Sample records for evaluate personal exposure

  1. Windsor, Ontario Exposure Assessment Study: Design and Methods Validation of Personal, Indoor and Outdoor Air Pollution Monitoring

    EPA Science Inventory

    The Windsor, Ontario Exposure Assessment Study evaluated the contribution of ambient air pollutants to personal and indoor exposures of adults and asthmatic children living in Windsor, Ontario, Canada. In addition, the role of personal, indoor, and outdoor air pollution exposures...

  2. EVALUATION OF A PERSONAL NEPHELOMETER FOR HUMAN EXPOSURE MONITORING

    EPA Science Inventory

    Current particulate matter (PM) exposure studies are using continuous personal nephelometers (pDR-1000, MIE, Inc.) to measure human exposure to PM. The personal nephelometer is a passive sampler which uses light scattering technology to measure particles ranging in size from 0....

  3. Field evaluation of personal sampling methods for multiple bioaerosols.

    PubMed

    Wang, Chi-Hsun; Chen, Bean T; Han, Bor-Cheng; Liu, Andrew Chi-Yeu; Hung, Po-Chen; Chen, Chih-Yong; Chao, Hsing Jasmine

    2015-01-01

    Ambient bioaerosols are ubiquitous in the daily environment and can affect health in various ways. However, few studies have been conducted to comprehensively evaluate personal bioaerosol exposure in occupational and indoor environments because of the complex composition of bioaerosols and the lack of standardized sampling/analysis methods. We conducted a study to determine the most efficient collection/analysis method for the personal exposure assessment of multiple bioaerosols. The sampling efficiencies of three filters and four samplers were compared. According to our results, polycarbonate (PC) filters had the highest relative efficiency, particularly for bacteria. Side-by-side sampling was conducted to evaluate the three filter samplers (with PC filters) and the NIOSH Personal Bioaerosol Cyclone Sampler. According to the results, the Button Aerosol Sampler and the IOM Inhalable Dust Sampler had the highest relative efficiencies for fungi and bacteria, followed by the NIOSH sampler. Personal sampling was performed in a pig farm to assess occupational bioaerosol exposure and to evaluate the sampling/analysis methods. The Button and IOM samplers yielded a similar performance for personal bioaerosol sampling at the pig farm. However, the Button sampler is more likely to be clogged at high airborne dust concentrations because of its higher flow rate (4 L/min). Therefore, the IOM sampler is a more appropriate choice for performing personal sampling in environments with high dust levels. In summary, the Button and IOM samplers with PC filters are efficient sampling/analysis methods for the personal exposure assessment of multiple bioaerosols.

  4. Towards Personal Exposures: How Technology Is Changing Air Pollution and Health Research.

    PubMed

    Larkin, A; Hystad, P

    2017-12-01

    We present a review of emerging technologies and how these can transform personal air pollution exposure assessment and subsequent health research. Estimating personal air pollution exposures is currently split broadly into methods for modeling exposures for large populations versus measuring exposures for small populations. Air pollution sensors, smartphones, and air pollution models capitalizing on big/new data sources offer tremendous opportunity for unifying these approaches and improving long-term personal exposure prediction at scales needed for population-based research. A multi-disciplinary approach is needed to combine these technologies to not only estimate personal exposures for epidemiological research but also determine drivers of these exposures and new prevention opportunities. While available technologies can revolutionize air pollution exposure research, ethical, privacy, logistical, and data science challenges must be met before widespread implementations occur. Available technologies and related advances in data science can improve long-term personal air pollution exposure estimates at scales needed for population-based research. This will advance our ability to evaluate the impacts of air pollution on human health and develop effective prevention strategies.

  5. PERSONAL EXPOSURE TO PM2.5 MASS AND TRACE ELEMENTS IN BALTIMORE, MD, USA

    EPA Science Inventory

    In a recent study, EPA found significant relationships between PM2.5 mass measurements at a community site and personal exposure samples in a Towson, MD retirement facility. This manuscript builds upon these results by evaluating the exposure relationships with the elemental c...

  6. DEVELOPMENT AND TESTING OF A WHOLE-AIR SAMPLER FOR MEASUREMENT OF PERSONAL EXPOSURE TO VOLATILE ORGANIC COMPOUNDS

    EPA Science Inventory

    A small and relatively lightweight (3.35 kg) whole-air (canister) sampler that can be worn to monitor personal exposures to volatile organic compounds was developed and evaluated. The prototype personal whole air sampler (PWAS) consists of a 1-L canister, a mass flow controller, ...

  7. SOURCE APPORTIONMENT OF EXPOSURES TO VOLATILE ORGANIC COMPOUNDS: I. EVALUATION OF RECEPTOR MODELS USING SIMULATED EXPOSURE DATA. (R826788)

    EPA Science Inventory

    Four receptor-oriented source apportionment models were evaluated by applying them to simulated personal exposure data for select volatile organic compounds (VOCs) that were generated by Monte Carlo sampling from known source contributions and profiles. The exposure sources mo...

  8. [Multiple mere exposure effect: category evaluation measured in the Go/No-go association task (GNAT)].

    PubMed

    Kawakami, Naoaki; Yoshida, Fujio

    2011-12-01

    The effect on likability of multiple subliminal exposures to the same person was investigated. Past studies on the mere exposure effect indicated a correlation between the frequency of repeated exposure to the same stimulus and likability. We proposed that exposure to various stimuli of the same person would have a stronger effect on likability. Participants were subliminally exposed to photographs of a person's face taken from seven angles (multi-angle-exposure) three times each (Experiment 1), or photographs of a person with seven facial expressions (multi-expression-exposure) three times each (Experiment 2). Then, the likability toward the exposed person was measured using the Go/No-go Association Task. The results indicated that the effect of the multiple exposures from various angles was equivalent to exposure to only one full-face photograph shown 21 times (Experiment 1). Moreover, likability was significantly higher in the case of exposure to various facial expressions than for exposure to only a single facial expression (Experiment 2). The results suggest that exposure to various stimuli in a category is more effective than repeated exposure to a single stimulus for increasing likability.

  9. Evaluating methods for estimating space-time paths of individuals in calculating long-term personal exposure to air pollution

    NASA Astrophysics Data System (ADS)

    Schmitz, Oliver; Soenario, Ivan; Vaartjes, Ilonca; Strak, Maciek; Hoek, Gerard; Brunekreef, Bert; Dijst, Martin; Karssenberg, Derek

    2016-04-01

    Air pollution is one of the major concerns for human health. Associations between air pollution and health are often calculated using long-term (i.e. years to decades) information on personal exposure for each individual in a cohort. Personal exposure is the air pollution aggregated along the space-time path visited by an individual. As air pollution may vary considerably in space and time, for instance due to motorised traffic, the estimation of the spatio-temporal location of a persons' space-time path is important to identify the personal exposure. However, long term exposure is mostly calculated using the air pollution concentration at the x, y location of someone's home which does not consider that individuals are mobile (commuting, recreation, relocation). This assumption is often made as it is a major challenge to estimate space-time paths for all individuals in large cohorts, mostly because limited information on mobility of individuals is available. We address this issue by evaluating multiple approaches for the calculation of space-time paths, thereby estimating the personal exposure along these space-time paths with hyper resolution air pollution maps at national scale. This allows us to evaluate the effect of the space-time path and resulting personal exposure. Air pollution (e.g. NO2, PM10) was mapped for the entire Netherlands at a resolution of 5×5 m2 using the land use regression models developed in the European Study of Cohorts for Air Pollution Effects (ESCAPE, http://escapeproject.eu/) and the open source software PCRaster (http://www.pcraster.eu). The models use predictor variables like population density, land use, and traffic related data sets, and are able to model spatial variation and within-city variability of annual average concentration values. We approximated space-time paths for all individuals in a cohort using various aggregations, including those representing space-time paths as the outline of a persons' home or associated parcel of land, the 4 digit postal code area or neighbourhood of a persons' home, circular areas around the home, and spatial probability distributions of space-time paths during commuting. Personal exposure was estimated by averaging concentrations over these space-time paths, for each individual in a cohort. Preliminary results show considerable differences of a persons' exposure using these various approaches of space-time path aggregation, presumably because air pollution shows large variation over short distances.

  10. Determinants of the Associations between Ambient Concentrations and Personal Exposures to Ambient PM2.5, NO2, and O3 during DEARS

    EPA Science Inventory

    In this analysis, ambient concentrations and personal exposures to PM2.5, O3, and NO2, air exchange rates, meteorological parameters, and questionnaire survey responses collected during the Detroit Exposure and Aerosol Research Study (DEARS) are used: 1) to evaluate different met...

  11. Historical cohort study of US man-made vitreous fiber production workers: VIII. Exposure-specific job analysis.

    PubMed

    Quinn, M M; Smith, T J; Youk, A O; Marsh, G M; Stone, R A; Buchanich, J M; Gula, M J

    2001-09-01

    All jobs held by a cohort of US man-made vitreous fiber production workers were analyzed for airborne fiber exposure. This exposure-specific job analysis was part of an exposure assessment for an epidemiologic study of mortality patterns, with particular focus on respiratory cancer, among 35,145 workers employed in 10 fiberglass and five rock or slag wool plants. The exposure assessment was conducted from the start-up date of each plant (1917 to 1946) to 1990. For the job analysis, 15,465 crude department names and 47,693 crude job titles were grouped into 1668 unique department and job pairs (UDJobs), which represented a job title linked to a specific department within each plant. Every UDJob was evaluated according to a set of job elements related to airborne fiber exposure. The distribution of the cohort person-years by UDJob and the job-exposure elements was then evaluated. The results show the main departments and jobs that employed the workers for each plant. The distribution of person-years varies across the job-exposure elements. The same job title was used in different departments within and across plants. When job titles not linked to departments were evaluated, the values of the job-exposure elements varied considerably across all plants and within plant. (1) exposure misclassification could occur if job title alone were used for the exposure assessment; (2) the job-exposure elements analysis provides an efficient way to identify major job determinants of exposure without relying on the more detailed, resource-intensive task-based approach; and (3) the evaluation of the cohort person-years by UDJobs and job-exposure elements is an effective way to identify which plants, departments, and jobs have sufficient information for making precise risk estimates in the broader epidemiologic study.

  12. Different relationships between personal exposure and ambient concentration by particle size.

    PubMed

    Guak, Sooyoung; Lee, Kiyoung

    2018-04-06

    Ambient particulate matter (PM) concentrations at monitoring stations were often used as an indicator of population exposure to PM in epidemiological studies. The correlation between personal exposure and ambient concentrations of PM varied because of diverse time-activity patterns. The aim of this study was to determine the relationship between personal exposure and ambient concentrations of PM 10 and PM 2.5 with minimal impact of time-activity pattern on personal exposure. Performance of the MicroPEM, v3.2 was evaluated by collocation with central ambient air monitors for PM 10 and PM 2.5 . A field technician repeatedly conducted measurement of 24 h personal exposures to PM 10 and PM 2.5 with a fixed time-activity pattern of office worker over 26 days in Seoul, Korea. The relationship between the MicroPEM and the ambient air monitor showed good linearity. Personal exposure and ambient concentrations of PM 2.5 were highly correlated with a fixed time-activity pattern compared with PM 10 . The finding implied a high infiltration rate of PM 2.5 and low infiltration rate of PM 10 . The relationship between personal exposure and ambient concentrations of PM 10 and PM 2.5 was different for high level episodes. In the Asian dust episode, staying indoors could reduce personal exposure to PM 10 . However, personal exposure to PM 2.5 could not be reduced by staying indoors during the fine dust advisory episode.

  13. Use of personal protective equipment for respiratory protection.

    PubMed

    Sargent, Edward V; Gallo, Frank

    2003-01-01

    Management of hazards in biomedical research facilities requires the application of the traditional industrial hygiene responsibilities of anticipation, recognition, evaluation, and control to characterize the work environment, evaluate tasks and equipment, identify hazards, define exposure groups, and recommend controls. Generally, the diversity and unique characteristics of hazards faced by laboratory and animal facility employees and the short-term and low-level nature of the exposures factor into the selection of proper exposure control measures in the laboratory. The proper selection of control measures is based on a hierarchy of elimination and minimization by engineering controls, followed last by personal protective equipment when exposures cannot be eliminated. Once it is decided that personal protective equipment is needed, specific regulations and guidelines define safety standards for research facilities, including the elements of a sound respiratory protection program. These elements include respirator selection (including appropriate protection factors), medical evaluation, fit testing, training, inspection, maintenance and care, quality, quantity and flow of breathing air, and routine and emergency use procedures.

  14. Personal exposures to VOC in the upper end of the distribution—relationships to indoor, outdoor and workplace concentrations

    NASA Astrophysics Data System (ADS)

    Edwards, Rufus D.; Schweizer, Christian; Jantunen, Matti; Lai, Hak Kan; Bayer-Oglesby, Lucy; Katsouyanni, Klea; Nieuwenhuijsen, Mark; Saarela, Kristiina; Sram, Radim; Künzli, Nino

    Evaluation of relationships between median residential indoor, indoor workplace and population exposures may obscure potential strategies for exposure reduction. Evaluation of participants with personal exposures above median levels in the EXPOLIS study in Athens, Helsinki, Oxford and Prague illustrated that these participants frequently showed a different relationship to indoor and workplace levels than that shown by the population median. Thus, prioritization of environments for control measures based on median exposures may exclude important areas where effectively focused control measures are possible, and may therefore have little impact on the highest and most harmful exposures. Further, personal exposures at the upper end of the distribution may exceed the US EPA inhalation reference concentration (Rfc), illustrated here using hexane, naphthalene and benzene. For example upper 90th percentile personal exposures to benzene in Athens and Prague were 64 and 27 μg m -3 with peak exposures of 217 and 38 μg m -3, respectively for non-ETS exposed participants relative to an Rfc of 30 μg m -3. Strategies to reduce exposures to individual compounds, therefore, may benefit from focus on the high end of the distribution to identify activities and behaviors that result in elevated exposures. Control strategies targeting activities that lead to exposures in the upper end of the distribution would reduce the variability associated with population median values by bringing the upper end of the exposure distribution closer to median values. Thus, compliance with health-based standards would be more protective of the higher exposed fraction of the population, in whom health effects would be more expected.

  15. Initial Evaluation of the Effects of Aerosolized Florida Red Tide Toxins (Brevetoxins) in Persons with Asthma

    PubMed Central

    Fleming, Lora E.; Kirkpatrick, Barbara; Backer, Lorraine C.; Bean, Judy A.; Wanner, Adam; Dalpra, Dana; Tamer, Robert; Zaias, Julia; Cheng, Yung Sung; Pierce, Richard; Naar, Jerome; Abraham, William; Clark, Richard; Zhou, Yue; Henry, Michael S.; Johnson, David; Van De Bogart, Gayl; Bossart, Gregory D.; Harrington, Mark; Baden, Daniel G.

    2005-01-01

    Florida red tides annually occur in the Gulf of Mexico, resulting from blooms of the marine dinoflagellate Karenia brevis. K. brevis produces highly potent natural polyether toxins, known as brevetoxins, that activate voltage-sensitive sodium channels. In experimental animals, brevetoxins cause significant bronchoconstriction. A study of persons who visited the beach recreationally found a significant increase in self-reported respiratory symptoms after exposure to aerosolized Florida red tides. Anecdotal reports indicate that persons with underlying respiratory diseases may be particularly susceptible to adverse health effects from these aerosolized toxins. Fifty-nine persons with physician-diagnosed asthma were evaluated for 1 hr before and after going to the beach on days with and without Florida red tide. Study participants were evaluated with a brief symptom questionnaire, nose and throat swabs, and spirometry approved by the National Institute for Occupational Safety and Health. Environmental monitoring, water and air sampling (i.e., K. brevis, brevetoxins, and particulate size distribution), and personal monitoring (for toxins) were performed. Brevetoxin concentrations were measured by liquid chromatography mass spectrometry, high-performance liquid chromatography, and a newly developed brevetoxin enzyme-linked immunosorbent assay. Participants were significantly more likely to report respiratory symptoms after Florida red tide exposure. Participants demonstrated small but statistically significant decreases in forced expiratory volume in 1 sec, forced expiratory flow between 25 and 75%, and peak expiratory flow after exposure, particularly those regularly using asthma medications. Similar evaluation during nonexposure periods did not significantly differ. This is the first study to show objectively measurable adverse health effects from exposure to aerosolized Florida red tide toxins in persons with asthma. Future studies will examine the possible chronic effects of these toxins among persons with asthma and other chronic respiratory impairment. PMID:15866779

  16. Initial evaluation of the effects of aerosolized Florida red tide toxins (brevetoxins) in persons with asthma.

    PubMed

    Fleming, Lora E; Kirkpatrick, Barbara; Backer, Lorraine C; Bean, Judy A; Wanner, Adam; Dalpra, Dana; Tamer, Robert; Zaias, Julia; Cheng, Yung Sung; Pierce, Richard; Naar, Jerome; Abraham, William; Clark, Richard; Zhou, Yue; Henry, Michael S; Johnson, David; Van De Bogart, Gayl; Bossart, Gregory D; Harrington, Mark; Baden, Daniel G

    2005-05-01

    Florida red tides annually occur in the Gulf of Mexico, resulting from blooms of the marine dinoflagellate Karenia brevis. K. brevis produces highly potent natural polyether toxins, known as brevetoxins, that activate voltage-sensitive sodium channels. In experimental animals, brevetoxins cause significant bronchoconstriction. A study of persons who visited the beach recreationally found a significant increase in self-reported respiratory symptoms after exposure to aerosolized Florida red tides. Anecdotal reports indicate that persons with underlying respiratory diseases may be particularly susceptible to adverse health effects from these aerosolized toxins. Fifty-nine persons with physician-diagnosed asthma were evaluated for 1 hr before and after going to the beach on days with and without Florida red tide. Study participants were evaluated with a brief symptom questionnaire, nose and throat swabs, and spirometry approved by the National Institute for Occupational Safety and Health. Environmental monitoring, water and air sampling (i.e., K. brevis, brevetoxins, and particulate size distribution), and personal monitoring (for toxins) were performed. Brevetoxin concentrations were measured by liquid chromatography mass spectrometry, high-performance liquid chromatography, and a newly developed brevetoxin enzyme-linked immunosorbent assay. Participants were significantly more likely to report respiratory symptoms after Florida red tide exposure. Participants demonstrated small but statistically significant decreases in forced expiratory volume in 1 sec, forced expiratory flow between 25 and 75%, and peak expiratory flow after exposure, particularly those regularly using asthma medications. Similar evaluation during nonexposure periods did not significantly differ. This is the first study to show objectively measurable adverse health effects from exposure to aerosolized Florida red tide toxins in persons with asthma. Future studies will examine the possible chronic effects of these toxins among persons with asthma and other chronic respiratory impairment.

  17. Validity of ambient levels of fine particles as surrogate for personal exposure to outdoor air pollution--results of the European EXPOLIS-EAS Study (Swiss Center Basel).

    PubMed

    Oglesby, L; Künzli, N; Röösli, M; Braun-Fahrländer, C; Mathys, P; Stern, W; Jantunen, M; Kousa, A

    2000-07-01

    To evaluate the validity of fixed-site fine particle levels as exposure surrogates in air pollution epidemiology, we considered four indicator groups: (1) PM2.5 total mass concentrations, (2) sulfur and potassium for regional air pollution, (3) lead and bromine for traffic-related particles, and (4) calcium for crustal particles. Using data from the European EXPOLIS (Air Pollution Exposure Distribution within Adult Urban Populations in Europe) study, we assessed the associations between 48-hr personal exposures and home outdoor levels of the indicators. Furthermore, within-city variability of fine particle levels was evaluated. Personal exposures to PM2.5 mass were not correlated to corresponding home outdoor levels (n = 44, rSpearman (Sp) = 0.07). In the group reporting neither relevant indoor sources nor relevant activities, personal exposures and home outdoor levels of sulfur were highly correlated (n = 40, rSp = 0.85). In contrast, the associations were weaker for traffic (Pb: n = 44, rSp = 0.53; Br: n = 44, rSp = 0.21) and crustal (Ca: n = 44, rSp = 0.12) indicators. This contrast is consistent with spatially homogeneous regional pollution and higher spatial variability of traffic and crustal indicators observed in Basel, Switzerland. We conclude that for regional air pollution, fixed-site fine particle levels are valid exposure surrogates. For source-specific exposures, however, fixed-site data are probably not the optimal measure. Still, in air pollution epidemiology, ambient PM2.5 levels may be more appropriate exposure estimates than total personal PM2.5 exposure, since the latter reflects a mixture of indoor and outdoor sources.

  18. Validity of Ambient Levels of Fine Particles as Surrogate for Personal Exposure to Outdoor Air Pollution-Results of the European EXPOLIS-EAS Study (Swiss Center Basel).

    PubMed

    Oglesby, Lucy; Künzli, Nino; Röösli, Martin; Braun-Fahrländer, Charlotte; Mathys, Patrick; Stern, Willem; Jantunen, Matti; Kousa, Anu

    2000-07-01

    To evaluate the validity of fixed-site fine particle levels as exposure surrogates in air pollution epidemiology, we considered four indicator groups: (1) PM 25 total mass concentrations, (2) sulfur and potassium for regional air pollution, (3) lead and bromine for traffic-related particles, and (4) calcium for crustal particles. Using data from the European EXPOLIS (Air Pollution Exposure Distribution within Adult Urban Populations in Europe) study, we assessed the associations between 48-hr personal exposures and home outdoor levels of the indicators. Furthermore, within-city variability of fine particle levels was evaluated. Personal exposures to PM 2.5 mass were not correlated to corresponding home outdoor levels (n = 44, r S (S) =r o v ' Spearman (Sp) 0.07). In the group reporting neither relevant indoor sources nor relevant activities, personal exposures and home outdoor levels of sulfur were highly correlated (n = 40, r Sp = 0.85). In contrast, the associations were weaker for traffic (Pb: n = 44, r Sp = 0.53; Br: n = 44, r Sp = 0.21) and crustal (Ca: n = 44, r Sp = 0.12) indicators. This contrast is consistent with spatially homogeneous regional pollution and higher spatial variability of traffic and crustal indicators observed in Basel, Switzerland. We conclude that for regional air pollution, fixed-site fine particle levels are valid exposure surrogates. For source-specific exposures, however, fixed-site data are probably not the optimal measure. Still, in air pollution epidemiology, ambient PM 2.5 levels may be more appropriate exposure estimates than total personal PM 2.5 exposure, since the latter reflects a mixture of indoor and outdoor sources.

  19. Evaluation of a Colorimetric Personal Dosimeter for Nitrogen Oxide.

    ERIC Educational Resources Information Center

    Diamond, Philip

    A personal colorimetric dosimeter for nitrogen dioxide was developed. Tests were performed to determine the response of these strips to various concentrations of NO2. The dosimeter strips were satisfactory for approximate determinations of total exposure (concentration + time) of nitrogen dioxide. The total exposure was calculated in terms of time…

  20. PREDICTING PARTICULATE (PM-10) FREQUENCY DISTRIBUTIONS FOR URBAN POPULATIONS USING A RANDOM COMPONENT SUPERPOSITION MODEL (RCS) MODEL

    EPA Science Inventory

    Health risk evaluations usually require the frequency distribution of personal exposures of a given population. For particles, personal exposure field studies have been conducted in only a few urban areas, such as Riverside, CA; Philipsburg, NJ; and Toronto, Ontario. This paper...

  1. POPULATION-BASED EXPOSURE MODELING FOR AIR POLLUTANTS AT EPA'S NATIONAL EXPOSURE RESEARCH LABORATORY

    EPA Science Inventory

    The US EPA's National Exposure Research Laboratory (NERL) has been developing, applying, and evaluating population-based exposure models to improve our understanding of the variability in personal exposure to air pollutants. Estimates of population variability are needed for E...

  2. USE OF AN INTEGRATED APPROACH TO EVALUATE YOUNG CHILDREN'S ACTIVITIES

    EPA Science Inventory

    Linking a young child's activity pattern data with the environmental, biological, and personal samples that are collected during an exposure assessment is important in evaluating potential exposures and dose associated with environmental contaminants. A number of different appro...

  3. Assessment of personal exposure to inhalable indoor and outdoor particulate matter for student residents of an academic campus (IIT-Kanpur).

    PubMed

    Devi, J Jai; Gupta, Tarun; Tripathi, S N; Ujinwal, Kamal K

    2009-12-01

    Human exposure to particulate matter can have significant harmful effects on the respiratory and cardiovascular system. These effects vary with number, size, and chemical composition of particulate matter, which vary significantly with space and time. The Indian Institute of Technology-Kanpur (IITK), Kanpur, India, is a relatively clean academic campus in the northwest of a heavily polluted city, Kanpur. The major objectives of the study were to evaluate total exposure of fine and coarse fractions of PM(10) to a typical IITK student resident in different indoor microenvironments within the campus; to evaluate personal exposure to student residents during outdoor trips; and to evaluate personal exposure to a typical student resident carrying out routine activities. In order to account for all the sources of particulate matter exposure, measurements on several different days during the pre-monsoon season were carried out in the most common indoor microenvironments in the campus and during outdoor trips outside the campus. A 15-channel optical particle counter (model 1.108, GRIMM) was used to measure continuous real-time particle size distribution from 0.3 to 20 microm diameter. Using this instrument, exposure for 1 h at different indoor microenvironments was determined. Both the effects of location and activity, which, in turn, account for specific indoor sources and number of occupants, respectively, were carefully evaluated. Re-suspension of particles due to movement of people was found to be a major source of coarse particulate matter exposure. On the other hand, combustion sources led to elevated fine particulate levels. Chalk dust was found to be the major source of fine particulate matter in classrooms. Similar results on other sources of particulate matter are discussed in the paper. To assess the personal average size resolved particulate exposure on a student making a day trip outside the campus, study trips to most common public places in the city in a commonly preferred vehicle were made. Striking correlations between sources/activities and increase in fine and/or coarse particle concentration were clearly visible. To investigate the daily personal exposure and its relation to the activities of a typical student residing in the campus, a 24-h exposure study was done on a student who maintained a time-activity diary. The results provide insight into possible sources and their interaction with human activities in modifying the human exposure levels. A comparison between different microenvironments has been attempted for the first time in an Indian scenario using a real-time aerosol measuring instrument.

  4. Characterization of inhalation exposure to jet fuel among U.S. Air Force personnel.

    PubMed

    Merchant-Borna, Kian; Rodrigues, Ema G; Smith, Kristen W; Proctor, Susan P; McClean, Michael D

    2012-07-01

    Jet propulsion fuel-8 (JP-8) is the primary jet fuel used by the US military, collectively consuming ~2.5 billion gallons annually. Previous reports suggest that JP-8 is potentially toxic to the immune, respiratory, and nervous systems. The objectives of this study were to evaluate inhalation exposure to JP-8 constituents among active duty United States Air Force (USAF) personnel while performing job-related tasks, identify significant predictors of inhalation exposure to JP-8, and evaluate the extent to which surrogate exposure classifications were predictive of measured JP-8 exposures. Seventy-three full-time USAF personnel from three different air force bases were monitored during four consecutive workdays where personal air samples were collected and analyzed for benzene, ethylbenzene, toluene, xylenes, total hydrocarbons (THC), and naphthalene. The participants were categorized a priori into high- and low-exposure groups, based on their exposure to JP-8 during their typical workday. Additional JP-8 exposure categories included job title groups and self-reported exposure to JP-8. Linear mixed-effects models were used to evaluate predictors of personal air concentrations. The concentrations of THC in air were significantly different between a priori exposure groups (2.6 mg m(-3) in high group versus 0.5 mg m(-3) in low, P < 0.0001), with similar differences observed for other analytes in air. Naphthalene was strongly correlated with THC (r = 0.82, P < 0.0001) and both were positively correlated with the relative humidity of the work environment. Exposures to THC and naphthalene varied significantly by job categories based on USAF specialty codes and were highest among personnel working in fuel distribution/maintenance, though self-reported exposure to JP-8 was an even stronger predictor of measured exposure in models that explained 72% (THC) and 67% (naphthalene) of between-worker variability. In fact, both self-report JP-8 exposure and a priori exposure groups explained more between-worker variability than job categories. Personal exposure to JP-8 varied by job and was positively associated with the relative humidity. However, self-reported exposure to JP-8 was an even stronger predictor of measured exposure than job title categories, suggesting that self-reported JP-8 exposure is a valid surrogate metric of exposure when personal air measurements are not available.

  5. Newsagents' daily personal exposures to benzo(a)pyrene in Genoa, Italy

    NASA Astrophysics Data System (ADS)

    Piccardo, Maria Teresa; Stella, Anna; Redaelli, Anna; Minoia, Claudio; Valerio, Federico

    Daily personal exposures to benzo(a)pyrene (BaP) of 31 newsagents working in Genoa, Italy, were evaluated throughout 1998 during two different seasonal periods (February-April and May-June). Exposures of smoker and non-smoker subjects were compared. The highest BaP exposures were those of smokers during the cold period (2.20±0.84 ng/m 3). During this same period, the BaP exposure for non-smoker subjects was 1.00±0.32 ng/m 3. Both smoker and non-smoker exposures showed a seasonal dependence, with the lowest values occurring in the warm period (smokers: 1.46±0.72 ng/m 3, non-smokers: 0.65±0.25 ng/m 3). Compared to the cold period, the warm period produced a nearly 35% reduction in BaP exposures in both smoker and non-smoker subjects. A linear correlation was observed between personal exposures and number of cigarettes smoked daily. An increase in average daily BaP exposure of 0.071±0.009 ng/m 3 for every cigarette, due to passive smoke, was calculated. Mean BaP concentrations calculated from fixed monitoring stations were nearly 40% higher than mean personal exposures of non-smoker newsagents.

  6. Effect of poverty on the relationship between personal exposures and ambient concentrations of air pollutants in Ho Chi Minh City

    NASA Astrophysics Data System (ADS)

    Mehta, Sumi; Sbihi, Hind; Dinh, Tuan Nguyen; Xuan, Dan Vu; Le Thi Thanh, Loan; Thanh, Canh Truong; Le Truong, Giang; Cohen, Aaron; Brauer, Michael

    2014-10-01

    Socioeconomic factors often affect the distribution of exposure to air pollution. The relationships between health, air pollution, and poverty potentially have important public health and policy implications, especially in areas of Asia where air pollution levels are high and income disparity is large. The objective of the study was to characterize the levels, determinants of exposure, and relationships between children personal exposures and ambient concentrations of multiple air pollutants amongst different socioeconomic segments of the population of Ho Chi Minh City, Vietnam. Using repeated (N = 9) measures personal exposure monitoring and determinants of exposure modeling, we compared daily average PM2.5, PM10, PM2.5 absorbance and NO2 concentrations measured at ambient monitoring sites to measures of personal exposures for (N = 64) caregivers of young children from high and low socioeconomic groups in two districts (urban and peri-urban), across two seasons. Personal exposures for both PM sizes were significantly higher among the poor compared to non-poor participants in each district. Absolute levels of personal exposures were under-represented by ambient monitors with median individual longitudinal correlations between personal exposures and ambient concentrations of 0.4 for NO2, 0.6 for PM2.5 and PM10 and 0.7 for absorbance. Exposures of the non-poor were more highly correlated with ambient concentrations for both PM size fractions and absorbance while those for NO2 were not significantly affected by socioeconomic position. Determinants of exposure modeling indicated the importance of ventilation quality, time spent in the kitchen, air conditioner use and season as important determinant of exposure that are not fully captured by the differences in socioeconomic position. Our results underscore the need to evaluate how socioeconomic position affects exposure to air pollution. Here, differential exposure to major sources of pollution, further influenced by characteristics of Ho Chi Minh City's rapidly urbanizing landscape, resulted in systematically higher PM exposures among the poor.

  7. Personal radiofrequency electromagnetic field exposure measurements in Swiss adolescents.

    PubMed

    Roser, Katharina; Schoeni, Anna; Struchen, Benjamin; Zahner, Marco; Eeftens, Marloes; Fröhlich, Jürg; Röösli, Martin

    2017-02-01

    Adolescents belong to the heaviest users of wireless communication devices, but little is known about their personal exposure to radiofrequency electromagnetic fields (RF-EMF). The aim of this paper is to describe personal RF-EMF exposure of Swiss adolescents and evaluate exposure relevant factors. Furthermore, personal measurements were used to estimate average contributions of various sources to the total absorbed RF-EMF dose of the brain and the whole body. Personal exposure was measured using a portable RF-EMF measurement device (ExpoM-RF) measuring 13 frequency bands ranging from 470 to 3600MHz. The participants carried the device for three consecutive days and kept a time-activity diary. In total, 90 adolescents aged 13 to 17years participated in the study conducted between May 2013 and April 2014. In addition, personal measurement values were combined with dose calculations for the use of wireless communication devices to quantify the contribution of various RF-EMF sources to the daily RF-EMF dose of adolescents. Main contributors to the total personal RF-EMF measurements of 63.2μW/m 2 (0.15V/m) were exposures from mobile phones (67.2%) and from mobile phone base stations (19.8%). WLAN at school and at home had little impact on the personal measurements (WLAN accounted for 3.5% of total personal measurements). According to the dose calculations, exposure from environmental sources (broadcast transmitters, mobile phone base stations, cordless phone base stations, WLAN access points, and mobile phones in the surroundings) contributed on average 6.0% to the brain dose and 9.0% to the whole-body dose. RF-EMF exposure of adolescents is dominated by their own mobile phone use. Environmental sources such as mobile phone base stations play a minor role. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Personal exposure to Black Carbon in transport microenvironments

    NASA Astrophysics Data System (ADS)

    Dons, Evi; Int Panis, Luc; Van Poppel, Martine; Theunis, Jan; Wets, Geert

    2012-08-01

    We evaluated personal exposure of 62 individuals to the air pollutant Black Carbon, using 13 portable aethalometers while keeping detailed records of their time-activity pattern and whereabouts. Concentrations encountered in transport are studied in depth and related to trip motives. The evaluation comprises more than 1500 trips with different transport modes. Measurements were spread over two seasons. Results show that 6% of the time is spent in transport, but it accounts for 21% of personal exposure to Black Carbon and approximately 30% of inhaled dose. Concentrations in transport were 2-5 times higher compared to concentrations encountered at home. Exposure was highest for car drivers, and car and bus passengers. Concentrations of Black Carbon were only half as much when traveling by bike or on foot; when incorporating breathing rates, dose was found to be twice as high for active modes. Lowest 'in transport' concentrations were measured in trains, but nevertheless these concentrations are double the concentrations measured at home. Two thirds of the trips are car trips, and those trips showed a large spread in concentrations. In-car concentrations are higher during peak hours compared to off-peak, and are elevated on weekdays compared to Saturdays and even more so on Sundays. These findings result in significantly higher exposure during car commute trips (motive 'Work'), and lower concentrations for trips with motive 'Social and leisure'. Because of the many factors influencing exposure in transport, travel time is not a good predictor of integrated personal exposure or inhaled dose.

  9. A comparison of personal exposure to air pollutants in different travel modes on national highways in India.

    PubMed

    Kolluru, Soma Sekhara Rao; Patra, Aditya Kumar; Sahu, Satya Prakash

    2018-04-01

    People often travel a long distance on highways to the nearest city for professional/business activities. However, relatively few publications on passenger exposure to pollutants on highways in India or elsewhere are available. The aim of this study was to examine the contribution of different travel modes to passengers' pollutant exposure for a long distance travel on a national highway in India. We measured PM 2.5 and CO exposure levels of the passengers over 200km on a national highway using two portable air monitors, EVM-7 and EPAM-5000. Personal concentration exposures and per min-, per hour-, per trip- and round trip mass exposures for three travel modes were calculated for 9 trips. Association between pollutants and weather variables were evaluated using levels Spearman correlation. ANOVA was carried out to evaluate the influence of travel mode, the timing of trips, temperature and RH on personal exposures. On an average, PM 2.5 personal concentration exposure levels were highest in the car (85.41±61.85μgm -3 ), followed by the bus (75.08±55.39μgm -3 ) and lowest in the car (ac) (54.43±34.09μgm -3 ). In contrast, CO personal exposure was highest in the car (ac) (1.81±1.3ppm). Travel mode explained the highest variability for CO (18.1%), CO 2 (9.9%), PM 2.5 (1.2%) exposures. In-city mass exposures were higher than trip averages; PM 2.5 :1.21-1.22, 1.13-1.19 and 1.03-1.28 times; CO: 1.20-1.57, 1.37-2.10 and 1.76-2.22 times for bus, car and car (ac) respectively. Traveling by car (ac) results in the lowest PM 2.5 exposures, although it exposes the passenger to high CO level. Avoiding national highways passing through cities can reduce up to 25% PM 2.5 and 50% CO mass exposures. This information can be useful for increasing environmental awareness among the passengers and for framing better pollution control strategies on highways. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. An accurate filter loading correction is essential for assessing personal exposure to black carbon using an Aethalometer.

    PubMed

    Good, Nicholas; Mölter, Anna; Peel, Jennifer L; Volckens, John

    2017-07-01

    The AE51 micro-Aethalometer (microAeth) is a popular and useful tool for assessing personal exposure to particulate black carbon (BC). However, few users of the AE51 are aware that its measurements are biased low (by up to 70%) due to the accumulation of BC on the filter substrate over time; previous studies of personal black carbon exposure are likely to have suffered from this bias. Although methods to correct for bias in micro-Aethalometer measurements of particulate black carbon have been proposed, these methods have not been verified in the context of personal exposure assessment. Here, five Aethalometer loading correction equations based on published methods were evaluated. Laboratory-generated aerosols of varying black carbon content (ammonium sulfate, Aquadag and NIST diesel particulate matter) were used to assess the performance of these methods. Filters from a personal exposure assessment study were also analyzed to determine how the correction methods performed for real-world samples. Standard correction equations produced correction factors with root mean square errors of 0.10 to 0.13 and mean bias within ±0.10. An optimized correction equation is also presented, along with sampling recommendations for minimizing bias when assessing personal exposure to BC using the AE51 micro-Aethalometer.

  11. EVALUATION OF UV IRRADIATION CONTROL MEASURES FOR REDUCING MICROBIAL CONTAMINATION (BIO-TERRORISM SAFETY)

    EPA Science Inventory

    Exposures from indoor environments are a major issue for evaluating total long-term personal exposures to the fine fraction (
    Biocontaminants such as some mold spores or pollen grains, because of their size and mass, settle rapidly within the indoor environment. Over time the...

  12. Evaluation of a Direct Personal Coarse Particulate Matter Monitor

    EPA Science Inventory

    One aspect of the North Carolina Adult Asthma and Environment study (NCAAES) was to evaluate personal exposures to coarse particulate matter (PM 10-2.5) and their associated variability. As part of this, we examined the ability of a community-based monitor to act as...

  13. Factors affecting measured, modeled and reconstructed estimates of personal exposure to ambient ozone in southern California

    NASA Astrophysics Data System (ADS)

    Gonzales, Melissa

    To evaluate those factors which influence the assignment of ozone ( O3) exposures in an epidemiologic context a field study was conducted in the South Coast Air Basin (SoCAB) during the summer of 19% in which time, location, activity (TLA) information and direct measurements of personal O3 exposure were concurrently collected on a group of college students. Current and past O3 exposures were modeled and evaluated as a function of ambient O 3, activity and mobility patterns, indoor ventilation, and recalled TLA information collected one year later. The effect of these factors on the within- and between-subject exposure variability assigned by ecologic (EC) and microenvironment (MEV) models were examined by two-hour intervals, on weekends and weekdays, and by monitoring week compared to personal exposures measured with a passive sampling device (PSD). The students reported spending 85% of their time inside, 7% outside and 8% in- transit. More time was spent outdoors on weekends than on weekdays. Ambient O3 levels were also higher on weekends. In the study area, where a dense O3 monitoring network and the appropriate topography exist fixed-site O3 accurately assigned ambient O3 levels within a 10 mile radius. The variation in the ecologic exposure assignments was low compared to the estimated variation among PSD-measured and MEV-modeled estimates due to the low spatial variation of ambient O3 levels across the SoCAB areas visited by the students. MEV and PSD exposure estimates better captured the variability of personal exposure in any given ambient spatial regimen compared to ecologic exposure assignments. MEV exposure estimates based on recalled TLA patterns, were similar to the MEV estimates based on diary-recorded TLA patterns. For this study population, PSD-measured O3 exposures were estimated to average 32% lower than ``true'' exposure levels due to indoor/outdoor differences in the PSD collection rate. The level of detail obtained from the TLA diary is not necessary for the assignment of current of past O3 exposures in epidemiologic studies. It may be more adventitious to characterize the locations visited, and indoor and outdoor time with the greatest accuracy possible and to use these data to estimate exposure from nearest-monitor ambient O 3 measurements and sets of indoor/outdoor O3 ratios validated to reflect personal exposure within indoor microenvironments.

  14. The Mere Exposure Instruction Effect.

    PubMed

    Van Dessel, Pieter; Mertens, Gaëtan; Smith, Colin Tucker; De Houwer, Jan

    2017-09-01

    The mere exposure effect refers to the well-established finding that people evaluate a stimulus more positively after repeated exposure to that stimulus. We investigated whether a change in stimulus evaluation can occur also when participants are not repeatedly exposed to a stimulus, but are merely instructed that one stimulus will occur frequently and another stimulus will occur infrequently. We report seven experiments showing that (1) mere exposure instructions influence implicit stimulus evaluations as measured with an Implicit Association Test (IAT), personalized Implicit Association Test (pIAT), or Affect Misattribution Procedure (AMP), but not with an Evaluative Priming Task (EPT), (2) mere exposure instructions influence explicit evaluations, and (3) the instruction effect depends on participants' memory of which stimulus will be presented more frequently. We discuss how these findings inform us about the boundary conditions of mere exposure instruction effects, as well as the mental processes that underlie mere exposure and mere exposure instruction effects.

  15. Integrating Dialectical Behavior Therapy and Prolonged Exposure to Treat Co-Occurring Borderline Personality Disorder and PTSD: Two Case Studies

    ERIC Educational Resources Information Center

    Harned, Melanie S.; Linehan, Marsha M.

    2008-01-01

    Despite the high rate of trauma and PTSD among individuals with borderline personality disorder (BPD), no studies have specifically evaluated the treatment of PTSD in a BPD population. These case studies illustrate the use of a protocol based on prolonged exposure therapy that can be integrated into standard dialectical behavior therapy to treat…

  16. Personality Traits in Miners with Past Occupational Elemental Mercury Exposure

    PubMed Central

    Grum, Darja Kobal; Kobal, Alfred B.; Arnerič, Niko; Horvat, Milena; Ženko, Bernard; Džeroski, Sašo; Osredkar, Joško

    2006-01-01

    In this study, we evaluated the impact of long-term occupational exposure to elemental mercury vapor (Hg0) on the personality traits of ex-mercury miners. Study groups included 53 ex-miners previously exposed to Hg0 and 53 age-matched controls. Miners and controls completed the self-reporting Eysenck Personality Questionnaire and the Emotional States Questionnaire. The relationship between the indices of past occupational exposure and the observed personality traits was evaluated using Pearson’s correlation coefficient and on a subgroup level by machine learning methods (regression trees). The ex-mercury miners were intermittently exposed to Hg0 for a period of 7–31 years. The means of exposure-cycle urine mercury (U-Hg) concentrations ranged from 20 to 120 μg/L. The results obtained indicate that ex-miners tend to be more introverted and sincere, more depressive, more rigid in expressing their emotions and are likely to have more negative self-concepts than controls, but no correlations were found with the indices of past occupational exposure. Despite certain limitations, results obtained by the regression tree suggest that higher alcohol consumption per se and long-term intermittent, moderate exposure to Hg0 (exposure cycle mean U-Hg concentrations > 38.7 < 53.5 μg/L) in interaction with alcohol remain a plausible explanation for the depression associated with negative self-concept found in subgroups of ex-mercury miners. This could be one of the reason for the higher risk of suicide among miners of the Idrija Mercury Mine in the last 45 years. PMID:16451870

  17. Measuring personal exposure from 900MHz mobile phone base stations in Australia and Belgium using a novel personal distributed exposimeter.

    PubMed

    Bhatt, Chhavi Raj; Thielens, Arno; Redmayne, Mary; Abramson, Michael J; Billah, Baki; Sim, Malcolm R; Vermeulen, Roel; Martens, Luc; Joseph, Wout; Benke, Geza

    2016-01-01

    The aims of this study were to: i) measure personal exposure in the Global System for Mobile communications (GSM) 900MHz downlink (DL) frequency band with two systems of exposimeters, a personal distributed exposimeter (PDE) and a pair of ExpoM-RFs, ii) compare the GSM 900MHz DL exposures across various microenvironments in Australia and Belgium, and iii) evaluate the correlation between the PDE and ExpoM-RFs measurements. Personal exposure data were collected using the PDE and two ExpoM-RFs simultaneously across 34 microenvironments (17 each in Australia and Belgium) located in urban, suburban and rural areas. Summary statistics of the electric field strengths (V/m) were computed and compared across similar microenvironments in Australia and Belgium. The personal exposures across urban microenvironments were higher than those in the rural or suburban microenvironments. Likewise, the exposure levels across the outdoor were higher than those for indoor microenvironments. The five highest median exposure levels were: city centre (0.248V/m), bus (0.124V/m), railway station (0.105V/m), mountain/forest (rural) (0.057V/m), and train (0.055V/m) [Australia]; and bicycle (urban) (0.238V/m), tram station (0.238V/m), city centre (0.156V/m), residential outdoor (urban) (0.139V/m) and park (0.124V/m) [Belgium]. Exposures in the GSM900 MHz frequency band across most of the microenvironments in Australia were significantly lower than the exposures across the microenvironments in Belgium. Overall correlations between the PDE and the ExpoM-RFs measurements were high. The measured exposure levels were far below the general public reference levels recommended in the guidelines of the ICNIRP and the ARPANSA. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. DETROIT EXPOSURE AND AEROSOL RESEARCH STUDY (DEARS)

    EPA Science Inventory

    The Detroit Exposure and Aerosol Research Study (DEARS) is a residential and personal exposure field monitoring study that is being conducted in Detroit MI over a three-year period from 2004 to 2007. The primary goal of the study is to evaluate and describe the relationship betw...

  19. Effectiveness evaluation of existing noise controls in a deep shaft underground mine.

    PubMed

    Lutz, Eric A; Reed, Rustin J; Turner, Dylan; Littau, Sally R; Lee, Vivien; Hu, Chengcheng

    2015-01-01

    Noise exposures and hearing loss in the mining industry continue to be a major problem, despite advances in noise control technologies. This study evaluated the effectiveness of engineering, administrative, and personal noise controls using both traditional and in-ear dosimetry by job task, work shift, and five types of earplug. The noise exposures of 22 miners performing deep shaft-sinking tasks were evaluated during 56 rotating shifts in an underground mine. Miners were earplug-insertion trained, earplug fit-tested, and monitored utilizing traditional and in-ear dosimetry. The mean TWA8 noise exposure via traditional dosimetry was 90.1 ± 8.2 dBA, while the mean in-ear TWA8 was 79.6 ± 13.8 dBA. The latter was significantly lower (p < 0.05) than the Mine Safety and Health Administration (MSHA) personal exposure limit (PEL) of 90 dBA. Dosimetry mean TWA8 noise exposures for bench blowing (103.5 ± 0.9 dBA), jumbo drill operation (103.0 ± 0.8 dBA), and mucking tasks (99.6 ± 4.7 dBA) were significantly higher (p < 0.05) than other tasks. For bench blowing, cable pulling, grinding, and jumbo drill operation tasks, the mean in-ear TWA8 was greater than 85 dBA. Those working swing shift had a significantly higher (p < 0.001) mean TWA8 noise exposure (95.4 ± 7.3 dBA) than those working day shift. For percent difference between traditional vs. in-ear dosimetry, there was no significant difference among types of earplug used. Reflective of occupational hearing loss rate trends across the mining industry, this study found that, despite existing engineering and administrative controls, noise exposure levels exceeded regulatory limits, while the addition of personal hearing protection limited excessive exposures.

  20. Associations between personal exposures and ambient concentrations of nitrogen dioxide: A quantitative research synthesis

    NASA Astrophysics Data System (ADS)

    Meng, Q. Y.; Svendsgaard, D.; Kotchmar, D. J.; Pinto, J. P.

    2012-09-01

    Although positive associations between ambient NO2 concentrations and personal exposures have generally been found by exposure studies, the strength of the associations varied among studies. Differences in results could be related to differences in study design and in exposure factors. However, the effects of study design, exposure factors, and sampling and measurement errors on the strength of the personal-ambient associations have not been evaluated quantitatively in a systematic manner. A quantitative research synthesis was conducted to examine these issues based on peer-reviewed publications in the past 30 years. Factors affecting the strength of the personal-ambient associations across the studies were also examined with meta-regression. Ambient NO2 was found to be significantly associated with personal NO2 exposures, with estimates of 0.42, 0.16, and 0.72 for overall pooled, longitudinal and daily average correlation coefficients based on random-effects meta-analysis. This conclusion was robust after correction for publication bias with correlation coefficients of 0.37, 0.16 and 0.45. We found that season and some population characteristics, such as pre-existing disease, were significant factors affecting the strength of the personal-ambient associations. More meaningful and rigorous comparisons would be possible if greater detail were published on the study design (e.g. local and indoor sources, housing characteristics, etc.) and data quality (e.g., detection limits and percent of data above detection limits).

  1. Personal inhalation exposure to polycyclic aromatic hydrocarbons and their nitro-derivatives in rural residents in northern Thailand.

    PubMed

    Orakij, Walaiporn; Chetiyanukornkul, Thaneeya; Chuesaard, Thanyarat; Kaganoi, Yuichi; Uozaki, Waka; Homma, Chiharu; Boongla, Yaowatat; Tang, Ning; Hayakawa, Kazuichi; Toriba, Akira

    2017-09-18

    A personal inhalation exposure and cancer risk assessment of rural residents in Lampang, Thailand, was conducted for the first time. This highlighted important factors that may be associated with the highest areal incidence of lung cancer. Personal exposure of rural residents to polycyclic aromatic hydrocarbons (PAHs) and their nitro-derivatives (NPAHs) through inhalation of fine particulate matter (PM 2.5 ) was investigated in addition to stationary air sampling in an urban area. The personal exposure of the subjects to PM 2.5 ranged from 44.4 to 316 μg/m 3 , and the concentrations of PAHs (4.2-224 ng/m 3 ) and NPAHs (120-1449 pg/m 3 ) were higher than those at the urban site, indicating that personal exposure was affected by microenvironments through individual activities. The smoking behaviors of the rural residents barely affected their exposure to PAHs and NPAHs compared to other sources. The most important factor concerning the exposure of rural populations to PAHs was cooking activity, especially the use of charcoal open fires. The emission sources for rural residents and urban air were evaluated using diagnostic ratios, 1-nitropyrene/pyrene, and benzo[a]pyrene/benzo[ghi]perylene. Their analyses showed a significant contribution to emission from residents' personal activities in addition to the atmospheric environment. Furthermore, the personal inhalation cancer risks for all rural subjects exceeded the USEPA guideline value, suggesting that the residents have a potentially increased cancer risk. The use of open fires showed the highest cancer risk. A reduction in exposure to air pollutants for the residents could potentially be achieved by using clean fuel such as liquid petroleum gas or electricity for daily cooking.

  2. Personal exposure of traffic police officers to particulate matter, carbon monoxide, and benzene in the city of Milan, Italy.

    PubMed

    Cattaneo, Andrea; Taronna, Matteo; Consonni, Dario; Angius, Silvana; Costamagna, Paolo; Cavallo, Domenico Maria

    2010-06-01

    The aim of this work was to quantify the personal exposure of traffic police officers to particulate matter (PM), carbon monoxide (CO), benzene, toluene, ethylbenzene, and xylenes. The contributions of some behavioral, occupational, and meteorological determinants of exposure also were evaluated. Personal exposure to airborne contaminants was measured on 130 selected volunteers in four seasonal sampling sessions. CO was measured with high sampling frequency. A time-activity diary was completed by traffic police officers during their work shift. Mean (median) personal exposure levels of carbon monoxide, respirable particles (PM(resp)), and benzene were 3.51 (3.22) mg/m(3), 128 (115) microg/m(3) and 11.5 (9.6) microg/m(3), respectively. The highest ambient mean levels of PM(resp), CO, and benzene were found during cold seasons. Measurements taken where traffic is directed, schools are guarded, and other outdoor tasks are performed showed the highest median CO concentrations. As expected, wind decreased exposure to CO and benzene. Exposure was not significantly affected by active tobacco smoke. A key finding was that airborne concentrations determined by fixed measurement stations reported in other studies greatly underestimated traffic officers' exposure to airborne contaminants. The proximity to an emission source determined by the occupational activity was the factor that most affected exposure. For this reason, fixed stations are poor predictors of roadside exposures to airborne pollutants.

  3. [Assessment comparison between area sampling and personal sampling noise measurement in new thermal power plant].

    PubMed

    Zhang, Hua; Chen, Qing-song; Li, Nan; Hua, Yan; Zeng, Lin; Xu, Guo-yang; Tao, Li-yuan; Zhao, Yi-ming

    2013-05-01

    To compare the results of noise hazard evaluations based on area sampling and personal sampling in a new thermal power plant and to analyze the similarities and differences between the two measurement methods. According to Measurement of Physical agents in Workplace Part 8: Noise(GBZff 189.8-2007), area sampling was performed at various operating points for noise measurement, and meanwhile the workers under different types of work wore noise dosimeters for personal noise exposure measurement. The two measurement methods were used to evaluate the level of noise hazards in the enterprise according to the corresponding occupational health standards, and the evaluation results were compared. Area sampling was performed at 99 operating points, the mean noise level was 88.9 ± 11.1 dB (A)(range, 51.3-107.0 dB (A)), with an over-standard rate of 75.8%. Personal sampling was performed (73 person times),and the mean noise level was 79.3 ± 6.3 dB (A), with an over-standard rate of 6.6% ( 16/241 ). There was a statistically significant difference in the over-standard rate between the evaluation results of the two measurement methods ( x2=53.869, ?<0.001 ). Because of the characteristics of the work in new thermal power plants, the noise hazard evaluation based on area sampling cannot be used instead of personal noise exposure measurement among workers. Personal sampling should be used in the noise measurement in new thermal power plant.

  4. Performance evaluation of the active-flow personal DataRAM PM 2.5 mass monitor (Thermo Anderson pDR-1200) designed for continuous personal exposure measurements

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Bhabesh; Fine, Philip M.; Delfino, Ralph; Sioutas, Constantinos

    The need for continuous personal monitoring for exposure to particulate matter has been demonstrated by recent health studies showing effects of PM exposure on time scales of less than a few hours. Filter-based methods cannot measure this short-term variation of PM levels, which can be quite significant considering human activity patterns. The goal of this study was to evaluate the active-flow personal DataRAM for PM 2.5 (MIE pDR-1200; Thermo Electron Corp., Franklin, MA) designed as a wearable monitor to continuously measure particle exposure. The instrument precision was found to be good (2.1%) and significantly higher than the passive pDR configuration tested previously. A comparison to other proven continuous monitors resulted in good agreement at low relative humidities. Results at higher humidity followed predictable trends and provided a correction scheme that improved the accuracy of pDR readings. The pDR response to particle size also corresponded to previously observed and theoretical errors. The active flow feature of the pDR allows collection of the sampled particles on a back-up filter. The 24-h mass measured on this filter was found to compare very well with a Federal Reference Method for PM 2.5 mass.

  5. PARAMETER EVALUATION AND MODEL VALIDATION OF OZONE EXPOSURE ASSESSMENT USING HARVARD SOUTHERN CALIFORNIA CHRONIC OZONE EXPOSURE STUDY DATA

    EPA Science Inventory

    To examine factors influencing long-term ozone exposures by children living in urban communities, we analyzed longitudinal data on personal, indoor, and outdoor ozone concentrations as well as related housing and other questionnaire information collected in the one-year-long Harv...

  6. RECEPTOR MODELING OF AMBIENT AND PERSONAL EXPOSURE SAMPLES: 1998 BALTIMORE PARTICULATE MATTER EPIDEMIOLOGY-EXPOSURE STUDY

    EPA Science Inventory

    Sources of particulate matter exposure for an elderly population in a city north of Baltimore, MD were evaluated using advanced factor analysis models. Data collected with Versatile Air Pollutant Samplers (VAPS) positioned at a community site, outside and inside of an elderly ...

  7. Development of a method for personal, spatiotemporal exposure assessment.

    PubMed

    Adams, Colby; Riggs, Philip; Volckens, John

    2009-07-01

    This work describes the development and evaluation of a high resolution, space and time-referenced sampling method for personal exposure assessment to airborne particulate matter (PM). This method integrates continuous measures of personal PM levels with the corresponding location-activity (i.e. work/school, home, transit) of the subject. Monitoring equipment include a small, portable global positioning system (GPS) receiver, a miniature aerosol nephelometer, and an ambient temperature monitor to estimate the location, time, and magnitude of personal exposure to particulate matter air pollution. Precision and accuracy of each component, as well as the integrated method performance were tested in a combination of laboratory and field tests. Spatial data was apportioned into pre-determined location-activity categories (i.e. work/school, home, transit) with a simple, temporospatially-based algorithm. The apportioning algorithm was extremely effective with an overall accuracy of 99.6%. This method allows examination of an individual's estimated exposure through space and time, which may provide new insights into exposure-activity relationships not possible with traditional exposure assessment techniques (i.e., time-integrated, filter-based measurements). Furthermore, the method is applicable to any contaminant or stressor that can be measured on an individual with a direct-reading sensor.

  8. Assessment of arsenic exposures and controls in gallium arsenide production.

    PubMed

    Sheehy, J W; Jones, J H

    1993-02-01

    The electronics industry is expanding the use of gallium arsenide in the production of optoelectronic devices and integrated circuits. Workers in the electronics industry using gallium arsenide are exposed to hazardous substances such as arsenic, arsine, and various acids. Arsenic requires stringent controls to minimize exposures (the current OSHA PEL for arsenic is 10 micrograms/m3 and the NIOSH REL is 2 micrograms/m3 ceiling). Inorganic arsenic is strongly implicated in respiratory tract and skin cancer. For these reasons, NIOSH researchers conducted a study of control systems for facilities using gallium arsenide. Seven walk-through surveys were performed to identify locations for detailed study which appeared to have effective controls; three facilities were chosen for in-depth evaluation. The controls were evaluated by industrial hygiene sampling. Including personal breathing zone and area air sampling for arsenic and arsine; wipe samples for arsenic also were collected. Work practices and the use of personal protective equipment were documented. This paper reports on the controls and the arsenic exposure results from the evaluation of the following gallium arsenide processes: Liquid Encapsulated Czochralski (LEC) and Horizontal Bridgeman (HB) crystal growing, LEC cleaning operations, ingot grinding/wafer sawing, and epitaxy. Results at one plant showed that in all processes except epitaxy, average arsenic exposures were at or above the OSHA action level of 5 micrograms/m3. While cleaning the LEC crystal pullers, the average potential arsenic exposure of the cleaning operators was 100 times the OSHA PEL. At the other two plants, personal exposures for arsenic were well controlled in LEC, LEC cleaning, grinding/sawing, and epitaxy operations.

  9. New Methods for Personal Exposure Monitoring for Airborne Particles

    PubMed Central

    Koehler, Kirsten A.; Peters, Thomas

    2016-01-01

    Airborne particles have been associated with a range of adverse cardiopulmonary outcomes, which has driven its monitoring at stationary, central sites throughout the world. Individual exposures, however, can differ substantially from concentrations measured at central sites due to spatial variability across a region and sources unique to the individual, such as cooking or cleaning in homes, traffic emissions during commutes, and widely varying sources encountered at work. Personal monitoring with small, battery-powered instruments enables the measurement of an individual’s exposure as they go about their daily activities. Personal monitoring can substantially reduce exposure misclassification and improve the power to detect relationships between particulate pollution and adverse health outcomes. By partitioning exposures to known locations and sources, it may be possible to account for variable toxicity of different sources. This review outlines recent advances in the field of personal exposure assessment for particulate pollution. Advances in battery technology have improved the feasibility of 24-hour monitoring, providing the ability to more completely attribute exposures to microenvironment (e.g., work, home, commute). New metrics to evaluate the relationship between particulate matter and health are also being considered, including particle number concentration, particle composition measures, and particle oxidative load. Such metrics provide opportunities to develop more precise associations between airborne particles and health and may provide opportunities for more effective regulations. PMID:26385477

  10. EVALUATION OF URINARY PAH METABOLITES AS BIOMARKERS OF EXPOSURE TO PM2.5 FROM COMBUSTION SOURCES

    EPA Science Inventory

    This study determined the relationship between daily personal exposure to airborne fine particles (PM2.5) and the excretion of urinary PAH metabolites over a 10-day period of repeated measurements. The samples (n=60) were selected from a large series of exposure and health pane...

  11. Chlorine dioxide water disinfection: a prospective epidemiology study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael, G.E.; Miday, R.K.; Bercz, J.P.

    An epidemiologic study of 198 persons exposed for 3 months to drinking water disinfected with chlorine dioxide was conducted in a rural village. A control population of 118 nonexposed persons was also studied. Pre-exposure hematologic and serum chemical parameters were compared with test results after 115 days of exposure. Chlorite ion levels in the water averaged approximately 5 ppM during the study period. Statistical analysis (ANOVA) of the data failed to identify any significant exposure-related effects. This study suggests that future evaluations of chlorine dioxide disinfection should be directed toward populations with potentially increased sensitivity to hemolytic agents.

  12. Impact of one's own mobile phone in stand-by mode on personal radiofrequency electromagnetic field exposure.

    PubMed

    Urbinello, Damiano; Röösli, Martin

    2013-01-01

    When moving around, mobile phones in stand-by mode periodically send data about their positions. The aim of this paper is to evaluate how personal radiofrequency electromagnetic field (RF-EMF) measurements are affected by such location updates. Exposure from a mobile phone handset (uplink) was measured during commuting by using a randomized cross-over study with three different scenarios: disabled mobile phone (reference), an activated dual-band phone and a quad-band phone. In the reference scenario, uplink exposure was highest during train rides (1.19 mW/m(2)) and lowest during car rides in rural areas (0.001 mW/m(2)). In public transports, the impact of one's own mobile phone on personal RF-EMF measurements was not observable because of high background uplink radiation from other people's mobile phone. In a car, uplink exposure with an activated phone was orders of magnitude higher compared with the reference scenario. This study demonstrates that personal RF-EMF exposure is affected by one's own mobile phone in stand-by mode because of its regular location update. Further dosimetric studies should quantify the contribution of location updates to the total RF-EMF exposure in order to clarify whether the duration of mobile phone use, the most common exposure surrogate in the epidemiological RF-EMF research, is actually an adequate exposure proxy.

  13. Passive sampling methods to determine household and personal care product use.

    PubMed

    Bennett, Deborah H; Wu, Xiangmei May; Teague, Candice H; Lee, Kiyoung; Cassady, Diana L; Ritz, Beate; Hertz-Picciotto, Irva

    2012-01-01

    Traditionally, use of household and personal care products has been collected through questionnaires, which is very time consuming, a burden on participants, and prone to recall bias. As part of the SUPERB Project (Study of Use of Products and Exposure-Related Behaviors), a novel platform was developed using bar codes to quickly and reliably determine what household and personal care products people have in their homes and determine the amount used over a 1-week period. We evaluated the acceptability and feasibility of our methodology in a longitudinal field study that included 47 California households, 30 with young children and 17 with an older adult. Acceptability was defined by refusal rates; feasibility was evaluated in terms of readable bar codes, useful product information in our database for all readable barcodes, and ability to find containers at both the start and end of the week. We found 63% of personal care products and 87% of the household care products had readable barcodes with 47% and 41% having sufficient data for product identification, respectively and secondly, the amount used could be determined most of the time. We present distributions for amount used by product category and compare inter- and intra-person variability. In summary, our method appears to be appropriate, acceptable, and useful for gathering information related to potential exposures stemming from the use of personal and household care products. A very low drop-out rate suggests that this methodology can be useful in longitudinal studies of exposure to household and personal care products.

  14. Assessing Exposure to Household Air Pollution: A Systematic ...

    EPA Pesticide Factsheets

    ACKGROUND: Household air pollution from solid fuel burning is a leading contributor to disease burden globally. Fine particulate matter (PM2.5) is thought to be responsible for many of these health impacts. A co-pollutant, carbon monoxide (CO) has been widely used as a surrogate measure of PM2.5 in studies of household air pollution. OBJECTIVE: The goal was to evaluate the validity of exposure to CO as a surrogate of exposure to PM2.5 in studies of household air pollution and the consistency of the PM2.5–CO relationship across different study settings and conditions. METHODS: We conducted a systematic review of studies with exposure and/or cooking area PM2.5 and CO measurements and assembled 2,048 PM2.5 and CO measurements from a subset of studies (18 cooking area studies and 9 personal exposure studies) retained in the systematic review. We conducted pooled multivariate analyses of PM2.5–CO associations, evaluating fuels, urbanicity, season, study, and CO methods as covariates and effect modifiers. RESULTS: We retained 61 of 70 studies for review, representing 27 countries. Reported PM2.5–CO correlations (r) were lower for personal exposure (range: 0.22–0.97; median=0.57) than for cooking areas (range: 0.10–0.96; median=0.71). In the pooled analyses of personal exposure and cooking area concentrations, the variation in ln(CO) explained 13% and 48% of the variation in ln(PM2.5), respectively. CONCLUSIONS: Our results suggest that exposure to CO is not

  15. Relationship of Indoor, Outdoor and Personal Air (RIOPA) study: study design, methods and quality assurance/control results.

    PubMed

    Weisel, Clifford P; Zhang, Junfeng; Turpin, Barbara J; Morandi, Maria T; Colome, Steven; Stock, Thomas H; Spektor, Dalia M; Korn, Leo; Winer, Arthur; Alimokhtari, Shahnaz; Kwon, Jaymin; Mohan, Krishnan; Harrington, Robert; Giovanetti, Robert; Cui, William; Afshar, Masoud; Maberti, Silvia; Shendell, Derek

    2005-03-01

    The Relationship of Indoor, Outdoor and Personal Air (RIOPA) Study was undertaken to evaluate the contribution of outdoor sources of air toxics, as defined in the 1990 Clean Air Act Amendments, to indoor concentrations and personal exposures. The concentrations of 18 volatile organic compounds (VOCs), 17 carbonyl compounds, and fine particulate matter mass (PM(2.5)) were measured using 48-h outdoor, indoor and personal air samples collected simultaneously. PM2.5 mass, as well as several component species (elemental carbon, organic carbon, polyaromatic hydrocarbons and elemental analysis) were also measured; only PM(2.5) mass is reported here. Questionnaires were administered to characterize homes, neighborhoods and personal activities that might affect exposures. The air exchange rate was also measured in each home. Homes in close proximity (<0.5 km) to sources of air toxics were preferentially (2:1) selected for sampling. Approximately 100 non-smoking households in each of Elizabeth, NJ, Houston, TX, and Los Angeles, CA were sampled (100, 105, and 105 respectively) with second visits performed at 84, 93, and 81 homes in each city, respectively. VOC samples were collected at all homes, carbonyls at 90% and PM(2.5) at 60% of the homes. Personal samples were collected from nonsmoking adults and a portion of children living in the target homes. This manuscript provides the RIOPA study design and quality control and assurance data. The results from the RIOPA study can potentially provide information on the influence of ambient sources on indoor air concentrations and exposure for many air toxics and will furnish an opportunity to evaluate exposure models for these compounds.

  16. 47 CFR 2.1091 - Radiofrequency radiation exposure evaluation: mobile devices.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...: mobile devices. 2.1091 Section 2.1091 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL... workers that can be easily re-located, such as wireless devices associated with a personal computer, are... that operate in the Cellular Radiotelephone Service, the Personal Communications Services, the...

  17. Evaluation of exposure scenarios on intentional microbiological contamination in a drinking water distribution network.

    PubMed

    Schijven, Jack; Forêt, Jean Marie; Chardon, Jurgen; Teunis, Peter; Bouwknegt, Martijn; Tangena, Ben

    2016-06-01

    Drinking water distribution networks are vulnerable to accidental or intentional contamination events. The objective of this study was to investigate the effects of seeding duration and concentration, exposure pathway (ingestion via drinking of water and tooth brushing and inhalation by taking a shower) and pathogen infectivity on exposure and infection risk in the case of an intentional pathogenic contamination in a drinking water distribution network. Seeding of a pathogen for 10 min and 120 min, and subsequent spreading through a drinking water distribution network were simulated. For exposure via drinking, actual data on drinking events and volumes were used. Ingestion of a small volume of water by tooth brushing twice a day by every person in the network was assumed. Inhalation of contaminated aerosol droplets took place when taking a shower. Infection risks were estimated for pathogens with low (r = 0.0001) and high (r = 0.1) infectivity. In the served population (48 000 persons) and within 24 h, about 1400 persons were exposed to the pathogen by ingestion of water in the 10-min seeding scenario and about 3400 persons in the 120-min scenario. The numbers of exposed persons via tooth brushing were about the same as via drinking of water. Showering caused (inhalation) exposure in about 450 persons in the 10-min scenario and about 1500 in the 120-min scenario. Regardless of pathogen infectivity, if the seeding concentration is 10(6) pathogens per litre or more, infection risks are close to one. Exposure by taking a shower is of relevance if the pathogen is highly infectious via inhalation. A longer duration of the seeding of a pathogen increases the probability of exposure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Photometrically measured continuous personal PM(2.5) exposure: levels and correlation to a gravimetric method.

    PubMed

    Lanki, Timo; Alm, Sari; Ruuskanen, Juhani; Janssen, Nicole A H; Jantunen, Matti; Pekkanen, Juha

    2002-05-01

    There is evidence that hourly variations in exposure to airborne particulate matter (PM) may be associated with adverse health effects. Still there are only few published data on short-term levels of personal exposure to PM in community settings. The objectives of the study were to assess hourly and shorter-term variations in personal PM(2.5) exposure in Helsinki, Finland, and to compare results from portable photometers to simultaneously measured gravimetric concentrations. The effect of relative humidity on the photometric results was also evaluated. Personal PM(2.5) exposures of elderly persons were assessed for 24 h every second week, resulting in 308 successful measurements from 47 different subjects. Large changes in concentrations in minutes after cooking or changing microenvironment were seen. The median of daily 1-h maxima was over twice the median of 24-h averages. There was a strong significant association between the two means, which was not linear. Median (95th percentile) of the photometric 24-h concentrations was 12.1 (37.7) and of the 24-h gravimetric concentrations 9.2 (21.3) microg/m3. The correlation between the photometric and the gravimetric method was quite good (R2=0.86). Participants spent 94.1% of their time indoors or in a vehicle, where relative humidity is usually low and thus not likely to cause significant effects on photometric results. Even outdoors, the relative humidity had only modest effect on concentrations. Photometers are a promising method to explore the health effects of short-term variation in personal PM(2.5) exposure.

  19. Biomonitoring-based exposure assessment of benzene, toluene, ethylbenzene and xylene among workers at petroleum distribution facilities.

    PubMed

    Heibati, Behzad; Godri Pollitt, Krystal J; Charati, Jamshid Yazdani; Ducatman, Alan; Shokrzadeh, Mohammad; Karimi, Ali; Mohammadyan, Mahmoud

    2018-03-01

    Elevated emissions of volatile organic compounds, including benzene, toluene, ethylbenzene, and o, p, and m-xylenes (BTEX), are an occupational health concern at oil transfer stations. This exploratory study investigated personal exposure to BTEX through environmental air and urine samples collected from 50 male workers at a major oil distribution company in Iran. Airborne BTEX exposures were evaluated over 8h periods during work-shift by using personal passive samplers. Urinary BTEX levels were determined using solid-phase microextraction with gas chromatography mass spectrometry for separation and detection. Mean exposure to ambient concentrations of benzene differed by workers' job type: tanker loading workers (5390μg/m 3 ), tank-gauging workers (830μg/m 3 ), drivers (81.9μg/m 3 ), firefighters (71.2μg/m 3 ) and office workers (19.8μg/m 3 ). Exposure across job type was similarly stratified across all personal exposures to BTEX measured in air samples with maximum concentrations found for tanker loading workers. Average exposures concentrations of BTEX measured in urine were 11.83 ppb benzene, 1.87 ppb toluene, 0.43 ppb ethylebenzene, and 3.76 ppb xylene. Personal air exposure to benzene was found to be positively associated with benzene concentrations measured in urine; however, a relationship was not observed to the other BTEX compounds. Urinary exposure profiles are a potentially useful, noninvasive, and rapid method for assessing exposure to benzene in a developing and relatively remote production region. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. AN ANALYTICAL METHOD FOR THE MEASUREMENT OF NONVIABLE BIOAEROSOLS

    EPA Science Inventory

    Exposures from indoor environments are a major issue for evaluating total long-term personal exposure to the fine fraction (<2.5 micrometers in aerodynamic diameter) of particulate matter (PM). It is widely accepted in the indoor air quality (IAQ) research community that bioconta...

  1. Health Risk Assessment for Exposure to Benzene in Petroleum Refinery Environments

    PubMed Central

    Edokpolo, Benjamin; Yu, Qiming Jimmy; Connell, Des

    2015-01-01

    The health risk resulting from benzene exposure in petroleum refineries was calculated using data from the scientific literature from various countries throughout the world. The exposure data was collated into four scenarios from petroleum refinery environments and plotted as cumulative probability distributions (CPD) plots. Health risk was evaluated for each scenario using the Hazard Quotient (HQ) at 50% (CEXP50) and 95% (CEXP95) exposure levels. Benzene levels were estimated to pose a significant risk with HQ50 > 1 and HQ95 > 1 for workers exposed to benzene as base estimates for petroleum refinery workers (Scenario 1), petroleum refinery workers evaluated with personal samplers in Bulgarian refineries (Scenario 2B) and evaluated using air inside petroleum refineries in Bulgarian refineries (Scenario 3B). HQ50 < 1 were calculated for petroleum refinery workers with personal samplers in Italian refineries (Scenario 2A), air inside petroleum refineries (Scenario 3A) and air outside petroleum refineries (Scenario 4) in India and Taiwan indicating little possible adverse health effects. Also, HQ95 was < 1 for Scenario 4 however potential risk was evaluated for Scenarios 2A and 3A with HQ95 > 1. The excess Cancer risk (CR) for lifetime exposure to benzene for all the scenarios was evaluated using the Slope Factor and Overall Risk Probability (ORP) methods. The result suggests a potential cancer risk for exposure to benzene in all the scenarios. However, there is a higher cancer risk at 95% (CEXP95) for petroleum refinery workers (2B) with a CR of 48,000 per 106 and exposure to benzene in air inside petroleum refineries (3B) with a CR of 28,000 per 106. PMID:25588154

  2. Exposure to grain dust and microbial components in the Norwegian grain and compound feed industry.

    PubMed

    Halstensen, Anne Straumfors; Heldal, Kari Kulvik; Wouters, Inge M; Skogstad, Marit; Ellingsen, Dag G; Eduard, Wijnand

    2013-11-01

    The aim of this study was to extensively characterize grain workers' personal exposure during work in Norwegian grain elevators and compound feed mills, to identify differences in exposures between the workplaces and seasons, and to study the correlations between different microbial components. Samples of airborne dust (n = 166) were collected by full-shift personal sampling during work in 20 grain elevators and compound feed mills during one autumn season and two winter seasons. The personal exposure to grain dust, endotoxins, β-1→3-glucans, bacteria, and fungal spores was quantified. Correlations between dust and microbial components and differences between workplaces and seasons were investigated. Determinants of endotoxin and β-1→3-glucan exposure were evaluated by linear mixed-effect regression modeling. The workers were exposed to an overall geometric mean of 1.0mg m(-3) inhalable grain dust [geometric standard deviation (GSD) = 3.7], 628 endotoxin units m(-3) (GSD = 5.9), 7.4 µg m(-3) of β-1→3-glucan (GSD = 5.6), 21 × 10(4) bacteria m(-3) (GSD = 7.9) and 3.6 × 10(4) fungal spores m(-3) (GSD = 3.4). The grain dust exposure levels were similar across workplaces and seasons, but the microbial content of the grain dust varied substantially between workplaces. Exposure levels of all microbial components were significantly higher in grain elevators compared with all other workplaces. The grain dust exposure was significantly correlated (Pearson's r) with endotoxin (rp = 0.65), β-1→3-glucan (rp = 0.72), bacteria (rp = 0.44) and fungal spore (rp = 0.48) exposure, whereas the explained variances were strongly dependent on the workplace. Bacteria, grain dust, and workplace were important determinants for endotoxin exposure, whereas fungal spores, grain dust, and workplace were important determinants for β-1→3-glucan exposure. Although the workers were exposed to a relatively low mean dust level, the microbial exposure was high. Furthermore, the exposure levels of microbial components varied between workplaces although the dust levels were similar. We therefore recommend that exposure levels at different workplaces should be assessed separately and a task-based assessment should be done for detailed evaluation of efficient dust-reducing measures. The microbial content and knowledge of health effects of the microbial components should be considered in health risk evaluations of these workplaces.

  3. Temporal variability in urinary levels of drinking water disinfection byproducts dichloroacetic acid and trichloroacetic acid among men

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yi-Xin; Zeng, Qiang; Wang, Le

    Urinary haloacetic acids (HAAs), such as dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA), have been suggested as potential biomarkers of exposure to drinking water disinfection byproducts (DBPs). However, variable exposure to and the short elimination half-lives of these biomarkers can result in considerable variability in urinary measurements, leading to exposure misclassification. Here we examined the variability of DCAA and TCAA levels in the urine among eleven men who provided urine samples on 8 days over 3 months. The urinary concentrations of DCAA and TCAA were measured by gas chromatography coupled with electron capture detection. We calculated the intraclass correlation coefficientsmore » (ICCs) to characterize the within-person and between-person variances and computed the sensitivity and specificity to assess how well single or multiple urine collections accurately determined personal 3-month average DCAA and TCAA levels. The within-person variance was much higher than the between-person variance for all three sample types (spot, first morning, and 24-h urine samples) for DCAA (ICC=0.08–0.37) and TCAA (ICC=0.09–0.23), regardless of the sampling interval. A single-spot urinary sample predicted high (top 33%) 3-month average DCAA and TCAA levels with high specificity (0.79 and 0.78, respectively) but relatively low sensitivity (0.47 and 0.50, respectively). Collecting two or three urine samples from each participant improved the classification. The poor reproducibility of the measured urinary DCAA and TCAA concentrations indicate that a single measurement may not accurately reflect individual long-term exposure. Collection of multiple urine samples from one person is an option for reducing exposure classification errors in studies exploring the effects of DBP exposure on reproductive health. - Highlights: • We evaluated the variability of DCAA and TCAA levels in the urine among men. • Urinary DCAA and TCAA levels varied greatly over a 3-month period. • Single measurement may not accurately reflect personal long-term exposure levels. • Collecting multiple samples from one person improved the exposure classification.« less

  4. Development and Evaluation of Alternative Metrics of Ambient Air Pollution Exposure for Use in Epidemiologic Studies

    EPA Science Inventory

    Population-based epidemiologic studies of air pollution have traditionally relied upon imperfect surrogates of personal exposures, such as area-wide ambient air pollution levels based on readily available outdoor concentrations from central monitoring sites. This practice may in...

  5. 76 FR 552 - Pesticides; Availability of Pesticide Registration Notice Regarding the Residential Exposure...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-05

    ... interested persons about important policies, procedures, and registration related decisions, and serve to...: Richard P. Dumas, Pesticide Re- evaluation Division, Office of Pesticide Programs, Environmental... applicability of this action to a particular entity, consult the person listed under FOR FURTHER INFORMATION...

  6. Personal exposure to dust and endotoxin in Robusta and Arabica coffee processing factories in Tanzania.

    PubMed

    Sakwari, Gloria; Mamuya, Simon H D; Bråtveit, Magne; Larsson, Lennart; Pehrson, Christina; Moen, Bente E

    2013-03-01

    Endotoxin exposure associated with organic dust exposure has been studied in several industries. Coffee cherries that are dried directly after harvest may differ in dust and endotoxin emissions to those that are peeled and washed before drying. The aim of this study was to measure personal total dust and endotoxin levels and to evaluate their determinants of exposure in coffee processing factories. Using Sidekick Casella pumps at a flow rate of 2l/min, total dust levels were measured in the workers' breathing zone throughout the shift. Endotoxin was analyzed using the kinetic chromogenic Limulus amebocyte lysate assay. Separate linear mixed-effects models were used to evaluate exposure determinants for dust and endotoxin. Total dust and endotoxin exposure were significantly higher in Robusta than in Arabica coffee factories (geometric mean 3.41 mg/m(3) and 10 800 EU/m(3) versus 2.10 mg/m(3) and 1400 EU/m(3), respectively). Dry pre-processed coffee and differences in work tasks explained 30% of the total variance for total dust and 71% of the variance for endotoxin exposure. High exposure in Robusta processing is associated with the dry pre-processing method used after harvest. Dust and endotoxin exposure is high, in particular when processing dry pre-processed coffee. Minimization of dust emissions and use of efficient dust exhaust systems are important to prevent the development of respiratory system impairment in workers.

  7. Assessing Exposure to Household Air Pollution: A Systematic Review and Pooled Analysis of Carbon Monoxide as a Surrogate Measure of Particulate Matter.

    PubMed

    Carter, Ellison; Norris, Christina; Dionisio, Kathie L; Balakrishnan, Kalpana; Checkley, William; Clark, Maggie L; Ghosh, Santu; Jack, Darby W; Kinney, Patrick L; Marshall, Julian D; Naeher, Luke P; Peel, Jennifer L; Sambandam, Sankar; Schauer, James J; Smith, Kirk R; Wylie, Blair J; Baumgartner, Jill

    2017-07-28

    Household air pollution from solid fuel burning is a leading contributor to disease burden globally. Fine particulate matter (PM 2.5 ) is thought to be responsible for many of these health impacts. A co-pollutant, carbon monoxide (CO) has been widely used as a surrogate measure of PM 2.5 in studies of household air pollution. The goal was to evaluate the validity of exposure to CO as a surrogate of exposure to PM 2.5 in studies of household air pollution and the consistency of the PM 2.5 -CO relationship across different study settings and conditions. We conducted a systematic review of studies with exposure and/or cooking area PM 2.5 and CO measurements and assembled 2,048 PM 2.5 and CO measurements from a subset of studies (18 cooking area studies and 9 personal exposure studies) retained in the systematic review. We conducted pooled multivariate analyses of PM 2.5 -CO associations, evaluating fuels, urbanicity, season, study, and CO methods as covariates and effect modifiers. We retained 61 of 70 studies for review, representing 27 countries. Reported PM 2.5 -CO correlations ( r ) were lower for personal exposure (range: 0.22-0.97; median=0.57) than for cooking areas (range: 0.10-0.96; median=0.71). In the pooled analyses of personal exposure and cooking area concentrations, the variation in ln(CO) explained 13% and 48% of the variation in ln(PM 2.5 ), respectively. Our results suggest that exposure to CO is not a consistently valid surrogate measure of exposure to PM 2.5 . Studies measuring CO exposure as a surrogate measure of PM exposure should conduct local validation studies for different stove/fuel types and seasons. https://doi.org/10.1289/EHP767.

  8. Assessing Exposure to Household Air Pollution: A Systematic Review and Pooled Analysis of Carbon Monoxide as a Surrogate Measure of Particulate Matter

    PubMed Central

    Carter, Ellison; Norris, Christina; Dionisio, Kathie L.; Balakrishnan, Kalpana; Checkley, William; Clark, Maggie L.; Ghosh, Santu; Jack, Darby W.; Kinney, Patrick L.; Marshall, Julian D.; Naeher, Luke P.; Peel, Jennifer L.; Sambandam, Sankar; Schauer, James J.; Smith, Kirk R.; Wylie, Blair J.

    2017-01-01

    Background: Household air pollution from solid fuel burning is a leading contributor to disease burden globally. Fine particulate matter (PM2.5) is thought to be responsible for many of these health impacts. A co-pollutant, carbon monoxide (CO) has been widely used as a surrogate measure of PM2.5 in studies of household air pollution. Objective: The goal was to evaluate the validity of exposure to CO as a surrogate of exposure to PM2.5 in studies of household air pollution and the consistency of the PM2.5–CO relationship across different study settings and conditions. Methods: We conducted a systematic review of studies with exposure and/or cooking area PM2.5 and CO measurements and assembled 2,048 PM2.5 and CO measurements from a subset of studies (18 cooking area studies and 9 personal exposure studies) retained in the systematic review. We conducted pooled multivariate analyses of PM2.5–CO associations, evaluating fuels, urbanicity, season, study, and CO methods as covariates and effect modifiers. Results: We retained 61 of 70 studies for review, representing 27 countries. Reported PM2.5–CO correlations (r) were lower for personal exposure (range: 0.22–0.97; median=0.57) than for cooking areas (range: 0.10–0.96; median=0.71). In the pooled analyses of personal exposure and cooking area concentrations, the variation in ln(CO) explained 13% and 48% of the variation in ln(PM2.5), respectively. Conclusions: Our results suggest that exposure to CO is not a consistently valid surrogate measure of exposure to PM2.5. Studies measuring CO exposure as a surrogate measure of PM exposure should conduct local validation studies for different stove/fuel types and seasons. https://doi.org/10.1289/EHP767 PMID:28886596

  9. Skin sensitisation quantitative risk assessment (QRA) based on aggregate dermal exposure to methylisothiazolinone in personal care and household cleaning products.

    PubMed

    Ezendam, J; Bokkers, B G H; Bil, W; Delmaar, J E

    2018-02-01

    Contact allergy to preservatives is an important public health problem. Ideally, new substances should be evaluated for the risk on skin sensitisation before market entry, for example by using a quantitative risk assessment (QRA) as developed for fragrances. As a proof-of-concept, this QRA was applied to the preservative methylisothiazolinone (MI), a common cause of contact allergy. MI is used in different consumer products, including personal care products (PCPs) and household cleaning products (HCPs). Aggregate exposure to MI in PCPs and HCPs was therefore assessed with the Probabilistic Aggregated Consumer Exposure Model (PACEM). Two exposure scenarios were evaluated: scenario 1 calculated aggregate exposure on actual MI product concentrations before the restricted use in PCPs and scenario 2 calculated aggregate exposure using the restrictions for MI in PCPs. The QRA for MI showed that in scenarios 1 and 2, the proportion of the population at risk for skin sensitisation is 0.7% and 0.5%, respectively. The restricted use of MI in PCPs does not seem very effective in lowering the risk on skin sensitization. To conclude, it is important to consider aggregate exposure from the most important consumer products into consideration in the risk assessment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Impact of the 2004 tsunami on self-reported physical health in Thailand for the subsequent 2 years.

    PubMed

    Isaranuwatchai, Wanrudee; Coyte, Peter C; McKenzie, Kwame; Noh, Samuel

    2013-11-01

    We examined self-reported physical health during the first 2 years following the 2004 tsunami in Thailand. We assessed physical health with the revised Short Form Health Survey. We evaluated 6 types of tsunami exposure: personal injury, personal loss of home, personal loss of business, loss of family member, family member's injury, and family's loss of business. We examined the relationship between tsunami exposure and physical health with multivariate linear regression. One year post-tsunami, we interviewed 1931 participants (97.2% response rate), and followed up with 1855 participants 2 years after the tsunami (96.1% follow-up rate). Participants with personal injury or loss of business reported poorer physical health than those unaffected (P < .001), and greater health impacts were found for women and older individuals. Exposure to the tsunami disaster adversely affected physical health, and its impact may last for longer than 1 year, which is the typical time when most public and private relief programs withdraw.

  11. An EPA Pilot Study Evaluating Personal, Housing, and Community Factors Influencing Children's Potential Exposures to Indoor Contaminants at Various Lifestages

    EPA Science Inventory

    EPA pilot studyAddresses how young children’s exposures to various indoor pollutants (both chemical and biological agents) change as a result of building renovation-based interventions, potentially affecting their asthma exacerbation and morbidityProvide additional informat...

  12. Validity of at home model predictions as a proxy for personal exposure to radiofrequency electromagnetic fields from mobile phone base stations.

    PubMed

    Martens, Astrid L; Bolte, John F B; Beekhuizen, Johan; Kromhout, Hans; Smid, Tjabe; Vermeulen, Roel C H

    2015-10-01

    Epidemiological studies on the potential health effects of RF-EMF from mobile phone base stations require efficient and accurate exposure assessment methods. Previous studies have demonstrated that the 3D geospatial model NISMap is able to rank locations by indoor and outdoor RF-EMF exposure levels. This study extends on previous work by evaluating the suitability of using NISMap to estimate indoor RF-EMF exposure levels at home as a proxy for personal exposure to RF-EMF from mobile phone base stations. For 93 individuals in the Netherlands we measured personal exposure to RF-EMF from mobile phone base stations during a 24h period using an EME-SPY 121 exposimeter. Each individual kept a diary from which we extracted the time spent at home and in the bedroom. We used NISMap to model exposure at the home address of the participant (at bedroom height). We then compared model predictions with measurements for the 24h period, when at home, and in the bedroom by the Spearman correlation coefficient (rsp) and by calculating specificity and sensitivity using the 90th percentile of the exposure distribution as a cutpoint for high exposure. We found a low to moderate rsp of 0.36 for the 24h period, 0.51 for measurements at home, and 0.41 for measurements in the bedroom. The specificity was high (0.9) but with a low sensitivity (0.3). These results indicate that a meaningful ranking of personal RF-EMF can be achieved, even though the correlation between model predictions and 24h personal RF-EMF measurements is lower than with at home measurements. However, the use of at home RF-EMF field predictions from mobile phone base stations in epidemiological studies leads to significant exposure misclassification that will result in a loss of statistical power to detect health effects. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Comparison of task-based exposure metrics for an epidemiologic study of isocyanate inhalation exposures among autobody shop workers.

    PubMed

    Woskie, Susan R; Bello, Dhimiter; Gore, Rebecca J; Stowe, Meredith H; Eisen, Ellen A; Liu, Youcheng; Sparer, Judy A; Redlich, Carrie A; Cullen, Mark R

    2008-09-01

    Because many occupational epidemiologic studies use exposure surrogates rather than quantitative exposure metrics, the UMass Lowell and Yale study of autobody shop workers provided an opportunity to evaluate the relative utility of surrogates and quantitative exposure metrics in an exposure response analysis of cross-week change in respiratory function. A task-based exposure assessment was used to develop several metrics of inhalation exposure to isocyanates. The metrics included the surrogates, job title, counts of spray painting events during the day, counts of spray and bystander exposure events, and a quantitative exposure metric that incorporated exposure determinant models based on task sampling and a personal workplace protection factor for respirator use, combined with a daily task checklist. The result of the quantitative exposure algorithm was an estimate of the daily time-weighted average respirator-corrected total NCO exposure (microg/m(3)). In general, these four metrics were found to be variable in agreement using measures such as weighted kappa and Spearman correlation. A logistic model for 10% drop in FEV(1) from Monday morning to Thursday morning was used to evaluate the utility of each exposure metric. The quantitative exposure metric was the most favorable, producing the best model fit, as well as the greatest strength and magnitude of association. This finding supports the reports of others that reducing exposure misclassification can improve risk estimates that otherwise would be biased toward the null. Although detailed and quantitative exposure assessment can be more time consuming and costly, it can improve exposure-disease evaluations and is more useful for risk assessment purposes. The task-based exposure modeling method successfully produced estimates of daily time-weighted average exposures in the complex and changing autobody shop work environment. The ambient TWA exposures of all of the office workers and technicians and 57% of the painters were found to be below the current U.K. Health and Safety Executive occupational exposure limit (OEL) for total NCO of 20 microg/m(3). When respirator use was incorporated, all personal daily exposures were below the U.K. OEL.

  14. Urinary polycyclic aromatic hydrocarbons as a biomarker of exposure to PAHs in air: a pilot study among pregnant women.

    PubMed

    Nethery, Elizabeth; Wheeler, Amanda J; Fisher, Mandy; Sjödin, Andreas; Li, Zheng; Romanoff, Lovisa C; Foster, Warren; Arbuckle, Tye E

    2012-01-01

    Recent studies have linked increased polycyclic aromatic hydrocarbons (PAHs) in air and adverse fetal health outcomes. Urinary PAH metabolites are of interest for exposure assessment if they can predict PAHs in air. We investigated exposure to PAHs by collecting air and urine samples among pregnant women pre-selected as living in "high" (downtown and close to steel mills, n=9) and "low" (suburban, n=10) exposure areas. We analyzed first-morning urine voids from all 3 trimesters of pregnancy for urinary PAH metabolites and compared these to personal air PAH/PM(2.5)/NO(2)/NO(X) samples collected in the 3rd trimester. We also evaluated activities and home characteristics, geographic indicators and outdoor central site PM(2.5)/NO(2)/NO(X) (all trimesters). Personal air exposures to the lighter molecular weight (MW) PAHs were linked to indoor sources (candles and incense), whereas the heavier PAHs were related to outdoor sources. Geometric means of all personal air measurements were higher in the "high" exposure group. We suggest that centrally monitored heavier MW PAHs could be used to predict personal exposures for heavier PAHs only. Urine metabolites were only directly correlated with their parent air PAHs for phenanthrene (Pearson's r=0.31-0.45) and fluorene (r=0.37-0.58). Predictive models suggest that specific metabolites (3-hydroyxyfluorene and 3-hydroxyphenanthrene) may be related to their parent air PAH exposures. The metabolite 2-hydroxynaphthalene was linked to smoking and the metabolite 1-hydroxypyrene was linked to dietary exposures. For researchers interested in predicting exposure to airborne lighter MW PAHs using urinary PAH metabolites, we propose that hydroxyfluorene and hydroxyphenanthrene metabolites be considered.

  15. Radiofrequency electromagnetic field exposure in everyday microenvironments in Europe: A systematic literature review.

    PubMed

    Sagar, Sanjay; Dongus, Stefan; Schoeni, Anna; Roser, Katharina; Eeftens, Marloes; Struchen, Benjamin; Foerster, Milena; Meier, Noëmi; Adem, Seid; Röösli, Martin

    2018-03-01

    The impact of the introduction and advancement in communication technology in recent years on exposure level of the population is largely unknown. The main aim of this study is to systematically review literature on the distribution of radiofrequency electromagnetic field (RF-EMF) exposure in the everyday environment in Europe and summarize key characteristics of various types of RF-EMF studies conducted in the European countries. We systematically searched the ISI Web of Science for relevant literature published between 1 January 2000 and 30 April 2015, which assessed RF-EMF exposure levels by any of the methods: spot measurements, personal measurement with trained researchers and personal measurement with volunteers. Twenty-one published studies met our eligibility criteria of which 10 were spot measurements studies, 5 were personal measurement studies with trained researchers (microenvironmental), 5 were personal measurement studies with volunteers and 1 was a mixed methods study combining data collected by volunteers and trained researchers. RF-EMF data included in the studies were collected between 2005 and 2013. The mean total RF-EMF exposure for spot measurements in European "Homes" and "Outdoor" microenvironments was 0.29 and 0.54 V/m, respectively. In the personal measurements studies with trained researchers, the mean total RF-EMF exposure was 0.24 V/m in "Home" and 0.76 V/m in "Outdoor". In the personal measurement studies with volunteers, the population weighted mean total RF-EMF exposure was 0.16 V/m in "Homes" and 0.20 V/m in "Outdoor". Among all European microenvironments in "Transportation", the highest mean total RF-EMF 1.96 V/m was found in trains of Belgium during 2007 where more than 95% of exposure was contributed by uplink. Typical RF-EMF exposure levels are substantially below regulatory limits. We found considerable differences between studies according to the type of measurements procedures, which precludes cross-country comparison or evaluating temporal trends. A comparable RF-EMF monitoring concept is needed to accurately identify typical RF-EMF exposure levels in the everyday environment.

  16. The role of candidate evaluations in the 2014 European Parliament elections: Towards the personalization of voting behaviour?

    PubMed Central

    Gattermann, Katjana; De Vreese, Claes H

    2017-01-01

    We study the personalization of voting behaviour in European Parliament elections. We argue that information from the media is crucial for providing linkages between candidates and voters. Moreover, we contend that candidates can serve as information short-cuts given the complexity of European Union politics. We use a four-wave Dutch panel survey and a media study that enable us to link evaluations of lead candidates, party preferences, and vote choice to exposure to news about these candidates. We show, firstly, that exposure to candidate news is a strong explanatory factor for candidate recognition. Secondly, we find that candidate evaluations positively affect party choice, albeit mainly for those voters who tend to be politically aware. Our research has implications for debates about the European Union’s accountability deficit. PMID:29657555

  17. The role of candidate evaluations in the 2014 European Parliament elections: Towards the personalization of voting behaviour?

    PubMed

    Gattermann, Katjana; De Vreese, Claes H

    2017-09-01

    We study the personalization of voting behaviour in European Parliament elections. We argue that information from the media is crucial for providing linkages between candidates and voters. Moreover, we contend that candidates can serve as information short-cuts given the complexity of European Union politics. We use a four-wave Dutch panel survey and a media study that enable us to link evaluations of lead candidates, party preferences, and vote choice to exposure to news about these candidates. We show, firstly, that exposure to candidate news is a strong explanatory factor for candidate recognition. Secondly, we find that candidate evaluations positively affect party choice, albeit mainly for those voters who tend to be politically aware. Our research has implications for debates about the European Union's accountability deficit.

  18. Dose-response relationships between occupational exposure to potash, diesel exhaust and nitrogen oxides and lung function: cross-sectional and longitudinal study in two salt mines.

    PubMed

    Lotz, Gabriele; Plitzko, Sabine; Gierke, Erhardt; Tittelbach, Ulrike; Kersten, Norbert; Schneider, W Dietmar

    2008-08-01

    Several studies have shown that underground salt miners may have an increased incidence of chest symptoms and sometimes decreased lung function. Miners of two salt mines were investigated to evaluate relationships between the lung function and the workplace exposure. The effect of nitrogen monoxide (NO) and nitrogen dioxide (NO(2)) was investigated in view of the recent debate on European occupational exposure limits. A total of 410/463 miners (mine A/mine B) were examined cross-sectional and 75/64% of the first cohort were examined after a 5-year period. Exposure was measured by personal sampling. Personal lifetime exposure doses of salt dust, diesel exhaust, NO(2) and NO were calculated for all miners. Dose-response relationships were calculated by multiple regression analysis. Each exposure component acted as an indicator for the complex exposure. Exposure response relationships were shown in the cross-sectional and longitudinal investigations in both mines. In the 5-year period, the adjusted (age, smoking, etc.) effect of the exposure indicators resulted in a mean decrease of FEV(1) between -18 ml/year (mine A) and -10 ml/year (mine B). The personal concentrations related to this effect were 12.6/7.1 mg/m(3) inhalable dust, 2.4/0.8 mg/m(3) respirable dust, 0.09/0.09 mg/m(3) diesel exhaust, 0.4/0.5 ppm NO(2) and 1.7/1.4 ppm NO (mine A/B). Exposure was related to symptoms of chronic bronchitis only in mine B. The effects found in both mines indicate that the mixed exposure can cause lung function disorders in salt miners exposed over a long time. Because of the high correlation of the concentrations it was not possible to determine the effects of a single exposure component separately or to recommend a specific occupational exposure limit. However, possible maximum effects associated with the mixed exposure can be evaluated in the ranges of concentrations of the individual substances in the mines.

  19. Usage of personal music players in adolescents and its association with noise-induced hearing loss: A cross-sectional analysis of Ohrkan cohort study data.

    PubMed

    Twardella, Dorothee; Raab, Ulla; Perez-Alvarez, Carmelo; Steffens, Thomas; Bolte, Gabriele; Fromme, Hermann

    2017-01-01

    To describe personal music player (PMP) usage among adolescents, sociodemographic determinants and association with audiometric notches. Audiometric evaluation to assess hearing status, and standardized questionnaires to evaluate PMP listening behaviors, leisure noise exposures and self-reported hearing loss symptoms. Sociodemographic information was collected using a parent questionnaire. Noise exposure by PMP usage equivalent for a 40 h week was estimated based on self-reported volume and duration of use. A total of 2143 students (54% females) attending 9th grade in Regensburg, Germany, during 2009 to 2011. Overall, 85% of the students reported using PMPs. Exposure level exceeded 80 dB(A) in approximately one third, and 85 dB(A) in one quarter, of those who used PMP. An audiometric notch was found in 2.3% of participants, but was not significantly associated with higher PMP exposure. PMP exposure above the occupational limits of 80 and 85 dB(A) set by the Directive 2003/10/EC may be a risk factor for developing noise-induced hearing loss. Educational measures to ameliorate high risk behaviors in PMP usage are needed, particularly for socially disadvantaged groups.

  20. Measurement errors in the assessment of exposure to solar ultraviolet radiation and its impact on risk estimates in epidemiological studies.

    PubMed

    Dadvand, Payam; Basagaña, Xavier; Barrera-Gómez, Jose; Diffey, Brian; Nieuwenhuijsen, Mark

    2011-07-01

    To date, many studies addressing long-term effects of ultraviolet radiation (UVR) exposure on human health have relied on a range of surrogates such as the latitude of the city of residence, ambient UVR levels, or time spent outdoors to estimate personal UVR exposure. This study aimed to differentiate the contributions of personal behaviour and ambient UVR levels on facial UVR exposure and to evaluate the impact of using UVR exposure surrogates on detecting exposure-outcome associations. Data on time-activity, holiday behaviour, and ambient UVR levels were obtained for adult (aged 25-55 years old) indoor workers in six European cities: Athens (37°N), Grenoble (45°N), Milan (45°N), Prague (50°N), Oxford (52°N), and Helsinki (60°N). Annual UVR facial exposure levels were simulated for 10,000 subjects for each city, using a behavioural UVR exposure model. Within-city variations of facial UVR exposure were three times larger than the variation between cities, mainly because of time-activity patterns. In univariate models, ambient UVR levels, latitude and time spent outdoors, each accounted for less than one fourth of the variation in facial exposure levels. Use of these surrogates to assess long-term exposure to UVR resulted in requiring more than four times more participants to achieve similar statistical power to the study that applied simulated facial exposure. Our results emphasise the importance of integrating both personal behaviour and ambient UVR levels/latitude in exposure assessment methodologies.

  1. A modeling investigation of the impact of street and building configurations on personal air pollutant exposure in isolated deep urban canyons.

    PubMed

    Ng, Wai-Yin; Chau, Chi-Kwan

    2014-01-15

    This study evaluated the effectiveness of different configurations for two building design elements, namely building permeability and setback, proposed for mitigating air pollutant exposure problems in isolated deep canyons by using an indirect exposure approach. The indirect approach predicted the exposures of three different population subgroups (i.e. pedestrians, shop vendors and residents) by multiplying the pollutant concentrations with the duration of exposure within a specific micro-environment. In this study, the pollutant concentrations for different configurations were predicted using a computational fluid dynamics model. The model was constructed based on the Reynolds-Averaged Navier-Stokes (RANS) equations with the standard k-ε turbulence model. Fifty-one canyon configurations with aspect ratios of 2, 4, 6 and different building permeability values (ratio of building spacing to the building façade length) or different types of building setback (recess of a high building from the road) were examined. The findings indicated that personal exposures of shop vendors were extremely high if they were present inside a canyon without any setback or separation between buildings and when the prevailing wind was perpendicular to the canyon axis. Building separation and building setbacks were effective in reducing personal air exposures in canyons with perpendicular wind, although their effectiveness varied with different configurations. Increasing the permeability value from 0 to 10% significantly lowered the personal exposures on the different population subgroups. Likewise, the personal exposures could also be reduced by the introduction of building setbacks despite their effects being strongly influenced by the aspect ratio of a canyon. Equivalent findings were observed if the reduction in the total development floor area (the total floor area permitted to be developed within a particular site area) was also considered. These findings were employed to formulate a hierarchy decision making model to guide the planning of deep canyons in high density urban cities. © 2013 Elsevier B.V. All rights reserved.

  2. [An investigation of psychological state at different stages of occupational AIDS exposure and related influencing factors in Nanning, China].

    PubMed

    Lin, Q; Ge, X M; Mo, J C; Li, S S; Chen, C C; Chen, S Y

    2016-10-20

    Objective: To investigate the changes in psychological state after occupational exposure in the AIDS occupational exposure population and related influencing factors, and to provide baseline data and a basis for related departments to conduct mental health prevention and intervention for personnel with occupational AIDS exposure. Methods: AIDS risk assessment was performed for all personnel with occupational AIDS exposure in 2014 in Nanning, China, and the Symptom Checklist - 90 (SCL - 90) psychological scale was used for psychological state evaluation at 24 hours, 1 week, and 3 months after occupational exposure in all persons who met the research criteria. Results: Most of the persons with occupational AIDS exposure came from secondary and tertiary hospitals (85%) , and nurses accounted for the highest percentage (78.3% ). The age ranged from 21 to 50 years, and the mean age was 31.02 ± 7.92 years. The persons with occupational AIDS exposure aged 20~29 years accounted for the highest percentage (51.6%) , and most persons (76.7%) graduated from junior colleges. Compared with the adult norm, there was significant increases in the total psychological score and the number of positive items after occupational exposure ( P <0.05). The scores of all items at 24 hours were significantly higher than those at the other time points, and the scores of all items gradually decreased over time ( F =227.24, 267.57, and 287.46, P <0.05). Compared with the adult norm, there were significant increases in the factor points at 24 hours and significant reductions in the factor points at 3 months ( P <0.05). Compared with those at 24 hours, the factor scores at 3 months decreased significantly ( P <0.05). Conclusion: Occupational AIDS exposure affects the mental status of related personnel, and the mental status at 24 hours after exposure is poor. Related departments should provide corresponding psychological counseling for the occupational exposure population at different exposure times.

  3. Spatial and temporal variability of personal environmental exposure to radio frequency electromagnetic fields in children in Europe.

    PubMed

    Birks, Laura Ellen; Struchen, Benjamin; Eeftens, Marloes; van Wel, Luuk; Huss, Anke; Gajšek, Peter; Kheifets, Leeka; Gallastegi, Mara; Dalmau-Bueno, Albert; Estarlich, Marisa; Fernandez, Mariana F; Meder, Inger Kristine; Ferrero, Amparo; Jiménez-Zabala, Ana; Torrent, Maties; Vrijkotte, Tanja G M; Cardis, Elisabeth; Olsen, Jørn; Valič, Blaž; Vermeulen, Roel; Vrijheid, Martine; Röösli, Martin; Guxens, Mònica

    2018-08-01

    Exposure to radiofrequency electromagnetic fields (RF-EMF) has rapidly increased and little is known about exposure levels in children. This study describes personal RF-EMF environmental exposure levels from handheld devices and fixed site transmitters in European children, the determinants of this, and the day-to-day and year-to-year repeatability of these exposure levels. Personal environmental RF-EMF exposure (μW/m 2 , power flux density) was measured in 529 children (ages 8-18 years) in Denmark, the Netherlands, Slovenia, Switzerland, and Spain using personal portable exposure meters for a period of up to three days between 2014 and 2016, and repeated in a subsample of 28 children one year later. The meters captured 16 frequency bands every 4 s and incorporated a GPS. Activity diaries and questionnaires were used to collect children's location, use of handheld devices, and presence of indoor RF-EMF sources. Six general frequency bands were defined: total, digital enhanced cordless telecommunications (DECT), television and radio antennas (broadcast), mobile phones (uplink), mobile phone base stations (downlink), and Wireless Fidelity (WiFi). We used adjusted mixed effects models with region random effects to estimate associations of handheld device use habits and indoor RF-EMF sources with personal RF-EMF exposure. Day-to-day and year-to-year repeatability of personal RF-EMF exposure were calculated through intraclass correlations (ICC). Median total personal RF-EMF exposure was 75.5 μW/m 2 . Downlink was the largest contributor to total exposure (median: 27.2 μW/m 2 ) followed by broadcast (9.9 μW/m 2 ). Exposure from uplink (4.7 μW/m 2 ) was lower. WiFi and DECT contributed very little to exposure levels. Exposure was higher during day (94.2 μW/m 2 ) than night (23.0 μW/m 2 ), and slightly higher during weekends than weekdays, although varying across regions. Median exposures were highest while children were outside (157.0 μW/m 2 ) or traveling (171.3 μW/m 2 ), and much lower at home (33.0 μW/m 2 ) or in school (35.1 μW/m 2 ). Children living in urban environments had higher exposure than children in rural environments. Older children and users of mobile phones had higher uplink exposure but not total exposure, compared to younger children and those that did not use mobile phones. Day-to-day repeatability was moderate to high for most of the general frequency bands (ICCs between 0.43 and 0.85), as well as for total, broadcast, and downlink for the year-to-year repeatability (ICCs between 0.49 and 0.80) in a small subsample. The largest contributors to total personal environmental RF-EMF exposure were downlink and broadcast, and these exposures showed high repeatability. Urbanicity was the most important determinant of total exposure and mobile phone use was the most important determinant of uplink exposure. It is important to continue evaluating RF-EMF exposure in children as device use habits, exposure levels, and main contributing sources may change. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Mold prevention strategies and possible health effects in the aftermath of hurricanes and major floods.

    PubMed

    Brandt, Mary; Brown, Clive; Burkhart, Joe; Burton, Nancy; Cox-Ganser, Jean; Damon, Scott; Falk, Henry; Fridkin, Scott; Garbe, Paul; McGeehin, Mike; Morgan, Juliette; Page, Elena; Rao, Carol; Redd, Stephen; Sinks, Tom; Trout, Douglas; Wallingford, Kenneth; Warnock, David; Weissman, David

    2006-06-09

    Extensive water damage after major hurricanes and floods increases the likelihood of mold contamination in buildings. This report provides information on how to limit exposure to mold and how to identify and prevent mold-related health effects. Where uncertainties in scientific knowledge exist, practical applications designed to be protective of a person's health are presented. Evidence is included about assessing exposure, clean-up and prevention, personal protective equipment, health effects, and public health strategies and recommendations. The recommendations assume that, in the aftermath of major hurricanes or floods, buildings wet for <48 hours will generally support visible and extensive mold growth and should be remediated, and excessive exposure to mold-contaminated materials can cause adverse health effects in susceptible persons regardless of the type of mold or the extent of contamination. For the majority of persons, undisturbed mold is not a substantial health hazard. Mold is a greater hazard for persons with conditions such as impaired host defenses or mold allergies. To prevent exposure that could result in adverse health effects from disturbed mold, persons should 1) avoid areas where mold contamination is obvious; 2) use environmental controls; 3) use personal protective equipment; and 4) keep hands, skin, and clothing clean and free from mold-contaminated dust. Clinical evaluation of suspected mold-related illness should follow conventional clinical guidelines. In addition, in the aftermath of extensive flooding, health-care providers should be watchful for unusual mold-related diseases. The development of a public health surveillance strategy among persons repopulating areas after extensive flooding is recommended to assess potential health effects and the effectiveness of prevention efforts. Such a surveillance program will help CDC and state and local public health officials refine the guidelines for exposure avoidance, personal protection, and clean-up and assist health departments to identify unrecognized hazards.

  5. Workplace Secondhand Smoke Exposure in the U.S. Trucking Industry

    PubMed Central

    Chiu, Yueh-Hsiu; Hart, Jaime E.; Spiegelman, Donna; Garshick, Eric; Smith, Thomas J.; Dockery, Douglas W.; Hammond, S. Katharine; Laden, Francine

    2010-01-01

    Background Although the smoking rate in the United States is declining because of an increase of smoke-free laws, among blue-collar workers it remains higher than that among many other occupational groups. Objectives We evaluated the factors influencing workplace secondhand smoke (SHS) exposures in the U.S. unionized trucking industry. Methods From 2003 through 2005, we measured workplace SHS exposure among 203 nonsmoking and 61 smoking workers in 25 trucking terminals. Workers in several job groups wore personal vapor-phase nicotine samplers on their lapels for two consecutive work shifts and completed a workplace SHS exposure questionnaire at the end of the personal sampling. Results Median nicotine level was 0.87 μg/m3 for nonsmokers and 5.96 μg/m3 for smokers. As expected, smokers experienced higher SHS exposure duration and intensity than did nonsmokers. For nonsmokers, multiple regression analyses indicated that self-reported exposure duration combined with intensity, lack of a smoking policy as reported by workers, having a nondriver job, and lower educational level were independently associated with elevated personal nicotine levels (model R2 = 0.52). Nondriver job and amount of active smoking were associated with elevated personal nicotine level in smokers, but self-reported exposure, lack of a smoking policy, and lower educational level were not. Conclusions Despite movements toward smoke-free laws, this population of blue-collar workers was still exposed to workplace SHS as recently as 2005. The perceived (reported by the workers), rather than the official (reported by the terminal managers), smoking policy was associated with measured SHS exposure levels among the nonsmokers. Job duties and educational level might also be important predictors of workplace SHS exposure. PMID:20123606

  6. In Situ Field-Based Metabolomics for Evaluating the Impacts of Exposure to Chemicals of Emerging Concern Relative to Other Stressors

    EPA Science Inventory

    Significant attention is being devoted to the potential impacts on ecosystems from exposure to chemicals of emerging concern (CECs; including pharmaceuticals, personal-care products, etc.). Many of these are persistent, distributed globally, and have been shown to cause adverse i...

  7. Guidance on health effects of toxic chemicals. Safety Analysis Report Update Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foust, C.B.; Griffin, G.D.; Munro, N.B.

    1994-02-01

    Martin Marietta Energy Systems, Inc. (MMES), and Martin Marietta Utility Services, Inc. (MMUS), are engaged in phased programs to update the safety documentation for the existing US Department of Energy (DOE)-owned facilities. The safety analysis of potential toxic hazards requires a methodology for evaluating human health effects of predicted toxic exposures. This report provides a consistent set of health effects and documents toxicity estimates corresponding to these health effects for some of the more important chemicals found within MMES and MMUS. The estimates are based on published toxicity information and apply to acute exposures for an ``average`` individual. The healthmore » effects (toxicological endpoints) used in this report are (1) the detection threshold; (2) the no-observed adverse effect level; (3) the onset of irritation/reversible effects; (4) the onset of irreversible effects; and (5) a lethal exposure, defined to be the 50% lethal level. An irreversible effect is defined as a significant effect on a person`s quality of life, e.g., serious injury. Predicted consequences are evaluated on the basis of concentration and exposure time.« less

  8. Some factors influencing the nonexpert's perception and evaluation of environmental risks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaughan, E.

    Policy makers and decision analysts have been limited somewhat in their ability to predict public reactions to regulatory decisions about hazardous substances or technologies. Most studies of the nonexpert's evaluation of environmental risks have relied on survey data and correlational analyses which preclude the determination of interactive effects, effects that could explain apparent inconsistencies. Three experimental studies were designed to test empirically the effect of six dimensions of environmental risk on judgments of (1) perceived risk, (2) acceptability of risk, (3) subjective probability of negative outcomes due to exposure, and (4) perceived severity of consequences. Factors examined included: (a) familiaritymore » with the terms used to describe a hazard, (b) environmental persistence of a chemical, (c) personal relevance of data used to evaluate cancer-causing potential, (d) personal relevance of possible adverse consequences, (e) perceived control over exposure, and (f) vividness of the exposure pathway. The findings were discussed in terms of their implications for the nonexpert's formulation of risk perceptions, and public policy in the domain of environmental risks.« less

  9. Gender differences in respiratory symptoms-does occupation matter?

    PubMed

    Dimich-Ward, Helen; Camp, Patricia G; Kennedy, Susan M

    2006-06-01

    Little attention has been given to gender differences in respiratory health, particularly in occupational settings. The purpose of this paper was to evaluate gender differences in respiratory morbidity based on surveys of hospitality workers, radiographers, and respiratory therapists. Data were available from mail surveys of 850 hospitality industry workers (participation rate 73.9%; 52.6% female), 586 radiographers (participation rate 63.6%; 85% female), and 275 respiratory therapists (participation rate 64.1%; 58.6% female). Cross-tabulations by gender were evaluated by chi(2) analysis and logistic regression with adjustment for personal and work characteristics. Women consistently had greater respiratory morbidity for symptoms associated with shortness of breath, whereas men usually had a higher prevalence of phlegm. There were few differences in work exposures apart from perception of exposure to ETS among hospitality workers. Gender differences in symptoms were often reduced after adjustment for personal and work characteristics but for respiratory therapists there were even greater gender disparities for asthma attack and breathing trouble. Population health findings of elevated symptoms among women were only partially supported by these occupational respiratory health surveys. The influence of differential exposures and personal factors should be considered when interpreting gender differences in health outcomes.

  10. Gender differences in respiratory symptoms-Does occupation matter?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dimich-Ward, Helen; Camp, Patricia G.; James Hogg iCapture Center for Cardiovascular and Pulmonary Research, University of British Columbia, Vancouver, BC, V6Z 1Y6

    Little attention has been given to gender differences in respiratory health, particularly in occupational settings. The purpose of this paper was to evaluate gender differences in respiratory morbidity based on surveys of hospitality workers, radiographers, and respiratory therapists. Data were available from mail surveys of 850 hospitality industry workers (participation rate 73.9%; 52.6% female), 586 radiographers (participation rate 63.6%; 85% female), and 275 respiratory therapists (participation rate 64.1%; 58.6% female). Cross-tabulations by gender were evaluated by {chi}{sup 2} analysis and logistic regression with adjustment for personal and work characteristics. Women consistently had greater respiratory morbidity for symptoms associated with shortnessmore » of breath, whereas men usually had a higher prevalence of phlegm. There were few differences in work exposures apart from perception of exposure to ETS among hospitality workers. Gender differences in symptoms were often reduced after adjustment for personal and work characteristics but for respiratory therapists there were even greater gender disparities for asthma attack and breathing trouble. Population health findings of elevated symptoms among women were only partially supported by these occupational respiratory health surveys. The influence of differential exposures and personal factors should be considered when interpreting gender differences in health outcomes.« less

  11. Agreement of central site measurements and land use regression modeled oxidative potential of PM{sub 2.5} with personal exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Aileen, E-mail: Yang@uu.nl; Institute for Risk Assessment Sciences, Division Environmental Epidemiology, Utrecht University, P.O. Box 80.178, 3508TD Utrecht; Hoek, Gerard

    Oxidative potential (OP) of ambient particulate matter (PM) has been suggested as a health-relevant exposure metric. In order to use OP for exposure assessment, information is needed about how well central site OP measurements and modeled average OP at the home address reflect temporal and spatial variation of personal OP. We collected 96-hour personal, home outdoor and indoor PM{sub 2.5} samples from 15 volunteers living either at traffic, urban or regional background locations in Utrecht, the Netherlands. OP was also measured at one central reference site to account for temporal variations. OP was assessed using electron spin resonance (OP{sup ESR})more » and dithiothreitol (OP{sup DTT}). Spatial variation of average OP at the home address was modeled using land use regression (LUR) models. For both OP{sup ESR} and OP{sup DTT}, temporal correlations of central site measurements with home outdoor measurements were high (R>0.75), and moderate to high (R=0.49–0.70) with personal measurements. The LUR model predictions for OP correlated significantly with the home outdoor concentrations for OP{sup DTT} and OP{sup ESR} (R=0.65 and 0.62, respectively). LUR model predictions were moderately correlated with personal OP{sup DTT} measurements (R=0.50). Adjustment for indoor sources, such as vacuum cleaning and absence of fume-hood, improved the temporal and spatial agreement with measured personal exposure for OP{sup ESR}. OP{sup DTT} was not associated with any indoor sources. Our study results support the use of central site OP for exposure assessment of epidemiological studies focusing on short-term health effects. - Highlights: • Oxidative potential (OP) of PM was proposed as a health-relevant exposure metric. • We evaluated the relationship between measured and modeled outdoor and personal OP. • Temporal correlations of central site with personal OP are moderate to high. • Adjusting for indoor sources improved the agreement with personal OP. • Our results support the use of central site OP for short-term health effect studies.« less

  12. Behind the Wheel: Predictors of Driving Exposure in Older Drivers.

    PubMed

    Coxon, Kristy; Chevalier, Anna; Lo, Serigne; Ivers, Rebecca; Brown, Julie; Keay, Lisa

    2015-06-01

    To explore and deepen understanding of factors influencing driving exposure for older drivers. Cross-sectional. Baseline data on function and driving exposure from 1 week of driving were evaluated. A convenience sample of 380 drivers aged 75 and older, residing in northwest Sydney, was recruited. Participants were required to be the primary drivers of their own vehicle. Driver function was evaluated using the DriveSafe and DriveAware clinic-based assessments to measure visual attention to the driving environment and awareness of driving ability. Demographic information was obtained through interview. An in-vehicle monitoring device with data logger and GPS receiver, was used to measure driving exposure in 362 of 380 participants' vehicles. Driving exposure outcomes were total distance driven, furthest distance traveled from home, and average trip length. Factors influencing these exposure outcomes were analyzed using generalized linear regression. Drivers typically drove 100 km in local and surrounding areas during the week. Function was predictive of all driving exposure outcomes. Drivers with lower levels of function drove fewer kilometers and took shorter trips closer to home. Age, health status, and personal circumstance (e.g., rural residence) also influenced exposure, but sex did not. Using objective measures, this study provides evidence that function, age, health status, and personal circumstance influence driving exposure of older drivers. Understanding how older people use driving to preserve their independence is important for exploring safe driving strategies for older people. © 2015, Copyright the Authors Journal compilation © 2015, The American Geriatrics Society.

  13. Personal Exposure to Dust and Endotoxin in Robusta and Arabica Coffee Processing Factories in Tanzania

    PubMed Central

    Sakwari, Gloria

    2013-01-01

    Introduction: Endotoxin exposure associated with organic dust exposure has been studied in several industries. Coffee cherries that are dried directly after harvest may differ in dust and endotoxin emissions to those that are peeled and washed before drying. The aim of this study was to measure personal total dust and endotoxin levels and to evaluate their determinants of exposure in coffee processing factories. Methods: Using Sidekick Casella pumps at a flow rate of 2l/min, total dust levels were measured in the workers’ breathing zone throughout the shift. Endotoxin was analyzed using the kinetic chromogenic Limulus amebocyte lysate assay. Separate linear mixed-effects models were used to evaluate exposure determinants for dust and endotoxin. Results: Total dust and endotoxin exposure were significantly higher in Robusta than in Arabica coffee factories (geometric mean 3.41mg/m3 and 10 800 EU/m3 versus 2.10mg/m3 and 1400 EU/m3, respectively). Dry pre-processed coffee and differences in work tasks explained 30% of the total variance for total dust and 71% of the variance for endotoxin exposure. High exposure in Robusta processing is associated with the dry pre-processing method used after harvest. Conclusions: Dust and endotoxin exposure is high, in particular when processing dry pre-processed coffee. Minimization of dust emissions and use of efficient dust exhaust systems are important to prevent the development of respiratory system impairment in workers. PMID:23028014

  14. Airborne exposures associated with the typical use of an aerosol brake cleaner during vehicle repair work.

    PubMed

    Fries, Michael; Williams, Pamela R D; Ovesen, Jerald; Maier, Andrew

    2018-04-19

    Many petroleum-based products are used for degreasing and cleaning purposes during vehicle maintenance and repairs. Although prior studies have evaluated chemical exposures associated with this type of work, most of these have focused on gasoline and exhaust emissions, with few samples collected solely during the use of an aerosol cleaning product. In this case study, we assess the type of airborne exposures that would be expected from the typical use of an aerosol brake cleaner during vehicle repair work. Eight exposure scenarios were evaluated over a two-day study in which the benzene content of the brake cleaner and potential for dilution ventilation and air flow varied. Both short-term (15 min) and task-based (≥1 hr) charcoal tube samples were collected in the breathing zone and adjacent work area and analyzed for total hydrocarbons (THCs), toluene, and benzene. The majority of personal (N = 48) and area (N = 47) samples had detectable levels of THC and toluene, but no detections of benzene were found. For the personal short-term samples, average airborne concentrations ranged from 3.1 - 61.5 ppm (13.8-217.5 mg/m 3 ) for THC and 2.2 - 44.0 ppm (8.2-162.5 mg/m 3 ) for toluene, depending on the scenario. Compared to the personal short-term samples, average concentrations were generally 2 to 3 times lower for the personal task-based samples and 2 to 5 times lower for the area short-term samples. The highest exposures occurred when the garage bay doors were closed, floor fan was turned off, or greatest amount of brake cleaner was used. These findings add to the limited dataset on this topic and can be used to bound or approximate worker or consumer exposures from use of aerosol cleaning products with similar compositions and use patterns.

  15. Skin exposure to aliphatic polyisocyanates in the auto body repair and refinishing industry: III. A personal exposure algorithm.

    PubMed

    Liu, Youcheng; Stowe, Meredith H; Bello, Dhimiter; Sparer, Judy; Gore, Rebecca J; Cullen, Mark R; Redlich, Carrie A; Woskie, Susan R

    2009-01-01

    Isocyanate skin exposure may play an important role in sensitization and the development of isocyanate asthma, but such exposures are frequently intermittent and difficult to assess. Exposure metrics are needed to better estimate isocyanate skin exposures. The goal of this study was to develop a semiquantitative algorithm to estimate personal skin exposures in auto body shop workers using task-based skin exposure data and daily work diaries. The relationship between skin and respiratory exposure metrics was also evaluated. The development and results of respiratory exposure metrics were previously reported. Using the task-based data obtained with a colorimetric skin exposure indicator and a daily work diary, we developed a skin exposure algorithm to estimate a skin exposure index (SEI) for each worker. This algorithm considered the type of personal protective equipment (PPE) used, the percentage of skin area covered by PPE and skin exposures without and underneath the PPE. The SEI was summed across the day (daily SEI) and survey week (weekly average SEI) for each worker, compared among the job title categories and also compared with the respiratory exposure metrics. A total of 893 person-days was calculated for 232 workers (49 painters, 118 technicians and 65 office workers) from 33 auto body shops. The median (10th-90th percentile, maximum) daily SEI was 0 (0-0, 1.0), 0 (0-1.9, 4.8) and 1.6 (0-3.5, 6.1) and weekly average SEI was 0 (0-0.0, 0.7), 0.3 (0-1.6, 4.2) and 1.9 (0.4-3.0, 3.6) for office workers, technicians and painters, respectively, which were significantly different (P < 0.0001). The median (10th-90th percentile, maximum) daily SEI was 0 (0-2.4, 6.1) and weekly average SEI was 0.2 (0-2.3, 4.2) for all workers. A relatively weak positive Spearman correlation was found between daily SEI and time-weighted average (TWA) respiratory exposure metrics (microg NCO m(-3)) (r = 0.380, n = 893, P < 0.0001) and between weekly SEI and TWA respiratory exposure metrics (r = 0.482, n = 232, P < 0.0001). The skin exposure algorithm developed in this study provides task-based personal daily and weekly average skin exposure indices that are adjusted for the use of PPE. These skin exposure indices can be used to assess isocyanate exposure-response relationships.

  16. A personal exposure study employing scripted activities and paths in conjunction with atmospheric releases of perfluorocarbon tracers in Manhattan, New York

    PubMed Central

    LIOY, PAUL J; VALLERO, DANIEL; FOLEY, GARY; GEORGOPOULOS, PANOS; HEISER, JOHN; WATSON, TOM; REYNOLDS, MICHAEL; DALOIA, JAMES; TONG, SAI; ISUKAPALLI, SASTRY

    2014-01-01

    A personal exposure study was conducted in New York City as part of the Urban Dispersion Program (UDP). It examined the contact of individuals with four harmless perflourocarbon tracers (PFT) released in Midtown Manhattan with approval by city agencies at separate locations, during two types of experiments, completed during each release period. Two continuous 1 h release periods separated by a 1.5 h ventilation time were completed on 3 October 2005. Stationary site and personal exposure measurements were taken during each period, and the first half hour after the release ended. Two types of scripted exposure activities are reported: Outdoor Source Scale, and Outdoor Neighborhood Scale; requiring 1- and 10-min duration samples, respectively. The results showed that exposures were influenced by the surface winds, the urban terrain, and the movements of people and vehicles typical in urban centers. The source scale exposure data indicated that local conditions significantly affected the distribution of each tracer, and consequently the exposures. The highest PFT exposures resulted from interaction of the scripted activities with local surface conditions. The range measured for 1- min exposures were large with measured values exceeding 5000 ppqv (parts per quadrillion by volume). The neighborhood scale measurements quantified exposures at distances up to seven blocks away from the release points. Generally, but not always, the PFT levels returned quickly to zero indicating that after cessation of the emissions the concentrations decrease rapidly, and reduce the intensity of local exposures. The near source and neighborhood personal exposure route results provided information to establish a baseline for determining how a release could affect both the general public and emergency responders, and evaluate the adequacy of re-entry or exit strategies from a local area. Finally, the data also show that local characteristics can produce “hot spots”. PMID:17505505

  17. Truncated Lévy flights and agenda-based mobility are useful for the assessment of personal human exposure.

    PubMed

    Schlink, Uwe; Ragas, Ad M J

    2011-01-01

    Receptor-oriented approaches can assess the individual-specific exposure to air pollution. In such an individual-based model we analyse the impact of human mobility to the personal exposure that is perceived by individuals simulated in an exemplified urban area. The mobility models comprise random walk (reference point mobility, RPM), truncated Lévy flights (TLF), and agenda-based walk (RPMA). We describe and review the general concepts and provide an inter-comparison of these concepts. Stationary and ergodic behaviour are explained and applied as well as performance criteria for a comparative evaluation of the investigated algorithms. We find that none of the studied algorithm results in purely random trajectories. TLF and RPMA prove to be suitable for human mobility modelling, because they provide conditions for very individual-specific trajectories and exposure. Suggesting these models we demonstrate the plausibility of their results for exposure to air-borne benzene and the combined exposure to benzene and nonane. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Estimation of personal PM2.5 and BC exposure by a modeling approach - Results of a panel study in Shanghai, China.

    PubMed

    Chen, Chen; Cai, Jing; Wang, Cuicui; Shi, Jingjin; Chen, Renjie; Yang, Changyuan; Li, Huichu; Lin, Zhijing; Meng, Xia; Zhao, Ang; Liu, Cong; Niu, Yue; Xia, Yongjie; Peng, Li; Zhao, Zhuohui; Chillrud, Steven; Yan, Beizhan; Kan, Haidong

    2018-06-06

    Epidemiologic studies of PM 2.5 (particulate matter with aerodynamic diameter ≤2.5 μm) and black carbon (BC) typically use ambient measurements as exposure proxies given that individual measurement is infeasible among large populations. Failure to account for variation in exposure will bias epidemiologic study results. The ability of ambient measurement as a proxy of exposure in regions with heavy pollution is untested. We aimed to investigate effects of potential determinants and to estimate PM 2.5 and BC exposure by a modeling approach. We collected 417 24 h personal PM 2.5 and 130 72 h personal BC measurements from a panel of 36 nonsmoking college students in Shanghai, China. Each participant underwent 4 rounds of three consecutive 24-h sampling sessions through December 2014 to July 2015. We applied backwards regression to construct mixed effect models incorporating all accessible variables of ambient pollution, climate and time-location information for exposure prediction. All models were evaluated by marginal R 2 and root mean square error (RMSE) from a leave-one-out-cross-validation (LOOCV) and a 10-fold cross-validation (10-fold CV). Personal PM 2.5 was 47.6% lower than ambient level, with mean (±Standard Deviation, SD) level of 39.9 (±32.1) μg/m 3 ; whereas personal BC (6.1 (±2.8) μg/m 3 ) was about one-fold higher than the corresponding ambient concentrations. Ambient levels were the most significant determinants of PM 2.5 and BC exposure. Meteorological and season indicators were also important predictors. Our final models predicted 75% of the variance in 24 h personal PM 2.5 and 72 h personal BC. LOOCV analysis showed an R 2 (RMSE) of 0.73 (0.40) for PM 2.5 and 0.66 (0.27) for BC. Ten-fold CV analysis showed a R 2 (RMSE) of 0.73 (0.41) for PM 2.5 and 0.68 (0.26) for BC. We used readily accessible data and established intuitive models that can predict PM 2.5 and BC exposure. This modeling approach can be a feasible solution for PM exposure estimation in epidemiological studies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Health hazard evaluation report No. HHE-80-233-793, Davis Bessie Nuclear Power Station, Toledo Edison Company, United Engineers and Contractors Company (UE and C), Oak Harbor, Ohio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cone, J.; Hartle, R.

    1981-01-01

    Personal air samples were analyzed and employees were given medical evaluations at Davis Bessie Nuclear Power Station (SIC-4911) in Oak Harbor, Ohio. Requests for evaluation were made by a union representative of the United Engineers and Contractors and a union representative of employees of Toledo Edison Company, working on site at the power station, to evaluate employee skin and scalp problems due to exposure to ceramic wood fibers. Preliminary surveys were conducted on September 24 and 25, 1980 and a follow-up survey was performed on October 16, 1980. Environmental evaluation consisted of gravimetric analyses of personal air samples for airbornemore » ceramic wool fibers. A total of 400 production and maintenance workers and varying numbers of construction workers were exposed to the fibers during installation of insulation which was completed at the time of the survey. The three personal air samples showed no accumulation of particulates and fibers detected were nonrespirable. Medical evaluations were conducted in 52 workers and scalp scrapings were obtained from 43 workers. Thirty seven workers had histories suggestive of irritant dermatitis of the scalp; 24 workers had physical findings consistent with the diagnosis. Of the 43 scalp samples, 18 were contaminated with organisms of the gut, perineum, skin or respiratory tract. Dermatitis was directly related to the history of dust exposure. The authors conclude that a potential health hazard exists for employees from exposure to ceramic wool fiber. Recommendations include provision of handwashing facilities and protective clothing for employees, and installation of an impermeable covering for the ceramic wool fiber.« less

  20. Estimations of the lethal and exposure doses for representative methanol symptoms in humans.

    PubMed

    Moon, Chan-Seok

    2017-01-01

    The aim of this review was to estimate the lethal and exposure doses of a representative symptom (blindness) of methanol exposure in humans by reviewing data from previous articles. Available articles published from 1970 to 2016 that investigated the dose-response relationship for methanol exposure (i.e., the exposure concentration and the biological markers/clinical symptoms) were evaluated; the MEDLINE and RISS (Korean search engine) databases were searched. The available data from these articles were carefully selected to estimate the range and median of a lethal human dose. The regression equation and correlation coefficient (between the exposure level and urinary methanol concentration as a biological exposure marker) were assumed from the previous data. The lethal human dose of pure methanol was estimated at 15.8-474 g/person as a range and as 56.2 g/person as the median. The dose-response relationship between methanol vapor in ambient air and urinary methanol concentrations was thought to be correlated. An oral intake of 3.16-11.85 g/person of pure methanol could cause blindness. The lethal dose from respiratory intake was reported to be 4000-13,000 mg/l. The initial concentration of optic neuritis and blindness were shown to be 228.5 and 1103 mg/l, respectively, for a 12-h exposure. The concentration of biological exposure indices and clinical symptoms for methanol exposure might have a dose-response relationship according to previous articles. Even a low dose of pure methanol through oral or respiratory exposure might be lethal or result in blindness as a clinical symptom.

  1. Occupational secondhand smoke is the main determinant of hair nicotine concentrations in bar and restaurant workers

    PubMed Central

    Iglesias, Verónica; Erazo, Marcia; Droppelmann, Andrea; Steenland, Kyle; Aceituno, Paulina; Orellana, Cecilia; Acuña, Marisol; Peruga, Armando; Breysse, Patrick N.; Navas-Acien, Ana

    2015-01-01

    Objective To evaluate the relative contribution of occupational vs. non-occupational secondhand tobacco smoke exposure to overall hair nicotine concentrations in non-smoking bar and restaurant employees. Method We recruited 76 non-smoking employees from venues that allowed smoking (n = 9), had mixed policies (smoking and non-smoking areas, n = 13) or were smoke-free (n = 2) between April and August 2008 in Santiago, Chile. Employees used personal air nicotine samplers during working and non-working hours for a 24-h period to assess occupational vs. non-occupational secondhand tobacco smoke exposure and hair nicotine concentrations to assess overall secondhand tobacco smoke exposure. Results Median hair nicotine concentrations were 1.5 ng/mg, interquartile range (IQR) 0.7 to 5.2 ng/mg. Time weighted average personal air nicotine concentrations were higher during working hours (median 9.7, IQR 3.3-25.4 μg/m3) compared to non-working hours (1.7, 1.0-3.1 μg/m3). Hair nicotine concentration was best predicted by personal air nicotine concentration at working hours. After adjustment, a 2-fold increase in personal air nicotine concentration in working hours was associated with a 42% increase in hair nicotine concentration (95% confidence interval 14-70%). Hair nicotine concentration was not associated with personal air nicotine concentration during non-working hours (non-occupational exposure). Conclusions Personal air nicotine concentration at working hours was the major determinant of hair nicotine concentrations in non-smoking employees from Santiago, Chile. Secondhand tobacco smoke exposure during working hours is a health hazard for hospitality employees working in venues where smoking is allowed. PMID:24813578

  2. 47 CFR 2.1091 - Radiofrequency radiation exposure evaluation: mobile devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... their effective radiated power (ERP) is 1.5 watts or more, or if they operate at frequencies above 1.5 GHz and their ERP is 3 watts or more. Unlicensed personal communications service devices, unlicensed... exposure prior to equipment authorization or use if their ERP is 3 watts or more or if they meet the...

  3. Personal carbon monoxide exposure in five European cities and its determinants

    NASA Astrophysics Data System (ADS)

    Georgoulis, L. B.; Hänninen, O.; Samoli, E.; Katsouyanni, K.; Künzli, N.; Polanska, L.; Bruinen de Bruin, Y.; Alm, S.; Jantunen, M.

    Studies involving carbon monoxide (CO) exposure assessment are mainly based on measurements at outdoor fixed sites or in various indoor micro-environments. Few studies have been based on personal exposure measurements. In this paper, we report results on personal measurements of CO in five European cities and we investigate determinants which may influence this personal exposure. Within the multi-centre European EXPOLIS study, personal exposure to CO, measured every minute for 48 h, of 401 randomly selected study participants (mainly non-smokers) was monitored in Athens, Basle, Helsinki, Milan and Prague. Each participant also completed a time-microenvironment-activity diary and an extended questionnaire. In addition, for the same time period, ambient levels of CO from fixed site stations were collected. There are significant differences in both personal exposure and ambient levels within the five cities, ranging from high values in Milan and Athens to low in Helsinki. Ambient levels are a significant correlate and determinant of CO 48-h personal exposure in all cities. From the other determinants studied (time spent in street traffic, time of exposure to ETS and time of exposure to gas burning devices) none was consistently significant for all cities. Change of the ambient CO levels from the 25th to the 75th percentile of its distribution resulted in a 1.5-2 fold increase of 48-h personal exposure. Short time personal exposure was also studied in order to assess the influence of specific sources. Exposure levels were significantly higher when participants were in street traffic and in indoor locations in the presence of smokers. Personal 48-h exposure of non-smokers to CO varies among urban populations depending primarily on the ambient levels. For a CO source to be a significant determinant of the personal 48-h CO exposure, it has to affect the levels of CO in the person's proximity for an adequate length of time. Activities of individuals affect shorter term personal exposure.

  4. Short-Term Medical Consequences of the Chernobyl Nuclear Accident: Lessons for the Future

    PubMed Central

    Gale, Robert Peter

    1988-01-01

    The author of this article discusses the world's most serious nuclear accident to date: the Chernobyl nuclear accident of April 1986. His major focus is on the short-term medical consequences of the accident, including reduction of exposure to persons at risk, evaluation of persons potentially affected, dosimetry, and specific medical interventions. PMID:21253129

  5. Teaching Strategies for Personality Assessment at the Undergraduate Level.

    PubMed

    Roche, Michael J; Jacobson, Nicholas C; Roche, Carley A

    2017-01-01

    Personality assessment is a crucial component of clinical practice, and the training and proficiency criteria to develop competence are complex and multifaceted. Like many advanced topics, the field of personality assessment would benefit from early exposure in undergraduate classroom settings. This research evaluates how an undergraduate personality course can be enhanced through 2 enrichment activities (self-assessments and a personality project). Students completed several self-assessments of their personality and wrote a comprehensive and integrative personality assessment about themselves. Results demonstrated that these activities increased interest in personality assessment, deepened understanding of course material, and promoted student growth and self-exploration. We discuss the benefits of these enrichment activities for the student, instructor, and field of personality science.

  6. Personal exposure to ultrafine particles: the influence of time-activity patterns.

    PubMed

    Buonanno, G; Stabile, L; Morawska, L

    2014-01-15

    Exposure to ultrafine particles (UFPs) is deemed to be a major risk affecting human health. Therefore, airborne particle studies were performed in the recent years to evaluate the most critical micro-environments, as well as identifying the main UFP sources. Nonetheless, in order to properly evaluate the UFP exposure, personal monitoring is required as the only way to relate particle exposure levels to the activities performed and micro-environments visited. To this purpose, in the present work, the results of experimental analysis aimed at showing the effect of the time-activity patterns on UFP personal exposure are reported. In particular, 24 non-smoking couples (12 during winter and summer time, respectively), comprised of a man who worked full-time and a woman who was a homemaker, were analyzed using personal particle counter and GPS monitors. Each couple was investigated for a 48-h period, during which they also filled out a diary reporting the daily activities performed. Time activity patterns, particle number concentration exposure and the related dose received by the participants, in terms of particle alveolar-deposited surface area, were measured. The average exposure to particle number concentration was higher for women during both summer and winter (Summer: women 1.8 × 10(4) part. cm(-3); men 9.2 × 10(3) part. cm(-3); Winter: women 2.9 × 10(4) part. cm(-3); men 1.3 × 10(4) part. cm(-3)), which was likely due to the time spent undertaking cooking activities. Staying indoors after cooking also led to higher alveolar-deposited surface area dose for both women and men during the winter time (9.12 × 10(2) and 6.33 × 10(2) mm(2), respectively), when indoor ventilation was greatly reduced. The effect of cooking activities was also detected in terms of women's dose intensity (dose per unit time), being 8.6 and 6.6 in winter and summer, respectively. On the contrary, the highest dose intensity activity for men was time spent using transportation (2.8 in both winter and summer). © 2013.

  7. The influence of air cleaners on indoor particulate matter components and oxidative potential in residential households in Beijing.

    PubMed

    Zhan, Ying; Johnson, Karoline; Norris, Christina; Shafer, Martin M; Bergin, Mike H; Zhang, Yinping; Zhang, Junfeng; Schauer, James J

    2018-06-01

    In many developing regions with poor air quality, the use of air filtration devices to clean indoor air is growing rapidly. In this study, we collected indoor, outdoor and personal exposure filter-based samples of fine particulate matter (PM 2.5 ) with both properly operating, and sham air cleaners in six Beijing residences from July 24th to August 17th, 2016. Mass concentrations of PM 2.5 and several health relevant components of PM 2.5 including organic carbon, elemental carbon, sulfate, nitrate, ammonium, and 21 selected metals, were analyzed to evaluate the effectiveness of air cleaners. The effect of air purification on PM 2.5 reactive oxygen species (ROS) activity, a metric of the oxidative potential of the aerosol, was also evaluated. The average indoor PM 2.5 concentration during true filtration was 8.47μg/m 3 , compared to 49.0μg/m 3 during sham filtration; thus, air cleaners can significantly reduce the indoor PM 2.5 concentration to well below WHO guideline levels and significantly lower all major components of PM 2.5 . However, the utility of air cleaners in reducing overall personal exposure to PM 2.5 and its components was marginal in this study: the average personal exposure PM 2.5 concentration was 67.8 and 51.1μg/m 3 during true and sham filtration respectively, and it is likely due to the activity patterns of the subjects. Short-term exposure contributions from environments with high PM 2.5 concentrations, including exposure to traffic related emissions as well as uncharacterized indoor microenvironments, likely add substantially to the total PM 2.5 exposure burden. The toxicity assay indicates that the air cleaners can also significantly reduce ROS activity in the indoor environment; however, this decrease did not translate to a reduction in personal exposure. Elemental carbon, lead, and arsenic were well-correlated with the ROS activity, thus adding to the knowledge base of drivers for ROS activity. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Exposure assessment among US workers employed in semiconductor wafer fabrication.

    PubMed

    Marano, Donald E; Boice, John D; Munro, Heather M; Chadda, Bandana K; Williams, Michael E; McCarthy, Colleen M; Kivel, Peggy F; Blot, William J; McLaughlin, Joseph K

    2010-11-01

    To classify 100,081 semiconductor workers employed during 1983-2002, and some as early as 1968, regarding potential for chemical exposures in cleanrooms during silicon wafer fabrication. This study involved site visits to 10 cities with fabrication facilities, evaluation of 12,300 personal air samples for >60 chemicals, and examination of >37,000 departments and >8600 job codes to develop exposure groupings. Each worker was classified into one of five exposure groups on the basis of job-department combinations: 1) fabrication process equipment operators or process equipment service technicians working in cleanrooms (n = 28,583); 2) professionals such as supervisors working in fabrication areas (n = 8642); 3) professionals and office workers in nonfabrication areas (n = 53,512); 4) back-end workers (n = 5256); or 5) other nonfabrication workers (n = 4088). More than 98% of the personal air samples were below current occupational exposure limits. Although specific chemical exposures at the level of the individual could not be quantified, semiconductor workers were classified into broad exposure groups for assessment of cancer mortality in an epidemiologic study.

  9. Air Pollution Exposure Modeling for Health Studies | Science ...

    EPA Pesticide Factsheets

    Dr. Michael Breen is leading the development of air pollution exposure models, integrated with novel personal sensor technologies, to improve exposure and risk assessments for individuals in health studies. He is co-investigator for multiple health studies assessing the exposure and effects of air pollutants. These health studies include participants with asthma, diabetes, and coronary artery disease living in various U.S. cities. He has developed, evaluated, and applied novel exposure modeling and time-activity tools, which includes the Exposure Model for Individuals (EMI), GPS-based Microenvironment Tracker (MicroTrac) and Exposure Tracker models. At this seminar, Dr. Breen will present the development and application of these models to predict individual-level personal exposures to particulate matter (PM) for two health studies in central North Carolina. These health studies examine the association between PM and adverse health outcomes for susceptible individuals. During Dr. Breen’s visit, he will also have the opportunity to establish additional collaborations with researchers at Harvard University that may benefit from the use of exposure models for cohort health studies. These research projects that link air pollution exposure with adverse health outcomes benefit EPA by developing model-predicted exposure-dose metrics for individuals in health studies to improve the understanding of exposure-response behavior of air pollutants, and to reduce participant

  10. Occupational exposures to respirable crystalline silica during hydraulic fracturing.

    PubMed

    Esswein, Eric J; Breitenstein, Michael; Snawder, John; Kiefer, Max; Sieber, W Karl

    2013-01-01

    This report describes a previously uncharacterized occupational health hazard: work crew exposures to respirable crystalline silica during hydraulic fracturing. Hydraulic fracturing involves high pressure injection of large volumes of water and sand, and smaller quantities of well treatment chemicals, into a gas or oil well to fracture shale or other rock formations, allowing more efficient recovery of hydrocarbons from a petroleum-bearing reservoir. Crystalline silica ("frac sand") is commonly used as a proppant to hold open cracks and fissures created by hydraulic pressure. Each stage of the process requires hundreds of thousands of pounds of quartz-containing sand; millions of pounds may be needed for all zones of a well. Mechanical handling of frac sand creates respirable crystalline silica dust, a potential exposure hazard for workers. Researchers at the National Institute for Occupational Safety and Health collected 111 personal breathing zone samples at 11 sites in five states to evaluate worker exposures to respirable crystalline silica during hydraulic fracturing. At each of the 11 sites, full-shift samples exceeded occupational health criteria (e.g., the Occupational Safety and Health Administration calculated permissible exposure limit, the NIOSH recommended exposure limit, or the ACGIH threshold limit value), in some cases, by 10 or more times the occupational health criteria. Based on these evaluations, an occupational health hazard was determined to exist for workplace exposures to crystalline silica. Seven points of dust generation were identified, including sand handling machinery and dust generated from the work site itself. Recommendations to control exposures include product substitution (when feasible), engineering controls or modifications to sand handling machinery, administrative controls, and use of personal protective equipment. To our knowledge, this represents the first systematic study of work crew exposures to crystalline silica during hydraulic fracturing. Companies that conduct hydraulic fracturing using silica sand should evaluate their operations to determine the potential for worker exposure to respirable crystalline silica and implement controls as necessary to protect workers.

  11. Effect of Skin Protection and Skin Irritation on the Internal Exposure to Carbon Disulfide in Employees of the Viscose Industry.

    PubMed

    Kilo, Sonja; Zonnur, Nina; Uter, Wolfgang; Göen, Thomas; Drexler, Hans

    2015-10-01

    Occupational exposure to carbon disulfide (CS2) leads to inhalative and dermal uptake and thereby to internal exposure. In order to prevent occupational contact dermatitis, gloves and skin protection creams are used at the workplace. The aim of the study was the evaluation of the influence of personal skin protection and irritation on the internal exposure to CS2 of employees in the viscose industry. One hundred and eighty-two male CS2-exposed employees were included in the study and were examined regarding working conditions, use of personal protective measures und skin status. Personal air monitoring and biological monitoring was performed and the 'relative internal exposure' (RIE, internal exposure in relation to external exposure) calculated. A multiple regression analysis calculated the influence of skin protection and irritation on CS2 uptake. Usage of skin protection creams and gloves (and both in combination) while working was associated with a significantly higher RIE indicating a higher dermal penetration of CS2. Equally, irritated skin and younger age was associated with a higher internal burden. Gloves and skin protection creams are useful for preventing occupational skin diseases. However, when handling skin-resorptive substances like CS2, they can increase internal exposure or skin irritation. Therefore, we recommend the careful consideration of benefits and risks of protective creams and gloves at the workplace. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  12. Exposure and effect assessment of aerosolized red tide toxins (brevetoxins) and asthma.

    PubMed

    Fleming, Lora E; Bean, Judy A; Kirkpatrick, Barbara; Cheng, Yung Sung; Pierce, Richard; Naar, Jerome; Nierenberg, Kate; Backer, Lorraine C; Wanner, Adam; Reich, Andrew; Zhou, Yue; Watkins, Sharon; Henry, Mike; Zaias, Julia; Abraham, William M; Benson, Janet; Cassedy, Amy; Hollenbeck, Julie; Kirkpatrick, Gary; Clarke, Tainya; Baden, Daniel G

    2009-07-01

    In previous studies we demonstrated statistically significant changes in reported symptoms for lifeguards, general beach goers, and persons with asthma, as well as statistically significant changes in pulmonary function tests (PFTs) in asthmatics, after exposure to brevetoxins in Florida red tide (Karenia brevis bloom) aerosols. In this study we explored the use of different methods of intensive ambient and personal air monitoring to characterize these exposures to predict self-reported health effects in our asthmatic study population. We evaluated health effects in 87 subjects with asthma before and after 1 hr of exposure to Florida red tide aerosols and assessed for aerosolized brevetoxin exposure using personal and ambient samplers. After only 1 hr of exposure to Florida red tide aerosols containing brevetoxin concentrations > 57 ng/m(3), asthmatics had statistically significant increases in self-reported respiratory symptoms and total symptom scores. However, we did not see the expected corresponding changes in PFT results. Significant increases in self-reported symptoms were also observed for those not using asthma medication and those living >/= 1 mile from the coast. These results provide additional evidence of health effects in asthmatics from ambient exposure to aerosols containing very low concentrations of brevetoxins, possibly at the lower threshold for inducing a biologic response (i.e., toxicity). Consistent with the literature describing self-reported symptoms as an accurate measure of asthmatic distress, our results suggest that self-reported symptoms are a valuable measure of the extent of health effects from exposure to aerosolized brevetoxins in asthmatic populations.

  13. Analysis of Personal and Home Characteristics Associated with the Elemental Composition of PM2.5 in Indoor, Outdoor, and Personal Air in the RIOPA Study.

    PubMed

    Ryan, Patrick H; Brokamp, Cole; Fan, Zhi-Hua; Rao, M B

    2015-12-01

    The complex mixture of chemicals and elements that constitute particulate matter (PM*) varies by season and geographic location because source contributors differ over time and place. The composition of PM having an aerodynamic diameter < 2.5 μm (PM2.5) is hypothesized to be responsible, in part, for its toxicity. Epidemiologic studies have identified specific components and sources of PM2.5 that are associated with adverse health outcomes. The majority of these studies use measures of outdoor concentrations obtained from one or a few central monitoring sites as a surrogate for measures of personal exposure. Personal PM2.5 (and its elemental composition), however, may be different from the PM2.5 measured at stationary outdoor sites. The objectives of this study were (1) to describe the relationships between the concentrations of various elements in indoor, outdoor, and personal PM2.5 samples, (2) to identify groups of individuals with similar exposures to mixtures of elements in personal PM2.5 and to examine personal and home characteristics of these groups, and (3) to evaluate whether concentrations of elements from outdoor PM2.5 samples are appropriate surrogates for personal exposure to PM2.5 and its elements and whether indoor PM2.5 concentrations and information about home characteristics improve the prediction of personal exposure. The objectives of the study were addressed using data collected as part of the Relationships of Indoor, Outdoor, and Personal Air (RIOPA) study. The RIOPA study has previously measured the mass concentrations of PM2.5 and its elemental constituents during 48-hour concurrent indoor, outdoor (directly outside the home), and personal samplings in three urban areas (Los Angeles, California; Houston, Texas; and Elizabeth, New Jersey). The resulting data and information about personal and home characteristics (including air-conditioning use, nearby emission sources, time spent indoors, census-tract geography, air-exchange rates, and other information) for each RIOPA participant were downloaded from the RIOPA study database. We performed three sets of analyses to address the study aims. First, we conducted descriptive analyses to describe the relationships between elemental concentrations in the concurrently gathered indoor, outdoor, and personal air samples. We assessed the correlation between personal exposure and indoor concentrations as well as personal exposure and outdoor concentrations of each element and calculated ratios between them. In addition, we performed principal component analysis (PCA) and calculated principal component scores (PCSs) to examine the heterogeneity of the elemental composition and then tested whether the mixture of elements in indoor, outdoor, and personal PM2.5 was significantly different within each study site and across study sites. Secondly, we performed model-based clustering analysis to group RIOPA participants with similar exposures to mixtures of elements in personal PM2.5. We examined the association between cluster membership and the concentrations of elements in indoor and outdoor PM2.5 samples and personal and home characteristics. Finally, we developed a series of linear regression models and random forest models to examine the association between personal exposure to elements in PM2.5 and (1) outdoor measurements, (2) outdoor and indoor measurements, and (3) outdoor and indoor measurements and home characteristics. As we developed each model, the improvement in prediction of personal exposure when including additional information was assessed. Personal exposures to PM2.5 and to most elements were significantly correlated with both indoor and outdoor concentrations, although concentrations in personal samples frequently exceeded those of indoor and outdoor samples. In general, for most PM2.5 elements indoor concentrations were more highly correlated with personal exposure than were outdoor concentrations. PCA showed that the mixture of elements in indoor, outdoor, and personal PM2.5 varied significantly across sample types within each study site and also across study sites within each sample type. Using model-based clustering, we identified seven clusters of RIOPA participants whose personal PM2.5 samples had similar patterns of elemental composition. Using this approach, subsets of RIOPA participants were identified whose personal exposures to PM2.5 (and its elements) were significantly higher than their indoor and outdoor concentrations (and vice versa). The results of linear and random forest regression models were consistent with our correlation analyses and demonstrated that (1) indoor concentrations were more significantly associated with personal exposure than were outdoor concentrations and (2) participant reports of time spent at their home significantly modified many of the associations between indoor and personal concentrations. In linear regression models, the inclusion of indoor concentrations significantly improved the prediction of personal exposures to Ba, Ca, Cl, Cu, K, Sn, Sr, V, and Zn compared with the use of outdoor elemental concentrations alone. Including additional information on personal and home characteristics improved the prediction for only one element, Pb. Our results support the use of outdoor monitoring sites as surrogates of personal exposure for a limited number of individual elements associated with long-range transport and with a few local or indoor sources. Based on our PCA and clustering analyses, we concluded that the overall elemental composition of PM2.5 obtained at outdoor monitoring sites may not accurately represent the elemental composition of personal PM2.5. Although the data used in these analyses compared outdoor PM2.5 composition collected at the home with indoor and personal samples, our results imply that studies examining the complete elemental composition of PM2.5 should be cautious about using data from central outdoor monitoring sites because of the potential for exposure misclassification. The inclusion of personal and home characteristics only marginally improved the prediction of personal exposure for a small number of elements in PM2.5. We concluded that the additional cost and burden of indoor and personal sampling may be justified for studies examining elements because neither outdoor monitoring nor questionnaire data on home and personal characteristics were able to represent adequately the overall elemental composition of personal PM2.5.

  14. Hyperparathyroidism in persons exposed to iodine-131 from the Hanford Nuclear Site.

    PubMed

    Hamilton, Thomas E; Davis, Scott; Onstad, Lynn; Kopecky, Kenneth J

    2005-12-01

    The risk of primary hyperparathyroidism from exposure to external radiation has been well documented in the last 20 yr. However, it remains unclear whether hyperparathyroidism might also be caused by internal exposure to radioactive iodine. The objective of this study was to determine whether exposure to 131I from the Hanford Nuclear Site during 1944-1957 increased the risk of hyperparathyroidism among people living in the area. The Hanford Thyroid Disease Study was conducted as a retrospective cohort study. The study setting was the general community in Washington State. The participants were 5199 persons born to mothers with usual residence in one of seven counties in eastern Washington State, randomly selected from birth records for the years 1940-1946. Of the 5199 selected, 3440 underwent a Hanford Thyroid Disease Study clinical evaluation, including an evaluation for hyperparathyroidism. Individual thyroid radiation dose, which could be estimated for 3191 study participants, ranged from 0.0029-2823 mGy (mean, 174 mGy). Hyperparathyroidism was the main outcome measure. Of 3440 evaluable participants, we confirmed 12 cases of primary hyperparathyroidism (0.35%). We found no evidence that the cumulative incidence of hyperparathyroidism increased with increasing radiation dose. In summary, this study shows no evidence that 131I, received at young ages and at the doses and exposure conditions experienced by this cohort, increased the risk of primary hyperparathyroidism. However, the effects of different doses and conditions of exposure to 131I on the risk of hyperparathyroidism remain to be defined.

  15. Chronic Trauma Effects on Personality Traits in Police Officers.

    PubMed

    Leigh Wills, Jennifer; Schuldberg, David

    2016-04-01

    The impact of cumulative occupational exposure to traumatic events (TEs), posttraumatic stress (PTS) symptoms, and work environment stress on personality traits over time was examined in 38 police officers from an urban agency. California Psychological Inventory (CPI) personality trait scores from prehire evaluations were compared with follow-up CPI scores to test whether exposure to traumatic events was correlated with changes in traits from baseline to 5-10 years later. Measures of occupational TEs, PTS symptoms, and police work environment stress were administered. Mean trait scores declined on all CPI traits analyzed in the study. Trait change was evaluated using the Reliable Change Index; change in participants' scores unlikely to occur by chance ranged from 11% to 63% in the traits examined. All participants reported substantial TE exposure. PTS symptoms were correlated with steeper decline in 4 of 5 traits, with effect sizes ranging from r =  -.47 to r = -.67. Scores on measures of job-related TEs were negatively correlated with only one CPI trait (empathy) at T2 (r = -.31), and were unrelated to slope of trait change. Work environment stress was significantly related to gender, with female officers reporting higher levels of operational (r = .45) and organizational (r = .54) stress. Copyright © 2016 International Society for Traumatic Stress Studies.

  16. Genetic Aspects of Susceptibility to Mercury Toxicity: An Overview.

    PubMed

    Andreoli, Virginia; Sprovieri, Francesca

    2017-01-18

    Human exposure to mercury is still a major public health concern. In this context, children have a higher susceptibility to adverse neurological mercury effects, compared to adults with similar exposures. Moreover, there exists a marked variability of personal response to detrimental mercury action, in particular among population groups with significant mercury exposure. New scientific evidence on genetic backgrounds has raised the issue of whether candidate susceptibility genes can make certain individuals more or less vulnerable to mercury toxicity. In this review, the aim is to evaluate a new genetic dimension and its involvement in mercury risk assessment, focusing on the important role played by relevant polymorphisms, located in attractive gene targets for mercury toxicity. Existing original articles on epidemiologic research which report a direct link between the genetic basis of personal vulnerability and different mercury repercussions on human health will be reviewed. Based on this evidence, a careful evaluation of the significant markers of susceptibility will be suggested, in order to obtain a powerful positive "feedback" to improve the quality of life. Large consortia of studies with clear phenotypic assessments will help clarify the "window of susceptibility" in the human health risks due to mercury exposure.

  17. Genetic Aspects of Susceptibility to Mercury Toxicity: An Overview

    PubMed Central

    Andreoli, Virginia; Sprovieri, Francesca

    2017-01-01

    Human exposure to mercury is still a major public health concern. In this context, children have a higher susceptibility to adverse neurological mercury effects, compared to adults with similar exposures. Moreover, there exists a marked variability of personal response to detrimental mercury action, in particular among population groups with significant mercury exposure. New scientific evidence on genetic backgrounds has raised the issue of whether candidate susceptibility genes can make certain individuals more or less vulnerable to mercury toxicity. In this review, the aim is to evaluate a new genetic dimension and its involvement in mercury risk assessment, focusing on the important role played by relevant polymorphisms, located in attractive gene targets for mercury toxicity. Existing original articles on epidemiologic research which report a direct link between the genetic basis of personal vulnerability and different mercury repercussions on human health will be reviewed. Based on this evidence, a careful evaluation of the significant markers of susceptibility will be suggested, in order to obtain a powerful positive “feedback” to improve the quality of life. Large consortia of studies with clear phenotypic assessments will help clarify the “window of susceptibility” in the human health risks due to mercury exposure. PMID:28106810

  18. Chronic radioisotope effects on residents of the Techa River (Russia) region: cytogenetic analysis more than 50 years after onset of exposure.

    PubMed

    Vozilova, A V; Shagina, N B; Degteva, M O; Akleyev, A V

    2013-08-30

    This paper presents the results of a cytogenetic study conducted among residents of the Techa Riverside communities (Southern Urals, Russia) exposed in the early 1950s as a result of releases of liquid radioactive wastes from the Mayak plutonium-production facility. The study was performed 50-60 years after the beginning of the exposure for those individuals who were predominantly exposed to strontium radioisotopes ((89,90)Sr) through drinking contaminated river water and consumption of local foodstuff. Standard cytogenetic methods were used for evaluation of the frequency of unstable chromosome aberrations in exposed persons as well as in persons from the control group who were of similar age and sex, living in similar socio-economic conditions in non-contaminated territories of the Southern Urals. The exposure doses were reconstructed for the studied donors using the Techa River Dosimetry System developed in 2009. The doses of internal exposure from ingested radionuclides were evaluated using individual or family in vivo measurements of (90)Sr-body burden. Individual cumulative absorbed doses in red bone marrow (RBM) in the studied persons varied in the range of 0.01-4.4Gy. A significantly higher level of unstable chromosome aberrations (UCA) in T-cells was observed in the group of exposed individuals as compared to control group. The highest UCA level was detected in the individuals who were suspected of having chronic radiation syndrome. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Personal endotoxin exposure in a panel study of school children with asthma

    PubMed Central

    2011-01-01

    Background Endotoxin exposure has been associated with asthma exacerbations and increased asthma prevalence. However, there is little data regarding personal exposure to endotoxin in children at risk, or the relation of personal endotoxin exposure to residential or ambient airborne endotoxin. The relation between personal endotoxin and personal air pollution exposures is also unknown. Methods We characterized personal endotoxin exposures in 45 school children with asthma ages 9-18 years using 376 repeated measurements from a PM2.5 active personal exposure monitor. We also assayed endotoxin in PM2.5 samples collected from ambient regional sites (N = 97 days) and from a subset of 12 indoor and outdoor subject home sites (N = 109 and 111 days, respectively) in Riverside and Whittier, California. Endotoxin was measured using the Limulus Amoebocyte Lysate kinetic chromogenic assay. At the same time, we measured personal, home and ambient exposure to PM2.5 mass, elemental carbon (EC), and organic carbon (OC). To assess exposure relations we used both rank correlations and mixed linear regression models, adjusted for personal temperature and relative humidity. Results We found small positive correlations of personal endotoxin with personal PM2.5 EC and OC, but not personal PM2.5 mass or stationary site air pollutant measurements. Outdoor home, indoor home and ambient endotoxin were moderately to strongly correlated with each other. However, in mixed models, personal endotoxin was not associated with indoor home or outdoor home endotoxin, but was associated with ambient endotoxin. Dog and cat ownership were significantly associated with increased personal but not indoor endotoxin. Conclusions Daily fixed site measurements of endotoxin in the home environment may not predict daily personal exposure, although a larger sample size may be needed to assess this. This conclusion is relevant to short-term exposures involved in the acute exacerbation of asthma. PMID:21810249

  20. Lack of SARS transmission and U.S. SARS case-patient.

    PubMed

    Peck, Angela J; Newbern, E Claire; Feikin, Daniel R; Issakbaeva, Elmira T; Park, Benjamin J; Fehr, Jason; LaMonte, Ashley C; Le, Thong P; Burger, Terry L; Rhodes, Luther V; Weltman, Andre; Erdman, Dean; Ksiazek, Thomas G; Lingappa, Jairam R

    2004-02-01

    In early April 2003, severe acute respiratory syndrome (SARS) was diagnosed in a Pennsylvania resident after his exposure to persons with SARS in Toronto, Canada. To identify contacts of the case-patient and evaluate the risk for SARS transmission, a detailed epidemiologic investigation was performed. On the basis of this investigation, 26 persons (17 healthcare workers, 4 household contacts, and 5 others) were identified as having had close contact with this case-patient before infection-control practices were implemented. Laboratory evaluation of clinical specimens showed no evidence of transmission of SARS-associated coronavirus (SARS-CoV) infection to any close contact of this patient. This investigation documents that, under certain circumstances, SARS-CoV is not readily transmitted to close contacts, despite ample unprotected exposures. Improving the understanding of risk factors for transmission will help focus public health control measures.

  1. Modeling personal particle-bound polycyclic aromatic hydrocarbon (pb-pah) exposure in human subjects in Southern California.

    PubMed

    Wu, Jun; Tjoa, Thomas; Li, Lianfa; Jaimes, Guillermo; Delfino, Ralph J

    2012-07-11

    Exposure to polycyclic aromatic hydrocarbon (PAH) has been linked to various adverse health outcomes. Personal PAH exposures are usually measured by personal monitoring or biomarkers, which are costly and impractical for a large population. Modeling is a cost-effective alternative to characterize personal PAH exposure although challenges exist because the PAH exposure can be highly variable between locations and individuals in non-occupational settings. In this study we developed models to estimate personal inhalation exposures to particle-bound PAH (PB-PAH) using data from global positioning system (GPS) time-activity tracking data, traffic activity, and questionnaire information. We conducted real-time (1-min interval) personal PB-PAH exposure sampling coupled with GPS tracking in 28 non-smoking women for one to three sessions and one to nine days each session from August 2009 to November 2010 in Los Angeles and Orange Counties, California. Each subject filled out a baseline questionnaire and environmental and behavior questionnaires on their typical activities in the previous three months. A validated model was used to classify major time-activity patterns (indoor, in-vehicle, and other) based on the raw GPS data. Multiple-linear regression and mixed effect models were developed to estimate averaged daily and subject-level PB-PAH exposures. The covariates we examined included day of week and time of day, GPS-based time-activity and GPS speed, traffic- and roadway-related parameters, meteorological variables (i.e. temperature, wind speed, relative humidity), and socio-demographic variables and occupational exposures from the questionnaire. We measured personal PB-PAH exposures for 180 days with more than 6 h of valid data on each day. The adjusted R2 of the model was 0.58 for personal daily exposures, 0.61 for subject-level personal exposures, and 0.75 for subject-level micro-environmental exposures. The amount of time in vehicle (averaging 4.5% of total sampling time) explained 48% of the variance in daily personal PB-PAH exposure and 39% of the variance in subject-level exposure. The other major predictors of PB-PAH exposures included length-weighted traffic count, work-related exposures, and percent of weekday time. We successfully developed regression models to estimate PB-PAH exposures based on GPS-tracking data, traffic data, and simple questionnaire information. Time in vehicle was the most important determinant of personal PB-PAH exposure in this population. We demonstrated the importance of coupling real-time exposure measures with GPS time-activity tracking in personal air pollution exposure assessment.

  2. Biomarkers in humans exposed to polycyclic aromatic hydrocarbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Binkova, B.; Topinka, J.; Mrackova, G.

    1997-10-01

    Polycyclic aromatic hydrocarbons (PAH) have been identified as a major source of carcinogenic risk in the coke-oven industry. This study evaluates following markers: personal exposure to PAH, DNA adducts, chromosomal aberrations and sister chromatid exchanges (SCE), glutathione S-transferase M1 (GSTM1) and N-acetyltransferase 2 (NAT2) polymorphisms. 23 top side coke-oven workers and 13 unexposed workers employed in the same plant at Kosice, Slovakia were studied. Personal monitors were used to measure carcinogenic PAH exposure during 8 h of working shift prior the collection of blood and urine samples. Personal exposure to eight carcinogenic PAHs ranged from 0.6 to 632 {mu}g/m{sup 3}more » and from 0.07 to 0.62 {mu}g/m{sup 3} for exposed and control groups, respectively. Based on the values of individual persons, the positive significant correlations were found between DNA adducts detected in WBC and LYM (Spearman r=0.451, p=0.044), between DNA adducts and SCE (r=0.363, p=0.034) and between AB.C. and SCE-H (SCE evaluated as the index of heterogeneity H-variance/mean: r=0.381, p=0.024). Using individual PAH exposure data the following significant correlations between exposure and biomarkers were found: WBC-DNA adducts (r=0.325;p=0.058);SCE-H (r=0.467, p=0.007). Groupwise comparison of the exposed and control groups (Mann-Whitney U-test) showed significantly increased values of SCE (6.71{+-}1.20 vs. 5.20 {+-}1.16, respectively) and DNA adducts in WBC and LYM (2.70{+-}0.74 vs 1.94{+-}0.51 adducts/10{sup 8} nucleotides; 2.46{+-}0.83 vs. 1.60{+-}0.32 adducts/10{sup 8}nucleotides, respectively). No influence of the smoking habits on the biomarkers was detectable in exposed or unexposed individuals. Multifactor analysis of variance taking into account confounding factors such as GSTM1, NAT2, diet and adjusting the data for age and smoking clearly showed the effect of exposure on DNA adducts, AB.C and SCE-H.« less

  3. A statistical framework for the validation of a population exposure model based on personal exposure data

    NASA Astrophysics Data System (ADS)

    Rodriguez, Delphy; Valari, Myrto; Markakis, Konstantinos; Payan, Sébastien

    2016-04-01

    Currently, ambient pollutant concentrations at monitoring sites are routinely measured by local networks, such as AIRPARIF in Paris, France. Pollutant concentration fields are also simulated with regional-scale chemistry transport models such as CHIMERE (http://www.lmd.polytechnique.fr/chimere) under air-quality forecasting platforms (e.g. Prev'Air http://www.prevair.org) or research projects. These data may be combined with more or less sophisticated techniques to provide a fairly good representation of pollutant concentration spatial gradients over urban areas. Here we focus on human exposure to atmospheric contaminants. Based on census data on population dynamics and demographics, modeled outdoor concentrations and infiltration of outdoor air-pollution indoors we have developed a population exposure model for ozone and PM2.5. A critical challenge in the field of population exposure modeling is model validation since personal exposure data are expensive and therefore, rare. However, recent research has made low cost mobile sensors fairly common and therefore personal exposure data should become more and more accessible. In view of planned cohort field-campaigns where such data will be available over the Paris region, we propose in the present study a statistical framework that makes the comparison between modeled and measured exposures meaningful. Our ultimate goal is to evaluate the exposure model by comparing modeled exposures to monitor data. The scientific question we address here is how to downscale modeled data that are estimated on the county population scale at the individual scale which is appropriate to the available measurements. To assess this question we developed a Bayesian hierarchical framework that assimilates actual individual data into population statistics and updates the probability estimate.

  4. Risk assessments for exposure of deployed military personnel to insecticides and personal protective measures used for disease-vector management.

    PubMed

    Macedo, Paula A; Peterson, Robert K D; Davis, Ryan S

    2007-10-01

    Infectious diseases are problematic for deployed military forces throughout the world, and, historically, more military service days have been lost to insect-vectored diseases than to combat. Because of the limitations in efficacy and availability of both vaccines and therapeutic drugs, vector management often is the best tool that military personnel have against most vector-borne pathogens. However, the use of insecticides may raise concerns about the safety of their effects on the health of the military personnel exposed to them. Therefore, our objective was to use risk assessment methodologies to evaluate health risks to deployed U.S. military personnel from vector management tactics. Our conservative tier-1, quantitative risk assessment focused on acute, subchronic, and chronic exposures and cancer risks to military personnel after insecticide application and use of personal protective measures in different scenarios. Exposures were estimated for every scenario, chemical, and pathway. Acute, subchronic, and chronic risks were assessed using a margin of exposure (MOE) approach. Our MOE was the ratio of a no-observed-adverse-effect level (NOAEL) to an estimated exposure. MOEs were greater than the levels of concern (LOCs) for all surface residual and indoor space spraying exposures, except acute dermal exposure to lambda-cyhalothrin. MOEs were greater than the LOCs for all chemicals in the truck-mounted ultra-low-volume (ULV) exposure scenario. The aggregate cancer risk for permethrin exceeded 1 x 10(-6), but more realistic exposure refinements would reduce the cancer risk below that value. Overall, results indicate that health risks from exposures to insecticides and personal protective measures used by military personnel are low.

  5. Risk of surgery for subacromial impingement syndrome in relation to neck-shoulder complaints and occupational biomechanical exposures: a longitudinal study.

    PubMed

    Svendsen, Susanne Wulff; Dalbøge, Annett; Andersen, Johan Hviid; Thomsen, Jane Frølund; Frost, Poul

    2013-11-01

    The aim of this longitudinal study was to evaluate the risk of surgery for subacromial impingement syndrome (SIS) in relation to neck-shoulder complaints and occupational biomechanical shoulder exposures. The study was based on the Musculoskeletal Research Database at the Danish Ramazzini Centre. We linked baseline questionnaire information from 1993-2004 on neck-shoulder complaints, job titles, psychosocial work factors, body mass index, and smoking with register information on first-time surgery for SIS from 1996-2008. Biomechanical exposure measures were obtained from a job exposure matrix based on expert judgment. We applied multivariable Cox regression. During 280 125 person-years of follow-up among 37 402 persons, 557 first-time operations for SIS occurred. Crude surgery rates increased from 1.1 to 2.5 per 1000 person-years with increasing shoulder load. Using no neck-shoulder complaints and low shoulder load at baseline as a reference, no neck-shoulder complaints and high shoulder load showed an adjusted hazard ratio (HR(adj)) of 2.55 [95% confidence interval (95% CI) 1.59-4.09], while neck-shoulder complaints in combination with high shoulder load showed an HR(adj) of 4.52 (95% CI 2.87-7.13). Subanalyses based on 18 856 persons showed an HR(adj) of 5.40 (95% CI 2.88-10.11) for complaints located specifically in the shoulder in combination with high shoulder load. Based on these findings, persons with neck-shoulder and especially shoulder complaints in combination with high shoulder load seem an obvious target group for interventions aimed at reducing exposures to prevent surgery for SIS.

  6. Environmental and biological monitoring of benzene in traffic policemen, police drivers and rural outdoor male workers.

    PubMed

    Manuela, Ciarrocca; Francesco, Tomei; Tiziana, Caciari; Assunta, Capozzella; Lara, Scimitto; Nadia, Nardone; Giorgia, Andreozzi; Barbara, Scala; Maria, Fiaschetti; Carlotta, Cetica; Valeria, Di Giorgio; Pia, Schifano Maria; Gianfranco, Tomei; Angela, Sancini

    2012-05-01

    To evaluate exposure to benzene in urban and rural areas, an investigation into personal exposure to benzene in traffic policemen, police drivers and rural (roadmen) male outdoor workers was carried out. Personal samples and data acquired using fixed monitoring stations located in different areas of the city were used to measure personal exposure to benzene in 62 non-smoker traffic policemen, 22 police drivers and 57 roadmen. Blood benzene, urinary trans-trans muconic acid (t,t-MA) and S-phenyl-mercapturic acid (S-PMA) were measured at the end of work shift in 62 non-smoker traffic policemen, 22 police drivers and 57 roadmen and 34 smoker traffic policemen, 21 police drivers and 53 roadmen. Exposure to benzene was similar among non-smoker traffic policemen and police drivers and higher among non-smoker urban workers compared to rural workers. Blood benzene, t,t-MA and S-PMA were similar among non-smoker traffic policemen and police drivers; blood benzene and t,t-MA were significantly higher in non-smoker urban workers compared to rural workers. Significant increases in t,t-MA were found in smokers vs. non-smokers. In non-smoker urban workers airborne benzene and blood benzene, and t,t-MA and S-PMA were significantly correlated. This study gives an evaluation of the exposure to benzene in an urban area, comparing people working in the street or in cars, to people working in a rural area. Benzene is a certain carcinogen for humans. The results we showed should lead to more in-depth studies about the effects on health of these categories of workers.

  7. Individual pollen exposure measurements: are they feasible?

    PubMed

    Berger, Uwe; Kmenta, Maximilian; Bastl, Katharina

    2014-06-01

    The purpose of the recent review is to give insight into recent attempts to measure individual pollen exposure and to give advice for interpreting such data. It is well recognized that there are various challenges in monitoring the atmospheric content of pollen in the air. Although pollen data gathered by Hirst type spore traps and evaluated by human expertise are of inestimable value because of long-time data series and as the basic foundation for pollen information services as well as for diagnosis and therapy of pollen allergies, there is a need for more precise information for individual pollen allergy sufferers. Different types of individual pollen exposure measurement samplers are presented, and estimates are offered. Further developments, especially standardization of personal pollen samplers, are needed. Improvements should lead to more usability. Because of a variety of factors, a pollen count will always stay a pollen count, and a pollen forecast is not a symptom forecast, something pollen allergy sufferers actually desire. Thus, a different promising path to individualized pollen information was recently chosen: personal pollen information is now possible based on personal symptom data and regional pollen data. In future, personal pollen data could complete this achievement.

  8. An EPA Pilot Study Evaluating Personal, Housing, and ...

    EPA Pesticide Factsheets

    EPA pilot studyAddresses how young children’s exposures to various indoor pollutants (both chemical and biological agents) change as a result of building renovation-based interventions, potentially affecting their asthma exacerbation and morbidityProvide additional information on chemical exposures and children’s interactions with their environments to enhance ongoing research in the Green Housing Study’s evaluation of green housing and impacts on childhood asthma Invited presentation to the NC Lead and Healthy Homes Task Force Meeting, Wednesday, February 24, 2016, UNC Institute for the Environment, Chapel Hill, NC

  9. Epidemiology of non-keratinocytic skin cancers among persons with acquired immunodeficiency syndrome in the U.S.

    PubMed Central

    Lanoy, Emilie; Dores, Graça M.; Madeleine, Margaret M.; Toro, Jorge R.; Fraumeni, Joseph F.; Engels, Eric A.

    2009-01-01

    Objective Immunosuppression may increase risk for some skin cancers. We evaluated skin cancer epidemiology among persons with acquired immunodeficiency syndrome (AIDS). Design We linked data from population-based U.S. AIDS and cancer registries to evaluate risk of non-keratinocytic skin cancers (melanoma, Merkel cell carcinoma, and appendageal carcinomas, including sebaceous carcinoma) in 497,142 persons with AIDS. Methods Standardized incidence ratios (SIRs) were calculated to relate skin cancer risk to that in the general population. We used logistic regression to compare risk according to demographic factors, CD4 count, and a geographic index of ultraviolet radiation exposure. Results From 60 months before to 60 months after AIDS onset, persons with AIDS had elevated risks of melanoma (SIR=1.3, 95%CI 1.1-1.4, n=292 cases) and, more strongly, of Merkel cell carcinoma (SIR=11, 95%CI 6.3-17, n=17) and sebaceous carcinoma (SIR=8.1, 95%CI 3.2-17, n=7). Risk for appendageal carcinomas increased with progressive time relative to AIDS onset (p-trend=0.03). Risk of these skin cancers was higher in non-Hispanic whites than other racial/ethnic groups, and melanoma risk was highest among men who have sex with men. Melanoma risk was unrelated to CD4 count at AIDS onset (p=0.32). Risks for melanoma and appendageal carcinomas rose with increasing ultraviolet radiation exposure (p-trend<10-4 and p-trend=10-3, respectively). Conclusions Among persons with AIDS, there is a modest excess risk of melanoma which is not strongly related to immunosuppression and may relate to ultraviolet radiation exposure. In contrast, the greatly increased risks for Merkel cell and sebaceous carcinoma suggest an etiologic role for immunosuppression. PMID:19114864

  10. POWER ANALYSIS OF LINEAR RELATIONSHIPS BETWEEN PERSONAL EXPOSURE AND INDOOR/OUTDOOR PM 2.5 CONCENTRATIONS AT BALTIMORE AND FRESNO

    EPA Science Inventory

    The National Exposure Research Laboratory is currently in the process of conducting panel studies to investigate personal exposure to particulate matter(PM). One of the primary goals of PM exposure studies is to establish mathematical relationships between personal exposure and...

  11. Ozone personal exposures and health effects for selected groups residing in the Fraser Valley

    NASA Astrophysics Data System (ADS)

    Brauer, Michael; Brook, Jeffrey R.

    Due to concern regarding poor ambient air quality in the Fraser Valley, a series of exposure and health effects assessments were performed to evaluate the impact of summer photochemical air pollution. In 1992 and 1993, three groups of individuals were selected for personal monitoring of ozone exposure, based on prior expectations of their activity patterns. The first group spent a majority of the work day indoors or commuting, the second group spent more time outdoors and the third group spent the entire personal monitoring period outdoors. Time-activity data were collected for the first two groups and differences in personal ozone exposures were found to be associated with the fraction of time a person spent outdoors. Similarly, differences among groups in the mean ozone exposure were associated with time spent outdoors. These results and other exposure information were used to design a study of the health impacts of summer ambient air pollution that was conducted during the time period of the Pacific'93 field campaign. Aerosol acidity levels in the Fraser Valley were observed to be very low in 1992 so the health study focused on the effects of ozone exposure. The subjects were adult farm workers (26 male, 32 female; mean age 44.4, range 10-69) who spent the entire working day outdoors (a subset of group 3 above). Lung function measurements were made twice daily on each subject, once before and once after their work shift, from 23 June-26 August 1993. Ambient O 3 concentrations were measured continuously at several nearby locations. In a regression model including individual lung function level, date, temperature and daily maximum O 3, a statistically significant ( p < 0.001) negative association was observed between ozone and lung function. This association between ozone and reduced lung function was still apparent the following day, suggesting a persistent ozone effect. These results indicate that exposure to ambient O 3 concentrations below either the U.S. NAAQS (120 ppb) or the Canadian Air Quality Objective (82 ppb) may have an adverse effect on the lung function of people engaged in outdoor work for several hours a day.

  12. Exposure pathway evaluations for sites that processed asbestos-contaminated vermiculite.

    PubMed

    Anderson, Barbara A; Dearwent, Steve M; Durant, James T; Dyken, Jill J; Freed, Jennifer A; Moore, Susan McAfee; Wheeler, John S

    2005-01-01

    The Agency for Toxic Substances and Disease Registry (ATSDR) is currently evaluating the potential public health impacts associated with the processing of asbestos-contaminated vermiculite at various facilities around the country. Vermiculite ore contaminated with significant levels of asbestos was mined and milled in Libby, Montana, from the early 1920s until 1990. The majority of the Libby ore was then shipped to processing facilities for exfoliation. ATSDR initiated the National Asbestos Exposure Review (NAER) to identify and evaluate exposure pathways associated with these processing facilities. This manuscript details ATSDR's phased approach in addressing exposure potential around these sites. As this is an ongoing project, only the results from a selected set of completed site analyses are presented. Historical occupational exposures are the most significant exposure pathway for the site evaluations completed to date. Former workers also probably brought asbestos fibers home on their clothing, shoes, and hair, and their household contacts may have been exposed. Currently, most site-related worker and community exposure pathways have been eliminated. One community exposure pathway of indeterminate significance is the current exposure of individuals through direct contact with waste rock brought home for personal use as fill material, driveway surfacing, or soil amendment. Trace levels of asbestos are present in soil at many of the sites and buried waste rock has been discovered at a few sites; therefore, future worker and community exposure associated with disturbing on-site soil during construction or redevelopment at these sites is also a potential exposure pathway.

  13. Opportunities and Challenges for Personal Heat Exposure Research

    PubMed Central

    Kuras, Evan R.; Richardson, Molly B.; Calkins, Miriam M.; Ebi, Kristie L.; Hess, Jeremy J.; Kintziger, Kristina W.; Jagger, Meredith A.; Middel, Ariane; Scott, Anna A.; Spector, June T.; Uejio, Christopher K.; Vanos, Jennifer K.; Zaitchik, Benjamin F.; Gohlke, Julia M.

    2017-01-01

    Background: Environmental heat exposure is a public health concern. The impacts of environmental heat on mortality and morbidity at the population scale are well documented, but little is known about specific exposures that individuals experience. Objectives: The first objective of this work was to catalyze discussion of the role of personal heat exposure information in research and risk assessment. The second objective was to provide guidance regarding the operationalization of personal heat exposure research methods. Discussion: We define personal heat exposure as realized contact between a person and an indoor or outdoor environment that poses a risk of increases in body core temperature and/or perceived discomfort. Personal heat exposure can be measured directly with wearable monitors or estimated indirectly through the combination of time–activity and meteorological data sets. Complementary information to understand individual-scale drivers of behavior, susceptibility, and health and comfort outcomes can be collected from additional monitors, surveys, interviews, ethnographic approaches, and additional social and health data sets. Personal exposure research can help reveal the extent of exposure misclassification that occurs when individual exposure to heat is estimated using ambient temperature measured at fixed sites and can provide insights for epidemiological risk assessment concerning extreme heat. Conclusions: Personal heat exposure research provides more valid and precise insights into how often people encounter heat conditions and when, where, to whom, and why these encounters occur. Published literature on personal heat exposure is limited to date, but existing studies point to opportunities to inform public health practice regarding extreme heat, particularly where fine-scale precision is needed to reduce health consequences of heat exposure. https://doi.org/10.1289/EHP556 PMID:28796630

  14. Evaluation of the protective effectiveness of gloves from occupational exposure to 2-methoxyethanol using the biomarkers of 2-methoxyacetic acid levels in the urine and plasma

    PubMed Central

    Chang, H; Lin, C; Shih, T; Chan, H; Chou, J; Huang, Y

    2004-01-01

    Aims: To evaluate the protective effectiveness of gloves from occupational exposure to 2-methoxyethanol (2-ME); and to examine the association of 2-methoxyacetic acid (MAA) in urine and plasma collected simultaneously from low 2-ME exposure and high 2-ME exposure workers in a semiconductor copper laminate circuit board manufacturing plant. Methods: Eight hour time weighted breathing zone monitoring was performed to verify the 2-ME exposure classification between workers in regular and special operations. Urine and plasma samples were simultaneously collected from 74 exposed and 80 non-exposed workers. MAA concentrations in the urine (UMAA) and plasma (PMAA) were measured using previously published methods. Three types of gloves worn by workers (cotton, rubber, and no gloves) were recorded by direct observations in the workplace and validated by person-to-person interview. Protective effectiveness indices (PEI) were used to evaluate the glove effectiveness. Results: There was no detectable 2-ME/MAA in the air, or in urine and plasma samples in non-exposed workers. The average UMAA and PMAA in special operations were 72.63 mg/g Cr. and 29.72 mg/l, significantly higher than values in regular operations (5.44 mg/g Cr. and 2.58 mg/l, respectively). PMAA showed satisfactory correlation to UMAA in all participants from both regular and special operations. The rubber gloves provided significant reduction in 2-ME uptake, whereas cotton gloves provided little protection with fluctuating effectiveness, based on PEI estimates. Conclusions: PMAA, similar to UMAA, could serve as a specific biomarker for 2-ME exposure. Wearing impermeable rubber gloves during high risk tasks can reduce major 2-ME exposure. Other improvements, including engineering control, should be provided to diminish worker exposure to 2-ME in occupational environments. PMID:15258277

  15. Performance of Panasonic ZP-1460 Electronic Personal Dosemeter under Exposure Conditions Likely to be Found at Fukushima Daiichi Nuclear Power Plant

    NASA Astrophysics Data System (ADS)

    Tsujimura, Norio; Yoshida, Tadayoshi; Hoshi, Katsuya; Momose, Takumaro

    A study on the performance of the Panasonic ZP-1460 electronic personal dosemeter, the model used in the aftermath of the Fukushima Daiichi nuclear power plant accident in March 2011, was conducted under actual exposure situations likely encountered in the plant. The tests pertained to (1) the dose rate response over dose rates >100 mSv/h and (2) the angular response on an anthropomorphic phantom exposed to the rotational and isotropic irradiation geometries. The test results confirmed that the dosemeter provides Hp(10) as a reasonably close estimate of the effective dose for any exposure geometries. The dosemeter response data evaluated in this study can be utilized for converting dosemeter readings to the absorbed dose to any organs and tissues for epidemiologic purposes.

  16. Trends in occupational hygiene in Finland.

    PubMed

    Pääkkönen, Rauno; Koponen, Milja

    2018-03-01

    The aim of this work is to evaluate and describe the current status of, and prospects for, the future of occupational hygiene in Finland. The main sources of information include a seminar held in the annual meeting of Finnish Occupational Hygiene Society and interviews with different stakeholders. Nanotechnology and other new materials, changing work environments, circular economy including green jobs, new medical methods and advances of construction methods were recognized as future challenges. Future work opportunities for occupational hygiene experts included exposure assessments in indoor air surveys, private consulting and entrepreneurship in general, international activities and product safety issues. Unclear topics needing more attention in the future were thought to be in new exposures, sensitive persons, combined effects, skin exposures and applicability of personal protective equipment. Occupational hygiene should broaden its view; occupational hygienists should have to cooperate with other specialists and grasp new challenges.

  17. Commuter exposure to PM2.5, BC, and UFP in six common transport microenvironments in Sacramento, California

    NASA Astrophysics Data System (ADS)

    Ham, Walter; Vijayan, Abhilash; Schulte, Nico; Herner, Jorn D.

    2017-10-01

    This study was designed to estimate and compare the air pollution exposures experienced by commuters in six common transportation modes utilized by California residents, and to evaluate the impact of practical exposure mitigation strategies in reducing commute exposures. We measured concentrations of fine particle matter (PM2.5), black carbon (BC), and ultrafine particles (UFP) for 161 commutes between April 2014 and November 2015 in Sacramento, CA. We collected measurements for six modes including single occupancy vehicles, high occupancy vehicles (multiple occupants), buses, light rail, train, and bicycling. The largest average concentrations for most pollutants were measured during train commutes and the lowest average concentrations were observed during light-rail commutes. Mitigation options were explored for personal vehicles, bicycling, and train commute modes. We found that ventilation settings of personal vehicles can reduce in-vehicle PM2.5, BC, and UFP concentrations by up to 75%. Similarly, bicycle route choice can reduce exposures by 15-75% with the lowest concentrations observed during commutes on dedicated bicycle paths away from traffic sources. Train commuters experienced UFP concentrations an order of magnitude greater when the locomotive engine was pulling the rail cars versus pushing the rail cars. We found that UFP concentrations during bus, bicycling, and train commutes were 1.6-5.3 times greater than personal vehicle commutes, while light rail commutes had 30% lower UFP concentrations than personal vehicle commutes. The largest exposure per mile occurred during bicycle commutes with PM2.5, BC, and UFP exposures of 1.312 μg/mile, 0.097 μg/mile, and 3.0 × 109 particles/mile, respectively. Train commutes experienced the largest exposure per mile of all of the combustion-derived transportation commute modes. BC accounted for 5-20% of total PM mass across all commute modes with an average fraction of ∼7% of PM2.5.

  18. Trends of VOC exposures among a nationally representative sample: Analysis of the NHANES 1988 through 2004 data sets

    NASA Astrophysics Data System (ADS)

    Su, Feng-Chiao; Mukherjee, Bhramar; Batterman, Stuart

    2011-09-01

    Exposures to volatile organic compounds (VOCs) are ubiquitous due to emissions from personal, commercial and industrial products, but quantitative and representative information regarding long term exposure trends is lacking. This study characterizes trends from 1988 to 2004 for the 15 VOCs measured in blood in five cohorts of the National Health and Nutrition Examination Survey (NHANES), a large and representative sample of U.S. adults. Trends were evaluated at various percentiles using linear quantile regression (QR) models, which were adjusted for solvent-related occupations and cotinine levels. Most VOCs showed decreasing trends at all quantiles, e.g., median exposures declined by 2.5 (m,p-xylene) to 6.4 (tetrachloroethene) percent per year over the 15 year period. Trends varied by VOC and quantile, and were grouped into three patterns: similar decreases at all quantiles (including benzene, toluene); most rapid decreases at upper quantiles (ethylbenzene, m,p-xylene, o-xylene, styrene, chloroform, tetrachloroethene); and fastest declines at central quantiles (1,4-dichlorobenzene). These patterns reflect changes in exposure sources, e.g., upper-percentile exposures may result mostly from occupational exposure, while lower percentile exposures arise from general environmental sources. Both VOC emissions aggregated at the national level and VOC concentrations measured in ambient air also have declined substantially over the study period and are supportive of the exposure trends, although the NHANES data suggest the importance of indoor sources and personal activities on VOC exposures. While piecewise QR models suggest that exposures of several VOCs decreased little or any during the 1990's, followed by more rapid decreases from 1999 to 2004, questions are raised concerning the reliability of VOC data in several of the NHANES cohorts and its applicability as an exposure indicator, as demonstrated by the modest correlation between VOC levels in blood and personal air collected in the 1999/2000 cohort. Despite some limitations, the NHANES data provides a unique, long term and direct measurement of VOC exposures and trends.

  19. Skin and surface lead contamination, hygiene programs, and work practices of bridge surface preparation and painting contractors.

    PubMed

    Virji, M Abbas; Woskie, Susan R; Pepper, Lewis D

    2009-02-01

    A 2005 regulatory review of the lead in construction standard by the Occupational Safety and Health Administration (OSHA) noted that alternative pathways of exposure can be as significant as inhalation exposure and that noncompliance with the standard pertaining to hygiene facilities and practices was the second most commonly violated section of the standard. Noncompliance with provisions of the standard and unhealthy work and hygiene practices likely increase the likelihood of take-home lead via contaminated clothing, automobiles, and skin, thus contributing to elevated blood lead levels (BLL) among construction workers and their family members. We performed a cross-sectional study of bridge painters working for small contractors in Massachusetts to investigate causes of persistent elevated BLLs and to assess lead exposures. Thirteen work sites were evaluated for a 2-week period during which surface and skin wipe samples were collected and qualitative information was obtained on personal hygiene practices, decontamination and hand wash facilities, and respiratory protection programs. Results showed lead contamination on workers' skin, respirators, personal automobiles, and the decontamination unit, indicating a significant potential for take-home lead exposure. Overall, the geometric mean (GM) skin lead levels ranged from 373 microg on workers' faces at end of shift to 814 microg on hands at break time. The overall GM lead level inside respirators was 143 microg before work and 286 microg after work. Lead contamination was also present inside workers' personal vehicles as well as on surfaces inside the clean side of the decontamination unit. Review of the respiratory protection programs, work site decontamination and hand wash facilities, and personal hygiene practices indicated that these factors had significant impact on skin and surface contamination levels and identified significant opportunities for improving work site facilities and personal practices. Elevated lead exposure and BLL can be minimized by strict adherence to the OSHA provisions for functioning decontamination and hygiene facilities and healthy personal hygiene practices.

  20. Using silicone wristbands to evaluate preschool children’s exposure to flame retardants

    PubMed Central

    Kile, Molly L.; Scott, Richard P.; O’Connell, Steven G.; Lipscomb, Shannon; MacDonald, Megan; McClelland, Megan; Anderson, Kim A.

    2016-01-01

    Silicone wristbands can be used as passive sampling tools for measuring personal environmental exposure to organic compounds. Due to the lightweight and simple design, the wristband may be a useful technique for measuring children’s exposure. In this study, we tested the stability of flame retardant compounds in silicone wristbands and developed an analytical approach for measuring 41 flame retardants in the silicone wristband in order to evaluate exposure to these compounds in preschool-aged children. To evaluate the robustness of using wristbands to measure flame retardants, we evaluated the stability of 3 polybrominated diphenyl ethers (BDEs), and 2 organophosphate flame retardants (OPFRs) in wristbands over 84 days and did not find any evidence of significant loss over time at either 4 or −20°C (p > 0.16). We recruited a cohort of 92 preschool aged children in Oregon to wear the wristband for 7 days in order to characterize children’s acceptance of the technology, and to characterize their exposure to flame retardants. Seventy-seven parents returned the wristbands for analysis of 35 BDEs, 4 OPFRs, and 2 other brominated flame retardants although 5 were excluded from the exposure assessment due to protocol deviations (n=72). A total of 20 compounds were detected above the limit of quantitation, and 11 compounds including 4 OPFRs and 7 BDEs were detected in over 60% of the samples. Children’s gender, age, race, recruitment site, and family context were not significantly associated with returning wristbands or compliance with protocols. Comparisons between flame retardant data and socio-demographic information revealed significant differences in total exposures to both ΣBDEs and ΣOPFRs based on age of house, vacuuming frequency, and family context. These results demonstrate that preschool children in Oregon are exposed to BDEs that are no longer being produced in the United States and to OPFRs that have been used as an alternative to polybrominated compounds. Silicone wristbands were well tolerated by young children and were useful for characterizing personal exposure to flame retardants that were not bound to particulate matter. PMID:26945619

  1. Personal carbon monoxide exposures of preschool children in Helsinki, Finland—comparison to ambient air concentrations

    NASA Astrophysics Data System (ADS)

    Alm, S.; Mukala, K.; Tiittanen, P.; Jantunen, M. J.

    The associations of personal carbon monoxide (CO) exposures with ambient air CO concentrations measured at fixed monitoring sites, were studied among 194 children aged 3-6 yr in four downtown and four suburban day-care centers in Helsinki, Finland. Each child carried a personal CO exposure monitor between 1 and 4 times for a time period of between 20 and 24 h. CO concentrations at two fixed monitoring sites were measured simultaneously. The CO concentrations measured at the fixed monitoring sites were usually lower (mean maximum 8-h concentration: 0.9 and 2.6 mg m -3) than the personal CO exposure concentrations (mean maximum 8-h concentration: 3.3 mg m -3). The fixed site CO concentrations were poor predictors of the personal CO exposure concentrations. However, the correlations between the personal CO exposure and the fixed monitoring site CO concentrations increased (-0.03--0.12 to 0.13-0.16) with increasing averaging times from 1 to 8 h. Also, the fixed monitoring site CO concentrations explained the mean daily or weekly personal CO exposures of a group of simultaneously measured children better than individual exposure CO concentrations. This study suggests that the short-term CO personal exposure of children cannot be meaningfully assessed using fixed monitoring sites.

  2. Bayesian algorithm implementation in a real time exposure assessment model on benzene with calculation of associated cancer risks.

    PubMed

    Sarigiannis, Dimosthenis A; Karakitsios, Spyros P; Gotti, Alberto; Papaloukas, Costas L; Kassomenos, Pavlos A; Pilidis, Georgios A

    2009-01-01

    The objective of the current study was the development of a reliable modeling platform to calculate in real time the personal exposure and the associated health risk for filling station employees evaluating current environmental parameters (traffic, meteorological and amount of fuel traded) determined by the appropriate sensor network. A set of Artificial Neural Networks (ANNs) was developed to predict benzene exposure pattern for the filling station employees. Furthermore, a Physiology Based Pharmaco-Kinetic (PBPK) risk assessment model was developed in order to calculate the lifetime probability distribution of leukemia to the employees, fed by data obtained by the ANN model. Bayesian algorithm was involved in crucial points of both model sub compartments. The application was evaluated in two filling stations (one urban and one rural). Among several algorithms available for the development of the ANN exposure model, Bayesian regularization provided the best results and seemed to be a promising technique for prediction of the exposure pattern of that occupational population group. On assessing the estimated leukemia risk under the scope of providing a distribution curve based on the exposure levels and the different susceptibility of the population, the Bayesian algorithm was a prerequisite of the Monte Carlo approach, which is integrated in the PBPK-based risk model. In conclusion, the modeling system described herein is capable of exploiting the information collected by the environmental sensors in order to estimate in real time the personal exposure and the resulting health risk for employees of gasoline filling stations.

  3. Bayesian Algorithm Implementation in a Real Time Exposure Assessment Model on Benzene with Calculation of Associated Cancer Risks

    PubMed Central

    Sarigiannis, Dimosthenis A.; Karakitsios, Spyros P.; Gotti, Alberto; Papaloukas, Costas L.; Kassomenos, Pavlos A.; Pilidis, Georgios A.

    2009-01-01

    The objective of the current study was the development of a reliable modeling platform to calculate in real time the personal exposure and the associated health risk for filling station employees evaluating current environmental parameters (traffic, meteorological and amount of fuel traded) determined by the appropriate sensor network. A set of Artificial Neural Networks (ANNs) was developed to predict benzene exposure pattern for the filling station employees. Furthermore, a Physiology Based Pharmaco-Kinetic (PBPK) risk assessment model was developed in order to calculate the lifetime probability distribution of leukemia to the employees, fed by data obtained by the ANN model. Bayesian algorithm was involved in crucial points of both model sub compartments. The application was evaluated in two filling stations (one urban and one rural). Among several algorithms available for the development of the ANN exposure model, Bayesian regularization provided the best results and seemed to be a promising technique for prediction of the exposure pattern of that occupational population group. On assessing the estimated leukemia risk under the scope of providing a distribution curve based on the exposure levels and the different susceptibility of the population, the Bayesian algorithm was a prerequisite of the Monte Carlo approach, which is integrated in the PBPK-based risk model. In conclusion, the modeling system described herein is capable of exploiting the information collected by the environmental sensors in order to estimate in real time the personal exposure and the resulting health risk for employees of gasoline filling stations. PMID:22399936

  4. Comparison of Personal PM2.5 Exposure in Various Micro-Environments during Haze and Clean Days in Nanjing

    NASA Astrophysics Data System (ADS)

    Zhang, T.

    2015-12-01

    There is a long term trend of haze in East China. As a main component of haze, fine particle (PM2.5) in various micro-environments (MEs) is a cause for concern regarding the environment and public health. To estimate individual PM2.5 exposures in distinct, non-residential MEs and to determine exposure characteristics during haze and clean days, we conducted personal PM2.5 monitoring with portable PM2.5 personal environment monitors (MicroPEM) in 19 indoor/outdoor MEs in Nanjing, and compared personal exposure data with ambient PM2.5 levels. Personal PM2.5 exposure patterns displayed notable spatial variance, peaking in snack streets and restaurants and dipping in subways and labs. Under both haze and non-haze conditions, different characteristics of MEs and the background PM2.5 level jointly determine the spatial variance of individual exposure. Indoor MEs with better ventilation systems led to lower personal PM2.5 exposure levels. During haze days, impact from high ambient PM2.5 overwhelms influence from other factors and dominates personal exposure trends.

  5. Pharmacometric Approaches to Personalize Use of Primarily Renally Eliminated Antibiotics in Preterm and Term Neonates.

    PubMed

    Wilbaux, Mélanie; Fuchs, Aline; Samardzic, Janko; Rodieux, Frédérique; Csajka, Chantal; Allegaert, Karel; van den Anker, Johannes N; Pfister, Marc

    2016-08-01

    Sepsis remains a major cause of mortality and morbidity in neonates, and, as a consequence, antibiotics are the most frequently prescribed drugs in this vulnerable patient population. Growth and dynamic maturation processes during the first weeks of life result in large inter- and intrasubject variability in the pharmacokinetics (PK) and pharmacodynamics (PD) of antibiotics. In this review we (1) summarize the available population PK data and models for primarily renally eliminated antibiotics, (2) discuss quantitative approaches to account for effects of growth and maturation processes on drug exposure and response, (3) evaluate current dose recommendations, and (4) identify opportunities to further optimize and personalize dosing strategies of these antibiotics in preterm and term neonates. Although population PK models have been developed for several of these drugs, exposure-response relationships of primarily renally eliminated antibiotics in these fragile infants are not well understood, monitoring strategies remain inconsistent, and consensus on optimal, personalized dosing of these drugs in these patients is absent. Tailored PK/PD studies and models are useful to better understand relationships between drug exposures and microbiological or clinical outcomes. Pharmacometric modeling and simulation approaches facilitate quantitative evaluation and optimization of treatment strategies. National and international collaborations and platforms are essential to standardize and harmonize not only studies and models but also monitoring and dosing strategies. Simple bedside decision tools assist clinical pharmacologists and neonatologists in their efforts to fine-tune and personalize the use of primarily renally eliminated antibiotics in term and preterm neonates. © 2016, The American College of Clinical Pharmacology.

  6. Permeation Resistance of Personal Protective Equipment Materials to Monomethyhydrazine

    NASA Technical Reports Server (NTRS)

    Waller, J. M.; Williams, J. H.

    1997-01-01

    Permeation resistance was determined by measuring the breakthrough time and time-averaged vapor transmission rate of monomethylhydrazine (MMH) through two types of personal protective equipment (PPE). The two types of PPE evaluated were the totally encapsulating ILC Dover Chemturion Model 1212 chemical protective suit with accessories, and the FabOhio polyvinyl chloride (PVC) splash garment. Two exposure scenarios were simulated: (1) a saturated vapor exposure for 2 hours (h), and (2) a brief MMH 'splash' followed by a 2-h saturated vapor exposure. Time-averaged MMH concentrations inside the totally-encapsulating suit were calculated by summation of the area-weighted contributions made by each suit component. Results show that the totally encapsulating suit provides adequate protection at the new 10 ppb Threshold Limit Value Time-Weighted Average (TLV-TWA). The permeation resistance of the PVC splash garment to MMH was poorer than any of the totally encapsulating suit materials tested. Breakthrough occurred soon after initial vapor or 'splash' exposure.

  7. Exposure to organophosphate (OP) pesticides and health conditions in agricultural and non-agricultural workers from Maule, Chile

    PubMed Central

    Muñoz-Quezada, María Teresa; Lucero, Boris; Iglesias, Verónica; Levy, Karen; Muñoz, María Pía; Achú, Eduardo; Cornejo, Claudia; Concha, Carlos; Brito, Ana María; Villalobos, Marcos

    2017-01-01

    The objective was to evaluate the characteristics of exposure to OP pesticides and health status in Chilean farm workers from the Maule Region. An occupational health questionnaire was administered in 207 agricultural and non-agricultural workers. For the group of agricultural workers we asked about specific occupational exposure history and symptoms of OP pesticide poisoning. The main health problem of the exposed group was previous OP pesticide poisoning (p <0.001). Fifty-six percent of agricultural workers reported symptoms consistent with acute OP pesticide poisoning. The use of respiratory personal protective equipment and younger age were protective against these symptoms, and number of years of OP pesticide exposure was positively associated with reporting symptoms of poisoning. Of the pesticide applicators 47% reported using chlorpyrifos. The regulations regarding use and application of pesticides should be strengthened, as should training and intervention with workers to improve the use of personal protective equipment. PMID:28002976

  8. Exposure to organophosphate (OP) pesticides and health conditions in agricultural and non-agricultural workers from Maule, Chile.

    PubMed

    Muñoz-Quezada, María Teresa; Lucero, Boris; Iglesias, Verónica; Levy, Karen; Muñoz, María Pía; Achú, Eduardo; Cornejo, Claudia; Concha, Carlos; Brito, Ana María; Villalobos, Marcos

    2017-02-01

    The objective was to evaluate the characteristics of exposure to OP pesticides and health status in Chilean farm workers from the Maule Region. An occupational health questionnaire was administered in 207 agricultural and non-agricultural workers. For the group of agricultural workers, we asked about specific occupational exposure history and symptoms of OP pesticide poisoning. The main health problem of the exposed group was previous OP pesticide poisoning (p < 0.001). Fifty-six percent of agricultural workers reported symptoms consistent with acute OP pesticide poisoning. The use of respiratory personal protective equipment and younger age were protective against these symptoms, and number of years of OP pesticide exposure was positively associated with reporting symptoms of poisoning. Of the pesticide applicators 47 % reported using chlorpyrifos. The regulations regarding use and application of pesticides should be strengthened, as should training and intervention with workers to improve the use of personal protective equipment.

  9. Cardiovascular and cortisol reactions to acute psychological stress under conditions of high versus low social evaluative threat: associations with the type D personality construct.

    PubMed

    Bibbey, Adam; Carroll, Douglas; Ginty, Annie T; Phillips, Anna C

    2015-06-01

    Social evaluative threat is an important factor in the cardiovascular response to mental stress. This study examined whether Type D personality, characterized by social inhibition and negative affectivity, is associated with an adverse cardiovascular response to a non-social and social evaluative threat. A total of 2300 students were screened for Type D personality, and 130 were selected for a nonsocial stress exposure condition (31 Type D, 30 non-Type D: 52% female) or a condition high in social evaluative threat (35 Type D, 34 non-Type D: 55% female). Systolic (SBP) and diastolic blood pressure (DBP), heart rate (HR), and salivary cortisol were measured. Social evaluative threat resulted in higher cardiovascular responses than the nonsocial challenge (SBP, p = .001, η = 0.092;DBP, p = .006, η = 0.058;HR, p = .006, η = 0.059). The greatest cardiovascular stress reactions were exhibited by Type D participants in the high social evaluation condition; reflected in significant group by condition interactions for SBP (F(1,126) = 7.29, p = .008, η = 0.055), DBP (F(1,126) = 5.23, p = .024, η = 0.040), and HR (F(1,126) = 5.04, p = .027, η = 0.038) reactivity. Only Type Ds in the social condition mounted a positive cortisol response (F(1,33) = 5.07, p = .031, η = 0.133). Type D individuals show different stress reactions depending on the social evaluative nature of the stress exposure. These findings suggest that dysregulation of the stress response in social situations potentially increases cardiovascular disease risk.

  10. Ecological Momentary Assessment of the Association Between Exposure to Alcohol Advertising and Early Adolescents' Beliefs About Alcohol

    PubMed Central

    Martino, Steven C.; Kovalchik, Stephanie A.; Collins, Rebecca L.; Becker, Kirsten M.; Shadel, William G.; D'Amico, Elizabeth J.

    2015-01-01

    Purpose To evaluate the momentary association between exposure to alcohol advertising and middle school students' beliefs about alcohol in real-world settings and to explore racial/ethnic differences in this association. Methods Middle school students (N = 588) carried handheld data collection devices for 14 days, recording their exposures to all forms of alcohol advertising during the assessment period. Students also responded to three investigator-initiated control prompts (programmed to occur randomly) on each day of the assessment period. After each exposure to advertising and at each control prompt, students reported their beliefs about alcohol. Mixed effects regression models compared students' beliefs about alcohol between moments of exposure to alcohol advertising and control prompts. Results Students perceived the typical person their age who drinks alcohol (prototype perceptions) more favorably and perceived alcohol use as more normative at times of exposure to alcohol advertising than at times of non-exposure (i.e., at control prompts). Exposure to alcohol advertising was not associated with shifts in the perceived norms of Black and Hispanic students, however, and the association between exposure and prototype perceptions was stronger among non-Hispanic students than among Hispanic students. Conclusions Exposure to alcohol advertising is associated with acute shifts in adolescents' perceptions of the typical person that drinks alcohol and the normativeness of drinking. These associations are both statistically and substantively meaningful. PMID:26480846

  11. Personal exposure to airborne particles and metals: results from the Particle TEAM study in Riverside, California.

    PubMed

    Ozkaynak, H; Xue, J; Spengler, J; Wallace, L; Pellizzari, E; Jenkins, P

    1996-01-01

    The PTEAM Study was the first large-scale probability-based study of personal exposure to particles. Sponsored by the U.S. Environmental Protection Agency (EPA) and the Air Resources Board of California, it was carried out by the Research Triangle Institute (RTI) and the Harvard University School of Public Health (HSPH). HSPH designed and constructed a 4-lpm, battery-operated personal monitor for inhalable particles (PM10) that could be worn comfortably for up to 14 hours by persons from 10 to 70 years old. The monitor was worn for two consecutive 12-hour periods (day and night) during the fall of 1990 by 178 participants representing 139,000 nonsmoking residents of Riverside, California. Nearly identical monitors were employed to collect concurrent indoor and outdoor samples. The monitors were equipped with a different sampling nozzle to collect fine particles (PM2.5). Population-weighted daytime personal PM10 exposures averaged 150 +/- 9 (SE) micrograms/m3, compared to concurrent indoor and outdoor concentrations of 95 +/- 6 micrograms/m3. This suggested the existence of excess mass near the person, a "personal cloud" that appeared related to personal activities. Fourteen of 15 prevalent elements also were evaluated in the personal samples. The two major indoor sources of indoor particles were smoking and cooking; even in these homes, however, more than half of the indoor particles came from outdoors, and a substantial portion of the indoor particles were of undetermined indoor origin. Outdoor concentrations near the homes were well correlated with outdoor concentrations at the central site, supporting the idea of using the central site as an indicator of of ambient concentrations over a wider area. Indoor concentrations were only weakly correlated with outdoor concentrations, however, and personal exposures were even more poorly correlated with outdoor concentrations. Elemental profiles were obtained for environmental tobacco smoke (ETS) (major contributions from potassium and chlorine) and cooking emissions (aluminum, iron, calcium, and chlorine). These profiles can be used in future source apportionment studies.

  12. 15 years of monitoring occupational exposure to respirable dust and quartz within the European industrial minerals sector.

    PubMed

    Zilaout, Hicham; Vlaanderen, Jelle; Houba, Remko; Kromhout, Hans

    2017-07-01

    In 2000, a prospective Dust Monitoring Program (DMP) was started in which measurements of worker's exposure to respirable dust and quartz are collected in member companies from the European Industrial Minerals Association (IMA-Europe). After 15 years, the resulting IMA-DMP database allows a detailed overview of exposure levels of respirable dust and quartz over time within this industrial sector. Our aim is to describe the IMA-DMP and the current state of the corresponding database which due to continuation of the IMA-DMP is still growing. The future use of the database will also be highlighted including its utility for the industrial minerals producing sector. Exposure data are being obtained following a common protocol including a standardized sampling strategy, standardized sampling and analytical methods and a data management system. Following strict quality control procedures, exposure data are consequently added to a central database. The data comprises personal exposure measurements including auxiliary information on work and other conditions during sampling. Currently, the IMA-DMP database consists of almost 28,000 personal measurements which have been performed from 2000 until 2015 representing 29 half-yearly sampling campaigns. The exposure data have been collected from 160 different worksites owned by 35 industrial mineral companies and comes from 23 European countries and approximately 5000 workers. The IMA-DMP database provides the European minerals sector with reliable data regarding worker personal exposures to respirable dust and quartz. The database can be used as a powerful tool to address outstanding scientific issues on long-term exposure trends and exposure variability, and importantly, as a surveillance tool to evaluate exposure control measures. The database will be valuable for future epidemiological studies on respiratory health effects and will allow for estimation of quantitative exposure response relationships. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  13. An analysis of workplace exposures to benzene over four decades at a petrochemical processing and manufacturing facility (1962-1999).

    PubMed

    Sahmel, J; Devlin, K; Burns, A; Ferracini, T; Ground, M; Paustenbach, D

    2013-01-01

    Benzene, a known carcinogen, can be generated as a by-product during the use of petroleum-based raw materials in chemical manufacturing. The aim of this study was to analyze a large data set of benzene air concentration measurements collected over nearly 40 years during routine employee exposure monitoring at a petrochemical manufacturing facility. The facility used ethane, propane, and natural gas as raw materials in the production of common commercial materials such as polyethylene, polypropylene, waxes, adhesives, alcohols, and aldehydes. In total, 3607 benzene air samples were collected at the facility from 1962 to 1999. Of these, in total 2359 long-term (>1 h) personal exposure samples for benzene were collected during routine operations at the facility between 1974 and 1999. These samples were analyzed by division, department, and job title to establish employee benzene exposures in different areas of the facility over time. Sampling data were also analyzed by key events over time, including changes in the occupational exposure limits (OELs) for benzene and key equipment process changes at the facility. Although mean benzene concentrations varied according to operation, in nearly all cases measured benzene quantities were below the OEL in place at the time for benzene (10 ppm for 1974-1986 and 1 ppm for 1987-1999). Decreases in mean benzene air concentrations were also found when data were evaluated according to 7- to 10-yr periods following key equipment process changes. Further, an evaluation of mortality rates for a retrospective employee cohort (n = 3938) demonstrated that the average personal benzene exposures at this facility (0.89 ppm for the period 1974-1986 and 0.125 ppm for the period 1987-1999) did not result in increased standardized mortality ratio (SMRs) for diseases or malignancies of the lymphatic system. The robust nature of this data set provides comprehensive exposure information that may be useful for assessing human benzene exposures at similar facilities. The data also provide a basis for comparable measured exposure levels and the potential for adverse health effects. These data may also prove beneficial for comparing relative exposure potential for production versus nonproduction operations and the relationship between area and personal breathing zone samples.

  14. Human Antibody Response to Aedes aegypti Saliva in an Urban Population in Bolivia: A New Biomarker of Exposure to Dengue Vector Bites

    PubMed Central

    Doucoure, Souleymane; Mouchet, François; Cournil, Amandine; Le Goff, Gilbert; Cornelie, Sylvie; Roca, Yelin; Giraldez, Mabel Guerra; Simon, Zaira Barja; Loayza, Roxanna; Misse, Dorothée; Flores, Jorge Vargas; Walter, Annie; Rogier, Christophe; Herve, Jean Pierre; Remoue, Franck

    2012-01-01

    Aedes mosquitoes are important vectors of re-emerging diseases in developing countries, and increasing exposure to Aedes in the developed world is currently a source of concern. Given the limitations of current entomologic methods, there is a need for a new effective way for evaluating Aedes exposure. Our objective was to evaluate specific antibody responses to Aedes aegypti saliva as a biomarker for vector exposure in a dengue-endemic urban area. IgG responses to saliva were strong in young children and steadily waned with age. Specific IgG levels were significantly higher in persons living in sites with higher Ae. aegypti density, as measured by using entomologic parameters. Logistic regression showed a significant correlation between IgG to saliva and exposure level, independently of either age or sex. These results suggest that antibody responses to saliva could be used to monitor human exposure to Aedes bites. PMID:22848099

  15. Source apportionment of exposures to volatile organic compounds. I. Evaluation of receptor models using simulated exposure data

    NASA Astrophysics Data System (ADS)

    Miller, Shelly L.; Anderson, Melissa J.; Daly, Eileen P.; Milford, Jana B.

    Four receptor-oriented source apportionment models were evaluated by applying them to simulated personal exposure data for select volatile organic compounds (VOCs) that were generated by Monte Carlo sampling from known source contributions and profiles. The exposure sources modeled are environmental tobacco smoke, paint emissions, cleaning and/or pesticide products, gasoline vapors, automobile exhaust, and wastewater treatment plant emissions. The receptor models analyzed are chemical mass balance, principal component analysis/absolute principal component scores, positive matrix factorization (PMF), and graphical ratio analysis for composition estimates/source apportionment by factors with explicit restriction, incorporated in the UNMIX model. All models identified only the major contributors to total exposure concentrations. PMF extracted factor profiles that most closely represented the major sources used to generate the simulated data. None of the models were able to distinguish between sources with similar chemical profiles. Sources that contributed <5% to the average total VOC exposure were not identified.

  16. Volatile Organic Compounds in Blood as Biomarkers of Exposure to JP-8 Jet Fuel Among US Air Force Personnel.

    PubMed

    Maule, Alexis L; Proctor, Susan P; Blount, Benjamin C; Chambers, David M; McClean, Michael D

    2016-01-01

    This study aimed to evaluate blood volatile organic compound (VOC) levels as biomarkers of occupational jet propulsion fuel 8 (JP-8) exposure while controlling for smoking. Among 69 Air Force personnel, post-shift blood samples were analyzed for components of JP-8, including ethylbenzene, toluene, o-xylene, and m/p-xylene, and for the smoking biomarker, 2,5-dimethylfuran. JP-8 exposure was characterized based on self-report and measured work shift levels of total hydrocarbons in personal air. Multivariate regression was used to evaluate the relationship between JP-8 exposure and post-shift blood VOCs while controlling for potential confounding from smoking. Blood VOC concentrations were higher among US Air Force personnel who reported JP-8 exposure and work shift smoking. Breathing zone total hydrocarbons was a significant predictor of VOC blood levels, after controlling for smoking. These findings support the use of blood VOCs as a biomarker of occupational JP-8 exposure.

  17. Exposure to volatile organic compounds for individuals with occupations associated with potential exposure to motor vehicle exhaust and/or gasoline vapor emissions.

    PubMed

    Jo, W K; Song, K B

    2001-03-26

    Workers who work near volatile organic compounds (VOCs) source(s), motor vehicle exhausts and/or gasoline vapor emissions, are suspected to be exposed to highly-elevated VOC levels during their work-time. This study confirmed this suspicion and evaluated the work-time exposure VOCs for traffic police officers, parking garage attendants, service station attendants, roadside storekeepers and underground storekeepers, by measuring the concentrations of six aromatic VOCs in workplace air, or personal air and breath samples. For nearly all target VOCs, the post-work breath concentrations of the workers were slightly or significantly higher than the pre-work breath concentrations, depending on the compound and occupation. Furthermore, both the pre- and post-work breath concentrations of the workers showed elevated levels compared with a control group of college students. The post-work breath concentrations were significantly correlated with the personal air concentrations, while the pre-work breath concentrations were not. Smoking workers were not always exposed to higher aromatic VOC levels than non-smoking workers. The breath and personal air concentrations for all the target compounds were both higher for underground parking garage attendants than for ground-level parking attendants. For all the target compounds except toluene, storekeepers exhibited similar levels of exposure for all store types. Print shopkeepers recorded the highest toluene exposure.

  18. Assessing occupational exposure to sea lamprey pesticides.

    PubMed

    Ceballos, Diana M; Beaucham, Catherine C; Kurtz, Kristine; Musolin, Kristin

    2015-01-01

    Sea lampreys are parasitic fish found in lakes of the United States and Canada. Sea lamprey is controlled through manual application of the pesticides 3-trifluoromethyl-4-nitrophenol (TFM) and Bayluscide(TM) into streams and tributaries. 3-Trifluoromethyl-4-nitrophenol may cause irritation and central nervous system depression and Bayluscide may cause irritation, dermatitis, blisters, cracking, edema, and allergic skin reactions. To assess occupational exposures to sea lamprey pesticides. We developed a wipe method for evaluating surface and skin contamination with these pesticides. This method was field tested at a biological field station and at a pesticide river application. We also evaluated exposures using control banding tools. We verified TFM surface contamination at the biological station. At the river application, we found surfaces and worker's skin contaminated with pesticides. We recommended minimizing exposures by implementing engineering controls and improved use of personal protective equipment.

  19. Terpene exposure and respiratory effects among workers in Swedish joinery shops.

    PubMed

    Eriksson, K A; Levin, J O; Sandström, T; Lindström-Espeling, K; Lindén, G; Stjernberg, N L

    1997-04-01

    Exposure to monoterpenes (alpha-pinene, beta-pinene and delta 3-carene) in joinery shops was studied in Sweden during the processing of Scot's pine, and the acute respiratory effects among the employees were evaluated. A cross-sectional study of 38 workers was carried out in 4 joinery shops. The investigation included personal air sampling of monoterpenes, biological monitoring of metabolites of alpha-pinene in the workers' urine, interviews following a standardized questionnaire, and dynamic spirometry. The personal exposure to monoterpenes in the joinery shops was 10-214 mg/m3. The correlation (correlation coefficient = 0.69) between exposure to alpha-pinene and verbenols (metabolites from alpha-pinene) in urine was relatively good. No acute effects on forced vital capacity or forced expiratory volume during 1 s were detected. The workers had significantly reduced preshift lung function values when compared with the values of a local reference group, even when smokers and ex-smokers were excluded. Personal exposure to the monoterpenes alpha-pinene, and delta 3-carene in joinery shops may exceed the present Swedish occupational exposure limit of 150 mg/m3 during the winter season when workroom air is commonly recirculated. The determination of metabolites of alpha-pinene (verbenols) in urine can be used as an index of exposure to fumes released during wood-treating processes. The results from the lung function tests indicate chronic rather than acute reactions in the airways. The fact that there were no major changes in lung function over a workshift indicates chronic reaction in the airways.

  20. DNA damage in outdoor workers occupationally exposed to environmental air pollutants

    PubMed Central

    Tovalin, H; Valverde, M; Morandi, M T; Blanco, S; Whitehead, L; Rojas, E

    2006-01-01

    Background Health concerns about the exposure to genotoxic and carcinogenic agents in the air are particularly significant for outdoor workers in less developed countries. Aims To investigate the association between personal exposure to a group of air pollutants and severity of DNA damage in outdoor workers from two Mexican cities. Methods DNA damage (Comet assay) and personal exposure to volatile organic compounds, PM2.5, and ozone were investigated in 55 outdoor and indoor workers from México City and Puebla. Results In México City, outdoor workers had greater DNA damage, reflected by a longer tail length, than indoor workers (median 46.8 v 30.1 μm), and a greater percentage of highly damaged cells (cells with tail length ⩾41 μm); in Puebla, outdoor and indoor workers had similar DNA damage. There were more alkali labile sites in outdoor than indoor workers. The DNA damage magnitude was positively correlated with PM2.5 and ozone exposure. Outdoor and indoor workers with ⩾60% of highly damaged cells (highly damaged workers) had significantly higher exposures to PM2.5, ozone, and some volatile organic compounds. The main factors associated with the highly damaged workers were ozone, PM2.5, and 1‐ethyl‐2‐methyl benzene exposure. Conclusions With this approach, the effects of some air pollutants could be correlated with biological endpoints from the Comet assay. It is suggested that the use of personal exposure assessment and biological endpoints evaluation could be an important tool to generate a more precise assessment of the associated potential health risks. PMID:16556741

  1. Exposure measurement error in PM2.5 health effects studies: A pooled analysis of eight personal exposure validation studies

    PubMed Central

    2014-01-01

    Background Exposure measurement error is a concern in long-term PM2.5 health studies using ambient concentrations as exposures. We assessed error magnitude by estimating calibration coefficients as the association between personal PM2.5 exposures from validation studies and typically available surrogate exposures. Methods Daily personal and ambient PM2.5, and when available sulfate, measurements were compiled from nine cities, over 2 to 12 days. True exposure was defined as personal exposure to PM2.5 of ambient origin. Since PM2.5 of ambient origin could only be determined for five cities, personal exposure to total PM2.5 was also considered. Surrogate exposures were estimated as ambient PM2.5 at the nearest monitor or predicted outside subjects’ homes. We estimated calibration coefficients by regressing true on surrogate exposures in random effects models. Results When monthly-averaged personal PM2.5 of ambient origin was used as the true exposure, calibration coefficients equaled 0.31 (95% CI:0.14, 0.47) for nearest monitor and 0.54 (95% CI:0.42, 0.65) for outdoor home predictions. Between-city heterogeneity was not found for outdoor home PM2.5 for either true exposure. Heterogeneity was significant for nearest monitor PM2.5, for both true exposures, but not after adjusting for city-average motor vehicle number for total personal PM2.5. Conclusions Calibration coefficients were <1, consistent with previously reported chronic health risks using nearest monitor exposures being under-estimated when ambient concentrations are the exposure of interest. Calibration coefficients were closer to 1 for outdoor home predictions, likely reflecting less spatial error. Further research is needed to determine how our findings can be incorporated in future health studies. PMID:24410940

  2. Use of real-time sensors to characterise human exposures to combustion related pollutants.

    PubMed

    Delgado-Saborit, Juana Maria

    2012-07-01

    Concentrations of black carbon and nitrogen dioxide have been collected concurrently using a MicrAeth AE-51 and an Aeroqual GSS NO(2) sensor. Forty five sampling events with a duration spanning between 16 and 22 hours have collected 10,800 5 min data in Birmingham (UK) from July to October 2011. The high temporal resolution database allowed identification of peak exposures and which activities contributed the most to these peaks, such as cooking and commuting. Personal exposure concentrations for non-occupationally exposed subjects ranged between 0.01 and 50 μg m(-3) for BC with average values of 1.3 ± 2.2 μg m(-3) (AM ± SD). Nitrogen dioxide exposure concentrations were in the range

  3. Children's exposure assessment of radiofrequency fields: Comparison between spot and personal measurements.

    PubMed

    Gallastegi, Mara; Huss, Anke; Santa-Marina, Loreto; Aurrekoetxea, Juan J; Guxens, Mònica; Birks, Laura Ellen; Ibarluzea, Jesús; Guerra, David; Röösli, Martin; Jiménez-Zabala, Ana

    2018-05-24

    Radiofrequency (RF) fields are widely used and, while it is still unknown whether children are more vulnerable to this type of exposure, it is essential to explore their level of exposure in order to conduct adequate epidemiological studies. Personal measurements provide individualized information, but they are costly in terms of time and resources, especially in large epidemiological studies. Other approaches, such as estimation of time-weighted averages (TWAs) based on spot measurements could simplify the work. The aims of this study were to assess RF exposure in the Spanish INMA birth cohort by spot measurements and by personal measurements in the settings where children tend to spend most of their time, i.e., homes, schools and parks; to identify the settings and sources that contribute most to that exposure; and to explore if exposure assessment based on spot measurements is a valid proxy for personal exposure. When children were 8 years old, spot measurements were conducted in the principal settings of 104 participants: homes (104), schools and their playgrounds (26) and parks (79). At the same time, personal measurements were taken for a subsample of 50 children during 3 days. Exposure assessment based on personal and on spot measurements were compared both in terms of mean exposures and in exposure-dependent categories by means of Bland-Altman plots, Cohen's kappa and McNemar test. Median exposure levels ranged from 29.73 (in children's bedrooms) to 200.10 μW/m 2 (in school playgrounds) for spot measurements and were higher outdoors than indoors. Median personal exposure was 52.13 μW/m 2 and median levels of assessments based on spot measurements ranged from 25.46 to 123.21 μW/m 2 . Based on spot measurements, the sources that contributed most to the exposure were FM radio, mobile phone downlink and Digital Video Broadcasting-Terrestrial, while indoor and personal sources contributed very little (altogether <20%). Similar distribution was observed with personal measurements. There was a bias proportional to power density between personal measurements and estimates based on spot measurements, with the latter providing higher exposure estimates. Nevertheless, there were no systematic differences between those methodologies when classifying subjects into exposure categories. Personal measurements of total RF exposure showed low to moderate agreement with home and bedroom spot measurements and agreed better, though moderately, with TWA based on spot measurements in the main settings where children spend time (homes, schools and parks; Kappa = 0.46). Exposure assessment based on spot measurements could be a feasible proxy to rank personal RF exposure in children population, providing that all relevant locations are being measured. Copyright © 2018. Published by Elsevier Ltd.

  4. Feasibility of a cohort study on health risks caused by occupational exposure to radiofrequency electromagnetic fields

    PubMed Central

    2009-01-01

    Background The aim of this study was to examine the feasibility of performing a cohort study on health risks from occupational exposure to radiofrequency electromagnetic fields (RF-EMF) in Germany. Methods A set of criteria was developed to evaluate the feasibility of such a cohort study. The criteria aimed at conditions of exposure and exposure assessment (level, duration, preferably on an individual basis), the possibility to assemble a cohort and the feasibility of ascertaining various disease endpoints. Results Twenty occupational settings with workers potentially exposed to RF-EMF and, in addition, a cohort of amateur radio operators were considered. Based on expert ratings, literature reviews and our set of predefined criteria, three of the cohorts were identified as promising for further evaluation: the personnel (technicians) of medium/short wave broadcasting stations, amateur radio operators, and workers on dielectric heat sealers. After further analyses, the cohort of workers on dielectric heat sealers seems not to be feasible due to the small number of exposed workers available and to the difficulty of assessing exposure (exposure depends heavily on the respective working process and mixture of exposures, e.g. plastic vapours), although exposure was highest in this occupational setting. The advantage of the cohort of amateur radio operators was the large number of persons it includes, while the advantage of the cohort of personnel working at broadcasting stations was the quality of retrospective exposure assessment. However, in the cohort of amateur radio operators the exposure assessment was limited, and the cohort of technicians was hampered by the small number of persons working in this profession. Conclusion The majority of occupational groups exposed to RF-EMF are not practicable for setting up an occupational cohort study due to the small numbers of exposed subjects or due to exposure levels being only marginally higher than those of the general public. PMID:19480652

  5. 76 FR 25277 - Lowering Miners' Exposure to Respirable Coal Mine Dust, Including Continuous Personal Dust Monitors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-04

    ... 1219-AB64 Lowering Miners' Exposure to Respirable Coal Mine Dust, Including Continuous Personal Dust... to Respirable Coal Mine Dust, Including Continuous Personal Dust Monitors. This extension gives... Miners' Exposure to Respirable Coal Mine Dust, Including Continuous Personal Dust Monitors. In response...

  6. Personal exposures to PM 2.5 and their relationships with microenvironmental concentrations

    NASA Astrophysics Data System (ADS)

    Lim, Soogil; Kim, Jeonghoon; Kim, Taehyun; Lee, Kiyoung; Yang, Wonho; Jun, Sangil; Yu, Seungdo

    2012-02-01

    Personal exposure to particulate matter of aerodynamic diameters less than 2.5 μm (PM 2.5) can be affected by various factors. The purpose of this study was to determine the impact of activity pattern and the contribution of each microenvironment to personal PM 2.5 exposure. Technicians carried a nephelometer for PM 2.5 while engaging in scripted time location activities. The scripted activities of 10 different population groups were based on time activity patterns of the Seoul population in Korea. A total of 58 daily PM 2.5 personal exposures were available for analysis. The average PM 2.5 personal exposure was 19.8 ± 15.3 μg m -3. The average personal exposure of each population group ranged from 9.8 to 43.1 μg m -3. High peak and average concentrations were observed in restaurants and bars; such high concentrations were due to secondhand smoke and cooking with charcoal on tables. The residential indoor level of the nine microenvironments was the largest contributor to personal exposure. The contributions from residential indoor, non-residential indoor, transportation, and outdoor levels were 36.2%, 53.4%, 6.7%, and 3.7%, respectively. The contributions of microenvironments varied among population groups; these variations suggest that the impact of activity pattern on personal exposure is significant.

  7. Nicotine in environmental tobacco smoke (ETS): Comparison of mobile personal and stationary area sampling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenkins, R.A.; Moody, R.L.; Higgins, C.E.

    1991-01-01

    Previous investigations of personal vs. area sampling of ambient nicotine may not accurately reflect personal exposure to ETS nicotine in environments in which individuals are relatively mobile. The purpose of this study was to determine the extent to which a stationary area sampler could estimate actual personal exposure to ambient nicotine when the exposed individuals are moving in and through a field environment. For this study, personal samplers using Tenax, and area samplers using XAD-4, were employed. Evaluations of the two systems using controlled experimental atmospheres of ETS revealed no differences in the measured nicotine levels over a range ofmore » 1.0--150 {mu}g/m{sup 3}. Field studies were conductd at approximately 30 locations, including taverns, restaurants with salad bars, laundromats, gaming establishments, and transportation waiting areas. Ambient nicotine levels ranged from 0.0--90.6 {mu}g/m{sup 3}. There were considerable differences in individual nicotine levels over relatively short distances within a given environment, probably due to atmospheric inhomogeneities. The variability between duplicate samples of a particular type was such that no statistically significant difference between stationary area and mobile personal samplers could be discerned. 17 refs., 2 tabs.« less

  8. Characterization of particulate and gas exposures of sensitive subpopulations living in Baltimore and Boston.

    PubMed

    Koutrakis, Petros; Suh, Helen H; Sarnat, Jeremy A; Brown, Kathleen Ward; Coull, Brent A; Schwartz, Joel

    2005-12-01

    Personal exposures to particulate and gaseous pollutants and corresponding ambient concentrations were measured for 56 subjects living in Baltimore, Maryland, and 43 subjects living in Boston, Massachusetts. The 3 Baltimore cohorts consisted of 20 healthy older adults (seniors), 21 children, and 15 individuals with physician-diagnosed chronic obstructive pulmonary disease (COPD*). The 2 Boston cohorts were 20 healthy seniors and 23 children. All children were 9 to 13 years of age; seniors were 65 years of age or older; and the COPD participants had moderate to severe physician-diagnosed COPD. Personal exposures to particulate matter with aerodynamic diameters less than 2.5 microm (PM2.5), sulfate (SO(4)2-), elemental carbon (EC), ozone (03), nitrogen dioxide (NO2), and sulfur dioxide (SO2) were measured simultaneously for 24 hours/day. All subjects were monitored for 8 to 12 consecutive days. The primary objectives of this study were (1) to characterize the personal particulate and gaseous exposures for individuals sensitive to PM health effects and (2) to assess the appropriateness of exposure assessment strategies for use in PM epidemiologic studies. Personal exposures to multiple pollutants and ambient concentrations were measured for subjects from each cohort from each location. Pollutant data were analyzed using correlation and mixed-model regression analyses. In Baltimore, personal PM2.5 exposures tended to be comparable to (and frequently lower than) corresponding ambient concentrations; in Boston, the personal exposures were frequently higher. Overall, personal exposures to the gaseous pollutants, especially O3 and SO2, were considerably lower than corresponding ambient concentrations because of the lack of indoor sources for these gases and their high removal rate on indoor surfaces. Further, the impact of ambient particles on personal exposure (the infiltration factor) and differences in infiltration factor by city, season, and cohort were investigated. No difference in infiltration factor was found among the cohorts, which suggests that all subjects were exposed to the same fraction of ambient PM2.5 for a given ambient concentration. In addition, the results show significant correlations between ambient PM2.5 concentrations and corresponding personal exposures over time and provide further indication that ambient gaseous pollutant concentrations may be better surrogates for personal PM2.5 exposures, especially personal exposures to PM2.5 of ambient origin, than their respective personal exposures. These results have important implications for PM health effects studies that use regression models including both ambient PM2.5 and gaseous pollutant concentrations as independent variables, because both parameters may be serving as surrogates for PM2.5 exposures.

  9. Personal carbon monoxide exposure in Helsinki, Finland

    NASA Astrophysics Data System (ADS)

    Scotto di Marco, Greta; Kephalopoulos, Stylianos; Ruuskanen, Juhani; Jantunen, Matti

    Personal exposure concentrations of carbon monoxide (CO) were measured for the adult urban population of Helsinki, Finland, as part of the multi-centre European EXPOLIS study. The arithmetic mean of the 48 h average personal CO exposure concentration was 1.3 mg m -3 for participants not exposed to environmental tobacco smoke (ETS) and 1.6 mg m -3 for those exposed to ETS at any time and in any microenvironment. The maximum 8 and 1 h exposure values were 2.0 and 2.6 mg m -3, and 4.3 and 5.7 mg m -3, respectively. As tobacco smoke is one of the major sources of CO, therefore the personal mean exposures of ETS participants were higher than the non-ETS participants for all averaging times. The long- and short-term personal exposures were higher in winter than in summer for all participants. In order to analyse in more detail the correlation between the time-activity patterns and exposure levels, cluster analysis was performed using 24 h personal exposure profiles of 1 h moving averages. The results showed clearly that the major source of CO for non-ETS exposed participants are traffic emissions. The majority of the diurnal exposure profiles showed two notable exposure peaks corresponding to the morning and evening traffic rush hours. The time spent in street traffic was the most relevant factor for describing the short-term personal exposures. The more time was spent commuting by car the higher were the exposures. The long-term exposure levels were linked both to the time spent commuting and home location. People living in low-traffic suburban areas and working in downtown spent more time commuting and ended up experiencing similar long-term exposure levels than people who lived in heavy-traffic downtown areas, but spent little time commuting. For ETS exposed participants the personal exposure profiles were dominated by both tobacco smoke and traffic emissions.

  10. The role of the location of personal exposimeters on the human body in their use for assessing exposure to the electromagnetic field in the radiofrequency range 98-2450 MHz and compliance analysis: evaluation by virtual measurements.

    PubMed

    Gryz, Krzysztof; Zradziński, Patryk; Karpowicz, Jolanta

    2015-01-01

    The use of radiofrequency (98-2450 MHz range) personal exposimeters to measure the electric field (E-field) in far-field exposure conditions was modelled numerically using human body model Gustav and finite integration technique software. Calculations with 256 models of exposure scenarios show that the human body has a significant influence on the results of measurements using a single body-worn exposimeter in various locations near the body ((from -96 to +133)%, measurement errors with respect to the unperturbed E-field value). When an exposure assessment involves the exposure limitations provided for the strength of an unperturbed E-field. To improve the application of exposimeters in compliance tests, such discrepancies in the results of measurements by a body-worn exposimeter may be compensated by using of a correction factor applied to the measurement results or alternatively to the exposure limit values. The location of a single exposimeter on the waist to the back side of the human body or on the front of the chest reduces the range of exposure assessments uncertainty (covering various exposure conditions). However, still the uncertainty of exposure assessments using a single exposimeter remains significantly higher than the assessment of the unperturbed E-field using spot measurements.

  11. Occupational PAH exposures during prescribed pile burns.

    PubMed

    Robinson, M S; Anthony, T R; Littau, S R; Herckes, P; Nelson, X; Poplin, G S; Burgess, J L

    2008-08-01

    Wildland firefighters are exposed to particulate matter and gases containing polycyclic aromatic hydrocarbons (PAHs), many of which are known carcinogens. Our objective was to evaluate the extent of firefighter exposure to particulate and PAHs during prescribed pile burns of mainly ponderosa pine slash and determine whether these exposures were correlated with changes in urinary 1-hydroxypyrene (1-HP), a PAH metabolite. Personal and area sampling for particulate and PAH exposures were conducted on the White Mountain Apache Tribe reservation, working with 21 Bureau of Indian Affairs/Fort Apache Agency wildland firefighters during the fall of 2006. Urine samples were collected pre- and post-exposure and pulmonary function was measured. Personal PAH exposures were detectable for only 3 of 16 PAHs analyzed: naphthalene, phenanthrene, and fluorene, all of which were identified only in vapor-phase samples. Condensed-phase PAHs were detected in PM2.5 area samples (20 of 21 PAHs analyzed were detected, all but naphthalene) at concentrations below 1 microg m(-3). The total PAH/PM2.5 mass fractions were roughly a factor of two higher during smoldering (1.06 +/- 0.15) than ignition (0.55 +/- 0.04 microg mg(-1)). There were no significant changes in urinary 1-HP or pulmonary function following exposure to pile burning. In summary, PAH exposures were low in pile burns, and urinary testing for a PAH metabolite failed to show a significant difference between baseline and post-exposure measurements.

  12. Ecological Momentary Assessment of the Association Between Exposure to Alcohol Advertising and Early Adolescents' Beliefs About Alcohol.

    PubMed

    Martino, Steven C; Kovalchik, Stephanie A; Collins, Rebecca L; Becker, Kirsten M; Shadel, William G; D'Amico, Elizabeth J

    2016-01-01

    To evaluate the momentary association between exposure to alcohol advertising and middle-school students' beliefs about alcohol in real-world settings and to explore racial/ethnic differences in this association. Middle-school students (N = 588) carried handheld data collection devices for 14 days, recording their exposures to all forms of alcohol advertising during the assessment period. Students also responded to three investigator-initiated control prompts (programmed to occur randomly) on each day of the assessment period. After each exposure to advertising and at each control prompt, students reported their beliefs about alcohol. Mixed-effects regression models compared students' beliefs about alcohol between moments of exposure to alcohol advertising and control prompts. Students perceived the typical person their age who drinks alcohol (prototype perceptions) more favorably and perceived alcohol use as more normative at times of exposure to alcohol advertising than at times of nonexposure (i.e., at control prompts). Exposure to alcohol advertising was not associated with shifts in the perceived norms of black and Hispanic students, however, and the association between exposure and prototype perceptions was stronger among non-Hispanic students than among Hispanic students. Exposure to alcohol advertising is associated with acute shifts in adolescents' perceptions of the typical person that drinks alcohol and the normativeness of drinking. These associations are both statistically and substantively meaningful. Copyright © 2016 Society for Adolescent Health and Medicine. All rights reserved.

  13. Exposure to electromagnetic fields during pregnancy with emphasis on electrically heated beds: association with birthweight and intrauterine growth retardation.

    PubMed

    Bracken, M B; Belanger, K; Hellenbrand, K; Dlugosz, L; Holford, T R; McSharry, J E; Addesso, K; Leaderer, B

    1995-05-01

    Several animal and human studies indicate that fetal growth may be retarded following exposure to electromagnetic fields (EMF). We conducted a prospective study (N = 2,967) to evaluate the relation of birthweight and fetal growth retardation with use of electrically heated beds (electric blankets and heated water beds) during pregnancy. A "nested" study design allowed monitoring of exposure at different stages of pregnancy using both direct and indirect methods. We assessed EMF exposure using personal monitors, home measurement, video display terminal use, and wire code. Exposure to EMF during pregnancy, either at conception, at < or = 16 weeks, or in the third trimester, showed no important relation to risk of low birth-weight or fetal growth retardation. This result was the same whether we used subjective measures of exposure or direct measurement. Use of video display terminals at home or work, exposure to > or = 2.0-milligauss fields as measured by home or personal monitors, and home wire code were unrelated to the reproductive outcomes studied. A time-weighted analysis of electric bed use, which accounted for strength of EMF exposure and hours of use, also showed evidence of no meaningful increase in risk. None of the exposure measures showed a dose response relation to risk. We conclude that risk of low birth-weight and intrauterine growth retardation is not increased after electrically heated bed use during pregnancy.

  14. The Role of the Location of Personal Exposimeters on the Human Body in Their Use for Assessing Exposure to the Electromagnetic Field in the Radiofrequency Range 98–2450 MHz and Compliance Analysis: Evaluation by Virtual Measurements

    PubMed Central

    Zradziński, Patryk

    2015-01-01

    The use of radiofrequency (98–2450 MHz range) personal exposimeters to measure the electric field (E-field) in far-field exposure conditions was modelled numerically using human body model Gustav and finite integration technique software. Calculations with 256 models of exposure scenarios show that the human body has a significant influence on the results of measurements using a single body-worn exposimeter in various locations near the body ((from −96 to +133)%, measurement errors with respect to the unperturbed E-field value). When an exposure assessment involves the exposure limitations provided for the strength of an unperturbed E-field. To improve the application of exposimeters in compliance tests, such discrepancies in the results of measurements by a body-worn exposimeter may be compensated by using of a correction factor applied to the measurement results or alternatively to the exposure limit values. The location of a single exposimeter on the waist to the back side of the human body or on the front of the chest reduces the range of exposure assessments uncertainty (covering various exposure conditions). However, still the uncertainty of exposure assessments using a single exposimeter remains significantly higher than the assessment of the unperturbed E-field using spot measurements. PMID:25879021

  15. Uncertainty in exposure to air pollution

    NASA Astrophysics Data System (ADS)

    Pebesma, Edzer; Helle, Kristina; Christoph, Stasch; Rasouli, Soora; Timmermans, Harry; Walker, Sam-Erik; Denby, Bruce

    2013-04-01

    To assess exposure to air pollution for a person or for a group of people, one needs to know where the person or group is as a function of time, and what the air pollution is at these times and locations. In this study we used the Albatross activity-based model to assess the whereabouts of people and the uncertainties in this, and a probabilistic air quality system based on TAPM/EPISODE to assess air quality probabilistically. The outcomes of the two models were combined to assess exposure to air pollution, and the errors in it. We used the area around Rotterdam (Netherlands) as a case study. As the outcomes of both models come as Monte Carlo realizations, it was relatively easy to cancel one of the sources of uncertainty (movement of persons, air pollution) in order to identify their respective contributions, and also to compare evaluations for individuals with averages for a population of persons. As the output is probabilistic, and in addition spatially and temporally varying, the visual analysis of the complete results poses some challenges. This case study was one of the test cases in the UncertWeb project, which has built concepts and tools to realize the uncertainty-enabled model web. Some of the tools and protocols will be shown and evaluated in this presentation. For the uncertainty of exposure, the uncertainty of air quality was more important than the uncertainty of peoples locations. This difference was stronger for PM10 than for NO2. The workflow was implemented as generic Web services in UncertWeb that also allow for other inputs than the simulated activity schedules and air quality with other resolution. However, due to this flexibility, the Web services require standardized formats and the overlay algorithm is not optimized for the specific use case resulting in a data and processing overhead. Hence, we implemented the full analysis in parallel in R, for this specific case as the model web solution had difficulties with massive data.

  16. Respirable Crystalline Silica Exposures During Asphalt Pavement Milling at Eleven Highway Construction Sites

    PubMed Central

    Hammond, Duane R.; Shulman, Stanley A.; Echt, Alan S.

    2016-01-01

    Asphalt pavement milling machines use a rotating cutter drum to remove the deteriorated road surface for recycling. The removal of the road surface has the potential to release respirable crystalline silica, to which workers can be exposed. This paper describes an evaluation of respirable crystalline silica exposures to the operator and ground worker from two different half-lane and larger asphalt pavement milling machines that had ventilation dust controls and water-sprays designed and installed by the manufacturers. Manufacturer A completed milling for eleven days at four highway construction sites in Wisconsin, while Manufacturer B completed milling for ten days at seven highway construction sites in Indiana. To evaluate the dust controls, full-shift personal breathing zone air samples were collected from an operator and ground worker during the course of normal employee work activities of asphalt pavement milling at eleven different sites. Forty-two personal breathing zone air samples were collected over 21 days (sampling on an operator and ground worker each day). All samples were below 50 µg/m3 for respirable crystalline silica, the National Institute for Occupational Safety and Health recommended exposure limit. The geometric mean personal breathing zone air sample was 6.2 µg/m3 for the operator and 6.1 µg/m3 for the ground worker for the Manufacturer A milling machine. The geometric mean personal breathing zone air sample was 4.2 µg/m3 for the operator and 9.0 µg/m3 for the ground worker for the Manufacturer B milling machine. In addition, upper 95% confidence limits for the mean exposure for each occupation were well below 50 µg/m3 for both studies. The silica content in the bulk asphalt material being milled ranged from 7% to 23% silica for roads milled by Manufacturer A and from 5% to 12% silica for roads milled by Manufacturer B. The results indicate that engineering controls consisting of ventilation controls in combination with water-sprays are capable of controlling occupational exposures to respirable crystalline silica generated by asphalt pavement milling machines on highway construction sites. PMID:26913983

  17. Respirable crystalline silica exposures during asphalt pavement milling at eleven highway construction sites.

    PubMed

    Hammond, Duane R; Shulman, Stanley A; Echt, Alan S

    2016-07-01

    Asphalt pavement milling machines use a rotating cutter drum to remove the deteriorated road surface for recycling. The removal of the road surface has the potential to release respirable crystalline silica, to which workers can be exposed. This article describes an evaluation of respirable crystalline silica exposures to the operator and ground worker from two different half-lane and larger asphalt pavement milling machines that had ventilation dust controls and water-sprays designed and installed by the manufacturers. Manufacturer A completed milling for 11 days at 4 highway construction sites in Wisconsin, and Manufacturer B completed milling for 10 days at 7 highway construction sites in Indiana. To evaluate the dust controls, full-shift personal breathing zone air samples were collected from an operator and ground worker during the course of normal employee work activities of asphalt pavement milling at 11 different sites. Forty-two personal breathing zone air samples were collected over 21 days (sampling on an operator and ground worker each day). All samples were below 50 µg/m(3) for respirable crystalline silica, the National Institute for Occupational Safety and Health recommended exposure limit. The geometric mean personal breathing zone air sample was 6.2 µg/m(3) for the operator and 6.1 µg/m(3) for the ground worker for the Manufacturer A milling machine. The geometric mean personal breathing zone air sample was 4.2 µg/m(3) for the operator and 9.0 µg/m(3) for the ground worker for the Manufacturer B milling machine. In addition, upper 95% confidence limits for the mean exposure for each occupation were well below 50 µg/m(3) for both studies. The silica content in the bulk asphalt material being milled ranged from 7-23% silica for roads milled by Manufacturer A and from 5-12% silica for roads milled by Manufacturer B. The results indicate that engineering controls consisting of ventilation controls in combination with water-sprays are capable of controlling occupational exposures to respirable crystalline silica generated by asphalt pavement milling machines on highway construction sites.

  18. USE OF A CONTINUOUS NEPHELOMETER TO MEASURE PERSONAL EXPOSURE TO PARTICLES DURING THE U.S. EPA BALTIMORE AND FRESNO PANEL STUDIES

    EPA Science Inventory

    In population exposure studies, personal exposure to particulate matter (PM) is typically measured as a 12- to 24-hour integrated mass concentration. To better understand short-term variation in personal PM exposure, continuous (one-minute averaging time) nephelometers were wo...

  19. An evaluation of the impact of flooring types on exposures to fine and coarse particles within the residential micro-environment using CONTAM.

    PubMed

    Bramwell, Lisa; Qian, Jing; Howard-Reed, Cynthia; Mondal, Sumona; Ferro, Andrea R

    2016-01-01

    Typical resuspension activities within the home, such as walking, have been estimated to contribute up to 25% of personal exposures to PM10. Chamber studies have shown that for moderate walking intensities, flooring type can impact the rate at which particles are re-entrained into the air. For this study, the impact of residential flooring type on incremental average daily (24 h) time-averaged exposure was investigated. Distributions of incremental time-averaged daily exposures to fine and coarse PM while walking within the residential micro-environment were predicted using CONTAM, the multizone airflow and contaminant transport program of the National Institute of Standards and Technology. Knowledge of when and where a person was walking was determined by randomly selecting 490 daily diaries from the EPA's consolidated human activity database (CHAD). On the basis of the results of this study, residential flooring type can significantly impact incremental time-averaged daily exposures to coarse and fine particles (α=0.05, P<0.05, N=490, Kruskal-Wallis test) with high-density cut pile carpeting resulting in the highest exposures. From this study, resuspension from walking within the residential micro-environment contributed 6-72% of time-averaged daily exposures to PM10.

  20. Safety assessment of enzyme-containing personal cleansing products: exposure characterization and development of IgE antibody to enzymes after a 6-month use test.

    PubMed

    Kelling, C K; Bartolo, R G; Ertel, K D; Smith, L A; Watson, D D; Sarlo, K

    1998-02-01

    Enzyme-containing personal cleansing products were being considered for the consumer market. Although enzymes have been marketed safely for many years as ingredients in laundry products, their use in a personal cleansing application represented a new type of exposure for consumers that was not supported by the historical safety data. An exposure assessment and additional safety data would be needed before marketing to ensure consumer safety. The work in this paper was designed to evaluate the potential for inhalation exposure to the enzyme during use of this new product while showering. Then a clinical trial was conducted to determine whether or not the level, duration, and routes of exposure encountered during use of this product would induce a Type I sensitization response to the enzyme. Exposure was assessed during normal showering activities by collecting air samples with both high volume and personal samplers and quantitating enzyme levels with an ELISA. To assess the potential for sensitization, panelists were asked to use a prototype protease-containing bar product for all personal cleansing tasks and to keep a use diary reporting any associated symptoms. Physical and dermatologic examinations and skin prick tests with enzyme were conducted before the test commenced and at 2-month intervals. Exposure assessment results showed that airborne enzyme levels were primarily dependent on the concentration of the enzyme in the personal cleansing product. Mean values for total airborne enzyme protein ranged from 5.7 to 11.8 ng/m3 when enzyme concentration, time of use, and measurement technique remained constant. After 6 months of at-home product use, four of 61 test subjects using the enzyme-containing bar had positive skin prick test responses when tested with the enzyme. The skin prick test data were supplemented with serologic analyses, which detected IgE specific for the protease enzyme. None of these subjects showed any clinical symptoms indicative of allergic reaction. The ability of enzymes to induce development of allergic antibodies in this study led to the conclusion that this prototype enzyme-containing personal cleansing bar would represent an inappropriate use of enzymes in a consumer product application. The likelihood of both induction of an immunologic response and subsequent elicitation of allergy symptoms in a small but significant fraction of the user population was high. This finding resulted in the decision to halt further development of this prototype.

  1. Personal exposure of PM2.5 emitted from solid fuels combustion for household heating and cooking in rural Guanzhong Plain, northwestern China

    NASA Astrophysics Data System (ADS)

    Xu, Hongmei; Li, Yaqi; Guinot, Benjamin; Wang, Jinhui; He, Kailai; Ho, Kin Fai; Cao, Junji; Shen, Zhenxing; Sun, Jian; Lei, Yali; Gong, Xuesong; Zhang, Ting

    2018-07-01

    Household solid fuel combustion for heating and cooking in rural areas is an important source of fine particulate matter (PM2.5) in northwestern China, which largely contributes to PM2.5 personal exposure concentrations during the cold winter. There is a general lack of understanding about the personal exposure to PM2.5 and to its chemical components emitted from domestic solid fuel combustion in northwestern Chinese rural populations. In this work, personal exposure to PM2.5 was sampled using a portative device together with fixed indoor and outdoor fixed samplings in Guanzhong Plain in December 2016 for the purpose of characterizing personal exposure to PM2.5 as a function of different solid fuels used in rural households. The average housewife's personal exposure to PM2.5 concentration was 263.4 ± 105.8 μg m-3 (1σ, n = 30), which was about 40% higher than the values found indoors (186.5 ± 79.5 μg m-3, 1σ, n = 30) and outdoors (191.0 ± 85.3 μg m-3, 1σ, n = 30). High personal exposure PM2.5 levels were mainly related to the ignition of solid fuels for heating and cooking. Correlations among personal exposure, indoor and outdoor PM2.5 levels and their mutual ratios were computed to investigate how personal exposure to fine aerosols can be related to microenvironmental PM2.5 levels and to individual activities. The results showed that households using electric power for heating and cooking were characterized by an average personal exposure PM2.5 value of 156.8 ± 36.6 μg m-3 (1σ, n = 6) while personal exposure to PM2.5 in households using solid fuels was twice higher (310.8 ± 90.4 μg m-3, 1σ, n = 24). Solid fuel combustion products and related secondary formed species dominated PM2.5 mass in personal exposure, indoor and outdoor samples. Motor vehicle emission and various dust sources were two other main contributors identified. Our results demonstrated that the use of clean energy could be an effective measure to reduce personal exposure levels of PM2.5 emitted from domestic solid fuels combustion in winter in rural areas, which implied that the government should speed up the upgrade of the heating and cooking equipment fleet to protect the health of rural residents in northwestern China.

  2. An Inexpensive High-Temporal Resolution Electronic Sun Journal for Monitoring Personal Day to Day Sun Exposure Patterns

    PubMed Central

    Downs, Nathan J.; Parisi, Alfio V.; Butler, Harry; Rawlings, Alex; Elrahoumi, Raja Salem

    2017-01-01

    Exposure to natural sunlight, specifically solar ultraviolet (UV) radiation contributes to lifetime risks of skin cancer, eye disease, and diseases associated with vitamin D insufficiency. Improved knowledge of personal sun exposure patterns can inform public health policy; and help target high-risk population groups. Subsequently, an extensive number of studies have been conducted to measure personal solar UV exposure in a variety of settings. Many of these studies, however, use digital or paper-based journals (self-reported volunteer recall), or employ cost prohibitive electronic UV dosimeters (that limit the size of sample populations), to estimate periods of exposure. A cost effective personal electronic sun journal (ESJ) built from readily available infrared photodiodes is presented in this research. The ESJ can be used to complement traditional UV dosimeters that measure total biologically effective exposure by providing a time-stamped sun exposure record. The ESJ can be easily attached to clothing and data logged to personal devices (including fitness monitors or smartphones). The ESJ improves upon self-reported exposure recording and is a cost effective high-temporal resolution option for monitoring personal sun exposure behavior in large population studies. PMID:29201865

  3. Air ions and mood outcomes: a review and meta-analysis

    PubMed Central

    2013-01-01

    Background Psychological effects of air ions have been reported for more than 80 years in the media and scientific literature. This study summarizes a qualitative literature review and quantitative meta-analysis, where applicable, that examines the potential effects of exposure to negative and positive air ions on psychological measures of mood and emotional state. Methods A structured literature review was conducted to identify human experimental studies published through August, 2012. Thirty-three studies (1957–2012) evaluating the effects of air ionization on depression, anxiety, mood states, and subjective feelings of mental well-being in humans were included. Five studies on negative ionization and depression (measured using a structured interview guide) were evaluated by level of exposure intensity (high vs. low) using meta-analysis. Results Consistent ionization effects were not observed for anxiety, mood, relaxation/sleep, and personal comfort. In contrast, meta-analysis results showed that negative ionization, overall, was significantly associated with lower depression ratings, with a stronger association observed at high levels of negative ion exposure (mean summary effect and 95% confidence interval (CI) following high- and low-density exposure: 14.28 (95% CI: 12.93-15.62) and 7.23 (95% CI: 2.62-11.83), respectively). The response to high-density ionization was observed in patients with seasonal or chronic depression, but an effect of low-density ionization was observed only in patients with seasonal depression. However, no relationship between the duration or frequency of ionization treatment on depression ratings was evident. Conclusions No consistent influence of positive or negative air ionization on anxiety, mood, relaxation, sleep, and personal comfort measures was observed. Negative air ionization was associated with lower depression scores particularly at the highest exposure level. Future research is needed to evaluate the biological plausibility of this association. PMID:23320516

  4. Human exposure to nitro musks and the evaluation of their potential toxicity: an overview

    PubMed Central

    2014-01-01

    Synthetic nitro musks are fragrant chemicals found in household and personal care products. The use of these products leads to direct exposures via dermal absorption, as well as inhalation of contaminated dust and volatilized fragrances. Evidence also suggests that humans are exposed to low doses of these chemicals through oral absorption of contaminated liquids and foods. As these compounds are lipophilic, they and their metabolites, have been found not only in blood, but also breast milk and adipose tissue. After personal use, these environmentally persistent pollutants then pass through sewage treatment plants through their effluent into the environment. Little is known about the biological effects in humans after such a prolonged low dose exposure to these chemicals. While epidemiologic studies evaluating the effects of nitro musk exposures are lacking, there is limited evidence that suggest blood levels of nitro musks are inversely related to luteal hormone levels. This is supported by animal models and laboratory studies that have shown that nitro musks are weakly estrogenic. Nitro musks exposure has been associated with an increased risk of tumor formation in mice. The evidence suggests that while nitro musks by themselves are not genotoxic, they may increase the genotoxicity of other chemicals. However, animal models for nitro musk exposure have proven to be problematic since certain outcomes are species specific. This may explain why evidence for developmental effects in animals is conflicting and inconclusive. Given that animal models and cell-line experiments are suggestive of adverse outcomes, further epidemiologic studies are warranted. PMID:24618224

  5. Portrayal of Mental Illness on the TV Series Monk: Presumed Influence and Consequences of Exposure.

    PubMed

    Hoffner, Cynthia A; Cohen, Elizabeth L

    2015-01-01

    This study of responses to the TV series Monk, about a detective with obsessive-compulsive disorder, examines perceptions and behaviors related to mental illness. A total of 172 respondents completed an online survey. A parasocial bond with Monk was associated with lower stereotypes of mental illness and less social distance. Predictors and outcomes of perceived influence of the series on self and others were also examined. Perceived (positive) influence of the series on others' attitudes was predicted by respondents' favorable evaluation of the series's depiction of mental illness, as well as greater perceived exposure to and favorable evaluations among family and friends. Perceived influence on others also was associated with greater willingness to disclose mental health treatment, but only among people without personal or family experience with mental illness. In contrast, perceived influence of the series on self was predicted only by respondents' own evaluations of the series, and was related to willingness to seek mental health treatment-but only among those who had personally dealt with mental illness.

  6. Styrene vapor control systems in FRP yacht plants.

    PubMed

    Todd, W F

    1985-01-01

    The production of large (greater than 25-ft) fiber-reinforced plastic (FRP) yachts has presented problems of styrene exposure in excess of the Occupational Safety and Health Administration permissible exposure level (OSHA PEL) of 100 ppm. Also, the National Institute for Occupational Safety and Health (NIOSH) is currently recommending a 10-hour workshift, 40-hour workweek time weighted average (TWA) of 50 ppm for styrene. Meeting this challenge will require a system of engineering, work practice, personal protective equipment, and monitoring control measures. NIOSH has performed a study of the engineering controls in three FRP yacht plants. Work practices and the use of personal protective equipment (PPE) were also considered in the evaluation. The three systems evaluated included a dilution system, a local ventilation system, and a push-pull ventilation system. The cost of constructing and operating these systems was not evaluated in this study. Study results indicated that each type of ventilation system can meet the present PEL of 100 ppm styrene; however, it is not certain that these systems can meet a lower PEL of 50 ppm styrene.

  7. Time series analysis of personal exposure to ambient air pollution and mortality using an exposure simulator.

    PubMed

    Chang, Howard H; Fuentes, Montserrat; Frey, H Christopher

    2012-09-01

    This paper describes a modeling framework for estimating the acute effects of personal exposure to ambient air pollution in a time series design. First, a spatial hierarchical model is used to relate Census tract-level daily ambient concentrations and simulated exposures for a subset of the study period. The complete exposure time series is then imputed for risk estimation. Modeling exposure via a statistical model reduces the computational burden associated with simulating personal exposures considerably. This allows us to consider personal exposures at a finer spatial resolution to improve exposure assessment and for a longer study period. The proposed approach is applied to an analysis of fine particulate matter of <2.5 μm in aerodynamic diameter (PM(2.5)) and daily mortality in the New York City metropolitan area during the period 2001-2005. Personal PM(2.5) exposures were simulated from the Stochastic Human Exposure and Dose Simulation. Accounting for exposure uncertainty, the authors estimated a 2.32% (95% posterior interval: 0.68, 3.94) increase in mortality per a 10 μg/m(3) increase in personal exposure to PM(2.5) from outdoor sources on the previous day. The corresponding estimates per a 10 μg/m(3) increase in PM(2.5) ambient concentration was 1.13% (95% confidence interval: 0.27, 2.00). The risks of mortality associated with PM(2.5) were also higher during the summer months.

  8. A portable data-logging system for industrial hygiene personal chlorine monitoring.

    PubMed

    Langhorst, M L; Illes, S P

    1986-02-01

    The combination of suitable portable sensors or instruments with small microprocessor-based data-logger units has made it possible to obtain detailed monitoring data for many health and environmental applications. Following data acquisition in field use, the logged data may be transferred to a desk-top personal computer for complete flexibility in manipulation of data and formating of results. A system has been assembled from commercial components and demonstrated for chlorine personal monitoring applications. The system consists of personal chlorine sensors, a Metrosonics data-logger and reader unit, and an Apple II Plus personal computer. The computer software was developed to handle sensor calibration, data evaluation and reduction, report formating and long-term storage of raw data on a disk. This system makes it possible to generate time-concentration profiles, evaluate dose above a threshold, quantitate short-term excursions and summarize time-weighted average (TWA) results. Field data from plant trials demonstrated feasibility of use, ruggedness and reliability. No significant differences were found between the time-weighted average chlorine concentrations determined by the sensor/logger system and two other methods: the sulfamic acid bubbler reference method and the 3M Poroplastic diffusional dosimeter. The sensor/data-logger system, however, provided far more information than the other two methods in terms of peak excursions, TWAs and exposure doses. For industrial hygiene applications, the system allows better definition of employee exposures, particularly for chemicals with acute as well as chronic health effects.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Real-time PCR detection of toxigenic Fusarium in airborne and settled grain dust and associations with trichothecene mycotoxins.

    PubMed

    Halstensen, Anne Straumfors; Nordby, Karl-Christian; Eduard, Wijnand; Klemsdal, Sonja Sletner

    2006-12-01

    Inhalation of immunomodulating mycotoxins produced by Fusarium spp. that are commonly found in grain dust may imply health risks for grain farmers. Airborne Fusarium and mycotoxin exposure levels are mainly unknown due to difficulties in identifying Fusarium and mycotoxins in personal aerosol samples. We used a novel real-time PCR method to quantify the fungal trichodiene synthase gene (tri5) and DNA specific to F. langsethiae and F. avenaceum in airborne and settled grain dust, determined the personal inhalant exposure level to toxigenic Fusarium during various activities, and evaluated whether quantitative measurements of Fusarium-DNA could predict trichothecene levels in grain dust. Airborne Fusarium-DNA was detected in personal samples even from short tasks (10-60 min). The median Fusarium-DNA level was significantly higher in settled than in airborne grain dust (p < 0.001), and only the F. langsethiae-DNA levels correlated significantly in settled and airborne dust (r(s) = 0.20, p = 0.003). Both F. langsethiae-DNA and tri5-DNA were associated with HT-2 and T-2 toxins (r(s) = 0.24-0.71, p < 0.05 to p < 00.01) in settled dust, and could thus be suitable as indicators for HT-2 and T-2. The median personal inhalant exposure to specific toxigenic Fusarium spp. was less than 1 genome m(-3), but the exposure ranged from 0-10(5) genomes m(-3). This study is the first to apply real-time PCR on personal samples of inhalable grain dust for the quantification of tri5 and species-specific Fusarium-DNA, which may have potential for risk assessments of inhaled trichothecenes.

  10. Assessing occupational exposure to sea lamprey pesticides

    PubMed Central

    Ceballos, Diana M; Beaucham, Catherine C; Kurtz, Kristine; Musolin, Kristin

    2015-01-01

    Background: Sea lampreys are parasitic fish found in lakes of the United States and Canada. Sea lamprey is controlled through manual application of the pesticides 3-trifluoromethyl-4-nitrophenol (TFM) and BayluscideTM into streams and tributaries. 3-Trifluoromethyl-4-nitrophenol may cause irritation and central nervous system depression and Bayluscide may cause irritation, dermatitis, blisters, cracking, edema, and allergic skin reactions. Objectives: To assess occupational exposures to sea lamprey pesticides. Methods: We developed a wipe method for evaluating surface and skin contamination with these pesticides. This method was field tested at a biological field station and at a pesticide river application. We also evaluated exposures using control banding tools. Results: We verified TFM surface contamination at the biological station. At the river application, we found surfaces and worker’s skin contaminated with pesticides. Conclusion: We recommended minimizing exposures by implementing engineering controls and improved use of personal protective equipment. PMID:25730600

  11. An Evaluation of a Counseling-Community Learning Approach to Foreign Language Teaching or Counseling-Learning Theory Applied to Foreign Language Learning. Final Report.

    ERIC Educational Resources Information Center

    Gallagher, Rosina Mena

    This study evaluates the counseling-learning approach to foreign language instruction as compared with traditional methods in terms of language achievement and change in personal orientation and in attitude toward learning. Twelve students volunteered to learn Spanish or German under simultaneous exposure to both languages using the…

  12. 75 FR 34146 - Proposed Collection; Comment Request Resource for the Collection and Evaluation of Human Tissues...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-16

    ... summaries of proposed projects to be submitted to the Office of Management and Budget (OMB) for review and... obtain the personal histories to compare to the life styles and exposures and the biospecimens will serve...

  13. Assessment of road users' elemental carbon personal exposure levels, London, UK

    NASA Astrophysics Data System (ADS)

    Adams, H. S.; Nieuwenhuijsen, M. J.; Colvile, R. N.; Older, M. J.; Kendall, M.

    Little is known about particulate elemental carbon (EC) personal exposure levels, a key component of diesel exhaust, specifically in transport microenvironments. A method utilizing the optical properties of EC particles has been applied to personal exposure measurement filter samples. In a series of field studies carried out in London, UK, during 1999-2000 over 400 fine particle (PM 2.5) personal exposure level measurements were taken for journeys in bicycle, bus, car and underground rail transport microenvironments, along three main fixed routes. The particulate EC contribution to the PM 2.5 personal exposure was assessed indirectly by means of an optical technique and with the development and use of a size fraction specific and site-specific calibration curve. In this first EC personal exposure study of transport users geometric mean exposure levels in the summer field campaign were 11.2 μg m -3 (GSD=2.7) for cyclists, 13.6 μg m -3 (GSD=1.9) for bus passengers and 21.6 μg m -3 (GSD=2.1) for car drivers; corresponding exposure levels in the winter were 16.4 μg m -3 (GSD=1.8), 18.6 μg m -3 (GSD=2.3) and 27.3 μg m -3 (GSD=2.0), respectively. EC/PM 2.5 ratios were approximately 0.5-0.6 for bicycle and bus modes and 0.7-0.8 for the car mode. EC/PM 2.5 ratios for different routes ranged from approximately 0.7 for Route 1 to 0.4 for Route 3. Cyclists had the lowest exposure to EC, and car occupants the highest exposure. A large difference in exposure levels between a central high traffic density route and the other less central routes was observed. Particulate EC was a very significant proportion of the total PM 2.5 personal exposure and EC personal exposure levels were considerably higher than reported fixed site monitor EC concentrations.

  14. The leaded apron revisited: does it reduce gonadal radiation dose in dental radiology?

    PubMed

    Wood, R E; Harris, A M; van der Merwe, E J; Nortjé, C J

    1991-05-01

    A tissue-equivalent anthropomorphic human phantom was used with a lithium fluoride thermoluminescent dosimetry system to evaluate the radiation absorbed dose to the ovarian and testicular region during dental radiologic procedures. Measurements were made with and without personal lead shielding devices consisting of thyroid collar and apron of 0.25 mm lead thickness equivalence. The radiation absorbed dose with or without lead shielding did not differ significantly from control dosimeters in vertex occlusal and periapical views (p greater than 0.05). Personal lead shielding devices did reduce gonadal dose in the case of accidental exposure (p less than 0.05). A leaded apron of 0.25 mm lead thickness equivalent was permeable to radiation in direct exposure testing.

  15. Mutations in the dihydropteroate synthase gene of Pneumocystis jiroveci isolates from Portuguese patients with Pneumocystis pneumonia.

    PubMed

    Costa, M C; Helweg-Larsen, J; Lundgren, Bettina; Antunes, F; Matos, O

    2003-11-01

    The aim of this study was to evaluate the frequency of mutations of the P. jiroveci dihydropteroate synthase (DHPS) gene in an immunocompromised Portuguese population and to investigate the possible association between DHPS mutations and sulpha exposure. In the studied population, DHPS gene mutations were not significantly more frequent in patients exposed to sulpha drugs compared with patients not exposed (P=0.390). The results of this study suggest that DHPS gene mutations are frequent in the Portuguese immunocompromised population but do not seem associated with previous sulpha exposure. These results are consistent with the possibility of an incidental acquisition and transmission of P. jiroveci mutant types, either by person to person transmission or from an environmental source.

  16. Modeling and analysis of personal exposures to VOC mixtures using copulas

    PubMed Central

    Su, Feng-Chiao; Mukherjee, Bhramar; Batterman, Stuart

    2014-01-01

    Environmental exposures typically involve mixtures of pollutants, which must be understood to evaluate cumulative risks, that is, the likelihood of adverse health effects arising from two or more chemicals. This study uses several powerful techniques to characterize dependency structures of mixture components in personal exposure measurements of volatile organic compounds (VOCs) with aims of advancing the understanding of environmental mixtures, improving the ability to model mixture components in a statistically valid manner, and demonstrating broadly applicable techniques. We first describe characteristics of mixtures and introduce several terms, including the mixture fraction which represents a mixture component's share of the total concentration of the mixture. Next, using VOC exposure data collected in the Relationship of Indoor Outdoor and Personal Air (RIOPA) study, mixtures are identified using positive matrix factorization (PMF) and by toxicological mode of action. Dependency structures of mixture components are examined using mixture fractions and modeled using copulas, which address dependencies of multiple variables across the entire distribution. Five candidate copulas (Gaussian, t, Gumbel, Clayton, and Frank) are evaluated, and the performance of fitted models was evaluated using simulation and mixture fractions. Cumulative cancer risks are calculated for mixtures, and results from copulas and multivariate lognormal models are compared to risks calculated using the observed data. Results obtained using the RIOPA dataset showed four VOC mixtures, representing gasoline vapor, vehicle exhaust, chlorinated solvents and disinfection by-products, and cleaning products and odorants. Often, a single compound dominated the mixture, however, mixture fractions were generally heterogeneous in that the VOC composition of the mixture changed with concentration. Three mixtures were identified by mode of action, representing VOCs associated with hematopoietic, liver and renal tumors. Estimated lifetime cumulative cancer risks exceeded 10−3 for about 10% of RIOPA participants. Factors affecting the likelihood of high concentration mixtures included city, participant ethnicity, and house air exchange rates. The dependency structures of the VOC mixtures fitted Gumbel (two mixtures) and t (four mixtures) copulas, types that emphasize tail dependencies. Significantly, the copulas reproduced both risk predictions and exposure fractions with a high degree of accuracy, and performed better than multivariate lognormal distributions. Copulas may be the method of choice for VOC mixtures, particularly for the highest exposures or extreme events, cases that poorly fit lognormal distributions and that represent the greatest risks. PMID:24333991

  17. Exposure chain of urban air PM 2.5—associations between ambient fixed site, residential outdoor, indoor, workplace and personal exposures in four European cities in the EXPOLIS-study

    NASA Astrophysics Data System (ADS)

    Kousa, Anu; Oglesby, Lucy; Koistinen, Kimmo; Künzli, Nino; Jantunen, Matti

    In the EXPOLIS study personal exposures and microenvironment levels of air pollutants from 50-201 urban adult (25-55 yr) participants were measured in six European cities during 1 yr from autumn 1996 to winter 1997-98. This paper presents the associations between the personal PM 2.5 exposures, microenvironment (residential indoor, residential outdoor and workplace indoor) and ambient fixed site concentrations measured in Helsinki (Finland), Basel (Switzerland), Prague (Czech Republic) and Athens (Greece). Considering the whole chain from ambient fixed site to residential outdoor, residential indoor and personal leisure time (non-working hours) exposure, the correlations were highest between personal leisure time exposures and residential indoor concentrations (non-environmental tobacco smoke (ETS): Pearson r=0.72-0.92, ETS included: r=0.82-0.86) except in Athens, where the correlation between residential indoor and outdoor air was highest (non-ETS: r=0.82, ETS included: r=0.68)). Unfortunately, ambient fixed site PM 2.5 concentrations were measured continuously only in Helsinki. Ambient fixed site PM 2.5 concentrations correlated quite well with residential outdoor concentrations ( r=0.90), and also with residential indoor (non-ETS) concentrations ( r=0.80), but concentrations measured at ambient fixed site monitors were poor predictors of personal exposures to PM 2.5. They were particularly poor predictors of personal workday exposures (non-ETS: r=0.34, ETS included: r=0.25), but considerably better for personal leisure time exposures (non-ETS: r=0.69, ETS included: r=0.54). According to log-linear regression models combined from all centres of non-ETS-exposed participants, residential indoor concentrations explained 76% of personal leisure time PM 2.5 exposure variation and workplace indoor concentrations explained 66% of the workday exposure variation.

  18. Particulate matter 2.5 (PM2.5) personal exposure evaluation on mechanics and administrative officers at the motor vehicle testing center at Pulo Gadung, DKI Jakarta.

    PubMed

    Rizky, Zuly Prima; Yolla, Patricia Bebby; Ramdhan, Doni Hikmat

    2016-03-01

    Exposure to fine particulate matter (PM2.5) in both the short and long term has been known to cause deaths and health effects, especially related to the heart, blood vessels, and lungs. Based on this information, researchers conducted this study at a motor vehicle testing center unit at Pulo Gadung, in Jarkarta, to determine the concentration of PM2.5 that workers were exposed to. The major source of PM2.5 in this area is from the exhaust of gas emissions from motor vehicles, which is one of the largest contributors to the levels of PM in urban areas. Ten mechanics were picked from 16 mechanics that work in this station. Four administration workers from different posts were also picked to participate. The researcher conducted the PM2.5 personal exposure measurement during weekdays from 6 to 14 April 2015 (2 workers/day). This research was conducted to measure the particle number concentration with size <2.5 μm. The average personal exposure concentrations of PM2.5 in the study period received by the group of mechanics amounted to 149.01 μm/m3 while the administrative officer group that consisted of four administrative workers were exposed to an average of 103.28 μm/m3. Once converted and compared with the World Health Organization Air Quality Guidelines, the PM2.5 exposure of the mechanics and administrative officers exceeded the recommended exposure (25 μm/m3).

  19. Exposure Assessment and Biomonitoring of Workers in Magnetic Resonance Environment: An Exploratory Study

    PubMed Central

    Sannino, Anna; Romeo, Stefania; Scarfì, Maria Rosaria; Massa, Rita; d’Angelo, Raffaele; Petrillo, Antonella; Cerciello, Vincenzo; Fusco, Roberta; Zeni, Olga

    2017-01-01

    Magnetic resonance imaging (MRI) has evolved rapidly over the past few decades as one of the most flexible tools in medical research and diagnostic imaging. MRI facilities are important sources of multiple exposure to electromagnetic fields for both patients and health-care staff, due to the presence of electromagnetic fields of multiple frequency ranges, different temporal variations, and field strengths. Due to the increasing use and technological advancements of MRI systems, clearer insights into exposure assessment and a better understanding of possible harmful effects due to long-term exposures are highly needed. In the present exploratory study, exposure assessment and biomonitoring of MRI workers at the Radio-diagnostics Unit of the National Cancer Institute of Naples “Pascale Foundation” (Naples, Italy) have been carried out. In particular, exposure to the MRI static magnetic field (SMF) has been evaluated by means of personal monitoring, while an application tool has been developed to provide an estimate of motion-induced, time-varying electric fields. Measurement results have highlighted a high day-to-day and worker-to-worker variability of the exposure to the SMF, which strongly depends on the characteristics of the environment and on personal behaviors, and the developed application tool can be adopted as an easy-to-use tool for rapid and qualitative evaluation of motion-induced, time-varying electric field exposure. Regarding biomonitoring, the 24 workers of the Radio-diagnostics Unit were enrolled to evaluate both spontaneous and mitomycin C-induced chromosomal fragility in human peripheral blood lymphocytes, by means of the cytokinesis-block micronucleus assay. The study subjects were 12 MRI workers, representative of different professional categories, as the exposed group, and 12 workers with no MRI exposure history, as the reference group. The results show a high worker-to-worker variability for both field exposure assessment and biomonitoring, as well as several critical issues and practicalities to be faced with in this type of investigations. The procedures for risk assessment and biomonitoring proposed here can be used to inform future research in this field, which will require a refinement of exposure assessment methods and an enlargement of the number of subjects enrolled in the biomonitoring study to gain robust statistics and reliable results. PMID:29326919

  20. ESTIMATED HOURLY PERSONAL EXPOSURES TO AMBIENT AND NON-AMBIENT PARTICULATE MATTER AMONG SENSITIVE POPULATIONS IN SEATTLE, WASHINGTON

    EPA Science Inventory

    Epidemiological studies of particulate matter (PM) routinely use concentrations measured with stationary outdoor monitors as surrogates for personal exposure. Despite the frequently reported poor correlations between ambient concentrations and total personal exposure, the epidemi...

  1. Permethrin treated clothing to protect outdoor workers: evaluation of different methods for mosquito exposure against populations with differing resistance status.

    PubMed

    Richards, Stephanie L; Agada, Nwanne; Balanay, Jo Anne G; White, Avian V

    2018-02-01

    Minimizing arthropod exposure (e.g. mosquito and tick bites) is vital to protect health of outdoor workers. Personal protective measures can help protect against exposure. Here, the quantity of permethrin was evaluated for different fabric types after washing. Cone and petri dish exposure assays were used to investigate the knockdown/mortality of permethrin-susceptible and permethrin-resistant populations of mosquitoes. Permethrin-treated clothing was effective against the tested mosquito population that was susceptible to permethrin but not a permethrin-resistant population. Permethrin quantity was significantly highest in the 100% cotton fabric and for the 0 wash group. Permethrin quantity in fabrics decreased with washing. No significant differences (p > 0.05) were observed in knockdown/mortality rates for either exposure method. The protective effect of permethrin-treated clothing against mosquitoes is impacted by many factors, e.g. wash frequency, fabric type, and the susceptibility/resistance status of local mosquito populations.

  2. Inhalation exposure and health risk levels to BTEX and carbonyl compounds of traffic policeman working in the inner city of Bangkok, Thailand

    NASA Astrophysics Data System (ADS)

    Kanjanasiranont, Navaporn; Prueksasit, Tassanee; Morknoy, Daisy

    2017-03-01

    Benzene, toluene, ethylbenzene and xylenes (BTEX) and carbonyl compounds (CCs) are recognized traffic-related air pollutants in urban environments and are the focus of this study. In Bangkok, the BTEX and CC concentrations in both ambient air and personal exposure samples were studied during two periods (April-May and August-September 2014) at four different sampling sites around the Pathumwan District (three intersections and one T-junction). Traffic policemen, representing the high-exposure group for these toxic air pollutants, were observed, and the health risk to these workers was evaluated. Toluene was the predominant aromatic compound in the ambient and personal exposure samples. The maximum average ambient concentration of BTEX was 2968.96 μg/m3. Formaldehyde and acetaldehyde were the most abundant CCs at all of the sampling sites, with the greatest mean concentrations of these substances being 21.50 μg/m3 and 64.82 μg/m3, respectively. In the personal exposure samples, the highest levels of BTEX, formaldehyde and acetaldehyde concentrations were 2231.85 μg/m3, 10.61 μg/m3, and 16.03 μg/m3, respectively. In terms of risk assessment, benzene posed the greatest cancer risk (at the 95% CI), followed by toluene, acetaldehyde and formaldehyde (1.15E-02, 5.14E-03, 2.84E-04, and 2.52E-04, respectively). Three risk factors were investigated to reduce the total cancer risk levels: reducing the chemical concentration, exposure time and exposure duration. The use of a mask (chemical concentration) was the best way to reduce the risk to traffic police. However, the risk value of benzene (average 1.57E-05) was still higher than an acceptable value when using a mask.

  3. The benefits of probabilistic exposure assessment: three case studies involving contaminated air, water, and soil.

    PubMed

    Finley, B; Paustenbach, D

    1994-02-01

    Probabilistic risk assessments are enjoying increasing popularity as a tool to characterize the health hazards associated with exposure to chemicals in the environment. Because probabilistic analyses provide much more information to the risk manager than standard "point" risk estimates, this approach has generally been heralded as one which could significantly improve the conduct of health risk assessments. The primary obstacles to replacing point estimates with probabilistic techniques include a general lack of familiarity with the approach and a lack of regulatory policy and guidance. This paper discusses some of the advantages and disadvantages of the point estimate vs. probabilistic approach. Three case studies are presented which contrast and compare the results of each. The first addresses the risks associated with household exposure to volatile chemicals in tapwater. The second evaluates airborne dioxin emissions which can enter the food-chain. The third illustrates how to derive health-based cleanup levels for dioxin in soil. It is shown that, based on the results of Monte Carlo analyses of probability density functions (PDFs), the point estimate approach required by most regulatory agencies will nearly always overpredict the risk for the 95th percentile person by a factor of up to 5. When the assessment requires consideration of 10 or more exposure variables, the point estimate approach will often predict risks representative of the 99.9th percentile person rather than the 50th or 95th percentile person. This paper recommends a number of data distributions for various exposure variables that we believe are now sufficiently well understood to be used with confidence in most exposure assessments. A list of exposure variables that may require additional research before adequate data distributions can be developed are also discussed.

  4. The relationship between ambient ultraviolet radiation (UVR) and objectively measured personal UVR exposure dose is modified by season and latitude.

    PubMed

    Sun, J; Lucas, R M; Harrison, S; van der Mei, I; Armstrong, B K; Nowak, M; Brodie, A; Kimlin, M G

    2014-12-01

    Despite the widespread use of ambient ultraviolet radiation (UVR) as a proxy measure of personal exposure to UVR, the relationship between the two is not well-defined. This paper examines the effects of season and latitude on the relationship between ambient UVR and personal UVR exposure. We used data from the AusD Study, a multi-centre cross-sectional study among Australian adults (18-75 years), where personal UVR exposure was objectively measured using polysulphone dosimeters. Data were analysed for 991 participants from 4 Australian cities of different latitude: Townsville (19.3°S), Brisbane (27.5°S), Canberra (35.3°S) and Hobart (42.8°S). Daily personal UVR exposure varied from 0.01 to 21 Standard Erythemal Doses (median = 1.1, IQR: 0.5-2.1), on average accounting for 5% of the total available ambient dose. There was an overall positive correlation between ambient UVR and personal UVR exposure (r = 0.23, p < 0.001). However, the correlations varied according to season and study location: from strong correlations in winter (r = 0.50) and at high latitudes (Hobart, r = 0.50; Canberra, r = 0.39), to null or even slightly negative correlations, in summer (r = 0.01) and at low latitudes (Townsville, r = -0.06; Brisbane, r = -0.16). Multiple regression models showed significant effect modification by season and location. Personal exposure fraction of total available ambient dose was highest in winter (7%) and amongst Hobart participants (7%) and lowest in summer (1%) and in Townsville (4%). These results suggest season and latitude modify the relationship between ambient UVR and personal UVR exposure. Ambient UVR may not be a good indicator for personal exposure dose under some circumstances.

  5. USE OF PERSONAL-INDOOR-OUTDOOR SULFUR CONCENTRATIONS TO ESTIMATE THE INFILTRATION FACTOR AND OUTDOOR EXPOSURE FACTOR FOR INDIVIDUAL HOMES AND PERSONS

    EPA Science Inventory

    A study of personal, indoor, and outdoor exposure to PM2.5 and associated elements has been carried out for 37 residents of the Research Triangle Park area in North Carolina. Participants were selected from persons expected to be at elevated risk from exposure to particles, and ...

  6. Epidemiological evidence of carcinogenicity of chlorinated organics in drinking water.

    PubMed

    Cantor, K P

    1982-12-01

    Concern has recently been voiced over possible chronic toxicity associated with chlorination of public drinking water supplies in the United States. This paper reviews the available evidence and the studies underway to further evaluate hypothesized associations between cancer risk and byproducts of chlorination. Preliminary data from measures of halogenated volatiles and personal exposure histories from respondents in a large epidemiologic study of bladder cancer are presented. These data support the use in epidemiologic studies of categorical measures of exposure and suggest that results from completed case-control studies, based on death certificates, may have underestimated the true risk of exposure to chlorination by-products. The current generation of studies which use a case-control interview design offer many advantages over earlier efforts to evaluate this issue.

  7. Epidemiological evidence of carcinogenicity of chlorinated organics in drinking water.

    PubMed Central

    Cantor, K P

    1982-01-01

    Concern has recently been voiced over possible chronic toxicity associated with chlorination of public drinking water supplies in the United States. This paper reviews the available evidence and the studies underway to further evaluate hypothesized associations between cancer risk and byproducts of chlorination. Preliminary data from measures of halogenated volatiles and personal exposure histories from respondents in a large epidemiologic study of bladder cancer are presented. These data support the use in epidemiologic studies of categorical measures of exposure and suggest that results from completed case-control studies, based on death certificates, may have underestimated the true risk of exposure to chlorination by-products. The current generation of studies which use a case-control interview design offer many advantages over earlier efforts to evaluate this issue. PMID:6759108

  8. Practices and impacts post-exposure to blood and body fluid in operating room nurses: A cross-sectional study.

    PubMed

    Kasatpibal, Nongyao; Whitney, JoAnne D; Katechanok, Sadubporn; Ngamsakulrat, Sukanya; Malairungsakul, Benjawan; Sirikulsathean, Pinyo; Nuntawinit, Chutatip; Muangnart, Thanisara

    2016-05-01

    Improper or inadequate actions taken after blood and body fluid exposures place individuals at risk for infection with bloodborne pathogens. This has potential, significant impact for health and well-being. To evaluate the practices and the personal impact experienced following blood and body fluid exposures among operating room nurses. A cross-sectional, multi-center study. Government and private hospitals from all parts of Thailand. Operating room nurses from 247 hospitals. A questionnaire eliciting responses on characteristics, post-exposure practices, and impacts was sent to 2500 operating room nurses. Usable questionnaires were returned by 2031 operating room nurses (81.2%). Of these 1270 had experience with blood and body fluid exposures (62.5%). Most operating room nurses did not report blood and body fluid exposures (60.9%). The major reasons of underreporting were low risk source (40.2%) and belief that they were not important to report (16.3%). Improper post-exposure practices were identified, 9.8% did not clean exposure area immediately, 18.0% squeezed out the wound, and 71.1% used antiseptic solution for cleansing a puncture wound. Post-exposure, 58.5% of them sought counseling, 16.3% took antiretroviral prophylaxis, 23.8% had serologic testing for hepatitis B and 43.1% for hepatitis C. The main personal impacts were anxiety (57.7%), stress (24.2%), and insomnia (10.2%). High underreporting, inappropriate post-exposure practices and impacts of exposure were identified from this study. Comprehensive education and effective training of post-exposure management may be keys to resolving these important problems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. [Genotoxic damage among artisanal and small-scale mining workers exposed to mercury].

    PubMed

    Rosales-Rimache, Jaime A; Elizabeth Malca, Nancy; Alarcón, Jhonatan J; Chávez, Manuel; Gonzáles, Marco Antonio

    2013-01-01

    To determine the genotoxic damage among artisanal and small-scale mining workers exposed to mercury. Observational cross-sectional study which evaluated mercury-exposed workers (n=83), whose cells were collected by mouth swab for further staining, microscopic observance, micronuclei count, and other nuclear alterations. 24-hour urine was also collected for the determination of inorganic mercury. 68.7% of participants were male, the mean age being 43 ± 12,4 years (range: 16-76). The average time of occupational exposure to mercury was 12,1 ± 6,7 years, and the contact with mercury was 4,1 ± 3,6 kg per person per day. 93% of participants failed to wear personal protection gear while handling mercury. Results of biological monitoring showed that 17% of participants had concentrations of mercury in urine higher than 2,5 µg/L, this value being the detection limit of the measurement technique used. Results of the genotoxic evaluation evidenced that 15% of people with labor exposure to mercury presented micronuclei in mouth epithelial cells, and other indicators of nuclear alteration such as nucleoplasmic bridges, gemmation and binucleation were found, which are also considered genotoxic events associated to the exposure of physical or chemical risk agents. The finding of micronuclei in mouth epithelial cells reflects genotoxic damage associated to the labor exposure of mercury used in artisanal and small-scale mining activities.

  10. A panel study of occupational exposure to fine particulate matter and changes in DNA methylation over a single workday and years worked in boilermaker welders

    PubMed Central

    2013-01-01

    Background Exposure to pollutants including metals and particulate air pollution can alter DNA methylation. Yet little is known about intra-individual changes in DNA methylation over time in relationship to environmental exposures. Therefore, we evaluated the effects of acute- and chronic metal-rich PM2.5 exposures on DNA methylation. Methods Thirty-eight male boilermaker welders participated in a panel study for a total of 54 person days. Whole blood was collected prior to any welding activities (pre-shift) and immediately after the exposure period (post-shift). The percentage of methylated cytosines (%mC) in LINE-1, Alu, and inducible nitric oxide synthase gene (iNOS) were quantified using pyrosequencing. Personal PM2.5 (particulate matter with an aerodynamic diameter ≤ 2.5 μm) was measured over the work-shift. A questionnaire assessed job history and years worked as a boilermaker. Linear mixed models with repeated measures evaluated associations between DNA methylation, PM2.5 concentration (acute exposure), and years worked as a boilermaker (chronic exposure). Results PM2.5 exposure was associated with increased methylation in the promoter region of the iNOS gene (β = 0.25, SE: 0.11, p-value = 0.04). Additionally, the number of years worked as a boilermaker was associated with increased iNOS methylation (β = 0.03, SE: 0.01, p-value = 0.03). No associations were observed for Alu or LINE-1. Conclusions Acute and chronic exposure to PM2.5 generated from welding activities was associated with a modest change in DNA methylation of the iNOS gene. Future studies are needed to confirm this association and determine if the observed small increase in iNOS methylation are associated with changes in NO production or any adverse health effect. PMID:23758843

  11. Household air pollution and measures of blood pressure, arterial stiffness and central haemodynamics.

    PubMed

    Baumgartner, Jill; Carter, Ellison; Schauer, James J; Ezzati, Majid; Daskalopoulou, Stella S; Valois, Marie-France; Shan, Ming; Yang, Xudong

    2018-02-09

    We evaluated the exposure-response associations between personal exposure to air pollution from biomass stoves and multiple vascular and haemodynamic parameters in rural Chinese women. We analysed the baseline information from a longitudinal study in southwestern China. Women's brachial and central blood pressure and pulse pressure, carotid-femoral pulse wave velocity and augmentation index, and their 48-hour personal exposures to fine particulate matter (PM 2.5 ) and black carbon were measured in summer and winter. We evaluated the associations between exposure to air pollution and haemodynamic parameters using mixed-effects regression models adjusted for known cardiovascular risk factors. Women's (n=205, ages 27-86 years) exposures to PM 2.5 and black carbon ranged from 14 µg/m 3 to 1405 µg/m 3 and 0.1-121.8 µg/m 3 , respectively. Among women aged ≥50 years, increased PM 2.5 exposure was associated with higher systolic (brachial: 3.5 mm Hg (P=0.05); central: 4.4 mm Hg (P=0.005)) and diastolic blood pressure (central: 1.3 mm Hg (P=0.10)), higher pulse pressure (peripheral: 2.5 mm Hg (P=0.05); central: 2.9 mm Hg (P=0.008)) and lower peripheral-central pulse pressure amplification (-0.007 (P=0.04)). Among younger women, the associations were inconsistent in the direction of effect and not statistically significant. Increased PM 2.5 exposure was associated with no difference in pulse wave velocity and modestly higher augmentation index though the CI included zero (1.1%; 95% CI -0.2% to 2.4%). Similar associations were found for black carbon exposure. Exposure to household air pollution was associated with higher blood pressure and central haemodynamics in older Chinese women, with no associations observed with pulse wave velocity. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  12. Relevance of both individual risk factors and occupational exposure in cancer survival studies: the example of intestinal type sinonasal adenocarcinoma.

    PubMed

    Tripodi, Dominique; Ferron, Christophe; Malard, Olivier; de Montreuil, Claude Beauvillain; Planche, Lucie; Sebille-Rivain, Veronique; Roedlich, Claude; Quéméner, Sylvia; Renaudin, Karine; Longuenesse, Claire; Verger, Christian; Meflah, Khaled; Gratas, Catherine; Géraut, Christian

    2011-09-01

    Wood dust is a well-established risk factor for intestinal type sinonasal adenocarcinoma. The 5-year overall survival has varied from 20% to 80% according T1-T4 stages; 5-year survival according to histologic subtype has varied from 20% to 50%. To date, no study has evaluated whether environmental, occupational, and personal risk factors have any impact on both overall and cancer-specific survival. We aimed to determine whether exposure to carcinogenic risk factors besides wood exposure can influence the survival of patients with sinonasal ethmoid carcinoma. Retrospective cohort study of the association of survival data and occupational and personal carcinogenic risk factors. All patients hospitalized for ethmoid adenocarcinoma at the Nantes University Hospital between 1988 and 2004 were included . Data concerning TNM classification, histology, type and quality of tumor resection at the macro- and microscopic level, and occupational and personal exposure to carcinogens were collected. Statistical analysis was conducted using univariate and multivariate linear regression. A total of 98 patients were included with a response rate of 98%. Data showed 86% of patients had been exposed to wood dust. The 5-year survival was 62%. We first identified four factors that independently influenced overall survival: diplopia (P = .0159), spread to the orbit (P = .0113), bilateral involvement (P = .0134), TNM stage (P < .001). When the analysis included all occupational environmental factors (wood dust, solvent, and metals exposure) as well as personal risk factors, the length of exposure to metals (P = .0307) and tobacco exposure (P = .0031) also were found to influence 5-year overall survival. We identified high prevalence of colon cancer (4%) and double cancer (18%). We showed exposure to both environmental (tobacco) and occupational (metal dust) factors could influence survival in the diagnosis of a cancer. Our study suggests that screening for colon cancer should be offered to wood dust workers. A prospective multicentric study should be necessary to confirm our results. Copyright © 2011 The American Laryngological, Rhinological, and Otological Society, Inc.

  13. PERSONAL EXPOSURES TO POLYCYCLIC AROMATIC HYDROCARBONS ASSOCIATED WITH THE NHEXAS PILOT

    EPA Science Inventory

    Personal exposure monitoring for select polycyclic aromatic hydrocarbons (PAHs) was performed as part of the National Human Exposure Assessment Survey (NHEXAS) Pilot Study in Baltimore, MD. Twenty-four hour PM10 sample collections (~5.7 m3) were performed using personal envi...

  14. Trends of VOC exposures among a nationally representative sample: Analysis of the NHANES 1988 through 2004 data sets

    PubMed Central

    Su, Feng-Chiao; Mukherjee, Bhramar; Batterman, Stuart

    2015-01-01

    Exposures to volatile organic compounds (VOCs) are ubiquitous due to emissions from personal, commercial and industrial products, but quantitative and representative information regarding long term exposure trends is lacking. This study characterizes trends from1988 to 2004 for the 15 VOCs measured in blood in five cohorts of the National Health and Nutrition Examination Survey (NHANES), a large and representative sample of U.S. adults. Trends were evaluated at various percentiles using linear quantile regression (QR) models, which were adjusted for solvent-related occupations and cotinine levels. Most VOCs showed decreasing trends at all quantiles, e.g., median exposures declined by 2.5 (m, p-xylene) to 6.4 (tetrachloroethene) percent per year over the 15 year period. Trends varied by VOC and quantile, and were grouped into three patterns: similar decreases at all quantiles (including benzene, toluene); most rapid decreases at upper quantiles (ethylbenzene, m, p-xylene, o-xylene, styrene, chloroform, tetrachloroethene); and fastest declines at central quantiles (1,4-dichlorobenzene). These patterns reflect changes in exposure sources, e.g., upper-percentile exposures may result mostly from occupational exposure, while lower percentile exposures arise from general environmental sources. Both VOC emissions aggregated at the national level and VOC concentrations measured in ambient air also have declined substantially over the study period and are supportive of the exposure trends, although the NHANES data suggest the importance of indoor sources and personal activities on VOC exposures. While piecewise QR models suggest that exposures of several VOCs decreased little or any during the 1990’s, followed by more rapid decreases from 1999 to 2004, questions are raised concerning the reliability of VOC data in several of the NHANES cohorts and its applicability as an exposure indicator, as demonstrated by the modest correlation between VOC levels in blood and personal air collected in the 1999/2000 cohort. Despite some limitations, the NHANES data provides a unique, long term and direct measurement of VOC exposures and trends. PMID:25705111

  15. Assessment of potential asbestos exposures from jet engine overhaul work.

    PubMed

    Mlynarek, S P; Van Orden, D R

    2012-06-01

    Asbestos fibers have been used in a wide variety of products and numerous studies have shown that exposures from the use or manipulation of these products can vary widely. Jet engines contained various components (gaskets, clamps, o-rings and insulation) that contained asbestos that potentially could release airborne fibers during routine maintenance or during an engine overhaul. To evaluate the potential exposures to aircraft mechanics, a Pratt & Whitney JT3D jet engine was obtained and overhauled by experienced mechanics using tools and work practices similar to those used since the time this engine was manufactured. This study has demonstrated that the disturbance of asbestos-containing gaskets, o-rings, and other types of asbestos-containing components, while performing overhaul work to a jet engine produces very few airborne fibers, and that virtually none of these aerosolized fibers is asbestos. The overhaul work was observed to be dirty and oily. The exposures to the mechanics and bystanders were several orders of magnitude below OSHA exposure regulations, both current and historic. The data presented underscore the lack of risk to the health of persons conducting this work and to other persons in proximity to it from airborne asbestos. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Personal exposure to particulate matter in commuters using different transport modes (bus, bicycle, car and subway) in an assigned route in downtown Santiago, Chile.

    PubMed

    Suárez, Liliana; Mesías, Stephanie; Iglesias, Verónica; Silva, Claudio; Cáceres, Dante D; Ruiz-Rudolph, Pablo

    2014-05-01

    The objective of this study was to compare personal exposure to particulate matter (fine and ultrafine particles) in commuters using different transport modes (bicycle, bus, car and subway) in a busy, assigned route in downtown Santiago, Chile. Volunteers carrying personal samplers completed scheduled commutes during the morning rush hours, while central site measurements were conducted in parallel. A total of 137 valid commutes were assessed. The impact of central site, traffic and other variables was explored with regression models. PM2.5 personal concentrations were equal to or slightly above central site measurements, while UFP personal concentrations were above them. Regression models showed impacts of both background levels and traffic emissions on personal PM2.5 and UFP exposure. Traffic impacts varied with transport modes. Estimates of traffic impacts on personal PM2.5 exposure were 2.0, 13.0, 16.9 and 17.5 μg m(-3), for car, bicycle, subway and bus, respectively; while for UFP exposure were 8400, 16 200, 25 600 and 30 100 counts per cm(3), for subway, car, bicycle and bus, respectively. After controlling the central site and transport mode, higher temperatures increased PM2.5 exposure and decreased UFP ones, while the wind direction affected UFP personal exposure. In conclusion, we found significant impacts of both central site background measurements and traffic emissions on personal exposure of volunteer commuters in an assigned route in Santiago, with impacts varying with transport modes.

  17. Prevalence and risk factors of non-carious cervical lesions related to occupational exposure to acid mists.

    PubMed

    Bomfim, Rafael Aiello; Crosato, Edgard; Mazzilli, Luiz Eugênio Nigro; Frias, Antonio Carlos

    2015-01-01

    This study evaluates the prevalence and risk factors of non-carious cervical lesions (NCCLs) in a Brazilian population of workers exposed and non-exposed to acid mists and chemical products. One hundred workers (46 exposed and 54 non-exposed) were evaluated in a Centro de Referência em Saúde do Trabalhador - CEREST (Worker's Health Reference Center). The workers responded to questionnaires regarding their personal information and about alcohol consumption and tobacco use. A clinical examination was conducted to evaluate the presence of NCCLs, according to WHO parameters. Statistical analyses were performed by unconditional logistic regression and multiple linear regression, with the critical level of p < 0.05. NCCLs were significantly associated with age groups (18-34, 35-44, 45-68 years). The unconditional logistic regression showed that the presence of NCCLs was better explained by age group (OR = 4.04; CI 95% 1.77-9.22) and occupational exposure to acid mists and chemical products (OR = 3.84; CI 95% 1.10-13.49), whereas the linear multiple regression revealed that NCCLs were better explained by years of smoking (p = 0.01) and age group (p = 0.04). The prevalence of NCCLs in the study population was particularly high (76.84%), and the risk factors for NCCLs were age, exposure to acid mists and smoking habit. Controlling risk factors through preventive and educative measures, allied to the use of personal protective equipment to prevent the occupational exposure to acid mists, may contribute to minimizing the prevalence of NCCLs.

  18. Evaluation of Consumer Product Co-occurrence to Inform Chemical Exposure

    EPA Science Inventory

    Consumer products are an important target of chemical innovation. Used daily for personal hygiene, home care, disinfection and cleaning, consumer products provide a host of benefits, and also an efficient delivery vehicle for a variety of chemicals into our homes and bodies. Al...

  19. Serologic Markers for Detecting Malaria in Areas of Low Endemicity, Somalia, 2008

    PubMed Central

    Youssef, Randa M.; Cook, Jackie; Cox, Jonathan; Alegana, Victor A.; Amran, Jamal; Noor, Abdisalan M.; Snow, Robert W.; Drakeley, Chris

    2010-01-01

    Areas in which malaria is not highly endemic are suitable for malaria elimination, but assessing transmission is difficult because of lack of sensitivity of commonly used methods. We evaluated serologic markers for detecting variation in malaria exposure in Somalia. Plasmodium falciparum or P. vivax was not detected by microscopy in cross-sectional surveys of samples from persons during the dry (0/1,178) and wet (0/1,128) seasons. Antibody responses against P. falciparum or P. vivax were detected in 17.9% (179/1,001) and 19.3% (202/1,044) of persons tested. Reactivity against P. falciparum was significantly different between 3 villages (p<0.001); clusters of seroreactivity were present. Distance to the nearest seasonal river was negatively associated with P. falciparum (p = 0.028) and P. vivax seroreactivity (p = 0.016). Serologic markers are a promising tool for detecting spatial variation in malaria exposure and evaluating malaria control efforts in areas where transmission has decreased to levels below the detection limit of microscopy. PMID:20202412

  20. Serologic markers for detecting malaria in areas of low endemicity, Somalia, 2008.

    PubMed

    Bousema, Teun; Youssef, Randa M; Cook, Jackie; Cox, Jonathan; Alegana, Victor A; Amran, Jamal; Noor, Abdisalan M; Snow, Robert W; Drakeley, Chris

    2010-03-01

    Areas in which malaria is not highly endemic are suitable for malaria elimination, but assessing transmission is difficult because of lack of sensitivity of commonly used methods. We evaluated serologic markers for detecting variation in malaria exposure in Somalia. Plasmodium falciparum or P. vivax was not detected by microscopy in cross-sectional surveys of samples from persons during the dry (0/1,178) and wet (0/1,128) seasons. Antibody responses against P. falciparum or P. vivax were detected in 17.9% (179/1,001) and 19.3% (202/1,044) of persons tested. Reactivity against P. falciparum was significantly different between 3 villages (p<0.001); clusters of seroreactivity were present. Distance to the nearest seasonal river was negatively associated with P. falciparum (p = 0.028) and P. vivax seroreactivity (p = 0.016). Serologic markers are a promising tool for detecting spatial variation in malaria exposure and evaluating malaria control efforts in areas where transmission has decreased to levels below the detection limit of microscopy.

  1. Immune defence against HIV-1 infection in HIV-1-exposed seronegative persons.

    PubMed

    Schmechel, S C; Russell, N; Hladik, F; Lang, J; Wilson, A; Ha, R; Desbien, A; McElrath, M J

    2001-11-01

    Rare individuals who are repeatedly exposed to HIV-1 through unprotected sexual contact fail to acquire HIV-1 infection. These persons represent a unique study population to evaluate mechanisms by which HIV-1 replication is either prevented or controlled. We followed longitudinally a group of healthy HIV-1 seronegative persons each reporting repeated high-risk sexual activities with their HIV-1-infected partner at enrollment. The volunteers were primarily (90%) male homosexuals, maintaining high risk activities with their known infected partner (45%) or multiple other partners (61%). We evaluated the quantity and specificity of HIV-1-specific T cells in 31 exposed seronegatives (ES) using a IFN-gamma ELISPOT assay to enumerate T cells recognizing epitopes within HIV-1 Env, Gag, Pol and Nef. PBMC from only three of the 31 volunteers demonstrated ex vivo HIV-1-specific IFN-gamma secretion, in contrast to nearly 30% exhibiting cytolytic responses in previous studies. These findings suggest that if T cell responses in ES are induced by HIV-1 exposure, the frequency is at low levels in most of them, and below the level of detection using the ELISPOT assay. Alternative approaches to improve the sensitivity of detection may include use of dendritic cells as antigen-presenting cells in the ex vivo assay and more careful definition of the risk behavior and extent of HIV-1 exposure in conjunction with the evaluation of T cell responses.

  2. Flight deck magnetic fields in commercial aircraft.

    PubMed

    Nicholas, J S; Butler, G C; Lackland, D T; Hood, W C; Hoel, D G; Mohr, L C

    2000-11-01

    Airline pilots are exposed to magnetic fields generated by the aircraft's electrical system. The objectives of this study were (1) to directly measure flight deck magnetic fields in terms of personal exposure to the pilots when flying on different aircraft types over a 75-hour flight-duty month, and (2) to compare magnetic field exposures across flight deck types and job titles. Measurements were taken using personal dosimeters carried by either the Captain or the First Officer on Boeing 737/200, Boeing 747/400, Boeing 767/300ER, and Airbus 320 aircraft. Approximately 1,008 block hours were recorded at a sampling frequency of 3 seconds. Total block time exposure to the pilots ranged from a harmonic geometric mean of 6.7 milliGauss (mG) for the Boeing 767/300ER to 12.7 mG for the Boeing 737/200. Measured flight deck magnetic field levels were substantially above the 0.8-1 mG level typically found in the home or office and suggest the need for further study to evaluate potential health effects of long-term exposure. Copyright 2000 Wiley-Liss, Inc.

  3. Message framing and medium considerations for recruiting newly eligible teen organ donor registrants.

    PubMed

    Quick, B L; Bosch, D; Morgan, S E

    2012-06-01

    In response to the current organ shortage-and in an effort to increase the number of registered donors-the present campaign employed a direct-mail marketing strategy that registered 6908 individuals in the state's First-Person Consent Registry (FPCR). In evaluating the most effective of three mailers, 18-year-old individuals (N = 139,356) were randomly assigned to receive: (a) a letter from the Secretary of State (SoS); (b) a brochure from the SoS or (c) both. As hypothesized, the results revealed that exposure to the SoS letter only resulted in a greater registration rate than exposure to the SoS brochure only. Results also revealed that exposure to both the SoS letter and SoS brochure resulted in a greater registration rate than exposure to the SoS brochure only. No difference in registration rate emerged between exposure to the SoS letter and SoS brochure compared to exposure to the SoS letter only. Our results speak to the effectiveness of utilizing personalized direct-mail marketing strategies to promote organ donation with an emphasis on the practical implications of our findings for organ donation practitioners. © Copyright 2012 The American Society of Transplantation and the American Society of Transplant Surgeons.

  4. Household concentrations and personal exposure of PM2.5 among urban residents using different cooking fuels.

    PubMed

    Li, Tianxin; Cao, Suzhen; Fan, Delong; Zhang, Yaqun; Wang, Beibei; Zhao, Xiuge; Leaderer, Brian P; Shen, Guofeng; Zhang, Yawei; Duan, Xiaoli

    2016-04-01

    Exposure to PM2.5 is a leading environmental risk factor for many diseases and premature deaths, arousing growing public concerns. In this study, indoor and outdoor PM2.5 concentrations were investigated during the heating and non-heating seasons in an urban area in northwest China. Personal inhalation exposure levels among different age groups were evaluated, and the difference attributable to different cooking fuels including coal, gas and electricity, was discussed. The average concentrations of PM2.5 in the kitchen and the bedroom were 125±51 and 119±64μg/m(3) during the heating season, and 80±67 and 80±50μg/m(3) during the non-heating season, respectively. Indoor PM2.5, from indoor combustion sources but also outdoor penetration, contributed to about 75% of the total PM2.5 exposure. Much higher indoor concentrations and inhalation exposure levels were found in households using coal for cooking compared to those using gas and electricity. Changing from coal to gas or electricity for cooking could result in a reduction of PM2.5 in the kitchen by 40-70% and consequently lower inhalation exposure levels, especially for children and women. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. A simple method for assessing occupational exposure via the one-way random effects model.

    PubMed

    Krishnamoorthy, K; Mathew, Thomas; Peng, Jie

    2016-11-01

    A one-way random effects model is postulated for the log-transformed shift-long personal exposure measurements, where the random effect in the model represents an effect due to the worker. Simple closed-form confidence intervals are proposed for the relevant parameters of interest using the method of variance estimates recovery (MOVER). The performance of the confidence bounds is evaluated and compared with those based on the generalized confidence interval approach. Comparison studies indicate that the proposed MOVER confidence bounds are better than the generalized confidence bounds for the overall mean exposure and an upper percentile of the exposure distribution. The proposed methods are illustrated using a few examples involving industrial hygiene data.

  6. Soft, stretchable, epidermal sensor with integrated electronics and photochemistry for measuring personal UV exposures.

    PubMed

    Shi, Yunzhou; Manco, Megan; Moyal, Dominique; Huppert, Gil; Araki, Hitoshi; Banks, Anthony; Joshi, Hemant; McKenzie, Richard; Seewald, Alex; Griffin, Guy; Sen-Gupta, Ellora; Wright, Donald; Bastien, Philippe; Valceschini, Florent; Seité, Sophie; Wright, John A; Ghaffari, Roozbeh; Rogers, John; Balooch, Guive; Pielak, Rafal M

    2018-01-01

    Excessive ultraviolet (UV) radiation induces acute and chronic effects on the skin, eye and immune system. Personalized monitoring of UV radiation is thus paramount to measure the extent of personal sun exposure, which could vary with environment, lifestyle, and sunscreen use. Here, we demonstrate an ultralow modulus, stretchable, skin-mounted UV patch that measures personal UV doses. The patch contains functional layers of ultrathin stretchable electronics and a photosensitive patterned dye that reacts to UV radiation. Color changes in the photosensitive dyes correspond to UV radiation intensity and are analyzed with a smartphone camera. A software application has feature recognition, lighting condition correction, and quantification algorithms that detect and quantify changes in color. These color changes are then correlated with corresponding shifts in UV dose, and compared to existing UV dose risk levels. The soft mechanics of the UV patch allow for multi-day wear in the presence of sunscreen and water. Two evaluation studies serve to demonstrate the utility of the UV patch during daily activities with and without sunscreen application.

  7. Soft, stretchable, epidermal sensor with integrated electronics and photochemistry for measuring personal UV exposures

    PubMed Central

    Shi, Yunzhou; Manco, Megan; Moyal, Dominique; Huppert, Gil; Araki, Hitoshi; Banks, Anthony; Joshi, Hemant; McKenzie, Richard; Seewald, Alex; Griffin, Guy; Sen-Gupta, Ellora; Wright, Donald; Bastien, Philippe; Valceschini, Florent; Seité, Sophie; Wright, John A.; Ghaffari, Roozbeh; Rogers, John; Balooch, Guive

    2018-01-01

    Excessive ultraviolet (UV) radiation induces acute and chronic effects on the skin, eye and immune system. Personalized monitoring of UV radiation is thus paramount to measure the extent of personal sun exposure, which could vary with environment, lifestyle, and sunscreen use. Here, we demonstrate an ultralow modulus, stretchable, skin-mounted UV patch that measures personal UV doses. The patch contains functional layers of ultrathin stretchable electronics and a photosensitive patterned dye that reacts to UV radiation. Color changes in the photosensitive dyes correspond to UV radiation intensity and are analyzed with a smartphone camera. A software application has feature recognition, lighting condition correction, and quantification algorithms that detect and quantify changes in color. These color changes are then correlated with corresponding shifts in UV dose, and compared to existing UV dose risk levels. The soft mechanics of the UV patch allow for multi-day wear in the presence of sunscreen and water. Two evaluation studies serve to demonstrate the utility of the UV patch during daily activities with and without sunscreen application. PMID:29293664

  8. The relationship between occupational sun exposure and non-melanoma skin cancer: clinical basics, epidemiology, occupational disease evaluation, and prevention.

    PubMed

    Fartasch, Manigé; Diepgen, Thomas Ludwig; Schmitt, Jochen; Drexler, Hans

    2012-10-01

    The cumulative effect of solar ultraviolet (UV) radiation is responsible for the worldwide increase in non-melanoma skin cancer, a category that includes squamous cell carcinoma and its precursors (the actinic keratoses) as well as basal-cell carcinoma. Non-melanoma skin cancer is the most common type of cancer in areas of the world with a light-skinned population. The occupational exposure to UV radiation is high in many outdoor occupations; recent studies suggest that persons working in such occupations are more likely to develop non-melanoma skin cancer. On the basis of a selective review of the literature, we present the current state of knowledge about occupational and non-occupational UV exposure and the findings of meta-analyses on the association of outdoor activity with non-melanoma skin cancer. We also give an overview of the current recommendations for prevention and for medicolegal assessment. Recent meta-analyses have consistently documented a significantly higher risk of squamous cell carcinoma of the skin among persons who work outdoors (odds ratio [OR] 1.77, 95% confidence interval [CI] 1.40-2.22, p<0.001). There is also evidence for an elevated risk of basal-cell carcinoma (OR 1.43, 95% CI 1.23-1.66, p = 0.0001), but the effect is of lesser magnitude and the study findings are not as uniform. The association of occupational exposure to solar UV radiation with squamous cell carcinoma, including actinic keratosis, has been conclusively demonstrated. It follows that, in Germany, suspected non-melanoma skin cancer in persons with high occupational exposure to UV radiation should be reported as an occupational disease under § 9, paragraph 2 of the Seventh Book of the German Social Code (Sozialgesetzbuch, SGB VII). Preventive measures are urgently needed for persons with high occupational exposure to UV radiation.

  9. Cardiovascular impacts and micro-environmental exposure factors associated with continuous personal PM2.5 monitoring.

    PubMed

    Hammond, Davyda; Croghan, Carry; Shin, Hwashin; Burnett, Richard; Bard, Robert; Brook, Robert D; Williams, Ron

    2014-07-01

    The US Environmental Protection Agency's (US EPA) Detroit Exposure and Aerosol Research Study (DEARS) has provided extensive data on human exposures to a wide variety of air pollutants and their impact on human health. Previous analyses in the DEARS revealed select cardiovascular (CV) health outcomes such as increase in heart rate (HR) associated with hourly based continuous personal fine particulate matter (PM2.5) exposures in this adult, non-smoking cohort. Examination of time activity diary (TAD), follow-up questionnaire (FQ) and the continuous PM2.5 personal monitoring data provided the means to more fully examine the impact of discreet human activity patterns on personal PM2.5 exposures and changes in CV outcomes. A total of 329 343 min-based PM2.5 personal measurements involving 50 participants indicated that ∼75% of these total events resulted in exposures <35 μg/m(3). Cooking and car-related events accounted for nearly 10% of the hourly activities that were identified with observed peaks in personal PM2.5 exposures. In-residence cooking often resulted in some of the highest incidents of 1 min exposures (33.5-17.6 μg/m(3)), with average peaks for such events in excess of 209 μg/m(3). PM2.5 exposure data from hourly based personal exposure activities (for example,, cooking, cleaning and household products) were compared with daily CV data from the DEARS subject population. A total of 1300 hourly based lag risk estimates associated with changes in brachial artery diameter and flow-mediated dilatation (BAD and FMD, respectively), among others, were defined for this cohort. Findings indicate that environmental tobacco smoke (ETS) exposures resulted in significant HR changes between 3 and 7 h following the event, and exposure to smells resulted in increases in BAD on the order of 0.2-0.7 mm/μg/m(3). Results demonstrate that personal exposures may be associated with several biological responses, sometimes varying in degree and direction in relation to the extent of the exposure.

  10. Occupational PAH Exposures during Prescribed Pile Burns

    PubMed Central

    Robinson, M. S.; Anthony, T. R.; Littau, S. R.; Herckes, P.; Nelson, X.; Poplin, G. S.; Burgess, J. L.

    2008-01-01

    Wildland firefighters are exposed to particulate matter and gases containing polycyclic aromatic hydrocarbons (PAHs), many of which are known carcinogens. Our objective was to evaluate the extent of firefighter exposure to particulate and PAHs during prescribed pile burns of mainly ponderosa pine slash and determine whether these exposures were correlated with changes in urinary 1-hydroxypyrene (1-HP), a PAH metabolite. Personal and area sampling for particulate and PAH exposures were conducted on the White Mountain Apache Tribe reservation, working with 21 Bureau of Indian Affairs/Fort Apache Agency wildland firefighters during the fall of 2006. Urine samples were collected pre- and post-exposure and pulmonary function was measured. Personal PAH exposures were detectable for only 3 of 16 PAHs analyzed: naphthalene, phenanthrene, and fluorene, all of which were identified only in vapor-phase samples. Condensed-phase PAHs were detected in PM2.5 area samples (20 of 21 PAHs analyzed were detected, all but naphthalene) at concentrations below 1 μg m−3. The total PAH/PM2.5 mass fractions were roughly a factor of two higher during smoldering (1.06 ± 0.15) than ignition (0.55 ± 0.04 μg mg−1). There were no significant changes in urinary 1-HP or pulmonary function following exposure to pile burning. In summary, PAH exposures were low in pile burns, and urinary testing for a PAH metabolite failed to show a significant difference between baseline and post-exposure measurements. PMID:18515848

  11. Formal recycling of e-waste leads to increased exposure to toxic metals: an occupational exposure study from Sweden.

    PubMed

    Julander, Anneli; Lundgren, Lennart; Skare, Lizbet; Grandér, Margaretha; Palm, Brita; Vahter, Marie; Lidén, Carola

    2014-12-01

    Electrical and electronic waste (e-waste) contains multiple toxic metals. However, there is currently a lack of exposure data for metals on workers in formal recycling plants. The objective of this study was to evaluate workers' exposure to metals, using biomarkers of exposure in combination with monitoring of personal air exposure. We assessed exposure to 20 potentially toxic metals among 55 recycling workers and 10 office workers at three formal e-waste recycling plants in Sweden. Workers at two of the plants were followed-up after 6 months. We collected the inhalable fraction and OFC (37-mm) fraction of particles, using personal samplers, as well as spot samples of blood and urine. We measured metal concentrations in whole blood, plasma, urine, and air filters using inductively coupled plasma-mass spectrometry following acid digestion. The air sampling indicated greater airborne exposure, 10 to 30 times higher, to most metals among the recycling workers handling e-waste than among the office workers. The exposure biomarkers showed significantly higher concentrations of chromium, cobalt, indium, lead, and mercury in blood, urine, and/or plasma of the recycling workers, compared with the office workers. Concentrations of antimony, indium, lead, mercury, and vanadium showed close to linear associations between the inhalable particle fraction and blood, plasma, or urine. In conclusion, our study of formal e-waste recycling shows that workers performing recycling tasks are exposed to multiple toxic metals. Copyright © 2014. Published by Elsevier Ltd.

  12. [The use of the FISH method for the cytogenetic examination of persons with a history of acute radiation sickness in connection with the accident at the Chernobyl Atomic Electric Power Station].

    PubMed

    Pilinskaia, M A; Dybskiĭ, S S; Khaliavka, I G

    1998-01-01

    We have performed conventional cytogenetics with group karyotyping and FISH analysis on metaphase-arrested lymphocyte cultured from 13 adults of 23 to 50 years. Twelve Chernobyl accident liquidators of 1986 year recovered from acute radiation sickness of the first (3 persons), second (7 persons) and third (2 persons) degree of severity; and one unexposed (control) person. A cocktail containing a balanced mix of directly-labeled by Spectrum orange whole-chromosome probes for human chromosomes 1,2 and 4 were used. Under the conventional staining the positive correlation between the frequency of chromosome type aberration (acentrics, dicentrics, centric rings, abnormal monocentrics) and the severity of irradiation was established even 10 years after radiation exposure. Under the FISH analysis the frequency of reciprocal translocation was in the range from 0.061 to 0.729 per cell which corresponded to doses of acute uniform irradiation from 0.8 till 3.48 Gy. The data obtained confirmed the validity of FISH as for quantifying stable chromosome aberrations in peripheral lymphocytes of irradiated persons as the high sensitivity of FISH for the retrospective dose evaluation in delayed terms after radiation exposure.

  13. The Prevalence of Annoyance and Effects after Long-Term Exposure to Low-Frequency Noise

    NASA Astrophysics Data System (ADS)

    PERSSON WAYE, K.; RYLANDER, R.

    2001-02-01

    A cross-sectional questionnaire and noise measurement survey was undertaken among 279 randomly chosen persons exposed to noise from heat pump/ventilation installations in their homes. The aim was to evaluate the prevalence of annoyance, disturbance of rest and concentration and the presence of psycho-social and medical symptoms in relation to noise exposure. Of the sample, 108 persons were exposed to a noise classified as of a low-frequency character (low-frequency noise exposed). As controls were chosen 171 persons living in similar residential areas, but exposed to a noise classified as of a mid-frequency character. The results showed that the prevalence of annoyance and disturbed concentration and rest was significantly higher among the persons exposed to low-frequency noise as compared to controls. Annoyance was suggested to be related to the sound pressure levels of the dominant low frequencies. The dB (A) noise levels did not predict annoyance. No significant differences in medical or psycho-social symptoms were found between the low-frequency noise exposed persons and controls. Among persons reporting themselves to be “rather” or “very” annoyed by low-frequency noise due to the heat pump/ventilation installations, a higher extent of psycho-social symptoms, sleep disturbance and headaches was found.

  14. SOURCES OF HUMAN EXPOSURE TO AIRBORNE PAH

    EPA Science Inventory

    Personal exposures to airborne particulate polycyclic aromatic hydrocarbons (PAHs) were studied in several populations in the US, Japan, and Czech Republic. Personal exposure monitors, developed for human exposure biomonitoring studies were used to collect fine particles (<_ 1....

  15. An In Situ and In Silico Evaluation of Biophysical Effects of 27 MHz Electromagnetic Whole Body Humans Exposure Expressed by the Limb Current

    PubMed Central

    2017-01-01

    Objectives The aim was to evaluate correlations between biophysical effects of 27 MHz electromagnetic field exposure in humans (limb induced current (LIC)) and (1) parameters of affecting heterogeneous electric field and (2) body anthropometric properties, in order to improve the evaluation of electromagnetic environmental hazards. Methods Biophysical effects of exposure were studied in situ by measurements of LIC in 24 volunteers (at the ankle) standing near radio communication rod antenna and in silico in 4 numerical body phantoms exposed near a model of antenna. Results Strong, positive, statistically significant correlations were found in all exposure scenarios between LIC and body volume index (body height multiplied by mass) (r > 0.7; p < 0.001). The most informative exposure parameters, with respect to the evaluation of electromagnetic hazards by measurements (i.e., the ones strongest correlated with LIC), were found to be the value of electric field (unperturbed field, in the absence of body) in front of the chest (50 cm from body axis) or the maximum value in space occupied by human. Such parameters were not analysed in previous studies. Conclusions Exposed person's body volume and electric field strength in front of the chest determine LIC in studied exposure scenarios, but their wider applicability needs further studies. PMID:28758119

  16. Active and passive ozone samplers based on a reaction with a binary reagent.

    PubMed

    Hackney, J D; Avol, E L; Linn, W S; Anderson, K R

    1994-02-01

    Ozone is one of the most toxic common air pollutants (judging from short-term animal and human exposure studies at realistic concentrations) and one of the most difficult and expensive pollutants to control. Because of ozone's high chemical reactivity, its concentrations may vary greatly over short distances, and fixed-site air quality monitors may not accurately estimate exposures of human populations. Epidemiologic research on ozone's long-term health effects has been inconclusive, partly because of the lack of reliable personal exposure information. The objective of this project was to develop a practical personal ozone exposure monitoring technique, and to document its precision and accuracy in actual use by representatives of freely ranging, ozone-exposed populations. The project site, Los Angeles, is the nation's metropolitan area with the highest level of ozone pollution and, thus, probably the most important locale for personal exposure assessment. Our overall strategy was (1) to select the most promising laboratory technique for ozone detection from published literature and private communications; (2) to design and test personal monitors using this technique; and (3) when feasible, to evaluate concurrently alternative methodologies developed by others. As indicated below, parts 1 and 2 of our strategy yielded a limited success with respect to short-term active sampling, i.e., measuring personal ozone exposure levels during one to two hours with a monitor incorporating a battery-powered air pump of the type used in industrial hygiene investigations. The same approach was not successful in passive sampling, i.e., measuring exposure levels during multihour or multiday periods with a light-weight, diffusion-controlled "badge" sampler having no moving parts. Passive badge samplers could be calibrated reasonably well in laboratory exposures to ozone in otherwise pure air, but they greatly overestimated ozone levels in outdoor ambient air. Part 3 of our strategy yielded more promising information on an alternative passive badge design. After testing and rejecting two other possibilities, we chose a binary organic reagents, 3-methyl-2-benzothiazolinone acetone azine with 2-phenylphenol, as the most promising chemical detector of ozone. Filter papers impregnated with the binary reagent develop a characteristic intense pink color when exposed to ozone. The inventors, J.E. Lambert and associates of Kansas State University, had intended only to develop a rough qualitative ozone monitor (Lambert et al. 1989). However, our initial laboratory testing (in exposure chambers containing ozone in otherwise very clean air, away from humans), revealed fairly accurate quantitative response.(ABSTRACT TRUNCATED AT 400 WORDS)

  17. Cumulative exposure to lead and cognition in persons with Parkinson’s disease

    PubMed Central

    Weuve, Jennifer; Press, Daniel Z.; Grodstein, Francine; Wright, Robert O.; Hu, Howard; Weisskopf, Marc G.

    2012-01-01

    Background Dementia is an important consequence of Parkinson’s disease (PD), with few known modifiable risk factors. Cumulative exposure to lead, at levels experienced in the community, may exacerbate PD-related neural dysfunction, resulting in impaired cognition. Methods Among 101 persons with PD (“cases”) and, separately, 50 persons without PD (“controls”), we evaluated cumulative lead exposure, gauged via tibia and patella bone lead concentrations, in relation to cognitive function, assessed using a telephone battery developed and validated in a separate sample of PD patients. We also assessed the interaction between lead and case-control status. Results After multivariable adjustment, higher tibia bone lead concentration among PD cases was associated with worse performance on all of the individual telephone tests. In particular, tibia lead levels corresponded to significantly worse performance on a telephone analogue of the Mini-Mental State Examination and tests of working memory and attention. Moreover, higher tibia bone lead concentration was associated with significantly worse global composite score encompassing all the cognitive tests (P=0.04). The magnitude of association per standard deviation increment in tibia bone lead level was equivalent to the difference in global scores among controls in our study who were about seven years apart in age. The tibia lead-cognition association was notably stronger within cases than within controls (Pdifference=0.06). Patella bone lead concentration was not consistently associated with performance on the tests. Conclusions These data provide evidence suggesting that cumulative exposure to lead may result in worsened cognition among persons with PD. PMID:23143985

  18. Cumulative exposure to lead and cognition in persons with Parkinson's disease.

    PubMed

    Weuve, Jennifer; Press, Daniel Z; Grodstein, Francine; Wright, Robert O; Hu, Howard; Weisskopf, Marc G

    2013-02-01

    Dementia is an important consequence of Parkinson's disease (PD), with few known modifiable risk factors. Cumulative exposure to lead, at levels experienced in the community, may exacerbate PD-related neural dysfunction, resulting in impaired cognition. Among 101 persons with PD ("cases") and, separately, 50 persons without PD ("controls"), we evaluated cumulative lead exposure, gauged by tibia and patella bone lead concentrations, in relation to cognitive function, assessed using a telephone battery developed and validated in a separate sample of PD patients. We also assessed the interaction between lead and case-control status. After multivariable adjustment, higher tibia bone lead concentration among PD cases was associated with worse performance on all of the individual telephone tests. In particular, tibia lead levels corresponded to significantly worse performance on a telephone analog of the Mini-Mental State Examination and tests of working memory and attention. Moreover, higher tibia bone lead concentration was associated with significantly worse global composite score encompassing all the cognitive tests (P = 0.04). The magnitude of association per standard deviation increment in tibia bone lead level was equivalent to the difference in global scores among controls in our study, who were approximately 7 years apart in age. The tibia lead-cognition association was notably stronger within cases than within controls (P(difference) = 0.06). Patella bone lead concentration was not consistently associated with performance on the tests. These data provide evidence suggesting that cumulative exposure to lead may result in worsened cognition among persons with PD. Copyright © 2012 Movement Disorders Society.

  19. 46 CFR 197.545 - Program to reduce personal exposure.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Program to reduce personal exposure. 197.545 Section 197.545 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE OCCUPATIONAL SAFETY AND HEALTH STANDARDS GENERAL PROVISIONS Benzene § 197.545 Program to reduce personal exposure. (a) When...

  20. 46 CFR 197.545 - Program to reduce personal exposure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Program to reduce personal exposure. 197.545 Section 197.545 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE OCCUPATIONAL SAFETY AND HEALTH STANDARDS GENERAL PROVISIONS Benzene § 197.545 Program to reduce personal exposure. (a) When...

  1. 46 CFR 197.545 - Program to reduce personal exposure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Program to reduce personal exposure. 197.545 Section 197.545 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE OCCUPATIONAL SAFETY AND HEALTH STANDARDS GENERAL PROVISIONS Benzene § 197.545 Program to reduce personal exposure. (a) When...

  2. 46 CFR 197.545 - Program to reduce personal exposure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Program to reduce personal exposure. 197.545 Section 197.545 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE OCCUPATIONAL SAFETY AND HEALTH STANDARDS GENERAL PROVISIONS Benzene § 197.545 Program to reduce personal exposure. (a) When...

  3. 46 CFR 197.545 - Program to reduce personal exposure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Program to reduce personal exposure. 197.545 Section 197.545 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE OCCUPATIONAL SAFETY AND HEALTH STANDARDS GENERAL PROVISIONS Benzene § 197.545 Program to reduce personal exposure. (a) When...

  4. Personality Traits and Combat Exposure as Predictors of Psychopathology Over Time

    PubMed Central

    Koffel, Erin; Kramer, Mark D.; Arbisi, Paul A.; Erbes, Christopher R.; Kaler, Matthew; Polusny, Melissa A.

    2016-01-01

    Background Research suggests that personality traits have both direct and indirect effects on the development of psychological symptoms, with indirect effects mediated by stressful or traumatic events. This study models the direct influence of personality traits on residualized changes in internalizing and externalizing symptoms following a stressful and potentially traumatic deployment, as well as the indirect influence of personality on symptom levels mediated by combat exposure. Method We utilized structural equation modeling with a longitudinal prospective study of 522 US National Guard soldiers deployed to Iraq. Analyses were based on self-report measures of personality, combat exposure, and internalizing and externalizing symptoms. Results Both pre-deployment Disconstraint and externalizing symptoms predicted combat exposure, which in turn predicted internalizing and externalizing symptoms. There was a significant indirect effect for pre-deployment externalizing symptoms on post-deployment externalizing via combat exposure (p < .01). Negative Emotionality and pre-deployment internalizing symptoms directly predicted post-deployment internalizing symptoms, but both were unrelated to combat exposure. No direct effects of personality on residualized changes in externalizing symptoms were found. Conclusions Baseline symptom dimensions had significant direct and indirect effects on post-deployment symptoms. Controlling for both pre-exposure personality and symptoms, combat experiences remained positively related to both internalizing and externalizing symptoms. Implications for diagnostic classification are discussed. PMID:26347314

  5. Smoking, sun exposure, number of nevi and previous neoplasias are risk factors for melanoma in older patients (60 years and over).

    PubMed

    Nagore, E; Hueso, L; Botella-Estrada, R; Alfaro-Rubio, A; Serna, I; Guallar, Jp; González, I; Ribes, I; Guillen, C

    2010-01-01

    Malignant melanoma risk factors have been studied in different geographical area populations. However, no study has focused on risk factors which are more frequently associated to the over 60's age group. A case-control study was performed that included 160 patients age > or = 60 years diagnosed of cutaneous melanoma and 318 controls matched for age and sex. Both groups were assessed, by personal interview and physical examination, for different phenotype characteristics (hair and eye color, phototype), the presence of other cutaneous lesions (solar lentigines, actinic keratoses and nevi), degree and type of solar exposure and personal and family past history of cutaneous or non-cutaneous cancer. Differences were evaluated by contingency tables and univariate and multivariate logistic regression. Of 17 factors, those risk factors with a strong effect on the development of melanoma in the elderly were: fair eyes, severe sunburns, years of occupational sun exposure, smoking, > 50 melanocytic nevi and personal history of NMSC and other non-cutaneous neoplasias. Tobacco smoking is an independent risk factor for cutaneous melanoma in the elderly. Intense (both acute and chronic) sun exposure and constitutional features, such as tumor susceptibility (NMSC, non-cutaneous neoplasias, and multiple nevi) are also associated with melanoma risk. All these factors should help to better design educational campaigns in older people.

  6. Impact of time-activity patterns on personal exposure to black carbon

    NASA Astrophysics Data System (ADS)

    Dons, Evi; Int Panis, Luc; Van Poppel, Martine; Theunis, Jan; Willems, Hanny; Torfs, Rudi; Wets, Geert

    2011-07-01

    Time-activity patterns are an important determinant of personal exposure to air pollution. This is demonstrated by measuring personal exposure of 16 participants for 7 consecutive days: 8 couples of which one person was a full-time worker and the other was a homemaker; both had a very different time-activity pattern. We used portable aethalometers to measure black carbon levels with a high temporal resolution and a PDA with GPS-logger and electronic diary. The exposure to black carbon differs between partners by up to 30%, although they live at the same location. The activity contributing most to this difference is transport: Average exposure in transport is 6445 ng m -3, followed by exposure during shopping (2584 ng m -3). Average exposure is lowest while sleeping (1153 ng m -3) and when doing home-based activities (1223 ng m -3). Full-time workers spend almost twice as much time in transport as the homemakers. As a result of the study design we measured in several different homes, shops, cars, etc. enabling a better insight in true overall exposure in those microenvironments. Other factors influencing personal exposure are: background concentrations and location of residence in an urban, suburban or rural environment.

  7. Validation of an aggregate exposure model for substances in consumer products: a case study of diethyl phthalate in personal care products

    PubMed Central

    Delmaar, Christiaan; Bokkers, Bas; ter Burg, Wouter; Schuur, Gerlienke

    2015-01-01

    As personal care products (PCPs) are used in close contact with a person, they are a major source of consumer exposure to chemical substances contained in these products. The estimation of realistic consumer exposure to substances in PCPs is currently hampered by the lack of appropriate data and methods. To estimate aggregate exposure of consumers to substances contained in PCPs, a person-oriented consumer exposure model has been developed (the Probabilistic Aggregate Consumer Exposure Model, PACEM). The model simulates daily exposure in a population based on product use data collected from a survey among the Dutch population. The model is validated by comparing diethyl phthalate (DEP) dose estimates to dose estimates based on biomonitoring data. It was found that the model's estimates compared well with the estimates based on biomonitoring data. This suggests that the person-oriented PACEM model is a practical tool for assessing realistic aggregate exposures to substances in PCPs. In the future, PACEM will be extended with use pattern data on other product groups. This will allow for assessing aggregate exposure to substances in consumer products across different product groups. PMID:25352161

  8. Evaluating health risks from occupational exposure to pesticides and the regulatory response.

    PubMed Central

    Woodruff, T J; Kyle, A D; Bois, F Y

    1994-01-01

    In this study, we used measurements of occupational exposures to pesticides in agriculture to evaluate health risks and analyzed how the federal regulatory program is addressing these risks. Dose estimates developed by the State of California from measured occupational exposures to 41 pesticides were compared to standard indices of acute toxicity (LD50) and chronic effects (reference dose). Lifetime cancer risks were estimated using cancer potencies. Estimated absorbed daily doses for mixers, loaders, and applicators of pesticides ranged from less than 0.0001% to 48% of the estimated human LD50 values, and doses for 10 of 40 pesticides exceeded 1% of the estimated human LD50 values. Estimated lifetime absorbed daily doses ranged from 0.1% to 114,000% of the reference doses developed by the U.S. Environmental Protection Agency, and doses for 13 of 25 pesticides were above them. Lifetime cancer risks ranged from 1 per million to 1700 per million, and estimates for 12 of 13 pesticides were above 1 per million. Similar results were obtained for field workers and flaggers. For the pesticides examined, exposures pose greater risks of chronic effects than acute effects. Exposure reduction measures, including use of closed mixing systems and personal protective equipment, significantly reduced exposures. Proposed regulations rely primarily on requirements for personal protective equipment and use restrictions to protect workers. Chronic health risks are not considered in setting these requirements. Reviews of pesticides by the federal pesticide regulatory program have had little effect on occupational risks. Policy strategies that offer immediate protection for workers and that are not dependent on extensive review of individual pesticides should be pursued. Images Figure 1. PMID:7713022

  9. 47 CFR 2.1093 - Radiofrequency radiation exposure evaluation: portable devices.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Cellular Radiotelephone Service pursuant to part 22 of this chapter; the Personal Communications Service (PCS) pursuant to part 24 of this chapter; the Satellite Communications Services pursuant to part 25 of this chapter; the Miscellaneous Wireless Communications Services pursuant to part 27 of this chapter...

  10. Activity pattern and personal exposure to nitrogen dioxide in indoor and outdoor microenvironments.

    PubMed

    Kornartit, C; Sokhi, R S; Burton, M A; Ravindra, Khaiwal

    2010-01-01

    People are exposed to air pollution from a range of indoor and outdoor sources. Concentrations of nitrogen dioxide (NO(2)), which is hazardous to health, can be significant in both types of environments. This paper reports on the measurement and analysis of indoor and outdoor NO(2) concentrations and their comparison with measured personal exposure in various microenvironments during winter and summer seasons. Furthermore, the relationship between NO(2) personal exposure in various microenvironments and including activities patterns were also studied. Personal, indoor microenvironments and outdoor measurements of NO(2) levels were conducted using Palmes tubes for 60 subjects. The results showed significant differences in indoor and outdoor NO(2) concentrations in winter but not for summer. In winter, indoor NO(2) concentrations were found to be strongly correlated with personal exposure levels. NO(2) concentration in houses using a gas cooker was higher in all rooms than those with an electric cooker during the winter campaign, whereas there was no significant difference noticed in summer. The average NO(2) levels in kitchens with a gas cooker were twice as high as those with an electric cooker, with no significant difference in the summer period. A time-weighted average personal exposure was calculated and compared with measured personal exposures in various indoor microenvironments (e.g. front doors, bedroom, living room and kitchen); including non-smokers, passive smokers and smoker. The estimated results were closely correlated, but showed some underestimation of the measured personal exposures to NO(2) concentrations. Interestingly, for our particular study higher NO(2) personal exposure levels were found during summer (14.0+/-1.5) than winter (9.5+/-2.4).

  11. Estimation of personal exposure to asbestos of brake repair workers.

    PubMed

    Cely-García, María Fernanda; Curriero, Frank C; Sánchez-Silva, Mauricio; Breysse, Patrick N; Giraldo, Margarita; Méndez, Lorena; Torres-Duque, Carlos; Durán, Mauricio; González-García, Mauricio; Parada, Patricia; Ramos-Bonilla, Juan Pablo

    2017-07-01

    Exposure assessments are key tools to conduct epidemiological studies. Since 2010, 28 riveters from 18 brake repair shops with different characteristics and workloads were sampled for asbestos exposure in Bogotá, Colombia. Short-term personal samples collected during manipulation activities of brake products, and personal samples collected during non-manipulation activities were used to calculate 103 8-h TWA PCM-equivalent personal asbestos concentrations. The aims of this study are to identify exposure determinant variables associated with the 8-h TWA personal asbestos concentrations among brake mechanics, and propose different models to estimate potential asbestos exposure of brake mechanics in an 8-h work-shift. Longitudinal-based multivariate linear regression models were used to determine the association between personal asbestos concentrations in a work-shift with different variables related to work tasks and workload of the mechanics, and some characteristics of the shops. Monte Carlo simulations were used to estimate the 8-h TWA PCM-Eq personal asbestos concentration in work-shifts that had manipulations of brake products or cleaning activities of the manipulation area, using the results of the sampling campaigns. The simulations proposed could be applied for both current and retrospective studies to determine personal asbestos exposures of brake mechanics, without the need of sampling campaigns or historical data of air asbestos concentrations.

  12. Development of a job-exposure matrix for exposure to total and fine particulate matter in the aluminum industry.

    PubMed

    Noth, Elizabeth M; Dixon-Ernst, Christine; Liu, Sa; Cantley, Linda; Tessier-Sherman, Baylah; Eisen, Ellen A; Cullen, Mark R; Hammond, S Katharine

    2014-01-01

    Increasing evidence indicates that exposure to particulate matter (PM) at environmental concentrations increases the risk of cardiovascular disease, particularly PM with an aerodynamic diameter of less than 2.5 μm (PM(2.5)). Despite this, the health impacts of higher occupational exposures to PM(2.5) have rarely been evaluated. In part, this research gap derives from the absence of information on PM(2.5) exposures in the workplace. To address this gap, we have developed a job-exposure matrix (JEM) to estimate exposure to two size fractions of PM in the aluminum industry. Measurements of total PM (TPM) and PM(2.5) were used to develop exposure metrics for an epidemiologic study. TPM exposures for distinct exposure groups (DEGs) in the JEM were calculated using 8385 personal TPM samples collected at 11 facilities (1980-2011). For eight of these facilities, simultaneous PM(2.5) and TPM personal monitoring was conducted from 2010 to 2011 to determine the percent of TPM that is composed of PM(2.5) (%PM(2.5)) in each DEG. The mean TPM from the JEM was then multiplied by %PM(2.5) to calculate PM(2.5) exposure concentrations in each DEG. Exposures in the smelters were substantially higher than in fabrication units; mean TPM concentrations in smelters and fabrication facilities were 3.86 and 0.76 mg/m(3), and the corresponding mean PM(2.5) concentrations were 2.03 and 0.40 mg/m(3). Observed occupational exposures in this study generally exceeded environmental PM(2.5) concentrations by an order of magnitude.

  13. Development of a job-exposure matrix for exposure to total and fine particulate matter in the aluminum industry

    PubMed Central

    Noth, Elizabeth M.; Dixon-Ernst, Christine; Liu, Sa; Cantley, Linda; Tessier-Sherman, Baylah; Eisen, Ellen A.; Cullen, Mark R.; Hammond, S. Katharine

    2014-01-01

    Increasing evidence indicates that exposure to particulate matter (PM) at environmental concentrations increases the risk of cardiovascular disease, particularly PM with an aerodynamic diameter of less than 2.5μm (PM2.5). Despite this, the health impacts of higher occupational exposures to PM2.5 have rarely been evaluated. In part, this research gap derives from the absence of information on PM2.5 exposures in the workplace. To address this gap, we have developed a job-exposure matrix (JEM) to estimate exposure to two size fractions of PM in the aluminum industry. Measurements of total PM (TPM) and PM2.5 were used to develop exposure metrics for an epidemiologic study. TPM exposures for distinct exposure groups (DEGs) in the JEM were calculated using 8,385 personal TPM samples collected at 11 facilities (1980-2011). For 8 of these facilities, simultaneous PM2.5 and TPM personal monitoring was conducted from 2010-2011 to determine the percent of TPM that is composed of PM2.5 (%PM2.5) in each DEG. The mean TPM from the JEM was then multiplied by %PM2.5 to calculate PM2.5 exposure concentrations in each DEG. Exposures in the smelters were substantially higher than in fabrication units; mean TPM concentrations in smelters and fabrication facilities were 3.86 mg/m3 and 0.76 mg/m3, and the corresponding mean PM2.5 concentrations were 2.03 mg/m3 and 0.40 mg/m3. Observed occupational exposures in this study generally exceeded environmental PM2.5 concentrations by an order of magnitude. PMID:24022670

  14. Evaluation of Veriox as a Skin Decontamination Product after Dermal Exposure to the Nerve Agent VX

    DTIC Science & Technology

    2016-09-01

    in hair -clipped, unanesthetized guinea pigs. Efficacy was established by generating VX dose-lethality curves for each DC product based on 24 survival...This study compared the effectiveness of Veriox® to RSDL when each was used as a DC product 2 min after dermal exposure to VX in hair -clipped...by the dermal LD90 of VX in untreated animals. A LD90 value of 188 μg/kg generated in hair -clipped, unanesthetized guinea pigs (Clarkson, personal

  15. Person-to-Person Household and Nosocomial Transmission of Andes Hantavirus, Southern Chile, 2011

    PubMed Central

    Martinez-Valdebenito, Constanza; Calvo, Mario; Vial, Cecilia; Mansilla, Rita; Marco, Claudia; Palma, R. Eduardo; Vial, Pablo A.; Valdivieso, Francisca; Mertz, Gregory

    2014-01-01

    Andes hantavirus (ANDV) causes hantavirus cardiopulmonary syndrome in Chile and is the only hantavirus for which person-to-person transmission has been proven. We describe an outbreak of 5 human cases of ANDV infection in which symptoms developed in 2 household contacts and 2 health care workers after exposure to the index case-patient. Results of an epidemiologic investigation and sequence analysis of the virus isolates support person-to-person transmission of ANDV for the 4 secondary case-patients, including nosocomial transmission for the 2 health care workers. Health care personnel who have direct contact with ANDV case-patients or their body fluids should take precautions to prevent transmission of the virus. In addition, because the incubation period of ANDV after environmental exposure is longer than that for person-to-person exposure, all persons exposed to a confirmed ANDV case-patient or with possible environmental exposure to the virus should be monitored for 42 days for clinical symptoms. PMID:25272189

  16. Personal medical electronic devices and walk-through metal detector security systems: assessing electromagnetic interference effects.

    PubMed

    Guag, Joshua; Addissie, Bisrat; Witters, Donald

    2017-03-20

    There have been concerns that Electromagnetic security systems such as walk-through metal detectors (WTMDs) can potentially cause electromagnetic interference (EMI) in certain active medical devices including implantable cardiac pacemakers and implantable neurostimulators. Incidents of EMI between WTMDs and active medical devices also known as personal medical electronic devices (PMED) continue to be reported. This paper reports on emission measurements of sample WTMDs and testing of 20 PMEDs in a WTMD simulation system. Magnetic fields from sample WTMD systems were characterized for emissions and exposure of certain PMEDs. A WTMD simulator system designed and evaluated by FDA in previous studies was used to mimic the PMED exposures to the waveform from sample WTMDs. The simulation system allows for controlled PMED exposure enabling careful study with adjustable magnetic field strengths and exposure duration, and provides flexibility for PMED exposure at elevated levels in order to study EMI effects on the PMED. The PMED samples consisted of six implantable cardiac pacemakers, six implantable cardioverter defibrillators (ICD), five implantable neurostimulators, and three insulin pumps. Each PMED was exposed in the simulator to the sample WTMD waveforms using methods based on appropriate consensus test standards for each of the device type. Testing the sample PMEDs using the WTMD simulator revealed EMI effects on two implantable pacemakers and one implantable neurostimulator for exposure field strength comparable to actual WTMD field strength. The observed effects were transient and the PMEDs returned to pre-exposure operation within a few seconds after removal from the simulated WTMD exposure fields. No EMI was observed for the sample ICDs or insulin pumps. The findings are consistent with earlier studies where certain sample PMEDs exhibited EMI effects. Clinical implications were not addressed in this study. Additional studies are needed to evaluate potential PMED EMI susceptibilities over a broader range of security systems.

  17. Relations of exhaled nitric oxide and FEV1 to personal endotoxin exposure in schoolchildren with asthma.

    PubMed

    Delfino, Ralph J; Staimer, Norbert; Tjoa, Thomas; Gillen, Daniel L

    2015-12-01

    Asthma prevalence and acute exacerbations have been associated with endotoxin exposure. However, there are limited data on relations between acute asthma outcomes in children and personal exposure to endotoxin or whether this relation is modified by personal air pollution exposures. We made repeated measurements of the fractional concentration of exhaled NO (FeNO), forced expiratory volume in 1 s (FEV1) and personal endotoxin exposures in patients with persistent asthma aged 9-18 years, each of whom was followed for 10 consecutive days in Riverside and Whittier, California. Endotoxin was measured in PM2.5, and simultaneously we measured personal exposure to air pollutants: NO2 and PM2.5 mass, elemental carbon and organic carbon. Endotoxin exposure-response relations and interactions between endotoxin and air pollutants were analysed with mixed models controlling for personal temperature, humidity and the 10-day period. Neither percent-predicted FEV1 nor FeNO was associated with personal endotoxin overall; however, endotoxin was associated with FEV1 among patients with average percent-predicted FEV1<80%. When NO2 was above its median, FeNO increased by 2.2% (95% CI -0.8% to 5.2%) for an interquartile increase in personal endotoxin, whereas FeNO was lower by -1.8% (95% CI -4% to 0.5%) when NO2 was≤its median. However, this is out of 12 interaction tests between personal endotoxin and a binary air pollutant for each outcome (FEV1 and FeNO), and there were no interactions with any continuous-scaled pollutant. Personal endotoxin exposure was not associated with acute daily changes in FeNO or FEV1 in a cohort panel of schoolchildren with asthma, except for decreased FEV1 among patients with more severe asthma (percent-predicted FEV1<80%). There was limited evidence of effect modification of endotoxin by personal exposure to air pollution. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  18. USE OF CONTINUOUS NEPHELOMETER TO MEASURE PERSONAL EXPOSURE TO PARTICULATE MATTER DURING THE 1998 U.S. EPA BALTIMORE PANEL STUDY

    EPA Science Inventory

    Personal exposures to particulate matter (PM) have typically been measured using filter samplers worn by the participants in exposure studies. Personal filter samplers, however, are limited to providing average mass concentrations integrated over a 12- to 24-hour period due to ...

  19. Quantitative aspects of radon daughter exposure and lung cancer in underground miners.

    PubMed Central

    Edling, C; Axelson, O

    1983-01-01

    Epidemiological studies have shown an excessive incidence of lung cancer in miners with exposure to radon daughters. The various risk estimates have ranged from six to 47 excess cases per 10(6) person years and working level month, but the effect of smoking has not been fully evaluated. The present study, among a group of iron ore miners, is an attempt to obtain quantitative information about the risk of lung cancer due to radon and its daughters among smoking and non-smoking miners. The results show a considerable risk for miners to develop lung cancer; even non-smoking miners seem to be at a rather high risk. An additive effect of smoking and exposure to radon daughters is indicated and an estimate of about 30-40 excess cases per 10(6) person years and working level month seems to apply on a life time basis to both smoking and non-smoking miners aged over 50. PMID:6830715

  20. Occupational Exposure to Multi-Walled Carbon Nanotubes During Commercial Production Synthesis and Handling

    PubMed Central

    Kuijpers, Eelco; Bekker, Cindy; Fransman, Wouter; Brouwer, Derk; Tromp, Peter; Vlaanderen, Jelle; Godderis, Lode; Hoet, Peter; Lan, Qing; Silverman, Debra; Vermeulen, Roel; Pronk, Anjoeka

    2016-01-01

    The world-wide production of carbon nanotubes (CNTs) has increased substantially in the last decade, leading to occupational exposures. There is a paucity of exposure data of workers involved in the commercial production of CNTs. The goals of this study were to assess personal exposure to multi-walled carbon nanotubes (MWCNTs) during the synthesis and handling of MWCNTs in a commercial production facility and to link these exposure levels to specific activities. Personal full-shift filter-based samples were collected, during commercial production and handling of MWCNTs, R&D activities, and office work. The concentrations of MWCNT were evaluated on the basis of EC concentrations. Associations were studied between observed MWCNT exposure levels and location and activities. SEM analyses showed MWCNTs, present as agglomerates ranging between 200nm and 100 µm. Exposure levels of MWCNTs observed in the production area during the full scale synthesis of MWCNTs (N = 23) were comparable to levels observed during further handling of MWCNTs (N = 19): (GM (95% lower confidence limit–95% upper confidence limit)) 41 μg m−3 (20–88) versus 43 μg m−3 (22–86), respectively. In the R&D area (N = 11) and the office (N = 5), exposure levels of MWCNTs were significantly (P < 0.05) lower: 5 μg m−3 (2–11) and 7 μg m−3 (2–28), respectively. Bagging, maintenance of the reactor, and powder conditioning were associated with higher exposure levels in the production area, whereas increased exposure levels in the R&D area were related to handling of MWCNTs powder. PMID:26613611

  1. Contribution of various microenvironments to the daily personal exposure to ultrafine particles: Personal monitoring coupled with GPS tracking

    NASA Astrophysics Data System (ADS)

    Bekö, Gabriel; Kjeldsen, Birthe Uldahl; Olsen, Yulia; Schipperijn, Jasper; Wierzbicka, Aneta; Karottki, Dorina Gabriela; Toftum, Jørn; Loft, Steffen; Clausen, Geo

    2015-06-01

    Exposure to ultrafine particles (UFP) may have adverse health effects. Central monitoring stations do not represent the personal exposure to UFP accurately. Few studies have previously focused on personal exposure to UFP. Sixty non-smoking residents living in Copenhagen, Denmark were asked to carry a backpack equipped with a portable monitor, continuously recording particle number concentrations (PN), in order to measure the real-time individual exposure over a period of ˜48 h. A GPS logger was carried along with the particle monitor and allowed us to estimate the contribution of UFP exposure occurring in various microenvironments (residence, during active and passive transport, other indoor and outdoor environments) to the total daily exposure. On average, the fractional contribution of each microenvironment to the daily integrated personal exposure roughly corresponded to the fractions of the day the subjects spent in each microenvironment. The home environment accounted for 50% of the daily personal exposure. Indoor environments other than home or vehicles contributed with ˜40%. The highest median UFP concentration was obtained during passive transport (vehicles). However, being in transit or outdoors contributed 5% or less to the daily exposure. Additionally, the subjects recorded in a diary the periods when they were at home. With this approach, 66% of the total daily exposure was attributable to the home environment. The subjects spent 28% more time at home according to the diary, compared to the GPS. These results may indicate limitations of using diaries, but also possible inaccuracy and miss-classification in the GPS data.

  2. Design and application of a web-based real-time personal PM2.5 exposure monitoring system.

    PubMed

    Sun, Qinghua; Zhuang, Jia; Du, Yanjun; Xu, Dandan; Li, Tiantian

    2018-06-15

    Growing demand from public health research for conduct large-scale epidemiological studies to explore health effect of PM 2.5 was well-documented. To address this need, we design a web-based real-time personal PM 2.5 exposure monitoring system (RPPM2.5 system) which can help researcher to get big data of personal PM 2.5 exposure with low-cost, low labor requirement, and low operating technical requirements. RPPM2.5 system can provide relative accurate real-time personal exposure data for individuals, researches, and decision maker. And this system has been used in a survey of PM 2.5 personal exposure level conducted in 5 cities of China and has provided mass of valuable data for epidemiological research. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Conduct of a personal radiofrequency electromagnetic field measurement study: proposed study protocol.

    PubMed

    Röösli, Martin; Frei, Patrizia; Bolte, John; Neubauer, Georg; Cardis, Elisabeth; Feychting, Maria; Gajsek, Peter; Heinrich, Sabine; Joseph, Wout; Mann, Simon; Martens, Luc; Mohler, Evelyn; Parslow, Roger C; Poulsen, Aslak Harbo; Radon, Katja; Schüz, Joachim; Thuroczy, György; Viel, Jean-François; Vrijheid, Martine

    2010-05-20

    The development of new wireless communication technologies that emit radio frequency electromagnetic fields (RF-EMF) is ongoing, but little is known about the RF-EMF exposure distribution in the general population. Previous attempts to measure personal exposure to RF-EMF have used different measurement protocols and analysis methods making comparisons between exposure situations across different study populations very difficult. As a result, observed differences in exposure levels between study populations may not reflect real exposure differences but may be in part, or wholly due to methodological differences. The aim of this paper is to develop a study protocol for future personal RF-EMF exposure studies based on experience drawn from previous research. Using the current knowledge base, we propose procedures for the measurement of personal exposure to RF-EMF, data collection, data management and analysis, and methods for the selection and instruction of study participants. We have identified two basic types of personal RF-EMF measurement studies: population surveys and microenvironmental measurements. In the case of a population survey, the unit of observation is the individual and a randomly selected representative sample of the population is needed to obtain reliable results. For microenvironmental measurements, study participants are selected in order to represent typical behaviours in different microenvironments. These two study types require different methods and procedures. Applying our proposed common core procedures in future personal measurement studies will allow direct comparisons of personal RF-EMF exposures in different populations and study areas.

  4. Conduct of a personal radiofrequency electromagnetic field measurement study: proposed study protocol

    PubMed Central

    2010-01-01

    Background The development of new wireless communication technologies that emit radio frequency electromagnetic fields (RF-EMF) is ongoing, but little is known about the RF-EMF exposure distribution in the general population. Previous attempts to measure personal exposure to RF-EMF have used different measurement protocols and analysis methods making comparisons between exposure situations across different study populations very difficult. As a result, observed differences in exposure levels between study populations may not reflect real exposure differences but may be in part, or wholly due to methodological differences. Methods The aim of this paper is to develop a study protocol for future personal RF-EMF exposure studies based on experience drawn from previous research. Using the current knowledge base, we propose procedures for the measurement of personal exposure to RF-EMF, data collection, data management and analysis, and methods for the selection and instruction of study participants. Results We have identified two basic types of personal RF-EMF measurement studies: population surveys and microenvironmental measurements. In the case of a population survey, the unit of observation is the individual and a randomly selected representative sample of the population is needed to obtain reliable results. For microenvironmental measurements, study participants are selected in order to represent typical behaviours in different microenvironments. These two study types require different methods and procedures. Conclusion Applying our proposed common core procedures in future personal measurement studies will allow direct comparisons of personal RF-EMF exposures in different populations and study areas. PMID:20487532

  5. Guidelines for personal exposure monitoring of chemicals: Part V.

    PubMed

    Hashimoto, Haruo; Yamada, Kenichi; Hori, Hajime; Kumagai, Shinji; Murata, Masaru; Nagoya, Toshio; Nakahara, Hirohiko; Mochida, Nobuyuki

    2018-05-25

    This Document, "Guidelines for personal exposure monitoring of chemicals" ("this Guideline"), has been prepared by "The Committee for Personal Exposure Monitoring" ("the Committee") of the Expert Division of Occupational Hygiene & Ergonomics, Japan Society for Occupational Health. Considering the background of the growing importance of personal exposure monitoring in risk assessment and the need to prepare for the introduction of monitoring using personal samplers from an administrative perspective in recent years, the Committee was organized in November 2012. The Committee has prepared this Guideline as a "practical guideline" for personal exposure monitoring, so as to offer proposals and recommendations to the members of the Japan Society for Occupational Health and to society in general. The scope of this Guideline covers all chemical substances and all related workplaces regarded as targets for general assessment and the management of risk. It thus is not to be considered to comment on legal regulations and methodology. The main text provides the basic methods and concepts of personal exposure monitoring, while 31 "Appendices" are provided in this Guideline throughout the series; technical descriptions, statistical bases, and actual workplace examples are provided in these appendices, to assist better understanding. The personal exposure monitoring described as per this Guideline is equivalent to an "expert-centered basic method to reasonably proceed with the assessment and management of risk at workplaces." It is considered that practicing and expanding on this method will significantly contribute in reforming the overall framework of occupational hygiene management in Japan.

  6. Guidelines for personal exposure monitoring of chemicals: Part IV.

    PubMed

    Hashimoto, Haruo; Yamada, Kenichi; Hori, Hajime; Kumagai, Shinji; Murata, Masaru; Nagoya, Toshio; Nakahara, Hirohiko; Mochida, Nobuyuki

    2018-03-27

    This Document, "Guidelines for personal exposure monitoring of chemicals" ("this Guideline"), has been prepared by "The Committee for Personal Exposure Monitoring" ("the Committee") of the Expert Division of Occupational Hygiene & Ergonomics, Japan Society for Occupational Health. Considering the background of the growing importance of personal exposure monitoring in risk assessment and the need to prepare for the introduction of monitoring using personal samplers from an administrative perspective in recent years, the Committee was organized in November 2012. The Committee has prepared this Guideline as a "practical guideline" for personal exposure monitoring, so as to offer proposals and recommendations to the members of the Japan Society for Occupational Health and to society in general. The scope of this Guideline covers all chemical substances and all related workplaces regarded as targets for general assessment and the management of risk. It thus is not to be considered to comment on legal regulations and methodology. The main text provides the basic methods and concepts of personal exposure monitoring, while 31 "Appendices" are provided in this Guideline throughout the series; technical descriptions, statistical bases, and actual workplace examples are provided in these appendices, to assist better understanding. The personal exposure monitoring described as per this Guideline is equivalent to an "expert-centered basic method to reasonably proceed with the assessment and management of risk at workplaces." It is considered that practicing and expanding on this method will significantly contribute in reforming the overall framework of occupational hygiene management in Japan.

  7. Guidelines for personal exposure monitoring of chemicals: Part III.

    PubMed

    Hashimoto, Haruo; Yamada, Kenichi; Hori, Hajime; Kumagai, Shinji; Murata, Masaru; Nagoya, Toshio; Nakahara, Hirohiko; Mochida, Nobuyuki

    2018-01-25

    This Document, "Guidelines for personal exposure monitoring of chemicals" ("this Guideline"), has been prepared by "The Committee for Personal Exposure Monitoring" ("the Committee") of the Expert Division of Occupational Hygiene & Ergonomics, Japan Society for Occupational Health. Considering the background of the growing importance of personal exposure monitoring in risk assessment and the need to prepare for the introduction of monitoring using personal samplers from an administrative perspective in recent years, the Committee was organized in November 2012. The Committee has prepared this Guideline as a "practical guideline" for personal exposure monitoring, so as to offer proposals and recommendations to the members of the Japan Society for Occupational Health and to society in general. The scope of this Guideline covers all chemical substances and all related workplaces regarded as targets for general assessment and the management of risk. It thus is not to be considered to comment on legal regulations and methodology. The main text provides the basic methods and concepts of personal exposure monitoring, while 31 "Appendices" are provided in this Guideline throughout the series; technical descriptions, statistical bases, and actual workplace examples are provided in these appendices, to assist better understanding. The personal exposure monitoring described as per this Guideline is equivalent to an "expert-centered basic method to reasonably proceed with the assessment and management of risk at workplaces." It is considered that practicing and expanding on this method will significantly contribute in reforming the overall framework of occupational hygiene management in Japan.

  8. Guidelines for personal exposure monitoring of chemicals: Part I.

    PubMed

    Hashimoto, Haruo; Yamada, Kenichi; Hori, Hajime; Kumagai, Shinji; Murata, Masaru; Nagoya, Toshio; Nakahara, Hirohiko; Mochida, Nobuyuki

    2017-09-28

    This Document, "Guidelines for personal exposure monitoring of chemicals" ("this Guideline"), has been prepared by "The Committee for Personal Exposure Monitoring" ("the Committee") of the Expert Division of Occupational Hygiene & Ergonomics, Japan Society for Occupational Health. Considering the background of the growing importance of personal exposure monitoring in risk assessment and the need to prepare for the introduction of monitoring using personal samplers from an administrative perspective in recent years, the Committee was organized in November 2012. The Committee has prepared this Guideline as a "practical guideline" for personal exposure monitoring, so as to offer proposals and recommendations to the members of the Japan Society for Occupational Health and to society in general. The scope of this Guideline covers all chemical substances and all related workplaces regarded as targets for general assessment and the management of risk. It thus is not to be considered to comment on legal regulations and methodology. The main text provides the basic methods and concepts of personal exposure monitoring, while 31 "Appendices" are provided later in this Guideline throughout the series; technical descriptions, statistical bases, and actual workplace examples are provided in these appendices, to assist better understanding. The personal exposure monitoring described as per this Guideline is equivalent to an "expert-centered basic method to reasonably proceed with the assessment and management of risk at workplaces." It is considered that practicing and expanding on this method will significantly contribute in reforming the overall framework of occupational hygiene management in Japan.

  9. Guidelines for personal exposure monitoring of chemicals: Part II.

    PubMed

    Hashimoto, Haruo; Yamada, Kenichi; Hori, Hajime; Kumagai, Shinji; Murata, Masaru; Nagoya, Toshio; Nakahara, Hirohiko; Mochida, Nobuyuki

    2017-11-25

    This Document, "Guidelines for personal exposure monitoring of chemicals" ("this Guideline"), has been prepared by "The Committee for Personal Exposure Monitoring" ("the Committee") of the Expert Division of Occupational Hygiene & Ergonomics, Japan Society for Occupational Health. Considering the background of the growing importance of personal exposure monitoring in risk assessment and the need to prepare for the introduction of monitoring using personal samplers from an administrative perspective in recent years, the Committee was organized in November 2012. The Committee has prepared this Guideline as a "practical guideline" for personal exposure monitoring, so as to offer proposals and recommendations to the members of the Japan Society for Occupational Health and to society in general. The scope of this Guideline covers all chemical substances and all related workplaces regarded as targets for general assessment and the management of risk. It thus is not to be considered to comment on legal regulations and methodology. The main text provides the basic methods and concepts of personal exposure monitoring, while 31 "Appendices" are provided in this Guideline throughout the series; technical descriptions, statistical bases, and actual workplace examples are provided in these appendices, to assist better understanding. The personal exposure monitoring described as per this Guideline is equivalent to an "expert-centered basic method to reasonably proceed with the assessment and management of risk at workplaces." It is considered that practicing and expanding on this method will significantly contribute in reforming the overall framework of occupational hygiene management in Japan.

  10. Indoor Exposure and Adverse Birth Outcomes Related to Fetal Growth, Miscarriage and Prematurity—A Systematic Review

    PubMed Central

    Patelarou, Evridiki; Kelly, Frank J.

    2014-01-01

    The purpose of this review was to summarize existing epidemiological evidence of the association between quantitative estimates of indoor air pollution and all-day personal exposure with adverse birth outcomes including fetal growth, prematurity and miscarriage. We carried out a systematic literature search of MEDLINE and EMBASE databases with the aim of summarizing and evaluating the results of peer-reviewed epidemiological studies undertaken in “westernized” countries that have assessed indoor air pollution and all-day personal exposure with specific quantitative methods. This comprehensive literature search identified 16 independent studies which were deemed relevant for further review and two additional studies were added through searching the reference lists of all included studies. Two reviewers independently and critically appraised all eligible articles using the Critical Appraisal Skills Programme (CASP) tool. Of the 18 selected studies, 14 adopted a prospective cohort design, three were case-controls and one was a retrospective cohort study. In terms of pollutants of interest, seven studies assessed exposure to electro-magnetic fields, four studies assessed exposure to polycyclic aromatic hydrocarbons, four studies assessed PM2.5 exposure and three studies assessed benzene, phthalates and noise exposure respectively. Furthermore, 12 studies examined infant growth as the main birth outcome of interest, six examined spontaneous abortion and three studies assessed gestational age at birth and preterm delivery. This survey demonstrates that there is insufficient research on the possible association of indoor exposure and early life effects and that further research is needed. PMID:24896737

  11. Does cultural exposure partially explain the association between personality and political orientation?

    PubMed

    Xu, Xiaowen; Mar, Raymond A; Peterson, Jordan B

    2013-11-01

    Differences in political orientation are partly rooted in personality, with liberalism predicted by Openness to Experience and conservatism by Conscientiousness. Since Openness is positively associated with intellectual and creative activities, these may help shape political orientation. We examined whether exposure to cultural activities and historical knowledge mediates the relationship between personality and political orientation. Specifically, we examined the mediational role of print exposure (Study 1), film exposure (Study 2), and knowledge of American history (Study 3). Studies 1 and 2 found that print and film exposure mediated the relationships Openness to Experience and Conscientiousness have with political orientation. In Study 3, knowledge of American history mediated the relationship between Openness and political orientation, but not the association between Conscientiousness and political orientation. Exposure to culture, and a corollary of this exposure in the form of acquiring knowledge, can therefore partially explain the associations between personality and political orientation.

  12. Exposure Modeling of Residential Air Exchange Rates for NEXUS Participants

    EPA Science Inventory

    Due to cost and participant burden of personal measurements, air pollution health studies often estimate exposures using local ambient air monitors. Since outdoor levels do not necessarily reflect personal exposures, we developed the Exposure Model for Individuals (EMI) to improv...

  13. Personal Exposure Monitoring Wearing Protocol Compliance: An Initial Assessment of Quantitative Measurements

    EPA Science Inventory

    Personal exposure sampling provides the most accurate and representative assessment of exposure to a pollutant, but only if measures are implemented to minimize exposure misclassification and reduce confounders that may cause misinterpretation of the collected data. Poor complian...

  14. Exposure Modeling of Residential Air Exchange Rates for NEXUS Participants.

    EPA Science Inventory

    Due to cost and participant burden of personal measurements, air pollution health studies often estimate exposures using local ambient air monitors. Since outdoor levels do not necessarily reflect personal exposures, we developed the Exposure Model for Individuals (EMI) to improv...

  15. Exposure Modeling of Residential Infiltration of Black Carbon for NEXUS Participants

    EPA Science Inventory

    Due to cost and participant burden of personal measurements, air pollution health studies often estimate exposures using outdoor concentrations. Since outdoor levels do not necessarily reflect personal exposures, we developed the Exposure Model for Individuals (EMI) to improve ex...

  16. Exposure Measurement Error in PM2.5 Health Effects Studies: A Pooled Analysis of Eight Personal Exposure Validation Studies

    EPA Science Inventory

    Background: Exposure measurement error is a concern in long-term PM2.5 health studies using ambient concentrations as exposures. We assessed error magnitude by estimating calibration coefficients as the association between personal PM2.5 exposures from validation studies and typ...

  17. Characterization of ambient-generated exposure to fine particles using sulfate as a tracer in the Chinese megacity of Guangzhou.

    PubMed

    Chen, Xiao-Cui; Jahn, Heiko J; Engling, Guenter; Ward, Tony J; Kraemer, Alexander; Ho, Kin-Fai; Chan, Chuen-Yu

    2017-02-15

    Total personal exposures can differ from the concentrations measured at stationary ambient monitoring sites. To provide further insight into factors affecting exposure to particles, chemical tracers were used to separate total personal exposure into its ambient and non-ambient components. Simultaneous measurements of ambient and personal exposure to fine particles (PM 2.5 ) were conducted in eight districts of Guangzhou, a megacity in South China, during the winter of 2011. Considerable significant correlations (Spearman's Rho, r s ) between personal exposures and ambient concentrations of sulfate (SO 4 2- ; r s >0.68) were found in contrast to elemental carbon (EC; r s >0.37). The average fraction of personal SO 4 2- to ambient SO 4 2- resulting in an adjusted ambient exposure factor of α=0.72 and a slope of 0.73 was determined from linear regression analysis when there were minimal indoor sources of SO 4 2- . From all data pooled across the districts, the estimated average ambient-generated and non-ambient-generated exposure to PM 2.5 were 55.3μg/m 3 (SD=23.4μg/m 3 ) and 18.1μg/m 3 (SD=29.1μg/m 3 ), respectively. A significant association was found between ambient-generated exposure and ambient PM 2.5 concentrations (Pearson's r=0.51, p<0.001). As expected, the non-ambient generated exposure was not related to the ambient concentrations. This study highlights the importance of both ambient and non-ambient components of total personal exposure in the megacity of Guangzhou. Our results support the use of SO 4 2- as a tracer of personal exposure to PM 2.5 of ambient origin in environmental and epidemiological studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. 47 CFR 2.1091 - Radiofrequency radiation exposure evaluation: mobile devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... transmission of a signal. In general, maximum average power levels must be used to determine compliance. (3) If... workers that can be easily re-located, such as wireless devices associated with a personal computer, are... Satellite Communications Services, the General Wireless Communications Service, the Wireless Communications...

  19. RESEARCH TOWARDS DEVELOPING METHODS FOR SELECTED PHARMACEUTICAL AND PERSONAL CARE PRODUCTS (PPCPS) ADAPTED FOR BIOSOLIDS

    EPA Science Inventory

    Development, standardization, and validation of analytical methods provides state-of-the-science

    techniques to evaluate the presence, or absence, of select PPCPs in biosolids. This research

    provides the approaches, methods, and tools to assess the exposures and redu...

  20. Safety in the Chemical Laboratory: Laboratory Air Quality: Part I. A Concentration Model.

    ERIC Educational Resources Information Center

    Butcher, Samuel S.; And Others

    1985-01-01

    Offers a simple model for estimating vapor concentrations in instructional laboratories. Three methods are described for measuring ventilation rates, and the results of measurements in six laboratories are presented. The model should provide a simple screening tool for evaluating worst-case personal exposures. (JN)

  1. Microenvironmental characteristics important for personal exposures to aldehydes in Sacramento, CA, and Milwaukee, WI

    NASA Astrophysics Data System (ADS)

    Raymer, J. H.; Akland, G.; Johnson, T. R.; Long, T.; Michael, L.; Cauble, L.; McCombs, M.

    Oxygenated additives in gasoline are designed to decrease the ozone-forming hydrocarbons and total air toxics, yet they can increase the emissions of aldehydes and thus increase human exposure to these toxic compounds. This paper describes a study conducted to characterize targeted aldehydes in microenvironments in Sacramento, CA, and Milwaukee, WI, and to improve our understanding of the impact of the urban environment on human exposure to air toxics. Data were obtained from microenvironmental concentration measurements, integrated, 24-h personal measurements, indoor and outdoor pollutant monitors at the participants' residences, from ambient pollutant monitors at fixed-site locations in each city, and from real-time diaries and questionnaires completed by the technicians and participants. As part of this study, a model to predict personal exposures based on individual time/activity data was developed for comparison to measured concentrations. Predicted concentrations were generally within 25% of the measured concentrations. The microenvironments that people encounter daily provide for widely varying exposures to aldehydes. The activities that occur in those microenvironments can modulate the aldehyde concentrations dramatically, especially for environments such as "indoor at home." By considering personal activity, location (microenvironment), duration in the microenvironment, and a knowledge of the general concentrations of aldehydes in the various microenvironments, a simple model can do a reasonably good job of predicting the time-averaged personal exposures to aldehydes, even in the absence of monitoring data. Although concentrations of aldehydes measured indoors at the participants' homes tracked well with personal exposure, there were instances where personal exposures and indoor concentrations differed significantly. Key to the ability to predict exposure based on time/activity data is the quality and completeness of the microenvironmental characterizations for the chemicals of interest. Consistent with many earlier studies, personal exposures are difficult to predict using data from regional outdoor monitors.

  2. Contribution of microenvironments to personal exposures to PM10 and PM2.5 in summer and winter

    NASA Astrophysics Data System (ADS)

    Hwang, Yunhyung; Lee, Kiyoung

    2018-02-01

    Personal exposure to particulate matter (PM) can be affected by time-activity patterns and microenvironmental concentrations. Particle size is closely associated with potential health problems, where smaller particles have greater effects on health. We investigated the effects of time-activity patterns on personal exposure and the contribution of the microenvironment to personal exposure to PM with maximal diameters of 10 μm and 2.5 μm (PM10 and PM2.5, respectively) in summer and winter. Technicians carried a nephelometer to detect various sizes of PM while engaging in one of nine scripted time-location-activity patterns. The scripted activities were based on the time-activity patterns of nine groups of inhabitants of Seoul, Korea. The monitoring was repeated in summer and winter to assess seasonal variation. The differences of personal exposures to PM10 and PM2.5 in summer and winter were not significant. The greatest PM concentrations occurred in restaurants. The PM2.5/PM10 ratios were varied from 0.35 at schools to 0.92 at stores. In both seasons, the residential indoor microenvironment was the largest contributor to personal PM exposure. The other major contributors were restaurants, offices, schools, buses, and walking, although their contributions differed by season and particle size. The different microenvironmental contributions among the activity pattern groups suggest that personal exposure significantly differs according to activity pattern.

  3. Hypersensitivity pneumonitis in a cluster of sawmill workers: a 10-year follow-up of exposure, symptoms, and lung function

    PubMed Central

    Færden, Karl; Lund, May Brit; Aaløkken, Trond Mogens; Eduard, Wijnand; Søstrand, Per; Langård, Sverre; Kongerud, Johny

    2014-01-01

    Background: The long-term prognosis of repeated acute episodes of hypersensitivity pneumonitis (HP) is not well described. We report on a 10-year follow-up of a 10-person cluster from a Norwegian sawmill who had all experienced relapsing episodes of HP. Objectives: To evaluate the health symptoms, work-related sick-leave, and lung function of 10 workers exposed to mold in a Norwegian sawmill. Methods: Participants were evaluated at baseline and 10 years later at follow-up. A structured interview, measurement of serum IgG antibodies to Rhizopus microsporus (R. microsporus) antigens, lung function tests, high resolution computed tomography (HRCT) of the chest, and personal measurements of exposure to mold spores and dust were completed for each participant. Results: At baseline, nearly all workers reported acute episodes of HP more than twice a month. At follow-up, both the frequency and intensity of symptoms had declined. Sick-leave was reduced and gas diffusing capacity improved – paralleling the gradually reduced air levels of mold spores. Conclusions: In spite of an initially high occurrence of symptoms, long-term clinical and physiological outcome was good. With reduced exposure to mold spores, symptoms declined and lung function was restored. PMID:24999852

  4. Health-hazard evaluation report HETA 87-392-2099, Loral Systems Group, Akron, Ohio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-02-01

    In response to a request from the International Union, United Automobile, Aerospace and Agricultural Implement Workers of America (UAW), an evaluation was undertaken of possible health hazards at the Loral Systems Group (SIC-3728) located in Akron, Ohio. Concern was voiced about possible asbestos (1332214) exposure. The company produces wheels and brakes for civilian and military aircraft and currently employs about 1560 persons at the Akron facility. At the time of the study there were about 2300 living retirees. The precise number who had worked in one of the four areas of particular interest was unkown. Of the 166 persons foundmore » eligible for inclusion in the health hazard evaluation (15 or more years of potential asbestos exposure in at least one of the four identified programs and still residing in Ohio), 129 participated in a medical evaluation consisting of a chest x-ray, pulmonary function test, and completion of a questionnaire to detail medical and prior work histories. Abnormal pulmonary function results were noted in 39 of these individuals of whom 30 demonstrated an obstructive pattern, three a restrictive pattern, and six both an obstructive and restrictive component. Nonsmoking participants were more likely to report chronic cough, chronic phlegm, and chronic bronchitis than comparisons.« less

  5. Risk analysis for worker exposure to benzene

    NASA Astrophysics Data System (ADS)

    Hallenbeck, William H.; Flowers, Roxanne E.

    1992-05-01

    Cancer risk factors (characterized by route, dose, dose rate per kilogram, fraction of lifetime exposed, species, and sex) were derived for workers exposed to benzene via inhalation or ingestion. Exposure at the current Occupational Safety and Health Administration (OSHA) permissible exposure limit (PEL) and at leaking underground storage tank (LUST) sites were evaluated. At the current PEL of 1 ppm, the theoretical lifetime excess risk of cancer from benzene inhalation is ten per 1000. The theoretical lifetime excess risk for worker inhalation exposure at LUST sites ranged from 10 to 40 per 1000. These results indicate that personal protection should be required. The theoretical lifetime excess risk due to soil ingestion is five to seven orders of magnitude less than the inhalation risks.

  6. Exposure to biohazards in wood dust: bacteria, fungi, endotoxins, and (1-->3)-beta-D-glucans.

    PubMed

    Alwis, K U; Mandryk, J; Hocking, A D

    1999-09-01

    Personal exposure to fungi, bacteria, endotoxin, and (1-->3)-beta-D-glucan was determined at different woodworking sites--logging sites, sawmills, woodchipping sites, and joineries. Exposure levels to fungi at logging sites and sawmills were in the range of 10(3)-10(4) cfu/m3, at the woodchipping mill, 10(3)-10(5) cfu/m3, and at joineries, 10(2)-10(4) cfu/m3. Although mean endotoxin levels were lower than the suggested threshold value of 20 ng/m3, some personal exposures at sawmills and a joinery exceeded the standard. The geometric mean personal (1-->3)-beta-D-glucan exposure level at the woodchipping mill was 2.32 ng/m3, at sawmills, 1.37 ng/m3, at logging sites, 2.02 ng/m3, and at joineries, 0.43 ng/m3. Highly significant associations were found between mean personal inhalable endotoxin exposures and Gram-negative bacteria levels (p < 0.0001), and mean personal inhalable (1-->3)-beta-D-glucan exposures and fungi levels (p = 0.0003). The prevalence of cough, phlegm, chronic bronchitis, nasal symptoms, frequent headaches, and eye and throat irritations was significantly higher among woodworkers than controls. Dose-response relationships were found between personal exposures and work-related symptoms among joinery workers and sawmill and chip mill workers.

  7. Estimating Time-Varying PCB Exposures Using Person-Specific Predictions to Supplement Measured Values: A Comparison of Observed and Predicted Values in Two Cohorts of Norwegian Women

    PubMed Central

    Nøst, Therese Haugdahl; Breivik, Knut; Wania, Frank; Rylander, Charlotta; Odland, Jon Øyvind; Sandanger, Torkjel Manning

    2015-01-01

    Background Studies on the health effects of polychlorinated biphenyls (PCBs) call for an understanding of past and present human exposure. Time-resolved mechanistic models may supplement information on concentrations in individuals obtained from measurements and/or statistical approaches if they can be shown to reproduce empirical data. Objectives Here, we evaluated the capability of one such mechanistic model to reproduce measured PCB concentrations in individual Norwegian women. We also assessed individual life-course concentrations. Methods Concentrations of four PCB congeners in pregnant (n = 310, sampled in 2007–2009) and postmenopausal (n = 244, 2005) women were compared with person-specific predictions obtained using CoZMoMAN, an emission-based environmental fate and human food-chain bioaccumulation model. Person-specific predictions were also made using statistical regression models including dietary and lifestyle variables and concentrations. Results CoZMoMAN accurately reproduced medians and ranges of measured concentrations in the two study groups. Furthermore, rank correlations between measurements and predictions from both CoZMoMAN and regression analyses were strong (Spearman’s r > 0.67). Precision in quartile assignments from predictions was strong overall as evaluated by weighted Cohen’s kappa (> 0.6). Simulations indicated large inter-individual differences in concentrations experienced in the past. Conclusions The mechanistic model reproduced all measurements of PCB concentrations within a factor of 10, and subject ranking and quartile assignments were overall largely consistent, although they were weak within each study group. Contamination histories for individuals predicted by CoZMoMAN revealed variation between study subjects, particularly in the timing of peak concentrations. Mechanistic models can provide individual PCB exposure metrics that could serve as valuable supplements to measurements. Citation Nøst TH, Breivik K, Wania F, Rylander C, Odland JØ, Sandanger TM. 2016. Estimating time-varying PCB exposures using person-specific predictions to supplement measured values: a comparison of observed and predicted values in two cohorts of Norwegian women. Environ Health Perspect 124:299–305; http://dx.doi.org/10.1289/ehp.1409191 PMID:26186800

  8. Sources of personal exposure to fine particles in Toronto, Ontario, Canada.

    PubMed

    Kim, David; Sass-Kortsak, Andrea; Purdham, James T; Dales, Robert E; Brook, Jeffrey R

    2005-08-01

    Individuals are exposed to particulate matter from both indoor and outdoor sources. The aim of this study was to compare the relative contributions of three sources of personal exposure to fine particles (PM2.5) by using chemical tracers. The study design incorporated repeated 24-hr personal exposure measurements of air pollution from 28 cardiac-compromised residents of Toronto, Ontario, Canada. Each study participant wore the Rupprecht & Patashnick ChemPass Personal Sampling System 1 day a week for a maximum of 10 weeks. During their individual exposure measurement days the subjects reported to have spent an average of 89% of their time indoors. Particle phase elemental carbon, sulfate, and calcium personal exposure data were used in a mixed-effects model as tracers for outdoor PM2.5 from traffic-related combustion, regional, and local crustal materials, respectively. These three sources were found to contribute 13% +/- 10%, 17% +/- 16%, and 7% +/- 6% of PM2.5 exposures. The remaining fraction of the personal PM2.5 is hypothesized to be predominantly related to indoor sources. For comparison, central site outdoor PM2.5 measurements for the same dates as personal measurements were used to construct a receptor model using the same three tracers. In this case, traffic-related combustion, regional, and local crustal materials were found to contribute 19% +/- 17%, 52% +/- 22%, and 10% +/- 7%, respectively. Our results indicate that the three outdoor PM2.5 sources considered are statistically significant contributors to personal exposure to PM2.5. Our results also suggest that among the Toronto subjects, who spent a considerable amount of time indoors, exposure to outdoor PM2.5 includes a greater relative contribution from combustion sources compared with outdoor PM2.5 measurements where regional sources are the dominant contributor.

  9. Determinants of indoor and personal exposure to PM 2.5 of indoor and outdoor origin during the RIOPA study

    NASA Astrophysics Data System (ADS)

    Meng, Qing Yu; Spector, Dalia; Colome, Steven; Turpin, Barbara

    2009-12-01

    Effects of physical/environmental factors on fine particle (PM 2.5) exposure, outdoor-to-indoor transport and air exchange rate ( AER) were examined. The fraction of ambient PM 2.5 found indoors ( F INF) and the fraction to which people are exposed ( α) modify personal exposure to ambient PM 2.5. Because F INF, α, and AER are infrequently measured, some have used air conditioning (AC) as a modifier of ambient PM 2.5 exposure. We found no single variable that was a good predictor of AER. About 50% and 40% of the variation in F INF and α, respectively, was explained by AER and other activity variables. AER alone explained 36% and 24% of the variations in F INF and α, respectively. Each other predictor, including Central AC Operation, accounted for less than 4% of the variation. This highlights the importance of AER measurements to predict F INF and α. Evidence presented suggests that outdoor temperature and home ventilation features affect particle losses as well as AER, and the effects differ. Total personal exposures to PM 2.5 mass/species were reconstructed using personal activity and microenvironmental methods, and compared to direct personal measurement. Outdoor concentration was the dominant predictor of (partial R2 = 30-70%) and the largest contributor to (20-90%) indoor and personal exposures for PM 2.5 mass and most species. Several activities had a dramatic impact on personal PM 2.5 mass/species exposures for the few study participants exposed to or engaged in them, including smoking and woodworking. Incorporating personal activities (in addition to outdoor PM 2.5) improved the predictive power of the personal activity model for PM 2.5 mass/species; more detailed information about personal activities and indoor sources is needed for further improvement (especially for Ca, K, OC). Adequate accounting for particle penetration and persistence indoors and for exposure to non-ambient sources could potentially increase the power of epidemiological analyses linking health effects to particulate exposures.

  10. Skin autofluorescence reflects individual seasonal UV exposure, skin photodamage and skin cancer development in organ transplant recipients.

    PubMed

    Togsverd-Bo, Katrine; Philipsen, Peter Alshede; Hædersdal, Merete; Wulf, Hans Christian Olsen

    2018-01-01

    Ultraviolet radiation (UVR)-induced skin cancers varies among organ transplant recipients (OTRs). To improve individual risk assessment of skin cancer, objectively quantified skin photodamage is needed. We measured personal UVR-exposure dose in OTRs and assessed the relation between individual UVR exposure, skin cancer and objectively measured photodamage in terms of skin autofluorescence, pigmentation, and black light-evaluated solar lentigines. Danish OTRs with (n=15) and without a history of skin cancer (n=15) kept sun diaries from May to September and wore personal dosimeters recording time-stamped UVR doses in standard erythema doses (SED). Photodamage was quantified as skin autofluorescence with excitation at 370nm (F370) and 430nm (F430), skin pigmentation (pigment protection factor, PPF), and black light-evaluated solar lentigines. OTRs with skin cancer received a higher UVR dose than OTRs without skin cancer (median 116 SED vs. 67 SED, p=0.07) and UVR exposure doses were correlated with increased PPF (p=0.052) and F370 on the shoulder (F370 shoulder ) (p=0.04). We found that skin cancer was associated with F370 shoulder (OR 10.53, CI 3.3-31,938; p=0.018) and time since transplantation (OR 1.34, CI 0.95-1.91, p=0.097). A cut-off at 7.2 arbitrary units, 89% of OTRs with skin cancer had F370 shoulder values above 7.2 arbitrary units and F370 shoulder was additionally related to patient age (p=0.09) and black light-evaluated solar lentigines (p=0.04). F370 autofluorescence indicates objectively measured photodamage and may be used for individual risk assessment of skin cancer development in OTRs. Copyright © 2017. Published by Elsevier B.V.

  11. Association between Traffic Air Pollution and Reduced Forced Vital Capacity: A Study Using Personal Monitors for Outdoor Workers.

    PubMed

    Santos, Ubiratan Paula; Garcia, Maria Lúcia Siqueira Bueno; Braga, Alfésio Luís Ferreira; Pereira, Luiz Alberto Amador; Lin, Chin An; de André, Paulo Afonso; de André, Carmen Diva Saldiva; Singer, Julio da Motta; Saldiva, Paulo Hilário Nascimento

    2016-01-01

    The effects of outdoor air pollution on lung function in adults are still controversial. Evaluate the effects of exposure to different levels of traffic-generated PM2.5 on workers' lung functions in São Paulo, Brazil. To cover a wide range of exposures, 101 non-smoking workers from three occupations (taxi drivers, traffic controllers, and forest rangers) were selected for the study. After clinical evaluation, the participants were scheduled to attend four consecutive weekly visits in which they received a 24-hour personal PM2.5 sampler and had lung function tests measured on the following day. The association between the spirometric variables and the averaged PM2.5 levels was assessed using robust regression models adjusted for age, waist circumference, time at the job, daily work hours, diabetes or hypertension and former smoking habits. Relative to workers in the lowest exposed group (all measures < 25 μg/m3), those with the highest level of exposure (all measures > 39.6 μg/m3) showed a reduction of predicted FVC (-12.2%; CI 95%: [-20.0% to -4.4%]), a marginal reduction of predicted FEV1 (-9.1%; CI 95%: [-19.1% to 0.9%]) and an increase of predicted FEF25-75%/FVC (14.9%; CI 95%: [2.9% to 26.8%]) without changes of FEV1/FVC. Exposure to vehicular traffic air pollution is associated with a small but significant reduction of FVC without a reduction of FEV1/FVC.

  12. Mass psychogenic illness: psychological predisposition and iatrogenic pseudo-vocal cord dysfunction and pseudo-reactive airways disease syndrome.

    PubMed

    Staudenmayer, Herman; Christopher, Kent L; Repsher, Lawrence; Hill, Ronald H

    2011-06-01

    A multidisciplinary team assessed five patients who alleged chronic medically unexplained multiorgan system symptoms described by idiopathic environmental intolerance allegedly triggered by exposure to solvents used in membrane roofing repair work on an office building. The event precipitated an incident of mass psychogenic illness (MPI). Treating physicians diagnosed irritant-associated vocal cord dysfunction (IVCD) and reactive airways disease syndrome (RADS) resulting from exposure. The authors conducted medical, psychological, and industrial hygiene evaluations. Air monitoring data for total volatile organic compounds obtained during the 2-day exposure period, measurements of emissions during membrane roofing repair at a similar site, mathematical modeling of air contaminant concentrations, and injection of tracer gas into the incident building revealed exposure levels well below those doses anticipated to cause clinical symptoms. There was no objective medical evidence validating symptoms. Review of the medical records indicated that the video laryngoscopy data, pulmonary function tests, and medical examinations relied upon by the treating physicians were inconsistent with published criteria for IVCD and RADS. Psychological evaluation identified defensiveness and self-serving misrepresentations of exaggerated health concerns associated with somatization and malingering. Each case had personality traits associated with at least one personality disorder. Social histories identified premorbid life events and stressors associated with distress. This is the first study to assess psychological predisposition, social interaction among the plaintiffs, and iatrogenic reinforcement of beliefs by diagnoses of pseudo-disorders associated with patient misrepresentation of exaggerated health concerns in an incident of MPI.

  13. MODELING CARBON MONOXIDE (CO) EXPOSURES WITHIN MICROENVIRONMENTS GIVEN PERSONAL EXPOSURE MONITORING DATA

    EPA Science Inventory

    Data collected at ambient fixed sites may not adequately reflect personal CO exposures, as they most often miss exposures resulting from CO emissions from sources in the immediate physical surroundings of individuals, such as within automobiles. he SHAPE model was proposed to acc...

  14. Personal formaldehyde exposure level in the gross anatomy dissecting room at College of Medicine King Saud University Riyadh.

    PubMed

    Vohra, Muhammad Saeed

    2011-03-01

    This study was conducted to correlate the personal formaldehyde (FA) exposure levels of instructors and students with the indoor FA concentrations in gross anatomy laboratory at King Saud University. The personal FA levels of instructors and students are higher than the indoor FA concentration in the gross anatomy laboratory. The gross anatomy laboratory at college of medicine, King Saud University Riyadh, was observed for indoor FA concentration and the personal exposure levels of instructors and the medical students during the 4th, 10th and 14th weeks of the dissection sessions. All air samples were collected by the diffusive sampling device and analyzed by using high performance liquid chromatography (HPLC). The personal exposure level of FA was higher than the indoor concentration, and the personal exposure levels of instructors were higher than that of the students. The concentration of FA was also higher in the center of the room than the corners and near the doors. Both the indoor FA concentrations and personal FA exposure levels are higher near the dissecting table than at locations away from it during the gross anatomy laboratory sessions. Thus, the instructors and students are exposed to the higher concentration of FA than the general population.

  15. Evaluation of workers' exposure to methylene diphenyl diisocyanate (MDI) in an automobile manufacturing company, Iran.

    PubMed

    Kakooei, Hossein; Shahtaheri, Seyed Jamaleddin; Karbasi, Hossein-Ali

    2006-01-01

    Evaluation of personal inhalation exposure to methylene diphenyl diisocyanate (MDI) among 39 employees, working in the window fixation and window glue processes in an automobile manufacturing company was performed. This study was conducted for both case and control groups. After sampling and sample preparation processes, MDI was determined with a UV-VIS spectrophotometer at 590 nm; the lung function was assessed with a digital spirometer, too. The average concentration of MDI in the window fixation, and window glue workplaces were 34.53 and 27.37 micro g/m3, respectively, which was lower than the threshold limit value (TLV) recommended by the American Conference of Governmental Industrial Hygienists (ACGIH) (51 micro g/m3). Respiratory symptoms in the exposed group were significantly different compared to the unexposed group (p < .05). Lung capacities in the case group were lower than in the control group (p < .05). Therefore, MDI can be easily measured making it possible to evaluate the adverse effects caused by occupational exposure.

  16. Exposure to solar ultraviolet radiation is associated with a decreased folate status in women of childbearing age.

    PubMed

    Borradale, D; Isenring, E; Hacker, E; Kimlin, M G

    2014-02-05

    In vitro studies indicate that folate in collected human blood is vulnerable to degradation after exposure to ultraviolet (UV) radiation. This has raised concerns about folate depletion in individuals with high sun exposure. Here, we investigate the association between personal solar UV radiation exposure and serum folate concentration, using a three-week prospective study that was undertaken in females aged 18-47years in Brisbane, Australia (153 E, 27 S). Following two weeks of supplementation with 500μg of folic acid daily, the change in serum folate status was assessed over a 7-day period of measured personal sun exposure. Compared to participants with personal UV exposures of <200 Joules per day, participants with personal UV exposures of 200-599 and >600 Joules per day had significantly higher depletion of serum folate (p=0.015). Multivariable analysis revealed personal UV exposure as the strongest predictor accounting for 20% of the overall change in serum folate (Standardised B=-0.49; t=-3.75; p=<0.01). These data show that increasing solar UV radiation exposures reduces the effectiveness of folic acid supplementation. The consequences of this association may be most pronounced for vulnerable individuals, such as women who are pregnant or of childbearing age with high sun exposures. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Schoolyard Shade and Sun Exposure: Assessment of Personal Monitoring During Children's Physical Activity.

    PubMed

    Vanos, Jennifer K; McKercher, Grant R; Naughton, Kylie; Lochbaum, Marc

    2017-07-01

    Childhood exposure to ultraviolet radiation (UVR) is a major risk factor for the development of melanoma later in life. However, it is challenging to accurately determine personal outdoor exposure to UVR, specifically erythemally weighted UVR (UV E ry ), due to technological constraints, variable time-activity patterns, and the influence of outdoor environmental design. To address this challenge, this study utilized mobile and stationary techniques to examine the UV E ry exposures of 14 children in a schoolyard in Lubbock, TX, in spring 2016. The aims of the study were to examine the influence of artificial shade on personal UV E ry exposures and to assess full sun exposure ratios (ERs) within the same playground microenvironment. On average, personal wrist dosimeters worn during play in the sun measured 18% of the total onsite UV E ry measured by a stationary UV pyranometer. Shade was found to significantly reduce the personal UV E ry exposures by 55%, UVB 280-315 nm exposures by 91%, and the overall solar radiation by 84%. Substantial benefits can be garnered through focused design of children's recreational space to utilize shade-both natural and artificial-to reduce UVR exposures during play, and to extend safe outdoor stays. Finally, although the wrist is a practical location for a dosimeter, it often underestimates full exposures, particularly during physical activity. © 2017 The American Society of Photobiology.

  18. Helmet-Cam: tool for assessing miners’ respirable dust exposure

    PubMed Central

    Cecala, A.B.; Reed, W.R.; Joy, G.J.; Westmoreland, S.C.; O’Brien, A.D.

    2015-01-01

    Video technology coupled with datalogging exposure monitors have been used to evaluate worker exposure to different types of contaminants. However, previous application of this technology used a stationary video camera to record the worker’s activity while the worker wore some type of contaminant monitor. These techniques are not applicable to mobile workers in the mining industry because of their need to move around the operation while performing their duties. The Helmet-Cam is a recently developed exposure assessment tool that integrates a person-wearable video recorder with a datalogging dust monitor. These are worn by the miner in a backpack, safety belt or safety vest to identify areas or job tasks of elevated exposure. After a miner performs his or her job while wearing the unit, the video and dust exposure data files are downloaded to a computer and then merged together through a NIOSH-developed computer software program called Enhanced Video Analysis of Dust Exposure (EVADE). By providing synchronized playback of the merged video footage and dust exposure data, the EVADE software allows for the assessment and identification of key work areas and processes, as well as work tasks that significantly impact a worker’s personal respirable dust exposure. The Helmet-Cam technology has been tested at a number of metal/nonmetal mining operations and has proven to be a valuable assessment tool. Mining companies wishing to use this technique can purchase a commercially available video camera and an instantaneous dust monitor to obtain the necessary data, and the NIOSH-developed EVADE software will be available for download at no cost on the NIOSH website. PMID:26380529

  19. Seven Passive 1-h Hypoxia Exposures Do Not Prevent AMS in Susceptible Individuals.

    PubMed

    Faulhaber, Martin; Pocecco, Elena; Gatterer, Hannes; Niedermeier, Martin; Huth, Maike; Dünnwald, Tobias; Menz, Verena; Bernardi, Luciano; Burtscher, Martin

    2016-12-01

    The present study evaluated the effects of a preacclimatization program comprising seven passive 1-h exposures to 4500-m normobaric hypoxia on the prevalence and severity of acute mountain sickness (AMS) during a subsequent exposure to real high altitude in persons susceptible to AMS. The project was designed as a randomized controlled trial including 32 healthy female and male participants with known susceptibility to AMS symptoms. After baseline measurements, participants were randomly assigned to the hypoxia or the control group to receive the preacclimatization program (seven passive 1-h exposures within 7 d to normobaric hypoxia or sham hypoxia). After completing preacclimatization, participants were transported (bus, cog railway) to real high altitude (3650 m, Mönchsjoch Hut, Switzerland) and stayed there for 45 h (two nights). Symptoms of AMS and physiological responses were determined repeatedly. AMS incidence and severity did not significantly differ between groups during the high-altitude exposure. In total, 59% of the hypoxia and 67% of the control group suffered from AMS at one or more time points during the high-altitude exposure. Hypoxic and hypercapnic ventilatory responses were not affected by the preacclimatization program. Resting ventilation at high altitude tended to be higher (P = 0.06) in the hypoxia group compared with the control group. No significant between-group differences were detected for heart rate variability, arterial oxygen saturation, and hematological and ventilatory parameters during the high-altitude exposure. Preacclimatization using seven passive 1-h exposures to normobaric hypoxia corresponding to 4500 m did not prevent AMS development during a subsequent high-altitude exposure in AMS-susceptible persons.

  20. Measuring combined exposure to environmental pressures in urban areas: an air quality and noise pollution assessment approach.

    PubMed

    Vlachokostas, Ch; Achillas, Ch; Michailidou, A V; Moussiopoulos, Nu

    2012-02-01

    This study presents a methodological scheme developed to provide a combined air and noise pollution exposure assessment based on measurements from personal portable monitors. Provided that air and noise pollution are considered in a co-exposure approach, they represent a significant environmental hazard to public health. The methodology is demonstrated for the city of Thessaloniki, Greece. The results of an extensive field campaign are presented and the variations in personal exposure between modes of transport, routes, streets and transport microenvironments are evaluated. Air pollution and noise measurements were performed simultaneously along several commuting routes, during the morning and evening rush hours. Combined exposure to environmental pollutants is highlighted based on the Combined Exposure Factor (CEF) and Combined Dose and Exposure Factor (CDEF). The CDEF takes into account the potential relative uptake of each pollutant by considering the physical activities of each citizen. Rather than viewing environmental pollutants separately for planning and environmental sustainability considerations, the possibility of an easy-to-comprehend co-exposure approach based on these two indices is demonstrated. Furthermore, they provide for the first time a combined exposure assessment to these environmental pollutants for Thessaloniki and in this sense they could be of importance for local public authorities and decision makers. A considerable environmental burden for the citizens of Thessaloniki, especially for VOCs and noise pollution levels is observed. The material herein points out the importance of measuring public health stressors and the necessity of considering urban environmental pollution in a holistic way. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. INDOOR, OUTDOOR, AND PERSONAL AIR EXPOSURES TO PARTICLES, ELEMENTS, AND NICOTINE FOR 178 RESIDENTS OF RIVERSIDE, CALIFORNIA

    EPA Science Inventory

    Personal, indoor, and outdoor concentrations of inhalable particles and 15 elements were measured for a probability sample of 178 persons representing 139,000 nonsmoking residents of Riverside, California. ewly designed personal monitors were employed. ersonal exposures often exc...

  2. Contribution to volatile organic compound exposures from time spent in stores and restaurants and bars.

    PubMed

    Loh, Miranda M; Houseman, E Andres; Levy, Jonathan I; Spengler, John D; Bennett, Deborah H

    2009-11-01

    Many people spend time in stores and restaurants, yet there has been little investigation of the influence of these microenvironments on personal exposure. Relative to the outdoors, transportation, and the home, these microenvironments have high concentrations of several volatile organic compounds (VOCs). We developed a stochastic model to examine the effect of VOC concentrations in these microenvironments on total personal exposure for (1) non-smoking adults working in offices who spend time in stores and restaurants or bars and (2) non-smoking adults who work in these establishments. We also compared the effect of working in a smoking versus non-smoking restaurant or bar. Input concentrations for each microenvironment were developed from the literature whereas time activity inputs were taken from the National Human Activity Patterns Survey. Time-averaged exposures were simulated for 5000 individuals over a weeklong period for each analysis. Mean contributions to personal exposure from non-working time spent in stores and restaurants or bars range from <5% to 20%, depending on the VOC and time-activity patterns. At the 95th percentile of the distribution of the proportion of personal exposure attributable to time spent in stores and restaurants or bars, these microenvironments can be responsible for over half of a person's total exposure to certain VOCs. People working in restaurants or bars where smoking is allowed had the highest fraction of exposure attributable to their workplace. At the median, people who worked in stores or restaurants tended to have 20-60% of their total exposures from time spent at work. These results indicate that stores and restaurants can be large contributors to personal exposure to VOCs for both workers in those establishments and for a subset of people who visit these places, and that incorporation of these non-residential microenvironments can improve models of personal exposure distributions.

  3. Assessment of exposure to pesticides during mixing/loading and spraying of tomatoes in the open field.

    PubMed

    Aprea, Maria Cristina; Bosi, Anna; Manara, Michele; Mazzocchi, Barbara; Pompini, Alessandra; Sormani, Francesca; Lunghini, Liana; Sciarra, Gianfranco

    2016-01-01

    Some evidence of exposure-response of metolachlor and pendimethalin for lung cancer and an association of metribuzin with risk of glioma have been reported. The primary objectives in this study were to evaluate exposure and occupational risk during mixing/loading of pesticides and during their application to tomatoes cultivated in open fields. Sixteen farmers were sampled. Respiratory exposure was estimated by personal air sampling using fiberglass filters in a IOM device. Dermal exposure was assessed using skin pads and hand washing. Absorbed doses were estimated assuming 100% lung retention, and 50% or 10% skin absorption for metribuzin, and pendimethalin and metolachlor, respectively. The three pesticides were quantified by gas chromatography tandem mass spectrometry in all matrices. Metolachlor was used as a tracer of contamination of clothes and tractors unrelated to the exposure monitored. Respiratory exposure to metribuzin, used in granular form, was on average more than one order of magnitude higher than exposure to pendimethalin, used in the form of microencapsulated liquid. The actual doses were 0.067-8.08 µg/kg bw, 0.420-12.6 µg/kg bw, and 0.003-0.877 µg/kg bw for pendimethalin, metribuzin, and metolachlor, respectively. Dermal exposure was about 88% of the actual dose for metribuzin and more than 95%, for pendimethalin and metolachlor. For risk assessment, the total absorbed doses (sum of respiratory and skin absorbed doses) were compared with the AOEL for each compound. The actual and absorbed doses of the three pesticides were always lower than the acceptable operator exposure level (AOEL), which are reported to be 234 µg/kg bw, 20 µg/kg bw, and 150 µg/kg bw for pendimethalin, metribuzin, and metolachlor, respectively. In any case, personal protective equipment and spraying devices should be chosen with care to minimize exposure.

  4. Evaluating OSHA's ethylene oxide standard: employer exposure-monitoring activities in Massachusetts hospitals from 1985 through 1993.

    PubMed Central

    LaMontagne, A D; Kelsey, K T

    1997-01-01

    OBJECTIVES: This study characterized exposure-monitoring activities and findings under the Occupational Safety and Health Administration's (OSHA's) 1984 ethylene oxide (EtO) standard. METHODS: In-depth mail and telephone surveys were followed by on-site interviews at all EtO-using hospitals in Massachusetts (n = 92, 96% participation rate). RESULTS: By 1993, most hospitals had performed personal exposure monitoring for OSHA's 8-hour action level (95%) and the excursion limit (87%), although most did not meet the 1985 implementation deadline. In 1993, 66% of hospitals reported the installation of EtO alarms to fulfill the standard's "alert" requirement. Alarm installation also lagged behind the 1985 deadline and peaked following a series of EtO citations by OSHA. From 1990 through 1992, 23% of hospitals reported having exceeded the action level once or more; 24% reported having exceeded the excursion limit; and 33% reported that workers were accidentally exposed to EtO in the absence of personal monitoring. CONCLUSIONS: Almost a decade after passage of the EtO standard, exposure-monitoring requirements were widely, but not completely, implemented. Work-shift exposures had markedly decreased since the mid-1980s, but overexposures continued to occur widely. OSHA enforcement appears to have stimulated implementation. PMID:9240100

  5. The Research Triangle Park particulate matter panel study: PM mass concentration relationships

    NASA Astrophysics Data System (ADS)

    Williams, Ron; Suggs, Jack; Rea, Anne; Leovic, Kelly; Vette, Alan; Croghan, Carry; Sheldon, Linda; Rodes, Charles; Thornburg, Jonathan; Ejire, Ademola; Herbst, Margaret; Sanders, William

    The US Environmental Protection Agency has recently performed the Research Triangle Park Particulate Matter Panel Study. This was a 1-year investigation of PM and related co-pollutants involving participants living within the RTP area of North Carolina. Primary goals were to characterize the relationships between ambient and residential PM measures to those obtained from personal exposure monitoring and estimate ambient source contributions to personal and indoor mass concentrations. A total of 38 participants living in 37 homes were involved in personal, residential indoor, residential outdoor and ambient PM 2.5 exposure monitoring. Participants were 30 non-smoking hypertensive African-Americans living in a low-moderate SES neighborhood (SE Raleigh, NC) and a cohort of eight individuals having implanted cardiac defibrillators (Chapel Hill, NC). Residential and ambient monitoring of PM 10 and PM 10-2.5 (coarse by differential) was also performed. The volunteers were monitored for seven consecutive days during each of four seasons (summer 2000, fall 2000, winter 2001, spring 2001). Individual PM 2.5 personal exposure concentrations ranged from 4 to 218 μg m -3 during the study. The highest personal exposures were determined to be the result of passive environmental tobacco exposures. Subsequently, ˜7% of the total number of personal exposure trials were excluded to minimize this pollutant's effect upon the overall analysis. Results indicated that a pooled data set (seasons, cohorts, residences, participants) was appropriate for investigation of the basic mass concentration relationships. Daily personal PM 2.5 mass concentrations were typically higher than their associated residential or ambient measurements (mean personal=23.0, indoor=19.1, outdoor=19.3, ambient=19.2 μg m -3). Mean personal PM 2.5 exposures were observed to be only moderately correlated to ambient PM 2.5 concentrations ( r=0.39).

  6. ATTRIBUTION OF PARTICLE EXPOSURE AND RISK TO COMBUSTION SOURCE EMISSIONS BASED ON PERSONAL PAH EXPOSURE AND URINARY METABOLITES

    EPA Science Inventory

    Personal airborne exposures to carcinogenic particulate PAH have been significantly correlated with exposure to respirable fine particle mass (PM 2.5) in several studies. All combustion sources emit PAH, however the relative concentrations of different PAH and other organic tr...

  7. Estimation of the diesel exhaust exposures of railroad workers: II. National and historical exposures.

    PubMed

    Woskie, S R; Smith, T J; Hammond, S K; Schenker, M B; Garshick, E; Speizer, F E

    1988-01-01

    The diesel exhaust exposures of railroad workers in thirteen job groups from four railroads in the United States were used to estimate U.S. national average exposures with a linear statistical model which accounts for the significant variability in exposure caused by climate, the differences among railroads and the uneven distribution of railroad workers across climatic regions. Personal measurements of respirable particulate matter, adjusted to remove the contribution of cigarette smoke particles, were used as a marker for diesel exhaust. The estimated national means of adjusted respirable particulate matter (ARP) averaged 10 micrograms/m3 lower than the simple means for each job group, reflecting the climatic differences between the northern railroads studied and the distribution of railroad workers nationally. Limited historical records, including some industrial hygiene data, were used to evaluate past diesel exhaust exposures, which were estimated to be approximately constant from the 1950's to 1983.

  8. Cardiovascular Effects of Long-Term Exposure to Air Pollution: A Population-Based Study With 900 845 Person-Years of Follow-up.

    PubMed

    Kim, Hyeanji; Kim, Joonghee; Kim, Sunhwa; Kang, Si-Hyuck; Kim, Hee-Jun; Kim, Ho; Heo, Jongbae; Yi, Seung-Muk; Kim, Kyuseok; Youn, Tae-Jin; Chae, In-Ho

    2017-11-08

    Studies have shown that long-term exposure to air pollution such as fine particulate matter (≤2.5 μm in aerodynamic diameter [PM 2.5 ]) increases the risk of all-cause and cardiovascular mortality. To date, however, there are limited data on the impact of air pollution on specific cardiovascular diseases. This study aimed to evaluate cardiovascular effects of long-term exposure to air pollution among residents of Seoul, Korea. Healthy participants with no previous history of cardiovascular disease were evaluated between 2007 and 2013. Exposure to air pollutants was estimated by linking the location of outdoor monitors to the ZIP code of each participant's residence. Crude and adjusted analyses were performed using Cox regression models to evaluate the risk for composite cardiovascular events including cardiovascular mortality, acute myocardial infarction, congestive heart failure, and stroke. A total of 136 094 participants were followed for a median of 7.0 years (900 845 person-years). The risk of major cardiovascular events increased with higher mean concentrations of PM 2.5 in a linear relationship, with a hazard ratio of 1.36 (95% confidence interval, 1.29-1.43) per 1 μg/m 3 PM 2.5 . Other pollutants including PM 2.5-10 of CO, SO 2 , and NO 2 , but not O 3 , were significantly associated with increased risk of cardiovascular events. The burden from air pollution was comparable to that from hypertension and diabetes mellitus. This large-scale population-based study demonstrated that long-term exposure to air pollution including PM 2.5 increases the risk of major cardiovascular disease and mortality. Air pollution should be considered an important modifiable environmental cardiovascular risk factor. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  9. Modeling spatial patterns of link-based PM2.5 emissions and subsequent human exposure in a large canadian metropolitan area

    NASA Astrophysics Data System (ADS)

    Requia, Weeberb J.; Dalumpines, Ron; Adams, Matthew D.; Arain, Altaf; Ferguson, Mark; Koutrakis, Petros

    2017-06-01

    Understanding the relationship between mobile source emissions and subsequent human exposure is crucial for emissions control. Determining this relationship over space is fundamental to improve the accuracy and precision of public policies. In this study, we evaluated the spatial patterns of link-based PM2.5 emissions and subsequent human exposure in a large Canadian metropolitan area - the Greater Toronto and Hamilton Area (GTHA). This study was performed in three stages. First, we estimated vehicle emissions using transportation models and emission simulators. Then we evaluated human exposure to PM2.5 emissions using the Intake fraction (iF) approach. Finally, we applied geostatistical methods to assess spatial patterns of vehicle emissions and subsequent human exposure based on three prospective goals: i) classification of emissions (Global Moran's I test), ii) level of emission exposure (Getis-Ord General G test), and; iii) location of emissions (Anselin Local Moran's I). Our results showed that passenger vehicles accounted for the highest total amount of PM2.5 emissions, representing 57% emissions from all vehicles. Examining only the emissions from passenger vehicles, on average, each person in the GTHA inhales 2.58 × 10-3 ppm per day. Accounting the emissions from buses and trucks, on average each person inhales 0.12 × 10-3 and 1.91 × 10-3 ppm per day, respectively. For both PM2.5 emissions and human exposure using iF approach, our analysis showed Moran's Index greater than 0 for all vehicle categories, suggesting the presence of significant clusters (p-value <0.01) in the region. Our study indicates that air pollution control policy must be developed for the whole region, because of the spatial distribution of housing and businesses centers and inter-connectivity of transportation networks across the region, where a policy cannot simply be based on a municipal or other boundaries.

  10. Exposures to multiple air toxics in New York City.

    PubMed Central

    Kinney, Patrick L; Chillrud, Steven N; Ramstrom, Sonja; Ross, James; Spengler, John D

    2002-01-01

    Efforts to assess health risks associated with exposures to multiple urban air toxics have been hampered by the lack of exposure data for people living in urban areas. The TEACH (Toxic Exposure Assessment, a Columbia/Harvard) study was designed to characterize levels of and factors influencing personal exposures to urban air toxics among high school students living in inner-city neighborhoods of New York City and Los Angeles, California. This present article reports methods and data for the New York City phase of TEACH, focusing on the relationships between personal, indoor, and outdoor concentrations in winter and summer among a group of 46 high school students from the A. Philip Randolph Academy, a public high school located in the West Central Harlem section of New York City. Air pollutants monitored included a suite of 17 volatile organic compounds (VOCs) and aldehydes, particulate matter with a mass median aerodynamic diameter

  11. Exposures to multiple air toxics in New York City.

    PubMed

    Kinney, Patrick L; Chillrud, Steven N; Ramstrom, Sonja; Ross, James; Spengler, John D

    2002-08-01

    Efforts to assess health risks associated with exposures to multiple urban air toxics have been hampered by the lack of exposure data for people living in urban areas. The TEACH (Toxic Exposure Assessment, a Columbia/Harvard) study was designed to characterize levels of and factors influencing personal exposures to urban air toxics among high school students living in inner-city neighborhoods of New York City and Los Angeles, California. This present article reports methods and data for the New York City phase of TEACH, focusing on the relationships between personal, indoor, and outdoor concentrations in winter and summer among a group of 46 high school students from the A. Philip Randolph Academy, a public high school located in the West Central Harlem section of New York City. Air pollutants monitored included a suite of 17 volatile organic compounds (VOCs) and aldehydes, particulate matter with a mass median aerodynamic diameter

  12. Temporal Variability of Daily Personal Magnetic Field Exposure Metrics in Pregnant Women

    PubMed Central

    Lewis, Ryan C.; Evenson, Kelly R.; Savitz, David A.; Meeker, John D.

    2015-01-01

    Recent epidemiology studies of power-frequency magnetic fields and reproductive health have characterized exposures using data collected from personal exposure monitors over a single day, possibly resulting in exposure misclassification due to temporal variability in daily personal magnetic field exposure metrics, but relevant data in adults are limited. We assessed the temporal variability of daily central tendency (time-weighted average, median) and peak (upper percentiles, maximum) personal magnetic field exposure metrics over seven consecutive days in 100 pregnant women. When exposure was modeled as a continuous variable, central tendency metrics had substantial reliability, whereas peak metrics had fair (maximum) to moderate (upper percentiles) reliability. The predictive ability of a single day metric to accurately classify participants into exposure categories based on a weeklong metric depended on the selected exposure threshold, with sensitivity decreasing with increasing exposure threshold. Consistent with the continuous measures analysis, sensitivity was higher for central tendency metrics than for peak metrics. If there is interest in peak metrics, more than one day of measurement is needed over the window of disease susceptibility to minimize measurement error, but one day may be sufficient for central tendency metrics. PMID:24691007

  13. Evaluation of preventive and control measures for lead exposure in a South African lead-acid battery recycling smelter.

    PubMed

    Dyosi, Sindiswa

    2007-10-01

    In South Africa, new lead regulations released in February 2002 served as motivation for a cross-sectional study investigating the effectiveness of preventive and control measures implemented in a lead smelter that recycles lead-acid batteries. Twenty-two workers were observed and interviewed. Structured questionnaires were used to gather workers' personal information, perception about their work environment, health risks, and work practices. Retrospective data from air monitoring and medical surveillance programs were obtained from the plant's records. The smelter implemented a number of control measures for lead exposure, including engineering controls, administrative controls, and, as a last resort, personal protective equipment. Engineering controls were rated the best control measure and included local exhaust ventilation systems and wet methods. Positive pressure systems were used in the offices and laboratory. The local exhaust ventilation system was rated the best engineering control measure. Although control measures were used, areas such as smelting and refinery had average lead in air levels above 0.15 mg/m(3), the occupational exposure limit for lead. This was a concern especially with regard to the smelting area because those workers had the second highest mean blood lead levels; workers in the battery breaking area had the highest. Regular use of personal protective equipment by some workers in the "lead exposure zones" was not observed. Although the mean blood lead levels had been below 40 micro g/dL for more than 90% of the workers since 2001, more than 70% of workers reported concerns about their health while working in the smelter. Even though control measures were implemented, they were not adequate because in some areas lead in air exceeded the occupational exposure limit. Therefore, improvement of existing measures and regular monitoring of personal protective equipment use were included in the recommendations given to the smelter.

  14. Calibrating a population-based job-exposure matrix using inspection measurements to estimate historical occupational exposure to lead for a population-based cohort in Shanghai, China

    PubMed Central

    Koh, Dong-Hee; Bhatti, Parveen; Coble, Joseph B.; Stewart, Patricia A; Lu, Wei; Shu, Xiao-Ou; Ji, Bu-Tian; Xue, Shouzheng; Locke, Sarah J.; Portengen, Lutzen; Yang, Gong; Chow, Wong-Ho; Gao, Yu-Tang; Rothman, Nathaniel; Vermeulen, Roel; Friesen, Melissa C.

    2012-01-01

    The epidemiologic evidence for the carcinogenicity of lead is inconsistent and requires improved exposure assessment to estimate risk. We evaluated historical occupational lead exposure for a population-based cohort of women (n=74,942) by calibrating a job-exposure matrix (JEM) with lead fume (n=20,084) and lead dust (n=5,383) measurements collected over four decades in Shanghai, China. Using mixed-effect models, we calibrated intensity JEM ratings to the measurements using fixed-effects terms for year and JEM rating. We developed job/industry-specific estimates from the random-effects terms for job and industry. The model estimates were applied to subjects’ jobs when the JEM probability rating was high for either job or industry; remaining jobs were considered unexposed. The models predicted that exposure increased monotonically with JEM intensity rating and decreased 20–50-fold over time. The cumulative calibrated JEM estimates and job/industry-specific estimates were highly correlated (Pearson correlation=0.79–0.84). Overall, 5% of the person-years and 8% of the women were exposed to lead fume; 2% of the person-years and 4% of the women were exposed to lead dust. The most common lead-exposed jobs were manufacturing electronic equipment. These historical lead estimates should enhance our ability to detect associations between lead exposure and cancer risk in future epidemiologic analyses. PMID:22910004

  15. Health hazard evaluation report HETA 85-538-1667, General Telephone Company, Sherman, Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pettigrew, G.L.

    1986-02-01

    Following an employee request, potential health problems among telephone cable splicers were investigated at the General Telephone Company Sherman, Texas. Information was collected on materials used, work procedures, and personal protective equipment employed. Materials of primary concern were petrolatum in the filled cable, petroleum distillates used as cable cleaner, and isocyanates in the two-part reenterable encapsulant. Personal air samples taken by OSHA during pouring operations with the encapsulant revealed no detectable isocyanate concentrations. Observation of a large splicing operation showed the head of the splicer was positioned over the top of the casing while pouring encapsulant components allowing potential exposure.more » Petrolatum was determined to be physiologically inert. Nine of 32 potentially exposed workers completed questionnaires. The most frequently reported symptoms were head congestion and headaches at work; 67% reported warts and 33% reported skin rashes. The author concludes that a health hazard to employees does not exist under normal operating conditions. Workers are advised not to use cable cleaner for personal cleanup. To avoid potential isocyanate sensitization, minimizing exposure, use of personal protective equipment, and good work practices are recommended. Cuts and abrasions among splicers may be implicated in wart formation.« less

  16. CONTRIBUTION OF FINE PARTICLES OF OUTDOOR ORIGIN TO PERSONAL EXPOSURES: RESULTS OF A 37-PERSON PANEL STUDY IN NORTH CAROLINA

    EPA Science Inventory

    The US EPA carried out a study of personal exposures to PM2.5 for 37 persons with hypertension or cardiovascular disease in North Carolina. Personal, indoor (home) and outdoor (home and central site) 24-h samples were collected for 7 consecutive days in each of four seasons in...

  17. Assessment of inhalation exposures and potential health risks to the general population that resulted from the collapse of the World Trade Center towers.

    PubMed

    Lorber, Matthew; Gibb, Herman; Grant, Lester; Pinto, Joseph; Pleil, Joachim; Cleverly, David

    2007-10-01

    In the days following the collapse of the World Trade Center (WTC) towers on September 11, 2001 (9/11), the U.S. Environmental Protection Agency (EPA) initiated numerous air monitoring activities to better understand the ongoing impact of emissions from that disaster. Using these data, EPA conducted an inhalation exposure and human health risk assessment to the general population. This assessment does not address exposures and potential impacts that could have occurred to rescue workers, firefighters, and other site workers, nor does it address exposures that could have occurred in the indoor environment. Contaminants evaluated include particulate matter (PM), metals, polychlorinated biphenyls, dioxins, asbestos, volatile organic compounds, particle-bound polycyclic aromatic hydrocarbons, silica, and synthetic vitreous fibers (SVFs). This evaluation yielded three principal findings. (1) Persons exposed to extremely high levels of ambient PM and its components, SVFs, and other contaminants during the collapse of the WTC towers, and for several hours afterward, were likely to be at risk for acute and potentially chronic respiratory effects. (2) Available data suggest that contaminant concentrations within and near ground zero (GZ) remained significantly elevated above background levels for a few days after 9/11. Because only limited data on these critical few days were available, exposures and potential health impacts could not be evaluated with certainty for this time period. (3) Except for inhalation exposures that may have occurred on 9/11 and a few days afterward, the ambient air concentration data suggest that persons in the general population were unlikely to suffer short-term or long-term adverse health effects caused by inhalation exposures. While this analysis by EPA evaluated the potential for health impacts based on measured air concentrations, epidemiological studies conducted by organizations other than EPA have attempted to identify actual impacts. Such studies have identified respiratory effects in worker and general populations, and developmental effects in newborns whose mothers were near GZ on 9/11 or shortly thereafter. While researchers are not able to identify specific times and even exactly which contaminants are the cause of these effects, they have nonetheless concluded that exposure to WTC contaminants (and/or maternal stress, in the case of developmental effects) resulted in these effects, and have identified the time period including 9/11 itself and the days and few weeks afterward as a period of most concern based on high concentrations of key pollutants in the air and dust.

  18. Formaldehyde exposure in gross anatomy laboratory of Suranaree University of Technology: a comparison of area and personal sampling.

    PubMed

    Saowakon, Naruwan; Ngernsoungnern, Piyada; Watcharavitoon, Pornpun; Ngernsoungnern, Apichart; Kosanlavit, Rachain

    2015-12-01

    Cadavers are usually preserved by embalming solution which is composed of formaldehyde (FA), phenol, and glycerol. Therefore, medical students and instructors have a higher risk of exposure to FA inhalation from cadavers during dissection. Therefore, the objective of this study was to evaluate the FA exposure in indoor air and breathing zone of medical students and instructors during dissection classes in order to investigate the relationship between them. The indoor air and personal air samples in breathing zone were collected three times during anatomy dissection classes (in January, August, and October of 2014) with sorbent tubes, which were analyzed by high-performance liquid chromatography (HPLC). The air cleaner machines were determined by weight measurement. Pulmonary function tests and irritation effects were also investigated. The mean of FA concentrations ranged from 0.117 to 0.415 ppm in the indoor air and from 0.126 to 1.176 ppm in the breathing zone of students and instructors. All the personal exposure data obtained exceeded the threshold limit of NIOSH and WHO agencies. The air cleaner machines were not significant difference. The pulmonary function of instructors showed a decrease during attention of classes and statistically significant decreasing in the instructors more than those of the students. Clinical symptoms that were observed in nose and eyes were irritations with general fatigue. We suggested that the modified exhaust ventilation and a locally ventilated dissection work table were considered for reducing FA levels in the gross anatomy dissection room.

  19. An evaluation of potential occupational exposure to asbestiform amphiboles near a former vermiculite mine.

    PubMed

    Hart, Julie F; Spear, Terry M; Ward, Tony J; Baldwin, Caitlan E; Salo, Marissa N; Elashheb, Mohamed I

    2009-01-01

    Amphibole asbestos (AA) has been detected on the surface of tree bark in forests neighboring an abandoned vermiculite mine near Libby, Montana. In the present study, simulations were performed to assess potential AA exposure associated with United States Department of Agriculture Forest Service (FS) occupational activities. Bark samples were collected prior, and personal breathing zone (PBZ) and Tyvek clothing wipe samples were collected during and immediately after trials that simulated FS activities. Transmission electron microscopy (TEM) analyses revealed AA bark concentrations up to 15 million structures per square centimeter (s/cm(2)). AA was detected in 25% of the PBZ TEM samples. AA was detected on wipe samples collected from all activities evaluated. This research demonstrates the potential for airborne exposure and transport of AA in the Kootenai National Forest. These findings are especially relevant to those that work in the area and to the general public who may conduct recreational activities.

  20. Evaluation of Airborne Particulate Matter and Metals Data in Personal, Indoor and Outdoor Environments using ED-XRF and ICP-MS and Co-located Duplicate Samples

    EPA Science Inventory

    Factors and sources affecting measurement uncertainty in airborne particulate matter (PM) gravimetric measurements and elemental analyses were investigated as part of the Windsor Ontario Exposure Assessment Study (WOEAS). The assessment was made using co-located duplicate sample...

  1. A Doggone Way to Reduce Stress: An Animal Assisted Intervention with College Students

    ERIC Educational Resources Information Center

    House, Lisa A.; Neal, Chelsea; Backels, Kelsey

    2018-01-01

    This article will describe an animal assisted intervention conducted by a University Counseling Center as an outreach program to reduce stress among college students. The study will evaluate students' perceived personal benefits from exposure to therapy dogs on campus. Specifically, we examined if our therapy dog outreach program resulted in…

  2. EVALUATING COMMERCIALLY AVAILABLE DERMAL ...

    EPA Pesticide Factsheets

    As the Human Exposure Program focuses on the exposure of children to pesticides, there are concerns about the effect, or perceived effect, of components of the sampling procedure on the health and well-being of the infant and the ability to collect pesticide residues. One concern involves the materials in wipes used to collect pesticide residues or other contact materials on the skin. In recent studies (e.g., National Human Exposure Assessment Survey; NHEXAS), isopropyl alcohol has been used as a solvent in conjunction with a cloth wipe to obtain samples from the hands of adults and children. Although isopropyl alcohol is generally considered innocuous, the use of commercially available products could eliminate concerns about exposure to alcohol. A few studies have evaluated the potential of commercially available baby wipes to collect personal exposure samples for metals research, but not for the area of pesticide research (Millson et al., 1994; Campbell et al., 1993; Lichtenwalner et al., 1993). Therefore, there is a need to evaluate the potential for using commercially available baby wipes for collecting pesticide samples from skin and other surfaces. Another concern involves establishing a convenient and safe method for assessing overall dermal exposure for children, especially for those in crawling stage. One route that the U .S. Environmental Protection Agency (EPA) would like to investigate is the use of cotton body suits (infant sleepers) as an indicator

  3. Health-hazard evaluation report HETA 87-063-1808, Presbyterian Day Surgery Center, Albuquerque, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniels, W.J.; Gunter, B.

    1987-07-01

    In response to a request from employees to evaluate exposures to waste anesthetic gases and vapors at the Presbyterian Day Surgery Unit, located in Albuquerque, New Mexico, personal and area air-sampling and leak-detection testing was carried out for nitrous oxide (N/sub 2/O) and halogenated anesthetic agents in the six operating rooms at the facility. Nitrous oxide concentrations ranged from not detectable to 95 parts per million (ppm) with a mean of 20ppm. Five of the samples exceeded the NIOSH limit of 25ppm for N/sub 2/O during anesthetic administration. Ethrane levels in 14 personal and area air samples ranged from lessmore » than the limit of detection to 3.63ppm with a mean of 0.31ppm. Isoflurane and halothane were below the limits of detection. The ventilation system in use changed the air in excess of 20 times per hour. However, during a portion of surgical procedures the system was not operating, resulting in a higher than normal exposure level in three of the operating rooms.« less

  4. Personal exposure to ultrafine particles from PVC welding and concrete work during tunnel rehabilitation.

    PubMed

    Jørgensen, Rikke Bramming; Buhagen, Morten; Føreland, Solveig

    2016-07-01

    To investigate the exposure to number concentration of ultrafine particles and the size distribution in the breathing zone of workers during rehabilitation of a subsea tunnel. Personal exposure was measured using a TSI 3091 Fast Mobility Particle Sizer (FMPS), measuring the number concentration of submicrometre particles (including ultrafine particles) and the particle size distribution in the size range 5.6-560 nm. The measurements were performed in the breathing zone of the operators by the use of a conductive silicone tubing. Working tasks studied were operation of the slipforming machine, operations related to finishing the verge, and welding the PVC membrane. In addition, background levels were measured. Arithmetic mean values of ultrafine particles were in the range 6.26×10(5)-3.34×10(6). Vertical PVC welding gave the highest exposure. Horizontal welding was the work task with the highest maximum peak exposure, 8.1×10(7) particles/cm(3). Background concentrations of 4.0×10(4)-3.1×10(5) were found in the tunnel. The mobility diameter at peak particle concentration varied between 10.8 nm during horizontal PVC welding and during breaks and 60.4 nm while finishing the verge. PVC welding in a vertical position resulted in very high exposure of the worker to ultrafine particles compared to other types of work tasks. In evaluations of worker exposure to ultrafine particles, it seems important to distinguish between personal samples taken in the breathing zone of the worker and more stationary work area measurements. There is a need for a portable particle-sizing instrument for measurements of ultrafine particles in working environments. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  5. A Critical Review of Naphthalene Sources and Exposures Relevant to Indoor and Outdoor Air

    PubMed Central

    Jia, Chunrong; Batterman, Stuart

    2010-01-01

    Both the recent classification of naphthalene as a possible human carcinogen and its ubiquitous presence motivate this critical review of naphthalene’s sources and exposures. We evaluate the environmental literature on naphthalene published since 1990, drawing on nearly 150 studies that report emissions and concentrations in indoor, outdoor and personal air. While naphthalene is both a volatile organic compound and a polycyclic aromatic hydrocarbon, concentrations and exposures are poorly characterized relative to many other pollutants. Most airborne emissions result from combustion, and key sources include industry, open burning, tailpipe emissions, and cigarettes. The second largest source is off-gassing, specifically from naphthalene’s use as a deodorizer, repellent and fumigant. In the U.S., naphthalene’s use as a moth repellant has been reduced in favor of para-dichlorobenzene, but extensive use continues in mothballs, which appears responsible for some of the highest indoor exposures, along with off-label uses. Among the studies judged to be representative, average concentrations ranged from 0.18 to 1.7 μg m−3 in non-smoker’s homes, and from 0.02 to 0.31 μg m−3 outdoors in urban areas. Personal exposures have been reported in only three European studies. Indoor sources are the major contributor to (non-occupational) exposure. While its central tendencies fall well below guideline levels relevant to acute health impacts, several studies have reported maximum concentrations exceeding 100 μg m−3, far above guideline levels. Using current but draft estimates of cancer risks, naphthalene is a major environmental risk driver, with typical individual risk levels in the 10−4 range, which is high and notable given that millions of individuals are exposed. Several factors influence indoor and outdoor concentrations, but the literature is inconsistent on their effects. Further investigation is needed to better characterize naphthalene’s sources and exposures, especially for indoor and personal measurements. PMID:20717549

  6. Thyroid neoplasia, autoimmune thyroiditis, and hypothyroidism in persons exposed to iodine 131 from the hanford nuclear site.

    PubMed

    Davis, Scott; Kopecky, Kenneth J; Hamilton, Thomas E; Onstad, Lynn

    2004-12-01

    Approximately 740,000 Ci (2.73 x 10(16) Bq) of iodine 131 (131I) were released to the atmosphere from the Hanford Nuclear Site in Washington State from 1944 through 1957. The risk of thyroid disease resulting from prolonged environmental 131I exposure is poorly understood. The Hanford Thyroid Disease Study (HTDS) was conducted to determine if thyroid disease is increased among persons exposed as children to atmospheric releases of 131I from Hanford. Retrospective cohort study. Exposure could have occurred from December 1944 through 1957. Follow-up occurred until the time of the HTDS examination (December 1992-September 1997). Participants' thyroid radiation doses from Hanford's 131I releases were estimated from interview data regarding residence and dietary histories. The cohort included a sample of all births from 1940 through 1946 to mothers with usual residence in 1 of 7 counties in eastern Washington State. Of 5199 individuals identified, 4350 were located alive and 3440 were evaluable; ie, had sufficient data for dose estimation and received an HTDS evaluation for thyroid disease, including a thyroid ultrasound, physical examination, and fine needle biopsy if required to evaluate thyroid nodularity. Thyroid cancer, benign thyroid nodules, total neoplasia, any thyroid nodules, autoimmune thyroiditis, and hypothyroidism. There was no evidence of a relationship between Hanford radiation dose and the cumulative incidence of any of the outcomes. These results remained unchanged after taking into account several factors that might confound the relationship between radiation dose and the outcomes of interest. These results do not support the hypothesis that exposure during infancy and childhood to 131I at the dose levels (median, 97 mGy; mean, 174 mGy) and exposure circumstances experienced by our study participants increases the risk of the forms of thyroid disease evaluated in this study.

  7. PERSONAL EXPOSURE TO PARTICLES IN BANSKA BYSTRICA, SLOVAKIA

    EPA Science Inventory

    Epidemiological studies have associated adverse health impacts with ambient concentrations of particulate matter (PM), though these studies have been limited in their characterization of personal exposure to PM. An exposure study of healthy nonsmoking adults and children was cond...

  8. 75 FR 69617 - Lowering Miners' Exposure to Respirable Coal Mine Dust, Including Continuous Personal Dust Monitors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-15

    ... 1219-AB64 Lowering Miners' Exposure to Respirable Coal Mine Dust, Including Continuous Personal Dust... hearings on the proposed rule addressing Lowering Miners' Exposure to Respirable Coal Mine Dust, Including... miners' exposure to respirable coal mine dust by revising the Agency's existing standards on miners...

  9. 76 FR 2617 - Lowering Miners' Exposure to Respirable Coal Mine Dust, Including Continuous Personal Dust Monitors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-14

    ... 1219-AB64 Lowering Miners' Exposure to Respirable Coal Mine Dust, Including Continuous Personal Dust... comment period on the proposed rule addressing Lowering Miners' Exposure to Respirable Coal Mine Dust...), MSHA published a proposed rule, Lowering Miners' Exposure to Respirable Coal Mine Dust, Including...

  10. Development of a Computer-Based Survey Instrument for Organophosphate and N-Methyl-Carbamate Exposure Assessment among Agricultural Pesticide Handlers

    PubMed Central

    Hofmann, Jonathan N.; Checkoway, Harvey; Borges, Ofelio; Servin, Flor; Fenske, Richard A.; Keifer, Matthew C.

    2010-01-01

    Background: Assessment of occupational pesticide exposures based on self-reported information can be challenging, particularly with immigrant farm worker populations for whom specialized methods are needed to address language and cultural barriers and account for limited literacy. An audio computer-assisted self-interview (A-CASI) survey instrument was developed to collect information about organophosphate (OP) and N-methyl-carbamate (CB) exposures and other personal characteristics among male agricultural pesticide handlers for an ongoing cholinesterase biomonitoring study in Washington State. Objectives: To assess the feasibility of collecting data using the A-CASI instrument and evaluate reliability for a subset of survey items. Methods: The survey consisted of 64 items administered in Spanish or English on a touch-screen tablet computer. Participants listened to digitally recorded questions on headphones and selected responses on the screen, most of which were displayed as images or icons to facilitate participation of low literacy respondents. From 2006–2008, a total of 195 participants completed the survey during the OP/CB application seasons on at least one occasion. Percent agreement and kappa coefficients were calculated to evaluate test–retest reliability for selected characteristics among 45 participants who completed the survey on two separate occasions within the same year. Results: Almost all participants self-identified as Hispanic or Latino (98%), and 97% completed the survey in Spanish. Most participants completed the survey in a half-hour or less, with minimal assistance from on-site research staff. Analyses of test–retest reliability showed substantial agreement for most demographic, work history, and health characteristics and at least moderate agreement for most variables related to personal protective equipment use during pesticide applications. Conclusions: This A-CASI survey instrument is a novel method that has been used successfully to collect information about OP/CB exposures and other personal characteristics among Spanish-speaking agricultural pesticide handlers. PMID:20413416

  11. Personal exposure to mixtures of volatile organic compounds: modeling and further analysis of the RIOPA data.

    PubMed

    Batterman, Stuart; Su, Feng-Chiao; Li, Shi; Mukherjee, Bhramar; Jia, Chunrong

    2014-06-01

    Emission sources of volatile organic compounds (VOCs*) are numerous and widespread in both indoor and outdoor environments. Concentrations of VOCs indoors typically exceed outdoor levels, and most people spend nearly 90% of their time indoors. Thus, indoor sources generally contribute the majority of VOC exposures for most people. VOC exposure has been associated with a wide range of acute and chronic health effects; for example, asthma, respiratory diseases, liver and kidney dysfunction, neurologic impairment, and cancer. Although exposures to most VOCs for most persons fall below health-based guidelines, and long-term trends show decreases in ambient emissions and concentrations, a subset of individuals experience much higher exposures that exceed guidelines. Thus, exposure to VOCs remains an important environmental health concern. The present understanding of VOC exposures is incomplete. With the exception of a few compounds, concentration and especially exposure data are limited; and like other environmental data, VOC exposure data can show multiple modes, low and high extreme values, and sometimes a large portion of data below method detection limits (MDLs). Field data also show considerable spatial or interpersonal variability, and although evidence is limited, temporal variability seems high. These characteristics can complicate modeling and other analyses aimed at risk assessment, policy actions, and exposure management. In addition to these analytic and statistical issues, exposure typically occurs as a mixture, and mixture components may interact or jointly contribute to adverse effects. However most pollutant regulations, guidelines, and studies remain focused on single compounds, and thus may underestimate cumulative exposures and risks arising from coexposures. In addition, the composition of VOC mixtures has not been thoroughly investigated, and mixture components show varying and complex dependencies. Finally, although many factors are known to affect VOC exposures, many personal, environmental, and socioeconomic determinants remain to be identified, and the significance and applicability of the determinants reported in the literature are uncertain. To help answer these unresolved questions and overcome limitations of previous analyses, this project used several novel and powerful statistical modeling and analysis techniques and two large data sets. The overall objectives of this project were (1) to identify and characterize exposure distributions (including extreme values), (2) evaluate mixtures (including dependencies), and (3) identify determinants of VOC exposure. METHODS VOC data were drawn from two large data sets: the Relationships of Indoor, Outdoor, and Personal Air (RIOPA) study (1999-2001) and the National Health and Nutrition Examination Survey (NHANES; 1999-2000). The RIOPA study used a convenience sample to collect outdoor, indoor, and personal exposure measurements in three cities (Elizabeth, NJ; Houston, TX; Los Angeles, CA). In each city, approximately 100 households with adults and children who did not smoke were sampled twice for 18 VOCs. In addition, information about 500 variables associated with exposure was collected. The NHANES used a nationally representative sample and included personal VOC measurements for 851 participants. NHANES sampled 10 VOCs in common with RIOPA. Both studies used similar sampling methods and study periods. Specific Aim 1. To estimate and model extreme value exposures, extreme value distribution models were fitted to the top 10% and 5% of VOC exposures. Health risks were estimated for individual VOCs and for three VOC mixtures. Simulated extreme value data sets, generated for each VOC and for fitted extreme value and lognormal distributions, were compared with measured concentrations (RIOPA observations) to evaluate each model's goodness of fit. Mixture distributions were fitted with the conventional finite mixture of normal distributions and the semi-parametric Dirichlet process mixture (DPM) of normal distributions for three individual VOCs (chloroform, 1,4-DCB, and styrene). Goodness of fit for these full distribution models was also evaluated using simulated data. Specific Aim 2. Mixtures in the RIOPA VOC data set were identified using positive matrix factorization (PMF) and by toxicologic mode of action. Dependency structures of a mixture's components were examined using mixture fractions and were modeled using copulas, which address correlations of multiple components across their entire distributions. Five candidate copulas (Gaussian, t, Gumbel, Clayton, and Frank) were evaluated, and the performance of fitted models was evaluated using simulation and mixture fractions. Cumulative cancer risks were calculated for mixtures, and results from copulas and multivariate lognormal models were compared with risks based on RIOPA observations. Specific Aim 3. Exposure determinants were identified using stepwise regressions and linear mixed-effects models (LMMs). Specific Aim 1. Extreme value exposures in RIOPA typically were best fitted by three-parameter generalized extreme value (GEV) distributions, and sometimes by the two-parameter Gumbel distribution. In contrast, lognormal distributions significantly underestimated both the level and likelihood of extreme values. Among the VOCs measured in RIOPA, 1,4-dichlorobenzene (1,4-DCB) was associated with the greatest cancer risks; for example, for the highest 10% of measurements of 1,4-DCB, all individuals had risk levels above 10(-4), and 13% of all participants had risk levels above 10(-2). Of the full-distribution models, the finite mixture of normal distributions with two to four clusters and the DPM of normal distributions had superior performance in comparison with the lognormal models. DPM distributions provided slightly better fit than the finite mixture distributions; the advantages of the DPM model were avoiding certain convergence issues associated with the finite mixture distributions, adaptively selecting the number of needed clusters, and providing uncertainty estimates. Although the results apply to the RIOPA data set, GEV distributions and mixture models appear more broadly applicable. These models can be used to simulate VOC distributions, which are neither normally nor lognormally distributed, and they accurately represent the highest exposures, which may have the greatest health significance. Specific Aim 2. Four VOC mixtures were identified and apportioned by PMF; they represented gasoline vapor, vehicle exhaust, chlorinated solvents and disinfection byproducts, and cleaning products and odorants. The last mixture (cleaning products and odorants) accounted for the largest fraction of an individual's total exposure (average of 42% across RIOPA participants). Often, a single compound dominated a mixture but the mixture fractions were heterogeneous; that is, the fractions of the compounds changed with the concentration of the mixture. Three VOC mixtures were identified by toxicologic mode of action and represented VOCs associated with hematopoietic, liver, and renal tumors. Estimated lifetime cumulative cancer risks exceeded 10(-3) for about 10% of RIOPA participants. The dependency structures of the VOC mixtures in the RIOPA data set fitted Gumbel (two mixtures) and t copulas (four mixtures). These copula types emphasize dependencies found in the upper and lower tails of a distribution. The copulas reproduced both risk predictions and exposure fractions with a high degree of accuracy and performed better than multivariate lognormal distributions. Specific Aim 3. In an analysis focused on the home environment and the outdoor (close to home) environment, home VOC concentrations dominated personal exposures (66% to 78% of the total exposure, depending on VOC); this was largely the result of the amount of time participants spent at home and the fact that indoor concentrations were much higher than outdoor concentrations for most VOCs. In a different analysis focused on the sources inside the home and outside (but close to the home), it was assumed that 100% of VOCs from outside sources would penetrate the home. Outdoor VOC sources accounted for 5% (d-limonene) to 81% (carbon tetrachloride [CTC]) of the total exposure. Personal exposure and indoor measurements had similar determinants depending on the VOC. Gasoline-related VOCs (e.g., benzene and methyl tert-butyl ether [MTBE]) were associated with city, residences with attached garages, pumping gas, wind speed, and home air exchange rate (AER). Odorant and cleaning-related VOCs (e.g., 1,4-DCB and chloroform) also were associated with city, and a residence's AER, size, and family members showering. Dry-cleaning and industry-related VOCs (e.g., tetrachloroethylene [or perchloroethylene, PERC] and trichloroethylene [TCE]) were associated with city, type of water supply to the home, and visits to the dry cleaner. These and other relationships were significant, they explained from 10% to 40% of the variance in the measurements, and are consistent with known emission sources and those reported in the literature. Outdoor concentrations of VOCs had only two determinants in common: city and wind speed. Overall, personal exposure was dominated by the home setting, although a large fraction of indoor VOC concentrations were due to outdoor sources. City of residence, personal activities, household characteristics, and meteorology were significant determinants. Concentrations in RIOPA were considerably lower than levels in the nationally representative NHANES for all VOCs except MTBE and 1,4-DCB. Differences between RIOPA and NHANES results can be explained by contrasts between the sampling designs and staging in the two studies, and by differences in the demographics, smoking, employment, occupations, and home locations. (ABSTRACT TRUNCATED)

  12. Coccidioidomycosis as a Common Cause of Community-acquired Pneumonia

    PubMed Central

    Valdivia, Lisa; Nix, David; Wright, Mark; Lindberg, Elizabeth; Fagan, Timothy; Lieberman, Donald; Stoffer, T'Prien; Ampel, Neil M.

    2006-01-01

    The early manifestations of coccidioidomycosis (valley fever) are similar to those of other causes of community-acquired pneumonia (CAP). Without specific etiologic testing, the true frequency of valley fever may be underestimated by public health statistics. Therefore, we conducted a prospective observational study of adults with recent onset of a lower respiratory tract syndrome. Valley fever was serologically confirmed in 16 (29%) of 55 persons (95% confidence interval 16%–44%). Antimicrobial medications were used in 81% of persons with valley fever. Symptomatic differences at the time of enrollment had insufficient predictive value for valley fever to guide clinicians without specific laboratory tests. Thus, valley fever is a common cause of CAP after exposure in a disease-endemic region. If CAP develops in persons who travel or reside in Coccidioides-endemic regions, diagnostic evaluation should routinely include laboratory evaluation for this organism. PMID:16707052

  13. Indoor, outdoor, and personal exposure monitoring of particulate air pollution: the Baltimore elderly epidemiology-exposure pilot study

    NASA Astrophysics Data System (ADS)

    Williams, Ron; Creason, John; Zweidinger, Roy; Watts, Randall; Sheldon, Linda; Shy, Carl

    A 17-day pilot study investigating potential PM exposures of an elderly population was conducted near Baltimore, Maryland. Collection of residential indoor, residential outdoor, and ambient monitoring data associated with the subjects living at a common retirement facility was integrated with results from a paired epidemiological pilot study. This integration was used to investigate the potential pathophysiological health effects resulting from daily changes in estimated PM exposures with results reported elsewhere. Objectives of the exposure study were to determine the feasibility of performing PM exposure assessment upon an elderly population and establishing relationships between the various exposure measures including personal monitoring. PM 2.5 was determined to be the dominant outdoor size fraction (0.83 PM 2.5/PM 10 mass ratio by dichot monitoring). Individual 24-h PM 1.5 personal exposures ranged from 12 to 58 μg m -3. Comparison of data from matched sampling dates resulted in mean daily PM 1.5 personal, PM 2.5 outdoor, and PM 1.5 indoor concentrations of 34, 17, and 17 μg m -3, respectively. Activity patterns of the study population indicated a generally sedentary population spending a mean of 96% of each day indoors. Future studies would benefit from the use of a consistent sampling methodology across a larger number of PM measurement sites relevant to the elderly subjects, as well as a larger personal PM exposure study population to more successfully collect data needed in matched epidemiological-exposure studies.

  14. Concentrations of synthetic musk compounds in personal care and sanitation products and human exposure profiles through dermal application.

    PubMed

    Roosens, Laurence; Covaci, Adrian; Neels, Hugo

    2007-11-01

    Synthetic musks, such as 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4-tetrahydronaphthalene (AHTN) and 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta-gamma-2-benzopyran (HHCB), musk ketone (MK) and musk xylene (MX), are used as an alternative for natural musk. Due to their widespread use, these synthetic compounds turned up in different environmental compartments, such as wastewater, human and animal tissues. Yet, little is known about their distribution and occurrence in personal care and household products, information needed in order to evaluate the different human exposure routes. This paper gives an overview of the synthetic musk levels in six different product categories: body lotions, perfumes, deodorants, hair care products, shower products and sanitation products. Especially body lotions, perfumes and deodorants contained high levels of synthetic musks. Maximum concentrations of HHCB, AHTN, MX and MK were 22 mg g(-1), 8 mg g(-1), 26 microg g(-1) and 0.5 microg g(-1), respectively. By combining these results with the average usage of consumer products, low-, medium- and high-exposure profiles through dermal application could be estimated. HHCB was the highest contributor to the total amount of synthetic musks in every exposure profile (18-23 700 microg d(-1)). Exposure to MK and MX did not increase substantially (10-20-fold) between low- and high-exposure profiles, indicating that these compounds cover a less broad range. In comparison, exposure to HHCB and AHTN increased up to 10 000 fold between low- and high-exposure.

  15. A study of personal and area airborne asbestos concentrations during asbestos abatement: a statistical evaluation of fibre concentration data.

    PubMed

    Lange, J H; Lange, P R; Reinhard, T K; Thomulka, K W

    1996-08-01

    Data were collected and analysed on airborne concentrations of asbestos generated by abatement of different asbestos-containing materials using various removal practices. Airborne concentrations of asbestos are dramatically variable among the types of asbestos-containing material being abated. Abatement practices evaluated in this study were removal of boiler/pipe insulation in a crawl space, ceiling tile, transite, floor tile/mastic with traditional methods, and mastic removal with a high-efficiency particulate air filter blast track (shot-blast) machine. In general, abatement of boiler and pipe insulation produces the highest airborne fibre levels, while abatement of floor tile and mastic was observed to be the lowest. A comparison of matched personal and area samples was not significantly different, and exhibited a good correlation using regression analysis. After adjusting data for outliers, personal sample fibre concentrations were greater than area sample fibre concentrations. Statistical analysis and sample distribution of airborne asbestos concentrations appear to be best represented in a logarithmic form. Area sample fibre concentrations were shown in this study to have a larger variability than personal measurements. Evaluation of outliers in fibre concentration data and the ability of these values to skew sample populations is presented. The use of personal and area samples in determining exposure, selecting personal protective equipment and its historical relevance as related to future abatement projects is discussed.

  16. Exposure of Trucking Company Workers to Particulate Matter during the Winter

    PubMed Central

    Lee, Byeong-Kyu; Smith, Thomas J.; Garshick, Eric; Natkin, Jonathan; Reaser, Paul; Lane, Kevin; Lee, Haengah Kim

    2006-01-01

    This study analyzed the workplace area concentrations and the personal exposure concentrations to fine particulate (PM2.5), elemental carbon (EC), and organic carbon (OC) measured during the winter period in trucking companies. The averaged personal exposure concentrations at breathing zones of workers are much greater than those of the microenvironment concentrations. The highest difference between the area (microenvironment) and personal exposure concentrations was in the PM2.5 concentrations followed by the OC concentrations. The area concentrations of PM2.5, EC, and OC at a large terminal were higher than those at a small one. The highest area concentrations of PM2.5, EC, and OC were observed in the shop areas followed by pick-up and delivery (P&D) areas. The area concentrations and personal exposure to PM2.5, EC, and OC in the shop and P&D areas which are highly affected by diesel engine exhaust emissions were much higher than those in the docks which are significantly affected by liquefied petroleum gas (LPG) engine exhaust emissions. The highest EC fraction to the total carbon (EC + OC) concentrations was observed in the shops, while the lowest one was identified in the offices. The personal exposure of the smoking workers to PM2.5 and OC was much higher than that of the non-smoking workers. However, the smoking might not significantly contribute to the personal exposure to EC. There were significant correlations between the PM2.5 and OC concentrations in both the area and personal exposure concentrations. However, significant correlations between the PM2.5 and EC concentrations and between the OC and EC concentrations were not identified. PMID:15913707

  17. IMPLICATIONS OF PARTICULATE MATTER RESEARCH PROGRAM UPON EXPOSURE ASSESSMENT AND APPORTIONMENT AND ATTRIBUTION OF ENVIRONMENTAL EFFECTS

    EPA Science Inventory

    Recent personal exposure panel studies and monitoring programs addressing fine particulate matter (PM) and associated co-pollutants have elucidated the physical and statistical relationships between personal exposures, residential indoor concentrations (and sources), concentratio...

  18. THE CONTRIBUTION OF PARTICLE RESUSPENSION TO INDOOR AND PERSONAL AIR CONCENTRATIONS

    EPA Science Inventory

    An association has been demonstrated between ambient PM concentrations and human morbidity/mortality. However, little is known regarding the most important sources of PM exposure, inter- and intrapersonal variability in exposure, and the relationship between personal exposure a...

  19. Outdoor work and solar radiation exposure: Evaluation method for epidemiological studies.

    PubMed

    Modenese, Alberto; Bisegna, Fabio; Borra, Massimo; Grandi, Carlo; Gugliermetti, Franco; Militello, Andrea; Gobba, Fabriziomaria

    The health risk related to an excessive exposure to solar radiation (SR) is well known. The Sun represents the main exposure source for all the frequency bands of optical radiation, that is the part of the electromagnetic spectrum ranging between 100 nm and 1 mm, including infrared (IR), ultraviolet (UV) and visible radiation. According to recent studies, outdoor workers have a relevant exposure to SR but few studies available in scientific literature have attempted to retrace a detailed history of individual exposure. We propose a new method for the evaluation of SR cumulative exposure both during work and leisure time, integrating subjective and objective data. The former is collected by means of an interviewer administrated questionnaire. The latter is available through the Internet databases for many geographical regions and through individual exposure measurements. The data is integrated into a mathematical algorithm, in order to obtain an esteem of the individual total amount of SR the subjects have been exposed to during their lives. The questionnaire has been tested for 58 voluntary subjects. Environmental exposure data through online databases has been collected for 3 different places in Italy in 2012. Individual exposure by electronic UV dosimeter has been measured in 6 fishermen. A mathematical algorithm integrating subjective and objective data has been elaborated. The method proposed may be used in epidemiological studies to evaluate specific correlations with biological effects of SR and to weigh the role of the personal and environmental factors that may increase or reduce SR exposure. Med Pr 2016;67(5):577-587. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  20. Quantitative risk assessment of the aggregate dermal exposure to the sensitizing fragrance geraniol in personal care products and household cleaning agents.

    PubMed

    Nijkamp, M M; Bokkers, B G H; Bakker, M I; Ezendam, J; Delmaar, J E

    2015-10-01

    A quantitative risk assessment was performed to establish if consumers are at risk for being dermally sensitized by the fragrance geraniol. Aggregate dermal exposure to geraniol was estimated using the Probabilistic Aggregate Consumer Exposure Model, containing data on the use of personal care products and household cleaning agents. Consumer exposure to geraniol via personal care products appeared to be higher than via household cleaning agents. The hands were the body parts receiving the highest exposure to geraniol. Dermal sensitization studies were assessed to derive the point of departure needed for the estimation of the Acceptable Exposure Level (AEL). Two concentrations were derived, one based on human studies and the other from dose-response analysis of the available murine local lymph node assay data. The aggregate dermal exposure assessment resulted in body part specific median exposures up to 0.041 μg/cm(2) (highest exposure 102 μg/cm(2)) for hands. Comparing the exposure to the lowest AEL (55 μg/cm(2)), shows that a range of 0.02-0.86% of the population may have an aggregated exposure which exceeds the AEL. Furthermore, it is demonstrated that personal care products contribute more to the consumer's geraniol exposure compared to household cleaning agents. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Increasing exposure to antibody-stimulating proteins and polysaccharides in vaccines is not associated with risk of autism.

    PubMed

    DeStefano, Frank; Price, Cristofer S; Weintraub, Eric S

    2013-08-01

    To evaluate the association between autism and the level of immunologic stimulation received from vaccines administered during the first 2 years of life. We analyzed data from a case-control study conducted in 3 managed care organizations (MCOs) of 256 children with autism spectrum disorder (ASD) and 752 control children matched on birth year, sex, and MCO. In addition to the broader category of ASD, we also evaluated autistic disorder and ASD with regression. ASD diagnoses were validated through standardized in-person evaluations. Exposure to total antibody-stimulating proteins and polysaccharides from vaccines was determined by summing the antigen content of each vaccine received, as obtained from immunization registries and medical records. Potential confounding factors were ascertained from parent interviews and medical charts. Conditional logistic regression was used to assess associations between ASD outcomes and exposure to antigens in selected time periods. The aOR (95% CI) of ASD associated with each 25-unit increase in total antigen exposure was 0.999 (0.994-1.003) for cumulative exposure to age 3 months, 0.999 (0.997-1.001) for cumulative exposure to age 7 months, and 0.999 (0.998-1.001) for cumulative exposure to age 2 years. Similarly, no increased risk was found for autistic disorder or ASD with regression. In this study of MCO members, increasing exposure to antibody-stimulating proteins and polysaccharides in vaccines during the first 2 years of life was not related to the risk of developing an ASD. Copyright © 2013 Mosby, Inc. All rights reserved.

  2. Modeling population exposures to outdoor sources of hazardous air pollutants.

    PubMed

    Ozkaynak, Halûk; Palma, Ted; Touma, Jawad S; Thurman, James

    2008-01-01

    Accurate assessment of human exposures is an important part of environmental health effects research. However, most air pollution epidemiology studies rely upon imperfect surrogates of personal exposures, such as information based on available central-site outdoor concentration monitoring or modeling data. In this paper, we examine the limitations of using outdoor concentration predictions instead of modeled personal exposures for over 30 gaseous and particulate hazardous air pollutants (HAPs) in the US. The analysis uses the results from an air quality dispersion model (the ASPEN or Assessment System for Population Exposure Nationwide model) and an inhalation exposure model (the HAPEM or Hazardous Air Pollutant Exposure Model, Version 5), applied by the US. Environmental protection Agency during the 1999 National Air Toxic Assessment (NATA) in the US. Our results show that the total predicted chronic exposure concentrations of outdoor HAPs from all sources are lower than the modeled ambient concentrations by about 20% on average for most gaseous HAPs and by about 60% on average for most particulate HAPs (mainly, due to the exclusion of indoor sources from our modeling analysis and lower infiltration of particles indoors). On the other hand, the HAPEM/ASPEN concentration ratio averages for onroad mobile source exposures were found to be greater than 1 (around 1.20) for most mobile-source related HAPs (e.g. 1, 3-butadiene, acetaldehyde, benzene, formaldehyde) reflecting the importance of near-roadway and commuting environments on personal exposures to HAPs. The distribution of the ratios of personal to ambient concentrations was found to be skewed for a number of the VOCs and reactive HAPs associated with major source emissions, indicating the importance of personal mobility factors. We conclude that the increase in personal exposures from the corresponding predicted ambient levels tends to occur near locations where there are either major emission sources of HAPs or when individuals are exposed to either on- or nonroad sources of HAPs during their daily activities. These findings underscore the importance of applying exposure-modeling methods, which incorporate information on time-activity, commuting, and exposure factors data, for the purposes of assigning exposures in air pollution health studies.

  3. Airborne concentrations of metals and total dust during solid catalyst loading and unloading operations at a petroleum refinery.

    PubMed

    Lewis, Ryan C; Gaffney, Shannon H; Le, Matthew H; Unice, Ken M; Paustenbach, Dennis J

    2012-09-01

    Workers handle catalysts extensively at petroleum refineries throughout the world each year; however, little information is available regarding the airborne concentrations and plausible exposures during this type of work. In this paper, we evaluated the airborne concentrations of 15 metals and total dust generated during solid catalyst loading and unloading operations at one of the largest petroleum refineries in the world using historical industrial hygiene samples collected between 1989 and 2006. The total dust and metals, which included aluminum, cadmium, chromium, cobalt, copper, iron, lead, manganese, molybdenum, nickel, platinum, silicon, silver, vanadium, and zinc, were evaluated in relation to the handling of four different types of solid catalysts associated with three major types of catalytic processes. Consideration was given to the known components of the solid catalysts and any metals that were likely deposited onto them during use. A total of 180 analytical results were included in this analysis, representing 13 personal and 54 area samples. Of the long-term personal samples, airborne concentrations of metals ranged from <0.001 to 2.9mg/m(3), and, in all but one case, resulted in concentrations below the current U.S. Occupational Safety and Health Administration's Permissible Exposure Limits and the American Conference of Governmental Industrial Hygienists' Threshold Limit Values. The arithmetic mean total dust concentration resulting from long-term personal samples was 0.31mg/m(3). The data presented here are the most complete set of its kind in the open literature, and are useful for understanding the potential exposures during solid catalyst handling activities at this petroleum refinery and perhaps other modern refineries during the timeframe examined. Copyright © 2011 Elsevier GmbH. All rights reserved.

  4. [Individualised parent counselling in paediatric practices for the reduction of second-hand smoke exposure of their children: a feasibility study].

    PubMed

    Haug, S; Biedermann, A; Ulbricht, S; John, U

    2015-05-01

    The aim of this study was to test the feasibility of a web-based programme provided by paediatric practices for counselling parents to reduce second-hand smoke exposure of their children. Accompanying persons of children were systematically screened concerning tobacco smoking at their home in 2 Swiss paediatric practices. They were invited for programme participation if they or their partners smoked at home regularly. The web-based programme provided at least 1 computer-tailored counselling letter. Upto 3 additional counselling letters could be requested online by the participants over a period of 3 months. The letters were tailored according to the indoor smoking behaviour of the parents and considered individual barriers and resources for the establishment of a smoke-free home. Additionally, further information and advice could be requested on the programme website. Feasibility indicators were the participation rate, programme use, and programme evaluation by the participants. 3 055 (82.3%) of 3 712 accompanying persons of children in the paediatric practices were screened concerning tobacco smoking at their home. 96 (56.8%) of 169 eligible persons participated in the programme. 68 (70.8%) of the 96 programme participants could be reassessed at post assessment. 9 (15.0%) of 60 participants who provided a valid e-mail address requested more than one counselling letter. The counselling letters and the web-based programme were evaluated positively by the programme participants. Systematic screening combined with the provision of individually tailored counselling letters for parents to reduce second-hand smoke exposure of their children was feasible in paediatric practices. Possible strategies to in-crease the use and reach of the programme are -discussed. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Estimating Time-Varying PCB Exposures Using Person-Specific Predictions to Supplement Measured Values: A Comparison of Observed and Predicted Values in Two Cohorts of Norwegian Women.

    PubMed

    Nøst, Therese Haugdahl; Breivik, Knut; Wania, Frank; Rylander, Charlotta; Odland, Jon Øyvind; Sandanger, Torkjel Manning

    2016-03-01

    Studies on the health effects of polychlorinated biphenyls (PCBs) call for an understanding of past and present human exposure. Time-resolved mechanistic models may supplement information on concentrations in individuals obtained from measurements and/or statistical approaches if they can be shown to reproduce empirical data. Here, we evaluated the capability of one such mechanistic model to reproduce measured PCB concentrations in individual Norwegian women. We also assessed individual life-course concentrations. Concentrations of four PCB congeners in pregnant (n = 310, sampled in 2007-2009) and postmenopausal (n = 244, 2005) women were compared with person-specific predictions obtained using CoZMoMAN, an emission-based environmental fate and human food-chain bioaccumulation model. Person-specific predictions were also made using statistical regression models including dietary and lifestyle variables and concentrations. CoZMoMAN accurately reproduced medians and ranges of measured concentrations in the two study groups. Furthermore, rank correlations between measurements and predictions from both CoZMoMAN and regression analyses were strong (Spearman's r > 0.67). Precision in quartile assignments from predictions was strong overall as evaluated by weighted Cohen's kappa (> 0.6). Simulations indicated large inter-individual differences in concentrations experienced in the past. The mechanistic model reproduced all measurements of PCB concentrations within a factor of 10, and subject ranking and quartile assignments were overall largely consistent, although they were weak within each study group. Contamination histories for individuals predicted by CoZMoMAN revealed variation between study subjects, particularly in the timing of peak concentrations. Mechanistic models can provide individual PCB exposure metrics that could serve as valuable supplements to measurements.

  6. Pesticide exposure and end-stage renal disease risk among wives of pesticide applicators in the Agricultural Health Study.

    PubMed

    Lebov, Jill F; Engel, Lawrence S; Richardson, David; Hogan, Susan L; Sandler, Dale P; Hoppin, Jane A

    2015-11-01

    Pesticide exposure has been found to cause renal damage and dysfunction in experimental studies, but epidemiological research on the renal effects of chronic low-level pesticide exposure is limited. We investigated the relationships between end-stage renal disease (ESRD) among wives of licensed pesticide applicators (N=31,142) in the Agricultural Health Study (AHS) and (1) personal pesticide use, (2) exposure to the husband's pesticide use, and (3) other pesticide-associated farming and household activities. AHS participants reported pesticide exposure via self-administered questionnaires at enrollment (1993-1997). ESRD cases were identified via linkage to the United States Renal Data System. Associations between ESRD and pesticide exposures were estimated with Cox proportional hazard regression models controlling for age at enrollment. Models of associations with farming and household factors were additionally adjusted for personal use of pesticides. We identified 98 ESRD cases diagnosed between enrollment and 31 December 2011. Although women who ever applied pesticides (56% of cohort) were less likely than those who did not apply to develop ESRD (Hazard Ratio (HR): 0.42; 95% CI: 0.28, 0.64), among women who did apply pesticides, the rate of ESRD was significantly elevated among those who reported the highest (vs. lowest) cumulative general pesticide use (HR: 4.22; 95% CI: 1.26, 14.20). Among wives who never applied pesticides, ESRD was associated with husbands' ever use of paraquat (HR=1.99; 95% CI: 1.14, 3.47) and butylate (HR=1.71; 95% CI: 1.00, 2.95), with a positive exposure-response pattern for husband's cumulative use of these pesticides. ESRD may be associated with direct and/or indirect exposure to pesticides among farm women. Future studies should evaluate indirect exposure risk among other rural populations. Published by Elsevier Inc.

  7. Personal exposures to fine particulate matter and black carbon in households cooking with biomass fuels in rural Ghana

    PubMed Central

    Van Vliet, Eleanne D.S.; Asante, Kwakupoku; Jack, Darby W.; Kinney, Patrick L.; Whyatt, Robin M.; Chillrud, Steven N.; Abokyi, Livesy; Zandoh, Charles; Owusu-Agyei, Seth

    2014-01-01

    Objective To examine cooking practices and 24-h personal and kitchen area exposures to fine particulate matter (PM2.5) and black carbon in cooks using biomass in Ghana. Methods Researchers administered a detailed survey to 421 households. In a sub-sample of 36 households, researchers collected 24-h integrated PM2.5 samples (personal and kitchen area); in addition, the primary cook was monitored for real-time PM2.5. All filters were also analyzed for black carbon using a multi-wavelength reflectance method. Predictors of PM2.5 exposure were analyzed, including cooking behaviors, fuel, stove and kitchen type, weather, demographic factors and other smoke sources. Results The majority of households cooked outdoors (55%; 231/417), used biomass (wood or charcoal) as their primary fuel (99%; 412/413), and cooked on traditional fires (77%, 323/421). In the sub-sample of 29 households with complete, valid exposure monitoring data, the 24-h integrated concentrations of PM2.5 were substantially higher in the kitchen sample (mean 446.8 μg/m3) than in the personal air sample (mean 128.5 μg/m3). Black carbon concentrations followed the same pattern such that concentrations were higher in the kitchen sample (14.5 μg/m3) than in the personal air sample (8.8 μg/m3). Spikes in real-time personal concentrations of PM2.5 accounted for the majority of exposure; the most polluted 5%, or 72 min, of the 24-h monitoring period accounted for 75% of all exposure. Two variables that had some predictive power for personal PM2.5 exposures were primary fuel type and ethnicity, while reported kerosene lantern use was associated with increased personal and kitchen area concentrations of black carbon. Conclusion Personal concentrations of PM2.5 exhibited considerable inter-subject variability across kitchen types (enclosed, semi-enclosed, outdoor), and can be elevated even in outdoor cooking settings. Furthermore, personal concentrations of PM2.5 were not associated with kitchen type and were not predicted by kitchen area samples; rather they were driven by spikes in PM2.5 concentrations during cooking. Personal exposures were more enriched with black carbon when compared to kitchen area samples, underscoring the need to explore other sources of incomplete combustion such as roadway emissions, charcoal production and kerosene use. PMID:24176411

  8. Personal Exposure to Mixtures of Volatile Organic Compounds: Modeling and Further Analysis of the RIOPA Data

    PubMed Central

    Batterman, Stuart; Su, Feng-Chiao; Li, Shi; Mukherjee, Bhramar; Jia, Chunrong

    2015-01-01

    INTRODUCTION Emission sources of volatile organic compounds (VOCs) are numerous and widespread in both indoor and outdoor environments. Concentrations of VOCs indoors typically exceed outdoor levels, and most people spend nearly 90% of their time indoors. Thus, indoor sources generally contribute the majority of VOC exposures for most people. VOC exposure has been associated with a wide range of acute and chronic health effects; for example, asthma, respiratory diseases, liver and kidney dysfunction, neurologic impairment, and cancer. Although exposures to most VOCs for most persons fall below health-based guidelines, and long-term trends show decreases in ambient emissions and concentrations, a subset of individuals experience much higher exposures that exceed guidelines. Thus, exposure to VOCs remains an important environmental health concern. The present understanding of VOC exposures is incomplete. With the exception of a few compounds, concentration and especially exposure data are limited; and like other environmental data, VOC exposure data can show multiple modes, low and high extreme values, and sometimes a large portion of data below method detection limits (MDLs). Field data also show considerable spatial or interpersonal variability, and although evidence is limited, temporal variability seems high. These characteristics can complicate modeling and other analyses aimed at risk assessment, policy actions, and exposure management. In addition to these analytic and statistical issues, exposure typically occurs as a mixture, and mixture components may interact or jointly contribute to adverse effects. However most pollutant regulations, guidelines, and studies remain focused on single compounds, and thus may underestimate cumulative exposures and risks arising from coexposures. In addition, the composition of VOC mixtures has not been thoroughly investigated, and mixture components show varying and complex dependencies. Finally, although many factors are known to affect VOC exposures, many personal, environmental, and socioeconomic determinants remain to be identified, and the significance and applicability of the determinants reported in the literature are uncertain. To help answer these unresolved questions and overcome limitations of previous analyses, this project used several novel and powerful statistical modeling and analysis techniques and two large data sets. The overall objectives of this project were (1) to identify and characterize exposure distributions (including extreme values), (2) evaluate mixtures (including dependencies), and (3) identify determinants of VOC exposure. METHODS VOC data were drawn from two large data sets: the Relationships of Indoor, Outdoor, and Personal Air (RIOPA) study (1999–2001) and the National Health and Nutrition Examination Survey (NHANES; 1999–2000). The RIOPA study used a convenience sample to collect outdoor, indoor, and personal exposure measurements in three cities (Elizabeth, NJ; Houston, TX; Los Angeles, CA). In each city, approximately 100 households with adults and children who did not smoke were sampled twice for 18 VOCs. In addition, information about 500 variables associated with exposure was collected. The NHANES used a nationally representative sample and included personal VOC measurements for 851 participants. NHANES sampled 10 VOCs in common with RIOPA. Both studies used similar sampling methods and study periods. Specific Aim 1 To estimate and model extreme value exposures, extreme value distribution models were fitted to the top 10% and 5% of VOC exposures. Health risks were estimated for individual VOCs and for three VOC mixtures. Simulated extreme value data sets, generated for each VOC and for fitted extreme value and lognormal distributions, were compared with measured concentrations (RIOPA observations) to evaluate each model’s goodness of fit. Mixture distributions were fitted with the conventional finite mixture of normal distributions and the semi-parametric Dirichlet process mixture (DPM) of normal distributions for three individual VOCs (chloroform, 1,4-DCB, and styrene). Goodness of fit for these full distribution models was also evaluated using simulated data. Specific Aim 2 Mixtures in the RIOPA VOC data set were identified using positive matrix factorization (PMF) and by toxicologic mode of action. Dependency structures of a mixture’s components were examined using mixture fractions and were modeled using copulas, which address correlations of multiple components across their entire distributions. Five candidate copulas (Gaussian, t, Gumbel, Clayton, and Frank) were evaluated, and the performance of fitted models was evaluated using simulation and mixture fractions. Cumulative cancer risks were calculated for mixtures, and results from copulas and multivariate lognormal models were compared with risks based on RIOPA observations. Specific Aim 3 Exposure determinants were identified using stepwise regressions and linear mixed-effects models (LMMs). RESULTS Specific Aim 1 Extreme value exposures in RIOPA typically were best fitted by three-parameter generalized extreme value (GEV) distributions, and sometimes by the two-parameter Gumbel distribution. In contrast, lognormal distributions significantly underestimated both the level and likelihood of extreme values. Among the VOCs measured in RIOPA, 1,4-dichlorobenzene (1,4-DCB) was associated with the greatest cancer risks; for example, for the highest 10% of measurements of 1,4-DCB, all individuals had risk levels above 10−4, and 13% of all participants had risk levels above 10−2. Of the full-distribution models, the finite mixture of normal distributions with two to four clusters and the DPM of normal distributions had superior performance in comparison with the lognormal models. DPM distributions provided slightly better fit than the finite mixture distributions; the advantages of the DPM model were avoiding certain convergence issues associated with the finite mixture distributions, adaptively selecting the number of needed clusters, and providing uncertainty estimates. Although the results apply to the RIOPA data set, GEV distributions and mixture models appear more broadly applicable. These models can be used to simulate VOC distributions, which are neither normally nor lognormally distributed, and they accurately represent the highest exposures, which may have the greatest health significance. Specific Aim 2 Four VOC mixtures were identified and apportioned by PMF; they represented gasoline vapor, vehicle exhaust, chlorinated solvents and disinfection byproducts, and cleaning products and odorants. The last mixture (cleaning products and odorants) accounted for the largest fraction of an individual’s total exposure (average of 42% across RIOPA participants). Often, a single compound dominated a mixture but the mixture fractions were heterogeneous; that is, the fractions of the compounds changed with the concentration of the mixture. Three VOC mixtures were identified by toxicologic mode of action and represented VOCs associated with hematopoietic, liver, and renal tumors. Estimated lifetime cumulative cancer risks exceeded 10−3 for about 10% of RIOPA participants. The dependency structures of the VOC mixtures in the RIOPA data set fitted Gumbel (two mixtures) and t copulas (four mixtures). These copula types emphasize dependencies found in the upper and lower tails of a distribution. The copulas reproduced both risk predictions and exposure fractions with a high degree of accuracy and performed better than multivariate lognormal distributions. Specific Aim 3 In an analysis focused on the home environment and the outdoor (close to home) environment, home VOC concentrations dominated personal exposures (66% to 78% of the total exposure, depending on VOC); this was largely the result of the amount of time participants spent at home and the fact that indoor concentrations were much higher than outdoor concentrations for most VOCs. In a different analysis focused on the sources inside the home and outside (but close to the home), it was assumed that 100% of VOCs from outside sources would penetrate the home. Outdoor VOC sources accounted for 5% (d-limonene) to 81% (carbon tetrachloride [CTC]) of the total exposure. Personal exposure and indoor measurements had similar determinants depending on the VOC. Gasoline-related VOCs (e.g., benzene and methyl tert-butyl ether [MTBE]) were associated with city, residences with attached garages, pumping gas, wind speed, and home air exchange rate (AER). Odorant and cleaning-related VOCs (e.g., 1,4-DCB and chloroform) also were associated with city, and a residence’s AER, size, and family members showering. Dry-cleaning and industry-related VOCs (e.g., tetrachloroethylene [or perchloroethylene, PERC] and trichloroethylene [TCE]) were associated with city, type of water supply to the home, and visits to the dry cleaner. These and other relationships were significant, they explained from 10% to 40% of the variance in the measurements, and are consistent with known emission sources and those reported in the literature. Outdoor concentrations of VOCs had only two determinants in common: city and wind speed. Overall, personal exposure was dominated by the home setting, although a large fraction of indoor VOC concentrations were due to outdoor sources. City of residence, personal activities, household characteristics, and meteorology were significant determinants. Concentrations in RIOPA were considerably lower than levels in the nationally representative NHANES for all VOCs except MTBE and 1,4-DCB. Differences between RIOPA and NHANES results can be explained by contrasts between the sampling designs and staging in the two studies, and by differences in the demographics, smoking, employment, occupations, and home locations. A portion of these differences are due to the nature of the convenience (RIOPA) and representative (NHANES) sampling strategies used in the two studies. CONCLUSIONS Accurate models for exposure data, which can feature extreme values, multiple modes, data below the MDL, heterogeneous interpollutant dependency structures, and other complex characteristics, are needed to estimate exposures and risks and to develop control and management guidelines and policies. Conventional and novel statistical methods were applied to data drawn from two large studies to understand the nature and significance of VOC exposures. Both extreme value distributions and mixture models were found to provide excellent fit to single VOC compounds (univariate distributions), and copulas may be the method of choice for VOC mixtures (multivariate distributions), especially for the highest exposures, which fit parametric models poorly and which may represent the greatest health risk. The identification of exposure determinants, including the influence of both certain activities (e.g., pumping gas) and environments (e.g., residences), provides information that can be used to manage and reduce exposures. The results obtained using the RIOPA data set add to our understanding of VOC exposures and further investigations using a more representative population and a wider suite of VOCs are suggested to extend and generalize results. PMID:25145040

  9. Domestic Asbestos Exposure: A Review of Epidemiologic and Exposure Data

    PubMed Central

    Goswami, Emily; Craven, Valerie; Dahlstrom, David L.; Alexander, Dominik; Mowat, Fionna

    2013-01-01

    Inhalation of asbestos resulting from living with and handling the clothing of workers directly exposed to asbestos has been established as a possible contributor to disease. This review evaluates epidemiologic studies of asbestos-related disease or conditions (mesothelioma, lung cancer, and pleural and interstitial abnormalities) among domestically exposed individuals and exposure studies that provide either direct exposure measurements or surrogate measures of asbestos exposure. A meta-analysis of studies providing relative risk estimates (n = 12) of mesothelioma was performed, resulting in a summary relative risk estimate (SRRE) of 5.02 (95% confidence interval [CI]: 2.48–10.13). This SRRE pertains to persons domestically exposed via workers involved in occupations with a traditionally high risk of disease from exposure to asbestos (i.e., asbestos product manufacturing workers, insulators, shipyard workers, and asbestos miners). The epidemiologic studies also show an elevated risk of interstitial, but more likely pleural, abnormalities (n = 6), though only half accounted for confounding exposures. The studies are limited with regard to lung cancer (n = 2). Several exposure-related studies describe results from airborne samples collected within the home (n = 3), during laundering of contaminated clothing (n = 1) or in controlled exposure simulations (n = 5) of domestic exposures, the latter of which were generally associated with low-level chrysotile-exposed workers. Lung burden studies (n = 6) were also evaluated as a surrogate of exposure. In general, available results for domestic exposures are lower than the workers’ exposures. Recent simulations of low-level chrysotile-exposed workers indicate asbestos levels commensurate with background concentrations in those exposed domestically. PMID:24185840

  10. Zika Virus Exposure in an HIV-Infected Cohort in Ghana.

    PubMed

    Sherman, K E; Rouster, S D; Kong, L X; Shata, T M; Archampong, T; Kwara, A; Aliota, M T; Blackard, J T

    2018-04-27

    To determine the prevalence and epidemiologic associations of Zika Virus (ZIKV) in HIV-infected patients in Ghana, West Africa. We examined the seroprevalence of ZIKV in HIV/HBV co-infected persons in Ghana from sera samples collected from 2012 to 2014 using ELISA assays and plaque reduction neutralization tests (PRNT). Overall, ZIKV antibody was detected in 12.9% of 236 tested samples, though the true estimate of exposure is probably less due cross-reactions with other related viruses. PRNTs were performed on a subset to provide an estimate of the frequency of false positive reaction. Dengue virus testing was also performed and antibody prevalence was 87.2%. The median CD4 count was 436 (range 2-1781 cell/mm) and did not affect antibody results. Regional geographic ethnicity was associated with ZIKV exposure. Overall, these data suggest that ZIKV infection is a relatively prevalent infection in HIV-positive persons in Ghana though not as common as dengue. Further evaluation of the effect of ZIKV and HIV co-infection is warranted given the large geographical overlap of populations exposed to both viruses.

  11. Disaster Impact Across Cultural Groups: Comparison of Whites, African Americans, and Latinos

    PubMed Central

    Price, Matthew; McCauley, Jenna L.; Ruggiero, Kenneth J.

    2015-01-01

    The current study extends knowledge regarding the differential impact of natural disasters among White, African American, and Latino survivors of Hurricane Ike through its use of a large, regional sample recruited via representative sampling procedures to examine the associations between cultural identification and disaster impact, including loss, damage, and negative mental health outcomes. Consistent with previous research, results indicated disparities between cultural groups with regard to disaster exposure. Additionally, type of disaster impact was differentially associated with PTSD and depression status dependent on cultural group. Specifically, the extent of personal disaster exposure, property damage, and loss of services made significant contributions to PTSD status among White survivors. African-Americans were more likely than White and Latino Ike survivors to endorse post-disaster PTSD and depression and endorsement of depression was predicted by severity of property damage. With respect to Latino respondents, only the extent of personal disaster exposure significantly contributed to both PTSD and depression status. Implications of the current findings are discussed with regard to future disaster preparedness and response efforts and the implementation and evaluation of community-based disaster resources. PMID:23709270

  12. The impact of exposure to radio frequency electromagnetic fields on chronic well-being in young people--a cross-sectional study based on personal dosimetry.

    PubMed

    Heinrich, Sabine; Thomas, Silke; Heumann, Christian; von Kries, Rüdiger; Radon, Katja

    2011-01-01

    A possible influence of radio frequency electromagnetic field (RF EMF) exposure on health outcomes was investigated in various studies. The main problem of previous studies was exposure assessment. The aim of our study was the investigation of a possible association between RF EMF and chronic well-being in young persons using personal dosimetry. 3022 children and adolescents were randomly selected from the population registries of four Bavarian cities in Germany (participation 52%). Personal interview data on chronic symptoms, socio-demographic characteristics and potential confounders were collected. A 24-h radio frequency exposure profile was generated using a personal dosimeter. Exposure levels over waking hours were expressed as mean percentage of the International Commission on Non-Ionizing Radiation Protection (ICNIRP) reference level. Half of the children and nearly every adolescent owned a mobile phone which was used only for short durations per day. Measured exposure was far below the current ICNIRP reference levels. The most reported chronic symptom in children and adolescents was fatigue. No statistically significant association between measured exposure and chronic symptoms was observed. Our results do not indicate an association between measured exposure to RF EMF and chronic well-being in children and adolescents. Prospective studies investigating potential long-term effects of RF EMF are necessary to confirm our results. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Estimating individual-level exposure to airborne polycyclic aromatic hydrocarbons throughout the gestational period based on personal, indoor, and outdoor monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, H.; Perera, F.; Pac, A.

    2008-11-15

    Current understanding on health effects of long-term polycyclic aromatic hydrocarbon (PAH) exposure is limited by lack of data on time-varying nature of the pollutants at an individual level. In a cohort of pregnant women in Krakow, Poland, we examined the contribution of temporal, spatial, and behavioral factors to prenatal exposure to airborne PAHs within each trimester and developed a predictive model of PAH exposure over the entire gestational period. The observed personal, indoor, and outdoor B(a)P levels we observed in Krakow far exceed the recommended Swedish guideline value for B(a)P of 0.1 ng/m{sup 3}. Based on simultaneously monitored levels, themore » outdoor PAH level alone accounts for 93% of total variability in personal exposure during the heating season. Living near the Krakow bus depot, a crossroad, and the city, center and time spent outdoors or commuting were not associated with higher personal exposure. During the nonheating season only, a 1-hr increase in environmental tobacco smoke (ETS) exposure was associated with a 10-16% increase in personal exposure to the nine measured PAHs. A 1{degree}C decrease in ambient temperature was associated with a 3-5% increase in exposure to benz(a)anthracene, benzo(k)fluoranthene, and dibenz(a,h)anthracene, after accounting for the outdoor concentration. A random effects model demonstrated that mean personal exposure at a given gestational period depends on the season, residence location, and ETS. Considering that most women reported spending < 3 hr/day outdoors, most women in the study were exposed to outdoor-originating PAHs within the indoor setting. Cross-sectional, longitudinal monitoring supplemented with questionnaire data allowed development of a gestation-length model of individual-level exposure with high precision and validity.« less

  14. Source of Personal Exposure to PM2.5 among College Students in Beijing, China

    NASA Astrophysics Data System (ADS)

    Xie, Qiaorong; Zhu, Xianlei; Li, Xiang; Hui, Fan; Fu, Xianqiang; Zhang, Qiangbin

    2015-04-01

    The health risk from exposure to airborne particles arouses increasing public concern in Beijing, a megacity in China, where concentration of PM2.5 frequently exceeds the guideline values of World Health Organization (WHO). To investigate daily exposure to PM2.5, a personal exposure study was conducted for college students. The purpose of this study was to measure the daily PM2.5 personal exposures of students, to quantify the contributions of various microenvironments to personal exposure since students spend more than 85% of their time indoors, and to apportion the contributions of PM2.5 indoors origin and outdoor origin. In this work, a total of 320 paired indoor and outdoor PM2.5 samples were collected at eight types of microenvironments in both China University of Petroleum (suburban area) and Tsinghua University (urban area). The microenvironments were selected based on the time-activity diary finished by 1500 students from both universities. Simultaneously, the air exchange rate was measured in each microenvironment. PM2.5, elements, inorganic ions and polycyclic aromatic hydrocarbons in the samples were determined. The peak concentrations were observed in dinning halls, whereas PM2.5 in dormitories was the largest contributor to personal exposure because students spend more than half of a day there. Furthermore, source apportionment by positive matrix factorization (PMF) will be carried out to understand the source of personal exposure to PM2.5. Especially, efforts will be put on determing the contributions of primary combustion, secondary sulfate and organics, secondary nitrate, and mechanically generated PM, which present different infiltration behavior and are indoor PM2.5 of ambient origin, with help of air exchange rate data. The results would be benefit for refining the understanding of the contribution of PM2.5 of ambient (outdoor) origin to the daily PM2.5 personal exposures. Acknowledgments:This study has been funded by Beijing Municipal Commission of Education. Corresponding author:Qiangbin Zhang

  15. Characterization and evolution of exposure to volatile organic compounds in the Spanish shoemaking industry over a 5-year period.

    PubMed

    Estevan, Carmen; Ferri, Francisca; Sogorb, Miguel Angel; Vilanova, Eugenio

    2012-01-01

    This study measured inhalation exposure to 13 volatile organic compounds (VOCs) among workers in the leatherwear industry in Spain, examined the changes in those exposures over a 5-year period, and documented local exhaust ventilation practices that affected exposure. In collaboration with an occupational risk prevention company, air samples were collected from 849 workers' personal breathing zones using personal air pumps with activated charcoal tubes. VOCs were analyzed using a GC/MS-optimized method modified in our laboratory from that proposed by Spanish authorities (INSHT). Airborne concentrations were compared with occupational exposure limit (OEL) values from the European authorities. The most frequently detected VOCs were acetone (98.1%), toluene (94.8%), n-hexane (71.2%) and other C6-C7 branched alkyl hydrocarbons (97.5%). Other frequently detected VOCs were MEK (64.9%), ethylacetate (60.7%), and cyclohexane (29.3%). Benzene was detected in 24.6% of samples. Although all the samples were taken while workers performed tasks judged to have the highest VOC exposure potential, only 14% of samples showed excessive aggregate exposure, and chemical-specific OELs were exceeded in a relatively small number of cases: 7.2% for n-hexane, 2.8% for toluene, 0.6% for acetone, and 0.4% for hexane isomers. Over the study period, a diminished use of n-hexane in solvent formulations and an increased use of branched hexane and heptane isomers were observed. Six factors relating to work location conditions and types were evaluated. Most high-exposure cases were associated with three task types. The presence of local exhaust ventilation was an important exposure control, but significant exposures despite the use of local exhaust were observed. Although n-hexane exposures significantly decreased over the study period, the overall level of VOC exposure did not decrease. More effective exposure prevention measures need to be implemented.

  16. Children exposure to PM levels in a typical school morning

    NASA Astrophysics Data System (ADS)

    Valente, J.; Amorim, J. H.; Cascão, P.; Rodrigues, V.; Borrego, C.

    2012-10-01

    One of the major challenges to urban sustainability is the threat posed by air pollution, being exposure to ambient air pollutants associated with a high rate of premature deaths. Therefore, the study of the exposure of people, and in particular of vulnerable population groups such as children, to air pollution is a subject of paramount importance. In this paper a CFD model is used to simulate the particulate matter personal exposure of students in their school routine (both daily walk to and permanence in school). Under the concept of COST TU0801, the usability of a 3D city model is evaluated. The analysis was carried out for 4 children, with 4 alternative walking routes to school and using 4 different classrooms. Results indicate that the individual exposure of children is extremely spatially dependent, as a consequence of the wind flow and air pollutant dispersion patterns.

  17. Evaluation of exposure reduction to indoor air pollution in stove intervention projects in Peru by urinary biomonitoring of polycyclic aromatic hydrocarbon metabolites.

    PubMed

    Li, Zheng; Sjödin, Andreas; Romanoff, Lovisa C; Horton, Kevin; Fitzgerald, Christopher L; Eppler, Adam; Aguilar-Villalobos, Manuel; Naeher, Luke P

    2011-10-01

    Burning biomass fuels such as wood on indoor open-pit stoves is common in developing regions. In such settings, exposure to harmful combustion products such as fine particulate matter (PM(2.5)), carbon monoxide (CO) and polycyclic aromatic hydrocarbons (PAHs) is of concern. We aimed to investigate if the replacement of open pit stoves by improved stoves equipped with a chimney would significantly reduce exposure to PAHs, PM(2.5) and CO. Two stove projects were evaluated in Peru. Program A was part of the Juntos National Program in which households built their own stoves using materials provided. In Program B, Barrick Gold Corporation hired a company to produce and install the stoves locally. A total of 30 and 27 homes participated in Program A and B, respectively. We collected personal and kitchen air samples, as well as morning urine samples from women tasked with cooking in the households before and after the installation of the improved stoves. Median levels of PM(2.5) and CO were significantly reduced in kitchen and personal air samples by 47-74% after the installation of the new stoves, while the median reduction of 10 urinary hydroxylate PAH metabolites (OH-PAHs) was 19%-52%. The observed OH-PAH concentration in this study was comparable or higher than the 95th percentile of the general U.S. population, even after the stove intervention, indicating a high overall exposure in this population. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Nano-metal oxides: Exposure and engineering control assessment.

    PubMed

    Garcia, Alberto; Eastlake, Adrienne; Topmiller, Jennifer L; Sparks, Christopher; Martinez, Kenneth; Geraci, Charles L

    2017-09-01

    In January 2007, the National Institute for Occupational Safety and Health (NIOSH) conducted a field study to evaluate process specific emissions during the production of ENMs. This study was performed using the nanoparticle emission assessment technique (NEAT). During this study, it was determined that ENMs were released during production and cleaning of the process reactor. Airborne concentrations of silver, nickel, and iron were found both in the employee's personal breathing zone and area samples during reactor cleaning. At the completion of this initial survey, it was suggested that a flanged attachment be added to the local exhaust ventilation system.  NIOSH re-evaluated the facility in December 2011 to assess worker exposures following an increase in production rates. This study included a fully comprehensive emissions, exposure, and engineering control evaluation of the entire process. This study made use of the nanoparticle exposure assessment technique (NEAT 2.0). Data obtained from filter-based samples and direct reading instruments indicate that reactor cleanout increased the overall particle concentration in the immediate area. However, it does not appear that these concentrations affect areas outside of the production floor. As the distance between the reactor and the sample location increased, the observed particle number concentration decreased, creating a concentration gradient with respect to the reactor. The results of this study confirm that the flanged attachment on the local exhaust ventilation system served to decrease exposure potential.  Given the available toxicological data of the metals evaluated, caution is warranted. One should always keep in mind that occupational exposure levels were not developed specifically for nanoscale particles. With data suggesting that certain nanoparticles may be more toxic than the larger counterparts of the same material; employers should attempt to control emissions of these particles at the source, to limit the potential for exposure.

  19. Mobile Air Quality Studies (MAQS)-an international project.

    PubMed

    Groneberg, David A; Scutaru, Cristian; Lauks, Mathias; Takemura, Masaya; Fischer, Tanja C; Kölzow, Silvana; van Mark, Anke; Uibel, Stefanie; Wagner, Ulrich; Vitzthum, Karin; Beck, Fabian; Mache, Stefanie; Kreiter, Carolin; Kusma, Bianca; Friedebold, Annika; Zell, Hanna; Gerber, Alexander; Bock, Johanna; Al-Mutawakl, Khaled; Donat, Johannes; Geier, Maria Victoria; Pilzner, Carolin; Welker, Pia; Joachim, Ricarda; Bias, Harald; Götting, Michael; Sakr, Mohannad; Addicks, Johann P; Börger, Julia-Annik; Jensen, Anna-Maria; Grajewski, Sonja; Shami, Awfa; Neye, Niko; Kröger, Stefan; Hoffmann, Sarah; Kloss, Lisa; Mayer, Sebastian; Puk, Clemens; Henkel, Ulrich; Rospino, Robert; Schilling, Ute; Krieger, Evelyn; Westphal, Gesa; Meyer-Falcke, Andreas; Hupperts, Hagen; de Roux, Andrés; Tropp, Salome; Weiland, Marco; Mühlbach, Janette; Steinberg, Johannes; Szerwinski, Anne; Falahkohan, Sepiede; Sudik, Claudia; Bircks, Anna; Noga, Oliver; Dickgreber, Nicolas; Dinh, Q Thai; Golpon, Heiko; Kloft, Beatrix; Groneberg, Rafael Neill B; Witt, Christian; Wicker, Sabine; Zhang, Li; Springer, Jochen; Kütting, Birgitta; Mingomataj, Ervin C; Fischer, Axel; Schöffel, Norman; Unger, Volker; Quarcoo, David

    2010-04-09

    Due to an increasing awareness of the potential hazardousness of air pollutants, new laws, rules and guidelines have recently been implemented globally. In this respect, numerous studies have addressed traffic-related exposure to particulate matter using stationary technology so far. By contrast, only few studies used the advanced technology of mobile exposure analysis. The Mobile Air Quality Study (MAQS) addresses the issue of air pollutant exposure by combining advanced high-granularity spatial-temporal analysis with vehicle-mounted, person-mounted and roadside sensors. The MAQS-platform will be used by international collaborators in order 1) to assess air pollutant exposure in relation to road structure, 2) to assess air pollutant exposure in relation to traffic density, 3) to assess air pollutant exposure in relation to weather conditions, 4) to compare exposure within vehicles between front and back seat (children) positions, and 5) to evaluate "traffic zone"-exposure in relation to non-"traffic zone"-exposure.Primarily, the MAQS-platform will focus on particulate matter. With the establishment of advanced mobile analysis tools, it is planed to extend the analysis to other pollutants including NO2, SO2, nanoparticles and ozone.

  20. BAYESIAN HIERARCHICAL MODELING OF PERSONAL EXPOSURE TO PARTICULATE MATTER

    EPA Science Inventory

    In the US EPA's 1998 Baltimore Epidemiology-Exposure Panel Study, a group of 21 residents of a single building retirement community wore personal monitors recording personal fine particulate air pollution concentrations (PM2.5) for 27 days, while other monitors recorde...

  1. Personal Coarse Particulate Matter Exposures in an Adult Cohort

    EPA Science Inventory

    Volunteers associated with the North Carolina Adult Asthma and Environment Study (NCAAES) participated in an investigation of personal daily exposures to coarse and fine particulate matter size fractions (PM10-2.5, PM2.5). Data from these personal measuremen...

  2. US Federal Travel Restrictions for Persons with Higher-Risk Exposures to Communicable Diseases of Public Health Concern.

    PubMed

    Vonnahme, Laura A; Jungerman, M Robynne; Gulati, Reena K; Illig, Petra; Alvarado-Ramy, Francisco

    2017-12-01

    Published guidance recommends controlled movement for persons with higher-risk exposures (HREs) to communicable diseases of public health concern; US federal public health travel restrictions (PHTRs) might be implemented to enforce these measures. We describe persons eligible for and placed on PHTRs because of HREs during 2014-2016. There were 160 persons placed on PHTRs: 142 (89%) involved exposure to Ebola virus, 16 (10%) to Lassa fever virus, and 2 (1%) to Middle East respiratory syndrome coronavirus. Most (90%) HREs were related to an epidemic. No persons attempted to travel; all persons had PHTRs lifted after completion of a maximum disease-specific incubation period or a revised exposure risk classification. PHTR enforced controlled movement and removed risk for disease transmission among travelers who had contacts who refused to comply with public health recommendations. PHTRs are mechanisms to mitigate spread of communicable diseases and might be critical in enhancing health security during epidemics.

  3. The Fort Collins Commuter Study: Impact of route type and transport mode on personal exposure to multiple air pollutants.

    PubMed

    Good, Nicholas; Mölter, Anna; Ackerson, Charis; Bachand, Annette; Carpenter, Taylor; Clark, Maggie L; Fedak, Kristen M; Kayne, Ashleigh; Koehler, Kirsten; Moore, Brianna; L'Orange, Christian; Quinn, Casey; Ugave, Viney; Stuart, Amy L; Peel, Jennifer L; Volckens, John

    2016-06-01

    Traffic-related air pollution is associated with increased mortality and morbidity, yet few studies have examined strategies to reduce individual exposure while commuting. The present study aimed to quantify how choice of mode and route type affects personal exposure to air pollutants during commuting. We analyzed within-person difference in exposures to multiple air pollutants (black carbon (BC), carbon monoxide (CO), ultrafine particle number concentration (PNC), and fine particulate matter (PM2.5)) during commutes between the home and workplace for 45 participants. Participants completed 8 days of commuting by car and bicycle on direct and alternative (reduced traffic) routes. Mean within-person exposures to BC, PM2.5, and PNC were higher when commuting by cycling than when driving, but mean CO exposure was lower when cycling. Exposures to CO and BC were reduced when commuting along alternative routes. When cumulative exposure was considered, the benefits from cycling were attenuated, in the case of CO, or exacerbated, in the case of particulate exposures, owing to the increased duration of the commute. Although choice of route can reduce mean exposure, the effect of route length and duration often offsets these reductions when cumulative exposure is considered. Furthermore, increased ventilation rate when cycling may result in a more harmful dose than inhalation at a lower ventilation rate.

  4. The Fort Collins Commuter Study: Impact of route type and transport mode on personal exposure to multiple air pollutants

    PubMed Central

    Good, Nicholas; Mölter, Anna; Ackerson, Charis; Bachand, Annette; Carpenter, Taylor; Clark, Maggie L; Fedak, Kristen M; Kayne, Ashleigh; Koehler, Kirsten; Moore, Brianna; L'Orange, Christian; Quinn, Casey; Ugave, Viney; Stuart, Amy L; Peel, Jennifer L; Volckens, John

    2016-01-01

    Traffic-related air pollution is associated with increased mortality and morbidity, yet few studies have examined strategies to reduce individual exposure while commuting. The present study aimed to quantify how choice of mode and route type affects personal exposure to air pollutants during commuting. We analyzed within-person difference in exposures to multiple air pollutants (black carbon (BC), carbon monoxide (CO), ultrafine particle number concentration (PNC), and fine particulate matter (PM2.5)) during commutes between the home and workplace for 45 participants. Participants completed 8 days of commuting by car and bicycle on direct and alternative (reduced traffic) routes. Mean within-person exposures to BC, PM2.5, and PNC were higher when commuting by cycling than when driving, but mean CO exposure was lower when cycling. Exposures to CO and BC were reduced when commuting along alternative routes. When cumulative exposure was considered, the benefits from cycling were attenuated, in the case of CO, or exacerbated, in the case of particulate exposures, owing to the increased duration of the commute. Although choice of route can reduce mean exposure, the effect of route length and duration often offsets these reductions when cumulative exposure is considered. Furthermore, increased ventilation rate when cycling may result in a more harmful dose than inhalation at a lower ventilation rate. PMID:26507004

  5. Money matters: a resident curriculum for financial management.

    PubMed

    Mizell, Jason S; Berry, Katherine S; Kimbrough, Mary Katherine; Bentley, Frederick R; Clardy, James A; Turnage, Richard H

    2014-12-01

    A 2005 survey reported 87% of surgery program directors believed practice management training should occur during residency. However, only 8% of program directors believed residents received adequate training in practice management [1]. In addition to the gap in practice financial management knowledge, we recognized the need for training in personal finance among residents. A literature review and needs assessment led to the development of a novel curriculum for surgery residents combining principles of practice management and personal finance. An 18-h curriculum was administered over the 2012 academic year to 28 post graduate year 1-5 surgery residents and faculty. A self-assessment survey was given at the onset and conclusion of the curriculum [2]. Pre-tests and post-tests were given to objectively evaluate each twice monthly session's content. Self-perception of learning, interest, and acquired knowledge were analyzed using the Wilcoxon signed ranks test. Initial self-assessment data revealed high interest in practice management and personal finance principles but a deficiency in knowledge of and exposure to these topics. Throughout the curriculum, interest increased. Residents believed their knowledge of these topics increased after completing the curriculum, and objective data revealed various impacts on knowledge. Although surgery residents receive less exposure to these topics than residents in other specialties, their need to know is no less. We developed, implemented, and evaluated a curriculum that bridged this gap in surgery education. After the curriculum, residents reported an increase in interest, knowledge, and responsible behavior relating to personal and practice financial management. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. [Development of a monitor for quantifying personal eye exposure to visible and ultraviolet radiation and its application in epidemiology].

    PubMed

    Eto, Norihito; Tsubota, Kazuo; Tanaka, Taichiro; Nishiwaki, Yuji

    2013-01-01

    Eye diseases including cataract, keratitis and pterygium have been reported to be sun-exposure-related. The association between macular degeneration and blue light has also been discussed. Moreover, it is hypothesized that retinal exposure to blue light may influence the human circadian rhythm. However, no monitoring devices exist that can measure eye exposure to visible and ultraviolet (UV) radiation over time. To measure the exact dose at specific times, we have developed a novel sensing system (ray-sensing glass system: RaySeG). RaySeG can continuously measure and record the composition and intensity of light with a time-stamped system. Subjects wearing RaySeG were instructed to walk under various light conditions such as indoor and outdoor. RaySeG consists of two sensors embedded in the eyeglasses. These sensors are for UV (260-400 nm), visible lights (red, 615 nm; green, 540 nm; and blue, 465 nm: peak wavelength for each). The total weight of the system is about 100 g, and the size is comparable to that of a digital audio player. The system continuously recorded changes in visible and UV light exposure under various conditions. After accuracy validation, further experiments with a larger number of subjects are required. Our final goal is to apply the system to evaluating personal eye exposure to UV and visible light in epidemiological studies of eye diseases and circadian rhythm abnormality.

  7. A control technology evaluation of state-of-the-art, perchloroethylene dry-cleaning machines.

    PubMed

    Earnest, G Scott

    2002-05-01

    NIOSH researchers evaluated the ability of fifth-generation dry-cleaning machines to control occupational exposure to perchloroethylene (PERC). Use of these machines is mandated in some countries; however, less than 1 percent of all U.S. shops have them. A study was conducted at a U.S. dry-cleaning shop where two fifth-generation machines were used. Both machines had a refrigerated condenser as a primary control and a carbon adsorber as a secondary control to recover PERC vapors during the dry cycle. These machines were designed to lower the PERC concentration in the cylinder at the end of the dry cycle to below 290 ppm. A single-beam infrared photometer continuously monitors the PERC concentration in the machine cylinder, and a door interlock prevents opening until the concentration is below 290 ppm. Personal breathing zone air samples were measured for the machine operator and presser. The operator had time-weighted average (TWA) PERC exposures that were less than 2 ppm. Highest exposures occurred during loading and unloading the machine and when performing routine machine maintenance. All presser samples were below the limit of detection. Real-time video exposure monitoring showed that the operator had peak exposures near 160 ppm during loading and unloading the machine (below the OSHA maximum of 300 ppm). This exposure (160 ppm) is an order of magnitude lower than exposures with more traditional machines that are widely used in the United States. The evaluated machines were very effective at reducing TWA PERC exposures as well as peak exposures that occur during machine loading and unloading. State-of-the-art dry-cleaning machines equipped with refrigerated condensers, carbon adsorbers, drum monitors, and door interlocks can provide substantially better protection than more traditional machines that are widely used in the United States.

  8. Evaluation of ozone emissions and exposures from consumer products and home appliances.

    PubMed

    Zhang, Q; Jenkins, P L

    2017-03-01

    Ground-level ozone can cause serious adverse health effects and environmental impacts. This study measured ozone emissions and impacts on indoor ozone levels and associated exposures from 17 consumer products and home appliances that could emit ozone either intentionally or as a by-product of their functions. Nine products were found to emit measurable ozone, one up to 6230 ppb at a distance of 5 cm (2 inches). One use of these products increased room ozone concentrations by levels up to 106 ppb (mean, from an ozone laundry system) and personal exposure concentrations of the user by 12-424 ppb (mean). Multiple cycles of use of one fruit and vegetable washer increased personal exposure concentrations by an average of 2550 ppb, over 28 times higher than the level of the 1-h California Ambient Air Quality Standard for ozone (0.09 ppm). Ozone emission rates ranged from 1.6 mg/h for a refrigerator air purifier to 15.4 mg/h for a fruit and vegetable washer. The use of some products was estimated to contribute up to 87% of total daily exposures to ozone. The results show that the use of some products may result in potential health impacts. © 2016 The Authors. Indoor Air published by John Wiley & Sons Ltd.

  9. Trends in Occupational Exposure to Styrene in the European Glass Fibre-Reinforced Plastics Industry

    PubMed Central

    Van Rooij, J. G. M.; Kasper, A.; Triebig, G.; Werner, P.; Kromhout, H.

    2008-01-01

    Aim: This study presents temporal trends of styrene exposure for workers in the European glass fibre-reinforced plastics (GRP) industry during the period 1966–2002. Methods: Data of personal styrene exposure measurements were retrieved from reports, databases and peer-reviewed papers. Only sources with descriptive statistics of personal measurements were accepted. The styrene exposure data cover personal air samples and biological monitoring data, that is, urinary styrene metabolites (mandelic acid and/or phenylglyoxylic acid) and styrene in blood. Means of series of measurements were categorized by year, country, production process, job and sampling strategy. Linear mixed models were used to identify temporal trends and factors affecting exposure levels. Results: Personal exposure measurements were available from 60 reports providing data on 24145 1–8-h time-weighted average shift personal air samples. Available data of biological exposure indicators included measurements of mandelic acid in post-shift urine (6361 urine samples being analysed). Trend analyses of the available styrene exposure data showed that the average styrene concentration in the breathing zone of open-mould workers in the European GRP industry has decreased on average by 5.3% per year during the period 1966–1990 and by only 0.4% annually in the period after 1990. The highest exposures were measured in Southern Europe and the lowest exposures in Northern Europe with Central Europe in between. Biological indicators of styrene (mandelic acid in post-shift urine) showed a somewhat steeper decline (8.9%), most likely because urine samples were collected in companies that showed a stronger decrease of styrene exposure in air than GRP companies where no biological measurements were carried out. PMID:18550625

  10. Assessment on personal exposure to particulate compounds using an empirical exposure model in an elderly community in Tianjin, China.

    PubMed

    Xu, Jia; Zhang, Nan; Han, Bin; You, Yan; Zhou, Jian; Zhang, Jiefeng; Niu, Can; Liu, Yating; He, Fei; Ding, Xiao; Bai, Zhipeng

    2016-12-01

    Using central site measurement data to predict personal exposure to particulate matter (PM) is challenging, because people spend most of their time indoors and ambient contribution to personal exposure is subject to infiltration conditions affected by many factors. Efforts in assessing and predicting exposure on the basis of associated indoor/outdoor and central site monitoring were limited in China. This study collected daily personal exposure, residential indoor/outdoor and community central site PM filter samples in an elderly community during the non-heating and heating periods in 2009 in Tianjin, China. Based on the chemical analysis results of particulate species, mass concentrations of the particulate compounds were estimated and used to reconstruct the PM mass for mass balance analysis. The infiltration factors (F inf ) of particulate compounds were estimated using both robust regression and mixed effect regression methods, and further estimated the exposure factor (F pex ) according to participants' time-activity patterns. Then an empirical exposure model was developed to predict personal exposure to PM and particulate compounds as the sum of ambient and non-ambient contributions. Results showed that PM mass observed during the heating period could be well represented through chemical mass reconstruction, because unidentified mass was minimal. Excluding the high observations (>300μg/m 3 ), this empirical exposure model performed well for PM and elemental carbon (EC) that had few indoor sources. These results support the use of F pex as an indicator for ambient contribution predictions, and the use of empirical non-ambient contribution to assess exposure to particulate compounds. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. BIOMAKERS OF EXPOSURE AND METABOLIC SUSCEPTIBILITY TO FINE PARTICLE AIR POLLUTION

    EPA Science Inventory

    The influence of metabolic susceptibility (GSTM1 and NAT2 genotypes) on the association between personal air exposures and biomarkers of exposure, dose, and genetic damage were measured for 60 individuals in two regions exposed to ambient air in the Czech Republic. Personal mon...

  12. CHARACTERIZING THE SOURCES OF HUMAN EXPOSURE TO MUTAGENIC AND CARCINOGENIC CHEMICALS IN AIRBORNE FINE PARTICLES

    EPA Science Inventory

    Personal and ambient exposures to airborne fine particles, polycyclic aromatic hydrocarbons (PAH), and genotoxic activity has been studied in populations in the US, Japan, China, and the Czech Republic. Personal exposure monitors used to collect fine particles were extracted f...

  13. Occupational exposure to magnetic fields from transformer stations and electric enclosures in Turkey.

    PubMed

    Çam, Semra Tepe; Fırlarer, Arzu; Özden, Semih; Canseven, Ayşe G; Seyhan, Nesrin

    2011-06-01

    We aimed to provide a systematic evaluation of magnetic field (MF) exposure of staff working in the offices located above or close to transformer stations (TS) and electric enclosures (EE). Occupational short-term "spot" measurements with Narda EFA-300 and isotropic magnetic field probe were carried out in two National Banks and one Industrial Company having more than 500 employees. Extremely low-frequency (ELF) MFs up to several tens of μT were measured in the mentioned working environments. 25% of the measured MFs were found less than 0.3 μT, the background exposure level that staff receive at home, 75% were above 0.3 μT with the highest value of 6.8 μT. The mean and median personal exposures were calculated to be 1.19 μT and 0.56 μT, respectively. Most of the staff (83%) is under risk based on epidemiological studies that reported a statistically significant association between risk of leukemia and averaged magnetic fields of 0.2 μT or over. Results showed that risk evaluation should be considered to minimize the possibility of the workers being harmed due to exposure to work-related electromagnetic sources.

  14. Personal exposures to particulate matter among children with asthma in Detroit, Michigan

    NASA Astrophysics Data System (ADS)

    Yip, Fuyuen Y.; Keeler, Gerald J.; Dvonch, J. Timothy; Robins, Thomas G.; Parker, Edith A.; Israel, Barbara A.; Brakefield-Caldwell, Wilma

    2004-10-01

    From 2000 to 2001, eight two-week seasonal intensive measurement campaigns were conducted in Detroit which included daily ambient and indoor measurements of PM10 at two elementary schools. Concurrent measurements of PM10 inside the homes of 20 children, aged 7-11 years, with asthma as well as personal PM10 measurements for the same 20 children were performed. Sampling was changed from 24-h measurements to 8-hs in the classroom and 16-hs in the home in 2001 to more closely match the times spent by the children in these microenvironments. The mean personal PM10 concentrations were 57.1±41.0 μg m-3and 47.6±34.6 μg m-3 for children residing in homes with and without smokers, respectively. The mean personal PM10 exposures exceeded the mean classroom and ambient PM10 concentrations. The personal exposures of children residing in homes with non-smokers also exceeded the mean home concentration of 33.1±23.4 μg m-3 in 2000 and 16-h concentration of 27.2±22.8 μg m-3 in 2001. Among children residing in homes with smokers, their mean personal concentrations were less than the 24-h (65.1±43.0 μg m-3) and 16-h (81.7±68.9 μg m-3) concentrations measured in their home for 2000 and 2001. As the children spent an average of 70% of their day at home, their personal PM10 concentrations were significantly correlated with their home environment (Pearson's r=0.38 to 0.70), with the strongest relationships observed in homes with non-smokers. Weak correlations were observed between the personal concentrations and those in the ambient and classroom environments. The correlations between the children's personal exposures and the ambient and classroom concentrations improved when analyzed longitudinally, with the strongest correlations observed in 2001 (median Pearson's r > 0.41 , overall). The children's exposures, however, remained most strongly correlated with PM10 measured in their homes (Pearson's r > 0.50). The mean unexplained contributions to personal PM10-based on measured and modeled personal exposures-were greater among children in homes with non-smokers. The lowest estimate was observed in 2001 among children in homes with smokers, at 0.22±28.29 μg m-3. Overall, the model explained 37% and 45% of the variability in the children's exposures among those in non-smoking and smoking households, respectively, when the measured and modeled personal exposures were compared.

  15. Health surveillance study of workers who manufacture multi-walled carbon nanotubes.

    PubMed

    Lee, Jong Seong; Choi, Young Chul; Shin, Jae Hoon; Lee, Ji Hyun; Lee, Yurim; Park, So Young; Baek, Jin Ee; Park, Jung Duck; Ahn, Kangho; Yu, Il Je

    2015-01-01

    While many in vivo and in vitro toxicology studies of multi-walled carbon nanotubes (MWCNTs) have already indicated that exposure to MWCNTs can potentially induce health effects in humans, the actual health effects of MWCNTs among exposed workers are not yet known. Moreover, the levels of exposure and internal doses of MWCNTs are becoming more and more important for estimating the health effects resulting from exposure to MWCNTs. However, information on biomonitoring and exposure to MWCNTs remains limited. Therefore, the authors conducted a health surveillance study in a workplace that manufactures MWCNTs, including assessment of the personal and area exposure levels to MWCNTs, a walk-through evaluation of the manufacturing process, and collection of blood and exhaled breath condensates (EBCs) from the MWCNT manufacturing and office workers. In addition, a pulmonary function test was also conducted on the MWCNT manufacturing workers (9) and office workers (4). The worker exposure to elemental carbon was found to be 6.2-9.3 μg/m(3) in the personal samplings and 5.5-7.3 μg/m(3) in the area samplings. Notwithstanding, the workers exhibited a normal range of hematology and blood biochemistry values and normal lung function parameters. When analyzing the EBCs, the malondialdehyde (MDA), 4-hydroxy-2-hexenal (4-HHE) and n-hexanal levels in the MWCNT manufacturing workers were significantly higher than those in the office workers. The MDA and n-hexanal levels were also significantly correlated with the blood molybdenum concentration, suggesting MDA, n-hexanal and molybdenum as useful biomarkers of MWCNT exposure.

  16. Aerosolized red-tide toxins (brevetoxins) and asthma.

    PubMed

    Fleming, Lora E; Kirkpatrick, Barbara; Backer, Lorraine C; Bean, Judy A; Wanner, Adam; Reich, Andrew; Zaias, Julia; Cheng, Yung Sung; Pierce, Richard; Naar, Jerome; Abraham, William M; Baden, Daniel G

    2007-01-01

    With the increasing incidence of asthma, there is increasing concern over environmental exposures that may trigger asthma exacerbations. Blooms of the marine microalgae, Karenia brevis, cause red tides (or harmful algal blooms) annually throughout the Gulf of Mexico. K brevis produces highly potent natural polyether toxins, called brevetoxins, which are sodium channel blockers, and possibly histamine activators. In experimental animals, brevetoxins cause significant bronchoconstriction. In humans, a significant increase in self-reported respiratory symptoms has been described after recreational and occupational exposures to Florida red-tide aerosols, particularly among individuals with asthma. Before and after 1 h spent on beaches with and without an active K brevis red-tide exposure, 97 persons >or= 12 years of age with physician-diagnosed asthma were evaluated by questionnaire and spirometry. Concomitant environmental monitoring, water and air sampling, and personal monitoring for brevetoxins were performed. Participants were significantly more likely to report respiratory symptoms after K brevis red-tide aerosol exposure than before exposure. Participants demonstrated small, but statistically significant, decreases in FEV(1), midexpiratory phase of forced expiratory flow, and peak expiratory flow after exposure, particularly among those participants regularly using asthma medications. No significant differences were detected when there was no Florida red tide (ie, during nonexposure periods). This study demonstrated objectively measurable adverse changes in lung function from exposure to aerosolized Florida red-tide toxins in asthmatic subjects, particularly among those requiring regular therapy with asthma medications. Future studies will assess these susceptible subpopulations in more depth, as well as the possible long-term effects of these toxins.

  17. Aerosolized Red-Tide Toxins (Brevetoxins) and Asthma

    PubMed Central

    Fleming, Lora E.; Kirkpatrick, Barbara; Backer, Lorraine C.; Bean, Judy A.; Wanner, Adam; Reich, Andrew; Zaias, Julia; Cheng, Yung Sung; Pierce, Richard; Naar, Jerome; Abraham, William M.; Baden, Daniel G.

    2009-01-01

    Background With the increasing incidence of asthma, there is increasing concern over environmental exposures that may trigger asthma exacerbations. Blooms of the marine microalgae, Karenia brevis, cause red tides (or harmful algal blooms) annually throughout the Gulf of Mexico. K brevis produces highly potent natural polyether toxins, called brevetoxins, which are sodium channel blockers, and possibly histamine activators. In experimental animals, brevetoxins cause significant bronchoconstriction. In humans, a significant increase in self-reported respiratory symptoms has been described after recreational and occupational exposures to Florida red-tide aerosols, particularly among individuals with asthma. Methods Before and after 1 h spent on beaches with and without an active K brevis red-tide exposure, 97 persons ≥ 12 years of age with physician-diagnosed asthma were evaluated by questionnaire and spirometry. Concomitant environmental monitoring, water and air sampling, and personal monitoring for brevetoxins were performed. Results Participants were significantly more likely to report respiratory symptoms after K brevis red-tide aerosol exposure than before exposure. Participants demonstrated small, but statistically significant, decreases in FEV1, midexpiratory phase of forced expiratory flow, and peak expiratory flow after exposure, particularly among those participants regularly using asthma medications. No significant differences were detected when there was no Florida red tide (ie, during nonexposure periods). Conclusions This study demonstrated objectively measurable adverse changes in lung function from exposure to aerosolized Florida red-tide toxins in asthmatic subjects, particularly among those requiring regular therapy with asthma medications. Future studies will assess these susceptible subpopulations in more depth, as well as the possible long-term effects of these toxins. PMID:17218574

  18. Evaluation of cosmetic product exposures reported to the Milan Poison Control Centre, Italy from 2005 to 2010.

    PubMed

    Ruggiero, Simona; Moro, Paola Angela; Davanzo, Franca; Capuano, Annalisa; Rossi, Francesco; Sautebin, Lidia

    2012-12-01

    To the average consumer, "cosmetics" are not considered to cause damage to human health under normal conditions of use. Thus, cosmetic "safety" does not require any particular attention to the possibility that cosmetics may result in a toxic exposure, especially for children. Poison Control Centres (PCCs) provide specialized and rapid information for consumers and health professionals to ensure management of events related to the exposures to different agents, including Cosmetics. Poison Control Centres also represent a unique source of information to investigate the frequency and type of exposures to cosmetic and the related risks. An analysis of cases concerning human exposures to cosmetics collected from 2005 to 2010 by the PCC at the Ospedale Niguarda Ca' Granda (Milan, Italy) was performed. During this period, 11 322 human exposure cases related to cosmetics were collected accounting for 4.5% of the total human clinical cases. Almost, all the requests for assistance came from consumers (53%) and hospitals (40%). The most frequently reported site of exposure was the consumer's own residence (94%). The exposures mainly involved children younger than 4 years (77%). No difference in gender distribution was observed (female 49%, male 51%). Almost, all of the exposures were unintentional (94%). Intentional exposures, mainly related to suicide attempts and accounted for 6% of cases involving persons aged more than 12 years. Personal hygiene products (30%), perfumes and hair care products (excluding hair dyes) (both 13%) were the most frequently involved categories. Symptoms were present only in 26% of the exposures and were mostly gastrointestinal (46%). Most of the cases were managed at home (43%) whereas hospital intervention was required in 38%. Since the exposure frequency seems more likely to reflect product availability and accessibility to ingestors, our results call for closer attention to this type of hazard, especially for children younger than 4 years of age.

  19. Personal exposures and microenvironment concentrations of PM 2.5, VOC, NO 2 and CO in Oxford, UK

    NASA Astrophysics Data System (ADS)

    Lai, H. K.; Kendall, M.; Ferrier, H.; Lindup, I.; Alm, S.; Hänninen, O.; Jantunen, M.; Mathys, P.; Colvile, R.; Ashmore, M. R.; Cullinan, P.; Nieuwenhuijsen, M. J.

    Between 1998 and 2000 in Oxford, UK, simultaneous personal exposures and microenvironmental measurements (home indoor, home outdoor and work indoor) to fine particulate matters PM 2.5, volatile organic compounds (VOC), nitrogen dioxide (NO 2) and carbon monoxide (CO) were carried out once per person among 50 adults over a 48-h period. Thirty-seven elements in PM 2.5 and 30 different VOCs were analysed. Questionnaires were distributed to record their time-activity patterns and exposure-related information. Results showed that participants spent more time (89.5%) in all indoors than in other microenvironments. Geometric mean (GM) of personal and home indoor levels of PM 2.5, 14 elements (aluminium, arsenic, bromine, calcium, copper, iron, gallium, potassium, sodium, phosphorus, lead, selenium, silicon, titanium), total VOC (TVOC) and 8 individual compounds (nonane, decane, undecane, trimethylbenzene, toluene, benzaldehyde, alpha-pinene and d-limonene) were over 20% higher than their GM outdoor levels. Those of NO 2, 5 aromatic VOCs (benzene, o-xylene, ethylbenzene, propylbenzene, m, p-xylene) and 5 other elements (chlorine, magnesium, manganese, sulphur, zinc) were close to their GM outdoor levels. For PM 2.5 and TVOC, personal exposures and residential indoor levels (in GM) were about 2 times higher among the tobacco-smoke exposed group compared to the non-smoke exposed group, suggesting that smoking is an important determinant of these exposures. Determinants for CO were visualised by real-time monitoring, and we showed that the peak levels of personal exposure to CO were associated with smoking, cooking and transportation activities. Moderate to good correlations were only found between the personal exposures and residential indoor levels for both PM 2.5 ( r=0.60, p<0.001) and NO 2 ( r=0.47, p=0.003).

  20. Exposure to volatile organic compounds in healthcare settings

    PubMed Central

    LeBouf, Ryan F; Virji, M Abbas; Saito, Rena; Henneberger, Paul K; Simcox, Nancy; Stefaniak, Aleksandr B

    2015-01-01

    Objectives To identify and summarise volatile organic compound (VOC) exposure profiles of healthcare occupations. Methods Personal (n=143) and mobile area (n=207) evacuated canisters were collected and analysed by a gas chromatograph/mass spectrometer to assess exposures to 14 VOCs among 14 healthcare occupations in five hospitals. Participants were volunteers identified by their supervisors. Summary statistics were calculated by occupation. Principal component analysis (PCA) was used to reduce the 14 analyte inputs to five orthogonal factors and identify occupations that were associated with these factors. Linear regressions were used to assess the association between personal and mobile area samples. Results Exposure profiles differed among occupations; ethanol had the highest geometric mean (GM) among nursing assistants (~4900 and ~1900 μg/m3, personal and area), and 2-propanol had the highest GM among medical equipment preparers (~4600 and ~2000 μg/m3, personal and area). The highest total personal VOC exposures were among nursing assistants (~9200 μg/m3), licensed practical nurses (~8700 μg/m3) and medical equipment preparers (~7900 μg/m3). The influence of the PCA factors developed from personal exposure estimates varied by occupation, which enabled a comparative assessment of occupations. For example, factor 1, indicative of solvent use, was positively correlated with clinical laboratory and floor stripping/waxing occupations and tasks. Overall, a significant correlation was observed (r=0.88) between matched personal and mobile area samples, but varied considerably by analyte (r=0.23–0.64). Conclusions Healthcare workers are exposed to a variety of chemicals that vary with the activities and products used during activities. These VOC profiles are useful for estimating exposures for occupational hazard ranking for industrial hygienists as well as epidemiological studies. PMID:25011549

  1. Ambient concentrations and personal exposure to polycyclic aromatic hydrocarbons (PAH) in an urban community with mixed sources of air pollution.

    PubMed

    Zhu, Xianlei; Fan, Zhihua Tina; Wu, Xiangmei; Jung, Kyung Hwa; Ohman-Strickland, Pamela; Bonanno, Linda J; Lioy, Paul J

    2011-01-01

    Assessment of the health risks resulting from exposure to ambient polycyclic aromatic hydrocarbons (PAH) is limited by a lack of environmental exposure data among the general population. This study characterized personal exposure and ambient concentrations of PAH in the Village of Waterfront South (WFS), an urban community with many mixed sources of air toxics in Camden, New Jersey, and CopeWood/Davis Streets (CDS), an urban reference area located ∼1 mile east of WFS. A total of 54 and 53 participants were recruited from non-smoking households in WFS and CDS, respectively. In all, 24-h personal and ambient air samples were collected simultaneously in both areas on weekdays and weekends during summer and winter. The ambient PAH concentrations in WFS were either significantly higher than or comparable to those in CDS, indicating the significant impact of local sources on PAH pollution in WFS. Analysis of diagnostic ratios and correlation suggested that diesel truck traffic, municipal waste combustion and industrial combustion were the major sources in WFS. In such an area, ambient air pollution contributed significantly to personal PAH exposure, explaining 44-96% of variability in personal concentrations. This study provides valuable data for examining the impact of local ambient PAH pollution on personal exposure and therefore potential health risks associated with environmental PAH pollution.

  2. Ambient concentrations and personal exposure to polycyclic aromatic hydrocarbons (PAH) in an urban community with mixed sources of air pollution

    PubMed Central

    ZHU, XIANLEI; FAN, ZHIHUA (TINA); WU, XIANGMEI; JUNG, KYUNG HWA; OHMAN-STRICKLAND, PAMELA; BONANNO, LINDA J.; LIOY, PAUL J.

    2014-01-01

    Assessment of the health risks resulting from exposure to ambient polycyclic aromatic hydrocarbons (PAH) is limited by a lack of environmental exposure data among the general population. This study characterized personal exposure and ambient concentrations of PAH in the Village of Waterfront South (WFS), an urban community with many mixed sources of air toxics in Camden, New Jersey, and CopeWood/Davis Streets (CDS), an urban reference area located ~1 mile east of WFS. A total of 54 and 53 participants were recruited from non-smoking households in WFS and CDS, respectively. In all, 24-h personal and ambient air samples were collected simultaneously in both areas on weekdays and weekends during summer and winter. The ambient PAH concentrations in WFS were either significantly higher than or comparable to those in CDS, indicating the significant impact of local sources on PAH pollution in WFS. Analysis of diagnostic ratios and correlation suggested that diesel truck traffic, municipal waste combustion and industrial combustion were the major sources in WFS. In such an area, ambient air pollution contributed significantly to personal PAH exposure, explaining 44–96% of variability in personal concentrations. This study provides valuable data for examining the impact of local ambient PAH pollution on personal exposure and therefore potential health risks associated with environmental PAH pollution. PMID:21364704

  3. The relationship between occupational exposure to lead and manifestation of cardiovascular complications in persons with arterial hypertension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poreba, Rafal, E-mail: sogood@poczta.onet.p; Gac, Pawel; Poreba, Malgorzata

    The chronic exposure to lead represents a risk factor of arterial hypertension development. Ambulatory blood pressure monitoring is the most prognostically reliable method of measuring of arterial blood pressure. The study is aimed at evaluating the relationship between occupational exposure to lead and manifestation of cardiovascular complications in patients with arterial hypertension. The studies included 73 men (mean age, 54.26 {+-} 8.17 years) with arterial hypertension, treated with hypotensive drugs: group I-persons occupationally exposed to lead (n = 35) and group II-individuals not exposed to lead (n = 38). An analysis of results obtained during ambulatory blood pressure monitoring disclosedmore » significantly higher values of mean systolic blood pressure, mean blood pressure, pulse pressure, and variability of systolic blood pressure in the group of hypertensive patients occupationally exposed to lead as compared to patients with arterial hypertension but not exposed to lead. The logistic regression showed that a more advanced age, higher concentration of blood zinc protoporphyrin, and a higher mean value of pulse pressure represented independent risk factors of left ventricular hypertrophy in the group of persons with arterial hypertension and chronically exposed to lead (OR{sub age} = 1.11; OR{sub ZnPP} = 1.32; OR{sub PP} = 1,43; p < 0.05). In view of the above data demonstration that occupational exposure to lead represents an independent risk factor of increased pulse pressure may be of key importance in the process of shaping general social awareness as to harmful effects of lead compounds on human health.« less

  4. Airborne concentrations of methylene diphenyl diisocyanate (MDI) in North American wood mills during the manufacturing of oriented strand board (OSB).

    PubMed

    Karoly, William J; Flatley, John J; Stevenson, Ralph D; Bowers, John D

    2004-12-01

    Air monitoring data were collected from industrial hygiene surveys over an 8-year period in oriented strand board (OSB) mills. Personal samples were taken to evaluate potential employee exposures to MDI. Area samples were taken to determine the effectiveness of control measures used in the mills to prevent fugitive emissions of wood dust, MDI, and MDI-coated wood dust from the OSB manufacturing process. Personal sampling results (578 samples covering 11 different job categories) ranged from 0.0002-0.524 mg/m3, with a GM = 0.001 and GSD = 3.71. Area sampling results (1657 samples covering 14 stationary locations in the mills) ranged from 0.0002-2.5 mg/m3, with a GM = 0.004 and GSD = 5.52. The statistical range of the data suggests high variability. While exposures to MDI above the established limits (0.051 mg/m3, 8-hour time-weighted average, 0.2 mg/m3, ceiling) can and do occur when engineering controls are not maintained and/or proper work practices and personal protective equipment are not followed/used for certain high exposure potential tasks, the data indicate that over 97% of the personal and 92% of the area sampling results are less than 0.051 mg/m3. Wipe testing was performed to determine the presence of removable, unreacted diisocyanates (NCO functional groups)from various surfaces. Positive results were found in about 13% of the wipe tests on surfaces confined to the blender, forming line, and hopper deck process areas.

  5. 46 CFR 197.540 - Determination of personal exposure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... HEALTH STANDARDS GENERAL PROVISIONS Benzene § 197.540 Determination of personal exposure. (a) General. (1... which involves the handling of or potential exposure to benzene are monitored. The monitoring must be... operation involving benzene. Monitoring one vessel of a class is sufficient for all vessels of that class...

  6. 46 CFR 197.540 - Determination of personal exposure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... HEALTH STANDARDS GENERAL PROVISIONS Benzene § 197.540 Determination of personal exposure. (a) General. (1... which involves the handling of or potential exposure to benzene are monitored. The monitoring must be... operation involving benzene. Monitoring one vessel of a class is sufficient for all vessels of that class...

  7. 46 CFR 197.540 - Determination of personal exposure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... HEALTH STANDARDS GENERAL PROVISIONS Benzene § 197.540 Determination of personal exposure. (a) General. (1... which involves the handling of or potential exposure to benzene are monitored. The monitoring must be... operation involving benzene. Monitoring one vessel of a class is sufficient for all vessels of that class...

  8. 46 CFR 197.540 - Determination of personal exposure.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... HEALTH STANDARDS GENERAL PROVISIONS Benzene § 197.540 Determination of personal exposure. (a) General. (1... which involves the handling of or potential exposure to benzene are monitored. The monitoring must be... operation involving benzene. Monitoring one vessel of a class is sufficient for all vessels of that class...

  9. 46 CFR 197.540 - Determination of personal exposure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... HEALTH STANDARDS GENERAL PROVISIONS Benzene § 197.540 Determination of personal exposure. (a) General. (1... which involves the handling of or potential exposure to benzene are monitored. The monitoring must be... operation involving benzene. Monitoring one vessel of a class is sufficient for all vessels of that class...

  10. High-throughput exposure modeling to support prioritization of chemicals in personal care products

    EPA Science Inventory

    We demonstrate the application of a high-throughput modeling framework to estimate exposure to chemicals used in personal care products (PCPs). As a basis for estimating exposure, we use the product intake fraction (PiF), defined as the mass of chemical taken by an individual or ...

  11. The Influence of Human and Environmental Exposure Factors on Personal NO2 Exposures

    EPA Science Inventory

    The US Environmental Protection Agency’s (US EPA) Detroit Exposure and Aerosol Research Study (DEARS) deployed a total of over 2000 nitrogen dioxide, NO2, passive monitors during 3 years of field data collections. These 24-h based personal, residential outdoor and comm...

  12. PERSONAL EXPOSURE TO FINE PARTICLE POLYCYCLIC AROMATIC HYDROCARBONS: OUTDOOR SOURCE TRACERS

    EPA Science Inventory


    The most carcinogenic and toxic polycyclic aromatic hydrocarbons (PAH) are the 4-5 ring PAH found preferentially adsorbed to the fine particles (<2.54u in urban ambient air and personal air. Personal exposure to the carcinogenic particle bound PAH is also highly correlated ...

  13. Personal exposure to benzene and 1,3-butadiene during petroleum refinery turnarounds and work in the oil harbour.

    PubMed

    Akerstrom, M; Almerud, P; Andersson, E M; Strandberg, B; Sallsten, G

    2016-11-01

    Petroleum refinery workers' exposure to the carcinogens benzene and 1,3-butadiene has decreased during normal operations. However, certain occupational groups or events at the refineries still involve a risk of higher exposures. The aim of this study was to examine the personal exposure to benzene and 1,3-butadiene at refinery turnarounds and during work in the oil harbour. Personal exposure measurements of benzene and 1,3-butadiene were taken during work shifts, with a priori assumed higher benzene exposure, using PerkinElmer diffusive samplers filled with Carbopack X. Mean exposure levels were calculated, and repeated exposure measurements, when available, were assessed using mixed effect models. Group and individual compliance with the Swedish occupational exposure limit (OEL) was tested for the different exposure groups. Mean benzene exposure levels for refinery workers during the three measured turnarounds were 150, 610 and 960 µg/m 3 , and mean exposures for oil harbour workers and sewage tanker drivers were 310 and 360 µg/m 3 , respectively. Higher exposures were associated with handling benzene-rich products. Most occupational groups did not comply with the Swedish OEL for benzene nor did the individuals within the groups. The exposure to 1,3-butadiene was very low, between <1 and 3 % of the Swedish OEL. Work within the petroleum refinery industry, with potential exposure to open product streams containing higher fractions of benzene, pose a risk of personal benzene exposures exceeding the OEL. Refinery workers performing these work tasks frequently, such as contractors, sewage tanker drivers and oil harbour workers, need to be identified and protected.

  14. Feedback on Measured Dust Concentrations Reduces Exposure Levels Among Farmers.

    PubMed

    Basinas, Ioannis; Sigsgaard, Torben; Bønløkke, Jakob Hjort; Andersen, Nils Testrup; Omland, Øyvind; Kromhout, Hans; Schlünssen, Vivi

    2016-08-01

    The high burden of exposure to organic dust among livestock farmers warrants the establishment of effective preventive and exposure control strategies for these workers. The number of intervention studies exploring the effectiveness of exposure reduction strategies through the use of objective measurements has been limited. To examine whether dust exposure can be reduced by providing feedback to the farmers concerning measurements of the exposure to dust in their farm. The personal dust levels of farmers in 54 pig and 26 dairy cattle farms were evaluated in two measurement series performed approximately 6 months apart. Detailed information on work tasks and farm characteristics during the measurements were registered. Participating farms were randomized a priori to a control (n = 40) and an intervention group (n = 40). Shortly after the first visit, owners of intervention farms only received a letter with information on the measured dust concentrations in the farm together with some general advises on exposure reduction strategies (e.g. use of respirators during certain tasks). Relationships between measured dust concentrations and intervention status were quantified by means of linear mixed effect analysis with farm and worker id as random effects. Season, type of farming, and work tasks were treated as fixed effects. Changes in exposure over time were explored primarily at a farm level in models combined, as well as separate for pig and cattle farmers. After adjustment for fixed effects, an overall reduction of 23% in personal dust exposures was estimated as a result of the intervention (P = 0.02). Exposure reductions attributable to the intervention were similar across pig and cattle farmers, but statistically significant only for pig farmers. Intervention effects among pig farmers did not depend on the individuals' information status; but among cattle farmers a significant 48% reduction in exposure was found only among individuals that reported to have been informed. No systematic differences in changes over time considering the use of respiratory protection between the intervention and control groups were observed. The results of the present study suggest reductions between 20 and 30% in personal exposure to inhalable dust to be feasible through simple information provided to the farm owners regarding actual levels of exposure together with instructions on basic measures of prevention. The exact reasons for these effects are unclear, but likely they involve changes in behavior and working practices among intervention farmers. © The Author 2016. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  15. Anesthetic gas exposure in veterinary clinics.

    PubMed

    Korczynski, R E

    1999-06-01

    Concerns were raised by several workers from veterinary clinics in Manitoba, Canada, regarding potential exposure to isoflurane and halothane during anesthetic administration. There has been no guideline established for isoflurane by the American Conference of Governmental Industrial Hygienist (ACGIH) or a Permissible Exposure Limit by the Occupational Safety and Health Administration (OSHA) or a recommended exposure limit (REL) by the National Institute for Occupational Safety and Health (NIOSH). The ACGIH TLV-TWA for halothane is 50 ppm and NIOSH has established 2 ppm as a recommended level based on an one-hour sampling. OSHA has established no guideline for halothane. The Miran IB Portable Ambient Air Analyzer was used to conduct real-time sampling and to identify leaks during administration. All veterinary clinics inspected had installed the passive waste gas scavenging system. Ten clinics were each monitored during anesthetic gas delivery for one surgical procedure performed. Induction was 4 to 5 percent and maintenance 1.5 to 2.5 percent. Nine clinics were small animal practices and the tenth was an equine clinic. Veterinarians' personal exposures were higher than the assistants'. Veterinarians' personal exposures for isoflurane ranged from 1.3 to 13 ppm (AM = 5.3; SD +/- 2.7; GM = 4.6; GSD +/- 1.6) and for their assistants, personal exposures ranged from 1.2 to 9 ppm (AM = 4.7; SD +/- 2.5; GM = 3.9; GSD +/- 1.6). Veterinarians' personal exposures for halothane ranged from 0.7 to 12 ppm (AM = 4.2; SD +/- 3.6; GM = 2.9; GSD +/- 1.4) and for their assistants, personal exposures ranged from 0.4 to 3.2 ppm (AM = 1.8; SD +/- 1.0; GM = 1.5; GSD +/- 1.7). One clinic had significant leaks in the anesthetic gas delivery lines. Personal halothane exposure for the veterinarian at this clinic was 7.2 to 65 ppm (AM = 18.0; SD +/- 11.5; GM = 15.9; GSD +/- 1.8). Based on this study, worker exposures were acceptable. Peak exposures were recorded when the cuffed endotracheal tube was removed from the animal. Equipment leaks were minimal when the system was maintained at its optimum operating condition.

  16. Ototoxic occupational exposures for a stock car racing team: II. chemical surveys.

    PubMed

    Gwin, Kristin K; Wallingford, Kenneth M; Morata, Thais C; Van Campen, Luann E; Dallaire, Jacques; Alvarez, Frank J

    2005-08-01

    The National Institute for Occupational Safety and Health (NIOSH) conducted a series of surveys to evaluate occupational exposure to noise and potentially ototoxic chemical agents among members of a professional stock car racing team. Exposure assessments included site visits to the team's race shop and a worst-case scenario racetrack. During site visits to the race team's shop, area samples were collected to measure exposures to potentially ototoxic chemicals, including, organic compounds (typical of solvents), metals, and carbon monoxide (CO). Exposures to these chemicals were all below their corresponding Occupational Safety and Health Administration (OSHA) permissible exposure limits (PELs), NIOSH recommended exposure limits (RELs), and American Conference of Governmental Industrial Hygienists (ACGIH) threshold limit values (TLVs). During site visits to the racetrack, area and personal samples were collected for organic compounds, lead, and CO in and around the "pit" area where the cars undergo race preparation and service during the race. Exposures to organic compounds and lead were either nondetectable or too low to quantify. Twenty-five percent of the CO time-weighted average concentrations exceeded the OSHA PEL, NIOSH REL, and ACGIH TLV after being adjusted for a 10-hour workday. Peak CO measurements exceeded the NIOSH recommended ceiling limit of 200 ppm. Based on these data, exposures to potentially ototoxic chemicals are probably not high enough to produce an adverse effect greater than that produced by the high sound pressure levels alone. However, carbon monoxide levels occasionally exceeded all evaluation criteria at the racetrack.

  17. Personal exposure to airborne ultrafine particles in the urban area of Milan

    NASA Astrophysics Data System (ADS)

    Cattaneo, A.; Garramone, G.; Taronna, M.; Peruzzo, C.; Cavallo, D. M.

    2009-02-01

    The relevance of health effects related to ultrafine particles (UFPs; aerodynamic diameter < 100 nm) can be better evaluated using high-resolution strategies for measuring particle number concentrations. In this study, two different portable Condensation Particle Counters (CPCs) were used to measure personal exposure to UFPs in the central area of Milan for one week period during spring, with three sampling sessions per day. Experimental data were continuously collected along an established urban pathway, moving afoot or by different private and public means of transport. Correlation analysis between data measured by two CPCs was performed and general results showed a good agreement, especially at concentrations lower than 2×105 particles /cm3. UFPs measures were divided on the basis of crossed environments or micro-environments, days of the week and day time (hours). The highest measured mean concentrations and data variability were observed during walking time and moving on motorized vehicles (bus and car), indicating that the highest exposure to UFPs can be reached near motorized traffic. The lowest exposures were observed in green areas and in office microenvironments. An appreciable difference between working and non-working days was observed. Concentration patterns and variation by days of the week and time periods appears related to time trends in traffic intensity.

  18. Consumer product exposures associated with urinary phthalate levels in pregnant women

    PubMed Central

    Buckley, Jessie P.; Palmieri, Rachel T.; Matuszewski, Jeanine M.; Herring, Amy H.; Baird, Donna D.; Hartmann, Katherine E.; Hoppin, Jane A.

    2012-01-01

    Human phthalate exposure is ubiquitous, but little is known regarding predictors of urinary phthalate levels. To explore this, 50 pregnant women aged 18–38 years completed two questionnaires on potential phthalate exposures and provided a first morning void. Urine samples were analyzed for 12 phthalate metabolites. Associations with questionnaire items were evaluated via Wilcoxon tests and t-tests, and r-squared values were calculated in multiple linear regression models. Few measured factors were statistically significantly associated with phthalate levels. Individuals who used nail polish had higher levels of mono-butyl phthalate (p=0.048) than non-users. Mono-benzyl phthalate levels were higher among women who used eye makeup (p=0.034) or used makeup on a regular basis (p=0.004). Women who used cologne or perfume had higher levels of di-(2-ethylhexyl) phthalate metabolites. Household products, home flooring or paneling, and other personal care products were also associated with urinary phthalates. The proportion of variance in metabolite concentrations explained by questionnaire items ranged between 0.31 for mono-ethyl phthalate and 0.42 for mono-n-methyl phthalate. Although personal care product use may be an important predictor of urinary phthalate levels, most of the variability in phthalate exposure was not captured by our relatively comprehensive set of questionnaire items. PMID:22760436

  19. Exposure of airport workers to radiation from shipments of radioactive materials. A review of studies conducted at six major airports. Technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shapiro, J.

    1976-02-01

    The radiation exposure of airport workers handling shipments of radioactive materials was studied at six airports. Descriptions were obtained of the handling and arrangement of the packages, dose distributions were mapped around groupings of packages, and doses received by workers were evaluated both on the basis of time-motion studies and through readings of personal monitoring devices. Results of dosimeters worn over extended periods indicated that no workers were expected to receive exposures in excess of 500 millirems per year and most were expected to receive less than 100 millirems per year. No evidence was found in any of the sixmore » airport studies to suggest that members of the public received any exposure of significance relative to the natural background radiation.« less

  20. On the use of a PM2.5 exposure simulator to explain birthweight

    PubMed Central

    Berrocal, Veronica J.; Gelfand, Alan E.; Holland, David M.; Burke, Janet; Miranda, Marie Lynn

    2010-01-01

    In relating pollution to birth outcomes, maternal exposure has usually been described using monitoring data. Such characterization provides a misrepresentation of exposure as it (i) does not take into account the spatial misalignment between an individual’s residence and monitoring sites, and (ii) it ignores the fact that individuals spend most of their time indoors and typically in more than one location. In this paper, we break with previous studies by using a stochastic simulator to describe personal exposure (to particulate matter) and then relate simulated exposures at the individual level to the health outcome (birthweight) rather than aggregating to a selected spatial unit. We propose a hierarchical model that, at the first stage, specifies a linear relationship between birthweight and personal exposure, adjusting for individual risk factors and introduces random spatial effects for the census tract of maternal residence. At the second stage, our hierarchical model specifies the distribution of each individual’s personal exposure using the empirical distribution yielded by the stochastic simulator as well as a model for the spatial random effects. We have applied our framework to analyze birthweight data from 14 counties in North Carolina in years 2001 and 2002. We investigate whether there are certain aspects and time windows of exposure that are more detrimental to birthweight by building different exposure metrics which we incorporate, one by one, in our hierarchical model. To assess the difference in relating ambient exposure to birthweight versus personal exposure to birthweight, we compare estimates of the effect of air pollution obtained from hierarchical models that linearly relate ambient exposure and birthweight versus those obtained from our modeling framework. Our analysis does not show a significant effect of PM2.5 on birthweight for reasons which we discuss. However, our modeling framework serves as a template for analyzing the relationship between personal exposure and longer term health endpoints. PMID:21691413

  1. Sources of fine particulate matter in personal exposures and residential indoor, residential outdoor and workplace microenvironments in the Helsinki phase of the EXPOLIS study.

    PubMed

    Koistinen, Kimmo J; Edwards, Rufus D; Mathys, Patrick; Ruuskanen, Juhani; Künzli, Nino; Jantunen, Matti J

    2004-01-01

    This study assessed the source contributions to the mass concentrations of fine particles (PM2.5) in personal exposures and in residential indoor, residential outdoor, and workplace indoor microenvironments of the nonsmoking adult population unexposed to environmental tobacco smoke in Helsinki, Finland. The elemental composition of 48-hour personal exposure and residential indoor, residential outdoor, and workplace indoor PM2.5 was analyzed by energy-dispersive X-ray fluorescence spectrometry for 76 participants not exposed to environmental tobacco smoke and 102 participating residences with no smoking in Helsinki as a part of the EXPOLIS study. Subsequently, a principal component analysis was used to identify the emission sources of PM2.5-bound elements and black smoke in each microenvironment, and this information was used to identify the corresponding sources in personal exposures. Finally, source reconstruction was done to determine the relative contributions of each source type to the total PM2.5 mass concentrations. Inorganic secondary particles, primary combustion, and soil were the dominant source types for the PM2.5 mass concentration in all the microenvironments and personal exposures. The ratio of the residential indoor-to-outdoor PM2.5 concentration was close to unity, but the corresponding elemental ratios and source contributions varied. Resuspension of soil dust tracked indoors was a much larger contributor to residential and workplace indoor PM2.5 than soil dust to residential outdoor PM2.5. Source contributions to personal PM2.5 exposures were best approximated by data from residential and workplace indoor microenvironments. Population exposure assessment of PM2.5, based on outdoor fixed-site monitoring, overestimates exposures to outdoor sources like traffic and long-range transport and does not account for the contribution of significant indoor sources.

  2. Impact of a smoking ban in hospitality venues on second hand smoke exposure: a comparison of exposure assessment methods

    PubMed Central

    2013-01-01

    Background In May 2010, Switzerland introduced a heterogeneous smoking ban in the hospitality sector. While the law leaves room for exceptions in some cantons, it is comprehensive in others. This longitudinal study uses different measurement methods to examine airborne nicotine levels in hospitality venues and the level of personal exposure of non-smoking hospitality workers before and after implementation of the law. Methods Personal exposure to second hand smoke (SHS) was measured by three different methods. We compared a passive sampler called MoNIC (Monitor of NICotine) badge, to salivary cotinine and nicotine concentration as well as questionnaire data. Badges allowed the number of passively smoked cigarettes to be estimated. They were placed at the venues as well as distributed to the participants for personal measurements. To assess personal exposure at work, a time-weighted average of the workplace badge measurements was calculated. Results Prior to the ban, smoke-exposed hospitality venues yielded a mean badge value of 4.48 (95%-CI: 3.7 to 5.25; n = 214) cigarette equivalents/day. At follow-up, measurements in venues that had implemented a smoking ban significantly declined to an average of 0.31 (0.17 to 0.45; n = 37) (p = 0.001). Personal badge measurements also significantly decreased from an average of 2.18 (1.31-3.05 n = 53) to 0.25 (0.13-0.36; n = 41) (p = 0.001). Spearman rank correlations between badge exposure measures and salivary measures were small to moderate (0.3 at maximum). Conclusions Nicotine levels significantly decreased in all types of hospitality venues after implementation of the smoking ban. In-depth analyses demonstrated that a time-weighted average of the workplace badge measurements represented typical personal SHS exposure at work more reliably than personal exposure measures such as salivary cotinine and nicotine. PMID:23731820

  3. Comparisons of personal exposure to PM2.5 and CO by different commuting modes in Beijing, China.

    PubMed

    Huang, Jing; Deng, Furong; Wu, Shaowei; Guo, Xinbiao

    2012-05-15

    Epidemiological studies have shown that commuting in traffic is associated with adverse health effects. It is vital to investigate commuters' exposure to traffic-related air pollutants before considering potential health risks. However, there are relatively few publications considering commuters' personal exposure in China. We carried out a field investigation measuring commuters' personal exposure to particulate matter ≤2.5 μm in aerodynamic diameter (PM(2.5)) and carbon monoxide (CO) by three commuting modes in Beijing. Both PM(2.5) and CO personal concentrations and whole trip exposures were compared among the three commuting modes. After controlling confounding factors, we found that taxi commuters were exposed to lower concentrations of PM(2.5) (31.64±20.77 μg/m(3)) compared with bus commuters (42.40±23.36 μg/m(3)) and cyclists (49.10±26.60 μg/m(3)). By contrast, CO personal concentrations were significantly higher when commuting by taxi (5.21±1.52 ppm) than by bus (2.41±0.99 ppm) and bicycle (1.90±0.55 ppm). However, when inhalation rates and trip duration were taken into consideration, cyclists experienced the highest whole trip exposures to both PM(2.5) and CO (p<0.05). We also found fixed site monitoring data were not appropriate surrogates for personal exposure while commuting, especially during traffic heavy times. PM(2.5) and CO personal concentrations were greatly influenced by the commuting mode. Furthermore, the highest whole trip exposures to PM(2.5) and CO which cyclists experienced indicates it is not preferable to commute by bicycle in a relatively high air polluted environment. Cyclists are possibly subject to greater health risks than other commuters. Thus further research needs to be conducted to investigate the health risks associated with cycling. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Impact of a smoking ban in hospitality venues on second hand smoke exposure: a comparison of exposure assessment methods.

    PubMed

    Rajkumar, Sarah; Huynh, Cong Khanh; Bauer, Georg F; Hoffmann, Susanne; Röösli, Martin

    2013-06-04

    In May 2010, Switzerland introduced a heterogeneous smoking ban in the hospitality sector. While the law leaves room for exceptions in some cantons, it is comprehensive in others. This longitudinal study uses different measurement methods to examine airborne nicotine levels in hospitality venues and the level of personal exposure of non-smoking hospitality workers before and after implementation of the law. Personal exposure to second hand smoke (SHS) was measured by three different methods. We compared a passive sampler called MoNIC (Monitor of NICotine) badge, to salivary cotinine and nicotine concentration as well as questionnaire data. Badges allowed the number of passively smoked cigarettes to be estimated. They were placed at the venues as well as distributed to the participants for personal measurements. To assess personal exposure at work, a time-weighted average of the workplace badge measurements was calculated. Prior to the ban, smoke-exposed hospitality venues yielded a mean badge value of 4.48 (95%-CI: 3.7 to 5.25; n = 214) cigarette equivalents/day. At follow-up, measurements in venues that had implemented a smoking ban significantly declined to an average of 0.31 (0.17 to 0.45; n = 37) (p = 0.001). Personal badge measurements also significantly decreased from an average of 2.18 (1.31-3.05 n = 53) to 0.25 (0.13-0.36; n = 41) (p = 0.001). Spearman rank correlations between badge exposure measures and salivary measures were small to moderate (0.3 at maximum). Nicotine levels significantly decreased in all types of hospitality venues after implementation of the smoking ban. In-depth analyses demonstrated that a time-weighted average of the workplace badge measurements represented typical personal SHS exposure at work more reliably than personal exposure measures such as salivary cotinine and nicotine.

  5. Radiofrequency-electromagnetic field exposures in kindergarten children.

    PubMed

    Bhatt, Chhavi Raj; Redmayne, Mary; Billah, Baki; Abramson, Michael J; Benke, Geza

    2017-09-01

    The aim of this study was to assess environmental and personal radiofrequency-electromagnetic field (RF-EMF) exposures in kindergarten children. Ten children and 20 kindergartens in Melbourne, Australia participated in personal and environmental exposure measurements, respectively. Order statistics of RF-EMF exposures were computed for 16 frequency bands between 88 MHz and 5.8 GHz. Of the 16 bands, the three highest sources of environmental RF-EMF exposures were: Global System for Mobile Communications (GSM) 900 MHz downlink (82 mV/m); Universal Mobile Telecommunications System (UMTS) 2100MHz downlink (51 mV/m); and GSM 900 MHz uplink (45 mV/m). Similarly, the three highest personal exposure sources were: GSM 900 MHz downlink (50 mV/m); UMTS 2100 MHz downlink, GSM 900 MHz uplink and GSM 1800 MHz downlink (20 mV/m); and Frequency Modulation radio, Wi-Fi 2.4 GHz and Digital Video Broadcasting-Terrestrial (10 mV/m). The median environmental exposures were: 179 mV/m (total all bands), 123 mV/m (total mobile phone base station downlinks), 46 mV/m (total mobile phone base station uplinks), and 16 mV/m (Wi-Fi 2.4 GHz). Similarly, the median personal exposures were: 81 mV/m (total all bands), 62 mV/m (total mobile phone base station downlinks), 21 mV/m (total mobile phone base station uplinks), and 9 mV/m (Wi-Fi 2.4 GHz). The measurements showed that environmental RF-EMF exposure levels exceeded the personal RF-EMF exposure levels at kindergartens.

  6. Characterizing relationships between personal exposures to VOCs and socioeconomic, demographic, behavioral variables

    NASA Astrophysics Data System (ADS)

    Wang, Sheng-Wei; Majeed, Mohammed A.; Chu, Pei-Ling; Lin, Hui-Chih

    Socioeconomic and demographic factors have been found to significantly affect time-activity patterns in population cohorts that can subsequently influence personal exposures to air pollutants. This study investigates relationships between personal exposures to eight VOCs (benzene, toluene, ethylbenzene, o-xylene, m-,p-xylene, chloroform, 1,4-dichlorobenzene, and tetrachloroethene) and socioeconomic, demographic, time-activity pattern factors using data collected from the 1999-2000 National Health and Nutrition Examination Survey (NHANES) VOC study. Socio-demographic factors (such as race/ethnicity and family income) were generally found to significantly influence personal exposures to the three chlorinated compounds. This was mainly due to the associations paired by race/ethnicity and urban residence, race/ethnicity and use of air freshener in car, family income and use of dry-cleaner, which can in turn affect exposures to chloroform, 1,4-dichlorobenzene, and tetrachloroethene, respectively. For BTEX, the traffic-related compounds, housing characteristics (leaving home windows open and having an attached garage) and personal activities related to the uses of fuels or solvent-related products played more significant roles in influencing exposures. Significant differences in BTEX exposures were also commonly found in relation to gender, due to associated significant differences in time spent at work/school and outdoors. The coupling of Classification and Regression Tree (CART) and Bootstrap Aggregating (Bagging) techniques were used as effective tools for characterizing robust sets of significant VOC exposure factors presented above, which conventional statistical approaches could not accomplish. Identification of these significant VOC exposure factors can be used to generate hypotheses for future investigations about possible significant VOC exposure sources and pathways in the general U.S. population.

  7. Walking can be more effective than balance training in fall prevention among community-dwelling older adults.

    PubMed

    Okubo, Yoshiro; Osuka, Yosuke; Jung, Songee; Rafael, Figueroa; Tsujimoto, Takehiko; Aiba, Tatsuya; Kim, Teaho; Tanaka, Kiyoji

    2016-01-01

    To examine the effects of walking on falls among community-dwelling older adults while accounting for exposures. A total of 90 older adults, ranging in age from 65 to 79 years, were allocated into either the walking (brisk walking, n = 50) or the balance (balance and strength training, n = 40) group to participate in a 3-month supervised and 13-month unsupervised fall-prevention program held from 2012 to 2014 in Japan. Falls and trips that occurred during the 16-month period were monitored with a monthly fall calendar. The risk of falls and trips was evaluated by person-year, physically active person-day and person-step. The walking group showed a significant reduction in the fall risk when evaluated by the falls per physically active person-day (rate ratio 0.38, 95% confidence interval 0.19-0.77) and falls per person-step (rate ratio 0.47, 95% confidence interval 0.26-0.85) compared with the balance group. In contrast, the number of trips significantly increased with walking, even when evaluated as trips per physically active person-day (rate ratio 1.50, 95% confidence interval 1.12-2.00). The present findings suggest that walking among community-dwelling older adults can be more effective for fall prevention than balance training. However, because walking can induce more trips, walking should not be recommended for older adults who are susceptible to falling or frailty. © 2015 Japan Geriatrics Society.

  8. Household air pollution and personal exposure to nitrated and oxygenated polycyclic aromatics (PAHs) in rural households: Influence of household cooking energies.

    PubMed

    Chen, Y; Du, W; Shen, G; Zhuo, S; Zhu, X; Shen, H; Huang, Y; Su, S; Lin, N; Pei, L; Zheng, X; Wu, J; Duan, Y; Wang, X; Liu, W; Wong, M; Tao, S

    2017-01-01

    Residential solid fuels are widely consumed in rural China, contributing to severe household air pollution for many products of incomplete combustion, such as polycyclic aromatic hydrocarbons (PAHs) and their polar derivatives. In this study, concentrations of nitrated and oxygenated PAH derivatives (nPAHs and oPAHs) for household and personal air were measured and analyzed for influencing factors like smoking and cooking energy type. Concentrations of nPAHs and oPAHs in kitchens were higher than those in living rooms and in outdoor air. Exposure levels measured by personal samplers were lower than levels in indoor air, but higher than outdoor air levels. With increasing molecular weight, individual compounds tended to be more commonly partitioned to particulate matter (PM); moreover, higher molecular weight nPAHs and oPAHs were preferentially found in finer particles, suggesting a potential for increased health risks. Smoking behavior raised the concentrations of nPAHs and oPAHs in personal air significantly. People who cooked food also had higher personal exposures. Cooking and smoking have a significant interaction effect on personal exposure. Concentrations in kitchens and personal exposure to nPAHs and oPAHs for households using wood and peat were significantly higher than for those using electricity and liquid petroleum gas (LPG). © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Associations among personal care product use patterns and exogenous hormone use in the NIEHS Sister Study.

    PubMed

    Taylor, Kyla W; Baird, Donna D; Herring, Amy H; Engel, Lawrence S; Nichols, Hazel B; Sandler, Dale P; Troester, Melissa A

    2017-09-01

    It is hypothesized that certain chemicals in personal care products may alter the risk of adverse health outcomes. The primary aim of this study was to use a data-centered approach to classify complex patterns of exposure to personal care products and to understand how these patterns vary according to use of exogenous hormone exposures, oral contraceptives (OCs) and post-menopausal hormone therapy (HT). The NIEHS Sister Study is a prospective cohort study of 50,884 US women. Limiting the sample to non-Hispanic blacks and whites (N=47,019), latent class analysis (LCA) was used to identify groups of individuals with similar patterns of personal care product use based on responses to 48 survey questions. Personal care products were categorized into three product types (beauty, hair, and skincare products) and separate latent classes were constructed for each type. Adjusted prevalence differences (PD) were calculated to estimate the association between exogenous hormone use, as measured by ever/never OC or HT use, and patterns of personal care product use. LCA reduced data dimensionality by grouping of individuals with similar patterns of personal care product use into mutually exclusive latent classes (three latent classes for beauty product use, three for hair, and four for skin care. There were strong differences in personal care usage by race, particularly for haircare products. For both blacks and whites, exogenous hormone exposures were associated with higher levels of product use, especially beauty and skincare products. Relative to individual product use questions, latent class variables capture complex patterns of personal care product usage. These patterns differed by race and were associated with ever OC and HT use. Future studies should consider personal care product exposures with other exogenous exposures when modeling health risks.

  10. Associations among personal care product use patterns and exogenous hormone use in the NIEHS Sister Study

    PubMed Central

    Taylor, Kyla W.; Baird, Donna D.; Herring, Amy H.; Engel, Lawrence S.; Nichols, Hazel B.; Sandler, Dale P.; Troester, Melissa A.

    2017-01-01

    It is hypothesized that certain chemicals in personal care products may alter the risk of adverse health outcomes. The primary aim of this study was to use a data-centered approach to classify complex patterns of exposure to personal care products and to understand how these patterns vary according to use of exogenous hormone exposures, oral contraceptives (OCs) and post-menopausal hormone therapy (HT). The NIEHS Sister Study is a prospective cohort study of 50,884 US women. Limiting the sample to non-Hispanic blacks and whites (N = 47,019), latent class analysis (LCA) was used to identify groups of individuals with similar patterns of personal care product use based on responses to 48 survey questions. Personal care products were categorized into three product types (beauty, hair, and skincare products) and separate latent classes were constructed for each type. Adjusted prevalence differences (PD) were calculated to estimate the association between exogenous hormone use, as measured by ever/never OC or HT use, and patterns of personal care product use. LCA reduced data dimensionality by grouping of individuals with similar patterns of personal care product use into mutually exclusive latent classes (three latent classes for beauty product use, three for hair, and four for skin care. There were strong differences in personal care usage by race, particularly for haircare products. For both blacks and whites, exogenous hormone exposures were associated with higher levels of product use, especially beauty and skincare products. Relative to individual product use questions, latent class variables capture complex patterns of personal care product usage. These patterns differed by race and were associated with ever OC and HT use. Future studies should consider personal care product exposures with other exogenous exposures when modeling health risks. PMID:28120835

  11. Exposure and Human Health Evaluation of Airborne Pollution ...

    EPA Pesticide Factsheets

    Following the collapse of the World Trade Center towers on September 11, 2001, New York State and Federal agencies initiated numerous air monitoring activities to better understand the ongoing impact of emissions from the disaster. This report focuses on these air measurement data, evaluating them in terms of what is typical for New York City or general urban background and interpreting it with regard to the potential for human health consequences. The report does not evaluate exposures possibly faced by rescue or clean-up workers and briefly discusses past and current indoor monitoring efforts. The analysis in this report supports three general findings: 1) Persons exposed to the extremely high levels of ambient particulate matter and its components during the collapse of the World Trade Center towers and for several hours afterwards were likely to be at risk for immediate acute (and possibly chronic) respiratory and other types (e.g., cardiovascular) of symptoms. 2) The first measurements of some of the contaminants were on September 14, while other contaminants were not measured until September 23. Available data suggest that the concentrations within and near Ground Zero were likely to be highest in the few days following September 11. Because there are only limited data on these critical few days, exposures and potential health impacts cannot be evaluated with certainty for this time period. 3) Except for exposures on September 11 and possibly d

  12. Characterisation of exposure to non-ionising electromagnetic fields in the Spanish INMA birth cohort: study protocol.

    PubMed

    Gallastegi, Mara; Guxens, Mònica; Jiménez-Zabala, Ana; Calvente, Irene; Fernández, Marta; Birks, Laura; Struchen, Benjamin; Vrijheid, Martine; Estarlich, Marisa; Fernández, Mariana F; Torrent, Maties; Ballester, Ferrán; Aurrekoetxea, Juan J; Ibarluzea, Jesús; Guerra, David; González, Julián; Röösli, Martin; Santa-Marina, Loreto

    2016-02-18

    Analysis of the association between exposure to electromagnetic fields of non-ionising radiation (EMF-NIR) and health in children and adolescents is hindered by the limited availability of data, mainly due to the difficulties on the exposure assessment. This study protocol describes the methodologies used for characterising exposure of children to EMF-NIR in the INMA (INfancia y Medio Ambiente- Environment and Childhood) Project, a prospective cohort study. Indirect (proximity to emission sources, questionnaires on sources use and geospatial propagation models) and direct methods (spot and fixed longer-term measurements and personal measurements) were conducted in order to assess exposure levels of study participants aged between 7 and 18 years old. The methodology used varies depending on the frequency of the EMF-NIR and the environment (homes, schools and parks). Questionnaires assessed the use of sources contributing both to Extremely Low Frequency (ELF) and Radiofrequency (RF) exposure levels. Geospatial propagation models (NISMap) are implemented and validated for environmental outdoor sources of RFs using spot measurements. Spot and fixed longer-term ELF and RF measurements were done in the environments where children spend most of the time. Moreover, personal measurements were taken in order to assess individual exposure to RF. The exposure data are used to explore their relationships with proximity and/or use of EMF-NIR sources. Characterisation of the EMF-NIR exposure by this combination of methods is intended to overcome problems encountered in other research. The assessment of exposure of INMA cohort children and adolescents living in different regions of Spain to the full frequency range of EMF-NIR extends the characterisation of environmental exposures in this cohort. Together with other data obtained in the project, on socioeconomic and family characteristics and development of the children and adolescents, this will enable to evaluate the complex interaction between health outcomes in children and adolescents and the various environmental factors that surround them.

  13. Dermal exposure assessment to benzene and toluene using charcoal cloth pads.

    PubMed

    van Wendel de Joode, Berna; Tielemans, Erik; Vermeulen, Roel; Wegh, Hillion; Kromhout, Hans

    2005-01-01

    Charcoal cloth pads have been used to assess volatile chemicals on the skin in a laboratory setting; however, they have not yet been applied to measure dermal exposure in occupational settings. This study aimed at evaluating whether charcoal pads can be used to assess dermal exposure to benzene and toluene in workers of a petrochemical plant. Inhalation and dermal exposure levels to benzene and toluene were assessed for workers of a petrochemical plant performing different jobs. Benzene uptake was assessed by determining S-phenylmercapturic acid in workers' urine samples. Dermal exposure levels on the charcoal pads were adjusted for ambient air levels of benzene and toluene by subtracting the amount of benzene or toluene measured in personal air from the amount of benzene or toluene measured on the charcoal pad. In general, measured external and internal exposure levels were low. The estimated contribution of the dermal route to internal benzene exposure levels was less than 0.06% for all jobs. Toluene personal air concentrations and benzene and toluene dermal exposure levels differed statistically significantly between job titles. For benzene, differences between jobs were larger for adjusted dermal exposures (maximum 17-fold, P = 0.02) than for inhalation exposures (maximum two-fold, P = 0.08). Also for toluene, although less clear, differences between jobs were larger for adjusted dermal exposures (maximum 23-fold, P = 0.01) as compared to inhalation exposures (maximum 10-fold, P = 0.01). Charcoal pads appeared to measure dermal exposures to benzene and toluene in addition to ambient air levels. Future studies applying charcoal cloth pads for the dermal exposure assessment at workplaces with higher dermal exposure to organic solvents may provide more insight into the biological relevance of dermal exposure levels measured by charcoal cloth pads. In addition, the design of the dermal sampler might be improved by configuring a dermal sampler, where part of the sampler is protected against direct contact and splashes, but still permeable for the gas phase. This design would most likely result in a better ability to correct for airborne concentrations at a given body location.

  14. Face to face versus Facebook: does exposure to social networking web sites augment or attenuate physiological arousal among the socially anxious?

    PubMed

    Rauch, Shannon M; Strobel, Cara; Bella, Megan; Odachowski, Zachary; Bloom, Christopher

    2014-03-01

    The present study tested two competing hypotheses about the effect of Facebook exposure on the physiological arousal level of participants who then encountered the stimulus person in a face-to-face situation. Facebook exposure may attenuate later arousal by providing increased comfort and confidence, but it is also possible that Facebook exposure will augment arousal, particularly among the socially anxious. Participants completed a measure of social anxiety and were exposed to a stimulus person via Facebook, face to face, or both. Galvanic skin response was recorded during the exposures to the stimulus person. Results were consistent with the augmentation hypothesis: a prior exposure on Facebook will lead to increased arousal during a face-to-face encounter, particularly for those high in social anxiety.

  15. NTP-CERHR monograph on the potential human reproductive and developmental effects of amphetamines.

    PubMed

    2005-07-01

    The National Toxicology Program (NTP) Center for the Evaluation of Risks to Human Reproduction (CERHR) conducted an evaluation of the potential for amphetamines to cause adverse effects on reproduction and development in humans. Amphetamines evaluated were D- and D,L-amphetamine and methamphetamine. Amphetamine is approved by the U.S. Food and Drug Administration for the treatment of attention deficit hyperactivity disorder (ADHD) in persons over 3 years of age and narcolepsy; methamphetamine is approved for the treatment of ADHD in persons 6 years of age and older and for short-term treatment of obesity. Amphetamines were selected for evaluation because of 1) widespread usage in children, 2) availability of developmental studies in children and experimental animals, and 3) public concern about the effect of this stimulant on child development. The results of this evaluation on amphetamines are published in an NTP-CERHR monograph which includes: 1) the NTP Brief, 2) the Expert Panel Report on the Reproductive and Developmental Toxicity of Methylphenidate, and 3) public comments received on the Expert Panel Report. As stated in the NTP Brief, the NTP reached the following conclusions regarding the possible effects of exposure to methylphenidate on human development and reproduction. First, there is some concern for developmental effects, specifically for potential neurobehavioral alterations, from prenatal amphetamine exposure in humans both in therapeutic and non-therapeutic settings. After prenatal exposure to therapeutic doses of amphetamine, rat pups demonstrated neurobehavioral alterations. Data from human and animal studies were judged insufficient for an evaluation of the effect of amphetamine exposure on growth and other related developmental effects. Second, there is concern for methamphetamine-induced adverse developmental effects, specifically on growth and neurobehavioral development, in therapeutic and non-therapeutic settings. This conclusion is based on evidence from studies in experimental animals that prenatal and postnatal exposures to methamphetamine produce neurobehavioral alterations, small litter size, and low birth weight. Results from studies in humans suggest that methamphetamine may cause low birth weight and shortened gestation, but study confounders such as possible multiple drug usage prevent a definite conclusion. NTP-CERHR monographs are transmitted to federal and state agencies, interested parties, and the public and are available in electronic PDF format on the CERHR web site (http://cerhr.niehs.nih.gov) and in printed text or CD-ROM from the CERHR (National Institute of Environmental Health Sciences, P.O. Box 12233, MD EC-32, Research Triangle Park, NC; fax: 919-316-4511).

  16. Improving Radiation Awareness and Feeling of Personal Security of Non-Radiological Medical Staff by Implementing a Traffic Light System in Computed Tomography.

    PubMed

    Heilmaier, C; Mayor, A; Zuber, N; Fodor, P; Weishaupt, D

    2016-03-01

    Non-radiological medical professionals often need to remain in the scanning room during computed tomography (CT) examinations to supervise patients in critical condition. Independent of protective devices, their position significantly influences the radiation dose they receive. The purpose of this study was to assess if a traffic light system indicating areas of different radiation exposure improves non-radiological medical staff's radiation awareness and feeling of personal security. Phantom measurements were performed to define areas of different dose rates and colored stickers were applied on the floor according to a traffic light system: green = lowest, orange = intermediate, and red = highest possible radiation exposure. Non-radiological medical professionals with different years of working experience evaluated the system using a structured questionnaire. Kruskal-Wallis and Spearman's correlation test were applied for statistical analysis. Fifty-six subjects (30 physicians, 26 nursing staff) took part in this prospective study. Overall rating of the system was very good, and almost all professionals tried to stand in the green stickers during the scan. The system significantly increased radiation awareness and feeling of personal protection particularly in staff with ≤ 5 years of working experience (p < 0.05). The majority of non-radiological medical professionals stated that staying in the green stickers and patient care would be compatible. Knowledge of radiation protection was poor in all groups, especially among entry-level employees (p < 0.05). A traffic light system in the CT scanning room indicating areas with lowest, intermediate, and highest possible radiation exposure is much appreciated. It increases radiation awareness, improves the sense of personal radiation protection, and may support endeavors to lower occupational radiation exposure, although the best radiation protection always is to re-main outside the CT room during the scan. • A traffic light system indicating areas with different radiation exposure within the computed tomography scanner room is much appreciated by non-radiological medical staff. • The traffic light system increases non-radiological medical staff's radiation awareness and feeling of personal protection. • Knowledge on radiation protection was poor in non-radiological medical staff, especially in those with few working experience. © Georg Thieme Verlag KG Stuttgart · New York.

  17. Socioeconomic and ethnic inequalities in exposure to air and noise pollution in London.

    PubMed

    Tonne, Cathryn; Milà, Carles; Fecht, Daniela; Alvarez, Mar; Gulliver, John; Smith, James; Beevers, Sean; Ross Anderson, H; Kelly, Frank

    2018-06-01

    Transport-related air and noise pollution, exposures linked to adverse health outcomes, varies within cities potentially resulting in exposure inequalities. Relatively little is known regarding inequalities in personal exposure to air pollution or transport-related noise. Our objectives were to quantify socioeconomic and ethnic inequalities in London in 1) air pollution exposure at residence compared to personal exposure; and 2) transport-related noise at residence from different sources. We used individual-level data from the London Travel Demand Survey (n = 45,079) between 2006 and 2010. We modeled residential (CMAQ-urban) and personal (London Hybrid Exposure Model) particulate matter <2.5 μm and nitrogen dioxide (NO 2 ), road-traffic noise at residence (TRANEX) and identified those within 50 dB noise contours of railways and Heathrow airport. We analyzed relationships between household income, area-level income deprivation and ethnicity with air and noise pollution using quantile and logistic regression. We observed inverse patterns in inequalities in air pollution when estimated at residence versus personal exposure with respect to household income (categorical, 8 groups). Compared to the lowest income group (<£10,000), the highest group (>£75,000) had lower residential NO 2 (-1.3 (95% CI -2.1, -0.6) μg/m 3 in the 95th exposure quantile) but higher personal NO 2 exposure (1.9 (95% CI 1.6, 2.3) μg/m 3 in the 95th quantile), which was driven largely by transport mode and duration. Inequalities in residential exposure to NO 2 with respect to area-level deprivation were larger at lower exposure quantiles (e.g. estimate for NO 2 5.1 (95% CI 4.6, 5.5) at quantile 0.15 versus 1.9 (95% CI 1.1, 2.6) at quantile 0.95), reflecting low-deprivation, high residential NO 2 areas in the city centre. Air pollution exposure at residence consistently overestimated personal exposure; this overestimation varied with age, household income, and area-level income deprivation. Inequalities in road traffic noise were generally small. In logistic regression models, the odds of living within a 50 dB contour of aircraft noise were highest in individuals with the highest household income, white ethnicity, and with the lowest area-level income deprivation. Odds of living within a 50 dB contour of rail noise were 19% (95% CI 3, 37) higher for black compared to white individuals. Socioeconomic inequalities in air pollution exposure were different for modeled residential versus personal exposure, which has important implications for environmental justice and confounding in epidemiology studies. Exposure misclassification was dependent on several factors related to health, a potential source of bias in epidemiological studies. Quantile regression revealed that socioeconomic and ethnic inequalities in air pollution are often not uniform across the exposure distribution. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Application of the "threshold of toxicological concern" to derive tolerable concentrations of "non-relevant metabolites" formed from plant protection products in ground and drinking water.

    PubMed

    Melching-Kollmuss, Stephanie; Dekant, Wolfgang; Kalberlah, Fritz

    2010-03-01

    Limits for tolerable concentrations of ground water metabolites ("non-relevant metabolites" without targeted toxicities and specific classification and labeling) derived from active ingredients (AI) of plant protection products (PPPs) are discussed in the European Union. Risk assessments for "non-relevant metabolites" need to be performed when concentrations are above 0.75 microg/L. Since oral uptake is the only relevant exposure pathway for "non-relevant metabolites", risk assessment approaches as used for other chemicals with predominantly oral exposure in humans are applicable. The concept of "thresholds of toxicological concern" (TTC) defines tolerable dietary intakes for chemicals without toxicity data and is widely applied to chemicals present in food in low concentrations such as flavorings. Based on a statistical evaluation of the results of many toxicity studies and considerations of chemical structures, the TTC concept derives a maximum daily oral intake without concern of 90 microg/person/day for non-genotoxic chemicals, even for those with appreciable toxicity. When using the typical exposure assessment for drinking water contaminants (consumption of 2L of drinking water/person/day, allocation of 10% of the tolerable daily intake to drinking water), a TTC-based upper concentration limit of 4.5 microg/L for "non-relevant metabolites" in ground/drinking water is delineated. In the present publication it has been evaluated, whether this value would cover all relevant toxicities (repeated dose, reproductive and developmental, and immune effects). Taking into account, that after evaluation of specific reproduction toxicity data from chemicals and pharmaceuticals, a value of 1 microg/kgbw/day has been assessed as to cover developmental and reproduction toxicity, a TTC value of 60 microg/person/day was assessed as to represent a safe value. Based on these reasonable worst case assumptions, a TTC-derived threshold of 3 microg/L in drinking water is derived. When a non-relevant metabolite is present in concentration below 3 microg/L, animal testing for toxicity is not considered necessary for a compound-specific risk assessment since the application of the TTC covers all relevant toxicities to be considered in such assessment and any health risk resulting from these exposures is very low. (c) 2009 Elsevier Inc. All rights reserved.

  19. Association Between Serotonergic Antidepressant Use During Pregnancy and Autism Spectrum Disorder in Children.

    PubMed

    Brown, Hilary K; Ray, Joel G; Wilton, Andrew S; Lunsky, Yona; Gomes, Tara; Vigod, Simone N

    2017-04-18

    Previous observations of a higher risk of child autism spectrum disorder with serotonergic antidepressant exposure during pregnancy may have been confounded. To evaluate the association between serotonergic antidepressant exposure during pregnancy and child autism spectrum disorder. Retrospective cohort study. Health administrative data sets were used to study children born to mothers who were receiving public prescription drug coverage during pregnancy in Ontario, Canada, from 2002-2010, reflecting 4.2% of births. Children were followed up until March 31, 2014. Serotonergic antidepressant exposure was defined as 2 or more consecutive maternal prescriptions for a selective serotonin or serotonin-norepinephrine reuptake inhibitor between conception and delivery. Child autism spectrum disorder identified after the age of 2 years. Exposure group differences were addressed by inverse probability of treatment weighting based on derived high-dimensional propensity scores (computerized algorithm used to select a large number of potential confounders) and by comparing exposed children with unexposed siblings. There were 35 906 singleton births at a mean gestational age of 38.7 weeks (50.4% were male, mean maternal age was 26.7 years, and mean duration of follow-up was 4.95 years). In the 2837 pregnancies (7.9%) exposed to antidepressants, 2.0% (95% CI, 1.6%-2.6%) of children were diagnosed with autism spectrum disorder. The incidence of autism spectrum disorder was 4.51 per 1000 person-years among children exposed to antidepressants vs 2.03 per 1000 person-years among unexposed children (between-group difference, 2.48 [95% CI, 2.33-2.62] per 1000 person-years; hazard ratio [HR], 2.16 [95% CI, 1.64-2.86]; adjusted HR, 1.59 [95% CI, 1.17-2.17]). After inverse probability of treatment weighting based on the high-dimensional propensity score, the association was not significant (HR, 1.61 [95% CI, 0.997-2.59]). The association was also not significant when exposed children were compared with unexposed siblings (incidence of autism spectrum disorder was 3.40 per 1000 person-years vs 2.05 per 1000 person-years, respectively; adjusted HR, 1.60 [95% CI, 0.69-3.74]). In children born to mothers receiving public drug coverage in Ontario, Canada, in utero serotonergic antidepressant exposure compared with no exposure was not associated with autism spectrum disorder in the child. Although a causal relationship cannot be ruled out, the previously observed association may be explained by other factors.

  20. Four-year-olds' beliefs about how others regard males and females.

    PubMed

    Halim, May Ling; Ruble, Diane N; Tamis-LeMonda, Catherine S

    2013-03-01

    Children's awareness of how others evaluate their gender could influence their behaviours and well-being, yet little is known about when this awareness develops and what influences its emergence. The current study investigated culturally diverse 4-year-olds' (N = 240) public regard for gender groups and whether exposure to factors that convey status and highlight gender influenced it. Children were asked whether most people thought (i) girls or boys, and (ii) women or men, were better. Overall, children thought others more positively evaluated their own gender. However more TV exposure and, among girls only, more traditional parental division of housework predicted children stating that others thought boys were better, suggesting more awareness of greater male status. Children's public regard was distinct from their personal attitudes. © 2012 The British Psychological Society.

  1. Daily personal exposure to black carbon: A pilot study

    NASA Astrophysics Data System (ADS)

    Williams, Ryan D.; Knibbs, Luke D.

    2016-05-01

    Continuous personal monitoring is the benchmark for air pollution exposure assessment. Black carbon (BC) is a strong marker of primary combustion like vehicle and biomass emissions. There have been few studies that quantified daily personal BC exposure and the contribution that different microenvironments make to it. In this pilot study, we used a portable aethalometer to measure BC concentrations in an individual's breathing zone at 30-s intervals while he performed his usual daily activities. We used a GPS and time-activity diary to track where he spent his time. We performed twenty 24-h measurements, and observed an arithmetic mean daily exposure concentration of 603 ng/m3. We estimated that changing commute modes from bus to train reduced the 24-h mean BC exposure concentration by 29%. Switching from open windows to closed windows and recirculated air in a car led to a reduction of 32%. Living in a home without a wood-fired heater caused a reduction of 50% compared with a wood-heated home. Our preliminary findings highlight the potential utility of simple approaches to reduce a person's daily BC exposure.

  2. Patterns of cosmetic contact allergy.

    PubMed

    Castanedo-Tardan, Mari Paz; Zug, Kathryn A

    2009-07-01

    Certain patterns of dermatitis, such as those affecting the face, eyelids, lips, and neck, should raise the suspicion of a cosmetic-related contact allergy. Patch testing with a broad screening series, supplemented by a patient's own personal care products, should be considered when evaluating patients with suspected cosmetic dermatitis. Once the offending allergen is identified, an avoidance regimen should be established to avoid further exposure.

  3. Estimating Personal Exposures from Ambient Air Pollution Measures - Using Meta-Analysis to Assess Measurement Error

    EPA Science Inventory

    Although ambient concentrations of particulate matter ≤ 10μm (PM10) are often used as proxies for total personal exposure, correlation (r) between ambient and personal PM10 concentrations varies. Factors underlying this variation and its effect on he...

  4. Health-hazard evaluation report HETA 83-391-1683, Continental Coffee Products Company, Houston, Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnold, S.J.; Markel, H.L.; Morawetz, J.S.

    1986-04-01

    The International Chemical Workers Union requested an evaluation be made of the health status of employees at the Continental Coffee Products Company, Houston, Texas with particular attention given to potential exposure to pesticide residues on imported coffee beans. Analysis of air samples revealed the following concentration ranges: 29 personal respirable-dust samples ranging from 0.03 to 2.03 milligrams/cubic meter (mg/m3); 27 of 28 personal total dust samples, 0.09 to 2.65 mg/m3; four area respirable-dust samples, 0.11 to 0.53 mg/m3; and four area total dust samples, 0.16 to 2.39 mg/m3. Pesticide exposures were significantly below acceptable daily intakes. The authors conclude thatmore » it would not be expected that employees would be exposed to pesticide levels posing an appreciable threat to health. Recommendations were made to increase the use of local exhaust ventilation; to improve work practices to reduce generation of dust and accumulation; increase ventilation in the basement re-mix operation; and train employees toward the understanding of potential hazards and their role in controlling dust.« less

  5. Trauma and PTSD in the WHO World Mental Health Surveys.

    PubMed

    Kessler, Ronald C; Aguilar-Gaxiola, Sergio; Alonso, Jordi; Benjet, Corina; Bromet, Evelyn J; Cardoso, Graça; Degenhardt, Louisa; de Girolamo, Giovanni; Dinolova, Rumyana V; Ferry, Finola; Florescu, Silvia; Gureje, Oye; Haro, Josep Maria; Huang, Yueqin; Karam, Elie G; Kawakami, Norito; Lee, Sing; Lepine, Jean-Pierre; Levinson, Daphna; Navarro-Mateu, Fernando; Pennell, Beth-Ellen; Piazza, Marina; Posada-Villa, José; Scott, Kate M; Stein, Dan J; Ten Have, Margreet; Torres, Yolanda; Viana, Maria Carmen; Petukhova, Maria V; Sampson, Nancy A; Zaslavsky, Alan M; Koenen, Karestan C

    2017-01-01

    Background : Although post-traumatic stress disorder (PTSD) onset-persistence is thought to vary significantly by trauma type, most epidemiological surveys are incapable of assessing this because they evaluate lifetime PTSD only for traumas nominated by respondents as their 'worst.' Objective : To review research on associations of trauma type with PTSD in the WHO World Mental Health (WMH) surveys, a series of epidemiological surveys that obtained representative data on trauma-specific PTSD. Method : WMH Surveys in 24 countries (n = 68,894) assessed 29 lifetime traumas and evaluated PTSD twice for each respondent: once for the 'worst' lifetime trauma and separately for a randomly-selected trauma with weighting to adjust for individual differences in trauma exposures. PTSD onset-persistence was evaluated with the WHO Composite International Diagnostic Interview. Results : In total, 70.4% of respondents experienced lifetime traumas, with exposure averaging 3.2 traumas per capita. Substantial between-trauma differences were found in PTSD onset but less in persistence. Traumas involving interpersonal violence had highest risk. Burden of PTSD, determined by multiplying trauma prevalence by trauma-specific PTSD risk and persistence, was 77.7 person-years/100 respondents. The trauma types with highest proportions of this burden were rape (13.1%), other sexual assault (15.1%), being stalked (9.8%), and unexpected death of a loved one (11.6%). The first three of these four represent relatively uncommon traumas with high PTSD risk and the last a very common trauma with low PTSD risk. The broad category of intimate partner sexual violence accounted for nearly 42.7% of all person-years with PTSD. Prior trauma history predicted both future trauma exposure and future PTSD risk. Conclusions : Trauma exposure is common throughout the world, unequally distributed, and differential across trauma types with respect to PTSD risk. Although a substantial minority of PTSD cases remits within months after onset, mean symptom duration is considerably longer than previously recognized.

  6. Trauma and PTSD in the WHO World Mental Health Surveys

    PubMed Central

    Kessler, Ronald C.; Aguilar-Gaxiola, Sergio; Alonso, Jordi; Benjet, Corina; Bromet, Evelyn J.; Cardoso, Graça; Degenhardt, Louisa; de Girolamo, Giovanni; Dinolova, Rumyana V.; Ferry, Finola; Florescu, Silvia; Gureje, Oye; Haro, Josep Maria; Huang, Yueqin; Karam, Elie G.; Kawakami, Norito; Lee, Sing; Lepine, Jean-Pierre; Levinson, Daphna; Navarro-Mateu, Fernando; Pennell, Beth-Ellen; Piazza, Marina; Posada-Villa, José; Scott, Kate M.; Stein, Dan J.; Ten Have, Margreet; Torres, Yolanda; Viana, Maria Carmen; Petukhova, Maria V.; Sampson, Nancy A.; Zaslavsky, Alan M.; Koenen, Karestan C.

    2017-01-01

    ABSTRACT Background: Although post-traumatic stress disorder (PTSD) onset-persistence is thought to vary significantly by trauma type, most epidemiological surveys are incapable of assessing this because they evaluate lifetime PTSD only for traumas nominated by respondents as their ‘worst.’ Objective: To review research on associations of trauma type with PTSD in the WHO World Mental Health (WMH) surveys, a series of epidemiological surveys that obtained representative data on trauma-specific PTSD. Method: WMH Surveys in 24 countries (n = 68,894) assessed 29 lifetime traumas and evaluated PTSD twice for each respondent: once for the ‘worst’ lifetime trauma and separately for a randomly-selected trauma with weighting to adjust for individual differences in trauma exposures. PTSD onset-persistence was evaluated with the WHO Composite International Diagnostic Interview. Results: In total, 70.4% of respondents experienced lifetime traumas, with exposure averaging 3.2 traumas per capita. Substantial between-trauma differences were found in PTSD onset but less in persistence. Traumas involving interpersonal violence had highest risk. Burden of PTSD, determined by multiplying trauma prevalence by trauma-specific PTSD risk and persistence, was 77.7 person-years/100 respondents. The trauma types with highest proportions of this burden were rape (13.1%), other sexual assault (15.1%), being stalked (9.8%), and unexpected death of a loved one (11.6%). The first three of these four represent relatively uncommon traumas with high PTSD risk and the last a very common trauma with low PTSD risk. The broad category of intimate partner sexual violence accounted for nearly 42.7% of all person-years with PTSD. Prior trauma history predicted both future trauma exposure and future PTSD risk. Conclusions: Trauma exposure is common throughout the world, unequally distributed, and differential across trauma types with respect to PTSD risk. Although a substantial minority of PTSD cases remits within months after onset, mean symptom duration is considerably longer than previously recognized. PMID:29075426

  7. Source apportionment of indoor, outdoor and personal PM2.5 exposure of pregnant women in Barcelona, Spain

    NASA Astrophysics Data System (ADS)

    Minguillón, M. C.; Schembari, A.; Triguero-Mas, M.; de Nazelle, A.; Dadvand, P.; Figueras, F.; Salvado, J. A.; Grimalt, J. O.; Nieuwenhuijsen, M.; Querol, X.

    2012-11-01

    Exposure to air pollution has been shown to adversely affect foetal development in the case of pregnant women. The present study aims to investigate the PM composition and sources influencing personal exposure of pregnant women in Barcelona. To this end, indoor, outdoor and personal exposure measurements were carried out for a selection of 54 pregnant women between November 2008 and November 2009. PM2.5 samples were collected during two consecutive days and then analysed for black smoke (BS), major and trace elements, and polycyclic aromatic hydrocarbons (PAHs) concentrations. Personal information such as commuting patterns and cosmetics use was also collected. PM2.5 concentrations were higher for personal samples than for indoor and outdoor environments. Indoor, outdoor and personal BS and sulphate concentrations were strongly correlated, although some specific indoor and outdoor sulphate sources may exist. Average trace elements concentrations were similar indoor, outdoor and for personal exposure, but the correlations were moderate for most of them. Most of the PAHs concentrations showed strong correlations indoor-outdoor. A source apportionment analysis of the PM composition data by means of a Positive Matrix Factorization (PMF) resulted in the identification of six sources for the outdoor and indoor environments: secondary sulphate, fueloil + sea salt (characterized by V, Ni, Na and Mg), mineral, cigarette (characterized by K, Ce, Cd, benzo(k)fluoranthene and benzo(ghi)perylene), road traffic (characterized by BS and low weight PAHs), and industrial (characterized by Pb, Sn, Cu, Mn and Fe). For personal exposure two specific sources were found: cosmetics (characterized by abundance of Ca, Li, Ti and Sr and the absence of Al) and train/subway (characterized by Fe, Mn, Cu and Ba). The contribution of the sources varied widely among women, especially for cigarette (from zero to up to 4 μg m-3), train/subway (up to more than 6 μg m-3) and cosmetics (up to more than 5 μg m-3). The source contributions showed generally strong correlations indoor-outdoor although the infiltration efficiencies varied among homes. This study emphasizes the importance of relying on personal exposure in epidemiological studies assessing the impact of air pollution on human health.

  8. Personal exposure assessment to particulate metals using a paper-based analytical device

    NASA Astrophysics Data System (ADS)

    Cate, David; Volckens, John; Henry, Charles

    2013-03-01

    The development of a paper-based analytical device (PAD) for assessing personal exposure to particulate metals will be presented. Human exposure to metal aerosols, such as those that occur in the mining, construction, and manufacturing industries, has a significant impact on the health of our workforce, costing an estimated $10B in the U.S and causing approximately 425,000 premature deaths world-wide each year. Occupational exposure to particulate metals affects millions of individuals in manufacturing, construction (welding, cutting, blasting), and transportation (combustion, utility maintenance, and repair services) industries. Despite these effects, individual workers are rarely assessed for their exposure to particulate metals, due mainly to the high cost and effort associated with personal exposure measurement. Current exposure assessment methods for particulate metals call for an 8-hour filter sample, after which time, the filter sample is transported to a laboratory and analyzed by inductively-coupled plasma (ICP). The time from sample collection to reporting is typically weeks and costs several hundred dollars per sample. To exacerbate the issue, method detection limits suffer because of sample dilution during digestion. The lack of sensitivity hampers task-based exposure assessment, for which sampling times may be tens of minutes. To address these problems, and as a first step towards using microfluidics for personal exposure assessment, we have developed PADs for measurement of Pb, Cd, Cr, Fe, Ni, and Cu in aerosolized particulate matter.

  9. Windsor, Ontario exposure assessment study: design and methods validation of personal, indoor, and outdoor air pollution monitoring.

    PubMed

    Wheeler, Amanda J; Xu, Xiaohong; Kulka, Ryan; You, Hongyu; Wallace, Lance; Mallach, Gary; Van Ryswyk, Keith; MacNeill, Morgan; Kearney, Jill; Rasmussen, Pat E; Dabek-Zlotorzynska, Ewa; Wang, Daniel; Poon, Raymond; Williams, Ron; Stocco, Corinne; Anastassopoulos, Angelos; Miller, J David; Dales, Robert; Brook, Jeffrey R

    2011-03-01

    The Windsor, Ontario Exposure Assessment Study evaluated the contribution of ambient air pollutants to personal and indoor exposures of adults and asthmatic children living in Windsor, Ontario, Canada. In addition, the role of personal, indoor, and outdoor air pollution exposures upon asthmatic children's respiratory health was assessed. Several active and passive sampling methods were applied, or adapted, for personal, indoor, and outdoor residential monitoring of nitrogen dioxide, volatile organic compounds, particulate matter (PM; PM-2.5 pm [PM2.5] and < or =10 microm [PM10] in aerodynamic diameter), elemental carbon, ultrafine particles, ozone, air exchange rates, allergens in settled dust, and particulate-associated metals. Participants completed five consecutive days of monitoring during the winter and summer of 2005 and 2006. During 2006, in addition to undertaking the air pollution measurements, asthmatic children completed respiratory health measurements (including peak flow meter tests and exhaled breath condensate) and tracked respiratory symptoms in a diary. Extensive quality assurance and quality control steps were implemented, including the collocation of instruments at the National Air Pollution Surveillance site operated by Environment Canada and at the Michigan Department of Environmental Quality site in Allen Park, Detroit, MI. During field sampling, duplicate and blank samples were also completed and these data are reported. In total, 50 adults and 51 asthmatic children were recruited to participate, resulting in 922 participant days of data. When comparing the methods used in the study with standard reference methods, field blanks were low and bias was acceptable, with most methods being within 20% of reference methods. Duplicates were typically within less than 10% of each other, indicating that study results can be used with confidence. This paper covers study design, recruitment, methodology, time activity diary, surveys, and quality assurance and control results for the different methods used.

  10. Household air pollution following replacement of traditional open fire with an improved rocket type cookstove.

    PubMed

    Ochieng, Caroline; Vardoulakis, Sotiris; Tonne, Cathryn

    2017-02-15

    Cooking with biomass fuel is an important source of household air pollution (HAP) in developing countries, and a leading risk factor for ill-health. Although various designs of "improved cookstoves" (ICS) have been promoted as HAP interventions in these settings, few of them have undergone in-field evaluation, partly due to the challenge of conducting field measurements in remote settings. In this study we assessed the change in carbon monoxide (CO) exposure following the replacement of the traditional three-stone stove with a popular ICS in 49 homes in Western Kenya. We also assessed the suitability of using kitchen CO as a proxy for kitchen PM 2.5 . Reduction in 48h mean kitchen CO was 3.1ppm (95% CI: -8.1, 1.8) and in personal CO was 0.9ppm (95% CI: -4.3, 2.6) following stove replacements. Overall, 48-h kitchen and personal CO exposures were lower after stove replacement (28% and 12%, respectively) but with wide confidence intervals that also suggested possible increases in exposure. There were statistically significant reductions in peak kitchen and personal CO concentrations represented by the 8-h 95th percentile: reductions of 26.1ppm (95% CI: -44.6, -7.6) and 8.0ppm (95% CI: -12.2, -3.8), respectively. This is equivalent to 53% reduction in kitchen CO and 39% reduction in personal CO. We found good correlation between kitchen CO and PM 2.5 concentrations overall (r=0.73, n=33 over averaging periods approximating 1day), which varied by time of day and exposure setting. These variations limit the applicability of CO as a proxy measure for PM 2.5 concentrations. A combination of interventions, including better designed stoves, improved ventilation and cleaner fuels, may be needed to reduce HAP to levels that are likely to improve health. Copyright © 2016. Published by Elsevier B.V.

  11. [To-day exposure to occupational carcinogens and their effects. The experience of the rubber industry, iron metallurgy, asphalt work and aviculture].

    PubMed

    Barbieri, Pietro Gino

    2009-01-01

    While the progressive improvement of hygiene situations in the workplaces has taken to a reduction of chemical carcinogens exposure, in recent years in Italy the number of compensated occupational cancer resulting from carcinogens exposures of distant decades, has been increasing. Nevertheless, several experiences suggest that the proportion of occupational cancers unrecognised and not notified, as required by law, still remains important. This contribution concerns some experiences, performed between 2004-2008 by the Local Occupational Health Service (SPSAL) located in a highly industrialised province, on the working sector of rubber, iron and steel industry, the asphalt working and the poultry stock-breeders. This work concerns the following issues: - the evaluation of carcinogens exposure; - technical preventive measures and personal protection; - the level of workers' information and formation and the registration of exposed workers; - the characterization of work-related cancer. The results of the 5 years of activity allow us to underline that, in the most of 49 plants involved in the study, the carcinogens exposure evaluation and the prevention and protection measures were lacking. Information of workers was largely deficient and the registration of exposed workers was absent. A major attention to detect and to evaluate the work-related cancer has allowed us to recognize 50 new cases in the iron-steel industries and 21 new cases in a rubber industry. Although this experience concerns only few occupational fields, it provides the basis to call for a greater commitment of SPSAL addressed to companies and general practitioners to both, the promotion and surveillance of the correct procedures of carcinogens exposure evaluation and his prevention, and the active detection of occupational cancer, still missing.

  12. Female college student awareness of exposures to environmental toxins in personal care products and their effect on preconception health.

    PubMed

    Chan, Lisa M; Chalupka, Stephanie M; Barrett, Roseann

    2015-02-01

    This research study investigated college women's usage of personal care products and their views on health effects from exposures during the preconception period. Many personal care products and cosmetics contain chemical ingredients that have been known to disrupt human endocrine and neurological systems, and contribute to infertility and adverse birth outcomes. Seventy-two female college students from a single, medium-sized university campus completed a researcher-developed questionnaire. Findings provide insight into the daily exposures young women experience during their reproductive years. Results can inform occupational and environmental health nurses about the personal daily exposures of young women when conducting risk assessments in the workplace or at a school, and can aid in developing interventions that support the environmental health of employees or future employees. © 2015 The Author(s).

  13. Health effects from fallout.

    PubMed

    Gilbert, Ethel S; Land, Charles E; Simon, Steven L

    2002-05-01

    This paper primarily discusses health effects that have resulted from exposures received as a result of above-ground nuclear tests, with emphasis on thyroid disease from exposure to 131I and leukemia and solid cancers from low dose rate external and internal exposure. Results of epidemiological studies of fallout exposures in the Marshall Islands and from the Nevada Test Site are summarized, and studies of persons with exposures similar to those from fallout are briefly reviewed (including patients exposed to 131I for medical reasons and workers exposed externally at low doses and low dose rates). Promising new studies of populations exposed in countries of the former Soviet Union are also discussed and include persons living near the Semipalatinsk Test Site in Kazakhstan, persons exposed as a result of the Chernobyl accident, and persons exposed as a result of operations of the Mayak Nuclear Plant in the Russian Federation. Very preliminary estimates of cancer risks from fallout doses received by the United States population are presented.

  14. Personal Exposure to Particulate Matter and Endotoxin in California Dairy Workers

    NASA Astrophysics Data System (ADS)

    Garcia, Johnny

    The average number of cows per dairy has increased over the last thirty years, with little known about how this increase may impact occupational exposure. Thirteen California dairies and 226 workers participated in this study throughout the 2008 summer months. Particulate Matter (PM) and endotoxin concentrations were quantified using ambient area based and personal air samplers. Two size fractions were collected, Total Suspended Particulate matter (TSP) and PM 2.5. Differences across dairies were evaluated by placing area based integrated air samplers in established locations on the dairies, e.g. milking parlor, drylot corral, and freestall barns. The workers occupational exposure was quantified using personal air samplers. We analyzed concentrations along with the time workers spent conducting specific job tasks during their shift to identify high exposure job tasks. Biological and chemical analytical methods were employed to ascertain endotoxin concentrations in personal and area based air samples. Recombinant factor C assays (rFC) were used to analyze biologically active endotoxin and gas chromatography coupled with mass spectrometry in tandem (GC-MS/MS) was used to quantify total endotoxin. The PM2.5 concentrations ranged from 2-116 mug/m3 for ambient area concentration and 7-495 mug/m3 for personal concentrations while TSP concentrations ranged from 74-1690 mug/m3 for area ambient concentrations and 191-4950 mug/m3 for personal concentrations. Biologically active endotoxin concentrations in the TSP size fraction from ambient area based samples ranged from 11-2095 EU/m3 and 45-2061 EU/m3 for personal samples. Total endotoxin in the TSP size fraction ranged from 75-10,166 pmol/m3 for area based samples and 34-11,689 pmol/m3 for personal samples. Drylot corrals were found to have higher sample mean concentrations when compared to other locations on the dairies for PM and endotoxin. Re-bedding, of the freestalls, was found to consistently lead to higher personal sample mean concentrations when compared to other tasks performed on dairies for both endotoxin and PM. In mixed effect regression models, regional ambient concentrations of PM 2.5 helped account for variation in PM2.5 concentration outcomes. We found that while upwind and downwind mean concentrations were not significantly different, central mean concentrations were higher than upwind concentration. Variation in TSP levels was largely explained by dairy-level characteristics such as the age of the dairy and number of animals in the drylot corrals and freestall barns. The different locations within the dairy were found to differ in mean concentrations for TSP. Biologically active and total endotoxin concentration variation was explained by meteorological data, wind speed, relative humidity, and dairy waste management practices. Personal exposure levels where found to be higher than area based concentrations for PM and endotoxin. Endotoxin characteristics differed by particle size and location within the dairy. The chain length proportion for endotoxin in the PM 2.5 size fraction was dominated by C12 and C16 in the TSP size fraction.

  15. Personal carbon monoxide exposures of preschool children in Helsinki, Finland: levels and determinants

    NASA Astrophysics Data System (ADS)

    Alm, S.; Mukala, K.; Jantunen, M. J.

    Personal CO exposures of 194 preschool children were measured with personal exposure monitors during a 24 week sampling period from fall 1990 to spring 1991 in Helsinki, Finland. Arithmetic mean of the maximum 1 and 8 h exposure levels were 6.0 and 3.3 mg m -3. The then Finnish ambient air quality guideline values for 1/8 h maximum CO level (30/10 mg m -3) were exceeded in 2/4% of the children's daily maximum 1/8 h exposure levels. Gas stove at home, parents, especially mother, smoking in the home, and living in high rise buildings — reflecting higher local population and traffic density — increased the children's CO exposures. The presence of a fireplace in the home was associated with decreased CO exposures. Father's high education reduced the children's CO exposure while mother's education level had no significant effect. The peak (15 min) exposure levels of the children commuting to day care center by car or bus were higher than those of the children who walked or came by bike.

  16. Human mercury exposure associated with small-scale gold mining in Burkina Faso.

    PubMed

    Tomicic, Catherine; Vernez, David; Belem, Tounaba; Berode, Michèle

    2011-06-01

    In Burkina Faso, gold ore is one of the main sources of income for an important part of the active population. Artisan gold miners use mercury in the extraction, a toxic metal whose human health risks are well known. The aim of the present study was to assess mercury exposure as well as to understand the exposure determinants of gold miners in Burkinabe small-scale mines. The examined gold miners' population on the different selected gold mining sites was composed by persons who were directly and indirectly related to gold mining activities. But measurement of urinary mercury was performed on workers most susceptible to be exposed to mercury. Thus, occupational exposure to mercury was evaluated among ninety-three workers belonging to eight different gold mining sites spread in six regions of Burkina Faso. Among others, work-related exposure determinants were taken into account for each person during urine sampling as for example amalgamating or heating mercury. All participants were medically examined by a local medical team in order to identify possible symptoms related to the toxic effect of mercury. Mercury levels were high, showing that 69% of the measurements exceeded the ACGIH (American Conference of Industrial Hygienists) biological exposure indice (BEI) of 35 μg per g of creatinine (μg/g-Cr) (prior to shift) while 16% even exceeded 350 μg/g-Cr. Basically, unspecific but also specific symptoms related to mercury toxicity could be underlined among the persons who were directly related to gold mining activities. Only one-third among the studied subpopulation reported about less than three symptoms possibly associated to mercury exposure and nearly half of them suffered from at least five of these symptoms. Ore washers were more involved in the direct handling of mercury while gold dealers in the final gold recovery activities. These differences may explain the overexposure observed in gold dealers and indicate that the refining process is the major source of exposure. This study attests that mercury exposure still is an issue of concern. North-South collaborations should encourage knowledge exchange between developing and developed countries, for a cleaner artisanal gold mining process and thus for reducing human health and environmental hazards due to mercury use.

  17. Spatial modeling of personalized exposure dynamics: the case of pesticide use in small-scale agricultural production landscapes of the developing world.

    PubMed

    Leyk, Stefan; Binder, Claudia R; Nuckols, John R

    2009-03-30

    Pesticide poisoning is a global health issue with the largest impacts in the developing countries where residential and small-scale agricultural areas are often integrated and pesticides sprayed manually. To reduce health risks from pesticide exposure approaches for personalized exposure assessment (PEA) are needed. We present a conceptual framework to develop a spatial individual-based model (IBM) prototype for assessing potential exposure of farm-workers conducting small-scale agricultural production, which accounts for a considerable portion of global food crop production. Our approach accounts for dynamics in the contaminant distributions in the environment, as well as patterns of movement and activities performed on an individual level under different safety scenarios. We demonstrate a first prototype using data from a study area in a rural part of Colombia, South America. Different safety scenarios of PEA were run by including weighting schemes for activities performed under different safety conditions. We examined the sensitivity of individual exposure estimates to varying patterns of pesticide application and varying individual patterns of movement. This resulted in a considerable variation in estimates of magnitude, frequency and duration of exposure over the model runs for each individual as well as between individuals. These findings indicate the influence of patterns of pesticide application, individual spatial patterns of movement as well as safety conditions on personalized exposure in the agricultural production landscape that is the focus of our research. This approach represents a conceptual framework for developing individual based models to carry out PEA in small-scale agricultural settings in the developing world based on individual patterns of movement, safety conditions, and dynamic contaminant distributions. The results of our analysis indicate our prototype model is sufficiently sensitive to differentiate and quantify the influence of individual patterns of movement and decision-based pesticide management activities on potential exposure. This approach represents a framework for further understanding the contribution of agricultural pesticide use to exposure in the small-scale agricultural production landscape of many developing countries, and could be useful to evaluate public health intervention strategies to reduce risks to farm-workers and their families. Further research is needed to fully develop an operational version of the model.

  18. The evaluation and quantification of respirable coal and silica dust concentrations: a task-based approach.

    PubMed

    Grové, T; Van Dyk, T; Franken, A; Du Plessis, J

    2014-01-01

    Silicosis and coal worker's pneumoconiosis are serious occupational respiratory diseases associated with the coal mining industry and the inhalation of respirable dusts containing crystalline silica. The purpose of this study (funded by the Mine Health and Safety Council of South Africa) was to evaluate the individual contributions of underground coal mining tasks to the respirable dust and respirable silica dust concentrations in an underground section by sampling the respirable dust concentrations at the intake and return of each task. The identified tasks were continuous miner (CM) cutting, construction, transfer of coal, tipping, and roof bolting. The respirable dust-generating hierarchy of the tasks from highest to lowest was: transfer of coal > CM right cutting > CM left cutting > CM face cutting > construction > roof bolting > tipping; and for respirable silica dust: CM left cutting > construction > transfer of coal > CM right cutting. Personal exposure levels were determined by sampling the exposures of workers performing tasks in the section. Respirable dust concentrations and low concentrations of respirable silica dust were found at the intake air side of the section, indicating that air entering the section is already contaminated. The hierarchy for personal respirable dust exposures was as follows, from highest to lowest: CM operator > cable handler > miner > roof bolt operator > shuttle car operator, and for respirable silica dust: shuttle car operator > CM operator > cable handler > roof bolt operator > miner. Dust control methods to lower exposures should include revision of the position of workers with regard to the task performed, positioning of the tasks with regard to the CM cutting, and proper use of the line curtains to direct ventilation appropriately. The correct use of respiratory protection should also be encouraged.

  19. Statistical modelling of formaldehyde occupational exposure levels in French industries, 1986-2003.

    PubMed

    Lavoué, Jérôme; Vincent, Raymond; Gérin, Michel

    2006-04-01

    Occupational exposure databanks (OEDBs) have been cited as sources of exposure data for exposure surveillance and exposure assessment in epidemiology. In 2003, an extract was made from COLCHIC, the French national OEDB, of all concentrations of formaldehyde. The data were analysed with extended linear mixed-effects models in order to identify influent variables and elaborate a multi-sector picture of formaldehyde exposures. Respectively, 1401 and 1448 personal and area concentrations were available for the analysis. The fixed effects of the personal and area models explained, respectively, 57 and 53% of the total variance. Personal concentrations were related to the sampling duration (short-term higher than TWA levels), decreased with the year of sampling (-9% per year) and were higher when local exhaust ventilation was present. Personal levels taken during planned visits and for occupational illness notification purpose were consistently lower than those taken during ventilation modification programmes or because the hygienist suspected the presence of significant risk or exposure. Area concentrations were related to the sampling duration (short-term higher than TWA levels), and decreased with the year of sampling (-7% per year) and when the measurement sampling flow increased. Significant within-facility (correlation coefficient 0.4-0.5) and within-sampling campaign correlation (correlation coefficient 0.8) was found for both area and personal data. The industry/task classification appeared to have the greatest influence on exposure variability while the sample duration and the sampling flow were significant in some cases. Estimates made from the models for year 2002 showed elevated formaldehyde exposure in the fields of anatomopathological and biological analyses, operation of gluing machinery in the wood industry, operation and monitoring of mixers in the pharmaceutical industry, and garages and warehouses in urban transit authorities.

  20. Personal exposure of dairy workers to dust, endotoxin, muramic acid, ergosterol, and ammonia on large-scale dairies in the high plains Western United States.

    PubMed

    Davidson, Margaret E; Schaeffer, Joshua; Clark, Maggie L; Magzamen, Sheryl; Brooks, Elizabeth J; Keefe, Thomas J; Bradford, Mary; Roman-Muniz, Noa; Mehaffy, John; Dooley, Gregory; Poole, Jill A; Mitloehner, Frank M; Reed, Sue; Schenker, Marc B; Reynolds, Stephen J

    2018-03-01

    Dairy workers experience a high degree of bioaerosol exposure, composed of an array of biological and chemical constituents, which have been tied to adverse health effects. A better understanding of the variation in the magnitude and composition of exposures by task is needed to inform worker protection strategies. To characterize the levels and types of exposures, 115 dairy workers grouped into three task categories on nine farms in the high plains Western United States underwent personal monitoring for inhalable dust, endotoxin, 3-hydroxy fatty acids (3-OHFA), muramic acid, ergosterol, and ammonia through one work shift. Eighty-nine percent of dairy workers were exposed to endotoxin at concentrations exceeding the recommended exposure guidelines (adjusted for a long work shift). The proportion of workers with exposures exceeding recommended guidelines was lower for inhalable dust (12%), and ammonia (1%). Ergosterol exposures were only measurable on 28% of samples, primarily among medical workers and feed handlers. Milking parlor workers were exposed to significantly higher inhalable dust, endotoxin, 3-OHFA, ammonia, and muramic acid concentrations compared to workers performing other tasks. Development of large modern dairies has successfully made progress in reducing worker exposures and lung disease prevalence. However, exposure to endotoxin, dust, and ammonia continues to present a significant risk to worker health on North American dairies, especially for workers in milking parlors. This study was among the first to concurrently evaluate occupational exposure to assayable endotoxin (lipid A), 3-hydroxy fatty acids or 3-OHFA (a chemical measure of cell bound and noncell-bound endotoxins), muramic acid, ergosterol, and ammonia among workers on Western U.S. dairies. There remains a need for cost-effective, culturally acceptable intervention strategies integrated in OHS Risk Management and production systems to further optimize worker health and farm productivity.

  1. THE EXPOSURE PARADOX IN PARTICULATE MATTER COMMUNITY TIME-SERIES EPIDEMIOLOGY: CAN AMBIENT CONCENTRATIONS OF PM BE USED AS A SURROGATE FOR PERSONAL EXPOSURE TO PM ?

    EPA Science Inventory

    Objective: Explain why epidemiologic studies find a statistically significant relationship between ambient concentrations of PM and health effects even though only a near-zero correlation is found between ambient concentrations of PM and personal exposures to PM. Method: Consider...

  2. APPLICATION OF THE RANDOM COMPONENT SUPERPOSITION (RCS) MODEL TO PM2.5 PERSONAL EXPOSURE AND INDOOR AIR QUALITY MEASUREMENTS IN DIFFERENT CITIES

    EPA Science Inventory

    The RCS model allows us to estimate the distribution of population exposure to air pollutants in any city given only the outdoor measurements in that city. Since outdoor measurements are made in many cities, but personal exposures are measured in few, the model could conceivab...

  3. UV exposure in cars.

    PubMed

    Moehrle, Matthias; Soballa, Martin; Korn, Manfred

    2003-08-01

    There is increasing knowledge about the hazards of solar and ultraviolet (UV) radiation to humans. Although people spend a significant time in cars, data on UV exposure during traveling are lacking. The aim of this study was to obtain basic information on personal UV exposure in cars. UV transmission of car glass samples, windscreen, side and back windows and sunroof, was determined. UV exposure of passengers was evaluated in seven German middle-class cars, fitted with three different types of car windows. UV doses were measured with open or closed windows/sunroof of Mercedes-Benz E 220 T, E 320, and S 500, and in an open convertible car (Mercedes-Benz CLK). Bacillus subtilis spore film dosimeters (Viospor) were attached to the front, vertex, cheeks, upper arms, forearms and thighs of 'adult' and 'child' dummies. UV wavelengths longer than >335 nm were transmitted through car windows, and UV irradiation >380 nm was transmitted through compound glass windscreens. There was some variation in the spectral transmission of side windows according to the type of glass. On the arms, UV exposure was 3-4% of ambient radiation when the car windows were shut, and 25-31% of ambient radiation when the windows were open. In the open convertible car, the relative personal doses reached 62% of ambient radiation. The car glass types examined offer substantial protection against short-wave UV radiation. Professional drivers should keep car windows closed on sunny days to reduce occupational UV exposure. In individuals with polymorphic light eruption, produced by long-wave UVA, additional protection by plastic films, clothes or sunscreens appears necessary.

  4. What is the risk for exposure to vector-borne pathogens in United States national parks?

    PubMed

    Eisen, Lars; Wong, David; Shelus, Victoria; Eisen, Rebecca J

    2013-03-01

    United States national parks attract > 275 million visitors annually and collectively present risk of exposure for staff and visitors to a wide range of arthropod vector species (most notably fleas, mosquitoes, and ticks) and their associated bacterial, protozoan, or viral pathogens. We assessed the current state of knowledge for risk of exposure to vector-borne pathogens in national parks through a review of relevant literature, including internal National Park Service documents and organismal databases. We conclude that, because of lack of systematic surveillance for vector-borne pathogens in national parks, the risk of pathogen exposure for staff and visitors is unclear. Existing data for vectors within national parks were not based on systematic collections and rarely include evaluation for pathogen infection. Extrapolation of human-based surveillance data from neighboring communities likely provides inaccurate estimates for national parks because landscape differences impact transmission of vector-borne pathogens and human-vector contact rates likely differ inside versus outside the parks because of differences in activities or behaviors. Vector-based pathogen surveillance holds promise to define when and where within national parks the risk of exposure to infected vectors is elevated. A pilot effort, including 5-10 strategic national parks, would greatly improve our understanding of the scope and magnitude of vector-borne pathogen transmission in these high-use public settings. Such efforts also will support messaging to promote personal protection measures and inform park visitors and staff of their responsibility for personal protection, which the National Park Service preservation mission dictates as the core strategy to reduce exposure to vector-borne pathogens in national parks.

  5. Undeclared Formaldehyde Levels in Patient Consumer Products: Formaldehyde Test Kit Utility.

    PubMed

    Ham, Jason E; Siegel, Paul; Maibach, Howard

    2018-05-03

    Formaldehyde allergic contact dermatitis (ACD) may be due to products with free formaldehyde or formaldehyde-releasing agents, however, assessment of formaldehyde levels in such products is infrequently conducted. The present study quantifies total releasable formaldehyde from "in-use" products associated with formaldehyde ACD and tests the utility of commercially available formaldehyde spot test kits. Personal care products from 2 patients with ACD to formaldehyde were initially screened at the clinic for formaldehyde using a formaldehyde spot test kit. Formaldehyde positive products were sent to the laboratory for confirmation by gas chromatography-mass spectrometry. In addition, 4 formaldehyde spot test kits were evaluated for potential utility in a clinical setting. Nine of the 10 formaldehyde spot test kit positive products obtained from formaldehyde allergic patients had formaldehyde with total releasable formaldehyde levels ranging from 5.4 to 269.4 µg/g. Of these, only 2 shampoos tested listed a formaldehyde-releasing agent in the ingredients or product literature. Subsequently, commercially available formaldehyde spot test kits were evaluated in the laboratory for ability to identify formaldehyde in personal care products. Chemical based formaldehyde spot test were more reliable than the enzymatic based test in identifying product releasable formaldehyde content. It is concluded that product labeled ingredient lists and available information are often inadequate to confirm the potential for formaldehyde exposure and chemical based spot test kits may have utility for identification of potential formaldehyde exposure from personal care products.

  6. Relationships among indoor, outdoor, and personal airborne Japanese cedar pollen counts.

    PubMed

    Yamamoto, Naomichi; Matsuki, Yuuki; Yokoyama, Hiromichi; Matsuki, Hideaki

    2015-01-01

    Japanese cedar pollinosis (JCP) is an important illness caused by the inhalation of airborne allergenic cedar pollens, which are dispersed in the early spring throughout the Japanese islands. However, associations between pollen exposures and the prevalence or severity of allergic symptoms are largely unknown, due to a lack of understanding regarding personal pollen exposures in relation to indoor and outdoor concentrations. This study aims to examine the relationships among indoor, outdoor, and personal airborne Japanese cedar pollen counts. We conducted a 4-year monitoring campaign to quantify indoor, outdoor, and personal airborne cedar pollen counts, where the personal passive settling sampler that has been previously validated against a volumetric sampler was used to count airborne pollen grains. A total of 256 sets of indoor, outdoor, and personal samples (768 samples) were collected from 9 subjects. Medians of the seasonally-integrated indoor-to-outdoor, personal-to-outdoor, and personal-to-indoor ratios of airborne pollen counts measured for 9 subjects were 0.08, 0.10, and 1.19, respectively. A greater correlation was observed between the personal and indoor counts (r = 0.89) than between the personal and outdoor counts (r = 0.71), suggesting a potential inaccuracy in the use of outdoor counts as a basis for estimating personal exposures. The personal pollen counts differed substantially among the human subjects (49% geometric coefficient of variation), in part due to the variability in the indoor counts that have been found as major determinants of the personal pollen counts. The findings of this study highlight the need for pollen monitoring in proximity to human subjects to better understand the relationships between pollen exposures and the prevalence or severity of pollen allergy.

  7. Relationships among Indoor, Outdoor, and Personal Airborne Japanese Cedar Pollen Counts

    PubMed Central

    Yamamoto, Naomichi; Matsuki, Yuuki; Yokoyama, Hiromichi; Matsuki, Hideaki

    2015-01-01

    Japanese cedar pollinosis (JCP) is an important illness caused by the inhalation of airborne allergenic cedar pollens, which are dispersed in the early spring throughout the Japanese islands. However, associations between pollen exposures and the prevalence or severity of allergic symptoms are largely unknown, due to a lack of understanding regarding personal pollen exposures in relation to indoor and outdoor concentrations. This study aims to examine the relationships among indoor, outdoor, and personal airborne Japanese cedar pollen counts. We conducted a 4-year monitoring campaign to quantify indoor, outdoor, and personal airborne cedar pollen counts, where the personal passive settling sampler that has been previously validated against a volumetric sampler was used to count airborne pollen grains. A total of 256 sets of indoor, outdoor, and personal samples (768 samples) were collected from 9 subjects. Medians of the seasonally-integrated indoor-to-outdoor, personal-to-outdoor, and personal-to-indoor ratios of airborne pollen counts measured for 9 subjects were 0.08, 0.10, and 1.19, respectively. A greater correlation was observed between the personal and indoor counts (r = 0.89) than between the personal and outdoor counts (r = 0.71), suggesting a potential inaccuracy in the use of outdoor counts as a basis for estimating personal exposures. The personal pollen counts differed substantially among the human subjects (49% geometric coefficient of variation), in part due to the variability in the indoor counts that have been found as major determinants of the personal pollen counts. The findings of this study highlight the need for pollen monitoring in proximity to human subjects to better understand the relationships between pollen exposures and the prevalence or severity of pollen allergy. PMID:26110813

  8. Estimating personal exposures from ambient air-pollution measures: Using meta-analysis to assess measurement error

    PubMed Central

    Holliday, Katelyn M; Avery, Christy L; Poole, Charles; McGraw, Kathleen; Williams, Ronald; Liao, Duanping; Smith, Richard L; Whitsel, Eric A

    2014-01-01

    Background Although ambient concentrations of particulate matter ≤10μm (PM10) are often used as proxies for total personal exposure, correlation (r) between ambient and personal PM10 concentrations varies. Factors underlying this variation and its effect on health outcome-PM exposure relationships remain poorly understood. Methods We conducted a random-effects meta-analysis to estimate effects of study, participant and environmental factors on r; used the estimates to impute personal exposure from ambient PM10 concentrations among 4,012 non-smoking, diabetic participants in the Women’s Health Initiative clinical trial; and then estimated the associations of ambient and imputed personal PM10 concentrations with electrocardiographic measures such as heart rate variability. Results We identified fifteen studies (in years 1990-2009) of 342 participants in five countries. The median r was 0.46 (range = 0.13 to 0.72). There was little evidence of funnel-plot asymmetry but substantial heterogeneity of r, which increased 0.05 (95% confidence interval [CI]= 0.01 to 0.09) per 10 μg/m3 increase in mean ambient PM10 concentration. Substituting imputed personal exposure for ambient PM10 concentrations shifted mean percent changes in electrocardiographic measures per 10μg/m3 increase in exposure away from the null and decreased their precision, e.g. −2.0% (95% CI= −4.6% to 0.7%) versus −7.9% (−15.9% to 0.9%) for the standard deviation of normal-to-normal RR interval duration. Conclusions Analogous distributions and heterogeneity of r in extant meta-analyses of ambient and personal PM2.5 concentrations suggest that observed shifts in mean percent change and decreases in precision may be generalizable across particle size. PMID:24220191

  9. Exposure to asbestos: psychological responses of mesothelioma patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lebovits, A.H.; Chahinian, A.P.; Holland, J.C.

    1983-01-01

    Thirty-eight patients with a diagnosis of malignant mesothelioma participated in a semi-structured interview to evaluate asbestos exposure, acquisition of increased risk information, and retrospective reporting of cognitive and behavioral reactions (particularly smoking behavior) to risk information. Twenty-eight patients (74%) had direct occupational contact with asbestos, and six patients (16%) reported indirect nonoccupational exposure to asbestos. Only two (10%) of the directly exposed patients acquired risk information from professional sources prior to diagnosis of mesothelioma. The most frequently reported reaction to learning of increased risk of cancer was a denial of the risk by minimizing personal exposure. Few patients reported beingmore » concerned about the information of increased risk. Smoking behavior did not change as a result of risk information, nor was there any increase in visits to physicians. Guidelines for psychosocial management of at-risk groups are recommended.« less

  10. Assessing Exposure and Health Consequences of Chemicals in Drinking Water: Current State of Knowledge and Research Needs

    PubMed Central

    Kogevinas, Manolis; Cordier, Sylvaine; Templeton, Michael R.; Vermeulen, Roel; Nuckols, John R.; Nieuwenhuijsen, Mark J.; Levallois, Patrick

    2014-01-01

    Background: Safe drinking water is essential for well-being. Although microbiological contamination remains the largest cause of water-related morbidity and mortality globally, chemicals in water supplies may also cause disease, and evidence of the human health consequences is limited or lacking for many of them. Objectives: We aimed to summarize the state of knowledge, identify gaps in understanding, and provide recommendations for epidemiological research relating to chemicals occurring in drinking water. Discussion: Assessing exposure and the health consequences of chemicals in drinking water is challenging. Exposures are typically at low concentrations, measurements in water are frequently insufficient, chemicals are present in mixtures, exposure periods are usually long, multiple exposure routes may be involved, and valid biomarkers reflecting the relevant exposure period are scarce. In addition, the magnitude of the relative risks tends to be small. Conclusions: Research should include well-designed epidemiological studies covering regions with contrasting contaminant levels and sufficient sample size; comprehensive evaluation of contaminant occurrence in combination with bioassays integrating the effect of complex mixtures; sufficient numbers of measurements in water to evaluate geographical and temporal variability; detailed information on personal habits resulting in exposure (e.g., ingestion, showering, swimming, diet); collection of biological samples to measure relevant biomarkers; and advanced statistical models to estimate exposure and relative risks, considering methods to address measurement error. Last, the incorporation of molecular markers of early biological effects and genetic susceptibility is essential to understand the mechanisms of action. There is a particular knowledge gap and need to evaluate human exposure and the risks of a wide range of emerging contaminants. Citation: Villanueva CM, Kogevinas M, Cordier S, Templeton MR, Vermeulen R, Nuckols JR, Nieuwenhuijsen MJ, Levallois P. 2014. Assessing exposure and health consequences of chemicals in drinking water: current state of knowledge and research needs. Environ Health Perspect 122:213–221; http://dx.doi.org/10.1289/ehp.1206229 PMID:24380896

  11. Acute nonlymphocytic leukemia and residential exposure to power frequency magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Severson, R.K.

    1986-01-01

    A population-based case-control study of adult acute nonlymphocytic leukemia (ANLL) and residential exposure to power frequency magnetic fields was conducted in King, Pierce and Snohomish Counties in Washington state. Of 164 cases who were diagnosed from January 1, 1981 through December 31, 1984, 114 were interviewed. Controls were selected from the study area on the basis of random digit dialing and frequency matched to the cases by age and sex. Analyses were undertaken to evaluate whether exposure to high levels of power frequency magnetic fields in the residence were associated with an increased risk of ANLL. Neither the directly measuredmore » magnetic fields nor the surrogate values based on the wiring configurations were associated with ANLL. Additional analyses suggested that persons with prior allergies were at decreased risk of acute myelocytic leukemia (AML). Also, persons with prior autoimmune diseases were at increased risk of AML. The increase in AML risk in rheumatoid arthritics was of borderline statistical significance. Finally, cigarette smoking was associated with an increased risk of AML. The risk of AML increased significantly with the number of years of cigarette smoking.« less

  12. Occupational exposure to acrylamide in closed system production plants: air levels and biomonitoring.

    PubMed

    Moorman, William J; Reutman, Susan S; Shaw, Peter B; Blade, Leo Michael; Marlow, David; Vesper, Hubert; Clark, John C; Schrader, Steven M

    2012-01-01

    The aim of this study was to evaluate biomarkers of acrylamide exposure, including hemoglobin adducts and urinary metabolites in acrylamide production workers. Biomarkers are integrated measures of the internal dose, and it is total acrylamide dose from all routes and sources that may present health risks. Workers from three companies were studied. Workers potentially exposed to acrylamide monomer wore personal breathing-zone air samplers. Air samples and surface-wipe samples were collected and analyzed for acrylamide. General-area air samples were collected in chemical processing units and control rooms. Hemoglobin adducts were isolated from ethylenediamine teraacetic acid (EDTA)-whole blood, and adducts of acrylamide and glycidamide, at the N-terminal valines of hemoglobin, were cleaved from the protein chain by use of a modified Edman reaction. Full work-shift, personal breathing zone, and general-area air samples were collected and analyzed for particulate and acrylamide monomer vapor. The highest general-area concentration of acrylamide vapor was 350 μg/cm(3) in monomer production. Personal breathing zone and general-area concentrations of acrylamide vapor were found to be highest in monomer production operations, and lower levels were in the polymer production operations. Adduct levels varied widely among workers, with the highest in workers in the monomer and polymer production areas. The acrylamide adduct range was 15-1884 pmol/g; glycidamide adducts ranged from 17.8 to 1376 p/mol/g. The highest acrylamide and glycidamide adduct levels were found among monomer production process operators. The primary urinary metabolite N-acetyl-S-(2-carbamoylethyl) cysteine (NACEC) ranged from the limit of detection to 15.4 μg/ml. Correlation of workplace exposure and sentinel health effects is needed to determine and control safe levels of exposure for regulatory standards.

  13. Assessment of Occupational Symptoms and Chemical Exposures for Nail Salon Technicians in Daegu City, Korea

    PubMed Central

    Park, Sung-Ae; Gwak, Sugyeong

    2014-01-01

    Objectives This study aimed to evaluate occupational symptoms and chemical exposures of nail salon technicians. Methods Work-related symptoms of nail salon technicians in Daegu City were surveyed using a researcher-administered questionnaire, and responses were compared to those of non-exposed office workers as controls. Personal exposure level of airborne volatile organic compounds was also monitored using passive samplers. Results A total of 159 subjects in 120 salons were interviewed. Average work-shift concentrations of 13 chemicals were measured for 50 workers from 30 salons using personal passive samplers. The most frequently reported respiratory or neurologic symptoms by nail shop technicians compared to controls were nose irritation (odds ratio [OR], 54.0; confidence interval [CI], 21.6 to 134.8), followed by headache (OR, 9.3; CI, 4.7 to 18), and throat irritation (OR, 4.3; CI, 2.2 to 8.5). For eyes and skin, 92% of respondents complained eye irritation (OR, 13.1; CI, 5.7 to 30.1). In musculoskeletal symptoms, workers reported pain or discomfort in shoulders (OR, 20.3; CI, 7.7 to 54) and neck (OR, 19.7; CI, 8.9 to 43.6). From personal measurements, the proportion of exceeding the Korean Occupational Exposure Limit was the highest for acetone with 64%, followed by toluene (50%), butyl acetate (46%), and methyl methacrylate (12%). However, the service was being provided without a proper ventilation system in most surveyed shops. Conclusions Based on these findings, it is warranted to have appropriate local exhaust ventilation place to ensure adequate health protection of nail shop technicians as well as customers. At the same time, greater policy interests are warranted in nail care business to protect health of both workers and customers. PMID:24921020

  14. Optimizing Severe Acute Respiratory Syndrome Response Strategies: Lessons Learned From Quarantine

    PubMed Central

    Wang, Tsung-Hsi; Wei, Kuo-Chen; Hsiung, Chao Agnes; Maloney, Susan A.; Eidex, Rachel Barwick; Posey, Drew L.; Chou, Wei-Hui; Shih, Wen-Yi; Kuo, Hsu-Sung

    2007-01-01

    Taiwan used quarantine as 1 of numerous interventions implemented to control the outbreak of severe acute respiratory syndrome in 2003. From March 18 to July 31, 2003, 147 526 persons were placed under quarantine. Quarantining only persons with known exposure to people infected with severe acute respiratory syndrome could have reduced the number of persons quarantined by approximately 64%. Focusing quarantine efforts on persons with known or suspected exposure can greatly decrease the number of persons placed under quarantine, without substantially compromising its yield and effectiveness. PMID:17413071

  15. Absence of Nosocomial Transmission of Imported Lassa Fever during Use of Standard Barrier Nursing Methods.

    PubMed

    Grahn, Anna; Bråve, Andreas; Tolfvenstam, Thomas; Studahl, Marie

    2018-06-01

    Nosocomial transmission of Lassa virus (LASV) is reported to be low when care for the index patient includes proper barrier nursing methods. We investigated whether asymptomatic LASV infection occurred in healthcare workers who used standard barrier nursing methods during the first 15 days of caring for a patient with Lassa fever in Sweden. Of 76 persons who were defined as having been potentially exposed to LASV, 53 provided blood samples for detection of LASV IgG. These persons also responded to a detailed questionnaire to evaluate exposure to different body fluids from the index patient. LASV-specific IgG was not detected in any of the 53 persons. Five of 53 persons had not been using proper barrier nursing methods. Our results strengthen the argument for a low risk of secondary transmission of LASV in humans when standard barrier nursing methods are used and the patient has only mild symptoms.

  16. Thyroid hypofunction after exposure to fallout from a hydrogen bomb explosion.

    PubMed

    Larsen, P R; Conard, R A; Knudsen, K D; Robbins, J; Wolff, J; Rall, J E; Nicoloff, J T; Dobyns, B M

    1982-03-19

    Thyroid function was evaluated in the Marshallese who were accidentally exposed to fallout-containing radioiodine isotopes in 1954. Measurements of thyrotrophin (TSH, thyroid-stimulating hormone) levels and free thyroxine (T4) index (FT4I) have revealed that, among 86 persons exposed on Rongelap and Ailingnae atolls, 14 have shown evidence of thyroid hypofunction. This was first noted in some individuals about ten years after exposure. Only two of these showed clinical evidence of hypothyroidism. The most marked TSH elevations were noted in nine persons exposed when younger than 6 years, with estimated doses to the thyroid from 390 to 2,100 rad. Most of this group subsequently had surgery for removal of thyroid nodules. The remaining five cases have been noted more recently among 36 surviving adults exposed at an older age who showed no other detectable thyroid abnormalities. This group had received estimated thyroid doses ranging from 135 to 335 rad and showed modest elevation of serum TSH levels (6 to 9 microU/mL) and a slightly subnormal FT4I. No abnormalities were found in persons on Utirik who received substantially less radiation, and hypothyroidism was present in less than 1% of the control, unexposed Marshallese. The high prevalence of a thyroid hypofunction in these persons indicates that this condition, as well as thyroid nodularity, can be a delayed complication of exposure to early fallout from a nuclear explosion. The fact that a significant fraction of the radiation to the thyroid was from short-lived radioiodine isotopes (132I, 133I, 135I), as opposed to 131I, may account for the severity of the thyroid damage.

  17. Gender violence, poverty and HIV infection risk among persons engaged in the sex industry: cross-national analysis of the political economy of sex markets in 30 European and Central Asian countries.

    PubMed

    Reeves, A; Steele, S; Stuckler, D; McKee, M; Amato-Gauci, A; Semenza, J C

    2017-11-01

    Persons engaged in the sex industry are at greater risk of HIV and other sexually transmitted infections than the general population. One major factor is exposure to higher levels of risky sexual activity. Expanding condom use is a critical prevention strategy, but this requires negotiation with those buying sex, which takes place in the context of cultural and economic constraints. Impoverished individuals who fear violence are more likely to forego condoms. Here we tested the hypotheses that poverty and fear of violence are two structural drivers of HIV infection risk in the sex industry. Using data from the European Centre for Disease Prevention and Control and the World Bank for 30 countries, we evaluated poverty, measured using the average income per day per person in the bottom 40% of the income distribution, and gender violence, measured using homicide rates in women and the proportion of women exposed to violence in the last 12 months and/or since age 16 years. We found that HIV prevalence among those in the sex industry was higher in countries where there were greater female homicide rates (β = 0.86; P = 0.018) and there was some evidence that self-reported exposure to violence was also associated with higher HIV prevalence (β = 1.37; P = 0.043). Conversely, HIV prevalence was lower in countries where average incomes among the poorest were greater (β = -1.05; P = 0.046). Our results are consistent with the theory that reducing poverty and exposure to violence may help reduce HIV infection risk among persons engaged in the sex industry. © 2017 British HIV Association.

  18. Outdoor, Indoor, and Personal Exposure to VOCs in Children

    PubMed Central

    Adgate, John L.; Church, Timothy R.; Ryan, Andrew D.; Ramachandran, Gurumurthy; Fredrickson, Ann L.; Stock, Thomas H.; Morandi, Maria T.; Sexton, Ken

    2004-01-01

    We measured volatile organic compound (VOC) exposures in multiple locations for a diverse population of children who attended two inner-city schools in Minneapolis, Minnesota. Fifteen common VOCs were measured at four locations: outdoors (O), indoors at school (S), indoors at home (H), and in personal samples (P). Concentrations of most VOCs followed the general pattern O ≈ S < P ≤ H across the measured microenvironments. The S and O environments had the smallest and H the largest influence on personal exposure to most compounds. A time-weighted model of P exposure using all measured microenvironments and time–activity data provided little additional explanatory power beyond that provided by using the H measurement alone. Although H and P concentrations of most VOCs measured in this study were similar to or lower than levels measured in recent personal monitoring studies of adults and children in the United States, p-dichlorobenzene was the notable exception to this pattern, with upper-bound exposures more than 100 times greater than those found in other studies of children. Median and upper-bound H and P exposures were well above health benchmarks for several compounds, so outdoor measurements likely underestimate long-term health risks from children’s exposure to these compounds. PMID:15471730

  19. SYN-JEM: A Quantitative Job-Exposure Matrix for Five Lung Carcinogens.

    PubMed

    Peters, Susan; Vermeulen, Roel; Portengen, Lützen; Olsson, Ann; Kendzia, Benjamin; Vincent, Raymond; Savary, Barbara; Lavoué, Jérôme; Cavallo, Domenico; Cattaneo, Andrea; Mirabelli, Dario; Plato, Nils; Fevotte, Joelle; Pesch, Beate; Brüning, Thomas; Straif, Kurt; Kromhout, Hans

    2016-08-01

    The use of measurement data in occupational exposure assessment allows more quantitative analyses of possible exposure-response relations. We describe a quantitative exposure assessment approach for five lung carcinogens (i.e. asbestos, chromium-VI, nickel, polycyclic aromatic hydrocarbons (by its proxy benzo(a)pyrene (BaP)) and respirable crystalline silica). A quantitative job-exposure matrix (JEM) was developed based on statistical modeling of large quantities of personal measurements. Empirical linear models were developed using personal occupational exposure measurements (n = 102306) from Europe and Canada, as well as auxiliary information like job (industry), year of sampling, region, an a priori exposure rating of each job (none, low, and high exposed), sampling and analytical methods, and sampling duration. The model outcomes were used to create a JEM with a quantitative estimate of the level of exposure by job, year, and region. Decreasing time trends were observed for all agents between the 1970s and 2009, ranging from -1.2% per year for personal BaP and nickel exposures to -10.7% for asbestos (in the time period before an asbestos ban was implemented). Regional differences in exposure concentrations (adjusted for measured jobs, years of measurement, and sampling method and duration) varied by agent, ranging from a factor 3.3 for chromium-VI up to a factor 10.5 for asbestos. We estimated time-, job-, and region-specific exposure levels for four (asbestos, chromium-VI, nickel, and RCS) out of five considered lung carcinogens. Through statistical modeling of large amounts of personal occupational exposure measurement data we were able to derive a quantitative JEM to be used in community-based studies. © The Author 2016. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  20. Neurologic syndrome in 25 workers from an aluminum smelting plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, D.M.; Longstreth, W.T. Jr.; Rosenstock, L.

    1992-07-01

    This article expands on an earlier series of three patients with a neurologic syndrome, who had all worked in an aluminum smelting plant. Twenty-five symptomatic workers from the same plant were referred for a standardized evaluation, including completion of a health questionnaire, neurologic examination, and neuropsychologic evaluation. An exposure index was calculated for each worker based on level and duration of exposure in the potroom, where exposures were the greatest. This index was correlated with symptoms, signs, and neuropsychologic test scores. Twenty-two (88%) of the patients reported frequent loss of balance, and 21 (84%) reported memory loss. Neurologic examination revealedmore » signs of incoordination in 21 (84%) of the patients. Neuropsychologic test results showed preservation in certain spheres of functioning, such as verbal IQ, with substantial impairment in others, particularly memory functioning. On memory tests, 70% to 75% showed mild or greater impairment. The majority (17 of 19 tested, or 89%) showed depression on the Minnesota Multiphasic Personality Inventory. The exposure index was significantly correlated with signs and symptoms of incoordination. This study and others in humans and animals support the existence of a syndrome characterized by incoordination, poor memory, impairment in abstract reasoning, and depression. Aluminum exposure in the potroom seems the most likely cause.« less

  1. Evaluation of genome damage in subjects occupationally exposed to possible carcinogens.

    PubMed

    Zeljezic, Davor; Mladinic, Marin; Kopjar, Nevenka; Radulovic, Azra Hursidic

    2016-09-01

    In occupational exposures, populations are simultaneously exposed to a mixture of chemicals. We aimed to evaluate DNA damage due to possible carcinogen exposure (phenylhydrazine, ethylene oxide, dichloromethane, and 1,2-dichloroethane) in lymphocytes of pharmaceutical industry workers from the same production line. Population comprised 16 subjects (9 females and 7 males) who were exposed to multiple chemicals for 8 months. Genome damage was assessed using alkaline comet assay, micronucleus assay, and comet assay coupled with fluorescent in situ hybridization (comet-FISH). After 8 months of exposure, the issue of irregular use of all available personal protective equipment (PPE) came into light. To decrease the risk of exposure, strict use of PPE was enforced. After 8 months of strict PPE use, micronuclei frequency and comet assay parameters in lymphocytes of pharmaceutical workers significantly decreased compared with prior period of irregular PPE use. Comet-FISH results indicated a significant shift in distribution of signals for the TP 53 gene toward a more frequent occurrence in the comet tail. Prolonged exposure to possible carcinogens may hinder DNA repair mechanisms and affect structural integrity of TP 53 Two indicators of loss of TP 53 gene integrity have risen, namely, TP 53 fragmentation rate in lymphocytes with persistently elevated primary damage and incidence of TP 53 deletions in undamaged lymphocytes. © The Author(s) 2015.

  2. MTV's "Staying Alive" global campaign promoted interpersonal communication about HIV and positive beliefs about HIV prevention.

    PubMed

    Geary, Cynthia Waszak; Burke, Holly McClain; Castelnau, Laure; Neupane, Shailes; Sall, Yacine Ba; Wong, Emily; Tucker, Heidi Toms

    2007-02-01

    In 2002 MTV launched a global multicomponent HIV prevention campaign, "Staying Alive," reaching over 166 countries worldwide. An evaluation of this campaign focused on three diverse sites: Kathmandu, Nepal; São Paulo, Brazil; and Dakar, Senegal. Data were collected before and after campaign implementation through population-based household surveys. Using linear regression techniques, our evaluation examined the effects of campaign exposure on interpersonal communication about HIV and the effects of campaign exposure and interpersonal communication on beliefs about HIV prevention. We found a consistent positive effect of exposure on interpersonal communication across all sites, though there were differences among sites with regard to whom the respondent talked about HIV. We also found a consistent positive effect of exposure on HIV prevention beliefs across sites when interpersonal communication was simultaneously entered into the model. Finally, in two sites we found a relationship between interpersonal communication and HIV prevention beliefs, controlling for exposure, though again, the effects differed by the type of person the communication was with. These similar findings in three diverse sites provide ecological validity of the findings that "Staying Alive" promoted interpersonal communication and influenced young people's beliefs about HIV prevention in a positive way, evidence for the potential of a global media campaign to have an impact on social norms.

  3. The contribution of personal and exposure characteristics to the adjustment of adolescents following war.

    PubMed

    Lavi, T; Green, O; Dekel, R

    2013-02-01

    The study examined the unique contribution of both personal characteristics and several types of exposure variables to the adjustment of Israeli adolescents following the Second Lebanon War. Two thousand three hundred and fourteen adolescents, who lived in areas that were the target of multiple missile attacks, completed self-report questionnaires assessing personal characteristics of gender and early traumatic events, subjective exposure (i.e., measures of fear and shortage of basic necessities during the war), objective exposure (i.e., exposure to missile attacks, knowing someone who was wounded or killed) and media exposure. Fifteen percent of the adolescents reported moderate or severe post-traumatic symptoms. Girls and adolescents who experienced earlier traumatic events were at higher risk for distress. While the level of direct exposure contributed to greater distress, the contribution of subjective exposure was significantly stronger. The discussion deals with the unique contribution of both subjective and objective characteristics to post-war adjustment. Copyright © 2012 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  4. Effectiveness of a personalized ventilation system in reducing personal exposure against directly released simulated cough droplets.

    PubMed

    Pantelic, J; Tham, K W; Licina, D

    2015-12-01

    The inhalation intake fraction was used as an indicator to compare effects of desktop personalized ventilation and mixing ventilation on personal exposure to directly released simulated cough droplets. A cough machine was used to simulate cough release from the front, back, and side of a thermal manikin at distances between 1 and 4 m. Cough droplet concentration was measured with an aerosol spectrometer in the breathing zone of a thermal manikin. Particle image velocimetry was used to characterize the velocity field in the breathing zone. Desktop personalized ventilation substantially reduced the inhalation intake fraction compared to mixing ventilation for all investigated distances and orientations of the cough release. The results point out that the orientation between the cough source and the breathing zone of the exposed occupant is an important factor that substantially influences exposure. Exposure to cough droplets was reduced with increasing distance between cough source and exposed occupant. The results from this study show that an advanced air distribution system such as personalized ventilation reduces exposure to cough-released droplets better than commonly applied overhead mixing ventilation. This work can inform HVAC engineers about different aspects of air distribution systems’ performance and can serve as an aid in making critical design decisions. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Occupational exposure of personnel operating military radio equipment: measurements and simulation.

    PubMed

    Paljanos, Annamaria; Miclaus, Simona; Munteanu, Calin

    2015-09-01

    Technical literature provides numerous studies concerning radiofrequency exposure measurements for various radio communication devices, but there are few studies related to exposure of personnel operating military radio equipment. In order to evaluate exposure and identify cases when safety requirements are not entirely met, both measurements and simulations are needed for accurate results. Moreover, given the technical characteristics of the radio devices used in the military, personnel mainly operate in the near-field region so both measurements and simulation becomes more complex. Measurements were made in situ using a broadband personal exposimeter equipped with two isotropic probes for both electric and magnetic components of the field. The experiment was designed for three different operating frequencies of the same radio equipment, while simulations were made in FEKO software using hybrid numerical methods to solve complex electromagnetic field problems. The paper aims to discuss the comparative results of the measurements and simulation, as well as comparing them to reference levels specified in military or civilian radiofrequency exposure standards.

  6. Disaster-related exposures and health effects among US Coast Guard responders to Hurricanes Katrina and Rita: a cross-sectional study.

    PubMed

    Rusiecki, Jennifer A; Thomas, Dana L; Chen, Ligong; Funk, Renée; McKibben, Jodi; Dayton, Melburn R

    2014-08-01

    Disaster responders work among poorly characterized physical and psychological hazards with little understood regarding health consequences of their work. A survey administered to 2834 US Coast Guard responders to Hurricanes Katrina and Rita provided data on exposures and health effects. Prevalence odds ratios (PORs) evaluated associations between baseline characteristics, missions, exposures, and health effects. Most frequent exposures were animal/insect vector (n = 1309; 46%) and floodwater (n = 817; 29%). Most frequent health effects were sunburn (n = 1119; 39%) and heat stress (n = 810; 30%). Significant positive associations were for mold exposure and sinus infection (POR = 10.39); carbon monoxide and confusion (POR = 6.27); lack of sleep and slips, trips, falls (POR = 3.34) and depression (POR = 3.01); being a Gulf-state responder and depression (POR = 3.22). Increasing protection for disaster responders requires provisions for adequate sleep, personal protective equipment, and access to medical and psychological support.

  7. An evaluation of retrofit engineering control interventions to reduce perchloroethylene exposures in commercial dry-cleaning shops.

    PubMed

    Earnest, G Scott; Ewers, Lynda M; Ruder, Avima M; Petersen, Martin R; Kovein, Ronald J

    2002-02-01

    Real-time monitoring was used to evaluate the ability of engineering control devices retrofitted on two existing dry-cleaning machines to reduce worker exposures to perchloroethylene. In one dry-cleaning shop, a refrigerated condenser was installed on a machine that had a water-cooled condenser to reduce the air temperature, improve vapor recovery, and lower exposures. In a second shop, a carbon adsorber was retrofitted on a machine to adsorb residual perchloroethylene not collected by the existing refrigerated condenser to improve vapor recovery and reduce exposures. Both controls were successful at reducing the perchloroethylene exposures of the dry-cleaning machine operator. Real-time monitoring was performed to evaluate how the engineering controls affected exposures during loading and unloading the dry-cleaning machine, a task generally considered to account for the highest exposures. The real-time monitoring showed that dramatic reductions occurred in exposures during loading and unloading of the dry-cleaning machine due to the engineering controls. Peak operator exposures during loading and unloading were reduced by 60 percent in the shop that had a refrigerated condenser installed on the dry-cleaning machine and 92 percent in the shop that had a carbon adsorber installed. Although loading and unloading exposures were dramatically reduced, drops in full-shift time-weighted average (TWA) exposures were less dramatic. TWA exposures to perchloroethylene, as measured by conventional air sampling, showed smaller reductions in operator exposures of 28 percent or less. Differences between exposure results from real-time and conventional air sampling very likely resulted from other uncontrolled sources of exposure, differences in shop general ventilation before and after the control was installed, relatively small sample sizes, and experimental variability inherent in field research. Although there were some difficulties and complications with installation and maintenance of the engineering controls, this study showed that retrofitting engineering controls may be a feasible option for some dry-cleaning shop owners to reduce worker exposures to perchloroethylene. By installing retrofit controls, a dry-cleaning facility can reduce exposures, in some cases dramatically, and bring operators into compliance with the Occupational Safety and Health Administration (OSHA) peak exposure limit of 300 ppm. Retrofit engineering controls are also likely to enable many dry-cleaning workers to lower their overall personal TWA exposures to perchloroethylene.

  8. Rabies in Poland in 2012.

    PubMed

    Sadkowska-Todys, Małgorzata; Kucharczyk, Bożena

    2014-01-01

    Evaluation of the epidemiological situation of rabies in Poland in 2012. Evaluation was based on the analysis of data from questionnaires sent by the Epidemiological-Sanitary Stations. The data are from questionnaires of persons who were administered vaccine against rabies following exposure in Poland and beyond its territory and data from annual bulletin "Infectious diseases and poisonings in Poland in 2012"(Czarkowski MP et al., Warsaw, NIH and CSI) and epizootic data provided by the General Veterinary Inspectorate. In 2012, a total of 257 animal rabies cases were registered in Poland, i.e. nearly 60% more compared to 2011. More than 83% of these cases were reported in Podkarpackie province. Compared to 2011, more than 3.5 increase was noted there. One rabid dog was reported in Śląskie province where one rabies infection in fox was noted there a year ago. Rabies infections in terrestrial animals were also reported in the following provinces: Małopolskie, Lubelskie, Warmińsko-mazurskie and Podlaskie. Single rabies infections in bats were registered in other regions of Poland. In 2012, a total of 7,753 persons were vaccinated against rabies, including 315, i.e. more than 4% due to the exposure to animals infected with rabies virus. Of persons vaccinated due to contact with a rabid animal, nearly 40% and more than 44% were vaccinated following contact with rabid fox and domestic animal, respectively. As with the previous years, humans were vaccinated mostly due to contact with dogs and cats in which rabies could not be excluded - 5,974 persons (77%). A reason for concern is an increase in the number of animal rabies cases reported in 2012, especially in Podkarpackie province. Epizootic situation in Poland affects slightly the number of persons vaccinated against rabies who had contact with an animal which potentially is a source of rabies virus. Since many years, this number remains stable, amounting to 7-8,000 annually.

  9. Health risks of vibration exposure to wheelchair users in the community

    PubMed Central

    Garcia-Mendez, Yasmin; Pearlman, Jonathan L.; Boninger, Michael L.; Cooper, Rory A.

    2013-01-01

    Objective The purpose of this study was to evaluate whole-body vibration (WBV) exposure to wheelchair (WC) users in their communities and to determine the effect of WC frame type (folding, rigid, and suspension) in reducing WBV transmitted to the person. Design An observational case-control study of the WBV exposure levels among WC users. Participants Thirty-seven WC users, with no pressure sores, 18 years old or older and able to perform independent transfers. Main outcome measures WC users were monitored for 2 weeks to collect WBV exposure, as well as activity levels, by using custom vibration and activity data-loggers. Vibration levels were evaluated using ISO 2631-1 methods. Results All WC users who participated in this study were continuously exposed to WBV levels at the seat that were within and above the health caution zone specified by ISO 2631-1 during their day-to-day activities (0.83 ± 0.17 m/second2, weighted root-mean-squared acceleration, for 13.07 ± 3.85 hours duration of exposure). WCs with suspension did not attenuate vibration transmitted to WC users (V = 0.180, F(8, 56) = 0.692, P = 0.697). Conclusions WBV exposure to WC users exceeds international standards. Suspension systems need to be improved to reduce vibrations transmitted to the users. PMID:23820152

  10. Work environments and exposure to hazardous substances in korean tire manufacturing.

    PubMed

    Lee, Naroo; Lee, Byung-Kyu; Jeong, Sijeong; Yi, Gwang Yong; Shin, Jungah

    2012-06-01

    The purpose of this study is to evaluate the tire manufacturing work environments extensively and to identify workers' exposure to hazardous substances in various work processes. Personal air sampling was conducted to measure polycyclic aromatic hydrocarbons, carbon disulfide, 1,3-butadiene, styrene, methyl isobutyl ketone, methylcyclohexane, formaldehyde, sulfur dioxide, and rubber fume in tire manufacturing plants using the National Institute for Occupational Safety Health Manual of Analytical Methods. Noise, carbon monoxide, and heat stress exposure were evaluated using direct reading instruments. Past concentrations of rubber fume were assessed using regression analysis of total particulate data from 2003 to 2007, after identifying the correlation between the concentration of total particulate and rubber fume. Workers were exposed to rubber fume that exceeded 0.6 mg/m(3), the maximum exposure limit of the UK, in curing and production management processes. Forty-seven percent of workers were exposed to noise levels exceeding 85 dBA. Workers in the production management process were exposed to 28.1℃ (wet bulb globe temperature value, WBGT value) even when the outdoor atmosphere was 2.7℃ (WBGT value). Exposures to other substances were below the limit of detection or under a tenth of the threshold limit values given by the American Conference of Governmental Industrial Hygienists. To better classify exposure groups and to improve work environments, examining closely at rubber fume components and temperature as risk indicators in tire manufacturing is recommended.

  11. Exposure to hazardous substances in a standard molecular biology laboratory environment: evaluation of exposures in IARC laboratories.

    PubMed

    Chapot, Brigitte; Secretan, Béatrice; Robert, Annie; Hainaut, Pierre

    2009-07-01

    Working in a molecular biology laboratory environment implies regular exposure to a wide range of hazardous substances. Several recent studies have shown that laboratory workers may have an elevated risk of certain cancers. Data on the nature and frequency of exposures in such settings are scanty. The frequency of use of 163 agents by staff working in molecular biology laboratories was evaluated over a period of 4 years by self-administered questionnaire. Of the agents listed, ethanol was used by the largest proportion of staff (70%), followed by ethidium bromide (55%). Individual patterns of use showed three patterns, namely (i) frequent use of a narrow range of products, (ii) occasional use of a wide range of products, and (iii) frequent and occasional use of an intermediate range of products. Among known or suspected carcinogens (International Agency for Research on Cancer Group 1 and 2A, respectively), those most frequently used included formaldehyde (17%), oncogenic viruses (4%), and acrylamide (32%). The type of exposure encountered in research laboratories is extremely diverse. Few carcinogenic agents are used frequently but many laboratory workers may be exposed occasionally to known human carcinogens. In addition, many of the chemicals handled by staff represent a health hazard. The results enabled the staff physician to develop an individual approach to medical surveillance and to draw a personal history of occupational exposures for laboratory staff.

  12. Factors Surgical Team Members Perceive Influence Choices of Wearing or Not Wearing Personal Protective Equipment during Operative/Invasive Procedures

    ERIC Educational Resources Information Center

    Cuming, Richard G.

    2009-01-01

    Exposure to certain bloodborne pathogens can prematurely end a person's life. Healthcare workers (HCWs), especially those who are members of surgical teams, are at increased risk of exposure to these pathogens. The proper use of personal protective equipment (PPE) during operative/invasive procedures reduces that risk. Despite this, some HCWs fail…

  13. ESTIMATING CONTRIBUTIONS OF OUTDOOR FINE PARTICLES TO INDOOR CONCENTRATIONS AND PERSONAL EXPOSURES: EFFECTS OF HOUSEHOLD CHARACTERISTICS AND PERSONAL ACTIVITIES

    EPA Science Inventory

    A study of personal, indoor, and outdoor exposure to PM2.5 and associated elements has been carried out for 37 residents of the Research Triangle Park area in North Carolina. Participants were monitored for 7 consecutive days in each of four seasons. One goal of the ...

  14. A Critical Test of Self-Enhancement, Exposure, and Self-Categorization Explanations for First- and Third-Person Perceptions

    ERIC Educational Resources Information Center

    Reid, Scott A.; Byrne, Sahara; Brundidge, Jennifer S.; Shoham, Mirit D.; Marlow, Mikaela L.

    2007-01-01

    The third-person perception is the tendency for people to believe that others are more influenced by media content than themselves (W. P. Davison, 1983). The current study provides a critical test of self-enhancement, exposure, and self-categorization explanations for first- (i.e., self more influenced than others) and third-person perceptions.…

  15. Residential indoor and personal PM10 exposures of ambient origin based on chemical components.

    PubMed

    Xu, Jia; Bai, Zhipeng; You, Yan; Zhou, Jian; Zhang, Jiefeng; Niu, Can; Liu, Yating; Zhang, Nan; He, Fei; Ding, Xiao

    2014-07-01

    Many studies have focused on the relationships of particulate matter between indoor, outdoor and personal exposure; however, considerable uncertainties remain regarding the portion of indoor particles and personal exposure of ambient origin. As part of the Particle Exposure Assessment for Community Elderly (PEACE) study in Tianjin, China, we have further interpreted the relationships between personal, residential indoor, outdoor and community PM10 (particulate matter with aerodynamic diameters of less than 10 μm). Comparisons of the chemical compositions of PM10 samples were performed using the coefficient of divergence (COD). A robust regression method, least-trimmed squared (LTS) regression, was used to estimate the infiltration factors of PM10 from residential outdoor to indoor environments based on the particulate component concentrations. Personal exposures of ambient origin were also estimated. A relatively good correlation was found between the personal and indoor PM10 samples with respect to chemical composition. The infiltration factors (Finf) of the residential indoor-outdoor PM10 were 0.74±0.31 (mean±SD) in summer and 0.44±0.22 in winter, with medians of 0.98 and 0.48, respectively. The residential outdoor contributions to the indoor environments were 87±55 μg/m(3) in summer and 80±54 μg/m(3) in winter, with medians of 75 μg/m(3) and 61 μg/m(3), respectively. The personal exposures of ambient origin were 92±44 μg/m(3) in summer and 89±47 μg/m(3) in winter, with medians of 81 μg/m(3) and 80 μg/m(3), respectively. This study indicated that the infiltrations in an urbanized area in North China exhibited a seasonal difference: the residential outdoor contributions to residential indoor environments were larger in summer due to the higher use of natural ventilation. The personal exposures of ambient origin were comparable during the different seasons, whereas those of non-ambient origin were higher in summer than in winter.

  16. An assessment of air pollutant exposure methods in Mexico City, Mexico.

    PubMed

    Rivera-González, Luis O; Zhang, Zhenzhen; Sánchez, Brisa N; Zhang, Kai; Brown, Daniel G; Rojas-Bracho, Leonora; Osornio-Vargas, Alvaro; Vadillo-Ortega, Felipe; O'Neill, Marie S

    2015-05-01

    Geostatistical interpolation methods to estimate individual exposure to outdoor air pollutants can be used in pregnancy cohorts where personal exposure data are not collected. Our objectives were to a) develop four assessment methods (citywide average (CWA); nearest monitor (NM); inverse distance weighting (IDW); and ordinary Kriging (OK)), and b) compare daily metrics and cross-validations of interpolation models. We obtained 2008 hourly data from Mexico City's outdoor air monitoring network for PM10, PM2.5, O3, CO, NO2, and SO2 and constructed daily exposure metrics for 1,000 simulated individual locations across five populated geographic zones. Descriptive statistics from all methods were calculated for dry and wet seasons, and by zone. We also evaluated IDW and OK methods' ability to predict measured concentrations at monitors using cross validation and a coefficient of variation (COV). All methods were performed using SAS 9.3, except ordinary Kriging which was modeled using R's gstat package. Overall, mean concentrations and standard deviations were similar among the different methods for each pollutant. Correlations between methods were generally high (r=0.77 to 0.99). However, ranges of estimated concentrations determined by NM, IDW, and OK were wider than the ranges for CWA. Root mean square errors for OK were consistently equal to or lower than for the IDW method. OK standard errors varied considerably between pollutants and the computed COVs ranged from 0.46 (least error) for SO2 and PM10 to 3.91 (most error) for PM2.5. OK predicted concentrations measured at the monitors better than IDW and NM. Given the similarity in results for the exposure methods, OK is preferred because this method alone provides predicted standard errors which can be incorporated in statistical models. The daily estimated exposures calculated using these different exposure methods provide flexibility to evaluate multiple windows of exposure during pregnancy, not just trimester or pregnancy-long exposures. Many studies evaluating associations between outdoor air pollution and adverse pregnancy outcomes rely on outdoor air pollution monitoring data linked to information gathered from large birth registries, and often lack residence location information needed to estimate individual exposure. This study simulated 1,000 residential locations to evaluate four air pollution exposure assessment methods, and describes possible exposure misclassification from using spatial averaging versus geostatistical interpolation models. An implication of this work is that policies to reduce air pollution and exposure among pregnant women based on epidemiologic literature should take into account possible error in estimates of effect when spatial averages alone are evaluated.

  17. Investigation of Childhood Lead Poisoning from Parental Take-Home Exposure from an Electronic Scrap Recycling Facility — Ohio, 2012.

    PubMed

    Newman, Nick; Jones, Camille; Page, Elena; Ceballos, Diana; Oza, Aalok

    2015-07-17

    Lead affects the developing nervous system of children, and no safe blood lead level (BLL) in children has been identified. Elevated BLLs in childhood are associated with hyperactivity, attention problems, conduct problems, and impairment in cognition. Young children are at higher risk for environmental lead exposure from putting their hands or contaminated objects in their mouth. Although deteriorating lead paint in pre-1979 housing is the most common source of lead exposure in children, data indicate that ≥30% of children with elevated BLLs were exposed through a source other than paint. Take-home contamination occurs when lead dust is transferred from the workplace on employees' skin, clothing, shoes, and other personal items to their car and home. Recycling of used electronics (e-scrap) is a relatively recent source of exposure to developmental neurotoxicants, including lead. In 2010, the Cincinnati Health Department and Cincinnati Children's Hospital Pediatric Environmental Health Specialty Unit (PEHSU) investigated two cases of childhood lead poisoning in a single family. In 2012, CDC's National Institute for Occupational Safety and Health (NIOSH) learned about the lead poisonings during an evaluation of the e-scrap recycling facility where the father of the two children with lead poisoning worked. This report summarizes the case investigation. Pediatricians should ask about parents' occupations and hobbies that might involve lead when evaluating elevated BLLs in children, in routine lead screening questionnaires, and in evaluating children with signs or symptoms of lead exposure.

  18. Cross-sectional study of social behaviors in preschool children and exposure to flame retardants.

    PubMed

    Lipscomb, Shannon T; McClelland, Megan M; MacDonald, Megan; Cardenas, Andres; Anderson, Kim A; Kile, Molly L

    2017-03-09

    Children are exposed to flame retardants from the built environment. Brominated diphenyl ethers (BDE) and organophosphate-based flame retardants (OPFRs) are associated with poorer neurocognitive functioning in children. Less is known, however, about the association between these classes of compounds and children's emotional and social behaviors. The objective of this study was to determine if flame retardant exposure was associated with measurable differences in social behaviors among children ages 3-5 years. We examined teacher-rated social behaviors measured using the Social Skills Improvement Rating Scale (SSIS) and personal exposure to flame retardants in children aged 3-5 years who attended preschool (n = 72). Silicone passive samplers worn for 7 days were used to assess personal exposure to 41 compounds using gas chromatography-mass spectrophotometer. These concentrations were then summed into total BDE and total OPFR exposure prior to natural log transformation. Separate generalized additive models were used to evaluate the relationship between seven subscales of the SSIS and lnΣBDE or lnΣOPFR adjusting for other age, sex, adverse social experiences, and family context. All children were exposed to a mixture of flame retardant compounds. We observed a dose dependent relationship between lnΣOPFR and two subscales where children with higher exposures were rated by their preschool teachers as having less responsible behavior (p = 0.07) and more externalizing behavior problems (p = 0.03). Additionally, children with higher lnΣBDE exposure were rated by teachers as less assertive (p = 0.007). We observed a cross-sectional association between children's exposure to flame retardant compounds and teacher-rated social behaviors among preschool-aged children. Children with higher flame retardant exposures exhibited poorer social skills in three domains that play an important role in a child's ability to succeed academically and socially.

  19. Aggregate exposure approaches for parabens in personal care products: a case assessment for children between 0 and 3 years old

    PubMed Central

    Gosens, Ilse; Delmaar, Christiaan J E; ter Burg, Wouter; de Heer, Cees; Schuur, A Gerlienke

    2014-01-01

    In the risk assessment of chemical substances, aggregation of exposure to a substance from different sources via different pathways is not common practice. Focusing the exposure assessment on a substance from a single source can lead to a significant underestimation of the risk. To gain more insight on how to perform an aggregate exposure assessment, we applied a deterministic (tier 1) and a person-oriented probabilistic approach (tier 2) for exposure to the four most common parabens through personal care products in children between 0 and 3 years old. Following a deterministic approach, a worst-case exposure estimate is calculated for methyl-, ethyl-, propyl- and butylparaben. As an illustration for risk assessment, Margins of Exposure (MoE) are calculated. These are 991 and 4966 for methyl- and ethylparaben, and 8 and 10 for propyl- and butylparaben, respectively. In tier 2, more detailed information on product use has been obtained from a small survey on product use of consumers. A probabilistic exposure assessment is performed to estimate the variability and uncertainty of exposure in a population. Results show that the internal exposure for each paraben is below the level determined in tier 1. However, for propyl- and butylparaben, the percentile of the population with an exposure probability above the assumed “safe” MoE of 100, is 13% and 7%, respectively. In conclusion, a tier 1 approach can be performed using simple equations and default point estimates, and serves as a starting point for exposure and risk assessment. If refinement is warranted, the more data demanding person-oriented probabilistic approach should be used. This probabilistic approach results in a more realistic exposure estimate, including the uncertainty, and allows determining the main drivers of exposure. Furthermore, it allows to estimate the percentage of the population for which the exposure is likely to be above a specific value. PMID:23801276

  20. Has the rolling uterus finally gathered moss? Somatization and malingering of cognitive deficit in six cases of "toxic mold" exposure.

    PubMed

    Stone, David C; Boone, Kyle B; Back-Madruga, Carla; Lesser, Ira M

    2006-12-01

    This article reports six cases of litigants claiming neuropsychiatric impairment due to toxic mold exposure. In spite of recent growth in personal injury claims due to mold, numerous reviews of the literature have failed to find an association between environmental exposure to mold and neuropsychiatric and/or neuropsychological damage. We report data on six patients claiming harm, 4 of whom revealed a long history of somatization by history and psychological testing, and 2 of whom were shown to be malingering based on multiple indicators of non-credible performance. Of the 6 patients, only the 2 somatoform patients who were also depressed showed credible evidence of neuropsychological dysfunction. We review two other studies that have examined the link between mold exposure and cognitive impairment and discuss their limitations in view of the presenting behaviors of these 6 patients. Until the literature has established a credible link between mold and neuropsychiatric/neuropsychological impairment, jurists and clinicians must consider the ethics and potential harm of exposing somatoform patients to multiple unwarranted medical evaluations. Principles for forensic evaluations in this special population are reviewed.

  1. Exposure to virtual social interactions in the treatment of social anxiety disorder: A randomized controlled trial.

    PubMed

    Kampmann, Isabel L; Emmelkamp, Paul M G; Hartanto, Dwi; Brinkman, Willem-Paul; Zijlstra, Bonne J H; Morina, Nexhmedin

    2016-02-01

    This randomized controlled trial investigated the efficacy of a stand-alone virtual reality exposure intervention comprising verbal interaction with virtual humans to target heterogeneous social fears in participants with social anxiety disorder. Sixty participants (Mage = 36.9 years; 63.3% women) diagnosed with social anxiety disorder were randomly assigned to individual virtual reality exposure therapy (VRET), individual in vivo exposure therapy (iVET), or waiting-list. Multilevel regression analyses revealed that both treatment groups improved from pre-to postassessment on social anxiety symptoms, speech duration, perceived stress, and avoidant personality disorder related beliefs when compared to the waiting-list. Participants receiving iVET, but not VRET, improved on fear of negative evaluation, speech performance, general anxiety, depression, and quality of life relative to those on waiting-list. The iVET condition was further superior to the VRET condition regarding decreases in social anxiety symptoms at post- and follow-up assessments, and avoidant personality disorder related beliefs at follow-up. At follow-up, all improvements were significant for iVET. For VRET, only the effect for perceived stress was significant. VRET containing extensive verbal interaction without any cognitive components can effectively reduce complaints of generalized social anxiety disorder. Future technological and psychological improvements of virtual social interactions might further enhance the efficacy of VRET for social anxiety disorder. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Health-hazard evaluation report HETA 89-374-2197, Exxon Baytown Refinery, Baytown, Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinnes, G.M.; Kawamoto, M.M.

    1992-03-01

    In response to a request from The Gulf Coast Industrial Workers Union (GCIWU), an investigation was begun of possible hazardous working conditions at the Exxon Baytown Refinery (SIC-2911), Baytown, Texas. Some process technicians had reported that they experienced heart attack type symptoms while or after they were involved in unloading the diesel fuel cetane improver, 2-ethylhexyl-nitrate (27247967), from tanker trucks. Approximately every 5 days the 2-ethylhexyl-nitrate was delivered to the facility in a 6000 gallon tanker truck, and pumped into a 15,000 gallon storage tank. Nine personal breathing zone and general area air samples were collected during the cetane improvermore » unloading operation. Only three of the nine samples had detectable levels of 2-ethylhexyl-nitrate, ranging from 0.05 to 0.48 parts per million (ppm); however, the validity of the data was questionable due to difficulties in analysis. Of the 11 interviewed employees, six reported symptoms related to cetane improver exposure. Often the symptoms were temporally related to direct skin exposure. Some of the symptoms were headache, lightheadedness or dizziness, chest discomfort or palpitations, and nausea. Personal protective equipment procedures had been implemented, decreasing the occurence of symptomatic episodes. The authors conclude that symptoms were consistent with excessive exposure to nitrated esters. The authors recommend that efforts continue to limit the exposure to the chemical.« less

  3. Professional ski waxers' exposure to PFAS and aerosol concentrations in gas phase and different particle size fractions.

    PubMed

    Nilsson, Helena; Kärrman, Anna; Rotander, Anna; van Bavel, Bert; Lindström, Gunilla; Westberg, Håkan

    2013-04-01

    Previous reports show that professional ski waxers have elevated blood levels of perfluorinated substances (PFAS) such as perfluorooctanoate (PFOA) and are exposed to very high concentrations of PFAS in air during ski waxing. Aerosol exposure increases the risk of cardiovascular disease, and PFOA is a potential hormonal disruptor and carcinogen, and can affect the fatty acid metabolism. Animal studies have shown that 8:2 FTOH can undergo biotransformation to PFOA. For the first time, this study presents an occupational scenario of professional ski waxers who are exposed to extremely high dust levels as well as per- and polyfluorinated compounds. Personal and fixed measurements of total aerosol, inhalable and respirable fractions were performed during World Cup events 2007-2010. The occupational exposure limit (OEL) is exceeded in 37% of the personal measurements with concentrations up to 15 mg m(-3) in air. There are differences between personal and area total aerosol concentrations with levels from personal measurements twice as high as those from the area measurements. The personal levels for FTOH ranged up to 996 μg m(-3) (mean = 114 μg m(-3)) and for PFOA up to 4.89 μg m(-3) (mean = 0.53 μg m(-3)) in ENV+ sorbent samples as compared to the general exposure levels from air reaching only low ng m(-3) (<30 ng m(-3)) levels. FTOHs were not detected in aerosols but PFOA showed an average level of 12 μg m(-3) (range = 1.2-47 μg m(-3)). The ski waxers' exposure to paraffin fumes and PFAS is not in compliance with the occupational exposure standards and by far exceed the general populations' exposure. Preventive measures must be taken to minimize the exposure in this occupational group.

  4. Biological Monitoring of Blood Naphthalene Levels as a Marker of Occupational Exposure to PAHs among Auto-Mechanics and Spray Painters in Rawalpindi

    PubMed Central

    2011-01-01

    Background Routine exposure to chemical contaminants in workplace is a cause for concern over potential health risks to workers. In Pakistan, reports on occupational exposure and related health risks are almost non-existent, which reflects the scarce availability of survey data and criteria for determining whether an unsafe exposure has occurred. The current study was designed to evaluate blood naphthalene (NAPH) levels as an indicator of exposure to polycyclic aromatic hydrocarbons (PAHs) among automobile workshop mechanics (MCs) and car-spray painters (PNs). We further determined the relationship between blood NAPH levels and personal behavioural, job related parameters and various environmental factors that may further be associated with elevated risks of occupational exposures to PAHs. Methods Sixty blood samples (n = 20 for each group i.e. MC, PN and control group) were collected to compare their blood NAPH levels among exposed (MCs and PNs) and un-exposed (control) groups. Samples were analyzed using high pressure liquid chromatography (HPLC). Data regarding demographic aspects of the subjects and their socioeconomic features were collected using a questionnaire. Subjects were also asked to report environmental hygiene conditions of their occupational environment. Results We identified automobile work areas as potential sites for PAHs exposure, which was reflected by higher blood NAPH levels among MCs. Blood NAPH levels ranged from 53.7 to 1980.6 μgL-1 and 54.1 to 892.9 μgL-1 among MCs and PNs respectively. Comparison within each group showed that smoking enhanced exposure risks several fold and both active and passive smoking were among personal parameters that were significantly correlated with log-transformed blood NAPH levels. For exposed groups, work hours and work experience were job related parameters that showed strong associations with the increase in blood NAPH levels. Poor workplace hygiene and ventilation were recognized as most significant predictors related to differences among workplaces that may enhance the extent of exposure to chemical contaminants. Conclusions It appeared that chemical exposure at the workplace may be influenced by multiple environmental factors, but poor workplace hygiene and duration of exposure (long work hours) were the most important factors. Smoking and negligence of workers regarding self protection were among some of the important personal behaviours than can be addressed with better training. There is also a need to improve workplaces hygiene and to rationalize work hours to minimize health risks. Since smoking was an important confounding factor that supplemented most of the actual occupational exposure, a study based on non-smoker subjects is needed to separate out the effects of smoking and other confounding factors that may obscure measurements of actual extent of occupational exposure. PMID:21668991

  5. Evaluation of airborne asbestos exposure from routine handling of asbestos-containing wire gauze pads in the research laboratory.

    PubMed

    Garcia, Ediberto; Newfang, Daniel; Coyle, Jayme P; Blake, Charles L; Spencer, John W; Burrelli, Leonard G; Johnson, Giffe T; Harbison, Raymond D

    2018-07-01

    Three independently conducted asbestos exposure evaluations were conducted using wire gauze pads similar to standard practice in the laboratory setting. All testing occurred in a controlled atmosphere inside an enclosed chamber simulating a laboratory setting. Separate teams consisting of a laboratory technician, or technician and assistant simulated common tasks involving wire gauze pads, including heating and direct wire gauze manipulation. Area and personal air samples were collected and evaluated for asbestos consistent with the National Institute of Occupational Safety Health method 7400 and 7402, and the Asbestos Hazard Emergency Response Act (AHERA) method. Bulk gauze pad samples were analyzed by Polarized Light Microscopy and Transmission Electron Microscopy to determine asbestos content. Among air samples, chrysotile asbestos was the only fiber found in the first and third experiments, and tremolite asbestos for the second experiment. None of the air samples contained asbestos in concentrations above the current permissible regulatory levels promulgated by OSHA. These findings indicate that the level of asbestos exposure when working with wire gauze pads in the laboratory setting is much lower than levels associated with asbestosis or asbestos-related lung cancer and mesothelioma. Copyright © 2018. Published by Elsevier Inc.

  6. [PAH exposure in asphalt workers].

    PubMed

    Garattini, Siria; Sarnico, Michela; Benvenuti, Alessandra; Barbieri, P G

    2010-01-01

    There has been interest in evaluating the potential carcinogenicity of bitumen fumes in asphalt workers since the 1960's. The IARC classified air-refined bitumens as possible human carcinogens, while coal-tar fumes were classified as known carcinogens. Occupational/environmental PAH exposure can be measured by several urinary markers. Urinary 1-OHP has become the most commonly used biological marker of PAH exposure in asphalt workers. The aim of this study was to assess asphalt workers' exposure levels by monitoring 1-OHP urinary excretion and compare this data with those of non-occupationally exposed subjects. We investigated three groups of asphalt workers: 100 in summer 2007, 29 in winter 2007, and 148 during summer 2008 and compared 1-OHP urinary concentrations using Kruskall-Wallis test. Median 1-OHP urinary concentrations during the three biomonitoring sampling periods were 0.65, 0.17 and 0.53 microg/g creatinine respectively. There was a significant difference in 1-OHP values between the three groups (p < 0.001). our study showed that PAH exposure of asphalt workers' is higher than that observed in the general population and in workers in urban areas. Our results suggest that PAH exposure in the three groups studied is not sufficiently kept under control by the use of personal protective equipment and that biomonitoring is useful in evaluating PAH exposure and for risk assessment. Regulations need to be enforced for workers exposed to cancer risk, such as the register of workers exposed to carcinogens.

  7. Measured occupational solar UVR exposures of lifeguards in pool settings.

    PubMed

    Gies, Peter; Glanz, Karen; O'Riordan, David; Elliott, Tom; Nehl, Eric

    2009-08-01

    The aim of this study was to measure ultraviolet radiation (UVR) exposures of lifeguards in pool settings and evaluate their personal UVR protective practices. Lifeguards (n = 168) wore UVR sensitive polysulfone (PS) film badges in wrist bracelets on 2 days and completed a survey and diary covering sun protection use. Analyses were used to describe sun exposure and sun protection practices, to compare UVR exposure across locations, and to compare findings with recommended threshold limits for occupational exposure. The measured UVR exposures varied with location, ranging from high median UVR exposures of 6.2 standard erythemal doses (SEDs) to the lowest median of 1.7 SEDs. More than 74% of the lifeguards' PS badges showed UVR above recommended threshold limits for occupational exposure. Thirty-nine percent received more than four times the limit and 65% of cases were sufficient to induce sunburn. The most common protective behaviors were wearing sunglasses and using sunscreen, but sun protection was often inadequate. At-risk individuals were exposed to high levels of UVR in excess of occupational limits and though appropriate types of sun protection were used, it was not used consistently and more than 50% of lifeguards reported being sunburnt at least twice during the previous year.

  8. Resilience Building in Students: The Role of Academic Self-Efficacy

    PubMed Central

    Cassidy, Simon

    2015-01-01

    Self-efficacy relates to an individual's perception of their capabilities. It has a clear self-evaluative dimension leading to high or low perceived self-efficacy. Individual differences in perceived self-efficacy have been shown to be better predictors of performance than previous achievement or ability and seem particularly important when individuals face adversity. The study investigated the nature of the association between academic self-efficacy (ASE) and academic resilience. Undergraduate student participants (N = 435) were exposed to an adverse situation case vignette describing either personal or vicarious academic adversity. ASE was measured pre-exposure and academic resilience was measured post-exposure. ASE was correlated with, and a significant predictor of, academic resilience and students exhibited greater academic resilience when responding to vicarious adversity compared to personal adversity. Identifying constructs that are related to resilience and establishing the precise nature of how such constructs influence academic resilience will assist the development of interventions aimed at promoting resilience in students. PMID:26640447

  9. A non-inferiority trial of Prolonged Exposure for posttraumatic stress disorder: In person versus home-based telehealth.

    PubMed

    Acierno, Ron; Knapp, Rebecca; Tuerk, Peter; Gilmore, Amanda K; Lejuez, Carl; Ruggiero, Kenneth; Muzzy, Wendy; Egede, Leonard; Hernandez-Tejada, Melba A; Foa, Edna B

    2017-02-01

    This is the first randomized controlled trial to evaluate non-inferiority of Prolonged Exposure (PE) delivered via home-based telehealth (HBT) compared to standard in-person (IP) PE. One-hundred thirty two Veterans recruited from a Southeastern Veterans Affairs Medical Center and affiliated University who met criteria for posttraumatic stress disorder (PTSD) were randomized to receive PE via HBT or PE via IP. Results indicated that PE-HBT was non-inferior to PE-IP in terms of reducing PTSD scores at post-treatment, 3 and 6 month follow-up. However, non-inferiority hypotheses for depression were only supported at 6 month follow-up. HBT has great potential to reduce patient burden associated with receiving treatment in terms of travel time, travel cost, lost work, and stigma without sacrificing efficacy. These findings indicate that telehealth treatment delivered directly into patients' homes may dramatically increase the reach of this evidence-based therapy for PTSD without diminishing effectiveness. Published by Elsevier Ltd.

  10. Alexithymia tendencies and mere exposure alter social approachability judgments.

    PubMed

    Campbell, Darren W; McKeen, Nancy A

    2011-04-01

    People have a fundamental motivation for social connection and social engagement, but how do they decide whom to approach in ambiguous social situations? Subjective feelings often influence such decisions, but people vary in awareness of their feelings. We evaluated two opposing hypotheses based on visual familiarity effects and emotional awareness on social approachability judgments. These hypotheses differ in their interpretation of the familiarity or mere exposure effect with either an affective or cognitive interpretation. The responses of our 128-student sample supported the cognitive interpretation. Lower emotional awareness or higher alexithymia was associated with higher approachability judgments to familiarized faces and lower approachability judgments to novel faces. These findings were independent of the Big Five personality factors. The results indicate that individual differences in emotional awareness should be integrated into social decision-making models. The results also suggest that cognitive-perceptual alterations may underlie the poorer social outcomes associated with alexithymia. © 2011 The Authors. Journal of Personality © 2011, Wiley Periodicals, Inc.

  11. From parallel to intersecting narratives in cases of sexual assault.

    PubMed

    Bletzer, Keith V; Koss, Mary P

    2012-03-01

    Restorative justice alternatives to criminal justice are designed to balance the needs of victims, offenders, families, friends, and the community at large to achieve social justice, repair of victims, and deterrence of crime. In the model we evaluated from RESTORE (Responsibility and Equity for Sexual Transgressions Offering a Restorative Experience), each offender and victim received individual services and met in guided conferencing to mutually determine reparative actions for the offender. At the exit meeting, the offender, as the responsible person, read a written apology to the survivor/victim. In this article, we analyze the expression of empathy in the apology, in which the initial mitigation of responsibility in early documents was replaced by acknowledgment of harm to the survivor/victim and acceptance of responsibility for the assault. Those accused of felony rape and those targeting a visible person in cases of misdemeanor indecent exposure expressed greater regret and remorse than offenders of indecent exposure with an indeterminate victim.

  12. Development and evaluation of an ultrasonic personal aerosol sampler.

    PubMed

    Volckens, J; Quinn, C; Leith, D; Mehaffy, J; Henry, C S; Miller-Lionberg, D

    2017-03-01

    Assessing personal exposure to air pollution has long proven challenging due to technological limitations posed by the samplers themselves. Historically, wearable aerosol monitors have proven to be expensive, noisy, and burdensome. The objective of this work was to develop a new type of wearable monitor, an ultrasonic personal aerosol sampler (UPAS), to overcome many of the technological limitations in personal exposure assessment. The UPAS is a time-integrated monitor that features a novel micropump that is virtually silent during operation. A suite of onboard environmental sensors integrated with this pump measure and record mass airflow (0.5-3.0 L/min, accurate within 5%), temperature, pressure, relative humidity, light intensity, and acceleration. Rapid development of the UPAS was made possible through recent advances in low-cost electronics, open-source programming platforms, and additive manufacturing for rapid prototyping. Interchangeable cyclone inlets provided a close match to the EPA PM 2.5 mass criterion (within 5%) for device flows at either 1.0 or 2.0 L/min. Battery life varied from 23 to 45 hours depending on sample flow rate and selected filter media. Laboratory tests of the UPAS prototype demonstrate excellent agreement with equivalent federal reference method samplers for gravimetric analysis of PM 2.5 across a broad range of concentrations. © 2016 The Authors. Indoor Air published by John Wiley & Sons Ltd.

  13. Using Global Positioning Systems (GPS) and temperature data to generate time-activity classifications for estimating personal exposure in air monitoring studies: an automated method.

    PubMed

    Nethery, Elizabeth; Mallach, Gary; Rainham, Daniel; Goldberg, Mark S; Wheeler, Amanda J

    2014-05-08

    Personal exposure studies of air pollution generally use self-reported diaries to capture individuals' time-activity data. Enhancements in the accuracy, size, memory and battery life of personal Global Positioning Systems (GPS) units have allowed for higher resolution tracking of study participants' locations. Improved time-activity classifications combined with personal continuous air pollution sampling can improve assessments of location-related air pollution exposures for health studies. Data was collected using a GPS and personal temperature from 54 children with asthma living in Montreal, Canada, who participated in a 10-day personal air pollution exposure study. A method was developed that incorporated personal temperature data and then matched a participant's position against available spatial data (i.e., road networks) to generate time-activity categories. The diary-based and GPS-generated time-activity categories were compared and combined with continuous personal PM2.5 data to assess the impact of exposure misclassification when using diary-based methods. There was good agreement between the automated method and the diary method; however, the automated method (means: outdoors = 5.1%, indoors other =9.8%) estimated less time spent in some locations compared to the diary method (outdoors = 6.7%, indoors other = 14.4%). Agreement statistics (AC1 = 0.778) suggest 'good' agreement between methods over all location categories. However, location categories (Outdoors and Transit) where less time is spent show greater disagreement: e.g., mean time "Indoors Other" using the time-activity diary was 14.4% compared to 9.8% using the automated method. While mean daily time "In Transit" was relatively consistent between the methods, the mean daily exposure to PM2.5 while "In Transit" was 15.9 μg/m3 using the automated method compared to 6.8 μg/m3 using the daily diary. Mean times spent in different locations as categorized by a GPS-based method were comparable to those from a time-activity diary, but there were differences in estimates of exposure to PM2.5 from the two methods. An automated GPS-based time-activity method will reduce participant burden, potentially providing more accurate and unbiased assessments of location. Combined with continuous air measurements, the higher resolution GPS data could present a different and more accurate picture of personal exposures to air pollution.

  14. Using Global Positioning Systems (GPS) and temperature data to generate time-activity classifications for estimating personal exposure in air monitoring studies: an automated method

    PubMed Central

    2014-01-01

    Background Personal exposure studies of air pollution generally use self-reported diaries to capture individuals’ time-activity data. Enhancements in the accuracy, size, memory and battery life of personal Global Positioning Systems (GPS) units have allowed for higher resolution tracking of study participants’ locations. Improved time-activity classifications combined with personal continuous air pollution sampling can improve assessments of location-related air pollution exposures for health studies. Methods Data was collected using a GPS and personal temperature from 54 children with asthma living in Montreal, Canada, who participated in a 10-day personal air pollution exposure study. A method was developed that incorporated personal temperature data and then matched a participant’s position against available spatial data (i.e., road networks) to generate time-activity categories. The diary-based and GPS-generated time-activity categories were compared and combined with continuous personal PM2.5 data to assess the impact of exposure misclassification when using diary-based methods. Results There was good agreement between the automated method and the diary method; however, the automated method (means: outdoors = 5.1%, indoors other =9.8%) estimated less time spent in some locations compared to the diary method (outdoors = 6.7%, indoors other = 14.4%). Agreement statistics (AC1 = 0.778) suggest ‘good’ agreement between methods over all location categories. However, location categories (Outdoors and Transit) where less time is spent show greater disagreement: e.g., mean time “Indoors Other” using the time-activity diary was 14.4% compared to 9.8% using the automated method. While mean daily time “In Transit” was relatively consistent between the methods, the mean daily exposure to PM2.5 while “In Transit” was 15.9 μg/m3 using the automated method compared to 6.8 μg/m3 using the daily diary. Conclusions Mean times spent in different locations as categorized by a GPS-based method were comparable to those from a time-activity diary, but there were differences in estimates of exposure to PM2.5 from the two methods. An automated GPS-based time-activity method will reduce participant burden, potentially providing more accurate and unbiased assessments of location. Combined with continuous air measurements, the higher resolution GPS data could present a different and more accurate picture of personal exposures to air pollution. PMID:24885722

  15. Quantitative plasma biomarker analysis in HDI exposure assessment.

    PubMed

    Flack, Sheila L; Fent, Kenneth W; Trelles Gaines, Linda G; Thomasen, Jennifer M; Whittaker, Steve; Ball, Louise M; Nylander-French, Leena A

    2010-01-01

    Quantification of amines in biological samples is important for evaluating occupational exposure to diisocyanates. In this study, we describe the quantification of 1,6-hexamethylene diamine (HDA) levels in hydrolyzed plasma of 46 spray painters applying 1,6-hexamethylene diisocyanate (HDI)-containing paint in vehicle repair shops collected during repeated visits to their workplace and their relationship with dermal and inhalation exposure to HDI monomer. HDA was detected in 76% of plasma samples, as heptafluorobutyryl derivatives, and the range of HDA concentrations was < or =0.02-0.92 microg l(-1). After log-transformation of the data, the correlation between plasma HDA levels and HDI inhalation exposure measured on the same workday was low (N = 108, r = 0.22, P = 0.026) compared with the correlation between plasma HDA levels and inhalation exposure occurring approximately 20 to 60 days before blood collection (N = 29, r = 0.57, P = 0.0014). The correlation between plasma HDA levels and HDI dermal exposure measured on the same workday, although statistically significant, was low (N = 108, r = 0.22, P = 0.040) while the correlation between HDA and dermal exposure occurring approximately 20 to 60 days before blood collection was slightly improved (N = 29, r = 0.36, P = 0.053). We evaluated various workplace factors and controls (i.e. location, personal protective equipment use and paint booth type) as modifiers of plasma HDA levels. Workers using a downdraft-ventilated booth had significantly lower plasma HDA levels relative to semi-downdraft and crossdraft booth types (P = 0.0108); this trend was comparable to HDI inhalation and dermal exposure levels stratified by booth type. These findings indicate that HDA concentration in hydrolyzed plasma may be used as a biomarker of cumulative inhalation and dermal exposure to HDI and for investigating the effectiveness of exposure controls in the workplace.

  16. Between-User Reliability of Tier 1 Exposure Assessment Tools Used Under REACH.

    PubMed

    Lamb, Judith; Galea, Karen S; Miller, Brian G; Hesse, Susanne; Van Tongeren, Martie

    2017-10-01

    When applying simple screening (Tier 1) tools to estimate exposure to chemicals in a given exposure situation under the Registration, Evaluation, Authorisation and restriction of CHemicals Regulation 2006 (REACH), users must select from several possible input parameters. Previous studies have suggested that results from exposure assessments using expert judgement and from the use of modelling tools can vary considerably between assessors. This study aimed to investigate the between-user reliability of Tier 1 tools. A remote-completion exercise and in person workshop were used to identify and evaluate tool parameters and factors such as user demographics that may be potentially associated with between-user variability. Participants (N = 146) generated dermal and inhalation exposure estimates (N = 4066) from specified workplace descriptions ('exposure situations') and Tier 1 tool combinations (N = 20). Interactions between users, tools, and situations were investigated and described. Systematic variation associated with individual users was minor compared with random between-user variation. Although variation was observed between choices made for the majority of input parameters, differing choices of Process Category ('PROC') code/activity descriptor and dustiness level impacted most on the resultant exposure estimates. Exposure estimates ranging over several orders of magnitude were generated for the same exposure situation by different tool users. Such unpredictable between-user variation will reduce consistency within REACH processes and could result in under-estimation or overestimation of exposure, risking worker ill-health or the implementation of unnecessary risk controls, respectively. Implementation of additional support and quality control systems for all tool users is needed to reduce between-assessor variation and so ensure both the protection of worker health and avoidance of unnecessary business risk management expenditure. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  17. Long-Term Ethylene Oxide Exposure Trends in US Hospitals: Relationship With OSHA Regulatory and Enforcement Actions

    PubMed Central

    LaMontagne, Anthony D.; Oakes, J. Michael; Lopez Turley, Ruth N.

    2004-01-01

    Objectives. We assessed long-term trends in ethylene oxide (EtO) worker exposures for the purposes of exposure surveillance and evaluation of the impacts of the Occupational Safety and Health Administration (OSHA) 1984 and 1988 EtO standards. Methods. We obtained exposure data from a large commercial vendor and processor of EtO passive dosimeters. Personal samples (87 582 workshift [8-hr] and 46 097 short-term [15-min] samples) from 2265 US hospitals were analyzed for time trends from 1984 through 2001 and compared with OSHA enforcement data. Results. Exposures declined steadily for the first several years after the OSHA standards were set. Workshift exposures continued to taper off and have remained low and constant through 2001. However, since 1996, the probability of exceeding the short-term excursion limit has increased. This trend coincides with a decline in enforcement of the EtO standard. Conclusions. Results indicate the need for renewed intervention efforts to preserve gains made following the passage and implementation of the 1984 and 1988 EtO standards. PMID:15333324

  18. Progress in cadmium-related health effects in persons with high environmental exposure in northwestern Thailand: A five-year follow-up

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swaddiwudhipong, Witaya, E-mail: swaddi@hotmail.com; Limpatanachote, Pisit; Mahasakpan, Pranee

    Food-borne cadmium was the principal source of exposure for persons living in the 12 cadmium-contaminated villages in Mae Sot District, Tak Province, northwestern Thailand. This report presents progress in cadmium-related health effects among persons with high cadmium exposure. The study included 436 persons who had urinary cadmium levels {>=}5 {mu}g/g creatinine and were screened for urinary cadmium, renal function, hypertension, diabetes and urinary stones in 2005 (baseline) and 2010 (5-year follow-up). Study renal biomarkers included urinary excretion of {beta}{sub 2}-microglobulin ({beta}{sub 2}-MG), total protein and calcium, serum creatinine and glomerular filtration rate (GFR). The geometric mean level of urinary cadmiummore » statistically significantly reduced from 9.5{+-}1.6 {mu}g/g creatinine in 2005 to 8.8{+-}1.6 {mu}g/g creatinine in 2010. Compared to baseline, the follow-up examination revealed significant increases in urinary {beta}{sub 2}-MG (tubular effect), urinary total protein and serum creatinine, and a decrease in GFR (glomerular effects). Progressive renal dysfunctions were similarly observed in persons both with and without reduction in cadmium intake. Significant increases in prevalence of hypertension, diabetes and urinary stones were also detected at follow-up. These three disorders were found to markedly impair renal functions in the study persons. Our study indicates that in persons with prolonged excessive cadmium exposure, toxic health effects may progress even after exposure reduction. Renal damage from cadmium can be due to its direct nephrotoxic effect and also through the related disorders causing nephropathy.« less

  19. Changes in spine loading patterns throughout the workday as a function of experience, lift frequency, and personality.

    PubMed

    Chany, Anne-Marie; Parakkat, Julia; Yang, Gang; Burr, Deborah L; Marras, William S

    2006-01-01

    Psychosocial stressors have been associated with low back pain reporting. However, response to psychosocial risk factors may be dependent on the individual's personality type that, in turn, can affect muscle recruitment and spine loading. This study explores how personality might be associated with spine loading during repetitive lifting performed throughout an entire work shift. Assess spine loading as a function of an individual's personality type during repetitive, long-term exposure to a materials handling tasks. Laboratory experiment where experienced and inexperienced participants performed repetitive, asymmetric lifts at various load and lift frequency levels throughout a series of 8-hour exposure periods. Spine loads were monitored throughout the work period. Twelve novice and 12 experienced materials handlers who were asymptomatic for back pain. Spine compression, anterior-posterior (A/P) shear, and lateral shear at the L5-S1 level. Participants were categorized into personality types based upon the Myers-Briggs personality type indicator. An electromyography-assisted biomechanical model was used to assess spine compression, A/P shear, and lateral shear throughout the exposure period. The results indicate that intuitors had higher shear spinal loading regardless of moment exposure, lift frequency, and time through the work period, compared with the sensor personality type. In addition, higher spine compressive and shear forces occurred in the perceiver personality compared with the judgers' personality trait, regardless of moment and, often, lift frequency. Novice lifters typically experienced greater spine loading. The results suggest that when there exists a personality-job environment mismatch, spinal loading increases via an increase in antagonistic co-contraction. The trends suggest that inherent personality characteristics may play a role in one's motor control strategies when performing a repetitive lifting task.

  20. Exploiting Aerobic Fitness To Reduce Risk Of Hypobaric Decompression Sickness

    NASA Technical Reports Server (NTRS)

    Conkin, Johnny; Gernhardt, Michael L.; Wessel, James H., III

    2007-01-01

    Decompression sickness (DCS) is multivariable. But we hypothesize an aerobically fit person is less likely to experience hypobaric DCS than an unfit person given that fitness is exploited as part of the denitrogenation (prebreathe, PB) process prior to an altitude exposure. Aerobic fitness is peak oxygen uptake (VO2pk, ml/kg/min). METHODS: Treadmill or cycle protocols were used over 15 years to determine VO2pks. We evaluated dichotomous DCS outcome and venous gas emboli (VGE) outcome detected in the pulmonary artery with Doppler ultrasound associated with VO2pk for two classes of experiments: 1) those with no PB or PB under resting conditions prior to ascent in an altitude chamber, and 2) PB that included exercise for some part of the PB. There were 165 exposures (mean VO2pk 40.5 +/- 7.6 SD) with 25 cases of DCS in the first protocol class and 172 exposures (mean VO2pk 41.4 +/- 7.2 SD) with 25 cases of DCS in the second. Similar incidence of the DCS (15.2% vs. 14.5%) and VGE (45.5% vs. 44.8%) between the two classes indicates that decompression stress was similar. The strength of association between outcome and VO2pk was evaluated using univariate logistic regression. RESULTS: An inverse relationship between the DCS outcome and VO2pk was evident, but the relationship was strongest when exercise was done as part of the PB (exercise PB, coef. = -0.058, p = 0.07; rest or no PB, coef. = -0.005, p = 0.86). There was no relationship between VGE outcome and VO2pk (exercise PB, coef. = -0.003, p = 0.89; rest or no PB, coef. = 0.014, p = 0.50). CONCLUSIONS: A significant change in probability of DCS was associated with fitness only when exercise was included in the denitrogenation process. We believe a fit person that exercises during PB efficiently eliminates dissolved nitrogen from tissues.

Top