD-immunized mice and rabbits and from S. mansoni-infected individuals to human superoxide dismutase (hSOD) and SmCT-SOD parasite-specific peptides to assess the potential for autoimmune responses from immunization with the recombinant molecule. In addition, we evaluated the ability of various SmCT-SOD adjuvant-delivered immunizations to induce cross-reactive antibodies. Both mouse and rabbit antibodies generated against SmCT-SOD recognized the denatured form of hSOD. The same antibodies did not recognize nondenatured hSOD. Sera from infected individuals with different clinical forms of schistosomiasis recognized SmCT-SOD but not hSOD. Antibodies from mice immunized with different SmCT-SOD-containing formulations of both DNA and protein were able to recognize SmCT-SOD-derived peptides but not soluble hSOD. All together, these findings serve as a basis for developing a subunit vaccine against schistosomiasis. PMID:15102772
Fusaro, Ana Elisa; de Brito, Cyro Alves; Taniguchi, Eliana Futata; Muniz, Bruno Pacola; Victor, Jefferson Russo; Orii, Noemia Mie; Duarte, Alberto José da Silva; Sato, Maria Notomi
2009-09-01
Allergens can be maternally transferred to the fetus or neonate, though it is uncertain how this initial allergen exposure may impact the development of allergy responses. To evaluate the roles of timing and level of maternal allergen exposure in the early life sensitization of progeny, female BALB/c mice were given ovalbumin (OVA) orally during pregnancy, lactation or weekly at each stage to investigate the immunoglobulin E (IgE) antibody production and cellular responsiveness of their offspring. Exposure to OVA during pregnancy was also evaluated in OVA-specific T-cell receptor (TCR) transgenic (DO11.10) mice. The effect of prenatal antigen exposure on offspring sensitization was dependent on antigen intake, with low-dose OVA inducing tolerance followed by neonatal immunization that was sustained even when pups were immunized when 3 weeks old. These offspring received high levels of transforming growth factor-beta via breastfeeding. High-dose exposure during the first week of pregnancy or perinatal period induced transient inhibition of IgE production following neonatal immunization; although for later immunization IgE production was enhanced in these offspring. Postnatal maternal antigen exposure provided OVA transference via breastfeeding, which consequently induced increased offspring susceptibility to IgE antibody production according to week post-birth. The effect of low-dose maternal exposure during pregnancy was further evaluated using OVA transgenic TCR dams as a model. These progeny presented pronounced entry of CD4(+) T cells into the S phase of the cell cycle with a skewed T helper type 2 response early in life, revealing the occurrence of allergen priming in utero. The balance between tolerance and sensitization depended on the amount and timing of maternal allergen intake during pregnancy.
Shen, Chi; Mao, Jian; Chen, Yongquan; Meng, Xiangyong; Ji, Zhongwei
2015-08-15
Chinese rice wine is well known for its unique flavor and high nutritional value. It is of interest to investigate the functional components of Chinese rice wine and their health benefits. Response surface design of three factors - pH, ethanol concentration and precipitation time - at three levels was utilized to optimize the extraction of Chinese rice wine polysaccharide (CRWP). The results indicated that the CRWP yield was 77.287% at the optimal levels for pH 8.4, ethanol concentration 88% and precipitation time 23 h. In addition, immune activity of CRWP was investigated by measuring body weight, spleen index and thymus index. Furthermore, immunity activity of CRWP was investigated by measuring lymphocyte proliferation, phagocytic index and phagocytic percentage of immunosuppressed mice. Compared with the control mice and model mice, it was found that CRWP has beneficial immune activities in vivo. These findings indicate that CRWP has immune activities in vivo by modulating the immune response, and implies full development and utilization of the nutritional value of Chinese rice wine. However, further work will be conducted in the future to elucidate the structure-bioactivity relationship for CRWP. © 2014 Society of Chemical Industry.
Hu, Yu; Luo, Shuying; Tang, Xuewen; Lou, Linqiao; Chen, Yaping; Guo, Jing; Zhang, Bing
2015-07-15
An EPI (Expanded Program on Immunization) intervention package was implemented from October 2011 to May 2014 among migrant children in Yiwu, east China. This study aimed to evaluate its impacts on vaccination coverage, maternal understanding of EPI and the local immunization service performance. A pre- and post-test design was used. The EPI intervention package included: (1) extending the EPI service time and increasing the frequency of vaccination service; (2) training program for vaccinators; (3) developing a screening tool to identify vaccination demands among migrant clinic attendants; (4) Social mobilization for immunization. Data were obtained from random sampling investigations, vaccination service statistics and qualitative interviews with vaccinators and mothers of migrant children. The analysis of quantitative data was based on a "before and after" evaluation and qualitative data were analyzed using content analysis. The immunization registration (records kept by immunization clinics) rate increased from 87.4 to 91.9% (P = 0.016) after implementation of the EPI intervention package and the EPI card holding (EPI card kept by caregivers) rate increased from 90.9 to 95.6% (P = 0.003). The coverage of fully immunized increased from 71.5 to 88.6% for migrant children aged 1-4 years (P < 0.001) and increased from 42.2 to 80.5% for migrant children aged 2-4 years (P < 0.001). The correct response rates on valid doses and management of adverse events among vaccinators were over 90% after training. The correct response rates on immunization among mothers of migrant children were 86.8-99.3% after interventions. Our study showed a substantial improvement in vaccination coverage among migrant children in Yiwu after implementation of the EPI intervention package. Further studies are needed to evaluate the cost-effectiveness of the interventions, to identify individual interventions that make the biggest contribution to coverage, and to examine the sustainability of the interventions within the existing vaccination service delivery system in a larger scale settings or in a longer term.
Leroux-Roels, Isabel; Forgus, Sheron; De Boever, Fien; Clement, Frédéric; Demoitié, Marie-Ange; Mettens, Pascal; Moris, Philippe; Ledent, Edouard; Leroux-Roels, Geert; Ofori-Anyinam, Opokua
2013-04-19
The Bacille Calmette-Guérin (BCG) tuberculosis (TB) vaccine provides incomplete protection, necessitating development of an effective vaccine against TB disease. The Mtb72F/AS02 candidate vaccine was previously shown to be clinically well tolerated and immunogenic in Purified Protein Derivative (PPD)-negative adults. To improve the stability of Mtb72F, a point mutation was introduced into a putative serine protease site to give the final M72 construct. AS01 is an Adjuvant System that can potentially improve both humoral and cellular immune responses compared to the AS02 Adjuvant System or unadjuvanted vaccine. This study evaluated the safety and immunogenicity in Mtb-naïve adults of vaccines containing 40 μg of the M72 antigen with AS02 or AS01 and compared the results with Mtb72F/AS02 vaccine (40 μg dose), M72 in saline (40 μg dose) and AS01 alone. In this Phase I/II observer-blind controlled trial, 110 participants were randomized (4:4:1:1:1) to receive M72/AS01, M72/AS02, Mtb72F/AS02, M72/saline or AS01, following a 0, 1-month schedule. Subjects receiving the adjuvanted M72 vaccines were followed up until 3 years post vaccination. Evaluation of the immune response and safety/reactogenicity was performed. For all vaccines, solicited adverse events (AEs) were predominantly mild to moderate and transient. No vaccine-related serious AEs occurred and no subject withdrew due to an AE. Immune responses induced by Mtb72F and M72 antigens combined with AS02 were similar. M72/AS01 and M72/AS02 induced robust polyfunctional M72-specific CD4(+) T cell and antibody responses persisting at 3 years, with the highest CD4(+) T cell responses found with M72/AS01. This first clinical study with M72/AS01 and M72/AS02 showed that both vaccines were clinically well tolerated and induced high magnitude and persistent cell-mediated and humoral immune responses. The Mtb72F/AS02 and M72/AS02 vaccines were comparably immunogenic with significantly higher immune responses compared to the M72/saline control. Of the formulations tested, M72/AS01 demonstrated significantly higher vaccine specific Th1 CD4(+) T cell responses supporting its further clinical evaluation. Copyright © 2012 Elsevier Ltd. All rights reserved.
T Cell-Mediated Immunity towards Yellow Fever Virus and Useful Animal Models
Watson, Alan M.; Klimstra, William B.
2017-01-01
The 17D line of yellow fever virus vaccines is among the most effective vaccines ever created. The humoral and cellular immunity elicited by 17D has been well characterized in humans. Neutralizing antibodies have long been known to provide protection against challenge with a wild-type virus. However, a well characterized T cell immune response that is robust, long-lived and polyfunctional is also elicited by 17D. It remains unclear whether this arm of immunity is protective following challenge with a wild-type virus. Here we introduce the 17D line of yellow fever virus vaccines, describe the current state of knowledge regarding the immunity directed towards the vaccines in humans and conclude with a discussion of animal models that are useful for evaluating T cell-mediated immune protection to yellow fever virus. PMID:28398253
T Cell-Mediated Immunity towards Yellow Fever Virus and Useful Animal Models.
Watson, Alan M; Klimstra, William B
2017-04-11
The 17D line of yellow fever virus vaccines is among the most effective vaccines ever created. The humoral and cellular immunity elicited by 17D has been well characterized in humans. Neutralizing antibodies have long been known to provide protection against challenge with a wild-type virus. However, a well characterized T cell immune response that is robust, long-lived and polyfunctional is also elicited by 17D. It remains unclear whether this arm of immunity is protective following challenge with a wild-type virus. Here we introduce the 17D line of yellow fever virus vaccines, describe the current state of knowledge regarding the immunity directed towards the vaccines in humans and conclude with a discussion of animal models that are useful for evaluating T cell-mediated immune protection to yellow fever virus.
Gupta, Sadhana M; Aranha, Clara C; Mohanty, Madhu C; Reddy, K V R
2008-01-01
Topical microbicides are intended for frequent use by women in reproductive age. Hence, it is essential to evaluate their impact on mucosal immune function in the vagina. In the present study, we evaluated nisin, a naturally occurring antimicrobial peptide (AMP), for its efficacy as an intravaginal microbicide. Its effect on the vaginal immune function was determined by localizing Toll-like receptors (TLRs-3, 9) and cytokines (IL-4, 6 , 10 and TNF-alpha) in the rabbit cervicovaginal epithelium following intravaginal administration of high dose of nisin gel for 14 consecutive days. The results revealed no alteration in the expression of TLRs and cytokines at both protein and mRNA levels. However, in SDS gel-treated group, the levels were significantly upregulated with the induction of NF-kappaB signalling cascade. Thus, TLRs and cytokines appear as sensitive indicators for screening immunotoxic potential of candidate microbicides.
Jiang, Hao; Hu, Yijun; Yang, Mei; Liu, Hao; Jiang, Guangshui
2017-05-01
The strength of immune responses induced by DNA vaccine is closely associated with the expression level of cloned antigens available to the antigen presenting cells (APCs). To acquire a larger and more persistent amount of antigen, a dual-promoter, which could double the target antigen output through its expression both in prokaryotic and eukaryotic cells, was employed in the constructed anti-caries DNA vaccine with attenuated Salmonella as mucosal delivery vector in this study. Here, both CMV and nirB promoters were included in the plasmid that harbors the genes encoding the functional epitopes of two virulence factors of S. mutans, i.e. the saliva-binding region (SBR) of PAc and the glucan-binding region (GBR) of glucosyltransferase-I (GTF-I). Delivered by attenuated Salmonella Typhimurium strain SL3261, the anti-caries vaccine was administered intragastrointestinally to BALB/c mice for evaluation of the effectiveness of this immune regime. Specific anti-SBR and anti-GBR antibodies were detected in the serum and saliva of experimental animals by week 3 after immunization. These immune responses were further enhanced after a booster vaccination at week 16. However, in mice receiving Salmonella expressing SBR and GBR under the control of nirB alone these antibody responses were significantly (P<0.01) lower. The serum IgG subclass profiles suggested a Th1/Th2-mixed but Th2 biased immune response to the cloned antigens, which was further confirmed by a significant increase in the Th1 (IFN-γ, IL-2) and Th2 (IL-4, IL-10) cytokines in splenocytes of immunized mice upon stimulation with SBR or GBR. To further determine the protective efficacy of these responses, a challenge test with S. mutans strain UA159 was performed in mice after the second immunization. Following challenge, mice immunized with Salmonella expressing SBR and GBR under the control of the CMV-nirB promoter showed a significant (P<0.01) reduction in the number of S. mutans in the dental plaque compared to the empty vector-immunized or unimmunized mice, and the reduction was also significant at weeks 3-8 (P<0.05) post-challenge when compared with those receiving Salmonella clones with nirB promoter alone. These results provide evidence for the effectiveness of a dual-promoter strategy in the anti-caries DNA vaccine when employing attenuated Salmonella as delivering vehicle for mucosal immunization. Copyright © 2017 Elsevier GmbH. All rights reserved.
Kawamura, Koji; Yamazaki, Rie; Akahoshi, Yu; Nakano, Hirofumi; Ugai, Tomotaka; Wada, Hidenori; Yamasaki, Ryoko; Ishihara, Yuko; Sakamoto, Kana; Ashizawa, Masahiro; Sato, Miki; Terasako-Saito, Kiriko; Kimura, Shun-ichi; Kikuchi, Misato; Nakasone, Hideki; Kanda, Junya; Kako, Shinichi; Tanihara, Aki; Nishida, Junji; Kanda, Yoshinobu
2015-03-01
Previous studies have shown that most patients lose immunity to measles, mumps, and rubella (MMR) during long-term follow-up after allogeneic hematopoietic stem cell transplantation (HSCT), and immunizations against them have been investigated. However, these previous studies mainly targeted pediatric patients and information in adult patients is still insufficient. We evaluated the immunity to MMR in 45 adult allogeneic HSCT patients. None of these patients received vaccination after HSCT. The seropositive rates at six years after allogeneic HSCT were estimated to be less than 44% for measles, less than 10% for mumps, and less than 36% for rubella. Thirteen of the 16 female patients who were 16-39 years old were negative or equivocal for rubella. Patients who developed grade II-IV acute graft-versus-host disease tended to become seronegative for measles and rubella at two years after HSCT, although the difference was not statistically significant. This study showed that most adult patients lost immunity to MMR after allogeneic HSCT. Although we did not evaluate the safety and efficacy of vaccination in this study, most HSCT guidelines recommend vaccination for HSCT recipients without active chronic graft-versus-host disease or ongoing immunosuppressive therapy at 24 months after HSCT. Immunization against rubella is especially important for female patients of reproductive age. Further studies will be necessary to evaluate the effect of vaccination on the antibody response in adult allogeneic HSCT recipients.
Kityo, Cissy; Bousheri, Stephanie; Akao, Juliette; Ssali, Francis; Byaruhanga, Rose; Ssewanyana, Isaac; Muloma, Prossy; Myalo, Sula; Magala, Rose; Lu, Yichen; Mugyenyi, Peter; Cao, Huyen
2011-01-01
Therapeutic immunizations in HIV infection may boost immunity during antiretroviral treatment. We report on the first therapeutic vaccine trial in Uganda, Africa. This open label Phase I trial was designed to assess the safety, tolerability and immunogenicity of a therapeutic HIV-1 vaccine candidate. Thirty HIV positive volunteers receiving a stable regimen of antiretroviral therapy with CD4 counts > 400 were recruited for the safety evaluation of LFn-p24C, a detoxified anthrax-derived polypeptide fused to the subtype C HIV gag protein p24. The vaccine was well tolerated and HIV RNA levels remained undetectable following three immunizations. CD4 counts in vaccine recipients were significantly higher compared to the control individuals after 12 months. HIV-specific responses were associated with higher gain in CD4 counts following LFn-p24C immunizations. Volunteers were subsequently asked to undergo a 30-day period of observed treatment interruption. 8/24 (30%) individuals showed no evidence of viral rebound during treatment interruption. All demonstrated prompt suppression of viral load following resumption of ART. Our data demonstrates the safety of LFn-p24C and suggests that adjunct therapeutic immunization may benefit select individuals in further boosting an immune response. PMID:21211581
Long-term memory cellular immune response to dengue virus after a natural primary infection.
Sierra, Beatríz; García, Gissel; Pérez, Ana B; Morier, Luis; Rodríguez, Rayner; Alvarez, Mayling; Guzmán, María G
2002-06-01
This study was conducted to examine the memory T-cell response to dengue virus 20 years after a primary infection. We took advantage of the exceptional epidemiologic situation in Cuba, where the population initially suffered two large successive epidemics due to dengue virus 1 and 2 respectively over a 4-year period. Thereafter, no dengue virus circulation was subsequently observed, except for the Santiago de Cuba municipality. T-cell response was evaluated in peripheral blood mononuclear cells (PBMCs) from 20 individuals with history of a primary infection by dengue virus 1 or 2. Methods previously shown to induce lymphoproliferation of CD4+ memory T-cell subpopulations were used. We evaluated the proliferative responses generated in those PBMCs after stimulation with dengue virus 1, 2, 3 and 4 antigens in a serotype-specific and serotype-crossreactive way. Serotype-specific and serotype-crossreactive lymphoproliferative responses in all PBMCs donated by dengue immune donors were observed. The serotype-crossreactive response for dengue 2 was stronger than for the rest of the serotypes. This is the first report of cellular memory lymphocyte response specific for dengue virus detected 20 years after a primary infection by dengue.
Domínguez-Bernal, Gustavo; Horcajo, Pilar; Orden, José A; De La Fuente, Ricardo; Herrero-Gil, Aldara; Ordóñez-Gutiérrez, Lara; Carrión, Javier
2012-08-09
Leishmania major is the major cause of cutaneous leishmaniosis (CL) outside of the Americas. In the present study we have cloned six Leishmania genes (H2A, H2B, H3, H4, A2 and HSP70) into the eukaryotic expression vector pCMVβ-m2a, resulting in pCMV-HISA70m2A, which encodes all six pathoantigenic proteins as a single polyprotein. This expression plasmid has been evaluated as a novel vaccine candidate in the BALB/c mouse model of CL. The DNA vaccine shifted the immune response normally induced by L. major infection away from a Th2-specific pathway to one of basal susceptibility. Immunization with pCMV-HISA70m2A dramatically reduced footpad lesions and lymph node parasite burdens relative to infected control mice. Complete absence of visceral parasite burden was observed in all 12 immunized animals but not in any of the 24 control mice. Moreover, vaccinated mice produced large amounts of IFN-γ, IL-17 and NO at 7 weeks post-infection (pi), and they showed lower arginase activity at the site of infection, lower IL-4 production and a weaker humoral immune response than infected control mice. Taken together, these results demonstrate the ability of the HISA70 vaccine to shift the murine immune response to L. major infection away from an undesirable, Th2-specific pathway to a less susceptible-like pathway involving Th1 and Th17 cytokine profiles.
Huang, Juan; Jia, Renyong; Wang, Mingshu; Shu, Bing; Yu, Xia; Zhu, Dekang; Chen, Shun; Yin, Zhongqiong; Chen, Xiaoyue; Cheng, Anchun
2014-04-01
Duck plague (DP) is a severe disease caused by DP virus (DPV). Control of the disease is recognized as one of the biggest challenges in avian medicine. Vaccination is an efficient way to control DPV, and an attenuated vaccine is the main routine vaccine. The attenuated DPV vaccine strain CHa is a modified live vaccine, but the systemic and mucosal immune responses induced by this vaccine have been poorly understood. In this study, the immunogenicity and efficacy of the vaccine were evaluated after subcutaneous immunization of ducks. CD4(+) and CD8(+) T cells were counted by flow cytometry, and humoral and mucosal Ig antibodies were analyzed by enzyme-linked immunosorbent assay (ELISA). The results showed that high levels of T cells and Ig antibodies were present postimmunization and that there were more CD4(+) T cells than CD8(+) T cells. Titers of humoral IgG were higher than those of humoral IgA. Local IgA was found in each sample, whereas local IgG was found only in the spleen, thymus, bursa of Fabricius, harderian gland, liver, bile, and lung. In a protection assay, the attenuated DPV vaccine completely protected ducks against 1,000 50% lethal doses (LD50) of the lethal DPV strain CHv via oral infection. These data suggest that this subcutaneous vaccine elicits sufficient systemic and mucosal immune responses against lethal DPV challenge to be protective in ducks. This study provides broad insights into understanding the immune responses to the attenuated DPV vaccine strain CHa through subcutaneous immunization in ducks.
Hu, Bing; Wei, Yuquan; Tian, Ling; Zhao, Xia; Lu, You; Wu, Yang; Yao, Bing; Liu, Jiyan; Niu, Ting; Wen, Yanjun; He, Qiuming; Su, Jingmei; Huang, Meijuan; Lou, Yanyan; Luo, Yan; Kan, Bing
2005-01-01
Active immunotherapy targeting epidermal growth factor receptor (EGFR) should be another attractive approach to the treatment of EGFR-positive tumors. To test this concept, the authors evaluated the potential immune responses and antitumor activities elicited by dendritic cells pulsed with recombinant ectodomain of mouse EGFR (DC-edMER). Spleen cells isolated from DC-edMER-vaccinated mice showed a high quantity of EGFR-specific antibody-producing cells. EGFR-reactive antibody in sera isolated from vaccinated mice was identified and shown to be effective against tumors in vitro and in vivo by adoptive transfer. DC-edMER vaccine also elicited cytotoxic T-lymphocyte responses that could mediate antitumor effects in vitro and adoptive transfer in vivo. In addition, EGFR-specific cytokines responses were elicited by DC-edMER vaccine. Immunization with DC-edMER resulted in tumor regression and prolonged survival in mice challenged with Lewis lung carcinomas and mammary cancer models. Depletion of CD4+ T lymphocytes could completely abrogate the antitumor activity and EGFR-specific antibody responses, whereas the depletion of CD8+ T lymphocytes showed partial abrogation of the antitumor activity but antibody was still detected. Furthermore, tumor-induced angiogenesis was suppressed in DC-edMER-vaccinated mice or mice treated with antibody adoptive transfer. Taken together, these findings suggest the antitumor immunity could be induced by DC-edMER, which may involve both humoral and cellular immunity, and may provide insight into the treatment of EGFR-positive tumors through the induction of active immunity against EGFR.
Optimized dosing of a CCR2 antagonist for amplification of vaccine immunity.
Mitchell, Leah A; Hansen, Ryan J; Beaupre, Adam J; Gustafson, Daniel L; Dow, Steven W
2013-02-01
We have recently discovered that inflammatory monocytes recruited to lymph nodes in response to vaccine-induced inflammation can function as potent negative regulators of both humoral and cell-mediated immune responses to vaccination. Monocyte depletion or migration blockade can significantly amplify both antibody titers and cellular immune responses to vaccination with several different antigens in mouse models. Thus, we hypothesized that the use of small molecule CCR2 inhibitors to block monocyte migration into lymph nodes may represent a broadly effective means of amplifying vaccine immunity. To address this question, the role of CCR2 in monocyte recruitment to vaccine draining lymph nodes was initially explored in CCR2-/- mice. Next, a small molecule antagonist of CCR2 (RS102895) was evaluated in mouse vaccination models. Initial studies revealed that a single intraperitoneal dose of RS102895 failed to effectively block monocyte recruitment following vaccination. Pharmacokinetic analysis of RS102895 revealed a short half-life (approximately 1h), and suggested that a multi-dose treatment regimen would be more effective. We found that administration of RS102895 every 6 h resulted in consistent plasma levels of 20 ng/ml or greater, which effectively blocked monocyte migration to lymph nodes following vaccination. Moreover, administration of RS102895 with concurrent vaccination markedly enhanced vaccine responses following immunization against the influenza antigen HA1. We concluded that administration of small molecule CCR2 antagonists such as RS102895 in the immediate post-vaccine period could be used as a novel means of significantly enhancing vaccine immunity. Copyright © 2012 Elsevier B.V. All rights reserved.
Advances in immunotherapy for non-small cell lung cancer.
Reckamp, Karen L
2015-12-01
In most patients, lung cancer presents as advanced disease with metastases to lymph nodes and/or distant organs, and survival is poor. Lung cancer is also a highly immune-suppressing malignancy with numerous methods to evade antitumor immune responses, including deficiencies in antigen processing and presentation, release of immunomodulatory cytokines, and inhibition of T-cell activation. Advances in understanding the complex interactions of the immune system and cancer have led to novel therapies that promote T-cell activation at the tumor site, resulting in prolonged clinical benefit. Immune checkpoint inhibitors, specifically programmed death receptor 1 pathway antibodies, have demonstrated impressively durable responses and improved survival in patients with non-small cell lung cancer. This article will review the recent progress made in immunotherapy for lung cancer with data from trials evaluating programmed death receptor 1 and cytotoxic T-lymphocyte-associated protein 4 monoclonal antibodies in addition to cancer vaccines. The review will focus on studies that have been published and the latest randomized trials exploring immune therapy in lung cancer. These results form the framework for a new direction in the treatment of lung cancer toward immunotherapy.
Zheng, Fengrong; Sun, Xiuqin; Wu, Xing'an; Liu, Hongzhan; Li, Jiye; Wu, Suqi; Zhang, Jinxing
2011-01-01
Here, we report the construction of a vaccine against lymphocystis disease virus (LCDV) using nucleic acid vaccination technology. A fragment of the major capsid protein encoding gene from an LCDV isolated from China (LCDV-cn) was cloned into an eukaryotic expression vector pEGFP-N2, yielding a recombinant plasmid pEGFP-N2-LCDV-cn0.6 kb. This plasmid was immediately expressed after liposomal transfer into the Japanese flounder embryo cell line. The recombinant plasmid was inoculated into Japanese flounder via two routes (intramuscular injection and hypodermic injection) at three doses (0.1, 5, and 15 μg), and then T-lymphopoiesis in different tissues and antibodies raised against LCDV were evaluated. The results indicated that this recombinant plasmid induced unique humoral or cell-mediated immune responses depending on the inoculation route and conferred immune protection. Furthermore, the humoral immune responses and protective effects were significantly increased at higher vaccine doses via the two injection routes. Plasmid pEGFP-N2-LCDV0.6 kb is therefore a promising vaccine candidate against LCDV in Japanese flounder. PMID:21789044
Schultz, R D
1976-01-01
The attenuated Rockborn strain of canine distemper virus is commonly used in commercial vaccines. Since immunosuppression is a common feature of virulent (Snyder Hill) distemper virus infection of the dog, an evaluation of the cellular immune functions of dogs given inoculums of the less virulent Rockborn strain was done using lymphocyte blastogenesis responses to various mitogens. Unlike the viruslent Snyder Hill strain, the attenuated distemper virus did not alter lymphocyte blastogenesis responses to phytohemaglutinin (PHA) and pokeweed mitogen (PWM) which are considered in vitro correlates of T and B cell immunity.
Saffar, M J; Rezai, M S
2004-12-01
Four hundred and fifty three healthy children immunized with a course of hepatitis B vaccine beginning at birth were tested at 10-11 years of age for persistence of anti-hepatitis B-S antigen antibody (anti-HBs); and responses of children without protective antibody to different doses of hepatitis B vaccine booster were evaluated. Although nearly 42% of them were not seroprotected, but most of boosted subjects (87.3%) retained robust immunologic memory and rapidly retained a protective anti-HBs antibody titer of at least 10 IU/L after booster vaccination.
Carneiro, Luciene Moraes; Mousquer, Gina Jonasson; Pinheiro, Raquel Silva; Castro, Ana Rita Coimbra Motta; França, Divânia Dias Da Silva; Caetano, Karlla Antonieta Amorim; Carneiro, Megmar Aparecida dos Santos; Martins, Regina Maria Bringel; Matos, Marcos André de; Castro, Lisie; Rezende, Grazielli; Teles, Sheila Araujo
2014-01-01
To evaluate the hepatitis B immunization status of female sex workers (FSWs) in Central-West Brazil and to evaluate their compliance with and immune response to hepatitis B vaccination delivered using outreach strategies. A total of 721 FSWs recruited in 2 large cities in Central-West Brazil were interviewed and screened for the presence of hepatitis B virus (HBV) markers. Hepatitis B vaccine was offered to all women susceptible to HBV, using outreach strategies. The immune response of FSWs who received a full course of vaccine was assessed following the final vaccine dose. We found that 27.6% of FSWs, the majority of whom were aged 18 to 25 years, had serological evidence of previous hepatitis B vaccination. A total of 434 FSWs were eligible for vaccination, 389 (89.6%) of whom accepted the first hepatitis B vaccine dose. Of those, 64% received a second dose and 37.5% received all three doses. Through the outreach strategy, there was a 52.2% increase in the number of women who received the second dose and a 67% increase in the number who received the third dose. Of the 146 women who received a full course of vaccine, 105 accepted testing for quantitative anti-HBs (hepatitis B surface antibody) following the final vaccine dose, and 92.4% of those tested had developed protective levels of anti-HBs. Lower education level, workplace, and length of prostitution were predictors of full-vaccine acceptance. The present findings illustrate the benefits of using outreach strategies to overcome the difficulties of vaccinating hard-to-reach populations such as FSWs.
Giacomet, Vania; Masetti, Michela; Nannini, Pilar; Forlanini, Federica; Clerici, Mario; Zuccotti, Gian Vincenzo; Trabattoni, Daria
2018-01-01
HBV vaccine induces protective antibodies only in 23-56% of HIV-infected children. The aim of our study is to evaluate the immunologic effects of a booster dose of HBV vaccine in HIV-infected youth. 53 young HIV-infected patients in whom HBV vaccination did not elicit protective Ab titers were enrolled. All patients were on ART with optimal immunological and viral response. All patients received a booster dose of HBV vaccine (HBVAXPRO 10 μg i.m.). HBV-specific Ab titer, viral load and CD4+ T cells were measured at baseline (T0), T1, T6 and T12 months. In a subgroup of 16 patients HBV-specific cell mediated immune responses were evaluated at baseline, at T1 and T6. The booster dose induced seroconversion in 51% of patients at T1, 57% at T6, and49% at T12; seroconversion rate was significantly correlated with CD4+T cells at T0 and to the CD4 nadir. The booster dose induced HBV-specific cell mediated immunity at T6 mainly in Responders (Rs): Effector Memory CD8+T cells, HBV-specific TNFα-, IFNγ-, granzyme secreting CD8+ T cells and IL2-secreting CD4+ T cells were significantly increased in Rs compared to T0. In Non Responders (NRs), HBV-specific IL2-secreting CD4+ T cells, Central and Effector Memory CD8+ T cells were the only parameters modified at T6. Seroconversion induced by a booster dose of vaccine correlates with the development of T cell immunological memory in HIV-infected patients who did not respond to the standard immunization. Alternate immunization schedules need to be considered in NRs.
Zhao, Ji-Hui; Zhang, Qi-Bo; Liu, Bao; Piao, Xiang-Hua; Yan, Yu-Lu; Hu, Xiao-Ge; Zhou, Kuan; Zhang, Yong-Tai; Feng, Nian-Ping
2017-01-01
Purpose To enhance the immunogenicity of the model subunit vaccine, ovalbumin (OVA) was combined with platycodin (PD), a saponin adjuvant. To reduce the toxicity of PD, OVA, and adjuvant were loaded together into liposomes before being incorporated into a dissolving microneedle array. Methods OVA- and PD-loaded liposomes (OVA-PD-Lipos) were prepared using the film dispersion method. Their uptake behavior, toxicity to mouse bone marrow dendritic cells (BMDCs), and hemolytic activity to rabbit red blood cells (RBCs) were evaluated. The OVA-PD-Lipos were incorporated into a dissolving microneedle array. The chemical stability of OVA and the physical stability of OVA-PD-Lipos in microneedle arrays were investigated. The immune response of Institute of Cancer Research mice and potential skin irritation reaction of rabbits to OVA-PD-Lipos-MNs were evaluated. Results The uptake of OVA by mouse BMDCs was greatly enhanced when OVA was prepared as OVA-PD-Lipos, and in this form, the toxicity of PD was dramatically reduced. OVA was chemically stable as OVA-PD-Lipos, when OVA-PD-Lipos was incorporated into a dissolving microneedle array. Institute of Cancer Research mice treated with OVA-PD-Lipos-MNs showed a significantly enhanced immune response. PD combined with OVA elicited a balanced Th1 and Th2 humoral immune response in mice, with minimal irritation in rabbit skin. Conclusion The dissolving microneedle array-based system is a promising delivery vehicle for subunit vaccine and its adjuvant. PMID:28740383
Safari, Roghieh; Hoseinifar, Seyed Hossein; Van Doan, Hien; Dadar, Maryam
2017-07-01
Myrtle (Myrtus communis L., Myrtaceae) is a significant plant which naturally distributed around the globe. Although numerous studies have demonstrated the benefits of myrtle in different species, studies using the oral route are rare in the literature. In the present study, we evaluated the effect of myrtle intake on the antioxidant, immune, appetite and growth related genes as well as mucosal immune responses in zebrafish (Danio rerio) model. Zebrafish were fed control or myrtle (5, 10 and 20 g kg -1 myrtle) supplemented diets for sixty days. The results showed that, oral administration of Myrtle significantly improved mucosal immune responses (the activity of lysozyme, total Ig and protease). Furthermore, fish fed 20 g kg -1 showed remarkably higher antioxidant (sod and cat) enzymes gene expression compared other treatment. There were significant difference between myrtle fed fish and control group regarding tnf-alpha and lyz expression. Also, evaluation of growth (gh and igf1) related genes revealed remarkable upregulation in 20 g kg -1 myrtle treatment compared other myrtle treatments and control group. Similar results was observed regarding the mRNA levels of appetite related genes (ghrl) in zebrafish fed 20 g kg -1 myrtle. The present results indicated that dietary administration of myrtle improved mucosal immune parameters and altered mRNA levels of selected genes. These results on zebrafish model also highlights the potential use of Myrtle supplements as additive in human diets. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gilbert, Peter B.; Grove, Douglas; Gabriel, Erin; Huang, Ying; Gray, Glenda; Hammer, Scott M.; Buchbinder, Susan P.; Kublin, James; Corey, Lawrence; Self, Steven G.
2012-01-01
Five preventative HIV vaccine efficacy trials have been conducted over the last 12 years, all of which evaluated vaccine efficacy (VE) to prevent HIV infection for a single vaccine regimen versus placebo. Now that one of these trials has supported partial VE of a prime-boost vaccine regimen, there is interest in conducting efficacy trials that simultaneously evaluate multiple prime-boost vaccine regimens against a shared placebo group in the same geographic region, for accelerating the pace of vaccine development. This article proposes such a design, which has main objectives (1) to evaluate VE of each regimen versus placebo against HIV exposures occurring near the time of the immunizations; (2) to evaluate durability of VE for each vaccine regimen showing reliable evidence for positive VE; (3) to expeditiously evaluate the immune correlates of protection if any vaccine regimen shows reliable evidence for positive VE; and (4) to compare VE among the vaccine regimens. The design uses sequential monitoring for the events of vaccine harm, non-efficacy, and high efficacy, selected to weed out poor vaccines as rapidly as possible while guarding against prematurely weeding out a vaccine that does not confer efficacy until most of the immunizations are received. The evaluation of the design shows that testing multiple vaccine regimens is important for providing a well-powered assessment of the correlation of vaccine-induced immune responses with HIV infection, and is critically important for providing a reasonably powered assessment of the value of identified correlates as surrogate endpoints for HIV infection. PMID:23181167
Ullah, Muhammad Irfan; Akhtar, Masood; Awais, Mian Muhammad; Anwar, Muhammad Irfan; Khaliq, Kashfa
2018-01-01
Mushrooms (Lentinus edodes) were processed for hot water (HWE), methanolic (ME), and polysaccharide (PSE) extracts. Polysaccharides were isolated through ion exchange (DEAE cellulose) and size exclusion (Sephadex G-100) chromatography. Monosaccharides including maltose (0.282%), glucose (0.113%), and mannose (0.451%) were identified, qualitatively and quantitatively, from the isolated polysaccharides through high-performance liquid chromatography. The whole study was divided into two experiments. Experiment 1 was meant for the evaluation of HWE and ME; whereas, experiment 2 was meant for the evaluation of PSE for immunostimulatory and immunotherapeutic activities. The cellular and humoral immune responses were demonstrated through lymphoproliferative response to phytohemagglutinin-P (PHA-P) and anti-body response to sheep red blood cells (SRBCs), respectively. The immunotherapeutic effects of these extracts were demonstrated against eimeriasis in terms of lesion scoring, oocysts per gram of droppings, and percent protection. Cell-mediated immune responses observed at 24, 48, and 72 h post-PHA-P injection were significantly higher (P < 0.05) in chickens administered with any of the three extracts (PSE, ME, and HWE), when compared with the controls. Humoral immune response in terms of anti-SRBCs anti-body titers was also observed higher in chickens administered with mushroom extracts. In the challenge experiment, significantly higher (P < 0.05) OPG and lesion scores were observed in controls as compared to the groups administered with mushroom extracts (HWE, ME, and PSE). Significantly higher (P < 0.05) percent protection against eimeriasis was observed in all groups administered with different extracts of L. edodes as compared to controls. In conclusion, L. edodes extracts showed immunostimulatory potential which persisted against eimeriasis in chicken.
Kumar, Amit; Wonganan, Piyanuch; Sandoval, Michael A.; Li, Xinran; Zhu, Saijie; Cui, Zhengrong
2012-01-01
Previously, it was shown that microneedle-mediated transcutaneous immunization with plasmid DNA can potentially induce a stronger immune response than intramuscular injection of the same plasmid DNA. In the present study, we showed that the immune responses induced by transcutaneous immunization by applying plasmid DNA onto a skin area pretreated with solid microneedles were significantly enhanced by coating the plasmid DNA on the surface of cationic nanoparticles. In addition, the net surface charge of the DNA-coated nanoparticles significantly affected their in vitro skin permeation and their ability to induce immune responses in vivo. Transcutaneous immunization with plasmid DNA-coated net positively charged anoparticles elicited a stronger immune response than with plasmid DNA-coated net negatively charged nanoparticles or by intramuscular immunization with plasmid DNA alone. Transcutaneous immunization with plasmid DNA-coated net positively charged nanoparticles induced comparable immune responses as intramuscular injection of them, but transcutaneous immunization was able to induce specific mucosal immunity and a more balanced T helper type 1 and type 2 response. The ability of the net positively charged DNA-coated nanoparticles to induce a strong immune response through microneedle-mediated transcutaneous immunization may be attributed to their ability to increase the expression of the antigen gene encoded by the plasmid and to more effectively stimulate the maturation of antigen-presenting cells. PMID:22921518
Leukocyte susceptibility and immune response against Vibrio parahaemolyticus in Totoaba macdonaldi.
Reyes-Becerril, Martha; Alamillo, Erika; Sánchez-Torres, Luvia; Ascencio-Valle, Felipe; Perez-Urbiola, Juan C; Angulo, Carlos
2016-12-01
Vibrio parahaemolyticus is a serious pathogen that affects aquaculture. Nonetheless, to the best of our knowledge, no studies have focused on its immunological implications in Totoaba macdonaldi. Thus, the early immune response to V. parahaemolyticus in juveniles of totoaba was studied at 24 h post-infection with an in vivo study. In addition, changes in cellular innate immune parameters - phagocytosis, respiratory burst activity and viability (annexin V/propidium iodide) - were evaluated in vitro in head-kidney, spleen and thymus leukocytes at 6 and 24 h after bacterial stimulation by flow cytometry. Simultaneously, the expression levels of two immune-relevant genes (IL-1β and IL-8) were measured by using real time PCR. During in vivo study, mRNA transcripts of IL-1β were highly expressed in spleen, thymus and intestine and down-regulated in liver after 24 h post-infection. IL-8 gene expression was upregulated in spleen, intestine and liver compared to that of non-infected fish and down-regulated in thymus after 24 h post-infection. Generally, the results showed a significant decrease in cellular immune responses during the infection, principally in phagocytic ability and respiratory burst. The survival or viability of stimulated leukocytes was significantly reduced causing necrosis and apoptosis, indicating a robust killing response by V. parahaemolyticus. Finally the in vitro analysis showed that transcript levels of IL-1β and IL-8 were up-regulated during stimulation with V. parahaemolyticus in head-kidney, spleen and intestine and down-regulated in thymus at any time of the experiment. Although V. parahaemolyticus has been reported to be an important pathogen for many aquatic organisms, to our knowledge this might be the first report of early-immune response in juvenile totoaba and these immune parameters may be reliable indicators and can be useful in the health control of this species. Copyright © 2016 Elsevier Ltd. All rights reserved.
Montoya, Carlos J; Toro, Maria F; Aguirre, Carlos; Bustamante, Alberto; Hernandez, Mariluz; Arango, Liliana P; Echeverry, Marta; Arango, Ana E; Prada, Maria C; Alarcon, Herminia del P; Rojas, Mauricio
2007-06-01
Given that highly active antiretroviral therapy (HAART) has been demonstrated useful to restore immune competence in type-1 human immunodeficiency virus (HIV-1)-infected subjects, we evaluated the specific antibody response to influenza vaccine in a cohort of HIV-1-infected children on HAART so as to analyze the quality of this immune response in patients under antiretroviral therapy. Sixteen HIV-1-infected children and 10 HIV-1 seronegative controls were immunized with a commercially available trivalent inactivated influenza vaccine containing the strains A/H1N1, A/H3N2, and B. Serum hemagglutinin inhibition (HI) antibody titers were determined for the three viral strains at the time of vaccination and 1 month later. Immunization induced a significantly increased humoral response against the three influenza virus strains in controls, and only against A/H3N2 in HIV-1-infected children. The comparison of post-vaccination HI titers between HIV-1+ patients and HIV-1 negative controls showed significantly higher HI titers against the three strains in controls. In addition, post vaccination protective HI titers (defined as equal to or higher than 1:40) against the strains A/H3N2 and B were observed in a lower proportion of HIV-1+ children than in controls, while a similar proportion of individuals from each group achieved protective HI titers against the A/H1N1 strain. The CD4+ T cell count, CD4/CD8 T cells ratio, and serum viral load were not affected by influenza virus vaccination when pre- vs post-vaccination values were compared. These findings suggest that despite the fact that HAART is efficient in controlling HIV-1 replication and in increasing CD4+ T cell count in HIV-1-infected children, restoration of immune competence and response to cognate antigens remain incomplete, indicating that additional therapeutic strategies are required to achieve a full reconstitution of immune functions.
Monaris, D.; Sbrogio-Almeida, M. E.; Dib, C. C.; Canhamero, T. A.; Souza, G. O.; Vasconcellos, S. A.; Ferreira, L. C. S.
2015-01-01
Leptospirosis is a global zoonotic disease caused by different Leptospira species, such as Leptospira interrogans, that colonize the renal tubules of wild and domestic animals. Thus far, attempts to develop effective leptospirosis vaccines, both for humans and animals, have failed to induce immune responses capable of conferring protection and simultaneously preventing renal colonization. In this study, we evaluated the protective immunity induced by subunit vaccines containing seven different recombinant Leptospira interrogans outer membrane proteins, including the carboxy-terminal portion of the immunoglobulinlike protein A (LigAC) and six novel antigens, combined with aluminum hydroxide (alum) or Salmonella flagellin (FliC) as adjuvants. Hamsters vaccinated with the different formulations elicited high antigen-specific antibody titers. Immunization with LigAC, either with alum or flagellin, conferred protective immunity but did not prevent renal colonization. Similarly, animals immunized with LigAC or LigAC coadministered with six leptospiral proteins with alum adjuvant conferred protection but did not reduce renal colonization. In contrast, immunizing animals with the pool of seven antigens in combination with flagellin conferred protection and significantly reduced renal colonization by the pathogen. The present study emphasizes the relevance of antigen composition and added adjuvant in the efficacy of antileptospirosis subunit vaccines and shows the complex relationship between immune responses and renal colonization by the pathogen. PMID:26108285
2014-01-01
Background The coinhibitory receptor Programmed Death-1 (PD-1) inhibits effector functions of activated T cells and prevents autoimmunity, however, cancer hijack this pathway to escape from immune attack. The costimulatory receptor glucocorticoid-induced TNFR related protein (GITR) is up-regulated on activated T cells and increases their proliferation, activation and cytokine production. We hypothesize that concomitant PD-1 blockade and GITR triggering would synergistically improve the effector functions of tumor-infiltrating T cells and increase the antitumor immunity. In present study, we evaluated the antitumor effects and mechanisms of combined PD-1 blockade and GITR triggering in a clinically highly relevant murine ID8 ovarian cancer model. Methods Mice with 7 days-established peritoneal ID8 ovarian cancer were treated intraperitoneally (i.p.) with either control, anti-PD-1, anti-GITR or anti-PD-1/GITR monoclonal antibody (mAb) and their survival was evaluated; the phenotype and function of tumor-associated immune cells in peritoneal cavity of treated mice was analyzed by flow cytometry, and systemic antigen-specific immune response was evaluated by ELISA and cytotoxicity assay. Results Combined anti-PD-1/GITR mAb treatment remarkably inhibited peritoneal ID8 tumor growth with 20% of mice tumor free 90 days after tumor challenge while treatment with either anti-PD-1 or anti-GITR mAb alone exhibited little antitumor effect. The durable antitumor effect was associated with a memory immune response and conferred by CD4+ cells and CD8+ T cells. The treatment of anti-PD-1/GITR mAb increased the frequencies of interferon-γ-producing effector T cells and decreased immunosuppressive regulatory T cells and myeloid-derived suppressor cells, shifting an immunosuppressive tumor milieu to an immunostimulatory state in peritoneal cavity. In addition, combined treatment of anti-PD-1/GITR mAb mounted an antigen-specific immune response as evidenced by antigen-specific IFN-γ production and cytolytic activity of spleen cells from treated mice. More importantly, combined treatment of anti-PD-1/GITR mAb and chemotherapeutic drugs (cisplatin or paclitaxel) further increased the antitumor efficacy with 80% of mice obtaining tumor-free long-term survival in murine ID8 ovarian cancer and 4 T1 breast cancer models. Conclusions Combined anti-PD-1/GITR mAb treatment induces a potent antitumor immunity, which can be further promoted by chemotherapeutic drugs. A combined strategy of anti-PD-1/GITR mAb plus cisplatin or paclitaxel should be considered translation into clinic. PMID:24502656
Interleukin-17A as a biomarker for bovine tuberculosis
USDA-ARS?s Scientific Manuscript database
T helper (Th) 17-associated cytokines are integral in the immune response to tuberculosis, initiating both protective and harmful inflammatory responses. The aim of the present study was to evaluate applied aspects of IL-17 biology in the context of Mycobacterium bovis infection of cattle. Using RNA...
NASA Astrophysics Data System (ADS)
Lopes da Silva, L. F. F.; Zamboni, C. B.; Bahovschi, V.; Metairon, S.; Suzuki, M. F.; Sant'Anna, O. A.; Rizzutto, M. A.
2015-07-01
In this work, mice genetically modified [HIII line] were immunized against different Bothrops snake venoms to produce anti-Bothrops serum (antivenom). The Neutron Activation Analysis (NAA) and Energy Dispersive X-Ray Fluorescence (EDXRF) techniques were used to evaluate Ca and Fe concentrations in blood of these immunized mice in order to establish a potential correlation between both phenotypes: antibody response and blood constituents after Bothrops venom administration. The results were compared with the control group (mice not immunized) and with human being estimative. These data are important for clinical screening of patients submitted to immunological therapy as well as the understanding of the envenoming mechanisms.
Involvement of Corneal Lymphangiogenesis in a Mouse Model of Allergic Eye Disease
Lee, Hyun-Soo; Hos, Deniz; Blanco, Tomas; Bock, Felix; Reyes, Nancy J.; Mathew, Rose; Cursiefen, Claus; Dana, Reza; Saban, Daniel R.
2015-01-01
Purpose. The contribution of lymphangiogenesis (LA) to allergy has received considerable attention and therapeutic inhibition of this process via targeting VEGF has been considered. Likewise, certain inflammatory settings affecting the ocular mucosa can trigger pathogenic LA in the naturally avascular cornea. Chronic inflammation in allergic eye disease (AED) impacts the conjunctiva and cornea, leading to sight threatening conditions. However, whether corneal LA is involved is completely unknown. We addressed this using a validated mouse model of AED. Methods. Allergic eye disease was induced by ovalbumin (OVA) immunization and chronic OVA exposure. Confocal microscopy of LYVE-1–stained cornea allowed evaluation of corneal LA, and qRT-PCR was used to evaluate expression of VEGF-C, -D, and -R3 in these mice. Administration of VEGF receptor (R) inhibitor was incorporated to inhibit corneal LA in AED. Immune responses were evaluated by in vitro OVA recall responses of T cells, and IgE levels in the serum. Results. Confocal microscopy of LYVE-1–stained cornea revealed the distinct presence of corneal LA in AED, and corroborated by increased corneal expression of VEGF-C, -D, and -R3. Importantly, prevention of corneal LA in AED via VEGFR inhibition was associated with decreased T helper two responses and IgE production. Furthermore, VEGFR inhibition led a significant reduction in clinical signs of AED. Conclusions. Collectively, these data reveal that there is a distinct involvement of corneal LA in AED. Furthermore, VEGFR inhibition prevents corneal LA and consequent immune responses in AED. PMID:26024097
Lokhandwala, Shehnaz; Waghela, Suryakant D; Bray, Jocelyn; Sangewar, Neha; Charendoff, Chloe; Martin, Cameron L; Hassan, Wisam S; Koynarski, Tsvetoslav; Gabbert, Lindsay; Burrage, Thomas G; Brake, David; Neilan, John; Mwangi, Waithaka
2017-01-01
African Swine Fever Virus (ASFV) is a high-consequence transboundary animal pathogen that often causes hemorrhagic disease in swine with a case fatality rate close to 100%. Lack of treatment or vaccine for the disease makes it imperative that safe and efficacious vaccines are developed to safeguard the swine industry. In this study, we evaluated the immunogenicity of seven adenovirus-vectored novel ASFV antigens, namely A151R, B119L, B602L, EP402RΔPRR, B438L, K205R and A104R. Immunization of commercial swine with a cocktail of the recombinant adenoviruses formulated in adjuvant primed strong ASFV antigen-specific IgG responses that underwent rapid recall upon boost. Notably, most vaccinees mounted robust IgG responses against all the antigens in the cocktail. Most importantly and relevant to vaccine development, the induced antibodies recognized viral proteins from Georgia 2007/1 ASFV-infected cells by IFA and by western blot analysis. The recombinant adenovirus cocktail also induced ASFV-specific IFN-γ-secreting cells that were recalled upon boosting. Evaluation of local and systemic effects of the recombinant adenovirus cocktail post-priming and post-boosting in the immunized animals showed that the immunogen was well tolerated and no serious negative effects were observed. Taken together, these outcomes showed that the adenovirus-vectored novel ASFV antigen cocktail was capable of safely inducing strong antibody and IFN-γ+ cell responses in commercial swine. The data will be used for selection of antigens for inclusion in a multi-antigen prototype vaccine to be evaluated for protective efficacy.
Adenovirus-vectored novel African Swine Fever Virus antigens elicit robust immune responses in swine
Waghela, Suryakant D.; Bray, Jocelyn; Sangewar, Neha; Charendoff, Chloe; Martin, Cameron L.; Hassan, Wisam S.; Koynarski, Tsvetoslav; Gabbert, Lindsay; Burrage, Thomas G.; Brake, David; Neilan, John; Mwangi, Waithaka
2017-01-01
African Swine Fever Virus (ASFV) is a high-consequence transboundary animal pathogen that often causes hemorrhagic disease in swine with a case fatality rate close to 100%. Lack of treatment or vaccine for the disease makes it imperative that safe and efficacious vaccines are developed to safeguard the swine industry. In this study, we evaluated the immunogenicity of seven adenovirus-vectored novel ASFV antigens, namely A151R, B119L, B602L, EP402RΔPRR, B438L, K205R and A104R. Immunization of commercial swine with a cocktail of the recombinant adenoviruses formulated in adjuvant primed strong ASFV antigen-specific IgG responses that underwent rapid recall upon boost. Notably, most vaccinees mounted robust IgG responses against all the antigens in the cocktail. Most importantly and relevant to vaccine development, the induced antibodies recognized viral proteins from Georgia 2007/1 ASFV-infected cells by IFA and by western blot analysis. The recombinant adenovirus cocktail also induced ASFV-specific IFN-γ-secreting cells that were recalled upon boosting. Evaluation of local and systemic effects of the recombinant adenovirus cocktail post-priming and post-boosting in the immunized animals showed that the immunogen was well tolerated and no serious negative effects were observed. Taken together, these outcomes showed that the adenovirus-vectored novel ASFV antigen cocktail was capable of safely inducing strong antibody and IFN-γ+ cell responses in commercial swine. The data will be used for selection of antigens for inclusion in a multi-antigen prototype vaccine to be evaluated for protective efficacy. PMID:28481911
Lynch, Michelle M.; Cernetich-Ott, Amy; Weidanz, William P.; Burns, James M.
2009-01-01
For the development of blood-stage malaria vaccines, there is a clear need to establish in vitro measures of the antibody-mediated and the cell-mediated immune responses that correlate with protection. In this study, we focused on establishing correlates of antibody-mediated immunity induced by immunization with apical membrane antigen 1 (AMA1) and merozoite surface protein 142 (MSP142) subunit vaccines. To do so, we exploited the Plasmodium chabaudi rodent model, with which we can immunize animals with both protective and nonprotective vaccine formulations and allow the parasitemia in the challenged animals to peak. Vaccine formulations were varied with regard to the antigen dose, the antigen conformation, and the adjuvant used. Prechallenge antibody responses were evaluated by enzyme-linked immunosorbent assay and were tested for a correlation with protection against nonlethal P. chabaudi malaria, as measured by a reduction in the peak level of parasitemia. The analysis showed that neither the isotype profile nor the avidity of vaccine-induced antibodies correlated with protective efficacy. However, high titers of antibodies directed against conformation-independent epitopes were associated with poor vaccine performance and may limit the effectiveness of protective antibodies that recognize conformation-dependent epitopes. We were able to predict the efficacies of the P. chabaudi AMA1 (PcAMA1) and P. chabaudi MSP142 (PcMSP142) vaccines only when the prechallenge antibody titers to both refolded and reduced/alkylated antigens were considered in combination. The relative importance of these two measures of vaccine-induced responses as predictors of protection differed somewhat for the PcAMA1 and the PcMSP142 vaccines, a finding confirmed in our final immunization and challenge study. A similar approach to the evaluation of vaccine-induced antibody responses may be useful during clinical trials of Plasmodium falciparum AMA1 and MSP142 vaccines. PMID:19116303
Marburg virus survivor immune responses are Th1 skewed with limited neutralizing antibody responses.
Stonier, Spencer W; Herbert, Andrew S; Kuehne, Ana I; Sobarzo, Ariel; Habibulin, Polina; Dahan, Chen V Abramovitch; James, Rebekah M; Egesa, Moses; Cose, Stephen; Lutwama, Julius Julian; Lobel, Leslie; Dye, John M
2017-09-04
Until recently, immune responses in filovirus survivors remained poorly understood. Early studies revealed IgM and IgG responses to infection with various filoviruses, but recent outbreaks have greatly expanded our understanding of filovirus immune responses. Immune responses in survivors of Ebola virus (EBOV) and Sudan virus (SUDV) infections have provided the most insight, with T cell responses as well as detailed antibody responses having been characterized. Immune responses to Marburg virus (MARV), however, remain almost entirely uncharacterized. We report that immune responses in MARV survivors share characteristics with EBOV and SUDV infections but have some distinct differences. MARV survivors developed multivariate CD4 + T cell responses but limited CD8 + T cell responses, more in keeping with SUDV survivors than EBOV survivors. In stark contrast to SUDV survivors, rare neutralizing antibody responses in MARV survivors diminished rapidly after the outbreak. These results warrant serious consideration for any vaccine or therapeutic that seeks to be broadly protective, as different filoviruses may require different immune responses to achieve immunity. © 2017 Stonier et al.
Hayashi, Yumiko; Okutani, Mie; Ogawa, Shohei; Tsukahara, Takamitsu; Inoue, Ryo
2018-05-01
T cell-mediated cellular immunity and humoral immunity are equally important for the prevention of diseases. To assess activation of human and mouse cellular immunity, early activation markers of lymphocytes are often used in flow cytometry targeting expression of CD69 molecules. Response of humoral immunity against infection or vaccination has been well investigated in pigs, but that of cellular immunity has been largely neglected due to lack of direct evaluation tools. Thus, in pig research a proper assay of antibody reacted with porcine CD69 is still unavailable. In the present study, two anti-porcine CD69 mAb-producing mouse hybridomas, 01-14-22-51 (IgG2b-κ) and 01-22-44-102 (IgG2a-κ), both showing fine reactivity with phorbol 12-myristate 13-acetate (PMA) and ionomycin-stimulated porcine peripheral blood lymphocytes in flow cytometry, were established. When porcine peripheral blood lymphocytes were activated with PMA and ionomycin and analyzed by flow cytometry, it was found that both mAbs generated in this study stained about 70% of lymphocytes. In contrast, after an identical procedure, only 5% and 13.5% of lymphocytes were stained with anti-interferon-γ mAb and anti-tumor necrosis factor-α mAb, respectively. These results indicate that evaluation of cellular immunity activation turns more sensitive after using our newly generated mAbs. © 2018 Japanese Society of Animal Science.
Hajam, Irshad Ahmed; Lee, John Hwa
2017-06-01
Recombinant Salmonella strains expressing foreign heterologous antigens have been extensively studied as promising live vaccine delivery vehicles. In this study, we constructed attenuated smooth (S-HA) and rough (R-HA) Salmonella strains expressing hemagglutinin (HA) of H9N2, a low pathogenic avian influenza A virus. We then investigated the HA-specific immune responses following oral immunization with either S-HA or R-HA strain in chicken model. We further examined the effects of the preexisting anti-Salmonella immunity on the subsequent elicitation of the HA and the Salmonella ompA specific immune responses. Our results showed that primary immunization with either the S-HA or the R-HA strain elicited comparable HA-specific immune responses and the responses were significantly (p<0.05) higher compared to the Salmonella vector control. When chickens were pre-immunized with the smooth Salmonella carrier alone and then vaccinated with either S-HA or R-HA strain 3, 6 and 9 weeks later, respectively, significant reductions were seen for HA-specific immune responses at week 6, a point which corresponded to the peak of the primary Salmonella-specific antibody responses. No reductions were seen at week 3 and 9, albeit, the HA-specific immune responses were boosted at week 9, a point which corresponded to the lowest primary Salmonella-specific antibody responses. The ompA recall responses remain refractory at week 3 and 6 following deliberate immunization with the carrier strain, but were significantly (p<0.05) increased at week 9 post-primary immunization. We conclude that preexisting anti-Salmonella immunity inhibits antigen-specific immune responses and this effect could be avoided by carefully selecting the time point when carrier-specific immune responses are relatively low. Copyright © 2017 Elsevier B.V. All rights reserved.
Chia, Min-Yuan; Hsiao, Shih-Hsuan; Chan, Hui-Ting; Do, Yi-Yin; Huang, Pung-Ling; Chang, Hui-Wen; Tsai, Yi-Chieh; Lin, Chun-Ming; Pang, Victor Fei; Jeng, Chian-Ren
2011-04-15
Escherichia coli heat-labile enterotoxin B subunit (LTB) can be used as an adjuvant for co-administered antigens. Our previous study showed that the expression of neutralizing epitope GP5 of porcine reproductive and respiratory syndrome virus (PRRSV) in transgenic tobacco plant (GP5-T) could induce PRRSV-specific immune responses in pigs. A transgenic tobacco plant co-expressing LTB and PRRSV GP5 as a fusion protein (LTB-GP5-T) was further constructed and its immunogenicity was evaluated. Pigs were given orally three consecutive doses of equal concentration of recombinant GP5 protein expressed in leaves of LTB-GP5-T or GP5-T at a 2-week interval and challenged with PRRSV at 7 weeks post-initial immunization. Pigs receiving LTB-GP5-T or GP5-T developed PRRSV-specific antibody- and cell-mediated immunity and showed significantly lower viremia and tissue viral load and milder lung lesions than wild type tobacco plant (W-T). The LTB-GP5-T-treated group had relatively higher immune responses than the GP5-T-treated group, although the differences were not statistically significant. Copyright © 2011 Elsevier B.V. All rights reserved.
Evaluation of the Immunogenicity of a Potyvirus-Like Particle as an Adjuvant of a Synthetic Peptide.
Cárdenas-Vargas, Albertina; Elizondo-Quiroga, Darwin; Gutierrez-Ortega, Abel; Charles-Niño, Claudia; Pedroza-Roldán, César
2016-12-01
Improvement of current vaccines is highly necessary to increase immunogenicity levels and protection against several pathogens. Virus-like particles (VLPs) are promising approaches for vaccines because they emulate infectious virus structure, but lack any genetic material needed for replication. Plant viruses have emerged as a potential framework for VLP design, mainly because there is no preexisting immunity in mammals. In this study, we evaluated the scaffold of the papaya ringspot virus (PRSV) as a VLP adjuvant for a short synthetic peptide derived from the Hemagglutinin protein of AH1 N1 influenza virus-hemagglutinin (VLP-HA). Our results demonstrated that the adjuvant property of this VLP is highly similar to the trivalent influenza vaccine, showing comparable levels of IgG- and IgA-specific antibodies to HA-derived peptide in serum and feces of vaccinated mice, respectively. Furthermore, VLP-HA-immunized mice showed Th1-biased immune response as suggested by measuring IgG subclasses in comparison with the predominance of Th2-biased immune response in trivalent influenza vaccine dose-vaccinated mice. VLP-HA administration in mice induced comparable levels of activated CD4 + - and CD8 + -specific T lymphocytes for the HA-derived peptide. These results suggest the potential adjuvant capacity of the PRSV-VLP as a carrier for short synthetic peptides.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valdes, Iris, E-mail: iris.valdes@cigb.edu.c; Bernardo, Lidice; Gil, Lazaro
Based on the immunogenicity of domain III from the Envelope protein of dengue virus as well as the proven protective capacity of the capsid antigen, we have designed a novel domain III-capsid chimeric protein with the goal of obtaining a molecule potentially able to induce both humoral and cell-mediated immunity (CMI). After expression of the recombinant gene in Escherichia coli, the domain III moiety retained its antigenicity as evaluated with anti-dengue sera. In order to explore alternatives for modulating the immunogenicity of the protein, it was mixed with oligodeoxynucleotides in order to obtain particulated aggregates and then immunologically evaluated inmore » mice in comparison with non-aggregated controls. Although the humoral immune response induced by both forms of the protein was equivalent, the aggregated variant resulted in a much stronger CMI as measured by in vitro IFN-gamma secretion and protection experiments, mediated by CD4{sup +} and CD8{sup +} cells. The present work provides additional evidence in support for a crucial role of CMI in protection against dengue virus and describes a novel vaccine candidate against the disease based on a recombinant protein that can stimulate both arms of the acquired immune system.« less
Bahi-Jaber, Narges; Petitdidier, Elodie; Markikou-Ouni, Wafa; Aoun, Karim; Moreno, Javier; Carrillo, Eugenia; Salotra, Poonam; Kaushal, Himanshu; Negi, Narender Singh; Arevalo, Jorge; Falconi-Agapito, Francesca; Privat, Angela; Cruz, Maria; Pagniez, Julie; Papierok, Gérard-Marie; Rhouma, Faten Bel Haj; Torres, Pilar; Lemesre, Jean-Loup; Chenik, Mehdi; Meddeb-Garnaoui, Amel
2014-01-01
PSA (Promastigote Surface Antigen) belongs to a family of membrane-bound and secreted proteins present in several Leishmania (L.) species. PSA is recognized by human Th1 cells and provides a high degree of protection in vaccinated mice. We evaluated humoral and cellular immune responses induced by a L. amazonensis PSA protein (LaPSA-38S) produced in a L. tarentolae expression system. This was done in individuals cured of cutaneous leishmaniasis due to L. major (CCLm) or L. braziliensis (CCLb) or visceral leishmaniasis due to L. donovani (CVLd) and in healthy individuals. Healthy individuals were subdivided into immune (HHR-Lm and HHR-Li: Healthy High Responders living in an endemic area for L. major or L. infantum infection) or non immune/naive individuals (HLR: Healthy Low Responders), depending on whether they produce high or low levels of IFN-γ in response to Leishmania soluble antigen. Low levels of total IgG antibodies to LaPSA-38S were detected in sera from the studied groups. Interestingly, LaPSA-38S induced specific and significant levels of IFN-γ, granzyme B and IL-10 in CCLm, HHR-Lm and HHR-Li groups, with HHR-Li group producing TNF-α in more. No significant cytokine response was observed in individuals immune to L. braziliensis or L. donovani infection. Phenotypic analysis showed a significant increase in CD4+ T cells producing IFN-γ after LaPSA-38S stimulation, in CCLm. A high positive correlation was observed between the percentage of IFN-γ-producing CD4+ T cells and the released IFN-γ. We showed that the LaPSA-38S protein was able to induce a mixed Th1 and Th2/Treg cytokine response in individuals with immunity to L. major or L. infantum infection indicating that it may be exploited as a vaccine candidate. We also showed, to our knowledge for the first time, the capacity of Leishmania PSA protein to induce granzyme B production in humans with immunity to L. major and L. infantum infection. PMID:24786587
Haanwinckel, Maria Cristina Santos; de Oliveira, Silvio Luis
2011-01-01
The aim of the present study was to evaluate the activity of macrophages, and the production of TNF-α and antibodies against experimental infection by Leptospira serovar Pomona in mice genetically selected for High (H) or Low (L) humoral immune response. To evaluate macrophagic activity, peritoneal and splenic lavages were performed for determination of oxygen (H2O2) and nitrogen (NO) intermediates. The production of the tumor necrosis factor (TNF-α) was investigated through bioassays in serum and homogenates of splenic and hepatic cells of control and infected animals, as was as specific antibodies production. The immune response against serovar Pomona in those lines, was characterized by high antibody production, especially in later periods of the infectious process, whereas values of bacterial recovery in culture medium were lower. The production of reactives oxygen and nitrogen intermediate, also helped to eliminate Leptospira Pomona in both lines; H2O2 production an important factor in HIV-A, as well as NO production in LIV-A, especially in later post-inoculation periods. The same was detected for TNF-α. Results suggest that such lines could be an important model to investigate the pathogenesis and the immune response of animals against the several Leptospira serovars. PMID:24031688
Gleeson, Maree; Pyne, David B; Elkington, Lisa J; Hall, Sharron T; Attia, John R; Oldmeadow, Christopher; Wood, Lisa G; Callister, Robin
2017-01-01
Clinical and laboratory identification of the underlying risk of respiratory illness in athletes has proved problematic. The aim of this study was to determine whether clinical data, combined with immune responses to standardised exercise protocols and genetic cytokine polymorphism status, could identify the risk of respiratory illness (symptoms) in a cohort of highly-trained athletes. Male endurance athletes (n=16; VO2max 66.5 ± 5.1 mL.kg-1.min-1) underwent a clinical evaluation of known risk factors by a physician and comprehensive laboratory analysis of immune responses both at rest and after two cycling ergometer tests: 60 min at 65% VO2max (LONG); and 6 x 3 min intervals at 90% VO2max (INTENSE). Blood tests were performed to determine Epstein Barr virus (EBV) status and DNA was genotyped for a panel of cytokine gene polymorphisms. Saliva was collected for measurement of IgA and detection of EBV DNA. Athletes were then followed for 9 months for self-reported episodes of respiratory illness, with confirmation of the underlying cause by a sports physician. There were no associations with risk of respiratory illness identified for any parameter assessed in the clinical evaluations. The laboratory parameters associated with an increased risk of respiratory illnesses in highly-trained athletes were cytokine gene polymorphisms for the high expression of IL-6 and IFN-ɣ; expression of EBV-DNA in saliva; and low levels of salivary IgA concentration. A genetic risk score was developed for the cumulative number of minor alleles for the cytokines evaluated. Athletes prone to recurrent respiratory illness were more likely to have immune disturbances that allow viral reactivation, and a genetic predisposition to pro-inflammatory cytokine responses to intense exercise. Copyright © 2016 International Society of Exercise and Immunology. All rights reserved.
Reyes-Becerril, Martha; Angulo, Carlos; Ascencio, Felipe
2015-02-01
Aquaculture production of Pacific red snapper Lutjanus peru is growing rapidly in Mexico, especially in Gulf of California. As it is a relatively new aquaculture species there are few reports evaluating its immune response to pathogens. The Gram-negative bacteria Aeromonas veronii is a heterogeneous organism that causes the disease known as motile aeromonad septicemia, which is responsible for serious economic loss in seabream culture due to bacterial infections. For the purpose of this study, juvenile Pacific red snapper specimens were intraperitoneally injected with low doses of A. veronii (1 × 10(6) CFU ml(-1)). Changes in humoral immune parameters (total protein, myeloperoxidase, lisozyme and antiprotease activities and IgM levels), as well as superoxide dismutase and catalase activities, and TLR9 gene expression were evaluated 24 and 48 h after injection. Overall, the results showed an enhanced in humoral immune parameters and SOD and CAT activities in fish infected with A. veronii compared with control group at 24 or 48 h. By real time PCR assays, the basal mRNA transcripts of TLR9 showed that were highly expressed in intestine and leucocytes compared to skin, head kidney, liver and gill. Then, the mRNA expression levels of TLR9 in head kidney, skin, liver and intestine were analyzed in non-infected and experimentally infected fish 24 and 48 h after injection. A. veronii up-regulated the expression of TLR9 at 24 or 48 h of exposure in all samples analyzed except in liver. Interestingly, intestine produced the greatest increase in transcript levels upon exposure (48 h) to A. veronii. Taken together, our results suggest that low doses of A. veronii infection inducing humoral immune system and TLR9 immune gene in Pacific red snapper that can be useful in the health control of this species. Copyright © 2014 Elsevier Ltd. All rights reserved.
Evaluation of vaccination efficiency against HBV among Syrian multitransfused patients.
Yazji, Wadad; Habal, Wafaa; Menem, Fawza
2018-03-05
This cross-sectional study estimates HBV prevalence and evaluates vaccination efficiency among multitransfused patients. 159 patients with various hemoglobinopathies were tested for HBsAg, anti-HBs, and anti-HBc, using enzyme-linked immunosorbent assay (ELISA). The serological results were then compared with the relevant documentation in medical records. Seropositivity of HBV was detected in 1/8 of recruited patients. Serological immunity was found in only half of patients, while the other half were either infected or non-immune. The vaccination against HBV appeared inefficient in almost half of vaccinated patients and was not documented in the medical records of 1/6 of patients. Thus, multitransfused patients are at risk of acquiring hepatitis B infection. Applying prophylactic vaccination, documenting vaccine doses, and monitoring immune response are highly recommended.
Kalkavan, Halime; Sharma, Piyush; Kasper, Stefan; Helfrich, Iris; Pandyra, Aleksandra A.; Gassa, Asmae; Virchow, Isabel; Flatz, Lukas; Brandenburg, Tim; Namineni, Sukumar; Heikenwalder, Mathias; Höchst, Bastian; Knolle, Percy A.; Wollmann, Guido; von Laer, Dorothee; Drexler, Ingo; Rathbun, Jessica; Cannon, Paula M.; Scheu, Stefanie; Bauer, Jens; Chauhan, Jagat; Häussinger, Dieter; Willimsky, Gerald; Löhning, Max; Schadendorf, Dirk; Brandau, Sven; Schuler, Martin; Lang, Philipp A.; Lang, Karl S.
2017-01-01
Immune-mediated effector molecules can limit cancer growth, but lack of sustained immune activation in the tumour microenvironment restricts antitumour immunity. New therapeutic approaches that induce a strong and prolonged immune activation would represent a major immunotherapeutic advance. Here we show that the arenaviruses lymphocytic choriomeningitis virus (LCMV) and the clinically used Junin virus vaccine (Candid#1) preferentially replicate in tumour cells in a variety of murine and human cancer models. Viral replication leads to prolonged local immune activation, rapid regression of localized and metastatic cancers, and long-term disease control. Mechanistically, LCMV induces antitumour immunity, which depends on the recruitment of interferon-producing Ly6C+ monocytes and additionally enhances tumour-specific CD8+ T cells. In comparison with other clinically evaluated oncolytic viruses and to PD-1 blockade, LCMV treatment shows promising antitumoural benefits. In conclusion, therapeutically administered arenavirus replicates in cancer cells and induces tumour regression by enhancing local immune responses. PMID:28248314