This issue paper explains when and how to apply first-order attenuation rate constant calculations in monitored natural attenuation (MNA) studies. First-order attenuation rate constant calculations can be an important tool for evaluating natural attenuation processes at ground-wa...
Study on improving the turbidity measurement of the absolute coagulation rate constant.
Sun, Zhiwei; Liu, Jie; Xu, Shenghua
2006-05-23
The existing theories dealing with the evaluation of the absolute coagulation rate constant by turbidity measurement were experimentally tested for different particle-sized (radius = a) suspensions at incident wavelengths (lambda) ranging from near-infrared to ultraviolet light. When the size parameter alpha = 2pi a/lambda > 3, the rate constant data from previous theories for fixed-sized particles show significant inconsistencies at different light wavelengths. We attribute this problem to the imperfection of these theories in describing the light scattering from doublets through their evaluation of the extinction cross section. The evaluations of the rate constants by all previous theories become untenable as the size parameter increases and therefore hampers the applicable range of the turbidity measurement. By using the T-matrix method, we present a robust solution for evaluating the extinction cross section of doublets formed in the aggregation. Our experiments show that this new approach is effective in extending the applicability range of the turbidity methodology and increasing measurement accuracy.
Mahmood, Iftekhar
2004-01-01
The objective of this study was to evaluate the performance of Wagner-Nelson, Loo-Reigelman, and statistical moments methods in determining the absorption rate constant(s) in the presence of a secondary peak. These methods were also evaluated when there were two absorption rates without a secondary peak. Different sets of plasma concentration versus time data for a hypothetical drug following one or two compartment models were generated by simulation. The true ka was compared with the ka estimated by Wagner-Nelson, Loo-Riegelman and statistical moments methods. The results of this study indicate that Wagner-Nelson, Loo-Riegelman and statistical moments methods may not be used for the estimation of absorption rate constants in the presence of a secondary peak or when absorption takes place with two absorption rates.
Allison, Thomas C
2016-03-03
Rate constants for reactions of chemical compounds with hydroxyl radical are a key quantity used in evaluating the global warming potential of a substance. Experimental determination of these rate constants is essential, but it can also be difficult and time-consuming to produce. High-level quantum chemistry predictions of the rate constant can suffer from the same issues. Therefore, it is valuable to devise estimation schemes that can give reasonable results on a variety of chemical compounds. In this article, the construction and training of an artificial neural network (ANN) for the prediction of rate constants at 298 K for reactions of hydroxyl radical with a diverse set of molecules is described. Input to the ANN consists of counts of the chemical bonds and bends present in the target molecule. The ANN is trained using 792 (•)OH reaction rate constants taken from the NIST Chemical Kinetics Database. The mean unsigned percent error (MUPE) for the training set is 12%, and the MUPE of the testing set is 51%. It is shown that the present methodology yields rate constants of reasonable accuracy for a diverse set of inputs. The results are compared to high-quality literature values and to another estimation scheme. This ANN methodology is expected to be of use in a wide range of applications for which (•)OH reaction rate constants are required. The model uses only information that can be gathered from a 2D representation of the molecule, making the present approach particularly appealing, especially for screening applications.
A new approach using coagulation rate constant for evaluation of turbidity removal
NASA Astrophysics Data System (ADS)
Al-Sameraiy, Mukheled
2017-06-01
Coagulation-flocculation-sedimentation processes for treating three levels of bentonite synthetic turbid water using date seeds (DS) and alum (A) coagulants were investigated in the previous research work. In the current research, the same experimental results were used to adopt a new approach on a basis of using coagulation rate constant as an investigating parameter to identify optimum doses of these coagulants. Moreover, the performance of these coagulants to meet (WHO) turbidity standard was assessed by introducing a new evaluating criterion in terms of critical coagulation rate constant (kc). Coagulation rate constants (k2) were mathematically calculated in second order form of coagulation process for each coagulant. The maximum (k2) values corresponded to doses, which were obviously to be considered as optimum doses. The proposed criterion to assess the performance of coagulation process of these coagulants was based on the mathematical representation of (WHO) turbidity guidelines in second order form of coagulation process stated that (k2) for each coagulant should be ≥ (kc) for each level of synthetic turbid water. For all tested turbid water, DS coagulant could not satisfy it. While, A coagulant could satisfy it. The results obtained in the present research are exactly in agreement with the previous published results in terms of finding optimum doses for each coagulant and assessing their performances. On the whole, it is recommended considering coagulation rate constant to be a new approach as an indicator for investigating optimum doses and critical coagulation rate constant to be a new evaluating criterion to assess coagulants' performance.
NASA Astrophysics Data System (ADS)
Newsome, Ben; Evans, Mat
2017-12-01
Chemical rate constants determine the composition of the atmosphere and how this composition has changed over time. They are central to our understanding of climate change and air quality degradation. Atmospheric chemistry models, whether online or offline, box, regional or global, use these rate constants. Expert panels evaluate laboratory measurements, making recommendations for the rate constants that should be used. This results in very similar or identical rate constants being used by all models. The inherent uncertainties in these recommendations are, in general, therefore ignored. We explore the impact of these uncertainties on the composition of the troposphere using the GEOS-Chem chemistry transport model. Based on the Jet Propulsion Laboratory (JPL) and International Union of Pure and Applied Chemistry (IUPAC) evaluations we assess the influence of 50 mainly inorganic rate constants and 10 photolysis rates on tropospheric composition through the use of the GEOS-Chem chemistry transport model. We assess the impact on four standard metrics: annual mean tropospheric ozone burden, surface ozone and tropospheric OH concentrations, and tropospheric methane lifetime. Uncertainty in the rate constants for NO2 + OH →M HNO3 and O3 + NO → NO2 + O2 are the two largest sources of uncertainty in these metrics. The absolute magnitude of the change in the metrics is similar if rate constants are increased or decreased by their σ values. We investigate two methods of assessing these uncertainties, addition in quadrature and a Monte Carlo approach, and conclude they give similar outcomes. Combining the uncertainties across the 60 reactions gives overall uncertainties on the annual mean tropospheric ozone burden, surface ozone and tropospheric OH concentrations, and tropospheric methane lifetime of 10, 11, 16 and 16 %, respectively. These are larger than the spread between models in recent model intercomparisons. Remote regions such as the tropics, poles and upper troposphere are most uncertain. This chemical uncertainty is sufficiently large to suggest that rate constant uncertainty should be considered alongside other processes when model results disagree with measurement. Calculations for the pre-industrial simulation allow a tropospheric ozone radiative forcing to be calculated of 0.412 ± 0.062 W m-2. This uncertainty (13 %) is comparable to the inter-model spread in ozone radiative forcing found in previous model-model intercomparison studies where the rate constants used in the models are all identical or very similar. Thus, the uncertainty of tropospheric ozone radiative forcing should expanded to include this additional source of uncertainty. These rate constant uncertainties are significant and suggest that refinement of supposedly well-known chemical rate constants should be considered alongside other improvements to enhance our understanding of atmospheric processes.
1995-01-01
LamB (maltoporin) of Escherichia coli outer membrane was reconstituted into artificial lipid bilayer membranes. The channel contains a binding site for sugars and is blocked for ions when the site is occupied by a sugar. The on and off reactions of sugar binding cause an increase of the noise of the current through the channel. The sugar-induced current noise of maltoporin was used for the evaluation of the sugar-binding kinetics for different sugars of the maltooligosaccharide series and for sucrose. The on rate constant for sugar binding was between 10(6) and 10(7) M-1.s-1 for the maltooligosaccharides and corresponds to the movement of the sugars from the aqueous phase to the central binding site. The off rate (corresponding to the release of the sugars from the channel) decreased with increasing number of glucose residues in the maltooligosaccharides from approximately 2,000 s-1 for maltotriose to 180 s-1 for maltoheptaose. The kinetics for sucrose movement was considerably slower. The activation energies of the stability constant and of the rate constants for sugar binding were evaluated from noise experiments at different temperatures. The role of LamB in the transport of maltooligosaccharides across the outer membrane is discussed. PMID:7539481
Long-Term Efficacy of Constant Current Deep Brain Stimulation in Essential Tremor.
Rezaei Haddad, Ali; Samuel, Michael; Hulse, Natasha; Lin, Hsin-Ying; Ashkan, Keyoumars
2017-07-01
Ventralis intermedius deep brain stimulation is an established intervention for medication-refractory essential tremor. Newer constant current stimulation technology offers theoretical advantage over the traditional constant voltage systems in terms of delivering a more biologically stable therapy. There are no previous reports on the outcomes of constant current deep brain stimulation in the treatment of essential tremor. This study aimed to evaluate the long-term efficacy of ventralis intermedius constant current deep brain stimulation in patients diagnosed with essential tremor. Essential tremor patients implanted with constant current deep brain stimulation for a minimum of three years were evaluated. Clinical outcomes were assessed using the Fahn-Tolosa-Marin tremor rating scale at baseline and postoperatively at the time of evaluation. The quality of life in the patients was assessed using the Quality of Life in Essential Tremor questionnaire. Ten patients were evaluated with a median age at evaluation of 74 years (range 66-79) and a mean follow up time of 49.7 (range 36-78) months since starting stimulation. Constant current ventralis intermedius deep brain stimulation was well tolerated and effective in all patients with a mean score improvement from 50.7 ± 5.9 to 17.4 ± 5.7 (p = 0.0020) in the total Fahn-Tolosa-Marin rating scale score (65.6%). Furthermore, the total combined mean Quality of Life in Essential Tremor score was improved from 56.2 ± 4.9 to 16.8 ± 3.5 (p value = 0.0059) (70.1%). This report shows that long-term constant current ventralis intermedius deep brain stimulation is a safe and effective intervention for essential tremor patients. © 2017 International Neuromodulation Society.
Sumiya, Yosuke; Nagahata, Yutaka; Komatsuzaki, Tamiki; Taketsugu, Tetsuya; Maeda, Satoshi
2015-12-03
The significance of kinetic analysis as a tool for understanding the reactivity and selectivity of organic reactions has recently been recognized. However, conventional simulation approaches that solve rate equations numerically are not amenable to multistep reaction profiles consisting of fast and slow elementary steps. Herein, we present an efficient and robust approach for evaluating the overall rate constants of multistep reactions via the recursive contraction of the rate equations to give the overall rate constants for the products and byproducts. This new method was applied to the Claisen rearrangement of allyl vinyl ether, as well as a substituted allyl vinyl ether. Notably, the profiles of these reactions contained 23 and 84 local minima, and 66 and 278 transition states, respectively. The overall rate constant for the Claisen rearrangement of allyl vinyl ether was consistent with the experimental value. The selectivity of the Claisen rearrangement reaction has also been assessed using a substituted allyl vinyl ether. The results of this study showed that the conformational entropy in these flexible chain molecules had a substantial impact on the overall rate constants. This new method could therefore be used to estimate the overall rate constants of various other organic reactions involving flexible molecules.
Ye, Zhi-Min; Dai, Shu-Jun; Yan, Feng-Qin; Wang, Lei; Fang, Jun; Fu, Zhen-Fu; Wang, Yue-Zhen
2018-01-01
This study aimed to evaluate both the short- and long-term efficacies of chemoradiotherapy in relation to the treatment of esophageal cancer . This was achieved through the use of dynamic contrast-enhanced magnetic resonance imaging-derived volume transfer constant and diffusion weighted imaging-derived apparent diffusion coefficient . Patients with esophageal cancer were assigned into the sensitive and resistant groups based on respective efficacies in chemoradiotherapy. Dynamic contrast-enhanced magnetic resonance imaging and diffusion weighted imaging were used to measure volume transfer constant and apparent diffusion coefficient, while computed tomography was used to calculate tumor size reduction rate. Pearson correlation analyses were conducted to analyze correlation between volume transfer constant, apparent diffusion coefficient, and the tumor size reduction rate. Receiver operating characteristic curve was constructed to analyze the short-term efficacy of volume transfer constant and apparent diffusion coefficient, while Kaplan-Meier curve was employed for survival rate analysis. Cox proportional hazard model was used for the risk factors for prognosis of patients with esophageal cancer. Our results indicated reduced levels of volume transfer constant, while increased levels were observed in ADC min , ADC mean , and ADC max following chemoradiotherapy. A negative correlation was determined between ADC min , ADC mean , and ADC max , as well as in the tumor size reduction rate prior to chemoradiotherapy, whereas a positive correlation was uncovered postchemoradiotherapy. Volume transfer constant was positively correlated with tumor size reduction rate both before and after chemoradiotherapy. The 5-year survival rate of patients with esophageal cancer having high ADC min , ADC mean , and ADC max and volume transfer constant before chemoradiotherapy was greater than those with respectively lower values. According to the Cox proportional hazard model, ADC mean , clinical stage, degree of differentiation, and tumor stage were all confirmed as being independent risk factors in regard to the prognosis of patients with EC. The findings of this study provide evidence suggesting that volume transfer constant and apparent diffusion coefficient as being tools allowing for the evaluation of both the short- and long-term efficacies of chemoradiotherapy esophageal cancer treatment.
NASA Technical Reports Server (NTRS)
James, G. H.; Imbrie, P. K.; Hill, P. S.; Allen, D. H.; Haisler, W. E.
1988-01-01
Four current viscoplastic models are compared experimentally for Inconel 718 at 593 C. This material system responds with apparent negative strain rate sensitivity, undergoes cyclic work softening, and is susceptible to low cycle fatigue. A series of tests were performed to create a data base from which to evaluate material constants. A method to evaluate the constants is developed which draws on common assumptions for this type of material, recent advances by other researchers, and iterative techniques. A complex history test, not used in calculating the constants, is then used to compare the predictive capabilities of the models. The combination of exponentially based inelastic strain rate equations and dynamic recovery is shown to model this material system with the greatest success. The method of constant calculation developed was successfully applied to the complex material response encountered. Backstress measuring tests were found to be invaluable and to warrant further development.
[Key physical parameters of hawthorn leaf granules by stepwise regression analysis method].
Jiang, Qie-Ying; Zeng, Rong-Gui; Li, Zhe; Luo, Juan; Zhao, Guo-Wei; Lv, Dan; Liao, Zheng-Gen
2017-05-01
The purpose of this study was to investigate the effect of key physical properties of hawthorn leaf granule on its dissolution behavior. Hawthorn leaves extract was utilized as a model drug. The extract was mixed with microcrystalline cellulose or starch with the same ratio by using different methods. Appropriate amount of lubricant and disintegrating agent was added into part of the mixed powder, and then the granules were prepared by using extrusion granulation and high shear granulation. The granules dissolution behavior was evaluated by using equilibrium dissolution quantity and dissolution rate constant of the hypericin as the indicators. Then the effect of physical properties on dissolution behavior was analyzed through the stepwise regression analysis method. The equilibrium dissolution quantity of hypericin and adsorption heat constant in hawthorn leaves were positively correlated with the monolayer adsorption capacity and negatively correlated with the moisture absorption rate constant. The dissolution rate constants were decreased with the increase of Hausner rate, monolayer adsorption capacity and adsorption heat constant, and were increased with the increase of Carr index and specific surface area. Adsorption heat constant, monolayer adsorption capacity, moisture absorption rate constant, Carr index and specific surface area were the key physical properties of hawthorn leaf granule to affect its dissolution behavior. Copyright© by the Chinese Pharmaceutical Association.
Estimation of hydrolysis rate constants for carbamates ...
Cheminformatics based tools, such as the Chemical Transformation Simulator under development in EPA’s Office of Research and Development, are being increasingly used to evaluate chemicals for their potential to degrade in the environment or be transformed through metabolism. Hydrolysis represents a major environmental degradation pathway; unfortunately, only a small fraction of hydrolysis rates for about 85,000 chemicals on the Toxic Substances Control Act (TSCA) inventory are in public domain, making it critical to develop in silico approaches to estimate hydrolysis rate constants. In this presentation, we compare three complementary approaches to estimate hydrolysis rates for carbamates, an important chemical class widely used in agriculture as pesticides, herbicides and fungicides. Fragment-based Quantitative Structure Activity Relationships (QSARs) using Hammett-Taft sigma constants are widely published and implemented for relatively simple functional groups such as carboxylic acid esters, phthalate esters, and organophosphate esters, and we extend these to carbamates. We also develop a pKa based model and a quantitative structure property relationship (QSPR) model, and evaluate them against measured rate constants using R square and root mean square (RMS) error. Our work shows that for our relatively small sample size of carbamates, a Hammett-Taft based fragment model performs best, followed by a pKa and a QSPR model. This presentation compares three comp
Mukherjee, Puspal; Biswas, Somnath; Sen, Pratik
2015-08-27
Fluorescence quenching studies through steady-state and time-resolved measurements are inadequate to quantify the bimolecular electron transfer rate in bulk homogeneous solution due to constraints from diffusion. To nullify the effect of diffusion, direct evaluation of the rate of formation of a transient intermediate produced upon the electron transfer is essential. Methyl viologen, a well-known electron acceptor, produces a radical cation after accepting an electron, which has a characteristic strong and broad absorption band centered at 600 nm. Hence it is a good choice to evaluate the rate of photoinduced electron transfer reaction employing femtosecond broadband transient absorption spectroscopy. The time constant of the aforementioned process between pyrene and methyl viologen in methanol has been estimated to be 2.5 ± 0.4 ps using the same technique. The time constant for the backward reaction was found to be 14 ± 1 ps. These values did not change with variation of concentration of quencher, i.e., methyl viologen. Hence, we can infer that diffusion has no contribution in the estimation of rate constants. However, on changing the solvent from methanol to ethanol, the time constant of the electron transfer reaction has been found to increase and has accounted for the change in solvent reorganization energy.
Liu, Jie; Xu, Shenghua; Sun, Zhiwei
2007-11-06
Our previous studies have shown that the determination of coagulation rate constants by turbidity measurement becomes impossible for a certain operating wavelength (that is, its blind point) because at this wavelength the change in the turbidity of a dispersion completely loses its response to the coagulation process. Therefore, performing the turbidity measurement in the wavelength range near the blind point should be avoided. In this article, we demonstrate that the turbidity measurement of the rate constant for coagulation of a binary dispersion containing particles of two different sizes (heterocoagulation) presents special difficulties because the blind point shifts with not only particle size but also with the component fraction. Some important aspects of the turbidity measurement for the heterocoagulation rate constant are discussed and experimentally tested. It is emphasized that the T-matrix method can be used to correctly evaluate extinction cross sections of doublets formed during the heterocoagulation process, which is the key data determining the rate constant from the turbidity measurement, and choosing the appropriate operating wavelength and component fraction are important to achieving a more accurate rate constant. Finally, a simple scheme in experimentally determining the sensitivity of the turbidity changes with coagulation over a wavelength range is proposed.
Evaluation of selected strapdown inertial instruments and pulse torque loops, volume 1
NASA Technical Reports Server (NTRS)
Sinkiewicz, J. S.; Feldman, J.; Lory, C. B.
1974-01-01
Design, operational and performance variations between ternary, binary and forced-binary pulse torque loops are presented. A fill-in binary loop which combines the constant power advantage of binary with the low sampling error of ternary is also discussed. The effects of different output-axis supports on the performance of a single-degree-of-freedom, floated gyroscope under a strapdown environment are illustrated. Three types of output-axis supports are discussed: pivot-dithered jewel, ball bearing and electromagnetic. A test evaluation on a Kearfott 2544 single-degree-of-freedom, strapdown gyroscope operating with a pulse torque loop, under constant rates and angular oscillatory inputs is described and the results presented. Contributions of the gyroscope's torque generator and the torque-to-balance electronics on scale factor variation with rate are illustrated for a SDF 18 IRIG Mod-B strapdown gyroscope operating with various pulse rebalance loops. Also discussed are methods of reducing this scale factor variation with rate by adjusting the tuning network which shunts the torque coil. A simplified analysis illustrating the principles of operation of the Teledyne two-degree-of-freedom, elastically-supported, tuned gyroscope and the results of a static and constant rate test evaluation of that instrument are presented.
Assessing Chemical Retention Process Controls in Ponds
NASA Astrophysics Data System (ADS)
Torgersen, T.; Branco, B.; John, B.
2002-05-01
Small ponds are a ubiquitous component of the landscape and have earned a reputation as effective chemical retention devices. The most common characterization of pond chemical retention is the retention coefficient, Ri= ([Ci]inflow-[Ci] outflow)/[Ci]inflow. However, this parameter varies widely in one pond with time and among ponds. We have re-evaluated literature reported (Borden et al., 1998) monthly average retention coefficients for two ponds in North Carolina. Employing a simple first order model that includes water residence time, the first order process responsible for species removal have been separated from the water residence time over which it acts. Assuming the rate constant for species removal is constant within the pond (arguable at least), the annual average rate constant for species removal is generated. Using the annual mean rate constant for species removal and monthly water residence times results in a significantly enhanced predictive capability for Davis Pond during most months of the year. Predictive ability remains poor in Davis Pond during winter/unstratified periods when internal loading of P and N results in low to negative chemical retention. Predictive ability for Piedmont Pond (which has numerous negative chemical retention periods) is improved but not to the same extent as Davis Pond. In Davis Pond, the rate constant for sediment removal (each month) is faster than the rate constant for water and explains the good predictability for sediment retention. However, the removal rate constant for P and N is slower than the removal rate constant for sediment (longer water column residence time for P,N than for sediment). Thus sedimentation is not an overall control on nutrient retention. Additionally, the removal rate constant for P is slower than for TOC (TOC is not the dominate removal process for P) and N is removed slower than P (different in pond controls). For Piedmont Pond, sediment removal rate constants are slower than the removal rate constant for water indicating significant sediment resuspension episodes. It appears that these sediment resuspension events are aperiodic and control the loading and the chemical retention capability of Piedmont Pond for N,P,TOC. These calculated rate constants reflect the differing internal loading processes for each component and suggest means and mechanisms for the use of ponds in water quality management.
Reaction of SO2 with OH in the atmosphere.
Long, Bo; Bao, Junwei Lucas; Truhlar, Donald G
2017-03-15
The OH + SO 2 reaction plays a critical role in understanding the oxidation of SO 2 in the atmosphere, and its rate constant is critical for clarifying the fate of SO 2 in the atmosphere. The rate constant of the OH + SO 2 reaction is calculated here by using beyond-CCSDT correlation energy calculations for a benchmark, validated density functional methods for direct dynamics, canonical variational transition state theory with anharmonicity and multidimensional tunneling for the high-pressure rate constant, and system-specific quantum RRK theory for pressure effects; the combination of these methods can compete in accuracy with experiments. There has been a long-term debate in the literature about whether the OH + SO 2 reaction is barrierless, but our calculations indicate a positive barrier with an transition structure that has an enthalpy of activation of 0.27 kcal mol -1 at 0 K. Our results show that the high-pressure limiting rate constant of the OH + SO 2 reaction has a positive temperature dependence, but the rate constant at low pressures has a negative temperature dependence. The computed high-pressure limiting rate constant at 298 K is 1.25 × 10 -12 cm 3 molecule -1 s -1 , which agrees excellently with the value (1.3 × 10 -12 cm 3 molecule -1 s -1 ) recommended in the most recent comprehensive evaluation for atmospheric chemistry. We show that the atmospheric lifetime of SO 2 with respect to oxidation by OH depends strongly on altitude (in the range 0-50 km) due to the falloff effect. We introduce a new interpolation procedure for fitting the combined temperature and pressure dependence of the rate constant, and it fits the calculated rate constants over the whole range with a mean unsigned error of only 7%. The present results provide reliable kinetics data for this specific reaction, and also they demonstrate convenient theoretical methods that can be reliable for predicting rate constants of other gas-phase reactions.
NASA Astrophysics Data System (ADS)
Zhao, Yuanyuan; Jiang, Guoliang; Hu, Jiandong; Hu, Fengjiang; Wei, Jianguang; Shi, Liang
2010-10-01
In the immunology, there are two important types of biomolecular interaction: antigens-antibodies and receptors-ligands. Monitoring the response rate and affinity of biomolecular interaction can help analyze the protein function, drug discover, genomics and proteomics research. Moreover the association rate constant and dissociation rate constant of receptors-ligands are the important parameters for the study of signal transmission between cells. Recent advances in bioanalyzer instruments have greatly simplified the measurement of the kinetics of molecular interactions. Non-destructive and real-time monitoring the response to evaluate the parameters between antigens and antibodies can be performed by using optical surface plasmon resonance (SPR) biosensor technology. This technology provides a quantitative analysis that is carried out rapidly with label-free high-throughput detection using the binding curves of antigens-antibodies. Consequently, the kinetic parameters of interaction between antigens and antibodies can be obtained. This article presents a low cost integrated SPR-based bioanalyzer (HPSPR-6000) designed by ourselves. This bioanalyzer is mainly composed of a biosensor TSPR1K23, a touch-screen monitor, a microprocessor PIC24F128, a microflow cell with three channels, a clamp and a photoelectric conversion device. To obtain the kinetic parameters, sensorgrams may be modeled using one of several binding models provided with BIAevaluation software 3.0, SensiQ or Autolab. This allows calculation of the association rate constant (ka) and the dissociation rate constant (kd). The ratio of ka to kd can be used to estimate the equilibrium constant. Another kind is the analysis software OriginPro, which can process the obtained data by nonlinear fitting and then get some correlative parameters, but it can't be embedded into the bioanalyzer, so the bioanalyzer don't support the use of OriginPro. This paper proposes a novel method to evaluate the kinetic parameters of biomolecular interaction by using Newton Iteration Method and Least Squares Method. First, the pseudo first order kinetic model of biomolecular interaction was established. Then the data of molecular interaction of HBsAg and HBsAb was obtained by bioanalyzer. Finally, we used the optical SPR bioanalyzer software which was written by ourselves to make nonlinear fit about the association and dissociation curves. The correlation coefficient R-squared is 0.99229 and 0.99593, respectively. Furthermore, the kinetic parameters and affinity constants were evaluated using the obtained data from the fitting results.
NASA Astrophysics Data System (ADS)
Tian, Xin; Li, Hua; Jiang, Xiaoyu; Xie, Jingping; Gore, John C.; Xu, Junzhong
2017-02-01
Two diffusion-based approaches, CG (constant gradient) and FEXI (filtered exchange imaging) methods, have been previously proposed for measuring transcytolemmal water exchange rate constant kin, but their accuracy and feasibility have not been comprehensively evaluated and compared. In this work, both computer simulations and cell experiments in vitro were performed to evaluate these two methods. Simulations were done with different cell diameters (5, 10, 20 μm), a broad range of kin values (0.02-30 s-1) and different SNR's, and simulated kin's were directly compared with the ground truth values. Human leukemia K562 cells were cultured and treated with saponin to selectively change cell transmembrane permeability. The agreement between measured kin's of both methods was also evaluated. The results suggest that, without noise, the CG method provides reasonably accurate estimation of kin especially when it is smaller than 10 s-1, which is in the typical physiological range of many biological tissues. However, although the FEXI method overestimates kin even with corrections for the effects of extracellular water fraction, it provides reasonable estimates with practical SNR's and more importantly, the fitted apparent exchange rate AXR showed approximately linear dependence on the ground truth kin. In conclusion, either CG or FEXI method provides a sensitive means to characterize the variations in transcytolemmal water exchange rate constant kin, although the accuracy and specificity is usually compromised. The non-imaging CG method provides more accurate estimation of kin, but limited to large volume-of-interest. Although the accuracy of FEXI is compromised with extracellular volume fraction, it is capable of spatially mapping kin in practice.
Greene, Samuel M; Shan, Xiao; Clary, David C
2015-12-17
Quantum mechanical methods for calculating rate constants are often intractable for reactions involving many atoms. Semiclassical transition state theory (SCTST) offers computational advantages over these methods but nonetheless scales exponentially with the number of degrees of freedom (DOFs) of the system. Here we present a method with more favorable scaling, reduced-dimensionality SCTST (RD SCTST), that treats only a subset of DOFs of the system explicitly. We apply it to three H abstraction and exchange reactions for which two-dimensional potential energy surfaces (PESs) have previously been constructed and evaluated using RD quantum scattering calculations. We differentiated these PESs to calculate harmonic frequencies and anharmonic constants, which were then used to calculate cumulative reaction probabilities and rate constants by RD SCTST. This method yielded rate constants in good agreement with quantum scattering results. Notably, it performed well for a heavy-light-heavy reaction, even though it does not explicitly account for corner-cutting effects. Recent extensions to SCTST that improve its treatment of deep tunneling were also evaluated within the reduced-dimensionality framework. The success of RD SCTST in this study suggests its potential applicability to larger systems.
Trichloroethylene (TCE) was electrochemically dechlorinated in aqueous environments using granular graphite cathode in a mixed reactor. Effects of pH, current, electrolyte type, and flow rate on TCE dechlorination rate were evaluated. TCE dechlorination rate constant and gas prod...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xiaoying; Liu, Chongxuan; Hu, Bill X.
The additivity model assumed that field-scale reaction properties in a sediment including surface area, reactive site concentration, and reaction rate can be predicted from field-scale grain-size distribution by linearly adding reaction properties estimated in laboratory for individual grain-size fractions. This study evaluated the additivity model in scaling mass transfer-limited, multi-rate uranyl (U(VI)) surface complexation reactions in a contaminated sediment. Experimental data of rate-limited U(VI) desorption in a stirred flow-cell reactor were used to estimate the statistical properties of the rate constants for individual grain-size fractions, which were then used to predict rate-limited U(VI) desorption in the composite sediment. The resultmore » indicated that the additivity model with respect to the rate of U(VI) desorption provided a good prediction of U(VI) desorption in the composite sediment. However, the rate constants were not directly scalable using the additivity model. An approximate additivity model for directly scaling rate constants was subsequently proposed and evaluated. The result found that the approximate model provided a good prediction of the experimental results within statistical uncertainty. This study also found that a gravel-size fraction (2 to 8 mm), which is often ignored in modeling U(VI) sorption and desorption, is statistically significant to the U(VI) desorption in the sediment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochran, R.C.
1985-01-01
Procedures used in estimating ruminal particle turnover and diet digestibility were evaluated in a series of independent experiments. Experiment 1 and 2 evaluated the influence of sampling site, mathematical model and intraruminal mixing on estimates of ruminal particle turnover in beef steers grazing crested wheatgrass or offered ad libitum levels of prairie hay once daily, respectively. Particle turnover rate constants were estimated by intraruminal administration (via rumen cannula) of ytterbium (Yb)-labeled forage, followed by serial collection of rumen digesta or fecal samples. Rumen Yb concentrations were transformed to natural logarithms and regressed on time. Influence of sampling site (rectum versusmore » rumen) on turnover estimates was modified by the model used to fit fecal marker excretion curves in the grazing study. In contrast, estimated turnover rate constants from rumen sampling were smaller (P < 0.05) than rectally derived rate constants, regardless of fecal model used, when steers were fed once daily. In Experiment 3, in vitro residues subjected to acid or neutral detergent fiber extraction (IVADF and IVNDF), acid detergent fiber incubated in cellulase (ADFIC) and acid detergent lignin (ADL) were evaluated as internal markers for predicting diet digestibility. Both IVADF and IVNDF displayed variable accuracy for prediction of in vivo digestibility whereas ADL and ADFIC inaccurately predicted digestibility of all diets.« less
Zhang, M.; Takahashi, M.; Morin, R.H.; Esaki, T.
1998-01-01
A theoretical analysis is presented that compares the response characteristics of the constant head and the constant flowrate (flow pump) laboratory techniques for quantifying the hydraulic properties of geologic materials having permeabilities less than 10-10 m/s. Rigorous analytical solutions that describe the transient distributions of hydraulic gradient within a specimen are developed, and equations are derived for each method. Expressions simulating the inflow and outflow rates across the specimen boundaries during a constant-head permeability test are also presented. These solutions illustrate the advantages and disadvantages of each method, including insights into measurement accuracy and the validity of using Darcy's law under certain conditions. The resulting observations offer practical considerations in the selection of an appropriate laboratory test method for the reliable measurement of permeability in low-permeability geologic materials.
NASA Technical Reports Server (NTRS)
Green, S.; Cochrane, D. L.; Truhlar, D. G.
1986-01-01
The utility of the energy-corrected sudden (ECS) scaling method is evaluated on the basis of how accurately it predicts the entire matrix of state-to-state rate constants, when the fundamental rate constants are independently known. It is shown for the case of Ar-CO collisions at 500 K that when a critical impact parameter is about 1.75-2.0 A, the ECS method yields excellent excited state rates on the average and has an rms error of less than 20 percent.
NASA Technical Reports Server (NTRS)
Payne, W. A.; Nava, D. F.; Brunning, J.; Stief, L. J.
1986-01-01
The first-order, diffusion, and bimolecular rate constants for the reaction Br + C2H2 yields C2H3Br are evaluated. The rate constants are measured at 210, 248, 298, and 393 K and at pressures between 15-100 torr Ar using flash photolysis combined with time-resolved detection of atomic bromine via Br resonance radiation. It is observed that the reaction is not affected by pressure or temperature and the bimolecular constant = (4.0 + or - 0.8) x 10 to the -15th cu cm/sec with an error of two standard deviations. The C2H2 + Br reaction rates are compared with reactions of C2H2 with Cl, OH, NH2, and H. The loss rates for atmospheric C2H2 for reactions with OH, Cl, O, and Br are calculated as a function of altitude.
Bioconcentration kinetics of hydrophobic chemicals in different densities of Chlorella pyrenoidosa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sijm, D.T.H.M.; Broersen, K.W.; Roode, D.F. de
1998-09-01
Algal density-dependent bioconcentration factors and rate constants were determined for a series of hydrophobic compounds in Chlorella pyrenoidosa. The apparent uptake rate constants of the hydrophobic compounds in algae varied between 200 and 710,000 L/kg/d, slightly increased with hydrophobicity within an experiment, were relatively constant for each algal density, and fitted fairly within existing allometric relationships. The bioavailability of the hydrophobic test compounds was significantly reduced by sorption by algal exudates. The sorption coefficients of the hydrophobic compounds to the algal exudates were between 80 and 1,200 L/kg, and were for most algal densities in the same order of magnitudemore » as the apparent bioconcentration factors to the algae, that is, between 80 and 60,200 L/kg. In typical field situations, however, no significant reduction in bioavailability due to exudates is expected. The apparent elimination rate constants of the hydrophobic compounds were high and fairly constant for each algal density and varied between 2 and 190/d. Because the apparent elimination rate constants were higher than the growth rate constant, and were independent of hydrophobicity, the authors speculated that other factors dominate excretion, such as exudate excretion-enhanced elimination. Bioconcentration factors increased less than proportional with hydrophobicity, i.e., the octanol-water partition coefficient [K{sub ow}]. The role of algal composition in bioconcentration is evaluated. Bioconcentrations (kinetics) of hydrophobic compounds that are determined at high algal densities should be applied with caution to field situations.« less
Hiratsuka, Tatsumasa; Tanaka, Hideki; Miyahara, Minoru T
2017-01-24
We find the rule of capillary condensation from the metastable state in nanoscale pores based on the transition state theory. The conventional thermodynamic theories cannot achieve it because the metastable capillary condensation inherently includes an activated process. We thus compute argon adsorption isotherms on cylindrical pore models and atomistic silica pore models mimicking the MCM-41 materials by the grand canonical Monte Carlo and the gauge cell Monte Carlo methods and evaluate the rate constant for the capillary condensation by the transition state theory. The results reveal that the rate drastically increases with a small increase in the chemical potential of the system, and the metastable capillary condensation occurs for any mesopores when the rate constant reaches a universal critical value. Furthermore, a careful comparison between experimental adsorption isotherms and the simulated ones on the atomistic silica pore models reveals that the rate constant of the real system also has a universal value. With this finding, we can successfully estimate the experimental capillary condensation pressure over a wide range of temperatures and pore sizes by simply applying the critical rate constant.
NASA Astrophysics Data System (ADS)
Orkin, V. L.; Khamaganov, V. G.; Martynova, L. E.; Kurylo, M. J.
2012-12-01
The emissions of halogenated (Cl, Br containing) organics of both natural and anthropogenic origin contribute to the balance of and changes in the stratospheric ozone concentration. The associated chemical cycles are initiated by the photochemical decomposition of the portion of source gases that reaches the stratosphere. Reactions with hydroxyl radicals and photolysis are the main processes dictating the compound lifetime in the troposphere and release of active halogen in the stratosphere for a majority of halogen source gases. Therefore, the accuracy of photochemical data is of primary importance for the purpose of comprehensive atmospheric modeling and for simplified kinetic estimations of global impacts on the atmosphere, such as in ozone depletion (i.e., the Ozone Depletion Potential, ODP) and climate change (i.e., the Global Warming Potential, GWP). The sources of critically evaluated photochemical data for atmospheric modeling, NASA/JPL Publications and IUPAC Publications, recommend uncertainties within 10%-60% for the majority of OH reaction rate constants with only a few cases where uncertainties lie at the low end of this range. These uncertainties can be somewhat conservative because evaluations are based on the data from various laboratories obtained during the last few decades. Nevertheless, even the authors of the original experimental works rarely estimate the total combined uncertainties of the published OH reaction rate constants to be less than ca. 10%. Thus, uncertainties in the photochemical properties of potential and current atmospheric trace gases obtained under controlled laboratory conditions still may constitute a major source of uncertainty in estimating the compound's environmental impact. One of the purposes of the presentation is to illustrate the potential for obtaining accurate laboratory measurements of the OH reaction rate constant over the temperature range of atmospheric interest. A detailed inventory of accountable sources of instrumental uncertainties related to our FP-RF experiment proves a total uncertainty of the OH reaction rate constant to be as small as ca. 2-3%. The high precision of kinetic measurements allows reliable determination of weak temperature dependences of the rate constants and clear resolution of the curvature of the Arrhenius plots for the OH reaction rate constants of various compounds. The results of OH reaction rate constant determinations between 220 K and 370 K will be presented. Similarly, the accuracy of UV and IR absorption measurements will be highlighted to provide an improved basis for atmospheric modeling.
Huber, Jennifer S.; Hernandez, Andrew M.; Janabi, Mustafa; ...
2017-09-06
Using longitudinal micro positron emission tomography (microPET)/computed tomography (CT) studies, we quantified changes in myocardial metabolism and perfusion in spontaneously hypertensive rats (SHRs), a model of left ventricular hypertrophy (LVH). Fatty acid and glucose metabolism were quantified in the hearts of SHRs and Wistar-Kyoto (WKY) normotensive rats using long-chain fatty acid analog 18F-fluoro-6-thia heptadecanoic acid ( 18F-FTHA) and glucose analog 18F-fluorodeoxyglucose ( 18F-FDG) under normal or fasting conditions. We also used 18F-fluorodihydrorotenol ( 18F-FDHROL) to investigate perfusion in their hearts without fasting. Rats were imaged at 4 or 5 times over their life cycle. Compartment modeling was used to estimatemore » the rate constants for the radiotracers. Blood samples were obtained and analyzed for glucose and free fatty acid concentrations. SHRs demonstrated no significant difference in 18F-FDHROL wash-in rate constant (P = .1) and distribution volume (P = .1), significantly higher 18F-FDG myocardial influx rate constant (P = 4×10 –8), and significantly lower 18F-FTHA myocardial influx rate constant (P = .007) than WKYs during the 2009-2010 study without fasting. SHRs demonstrated a significantly higher 18F-FDHROL wash-in rate constant (P = 5×10 –6) and distribution volume (P = 3×10 –8), significantly higher 18F-FDG myocardial influx rate constant (P = 3×10 –8), and a higher trend of 18F-FTHA myocardial influx rate constant (not significant, P = .1) than WKYs during the 2011–2012 study with fasting. Changes in glucose plasma concentrations were generally negatively correlated with corresponding radiotracer influx rate constant changes. The study indicates a switch from preferred fatty acid metabolism to increased glucose metabolism with hypertrophy. Increased perfusion during the 2011-2012 study may be indicative of increased aerobic metabolism in the SHR model of LVH.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huber, Jennifer S.; Hernandez, Andrew M.; Janabi, Mustafa
Using longitudinal micro positron emission tomography (microPET)/computed tomography (CT) studies, we quantified changes in myocardial metabolism and perfusion in spontaneously hypertensive rats (SHRs), a model of left ventricular hypertrophy (LVH). Fatty acid and glucose metabolism were quantified in the hearts of SHRs and Wistar-Kyoto (WKY) normotensive rats using long-chain fatty acid analog 18F-fluoro-6-thia heptadecanoic acid ( 18F-FTHA) and glucose analog 18F-fluorodeoxyglucose ( 18F-FDG) under normal or fasting conditions. We also used 18F-fluorodihydrorotenol ( 18F-FDHROL) to investigate perfusion in their hearts without fasting. Rats were imaged at 4 or 5 times over their life cycle. Compartment modeling was used to estimatemore » the rate constants for the radiotracers. Blood samples were obtained and analyzed for glucose and free fatty acid concentrations. SHRs demonstrated no significant difference in 18F-FDHROL wash-in rate constant (P = .1) and distribution volume (P = .1), significantly higher 18F-FDG myocardial influx rate constant (P = 4×10 –8), and significantly lower 18F-FTHA myocardial influx rate constant (P = .007) than WKYs during the 2009-2010 study without fasting. SHRs demonstrated a significantly higher 18F-FDHROL wash-in rate constant (P = 5×10 –6) and distribution volume (P = 3×10 –8), significantly higher 18F-FDG myocardial influx rate constant (P = 3×10 –8), and a higher trend of 18F-FTHA myocardial influx rate constant (not significant, P = .1) than WKYs during the 2011–2012 study with fasting. Changes in glucose plasma concentrations were generally negatively correlated with corresponding radiotracer influx rate constant changes. The study indicates a switch from preferred fatty acid metabolism to increased glucose metabolism with hypertrophy. Increased perfusion during the 2011-2012 study may be indicative of increased aerobic metabolism in the SHR model of LVH.« less
Trichloroethylene (TCE) was electrochemically dechlorinated in aqueous environments using granular graphite cathode in a mixed reactor. Effects of pH, current, electrolyte type, and flow rate on TCE dechlorination rate were evaluated. TCE dechlorination rate constant and gas pr...
Trichloroethylene (TCE) was electrochemically dechlorinated in aqueous environments using granular graphite cathode in a mixed reactor. Effects of pH, current, electrolyte type, and flow rate on TCE dechlorination rate were evaluated. TCE dechlorination rate constant and gas pr...
Doppler-resolved kinetics of saturation recovery
Forthomme, Damien; Hause, Michael L.; Yu, Hua -Gen; ...
2015-04-08
Frequency modulated laser transient absorption has been used to monitor the ground state rotational energy transfer rates of CN radicals in a double-resonance, depletion recovery experiment. When a pulsed laser is used to burn a hole in the equilibrium ground state population of one rotational state without velocity selection, the population recovery rate is found to depend strongly on the Doppler detuning of a narrow-band probe laser. Similar effects should be apparent for any relaxation rate process that competes effectively with velocity randomization. Alternative methods of extracting thermal rate constants in the presence of these non-thermal conditions are evaluated. Totalmore » recovery rate constants, analogous to total removal rate constants in an experiment preparing a single initial rotational level, are in good agreement with quantum scattering calculations, but are slower than previously reported experiments and show qualitatively different rotational state dependence between Ar and He collision partners. As a result, quasi-classical trajectory studies confirm that the differing rotational state dependence is primarily a kinematic effect.« less
Sampling the kinetic pathways of a micelle fusion and fission transition.
Pool, René; Bolhuis, Peter G
2007-06-28
The mechanism and kinetics of micellar breakup and fusion in a dilute solution of a model surfactant are investigated by path sampling techniques. Analysis of the path ensemble gives insight in the mechanism of the transition. For larger, less stable micelles the fission/fusion occurs via a clear neck formation, while for smaller micelles the mechanism is more direct. In addition, path analysis yields an appropriate order parameter to evaluate the fusion and fission rate constants using stochastic transition interface sampling. For the small, stable micelle (50 surfactants) the computed fission rate constant is a factor of 10 lower than the fusion rate constant. The procedure opens the way for accurate calculation of free energy and kinetics for, e.g., membrane fusion, and wormlike micelle endcap formation.
Use of photovoltaic detector for photocatalytic activity estimation
NASA Astrophysics Data System (ADS)
Das, Susanta Kumar; Satapathy, Pravakar; Rao, P. Sai Shruti; Sabar, Bilu; Panda, Rudrashish; Khatua, Lizina
2018-05-01
Photocatalysis is a very important process and have numerous applications. Generally, to estimate the photocatalytic activity of newly grown material, its reaction rate constant w.r.t to some standard commercial TiO2 nanoparticles like Degussa P25 is evaluated. Here a photovoltaic detector in conjunction with laser is used to determine this rate constant. This method is tested using Zinc Orthotitanate (Zn2TiO4) nanoparticles prepared by solid state reaction and it is found that its reaction rate constant is six times higher than that of P25. The value is found to be close to the value found by a conventional system. Our proposed system is much more cost-effective than the conventional one and has the potential to do real time monitoring of the photocatalytic activity.
He, Ning; Sun, Hechun; Dai, Miaomiao
2014-05-01
To evaluate the influence of temperature and humidity on the drug stability by initial average rate experiment, and to obtained the kinetic parameters. The effect of concentration error, drug degradation extent, humidity and temperature numbers, humidity and temperature range, and average humidity and temperature on the accuracy and precision of kinetic parameters in the initial average rate experiment was explored. The stability of vitamin C, as a solid state model, was investigated by an initial average rate experiment. Under the same experimental conditions, the kinetic parameters obtained from this proposed method were comparable to those from classical isothermal experiment at constant humidity. The estimates were more accurate and precise by controlling the extent of drug degradation, changing humidity and temperature range, or by setting the average temperature closer to room temperature. Compared with isothermal experiments at constant humidity, our proposed method saves time, labor, and materials.
NASA Astrophysics Data System (ADS)
Eriksson, L.; Wienhard, K.; Eriksson, M.; Casey, M. E.; Knoess, C.; Bruckbauer, T.; Hamill, J.; Mulnix, T.; Vollmar, S.; Bendriem, B.; Heiss, W. D.; Nutt, R.
2002-06-01
The first and second generation of the Exact and Exact HR family of scanners has been evaluated in terms of noise equivalent count rate (NEC) and count-rate capabilities. The new National Electrical Manufacturers Association standard was used for the evaluation. In spite of improved electronics and improved count-rate capabilities, the peak NEC was found to be fairly constant between the generations. The results are discussed in terms of the different electronic solutions for the two generations and its implications on system dead time and NEC count-rate capability.
Development of a tester for evaluation of prototype thermal cells and batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guidotti, R.A.
1994-10-01
A tester was developed to evaluate prototype thermal cells and batteries--especially high-voltage units--under a wide range of constant-current and constant-resistance discharge conditions. Programming of the steady-state and pulsing conditions was by software control or by hardware control via an external pulse generator. The tester was assembled from primarily Hewlett-Packard (H-P) instrumentation and was operated under H-P`s Rocky Mountain Basic (RMB). Constant-current electronic loads rated up to 4 kW (400 V at up to 100 A) were successfully used with the setup. For testing under constant-resistance conditions, power metal-oxide field-effect transistors (MOSFETs) controlled by a programmable pulse generator were used tomore » switch between steady-state and pulse loads. The pulses were digitized at up to a 50 kHz rate (20 {mu} s/pt) using high-speed DVMs; steady-state voltages were monitored with standard DVMs. This paper describes several of the test configurations used and discusses the limitations of each. Representative data are presented for a number of the test conditions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xiaoying; Liu, Chongxuan; Hu, Bill X.
This study statistically analyzed a grain-size based additivity model that has been proposed to scale reaction rates and parameters from laboratory to field. The additivity model assumed that reaction properties in a sediment including surface area, reactive site concentration, reaction rate, and extent can be predicted from field-scale grain size distribution by linearly adding reaction properties for individual grain size fractions. This study focused on the statistical analysis of the additivity model with respect to reaction rate constants using multi-rate uranyl (U(VI)) surface complexation reactions in a contaminated sediment as an example. Experimental data of rate-limited U(VI) desorption in amore » stirred flow-cell reactor were used to estimate the statistical properties of multi-rate parameters for individual grain size fractions. The statistical properties of the rate constants for the individual grain size fractions were then used to analyze the statistical properties of the additivity model to predict rate-limited U(VI) desorption in the composite sediment, and to evaluate the relative importance of individual grain size fractions to the overall U(VI) desorption. The result indicated that the additivity model provided a good prediction of the U(VI) desorption in the composite sediment. However, the rate constants were not directly scalable using the additivity model, and U(VI) desorption in individual grain size fractions have to be simulated in order to apply the additivity model. An approximate additivity model for directly scaling rate constants was subsequently proposed and evaluated. The result found that the approximate model provided a good prediction of the experimental results within statistical uncertainty. This study also found that a gravel size fraction (2-8mm), which is often ignored in modeling U(VI) sorption and desorption, is statistically significant to the U(VI) desorption in the sediment.« less
Performance evaluation of a newly developed variable rate sprayer for nursery liner applications
USDA-ARS?s Scientific Manuscript database
An experimental variable-rate sprayer designed for liner applications was tested by comparing its spray deposit, coverage, and droplet density inside canopies of six nursery liner varieties with constant-rate applications. Spray samplers, including water sensitive papers (WSP) and nylon screens, wer...
NASA Astrophysics Data System (ADS)
Takahashi, Hirona; Hagiwara, Kenta; Kawai, Akio
2016-11-01
Addition reaction of photo-generated radicals to double bonds of diethyl fumarate (deF) and diethyl maleate (deM), which are geometrical isomers, was studied by means of time-resolved- (TR-) and pulsed-electron paramagnetic resonance (EPR). Analysis of TR-EPR spectra indicates that adduct radicals from deF and deM should have the same structure. The double bonds of these monomers are converted to single ones by addition reaction, which allows hindered internal rotation to give the same structure of adduct radical. The rate constants for addition reaction of photo-generated radicals were determined by Stern-Volmer analysis of the decay time of electron spin-echo intensity of these radicals measured by the pulsed EPR method. Rate constants for deF were found to be larger than those for deM. This relation is in good consistent with efficiency of polymerisation of deF and deM. Experimentally determined rate constants were evaluated by introducing the addition reaction model on the basis of two important factors enthalpy and polar effects.
Reactive transport of uranium in fractured crystalline rock: Upscaling in time and distance
Dittrich, Timothy M.; Reimus, Paul W.
2015-09-29
In this study, batch adsorption and breakthrough column experiments were conducted to evaluate uranium transport through altered material that fills fractures in a granite rock system at the Grimsel Test Site in Switzerland at pH 6.9 and 7.9. The role of adsorption and desorption kinetics was evaluated with reactive transport modeling by comparing one-, two-, and three-site models. Emphasis was placed on describing long desorption tails that are important for upscaling in time and distance. The effect of increasing pH in injection solutions was also evaluated. For pH 6.9, a three-site model with forward rate constants between 0.07 and 0.8more » ml g –1 h –1, reverse rate constants between 0.001 and 0.06 h –1, and site densities of 1.3, 0.104, and 0.026 μmol g –1 for ‘weak/fast’, ‘strong/slow’, and ‘very strong/very slow’ sites provided the best fits. For pH 7.9, a three-site model with forward rate constants between 0.05 and 0.8 mL g –1 h –1, reverse rate constants between 0.001 and 0.6 h –1, and site densities of 1.3, 0.039, and 0.013 μmol g –1 for a ‘weak/fast’, ‘strong/slow’, and ‘very strong/very slow’ sites provided the best fits. Column retardation coefficients (R d) were 80 for pH 6.9 and 10.3 for pH 7.9. Model parameters determined from the batch and column experiments were used in 50 year large-scale simulations for continuous and pulse injections and indicated that a three-site model is necessary at pH 6.9, although a K d-type equilibrium partition model with one-site was adequate for large scale predictions at pH 7.9. Batch experiments were useful for predicting early breakthrough times in the columns while column experiments helped differentiate the relative importance of sorption sites and desorption rate constants on transport.« less
Rapid-Rate Compression Testing of Sheet Materials at High Temperatures
NASA Technical Reports Server (NTRS)
Bernett, E. C.; Gerberich, W. W.
1961-01-01
This Report describes the test equipment that was developed and the procedures that were used to evaluate structural sheet-material compression properties at preselected constant strain rates and/or loads. Electrical self-resistance was used to achieve a rapid heating rate of 200 F/sec. Four materials were tested at maximum temperatures which ranged from 600 F for the aluminum alloy to 2000 F for the Ni-Cr-Co iron-base alloy. Tests at 0.1, 0.001, and 0.00001 in./in./sec showed that strain rate has a major effect on the measured strength, especially at the high temperatures. The tests, under conditions of constant temperature and constant compression stress, showed that creep deformation can be a critical factor even when the time involved is on the order of a few seconds or less. The theoretical and practical aspects of rapid-rate compression testing are presented, and suggestions are made regarding possible modifications of the equipment which would improve the over-all capabilities.
Theoretical Discussion of Electron Transport Rate Constant at TCNQ / Ge and TiO2 System
NASA Astrophysics Data System (ADS)
Al-agealy, Hadi J. M.; Alshafaay, B.; Hassooni, Mohsin A.; Ashwiekh, Ahmed M.; Sadoon, Abbas K.; Majeed, Raad H.; Ghadhban, Rawnaq Q.; Mahdi, Shatha H.
2018-05-01
We have been studying and estimation the electronic transport constant at TCNQ / Ge and Tio2 interface by means of tunneling potential (TP), transport energy reorientation (TER), driving transition energy DTE and coupling coefficient constant. A simple quantum model for the transition processes was adapted to estimation and analysis depending on the quantum state for donor state |α D > and acceptor stated |α A > and assuming continuum levels of the system. Evaluation results were performed for the surfaces of Ge and Tio2 as best as for multilayer TCNQ. The results show an electronic transfer feature for electronic TCNQ density of states and a semiconductor behavior. The electronic rate constant result for both systems shows a good tool to election system in applied devices. All these results indicate the
EXPERIMENTAL PROTOCOL FOR DETERMINING PROTOLYSIS REACTION RATE CONSTANTS
An experimental protocol to determine photolysis rates of chemicals which photolyze relatively rapidly in the gas phase has been developed. This procedure provides a basis for evaluating the relative importance of one atmospheric reaction pathway (i.e., photolysis) for organic su...
Welsch, Ralph; Manthe, Uwe
2013-04-28
A strategy for the fast evaluation of Shepard interpolated potential energy surfaces (PESs) utilizing graphics processing units (GPUs) is presented. Speed ups of several orders of magnitude are gained for the title reaction on the ZFWCZ PES [Y. Zhou, B. Fu, C. Wang, M. A. Collins, and D. H. Zhang, J. Chem. Phys. 134, 064323 (2011)]. Thermal rate constants are calculated employing the quantum transition state concept and the multi-layer multi-configurational time-dependent Hartree approach. Results for the ZFWCZ PES are compared to rate constants obtained for other ab initio PESs and problems are discussed. A revised PES is presented. Thermal rate constants obtained for the revised PES indicate that an accurate description of the anharmonicity around the transition state is crucial.
The pyrolysis of toluene and ethyl benzene
NASA Technical Reports Server (NTRS)
Sokolovskaya, V. G.; Samgin, V. F.; Kalinenko, R. A.; Nametkin, N. S.
1987-01-01
The pyrolysis of toluene at 850 to 950 C gave mainly H2, CH4, and benzene; PhEt at 650 to 750 C gave mainly H2, CH4, styrene, benzene, and toluene. The rate constants for PhEt pyrolysis were 1000 times higher than those for toluene pyrolysis; the chain initiation rate constants differed by the same factor. The activation energy differences were 46 kJ/mole for the total reaction and 54 kJ/mole for chain initiation. The chain length was evaluated for the PhEt case (10 + or - 2).
Evaluated rate constants for selected HCFC's and HFC's with OH and O((sup)1D)
NASA Technical Reports Server (NTRS)
Hampson, Robert F.; Kurylo, Michael J.; Sander, Stanley P.
1990-01-01
The chemistry of HCFC's and HFC's in the troposphere is controlled by reactions with OH in which a hydrogen atom is abstracted from the halocarbon to form water and a halo-alkyl radical. The halo-alkyl radical subsequently reacts with molecular oxygen to form a peroxy radical. The reactions of HCFC's and HFC's with O(exp1D) atoms are unimportant in the troposphere, but may be important in producing active chlorine of OH in the stratosphere. Here, the rate constants for the reactions of OH and O(exp1D) with many HFC's and HCFC's are evaluated. Recommendations are given for the five HCFC's and three HFC's specified by AFEAS as primary alternatives as well as for all other isomers of C1 and C2 HCFC's and HFC's where rate data exist. In addition, recommendations are included for CH3CCl3, CH2Cl2, and CH4.
Thermodynamic Analysis of Chemically Reacting Mixtures-Comparison of First and Second Order Models.
Pekař, Miloslav
2018-01-01
Recently, a method based on non-equilibrium continuum thermodynamics which derives thermodynamically consistent reaction rate models together with thermodynamic constraints on their parameters was analyzed using a triangular reaction scheme. The scheme was kinetically of the first order. Here, the analysis is further developed for several first and second order schemes to gain a deeper insight into the thermodynamic consistency of rate equations and relationships between chemical thermodynamic and kinetics. It is shown that the thermodynamic constraints on the so-called proper rate coefficient are usually simple sign restrictions consistent with the supposed reaction directions. Constraints on the so-called coupling rate coefficients are more complex and weaker. This means more freedom in kinetic coupling between reaction steps in a scheme, i.e., in the kinetic effects of other reactions on the rate of some reaction in a reacting system. When compared with traditional mass-action rate equations, the method allows a reduction in the number of traditional rate constants to be evaluated from data, i.e., a reduction in the dimensionality of the parameter estimation problem. This is due to identifying relationships between mass-action rate constants (relationships which also include thermodynamic equilibrium constants) which have so far been unknown.
Influence of Motivational Design on Completion Rates in Online Self-Study Pharmacy-Content Courses
ERIC Educational Resources Information Center
Pittenger, Amy; Doering, Aaron
2010-01-01
Student retention rates are a constant concern in higher education, but this concern has become especially challenging as online courses become more common and there are widespread reports of low completion rates for online, self-study courses. We evaluated four self-study online pharmacy courses with a history of very high completion rates for…
Frost heave susceptibility of saturated soil under constant rate of freezing
NASA Astrophysics Data System (ADS)
Ryokai, K.; Iguro, M.; Yoneyama, K.
Introduced are the results of experiments carried out to quantitatively obtain the frost heave pressure and displacement of soil subjected to artificial freezing or freezing around in-ground liquefied natural gas storage tanks. This experiment is conducted to evaluate the frost heave susceptibility of saturated soil under overconsolidation. In other words, this experiment was carried out to obtain the relation of the over-burden pressure and freezing rate to the frost heave ratio by observing the frost heave displacement and freezing time of specimens by freezing the specimens at a constant freezing rate under a constant overburden pressure, while letting water freely flow in and out of the system. Introduced are the procedures for frost heave test required to quantitatively obtain the frost heave displacement and pressure of soil. Furthermore, the relation between the frost heave susceptibility and physical properties of soil obtained by this test is reported.
QSPR prediction of the hydroxyl radical rate constant of water contaminants.
Borhani, Tohid Nejad Ghaffar; Saniedanesh, Mohammadhossein; Bagheri, Mehdi; Lim, Jeng Shiun
2016-07-01
In advanced oxidation processes (AOPs), the aqueous hydroxyl radical (HO) acts as a strong oxidant to react with organic contaminants. The hydroxyl radical rate constant (kHO) is important for evaluating and modelling of the AOPs. In this study, quantitative structure-property relationship (QSPR) method is applied to model the hydroxyl radical rate constant for a diverse dataset of 457 water contaminants from 27 various chemical classes. The constricted binary particle swarm optimization and multiple-linear regression (BPSO-MLR) are used to obtain the best model with eight theoretical descriptors. An optimized feed forward neural network (FFNN) is developed to investigate the complex performance of the selected molecular parameters with kHO. Although the FFNN prediction results are more accurate than those obtained using BPSO-MLR, the application of the latter is much more convenient. Various internal and external validation techniques indicate that the obtained models could predict the logarithmic hydroxyl radical rate constants of a large number of water contaminants with less than 4% absolute relative error. Finally, the above-mentioned proposed models are compared to those reported earlier and the structural factors contributing to the AOP degradation efficiency are discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Srinivasan, N K; Su, M-C; Sutherland, J W; Michael, J V
2005-03-10
The reflected shock tube technique with multipass absorption spectrometric detection of OH radicals at 308 nm has been used to study the reactions OH + CH(4) --> CH(3) + H(2)O and CH(3) + NO(2) --> CH(3)O + NO. Over the temperature range 840-2025 K, the rate constants for the first reaction can be represented by the Arrhenius expression k = (9.52 +/- 1.62) x 10(-11) exp[(-4134 +/- 222 K)/T] cm(3) molecule(-1) s(-1). Since this reaction is important in both combustion and atmospheric chemistry, there have been many prior investigations with a variety of techniques. The present results extend the temperature range by 500 K and have been combined with the most accurate earlier studies to derive an evaluation over the extended temperature range 195-2025 K. A three-parameter expression describes the rate behavior over this temperature range, k = (1.66 x 10(-18))T(2.182) exp[(-1231 K)/T] cm(3) molecule(-1) s(-1). Previous theoretical studies are discussed, and the present evaluation is compared to earlier theoretical estimates. Since CH(3) radicals are a product of the reaction and could cause secondary perturbations in rate constant determinations, the second reaction was studied by OH radical production from the fast reactions CH(3)O --> CH(2)O + H and H + NO(2) --> OH + NO. The measured rate constant is 2.26 x 10(-11) cm(3) molecule(-1) s(-1) and is not dependent on temperature from 233 to 1700 K within experimental error.
Double proton transfer in the complex of acetic acid with methanol: Theory versus experiment
NASA Astrophysics Data System (ADS)
Fernández-Ramos, Antonio; Smedarchina, Zorka; Rodríguez-Otero, Jesús
2001-01-01
To test the approximate instanton approach to intermolecular proton-transfer dynamics, we report multidimensional ab initio bimolecular rate constants of HH, HD, and DD exchange in the complex of acetic acid with methanol in tetrahydrofuran-d8, and compare them with the NMR (nuclear magnetic resonance) experiments of Gerritzen and Limbach. The bimolecular rate constants are evaluated as products of the exchange rates and the equilibrium rate constants of complex formation in solution. The two molecules form hydrogen-bond bridges and the exchange occurs via concerted transfer of two protons. The dynamics of this transfer is evaluated in the complete space of 36 vibrational degrees of freedom. The geometries of the two isolated molecules, the complex, and the transition states corresponding to double proton transfer are fully optimized at QCISD (quadratic configuration interaction including single and double substitutions) level of theory, and the normal-mode frequencies are calculated at MP2 (Møller-Plesset perturbation theory of second order) level with the 6-31G (d,p) basis set. The presence of the solvent is taken into account via single-point calculations over the gas phase geometries with the PCM (polarized continuum model). The proton exchange rate constants, calculated with the instanton method, show the effect of the structure and strength of the hydrogen bonds, reflected in the coupling between the tunneling motion and the other vibrations of the complex. Comparison with experiment, which shows substantial kinetic isotopic effects (KIE), indicates that tunneling prevails over classic exchange for the whole temperature range of observation. The unusual behavior of the experimental KIE upon single and double deuterium substitution is well reproduced and is related to the synchronicity of two-atom tunneling.
NASA Astrophysics Data System (ADS)
Raghunath, P.; Lin, M. C.
2012-07-01
The kinetics and mechanism for the reaction of ClOO with NO have been investigated by ab initio molecular orbital theory calculations based on the CCSD(T)/6-311+G(3df)//PW91PW91/6-311+G(3df) method, employed to evaluate the energetics for the construction of potential energy surfaces and prediction of reaction rate constants. The results show that the reaction can produce two key low energy products ClNO + 3O2 via the direct triplet abstraction path and ClO + NO2 via the association and decomposition mechanism through long-lived singlet pc-ClOONO and ClONO2 intermediates. The yield of ClNO + O2 (1△) from any of the singlet intermediates was found to be negligible because of their high barriers and tight transition states. As both key reactions initially occur barrierlessly, their rate constants were evaluated with a canonical variational approach in our transition state theory and Rice-Ramspergen-Kassel-Marcus/master equation calculations. The rate constants for ClNO + 3O2 and ClO + NO2 production from ClOO + NO can be given by 2.66 × 10-16 T1.91 exp(341/T) (200-700 K) and 1.48 × 10-24 T3.99 exp(1711/T) (200-600 K), respectively, independent of pressure below atmospheric pressure. The predicted total rate constant and the yields of ClNO and NO2 in the temperature range of 200-700 K at 10-760 Torr pressure are in close agreement with available experimental results.
NASA Technical Reports Server (NTRS)
1981-01-01
Evaluated sets of rate constants and photochemical cross sections compiled by the Panel are presented. The primary application of the data is in the modelling of stratospheric processes, with particular emphasis on the ozone layer and its possible perturbation by anthropogenic and natural phenomena.
Chemical kinetic and photochemical data for use in stratospheric modelling
NASA Technical Reports Server (NTRS)
Demore, W. B.; Stief, L. J.; Kaufman, F.; Golden, D. M.; Hampton, R. F.; Kurylo, M. J.; Margitan, J. J.; Molina, M. J.; Watson, R. T.
1979-01-01
An evaluated set of rate constants and photochemical cross sections were compiled for use in modelling stratospheric processes. The data are primarily relevant to the ozone layer, and its possible perturbation by anthropogenic activities. The evaluation is current to, approximately, January, 1979.
Chemical kinetics and photochemical data for use in stratospheric modeling. Evaluation number 6
NASA Technical Reports Server (NTRS)
Demore, W. B.; Molina, M. J.; Watson, R. T.; Golden, D. M.; Hampson, R. F.; Kurylo, M. J.; Howard, C. J.; Ravishankara, A. R.
1983-01-01
Evaluated sets of rate constants and photochemical cross sections are presented. The primary application of the data is in the modeling of stratospheric processes, with particular emphasis on the ozone layer and its possible perturbation by anthropogenic and natural phenomena.
Chemical kinetics and photochemical data for use in stratospheric modeling: Evaluation number 5
NASA Technical Reports Server (NTRS)
Demore, W. B.
1982-01-01
Sets of rate constants and photochemical cross sections compiled which were evaluated. The primary application of the data is in the modeling of stratospheric processes on the ozone layer and its possible perturbation by anthropogenic and natural phenomena are emphasized.
Prediction of the rate of gas production from bioreactor landfills is important to optimize energy recovery and to estimate greenhouse gas emissions. Landfill gas (LFG) composition and flow rate were monitored for four years for a conventional and two bioreactor landfill landfil...
Evaluation of the kinetic oxidation of aqueous volatile organic compounds by permanganate.
Mahmoodlu, Mojtaba G; Hassanizadeh, S Majid; Hartog, Niels
2014-07-01
The use of permanganate solutions for in-situ chemical oxidation (ISCO) is a well-established groundwater remediation technology, particularly for targeting chlorinated ethenes. The kinetics of oxidation reactions is an important ISCO remediation design aspect that affects the efficiency and oxidant persistence. The overall rate of the ISCO reaction between oxidant and contaminant is typically described using a second-order kinetic model while the second-order rate constant is determined experimentally by means of a pseudo first order approach. However, earlier studies of chlorinated hydrocarbons have yielded a wide range of values for the second-order rate constants. Also, there is limited insight in the kinetics of permanganate reactions with fuel-derived groundwater contaminants such as toluene and ethanol. In this study, batch experiments were carried out to investigate and compare the oxidation kinetics of aqueous trichloroethylene (TCE), ethanol, and toluene in an aqueous potassium permanganate solution. The overall second-order rate constants were determined directly by fitting a second-order model to the data, instead of typically using the pseudo-first-order approach. The second-order reaction rate constants (M(-1) s(-1)) for TCE, toluene, and ethanol were 8.0×10(-1), 2.5×10(-4), and 6.5×10(-4), respectively. Results showed that the inappropriate use of the pseudo-first-order approach in several previous studies produced biased estimates of the second-order rate constants. In our study, this error was expressed as a function of the extent (P/N) in which the reactant concentrations deviated from the stoichiometric ratio of each oxidation reaction. The error associated with the inappropriate use of the pseudo-first-order approach is negatively correlated with the P/N ratio and reached up to 25% of the estimated second-order rate constant in some previous studies of TCE oxidation. Based on our results, a similar relation is valid for the other volatile organic compounds studied. Copyright © 2013 Elsevier B.V. All rights reserved.
Chemical kinetics and photochemical data for use in stratospheric modeling: Evaluation number 11
NASA Technical Reports Server (NTRS)
Demore, W. B.; Sander, S. P.; Golden, D. M.; Hampson, R. F.; Kurylo, M. J.; Howard, C. J.; Ravishankara, A. R.; Kolb, C. E.; Molina, M. J.
1994-01-01
This is the eleventh in a series of evaluated sets of rate constants and photochemical cross sections compiled by the NASA Panel for Data Evaluation. The primary application of the data is in the modeling of stratospheric processes, with special emphasis on the ozone layer and its possible perturbation by anthropogenic and natural phenomena.
Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling. Evaluation No. 12
NASA Technical Reports Server (NTRS)
DeMore, W. B.; Sander, S. P.; Golden, D. M.; Hampson, R. F.; Kurylo, M. J.; Howard, C. J.; Ravishankara, A. R.; Kolb, C. E.; Molina, M. J.
1997-01-01
This is the twelfth in a series of evaluated sets of rate constants and photochemical cross sections compiled by the NASA Panel for Data Evaluation. The primary application of the data is in the modeling of stratospheric processes, with special emphasis on the ozone layer and its possible perturbation by anthropogenic and natural phenomena.
Ren, Jimin; Sherry, A. Dean; Malloy, Craig R.
2015-01-01
Inversion transfer (IT) is a well-established technique with multiple attractive features for analysis of kinetics. However, its application in measurement of ATP synthesis rate in vivo has lagged behind the more common ST techniques. One well-recognized issue with IT is the complexity of data analysis in comparison to much simpler analysis by ST. This complexity arises, in part, because the γ-ATP spin is involved in multiple chemical reactions and magnetization exchanges, whereas Pi is involved in a single reaction, Pi → γ-ATP. By considering the reactions involving γ-ATP only as a lumped constant, the rate constant for the reaction of physiological interest, kPi→γATP, can be determined. Here, we present a new IT data analysis method to evaluate kPi→γATP using data collected from resting human skeletal muscle at 7T. The method is based on the basic Bloch-McConnell equation, which relates kPi→γATP with ṁPi, the rate of Pi magnetization change. The kPi→γATP value is accessed from ṁPi data by more familiar linear correlation approaches. For a group of human subjects (n = 15), the kPi→γATP value derived for resting calf muscle was 0.066 ± 0.017 s−1, in agreement with literature reported values. In this study we also explored possible time-saving strategies to speed up data acquisition for kPi→γATP evaluation using simulations. The analysis indicates that it is feasible to carry out a 31P inversion transfer experiment in ~10 minutes or shorter at 7T with reasonable outcome in kPi→γATP variance for measurement of ATP synthesis in resting human skeletal muscle. We believe that this new IT data analysis approach will facilitate the wide acceptance of IT to evaluate ATP synthesis rate in vivo. PMID:25943328
Semi-empirical master curve concept describing the rate capability of lithium insertion electrodes
NASA Astrophysics Data System (ADS)
Heubner, C.; Seeba, J.; Liebmann, T.; Nickol, A.; Börner, S.; Fritsch, M.; Nikolowski, K.; Wolter, M.; Schneider, M.; Michaelis, A.
2018-03-01
A simple semi-empirical master curve concept, describing the rate capability of porous insertion electrodes for lithium-ion batteries, is proposed. The model is based on the evaluation of the time constants of lithium diffusion in the liquid electrolyte and the solid active material. This theoretical approach is successfully verified by comprehensive experimental investigations of the rate capability of a large number of porous insertion electrodes with various active materials and design parameters. It turns out, that the rate capability of all investigated electrodes follows a simple master curve governed by the time constant of the rate limiting process. We demonstrate that the master curve concept can be used to determine optimum design criteria meeting specific requirements in terms of maximum gravimetric capacity for a desired rate capability. The model further reveals practical limits of the electrode design, attesting the empirically well-known and inevitable tradeoff between energy and power density.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laevastu, T.
1983-01-01
The effects of fishing on a given species biomass have been quantitatively evaluated. A constant recruitment is assumed in this study, but the evaluation can be computed on any known age distribution of exploitable biomass. Fishing mortality is assumed to be constant with age; however, spawning stress mortality increases with age. When fishing (mortality) increases, the spawning stress mortality decreases relative to total and exploitable biomasses. These changes are quantitatively shown for two species from the Bering Sea - walleye pollock, Theragra chalcogramma, and yellowfin sole, Limanda aspera.
Discounting in Economic Evaluations.
Attema, Arthur E; Brouwer, Werner B F; Claxton, Karl
2018-05-19
Appropriate discounting rules in economic evaluations have received considerable attention in the literature and in national guidelines for economic evaluations. Rightfully so, as discounting can be quite influential on the outcomes of economic evaluations. The most prominent controversies regarding discounting involve the basis for and height of the discount rate, whether costs and effects should be discounted at the same rate, and whether discount rates should decline or stay constant over time. Moreover, the choice for discount rules depends on the decision context one adopts as the most relevant. In this article, we review these issues and debates, and describe and discuss the current discounting recommendations of the countries publishing their national guidelines. We finish the article by proposing a research agenda.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dzegilenko, F.N.; Bowman, J.M.
1996-08-01
Two reduced dimensionality theories are used to calculate the thermal rate constant for the OH+CO{r_arrow}H+CO{sub 2} reaction. The standard theory employs energy-shift approximations to extract the full six degree-of-freedom quantum rate constant for this reaction from the previous two degree-of-freedom (2-DOF) quantum calculations of Hernandez and Clary [M.I. Hernandez and D.C. Clary, J. Chem. Phys. {bold 101}, 2779 (1994)]. Three extra bending modes and one extra {open_quote}{open_quote}spectator{close_quote}{close_quote} CO stretch mode are treated adiabatically in the harmonic fashion. The parameters of the exit channel transition state are used to evaluate the frequencies of those additional modes. A new reduced dimensionality theorymore » is also applied to this reaction. This theory explicitly addresses the finding from the 2-DOF calculations that the reaction proceeds mainly via complex formation. A J-shifting approximation has been used to take into account the initial states with non-zero values of total angular momentum in both reduced dimensionality theories. Cumulative reaction probabilities and thermal rate constants are calculated and compared with the previous quasiclassical and reduced dimensionality quantum calculations and with experiment. The rate constant from the new reduced dimensionality theory is between a factor of 5 and 100 times smaller than the statistical transition state theory result, and is in much better agreement with experiment. {copyright} {ital 1996 American Institute of Physics.}« less
Intrinsic photocatalytic assessment of reactively sputtered TiO₂ films.
Rafieian, Damon; Driessen, Rick T; Ogieglo, Wojciech; Lammertink, Rob G H
2015-04-29
Thin TiO2 films were prepared by DC magnetron reactive sputtering at different oxygen partial pressures. Depending on the oxygen partial pressure during sputtering, a transition from metallic Ti to TiO2 was identified by spectroscopic ellipsometry. The crystalline nature of the film developed during a subsequent annealing step, resulting in thin anatase TiO2 layers, displaying photocatalytic activity. The intrinsic photocatalytic activity of the catalysts was evaluated for the degradation of methylene blue (MB) using a microfluidic reactor. A numerical model was employed to extract the intrinsic reaction rate constants. High conversion rates (90% degradation within 20 s residence time) were observed within these microreactors because of the efficient mass transport and light distribution. To evaluate the intrinsic reaction kinetics, we argue that mass transport has to be accounted for. The obtained surface reaction rate constants demonstrate very high reactivity for the sputtered TiO2 films. Only for the thinnest film, 9 nm, slightly lower kinetics were observed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schreiber, G.; Henis, Y.I.; Sokolovsky, M.
The method of competition kinetics, which measures the binding kinetics of an unlabeled ligand through its effect on the binding kinetics of a labeled ligand, was employed to investigate the kinetics of muscarinic agonist binding to rat brain medulla pons homogenates. The agonists studied were acetylcholine, carbamylcholine, and oxotremorine, with N-methyl-4-(TH)piperidyl benzilate employed as the radiolabeled ligand. Our results suggested that the binding of muscarinic agonists to the high affinity sites is characterized by dissociation rate constants higher by 2 orders of magnitude than those of antagonists, with rather similar association rate constants. Our findings also suggest that isomerization ofmore » the muscarinic receptors following ligand binding is significant in the case of antagonists, but not of agonists. Moreover, it is demonstrated that in the medulla pons preparation, agonist-induced interconversion between high and low affinity bindings sites does not occur to an appreciable extent.« less
Zhang, Jiayi; Shao, Xiongjun; Townsend, Oliver V; Lynd, Lee R
2009-12-01
A kinetic model was developed to predict batch simultaneous saccharification and co-fermentation (SSCF) of paper sludge by the xylose-utilizing yeast Saccharomyces cerevisiae RWB222 and the commercial cellulase preparation Spezyme CP. The model accounts for cellulose and xylan enzymatic hydrolysis and competitive uptake of glucose and xylose. Experimental results show that glucan and xylan enzymatic hydrolysis are highly correlated, and that the low concentrations of xylose encountered during SSCF do not have a significant inhibitory effect on enzymatic hydrolysis. Ethanol is found to not only inhibit the specific growth rate, but also to accelerate cell death. Glucose and xylose uptake rates were found to be competitively inhibitory, but this did not have a large impact during SSCF because the sugar concentrations are low. The model was used to evaluate which constants had the greatest impact on ethanol titer for a fixed substrate loading, enzyme loading, and fermentation time. The cellulose adsorption capacity and cellulose hydrolysis rate constants were found to have the greatest impact among enzymatic hydrolysis related constants, and ethanol yield and maximum ethanol tolerance had the greatest impact among fermentation related constants.
Brazzale, Alessandra R; Küchenhoff, Helmut; Krügel, Stefanie; Schiergens, Tobias S; Trentzsch, Heiko; Hartl, Wolfgang
2018-04-05
We present a new method for estimating a change point in the hazard function of a survival distribution assuming a constant hazard rate after the change point and a decreasing hazard rate before the change point. Our method is based on fitting a stump regression to p values for testing hazard rates in small time intervals. We present three real data examples describing survival patterns of severely ill patients, whose excess mortality rates are known to persist far beyond hospital discharge. For designing survival studies in these patients and for the definition of hospital performance metrics (e.g. mortality), it is essential to define adequate and objective end points. The reliable estimation of a change point will help researchers to identify such end points. By precisely knowing this change point, clinicians can distinguish between the acute phase with high hazard (time elapsed after admission and before the change point was reached), and the chronic phase (time elapsed after the change point) in which hazard is fairly constant. We show in an extensive simulation study that maximum likelihood estimation is not robust in this setting, and we evaluate our new estimation strategy including bootstrap confidence intervals and finite sample bias correction.
Rate constants for the reactions of OH with CH3Cl, CH2Cl2, CHCl3, and CH3Br
NASA Technical Reports Server (NTRS)
Hsu, K.-J.; Demore, W. B.
1994-01-01
Rate constants for the reactions of OH with CH3Cl, CH2Cl2, CHCl3, and CH3Br have been measured by a relative rate technique in which the reaction rate of each compound was compared to that of HFC-152a (CH3CHF2) and (for CH2Cl2) HFC-161 (CH3CH2F). Using absolute rate constants for HFC-152a and HFC-161, which we have determined relative to those for CH4, CH3CCl3, and C2H6, temperature dependent rate constants of both compounds were derived. The derived rate constant for CH3Br is in good agreement with recent absolute measurements. However, for the chloromethanes all the rate constants are lower at atmospheric temperatures than previously reported, especially for CH2Cl2 where the present rate constant is about a factor of 1.6 below the JPL 92-20 value. The new rate constant appears to resolve a discrepancy between the observed atmospheric concentrations and those calculated from the previous rate constant and estimated release rates.
Microbial endogenous response to acute inhibitory impact of antibiotics.
Pala-Ozkok, I; Kor-Bicakci, G; Çokgör, E U; Jonas, D; Orhon, D
2017-06-13
Enhanced endogenous respiration was observed as the significant/main response of the aerobic microbial culture under pulse exposure to antibiotics: sulfamethoxazole, tetracycline and erythromycin. Peptone mixture and acetate were selected as organic substrates to compare the effect of complex and simple substrates. Experiments were conducted with microbial cultures acclimated to different sludge ages of 10 and 2 days, to visualize the effect of culture history. Evaluation relied on modeling of oxygen uptake rate profiles, reflecting the effect of all biochemical reactions associated with substrate utilization. Model calibration exhibited significant increase in values of endogenous respiration rate coefficient with all antibiotic doses. Enhancement of endogenous respiration was different with antibiotic type and initial dose. Results showed that both peptone mixture and acetate cultures harbored resistance genes against the tested antibiotics, which suggests that biomass spends cellular maintenance energy for activating the required antibiotic resistance mechanisms to survive, supporting higher endogenous decay rates. [Formula: see text]: maximum growth rate for X H (day -1 ); K S : half saturation constant for growth of X H (mg COD/L); b H : endogenous decay rate for X H (day -1 ); k h : maximum hydrolysis rate for S H1 (day -1 ); K X : hydrolysis half saturation constant for S H1 (mg COD/L); k hx : maximum hydrolysis rate for X S1 (day -1 ); K XX : hydrolysis half saturation constant for X S1 (mg COD/L); k STO : maximum storage rate of PHA by X H (day -1 ); [Formula: see text]: maximum growth rate on PHA for X H (day -1 ); K STO : half saturation constant for storage of PHA by X H (mg COD/L); X H1 : initial active biomass (mg COD/L).
Control of the Protein Turnover Rates in Lemna minor
Trewavas, A.
1972-01-01
The control of protein turnover in Lemna minor has been examined using a method described in the previous paper for determining the rate constants of synthesis and degradation of protein. If Lemna is placed on water, there is a reduction in the rate constants of synthesis of protein and an increase (3- to 6-fold) in the rate constant of degradation. The net effect is a loss of protein from the tissue. Omission of nitrate, phosphate, sulfate, magnesium, or calcium results in increases in the rate constant of degradation of protein. An unusual dual effect of benzyladenine on the turnover constants has been observed. Treatment of Lemna grown on sucrose-mineral salts with benzyladenine results in alterations only in the rate constant of synthesis. Treatment of Lemna grown on water with benzyladenine alters only the rate constant of degradation. Abscisic acid on the other hand alters both rate constants of synthesis and degradation of protein together. Inclusion of growth-inhibiting amino acids in the medium results in a reduction in the rate constants of synthesis and increases in the rate constant of degradation of protein. It is concluded that the rate of turnover of protein in Lemna is very dependent on the composition of the growth medium. Conditions which reduce growth rates also reduce the rates of synthesis of protein and increase those of degradation. PMID:16657895
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sivaramakrishnan, R.; Michael, J. V.; Chemical Sciences and Engineering Division
High-temperature rate constant experiments on OH with the five large (C{sub 5}-C{sub 8}) saturated hydrocarbons n-heptane, 2,2,3,3-tetramethylbutane (2,2,3,3-TMB), n-pentane, n-hexane, and 2,3-dimethylbutane (2,3-DMB) were performed with the reflected-shock-tube technique using multipass absorption spectrometric detection of OH radicals at 308 nm. Single-point determinations at {approx}1200 K on n-heptane, 2,2,3,3-TMB, n-hexane, and 2,3-DMB were previously reported by Cohen and co-workers; however, the present work substantially extends the database to both lower and higher temperature. The present experiments span a wide temperature range, 789-1308 K, and represent the first direct measurements of rate constants at T > 800 K for n-pentane. The presentmore » work utilized 48 optical passes corresponding to a total path length of {approx}4.2 m. As a result of this increased path length, the high OH concentration detection sensitivity permitted pseudo-first-order analyses for unambiguously measuring rate constants. The experimental results can be expressed in Arrhenius form in units of cm{sup 3} molecule{sup -1} s{sup -1} as follows: K{sub OH+n-heptane} = (2.48 {+-} 0.17) x 10{sup -10} exp[(-1927 {+-} 69 K)/T] (838-1287 K); k{sub OH+2,2,3,3-TMB} = (8.26 {+-} 0.89) x 10{sup -11} exp[(-1337 {+-} 94 K)/T] (789-1061 K); K{sub OH+n-pentane} = (1.60 {+-} 0.25) x 10{sup -10} exp[(-1903 {+-} 146 K)/T] (823-1308 K); K{sub OH+n-hexane} = (2.79 {+-} 0.39) x 10{sup -10} exp[(-2301 {+-} 134 K)/T] (798-1299 K); and k{sub OH+2,3-DMB} = (1.27 {+-} 0.16) x 10{sup -10} exp[(-1617 {+-} 118 K)/T] (843-1292 K). The available experimental data, along with lower-T determinations, were used to obtain evaluations of the experimental rate constants over the temperature range from {approx}230 to 1300 K for most of the title reactions. These extended-temperature-range evaluations, given as three-parameter fits, are as follows: k{sub OH+n-heptane} = 2.059 x 10{sup -5}T{sup 1.401} exp(33 K/T) cm{sup 3} molecule{sup -1} s{sup -1} (241-1287 K); k{sub OH+2,2,3,3-TMB} = 6.835 x 10{sup -17}T{sup 1.886} exp(-365 K/T) cm{sup 3} molecule{sup -1} s{sup -1} (290-1180 K); k{sub OH+n-pentane} = 2.495 x 10{sup -16}T{sup 1.649} exp(80 K/T) cm{sup 3} molecule{sup -1} s{sup -1} (224-1308 K); k{sub OH+n-hexane} = 3.959 x 10{sup -18}T{sup 2.218} exp(443 K/T) cm{sup 3} molecule{sup -1} s{sup -1} (292-1299 K); and k{sub OH+2,3-DMB} = 2.287 x 10{sup -17}T{sup 1.958} exp(365 K/T) cm{sup 3} molecule{sup -1} s{sup -1} (220-1292 K). The experimental data and the evaluations obtained for these five larger alkanes in the present work were used along with prior data/evaluations obtained in this laboratory for H abstractions by OH from a series of smaller alkanes (C{sub 3}?C{sub 5}) to devise rate rules for abstractions from various types of primary, secondary, and tertiary H atoms. Specifically, the current scheme was applied with good success to H abstractions by OH from a series of n-alkanes (n-octane through n-hexadecane). The total rate constants using this group scheme for reactions of OH with selected large alkanes are given as three-parameter fits in this article. The rate constants for the various abstraction channels in any large n-alkane can also be obtained using the groups listed in this article. The present group scheme serves to reduce the uncertainties in rate constants for OH + alkane reactions.« less
The vibrational dependence of dissociative recombination: Rate constants for N{sub 2}{sup +}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guberman, Steven L., E-mail: slg@sci.org
Dissociative recombination rate constants are reported with electron temperature dependent uncertainties for the lowest 5 vibrational levels of the N{sub 2}{sup +} ground state. The rate constants are determined from ab initio calculations of potential curves, electronic widths, quantum defects, and cross sections. At 100 K electron temperature, the rate constants overlap with the exception of the third vibrational level. At and above 300 K, the rate constants for excited vibrational levels are significantly smaller than that for the ground level. It is shown that any experimentally determined total rate constant at 300 K electron temperature that is smaller thanmore » 2.0 × 10{sup −7} cm{sup 3}/s is likely to be for ions that have a substantially excited vibrational population. Using the vibrational level specific rate constants, the total rate constant is in very good agreement with that for an excited vibrational distribution found in a storage ring experiment. It is also shown that a prior analysis of a laser induced fluorescence experiment is quantitatively flawed due to the need to account for reactions with unknown rate constants. Two prior calculations of the dissociative recombination rate constant are shown to be inconsistent with the cross sections upon which they are based. The rate constants calculated here contribute to the resolution of a 30 year old disagreement between modeled and observed N{sub 2}{sup +} ionospheric densities.« less
Chemical kinetics and photochemical data for use in stratospheric modeling
NASA Technical Reports Server (NTRS)
Demore, W. B.; Sander, S. P.; Golden, D. M.; Hampson, R. F.; Kurylo, M. J.; Howard, C. J.; Ravishankara, A. R.; Kolb, C. E.; Molina, M. J.
1992-01-01
As part of a series of evaluated sets, rate constants and photochemical cross sections compiled by the NASA Panel for Data Evaluation are provided. The primary application of the data is in the modeling of stratospheric processes, with particular emphasis on the ozone layer and its possible perturbation by anthropogenic and natural phenomena. Copies of this evaluation are available from the Jet Propulsion Laboratory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siewicki, T.C.; Chandler, G.T.
1995-12-31
Eastern oysters (Crassostrea virginica) were continuously exposed to suspended {sup 14}C-fluoranthene spiked-sediment for either: (1) five days followed by 24 days deputation, or (2) 28 days exposure. Sediment less than 63 um contained fluoranthene concentrations one or ten times that measured at suburbanized sites in southeastern estuaries (133 or 1,300 ng/g). The data were evaluated both raw and normalized for tissue lipid and sediment organic carbon concentrations. Uptake rate constants were estimated using non-linear regression methods. Depuration rate constants were estimated by linear regression of the deputation phase following five-days exposure and as the second partial derivative of the non-linearmore » regression for the 28-day exposures. Uptake and deputation rate constants, bioconcentration factors and half-lives were similar regardless of exposure time, sediment fluoranthene concentration or use of data normalization. Uptake and deputation rate constants, bioconcentration factors and half-lives (days) were similar and low for all experiments, ranging from 0.02 to 0.10, 0.14 to 0.30, 0.09 to 0.46, and 2.4 to 5.0, respectively. Degradation by the mixed function oxidase system is not expected in oysters allowing the use of radiotracers for measuring very low concentrations of fluoranthene. The results suggest that short-term exposures followed by deputation are effective for estimating kinetic rate constants and that normalization provides little benefit in these controlled studies. The results further show that bioconcentration of sediment-associated fluoranthene, and possibly other polycyclic aromatic hydrocarbons, is very low compared to either dissolved forms or levels commonly used in regulatory actions.« less
Reaction modeling of drainage quality in the Duluth Complex, northern Minnesota, USA
Seal, Robert; Lapakko, Kim; Piatak, Nadine; Woodruff, Laurel G.
2015-01-01
Reaction modeling can be a valuable tool in predicting the long-term behavior of waste material if representative rate constants can be derived from long-term leaching tests or other approaches. Reaction modeling using the REACT program of the Geochemist’s Workbench was conducted to evaluate long-term drainage quality affected by disseminated Cu-Ni-(Co-)-PGM sulfide mineralization in the basal zone of the Duluth Complex where significant resources have been identified. Disseminated sulfide minerals, mostly pyrrhotite and Cu-Fe sulfides, are hosted by clinopyroxene-bearing troctolites. Carbonate minerals are scarce to non-existent. Long-term simulations of up to 20 years of weathering of tailings used two different sets of rate constants: one based on published laboratory single-mineral dissolution experiments, and one based on leaching experiments using bulk material from the Duluth Complex conducted by the Minnesota Department of Natural Resources (MNDNR). The simulations included only plagioclase, olivine, clinopyroxene, pyrrhotite, and water as starting phases. Dissolved oxygen concentrations were assumed to be in equilibrium with atmospheric oxygen. The simulations based on the published single-mineral rate constants predicted that pyrrhotite would be effectively exhausted in less than two years and pH would rise accordingly. In contrast, only 20 percent of the pyrrhotite was depleted after two years using the MNDNR rate constants. Predicted pyrrhotite depletion by the simulation based on the MNDNR rate constant matched well with published results of laboratory tests on tailings. Modeling long-term weathering of mine wastes also can provide important insights into secondary reactions that may influence the permeability of tailings and thereby affect weathering behavior. Both models predicted the precipitation of a variety of secondary phases including goethite, gibbsite, and clay (nontronite).
Calculation of kinetic rate constants from thermodynamic data
NASA Technical Reports Server (NTRS)
Marek, C. John
1995-01-01
A new scheme for relating the absolute value for the kinetic rate constant k to the thermodynamic constant Kp is developed for gases. In this report the forward and reverse rate constants are individually related to the thermodynamic data. The kinetic rate constants computed from thermodynamics compare well with the current kinetic rate constants. This method is self consistent and does not have extensive rules. It is first demonstrated and calibrated by computing the HBr reaction from H2 and Br2. This method then is used on other reactions.
NASA Technical Reports Server (NTRS)
Kawamura, K.; Ferris, J. P.
1994-01-01
The rate constants for the condensation reaction of the 5'-phosphorimidazolide of adenosine (ImpA) to form dinucleotides and oligonucleotides have been measured in the presence of Na(+)-volclay (a Na(+)-montmorillonite) in pH 8 aqueous solution at 25 degrees C. The rates of the reaction of ImpA with an excess of adenosine 5'-monophosphoramidate (NH2pA), P1,P2-diadenosine 5',5'-pyrophosphate (A5'ppA), or adenosine 5'-monophosphate (5'-AMP or pA) in the presence of the montmorillonite to form NH2pA3'pA, A5'ppA3'pA, and pA3'pA, respectively, were measured. Only 3',5'-linked products were observed. The magnitude of the rate constants decrease in the order NH2pA3'pA > A5'-ppA3'pA > pA3'pA. The binding of ImpA to montmorillonite was measured, and the adsorption isotherm was determined. The binding of ImpA to montmorillonite and the formation of higher oligonucleotides is not observed in the absence of salts. Mg2+ enhances binding and oligonucleotide formation more than Ca2+ and Na+. The rate constants for the oligonucleotide formation were determined from the reaction products formed from 10 to 40 mM ImpA in the presence of Na(+)-montmorillonite using the computer program SIMFIT. The magnitudes of the rate constants for the formation of oligonucleotides increased in the order 2-mer < 3-mer < 4-mer ... 7-mer. The rate constants for dinucleotide and trinucleotide formation are more than 1000 times larger than those measured in the absence of montmorillonite. The rate constants for the formation of dinucleotide, trinucleotide, and tetranucleotide are 41,2.6, and 3.7 times larger than those for the formation of oligo(G)s with a poly(C) template. The hydrolysis of ImpA was accelerated 35 times in the presence of the montmorillonite. The catalytic ability of montmorillonite to form dinucleotides and oligonucleotides is quantitatively evaluated and possible pathways for oligo(A) formation are proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coleman, M.D.; Dickson, R.E.; Isebrands, J.G.
To assess the interaction of gaseous pollutants and plant nutrition it is desirable to grow plants at a constant growth rate while maintaining constant nutrient status. Once constant, or steady-state, conditions are established relationships between growth, nutrition, physiology and stress responses are simplified. Relative nutrient additions are an effective way to maintain such constant conditions in solution culture; however, few experiments have applied such treatments to soil grown plants. This experiment evaluates the response of two aspen clones (259 and 271) to various relative nutrient addition rates (1,2,3,4,5 % per day) applied to the peat:sand:vermiculite growing media. Although the initialmore » lag phase (adjustment period) lasted up to 50 days, subsequent relative growth rates were uniform and related to treatment. Growth responses among treatments were distinct with final biomass in the higher addition rates (3,4,5% per day) as much as twice that of the next lower treatment. Clone 271 (ozone tolerant) produced only 61% of the biomass that clone 259 (ozone sensitive) produced in the 5% per day treatment. Final leaf nitrogen was 1.5, 2.1, 3.4, 3.8, 4.3% dry weight for 1 to 5% per day addition rate treatments respectively. Concentrations between clones were equal. Results demonstrate the effectiveness of steady-state nutrition in controlling growth and nutrient status of soil grown aspen, enabling more critical control of stress experiments.« less
Temporal variations in volumetric magma eruption rates of Quaternary volcanoes in Japan
NASA Astrophysics Data System (ADS)
Yamamoto, Takahiro; Kudo, Takashi; Isizuka, Osamu
2018-04-01
Long-term evaluations of hazard and risk related to volcanoes rely on extrapolations from volcano histories, including the uniformity of their eruption rates. We calculated volumetric magma eruption rates, compiled from quantitative eruption histories of 29 Japanese Quaternary volcanoes, and analyzed them with respect to durations spanning 101-105 years. Calculated eruption rates vary greatly (101-10-4 km3 dense-rock equivalent/1000 years) between individual volcanoes. Although large basaltic stratovolcanoes tend to have high eruption rates and relatively constant repose intervals, these cases are not representative of the various types of volcanoes in Japan. At many Japanese volcanoes, eruption rates are not constant through time, but increase, decrease, or fluctuate. Therefore, it is important to predict whether eruption rates will increase or decrease for long-term risk assessment. Several temporal co-variations of eruption rate and magmatic evolution suggest that there are connections between them. In some cases, magma supply rates increased in response to changing magma-generation processes. On the other hand, stable plumbing systems without marked changes in magma composition show decreasing eruption rates through time.[Figure not available: see fulltext.
Park, Jinwoo; Kumar, Vipin; Wang, Xu; Lee, Pooi See; Kim, Woong
2017-10-04
The redox-active electrolyte supercapacitor (RAES) is a relatively new type of energy storage device. Simple addition of selected redox species in the electrolyte can greatly enhance the energy density of supercapacitors relative to traditional electric double layer capacitors (EDLCs) owing to redox reactions. Studies on the kinetics at the interface of the electrode and redox mediator are important when developing RAESs. In this work, we employ highly accurate scanning electrochemical microscopy (SECM) to extract the kinetic constants at carbon/hydroquinone interfaces. The charge transfer rate constants are 1.2 × 10 -2 and 1.3 × 10 -2 cm s -1 for the carbon nanotube/hydroquinone and reduced graphene oxide/hydroquinone interfaces, respectively. These values are higher than those obtained by the conventional cyclic voltammetry method, approximately by an order of magnitude. The evaluation of heterogeneous rate constants with SECM would be the cornerstone for understanding and developing high performance RAESs.
NASA Technical Reports Server (NTRS)
Gerren, Donna S.
1995-01-01
A study has been conducted to determine the capability to control a very large transport airplane with engine thrust. This study consisted of the design of an 800-passenger airplane with a range of 5000 nautical miles design and evaluation of a flight control system, and design and piloted simulation evaluation of a thrust-only backup flight control system. Location of the four wing-mounted engines was varied to optimize the propulsive control capability, and the time constant of the engine response was studied. The goal was to provide level 1 flying qualities. The engine location and engine time constant did not have a large effect on the control capability. The airplane design did meet level 1 flying qualities based on frequencies, damping ratios, and time constants in the longitudinal and lateral-directional modes. Project pilots consistently rated the flying qualities as either level 1 or level 2 based on Cooper-Harper ratings. However, because of the limited control forces and moments, the airplane design fell short of meeting the time required to achieve a 30 deg bank and the time required to respond a control input.
Benitez, F Javier; Acero, Juan L; Gonzalez, Teresa; Garcia, Juan
2002-08-01
The oxidation of the pollutant organic matter present in wastewaters generated during different stages in the black table-olive industry was investigated by using ozone alone or combined with UV radiation; by using aerobic microorganisms; and finally, by aerobic degradation of the previously ozonated wastewaters. In the ozonation processes, the removal of substrate (COD) and aromatic compounds, the decreases in BOD5 and pH, and the ozone consumed in the reaction were evaluated. A kinetic study was conducted that led to the evaluation of the stoichiometric ratio for the chemical reaction, as well as the rate constants for the substrate reduction and ozone disappearance. In the single aerobic degradation treatment, the evolution of substrate and biomass was monitored during the process, and a kinetic study was performed by applying the Contois model to the experimental data, giving the specific biokinetic constant, the cell yield coefficient, and the rate constant for the microorganism death phase. Finally, a combined process was performed, consisting in the aerobic degradation of pre-ozonated wastewaters, and the effect of such chemical pretreatment on the substrate removal and kinetic parameters of the later biological stage is discussed.
Studies on a novel doughnut-shaped minitablet for intraocular drug delivery.
Choonara, Yahya E; Pillay, Viness; Carmichael, Trevor; Danckwerts, Michael P
2007-12-28
The objective of this study was to evaluate the effect of 2 independent formulation variables on the drug release from a novel doughnut-shaped minitablet (DSMT) in order to optimize formulations for intraocular drug delivery. Formulations were based on a 3(2) full-factorial design. The 2 independent variables were the concentration of Resomer (% wt/wt) and the type of Resomer grade (RG502, RG503, and RG504), respectively. The evaluated response was the drug release rate constant computed from a referenced marketed product and in vitro drug release data obtained at pH 7.4 in simulated vitreous humor. DSMT devices were prepared containing either of 2 model drugs, ganciclovir or foscarnet, using a Manesty F3 tableting press fitted with a novel central-rod, punch, and die setup. Dissolution data revealed biphasic drug release behavior with 55% to 60% drug released over 120 days. The inherent viscosity of the various Resomer grades and the concentration were significant to achieve optimum release rate constants. Using the resultant statistical relationships with the release rate constant as a response, the optimum formulation predicted for devices formulated with foscarnet was 70% wt/wt of Resomer RG504, while 92% wt/wt of Resomer RG503 was ideal for devices formulated with ganciclovir. The results of this study revealed that the full-factorial design was a suitable tool to predict an optimized formulation for prolonged intraocular drug delivery.
Automated real time constant-specificity surveillance for disease outbreaks.
Wieland, Shannon C; Brownstein, John S; Berger, Bonnie; Mandl, Kenneth D
2007-06-13
For real time surveillance, detection of abnormal disease patterns is based on a difference between patterns observed, and those predicted by models of historical data. The usefulness of outbreak detection strategies depends on their specificity; the false alarm rate affects the interpretation of alarms. We evaluate the specificity of five traditional models: autoregressive, Serfling, trimmed seasonal, wavelet-based, and generalized linear. We apply each to 12 years of emergency department visits for respiratory infection syndromes at a pediatric hospital, finding that the specificity of the five models was almost always a non-constant function of the day of the week, month, and year of the study (p < 0.05). We develop an outbreak detection method, called the expectation-variance model, based on generalized additive modeling to achieve a constant specificity by accounting for not only the expected number of visits, but also the variance of the number of visits. The expectation-variance model achieves constant specificity on all three time scales, as well as earlier detection and improved sensitivity compared to traditional methods in most circumstances. Modeling the variance of visit patterns enables real-time detection with known, constant specificity at all times. With constant specificity, public health practitioners can better interpret the alarms and better evaluate the cost-effectiveness of surveillance systems.
Estimation of hydrolysis rate constants for carbamates
Cheminformatics based tools, such as the Chemical Transformation Simulator under development in EPA’s Office of Research and Development, are being increasingly used to evaluate chemicals for their potential to degrade in the environment or be transformed through metabolism...
HAZARDOUS AIR POLLUTANTS: WET REMOVAL RATES AND MECHANISMS
Fourteen hazardous organic air pollutants were evaluated for their potentials to be wet deposited by precipitation scavenging. This effort included a survey of solubilities (Henry's Law constants) in the literature, measurement of solubilities of three selected species, developme...
Mukhtasimova, Nuriya; daCosta, Corrie J.B.
2016-01-01
The acetylcholine receptor (AChR) from vertebrate skeletal muscle initiates voluntary movement, and its kinetics of activation are crucial for maintaining the safety margin for neuromuscular transmission. Furthermore, the kinetic mechanism of the muscle AChR serves as an archetype for understanding activation mechanisms of related receptors from the Cys-loop superfamily. Here we record currents through single muscle AChR channels with improved temporal resolution approaching half an order of magnitude over our previous best. A range of concentrations of full and partial agonists are used to elicit currents from human wild-type and gain-of-function mutant AChRs. For each agonist–receptor combination, rate constants are estimated from maximum likelihood analysis using a kinetic scheme comprised of agonist binding, priming, and channel gating steps. The kinetic scheme and rate constants are tested by stochastic simulation, followed by incorporation of the experimental step response, sampling rate, background noise, and filter bandwidth. Analyses of the simulated data confirm all rate constants except those for channel gating, which are overestimated because of the established effect of noise on the briefest dwell times. Estimates of the gating rate constants were obtained through iterative simulation followed by kinetic fitting. The results reveal that the agonist association rate constants are independent of agonist occupancy but depend on receptor state, whereas those for agonist dissociation depend on occupancy but not on state. The priming rate and equilibrium constants increase with successive agonist occupancy, and for a full agonist, the forward rate constant increases more than the equilibrium constant; for a partial agonist, the forward rate and equilibrium constants increase equally. The gating rate and equilibrium constants also increase with successive agonist occupancy, but unlike priming, the equilibrium constants increase more than the forward rate constants. As observed for a full and a partial agonist, the gain-of-function mutation affects the relationship between rate and equilibrium constants for priming but not for channel gating. Thus, resolving brief single channel currents distinguishes priming from gating steps and reveals how the corresponding rate and equilibrium constants depend on agonist occupancy. PMID:27353445
The effects of incubation temperature and experimental design on heart rates of lizard embryos.
Hulbert, Austin C; Mitchell, Timothy S; Hall, Joshua M; Guiffre, Cassia M; Douglas, Danielle C; Warner, Daniel A
2017-08-01
Many studies of phenotypic plasticity alter environmental conditions during embryonic development, yet only measure phenotypes at the neonatal stage (after embryonic development). However, measuring aspects of embryo physiology enhances our understanding of how environmental factors immediately affect embryos, which aids our understanding of developmental plasticity. While current research on reptile developmental plasticity has demonstrated that fluctuating incubation temperatures affect development differently than constant temperatures, most research on embryo physiology is still performed with constant temperature experiments. In this study, we noninvasively measured embryonic heart rates of the brown anole (Anolis sagrei), across ecologically relevant fluctuating temperatures. We incubated eggs under temperatures measured from potential nests in the field and examined how heart rates change through a diel cycle and throughout embryonic development. We also evaluated how experimental design (e.g., repeated vs. single measures designs, constant vs. fluctuating temperatures) and different protocols (e.g., removing eggs from incubators) might influence heart rate. We found that heart rates were correlated with daily temperature and increased through development. Our findings suggest that experimenters have reasonable flexibility in choosing an experimental design to address their questions; however, some aspects of design and protocol can potentially influence estimations of heart rates. Overall, we present the first ecologically relevant measures of anole embryonic heart rates and provide recommendations for experimental designs for future experiments. © 2017 Wiley Periodicals, Inc.
The effect of axial ligands on the quantum yield of singlet oxygen of new silicon phthalocyanine
NASA Astrophysics Data System (ADS)
Lv, Huafei; Zhang, Xuemei; Yu, Xinxin; Pan, Sujuan; Xie, Shusen; Yang, Hongqin; Peng, Yiru
2016-10-01
The singlet oxygen (1O2) production abilitity is an important factor to assess their potential as effective of photosensitizers. In this paper, the 1O2 production rate, production rate constant and quantum yield of silicon(IV) phthalocyanine axially bearing 1-3 generation dendritic substituents were evaluated by a high performance liquid chromatographic method. The results show that the 1O2 production rate and production rate constant of these compounds increase gradually with dendritic generations increase. And the 1O2 quantum yield of silicon(IV) phthalocyanine with first generation dendritic ligand was the highest. This may be due to the isolation effect of the dendritic ligands on the phthalocyanine core. The parameters of the observed 1O2 production properties will provide valuable data for these dendrimer phthalocyanines as promising photosensitizer in PDT application.
Kim; Zhu; Lee
2000-05-19
Rate constants (k(Y)) of the isomerizations of 11 diphenyl N-(substituted benzyl) ketenimines were measured at 40, 50, 60, and 70 degrees C. Activation parameters DeltaH()(Y) and DeltaS()(Y) were obtained using the Eyring equation. The relative rates (k(Y)/k(H)) were fitted into Hammett single correlations (log k(Y)/k(H) = rhosigma and log k(Y)/k(H) = rho(*)sigma(*)). The single correlations have been compared with Hammett dual correlations (log k(Y)/k(H) = rhosigma + rho(*)sigma(*) ). Separate treatments of para and meta substituents yielded even better correlations. Para substituents control the rates through spin-delocalizations and inductive effects. The former outweighs the latter when the latter exerts a modest but distinct influence on the rates. On the other hand, inductive effects are the "major" or the sole interactions triggered by meta substituents.
Song, Bo; Sanborn, Brett
2018-05-07
In this paper, a Johnson–Cook model was used as an example to analyze the relationship of compressive stress-strain response of engineering materials experimentally obtained at constant engineering and true strain rates. There was a minimal deviation between the stress-strain curves obtained at the same constant engineering and true strain rates. The stress-strain curves obtained at either constant engineering or true strain rates could be converted from one to the other, which both represented the intrinsic material response. There is no need to specify the testing requirement of constant engineering or true strain rates for material property characterization, provided that eithermore » constant engineering or constant true strain rate is attained during the experiment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Bo; Sanborn, Brett
In this paper, a Johnson–Cook model was used as an example to analyze the relationship of compressive stress-strain response of engineering materials experimentally obtained at constant engineering and true strain rates. There was a minimal deviation between the stress-strain curves obtained at the same constant engineering and true strain rates. The stress-strain curves obtained at either constant engineering or true strain rates could be converted from one to the other, which both represented the intrinsic material response. There is no need to specify the testing requirement of constant engineering or true strain rates for material property characterization, provided that eithermore » constant engineering or constant true strain rate is attained during the experiment.« less
Srinivasan, Nanda K; Su, Meng-Chih; Sutherland, James W; Michael, Joe V; Ruscic, Branko
2006-06-01
The motivation for the present study comes from the preceding paper where it is suggested that accepted rate constants for OH + NO2 --> NO + HO2 are high by approximately 2. This conclusion was based on a reevaluation of heats of formation for HO2, OH, NO, and NO2 using the Active Thermochemical Table (ATcT) approach. The present experiments were performed in C2H5I/NO2 mixtures, using the reflected shock tube technique and OH-radical electronic absorption detection (at 308 nm) and using a multipass optical system. Time-dependent profile decays were fitted with a 23-step mechanism, but only OH + NO2, OH + HO2, both HO2 and NO2 dissociations, and the atom molecule reactions, O + NO2 and O + C2H4, contributed to the decay profile. Since all of the reactions except the first two are known with good accuracy, the profiles were fitted by varying only OH + NO2 and OH + HO2. The new ATcT approach was used to evaluate equilibrium constants so that back reactions were accurately taken into account. The combined rate constant from the present work and earlier work by Glaenzer and Troe (GT) is k(OH+NO2) = 2.25 x 10(-11) exp(-3831 K/T) cm3 molecule(-1) s(-1), which is a factor of 2 lower than the extrapolated direct value from Howard but agrees well with NO + HO2 --> OH + NO2 transformed with the updated equilibrium constants. Also, the rate constant for OH + HO2 suitable for combustion modeling applications over the T range (1200-1700 K) is (5 +/- 3) x 10(-11) cm3 molecule(-1) s(-1). Finally, simulating previous experimental results of GT using our updated mechanism, we suggest a constant rate for k(HO2+NO2) = (2.2 +/- 0.7) x 10(-11) cm3 molecule(-1) s(-1) over the T range 1350-1760 K.
NASA Astrophysics Data System (ADS)
Bystrov, N. S.; Emelianov, A. V.; Eremin, A. V.; Yatsenko, P. I.
2018-05-01
The kinetics of the dissociation of CF3I behind shock waves was experimentally investigated. The reaction CF3I + Ar → CF3 + I + Ar was studied at temperatures between 900 and 1250 K and pressures of 2–3 bar. For this purpose, the time profiles of the concentration of atomic iodine were measured using a highly sensitive atomic resonance absorption spectroscopy method at a wavelength of 183.04 nm. From these data, the experimental value of the dissociation rate constant of CF3I was obtained: . We found that the investigated range of pressures and temperatures for the CF3I dissociation lies in the pressure transition region. Based on the Rice-Ramsperger–Kassel–Marcus theory, the threshold high and low-pressure rate constants ( and k 0) and falloff curves are calculated for the temperatures of 950–1200 K. As a result of this calculation, the threshold rate constants could be evaluated in the forms: and , and the center broadening factor, which takes into account the contribution of strong and weak collisions in the transition region, is .
NASA Astrophysics Data System (ADS)
Saengow, Chaimongkol; Giacomin, A. Jeffrey
2018-03-01
In this paper, we provide a new exact framework for analyzing the most commonly measured behaviors in large-amplitude oscillatory shear flow (LAOS), a popular flow for studying the nonlinear physics of complex fluids. Specifically, the strain rate sweep (also called the strain sweep) is used routinely to identify the onset of nonlinearity. By the strain rate sweep, we mean a sequence of LAOS experiments conducted at the same frequency, performed one after another, with increasing shear rate amplitude. In this paper, we give exact expressions for the nonlinear complex viscosity and the corresponding nonlinear complex normal stress coefficients, for the Oldroyd 8-constant framework for oscillatory shear sweeps. We choose the Oldroyd 8-constant framework for its rich diversity of popular special cases (we list 18 of these). We evaluate the Fourier integrals of our previous exact solution to get exact expressions for the real and imaginary parts of the complex viscosity, and for the complex normal stress coefficients, as functions of both test frequency and shear rate amplitude. We explore the role of infinite shear rate viscosity on strain rate sweep responses for the special case of the corotational Jeffreys fluid. We find that raising η∞ raises the real part of the complex viscosity and lowers the imaginary. In our worked examples, we thus first use the corotational Jeffreys fluid, and then, for greater accuracy, we use the Johnson-Segalman fluid, to describe the strain rate sweep response of molten atactic polystyrene. For our comparisons with data, we use the Spriggs relations to generalize the Oldroyd 8-constant framework to multimode. Our generalization yields unequivocally, a longest fluid relaxation time, used to assign Weissenberg and Deborah numbers to each oscillatory shear flow experiment. We then locate each experiment in the Pipkin space.
Comparison of TID Effects in Space-Like Variable Dose Rates and Constant Dose Rates
NASA Technical Reports Server (NTRS)
Harris, Richard D.; McClure, Steven S.; Rax, Bernard G.; Evans, Robin W.; Jun, Insoo
2008-01-01
The degradation of the LM193 dual voltage comparator has been studied at different TID dose rate profiles, including several different constant dose rates and a variable dose rate that simulates the behavior of a solar flare. A comparison of results following constant dose rate vs. variable dose rates is made to explore how well the constant dose rates used for typical part testing predict the performance during a simulated space-like mission. Testing at a constant dose rate equal to the lowest dose rate seen during the simulated flare provides an extremely conservative estimate of the overall amount of degradation. A constant dose rate equal to the average dose rate is also more conservative than the variable rate. It appears that, for this part, weighting the dose rates by the amount of total dose received at each rate (rather than the amount of time at each dose rate) results in an average rate that produces an amount of degradation that is a reasonable approximation to that received by the variable rate.
Ren, Jimin; Sherry, A Dean; Malloy, Craig R
2016-09-01
Inversion transfer (IT) is a well-established technique with multiple attractive features for analysis of kinetics. However, its application in measurement of ATP synthesis rate in vivo has lagged behind the more common saturation transfer (ST) techniques. One well-recognized issue with IT is the complexity of data analysis in comparison with much simpler analysis by ST. This complexity arises, in part, because the γ-ATP spin is involved in multiple chemical reactions and magnetization exchanges, whereas Pi is involved in a single reaction, Pi → γ-ATP. By considering the reactions involving γ-ATP only as a lumped constant, the rate constant for the reaction of physiological interest, kPi→γATP , can be determined. Here, we present a new IT data analysis method to evaluate kPi→γATP using data collected from resting human skeletal muscle at 7 T. The method is based on the basic Bloch-McConnell equation, which relates kPi→γATP to m˙Pi, the rate of Pi magnetization change. The kPi→γATP value is accessed from m˙Pi data by more familiar linear correlation approaches. For a group of human subjects (n = 15), the kPi→γATP value derived for resting calf muscle was 0.066 ± 0.017 s(-1) , in agreement with literature-reported values. In this study we also explored possible time-saving strategies to speed up data acquisition for kPi→γATP evaluation using simulations. The analysis indicates that it is feasible to carry out a (31) P IT experiment in about 10 min or less at 7 T with reasonable outcome in kPi→γATP variance for measurement of ATP synthesis in resting human skeletal muscle. We believe that this new IT data analysis approach will facilitate the wide acceptance of IT to evaluate ATP synthesis rate in vivo. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Y.; Hawkins, R.A.; Huang, S.C.
The liver plays an important role in glucose homeostasis. PET studies with 2-[F-18]fluro-2-deoxy-D-glucose (FDG) of the liver (e.g., in neoplasms) require an understanding of the effects of dietary conditions on hepatic FDG uptake. Twenty studies were performed on 10 normal volunteers (ages 24 {+-} 4) after fasting 4 to 19 hr and again after oral consumption of 100 g of dextrose to investigate tracer kinetic model configurations of FDG in the normal liver and to evaluate the impact of oral glucose on liver in normal subjects. Dynamic PET images were acquired for about 1 hr using a Siemens/CTI 931 tomograph.more » A three-compartment model with an input function delay time parameter was the statistically preferred model configuration. The model estimated transport rate constant from plasma to liver, K{sub 1}, increased significantly (p < 0.05) from 0.864 {+-} 0.136 ml/min/g in fasting studies to 1.058 {+-} 0.269 ml/min/g in postglucose studies. Glucose loading also significantly increased (p < 0.01) the rate constant for FDG phosphorylation, k{sub 3}, from 0.005 {+-} 0.003 min{sup -1} in fasting studies to 0.013 {+-} 0.007 min{sup -1} in postglucose administration and, consequently, significantly increased both the phosphorylation fraction (k{sub 3}/(k{sub 2} + k{sub 3})) and the influx constant (K{sub 1}k{sub 3}/(k{sub 2} + k{sub 3})). No significant differences in the liver-to-plasma transport rate constant, k{sub 2}, dephosphorylation constant, k{sub 4}, or distribution volume of FDG (K{sub 1}/(k{sub 2} + k{sub 3})) were observed. Dynamic FDG-PET studies can be used to evaluate kinetics of liver glucose metabolism. The results indicate that dietary conditions have a significant effect on hepatic FDG kinetics. Because of the higher net FDG uptake by normal liver after glucose loading, fasting conditions are preferred for FDG liver tumor studies to increase the tumor-to-background contrast. 22 refs., 2 figs., 3 tabs.« less
Effects of multiple predator species on green treefrog (Hyla cinerea) tadpoles
Gunzburger, M.S.; Travis, J.
2005-01-01
Prey species that occur across a range of habitats may be exposed to variable communities of multiple predator species across habitats. Predicting the combined effects of multiple predators can be complex. Many experiments evaluating the effects of multiple predators on prey confound either variation in predator density with predator identity or variation in relative predator frequency with overall predation rates. We develop a new experimental design of factorial predator combinations that maintains a constant expected predation rate, under the null hypothesis of additive predator effects. We implement this design to evaluate the combined effects of three predator species (bass, aeshnid and libellulid odonate naiads) on mortality rate of a prey species, Hyla cinerea (Schneider, 1799) tadpoles, that occurs across a range of aquatic habitats. Two predator treatments (libellulid and aeshnid + libellulid) resulted in lower tadpole mortality than any of the other predator treatments. Variation in tadpole mortality across treatments was not related to coarse variation in microhabitat use, but was likely due to intraguild predation, which occurred in all predator treatments. Hyla cinerea tadpoles have constant, low survival values when exposed to many different combinations of predator species, and predation rate probably increases linearly with predator density.
Hamzalıoğlu, Aytül; Gökmen, Vural
2018-02-01
In this study, reactions of hydroxymethylfurfural (HMF) with selected amino acids (arginine, cysteine and lysine) were investigated in HMF-amino acid (high moisture) and Coffee-amino acid (low moisture) model systems at 5, 25 and 50°C. The results revealed that HMF reacted efficiently and effectively with amino acids in both high and low moisture model systems. High-resolution mass spectrometry (HRMS) analyses of the reaction mixtures confirmed the formations of Michael adduct and Schiff base of HMF with amino acids. Calculated pseudo-first order reaction rate constants were in the following order; k Cysteine >k Arginine >k Lysine for high moisture model systems. Comparing to these rate constants, the k Cysteine decreased whereas, k Arginine and k Lysine increased under the low moisture conditions of Coffee-amino acid model systems. The temperature dependence of the rate constants was found to obey the Arrhenius law in a temperature range of 5-50°C under both low and high moisture conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.
SORPTION KINETICS OF PAHS IN METHANOL-WATER SYSTEMS
The objectives of this study were to evaluate the relationships between the equilibrium sorption constant (Kp), the first-order desorption rate coefficient (k2), and the volumetric fraction of water miscible solvent (fc); and to utilize SPARC-calculated (SPARC Performs Automatic ...
Petrowsky, Matt; Glatzhofer, Daniel T; Frech, Roger
2013-11-21
The dependence of the reaction rate on solvent dielectric constant is examined for the reaction of trihexylamine with 1-bromohexane in a series of 2-ketones over the temperature range 25-80 °C. The rate constant data are analyzed using the compensated Arrhenius formalism (CAF), where the rate constant assumes an Arrhenius-like equation that also contains a dielectric constant dependence in the exponential prefactor. The CAF activation energies are substantially higher than those obtained using the simple Arrhenius equation. A master curve of the data is observed by plotting the prefactors against the solvent dielectric constant. The master curve shows that the reaction rate has a weak dependence on dielectric constant for values approximately less than 10 and increases more rapidly for dielectric constant values greater than 10.
NASA Astrophysics Data System (ADS)
Vijaykumar, Adithya; ten Wolde, Pieter Rein; Bolhuis, Peter G.
2018-03-01
To predict the response of a biochemical system, knowledge of the intrinsic and effective rate constants of proteins is crucial. The experimentally accessible effective rate constant for association can be decomposed in a diffusion-limited rate at which proteins come into contact and an intrinsic association rate at which the proteins in contact truly bind. Reversely, when dissociating, bound proteins first separate into a contact pair with an intrinsic dissociation rate, before moving away by diffusion. While microscopic expressions exist that enable the calculation of the intrinsic and effective rate constants by conducting a single rare event simulation of the protein dissociation reaction, these expressions are only valid when the substrate has just one binding site. If the substrate has multiple binding sites, a bound enzyme can, besides dissociating into the bulk, also hop to another binding site. Calculating transition rate constants between multiple states with forward flux sampling requires a generalized rate expression. We present this expression here and use it to derive explicit expressions for all intrinsic and effective rate constants involving binding to multiple states, including rebinding. We illustrate our approach by computing the intrinsic and effective association, dissociation, and hopping rate constants for a system in which a patchy particle model enzyme binds to a substrate with two binding sites. We find that these rate constants increase as a function of the rotational diffusion constant of the particles. The hopping rate constant decreases as a function of the distance between the binding sites. Finally, we find that blocking one of the binding sites enhances both association and dissociation rate constants. Our approach and results are important for understanding and modeling association reactions in enzyme-substrate systems and other patchy particle systems and open the way for large multiscale simulations of such systems.
Sossou, S K; Hijikata, N; Sou, M; Tezuka, R; Maiga, A H; Funamizu, N
2014-01-01
This study aimed to compare the inactivation rate and the mechanisms of pathogenic bacteria in three matrixes (sawdust, rice husk and charcoal) during the composting process. The inactivation rate was evaluated with Escherichia coli strain and the damaged parts and/or functions were evaluated with three different media. Normalized inactivation rate constant in three media and from three matrixes had no significant difference in each process (pure, 1 month and 2 months). The value in rice husk was relatively increased during 2 months but there was no significant difference. The inactivation rate constants of Tryptic Soy Agar (TSA) and Compact Dry E. coli/Coliform in pure sawdust and rice husk were relatively lower than that of Desoxycholate Agar, but increased in 2 months. This indicated that damaging part was changed from outer membrane to enzymes and metabolisms during the 2-month composting process. In the case of charcoal, only the TSA value in apure matrix was relatively lower than that of others, but it increased in 2 months. This indicated that damaging part was changed from outer membrane and enzyme to metabolisms during the composting process. Composting matrix and composting process did not significantly affect inactivation rate of pathogenic bacteria during the process but affected the damaging part of the bacteria.
Moessner, Anne; Malec, James F; Beveridge, Scott; Reddy, Cara Camiolo; Huffman, Tracy; Marton, Julia; Schmerzler, Audrey J
2016-01-01
To develop and provide initial validation of a measure for accurately determining the need for Constant Visual Observation (CVO) in patients with traumatic brain injury (TBI) admitted to inpatient rehabilitation. Rating scale development and evaluation through Rasch analysis and assessment of concurrent validity. One hundred and thirty-four individuals with moderate-severe TBI were studied in seven inpatient brain rehabilitation units associated with the National Institute for Disability, Independent Living and Rehabilitation Research (NIDILRR) TBI Model System. Participants were rated on the preliminary version of the CVO Needs Assessment scale (CVONA) and, by independent raters, on the Levels of Risk (LoR) and Supervision Rating Scale (SRS) at four time points during inpatient rehabilitation: admission, Days 2-3, Days 5-6 and Days 8-9. After pruning misfitting items, the CVONA showed satisfactory internal consistency (Person Reliability = 0.85-0.88) across time points. With reference to the LoR and SRS, low false negative rates (sensitivity > 90%) were associated with moderate-to-high false positive rates (29-56%). The CVONA may be a useful objective metric to complement clinical judgement regarding the need for CVO; however, further prospective study is desirable to further assess its utility in identifying at-risk patients, reducing adverse events and decreasing CVO costs.
Kinetics of zero-valent iron reductive transformation of the anthraquinone dye Reactive Blue 4.
Epolito, William J; Yang, Hanbae; Bottomley, Lawrence A; Pavlostathis, Spyros G
2008-12-30
The effect of operational conditions and initial dye concentration on the reductive transformation (decolorization) of the textile dye Reactive Blue 4 (RB4) using zero-valent iron (ZVI) filings was evaluated in batch assays. The decolorization rate increased with decreasing pH and increasing temperature, mixing intensity, and addition of salt (100gL(-1) NaCl) and base (3gL(-1) Na2CO3 and 1gL(-1) NaOH), conditions typical of textile reactive dyebaths. ZVI RB4 decolorization kinetics at a single initial dye concentration were evaluated using a pseudo first-order model. Under dyebath conditions and at an initial RB4 concentration of 1000mgL(-1), the pseudo first-order rate constant (kobs) was 0.029+/-0.006h(-1), corresponding to a half-life of 24.2h and a ZVI surface area-normalized rate constant (kSA) of 2.9x10(-4)Lm(-2)h(-1). However, as the initial dye concentration increased, the kobs decreased, suggesting saturation of ZVI surface reactive sites. Non-linear regression of initial decolorization rate values as a function of initial dye concentration, based on a reactive sites saturation model, resulted in a maximum decolorization rate (Vm) of 720+/-88mgL(-1)h(-1) and a half-saturation constant (K) of 1299+/-273mgL(-1). Decolorization of RB4 via a reductive transformation, which was essentially irreversible (2-5% re-oxidation), is believed to be the dominant decolorization mechanism. However, some degree of RB4 irreversible sorption cannot be completely discounted. The results of this study show that ZVI treatment is a promising technology for the decolorization of commercial, anthraquinone-bearing, spent reactive dyebaths.
Kinetics of aqueous chlorination of some pharmaceuticals and their elimination from water matrices.
Acero, Juan L; Benitez, F Javier; Real, Francisco J; Roldan, Gloria
2010-07-01
Apparent rate constants for the reactions of four selected pharmaceutical compounds (metoprolol, naproxen, amoxicillin, and phenacetin) with chlorine in ultra-pure (UP) water were determined as a function of the pH. It was found that amoxicillin (in the whole pH range 3-12), and naproxen (in the low pH range 2-4) presented high reaction rates, while naproxen (in the pH range 5-9), and phenacetin and metoprolol (in the pH range 2.5-12 for phenacetin, and 3-10 for metoprolol) followed intermediate and slow reaction rates. A mechanism is proposed for the chlorination reaction, which allowed the evaluation of the intrinsic rate constants for the elementary reactions of the ionized and un-ionized species of each selected pharmaceutical with chlorine. An excellent agreement is obtained between experimental and calculated rate constants by this mechanism.The elimination of these substances in several waters (a groundwater, a surface water from a public reservoir, and two effluents from municipal wastewater treatment plants) was also investigated at neutral pH. The efficiency of the chlorination process with respect to the pharmaceuticals elimination and the formation THMs was also established. It is generally observed that the increasing presence of organic and inorganic matter in the water matrices demand more oxidant agent (chlorine), and therefore, less chlorine is available for the oxidation of these compounds. Finally, half-life times and oxidant exposures (CT) required for the removal of 99% of the four pharmaceuticals are also evaluated. These parameters are useful for the establishment of safety chlorine doses in oxidation or disinfection stages of pharmaceuticals in treatment plants.
Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies: Evaluation Number 18
NASA Technical Reports Server (NTRS)
Burkholder, J. B.; Sander, S. P.; Abbatt, J. P. D.; Barker, J. R.; Huie, R. E.; Kolb, C. E.; Kurylo, M. J.; Orkin, V. L.; Wilmouth, D. M.; Wine, P. H.
2015-01-01
This is the eighteenth in a series of evaluated sets of rate constants, photochemical cross sections, heterogeneous parameters, and thermochemical parameters compiled by the NASA Panel for Data Evaluation. The data are used primarily to model stratospheric and upper tropospheric processes, with particular emphasis on the ozone layer and its possible perturbation by anthropogenic and natural phenomena. The evaluation is available in electronic form from the following Internet URL: http://jpldataeval.jpl.nasa.gov/
Massoth, F E; Politzer, P; Concha, M C; Murray, J S; Jakowski, J; Simons, Jack
2006-07-27
The hydrodeoxygenation of methyl-substituted phenols was carried out in a flow microreactor at 300 degrees C and 2.85 MPa hydrogen pressure over a sulfided CoMo/Al(2)O(3) catalyst. The primary reaction products were methyl-substituted benzene, cyclohexene, cyclohexane, and H(2)O. Analysis of the results suggests that two independent reaction paths are operative, one leading to aromatics and the other to partially or completely hydrogenated cyclohexanes. The reaction data were analyzed using Langmuir-Hinshelwood kinetics to extract the values of the reactant-to-catalyst adsorption constant and of the rate constants characterizing the two reaction paths. The adsorption constant was found to be the same for both reactions, suggesting that a single catalytic site center is operative in both reactions. Ab initio electronic structure calculations were used to evaluate the electrostatic potentials and valence orbital ionization potentials for all of the substituted phenol reactants. Correlations were observed between (a) the adsorption constant and the two reaction rate constants measured for various methyl-substitutions and (b) certain moments of the electrostatic potentials and certain orbitals' ionization potentials of the isolated phenol molecules. On the basis of these correlations to intrinsic reactant-molecule properties, a reaction mechanism is proposed for each pathway, and it is suggested that the dependencies of adsorption and reaction rates upon methyl-group substitution are a result of the substituents' effects on the electrostatic potential and orbitals rather than geometric (steric) effects.
NASA Technical Reports Server (NTRS)
Mendreck, M. J.; Hurless, B. E.; Torres, P. D.; Danford, M. D.
1998-01-01
The corrosion and stress corrosion cracking (SCC) characteristics of annealed and hardened 440C stainless steel were evaluated in high humidity and 3.5-percent NaCl solution. Corrosion testing consisted of an evaluation of flat plates, with and without grease, in high humidity, as well as electrochemical testing in 3.5-percent NaCl. Stress corrosion testing consisted of conventional, constant strain, smooth bar testing in high humidity in addition to two relatively new techniques under evaluation at MSFC. These techniques involve either incremental or constant rate increases in the load applied to a precracked SE(B) specimen, monitoring the crack-opening-displacement response for indications of crack growth. The electrochemical corrosion testing demonstrated an order of magnitude greater general corrosion rate in the annealed 440C. All techniques for stress corrosion testing showed substantially better SCC resistance in the annealed material. The efficacy of the new techniques for stress corrosion testing was demonstrated both by the savings in time and the ability to better quantify SCC data.
Rate constants measured for hydrated electron reactions with peptides and proteins
NASA Technical Reports Server (NTRS)
Braams, R.
1968-01-01
Effects of ionizing radiation on the amino acids of proteins and the reactivity of the protonated amino group depends upon the pK subscript a of the group. Estimates of the rate constants for reactions involving the amino acid side chains are presented. These rate constants gave an approximate rate constant for three different protein molecules.
Yoshihara, Kazutaka; Gao, Yuying; Shiga, Hiroshi; Wada, D Russell; Hisaoka, Masafumi
2005-01-01
Olmesartan medoxomil (CS-866) is a new orally active angiotensin II receptor antagonist that is highly selective for the AT1 receptor subtype. To develop a population pharmacokinetic model for olmesartan (RNH-6270), the active metabolite of olmesartan medoxomil, in healthy volunteers and hypertensive patients, and to evaluate effects of covariates on the apparent oral clearance (CL/F), with particular emphasis on the effect of race. Retrospective analysis of data from 12 phase I-III trials in the US, Europe and Japan. Eighty-nine healthy volunteers and 383 hypertensive patients. Nonlinear mixed-effects modelling was used to evaluate 7911 olmesartan plasma sample concentrations. The covariates included age, bodyweight, sex, race (Westerners [including Caucasians and Hispanics] versus Japanese), patient status (hypertensive patients versus healthy volunteers), serum creatinine level as an index of renal function and serum chemistry data as indices of hepatic function. The pharmacokinetic data of olmesartan were well described by a two-compartment linear model with first-order absorption and an absorption lag-time, parameterised in terms of CL/F (6.66 L/h for a typical male Western hypertensive patient), absorption rate constant (1.46h-1), elimination rate constant (0.193h-1), rate constant from the central to peripheral compartment (0.061h-1), rate constant from the peripheral to central compartment (0.079h-1) and absorption lag-time (0.427h). Analysis of covariates showed that age, bodyweight, sex, patient status and renal function were factors influencing the clearance of olmesartan. The population pharmacokinetic analysis of olmesartan showed that: (i) severe renal impairment (serum creatinine >265 micromol/L [approximately 3 mg/dL]) could cause a clearance decrease of > or =30%; (ii) older age, lower bodyweight and being female were determinants of lower clearance but their effects on olmesartan clearance were within 20%; (iii) no statistically significant difference in clearance was found between Westerners and Japanese.
NASA Technical Reports Server (NTRS)
Choi, Sung R.; Nemeth, Noel N.; Gyekenyesi, John P.
2002-01-01
The previously determined life prediction analysis based on an exponential crack-velocity formulation was examined using a variety of experimental data on glass and advanced structural ceramics in constant stress rate and preload testing at ambient and elevated temperatures. The data fit to the relation of strength versus the log of the stress rate was very reasonable for most of the materials. Also, the preloading technique was determined equally applicable to the case of slow-crack-growth (SCG) parameter n greater than 30 for both the power-law and exponential formulations. The major limitation in the exponential crack-velocity formulation, however, was that the inert strength of a material must be known a priori to evaluate the important SCG parameter n, a significant drawback as compared with the conventional power-law crack-velocity formulation.
NASA Astrophysics Data System (ADS)
Majidi, Omid; Jahazi, Mohammad; Bombardier, Nicolas; Samuel, Ehab
2017-10-01
The strain rate sensitivity index, m-value, is being applied as a common tool to evaluate the impact of the strain rate on the viscoplastic behaviour of materials. The m-value, as a constant number, has been frequently taken into consideration for modeling material behaviour in the numerical simulation of superplastic forming processes. However, the impact of the testing variables on the measured m-values has not been investigated comprehensively. In this study, the m-value for a superplastic grade of an aluminum alloy (i.e., AA5083) has been investigated. The conditions and the parameters that influence the strain rate sensitivity for the material are compared with three different testing methods, i.e., monotonic uniaxial tension test, strain rate jump test and stress relaxation test. All tests were conducted at elevated temperature (470°C) and at strain rates up to 0.1 s-1. The results show that the m-value is not constant and is highly dependent on the applied strain rate, strain level and testing method.
THE EFFECT OF CHLORINE DEMAND ON INACTIVATION RATE CONSTANT
Ct (disinfectant concentration multiplied by exposure time) values are used by the US EPA to evaluate the efficacy of disinfection of microorganisms under various conditions of drinking water treatment conditions. First-order decay is usually assumed for the degradation of a disi...
Quality evaluation of onion bulbs during low temperature drying
NASA Astrophysics Data System (ADS)
Djaeni, M.; Asiah, N.; Wibowo, Y. P.; Yusron, D. A. A.
2016-06-01
A drying technology must be designed carefully by evaluating the foods' final quality properties as a dried material. Thermal processing should be operated with the minimum chance of substantial flavour, taste, color and nutrient loss. The main objective of this research was to evaluate the quality parameters of quercetin content, color, non-enzymatic browning and antioxidant activity. The experiments showed that heating at different temperatures for several drying times resulted in a percentage of quercetin being generally constant. The quercetin content maintained at the value of ±1.2 % (dry basis). The color of onion bulbs was measured by CIE standard illuminant C. The red color (a*) of the outer layer of onion bulbs changed significantly when the drying temperature was increased. However the value of L* and b* changed in a fluctuating way based on the temperature. The change of onion colors was influenced by temperature and moisture content during the drying process. The higher the temperature, the higher it affects the rate of non-enzymatic browning reaction. The correlation between temperature and reaction rate constant was described as Arrhenius equation. The rate of non-enzymatic browning increases along with the increase of drying temperature. The results showed that higher drying temperatures were followed by a lower IC10. This condition indicated the increase of antioxidant activity after the drying process.
A model analysis of halogen kinetics: the ClOOCl catalytic cycle revisited
NASA Astrophysics Data System (ADS)
Canty, T. P.; Salawitch, R. J.; Wilmouth, D. M.
2016-12-01
We revisit prior analyses of simultaneous in situ observations of [ClO] and [ClOOCl] obtained in the Arctic polar vortex to evaluate recommended updates that govern the kinetics of the ClOOCl catalytic cycle. Available laboratory measurements of the ClOOCl absorption cross sections, the ClO+ClO reaction rate constant, and the ClO/ClOOCl equilibrium constant are considered, along with compendium evaluations of these kinetic parameters. We show that the latest recommendations for the kinetics that govern the partitioning of ClO and ClOOCl put forth by the JPL panel in Spring 2016 (JPL 15-10) are in good agreement with atmospheric observations of [ClO] and [ClOOCl]. Hence, we suggest that studies of polar ozone loss adopt these most recent recommendations. The latest JPL recommendation for the equilibrium constant suggests that ClOOCl is less stable than previously assumed, resulting in a shift in the termination temperature of polar ozone loss due to the ClOOCl catalytic cycle. Remaining uncertainties in our knowledge of the kinetics that govern the partitioning of ClO and ClOOCl within the activated vortex, and hence the efficiency of O3 loss by the ClO+ClO cycle, will be best addressed by future laboratory determinations of the absolute cross section of ClOOCl as well as measurements designed to reduce the uncertainty in the rate constant of the ClO+ClO reaction at cold temperatures characteristic of the polar, lower stratosphere.
Navia, R; Inostroza, X; Diez, M C; Lorber, K E
2006-05-01
An irrigation process through volcanic soil columns was evaluated for bleached Kraft mill effluent pollutants retention. The system was designed to remove color and phenolic compounds and a simple kinetic model for determining the global mass transfer coefficient and the adsorption rate constant was used. The results clearly indicate that the global mass transfer coefficient values (K(c)a) and the adsorption rate constants are higher for the irrigation processes onto acidified soil. This means that the pretreatment of washing the volcanic soil with an acid solution has a positive effect on the adsorption rate for both pollutant groups. The enhanced adsorption capacity is partially explained by the activation of the metal oxides present in the soil matrix during the acid washing process. Increasing the flow rate from 1.5 to 2.5 ml/min yielded higher (K(c)a) values and adsorption rate constants for both pollutant groups. For instance, regarding color adsorption onto acidified soil, there is an increment of 43% in the (K(c)a) value for the experiment with a flow rate of 2.5 ml/min. Increasing the porosity of the column from 0.55 to 0.59, yielded a decrease in the (K(c)a) values for color and phenolic compounds adsorption processes. Onto natural soil for example, these decreases reached 21% and 24%, respectively. Therefore, the (K(c)a) value is dependent on both the liquid-phase velocity (external resistance) and the soil fraction in the column (internal resistance); making forced convection and diffusion to be the main transport mechanisms involved in the adsorption process. Analyzing the adsorption rate constants (K(c)a)/m, phenolic compounds and color adsorption rates onto acidified soil of 2.25 x 10(-6) and 2.62 x 10(-6) l/mg min were achieved for experiment 1. These adsorption rates are comparable with other adsorption systems and adsorbent materials.
Shigematsu, Hideki; Kawaguchi, Masahiko; Hayashi, Hironobu; Takatani, Tsunenori; Iwata, Eiichiro; Tanaka, Masato; Okuda, Akinori; Morimoto, Yasuhiko; Masuda, Keisuke; Tanaka, Yuu; Tanaka, Yasuhito
2017-10-01
During spine surgery, the spinal cord is electrophysiologically monitored via transcranial electrical stimulation of motor-evoked potentials (TES-MEPs) to prevent injury. Transcranial electrical stimulation of motor-evoked potential involves the use of either constant-current or constant-voltage stimulation; however, there are few comparative data available regarding their ability to adequately elicit compound motor action potentials. We hypothesized that the success rates of TES-MEP recordings would be similar between constant-current and constant-voltage stimulations in patients undergoing spine surgery. The objective of this study was to compare the success rates of TES-MEP recordings between constant-current and constant-voltage stimulation. This is a prospective, within-subject study. Data from 100 patients undergoing spinal surgery at the cervical, thoracic, or lumbar level were analyzed. The success rates of the TES-MEP recordings from each muscle were examined. Transcranial electrical stimulation with constant-current and constant-voltage stimulations at the C3 and C4 electrode positions (international "10-20" system) was applied to each patient. Compound muscle action potentials were bilaterally recorded from the abductor pollicis brevis (APB), deltoid (Del), abductor hallucis (AH), tibialis anterior (TA), gastrocnemius (GC), and quadriceps (Quad) muscles. The success rates of the TES-MEP recordings from the right Del, right APB, bilateral Quad, right TA, right GC, and bilateral AH muscles were significantly higher using constant-voltage stimulation than those using constant-current stimulation. The overall success rates with constant-voltage and constant-current stimulations were 86.3% and 68.8%, respectively (risk ratio 1.25 [95% confidence interval: 1.20-1.31]). The success rates of TES-MEP recordings were higher using constant-voltage stimulation compared with constant-current stimulation in patients undergoing spinal surgery. Copyright © 2017 Elsevier Inc. All rights reserved.
Elongational flow of polymer melts at constant strain rate, constant stress and constant force
NASA Astrophysics Data System (ADS)
Wagner, Manfred H.; Rolón-Garrido, Víctor H.
2013-04-01
Characterization of polymer melts in elongational flow is typically performed at constant elongational rate or rarely at constant tensile stress conditions. One of the disadvantages of these deformation modes is that they are hampered by the onset of "necking" instabilities according to the Considère criterion. Experiments at constant tensile force have been performed even more rarely, in spite of the fact that this deformation mode is free from necking instabilities and is of considerable industrial relevance as it is the correct analogue of steady fiber spinning. It is the objective of the present contribution to present for the first time a full experimental characterization of a long-chain branched polyethylene melt in elongational flow. Experiments were performed at constant elongation rate, constant tensile stress and constant tensile force by use of a Sentmanat Extensional Rheometer (SER) in combination with an Anton Paar MCR301 rotational rheometer. The accessible experimental window and experimental limitations are discussed. The experimental data are modelled by using the Wagner I model. Predictions of the steady-start elongational viscosity in constant strain rate and creep experiments are found to be identical, albeit only by extrapolation of the experimental data to Hencky strains of the order of 6. For constant stress experiments, a minimum in the strain rate and a corresponding maximum in the elongational viscosity is found at a Hencky strain of the order of 3, which, although larger than the steady-state value, follows roughly the general trend of the steady-state elongational viscosity. The constitutive analysis also reveals that constant tensile force experiments indicate a larger strain hardening potential than seen in constant elongation rate or constant tensile stress experiments. This may be indicative of the effect of necking under constant elongation rate or constant tensile stress conditions according to the Considère criterion.
Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies Evaluation Number 15
NASA Technical Reports Server (NTRS)
Sander, S. P.; Friedl, R. R.; Golden, D. M.; Kurylo, M. J.; Moortgat, G. K.; Wine, P. H.; Ravishankara, A. R.; Kolb, C. E.; Molina, M. J.; Finlayson-Pitts, B. J.;
2006-01-01
This is the fifteenth in a series of evaluated sets of rate constants and photochemical cross sections compiled by the NASA Panel for Data Evaluation. The data are used primarily to model stratospheric and upper tropospheric processes, with particular emphasis on the ozone layer and its possible perturbation by anthropogenic and natural phenomena. Copies of this evaluation are available in electronic form and may be printed from the following Internet URL: http://jpldataeval.jpl.nasa.gov/.
Chemical kinetics and photochemical data for use in stratospheric modeling evaluation Number 8
NASA Technical Reports Server (NTRS)
Demore, W. B.; Molina, M. J.; Sander, S. P.; Golden, D. M.; Hampson, R. F.; Kurylo, M. J.; Howard, C. J.; Ravishankara, A. R.
1987-01-01
This is the eighth in a series of evaluated sets of rate constants and photochemical cross sections compiled by the NASA Panel for Data Evaluation. The primary application of the data is in the modeling of stratospheric processes, with particular emphasis on the ozone layer and its possible perturbation by anthropogenic and natural phenomena. Copies of this evaluation are available from the Jet Propulsion Laboratory, Documentation Section, 111-116B, California Institute of Technology, Pasadena, California, 91109.
Instanton rate constant calculations close to and above the crossover temperature.
McConnell, Sean; Kästner, Johannes
2017-11-15
Canonical instanton theory is known to overestimate the rate constant close to a system-dependent crossover temperature and is inapplicable above that temperature. We compare the accuracy of the reaction rate constants calculated using recent semi-classical rate expressions to those from canonical instanton theory. We show that rate constants calculated purely from solving the stability matrix for the action in degrees of freedom orthogonal to the instanton path is not applicable at arbitrarily low temperatures and use two methods to overcome this. Furthermore, as a by-product of the developed methods, we derive a simple correction to canonical instanton theory that can alleviate this known overestimation of rate constants close to the crossover temperature. The combined methods accurately reproduce the rate constants of the canonical theory along the whole temperature range without the spurious overestimation near the crossover temperature. We calculate and compare rate constants on three different reactions: H in the Müller-Brown potential, methylhydroxycarbene → acetaldehyde and H 2 + OH → H + H 2 O. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Constant False Alarm Rate (CFAR) Autotrend Evaluation Report
2011-12-01
represent a level of uncertainty in the performance analysis. The performance analysis produced the following Key Performance Indicators ( KPIs ) as...Identity KPI Key Performance Indicator MooN M-out-of-N MSPU Modernized Signal Processor Unit NFF No Fault Found PAT Parameter Allocation Table PD
FORMAL UNCERTAINTY ANALYSIS OF A LAGRANGIAN PHOTOCHEMICAL AIR POLLUTION MODEL. (R824792)
This study applied Monte Carlo analysis with Latin
hypercube sampling to evaluate the effects of uncertainty
in air parcel trajectory paths, emissions, rate constants,
deposition affinities, mixing heights, and atmospheric stability
on predictions from a vertically...
An investigation of the processes controlling ozone in the upper stratosphere
NASA Technical Reports Server (NTRS)
Patten, Kenneth O., Jr.; Connell, Peter S.; Kinnison, Douglas E.; Wuebbles, Donald J.; Waters, Joe; Froidevaux, Lucien; Slanger, Tom G.
1994-01-01
Photolysis of vibrationally excited oxygen produced by ultraviolet photolysis of ozone in the upper stratosphere is incorporated into the Lawrence Livermore National Laboratory 2-D zonally averaged chemical-radiative-transport model of the troposphere and stratosphere. The importance of this potential contributor of odd oxygen to the concentration of ozone is evaluated based upon recent information on vibrational distributions of excited oxygen and upon preliminary studies of energy transfer from the excited oxygen. When the energy transfer rate constants of previous work are assumed, increases in model ozone concentrations of up to 40 percent in the upper stratosphere are found, and the ozone concentrations of the model agree with measurements, including data from the Upper Atmosphere Research Satellite. However, the increase is about 0.4 percent when the larger energy transfer rate constants suggested by more recent experimental work are applied in the model. This indicates the importance of obtaining detailed information on vibrationally excited oxygen properties to evaluation of this process for stratospheric modelling.
Oxidation behavior of V-Cr-Ti alloys in low-partial-pressure oxygen environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Natesan, K.; Uz, M.
A test program is in progress at Argonne National Laboratory to evaluate the effect of pO{sub 2} in the exposure environment on oxygen uptake, scaling kinetics, and scale microstructure in V-Cr-Ti alloys. The data indicate that the oxidation process follows parabolic kinetics in all of the environments used in the present study. From the weight change data, parabolic rate constants were evaluated as a function of temperature and exposure environment. The temperature dependence of the parabolic rate constants was described by an Arrhenius relationship. Activation energy for the oxidation process was fairly constant in the oxygen pressure range of 1more » {times} 10{sup {minus}6} to 1 {times} 10{sup {minus}1} torr for both the alloys. The activation energy for oxidation in air was significantly lower than in low-pO{sub 2} environments, and for oxidation in pure O{sub 2} at 760 torr was much lower than in low-pO{sub 2} environments. X-ray diffraction analysis of the specimens showed that VO{sub 2} was the dominant phase in low-pO{sub 2} environments, while V{sub 2}O{sub 5} was dominant in air and in pure oxygen at 76f0 torr.« less
Removing the barrier to the calculation of activation energies
Mesele, Oluwaseun O.; Thompson, Ward H.
2016-10-06
Approaches for directly calculating the activation energy for a chemical reaction from a simulation at a single temperature are explored with applications to both classical and quantum systems. The activation energy is obtained from a time correlation function that can be evaluated from the same molecular dynamics trajectories or quantum dynamics used to evaluate the rate constant itself and thus requires essentially no extra computational work.
NASA Astrophysics Data System (ADS)
Ahmad, Saeed; Holopainen, Hannu; Huovinen, Pasi
2017-05-01
In hydrodynamical modeling of ultrarelativistic heavy-ion collisions, the freeze-out is typically assumed to take place at a surface of constant temperature or energy density. A more physical approach is to assume that freeze-out takes place at a surface of constant Knudsen number. We evaluate the Knudsen number as a ratio of the expansion rate of the system to the pion-scattering rate and apply the constant Knudsen number freeze-out criterion to the ideal hydrodynamical description of heavy-ion collisions at the Relativistic Heavy Ion Collider at BNL (√{sNN}=200 GeV) and the Large Hadron Collider (√{sNN}=2760 GeV) energies. We see that once the numerical values of freeze-out temperature and freeze-out Knudsen number are chosen to produce similar pT distributions, the elliptic and triangular anisotropies are similar too, in both event-by-event and averaged initial state calculations.
NASA Technical Reports Server (NTRS)
Kurylo, M. J.; Cornett, K. D.; Murphy, J. L.
1982-01-01
The rate constant for the reaction of hydroxyl radicals with nitric acid in the 225-443 K temperature range has been measured by means of the flash photolysis resonance fluorescence technique. Above 300 K, the rate constant levels off in a way that can only be explained by the occurrence of two reaction channels, of which one, operative at low temperatures, proceeds through the formation of an adduct intermediate. The implications of these rate constant values for stratospheric reaction constants is discussed.
Stankovich, Joseph J; Gritti, Fabrice; Stevenson, Paul G; Beaver, Lois A; Guiochon, Georges
2014-01-17
Five methods for controlling the mobile phase flow rate for gradient elution analyses using very high pressure liquid chromatography (VHPLC) were tested to determine thermal stability of the column during rapid gradient separations. To obtain rapid separations, instruments are operated at high flow rates and high inlet pressure leading to uneven thermal effects across columns and additional time needed to restore thermal equilibrium between successive analyses. The purpose of this study is to investigate means to minimize thermal instability and obtain reliable results by measuring the reproducibility of the results of six replicate gradient separations of a nine component RPLC standard mixture under various experimental conditions with no post-run times. Gradient separations under different conditions were performed: constant flow rates, two sets of constant pressure operation, programmed flow constant pressure operation, and conditions which theoretically should yield a constant net heat loss at the column's wall. The results show that using constant flow rates, programmed flow constant pressures, and constant heat loss at the column's wall all provide reproducible separations. However, performing separations using a high constant pressure with programmed flow reduces the analysis time by 16% compared to constant flow rate methods. For the constant flow rate, programmed flow constant pressure, and constant wall heat experiments no equilibration time (post-run time) was required to obtain highly reproducible data. Copyright © 2013 Elsevier B.V. All rights reserved.
Evaluation of advanced high rate Li-SOCl2 cells
NASA Technical Reports Server (NTRS)
Deligiannis, F.; Ang, V.; Dawson, S.; Frank, H.; Subbarao, S.
1986-01-01
Under NASA sponsorship, JPL is developing advanced, high rate Li-SOCl2 cells for future space missions. As part of this effort, Li-SOCl2 cells of various designs were examined for performance and safety. The cells differed from one another in several aspects, such as: nature of carbon cathode, catalysts, cell configuration, case polarity, and safety devices. Performance evaluation included constant-current discharge over a range of currents and temperatures. Abuse-testing consisted of shortcircuiting, charging, and over-discharge. Energy densities greater than 300 Wh/Kg at the C/2 rate were found for some designs. A cell design featuring a high-surface-area carbon cathode was found to deliver nearly 500 Wh/Kg at moderate discharge rates. Temperature influenced the performance significantly.
Moran-Muñoz, Rafael; Valverde, Alexander; Ibancovichi, J A; Acevedo-Arcique, Carlos M; Recillas-Morales, Sergio; Sanchez-Aparicio, Pedro; Osorio-Avalos, Jorge; Chavez-Monteagudo, Julio Raul
2017-07-01
This study evaluated the cardiovascular effects of a constant rate infusion (CRI) of lidocaine, lidocaine and dexmedetomidine, and dexmedetomidine in dogs anesthetized with sevoflurane at equipotent doses. Treatments consisted of T1-Lidocaine [loading dose 2 mg/kg body weight (BW), IV, and CRI of 100 μg/kg BW per min] at 1.4% end-tidal of sevoflurane (FE SEV ); T2-Dexmedetomidine (loading dose 2 μg/kg BW, IV, and CRI of 2 μg/kg BW per hour) and FE SEV 1.1%; and T3-Lidocaine-Dexmedetomidine using the same doses of T1 and T2 and FE SEV 0.8%. Constant rate infusion of lidocaine did not induce any cardiovascular changes; lidocaine and dexmedetomidine resulted in cardiovascular effects similar to dexmedetomidine alone. These effects were characterized by a significant ( P < 0.001) decrease in heart rate, cardiac output, cardiac index, oxygen delivery, and pulmonary vascular resistance index, and a significant ( P < 0.001) increase in mean and diastolic arterial pressure, systemic vascular resistance index, pulmonary arterial occlusion pressure and oxygen extraction ratio, compared with baseline values. In conclusion, a CRI of lidocaine combined with dexmedetomidine produces significant cardiovascular changes similar to those observed with dexmedetomidine alone.
NASA Technical Reports Server (NTRS)
Sammonds, R. I.; Bunnell, J. W.
1981-01-01
A moving base simulator experiment demonstrated that a wings-level-turn control mode improved flying qualities for air to ground weapon delivery compared with those of a conventionally controlled aircraft. Evaluations of criteria for dynamic response for this system have shown that pilot ratings correlate well on the basis of equivalent time constant of the initial response. Ranges of this time constant, as well as digital system transport delays and lateral acceleration control authorities that encompassed level 1 through 3 handling qualities, were determined.
Criteria for Side-Force Control in Air-to-Ground Target Acquisition and Tracking
NASA Technical Reports Server (NTRS)
Sammonds, Robert I.; McNeill, Walter E.; Bunnell, John W.
1982-01-01
A moving-base simulator experiment conducted at Ames Research Center demonstrated that a wings-level-turn control mode improved flying qualities for air-to-ground weapons delivery compared with those of a conventional aircraft. Evaluations of criteria for dynamic response for this system have shown that pilot ratings correlate well with equivalent time constant of the initial response and with system bandwidth. Ranges of this time constant, as well as digital-system transport delays and lateral-acceleration control authorities that encompassed level 1 through level 3 handling qualities, were determined.
Moisture Effects on the High Strain-Rate Behavior of Sand (Preprint)
2008-04-01
1986) used a conventional SHPB to evaluate a single short pressure pulse traveling through long specimens of 20/40 dry sand, 50/80 dry sand...constant strain-rate within the specimen. In a conventional SHPB experiment, e.g., on dry sand by Veyera (1994), the incident pulse is nearly...strain-rate of 400 s-1. The sand specimen confined in a hardened steel tube, had a dry density of 1.50 g/cm3 with moisture contents varied from 3% to 20
NASA Technical Reports Server (NTRS)
Sander, S. P.; Friedl, R. R.; Barker, J. R.; Golden, D. M.; Kurylo, M. J.; Wine, P. H.; Abbatt, J.; Burkholder, J. B.; Kolb, C. E.; Moortgat, G. K.;
2009-01-01
This is the supplement to the fifteenth in a series of evaluated sets of rate constants and photochemical cross sections compiled by the NASA Panel for Data Evaluation. The data are used primarily to model stratospheric and upper tropospheric processes, with particular emphasis on the ozone layer and its possible perturbation by anthropogenic and natural phenomena. Copies of this evaluation are available in electronic form and may be printed from the following Internet URL: http://jpldataeval.jpl.nasa.gov/.
The influence of reagent type on the kinetics of ultrafine coal flotation
Read, R.B.; Camp, L.R.; Summers, M.S.; Rapp, D.M.
1989-01-01
A kinetic study has been conducted to determine the influence of reagent type on flotation rates of ultrafine coal. Two ultrafine coal samples, the Illinois No. 5 (Springfield) and Pittsburgh No. 8, have been evaluated with various reagent types in order to derive the rate constants for coal (kc), ash (ka), and pyrite (kc). The reagents used in the study include anionic surfactants, anionic surfactant-alcohol mixtures, and frothing alcohols. In general, the surfactant-alcohol mixtures tend to float ultrafine coal at a rate three to four times faster than either pure alcohols or pure anionic surfactants. Pine oil, a mixture of terpene alcohols and hydrocarbons, was an exception to this finding; it exhibited higher rate constants than the pure aliphatic alcohols or other pure anionic surfactants studied; this may be explained by the fact that the sample of pine oil used (70% alpha-terpineol) acted as a frother/collector system similar to alcohol/kerosene. The separation efficiencies of ash and pyrite from coal, as evidenced by the ratios of kc/ka or kc/kp, tend to indicate, however, that commercially available surfactant-alcohol mixtures are not as selective as pure alcohols such as 2-ethyl-1-hexanol or methylisobutylcarbinol. Some distinct differences in various rate constants, or their ratios, were noted between the two coals studied, and are possibly attributable to surface chemistry effects. ?? 1989.
Decrease of aliphatic CHs from diatoms by in situ heating infrared microspectroscopy
NASA Astrophysics Data System (ADS)
Alipour, Leila; Nakashima, Satoru
2016-04-01
In situ heating IR microspectroscopy at 260-300°C under air and N2 conditions has been conducted on diatom frustules to examine aliphatic CH losses during heating, simulating their changes with burial-diagenesis. Assuming a reaction model made up of two first-order kinetic relations, reaction rate constants k1 and k2 and activation energies (Ea) were evaluated for aliphatic CHs. The rate constants for loss of aliphatic CHs of diatom frustules under air and N2 flow are much larger, with much smaller activation energies (57-109 kJ/mol: air; 14-44 kJ/mol: N2), than those for conventional hydrocarbon generation reactions from kerogens (170-370 kJ/mol) studied at higher temperatures (350-450°C). The CH decrease rates are somewhat different from the amide I decrease (protein degradation) rates. The obtained results suggest that organic transformation reactions including degradation of aliphatic CHs inside the diatom silica frustules might be quite different from those of kerogens separated from the biological structures.
Rate dependency of delayed rectifier currents during the guinea-pig ventricular action potential
Rocchetti, Marcella; Besana, Alessandra; Gurrola, Georgina B; Possani, Lourival D; Zaza, Antonio
2001-01-01
The action potential clamp technique was exploited to evaluate the rate dependency of delayed rectifier currents (IKr and IKs) during physiological electrical activity. IKr and IKs were measured in guinea-pig ventricular myocytes at pacing cycle lengths (CL) of 1000 and 250 ms.A shorter CL, with the attendant changes in action potential shape, was associated with earlier activation and increased magnitude of both IKr and IKs. Nonetheless, the relative contributions of IKr and IKs to total transmembrane current were independent of CL.Shortening of diastolic interval only (constant action potential shape) enhanced IKs, but not IKr.IKr was increased by a change in the action potential shape only (constant diastolic interval).In ramp clamp experiments, IKr amplitude was directly proportional to repolarization rate at values within the low physiological range (< 1.0 V s−1); at higher repolarization rates proportionality became shallower and finally reversed.When action potential duration (APD) was modulated by constant current injection (I-clamp), repolarization rates > 1.0 V s−1 were associated with a reduced effect of IKr block on APD. The effect of changes in repolarization rate was independent of CL and occurred in the presence of IKs blockade.In spite of its complexity, the behaviour of IKr was accurately predicted by a numerical model based entirely on known kinetic properties of the current.Both IKr and IKs may be increased at fast heart rates, but this may occur through completely different mechanisms. The mechanisms identified are such as to contribute to abnormal rate dependency of repolarization in prolonged repolarization syndromes. PMID:11483703
Rate Constants and Mechanisms of Protein–Ligand Binding
Pang, Xiaodong; Zhou, Huan-Xiang
2017-01-01
Whereas protein–ligand binding affinities have long-established prominence, binding rate constants and binding mechanisms have gained increasing attention in recent years. Both new computational methods and new experimental techniques have been developed to characterize the latter properties. It is now realized that binding mechanisms, like binding rate constants, can and should be quantitatively determined. In this review, we summarize studies and synthesize ideas on several topics in the hope of providing a coherent picture of and physical insight into binding kinetics. The topics include microscopic formulation of the kinetic problem and its reduction to simple rate equations; computation of binding rate constants; quantitative determination of binding mechanisms; and elucidation of physical factors that control binding rate constants and mechanisms. PMID:28375732
Effect of vibrationally excited oxygen on ozone production in the stratosphere
NASA Technical Reports Server (NTRS)
Patten, K. O., Jr.; Connell, P. S.; Kinnison, D. E.; Wuebbles, D. J.; Slanger, T. G.; Froidevaux, L.
1994-01-01
Photolysis of vibrationally excited oxygen produced by ultraviolet photolysis of ozone in the upper stratosphere is incorporated into the Lawrence Livermore National Laboratory two-dimensional zonally averaged chemical-radiative-transport model of the troposphere and stratosphere. The importance of this potential contributor of odd oxygen to the concentration of ozone is evaluated based on recent information on vibrational distributions of excited oxygen and on preliminary studies of energy transfer from the excited oxygen. When energy transfer rate constants similar to those of Toumi et al. (1991) are assumed, increases in model ozone concentrations of up to 4.0% in the upper stratosphere are found, and the model ozone concentrations are found to agree slightly better with measurements, including recent data from the Upper Atmosphere Research Satellite. However, the ozone increase is only 0.3% when the larger energy transfer rate constants indicated by recent experimental work are applied to the model. An ozone increase of 1% at 50 km requires energy transfer rate constants one-twentieth those of the preliminary observations. As a result, vibrationally excited oxygen processes probably do not contribute enough ozone to be significant in models of the upper stratosphere.
NASA Technical Reports Server (NTRS)
DeMore, W.; Wilson, E., Jr.
1998-01-01
Relative rate experiments were used to measure the rate constant and temperature dependence of the reaction of OH radicals with 2-fluoropropane (HFC-281ea), using ethane, propane, ethyl chloride as reference standards.
Hennig, Kristin; Verkerk, Ruud; Bonnema, Guusje; Dekker, Matthijs
2012-08-15
Kinetic modeling was used as a tool to quantitatively estimate glucosinolate thermal degradation rate constants. Literature shows that thermal degradation rates differ in different vegetables. Well-characterized plant material, leaves of broccoli and Chinese kale plants grown in two seasons, was used in the study. It was shown that a first-order reaction is appropriate to model glucosinolate degradation independent from the season. No difference in degradation rate constants of structurally identical glucosinolates was found between broccoli and Chinese kale leaves when grown in the same season. However, glucosinolate degradation rate constants were highly affected by the season (20-80% increase in spring compared to autumn). These results suggest that differences in glucosinolate degradation rate constants can be due to variation in environmental as well as genetic factors. Furthermore, a methodology to estimate rate constants rapidly is provided to enable the analysis of high sample numbers for future studies.
NASA Astrophysics Data System (ADS)
German, Ernst D.; Sheintuch, Moshe
2017-02-01
Microkinetic models of methane steam reforming (MSR) over bare platinum and rhodium (111) surfaces are analyzed in present work using calculated rate constants. The individual rate constants are classified into three different sets: (i) rate constants of adsorption and desorption steps of CH4, H2O, CO and of H2; (ii) rate constants of dissociation and formation of A-H bonds (A = C, O, and H), and (iii) rate constants of dissociation and formation of C-O bond. The rate constants of sets (i) and (iii) are calculated using transition state theory and published thermochemical data. The rate constants of H-dissociation reactions (set (ii)) are calculated in terms of a previously-developed approach that accounts for thermal metal lattice vibrations and for H tunneling through a potential barrier of height which depends on distance of AH from a surface. Pre-exponential factors of several group (ii) steps were calculated to be usually lower than the traditional kBT/h due to tunneling effect. Surface composition and overall MSR rates over platinum and rhodium surfaces are compared with those over nickel surface showing that operating conditions strongly affect on the activity order of the catalysts.
NASA Astrophysics Data System (ADS)
Fuller, C.; Drexler, J. Z.
2016-12-01
210Pb dating of wetland sediments is commonly used to constrain recent C accumulation rates and contaminant input histories. However, uncertainties in 210Pb-derived rates and validation of accumulation and accretion rates using an independent tracer are often not reported. We describe here 210Pb and 137Cs profiles in two cores from a salt marsh in south San Francisco Bay, California, collected in 1981 and 2011 within 5 m of each other, to compare and evaluate 210Pb dating methods. In the 1981 core, unsupported 210Pb (210PbXS) was detected to 12 cm and yielded mass accumulation rates (MAR) of 0.043 and 0.036 g/cm2/y using the Constant Flux-Constant Sedimentation method (CF:CS) and Constant Rate of Supply (CRS) methods, respectively. Accretion rates (S) of 0.17 (CF:CS) and 0.12 cm/y (CRS) were calculated from these MARs. The distinct 137Cs peak at 4-6 cm in the 1981 core is in good agreement with the210Pb-based 1963 depth (3.4 and 4 cm, CF:CS and CRS, respectively). 210PbXS was detectable to 18 cm in the 2011 core, and yielded a CF:CS MAR (0.077 g/cm2/y; S = 0.35 cm/y) that is about two times greater than the mass-weighted average CRS MAR (0.044 g/cm2/y; S = 0.16 cm/y). Broad subsurface maxima in 137Cs and 239Pu were observed between 16 and 24 cm in the 2011 core, which are 5 to 11 cm deeper than the 1963 depth calculated by the 2011 and 1981 210Pb-derived MARs. The apparent migration and broadening of bomb-fallout radionuclide peaks over 30 years negates their use in validating 210Pb dating. Because of low 210PbXS activities in both cores, the base of the 210PbXS profile and integrated activity used in CRS are underestimated, resulting in the lower CRS MARs that decrease with increasing depth. The range of MARs determined for two cores within 5 m but separated by 30 years will be used as an example to evaluate the uncertainties that need to be reported with C accumulation rates and contaminant histories derived from 210Pb dating of sediment archives.
Kröger, Leif C; Kopp, Wassja A; Leonhard, Kai
2017-04-06
Microgels have a wide range of possible applications and are therefore studied with increasing interest. Nonetheless, the microgel synthesis process and some of the resulting properties of the microgels, such as the cross-linker distribution within the microgels, are not yet fully understood. An in-depth understanding of the synthesis process is crucial for designing tailored microgels with desired properties. In this work, rate constants and reaction enthalpies of chain propagation reactions in aqueous N-isopropylacrylamide/N,N'-methylenebisacrylamide and aqueous N-vinylcaprolactam/N,N'-methylenebisacrylamide systems are calculated to identify the possible sources of an inhomogeneous cross-linker distribution in the resulting microgels. Gas-phase reaction rate constants are calculated from B2PLYPD3/aug-cc-pVTZ energies and B3LYPD3/tzvp geometries and frequencies. Then, solvation effects based on COSMO-RS are incorporated into the rate constants to obtain the desired liquid-phase reaction rate constants. The rate constants agree with experiments within a factor of 2-10, and the reaction enthalpies deviate less than 5 kJ/mol. Further, the effect of rate constants on the microgel growth process is analyzed, and it is shown that differences in the magnitude of the reaction rate constants are a source of an inhomogeneous cross-linker distribution within the resulting microgel.
Energetics and kinetics of cooperative cofilin-actin filament interactions.
Cao, Wenxiang; Goodarzi, Jim P; De La Cruz, Enrique M
2006-08-11
We have evaluated the thermodynamic parameters associated with cooperative cofilin binding to actin filaments, accounting for contributions of ion-linked equilibria, and determined the kinetic basis of cooperative cofilin binding. Ions weaken non-contiguous (isolated, non-cooperative) cofilin binding to an actin filament without affecting cooperative filament interactions. Non-contiguous cofilin binding is coupled to the dissociation of approximately 1.7 thermodynamically bound counterions. Counterion dissociation contributes approximately 40% of the total cofilin binding free energy (in the presence of 50 mM KCl). The non-contiguous and cooperative binding free energies are driven entirely by large, positive entropy changes, consistent with a cofilin-mediated increase in actin filament structural dynamics. The rate constant for cofilin binding to an isolated site on an actin filament is slow and likely to be limited by filament breathing. Cooperative cofilin binding arises from an approximately tenfold more rapid association rate constant and an approximately twofold slower dissociation rate constant. The more rapid association rate constant is presumably a consequence of cofilin-dependent changes in the average orientation of subdomain 2, subunit angular disorder and filament twist, which increase the accessibility of a neighboring cofilin-binding site on an actin filament. Cooperative association is more rapid than binding to an isolated site, but still slow for a second-order reaction, suggesting that cooperative binding is limited also by binding site accessibility. We suggest that the dissociation of actin-associated ions weakens intersubunit interactions in the actin filament lattice that enhance cofilin-binding site accessibility, favor cooperative binding and promote filament severing.
NASA Astrophysics Data System (ADS)
Tang, Huanfeng; Huang, Zaiyin; Xiao, Ming; Liang, Min; Chen, Liying; Tan, XueCai
2017-09-01
The activities, selectivities, and stabilities of nanoparticles in heterogeneous reactions are size-dependent. In order to investigate the influencing laws of particle size and temperature on kinetic parameters in heterogeneous reactions, cubic nano-Cu2O particles of four different sizes in the range of 40-120 nm have been controllably synthesized. In situ microcalorimetry has been used to attain thermodynamic data on the reaction of Cu2O with aqueous HNO3 and, combined with thermodynamic principles and kinetic transition-state theory, the relevant reaction kinetic parameters have been evaluated. The size dependences of the kinetic parameters are discussed in terms of the established kinetic model and the experimental results. It was found that the reaction rate constants increased with decreasing particle size. Accordingly, the apparent activation energy, pre-exponential factor, activation enthalpy, activation entropy, and activation Gibbs energy decreased with decreasing particle size. The reaction rate constants and activation Gibbs energies increased with increasing temperature. Moreover, the logarithms of the apparent activation energies, pre-exponential factors, and rate constants were found to be linearly related to the reciprocal of particle size, consistent with the kinetic models. The influence of particle size on these reaction kinetic parameters may be explained as follows: the apparent activation energy is affected by the partial molar enthalpy, the pre-exponential factor is affected by the partial molar entropy, and the reaction rate constant is affected by the partial molar Gibbs energy. [Figure not available: see fulltext.
Microcomputer-Based Programs for Pharmacokinetic Simulations.
ERIC Educational Resources Information Center
Li, Ronald C.; And Others
1995-01-01
Microcomputer software that simulates drug-concentration time profiles based on user-assigned pharmacokinetic parameters such as central volume of distribution, elimination rate constant, absorption rate constant, dosing regimens, and compartmental transfer rate constants is described. The software is recommended for use in undergraduate…
Quark and Gluon Relaxation in Quark-Gluon Plasmas
NASA Technical Reports Server (NTRS)
Heiselberg, H.; Pethick, C. J.
1993-01-01
The quasiparticle decay rates for quarks and gluons in quark-gluon plasmas are calculated by solving the kinetic equation. Introducing an infrared cutoff to allow for nonperturbative effects, we evaluate the quasiparticle lifetime at momenta greater than the inverse Debye screening length to leading order in the coupling constant.
Do, V; Choo, R; De Boer, G; Klotz, L; Danjoux, C; Morton, G; Szumacher, E; Fleshner, N; Bunting, P
2002-05-01
To examine the change in the free/total prostate specific antigen ratio (f/tPSA) with time and to assess the potential value of serial measurements of f/tPSA as a determinant of disease progression in untreated, low-to-intermediate grade prostate cancer (T1b-T2b N0M0, Gleason score < or = 7 and PSA < or = 15 ng/mL). In a prospective single-arm cohort study from November 1995, patients were conservatively managed with watchful observation alone unless they met arbitrarily defined criteria (clinical, histological and biochemical) of disease progression. Patients were followed regularly and underwent blood tests including PSA and f/tPSA. The initial and mean f/tPSA and the rate of change of f/tPSA with time were evaluated against the rate constant for the PSA doubling time (PSATd). Correlation analyses were used to evaluate any association between baseline clinical variables and either the rate of change of f/tPSA or initial f/tPSA. As of December 2000, 161 of a total of 206 accrued patients had three or more f/tPSA measurements and formed the basis of the study (median age 70 years; median follow-up 2.7 years). The median initial f/tPSA was 0.16; there was a significant negative correlation between this value and the initial total PSA. The mean f/tPSA and rate of change of f/tPSA with time were significantly negatively correlated with the rate constant for PSATd. Also, the rate of change of f/tPSA correlated negatively with clinical T stage, but not with other baseline variables, including initial PSA, age and Gleason score. The f/tPSA in men with untreated, clinically localized prostate cancer varied widely. The negative correlation between the rate of change of f/tPSA with time and rate constant for PSATd suggests that both might provide valuable information to allow clinicians to develop a strategy for optimizing the timing of therapeutic intervention for those patients choosing watchful observation alone.
Xu, Xiaoming; Al-Ghabeish, Manar; Rahman, Ziyaur; Krishnaiah, Yellela S R; Yerlikaya, Firat; Yang, Yang; Manda, Prashanth; Hunt, Robert L; Khan, Mansoor A
2015-09-30
Owing to its unique anatomical and physiological functions, ocular surface presents special challenges for both design and performance evaluation of the ophthalmic ointment drug products formulated with a variety of bases. The current investigation was carried out to understand and identify the appropriate in vitro methods suitable for quality and performance evaluation of ophthalmic ointment, and to study the effect of formulation and process variables on its critical quality attributes (CQA). The evaluated critical formulation variables include API initial size, drug percentage, and mineral oil percentage while the critical process parameters include mixing rate, temperature, time and cooling rate. The investigated quality and performance attributes include drug assay, content uniformity, API particle size in ointment, rheological characteristics, in vitro drug release and in vitro transcorneal drug permeation. Using design of experiments (DoE) as well as a novel principle component analysis approach, five of the quality and performance attributes (API particle size, storage modulus of ointment, high shear viscosity of ointment, in vitro drug release constant and in vitro transcorneal drug permeation rate constant) were found to be highly influenced by the formulation, in particular the strength of API, and to a lesser degree by processing variables. Correlating the ocular physiology with the physicochemical characteristics of acyclovir ophthalmic ointment suggested that in vitro quality metrics could be a valuable predictor of its in vivo performance. Published by Elsevier B.V.
Carvalho, M N; da Motta, M; Benachour, M; Sales, D C S; Abreu, C A M
2012-11-15
The removal process of BTEX and phenol was evaluated. The smectite organoclay for single-solute system reached removal was evaluated by adsorption on smectite organoclay adsorbent by kinetic and equilibrium efficiencies between 55 and 90% while was reached between 30 and 90% for multi-solute system at 297 K and pH 9. The Langmuir-Freundlich model was used to fit the experimental data with correlation coefficient between 0.98 and 0.99 providing kinetic and equilibrium parameter values. Phenol and ethylbenzene presented high maximum adsorbed amount, 8.28 and 6.67 mg/g, respectively, compared to the other compounds for single-solute. Toluene and p-xylene presented high values of adsorption constant which indicates a high adsorption affinity of compounds to organoclay surface and high binding energy of adsorption. Phenol presented low kinetic adsorption constant value indicating slow rate of adsorption. Copyright © 2012 Elsevier B.V. All rights reserved.
Dynamic Characteristics of The DSI-Type Constant-Flow Valves
NASA Astrophysics Data System (ADS)
Kang, Yuan; Hu, Sheng-Yan; Chou, Hsien-Chin; Lee, Hsing-Han
Constant flow valves have been presented in industrial applications or academic studies, which compensate recess pressures of a hydrostatic bearing to resist load fluctuating. The flow rate of constant-flow valves can be constant in spite of the pressure changes in recesses, however the design parameters must be specified. This paper analyzes the dynamic responses of DSI-type constant-flow valves that is designed as double pistons on both ends of a spool with single feedback of working pressure and regulating restriction at inlet. In this study the static analysis presents the specific relationships among design parameters for constant flow rate and the dynamic analyses give the variations around the constant flow rate as the working pressure fluctuates.
NASA Technical Reports Server (NTRS)
DeMore, W.B.
1996-01-01
Relative rate experiments are used to measure rate constants and temperature dependencies of the reactions of OH with CH3F (41), CH2FCl (31), CH2BrCl (30B1), CH2Br2 (3OB2), CHBr3 (2OB3), CF2BrCHFCl (123aBl(alpha)), and CF2ClCHCl2 (122). Rate constants for additional compounds of these types are estimated using an empirical rate constant estimation method which is based on measured rate constants for a wide range of halocarbons. The experimental data are combined with the estimated and previously reported rate constants to illustrate the effects of F, Cl, and Br substitution on OH rate constants for a series of 19 halomethanes and 25 haloethanes. Application of the estimation technique is further illustrated for some higher hydrofluorocarbons (HFCs), including CHF2CF2CF2CF2H (338pcc), CF3CHFCHFCF2CF3 (43-10mee), CF3CH2CH2CF3 (356ffa), CF3CH2CF2CH2CF3 (458mfcf), CF3CH2CHF2 (245fa), and CF3CH2CF2CH3 (365mfc). The predictions are compared with literature data for these compounds.
Hong, Jun; Wang, Wei; Huang, Kun; Yang, Wei-Yun; Zhao, Ying-Xue; Xiao, Bao-Lin; Gao, Yun-Fei; Moosavi-Movahedi, Zainab; Ghourchian, Hedayatollah; Moosavi-Movahedi, Ali Akbar
2012-01-01
A nano-cluster with highly efficient peroxide activity was constructed based on nafion (NF) and cytochrome c (Cyt c). UV-Vis spectrometry and transmission electron microscopy (TEM) methods were utilized for characterization of the nano-structured enzyme or artificial peroxidase (AP). The nano-cluster was composed of a Chain-Ball structure, with an average ball size of about 40 nm. The Michaelis-Menten (K(m)) and catalytic rate (k(cat)) constants of the AP were determined to be 2.5 ± 0.4 µM and 0.069 ± 0.001 s(-1), respectively, in 50 mM PBS at pH 7.0. The catalytic efficiency of the AP was evaluated to be 0.028 ± 0.005 µM(-1) s(-1), which was 39 ± 5% as efficient as the native horseradish peroxidase (HRP). The AP was also immobilized on a functional multi-wall carbon nanotube (MWNCTs)-gold colloid nanoparticles (AuNPs) nano-complex modified glassy carbon (GC) electrode. The cyclic voltammetry of AP on the nano complex modified GC electrode showed a pair of well-defined redox peaks with a formal potential (E°') of -45 ± 2 mV (vs. Ag/AgCl) at a scan rate of 0.05 V/s. The heterogeneous electron transfer rate constant (k(s)) was evaluated to be 0.65 s(-1). The surface concentration of electroactive AP on GC electrode (Γ) was 7 × 10(-10) mol cm(-2). The apparent Michaelis-Menten constant (K(m)(app)) was 0.23 nM.
Lee, B.-G.; Wallace, W.G.; Luoma, S.N.
1998-01-01
Radiotracer studies were employed to quantitatively compare the biokinetics of uptake from the dissolved phase (influx rates) and loss (efflux) between 2 bivalves, Potamocorbula amurensis and Macoma balthica, and among the metals Cd, Cr and Zn. Effects of salinity on influx rate were evaluated in these 2 highly euryhaline species as were effects of animal size on uptake and loss. Metal speciation and biological attributes interacted to differentiate bioaccumulation processes among metals and between species. Influx rates of the 3 metals (??g g-1 [dry wt] d-1) increased linearly with dissolved metal concentrations. Influx rates of Zn in both clams were 3 to 4x those for Cd and 15x those for Cr. However, influx on the basis of free ion activities would be faster for Cd than for Zn. Relative influx rates among the metals were similar in the 2 bivalves. But, absolute influx rates of all 3 metals were 4 to 5x greater in P. amurensis than in M. balthica, probably because of differences in biological attributes (i.e. clearance rate or gill surface area). As salinity was reduced from 30 to 5 psu, the influx rate of Cd for P. amurensis increased 4-fold and that for M. balthica increased 6-fold, consistent with expected changes in speciation. However the influx rates of Cr in both clams also increased 2.4-fold over the same range, indicating a biological contribution to the salinity effect. Influx rates of Zn were not significantly affected by salinity. Weight specific metal influx rates (??g g-1 [dry wt] d-1) were negatively correlated with the tissue dry weight of the clams, but most rate constants determining physiological turnover of assimilated metals were not affected by clam size. The exception was the rate constant for Cd loss, which resulted in faster turnover in large M. balthica than in smaller clams. The rate constant of loss for P. amurensis increased in the order of Cd (0.011 d-1) < Zn (0.027 d-1) < Cr (0.048 d-1). This was different from the hierarchy of rate constants for M. balthica: Zn (0.012 d-1) < Cd (0.018 d-1) < Cr (0.024 d-1).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soudackov, Alexander V.; Hammes-Schiffer, Sharon
2015-11-21
Rate constant expressions for vibronically nonadiabatic proton transfer and proton-coupled electron transfer reactions are presented and analyzed. The regimes covered include electronically adiabatic and nonadiabatic reactions, as well as high-frequency and low-frequency proton donor-acceptor vibrational modes. These rate constants differ from previous rate constants derived with the cumulant expansion approach in that the logarithmic expansion of the vibronic coupling in terms of the proton donor-acceptor distance includes a quadratic as well as a linear term. The analysis illustrates that inclusion of this quadratic term in the framework of the cumulant expansion framework may significantly impact the rate constants at highmore » temperatures for proton transfer interfaces with soft proton donor-acceptor modes that are associated with small force constants and weak hydrogen bonds. The effects of the quadratic term may also become significant in these regimes when using the vibronic coupling expansion in conjunction with a thermal averaging procedure for calculating the rate constant. In this case, however, the expansion of the coupling can be avoided entirely by calculating the couplings explicitly for the range of proton donor-acceptor distances sampled. The effects of the quadratic term for weak hydrogen-bonding systems are less significant for more physically realistic models that prevent the sampling of unphysical short proton donor-acceptor distances. Additionally, the rigorous relation between the cumulant expansion and thermal averaging approaches is clarified. In particular, the cumulant expansion rate constant includes effects from dynamical interference between the proton donor-acceptor and solvent motions and becomes equivalent to the thermally averaged rate constant when these dynamical effects are neglected. This analysis identifies the regimes in which each rate constant expression is valid and thus will be important for future applications to proton transfer and proton-coupled electron transfer in chemical and biological processes.« less
NASA Technical Reports Server (NTRS)
Sammonds, R. I.; Bunnell, J. W., Jr.
1980-01-01
A moving-base simulator experiment conducted at Ames Research Center demonstrated that a wings-level-turn control mode improved flying qualities for air-to-ground weapons delivery compared with those of a conventional aircraft. Evaluations of criteria for dynamic response for this system have shown that pilot ratings correlate well on the basis of equivalent time constant of the initial response. Ranges of this time constant, as well as digital-system transport delays and lateral-acceleration control authorities that encompassed Level I through Level III handling qualities, were determined.
Effect of positive pulse charge waveforms on cycle life of nickel-zinc cells
NASA Technical Reports Server (NTRS)
Smithrick, J. J.
1979-01-01
Five amp-hour nickel-zinc cells were life cycled to evaluate four different charge methods. Three of the four waveforms investigated were 120 Hz full wave rectified sinusoidal (FWRS), 120 Hz silicon controlled rectified (SCR), and 1 kHz square wave (SW). The fourth, a constant current method, was used as a baseline of comparison. Three sealed Ni-Zn cells connected in series were cycled. Each series string was charged at an average c/20 rate, and discharged at a c/2.5 rate to a 75% rated depth.
Extraterrestrial 3He as a tracer of marine sediment transport and accumulation
NASA Astrophysics Data System (ADS)
Marcantonio, Franco; Anderson, Robert F.; Stute, Martin; Kumar, Niraj; Schlosser, Peter; Mix, Alan
1996-10-01
THE deposition rate of deep-sea sediments, and their focused redeposition by deep-sea currents, can be evaluated from analyses of sedimentary 230Th with a temporal resolution limited only by bioturbation6,7,10,11. 230Th is produced uniformly throughout the ocean by radioactive decay of dissolved 234U and is removed sufficiently fast by sorption onto sinking particles to act as a 'constant-flux' tracer of sedimentation rates. But the half-life of 230Th (75 kyr) limits its use for this purpose to the past 200-250 kyr. Here we explore the use of extraterrestrial 3He from interplanetary dust particles1-4 (IDPs) as a constant-flux proxy that is free from this limitation. A comparison of 3He with 230Th in two cores from the equatorial Pacific Ocean indicates that the variability in the mean flux of IDPs over the past 200 kyr is less than 75%. But in contrast to this relatively constant rate of supply of 3He to the deep sea, the local burial rates of 3He and 230Th have varied by a factor of five over the past 450 and 200 kyr, respect-ively. We interpret this variability as reflecting sediment focusing, with a temporal pattern that suggests regular cycles of climate-driven reorganization of near-bottom currents in the deep Pacific Ocean.
NASA Astrophysics Data System (ADS)
Oturan, Nihal; Panizza, Marco; Oturan, Mehmet A.
2009-09-01
This study reports the kinetics of the degradation of several chlorophenols (CPs), such as monochlorophenols (2-chlorophenol and 4-chlorophenol), dichlorophenols (2,4-dichlorophenol and 2,6- dichlorophenol), trichlorophenols (2,3,5- trichlorophenol and 2,4,5-trichlorophenol), 2,3,5,6-tetrachlorophenol, and pentachlorophenol, by the electro-Fenton process using a carbon felt cathode and a Pt anode. The effect of number and the position of the chlorine atoms in the aromatic ring on the oxidative degradation rate was evaluated and discussed. The oxidation reaction of all the CPs with hydroxyl radicals evidenced a pseudo-first-order kinetics and the rate constant decreased with increasing the number of chlorine atoms. The absolute rate constant of second-order reaction kinetics between CPs and •OH was determined by the competition kinetics method in the range of (3.56-7.75) × 109 M-1 s-1 and follows the same sequence of the apparent rate constants. The mineralization of several CPs and of a mixture of all CPs under study was monitored by the total organic carbon (TOC) removal and the chlorine release during mineralization was followed by ion chromatography. Our results demonstrated that more chlorinated phenols are more difficult to mineralize; however for all the tested CPs, almost quantitative release of chloride ions was obtained after 6 h of treatment.
Kinetic modeling of lactic acid production from batch submerged fermentation of cheese whey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tango, M.S.A.; Ghaly, A.E.
1999-12-01
A kinetic model for the production of lactic acid through batch submerged fermentation of cheese whey using Lactobacillus helveticus was developed. The model accounts for the effect of substrate limitation, substrate inhibition, lactic acid inhibition, maintenance energy and cell death on the cell growth, substrate utilization, and lactic acid production during the fermentation process. The model was evaluated using experimental data from Tango and Ghaly (1999). The predicted results obtained from the model compared well with experimental (R{sup 2} = 0.92--0.98). The model was also used to investigate the effect of the initial substrate concentration on the lag period, fermentationmore » time, specific growth rate, and cell productivity during batch fermentation. The maximum specific growth rate ({micro}{sub m}), the saturation constant (K{sub S}), the substrate inhibition constant (K{sub IS}), and the lactic acid inhibition constant (K{sub IP}) were found to be 0.25h{sup {minus}1}, 0.9 g/L, 250.0 g/L, and 60.0 g/L, respectively. High initial lactose concentration in cheese whey reduced both the specific growth rate and substrate utilization rate due to the substrate inhibition phenomenon. The maximum lactic acid production occurred at about 100 g/L initial lactose concentration after 40 h of fermentation. The maximum lactic acid concentration above which Lactobacillus helveticus did not grow was found to be 80.0 g/L.« less
Autoxidation of jet fuels: Implications for modeling and thermal stability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heneghan, S.P.; Chin, L.P.
1995-05-01
The study and modeling of jet fuel thermal deposition is dependent on an understanding of and ability to model the oxidation chemistry. Global modeling of jet fuel oxidation is complicated by several facts. First, liquid jet fuels are hard to heat rapidly and fuels may begin to oxidize during the heat-up phase. Non-isothermal conditions can be accounted for but the evaluation of temperature versus time is difficult. Second, the jet fuels are a mixture of many compounds that may oxidize at different rates. Third, jet fuel oxidation may be autoaccelerating through the decomposition of the oxidation products. Attempts to modelmore » the deposition of jet fuels in two different flowing systems showed the inadequacy of a simple two-parameter global Arrhenius oxidation rate constant. Discarding previous assumptions about the form of the global rate constants results in a four parameter model (which accounts for autoacceleration). This paper discusses the source of the rate constant form and the meaning of each parameter. One of these parameters is associated with the pre-exponential of the autoxidation chain length. This value is expected to vary inversely to thermal stability. We calculate the parameters for two different fuels and discuss the implication to thermal and oxidative stability of the fuels. Finally, we discuss the effect of non-Arrhenius behavior on current modeling of deposition efforts.« less
Minimum reaction network necessary to describe Ar/CF4 plasma etch
NASA Astrophysics Data System (ADS)
Helpert, Sofia; Chopra, Meghali; Bonnecaze, Roger T.
2018-03-01
Predicting the etch and deposition profiles created using plasma processes is challenging due to the complexity of plasma discharges and plasma-surface interactions. Volume-averaged global models allow for efficient prediction of important processing parameters and provide a means to quickly determine the effect of a variety of process inputs on the plasma discharge. However, global models are limited based on simplifying assumptions to describe the chemical reaction network. Here a database of 128 reactions is compiled and their corresponding rate constants collected from 24 sources for an Ar/CF4 plasma using the platform RODEo (Recipe Optimization for Deposition and Etching). Six different reaction sets were tested which employed anywhere from 12 to all 128 reactions to evaluate the impact of the reaction database on particle species densities and electron temperature. Because many the reactions used in our database had conflicting rate constants as reported in literature, we also present a method to deal with those uncertainties when constructing the model which includes weighting each reaction rate and filtering outliers. By analyzing the link between a reaction's rate constant and its impact on the predicted plasma densities and electron temperatures, we determine the conditions at which a reaction is deemed necessary to the plasma model. The results of this study provide a foundation for determining which minimal set of reactions must be included in the reaction set of the plasma model.
Pandey, Sachin; Rajaram, Harihar
2016-12-05
Inferences of weathering rates from laboratory and field observations suggest significant scale and time-dependence. Preferential flow induced by heterogeneity (manifest as permeability variations or discrete fractures) has been suggested as one potential mechanism causing scale/time-dependence. In this paper, we present a quantitative evaluation of the influence of preferential flow on weathering rates using reactive transport modeling. Simulations were performed in discrete fracture networks (DFNs) and correlated random permeability fields (CRPFs), and compared to simulations in homogeneous permeability fields. The simulations reveal spatial variability in the weathering rate, multidimensional distribution of reactions zones, and the formation of rough weathering interfaces andmore » corestones due to preferential flow. In the homogeneous fields and CRPFs, the domain-averaged weathering rate is initially constant as long as the weathering front is contained within the domain, reflecting equilibrium-controlled behavior. The behavior in the CRPFs was influenced by macrodispersion, with more spread-out weathering profiles, an earlier departure from the initial constant rate and longer persistence of weathering. DFN simulations exhibited a sustained time-dependence resulting from the formation of diffusion-controlled weathering fronts in matrix blocks, which is consistent with the shrinking core mechanism. A significant decrease in the domain-averaged weathering rate is evident despite high remaining mineral volume fractions, but the decline does not follow a math formula dependence, characteristic of diffusion, due to network scale effects and advection-controlled behavior near the inflow boundary. Finally, the DFN simulations also reveal relatively constant horizontally averaged weathering rates over a significant depth range, challenging the very notion of a weathering front.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pandey, Sachin; Rajaram, Harihar
Inferences of weathering rates from laboratory and field observations suggest significant scale and time-dependence. Preferential flow induced by heterogeneity (manifest as permeability variations or discrete fractures) has been suggested as one potential mechanism causing scale/time-dependence. In this paper, we present a quantitative evaluation of the influence of preferential flow on weathering rates using reactive transport modeling. Simulations were performed in discrete fracture networks (DFNs) and correlated random permeability fields (CRPFs), and compared to simulations in homogeneous permeability fields. The simulations reveal spatial variability in the weathering rate, multidimensional distribution of reactions zones, and the formation of rough weathering interfaces andmore » corestones due to preferential flow. In the homogeneous fields and CRPFs, the domain-averaged weathering rate is initially constant as long as the weathering front is contained within the domain, reflecting equilibrium-controlled behavior. The behavior in the CRPFs was influenced by macrodispersion, with more spread-out weathering profiles, an earlier departure from the initial constant rate and longer persistence of weathering. DFN simulations exhibited a sustained time-dependence resulting from the formation of diffusion-controlled weathering fronts in matrix blocks, which is consistent with the shrinking core mechanism. A significant decrease in the domain-averaged weathering rate is evident despite high remaining mineral volume fractions, but the decline does not follow a math formula dependence, characteristic of diffusion, due to network scale effects and advection-controlled behavior near the inflow boundary. Finally, the DFN simulations also reveal relatively constant horizontally averaged weathering rates over a significant depth range, challenging the very notion of a weathering front.« less
Georgievskii, Yuri; Miller, James A.; Klippenstein, Stephen J.
2007-05-18
Reactions between resonance-stabilized radicals play an important role in combustion chemistry. The theoretical prediction of rate coefficients and product distributions for such reactions is complicated by the fact that the initial complex-formation steps and some dissociation steps are barrierless. In this work, direct variable reaction coordinate transition state theory (VRC-TST) is used to predict accurately the association rate constants for the self and cross reactions of propargyl and allyl radicals. For each reaction, a set of multifaceted dividing surfaces is used to account for the multiple possible addition channels. Because of their resonant nature the geometric relaxation of the radicalsmore » is important. Here, the effect of this relaxation is explicitly calculated with the UB3LYP/cc-pvdz method for each mutual orientation encountered in the configurational integrals over the transition state dividing surfaces. The final energies are obtained from CASPT2/cc-pvdz calculations with all π-orbitals in the active space. Evaluations along the minimum energy path suggest that basis set corrections are negligible. The VRC-TST approach was also used to calculate the association rate constant and the corresponding number of states for the C 6H 5 + H → C 6H 6 exit channel of the C 3H 3 + C 3H 3 reaction, which is also barrierless. For this reaction, the interaction energies were evaluated with the CASPT2(2e,2o)/cc-pvdz method and a 1-D correction is included on the basis of CAS+1+2+QC/aug-cc-pvtz calculations for the CH 3 + H reference system. For the C 3H 3 + C 3H 3 reaction, the VRC-TST results for the energy and angular momentum resolved numbers of states in the entrance channels and in the C 6H 5 + H exit channel are incorporated in a master equation simulation to determine the temperature and pressure dependence of the phenomenological rate coefficients. The rate constants for the C 3H 3 + C 3H 3 and C 3H 5 + C 3H 5 self-reactions compare favorably with the available experimental data. Finally, to our knowledge there are no experimental rate data for the C 3H 3 + C 3H 5 reaction.« less
NASA Astrophysics Data System (ADS)
Osborne, David; Lawson, Patrick Andrew; Adams, Nigel; Dotan, Itzhak
2014-06-01
An in-depth study of the effects of functional group substitution on benzene's electron-ion dissociative recombination (e-IDR) rate constant has been conducted. The e-IDR rate constants for benzene, biphenyl, toluene, ethylbenzene, anisole, phenol, and aniline have been measured using a Flowing Afterglow equipped with an electrostatic Langmuir probe (FALP). These measurements have been made over a series of temperatures from 300 to 550 K. A relationship between the Hammett σpara values for each compound and rate constant has indicated a trend in the e-IDR rate constants and possibly in their temperature dependence data. The Hammett σpara value is a method to describe the effect a functional group substituted to a benzene ring has upon the reaction rate constant.
NASA Astrophysics Data System (ADS)
Kleinboehl, A.; Canty, T. P.; Salawitch, R. J.; Khosravi, M.; Urban, J.; Toon, G. C.; Kuellmann, H.; Notholt, J.
2011-12-01
Significant differences exist between different laboratory measurements of the photolysis cross-sections of ClO-dimer, and the rate constant controlling the thermal equilibrium between ClO-dimer and ClO. This leads to uncertainties in the calculations of stratospheric ozone loss in the winter polar regions. One way to constrain the plausibility of these parameters is the measurement of ClO across the terminator in the activated polar vortex. Here we analyze measurements of ClO taken by the airborne submillimeter radiometer ASUR in the Arctic winter of 1999/2000. We use measured ClO at low solar zenith angles (SZA) to estimate the total active chlorine (ClOx). We estimate total available inorganic chlorine (Cly) using ASUR measurements of N2O in January 2000 and a N2O-Cly correlation established by a balloon measurement of the MarkIV interferometer in December 1999. We compare the ClOx estimates based on different photolysis rates of ClO-Dimer. Our results show that cross-sections leading to fast photolysis rates like the ones by Burkholder et al. [1990] or Papanastasiou et al. [2009] give ClOx mixing ratios that overlap with our estimated range of available Cly. Slower photolysis rates like the ones by von Hobe et al. [2009] and Pope et al. [2007] lead to ClOx values that are significantly higher than the available Cly. We use the calculated ClOx from low SZA to estimate the ClO in darkness with different equilibrium constants, and compare it with ASUR ClO measurements before sunrise (SZA > 95). We find that calculations with equilibrium constants published in the JPL evaluation of the last few years all give good agreement with observed ClO mixing ratios. The equilibrium constant estimated by von Hobe et al. [2005] yields ClO values that are higher than the ones observed.
Nam, J G; Kang, K M; Choi, S H; Lim, W H; Yoo, R-E; Kim, J-H; Yun, T J; Sohn, C-H
2017-12-01
Glioblastoma is the most common primary brain malignancy and differentiation of true progression from pseudoprogression is clinically important. Our purpose was to compare the diagnostic performance of dynamic contrast-enhanced pharmacokinetic parameters using the fixed T1 and measured T1 on differentiating true from pseudoprogression of glioblastoma after chemoradiation with temozolomide. This retrospective study included 37 patients with histopathologically confirmed glioblastoma with new enhancing lesions after temozolomide chemoradiation defined as true progression ( n = 15) or pseudoprogression ( n = 22). Dynamic contrast-enhanced pharmacokinetic parameters, including the volume transfer constant, the rate transfer constant, the blood plasma volume per unit volume, and the extravascular extracellular space per unit volume, were calculated by using both the fixed T1 of 1000 ms and measured T1 by using the multiple flip-angle method. Intra- and interobserver reproducibility was assessed by using the intraclass correlation coefficient. Dynamic contrast-enhanced pharmacokinetic parameters were compared between the 2 groups by using univariate and multivariate analysis. The diagnostic performance was evaluated by receiver operating characteristic analysis and leave-one-out cross validation. The intraclass correlation coefficients of all the parameters from both T1 values were fair to excellent (0.689-0.999). The volume transfer constant and rate transfer constant from the fixed T1 were significantly higher in patients with true progression ( P = .048 and .010, respectively). Multivariate analysis revealed that the rate transfer constant from the fixed T1 was the only independent variable (OR, 1.77 × 10 5 ) and showed substantial diagnostic power on receiver operating characteristic analysis (area under the curve, 0.752; P = .002). The sensitivity and specificity on leave-one-out cross validation were 73.3% (11/15) and 59.1% (13/20), respectively. The dynamic contrast-enhanced parameter of rate transfer constant from the fixed T1 acted as a preferable marker to differentiate true progression from pseudoprogression. © 2017 by American Journal of Neuroradiology.
Biomarker measurements are used in three ways: 1) evaluating the time course and distribution of a chemical in the body, 2) estimating previous exposure or dose, and 3) assessing disease state. Blood and urine measurements are the primary methods employed. Of late, it has been ...
Rainfall–runoff model parameter estimation and uncertainty evaluation on small plots
Four seasonal rainfall simulations in 2009 and 2010were applied to a field containing 36 plots (0.75 × 2 m each), resulting in 144 runoff events. In all simulations, a constant rate of rainfall was applied then halted 60min after initiation of runoff, with plot-scale monitoring o...
Rainfall-runoff model parameter estimation and uncertainty evaluation on small plots
USDA-ARS?s Scientific Manuscript database
Four seasonal rainfall simulations in 2009 and 2010 were applied to a field containing 36 plots (0.75 × 2 m each), resulting in 144 runoff events. In all simulations, a constant rate of rainfall was applied, then halted 60 minutes after initiation of runoff, with plot-scale monitoring of runoff ever...
Equilibrium muscle cross-bridge behavior. Theoretical considerations.
Schoenberg, M
1985-01-01
We have developed a model for the equilibrium attachment and detachment of myosin cross-bridges to actin that takes into account the possibility that a given cross-bridge can bind to one of a number of actin monomers, as seems likely, rather than to a site on only a single actin monomer, as is often assumed. The behavior of this multiple site model in response to constant velocity, as well as instantaneous stretches, was studied and the influence of system parameters on the force response explored. It was found that in the multiple site model the detachment rate constant has considerably greater influence on the mechanical response than the attachment rate constant. It is shown that one can obtain information about the detachment rate constants either by examining the relationship between the apparent stiffness and duration of stretch for constant velocity stretches or by examining the force-decay rate constants following an instantaneous stretch. The main effect of the attachment rate constant is to scale the mechanical response by influencing the number of attached cross-bridges. The significance of the modeling for the interpretation of experimental results is discussed. PMID:4041539
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osborne, David; Lawson, Patrick; Adams, Nigel, E-mail: ngadams@uga.edu
Following the arrival of Cassini at Titan in 2004, the Titan atmosphere has been shown to contain large complex polycyclic-aromatic hydrocarbons. Since Cassini has provided a great deal of data, there exists a need for kinetic rate data to help with modeling this atmosphere. One type of kinetic data needed is electron-ion dissociative recombination (e-IDR) rate constants. These data are not readily available for larger compounds, such as naphthalene, or oxygen containing compounds, such as 1,4 dioxane or furan. Here, the rate constants for naphthalene, 1,4 dioxane, and furan have been measured and their temperature dependencies are determined when possible,more » using the University of Georgia's Variable Temperature Flowing Afterglow. The rate constants are compared with those previously published for other compounds; these show trends which illustrate the effects which multi-rings and oxygen heteroatoms substitutions have upon e-IDR rate constants.« less
NASA Astrophysics Data System (ADS)
Osborne, David; Lawson, Patrick; Adams, Nigel
2014-01-01
Following the arrival of Cassini at Titan in 2004, the Titan atmosphere has been shown to contain large complex polycyclic-aromatic hydrocarbons. Since Cassini has provided a great deal of data, there exists a need for kinetic rate data to help with modeling this atmosphere. One type of kinetic data needed is electron-ion dissociative recombination (e-IDR) rate constants. These data are not readily available for larger compounds, such as naphthalene, or oxygen containing compounds, such as 1,4 dioxane or furan. Here, the rate constants for naphthalene, 1,4 dioxane, and furan have been measured and their temperature dependencies are determined when possible, using the University of Georgia's Variable Temperature Flowing Afterglow. The rate constants are compared with those previously published for other compounds; these show trends which illustrate the effects which multi-rings and oxygen heteroatoms substitutions have upon e-IDR rate constants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cannon, William; Zucker, Jeremy; Baxter, Douglas
We report the application of a recently proposed approach for modeling biological systems using a maximum entropy production rate principle in lieu of having in vivo rate constants. The method is applied in four steps: (1) a new ODE-based optimization approach based on Marcelin’s 1910 mass action equation is used to obtain the maximum entropy distribution, (2) the predicted metabolite concentrations are compared to those generally expected from experiment using a loss function from which post-translational regulation of enzymes is inferred, (3) the system is re-optimized with the inferred regulation from which rate constants are determined from the metabolite concentrationsmore » and reaction fluxes, and finally (4) a full ODE-based, mass action simulation with rate parameters and allosteric regulation is obtained. From the last step, the power characteristics and resistance of each reaction can be determined. The method is applied to the central metabolism of Neurospora crassa and the flow of material through the three competing pathways of upper glycolysis, the non-oxidative pentose phosphate pathway, and the oxidative pentose phosphate pathway are evaluated as a function of the NADP/NADPH ratio. It is predicted that regulation of phosphofructokinase (PFK) and flow through the pentose phosphate pathway are essential for preventing an extreme level of fructose 1, 6-bisphophate accumulation. Such an extreme level of fructose 1,6-bisphophate would otherwise result in a glassy cytoplasm with limited diffusion, dramatically decreasing the entropy and energy production rate and, consequently, biological competitiveness.« less
NASA Astrophysics Data System (ADS)
Wen, Zhang; Zhan, Hongbin; Wang, Quanrong; Liang, Xing; Ma, Teng; Chen, Chen
2017-05-01
Actual field pumping tests often involve variable pumping rates which cannot be handled by the classical constant-rate or constant-head test models, and often require a convolution process to interpret the test data. In this study, we proposed a semi-analytical model considering an exponentially decreasing pumping rate started at a certain (higher) rate and eventually stabilized at a certain (lower) rate for cases with or without wellbore storage. A striking new feature of the pumping test with an exponentially decayed rate is that the drawdowns will decrease over a certain period of time during intermediate pumping stage, which has never been seen before in constant-rate or constant-head pumping tests. It was found that the drawdown-time curve associated with an exponentially decayed pumping rate function was bounded by two asymptotic curves of the constant-rate tests with rates equaling to the starting and stabilizing rates, respectively. The wellbore storage must be considered for a pumping test without an observation well (single-well test). Based on such characteristics of the time-drawdown curve, we developed a new method to estimate the aquifer parameters by using the genetic algorithm.
NASA Technical Reports Server (NTRS)
Kanavarioti, A.; Chang, S.; Alberas, D. J.
1990-01-01
Selected imidazolide-activated nucleotides have been subjected to hydrolysis under conditions similar to those that favor their template-directed oligomerization. Rate constants of hydrolysis of the P-N bond in guanosine 5'-monophosphate 2-methylimidazolide (2-MeImpG) and in guanosine 5'-monophosphate imidazolide (ImpG), kh, have been determined in the presence/absence of magnesium ion as a function of temperature and polycytidylate [poly(C)] concentration. Using the rate constant of hydrolysis of 2-MeImpG and the rate constant of elongation, i.e., the reaction of an oligoguanylate with 2-MeImpG in the presence of poly(C) acting as template, the limiting concentration of 2-MeImpG necessary for oligonucleotide elongation to compete with hydrolysis can be calculated. The limiting concentration is defined as the initial concentration of monomer that results in its equal consumption by hydrolysis and by elongation. These limiting concentrations of 2-MeImpG are found to be 1.7 mM at 37 degrees C and 0.36 mM at 1 degrees C. Boundary conditions in the form of limiting concentration of activated nucleotide may be used to evaluate a prebiotic model for chemical synthesis of biopolymers. For instance, the limiting concentration of monomer can be used as a basis of comparison among catalytic, but nonenzymatic, RNA-type systems. We also determined the rate constant of dimerization of 2-MeImpG, k2 = 0.45 +/- 0.06 M-1 h-1 in the absence of poly(C), and 0.45 +/- 0.06 less than or equal to k2 less than or equal to 0.97 +/- 0.13 M-1 h-1 in its presence at 37 degrees C and pH 7.95.(ABSTRACT TRUNCATED AT 250 WORDS).
A Computational Framework for Analyzing Stochasticity in Gene Expression
Sherman, Marc S.; Cohen, Barak A.
2014-01-01
Stochastic fluctuations in gene expression give rise to distributions of protein levels across cell populations. Despite a mounting number of theoretical models explaining stochasticity in protein expression, we lack a robust, efficient, assumption-free approach for inferring the molecular mechanisms that underlie the shape of protein distributions. Here we propose a method for inferring sets of biochemical rate constants that govern chromatin modification, transcription, translation, and RNA and protein degradation from stochasticity in protein expression. We asked whether the rates of these underlying processes can be estimated accurately from protein expression distributions, in the absence of any limiting assumptions. To do this, we (1) derived analytical solutions for the first four moments of the protein distribution, (2) found that these four moments completely capture the shape of protein distributions, and (3) developed an efficient algorithm for inferring gene expression rate constants from the moments of protein distributions. Using this algorithm we find that most protein distributions are consistent with a large number of different biochemical rate constant sets. Despite this degeneracy, the solution space of rate constants almost always informs on underlying mechanism. For example, we distinguish between regimes where transcriptional bursting occurs from regimes reflecting constitutive transcript production. Our method agrees with the current standard approach, and in the restrictive regime where the standard method operates, also identifies rate constants not previously obtainable. Even without making any assumptions we obtain estimates of individual biochemical rate constants, or meaningful ratios of rate constants, in 91% of tested cases. In some cases our method identified all of the underlying rate constants. The framework developed here will be a powerful tool for deducing the contributions of particular molecular mechanisms to specific patterns of gene expression. PMID:24811315
Karakas, Filiz; Imamoglu, Ipek
2017-02-15
This study aims to estimate anaerobic dechlorination rate constants (k m ) of reactions of individual PCB congeners using data from four laboratory microcosms set up using sediment from Baltimore Harbor. Pathway k m values are estimated by modifying a previously developed model as Anaerobic Dehalogenation Model (ADM) which can be applied to any halogenated hydrophobic organic (HOC). Improvements such as handling multiple dechlorination activities (DAs) and co-elution of congeners, incorporating constraints, using new goodness of fit evaluation led to an increase in accuracy, speed and flexibility of ADM. DAs published in the literature in terms of chlorine substitutions as well as specific microorganisms and their combinations are used for identification of pathways. The best fit explaining the congener pattern changes was found for pathways of Phylotype DEH10, which has the ability to remove doubly flanked chlorines in meta and para positions, para flanked chlorines in meta position. The range of estimated k m values is between 0.0001-0.133d -1 , the median of which is found to be comparable to the few available published biologically confirmed rate constants. Compound specific modelling studies such as that performed by ADM can enable monitoring and prediction of concentration changes as well as toxicity during bioremediation. Copyright © 2016 Elsevier B.V. All rights reserved.
Xu, Shenghua; Liu, Jie; Sun, Zhiwei
2006-12-01
Turbidity measurement for the absolute coagulation rate constants of suspensions has been extensively adopted because of its simplicity and easy implementation. A key factor in deriving the rate constant from experimental data is how to theoretically evaluate the so-called optical factor involved in calculating the extinction cross section of doublets formed during aggregation. In a previous paper, we have shown that compared with other theoretical approaches, the T-matrix method provides a robust solution to this problem and is effective in extending the applicability range of the turbidity methodology, as well as increasing measurement accuracy. This paper will provide a more comprehensive discussion of the physical insight for using the T-matrix method in turbidity measurement and associated technical details. In particular, the importance of ensuring the correct value for the refractive indices for colloidal particles and the surrounding medium used in the calculation is addressed, because the indices generally vary with the wavelength of the incident light. The comparison of calculated results with experiments shows that the T-matrix method can correctly calculate optical factors even for large particles, whereas other existing theories cannot. In addition, the data of the optical factor calculated by the T-matrix method for a range of particle radii and incident light wavelengths are listed.
Class Projects in Physical Organic Chemistry: The Hydrolysis of Aspirin
ERIC Educational Resources Information Center
Marrs, Peter S.
2004-01-01
An exercise that provides a hands-on demonstration of the hydrolysis of aspirin is presented. The key to understanding the hydrolysis is recognizing that all six process may occur simultaneously and that the observed rate constant is the sum of the rate constants that one rate constant dominates the overall process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xiaobing; Zheng, O'Neill; Niu, Fuxin
Most commercial ground source heat pump systems (GSHP) in the United States are in a distributed configuration. These systems circulate water or an anti-freeze solution through multiple heat pump units via a central pumping system, which usually uses variable speed pump(s). Variable speed pumps have potential to significantly reduce pumping energy use; however, the energy savings in reality could be far away from its potential due to improper pumping system design and controls. In this paper, a simplified hydronic pumping system was simulated with the dynamic Modelica models to evaluate three different pumping control strategies. This includes two conventional controlmore » strategies, which are to maintain a constant differential pressure across either the supply and return mains, or at the most hydraulically remote heat pump; and an innovative control strategy, which adjusts system flow rate based on the demand of each heat pump. The simulation results indicate that a significant overflow occurs at part load conditions when the variable speed pump is controlled to main a constant differential pressure across the supply and return mains of the piping system. On the other hand, an underflow occurs at part load conditions when the variable speed pump is controlled to maintain a constant differential pressure across the furthest heat pump. The flow-demand-based control can provide needed flow rate to each heat pump at any given time, and with less pumping energy use than the two conventional controls. Finally, a typical distributed GSHP system was studied to evaluate the energy saving potential of applying the flow-demand-based pumping control strategy. This case study shows that the annual pumping energy consumption can be reduced by 62% using the flow-demand-based control compared with that using the conventional pressure-based control to maintain a constant differential pressure a cross the supply and return mains.« less
Spin polarized photons from an axially charged plasma at weak coupling: Complete leading order
Mamo, Kiminad A.; Yee, Ho-Ung
2016-03-24
In the presence of (approximately conserved) axial charge in the QCD plasma at finite temperature, the emitted photons are spin aligned, which is a unique P- and CP-odd signature of axial charge in the photon emission observables. We compute this “P-odd photon emission rate” in a weak coupling regime at a high temperature limit to complete leading order in the QCD coupling constant: the leading log as well as the constant under the log. As in the P-even total emission rate in the literature, the computation of the P-odd emission rate at leading order consists of three parts: (1) Comptonmore » and pair annihilation processes with hard momentum exchange, (2) soft t- and u-channel contributions with hard thermal loop resummation, (3) Landau-Pomeranchuk-Migdal resummation of collinear bremsstrahlung and pair annihilation. In conclusion, we present analytical and numerical evaluations of these contributions to our P-odd photon emission rate observable.« less
NASA Astrophysics Data System (ADS)
Xie, Tiao; Bowman, Joel M.; Peterson, K. A.; Ramachandran, B.
2003-11-01
We report the thermal rate constant of the O(3P)+HCl→OH+Cl reaction calculated from 200 to 3200 K, using new fits to extensive ab initio calculations [B. Ramachandran and K. A. Peterson, J. Chem. Phys. 119, 9590 (2003), preceding paper]. The rate constants are obtained for both the 3A″ and 3A' surfaces using exact quantum reactive scattering calculations for selected values of the total angular momentum and the J-shifting approximation for both the 3A″ and 3A' surfaces. The results are compared with the ICVT/μOMT rate constants calculated by the POLYRATE program and all available experimental data. Other related high-energy reaction channels are also studied qualitatively for their contribution to the total thermal rate constant at high temperature.
Acid-base regulation during heating and cooling in the lizard, Varanus exanthematicus.
Wood, S C; Johansen, K; Glass, M L; Hoyt, R W
1981-04-01
Current concepts of acid-base balance in ectothermic animals require that arterial pH vary inversely with body temperature in order to maintain a constant OH-/H+ and constant net charge on proteins. The present study evaluates acid-base regulation in Varanus exanthematicus under various regimes of heating and cooling between 15 and 38 degrees C. Arterial blood was sampled during heating and cooling at various rates, using restrained and unrestrained animals with and without face masks. Arterial pH was found to have a small temperature dependence, i.e., pH = 7.66--0.005 (T). The slope (dpH/dT = -0.005), while significantly greater than zero (P less than 0.05), is much less than that required for a constant OH-/H+ or a constant imidazole alphastat (dpH/dT congruent to 0.018). The physiological mechanism that distinguishes this species from most other ectotherms is the presence of a ventilatory response to temperature-induced changes in CO2 production and O2 uptake, i.e., VE/VO2 is constant. This results in a constant O2 extraction and arterial saturation (approx. 90%), which is adaptive to the high aerobic requirements of this species.
Inflation with a constant rate of roll
NASA Astrophysics Data System (ADS)
Motohashi, Hayato; Starobinsky, Alexei A.; Yokoyama, Jun'ichi
2015-09-01
We consider an inflationary scenario where the rate of inflaton roll defined by ̈phi/H dot phi remains constant. The rate of roll is small for slow-roll inflation, while a generic rate of roll leads to the interesting case of 'constant-roll' inflation. We find a general exact solution for the inflaton potential required for such inflaton behaviour. In this model, due to non-slow evolution of background, the would-be decaying mode of linear scalar (curvature) perturbations may not be neglected. It can even grow for some values of the model parameter, while the other mode always remains constant. However, this always occurs for unstable solutions which are not attractors for the given potential. The most interesting particular cases of constant-roll inflation remaining viable with the most recent observational data are quadratic hilltop inflation (with cutoff) and natural inflation (with an additional negative cosmological constant). In these cases even-order slow-roll parameters approach non-negligible constants while the odd ones are asymptotically vanishing in the quasi-de Sitter regime.
Schröder, Henning; Sawall, Mathias; Kubis, Christoph; Selent, Detlef; Hess, Dieter; Franke, Robert; Börner, Armin; Neymeyr, Klaus
2016-07-13
If for a chemical reaction with a known reaction mechanism the concentration profiles are accessible only for certain species, e.g. only for the main product, then often the reaction rate constants cannot uniquely be determined from the concentration data. This is a well-known fact which includes the so-called slow-fast ambiguity. This work combines the question of unique or non-unique reaction rate constants with factor analytic methods of chemometrics. The idea is to reduce the rotational ambiguity of pure component factorizations by considering only those concentration factors which are possible solutions of the kinetic equations for a properly adapted set of reaction rate constants. The resulting set of reaction rate constants corresponds to those solutions of the rate equations which appear as feasible factors in a pure component factorization. The new analysis of the ambiguity of reaction rate constants extends recent research activities on the Area of Feasible Solutions (AFS). The consistency with a given chemical reaction scheme is shown to be a valuable tool in order to reduce the AFS. The new methods are applied to model and experimental data. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Hsu, K.-J.; DeMore, W. B.
1995-01-01
Rate constants and temperature dependencies for the reactions of OH with CF3OCH3 (HFOC-143a), CF2HOCF2H (HFOC-134), and CF3OCF2H (HFOC-125) were studied using a relative rate technique in the temperature range 298-393 K. The following absolute rate constants were derived: HFOC-143a, 1.9E-12 exp(-1555/T); HFOC-134, 1.9E-12 exp(-2006/T); HFOC-125, 4.7E-13 exp(-2095/T). Units are cm(exp 3)molecule(exp -1) s(exp -1). Substituent effects on OH abstraction rate constants are discussed, and it is shown that the CF3O group has an effect on the OH rate constants similar to that of a fluorine atom. The effects are related to changes in the C-H bond energies of the reactants (and thereby the activation energies) rather than changes in the preexponential factors. On the basis of a correlation of rate constants with bond energies, the respective D(C-H) bond strengths in the three ethers are found to be 102, 104, and 106 kcal/mol, with an uncertainty of about 1 kcal/mol.
NASA Astrophysics Data System (ADS)
Hernández Cifre, J. G.; García de la Torre, J.
2001-11-01
When linear polymer chains in dilute solution are subject to extensional flow, each chain in the sample experiences the coil-stretch transition at a different time. Using Brownian dynamics simulation, we have studied the distribution of transition times in terms of the extensional rate and the length of the chains. If instead of time one characterizes the effect of the flow by the accumulated strain, then the distribution and its moments seem to take general forms, independent of molecular weight and flow rate, containing some numerical, universal constants that have been evaluated from the dynamical simulation. The kinetics of the transition, expressed by the time-dependence of the fraction of remaining coils, has also been simulated, and the results for the kinetic rate constant has been rationalized in a manner similar to that used for the transition time. The molecular individualism, characterized in this work by the distribution of transition times, is related to the excess of the applied extensional rate over its critical value, which will determine the transition time and other features of the coil-stretch transition.
Experimental Assessment of the Reciprocating Feed System
NASA Technical Reports Server (NTRS)
Eddleman, David E.; Blackmon, James B.; Morton, Christopher D.
2006-01-01
The primary goal of this project was to design, construct, and test a full scale, high pressure simulated propellant feed system test bed that could evaluate the ability of the Reciprocating Feed System (RFS) to provide essentially constant flow rates and pressures to a rocket engine. The two key issues addressed were the effects of the transition of the drain cycle from tank to tank and the benefits of other hardware such as accumulators to provide a constant pressure flow rate out of the RFS. The test bed provided 500 psi flow at rates of the order of those required for engines in the 20,000 lbf thrust class (e.g., 20 to 40 lb/sec). A control system was developed in conjunction with the test article and automated system operation was achieved. Pre-test planning and acceptance activities such as a documented procedure and hazard analysis were conducted and the operation of the test article was approved by, and conducted in coordination with, appropriate NASA Marshall Space Flight Center personnel under a Space Act Agreement. Tests demonstrated successful control of flow rates and pressures.
Auditory sensitivity to spectral modulation phase reversal as a function of modulation depth
Grose, John
2018-01-01
The present study evaluated auditory sensitivity to spectral modulation by determining the modulation depth required to detect modulation phase reversal. This approach may be preferable to spectral modulation detection with a spectrally flat standard, since listeners appear unable to perform the task based on the detection of temporal modulation. While phase reversal thresholds are often evaluated by holding modulation depth constant and adjusting modulation rate, holding rate constant and adjusting modulation depth supports rate-specific assessment of modulation processing. Stimuli were pink noise samples, filtered into seven octave-wide bands (0.125–8 kHz) and spectrally modulated in dB. Experiment 1 measured performance as a function of modulation depth to determine appropriate units for adaptive threshold estimation. Experiment 2 compared thresholds in dB for modulation detection with a flat standard and modulation phase reversal; results supported the idea that temporal cues were available at high rates for the former but not the latter. Experiment 3 evaluated spectral modulation phase reversal thresholds for modulation that was restricted to either one or two neighboring bands. Flanking bands of unmodulated noise had a larger detrimental effect on one-band than two-band targets. Thresholds for high-rate modulation improved with increasing carrier frequency up to 2 kHz, whereas low-rate modulation appeared more consistent across frequency, particularly in the two-band condition. Experiment 4 measured spectral weights for spectral modulation phase reversal detection and found higher weights for bands in the spectral center of the stimulus than for the lowest (0.125 kHz) or highest (8 kHz) band. Experiment 5 compared performance for highly practiced and relatively naïve listeners, and found weak evidence of a larger practice effect at high than low spectral modulation rates. These results provide preliminary data for a task that may provide a better estimate of sensitivity to spectral modulation than spectral modulation detection with a flat standard. PMID:29621338
Gonzaga, Carla Castiglia; Cesar, Paulo Francisco; Miranda, Walter Gomes; Yoshimura, Humberto Naoyuki
2011-11-01
This study compared three methods for the determination of the slow crack growth susceptibility coefficient (n) of two veneering ceramics (VM7 and d.Sign), two glass-ceramics (Empress and Empress 2) and a glass-infiltrated alumina composite (In-Ceram Alumina). Discs (n = 10) were prepared according to manufacturers' recommendations and polished. The constant stress-rate test was performed at five constant stress rates to calculate n(d) . For the indentation fracture test to determine n(IF) , Vickers indentations were performed and the crack lengths were measured under an optical microscope. For the constant stress test (performed only for d.Sign for the determination of n(s) ) four constant stresses were applied and held constant until the specimens' fracture and the time to failure was recorded. All tests were performed in artificial saliva at 37°C. The n(d) values were 17.2 for Empress 2, followed by d.Sign (20.5), VM7 (26.5), Empress (30.2), and In-Ceram Alumina (31.1). In-Ceram Alumina and Empress 2 showed the highest n(IF) values, 66.0 and 40.2, respectively. The n(IF) values determined for Empress (25.2), d.Sign (25.6), and VM7 (20.1) were similar. The n(s) value determined for d.Sign was 31.4. It can be concluded that the n values determined for the dental ceramics evaluated were significantly influenced by the test method used. 2011 Wiley Periodicals, Inc.
Rate constant for the fraction of atomic chlorine with formaldehyde from 200 to 500K
NASA Technical Reports Server (NTRS)
Michael, J. V.; Nava, D. F.; Payne, W. A.; Stief, L. J.
1978-01-01
A flash photolysis - resonance fluorescence technique was used to measure rate constant. The results were independent of substantial variations in H2CO, total pressure (Ar), and flash intensity (i.e., initial Cl). The rate constant was shown to be invariant with temperature, the best representation for this temperature range being K = (7.48 + or - 0.50) x 10 to the minus 11 power cu cm molecule-1 s-1 where the error is one standard deviation. The rate constant is theoretically discussed and the potential importance of the reaction in stratospheric chemistry is considered.
NASA Astrophysics Data System (ADS)
Bostrom, G.; Atkinson, D.; Rice, A.
2015-04-01
Cavity ringdown spectroscopy (CRDS) uses the exponential decay constant of light exiting a high-finesse resonance cavity to determine analyte concentration, typically via absorption. We present a high-throughput data acquisition system that determines the decay constant in near real time using the discrete Fourier transform algorithm on a field programmable gate array (FPGA). A commercially available, high-speed, high-resolution, analog-to-digital converter evaluation board system is used as the platform for the system, after minor hardware and software modifications. The system outputs decay constants at maximum rate of 4.4 kHz using an 8192-point fast Fourier transform by processing the intensity decay signal between ringdown events. We present the details of the system, including the modifications required to adapt the evaluation board to accurately process the exponential waveform. We also demonstrate the performance of the system, both stand-alone and incorporated into our existing CRDS system. Details of FPGA, microcontroller, and circuitry modifications are provided in the Appendix and computer code is available upon request from the authors.
Reaction kinetics of resveratrol with tert-butoxyl radicals
NASA Astrophysics Data System (ADS)
Džeba, Iva; Pedzinski, Tomasz; Mihaljević, Branka
2012-09-01
The rate constant for the reaction of t-butoxyl radicals with resveratrol was studied under pseudo-first order conditions. The rate constant was determined by measuring the phenoxyl radical formation rate at 390 nm as function of resveratrol concentration in acetonitrile. The rate constant was determined to be 6.5×108 M-1s-1. This high value indicates the high reactivity consistent with the strong antioxidant activity of resveratrol.
Imaging regional renal function parameters using radionuclide tracers
NASA Astrophysics Data System (ADS)
Qiao, Yi
A compartmental model is given for evaluating kidney function accurately and noninvasively. This model is cast into a parallel multi-compartment structure and each pixel region (picture element) of kidneys is considered as a single kidney compartment. The loss of radionuclide tracers from the blood to the kidney and from the kidney to the bladder are modelled in great detail. Both the uptake function and the excretion function of the kidneys can be evaluated pixel by pixel, and regional diagnostic information on renal function is obtained. Gamma Camera image data are required by this model and a screening test based renal function measurement is provided. The regional blood background is subtracted from the kidney region of interest (ROI) and the kidney regional rate constants are estimated analytically using the Kuhn-Pucker multiplier method in convex programming by considering the input/output behavior of the kidney compartments. The detailed physiological model of the peripheral compartments of the system, which is not available for most radionuclide tracers, is not required in the determination of the kidney regional rate constants and the regional blood background factors within the kidney ROI. Moreover, the statistical significance of measurements is considered to assure the improved statistical properties of the estimated kidney rate constants. The relations between various renal function parameters and the kidney rate constants are established. Multiple renal function measurements can be found from the renal compartmental model. The blood radioactivity curve and the regional (or total) radiorenogram determining the regional (or total) summed behavior of the kidneys are obtained analytically with the consideration of the statistical significance of measurements using convex programming methods for a single peripheral compartment system. In addition, a new technique for the determination of 'initial conditions' in both the blood compartment and the kidney compartment is presented. The blood curve and the radiorenogram are analyzed in great detail and a physiological analysis from the radiorenogram is given. Applications of Kuhn-Tucker multiplier methods are illustrated for the renal compartmental model in the field of nuclear medicine. Conventional kinetic data analysis methods, the maximum likehood method, and the weighted integration method are investigated and used for comparisons. Moreover, the effect of the blood background subtraction is shown by using the gamma camera images in man. Several functional images are calculated and the functional imaging technique is applied for evaluating renal function in man quantitatively and visually and compared with comments from a physician.
[Evaluation of Dissolution Profiles of Famotidine from Over-the-counter Drugs].
Saito, Yuji; Adachi, Naoki; Kato, Miki; Nadai, Masayuki
2018-03-27
In recent years, self-medication has started to receive more attention in Japan owing to increasing medical costs and health awareness among people. One of the main roles of pharmacists in self-medication is to provide appropriate information regarding over-the-counter (OTC) drugs. However, pharmacists promoting the proper use of OTC drugs have little information on their formulation properties. In this study, we performed dissolution tests on both OTC drugs and ethical drug (ED) containing famotidine, and evaluated the differences in their dissolution profiles. Marked differences in dissolution profiles of OTC drugs were observed in test solutions at pH 1.2, 4.0, and 6.8 and in water. To evaluate the differences quantitatively, we calculated the lag time and dissolution rate constant from the dissolution profiles. Significant differences in lag times and dissolution rate constants between some OTC drugs and ED were observed. We also used similarity factor (f2), to quantify the similarity between dissolution profiles of OTC drugs and ED. f2 values less than 42 were observed in some OTC drugs, suggesting that these differences might influence absorption in vivo resulting in differences in their onset time and efficacy. The findings of this study will provide useful information for the promotion of proper use of OTC drugs.
Fujibuchi, Toshioh; Murazaki, Hiroo; Kuramoto, Taku; Umedzu, Yoshiyuki; Ishigaki, Yung
2015-08-01
Because of the more advanced and more complex procedures in interventional radiology, longer treatment times have become necessary. Therefore, it is important to determine the exposure doses received by operators and patients. The aim of our study was to evaluate an experimental production wireless dose monitoring system for pulse radiation in diagnostic X-ray. The energy, dose rate, and pulse fluoroscopy dependence were evaluated as the basic characteristics of this system for diagnostic X-ray using a fully digital fluoroscopy system. The error of 1 cm dose equivalent rate was less than 15% from 35.1 keV to 43.2 keV with energy correction using metal filter. It was possible to accurately measure the dose rate dependence of this system, which was highly linear until 100 μSv/h. This system showed a constant response to the pulse fluoroscopy. This system will become useful wireless dosimeter for the individual exposure management by improving the high dose rate and the energy characteristics.
Färber Lorda, Jaime; Tateda, Yutaka; Fowler, Scott W
2017-08-01
To clarify the relationship between zooplankton biomass and the environmental kinetics of the natural radionuclide 210 Po during a one-year period (October 1995 to November 1996) in northwestern Mediterranean coastal waters, a modelling analysis was applied. Using 210 Po concentrations in seawater and zooplankton, the 210 Po uptake rate constant from food for zooplankton was evaluated using a biokinetics calculation involving the uptake and the excretion rate constants between seawater and zooplankton. Using the transfer constants obtained, the 210 Po concentrations in zooplankton were reconstructed and validated by observed concentrations. The simulation results were in good agreement with the measured 210 Po concentrations in zooplankton. Assuming that 210 Po fecal excretion represents the majority of the excretion of 210 Po from zooplankton, the fecal matter associated 210 Po vertical flux was calculated, and compared with the observed vertical fluxes of 210 Po measured in sediment traps. The modelling evaluation showed that fecal pellet vertical transport could not fully explain the observed sinking fluxes of particulate organic matter at 150 m depth, suggesting that other sinking biodetrital aggregates are also important components of the plankton-derived vertical flux of 210 Po. The relationship between 210 Po concentration in seawater and that in rain and dry fallout and their potential effect on 210 Po concentrations in zooplankton at this location were also examined. A similar, but diphased trend between 210 Po in zooplankton and 210 Po in rain and dry fallout deposition rate was demonstrated. 210 Po concentrations in the dissolved phase of seawater tended to diminish as mean daily rainfall increased suggesting that rain inputs serve as a 210 Po dilution mechanism in seawater at this location. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lu, Shih-Yuan; Yen, Yi-Ming
2002-02-01
A first-passage scheme is devised to determine the overall rate constant of suspensions under the non-diffusion-limited condition. The original first-passage scheme developed for diffusion-limited processes is modified to account for the finite incorporation rate at the inclusion surface by using a concept of the nonzero survival probability of the diffusing entity at entity-inclusion encounters. This nonzero survival probability is obtained from solving a relevant boundary value problem. The new first-passage scheme is validated by an excellent agreement between overall rate constant results from the present development and from an accurate boundary collocation calculation for the three common spherical arrays [J. Chem. Phys. 109, 4985 (1998)], namely simple cubic, body-centered cubic, and face-centered cubic arrays, for a wide range of P and f. Here, P is a dimensionless quantity characterizing the relative rate of diffusion versus surface incorporation, and f is the volume fraction of the inclusion. The scheme is further applied to random spherical suspensions and to investigate the effect of inclusion coagulation on overall rate constants. It is found that randomness in inclusion arrangement tends to lower the overall rate constant for f up to the near close-packing value of the regular arrays because of the inclusion screening effect. This screening effect turns stronger for regular arrays when f is near and above the close-packing value of the regular arrays, and consequently the overall rate constant of the random array exceeds that of the regular array. Inclusion coagulation too induces the inclusion screening effect, and leads to lower overall rate constants.
Kinetics of azathioprine metabolism in fresh human blood.
Chrzanowska, M; Hermann, T; Gapińska, M
1985-01-01
Azathioprine (AZA) is transformed in the whole fresh human blood in vitro to 6-mercaptopurine (6-MP). The rate of the above reaction was followed as a function of time at 25, 30 and 37 degrees C. Pseudo-first-order rate constants and thermodynamic parameters were calculated. The statistical evaluation of the parameters calculated was provided. Half-life time of 6-MP formation in blood from AZA at e.g. 37 degrees C was equal to 28.9 +/- 2.8 min.
NASA Technical Reports Server (NTRS)
Warnock, J. M.; Vanzandt, T. E.
1986-01-01
A computer program has been tested and documented (Warnock and VanZandt, 1985) that estimates mean values of the refractivity turbulence structure constant in the stable free atmosphere from standard National Weather Service balloon data or an equivalent data set. The program is based on the statistical model for the occurrence of turbulence developed by VanZandt et al. (1981). Height profiles of the estimated refractivity turbulence structure constant agree well with profiles measured by the Sunset radar with a height resolution of about 1 km. The program also estimates the energy dissipation rate (epsilon), but because of the lack of suitable observations of epsilon, the model for epsilon has not yet been evaluated sufficiently to be used in routine applications. Vertical profiles of the refractivity turbulence structure constant were compared with profiles measured by both radar and optical remote sensors and good agreement was found. However, at times the scintillometer measurements were less than both the radar and model values.
A system consisting of a photochemical reaction was used to evaluate the kinetic parameters, such as reaction order and rate constant for the elemental mercury uptake by TiO2 in the presence of uv irradiation. TiO2 particles generated by an aerosol route were used in a fixed bed...
Linear free energy relationships for selected phthalate esters were used to estimate the rate constants for hydrolysis, biolysis, sediment-water partition coefficients, and biosorption required for modeling. The fate and transport behavior of dimethyl, diethyl, di-n-butyl, di-n-o...
Factory overload testing of a large power transformer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Douglas, D.H.; Lawrence, C.O.; Templeton, J.B.
1985-09-01
A factory overload test of up to 150% of the nameplate rating was run on a 224 MVA autotransformer. The results of this test were of great value and were used in identifying transformer overload limitations, in evaluating loading guide oil and winding equations, exponents and time constants, and in helping to perfect a factory overload test procedure.
Sequential CFAR detectors using a dead-zone limiter
NASA Astrophysics Data System (ADS)
Tantaratana, Sawasd
1990-09-01
The performances of some proposed sequential constant-false-alarm-rate (CFAR) detectors are evaluated. The observations are passed through a dead-zone limiter, the output of which is -1, 0, or +1, depending on whether the input is less than -c, between -c and c, or greater than c, where c is a constant. The test statistic is the sum of the outputs. The test is performed on a reduced set of data (those with absolute value larger than c), with the test statistic being the sum of the signs of the reduced set of data. Both constant and linear boundaries are considered. Numerical results show a significant reduction of the average number of observations needed to achieve the same false alarm and detection probabilities as a fixed-sample-size CFAR detector using the same kind of test statistic.
NASA Astrophysics Data System (ADS)
Mattei, G.; Ahluwalia, A.
2018-04-01
We introduce a new function, the apparent elastic modulus strain-rate spectrum, E_{app} ( \\dot{ɛ} ), for the derivation of lumped parameter constants for Generalized Maxwell (GM) linear viscoelastic models from stress-strain data obtained at various compressive strain rates ( \\dot{ɛ}). The E_{app} ( \\dot{ɛ} ) function was derived using the tangent modulus function obtained from the GM model stress-strain response to a constant \\dot{ɛ} input. Material viscoelastic parameters can be rapidly derived by fitting experimental E_{app} data obtained at different strain rates to the E_{app} ( \\dot{ɛ} ) function. This single-curve fitting returns similar viscoelastic constants as the original epsilon dot method based on a multi-curve global fitting procedure with shared parameters. Its low computational cost permits quick and robust identification of viscoelastic constants even when a large number of strain rates or replicates per strain rate are considered. This method is particularly suited for the analysis of bulk compression and nano-indentation data of soft (bio)materials.
Verstraeten, M; Broeckhoven, K; Lynen, F; Choikhet, K; Landt, K; Dittmann, M; Witt, K; Sandra, P; Desmet, G
2013-01-25
The present contribution investigates the quantitation aspects of mass-sensitive detectors with nebulizing interface (ESI-MSD, ELSD, CAD) in the constant pressure gradient elution mode. In this operation mode, the pressure is controlled and maintained at a set value and the liquid flow rate will vary according to the inverse mobile phase viscosity. As the pressure is continuously kept at the allowable maximum during the entire gradient run, the average liquid flow rate is higher compared to that in the conventional constant flow rate operation mode, thus shortening the analysis time. The following three mass-sensitive detectors were investigated: mass spectrometry detector (MS), evaporative light scattering detector (ELSD) and charged aerosol detector (CAD) and a wide variety of samples (phenones, polyaromatic hydrocarbons, wine, cocoa butter) has been considered. It was found that the nebulizing efficiency of the LC-interfaces of the three detectors under consideration changes with the increasing liquid flow rate. For the MS, the increasing flow rate leads to a lower peak area whereas for the ELSD the peak area increases compared to the constant flow rate mode. The peak area obtained with a CAD is rather insensitive to the liquid flow rate. The reproducibility of the peak area remains similar in both modes, although variation in system permeability compromises the 'long-term' reproducibility. This problem can however be overcome by running a flow rate program with an optimized flow rate and composition profile obtained from the constant pressure mode. In this case, the quantification remains reproducibile, despite any occuring variations of the system permeability. Furthermore, the same fragmentation pattern (MS) has been found in the constant pressure mode compared to the customary constant flow rate mode. Copyright © 2012 Elsevier B.V. All rights reserved.
Rosokha, Sergiy V; Lü, Jian-Ming; Newton, Marshall D; Kochi, Jay K
2005-05-25
Definitive X-ray structures of "separated" versus "contact" ion pairs, together with their spectral (UV-NIR, ESR) characterizations, provide the quantitative basis for evaluating the complex equilibria and intrinsic (self-exchange) electron-transfer rates for the potassium salts of p-dinitrobenzene radical anion (DNB(-)). Three principal types of ion pairs, K(L)(+)DNB(-), are designated as Classes S, M, and C via the specific ligation of K(+) with different macrocyclic polyether ligands (L). For Class S, the self-exchange rate constant for the separated ion pair (SIP) is essentially the same as that of the "free" anion, and we conclude that dinitrobenzenide reactivity is unaffected when the interionic distance in the separated ion pair is r(SIP) > or =6 Angstroms. For Class M, the dynamic equilibrium between the contact ion pair (with r(CIP) = 2.7 Angstroms) and its separated ion pair is quantitatively evaluated, and the rather minor fraction of SIP is nonetheless the principal contributor to the overall electron-transfer kinetics. For Class C, the SIP rate is limited by the slow rate of CIP right arrow over left arrow SIP interconversion, and the self-exchange proceeds via the contact ion pair by default. Theoretically, the electron-transfer rate constant for the separated ion pair is well-accommodated by the Marcus/Sutin two-state formulation when the precursor in Scheme 2 is identified as the "separated" inner-sphere complex (IS(SIP)) of cofacial DNB(-)/DNB dyads. By contrast, the significantly slower rate of self-exchange via the contact ion pair requires an associative mechanism (Scheme 3) in which the electron-transfer rate is strongly governed by cationic mobility of K(L)(+) within the "contact" precursor complex (IS(CIP)) according to the kinetics in Scheme 4.
New transmission scheme to enhance throughput of DF relay network using rate and power adaptation
NASA Astrophysics Data System (ADS)
Taki, Mehrdad; Heshmati, Milad
2017-09-01
This paper presents a new transmission scheme for a decode and forward (DF) relay network using continuous power adaptation while independent average power constraints are provisioned for each node. To have analytical insight, the achievable throughputs are analysed using continuous adaptation of the rates and the powers. As shown by numerical evaluations, a considerable outperformance is seen by continuous power adaptation compared to the case where constant powers are utilised. Also for practical systems, a new throughput maximised transmission scheme is developed using discrete rate adaptation (adaptive modulation and coding) and continuous transmission power adaptation. First a 2-hop relay network is considered and then the scheme is extended for an N-hop network. Numerical evaluations show the efficiency of the designed schemes.
NASA Technical Reports Server (NTRS)
Rogacki, John R.; Tuttle, Mark E.
1992-01-01
This research investigates the response of a fiberless 13 layer hot isostatically pressed Ti-15-3 laminate to creep, constant strain rate, and cyclic constant strain rate loading at temperatures ranging from 482C to 649C. Creep stresses from 48 to 260 MPa and strain rates of .0001 to .01 m/m/sec were used. Material parameters for three unified constitutive models (Bodner-Partom, Miller, and Walker models) were determined for Ti-15-3 from the experimental data. Each of the three models was subsequently incorporated into a rule of mixtures and evaluated for accuracy and ease of use in predicting the thermoviscoplastic response of unidirectional metal matrix composite laminates (both 0 and 90). The laminates were comprised of a Ti-15-3 matrix with 29 volume percent SCS6 fibers. The predicted values were compared to experimentally determined creep and constant strain rate data. It was found that all three models predicted the viscoplastic response of the 0 specimens reasonably well, but seriously underestimated the viscoplastic response of the 90 specimens. It is believed that this discrepancy is due to compliant and/or weak fiber-matrix interphase. In general, it was found that of the three models studied, the Bodner-Partom model was easiest to implement, primarily because this model does not require the use of cyclic constant strain rate tests to determine the material parameters involved. However, the version of the Bodner-Partom model used in this study does not include back stress as an internal state variable, and hence may not be suitable for use with materials which exhibit a pronounced Baushinger effect. The back stress is accounted for in both the Walker and Miller models; determination of the material parameters associated with the Walker model was somewhat easier than in the Miller model.
Monge-Palacios, M; Rangel, C; Espinosa-Garcia, J
2013-02-28
A full-dimensional analytical potential energy surface (PES) for the OH + NH3 → H2O + NH2 gas-phase reaction was developed based exclusively on high-level ab initio calculations. This reaction presents a very complicated shape with wells along the reaction path. Using a wide spectrum of properties of the reactive system (equilibrium geometries, vibrational frequencies, and relative energies of the stationary points, topology of the reaction path, and points on the reaction swath) as reference, the resulting analytical PES reproduces reasonably well the input ab initio information obtained at the coupled-cluster single double triple (CCSD(T)) = FULL/aug-cc-pVTZ//CCSD(T) = FC/cc-pVTZ single point level, which represents a severe test of the new surface. As a first application, on this analytical PES we perform an extensive kinetics study using variational transition-state theory with semiclassical transmission coefficients over a wide temperature range, 200-2000 K. The forward rate constants reproduce the experimental measurements, while the reverse ones are slightly underestimated. However, the detailed analysis of the experimental equilibrium constants (from which the reverse rate constants are obtained) permits us to conclude that the experimental reverse rate constants must be re-evaluated. Another severe test of the new surface is the analysis of the kinetic isotope effects (KIEs), which were not included in the fitting procedure. The KIEs reproduce the values obtained from ab initio calculations in the common temperature range, although unfortunately no experimental information is available for comparison.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilot, P.; Bonnefoy, F.; Marcuccilli, F.
1993-10-01
Kinetic data concerning carbon black oxidation in the temperature range between 600 and 900 C have been obtained using thermogravimetric analysis. Modeling of diffusion in a boundary layer above the pan and inside the porous medium coupled to oxygen reaction with carbon black is necessary to obtain kinetic constants as a function of temperature. These calculations require the knowledge of the oxidation rate at a given constant temperature as a function of the initial mass loading m[sub o]. This oxidation rate, expressed in milligrams of soot consumed per second and per milligram of initial soot loading, decreases when m[sub o]more » increases, in agreement with a reaction in an intermediary regime where the kinetics and the oxygen diffusion operate. The equivalent diffusivity of oxygen inside the porous medium is evaluated assuming two degrees of porosity: between soot aggregates and inside each aggregate. Below 700 C an activation energy of about 103 kJ/mol can be related to a combustion reaction probably kinetically controlled. Beyond 700 C the activation energy of about 20 kJ/ mol corresponds to a reaction essentially controlled by oxygen diffusion leading to a constant density oxidation with oxygen consumption at or near the particle surface. To validate these data, they are used in the modeling of a Diesel particulate trap regeneration. In this particular case, the oxidizing flux is forced across the carbon black deposit, oxygen diffusion being insignificant. A good agreement between experimental results and model predictions is obtained, proving the rate constants validity.« less
Kinetics of phloretin binding to phosphatidylcholine vesicle membranes
1980-01-01
The submillisecond kinetics for phloretin binding to unilamellar phosphatidylcholine (PC) vesicles was investigated using the temperature-jump technique. Spectrophotometric studies of the equilibrium binding performed at 328 nm demonstrated that phloretin binds to a single set of independent, equivalent sites on the vesicle with a dissociation constant of 8.0 microM and a lipid/site ratio of 4.0. The temperature of the phloretin-vesicle solution was jumped by 4 degrees C within 4 microseconds producing a monoexponential, concentration-dependent relaxation process with time constants in the 30--200-microseconds time range. An analysis of the concentration dependence of relaxation time constants at pH 7.30 and 24 degrees C yielded a binding rate constant of 2.7 X 10(8) M-1 s-1 and an unbinding constant of 2,900 s-1; approximately 66 percent of total binding sites are exposed at the outer vesicle surface. The value of the binding rate constant and three additional observations suggest that the binding kinetics are diffusion limited. The phloretin analogue, naringenin, which has a diffusion coefficient similar to phloretin yet a dissociation constant equal to 24 microM, bound to PC vesicle with the same rate constant as phloretin did. In addition, the phloretin-PC system was studied in buffers made one to six times more viscous than water by addition of sucrose or glycerol to the differ. The equilibrium affinity for phloretin binding to PC vesicles is independent of viscosity, yet the binding rate constant decreases with the expected dependence (kappa binding alpha 1/viscosity) for diffusion-limited processes. Thus, the binding rate constant is not altered by differences in binding affinity, yet depends upon the diffusion coefficient in buffer. Finally, studies of the pH dependence of the binding rate constant showed a dependence (kappa binding alpha [1 + 10pH-pK]) consistent with the diffusion-limited binding of a weak acid. PMID:7391812
NASA Technical Reports Server (NTRS)
Bosco, S. R.; Nava, D. F.; Brobst, W. D.; Stief, L. J.
1984-01-01
The absolute rate constants for the reaction between the NH2 free radical and acetylene and ethylene is measured experimentally using a flash photolysis technique. The constant is considered to be a function of temperature and pressure. At each temperature level of the experiment, the observed pseudo-first-order rate constants were assumed to be independent of flash intensity. The results of the experiment indicate that the bimolecular rate constant for the NH2 + C2H2 reaction increases with pressure at 373 K and 459 K but not at lower temperatures. Results near the pressure limit conform to an Arrhenius expression of 1.11 (+ or -) 0.36 x 10 to the -13th over the temperature range from 241 to 459 K. For the reaction NH2 + C2H4, a smaller rate of increase in the bimolecular rate constant was observed over the temperature range 250-465 K. The implications of these results for current theoretical models of NH2 + C2H2 (or H4) reactions in the atmospheres of Jupiter and Saturn are discussed.
NASA Astrophysics Data System (ADS)
Nakajima, H.; Arakaki, T.; Anastasio, C.
2008-12-01
Large organic compounds such as hyaluronic acid and chondroitin sulfate are often used in pharmaceutical and cosmetics products, but their chemical degradation pathways are not well understood. To better elucidate their fate in the aquatic environment, we initiated a study to determine bimolecular rate constants between these organic compounds and hydroxyl radical (OH), which is a potent oxidant in the environment. The lifetimes of many organic compounds are determined by reactions with OH radicals, and the lifetime of OH is often controlled by reactions with organic compounds. To determine these bimolecular rate constants we used a competition kinetics technique with either hydrogen peroxide or nitrate as a source of OH and benzoate as the competing sink. Since the molecular weights of some of the large organic compounds we studied were not known, we used dissolved organic carbon (DOC) concentrations to determine mole-carbon based bimolecular rate constants, instead of the commonly used molar-based bimolecular rate constants. We will report the mole-carbon based bimolecular rate constants of OH, determined at room temperature, with hyaluronic acid, chondroitin sulfate and some other large organic compounds.
Greskowiak, Janek; Hamann, Enrico; Burke, Victoria; Massmann, Gudrun
2017-12-01
The present study reports on biodegradation rate constants of emerging organic compounds (EOCs) in soil and groundwater available in the literature. The major aim of this compilation was to provide an assessment of the uncertainty of hydrological models with respect to the fate of EOCs. The literature search identified a total number of 82 EOCs for which 1st-order rate constants could be derived. It was found that for the majority of compounds degradation rate constants vary over more than three orders of magnitude. Correlation to factors that are well known to affect the degradation rate, such as temperature or redox condition was weak. No correlation at all was found with results from available quantitative structure-activity relationship models. This suggests that many unknown site specific or experimentally specific factors influence the degradation behavior of EOCs in the environment. Thus, local and catchment scale predictive models to estimate EOC concentration at receptors, e.g., receiving waters or drinking water wells, need to consider the large uncertainty in 1st-order rate constants. As a consequence, applying rate constants that were derived from one experiment or field site investigation to other experiments or field sites should be done with extreme caution. Copyright © 2017 Elsevier Ltd. All rights reserved.
Assessment of rate of drug release from oil vehicle using a rotating dialysis cell.
Larsen, D H; Fredholt, K; Larsen, C
2000-09-01
The rate constants for transfer of model compounds (naproxen and lidocaine) from oily vehicle (Viscoleo) to aqueous buffer phases were determined by use of the rotating dialysis cell. Release studies were done for the partly ionized compounds at several pH values. A correlation between the overall first-order rate constant related to attainment of equilibrium, k(obs), and the pH-dependent distribution coefficient, D, determined between oil vehicle and aqueous buffer was established according to the equation: logk(obs)=-0.71 logD-0.22 (k(obs) in h(-1)). Based on this correlation it was suggested that the rate constant of a weak electrolyte at a specified D value could be considered equal to the k(obs) value for a non-electrolyte possessing a partition coefficient, P(app), the magnitude of which was equal to D. Specific rate constants k(ow) and k(wo) were calculated from the overall rate constant and the pH-dependent distribution coefficient. The rate constant representing the transport from oily vehicle to aqueous phase, k(ow), was found to be significantly influenced by the magnitude of the partition coefficient P(app) according to: logk(ow)=-0.71 logP(app)-log(P(app)+1)-0.22 (k(ow) in h(-1)).
Veryser, Lieselotte; Bracke, Nathalie; Wynendaele, Evelien; Joshi, Tanmayee; Tatke, Pratima; Taevernier, Lien; De Spiegeleer, Bart
2016-01-01
Objective. To evaluate the gut mucosa and blood-brain barrier (BBB) pharmacokinetic permeability properties of the plant N-alkylamide pellitorine. Methods. Pure pellitorine and an Anacyclus pyrethrum extract were used to investigate the permeation of pellitorine through (1) a Caco-2 cell monolayer, (2) the rat gut after oral administration, and (3) the BBB in mice after intravenous and intracerebroventricular administration. A validated bioanalytical UPLC-MS(2) method was used to quantify pellitorine. Results. Pellitorine was able to cross the Caco-2 cell monolayer from the apical-to-basolateral and from the basolateral-to-apical side with apparent permeability coefficients between 0.6 · 10(-5) and 4.8 · 10(-5) cm/h and between 0.3 · 10(-5) and 5.8 · 10(-5) cm/h, respectively. In rats, a serum elimination rate constant of 0.3 h(-1) was obtained. Intravenous injection of pellitorine in mice resulted in a rapid and high permeation of pellitorine through the BBB with a unidirectional influx rate constant of 153 μL/(g·min). In particular, 97% of pellitorine reached the brain tissue, while only 3% remained in the brain capillaries. An efflux transfer constant of 0.05 min(-1) was obtained. Conclusion. Pellitorine shows a good gut permeation and rapidly permeates the BBB once in the blood, indicating a possible role in the treatment of central nervous system diseases.
Liotta, Flavia; d'Antonio, Giuseppe; Esposito, Giovanni; Fabbricino, Massimiliano; Frunzo, Luigi; van Hullebusch, Eric D; Lens, Piet N L; Pirozzi, Francesco
2014-01-01
The role of the moisture content and particle size (PS) on the disintegration of complex organic matter during the wet anaerobic digestion (AD) process was investigated. A range of total solids (TS) from 5% to 11.3% and PS from 0.25 to 15 mm was evaluated using carrot waste as model complex organic matter. The experimental results showed that the methane production rate decreased with higher TS and PS. A modified version of the AD model no.1 for complex organic substrates was used to model the experimental data. The simulations showed a decrease of the disintegration rate constants with increasing TS and PS. The results of the biomethanation tests were used to calibrate and validate the applied model. In particular, the values of the disintegration constant for various TS and PS were determined. The simulations showed good agreement between the numerical and observed data.
Mixing Enhancement by Tabs in Round Supersonic Jets
NASA Technical Reports Server (NTRS)
Seiner, John M.; Grosch, C. E.
1998-01-01
The objective of this study was to analyze jet plume mass flow entrainment rates associated with the introduction of counter-rotating streamwise vorticity by prism shaped devices (tabs) located at the lip of the nozzle. We have examined the resulting mixing process through coordinated experimental tests and numerical simulations of the supersonic flow from a model axisymmetric nozzle. In the numerical simulations, the total induced vorticity was held constant while varying the distribution of counter-rotating vorticity around the nozzle lip training edge. In the experiment, the number of tabs applied was varied while holding the total projected area constant. Evaluations were also conducted on initial vortex strength. The results of this work show that the initial growth rate of the jet shear layer is increasingly enhanced as more tabs are added, but that the lowest tab count results in the largest entrained mass flow. The numerical simulations confirm these results.
Application of the compensated arrhenius formalism to dielectric relaxation.
Petrowsky, Matt; Frech, Roger
2009-12-17
The temperature dependence of the dielectric rate constant, defined as the reciprocal of the dielectric relaxation time, is examined for several groups of organic solvents. Early studies of linear alcohols using a simple Arrhenius equation found that the activation energy was dependent on the chain length of the alcohol. This paper re-examines the earlier data using a compensated Arrhenius formalism that assumes the presence of a temperature-dependent static dielectric constant in the exponential prefactor. Scaling temperature-dependent rate constants to isothermal rate constants so that the dielectric constant dependence is removed results in calculated energies of activation E(a) in which there is a small increase with chain length. These energies of activation are very similar to those calculated from ionic conductivity data using compensated Arrhenius formalism. This treatment is then extended to dielectic relaxation data for n-alkyl bromides, n-nitriles, and n-acetates. The exponential prefactor is determined by dividing the temperature-dependent rate constants by the Boltzmann term exp(-E(a)/RT). Plotting the prefactors versus the static dielectric constant places the data on a single master curve for each group of solvents.
Inflation with a constant rate of roll
DOE Office of Scientific and Technical Information (OSTI.GOV)
Motohashi, Hayato; Starobinsky, Alexei A.; Yokoyama, Jun'ichi, E-mail: motohashi@kicp.uchicago.edu, E-mail: alstar@landau.ac.ru, E-mail: yokoyama@resceu.s.u-tokyo.ac.jp
2015-09-01
We consider an inflationary scenario where the rate of inflaton roll defined by {sup ··}φ/H φ-dot remains constant. The rate of roll is small for slow-roll inflation, while a generic rate of roll leads to the interesting case of 'constant-roll' inflation. We find a general exact solution for the inflaton potential required for such inflaton behaviour. In this model, due to non-slow evolution of background, the would-be decaying mode of linear scalar (curvature) perturbations may not be neglected. It can even grow for some values of the model parameter, while the other mode always remains constant. However, this always occurs formore » unstable solutions which are not attractors for the given potential. The most interesting particular cases of constant-roll inflation remaining viable with the most recent observational data are quadratic hilltop inflation (with cutoff) and natural inflation (with an additional negative cosmological constant). In these cases even-order slow-roll parameters approach non-negligible constants while the odd ones are asymptotically vanishing in the quasi-de Sitter regime.« less
NASA Astrophysics Data System (ADS)
Basant, Nikita; Gupta, Shikha
2018-03-01
The reactions of molecular ozone (O3), hydroxyl (•OH) and nitrate (NO3) radicals are among the major pathways of removal of volatile organic compounds (VOCs) in the atmospheric environment. The gas-phase kinetic rate constants (kO3, kOH, kNO3) are thus, important in assessing the ultimate fate and exposure risk of atmospheric VOCs. Experimental data for rate constants are not available for many emerging VOCs and the computational methods reported so far address a single target modeling only. In this study, we have developed a multi-target (mt) QSPR model for simultaneous prediction of multiple kinetic rate constants (kO3, kOH, kNO3) of diverse organic chemicals considering an experimental data set of VOCs for which values of all the three rate constants are available. The mt-QSPR model identified and used five descriptors related to the molecular size, degree of saturation and electron density in a molecule, which were mechanistically interpretable. These descriptors successfully predicted three rate constants simultaneously. The model yielded high correlations (R2 = 0.874-0.924) between the experimental and simultaneously predicted endpoint rate constant (kO3, kOH, kNO3) values in test arrays for all the three systems. The model also passed all the stringent statistical validation tests for external predictivity. The proposed multi-target QSPR model can be successfully used for predicting reactivity of new VOCs simultaneously for their exposure risk assessment.
Click-Evoked Auditory Efferent Activity: Rate and Level Effects.
Boothalingam, Sriram; Kurke, Julianne; Dhar, Sumitrajit
2018-05-07
There currently are no standardized protocols to evaluate auditory efferent function in humans. Typical tests use broadband noise to activate the efferents, but only test the contralateral efferent pathway, risk activating the middle ear muscle reflex (MEMR), and are laborious for clinical use. In an attempt to develop a clinical test of bilateral auditory efferent function, we have designed a method that uses clicks to evoke efferent activity, obtain click-evoked otoacoustic emissions (CEOAEs), and monitor MEMR. This allows for near-simultaneous estimation of cochlear and efferent function. In the present study, we manipulated click level (60, 70, and 80 dB peak-equivalent sound pressure level [peSPL]) and rate (40, 50, and 62.5 Hz) to identify an optimal rate-level combination that evokes measurable efferent modulation of CEOAEs. Our findings (n = 58) demonstrate that almost all click levels and rates used caused significant inhibition of CEOAEs, with a significant interaction between level and rate effects. Predictably, bilateral activation produced greater inhibition compared to stimulating the efferents only in the ipsilateral or contralateral ear. In examining the click rate-level effects during bilateral activation in greater detail, we observed a 1-dB inhibition of CEOAE level for each 10-dB increase in click level, with rate held constant at 62.5 Hz. Similarly, a 10-Hz increase in rate produced a 0.74-dB reduction in CEOAE level, with click level held constant at 80 dB peSPL. The effect size (Cohen's d) was small for either monaural condition and medium for bilateral, faster-rate, and higher-level conditions. We were also able to reliably extract CEOAEs from efferent eliciting clicks. We conclude that clicks can indeed be profitably employed to simultaneously evaluate cochlear health using CEOAEs as well as their efferent modulation. Furthermore, using bilateral clicks allows the evaluation of both the crossed and uncrossed elements of the auditory efferent nervous system, while yielding larger, more discernible, inhibition of the CEOAEs relative to either ipsilateral or contralateral condition.
Rationalizing 5000-Fold Differences in Receptor-Binding Rate Constants of Four Cytokines
Pang, Xiaodong; Qin, Sanbo; Zhou, Huan-Xiang
2011-01-01
The four cytokines erythropoietin (EPO), interleukin-4 (IL4), human growth hormone (hGH), and prolactin (PRL) all form four-helix bundles and bind to type I cytokine receptors. However, their receptor-binding rate constants span a 5000-fold range. Here, we quantitatively rationalize these vast differences in rate constants by our transient-complex theory for protein-protein association. In the transient complex, the two proteins have near-native separation and relative orientation, but have yet to form the short-range specific interactions of the native complex. The theory predicts the association rate constant as ka=ka0exp(−ΔGel∗/kBT) where ka0 is the basal rate constant for reaching the transient complex by random diffusion, and the Boltzmann factor captures the rate enhancement due to electrostatic attraction. We found that the vast differences in receptor-binding rate constants of the four cytokines arise mostly from the differences in charge complementarity among the four cytokine-receptor complexes. The basal rate constants (ka0) of EPO, IL4, hGH, and PRL were similar (5.2 × 105 M−1s−1, 2.4 × 105 M−1s−1, 1.7 × 105 M−1s−1, and 1.7 × 105 M−1s−1, respectively). However, the average electrostatic free energies (ΔGe1∗) were very different (−4.2 kcal/mol, −2.4 kcal/mol, −0.1 kcal/mol, and −0.5 kcal/mol, respectively, at ionic strength = 160 mM). The receptor-binding rate constants predicted without adjusting any parameters, 6.2 × 108 M−1s−1, 1.3 × 107 M−1s−1, 2.0 × 105 M−1s−1, and 7.6 × 104 M−1s−1, respectively, for EPO, IL4, hGH, and PRL agree well with experimental results. We uncover that these diverse rate constants are anticorrelated with the circulation concentrations of the cytokines, with the resulting cytokine-receptor binding rates very close to the limits set by the half-lives of the receptors, suggesting that these binding rates are functionally relevant and perhaps evolutionarily tuned. Our calculations also reproduced well-observed effects of mutations and ionic strength on the rate constants and produced a set of mutations on the complex of hGH with its receptor that putatively enhances the rate constant by nearly 100-fold through increasing charge complementarity. To quantify charge complementarity, we propose a simple index based on the charge distribution within the binding interface, which shows good correlation with ΔGe1∗. Together these results suggest that protein charges can be manipulated to tune ka and control biological function. PMID:21889455
NASA Astrophysics Data System (ADS)
Miwa, Shotaro; Kage, Hiroshi; Hirai, Takashi; Sumi, Kazuhiko
We propose a probabilistic face recognition algorithm for Access Control System(ACS)s. Comparing with existing ACSs using low cost IC-cards, face recognition has advantages in usability and security that it doesn't require people to hold cards over scanners and doesn't accept imposters with authorized cards. Therefore face recognition attracts more interests in security markets than IC-cards. But in security markets where low cost ACSs exist, price competition is important, and there is a limitation on the quality of available cameras and image control. Therefore ACSs using face recognition are required to handle much lower quality images, such as defocused and poor gain-controlled images than high security systems, such as immigration control. To tackle with such image quality problems we developed a face recognition algorithm based on a probabilistic model which combines a variety of image-difference features trained by Real AdaBoost with their prior probability distributions. It enables to evaluate and utilize only reliable features among trained ones during each authentication, and achieve high recognition performance rates. The field evaluation using a pseudo Access Control System installed in our office shows that the proposed system achieves a constant high recognition performance rate independent on face image qualities, that is about four times lower EER (Equal Error Rate) under a variety of image conditions than one without any prior probability distributions. On the other hand using image difference features without any prior probabilities are sensitive to image qualities. We also evaluated PCA, and it has worse, but constant performance rates because of its general optimization on overall data. Comparing with PCA, Real AdaBoost without any prior distribution performs twice better under good image conditions, but degrades to a performance as good as PCA under poor image conditions.
Stankovich, Joseph J; Gritti, Fabrice; Stevenson, Paul G; Beaver, Lois Ann; Guiochon, Georges
2014-01-10
Using a column packed with fully porous particles, four methods for controlling the flow rates at which gradient elution runs are conducted in very high pressure liquid chromatography (VHPLC) were tested to determine whether reproducible thermal conditions could be achieved, such that subsequent analyses would proceed at nearly the same initial temperature. In VHPLC high flow rates are achieved, producing fast analyses but requiring high inlet pressures. The combination of high flow rates and high inlet pressures generates local heat, leading to temperature changes in the column. Usually in this case a post-run time is input into the analytical method to allow the return of the column temperature to its initial state. An alternative strategy involves operating the column without a post-run equilibration period and maintaining constant temperature variations for subsequent analysis after conducting one or a few separations to bring the column to a reproducible starting temperature. A liquid chromatography instrument equipped with a pressure controller was used to perform constant pressure and constant flow rate VHPLC separations. Six replicate gradient separations of a nine component mixture consisting of acetophenone, propiophenone, butyrophenone, valerophenone, hexanophenone, heptanophenone, octanophenone, benzophenone, and acetanilide dissolved in water/acetonitrile (65:35, v/v) were performed under various experimental conditions: constant flow rate, two sets of constant pressure, and constant pressure operation with a programmed flow rate. The relative standard deviations of the response factors for all the analytes are lower than 5% across the methods. Programming the flow rate to maintain a fairly constant pressure instead of using instrument controlled constant pressure improves the reproducibility of the retention times by a factor of 5, when plotting the chromatograms in time. Copyright © 2013 Elsevier B.V. All rights reserved.
Theoretical rate constants of super-exchange hole transfer and thermally induced hopping in DNA.
Shimazaki, Tomomi; Asai, Yoshihiro; Yamashita, Koichi
2005-01-27
Recently, the electronic properties of DNA have been extensively studied, because its conductivity is important not only to the study of fundamental biological problems, but also in the development of molecular-sized electronics and biosensors. We have studied theoretically the reorganization energies, the activation energies, the electronic coupling matrix elements, and the rate constants of hole transfer in B-form double-helix DNA in water. To accommodate the effects of DNA nuclear motions, a subset of reaction coordinates for hole transfer was extracted from classical molecular dynamics (MD) trajectories of DNA in water and then used for ab initio quantum chemical calculations of electron coupling constants based on the generalized Mulliken-Hush model. A molecular mechanics (MM) method was used to determine the nuclear Franck-Condon factor. The rate constants for two types of mechanisms of hole transfer-the thermally induced hopping (TIH) and the super-exchange mechanisms-were determined based on Marcus theory. We found that the calculated matrix elements are strongly dependent on the conformations of the nucleobase pairs of hole-transferable DNA and extend over a wide range of values for the "rise" base-step parameter but cluster around a particular value for the "twist" parameter. The calculated activation energies are in good agreement with experimental results. Whereas the rate constant for the TIH mechanism is not dependent on the number of A-T nucleobase pairs that act as a bridge, the rate constant for the super-exchange process rapidly decreases when the length of the bridge increases. These characteristic trends in the calculated rate constants effectively reproduce those in the experimental data of Giese et al. [Nature 2001, 412, 318]. The calculated rate constants were also compared with the experimental results of Lewis et al. [Nature 2000, 406, 51].
Uncertainty analysis of multi-rate kinetics of uranium desorption from sediments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xiaoying; Liu, Chongxuan; Hu, Bill X.
2014-01-01
A multi-rate expression for uranyl [U(VI)] surface complexation reactions has been proposed to describe diffusion-limited U(VI) sorption/desorption in heterogeneous subsurface sediments. An important assumption in the rate expression is that its rate constants follow a certain type probability distribution. In this paper, a Bayes-based, Differential Evolution Markov Chain method was used to assess the distribution assumption and to analyze parameter and model structure uncertainties. U(VI) desorption from a contaminated sediment at the US Hanford 300 Area, Washington was used as an example for detail analysis. The results indicated that: 1) the rate constants in the multi-rate expression contain uneven uncertaintiesmore » with slower rate constants having relative larger uncertainties; 2) the lognormal distribution is an effective assumption for the rate constants in the multi-rate model to simualte U(VI) desorption; 3) however, long-term prediction and its uncertainty may be significantly biased by the lognormal assumption for the smaller rate constants; and 4) both parameter and model structure uncertainties can affect the extrapolation of the multi-rate model with a larger uncertainty from the model structure. The results provide important insights into the factors contributing to the uncertainties of the multi-rate expression commonly used to describe the diffusion or mixing-limited sorption/desorption of both organic and inorganic contaminants in subsurface sediments.« less
Zhang, Xuzhu; Poniewierski, Andrzej; Jelińska, Aldona; Zagożdżon, Anna; Wisniewska, Agnieszka; Hou, Sen; Hołyst, Robert
2016-10-04
The equilibrium and rate constants of molecular complex formation are of great interest both in the field of chemistry and biology. Here, we use fluorescence correlation spectroscopy (FCS), supplemented by dynamic light scattering (DLS) and Taylor dispersion analysis (TDA), to study the complex formation in model systems of dye-micelle interactions. In our case, dyes rhodamine 110 and ATTO-488 interact with three differently charged surfactant micelles: octaethylene glycol monododecyl ether C 12 E 8 (neutral), cetyltrimethylammonium chloride CTAC (positive) and sodium dodecyl sulfate SDS (negative). To determine the rate constants for the dye-micelle complex formation we fit the experimental data obtained by FCS with a new form of the autocorrelation function, derived in the accompanying paper. Our results show that the association rate constants for the model systems are roughly two orders of magnitude smaller than those in the case of the diffusion-controlled limit. Because the complex stability is determined by the dissociation rate constant, a two-step reaction mechanism, including the diffusion-controlled and reaction-controlled rates, is used to explain the dye-micelle interaction. In the limit of fast reaction, we apply FCS to determine the equilibrium constant from the effective diffusion coefficient of the fluorescent components. Depending on the value of the equilibrium constant, we distinguish three types of interaction in the studied systems: weak, intermediate and strong. The values of the equilibrium constant obtained from the FCS and TDA experiments are very close to each other, which supports the theoretical model used to interpret the FCS data.
Rate constant for reaction of atomic hydrogen with germane
NASA Technical Reports Server (NTRS)
Nava, David F.; Payne, Walter A.; Marston, George; Stief, Louis J.
1990-01-01
Due to the interest in the chemistry of germane in the atmospheres of Jupiter and Saturn, and because previously reported kinetic reaction rate studies at 298 K gave results differing by a factor of 200, laboratory measurements were performed to determine the reaction rate constant for H + GeH4. Results of the study at 298 K, obtained via the direct technique of flash photolysis-resonance fluorescence, yield the reaction rate constant, k = (4.08 + or - 0.22) x 10(exp -12) cu cm/s.
Loureiro, Susana; Sousa, J P; Nogueira, A J A; Soares, A M V M
2002-12-01
An achievable way to evaluate the bioavailability of a certain toxic in the environment is to measure the concentration inside soil organisms. Non-target saprotrophic organisms like isopods are often exposed to agrochemicals or other kind of persistent chemicals. In this study the isopod Porcellionides pruinosus was exposed to a constant concentration of Lindane (gamma-HCH) via food. Using toxicokinetic models the bioaccumulation and fate of the pesticide by isopods was assessed and compared with previous studies, where an unexpected decrease in gamma-HCH concentration was observed. Animal body burdens showed higher values, and a lower assimilation rate constant, although the elimination rate constant was twice the value previously observed. It was also observed that a significant amount of gamma-HCH had an unknown fate. To discover its possible destiny, a factorial experiment was carried out using two types of CO2 traps and contaminated leaves in the presence and absence of isopods. It was concluded that isopod activity might have been responsible for a more rapid biotransformation of gamma-HCH in leaves, since the amount of the pesticide is reduced in their presence.
Li, Xueming; Song, Siyu; Shuai, Qi; Pei, Yihan; Aastrup, Teodor; Pei, Yuxin; Pei, Zhichao
2015-01-01
A novel approach to the study of binding thermodynamics and kinetics of carbohydrate-protein interactions on unfixed cancer cell surfaces using a quartz crystal microbalance (QCM) biosensor was developed, in which binding events take place at the cell surface, more closely mimicking a biologically relevant environment. In this study, colon adenocarcinoma cells (KM-12) and ovary adenocarcinoma cells (SKOV-3) grew on the optimized polystyrene-coated biosensor chip without fixation. The association and dissociation between the cell surface carbohydrates and a range of lectins, including WGA, Con A, UEA-I, GS-II, PNA and SBA, were monitored in real time and without label for evaluation of cell surface glycosylation. Furthermore, the thermodynamic and kinetic parameters of the interaction between lectins and cell surface glycan were studied, providing detailed information about the interactions, such as the association rate constant, dissociation rate constant, affinity constant, as well as the changes of entropy, enthalpy and Gibbs free energy. This application provides an insight into the cell surface glycosylation and the complex molecular recognition on the intact cell surface, which may have impacts on disease diagnosis and drug discovery. PMID:26369583
NASA Astrophysics Data System (ADS)
Duynkerke, P. G.
1988-03-01
In the E - turbulence model an eddy-exchange coefficient is evaluated from the turbulent kinetic energy E and viscous dissipation . In this study we will apply the E - model to the stable and neutral atmospheric boundary layer. A discussion is given on the equation for , which terms should be included and how we have evaluated the constants. Constant cooling rate results for the stable atmospheric boundary layer are compared with a second-order closure study. For the neutral atmospheric boundary layer a comparison is made with observations, large-eddy simulations and a second-order closure study. It is shown that a small stability effect can change the neutral atmospheric boundary layer quite drastically, and therefore, it will be difficult to observe a neutral boundary layer in the atmosphere.
Effect of positive pulse charge waveforms on cycle life of nickel-zinc cells
NASA Technical Reports Server (NTRS)
Smithrick, J. J.
1980-01-01
Five amp-hour nickel-zinc cells were life cycled to evaluate four different charge methods. Three of the four waveforms investigated were 120 Hz full wave rectified sinusoidal (FWRS), 120 Hz silicon controlled rectified (SCR), and 1 kHz square wave (SW). The fourth, a constant current method, was used as a baseline of comparison. Three sealed Ni-Zn cells connected in series were cycled. Each series string was charged at an average c/20 rate, and discharged at a c/2.5 rate to a 75% rated depth. Results indicate that the relatively inexpensive 120 Hz FWRS charger appears feasible for charging 5 amp-hour nickel-zinc cells with no significant loss in average cycle life when compared to constant current charging. The 1-kHz SW charger could also be used with no significant loss in average cycle life, and suggests the possibility of utilizing the existing electric vehicle chopper controller circuitry for an on-board charger. There was an apparent difference using the 120 Hz SCR charger compared to the others, however, this difference could be due to an inadvertent severe overcharge, which occurred prior to cell failure. The remaining two positive pulse charging waveforms, FWRS and 1 kHz, did not improve the cycle life of 5 amp-hour nickel-zinc cells over that of constant current charging.
Ab Initio Calculations of the N-N Bond Dissociation for the Gas-phase RDX and HMX.
Liu, Lin-Lin; Liu, Pei-Jin; Hu, Song-Qi; He, Guo-Qiang
2017-01-17
NO 2 fission is a vital factor for 1,3,5-Trinitroperhydro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) decomposition. In this study, the geometry of the gas-phase RDX and HMX molecules was optimized, and the bond order and the bond dissociation energy of the N-N bonds were examined. Moreover, the rate constants of the gas-phase RDX and HMX conformers, concerning the N-N bond dissociation, were evaluated using the microcanonical variational transition state theory (μVT). The calculation results have shown that HMX is more stable than RDX in terms of the N-N bond dissociation, and the conformers stability parameters were as follows: RDXaaa < RDXaae < HMX I < HMX II. In addition, for the RDX conformers, the N-N bond of the pseudo-equatorial positioning of the nitro group was more stable than the N-N bond of the axial positioning of the nitro group, while the results were opposite in the case of the HMX conformers. Moreover, it has been shown that the dissociation rate constant of the N-N bond is influenced by the temperature significantly, thus the rate constants were much lower (<10 -10 s -1 ) when the temperature was less than 1000 K.
Ab Initio Calculations of the N-N Bond Dissociation for the Gas-phase RDX and HMX
Liu, Lin-lin; Liu, Pei-jin; Hu, Song-qi; He, Guo-qiang
2017-01-01
NO2 fission is a vital factor for 1,3,5-Trinitroperhydro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) decomposition. In this study, the geometry of the gas-phase RDX and HMX molecules was optimized, and the bond order and the bond dissociation energy of the N-N bonds were examined. Moreover, the rate constants of the gas-phase RDX and HMX conformers, concerning the N-N bond dissociation, were evaluated using the microcanonical variational transition state theory (μVT). The calculation results have shown that HMX is more stable than RDX in terms of the N-N bond dissociation, and the conformers stability parameters were as follows: RDXaaa < RDXaae < HMX I < HMX II. In addition, for the RDX conformers, the N-N bond of the pseudo-equatorial positioning of the nitro group was more stable than the N-N bond of the axial positioning of the nitro group, while the results were opposite in the case of the HMX conformers. Moreover, it has been shown that the dissociation rate constant of the N-N bond is influenced by the temperature significantly, thus the rate constants were much lower (<10−10 s−1) when the temperature was less than 1000 K. PMID:28094774
Ab Initio Calculations of the N-N Bond Dissociation for the Gas-phase RDX and HMX
NASA Astrophysics Data System (ADS)
Liu, Lin-Lin; Liu, Pei-Jin; Hu, Song-Qi; He, Guo-Qiang
2017-01-01
NO2 fission is a vital factor for 1,3,5-Trinitroperhydro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) decomposition. In this study, the geometry of the gas-phase RDX and HMX molecules was optimized, and the bond order and the bond dissociation energy of the N-N bonds were examined. Moreover, the rate constants of the gas-phase RDX and HMX conformers, concerning the N-N bond dissociation, were evaluated using the microcanonical variational transition state theory (μVT). The calculation results have shown that HMX is more stable than RDX in terms of the N-N bond dissociation, and the conformers stability parameters were as follows: RDXaaa < RDXaae < HMX I < HMX II. In addition, for the RDX conformers, the N-N bond of the pseudo-equatorial positioning of the nitro group was more stable than the N-N bond of the axial positioning of the nitro group, while the results were opposite in the case of the HMX conformers. Moreover, it has been shown that the dissociation rate constant of the N-N bond is influenced by the temperature significantly, thus the rate constants were much lower (<10-10 s-1) when the temperature was less than 1000 K.
Measurement of respiratory rate and timing using a nasal thermocouple.
Marks, M K; South, M; Carter, B G
1995-05-01
The aims of this study were to assess aspects of the response of a small thermocouple to temperature change, and to evaluate whether such a thermocouple could be used intermittently to measure respiratory rate and timing by detecting the changes in nasal temperature occurring with breathing. The study had three parts. First, three similar, fast-responding thermocouples were immersed repeatedly in warm water. Second, the influence of atmospheric temperature on the signal of a thermocouple placed at different sites within the nasal orifice was studied. The signals produced were continuously displayed and analyzed using a laptop computer to allow evaluation of the thermocouples' response characteristics. Third, simultaneous respiratory recordings were acquired using a nasal thermocouple and a nasal pneumotachograph in 12 teenaged subjects. The respiratory rate and the periods of time taken for inspiration (Ti) and expiration (Te) were calculated and compared. The thermocouples' responses to the temperature changes associated with breathing and immersion into water were rapid and consistent. The rate of the signals' decay, following the peak signal marking expiration, was influenced by the atmospheric temperature. The time constants of the thermocouples were similar (mean time constant = 0.41 sec, standard deviation (SD) = 0.07). Optimal respiratory recordings were obtained, with least discomfort, when the thermocouple was positioned at 0 to 4 mm within the nasal orifice. In comparing the respiratory recordings acquired simultaneously with a thermocouple and pneumotachograph, the respiratory rates were identical, and the Ti and Te values were similar (mean difference 0.04 sec (95% CI: -0.11 to 0.21 sec) and -0.04 sec (95% CI: -0.20 to 0.12 sec), respectively). Intermittent measurements of respiratory rate and timing using a nasal thermocouple accurately reflected measurements obtained from nasal airflow using a pneumotachograph.
Mizukawa, N; Hino, A; Imahori, Y; Tenjin, H; Yano, I; Yoshino, E; Hirakawa, K; Yamashita, M; Oki, F; Nakahashi, H
1989-03-01
Blood flow and glucose metabolism of the tumors and perifocal edematous tissues were evaluated using positron emission tomography (PET). Thirty-one brain tumor cases were investigated 12 non glial tumors (9 meningiomas and 3 metastatic tumors) and 19 gliomas (these were classified in 5 astrocytomas, 7 anaplastic astrocytomas and 7 glioblastomas, according to the malignancy). The diagnosis were confirmed pathologically in 30 cases. Cerebral blood flow (CBF), cerebral metabolic rate for oxygen (CMRO2), oxygen extraction fraction (OEF) and cerebral blood volume (CBV) were measured by O-15 labeled gases inhalation methods. Cerebral metabolic rate for glucose (CMFglu) were measured by F-18 Deoxyglucose intravenous injection method and calculated by Hutchins's formula. The rate constant (ks) and lumped constant (LC) used in this study were the same as those published by Phelps et al. in 1979. The blood flow and glucose metabolic rates of tumors were measured by the same methods. The results were as follows: 1) Meningiomas showed very high blood flow and blood volume with a wide range. The OEF and metabolic rate for glucose (MRglu) values were very low. 2) Metastatic tumors showed the low values of blood flow, metabolic rate for oxygen (MRO2) and OEF. 3) The blood flow and MRglu values on gliomas were varied with no significant differences between the three subgroups. On the other hands, as the malignancy of the glioma increased, a statistically significant increase in blood volume and a decrease in OEF were noted. 4) The OEF values from the various types of tumors studied were significantly lower than those obtained from the normal tissue.(ABSTRACT TRUNCATED AT 250 WORDS)
Modeling hard clinical end-point data in economic analyses.
Kansal, Anuraag R; Zheng, Ying; Palencia, Roberto; Ruffolo, Antonio; Hass, Bastian; Sorensen, Sonja V
2013-11-01
The availability of hard clinical end-point data, such as that on cardiovascular (CV) events among patients with type 2 diabetes mellitus, is increasing, and as a result there is growing interest in using hard end-point data of this type in economic analyses. This study investigated published approaches for modeling hard end-points from clinical trials and evaluated their applicability in health economic models with different disease features. A review of cost-effectiveness models of interventions in clinically significant therapeutic areas (CV diseases, cancer, and chronic lower respiratory diseases) was conducted in PubMed and Embase using a defined search strategy. Only studies integrating hard end-point data from randomized clinical trials were considered. For each study included, clinical input characteristics and modeling approach were summarized and evaluated. A total of 33 articles (23 CV, eight cancer, two respiratory) were accepted for detailed analysis. Decision trees, Markov models, discrete event simulations, and hybrids were used. Event rates were incorporated either as constant rates, time-dependent risks, or risk equations based on patient characteristics. Risks dependent on time and/or patient characteristics were used where major event rates were >1%/year in models with fewer health states (<7). Models of infrequent events or with numerous health states generally preferred constant event rates. The detailed modeling information and terminology varied, sometimes requiring interpretation. Key considerations for cost-effectiveness models incorporating hard end-point data include the frequency and characteristics of the relevant clinical events and how the trial data is reported. When event risk is low, simplification of both the model structure and event rate modeling is recommended. When event risk is common, such as in high risk populations, more detailed modeling approaches, including individual simulations or explicitly time-dependent event rates, are more appropriate to accurately reflect the trial data.
We examine the potential impacts of two additional sulfate production pathways using the Community Multiscale Air Quality modeling system. First we evaluate the impact of the aqueous-phase oxidation of S(IV) by nitrogen dioxide using two published rate constants, differing by 1-2...
ERIC Educational Resources Information Center
Nitta, Yasunori; And Others
1984-01-01
Describes a set of experiments (for senior-level biochemistry students) which permit evaluation and estimation of rate and equilibrium constants involving an intermediate in the alpha-chymotrypsin mediated hydrolysis of ortho-hydroxy-alpha-toluenesulfonic acid (I). The only equipment required for the experiments is a well-thermostated double beam…
Thermal Decomposition of Nitromethane and Reaction between CH3 and NO2.
Matsugi, Akira; Shiina, Hiroumi
2017-06-08
The thermal decomposition of gaseous nitromethane and the subsequent bimolecular reaction between CH 3 and NO 2 have been experimentally studied using time-resolved cavity-enhanced absorption spectroscopy behind reflected shock waves in the temperature range 1336-1827 K and at a pressure of 100 kPa. Temporal evolution of NO 2 was observed following the pyrolysis of nitromethane (diluted to 80-140 ppm in argon) by monitoring the absorption around 400 nm. The primary objectives of the current work were to evaluate the rate constant for the CH 3 + NO 2 reaction (k 2 ) and to examine the contribution of the roaming isomerization pathway in nitromethane decomposition. The resultant rate constant can be expressed as k 2 = (9.3 ± 1.8) × 10 -10 (T/K) -0.5 cm 3 molecule -1 s -1 , which is in reasonable agreement with available literature data. The decomposition of nitromethane was found to predominantly proceed with the C-N bond fission process with the branching fraction of 0.97 ± 0.06. Therefore, the upper limit of the branching fraction for the roaming pathway was evaluated to be 0.09.
Smeers, Inge; Decorte, Ronny; Van de Voorde, Wim; Bekaert, Bram
2018-05-01
DNA methylation is a promising biomarker for forensic age prediction. A challenge that has emerged in recent studies is the fact that prediction errors become larger with increasing age due to interindividual differences in epigenetic ageing rates. This phenomenon of non-constant variance or heteroscedasticity violates an assumption of the often used method of ordinary least squares (OLS) regression. The aim of this study was to evaluate alternative statistical methods that do take heteroscedasticity into account in order to provide more accurate, age-dependent prediction intervals. A weighted least squares (WLS) regression is proposed as well as a quantile regression model. Their performances were compared against an OLS regression model based on the same dataset. Both models provided age-dependent prediction intervals which account for the increasing variance with age, but WLS regression performed better in terms of success rate in the current dataset. However, quantile regression might be a preferred method when dealing with a variance that is not only non-constant, but also not normally distributed. Ultimately the choice of which model to use should depend on the observed characteristics of the data. Copyright © 2018 Elsevier B.V. All rights reserved.
Meesters, Johannes A J; Koelmans, Albert A; Quik, Joris T K; Hendriks, A Jan; van de Meent, Dik
2014-05-20
Screening level models for environmental assessment of engineered nanoparticles (ENP) are not generally available. Here, we present SimpleBox4Nano (SB4N) as the first model of this type, assess its validity, and evaluate it by comparisons with a known material flow model. SB4N expresses ENP transport and concentrations in and across air, rain, surface waters, soil, and sediment, accounting for nanospecific processes such as aggregation, attachment, and dissolution. The model solves simultaneous mass balance equations (MBE) using simple matrix algebra. The MBEs link all concentrations and transfer processes using first-order rate constants for all processes known to be relevant for ENPs. The first-order rate constants are obtained from the literature. The output of SB4N is mass concentrations of ENPs as free dispersive species, heteroaggregates with natural colloids, and larger natural particles in each compartment in time and at steady state. Known scenario studies for Switzerland were used to demonstrate the impact of the transport processes included in SB4N on the prediction of environmental concentrations. We argue that SB4N-predicted environmental concentrations are useful as background concentrations in environmental risk assessment.
NASA Astrophysics Data System (ADS)
Heinlein, S. N.
2013-12-01
Remote sensing data sets are widely used for evaluation of surface manifestations of active tectonics. This study utilizes ASTER GDEM and Landsat ETM+ data sets with Google Earth images draped over terrain models. This study evaluates 1) the surrounding surface geomorphology of the study area with these data sets and 2) the morphology of the Kumroch Fault using diffusion modeling to estimate constant diffusivity (κ) and estimate slip rates by means of real ground data measured across fault scarps by Kozhurin et al. (2006). Models of the evolution of fault scarp morphology provide time elapsed since slip initiated on a faults surface and may therefore provide more accurate estimates of slip rate than the rate calculated by dividing scarp offset by the age of the ruptured surface. Profile modeling of scarps collected by Kozhurin et al. (2006) formed by several events distributed through time and were evaluated using a constant slip rate (CSR) solution which yields a value A/κ (1/2 slip rate/diffusivity). Time elapsed since slip initiated on the fault is determined by establishing a value for κ and measuring total scarp offset. CSR nonlinear modeling estimated of κ range from 8m2/ka - 14m2/ka on the Kumroch Fault which indicates a slip rates of 0.6 mm/yr - 1.0 mm/yr since 3.4 ka -3.7 ka. This method provides a quick and inexpensive way to gather data for a regional tectonic study and establish estimated rates of tectonic activity. Analyses of the remote sensing data are providing new insight into the role of active tectonics within the region. Results from fault scarp diffusion models of Mattson and Bruhn (2001) and DuRoss and Bruhn (2004) and Kozhurin et al. (2006), Kozhurin (2007), Kozhurin et al. (2008) and Pinegina et al. 2012 trench profiles of the KF as calibrated age fault scarp diffusion rates were estimated. (-) mean that no data could be determined.
(In)validity of the constant field and constant currents assumptions in theories of ion transport.
Syganow, A; von Kitzing, E
1999-01-01
Constant electric fields and constant ion currents are often considered in theories of ion transport. Therefore, it is important to understand the validity of these helpful concepts. The constant field assumption requires that the charge density of permeant ions and flexible polar groups is virtually voltage independent. We present analytic relations that indicate the conditions under which the constant field approximation applies. Barrier models are frequently fitted to experimental current-voltage curves to describe ion transport. These models are based on three fundamental characteristics: a constant electric field, negligible concerted motions of ions inside the channel (an ion can enter only an empty site), and concentration-independent energy profiles. An analysis of those fundamental assumptions of barrier models shows that those approximations require large barriers because the electrostatic interaction is strong and has a long range. In the constant currents assumption, the current of each permeating ion species is considered to be constant throughout the channel; thus ion pairing is explicitly ignored. In inhomogeneous steady-state systems, the association rate constant determines the strength of ion pairing. Among permeable ions, however, the ion association rate constants are not small, according to modern diffusion-limited reaction rate theories. A mathematical formulation of a constant currents condition indicates that ion pairing very likely has an effect but does not dominate ion transport. PMID:9929480
Constant Head Evaluation of Full Scale Soil Absorption Fields
NASA Astrophysics Data System (ADS)
Dix, S. P.
2001-05-01
Design loading rates for septic tank effluent in trenches of various designs with different geometry and media has been debated for decades. The role of bottom and sidewall is a hot topic with many opinion by experts in the field of agricultural and environmental engineering. Research institutions have conducted numerous studies and developed procedures for measuring both test systems and fundamental of soil hydraulics. Falling head tests have been used more recently to evaluate mature test cells and evaluate both sidewall and basal absorption, (Keys et al). The proposed paper will discuss the design and testing of a constant head permeameter. Testing this equipment and developing the test protocol followed the application of the procedure to on a number of residential systems in both sandy and clay loam soil. Results from this testing showed the relability step that must be taken to successfully use this equipment. Result of the testing show the variability and consistency of absorption, the changes in absorption when systems are flooded above their equilibrium condition and the longer-term changes that occur when trenches are rested in a warm climate. More recent application of the test procedure evaluated affects of head and increased depth sidewall on absorption rates when the effluent level in the trenches was raised. Future modification of the test equipment and procedure by integrating a data logger will permits more exact recording of dose cycles and improved estimate of soil absorption efficiency over time.
River self-organisation inhibits discharge control on waterfall migration.
Baynes, Edwin R C; Lague, Dimitri; Attal, Mikaël; Gangloff, Aurélien; Kirstein, Linda A; Dugmore, Andrew J
2018-02-05
The action of rivers within valleys is fundamentally important in controlling landscape morphology, and how it responds to tectonic or climate change. The response of landscapes to external forcing usually results in sequential changes to river long profiles and the upstream migration of waterfalls. Currently, models of this response assume a relationship between waterfall retreat rate and drainage area at the location of the waterfall. Using an experimental study, we show that this assumption has limited application. Due to a self-regulatory response of channel geometry to higher discharge through increasing channel width, the bed shear stress at the lip of the experimental waterfall remains almost constant, so there was no observed change in the upstream retreat rate despite an order of magnitude increase in discharge. Crucially, however, the strength of the bedrock material exhibits a clear control on the magnitude of the mean retreat rate, highlighting the importance of lithology in setting the rate at which landscapes respond to external forcing. As a result existing numerical models of landscape evolution that simulate the retreat of waterfalls as a function of drainage area with a fixed erodibility constant should be re-evaluated to consider spatial heterogeneity in erodibility and channel self-organisation.
Radiation Parameters of High Dose Rate Iridium -192 Sources
NASA Astrophysics Data System (ADS)
Podgorsak, Matthew B.
A lack of physical data for high dose rate (HDR) Ir-192 sources has necessitated the use of basic radiation parameters measured with low dose rate (LDR) Ir-192 seeds and ribbons in HDR dosimetry calculations. A rigorous examination of the radiation parameters of several HDR Ir-192 sources has shown that this extension of physical data from LDR to HDR Ir-192 may be inaccurate. Uncertainty in any of the basic radiation parameters used in dosimetry calculations compromises the accuracy of the calculated dose distribution and the subsequent dose delivery. Dose errors of up to 0.3%, 6%, and 2% can result from the use of currently accepted values for the half-life, exposure rate constant, and dose buildup effect, respectively. Since an accuracy of 5% in the delivered dose is essential to prevent severe complications or tumor regrowth, the use of basic physical constants with uncertainties approaching 6% is unacceptable. A systematic evaluation of the pertinent radiation parameters contributes to a reduction in the overall uncertainty in HDR Ir-192 dose delivery. Moreover, the results of the studies described in this thesis contribute significantly to the establishment of standardized numerical values to be used in HDR Ir-192 dosimetry calculations.
Gadea, F; Favard, L; Boileau, P; Cuny, C; d'Ollone, T; Saragaglia, D; Sirveaux, F
2016-12-01
No objective criteria exist to help surgeons choose between IM nailing and plate fixation for 4-part fractures of the proximal humerus. The goal of this study was to identify radiological criteria that would make one technique a better choice than the other. This was a comparative, multicentre, retrospective study of 54 cases of antegrade nailing and 53 cases of plating performed between 1st January 2009 and 31 December 2011 for 4-part fractures of the proximal humerus. All patients had a minimum radiological and clinical follow-up of 18 months. The functional outcomes were evaluated using the weighted Constant score; a poor result was defined as a weighted Constant score<70%. The following radiological criteria were evaluated during the preoperative assessment and at the last follow-up: initial displacement and reduction of humeral head and tuberosities; morphology of the medial column (i.e. calcar comminution, posteromedial hinge, size of metaphyseal head extension); occurrence of avascular necrosis (AVN). After an average follow-up of 42 months, the weighted Constant scores and rate of poor outcomes were 77% and 48% in the nail group and 81% and 38% in the plate group, respectively (ns). The humeral head was reduced into an anatomical position, valgus or varus in 57%, 30% and 13% of cases in the nail group, and 58%, 29% and 13% in the plate group, respectively. The tuberosities healed in an anatomical position in 72% of nail cases and 70% of plate cases (ns). Only the presence of a medial hinge preoperatively had an effect on the functional outcomes in the nail and plate groups: the weighted Constant scores (P=0.05) and rate of poor outcomes (P=0.02) were 82% and 52% in the nail group and 97% and 9% in the plate group, respectively. The complication rates were comparable: the rates of AVN and articular screw penetration were 17% and 11% in the nail group, and 15% and 11% in the plate group, respectively. The surgical revision rate was 18.5% in the nail group and 30% in the plate group. If the medial hinge is preserved, we recommend locking plate fixation. In other cases, either technique can be used as long as the general rules of internal fixation are applied: reduction of the tuberosities, varus correction and stabilization of the calcar area. IV, retrospective study. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
NASA Technical Reports Server (NTRS)
Kawamura, K.; Ferris, J. P.
1999-01-01
The montmorillonite clay catalyzed condensation of activated monocleotides to oligomers of RNA is a possible first step in the formation of the proposed RNA world. The rate constants for the condensation of the phosphorimidazolide of adenosine were measured previously and these studies have been extended to the phosphorimidazolides of inosine and uridine in the present work to determine of substitution of neutral heterocycles for the basic adenine ring changes the reaction rate or regioselectivity. The oligomerization reactions of the 5'-phosphoromidazolides of uridine (ImpU) and inosine (ImpI) on montmorillonite yield oligo(U)s and oligo(I)s as long as heptamers. The rate constants for oligonucleotide formation were determined by measuring the rates of formation of the oligomers by HPLC. Both the apparent rate constants in the reaction mixture and the rate constants on the clay surface were calculated using the partition coefficients of the oligomers between the aqueous and clay phases. The rate constants for trimer formation are much greater than those dimer synthesis but there was little difference in the rate constants for the formation of trimers and higher oligomers. The overall rates of oligomerization of the phosphorimidazolides of purine and pyrimidine nucleosides in the presence of montmorillonite clay are the same suggesting that RNA formed on the primitive Earth could have contained a variety of heterocyclic bases. The rate constants for oligomerization of pyrimidine nucleotides on the clay surface are significantly higher than those of purine nucleotides since the pyrimidine nucleotides bind less strongly to the clay than do the purine nucleotides. The differences in the binding is probably due to Van der Waals interactions between the purine bases and the clay surface. Differences in the basicity of the heterocyclic ring in the nucleotide have little effect on the oligomerization process.
Variability in nest survival rates and implications to nesting studies
Klett, A.T.; Johnson, D.H.
1982-01-01
We used four reasonably large samples (83-213) of Mallard (Anas platyrhynchos) and Blue-winged Teal (A. discors) nests on an interstate highway right-of-way in southcentral North Dakota to evaluate potential biases in hatch-rate estimates. Twelve consecutive, weekly searches for nests were conducted with a cable-chain drag in 1976 and 1977. Nests were revisited at weekly intervals. Four methods were used to estimate hatch rates for the four data sets: the Traditional Method, the Mayfield Method, and two modifications of the Mayfield Method that are sometimes appropriate when daily mortality rates of nests are not constant. Hatch rates and the average age of nests at discovery declined as the interval between searches decreased, suggesting that mortality rates were not constant in our samples. An analysis of variance indicated that daily mortality rates varied with the age of nests in all four samples. Mortality was generally highest during the early laying period, moderately high during the late laying period, and lowest during incubation. We speculate that this relationship of mortality to nest age might be due to the presence of hens at nests or to differences in the vulnerability of nest sites to predation. A modification of the Mayfield Method that accounts for age-related variation in nest mortality was most appropriate for our samples. We suggest methods for conducting nesting studies and estimating nest success for species possessing similar nesting habits.
Ethanol inhibition kinetics of Kluyveromyces marxianus grown on Jerusalem artichoke juice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bajpai, P.; Margaritis, A.
1982-12-01
The kinetics of ethanol inhibition on cell growth and ethanol production by Kluyveromyces marxianus UCD (FST) 55-82 were studied during batch growth. The liquid medium contained 10% (weight/volume) inulin-type sugars derived from an extract of Jerusalem artichoke (Helianthus tuberosus) tubers, supplemented with small amounts of Tween 80, oleic acid, and corn steep liquor. Initial ethanol concentrations ranging from 0 to 80 g/liter in the liquid medium were used to study the inhibitory effect of ethanol on the following parameters: maximum specific growth rate (mu max), cell and ethanol yields, and sugar utilization. It was found that as the initial ethanolmore » concentration increased from 0 to 80 g/liter, and maximum specific growth rate of K. marxianus cells decreased from 0.42 to 0.09/hour, whereas the ethanol and cell yields and sugar utilization remained almost constant. A simple kinetic model was used to correlate the mu max results and the rates of cell and ethanol production, and the appropriate constants were evaluated. (Refs. 22).« less
Breakaway phenomenon of Zr-based alloys during a high-temperature oxidation
NASA Astrophysics Data System (ADS)
Baek, Jong Hyuk; Jeong, Yong Hwan
2008-01-01
The breakaway oxidation phenomena in Zr-based alloys were studied in the temperature range of 950-1200 °C for up to 36 000 s by using a modified thermo-gravimetric analyzer. After the oxidation tests, the oxidation behaviors, breakaway oxidation time, hydrogen pick-up contents, and oxidation rate constants of the alloys were systematically evaluated in this study. The breakaway oxidation time was shortened with an increase of the Sn content in the Zr alloys. A breakaway oxidation phenomenon could be caused by the transition of a tetragonal oxide phase into a monoclinic one, and the oxide transition could lead to form the oxide cracks in both the lateral and radial directions. The cracks within the oxide layer could result in catastrophic increase in the weight gain rates and rapid increase the hydrogen pick-up within the oxygen-stabilized α-Zr and prior β-Zr layers. The oxidation rate constants calculated from the post-breakaway data in the Zr alloys with breakaway oxidation behaviors matched well with the values from both the Baker-Just and Cathcart-Pawel correlations.
Kinetic isotope effect in malonaldehyde determined from path integral Monte Carlo simulations.
Huang, Jing; Buchowiecki, Marcin; Nagy, Tibor; Vaníček, Jiří; Meuwly, Markus
2014-01-07
The primary H/D kinetic isotope effect on the intramolecular proton transfer in malonaldehyde is determined from quantum instanton path integral Monte Carlo simulations on a fully dimensional and validated potential energy surface for temperatures between 250 and 1500 K. Our calculations, based on thermodynamic integration with respect to the mass of the transferring particle, are significantly accelerated by the direct evaluation of the kinetic isotope effect instead of computing it as a ratio of two rate constants. At room temperature, the KIE from the present simulations is 5.2 ± 0.4. The KIE is found to vary considerably as a function of temperature and the low-T behaviour is dominated by the fact that the free energy derivative in the reactant state increases more rapidly than in the transition state. Detailed analysis of the various contributions to the quantum rate constant together with estimates for rates from conventional transition state theory and from periodic orbit theory suggest that the KIE in malonaldehyde is dominated by zero point energy effects and that tunneling plays a minor role at room temperature.
Effect of infusion regime on doxorubicin pharmacokinetics in the cat.
Hahn, K A; Frazier, D L; Cox, S K; Legendre, A M
1997-01-01
In the pharmacokinetic evaluation of a single doxorubicin dose calculated by body surface area (25 mg/m2) or body weight (1 mg/kg body weight) and given intravenously as a 10-, 15-, or 20-minute infusion, the rate of doxorubicin infusion (mg per minute per m2 or mg per minute per kg) correlated positively with clearance and the distribution rate constant alpha, and it inversely correlated with area under the plasma concentration versus time curve (AUC). These findings suggest that a slower infusion rate results in a greater AUC and longer distribution phase than a faster infusion rate and indicates the importance of normalizing dosage regimes by infusion rate rather than by infusion duration when considering dose-response phenomena in veterinary patients.
Friction and wear behavior of graphite fiber reinforced polymide composites
NASA Technical Reports Server (NTRS)
Fusaro, R. L.; Sliney, H. E.
1977-01-01
The friction and wear rate characteristics of 50/50 (weight percent) graphite fiber polyimide composites were studied by sliding metallic hemispherically tipped riders against disks made from the composites. Two different polyimides and two different graphite fibers were evaluated. Also studied were such variables as the effect of moisture in an air atmosphere; the effect of temperature; and the effect of different sliding speeds. In general, wear to the the metallic riders was negligible, and composite wear increased at a constant rate as a function of number of sliding cycles.
NASA Technical Reports Server (NTRS)
DeMore, W.; Bayes, K.
1998-01-01
Relative rate experiements were used to measure rate constants and temperature denpendencies of the reactions of OH with propane, n-butane, n-pentane, n-hexane, cyclopropane, cyclobutane, cyclopentane, and dimethyl ether.
NASA Technical Reports Server (NTRS)
Choi, Sung H.; Salem, J. A.; Nemeth, N. N.
1998-01-01
High-temperature slow-crack-growth behaviour of hot-pressed silicon carbide was determined using both constant-stress-rate ("dynamic fatigue") and constant-stress ("static fatigue") testing in flexure at 1300 C in air. Slow crack growth was found to be a governing mechanism associated with failure of the material. Four estimation methods such as the individual data, the Weibull median, the arithmetic mean and the median deviation methods were used to determine the slow crack growth parameters. The four estimation methods were in good agreement for the constant-stress-rate testing with a small variation in the slow-crack-growth parameter, n, ranging from 28 to 36. By contrast, the variation in n between the four estimation methods was significant in the constant-stress testing with a somewhat wide range of n= 16 to 32.
Simple Model for Detonation Energy and Rate
NASA Astrophysics Data System (ADS)
Lauderbach, Lisa M.; Souers, P. Clark
2017-06-01
A simple model is used to derive the Eyring equation for the size effect and detonation rate, which depends on a constant energy density. The rate derived from detonation velocities is then converted into a rate constant to be used in a reactive flow model. The rate might be constant if the size effect curve is straight, but the rate constant will change with the radius of the sample and cannot be a constant. This is based on many careful cylinder tests have been run recently on LX-17 with inner copper diameters ranging from 12.7 to 101.6 mm. Copper wall velocities at scaled displacements of 6, 12.5 and 19 mm equate to values at relative volumes of 2.4, 4.4 and 7.0. At each point, the velocities from 25.4 to 101.6 mm are constant within error whereas the 12.7 mm velocities are lower. Using the updated Gurney model, the energy densities at the three larger sizes are also constant. Similar behavior has been seen in LX-14, LX-04, and an 83% RDX mix. A rough saturation has also been in old ANFO data for diameters of 101.6 mm and larger. Although the energy densities saturate, the detonation velocities continue to increase with size. These observations suggest that maximum energy density is a constant for a given explosive of a given density. The correlation of energy density with detonation velocity is not good because the latter depends on the total energy of the sample. This work performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Post, C B; Ray, W J; Gorenstein, D G
1989-01-24
Time-dependent 31P saturation-transfer studies were conducted with the Cd2+-activated form of muscle phosphoglucomutase to probe the origin of the 100-fold difference between its catalytic efficiency (in terms of kcat) and that of the more efficient Mg2+-activated enzyme. The present paper describes the equilibrium mixture of phosphoglucomutase and its substrate/product pair when the concentration of the Cd2+ enzyme approaches that of the substrate and how the nine-spin 31P NMR system provided by this mixture was treated. It shows that the presence of abortive complexes is not a significant factor in the reduced activity of the Cd2+ enzyme since the complex of the dephosphoenzyme and glucose 1,6-bisphosphate, which accounts for a large majority of the enzyme present at equilibrium, is catalytically competent. It also shows that rate constants for saturation transfer obtained at three different ratios of enzyme to free substrate are mutually compatible. These constants, which were measured at chemical equilibrium, can be used to provide a quantitative kinetic rationale for the reduced steady-state activity elicited by Cd2+ relative to Mg2+ [cf. Ray, W.J., Post, C.B., & Puvathingal, J.M. (1989) Biochemistry (following paper in this issue)]. They also provide minimal estimates of 350 and 150 s-1 for the rate constants describing (PO3-) transfer from the Cd2+ phosphoenzyme to the 6-position of bound glucose 1-phosphate and to the 1-position of bound glucose 6-phosphate, respectively. These minimal estimates are compared with analogous estimates for the Mg2+ and Li+ forms of the enzyme in the accompanying paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryan, J.A.; Zhang, P.
1998-10-14
Cerrusite (PbC03) is soluble under acidic conditions and considered to be a highly bioavailable soil Pb species. In this study, synthetic cerrusite and hydroxyapatite [Ca5(P04)30H] were reacted under constant and dynamic pH conditions with various P/Pb molar ratios in an attempt to evaluate the effect of reaction kinetics on the formation of chloropyromorphite (Pb5(P04)3Cl) and solubilization of Pb. Under constant pH conditions, dissolution rates of both cerrusite and apatite were rapid when pH was low. Complete conversion of Pb from cerrusite to chloropyromorphite occurred within 60 tin at pH 4 and below when the amount of phosphate in the addedmore » apatite was stoichoimetrically equal to that needed to transform all added Pb into chloropyromorphite. The concentration of soluble Pb depended upon the volubility of chloropyromorphite. The dissolution rates of apatite and cerrusite decreased with increasing pH, and the transformation was incomplete at pH 5 and above in the 60 rnin reaction period. The soluble Pb level, therefore, was determined by the volubility of cerrusite. In the dynamic pH system which simulated the gastrointestinal tract (GI tract) system, a complete transformation of Pb from cerrusite to chloropyromorphite was achieved due to the complete dissolution of apatite and cerrusite at the initial low pHs. Chloropyromorphite was the exclusive reaction product in both constant and dynamic pH systems as indicated by XRD analysis. The differences in transformation rate and the control of Pb volubility between the reactions occurring in constant and dynamic pH systems indicate the significance of kinetics in controlling the bioavailability of Pb and the potential for the reaction to occur during ingestion.« less
1987-09-25
rate constants, k2r using cyclic voltametry . The res tss are expressed in terms of systematic deviations oP sapparent measured" rate constants, k~b(app...concentration was taken to be lum unless otherwise noted. The voltammetric sweep rate was set at 20 V sŕ unless specified otherwise. The general procedure...peaks for the negative- and positive-going potential sweeps have opposite signs, the measured cathodic-anodic peak separation, AEp, will clearly be
Passive air sampling theory for semivolatile organic compounds.
Bartkow, Michael E; Booij, Kees; Kennedy, Karen E; Müller, Jochen F; Hawker, Darryl W
2005-07-01
The mathematical modelling underlying passive air sampling theory can be based on mass transfer coefficients or rate constants. Generally, these models have not been inter-related. Starting with basic models, the exchange of chemicals between the gaseous phase and the sampler is developed using mass transfer coefficients and rate constants. Importantly, the inter-relationships between the approaches are demonstrated by relating uptake rate constants and loss rate constants to mass transfer coefficients when either sampler-side or air-side resistance is dominating chemical exchange. The influence of sampler area and sampler volume on chemical exchange is discussed in general terms and as they relate to frequently used parameters such as sampling rates and time to equilibrium. Where air-side or sampler-side resistance dominates, an increase in the surface area of the sampler will increase sampling rates. Sampling rates are not related to the sampler/air partition coefficient (K(SV)) when air-side resistance dominates and increase with K(SV) when sampler-side resistance dominates.
Development and implementation of a human accuracy program in patient foodservice.
Eden, S H; Wood, S M; Ptak, K M
1987-04-01
For many years, industry has utilized the concept of human error rates to monitor and minimize human errors in the production process. A consistent quality-controlled product increases consumer satisfaction and repeat purchase of product. Administrative dietitians have applied the concepts of using human error rates (the number of errors divided by the number of opportunities for error) at four hospitals, with a total bed capacity of 788, within a tertiary-care medical center. Human error rate was used to monitor and evaluate trayline employee performance and to evaluate layout and tasks of trayline stations, in addition to evaluating employees in patient service areas. Long-term employees initially opposed the error rate system with some hostility and resentment, while newer employees accepted the system. All employees now believe that the constant feedback given by supervisors enhances their self-esteem and productivity. Employee error rates are monitored daily and are used to counsel employees when necessary; they are also utilized during annual performance evaluation. Average daily error rates for a facility staffed by new employees decreased from 7% to an acceptable 3%. In a facility staffed by long-term employees, the error rate increased, reflecting improper error documentation. Patient satisfaction surveys reveal satisfaction, for tray accuracy increased from 88% to 92% in the facility staffed by long-term employees and has remained above the 90% standard in the facility staffed by new employees.
Timmermann, W; Dralle, H; Hamelmann, W; Thomusch, O; Sekulla, C; Meyer, Th; Timm, S; Thiede, A
2002-05-01
Two different aspects of the influence of neuromonitoring on the possible reduction of post-operative recurrent laryngeal nerve palsies require critical examination: the nerve identification and the monitoring of it's functions. Due to the additional information from the EMG signals, neuromonitoring is the best method for identifying the nerves as compared to visual identification alone. There are still no randomized studies available that compare the visual and electrophysiological recurrent laryngeal nerve detection in thyroid operations with respect to the postoperative nerve palsies. Nevertheless, comparisons with historical collectives show that a constant low nerve-palsy-rate was achieved with electrophysiological detection in comparison to visual detection. The rate of nerve identification is normally very high and amounts to 99 % in our own patients. The data obtained during the "Quality assurance of benign and malignant Goiter" study show that in hemithyreoidectomy and subtotal resection, lower nerve-palsy-rates are achieved with neuromonitoring as compared to solely visual detection. Following subtotal resection, this discrepancy becomes even statistically significant. While monitoring the nerve functions with the presently used neuromonitoring technique, it is possible to observe the EMG-signal remaining constant or decreasing in volume. Assuming that a constant neuromonitoring signal represents a normal vocal cord, our evaluation shows that there is a small percentage of false negative and positive results. Looking at the permanent recurrent nerve palsy rates, this method has a specificity of 98 %, a sensitivity of 100 %, a positive prognostic value of 10 %, and a negative prognostic value of 100 %. Although an altered neuromonitoring signal can be taken as a clear indication of eventual nerve damage, an absolutely reliable statement about the postoperative vocal cord function is presently not possible with intraoperative neuromonitoring.
Effects of air ventilation during stationary exercise testing.
Van Schuylenbergh, R; Vanden Eynde, B; Hespel, P
2004-07-01
The impact of air ventilation on performance and physiological responses during stationary exercise in the laboratory was studied. Fourteen well-trained cyclists performed three exercise tests on a cycle ergometer, each separated by a 1-week interval. The first test was a graded test to determine the power output corresponding with the 4-mmol l(-1) lactate level. Tests 2 and 3 were 30-min constant-load tests at a power output corresponding with this 4-mmol l(-1) lactate threshold. One constant-load test was performed in the absence (NAV), whilst the other was performed in the presence (AV) of air ventilation (3 m s(-1)). During the constant-load tests, heart rate, tympanic temperature, blood lactate concentration and oxygen uptake (VO2) were measured at 10-min intervals and at the end of the test. Differences between the two test conditions were evaluated using paired t-tests. During NAV, 12 subjects interrupted the test due to premature exhaustion (exercise duration <30 min), versus only seven in AV ( P<0.05). At the end of the test tympanic temperature was 35.9 (0.2) degrees C in AV and was higher in NAV [36.7 (0.2) degrees C, P<0.05]. Exercise heart rate increased at a faster rate during NAV [+2.2 (0.3) beats min(-1)] than during AV [+1.5 (0.2) beats min(-1), P<0.05]. Blood lactate concentration and VO2 were similar between conditions. Air ventilation is essential to prevent an upward shift in the lactate:heart rate as well as the power output:heart rate relationship during laboratory exercise testing and indoor exercise training.
Ahmad, I; Ali Sheraz, M; Ahmed, S; Shad, Z; Vaid, F H M
2012-06-01
This study involves the evaluation of the effect of certain stabilizers, that is, citric acid (CT), tartaric acid (TA) and boric acid (BA) on the degradation of ascorbic acid (AH(2) ) in oil-in-water cream formulations exposed to the UV light and stored in the dark. The apparent first-order rate constants (0.34-0.95 × 10(-3) min(-1) in light, 0.38-1.24 × 10(-2) day(-1) in dark) for the degradation reactions in the presence of the stabilizers have been determined. These rate constants have been used to derive the second-order rate constants (0.26-1.45 × 10(-2) M(-1) min(-1) in light, 3.75-8.50 × 10(-3) M(-1) day(-1) in dark) for the interaction of AH(2) and the individual stabilizers. These stabilizers are effective in causing the inhibition of the rate of degradation of AH(2) both in the light and in the dark. The inhibitory effect of the stabilizers is in the order of CT > TA > BA. The rate of degradation of AH(2) in the presence of these stabilizers in the light is about 120 times higher than that in the dark. This could be explained on the basis of the deactivation of AH(2) -excited triplet state by CT and TA and by the inhibition of AH(2) degradation through complex formation with BA. AH(2) leads to the formation of dehydroascorbic acid (A) by chemical and photooxidation in cream formulations. © 2012 The Authors. ICS © 2012 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Assessing the effect of different treatments on decomposition rate of dairy manure.
Khalil, Tariq M; Higgins, Stewart S; Ndegwa, Pius M; Frear, Craig S; Stöckle, Claudio O
2016-11-01
Confined animal feeding operations (CAFOs) contribute to greenhouse gas emission, but the magnitude of these emissions as a function of operation size, infrastructure, and manure management are difficult to assess. Modeling is a viable option to estimate gaseous emission and nutrient flows from CAFOs. These models use a decomposition rate constant for carbon mineralization. However, this constant is usually determined assuming a homogenous mix of manure, ignoring the effects of emerging manure treatments. The aim of this study was to measure and compare the decomposition rate constants of dairy manure in single and three-pool decomposition models, and to develop an empirical model based on chemical composition of manure for prediction of a decomposition rate constant. Decomposition rate constants of manure before and after an anaerobic digester (AD), following coarse fiber separation, and fine solids removal were determined under anaerobic conditions for single and three-pool decomposition models. The decomposition rates of treated manure effluents differed significantly from untreated manure for both single and three-pool decomposition models. In the single-pool decomposition model, AD effluent containing only suspended solids had a relatively high decomposition rate of 0.060 d(-1), while liquid with coarse fiber and fine solids removed had the lowest rate of 0.013 d(-1). In the three-pool decomposition model, fast and slow decomposition rate constants (0.25 d(-1) and 0.016 d(-1) respectively) of untreated AD influent were also significantly different from treated manure fractions. A regression model to predict the decomposition rate of treated dairy manure fitted well (R(2) = 0.83) to observed data. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kwon, Jung-Hwan; Escher, Beate I
2008-03-01
Low cost in vitro tools are needed at the screening stage of assessment of bioaccumulation potential of new and existing chemicals because the number of chemical substances that needs to be tested highly exceeds the capacity of in vivo bioconcentration tests. Thus, the parallel artificial membrane permeability assay (PAMPA) system was modified to predict passive uptake/ elimination rate in fish. To overcome the difficulties associated with low aqueous solubility and high membrane affinity of highly hydrophobic chemicals, we measured the rate of permeation from the donor poly(dimethylsiloxane)(PDMS) disk to the acceptor PDMS disk through aqueous and PDMS membrane boundary layers and term the modified PAMPA system "PDMS-PAMPA". Twenty chemicals were selected for validation of PDMS-PAMPA. The measured permeability is proportional to the passive elimination rate constant in fish and was used to predict the "minimum" in vivo elimination rate constant. The in vivo data were very close to predicted values except for a few polar chemicals and metabolically active chemicals, such as pyrene and benzo[a]pyrene. Thus, PDMS-PAMPA can be an appropriate in vitro system for nonmetabolizable chemicals. Combination with metabolic clearance rates using a battery of metabolic degradation assays would enhance the applicability for metabolizable chemicals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, P.J.
1996-07-01
A simplified method for determining the reactive rate parameters for the ignition and growth model is presented. This simplified ignition and growth (SIG) method consists of only two adjustable parameters, the ignition (I) and growth (G) rate constants. The parameters are determined by iterating these variables in DYNA2D hydrocode simulations of the failure diameter and the gap test sensitivity until the experimental values are reproduced. Examples of four widely different explosives were evaluated using the SIG model. The observed embedded gauge stress-time profiles for these explosives are compared to those calculated by the SIG equation and the results are described.
Real association of factors with inappropriate hospital days.
Huet, Bernard; Cauterman, Maxime
2005-01-01
Several studies of inappropriate (in the sense of the AEP) hospital days highlighted associations between two factors (rate of inappropriateness and reasons for inappropriateness, rate of inappropriateness and appropriate setting of care,..). The aim of this communication is to present a study on real associations, at constant factor, between five factors associated with hospital inappropriate days: medical management process, reason for inappropriateness, scheduled admission, rate of inappropriateness, length of stay. We used the European version of Appropriateness Evaluation Protocol for evaluation of inappropriate days and the French protocol ;for analysis of inappropriate days. The study set in three Parisian hospitals, four clinical departments, three specialities. 523 patients were included in the study, 5663 days were evaluated on a wide variety of pathologies: 27 Medical Management Processes. Results show that there are real associations (elimination of transitive associations) between five factors : medical management process and discharge processes, reason for inappropriateness, scheduled admission, rate of inappropriate days, length of stay. Multiple Correspondence Analysis on all "groups of contiguous days related with the same reason for inappropriateness" shows five profiles of queues integrating various medical management processes.
ESTIMATION OF PHOSPHATE ESTER HYDROLYSIS RATE CONSTANTS - ALKALINE HYDROLYSIS
SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to allow the calculation of alkaline hydrolysis rate constants of phosphate esters in water. The rate is calculated from the energy difference between the initial and transition state...
Rahman, Safiur; Gagnon, Graham A
2014-01-01
Corrosion control strategies are important for many utilities in maintaining water quality from the water treatment plant to the customers' tap. In drinking water with low alkalinity, water quality can become significantly degraded in iron-based pipes if water utilities are not diligent in maintaining proper corrosion control. This article reports on experiments conducted in bicarbonate buffered (5 mg-C/L) synthetic water to determine the effects of corrosion control (pH and phosphate) and dissolved organic matter (DOM) on the rate constants of the Fe(II) oxidation process. A factorial design approach elucidated that pH (P = 0.007, contribution: 42.5%) and phosphate (P = 0.025, contribution: 22.7%) were the statistically significant factors in the Fe(II) oxidation process at a 95% confidence level. The comprehensive study revealed a significant dependency relationship between the Fe(II) oxidation rate constants (k) and phosphate-to- Fe(II) mole ratio. At pH 6.5, the optimum mole ratio was found to be 0.3 to reduce the k values. Conversely, the k values were observed to increase for the phosphate-to- Fe(II) mole ratio > 1. The factorial design approach revealed that chlorine and DOM for the designated dosages did not cause a statistically significant (α = 0.05, P > 0.05)change in rate constants. However, an increment of the chlorine to ferrous iron mole ratio by a factor of ∼ 2.5 resulted in an increase k values by a factor of ∼ 10. This study conclusively demonstrated that the lowest Fe(II) oxidation rate constant was obtained under low pH conditions (pH ≤ 6.5), with chlorine doses less than 2.2 mg/L and with a phosphate-to-Fe(II) mole ratio ≈ 0.3 in the iron water systems.
Verma, Anand Mohan; Kishore, Nanda
2017-09-27
The catalytic conversion of 2-hydroxybenzaldehyde (2-HB) is carried out numerically over a Pd(111) surface using density functional theory. The palladium catalyst surface is designed using a 12 atom monolayer and verified with the adsorption of phenol, benzene, anisole, guaiacol, and vanillin; it is found that the adsorption energies along with the adsorption configurations of phenol and benzene are in excellent agreement with the literature. The conversion of 2-HB over the Pd(111) catalyst surface is performed using four reaction schemes: (i) dehydrogenation of the formyl group followed by elimination of CO and association of hydrogen with 2-hydroxyphenyl to produce phenol, (ii) direct elimination of CHO from 2-HB followed by elimination of hydrogen from adsorbed CHO and association of hydrogen with 2-hydroxyphenyl to produce phenol, (iii) direct dehydroxylation of 2-HB followed by association of a hydrogen atom with 2-formylphenyl to produce benzaldehyde, and (iv) dehydrogenation of the hydroxyl group of 2-HB followed by elimination of an oxygen atom and association of a hydrogen atom with 2-formylphenyl to produce benzaldehyde. Along with the reaction mechanisms and their barrier heights, all reaction steps are considered for kinetic modelling in the temperature range 498-698 K with 50 K intervals. The rate constants, pre-exponential factors, and equilibrium constants of all elementary reaction steps are evaluated for each temperature. Kinetic analyses of the catalytic conversion of 2-HB over the Pd(111) surface suggests the production of phenol as an intermediate, instead of benzaldehyde, via dehydrogenation of the formyl group of 2-HB as a first elementary reaction step because of its low activation barrier and the high rate constant of the rate controlling step. Furthermore, the equilibrium constants of the rate controlling step in the production of phenol from 2-HB over the Pd(111) surface report a major fraction of the product in the product mixture even at a low temperature of 498 K.
Hammaecher, Catherine; Canneaux, Sébastien; Louis, Florent; Cantrel, Laurent
2011-06-23
The rate constants of the reactions of HOI molecules with H, OH, O ((3)P), and I ((2)P(3/2)) atoms have been estimated over the temperature range 300-2500 K using four different levels of theory. Geometry optimizations and vibrational frequency calculations are performed using MP2 methods combined with two basis sets (cc-pVTZ and 6-311G(d,p)). Single-point energy calculations are performed with the highly correlated ab initio coupled cluster method in the space of single, double, and triple (pertubatively) electron excitations CCSD(T) using the cc-pVTZ, cc-pVQZ, 6-311+G(3df,2p), and 6-311++G(3df,3pd) basis sets. Reaction enthalpies at 0 K were calculated at the CCSD(T)/cc-pVnZ//MP2/cc-pVTZ (n = T and Q), CCSD(T)/6-311+G(3df,2p)//MP2/6-311G(d,p), and CCSD(T)/6-311++G(3df,3pd)//MP2/6-311G(d,p) levels of theory and compared to the experimental values taken from the literature. Canonical transition-state theory with an Eckart tunneling correction is used to predict the rate constants as a function of temperature. The computational procedure has been used to predict rate constants for H-abstraction elementary reactions because there are actually no literature data to which the calculated rate constants can be directly compared. The final objective is to implement kinetics of gaseous reactions in the ASTEC (accident source term evaluation code) program to improve speciation of fission products, which can be transported along the reactor coolant system (RCS) of a pressurized water reactor (PWR) in the case of a severe accident.
Magnetic-time model at off-season germination
NASA Astrophysics Data System (ADS)
Mahajan, Tarlochan Singh; Pandey, Om Prakash
2014-03-01
Effect of static magnetic field on germination of mung beans is described. Seeds of mung beans, were exposed in batches to static magnetic fields of 87 to 226 mT intensity for 100 min. Magnetic time constant - 60.743 Th (Tesla hour) was determined experimentally. High value of magnetic time constant signifies lower effect of magnetic field on germination rate as this germination was carried out at off-season (13°C). Using decay function, germination magnetic constant was calculated. There was a linear increase in germination magnetic constant with increasing intensity of magnetic field. Calculated values of mean germination time, mean germination rate, germination rate coefficient, germination magnetic constant, transition time, water uptake, indicate that the impact of applied static magnetic field improves the germination of mung beans seeds even in off-season
Kinetic analysis of cooperative interactions induced by Mn2+ binding to the chloroplast H(+)-ATPase.
Hiller, R; Carmeli, C
1990-07-03
The kinetics of Mn2+ binding to three cooperatively interacting sites in chloroplast H(+)-ATPase (CF1) were measured by EPR following rapid mixing of the enzyme with MnCl2 with a time resolution of 8 ms. Mixing of the enzyme-bound Mn2+ with MgCl2 gave a measure of the rate of exchange. The data could be best fitted to a kinetic model assuming three sequential, positively cooperative binding sites. (1) In the latent CF1, the binding to all three sites had a similar on-rate constants of (1.1 +/- 0.04) X 10(4) M-1s-1. (2) Site segregation was found in the release of ions with off-rate constants of 0.69 +/- 0.04 s-1 for the first two and 0.055 +/- 0.003 s-1 for the third. (3) Addition of one ADP per CF1 caused a decrease in the off-rate constants to 0.31 +/- 0.02 and 0.033 +/- 0.008 s-1 for the first two and the third sites, respectively. (4) Heat activation of CF1 increased the on-rate constant to (4.2 +/- 0.92) X 10(4) M-1s-1 and the off-rate constants of the first two and the third site to 1.34 +/- 0.08 and 0.16 +/- 0.07 s-1, respectively. (5) The calculated thermodynamic dissociation constants were similar to those previously obtained from equilibrium binding studies. These findings were correlated to the rate constants obtained from studies of the catalysis and regulation of the H(+)-ATPase. The data support the suggestion that regulation induces sequential progress of catalysis through the three active sites of the enzyme.
Lin, Wei; Jiang, Ruifen; Shen, Yong; Xiong, Yaxin; Hu, Sizi; Xu, Jianqiao; Ouyang, Gangfeng
2018-04-13
Pre-equilibrium passive sampling is a simple and promising technique for studying sampling kinetics, which is crucial to determine the distribution, transfer and fate of hydrophobic organic compounds (HOCs) in environmental water and organisms. Environmental water samples contain complex matrices that complicate the traditional calibration process for obtaining the accurate rate constants. This study proposed a QSAR model to predict the sampling rate constants of HOCs (polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and pesticides) in aqueous systems containing complex matrices. A homemade flow-through system was established to simulate an actual aqueous environment containing dissolved organic matter (DOM) i.e. humic acid (HA) and (2-Hydroxypropyl)-β-cyclodextrin (β-HPCD)), and to obtain the experimental rate constants. Then, a quantitative structure-activity relationship (QSAR) model using Genetic Algorithm-Multiple Linear Regression (GA-MLR) was found to correlate the experimental rate constants to the system state including physicochemical parameters of the HOCs and DOM which were calculated and selected as descriptors by Density Functional Theory (DFT) and Chem 3D. The experimental results showed that the rate constants significantly increased as the concentration of DOM increased, and the enhancement factors of 70-fold and 34-fold were observed for the HOCs in HA and β-HPCD, respectively. The established QSAR model was validated as credible (R Adj. 2 =0.862) and predictable (Q 2 =0.835) in estimating the rate constants of HOCs for complex aqueous sampling, and a probable mechanism was developed by comparison to the reported theoretical study. The present study established a QSAR model of passive sampling rate constants and calibrated the effect of DOM on the sampling kinetics. Copyright © 2018 Elsevier B.V. All rights reserved.
Accelerated Testing Methodology for the Determination of Slow Crack Growth of Advanced Ceramics
NASA Technical Reports Server (NTRS)
Choi, Sung R.; Salem, Jonathan A.; Gyekenyesi, John P.
1997-01-01
Constant stress-rate (dynamic fatigue) testing has been used for several decades to characterize slow crack growth behavior of glass and ceramics at both ambient and elevated temperatures. The advantage of constant stress-rate testing over other methods lies in its simplicity: Strengths are measured in a routine manner at four or more stress rates by applying a constant crosshead speed or constant loading rate. The slow crack growth parameters (n and A) required for design can be estimated from a relationship between strength and stress rate. With the proper use of preloading in constant stress-rate testing, an appreciable saving of test time can be achieved. If a preload corresponding to 50 % of the strength is applied to the specimen prior to testing, 50 % of the test time can be saved as long as the strength remains unchanged regardless of the applied preload. In fact, it has been a common, empirical practice in strength testing of ceramics or optical fibers to apply some preloading (less then 40%). The purpose of this work is to study the effect of preloading on the strength to lay a theoretical foundation on such an empirical practice. For this purpose, analytical and numerical solutions of strength as a function of preloading were developed. To verify the solution, constant stress-rate testing using glass and alumina at room temperature and alumina silicon nitride, and silicon carbide at elevated temperatures was conducted in a range of preloadings from O to 90 %.
Weston, Ralph E; Nguyen, Thanh Lam; Stanton, John F; Barker, John R
2013-02-07
Ab initio microcanonical rate constants were computed using Semi-Classical Transition State Theory (SCTST) and used in two master equation formulations (1D, depending on active energy with centrifugal corrections, and 2D, depending on total energy and angular momentum) to compute temperature-dependent rate constants for the title reactions using a potential energy surface obtained by sophisticated ab initio calculations. The 2D master equation was used at the P = 0 and P = ∞ limits, while the 1D master equation with centrifugal corrections and an empirical energy transfer parameter could be used over the entire pressure range. Rate constants were computed for 75 K ≤ T ≤ 2500 K and 0 ≤ [He] ≤ 10(23) cm(-3). For all temperatures and pressures important for combustion and for the terrestrial atmosphere, the agreement with the experimental rate constants is very good, but at very high pressures and T ≤ 200 K, the theoretical rate constants are significantly smaller than the experimental values. This effect is possibly due to the presence in the experiments of dimers and prereactive complexes, which were not included in the model calculations. The computed H/D kinetic isotope effects are in acceptable agreement with experimental data, which show considerable scatter. Overall, the agreement between experimental and theoretical H/D kinetic isotope effects is much better than in previous work, and an assumption of non-RRKM behavior does not appear to be needed to reproduce experimental observations.
Minakata, Daisuke; Crittenden, John
2011-04-15
The hydroxyl radical (HO(•)) is a strong oxidant that reacts with electron-rich sites on organic compounds and initiates complex radical chain reactions in aqueous phase advanced oxidation processes (AOPs). Computer based kinetic modeling requires a reaction pathway generator and predictions of associated reaction rate constants. Previously, we reported a reaction pathway generator that can enumerate the most important elementary reactions for aliphatic compounds. For the reaction rate constant predictor, we develop linear free energy relationships (LFERs) between aqueous phase literature-reported HO(•) reaction rate constants and theoretically calculated free energies of activation for H-atom abstraction from a C-H bond and HO(•) addition to alkenes. The theoretical method uses ab initio quantum mechanical calculations, Gaussian 1-3, for gas phase reactions and a solvation method, COSMO-RS theory, to estimate the impact of water. Theoretically calculated free energies of activation are found to be within approximately ±3 kcal/mol of experimental values. Considering errors that arise from quantum mechanical calculations and experiments, this should be within the acceptable errors. The established LFERs are used to predict the HO(•) reaction rate constants within a factor of 5 from the experimental values. This approach may be applied to other reaction mechanisms to establish a library of rate constant predictions for kinetic modeling of AOPs.
Frembgen-Kesner, Tamara; Elcock, Adrian H
2010-11-03
Theory and computation have long been used to rationalize the experimental association rate constants of protein-protein complexes, and Brownian dynamics (BD) simulations, in particular, have been successful in reproducing the relative rate constants of wild-type and mutant protein pairs. Missing from previous BD studies of association kinetics, however, has been the description of hydrodynamic interactions (HIs) between, and within, the diffusing proteins. Here we address this issue by rigorously including HIs in BD simulations of the barnase-barstar association reaction. We first show that even very simplified representations of the proteins--involving approximately one pseudoatom for every three residues in the protein--can provide excellent reproduction of the absolute association rate constants of wild-type and mutant protein pairs. We then show that simulations that include intermolecular HIs also produce excellent estimates of association rate constants, but, for a given reaction criterion, yield values that are decreased by ∼35-80% relative to those obtained in the absence of intermolecular HIs. The neglect of intermolecular HIs in previous BD simulation studies, therefore, is likely to have contributed to the somewhat overestimated absolute rate constants previously obtained. Consequently, intermolecular HIs could be an important component to include in accurate modeling of the kinetics of macromolecular association events. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.
A theoretical and shock tube kinetic study on hydrogen abstraction from phenyl formate.
Ning, Hongbo; Liu, Dapeng; Wu, Junjun; Ma, Liuhao; Ren, Wei; Farooq, Aamir
2018-06-12
The hydrogen abstraction reactions of phenyl formate (PF) by different radicals (H/O(3P)/OH/HO2) were theoretically investigated. We calculated the reaction energetics for PF + H/O/OH using the composite method ROCBS-QB3//M06-2X/cc-pVTZ and that for PF + HO2 at the M06-2X/cc-pVTZ level of theory. The high-pressure limit rate constants were calculated using the transition state theory in conjunction with the 1-D hindered rotor approximation and tunneling correction. Three-parameter Arrhenius expressions of rate constants were provided over the temperature range of 500-2000 K. To validate the theoretical calculations, the overall rate constants of PF + OH → Products were measured in shock tube experiments at 968-1128 K and 1.16-1.25 atm using OH laser absorption. The predicted overall rate constants agree well with the shock tube data (within 15%) over the entire experimental conditions. Rate constant analysis indicates that the H-abstraction at the formic acid site dominates the PF consumption, whereas the contribution of H-abstractions at the aromatic ring increases with temperature. Additionally, comparisons of site-specific H-abstractions from PF with methyl formate, ethyl formate, benzene, and toluene were performed to understand the effects of the aromatic ring and side-chain substituent on H-abstraction rate constants.
Angulo, Jesús; Enríquez-Navas, Pedro M; Nieto, Pedro M
2010-07-12
The direct evaluation of dissociation constants (K(D)) from the variation of saturation transfer difference (STD) NMR spectroscopy values with the receptor-ligand ratio is not feasible due to the complex dependence of STD intensities on the spectral properties of the observed signals. Indirect evaluation, by competition experiments, allows the determination of K(D), as long as a ligand of known affinity is available for the protein under study. Herein, we present a novel protocol based on STD NMR spectroscopy for the direct measurements of receptor-ligand dissociation constants (K(D)) from single-ligand titration experiments. The influence of several experimental factors on STD values has been studied in detail, confirming the marked impact on standard determinations of protein-ligand affinities by STD NMR spectroscopy. These factors, namely, STD saturation time, ligand residence time in the complex, and the intensity of the signal, affect the accumulation of saturation in the free ligand by processes closely related to fast protein-ligand rebinding and longitudinal relaxation of the ligand signals. The proposed method avoids the dependence of the magnitudes of ligand STD signals at a given saturation time on spurious factors by constructing the binding isotherms using the initial growth rates of the STD amplification factors, in a similar way to the use of NOE growing rates to estimate cross relaxation rates for distance evaluations. Herein, it is demonstrated that the effects of these factors are cancelled out by analyzing the protein-ligand association curve using STD values at the limit of zero saturation time, when virtually no ligand rebinding or relaxation takes place. The approach is validated for two well-studied protein-ligand systems: the binding of the saccharides GlcNAc and GlcNAcbeta1,4GlcNAc (chitobiose) to the wheat germ agglutinin (WGA) lectin, and the interaction of the amino acid L-tryptophan to bovine serum albumin (BSA). In all cases, the experimental K(D) measured under different experimental conditions converged to the thermodynamic values. The proposed protocol allows accurate determinations of protein-ligand dissociation constants, extending the applicability of the STD NMR spectroscopy for affinity measurements, which is of particular relevance for those proteins for which a ligand of known affinity is not available.
W. Keith Moser; Stephen R. Shifley
2012-01-01
Forests and forest ecosystems provide a critical array of benefits, from clean air and water to commercial products to open space. The forests and their ability to provide desired benefi ts constantly change in response to natural forces, human decisions, and human needs. The complexity and rate of change demand a rigorous evaluation of existing and emerging natural...
Kinetics and mechanisms of some atomic oxygen reactions
NASA Technical Reports Server (NTRS)
Cvetanovic, R. J.
1987-01-01
Mechanisms and kinetics of some reactions of the ground state of oxygen atoms, O(3P), are briefly summarized. Attention is given to reactions of oxygen atoms with several different types of organic and inorganic compounds such as alkanes, alkenes, alkynes, aromatics, and some oxygen, nitrogen, halogen and sulfur derivatives of these compounds. References to some recent compilations and critical evaluations of reaction rate constants are given.
Harden, S.L.; Landmeyer, J.E.
1996-01-01
An investigation was conducted at the Knox Street fire pits, Fort Bragg, North Carolina, to monitor the distribution of toluene, ethylbenzene, and xylene (TEX) in soil vapor, ground water, and ground-water/vapor to evaluate if total concentrations of TEX at the site are decreasing with time, and to quantify biodegradation rates of toluene in the unsaturated and saturated zones. Soil-vapor and ground-water samples were collected around the fire pits and ground-water/vapor samples were collected along the ground-water discharge zone, Beaver Creek, on a monthly basis from June 1994 through June 1995. Concentrations of TEX compounds in these samples were determined with a field gas chro- matograph. Laboratory experiments were performed on aquifer sediment samples to measure rates of toluene biodegradation by in situ micro- organisms. Based on field gas chromatographic analytical results, contamination levels of TEX compounds in both soil vapor and ground water appear to decrease downgradient of the fire-pit source area. During the 1-year study period, the observed temporal and spatial trends in soil vapor TEX concentrations appear to reflect differences in the distribution of TEX among solid, aqueous, and gaseous phases within fuel-contaminated soils in the unsaturated zone. Soil temperature and soil moisture are two important factors which influence the distribution of TEX com- pounds among the different phases. Because of the short period of data collection, it was not possible to distinguish between seasonal fluc- tuations in soil vapor TEX concentrations and an overall net decrease in TEX concentrations at the study site. No seasonal trend was observed in total TEX concentrations for ground- water samples collected at the study site. Although the analytical results could not be used to determine if ground-water TEX concen- trations decreased during the study at a specific location, the data were used to examine rate constants of toluene biodegradation. Based on ground-water toluene concentration data, a maximum rate constant for anaerobic biodegradation of toluene in the saturated zone was estimated to be as low as 0.002 d-1 or as high as 0.026 d-1. Based on analyses of ground-water/vapor samples, toluene was the prin- cipal TEX compound identified in ground water discharging to Beaver Creek. Observed decreases in ground-water/vapor toluene concentrations during the study period may reflect a decrease in source inputs, an increase in dilution caused by higher ground-water flow, and(or) removal by biological or other physical processes. Rate constants of toluene anaerobic biodegradation determined by laboratory measurements illustrate a typical acclimation response of micro-organisms to hydrocarbon contamination in sediments collected from the site. Toluene biodegradation rate constants derived from laboratory microcosm studies ranged from 0.001 to 0.027 d-1, which is similar to the range of 0.002 to 0.026 d-1 for toluene biodegradation rate constants derived from ground-water analytical data. The close agreement of toluene biodegradation rate constants reported using both approaches offer strong evidence that toluene can be degraded at environmentally significant rates at the study site.
ESTIMATION OF PHOSPHATE ESTER HYDROLYSIS RATE CONSTANTS. I. ALKALINE HYDROLYSIS
SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to allow the calculation of alkaline hydrolysis rate constants of phosphate esters in water. The rate is calculated from the energy difference between the initial and transition state...
MICROBIAL TRANSFORMATION RATE CONSTANTS OF STRUCTURALLY DIVERSE MAN-MADE CHEMICALS
To assist in estimating microbially mediated transformation rates of man-made chemicals from their chemical structures, all second order rate constants that have been measured under conditions that make the values comparable have been extracted from the literature and combined wi...
Validating Whole-Airway CFD Predictions of DPI Aerosol Deposition at Multiple Flow Rates.
Longest, P Worth; Tian, Geng; Khajeh-Hosseini-Dalasm, Navvab; Hindle, Michael
2016-12-01
The objective of this study was to compare aerosol deposition predictions of a new whole-airway CFD model with available in vivo data for a dry powder inhaler (DPI) considered across multiple inhalation waveforms, which affect both the particle size distribution (PSD) and particle deposition. The Novolizer DPI with a budesonide formulation was selected based on the availability of 2D gamma scintigraphy data in humans for three different well-defined inhalation waveforms. Initial in vitro cascade impaction experiments were conducted at multiple constant (square-wave) particle sizing flow rates to characterize PSDs. The whole-airway CFD modeling approach implemented the experimentally determined PSDs at the point of aerosol formation in the inhaler. Complete characteristic airway geometries for an adult were evaluated through the lobar bronchi, followed by stochastic individual pathway (SIP) approximations through the tracheobronchial region and new acinar moving wall models of the alveolar region. It was determined that the PSD used for each inhalation waveform should be based on a constant particle sizing flow rate equal to the average of the inhalation waveform's peak inspiratory flow rate (PIFR) and mean flow rate [i.e., AVG(PIFR, Mean)]. Using this technique, agreement with the in vivo data was acceptable with <15% relative differences averaged across the three regions considered for all inhalation waveforms. Defining a peripheral to central deposition ratio (P/C) based on alveolar and tracheobronchial compartments, respectively, large flow-rate-dependent differences were observed, which were not evident in the original 2D in vivo data. The agreement between the CFD predictions and in vivo data was dependent on accurate initial estimates of the PSD, emphasizing the need for a combination in vitro-in silico approach. Furthermore, use of the AVG(PIFR, Mean) value was identified as a potentially useful method for characterizing a DPI aerosol at a constant flow rate.
Validating Whole-Airway CFD Predictions of DPI Aerosol Deposition at Multiple Flow Rates
Tian, Geng; Khajeh-Hosseini-Dalasm, Navvab; Hindle, Michael
2016-01-01
Abstract Background: The objective of this study was to compare aerosol deposition predictions of a new whole-airway CFD model with available in vivo data for a dry powder inhaler (DPI) considered across multiple inhalation waveforms, which affect both the particle size distribution (PSD) and particle deposition. Methods: The Novolizer DPI with a budesonide formulation was selected based on the availability of 2D gamma scintigraphy data in humans for three different well-defined inhalation waveforms. Initial in vitro cascade impaction experiments were conducted at multiple constant (square-wave) particle sizing flow rates to characterize PSDs. The whole-airway CFD modeling approach implemented the experimentally determined PSDs at the point of aerosol formation in the inhaler. Complete characteristic airway geometries for an adult were evaluated through the lobar bronchi, followed by stochastic individual pathway (SIP) approximations through the tracheobronchial region and new acinar moving wall models of the alveolar region. Results: It was determined that the PSD used for each inhalation waveform should be based on a constant particle sizing flow rate equal to the average of the inhalation waveform's peak inspiratory flow rate (PIFR) and mean flow rate [i.e., AVG(PIFR, Mean)]. Using this technique, agreement with the in vivo data was acceptable with <15% relative differences averaged across the three regions considered for all inhalation waveforms. Defining a peripheral to central deposition ratio (P/C) based on alveolar and tracheobronchial compartments, respectively, large flow-rate-dependent differences were observed, which were not evident in the original 2D in vivo data. Conclusions: The agreement between the CFD predictions and in vivo data was dependent on accurate initial estimates of the PSD, emphasizing the need for a combination in vitro–in silico approach. Furthermore, use of the AVG(PIFR, Mean) value was identified as a potentially useful method for characterizing a DPI aerosol at a constant flow rate. PMID:27082824
The rate constant of a quantum-diffusion-controlled bimolecular reaction
NASA Astrophysics Data System (ADS)
Bondarev, B. V.
1986-04-01
A quantum-mechanical equation is derived in the tight-bond approximation which describes the motion and chemical interaction of a pair of species A and B when their displacement in the matrix is caused by tunnelling. Within the framework of the discrete model of random walks, definitions are given of the probability and rate constant of a reaction A + B → P (products) proceeding in a condensed medium. A method is suggested for calculating the rate constant of a quantum-diffusion-controlled bimolecular reaction. By this method, an expression is obtained for the rate constant in the stationary spherically symmetrical case. An equation for the density matrix is also proposed which describes the motion and chemical interaction of a pair of species when the quantum and classical diffusion are competitive.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumaraswamy, L; Xu, Z; Podgorsak, M
Purpose: Commercial dose calculation algorithms incorporate a single DLG value for a given beam energy that is applied across an entire treatment field. However, the physical processes associated with beam generation and dose delivery suggest that the DLG is not constant. The aim of this study is to evaluate the variation of DLG among all leaf pairs, to quantify how this variation impacts delivered dose, and to establish a novel method to correct dose distributions calculated using the approximation of constant DLG. Methods: A 2D diode array was used to measure the DLG for all 60 leaf pairs at severalmore » points along each leaf pair travel direction. This approach was validated by comparison to DLG values measured at select points using a 0.6 cc ion chamber with the standard formalism. In-house software was developed to enable incorporation of position dependent DLG values into dose distribution optimization and calculation. The accuracy of beam delivery of both the corrected and uncorrected treatment plans was studied through gamma pass rate evaluation. A comparison of DVH statistics in corrected and uncorrected treatment plans was made. Results: The outer 20 MLC leaf pairs (1.0 cm width) have DLG values that are 0.32 mm (mean) to 0.65 mm (maximum) lower than the central leaf-pair. VMAT plans using a large number of 1 cm wide leaves were more accurately delivered (gamma pass rate increased by 5%) and dose coverage was higher (D100 increased by 3%) when the 2D DLG was modeled. Conclusion: Using a constant DLG value for a given beam energy will result in dose optimization, dose calculation and treatment delivery inaccuracies that become significant for treatment plans with high modulation complexity scores delivered with 1 cm wide leaves.« less
Liu, Xiaobing; Zheng, O'Neill; Niu, Fuxin
2016-01-01
Most commercial ground source heat pump systems (GSHP) in the United States are in a distributed configuration. These systems circulate water or an anti-freeze solution through multiple heat pump units via a central pumping system, which usually uses variable speed pump(s). Variable speed pumps have potential to significantly reduce pumping energy use; however, the energy savings in reality could be far away from its potential due to improper pumping system design and controls. In this paper, a simplified hydronic pumping system was simulated with the dynamic Modelica models to evaluate three different pumping control strategies. This includes two conventional controlmore » strategies, which are to maintain a constant differential pressure across either the supply and return mains, or at the most hydraulically remote heat pump; and an innovative control strategy, which adjusts system flow rate based on the demand of each heat pump. The simulation results indicate that a significant overflow occurs at part load conditions when the variable speed pump is controlled to main a constant differential pressure across the supply and return mains of the piping system. On the other hand, an underflow occurs at part load conditions when the variable speed pump is controlled to maintain a constant differential pressure across the furthest heat pump. The flow-demand-based control can provide needed flow rate to each heat pump at any given time, and with less pumping energy use than the two conventional controls. Finally, a typical distributed GSHP system was studied to evaluate the energy saving potential of applying the flow-demand-based pumping control strategy. This case study shows that the annual pumping energy consumption can be reduced by 62% using the flow-demand-based control compared with that using the conventional pressure-based control to maintain a constant differential pressure a cross the supply and return mains.« less
Werthel, Jean-David; Pelissier, Alexandre; Massin, Philippe; Boyer, Patrick; Valenti, Philippe
2014-10-01
The double row cuff repair with suture bridging is commonly used for arthroscopic rotator cuff repair (RCR). Despite its biomechanical qualities, the rate of iterative tears with this technique is important. The aim of our study was to evaluate the effect of autologous conditioned plasma (ACP) on functional results and on the rate of iterative tears after RCR by suture bridging. A consecutive series of 65 patients who underwent arthroscopic double-row suture bridge (Speed-Bridge, Arthrex) primary cuff repair of symptomatic full-thickness supraspinatus tear (retraction <3 in the Patte classification) were evaluated. Mean patient age was 60 (+/-8). The supraspinatus was repaired by knot-less bridging (SwiveLock, Arthrex) with suture tape material. 2 homogenous groups were created (A: 33 patients, B: 32 patients). In group A, all patients received, besides the cuff repair, an intra-tendinous ACP injection. Constant scores and Simple Shoulder Tests (SST) were measured pre-operatively and after a minimum follow-up period of 12 months post-operatively. Structural integrity of the repairs was evaluated by MRI according to the Sugaya classification. Sugaya >4 were considered as iterative tears. Mean follow-up was 19 months (+/-42) in the 2 groups. The mean quantity of ACP injected was 6ml. (+/-1.5) and no specific complication of the injection was found. Mean preoperative Constant-Murley scores were 41,2 (±7,7) and 38 (±11)in group B. Mean normalized Constant-Murley score increased from 41 points (±7) pre-operatively to 70 points (±8) post-operatively in group A and from 38 points (±11) to 73 points (±11) in group B. There were no significative differences between the two groups (P > 0.05). In group A, 31 repairs were Sugaya 1-3 (94%), vs. 30 in group B (93%), and 1 was type 4 in group A (5%) vs. 2 in group B (8%). In both groups, RCR with suture bridging gave successful functional outcomes, with a low rate of iterative tear. In this preliminary study, the adjuvant effect of ACP injections could not be showed on both functional and structural results. Longer follow-up is needed to evaluate potential differences.
Lo, Justin C; Allard, Gayatri N; Otton, S Victoria; Campbell, David A; Gobas, Frank A P C
2015-12-01
In vitro bioassays to estimate biotransformation rate constants of contaminants in fish are currently being investigated to improve bioaccumulation assessments of hydrophobic contaminants. The present study investigates the relationship between chemical substrate concentration and in vitro biotransformation rate of 4 environmental contaminants (9-methylanthracene, pyrene, chrysene, and benzo[a]pyrene) in rainbow trout (Oncorhynchus mykiss) liver S9 fractions and methods to determine maximum first-order biotransformation rate constants. Substrate depletion experiments using a series of initial substrate concentrations showed that in vitro biotransformation rates exhibit strong concentration dependence, consistent with a Michaelis-Menten kinetic model. The results indicate that depletion rate constants measured at initial substrate concentrations of 1 μM (a current convention) could underestimate the in vitro biotransformation potential and may cause bioconcentration factors to be overestimated if in vitro biotransformation rates are used to assess bioconcentration factors in fish. Depletion rate constants measured using thin-film sorbent dosing experiments were not statistically different from the maximum depletion rate constants derived using a series of solvent delivery-based depletion experiments for 3 of the 4 test chemicals. Multiple solvent delivery-based depletion experiments at a range of initial concentrations are recommended for determining the concentration dependence of in vitro biotransformation rates in fish liver fractions, whereas a single sorbent phase dosing experiment may be able to provide reasonable approximations of maximum depletion rates of very hydrophobic substances. © 2015 SETAC.
Biexponential photon antibunching: recombination kinetics within the Förster-cycle in DMSO.
Vester, Michael; Grueter, Andreas; Finkler, Björn; Becker, Robert; Jung, Gregor
2016-04-21
Time-resolved experiments with pulsed-laser excitation are the standard approach to map the dynamic evolution of excited states, but ground-state kinetics remain hidden or require pump-dump-probe schemes. Here, we exploit the so-called photon antibunching, a purely quantum-optical effect related to single molecule detection to assess the rate constants for a chemical reaction in the electronic ground state. The measurement of the second-order correlation function g((2)), i.e. the evaluation of inter-photon arrival times, is applied to the reprotonation in a Förster-cycle. We find that the antibunching of three different photoacids in the aprotic solvent DMSO significantly differs from the behavior in water. The longer decay constant of the biexponential antibunching tl is linked to the bimolecular reprotonation kinetics of the fully separated ion-pair, independent of the acidic additives. The value of the corresponding bimolecular rate constant, kp = 4 × 10(9) M(-1) s(-1), indicates diffusion-controlled reprotonation. The analysis of tl also allows for the extraction of the separation yield of proton and the conjugated base after excitation and amounts to approximately 15%. The shorter time component ts is connected to the decay of the solvent-separated ion pair. The associated time constant for geminate reprotonation is approximately 3 ± 1 ns in agreement with independent tcspc experiments. These experiments verify that the transfer of quantum-optical experiments to problems in chemistry enables mechanistic conclusions which are hardly accessible by other methods.
NASA Astrophysics Data System (ADS)
Simmonds, Boris; Wang, Chun-Wei; Kapoor, Rakesh
2010-02-01
This document reports a novel method of measuring association rate constant (ka) for antibody-antigen interaction using evanescent wave-based combination tapered fiber-optic biosensor (CTFOB) dip-probes. The method was demonstrated by measuring association rate constant for bovine serum albumin (BSA) and anti-BSA antibody interaction. "Direct method" was used for detection; goat anti-BSA "capture" antibodies were immobilized on the probe surfaces while the antigen (BSA) was directly labeled with Alexa 488 dye. The probes were subsequently submerged in 3nM Labeled BSA in egg albumin (1 mg/ml). The fluorescence signal recorded was proportional to BSA anti-BSA conjugates and continuous signal was acquired suing a fiber optic spectrometer (Ocean Optics, Inc.). A 476 nm diode laser was use as an excitation source. Association constant was estimated from a plot of signal as a function of time. Measured association rate constant ka for the binding of BSA with anti-BSA at room temperature is (8.33 +/- 0.01) x 104 M-1s-1.
NASA Technical Reports Server (NTRS)
Choi, S. R.; Gyekenyesi, J. P.
2001-01-01
Slow crack growth analysis was performed with three different loading histories including constant stress- rate/constant stress-rate testing (Case I loading), constant stress/constant stress-rate testing (Case II loading), and cyclic stress/constant stress-rate testing (Case III loading). Strength degradation due to slow crack growth and/or damage accumulation was determined numerically as a function of percentage of interruption time between the two loading sequences for a given loading history. The numerical solutions were examined with the experimental data determined at elevated temperatures using four different advanced ceramic materials, two silicon nitrides, one silicon carbide and one alumina for the Case I loading history, and alumina for the Case II loading history. The numerical solutions were in reasonable agreement with the experimental data, indicating that notwithstanding some degree of creep deformation presented for some test materials slow crack growth was a governing mechanism associated with failure for all the rest materials.
NASA Technical Reports Server (NTRS)
Choi, Sung R.; Gyekenyesi, John P.
2000-01-01
Slow crack growth analysis was performed with three different loading histories including constant stress-rate/constant stress-rate testing (Case 1 loading), constant stress/constant stress-rate testing (Case 2 loading), and cyclic stress/constant stress-rate testing (Case 2 loading). Strength degradation due to slow crack growth and/or damage accumulation was determined numerically as a function of percentage of interruption time between the two loading sequences for a given loading history. The numerical solutions were examined with the experimental data determined at elevated temperatures using four different advanced ceramic materials, two silicon nitrides, one silicon carbide and one alumina for the Case 1 loading history, and alumina for the Case 3 loading history. The numerical solutions were in reasonable agreement with the experimental data, indicating that notwithstanding some degree of creep deformation presented for some test materials slow crack growth was a governing mechanism associated with failure for all the test materials.
NASA Technical Reports Server (NTRS)
Choi, Sung R.; Gyekenyesi, John P.
2000-01-01
Slow crack growth analysis was performed with three different loading histories including constant stress-rate/constant stress-rate testing (Case I loading), constant stress/constant stress-rate testing (Case II loading), and cyclic stress/constant stress-rate testing (Case III loading). Strength degradation due to slow crack growth arid/or damage accumulation was determined numerically as a Function of percentage of interruption time between the two loading sequences for a given loading history. The numerical solutions were examined with the experimental data determined at elevated temperatures using four different advanced ceramic materials, two silicon nitrides, one silicon carbide and one alumina for the Case I loading history, and alumina for the Case II loading history. The numerical solutions were in reasonable agreement with the experimental data, indicating that notwithstanding some degree of creep deformation presented for some test materials slow crack growth was a governing mechanism associated with failure for all the test material&
Constitutive Model Constants for Al7075-T651 and Al7075-T6
NASA Astrophysics Data System (ADS)
Brar, N. S.; Joshi, V. S.; Harris, B. W.
2009-12-01
Aluminum 7075-T651 and 7075-T6 are characterized at quasi-static and high strain rates to determine Johnson-Cook (J-C) strength and fracture model constants. Constitutive model constants are required as input to computer codes to simulate projectile (fragment) impact or similar impact events on structural components made of these materials. Although the two tempers show similar elongation at breakage, the ultimate tensile strength of T651 temper is generally lower than the T6 temper. Johnson-Cook strength model constants (A, B, n, C, and m) for the two alloys are determined from high strain rate tension stress-strain data at room and high temperature to 250°C. The Johnson-Cook fracture model constants are determined from quasi-static and medium strain rate as well as high temperature tests on notched and smooth tension specimens. Although the J-C strength model constants are similar, the fracture model constants show wide variations. Details of the experimental method used and the results for the two alloys are presented.
NASA Astrophysics Data System (ADS)
Grieman, F. J.; Hui, A. O.; Okumura, M.; Sander, S. P.
2017-12-01
In order to model the upper troposphere/lower stratosphere in regions containing acetone properly, the kinetics of the acetonylperoxy/hydroperoxy self-reactions and cross reaction have been studied over a wide temperature range using Infrared Kinetic Spectroscopy. We report here the determination of different rate constants for the acetonylperoxy chemistry that we obtained at 298 K compared to currently accepted values. A considerable increase in the observed HO2 self-reaction rate constant due to rate enhancement via the chaperone effect from the reaction between HO2 and the (CH3)2CO•HO2 hydrogen-bonded adduct, even at room temperature, was discovered that was previously ignored. Correct determination of the acetonylperoxy and hydroperoxy kinetics must include this dependence of the HO2 self-reaction rate on acetone concentration. Via excimer laser flash photolysis to create the radical reactants, HO2 absorption was monitored in the infrared by diode laser wavelength modulation detection simultaneously with CH3C(O)CH2O2absorption monitored in the ultraviolet at 300 nm as a function of time. Resulting decay curves were fit concurrently first over a short time scale to obtain the rate constants minimizing subsequent product reactions. Modeling/fitting with a complete reaction scheme was then performed to refine the rate constants and test their veracity. Experiments were carried out over a variety of concentrations of acetone and methanol. Although no effect due to methanol concentration was found at room temperature, the rate constant for the hydroperoxy self-reaction was found to increase linearly with acetone concentration which is interpreted as the adduct being formed and resulting in a chaperone mechanism that enhances the self-reaction rate: (CH3)2CO·HO2 + HO2 → H2O2 + O2 + (CH3)2CO Including this effect, the resulting room temperature rate constants for the cross reaction and the acetonylperoxy self-reaction were found to be 2-3 times smaller than previously reported. This complex formation/chaperone mechanism is similar to that found for methanol, but different in that it occurs at room temperature. No precursor concentration dependence was found for the acetonylperoxy radical reactions. The equilibrium constant for the complex formation will also be presented.
Rubinstein, Alexander; Sherman, Simon
The dielectric properties of the polar solvent on the protein-solvent interface at small intercharge distances are still poorly explored. To deconvolute this problem and to evaluate the pair-wise electrostatic interaction (PEI) energies of the point charges located at the protein-solvent interface we used a nonlocal (NL) electrostatic approach along with a static NL dielectric response function of water. The influence of the aqueous solvent microstructure (determined by a strong nonelectrostatic correlation effect between water dipoles within the orientational Debye polarization mode) on electrostatic interactions at the interface was studied in our work. It was shown that the PEI energies can be significantly higher than the energies evaluated by the classical (local) consideration, treating water molecules as belonging to the bulk solvent with a high dielectric constant. Our analysis points to the existence of a rather extended, effective low-dielectric interfacial water shell on the protein surface. The main dielectric properties of this shell (effective thickness together with distance- and orientation-dependent dielectric permittivity function) were evaluated. The dramatic role of this shell was demonstrated when estimating the protein association rate constants.
NASA Astrophysics Data System (ADS)
Lukeš, Vladimír; Škorňa, Peter; Michalík, Martin; Klein, Erik
2017-11-01
Various para, meta and ortho substituted formanilides have been theoretically studied. For trans and cis-isomers of non-substituted formanilide, the calculated B3LYP vibration normal modes were analyzed. Substituent effect on the selected normal modes was described and the comparison with the available experimental data is presented. The calculated B3LYP proton affinities were correlated with Hammett constants, Fujita-Nishioka equation and the rate constants of the hydrolysis in 1 M HCl. Found linear dependences allow predictions of dissociation constants (pKBH+) and hydrolysis rate constants. Obtained results indicate that protonation of amide group may represent the rate determining step of acid catalyzed hydrolysis.
Computation of Kinetics for the Hydrogen/Oxygen System Using the Thermodynamic Method
NASA Technical Reports Server (NTRS)
Marek, C. John
1996-01-01
A new method for predicting chemical rate constants using thermodynamics has been applied to the hydrogen/oxygen system. This method is based on using the gradient of the Gibbs free energy and a single proportionality constant D to determine the kinetic rate constants. Using this method the rate constants for any gas phase reaction can be computed from thermodynamic properties. A modified reaction set for the H/O system is determined. A11 of the third body efficiencies M are taken to be unity. Good agreement was obtained between the thermodynamic method and the experimental shock tube data. In addition, the hydrogen bromide experimental data presented in previous work is recomputed with M's of unity.
Decomposition rates for hand-piled fuels
Clinton S. Wright; Alexander M. Evans; Joseph C. Restaino
2017-01-01
Hand-constructed piles in eastern Washington and north-central New Mexico were weighed periodically between October 2011 and June 2015 to develop decay-rate constants that are useful for estimating the rate of piled biomass loss over time. Decay-rate constants (k) were determined by fitting negative exponential curves to time series of pile weight for each site. Piles...
Carbamate and Pyrethroid Resistance in the Akron Strain of Anopheles gambiae
Mutunga, James M.; Anderson, Troy D.; Craft, Derek T.; Gross, Aaron D.; Swale, Daniel R.; Tong, Fan; Wong, Dawn M.; Carlier, Paul R.; Bloomquist, Jeffrey R.
2015-01-01
Insecticide resistance in the malaria vector, Anopheles gambiae is a serious problem, epitomized by the multi-resistant Akron strain, originally isolated in the country of Benin. Here we report resistance in this strain to pyrethroids and DDT (13-fold to 35-fold compared to the susceptible G3 strain), but surprisingly little resistance to etofenprox, a compound sometimes described as a “pseudo-pyrethroid.” There was also strong resistance to topically-applied commercial carbamates (45-fold to 81-fold), except for the oximes aldicarb and methomyl. Biochemical assays showed enhanced cytochrome P450 monooxygenase and carboxylesterase activity, but not that of glutathione-S-transferase. A series of substituted α,α,α,-trifluoroacetophenone oxime methylcarbamates were evaluated for enzyme inhibition potency and toxicity against G3 and Akron mosquitoes. The compound bearing an unsubstituted phenyl ring showed the greatest toxicity to mosquitoes of both strains. Low cross resistance in Akron was retained by all analogs in the series. Kinetic analysis of acetylcholinesterase activity and its inhibition by insecticides in the G3 strain showed inactivation rate constants greater than that of propoxur, and against Akron enzyme inactivation rate constants similar to that of aldicarb. However, inactivation rate constants against recombinant human AChE were essentially identical to that of the G3 strain. Thus, the acetophenone oxime carbamates described here, though potent insecticides that control resistant Akron mosquitoes, require further structural modification to attain acceptable selectivity and human safety. PMID:26047119
NASA Astrophysics Data System (ADS)
Raychoudhury, Trishikhi; Surasani, Vikranth Kumar
2017-06-01
Retention of surface-modified nanoscale zero-valent iron (NZVI) particles in the porous media near the point of injection has been reported in the recent studies. Retention of excess particles in porous media can alter the media properties. The main objectives of this study are, therefore, to evaluate the effect of particle retention on the porous media properties and its implication on further NZVI particle transport under different flow conditions. To achieve the objectives, a one-dimensional transport model is developed by considering particle deposition, detachment, and straining mechanisms along with the effect of changes in porosity resulting from retention of NZVI particles. Two different flow conditions are considered for simulations. The first is a constant Darcy's flow rate condition, which assumes a change in porosity, causes a change in pore water velocity and the second, is a constant head condition, which assumes the change in porosity, influence the permeability and hydraulic conductivity (thus Darcy's flow rate). Overall a rapid decrease in porosity was observed as a result of high particle retention near the injection points resulting in a spatial distribution of deposition rate coefficient. In the case of constant head condition, the spatial distribution of Darcy's velocities is predicted due to variation in porosity and hydraulic conductivity. The simulation results are compared with the data reported from the field studies; which suggests straining is likely to happen in the real field condition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Westerhout, R.W.J.; Balk, R.H.P.; Meijer, R.
1997-08-01
A screen heater with a gas sweep was developed and applied to study the pyrolysis kinetics of low density polyethene (LDPE) and polypropene (PP) at temperatures ranging from 450 to 530 C. The aim of this study was to examine the applicability of screen heaters to measure these kinetics. On-line measurement of the rate of volatiles formation using a hydrocarbon analyzer was applied to enable the determination of the conversion rate over the entire conversion range on the basis of a single experiment. Another important feature of the screen heater used in this study is the possibility to measure pyrolysismore » kinetics under nearly isothermal conditions. The kinetic constants for LDPE and PP pyrolysis were determined, using a first order model to describe the conversion rate in the 70--90% conversion range and the random chain dissociation model for the entire conversion range. In addition to the experimental work two single particle models have been developed which both incorporate a mass and a (coupled) enthalpy balance, which were used to assess the influence of internal and external heat transfer processes on the pyrolysis process. The first model assumes a variable density and constant volume during the pyrolysis process, whereas the second model assumes a constant density and a variable volume. An important feature of these models is that they can accommodate kinetic models for which no analytical representation of the pyrolysis kinetics is available.« less
Interactions and diffusion in fine-stranded β-lactoglobulin gels determined via FRAP and binding.
Schuster, Erich; Hermansson, Anne-Marie; Ohgren, Camilla; Rudemo, Mats; Lorén, Niklas
2014-01-07
The effects of electrostatic interactions and obstruction by the microstructure on probe diffusion were determined in positively charged hydrogels. Probe diffusion in fine-stranded gels and solutions of β-lactoglobulin at pH 3.5 was determined using fluorescence recovery after photobleaching (FRAP) and binding, which is widely used in biophysics. The microstructures of the β-lactoglobulin gels were characterized using transmission electron microscopy. The effects of probe size and charge (negatively charged Na2-fluorescein (376Da) and weakly anionic 70kDa FITC-dextran), probe concentration (50 to 200 ppm), and β-lactoglobulin concentration (9% to 12% w/w) on the diffusion properties and the electrostatic interaction between the negatively charged probes and the positively charged gels or solutions were evaluated. The results show that the diffusion of negatively charged Na2-fluorescein is strongly influenced by electrostatic interactions in the positively charged β-lactoglobulin systems. A linear relationship between the pseudo-on binding rate constant and the β-lactoglobulin concentration for three different probe concentrations was found. This validates an important assumption of existing biophysical FRAP and binding models, namely that the pseudo-on binding rate constant equals the product of the molecular binding rate constant and the concentration of the free binding sites. Indicators were established to clarify whether FRAP data should be analyzed using a binding-diffusion model or an obstruction-diffusion model. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Lenhard, Stephen C.; Yerby, Brittany; Forsgren, Mikael F.; Liachenko, Serguei; Johansson, Edvin; Pilling, Mark A.; Peterson, Richard A.; Yang, Xi; Williams, Dominic P.; Ungersma, Sharon E.; Morgan, Ryan E.; Brouwer, Kim L. R.; Jucker, Beat M.; Hockings, Paul D.
2018-01-01
Drug-induced liver injury (DILI) is a leading cause of acute liver failure and transplantation. DILI can be the result of impaired hepatobiliary transporters, with altered bile formation, flow, and subsequent cholestasis. We used gadoxetate dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), combined with pharmacokinetic modelling, to measure hepatobiliary transporter function in vivo in rats. The sensitivity and robustness of the method was tested by evaluating the effect of a clinical dose of the antibiotic rifampicin in four different preclinical imaging centers. The mean gadoxetate uptake rate constant for the vehicle groups at all centers was 39.3 +/- 3.4 s-1 (n = 23) and 11.7 +/- 1.3 s-1 (n = 20) for the rifampicin groups. The mean gadoxetate efflux rate constant for the vehicle groups was 1.53 +/- 0.08 s-1 (n = 23) and for the rifampicin treated groups was 0.94 +/- 0.08 s-1 (n = 20). Both the uptake and excretion transporters of gadoxetate were statistically significantly inhibited by the clinical dose of rifampicin at all centers and the size of this treatment group effect was consistent across the centers. Gadoxetate is a clinically approved MRI contrast agent, so this method is readily transferable to the clinic. Conclusion: Rate constants of gadoxetate uptake and excretion are sensitive and robust biomarkers to detect early changes in hepatobiliary transporter function in vivo in rats prior to established biomarkers of liver toxicity. PMID:29771932
Sarkar, Sounak; Li, Shan; Wayland, Bradford B
2011-04-18
Tetramesityl porphinato rhodium(III) methoxide ((TMP)Rh-OCH(3)) binds with methanol in benzene to form a 1:1 methanol complex ((TMP)Rh-OCH(3)(CH(3)OH)) (1). Dynamic processes are observed to occur for the rhodium(III) methoxide methanol complex (1) that involve both hydrogen and methanol exchange. Hydrogen exchange between coordinated methanol and methoxide through methanol in solution results in an interchange of the environments for the non-equivalent porphyrin faces that contain methoxide and methanol ligands. Interchange of the environments of the coordinated methanol and methoxide sites in 1 produces interchange of the inequivalent mesityl o-CH(3) groups, but methanol ligand exchange occurs on one face of the porphyrin and the mesityl o-CH(3) groups remain inequivalent. Rate constants for dynamic processes are evaluated by full line shape analysis for the (1)H NMR of the mesityl o-CH(3) and high field methyl resonances of coordinated methanol and methoxide groups in 1. The rate constant for interchange of the inequivalent porphyrin faces is associated with hydrogen exchange between 1 and methanol in solution and is observed to increase regularly with the increase in the mole fraction of methanol. The rate constant for methanol ligand exchange between 1 and the solution varies with the solution composition and fluctuates in a manner that parallels the change in the activation energy for methanol diffusion which is a consequence of solution non-ideality from hydrogen bonded clusters.
Diurnal Temperature Variations Affect Development of a Herbivorous Arthropod Pest and its Predators
Vangansbeke, Dominiek; Audenaert, Joachim; Nguyen, Duc Tung; Verhoeven, Ruth; Gobin, Bruno; Tirry, Luc; De Clercq, Patrick
2015-01-01
The impact of daily temperature variations on arthropod life history remains woefully understudied compared to the large body of research that has been carried out on the effects of constant temperatures. However, diurnal varying temperature regimes more commonly represent the environment in which most organisms thrive. Such varying temperature regimes have been demonstrated to substantially affect development and reproduction of ectothermic organisms, generally in accordance with Jensen’s inequality. In the present study we evaluated the impact of temperature alternations at 4 amplitudes (DTR0, +5, +10 and +15°C) on the developmental rate of the predatory mites Phytoseiulus persimilis Athias-Henriot and Neoseiulus californicus McGregor (Acari: Phytoseiidae) and their natural prey, the two-spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae). We have modelled their developmental rates as a function of temperature using both linear and nonlinear models. Diurnally alternating temperatures resulted in a faster development in the lower temperature range as compared to their corresponding mean constant temperatures, whereas the opposite was observed in the higher temperature range. Our results indicate that Jensen’s inequality does not suffice to fully explain the differences in developmental rates at constant and alternating temperatures, suggesting additional physiological responses play a role. It is concluded that diurnal temperature range should not be ignored and should be incorporated in predictive models on the phenology of arthropod pests and their natural enemies and their performance in biological control programmes. PMID:25874697
Rapid-Equilibrium Enzyme Kinetics
ERIC Educational Resources Information Center
Alberty, Robert A.
2008-01-01
Rapid-equilibrium rate equations for enzyme-catalyzed reactions are especially useful because if experimental data can be fit by these simpler rate equations, the Michaelis constants can be interpreted as equilibrium constants. However, for some reactions it is necessary to use the more complicated steady-state rate equations. Thermodynamics is…
SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to calculate acid and neutral hydrolysis rate constants of phosphate esters in water. The rate is calculated from the energy difference between the initial and transition states of a ...
The Rate Constant for Fluorescence Quenching
ERIC Educational Resources Information Center
Legenza, Michael W.; Marzzacco, Charles J.
1977-01-01
Describes an experiment that utilizes fluorescence intensity measurements from a Spectronic 20 to determine the rate constant for the fluorescence quenching of various aromatic hydrocarbons by carbon tetrachloride in an ethanol solvent. (MLH)
Wahman, David G.; Schrantz, Karen A.; Pressman, Jonathan G.
2010-01-01
Various medium compositions (phosphate, 1 to 50 mM; ionic strength, 2.8 to 150 meq/liter) significantly affected Nitrosomonas europaea monochloramine disinfection kinetics, as determined by the Live/Dead BacLight (LD) and propidium monoazide quantitative PCR (PMA-qPCR) methods (lag coefficient, 37 to 490 [LD] and 91 to 490 [PMA-qPCR] mg·min/liter; Chick-Watson rate constant, 4.0 × 10−3 to 9.3 × 10−3 [LD] and 1.6 × 10−3 to 9.6 × 10−3 [PMA-qPCR] liter/mg·min). Two competing effects may account for the variation in disinfection kinetic parameters: (i) increasing kinetics (disinfection rate constant [k] increased, lag coefficient [b] decreased) with increasing phosphate concentration and (ii) decreasing kinetics (k decreased, b increased) with increasing ionic strength. The results support development of a standard medium for evaluating disinfection kinetics in drinking water. PMID:20952645
Hemoglobin in Frankia, a Nitrogen-Fixing Actinomycete†
Tjepkema, John D.; Cashon, Robert E.; Beckwith, Jason; Schwintzer, Christa R.
2002-01-01
Frankia strain CcI3 grown in culture produced a hemoglobin which had optical absorption bands typical of a hemoglobin and a molecular mass of 14.1 kDa. Its equilibrium oxygen binding constant was 274 nM, the oxygen dissociation rate constant was 56 s−1, and the oxygen association rate constant was 206 μM−1 s−1. PMID:11976149
Ouk, Chanda-Malis; Zvereva-Loëte, Natalia; Scribano, Yohann; Bussery-Honvault, Béatrice
2012-10-30
Multireference single and double configuration interaction (MRCI) calculations including Davidson (+Q) or Pople (+P) corrections have been conducted in this work for the reactants, products, and extrema of the doublet ground state potential energy surface involved in the N((2)D) + CH(4) reaction. Such highly correlated ab initio calculations are then compared with previous PMP4, CCSD(T), W1, and DFT/B3LYP studies. Large relative differences are observed in particular for the transition state in the entrance channel resolving the disagreement between previous ab initio calculations. We confirm the existence of a small but positive potential barrier (3.86 ± 0.84 kJ mol(-1) (MR-AQCC) and 3.89 kJ mol(-1) (MRCI+P)) in the entrance channel of the title reaction. The correlation is seen to change significantly the energetic position of the two minima and five saddle points of this system together with the dissociation channels but not their relative order. The influence of the electronic correlation into the energetic of the system is clearly demonstrated by the thermal rate constant evaluation and it temperature dependance by means of the transition state theory. Indeed, only MRCI values are able to reproduce the experimental rate constant of the title reaction and its behavior with temperature. Similarly, product branching ratios, evaluated by means of unimolecular RRKM theory, confirm the NH production of Umemoto et al., whereas previous works based on less accurate ab initio calculations failed. We confirm the previous findings that the N((2)D) + CH(4) reaction proceeds via an insertion-dissociation mechanism and that the dominant product channels are CH(2)NH + H and CH(3) + NH. Copyright © 2012 Wiley Periodicals, Inc.
Mehring, Michael; Donnachie, Ewan; Fexer, Johannes; Hofmann, Frank; Schneider, Antonius
2014-07-01
The primary aim of the disease management program (DMP) for patients with COPD is to improve health outcomes and thereby to reduce overall costs. Six years after its introduction in Germany, no consensus has yet been reached as to whether the DMP has been effective in reaching these goals. The objective of the study was an evaluation of the DMP for COPD in Bavaria using routinely collected subject medical records. A longitudinal population-based study, comparing the total DMP population of up to 86,560 patients with a stable cohort of 17,549 subjects over a period of 5 years. The effect of subject dropout in the cohort is further estimated by means of inverse probability weighting. The proportion of subjects in the total population who were prescribed and received treatment with oral corticosteroids declined at a constant rate of 1.0% per year (P < .001). The proportion of subjects who were given a prescription for theophylline decreased at a constant rate of 2.0% per year (P < .001). By 2012, 15.6% of the total population and 26% of the cohort had undergone self-management education. While the proportion of smokers in the total population remained constant because of the effect of newly enrolled subjects, the proportion of smokers decreased significantly even after dropout adjustment, from 29% to 21%. The occurrence of exacerbations decreased steadily at a rate of 0.9% (total population) or 0.7% (cohort) per year. While the occurrence of emergency hospital admissions decreased in the total population, an increase was observed within the cohort. Summarizing all results leads to the suggestion that the German DMP for COPD has been effective in enhancing the quality of care in regard to an improved adherence to guidelines, pharmacotherapy, exacerbations, and self-management education. However, the DMP was not able to prevent an increase in emergency hospital admissions for the stable population in the cohort. Copyright © 2014 by Daedalus Enterprises.
Muraoka, Atsushi; Tokumura, Tadakazu; Machida, Yoshiharu
2008-01-01
The use of competing agents is considered a powerful tool for the development of a drug-delivery system with drug/cyclodextrin inclusion complexes. However, there are very few studies examining this issue. To explain this phenomenon, it was thought that a competing agent with a sufficiently high stability constant had not yet been reported. In this study, cinnarizine (CN), which has a high stability constant with beta-cyclodextrin (beta-CD) and unique solubility characteristics, was selected, and its ability as a competing agent was examined in a membrane permeability study. The permeability study showed that the permeation rates of the drugs flurbiprofen, progesterone, and spironolactone decreased with their stability constants with the addition of beta-CD. In one of the drugs, progesterone (Pro), the decrease was restored by the addition of CN. The amount of CN added was a 1:1 molar ratio to the amount of Pro. However, no similar action was induced with the addition of DL-phenylalanine (Phe) in the permeation study at the 1:5 (Pro:Phe) molar ratio. These finding indicate that CN acts as a competing agent, and its action is much stronger than that of Phe.
The discount rate in the economic evaluation of prevention: a thought experiment.
Bonneux, L; Birnie, E
2001-02-01
In the standard economic model of evaluation, constant discount rates devalue the long term health benefits of prevention strongly. This study shows that it is unlikely that this reflects societal preference. A thought experiment in a cause elimination life table calculates savings of eliminating cardiovascular disease from the Dutch population. A cost effectiveness analysis calculates the acceptable costs of such an intervention at a threshold of 18 000 Euro per saved life year. Cause specific mortality (all cardiovascular causes of death and all other causes) and health care costs (all costs of cardiovascular disease and all other causes of costs) by age and male sex of 1994. At a 0% discount rate, an intervention eliminating cardiovascular disease may cost 71 100 Euro. At the same threshold but at discount rates of 3% or 6%, the same intervention may cost 8100 Euro (8.8 times less) or 1100 Euro (65 times less). The standard economic model needs more realistic duration dependent models of time preference, which reflect societal preference.
NASA Astrophysics Data System (ADS)
Azmi, A. I.; Syahmi, A. Z.; Naquib, M.; Lih, T. C.; Mansor, A. F.; Khalil, A. N. M.
2017-10-01
This article presents an approach to evaluate the effects of different machining conditions on the specific cutting energy of carbon fibre reinforced polymer composites (CFRP). Although research works in the machinability of CFRP composites have been very substantial, the present literature rarely discussed the topic of energy consumption and the specific cutting energy. A series of turning experiments were carried out on two different CFRP composites in order to determine the power and specific energy constants and eventually evaluate their effects due to the changes in machining conditions. A good agreement between the power and material removal rate using a simple linear relationship. Further analyses revealed that a power law function is best to describe the effect of feed rate on the changes in the specific cutting energy. At lower feed rate, the specific cutting energy increases exponentially due to the nature of finishing operation, whereas at higher feed rate, the changes in specific cutting energy is minimal due to the nature of roughing operation.
Chlorine decay and bacterial inactivation kinetics in drinking water in the tropics.
Thøgersen, J; Dahi, E
1996-09-01
The decay of free chlorine (Cl2) and combined chlorine (mostly monochloramine: NH2Cl) and the inactivation of bacteria was examined in Dar es Salaam, Tanzania. Batch experiments, pilot-scale pipe experiments and full-scale pipe experiments were carried out to establish the kinetics for both decay and inactivation, and to compare the two disinfectants for use under tropical conditions. The decay of both disinfectants closely followed first order kinetics, with respect to the concentration of both disinfectant and disinfectant-consuming substances. Bacterial densities exhibited a kinetic pattern consisting of first order inactivation with respect to the density of the bacteria and the concentration of the disinfectant, and first order growth with respect to the bacterial density. The disinfection kinetic model takes the decaying concentration of the disinfectant into account. The decay rate constant for free chlorine was 114 lg(-1)h(-1), while the decay rate constant for combined chlorine was 1.84 lg(-1)h(-1) (1.6% of the decay rate for free chlorine). The average concentration of disinfectant consuming substances in the water phase was 2.6 mg Cl2/l for free chlorine and 5.6 mg NH2Cl/l for combined chlorine. The decay rate constant and the concentration of disinfectant consuming substances when water was pumped through pipes, depended on whether or not chlorination was continuous. Combined chlorine especially could clean the pipes of disinfectant consuming substances. The inactivation rate constant λ, was estimated at 3.06×10(4) lg(-1)h(-1). Based on the inactivation rate constant, and a growth rate constant determined in a previous study, the critical concentration of free chlorine was found to be 0.08 mg Cl2/l. The critical concentration is a value below which growth rates dominate over inactivation.
Impact of transverse and longitudinal dispersion on first-order degradation rate constant estimation
NASA Astrophysics Data System (ADS)
Stenback, Greg A.; Ong, Say Kee; Rogers, Shane W.; Kjartanson, Bruce H.
2004-09-01
A two-dimensional analytical model is employed for estimating the first-order degradation rate constant of hydrophobic organic compounds (HOCs) in contaminated groundwater under steady-state conditions. The model may utilize all aqueous concentration data collected downgradient of a source area, but does not require that any data be collected along the plume centerline. Using a least squares fit of the model to aqueous concentrations measured in monitoring wells, degradation rate constants were estimated at a former manufactured gas plant (FMGP) site in the Midwest U.S. The estimated degradation rate constants are 0.0014, 0.0034, 0.0031, 0.0019, and 0.0053 day -1 for acenaphthene, naphthalene, benzene, ethylbenzene, and toluene, respectively. These estimated rate constants were as low as one-half those estimated with the one-dimensional (centerline) approach of Buscheck and Alcantar [Buscheck, T.E., Alcantar, C.M., 1995. Regression techniques and analytical solutions to demonstrate intrinsic bioremediation. In: Hinchee, R.E., Wilson, J.T., Downey, D.C. (Eds.), Intrinsic Bioremediation, Battelle Press, Columbus, OH, pp. 109-116] which does not account for transverse dispersivity. Varying the transverse and longitudinal dispersivity values over one order of magnitude for toluene data obtained from the FMGP site resulted in nearly a threefold variation in the estimated degradation rate constant—highlighting the importance of reliable estimates of the dispersion coefficients for obtaining reasonable estimates of the degradation rate constants. These results have significant implications for decision making and site management where overestimation of a degradation rate may result in remediation times and bioconversion factors that exceed expectations. For a complex source area or non-steady-state plume, a superposition of analytical models that incorporate longitudinal and transverse dispersion and time may be used at sites where the centerline method would not be applicable.
18 CFR 806.12 - Constant-rate aquifer testing.
Code of Federal Regulations, 2014 CFR
2014-04-01
... withdraw or increase a withdrawal of groundwater shall perform a constant-rate aquifer test in accordance... groundwater availability analysis to determine the availability of water during a 1-in-10-year recurrence...
18 CFR 806.12 - Constant-rate aquifer testing.
Code of Federal Regulations, 2012 CFR
2012-04-01
... withdraw or increase a withdrawal of groundwater shall perform a constant-rate aquifer test in accordance... groundwater availability analysis to determine the availability of water during a 1-in-10-year recurrence...
18 CFR 806.12 - Constant-rate aquifer testing.
Code of Federal Regulations, 2011 CFR
2011-04-01
... withdraw or increase a withdrawal of groundwater shall perform a constant-rate aquifer test in accordance... groundwater availability analysis to determine the availability of water during a 1-in-10-year recurrence...
18 CFR 806.12 - Constant-rate aquifer testing.
Code of Federal Regulations, 2013 CFR
2013-04-01
... withdraw or increase a withdrawal of groundwater shall perform a constant-rate aquifer test in accordance... groundwater availability analysis to determine the availability of water during a 1-in-10-year recurrence...
Oxidation of Benzoin by Hexacyanoferrate (III)
ERIC Educational Resources Information Center
Jarrar, Adil A.; El-Zaru, Ribhi
1977-01-01
Describes a kinetics experiment in which the student measures both a second-order rate constant and an overall third-order rate constant for the oxidation of benzoin to benzil in an alkaline medium. (MLH)
Ballard, Andrew; Ahmad, Hiwa O.; Narduolo, Stefania; Rosa, Lucy; Chand, Nikki; Cosgrove, David A.; Varkonyi, Peter; Asaad, Nabil; Tomasi, Simone
2017-01-01
Abstract Racemization has a large impact upon the biological properties of molecules but the chemical scope of compounds with known rate constants for racemization in aqueous conditions was hitherto limited. To address this remarkable blind spot, we have measured the kinetics for racemization of 28 compounds using circular dichroism and 1H NMR spectroscopy. We show that rate constants for racemization (measured by ourselves and others) correlate well with deprotonation energies from quantum mechanical (QM) and group contribution calculations. Such calculations thus provide predictions of the second‐order rate constants for general‐base‐catalyzed racemization that are usefully accurate. When applied to recent publications describing the stereoselective synthesis of compounds of purported biological value, the calculations reveal that racemization would be sufficiently fast to render these expensive syntheses pointless. PMID:29072355
NASA Technical Reports Server (NTRS)
Ravishankara, A. R.; Wine, P. H.
1980-01-01
The technique of laser flash photolysis-resonance fluorescence is employed to study the kinetics of the reaction Cl(2P) + CH4 yields CH3 + HCl over the temperature range 221-375 K. At temperatures less than or equal to 241 K the apparent bimolecular rate constant is found to be dependent upon the identity of the chemically inert gases in the reaction mixture. For Cl2/CH4/He reaction mixtures (total pressure = 50 torr) different bimolecular rate constants are measured at low and high methane concentrations. For Cl2/CH4/CCl/He and Cl2/CH4/Ar reaction mixtures, the bimolecular rate constant is independent of methane concentration, being approximately equal to the rate constant measured at low methane concentrations for Cl2/CH4/He mixtures. These rate constants are in good agreement with previous results obtained using the discharge flow-resonance fluorescence and competitive chlorination techniques. At 298 K the measured bimolecular rate constant is independent of the identity of the chemically inert gases in the reaction mixture and in good agreement with all previous investigations. The low-temperature results obtained in this investigation and all previous investigations can be rationalized in terms of a model which assumes that the Cl(2P 1/2) state reacts with CH4 much faster than the Cl(2P 3/2) state. Extrapolation of this model to higher temperatures, however, is not straightforward.
Effect of Dunaliella tertiolecta organic exudates on the Fe(II) oxidation kinetics in seawater.
González, A G; Santana-Casiano, J M; González-Dávila, M; Pérez-Almeida, N; Suárez de Tangil, M
2014-07-15
The role played by the natural organic ligands excreted by the green algae Dunaliella tertiolecta on the Fe(II) oxidation rate constants was studied at different stages of growth. The concentration of dissolved organic carbon increased from 2.1 to 7.1 mg L(-1) over time of culture. The oxidation kinetics of Fe(II) was studied at nanomolar levels and under different physicochemical conditions of pH (7.2-8.2), temperature (5-35 °C), salinity (10-37), and dissolved organic carbon produced by cells (2.1-7.1 mg L(-1)). The experimental rate always decreased in the presence of organic exudates with respect to that in the control seawater. The Fe(II) oxidation rate constant was also studied in the context of Marcus theory, where ΔG° was 39.31-51.48 kJ mol(-1). A kinetic modeling approach was applied for computing the equilibrium and rate constants for Fe(II) and exudates present in solution, the Fe(II) speciation, and the contribution of each Fe(II) species to the overall oxidation rate constant. The best fit model took into account two acidity equilibrium constants for the Fe(II) complexing ligands with pKa,1=9.45 and pKa,2=4.9. The Fe(II) complexing constants were KFe(II)-LH=3×10(10) and KFe(II)-L=10(7), and the corresponding computed oxidation rates were 68±2 and 36±8 M(-1) min(-1), respectively.
Fouling resilient perforated feed spacers for membrane filtration.
Kerdi, Sarah; Qamar, Adnan; Vrouwenvelder, Johannes S; Ghaffour, Noreddine
2018-04-24
The improvement of feed spacers with optimal geometry remains a key challenge for spiral-wound membrane systems in water treatment due to their impact on the hydrodynamic performance and fouling development. In this work, novel spacer designs are proposed by intrinsically modifying cylindrical filaments through perforations. Three symmetric perforated spacers (1-Hole, 2-Hole, and 3-Hole) were in-house 3D-printed and experimentally evaluated in terms of permeate flux, feed channel pressure drop and membrane fouling. Spacer performance is characterized and compared with standard no perforated (0-Hole) design under constant feed pressure and constant feed flow rate. Perforations in the spacer filaments resulted in significantly lowering the net pressure drop across the spacer filled channel. The 3-Hole spacer was found to have the lowest pressure drop (50%-61%) compared to 0-Hole spacer for various average flow velocities. Regarding permeate flux production, the 0-Hole spacer produced 5.7 L m -2 .h -1 and 6.6 L m -2 .h -1 steady state flux for constant pressure and constant feed flow rate, respectively. The 1-Hole spacer was found to be the most efficient among the perforated spacers with 75% and 23% increase in permeate production at constant pressure and constant feed flow, respectively. Furthermore, membrane surface of 1-Hole spacer was found to be cleanest in terms of fouling, contributing to maintain higher permeate flux production. Hydrodynamic understanding of these perforated spacers is also quantified by performing Direct Numerical Simulation (DNS). The performance enhancement of these perforated spacers is attributed to the formation of micro-jets in the spacer cell that aided in producing enough unsteadiness/turbulence to clean the membrane surface and mitigate fouling phenomena. In the case of 1-Hole spacer, the unsteadiness intensity at the outlet of micro-jets and the shear stress fluctuations created inside the cells are higher than those observed with other perforated spacers, resulting in the cleanest membrane surface. Copyright © 2018 Elsevier Ltd. All rights reserved.
Carbonate mineral dissolution kinetics in high pressure experiments
NASA Astrophysics Data System (ADS)
Dethlefsen, F.; Dörr, C.; Schäfer, D.; Ebert, M.
2012-04-01
The potential CO2 reservoirs in the North German Basin are overlain by a series of Mesozoic barrier rocks and aquifers and finally mostly by Tertiary and Quaternary close-to-surface aquifers. The unexpected rise of stored CO2 from its reservoir into close-to-surface aquifer systems, perhaps through a broken well casing, may pose a threat to groundwater quality because of the acidifying effect of CO2 dissolution in water. The consequences may be further worsening of the groundwater quality due to the mobilization of heavy metals. Buffer mechanisms counteracting the acidification are for instance the dissolution of carbonates. Carbonate dissolution kinetics is comparably fast and carbonates can be abundant in close-to-surface aquifers. The disadvantages of batch experiments compared to column experiments in order to determine rate constants are well known and have for instance been described by v. GRINSVEN and RIEMSDIJK (1992). Therefore, we have designed, developed, tested, and used a high-pressure laboratory column system to simulate aquifer conditions in a flow through setup within the CO2-MoPa project. The calcite dissolution kinetics was determined for CO2-pressures of 6, 10, and 50 bars. The results were evaluated by using the PHREEQC code with a 1-D reactive transport model, applying a LASAGA (1984) -type kinetic dissolution equation (PALANDRI and KHARAKA, 2004; eq. 7). While PALANDRI and KHARAKA (2004) gave calcite dissolution rate constants originating from batch experiments of log kacid = -0.3 and log kneutral = -5.81, the data of the column experiment were best fitted using log kacid = -2.3 and log kneutral = -7.81, so that the rate constants fitted using the lab experiment applying 50 bars pCO2 were approximately 100 times lower than according to the literature data. Rate constants of experiments performed at less CO2 pressure (pCO2 = 6 bars: log kacid = -1.78; log kneutral = -7.29) were only 30 times lower than literature data. These discrepancies in the reaction kinetics should be acknowledged when using reactive transport models, especially when modeling kinetically controlled pH-buffering processes between a CO2 leakage an a receptor like a ground water well. Currently, further experiments for the determination of the dolomite dissolution kinetics are being performed. Here, the knowledge of the dissolution rate constants can be even more important compared to the (still) fast calcite dissolution. This study is being funded by the German Federal Ministry of Education and Research (BMBF), EnBW Energie Baden-Württemberg AG, E.ON Energie AG, E.ON Gas Storage AG, RWE Dea AG, Vattenfall Europe Technology Research GmbH, Wintershall Holding AG and Stadtwerke Kiel AG as part of the CO2-MoPa joint project in the framework of the Special Program GEOTECHNOLOGIEN. Literature Lasaga, A. C., 1984. Chemical Kinetics of Water-Rock Interactions. Journal of Geophysical Research 89, 4009-4025. Palandri, J. L. and Kharaka, Y. K., 2004. A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling. USGS, Menlo Park, CA, USA. v. Grinsven, J. J. M. and Riemsdijk, W. H., 1992. Evaluation of batch and column techniques to measure weathering rates in soils. Geoderma 52, 41-57.
On estimating total daily evapotranspiration from remote surface temperature measurements
NASA Technical Reports Server (NTRS)
Carlson, Toby N.; Buffum, Martha J.
1989-01-01
A method for calculating daily evapotranspiration from the daily surface energy budget using remotely sensed surface temperature and several meteorological variables is presented. Vaules of the coefficients are determined from simulations with a one-dimensional boundary layer model with vegetation cover. Model constants are obtained for vegetation and bare soil at two air temperature and wind speed levels over a range of surface roughness and wind speeds. A different means of estimating the daily evapotranspiration based on the time rate of increase of surface temperature during the morning is also considered. Both the equations using our model-derived constants and field measurements are evaluated, and a discussion of sources of error in the use of the formulation is given.
A set of literature data was used to derive several quantitative structure-activity relationships (QSARs) to predict the rate constants for the microbial reductive dehalogenation of chlorinated aromatics. Dechlorination rate constants for 25 chloroaromatics were corrected for th...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhanavel, S.; Nivethaa, E. A. K.; Esther, G.
Chitosan supported Palladium nanoparticles were synthesized by a simple cost effective chemical reduction method using NaBH{sub 4}. The prepared nanocomposite was characterized by X-Ray diffraction analysis, FESEM and Energy dispersive spectroscopy analysis of X-rays (EDAX). The catalytic performance of the nanocomposite was evaluated on the reduction of 2-Nitrophenol to the 2-Amino phenol with rate constant 1.08 × 10{sup −3} S{sup −1} by NaBH{sub 4} using Spectrophotometer.
Evaluation of Delamination Onset and Growth Characterization Methods under Mode I Fatigue Loading
NASA Technical Reports Server (NTRS)
Murri, Gretchen B.
2013-01-01
Double-cantilevered beam specimens of IM7/8552 graphite/epoxy from two different manufacturers were tested in static and fatigue to compare the material characterization data and to evaluate a proposed ASTM standard for generating Paris Law equations for delamination growth. Static results were used to generate compliance calibration constants for reducing the fatigue data, and a delamination resistance curve, GIR, for each material. Specimens were tested in fatigue at different initial cyclic GImax levels to determine a delamination onset curve and the delamination growth rate. The delamination onset curve equations were similar for the two sources. Delamination growth rate was calculated by plotting da/dN versus GImax on a log-log scale and fitting a Paris Law. Two different data reduction methods were used to calculate da/dN. To determine the effects of fiber-bridging, growth results were normalized by the delamination resistance curves. Paris Law exponents decreased by 31% to 37% after normalizing the data. Visual data records from the fatigue tests were used to calculate individual compliance constants from the fatigue data. The resulting da/dN versus GImax plots showed improved repeatability for each source, compared to using averaged static data. The Paris Law expressions for the two sources showed the closest agreement using the individually fit compliance data.
Preparation and In Vitro/In Vivo Evaluation of Vinpocetine Elementary Osmotic Pump System
Ning, Meiying; Zhou, Yue; Chen, Guojun; Mei, Xingguo
2011-01-01
Preparation and in vitro and in vivo evaluation of vinpocetine (VIN) elementary osmotic pump (EOP) formulations were investigated. A method for the preparation of VIN elementary osmotic pump tablet was obtained by adding organic acid additives to increase VIN solubility. VIN was used as the active pharmaceutical ingredient, lactose and mannitol as osmotic agent. Citric acid was used as increasing API solubility and without resulting in the API degradation. It is found that the VIN release rate was increasing with the citric acid amount at a constant range. Cellulose acetate 398-3 was employed as semipermeable membrane containing polyethylene glycol 6000 and diethyl-o-phthalate as pore-forming agent and plasticizer for controlling membrane permeability. In addition, a clear difference between the pharmacokinetic patterns of VIN immediate release and VIN elementary osmotic pump formulations was revealed. The area under the plasma concentration-time curve after oral administration of elementary osmotic pump formulations was equivalent to VIN immediate release formulation. Furthermore, significant differences found for mean residence time, elimination half-life, and elimination rate constant values corroborated prolonged release of VIN from elementary osmotic pump formulations. These results suggest that the VIN osmotic pump controlled release tablets have marked controlled release characters and the VIN osmotic pump controlled release tablets and the normal tablets were bioequivalent. PMID:21577257
Prediction of failure pressure and leak rate of stress corrosion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Majumdar, S.; Kasza, K.; Park, J. Y.
2002-06-24
An ''equivalent rectangular crack'' approach was employed to predict rupture pressures and leak rates through laboratory generated stress corrosion cracks and steam generator tubes removed from the McGuire Nuclear Station. Specimen flaws were sized by post-test fractography in addition to a pre-test advanced eddy current technique. The predicted and observed test data on rupture and leak rate are compared. In general, the test failure pressures and leak rates are closer to those predicted on the basis of fractography than on nondestructive evaluation (NDE). However, the predictions based on NDE results are encouraging, particularly because they have the potential to determinemore » a more detailed geometry of ligamented cracks, from which failure pressure and leak rate can be more accurately predicted. One test specimen displayed a time-dependent increase of leak rate under constant pressure.« less
Effect of surface curvature on diffusion-limited reactions on a curved surface
NASA Astrophysics Data System (ADS)
Eun, Changsun
2017-11-01
To investigate how the curvature of a reactive surface can affect reaction kinetics, we use a simple model in which a diffusion-limited bimolecular reaction occurs on a curved surface that is hollowed inward, flat, or extended outward while keeping the reactive area on the surface constant. By numerically solving the diffusion equation for this model using the finite element method, we find that the rate constant is a non-linear function of the surface curvature and that there is an optimal curvature providing the maximum value of the rate constant, which indicates that a spherical reactant whose entire surface is reactive (a uniformly reactive sphere) is not the most reactive species for a given reactive surface area. We discuss how this result arises from the interplay between two opposing effects: the exposedness of the reactive area to its partner reactants, which causes the rate constant to increase as the curvature increases, and the competition occurring on the reactive surface, which decreases the rate constant. This study helps us to understand the role of curvature in surface reactions and allows us to rationally design reactants that provide a high reaction rate.
Birch, Heidi; Andersen, Henrik R; Comber, Mike; Mayer, Philipp
2017-05-01
During simulation-type biodegradation tests, volatile chemicals will continuously partition between water phase and headspace. This study addressed how (1) this partitioning affects test results and (2) can be accounted for by combining equilibrium partition and dynamic biodegradation models. An aqueous mixture of 9 (semi)volatile chemicals was first generated using passive dosing and then diluted with environmental surface water producing concentrations in the ng/L to μg/L range. After incubation for 2 h to 4 weeks, automated Headspace Solid Phase Microextraction (HS-SPME) was applied directly on the test systems to measure substrate depletion by biodegradation relatively to abiotic controls. HS-SPME was also applied to determine air to water partitioning ratios. Biodegradation rate constants relating to the chemical in the water phase, k water , were generally a factor 1 to 11 times higher than biodegradation rate constants relating to the total mass of chemical in the test system, k system , with one exceptional factor of 72 times for a long chain alkane. True water phase degradation rate constants were found (i) more appropriate for risk assessment than test system rate constants, (ii) to facilitate extrapolation to other air-water systems and (iii) to be better defined input parameters for aquatic exposure and fate models. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chemical kinetics of homogeneous atmospheric oxidation of sulfur dioxide
NASA Technical Reports Server (NTRS)
Sander, S. P.; Seinfeld, J. H.
1976-01-01
A systematic evaluation of known homogeneous SO2 reactions which might be important in air pollution chemistry is carried out. A mechanism is developed to represent the chemistry of NOx/hydrocarbon/SO2 systems, and the mechanism is used to analyze available experimental data appropriate for quantitative analysis of SO2 oxidation kinetics. Detailed comparisons of observed and predicted concentration behavior are presented. In all cases, observed SO2 oxidation rates cannot be explained solely on the basis of those SO2 reactions for which rate constants have been measured. The role of ozone-olefin reactions in SO2 oxidation is elucidated.
Stochastic von Bertalanffy models, with applications to fish recruitment.
Lv, Qiming; Pitchford, Jonathan W
2007-02-21
We consider three individual-based models describing growth in stochastic environments. Stochastic differential equations (SDEs) with identical von Bertalanffy deterministic parts are formulated, with a stochastic term which decreases, remains constant, or increases with organism size, respectively. Probability density functions for hitting times are evaluated in the context of fish growth and mortality. Solving the hitting time problem analytically or numerically shows that stochasticity can have a large positive impact on fish recruitment probability. It is also demonstrated that the observed mean growth rate of surviving individuals always exceeds the mean population growth rate, which itself exceeds the growth rate of the equivalent deterministic model. The consequences of these results in more general biological situations are discussed.
NASA Astrophysics Data System (ADS)
Shaker, Ali Mohamed; Nassr, Lobna Abdel-Mohsen Ebaid; Adam, Mohamed Shaker Saied; Mohamed, Ibrahim Mohamed Abdelhalim
2015-05-01
Kinetic study of acid hydrolysis of some hydrophilic Fe(II) Schiff base amino acid complexes with antibacterial properties was performed using spectrophotometry. The Schiff base ligands were derived from sodium 2-hydroxybenzaldehyde-5-sulfonate and glycine, L-alanine, L-leucine, L-isoleucine, DL-methionine, DL-serine, or L-phenylalanine. The reaction was studied in aqueous media under conditions of pseudo-first order kinetics. Moreover, the acid hydrolysis was studied at different temperatures and the activation parameters were calculated. The general rate equation was suggested as follows: rate = k obs [Complex], where k obs = k 2 [H+]. The evaluated rate constants and activation parameters are consistent with the hydrophilicity of the investigated complexes.
NASA Technical Reports Server (NTRS)
Johnson, H.; Kenley, R. A.; Rynard, C.; Golub, M. A.
1985-01-01
Quantitative structure-activity relationships were derived for acetyl- and butyrylcholinesterase inhibition by various organophosphorus esters. Bimolecular inhibition rate constants correlate well with hydrophobic substituent constants, and with the presence or absence of catonic groups on the inhibitor, but not with steric substituent constants. CNDO/2 calculations were performed on a separate set of organophosphorus esters, RR'P(O)X, where R and R' are alkyl and/or alkoxy groups and X is fluorine, chlorine or a phenoxy group. For each subset with the same X, the CNDO-derived net atomic charge at the central phosphorus atom in the ester correlates well with the alkaline hydrolysis rate constant. For the whole set of esters with different X, two equations were derived that relate either charge and leaving group steric bulk, or orbital energy and bond order to the hydrogen hydrolysis rate constant.
NASA Technical Reports Server (NTRS)
Johnson, H.; Kenley, R. A.; Rynard, C.; Golub, M. A.
1985-01-01
Quantitative structure-activity relationships were derived for acetyl- and butyrylcholinesterase inhibition by various organophosphorus esters. Bimolecular inhibition rate constants correlate well with hydrophobic substituent constants, and with the presence or absence of cationic groups on the inhibitor, but not with steric substituent constants. CNDO/2 calculations were performed on a separate set of organophosphorus esters, RR-primeP(O)X, where R and R-prime are alkyl and/or alkoxy groups and X is fluorine, chlorine or a phenoxy group. For each subset with the same X, the CNDO-derived net atomic charge at the central phosphorus atom in the ester correlates well with the alkaline hydrolysis rate constant. For the whole set of esters with different X, two equations were derived that relate either charge and leaving group steric bulk, or orbital energy and bond order to the hydrolysis rate constant.
ERIC Educational Resources Information Center
Sattar, Simeen
2011-01-01
Tris(1,10-phenanthroline)iron(II) is the basis of a suite of four experiments spanning 5 weeks. Students determine the rate law, activation energy, and equilibrium constant for the dissociation of the complex ion in acid solution and base dissociation constant for phenanthroline. The focus on one chemical system simplifies a daunting set of…
Hermans, Ive; Jacobs, Pierre; Peeters, Jozef
2008-02-28
Abstraction of hydrogen atoms by pthalimide-N-oxyl radicals is an important step in the N-hydroxyphthalimide catalyzed autoxidation of hydrocarbons. In this contribution, the temperature dependency of this reaction is evaluated by a detailed transition state theory based kinetic analysis for the case of toluene. Tunneling was found to play a very important role, enhancing the rate constant by a factor of 20 at room temperature. As a result, tunneling, in combination with the existence of two distinct rotamers of the transition state, causes a pronounced temperature dependency of the pre-exponential frequency factor, and, as a consequence, marked curvature of the Arrhenius plot. This explains why earlier experimental studies over a limited temperature range around 300 K found formal Arrhenius activation energies and pre-factors that are 4 kcal mol(-1) and three orders of magnitude smaller than the actual energy barrier and the corresponding frequency factor, respectively. Also as a consequence of tunneling, substitution of a deuterium atom for a hydrogen atom causes a large decrease in the rate constant, in agreement with the measured kinetic isotope effects. The present theoretical analysis, complementary to the experimental rate coefficient data, allows for a reliable prediction of the rate coefficient at higher temperatures, relevant for actual autoxidation processes.
Tabraiz, Shamas; Haydar, Sajjad; Sallis, Paul; Nasreen, Sadia; Mahmood, Qaisar; Awais, Muhammad; Acharya, Kishor
2017-08-01
Intermittent backwashing and relaxation are mandatory in the membrane bioreactor (MBR) for its effective operation. The objective of the current study was to evaluate the effects of run-relaxation and run-backwash cycle time on fouling rates. Furthermore, comparison of the effects of backwashing and relaxation on the fouling behavior of membrane in high rate submerged MBR. The study was carried out on a laboratory scale MBR at high flux (30 L/m 2 ·h), treating sewage. The MBR was operated at three relaxation operational scenarios by keeping the run time to relaxation time ratio constant. Similarly, the MBR was operated at three backwashing operational scenarios by keeping the run time to backwashing time ratio constant. The results revealed that the provision of relaxation or backwashing at small intervals prolonged the MBR operation by reducing fouling rates. The cake and pores fouling rates in backwashing scenarios were far less as compared to the relaxation scenarios, which proved backwashing a better option as compared to relaxation. The operation time of backwashing scenario (lowest cycle time) was 64.6% and 21.1% more as compared to continuous scenario and relaxation scenario (lowest cycle time), respectively. Increase in cycle time increased removal efficiencies insignificantly, in both scenarios of relaxation and backwashing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moan, J.; Setlow, R.; Cicarma, E.
2010-01-01
In order to evaluate the role of solar radiation in uveal melanoma etiology, the time and latitude dependency of the incidence rates of this melanoma type were studied in comparison with those of cutaneous malignant melanoma (CMM). Norway and several other countries with Caucasian populations were included. There is a marked north - south gradient of the incidence rates of CMM in Norway, with three times higher rates in the south than in the north. No such gradient is found for uveal melanoma. Similar findings have been published for CMM in other Caucasian populations, with the exception of Europe asmore » a whole. In most populations the ratios of uveal melanoma incidence rates to those of CMM tend to decrease with increasing CMM rates. This is also true for Europe, in spite of the fact that in this region there is an inverse latitude gradient of CMM, with higher rates in the north than in the south. In Norway the incidence rates of CMM have increased until about 1990 but have been constant, or even decreased (for young people) after that time, indicating constant or decreasing sun exposure. The uveal melanoma rates have been increasing after 1990. In most other populations the incidence rates of CMM have been increasing until recently while those of uveal melanoma have been decreasing. These data generally support the assumption that uveal melanomas are not generated by ultraviolet (UV) radiation and that solar UV, via its role in vitamin D photosynthesis, may have a protective effect.« less
Hedenstierna, S; Halldin, P; Brolin, K
2008-12-01
The numerical method of finite elements (FE) is a powerful tool for analysing stresses and strains in the human body. One area of increasing interest is the skeletal musculature. This study evaluated modelling of skeletal muscle tissue using a combination of passive non-linear, viscoelastic solid elements and active Hill-type truss elements, the super-positioned muscle finite element (SMFE). The performance of the combined materials and elements was evaluated for eccentric motions by simulating a tensile experiment from a published study on a stimulated rabbit muscle including three different strain rates. It was also evaluated for isometric and concentric contractions. The resulting stress-strain curves had the same overall pattern as the experiments, with the main limitation being sensitivity to the active force-length relation. It was concluded that the SMFE could model active and passive muscle tissue at constant rate elongations for strains below failure, as well as isometric and concentric contractions.
The binding of the primary water of hydration to nucleosides, CsDNA and potassium hyaluronate
NASA Astrophysics Data System (ADS)
Lukan, A. M.; Cavanaugh, D.; Whitson, K. B.; Marlowe, R. L.; Lee, S. A.; Anthony, L.; Rupprecht, A.; Mohan, V.
1998-03-01
Differential scanning calorimetry (DSC) has been used to study the eight nucleosides, CsDNA and KHA hydrated at 59% relative humidity. Thermograms were measured between 25 and 180 ^oC for scan rates of 1, 2, 5, 10 and 20 K/min. A broad endothermic transition (due to the desorption of the water) near 80 ^oC was observed for all runs. The average enthalpy of desorption per water molecule was evaluated from the area under the peak. A Kissinger analysis of these data yielded the net activation energy for desorption. Both parameters were very similar for the two biopolymers. Rayleigh scattering of Mossbauer radiation (RSMR) data(G. Albanese et al. ) Hyperfine Int. 95, 97 (1995) were analyzed via a simple harmonic oscillator model to evaluate the effective force constant of the water bound to the biopolymer. This analysis suggests that the effective force constant of water bound to HA is much larger (about 5 times) than for water bound to DNA.
Manchester, Keith L
2004-01-30
An analysis is made of the rate constants for the reactions involving the interactions of EF-Tu, EF-Ts, GDP, and GTP recently derived by Gromadski et al. [Biochemistry 41 (2002) 162]. Though their measured values appear to allow a reasonable rate of nucleotide exchange sufficient to support rates of protein synthesis in vivo, their data underestimate the thermodynamic barrier involved in nucleotide exchange and therefore cannot be considered definitive. A kinetic scheme consistent with the thermodynamic barrier can be achieved by modification of various rate constants, particularly of those involving the release of EF-Ts from EF-Tu.GTP.EF-Ts, but such constants are markedly different from what are experimentally observed. It thus remains impossible at present satisfactorily to model guanine nucleotide exchange on EF-Tu, catalysed by EF-Ts by a double displacement mechanism, with experimentally derived rate constants. Metabolic control analysis has been applied to determine the degree of flux control of the different steps in the pathway.
Revised estimates for ozone reduction by shuttle operation
NASA Technical Reports Server (NTRS)
Potter, A. E.
1978-01-01
Previous calculations by five different modeling groups of the effect of space shuttle operations on the ozone layer yielded an estimate of 0.2 percent ozone reduction for the Northern Hemisphere at 60 launches per year. Since these calculations were made, the accepted rate constant for the reaction between hydroperoxyl and nitric oxide to yield hydroxyl and nitrogen dioxide, HO2 + NO yields OH + NO2, was revised upward by more than an order of magnitude, with a resultant increase in the predicted ozone reduction for chlorofluoromethanes by a factor of approximately 2. New calculations of the shuttle effect were made with use of the new rate constant data, again by five different modeling groups. The new value of the shuttle effect on the ozone layer was found to be 0.25 percent. The increase resulting from the revised rate constant is considerably less for space shuttle operations than for chlorofluoromethane production, because the new rate constant also increases the calculated rate of downward transport of shuttle exhaust products out of the stratosphere.
Comparative Studies on the Toxicokinetics of Benzo[a]pyrene in Pinctada martensii and Perna viridis.
Wang, Haihua; Cui, Lili; Cheng, Huamin; Zhang, Yu; Diao, Xiaoping; Wang, Jun
2017-05-01
Research on the kinetics of Benzo[a]pyrene (B[a]P) bioaccumulation in the clam Pinctada martensii and mussel Perna viridis showed that the initial rate of uptake was directly related to the PAH concentrations in the ambient environment. The uptake and depuration rate constants were different at the four B[a]P exposure levels, which indicated that the toxicokinetic rate constants mainly depended on the exposure levels of pollutants to the environment. In addition, the uptake rate constants of B[a]P were higher than the depuration rate constants in the entire experiment. The comparison demonstrated that mussels release B[a]P more rapidly than clams. The bioconcentration factors (BCFs) of B[a]P varied from 3335 to 12892 in the clam and 2373-6235 in the mussel. These findings on the bioaccumulation kinetics for petroleum hydrocarbons, in association with the critical body residue, will be valuable when choosing sensitive organisms to assess the potential ecotoxicological risk to the marine environment.
(210)Pb and compositional data of sediments from Rondonian lakes, Madeira River basin, Brazil.
Bonotto, Daniel Marcos; Vergotti, Marcelo
2015-05-01
Gold exploration has been intensive in Brazilian Amazon over the last 40 years, where the use of mercury as an amalgam has caused abnormal Hg concentrations in water bodies. Special attention has been directed to Madeira River due to fact it is a major tributary of Amazon River and that since 1986, gold exploration has been officially permitted along a 350km sector of the river. The (21)(0)Pb method has been used to date sediments taken from nine lakes situated in Madeira River basin, Rondônia State, and to verify where anthropogenic Hg might exist due to gold exploitation in Madeira River. Activity profiles of excess (21)(0)Pb determined in the sediment cores provided a means to evaluate the sedimentation rates using a Constant Flux: Constant Sedimentation (CF:CS) and Constant Rate of Supply (CRS) of unsupported/excess (21)(0)Pb models. A significant relationship was found between the CF:CS sedimentation rates and the mean values of the CRS sedimentation rates (Pearson correlation coefficient r=0.59). Chemical data were also determined in the sediments for identifying possible relationships with Hg occurring in the area. Significant values were found in statistical correlation tests realized among the Hg, major oxides and Total Organic Carbon (TOC) content in the sediments. The TOC increased in the sediment cores accompanied by a loss on ignition (LOI) increment, whereas silica decreased following a specific surface area raising associated to the TOC increase. The CRS model always provided ages within the permitted range of the (21)(0)Pb-method in the studied lakes, whereas the CF:CS model predicted two values above 140 years. Copyright © 2015 Elsevier Ltd. All rights reserved.
Solfrizzi, Vincenzo; Panza, Francesco; Imbimbo, Bruno P; D'Introno, Alessia; Galluzzo, Lucia; Gandin, Claudia; Misciagna, Giovanni; Guerra, Vito; Osella, Alberto; Baldereschi, Marzia; Di Carlo, Antonio; Inzitari, Domenico; Seripa, Davide; Pilotto, Alberto; Sabbá, Carlo; Logroscino, Giancarlo; Scafato, Emanuele
2015-01-01
Coffee, tea, or caffeine consumption may be protective against cognitive impairment and dementia. We estimated the association between change or constant habits in coffee consumption and the incidence of mild cognitive impairment (MCI). We evaluated 1,445 individuals recruited from 5,632 subjects, aged 65-84 year old, from the Italian Longitudinal Study on Aging, a population-based sample from eight Italian municipalities with a 3.5-year median follow-up. Cognitively normal older individuals who habitually consumed moderate amount of coffee (from 1 to 2 cups of coffee/day) had a lower rate of the incidence of MCI than those who never or rarely consumed coffee [1 cup/day: hazard ratio (HR): 0.47, 95% confidence interval (CI): 0.211 to 1.02 or 1-2 cups/day: HR: 0.31 95% CI: 0.13 to 0.75]. For cognitively normal older subjects who changed their coffee consumption habits, those increasing coffee consumption (>1 cup of coffee/day) had higher rate of the incidence of MCI compared to those with constant habits (up to ±1 cup of coffee/day) (HR: 1.80, 95% CI: 1.11 to 2.92) or those with reduced consumption (<1 cup of coffee/day) (HR: 2.17, 95% CI: 1.16 to 4.08). Finally, there was no significant association between subjects with higher levels of coffee consumption (>2 cups of coffee/day) and the incidence of MCI in comparison with those who never or rarely consumed coffee (HR: 0.26, 95% CI: 0.03 to 2.11). In conclusion, cognitively normal older individuals who increased their coffee consumption had a higher rate of developing MCI, while a constant in time moderate coffee consumption was associated to a reduced rate of the incidence of MCI.
Belden, Jason B; Lotufo, Guilherme R; Biedenbach, James M; Sieve, Kristal K; Rosen, Gunther
2015-05-01
The present study examined the potential use of polar organic chemical integrative samplers (POCIS) for exposure assessment of munitions constituents, including 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and their breakdown products (aminodinitrotoluenes [ADNTs], diaminonitrotoluenes [DANTs], and hexahydro-1,3,5-trinitroso-1,3,5-triazine [TNX]). Loss of munitions constituents from the sorbent phase after uptake was observed for the "pesticide" POCIS configuration but not for the "pharmaceutical" configuration. Therefore, the latter was selected for further investigation. Under constant exposure conditions, TNT, ADNTs, DANT, RDX, and atrazine (a common environmental contaminant) accumulated at a linear rate for at least 14 d, with sampling rates between 34 mL/d and 215 mL/d. When POCIS were exposed to fluctuating concentrations, analyte accumulation values were similar to values found during constant exposure, indicating that the sampler was indeed integrative. In contrast, caffeine (a common polar contaminant) and TNX did not accumulate at a linear rate and had a reduction in accumulation of greater than 50% on the POCIS during fluctuating exposures, demonstrating that POCIS did not sample those chemicals in an integrative manner. Moreover, in a flow-through microcosm containing the explosive formulation Composition B, TNT and RDX were readily measured using POCIS, despite relatively high turnover rates and thus reduced water concentrations. Mean water concentrations estimated from POCIS were ± 37% of mean water concentrations measured by traditional grab sample collection. Thus, POCIS were found to have high utility for quantifying exposure to most munitions constituents evaluated (TNT, ADNTs, and RDX) and atrazine. © 2014 SETAC.
In Vivo Force Decay of Niti Closed Coil Springs
Cox, Crystal; Nguyen, Tung; Koroluk, Lorne; Ko, Ching-Chang
2014-01-01
Introduction Nickel-titanium (NiTi) closed coil springs are purported to deliver constant forces over extended ranges of activation and working times. In vivo studies supporting this claim are limited. The objective of this study is to evaluate changes in force decay properties of NiTi closed coil springs after clinical use. Methods Pseudoelastic force-deflection curves for 30 NiTi coil springs (used intra-orally) and 15 matched laboratory control springs (simulated intra-oral conditions - artificial saliva, 37°C) were tested pre- and post-retrieval via Dynamic Mechanical Analysis (DMA) and the Instron machine, respectively, to evaluate amount of force loss and hysteresis change following 4, 8, or 12 weeks of working time (n=10 per group). Effect of the oral environment and clinical use on force properties were evaluated by comparing in vivo and in vitro data. Results The springs studied showed a statistically significant decrease in force (~12%) following 4 weeks of clinical use (p<0.01), with a further significant decrease (~7%) from 4–8 weeks (p=0.03) and force levels appearing to remain steady thereafter. Clinical space closure at an average rate of 0.91mm per month was still observed despite this decrease in force. In vivo and in vitro force loss data were not statistically different. Conclusions NiTi closed coil springs do not deliver constant forces when used intra-orally, but they still allow for space closure rates of ~1mm/month. PMID:24703289
PLATELET-RICH PLASMA IN ARTHROSCOPIC REPAIRS OF COMPLETE TEARS OF THE ROTATOR CUFF.
Malavolta, Eduardo Angeli; Gracitelli, Mauro Emilio Conforto; Sunada, Edwin Eiji; Benegas, Eduardo; de Santis Prada, Flavia; Neto, Raul Bolliger; Rodrigues, Marcelo Bordalo; Neto, Arnaldo Amado Ferreira; de Camargo, Olavo Pires
2012-01-01
To evaluate shoulder functional results and the retear rate of arthroscopic repair of the rotator cuff augmented with platelet-rich plasma (PRP). Prospective case series with single-row arthroscopic repair of the rotator cuff augmented with PRP. Only cases of isolated supraspinatus tears with retraction of less than 3 cm were included in this series. The PRP used was obtained by apheresis. It was applied on liquid consistency in its activated form, with the addition of autologous thrombin. Patients were evaluated after 12 months of the surgical procedure. The Constant-Murley, UCLA and VAS scales were used, and the retear rate was assessed using magnetic resonance imaging (MRI). Fourteen patients were evaluated (14 shoulders). The mean Constant-Murley score was 45.64 ± 12.29 before the operation and evolved to 80.78 ± 13.22 after the operation (p < 0.001). The UCLA score increased from 13.78 ± 5.66 to 31.43 ± 3.9 (p < 0.001). The patients' pain level decreased from a median of 7.5 (p25% = 6, p75% = 8) to 0.5 (p25% = 0, p75% = 3) (p = 0.0013) according to the VAS score. None of the patients presented complete retear. Three patients (21.4%) showed partial retear, without transfixation. Only one patient developed complications (adhesive capsulitis). Patients submitted to arthroscopic rotator cuff repair augmented with PRP showed significant functional improvement and none of them had complete retearing.
PLATELET-RICH PLASMA IN ARTHROSCOPIC REPAIRS OF COMPLETE TEARS OF THE ROTATOR CUFF
Malavolta, Eduardo Angeli; Gracitelli, Mauro Emilio Conforto; Sunada, Edwin Eiji; Benegas, Eduardo; de Santis Prada, Flavia; Neto, Raul Bolliger; Rodrigues, Marcelo Bordalo; Neto, Arnaldo Amado Ferreira; de Camargo, Olavo Pires
2015-01-01
Objective: To evaluate shoulder functional results and the retear rate of arthroscopic repair of the rotator cuff augmented with platelet-rich plasma (PRP).Methods: Prospective case series with single-row arthroscopic repair of the rotator cuff augmented with PRP. Only cases of isolated supraspinatus tears with retraction of less than 3 cm were included in this series. The PRP used was obtained by apheresis. It was applied on liquid consistency in its activated form, with the addition of autologous thrombin. Patients were evaluated after 12 months of the surgical procedure. The Constant-Murley, UCLA and VAS scales were used, and the retear rate was assessed using magnetic resonance imaging (MRI). Results: Fourteen patients were evaluated (14 shoulders). The mean Constant-Murley score was 45.64 ± 12.29 before the operation and evolved to 80.78 ± 13.22 after the operation (p < 0.001). The UCLA score increased from 13.78 ± 5.66 to 31.43 ± 3.9 (p < 0.001). The patients’ pain level decreased from a median of 7.5 (p25% = 6, p75% = 8) to 0.5 (p25% = 0, p75% = 3) (p = 0.0013) according to the VAS score. None of the patients presented complete retear. Three patients (21.4%) showed partial retear, without transfixation. Only one patient developed complications (adhesive capsulitis). Conclusion: Patients submitted to arthroscopic rotator cuff repair augmented with PRP showed significant functional improvement and none of them had complete retearing. PMID:27047894
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soudackov, Alexander; Hammes-Schiffer, Sharon
2015-11-17
Rate constant expressions for vibronically nonadiabatic proton transfer and proton-coupled electron transfer reactions are presented and analyzed. The regimes covered include electronically adiabatic and nonadiabatic reactions, as well as high-frequency and low-frequency regimes for the proton donor-acceptor vibrational mode. These rate constants differ from previous rate constants derived with the cumulant expansion approach in that the logarithmic expansion of the vibronic coupling in terms of the proton donor-acceptor distance includes a quadratic as well as a linear term. The analysis illustrates that inclusion of this quadratic term does not significantly impact the rate constants derived using the cumulant expansion approachmore » in any of the regimes studied. The effects of the quadratic term may become significant when using the vibronic coupling expansion in conjunction with a thermal averaging procedure for calculating the rate constant, however, particularly at high temperatures and for proton transfer interfaces with extremely soft proton donor-acceptor modes that are associated with extraordinarily weak hydrogen bonds. Even with the thermal averaging procedure, the effects of the quadratic term for weak hydrogen-bonding systems are less significant for more physically realistic models that prevent the sampling of unphysical short proton donor-acceptor distances, and the expansion of the coupling can be avoided entirely by calculating the couplings explicitly for the range of proton donor-acceptor distances. This analysis identifies the regimes in which each rate constant expression is valid and thus will be important for future applications to proton transfer and proton-coupled electron transfer in chemical and biological processes. We are grateful for support from National Institutes of Health Grant GM056207 (applications to enzymes) and the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences (applications to molecular electrocatalysts).« less
Low-level laser therapy on skeletal muscle inflammation: evaluation of irradiation parameters
NASA Astrophysics Data System (ADS)
Mantineo, Matías; Pinheiro, João P.; Morgado, António M.
2014-09-01
We evaluated the effect of different irradiation parameters in low-level laser therapy (LLLT) for treating inflammation induced in the gastrocnemius muscle of rats through cytokines concentration in systemic blood and analysis of muscle tissue. We used continuous (830 and 980 nm) and pulsed illuminations (830 nm). Animals were divided into five groups per wavelength (10, 20, 30, 40, and 50 mW), and a control group. LLLT was applied during 5 days with a constant irradiation time and area. TNF-α, IL-1β, IL-2, and IL-6 cytokines were quantified by ELISA. Inflammatory cells were counted using microscopy. Identical methodology was used with pulsed illumination. Average power (40 mW) and duty cycle were kept constant (80%) at five frequencies (5, 25, 50, 100, and 200 Hz). For continuous irradiation, treatment effects occurred for all doses, with a reduction of TNF-α, IL-1β, and IL-6 cytokines and inflammatory cells. Continuous irradiation at 830 nm was more effective, a result explained by the action spectrum of cytochrome c oxidase (CCO). Best results were obtained for 40 mW, with data suggesting a biphasic dose response. Pulsed wave irradiation was only effective for higher frequencies, a result that might be related to the rate constants of the CCO internal electron transfer process.
Garrido, M; Larrechi, M S; Rius, F X
2006-02-01
This study describes the combination of multivariate curve resolution-alternating least squares with a kinetic modeling strategy for obtaining the kinetic rate constants of a curing reaction of epoxy resins. The reaction between phenyl glycidyl ether and aniline is monitored by near-infrared spectroscopy under isothermal conditions for several initial molar ratios of the reagents. The data for all experiments, arranged in a column-wise augmented data matrix, are analyzed using multivariate curve resolution-alternating least squares. The concentration profiles recovered are fitted to a chemical model proposed for the reaction. The selection of the kinetic model is assisted by the information contained in the recovered concentration profiles. The nonlinear fitting provides the kinetic rate constants. The optimized rate constants are in agreement with values reported in the literature.
Rate constant for the reaction of atomic chlorine with methane
NASA Technical Reports Server (NTRS)
Lin, C. L.; Leu, M. T.; Demore, W. B.
1978-01-01
The rate constant and temperature dependence of the Cl + CH4 reaction have been investigated by the techniques of competitive chlorination of CH4/C2H6 mixtures and by discharge-flow/mass spectroscopy. The objectives were to determine an accurate value for the rate constant for use in stratospheric modeling, and to clarify discrepancies in results previously obtained by different techniques. The results deduced from the competitive chlorination study are in good agreement with the absolute values measured by the mass spectrometric method, and at temperatures above 300 K are in good agreement with measurements by other techniques based on resonance fluorescence detection of atomic chlorine. However, in the 220-300 K region, the competitive experiments indicate lower rate constants than those obtained by resonance fluorescence methods, and do not reproduce the curved Arrhenius plots seen in some of those studies.
NASA Astrophysics Data System (ADS)
Miyazaki, Tetsuo; Yoshimura, Toru; Mita, Kazuya; Suzuki, Keiji; Watanabe, Masami
1995-02-01
When an aqueous solution of albumin (0.1 kg dm -3) is irradiated by γ-rays at 295 K, albumin radicals with a long lifetime are observed by ESR. The reaction of vitamin C with the albumin radicals has been studied at 295 K in the albumin solution, which is considered as a model of cells. The rate constant for the reaction of vitamin C with the albumin radicals was measured as 0.014 dm 3 mol -1 s -1, which is much smaller than the reported rate constants (10 6-10 10 dm 3 mol -1 s -1) for the reaction of vitamin C with radicals in a dilute aqueous solution. The small rate constant for the reaction of vitamin C is ascribed to the reaction in polymer coils in the albumin solution, since vitamin C and albumin radicals diffuse very slowly in the coils.
Predicting DNA hybridization kinetics from sequence
NASA Astrophysics Data System (ADS)
Zhang, Jinny X.; Fang, John Z.; Duan, Wei; Wu, Lucia R.; Zhang, Angela W.; Dalchau, Neil; Yordanov, Boyan; Petersen, Rasmus; Phillips, Andrew; Zhang, David Yu
2018-01-01
Hybridization is a key molecular process in biology and biotechnology, but so far there is no predictive model for accurately determining hybridization rate constants based on sequence information. Here, we report a weighted neighbour voting (WNV) prediction algorithm, in which the hybridization rate constant of an unknown sequence is predicted based on similarity reactions with known rate constants. To construct this algorithm we first performed 210 fluorescence kinetics experiments to observe the hybridization kinetics of 100 different DNA target and probe pairs (36 nt sub-sequences of the CYCS and VEGF genes) at temperatures ranging from 28 to 55 °C. Automated feature selection and weighting optimization resulted in a final six-feature WNV model, which can predict hybridization rate constants of new sequences to within a factor of 3 with ∼91% accuracy, based on leave-one-out cross-validation. Accurate prediction of hybridization kinetics allows the design of efficient probe sequences for genomics research.
Landmeyer, J.E.; Chapelle, F.H.; Petkewich, M.D.; Bradley, P.M.
1998-01-01
Shallow, anaerobic groundwater near a former manufactured-gas plant (MGP) in Charleston, South Carolina, USA, contains mono- and polycyclic aromatic hydrocarbons (MAHs and PAHs, respectively). Between 1994 and 1997, a combination of field, laboratory, and numerical-flow and transport-model investigations were made to assess natural attenuation processes affecting MAH and PAH distributions. This assessment included determination of adsorption coefficients (K(ad)) and first-order biodegradation rate constants (K(bio)) using aquifer material from the MGP site and adjacent properties. Naphthalene adsorption (K(ad) = 1.35 x 10-7 m3/mg) to aquifer sediments was higher than toluene adsorption (K(ad) = 9.34 x 10-10 m3/mg), suggesting preferential toluene transport relative to naphthalene. However, toluene and benzene distributions measured in January 1994 were smaller than the naphthalene distribution. This scenario can be explained, in part, by the differences between biodegradation rates of the compounds. Aerobic first-order rate constants of 14C-toluene, 14C-benzene, and 14C-naphthalene degradation were similar (-0.84, -0.03, and 0.88 day-1, respectively), but anaerobic rate constants were higher for toluene and benzene (-0.002 and -0.00014 day-1, respectively) than for naphthalene (-0.000046 day-1). Both areal and cross-sectional numerical simulations were used to test the hypothesis suggested by these rate differences that MAH compounds will be contained relative to PAHs. Predictive simulations indicated that the distributions of toluene and benzene reach steady-state conditions before groundwater flow lines discharge to an adjacent surface-water body, but do discharge low concentrations of naphthalene. Numerical predictions were 'audited' by measuring concentrations of naphthalene, toluene, and benzene at the site in early 1997. Measured naphthalene and toluene concentrations were substantially reduced and the areal extent of contamination smaller than was both observed in January 1994 and predicted for 1997. Measured 1997 benzene concentrations and distribution were shown to be relatively unchanged from those measured in 1994, and similar to predictions for 1997.The natural attenuation processes affecting mono- and polycyclic aromatic hydrocarbons (MAHs and PAHs, respectively) distributions in groundwater near a former manufactured-gas plant in South Carolina, USA was evaluated. This assessment included determination of adsorption coefficients and first-order biodegradation rate constants. Detailed results obtained in the study are presented.
DESIGN OF A SIMPLE SLOW COOLING DEVICE FOR CRYOPRESERVATION OF SMALL BIOLOGICAL SAMPLES.
de Paz, Leonardo Juan; Robert, Maria Celeste; Graf, Daniel Adolfo; Guibert, Edgardo Elvio; Rodriguez, Joaquin Valentin
2015-01-01
Slow cooling is a cryopreservation methodology where samples are cooled to its storage temperature at controlled cooling rates. Design, construction and evaluation of a simple and low cost device for slow cooling of small biological samples. The device was constructed based on Pye's freezer idea. A Dewar flask filled with liquid nitrogen was used as heat sink and a methanol bath containing the sample was cooled at constant rates using copper bars as heat conductor. Sample temperature may be lowered at controlled cooling rate (ranging from 0.4°C/min to 6.0°C/min) down to ~-60°C, where it could be conserved at lower temperatures. An example involving the cryopreservation of Neuro-2A cell line showed a marked influence of cooling rate over post preservation cell viability with optimal values between 2.6 and 4.6°C/min. The cooling device proved to be a valuable alternative to more expensive systems allowing the assessment of different cooling rates to evaluate the optimal condition for cryopreservation of such samples.
NASA Astrophysics Data System (ADS)
Emmi, S. S.; Beggiato, G.; Casalbore-Miceli, G.
Chlorine atoms formed during the pulse radiolysis of deaerated methylene chloride at room temperature react with the solvent in the first 70 ns from the pulse at a bimolecular rate constant k4 ≈ 6 × 10 6 M -1s -1 and are available to otther reactions only at solute concentrations higher than 10 -3M. A u.v.-vis. spectrum is detected, the main features of which are a peak at 350 nm, a broad absorption in the vis. and a remarkable band in the u.v. The "350" species undertakes a fast first order decay ( k = 9.0 × 10 7s -1) which is followed by a slower decay ( k = 5.3 × 10 4s -1). The "u.v." species is a mixing of mono-and dichloromethyl radicals. These radicals recombine and cross-combine as if they were a single species; a rate constant 2 k 9 = 2 k 10 less than 2.4 × 10 9M -1s -1 for the combination reactions can be evaluated from the observed decay rate. Configurational factors are considered in connection with the reactivity of chlorosubstituted methyl radicals.
Chen, Z-Z; Xu, L-X; Li, L-L; Wu, H-B; Xu, Y-Y
2018-06-21
The oriental fruit moth, Grapholita molesta, is an important pest in many commercial orchards including apple, pear and peach orchards, and responsible for substantial economic losses every year. To help in attaining a comprehensive and thorough understanding of the ecological tolerances of G. molesta, we collected life history data of individuals reared on apples under different constant temperature regimes and compared the data with moths reared under a variable outdoor temperature environment. Because G. molesta individuals reared at a constant 25°C had the heaviest pupal weight, the highest survival rate from egg to adult, highest finite rate of increase, and greatest fecundity, 25°C was considered as the optimum developmental temperature. The G. molesta population reared at a constant 31°C had the shortest development time, lowest survival rate and fecundity, resulting in population parameters of r < 0, λ < 1, lead to negative population growth. The population parameters r and λ reared under fluctuating temperature were higher than that reared under constant temperatures, the mean generation time (T) was shorter than it was in all of the constant temperatures treatments. This would imply that the outdoor G. molesta population would have a higher population growth potential and faster growth rate than indoor populations raised at constant temperatures. G. molesta moths reared under fluctuating temperature also had a higher fertility than moths reared under constant temperatures (except at 25°C). Our findings indicated that the population raised under outdoor fluctuating temperature conditions had strong environment adaptiveness.
Deng, Zhe; Jiao, Meng-Jiao; Zhang, Jun; Xian, Jing; Zhang, Qing; Chen, Chang; Wang, Yue-Sheng; Liu, An
2017-07-01
Quality constant evaluation is a comprehensive method for grades evaluation of traditional Chinese medicine pieces, but when it comes to Glycyrrizae Radix et Rhizome pieces, grades evaluation is diverged due to significant difference in contents of liquiritin and glycyrrhizic acid and unreasonable weight of index. To solve this problem, we have established a relative quality constant method in this paper to evaluate grades of Glycyrrizae Radix et Rhizome pieces. Twenty-nine batches of different quality samples were collected and tested, and finally, 17 batches of them were chosen as researcher objects. The results revealed that the range of the relative quality constant of these samples was from 1.78 to 11.49. When Glycyrrizae Radix et Rhizome pieces are divided into three grades: the relative quality constant of first grade is greater than or equal to 9.19; the second grade is greater than or equal to 5.75 but less than 9.19; while the third grade is less than 5.75. This research indicates that relative quality constant can divide the grades of herbal pieces in a scientific, reasonable, objective and specific way and remedy the shortage of quality constant perfectly. It provides a novel mode for grading pieces of Chinese medicine that contains multi-target ingredients. Copyright© by the Chinese Pharmaceutical Association.
Does phenomenological kinetics provide an adequate description of heterogeneous catalytic reactions?
Temel, Burcin; Meskine, Hakim; Reuter, Karsten; Scheffler, Matthias; Metiu, Horia
2007-05-28
Phenomenological kinetics (PK) is widely used in the study of the reaction rates in heterogeneous catalysis, and it is an important aid in reactor design. PK makes simplifying assumptions: It neglects the role of fluctuations, assumes that there is no correlation between the locations of the reactants on the surface, and considers the reacting mixture to be an ideal solution. In this article we test to what extent these assumptions damage the theory. In practice the PK rate equations are used by adjusting the rate constants to fit the results of the experiments. However, there are numerous examples where a mechanism fitted the data and was shown later to be erroneous or where two mutually exclusive mechanisms fitted well the same set of data. Because of this, we compare the PK equations to "computer experiments" that use kinetic Monte Carlo (kMC) simulations. Unlike in real experiments, in kMC the structure of the surface, the reaction mechanism, and the rate constants are known. Therefore, any discrepancy between PK and kMC must be attributed to an intrinsic failure of PK. We find that the results obtained by solving the PK equations and those obtained from kMC, while using the same rate constants and the same reactions, do not agree. Moreover, when we vary the rate constants in the PK model to fit the turnover frequencies produced by kMC, we find that the fit is not adequate and that the rate constants that give the best fit are very different from the rate constants used in kMC. The discrepancy between PK and kMC for the model of CO oxidation used here is surprising since the kMC model contains no lateral interactions that would make the coverage of the reactants spatially inhomogeneous. Nevertheless, such inhomogeneities are created by the interplay between the rate of adsorption, of desorption, and of vacancy creation by the chemical reactions.
NASA Astrophysics Data System (ADS)
Wang, W.; Lee, C.; Cochran, K. K.; Armstrong, R. A.
2016-02-01
Sinking particles play a pivotal role transferring material from the surface to the deeper ocean via the "biological pump". To quantify the extent to which these particles aggregate and disaggregate, and thus affect particle settling velocity, we constructed a box model to describe organic matter cycling. The box model was fit to chloropigment data sampled in the 2005 MedFlux project using Indented Rotating Sphere sediment traps operating in Settling Velocity (SV) mode. Because of the very different pigment compositions of phytoplankton and fecal pellets, chloropigments are useful as proxies to record particle exchange. The maximum likelihood statistical method was used to estimate particle aggregation, disaggregation, and organic matter remineralization rate constants. Eleven settling velocity categories collected by SV sediment traps were grouped into two sinking velocity classes (fast- and slow-sinking) to decrease the number of parameters that needed to be estimated. Organic matter degradation rate constants were estimated to be 1.2, 1.6, and 1.1 y^-1, which are equivalent to degradation half-lives of 0.60, 0.45, and 0.62 y^-1, at 313, 524, and 1918 m, respectively. Rate constants of chlorophyll a degradation to pheopigments (pheophorbide, pheophytin, and pyropheophorbide) were estimated to be 0.88, 0.93, and 1.2 y^-1, at 313, 524, and 1918 m, respectively. Aggregation rate constants varied little with depth, with the highest value being 0.07 y^-1 at 524 m. Disaggregation rate constants were highest at 524 m (14 y^-1) and lowest at 1918 m (9.6 y^-1)
Escherichia coli promoter sequences predict in vitro RNA polymerase selectivity.
Mulligan, M E; Hawley, D K; Entriken, R; McClure, W R
1984-01-11
We describe a simple algorithm for computing a homology score for Escherichia coli promoters based on DNA sequence alone. The homology score was related to 31 values, measured in vitro, of RNA polymerase selectivity, which we define as the product KBk2, the apparent second order rate constant for open complex formation. We found that promoter strength could be predicted to within a factor of +/-4.1 in KBk2 over a range of 10(4) in the same parameter. The quantitative evaluation was linked to an automated (Apple II) procedure for searching and evaluating possible promoters in DNA sequence files.
Wahman, David G; Speitel, Gerald E; Katz, Lynn E
2017-11-21
Chloramine chemistry is complex, with a variety of reactions occurring in series and parallel and many that are acid or base catalyzed, resulting in numerous rate constants. Bromide presence increases system complexity even further with possible bromamine and bromochloramine formation. Therefore, techniques for parameter estimation must address this complexity through thoughtful experimental design and robust data analysis approaches. The current research outlines a rational basis for constrained data fitting using Brønsted theory, application of the microscopic reversibility principle to reversible acid or base catalyzed reactions, and characterization of the relative significance of parallel reactions using fictive product tracking. This holistic approach was used on a comprehensive and well-documented data set for bromamine decomposition, allowing new interpretations of existing data by revealing that a previously published reaction scheme was not robust; it was not able to describe monobromamine or dibromamine decay outside of the conditions for which it was calibrated. The current research's simplified model (3 reactions, 17 constants) represented the experimental data better than the previously published model (4 reactions, 28 constants). A final model evaluation was conducted based on representative drinking water conditions to determine a minimal model (3 reactions, 8 constants) applicable for drinking water conditions.
NASA Technical Reports Server (NTRS)
Green, Sheldon
1993-01-01
Rate constants for excitation of CO by collisions with H2O are needed to understand recent observations of comet spectra. These collision rates are closely related to spectral line shape parameters, especially those for Raman Q-branch spectra. Because such spectra have become quite important for thermometry applications, much effort has been invested in understanding this process. Although it is not generally possible to extract state-to-state rate constants directly from the data as there are too many unknowns, if the matrix of state-to-state rates can be expressed in terms of a rate-law model which depends only on rotational quantum numbers plus a few parameters, the parameters can be determined from the data; this has been done with some success for many systems, especially those relevant to combustion processes. Although such an analysis has not yet been done for CO-H2O, this system is expected to behave similarly to N2-H2O which has been well studies; modifications of parameters for the latter system are suggested which should provide a reasonable description of rate constants for the former.
An analytical model for in situ extraction of organic vapors
Roy, W.R.; Griffin, R.A.
1991-01-01
This paper introduces a simple convective-flow model that can be used as a screening tool and for conducting sensitivity analyses for in situ vapor extraction of organic compounds from porous media. An assumption basic to this model was that the total mass of volatile organic chemicals (VOC) exists in three forms: as vapors, in the soil solution, and adsorbed to soil particles. The equilibrium partitioning between the vapor-liquid phase was described by Henry's law constants (K(H)) and between the liquid-soil phase by soil adsorption constants (K(d)) derived from soil organic carbon-water partition coefficients (K(oc)). The model was used to assess the extractability of 36 VOCs from a hypothetical site. Most of the VOCs appeared to be removable from soil by this technology, although modeling results suggested that rates for the alcohols and ketones may be very slow. In general, rates for weakly adsorbed compounds (K(oc) < 100 mL/g) were significantly higher when K(H) was greater than 10-4 atm??m3??mol-1. When K(oc) was greater than about 100 mL/g, the rates of extraction were sensitive to the amount of organic carbon present in the soil. The air permeability of the soil material (k) was a critical factor. In situ extraction needs careful evaluation when k is less than 10 millidarcies to determine its applicability. An increase in the vacuum applied to an extraction well accelerated removal rates but the diameter of the well had little effect. However, an increase in the length of the well screen open to the contaminated zone significantly affected removal rates, especially in low-permeability materials.This paper introduces a simple convective-flow model that can be used as a screening tool and for conducting sensitivity analyses for in situ vapor extraction of organic compounds from porous media. An assumption basic to this model was that the total mass of volatile organic chemicals (VOC) exists in three forms: as vapors, in the soil solution, and adsorbed to soil particles. The equilibrium partitioning between the vapor-liquid phase was described by Henry's law constants (KH) and between the liquid-soil phase by soil adsorption constants (Kd) derived from soil organic carbon-water partition coefficients (Koc). The model was used to assess the extractability of 36 VOCs from a hypothetical site. Most of the VOCs appeared to be removable from soil by this technology, although modeling results suggested that rates for the alcohols and ketones may be very slow. In general, rates for weakly adsorbed compounds (Koc < 100 mL/g) were significantly higher when KH was greater than 10-4atm-m3-mol-1. When Koc was greater than about 100 mL/g, the rates of extraction were sensitive to the amount of organic carbon present in the soil. The air permeability of the soil material (k) was a critical factor. In situ extraction needs careful evaluation when k is less than 10 millidarcies to determine its applicability. An increase in the vacuum applied to an extraction well accelerated removal rates but the diameter of the well had little effect. However, an increase in the length of the well screen open to the contaminated zone significantly affected removal rates, especially in low-permeability materials.
Yoshioka, Sumie; Miyazaki, Tamaki; Aso, Yukio
2006-12-01
The relative influences of chemical activation energy and molecular mobility in determining chemical reactivity were evaluated for insulin lyophilized with alpha,beta-poly(N-hydroxyethyl)-L-aspartamide (PHEA), and compared with that for insulin lyophilized with trehalose, which had been found to have the ability to decrease the molecular mobility of insulin at low humidity. The ratio of the observed rate constant k(obs) to the chemical activation energy-controlled rate constant k(act) (k(obs)/k(act)) at glass transition temperature (T(g)) was estimated to be approximately 0.6 and 0.8 at 6% RH and 12% RH, respectively, indicating that the degradation rate is significantly affected by molecular mobility at lower humidity conditions. However, these k(obs)/k(act) values at T(g) were larger than those for the insulin-trehalose system, and changes in the temperature-dependent slope around T(g) were less obvious than those for the insulin-trehalose system. Thus, the contribution of molecular mobility to the degradation rate in the insulin-PHEA system appeared to be less intense than that in the insulin-trehalose system. The subtle change in the temperature-dependent slope around T(g) observed in the insulin-PHEA system brought about a significant bias in shelf-life estimation when the reaction rate was extrapolated from temperatures above T(g) according to the Arrhenius equation. (c) 2006 Wiley-Liss, Inc. and the American Pharmacists Association
TiC growth in C fiber/Ti alloy composites during liquid infiltration
NASA Technical Reports Server (NTRS)
Warrier, S. G.; Lin, R. Y.
1993-01-01
A cylindrical model is developed for predicting the reaction zone thickness of carbon fiber-reinforced Ti-matrix composites, and good agreement is obtained between its predicted values and experimental results. The reaction-rate constant for TiC formation is estimated to be 1.5 x 10 exp -9 sq cm/sec. The model is extended to evaluate the relationship between C-coating thicknesses on SiC fibers and processing times.
METHOD FOR THE STUDY OF THE LIVER BLOOD FLOW USING GAMMA-EMITTING RADIONUCLIDES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baptista, A.M.; Carvalho, J.S.
1959-10-31
A method is described for the evaluation of liver blood flow values by radioactivity measurements of gamma-emitting radionuclides, in colloid form, using a scintillation detector positioned over the liver region. It is shown that the disappearance rate constant of the nuclide from the blood can be calculated from the curves obtained. Advantages of the method, including the use of small amounts of radioactive materials, are discussed. (auth)
Effects of Cigarette Smoking on Body Weight, Energy Expenditure, Appetite and Endocrine Function
1982-03-01
the present study diet was kept constant iu both caloric content and composition and an on-off-on design was employed to evaluate the independent...plasma substrate concentrations, appetite and metabolic rate were thus assessed independently of change in caloric intake. Only small, statistically...day control period (smoking control, SC period), the subjects smoked their usual pack a day of cigarettes while taking a diet of controlled composition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miranda, D.; Instituto Politécnico de Viana do Castelo, Viana do Castelo; Miranda, F.
2016-06-08
Tailoring battery geometries is essential for many applications, as geometry influences the delivered capacity value. Two geometries, frame and conventional, have been studied and, for a given scan rate of 330C, the square frame shows a capacity value of 305,52 Ahm{sup −2}, which is 527 times higher than the one for the conventional geometry for a constant the area of all components.
Modeling and simulation of count data.
Plan, E L
2014-08-13
Count data, or number of events per time interval, are discrete data arising from repeated time to event observations. Their mean count, or piecewise constant event rate, can be evaluated by discrete probability distributions from the Poisson model family. Clinical trial data characterization often involves population count analysis. This tutorial presents the basics and diagnostics of count modeling and simulation in the context of pharmacometrics. Consideration is given to overdispersion, underdispersion, autocorrelation, and inhomogeneity.
Shuman, Nicholas S; Miller, Thomas M; Viggiano, Albert A; Troe, Jürgen
2013-05-28
Thermal rate constants and product branching fractions for electron attachment to CF3Br and the CF3 radical have been measured over the temperature range 300-890 K, the upper limit being restricted by thermal decomposition of CF3Br. Both measurements were made in Flowing Afterglow Langmuir Probe apparatuses; the CF3Br measurement was made using standard techniques, and the CF3 measurement using the Variable Electron and Neutral Density Attachment Mass Spectrometry technique. Attachment to CF3Br proceeds exclusively by the dissociative channel yielding Br(-), with a rate constant increasing from 1.1 × 10(-8) cm(3) s(-1) at 300 K to 5.3 × 10(-8) cm(3) s(-1) at 890 K, somewhat lower than previous data at temperatures up to 777 K. CF3 attachment proceeds through competition between associative attachment yielding CF3 (-) and dissociative attachment yielding F(-). Prior data up to 600 K showed the rate constant monotonically increasing, with the partial rate constant of the dissociative channel following Arrhenius behavior; however, extrapolation of the data using a recently proposed kinetic modeling approach predicted the rate constant to turn over at higher temperatures, despite being only ~5% of the collision rate. The current data agree well with the previous kinetic modeling extrapolation, providing a demonstration of the predictive capabilities of the approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Staehle, R.W.; Agrawal, A.K.
1978-01-01
The straining electrode technique was used to evaluate the stress corrosion cracking (SCC) susceptibility of AISI 304 stainless steel in 20N NaOH solution, and of Inconel 600 Alloy and Incoloy 800 Alloy in boiling 17.5N NaOH solution. The crack propagation rate estimated from the straining experiments correlated well with the previous constant load experiments. It was found that the straining electrode technique is a useful method for estimating, through short term experiments, parameters like crack propagation rate, crack morphology, and repassivation rate, as a function of the electrode potential. The role of alloying elements on the crack propagation rate inmore » the above alloys are also discussed.« less
Rate dependent deformation of porous sandstone across the brittle-ductile transition
NASA Astrophysics Data System (ADS)
Jefferd, M.; Brantut, N.; Mitchell, T. M.; Meredith, P. G.
2017-12-01
Porous sandstones transition from dilatant, brittle deformation at low pressure, to compactant, ductile deformation at high pressure. Both deformation modes are driven by microcracking, and are expected to exhibit a time dependency due to chemical interactions between the pore fluid and the rock matrix. In the brittle regime, time-dependent failure and brittle creep are well documented. However, much less is understood in the ductile regime. We present results from a series of triaxial deformation experiments, performed in the brittle-ductile transition zone of fluid saturated Bleurswiller sandstone (initial porosity = 23%). Samples were deformed at 40 MPa effective pressure, to 4% axial strain, under either constant strain rate (10-5 s-1) or constant stress (creep) conditions. In addition to stress, axial strain and pore volume change, P wave velocities and acoustic emission were monitored throughout. During constant stress tests, the strain rate initially decreased with increasing strain, before reaching a minimum and accelerating to a constant level beyond 2% axial strain. When plotted against axial strain, the strain rate evolution under constant stress conditions, mirrors the stress evolution during the constant strain rate tests; where strain hardening occurs prior to peak stress, which is followed by strain softening and an eventual plateau. In all our tests, the minimum strain rate during creep occurs at the same inelastic strain as the peak stress during constant strain tests, and strongly decreases with decreasing applied stress. The microstructural state of the rock, as interpreted from similar volumetric strain curves, as well as the P-wave velocity evolution and AE production rate, appears to be solely a function of the total inelastic strain, and is independent of the length of time required to reach said strain. We tested the sensitivity of fluid chemistry on the time dependency, through a series of experiments performed under similar stress conditions, but with chemically inert decane instead of water as the pore fluid. Under the same applied stress, decane saturated samples reached a minimum strain rate 2 orders of magnitude lower than the water saturated samples. This is consistent with a mechanism of subcritical crack growth driven by chemical interactions between the pore fluid and the rock.
Continental collision slowing due to viscous mantle lithosphere rather than topography.
Clark, Marin Kristen
2012-02-29
Because the inertia of tectonic plates is negligible, plate velocities result from the balance of forces acting at plate margins and along their base. Observations of past plate motion derived from marine magnetic anomalies provide evidence of how continental deformation may contribute to plate driving forces. A decrease in convergence rate at the inception of continental collision is expected because of the greater buoyancy of continental than oceanic lithosphere, but post-collisional rates are less well understood. Slowing of convergence has generally been attributed to the development of high topography that further resists convergent motion; however, the role of deforming continental mantle lithosphere on plate motions has not previously been considered. Here I show that the rate of India's penetration into Eurasia has decreased exponentially since their collision. The exponential decrease in convergence rate suggests that contractional strain across Tibet has been constant throughout the collision at a rate of 7.03 × 10(-16) s(-1), which matches the current rate. A constant bulk strain rate of the orogen suggests that convergent motion is resisted by constant average stress (constant force) applied to a relatively uniform layer or interface at depth. This finding follows new evidence that the mantle lithosphere beneath Tibet is intact, which supports the interpretation that the long-term strain history of Tibet reflects deformation of the mantle lithosphere. Under conditions of constant stress and strength, the deforming continental lithosphere creates a type of viscous resistance that affects plate motion irrespective of how topography evolved.
NASA Astrophysics Data System (ADS)
Filippova, Nina V.; Glagolev, Mikhail V.
2018-03-01
The method of standard litter (tea) decomposition was implemented to compare decomposition rate constants (k) between different peatland ecosystems and coniferous forests in the middle taiga zone of West Siberia (near Khanty-Mansiysk). The standard protocol of TeaComposition initiative was used to make the data usable for comparisons among different sites and zonobiomes worldwide. This article sums up the results of short-term decomposition (3 months) on the local scale. The values of decomposition rate constants differed significantly between three ecosystem types: it was higher in forest compared to bogs, and treed bogs had lower decomposition constant compared to Sphagnum lawns. In general, the decomposition rate constants were close to ones reported earlier for similar climatic conditions and habitats.
ESTIMATION OF CARBOXYLIC ACID ESTER HYDROLYSIS RATE CONSTANTS
SPARC chemical reactivity models were extended to calculate hydrolysis rate constants for carboxylic acid esters from molecular structure. The energy differences between the initial state and the transition state for a molecule of interest are factored into internal and external...
NASA Astrophysics Data System (ADS)
Nguyen, Thanh Lam; Stanton, John F.
2017-10-01
Hydrogen abstraction from NH3 by OH to produce H2O and NH2—an important reaction in combustion of NH3 fuel—was studied with a theoretical approach that combines high level quantum chemistry and advanced chemical kinetics methods. Thermal rate constants calculated from first principles agree well (within 5%-20%) with available experimental data over a temperature range that extends from 200 to 2500 K. Quantum mechanical tunneling effects were found to be important; they lead to a decided curvature and non-Arrhenius behavior for the rate constant.
Nguyen, Thanh Lam; Stanton, John F
2017-10-21
Hydrogen abstraction from NH 3 by OH to produce H 2 O and NH 2 -an important reaction in combustion of NH 3 fuel-was studied with a theoretical approach that combines high level quantum chemistry and advanced chemical kinetics methods. Thermal rate constants calculated from first principles agree well (within 5%-20%) with available experimental data over a temperature range that extends from 200 to 2500 K. Quantum mechanical tunneling effects were found to be important; they lead to a decided curvature and non-Arrhenius behavior for the rate constant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knyazev, V.D.; Dubinsky, I.A.; Slagle, I.R.
1994-10-27
The kinetics of the unimolecular decomposition of the sec-C[sub 4]H[sub 9] radical has been studied experimentally in a heated tubular flow reactor coupled to a photoionization mass spectrometer. Rate constants for the decomposition were determined in time-resolved experiments as a function of temperature (598-680 K) and bath gas density (3-18) [times] 10[sup 16] molecules cm[sup [minus]3] in three bath gases: He, Ar, and N[sub 2]. The rate constants are in the falloff region under the conditions of the experiments. The results of earlier studies of the reverse reaction were reanalyzed and used to create a transition state model of themore » reaction. This transition state model was used to obtain values of the microcanonical rate constants, k (E). Falloff behavior was reproduced using master equation modeling with the energy barrier height for decomposition (necessary to calculate k(E)) obtained from optimization of the agreement between experimental and calculated rate constants. The resulting model of the reaction provides the high-pressure limit rate constants for the decomposition reaction and the reverse reaction. 52 refs., 7 figs., 3 tabs.« less
Lamberson, Connor R; Muchalski, Hubert; McDuffee, Kari B; Tallman, Keri A; Xu, Libin; Porter, Ned A
2017-10-01
The free radical chain autoxidation of cholesterol and the oxidation products formed, i.e. oxysterols, have been the focus of intensive study for decades. The peroxidation of sterol precursors to cholesterol such as 7-dehydrocholesterol (7-DHC) and desmosterol as well as their oxysterols has received less attention. The peroxidation of these sterol precursors can become important under circumstances in which genetic conditions or exposures to small molecules leads to an increase of these biosynthetic intermediates in tissues and fluids. 7-DHC, for example, has a propagation rate constant for peroxidation some 200 times that of cholesterol and this sterol is found at elevated levels in a devastating human genetic condition, Smith-Lemli-Opitz syndrome (SLOS). The propagation rate constants for peroxidation of sterol intermediates on the biosynthetic pathway to cholesterol were determined by a competition kinetic method, i.e. a peroxyl radical clock. In this work, propagation rate constants for lathosterol, zymostenol, desmosterol, 7-dehydrodesmosterol and other sterols in the Bloch and Kandutsch-Russell pathways are assigned and these rate constants are related to sterol structural features. Furthermore, potential oxysterols products are proposed for sterols whose oxysterol products have not been determined. Copyright © 2017 Elsevier B.V. All rights reserved.
Monitoring survival rates of Swainson's Thrush Catharus ustulatus at multiple spatial scales
Rosenberg, D.K.; DeSante, D.F.; McKelvey, K.S.; Hines, J.E.
1999-01-01
We estimated survival rates of Swainson's Thrush, a common, neotropical, migratory landbird, at multiple spatial scales, using data collected in the western USA from the Monitoring Avian Productivity and Survivorship Programme. We evaluated statistical power to detect spatially heterogeneous survival rates and exponentially declining survival rates among spatial scales with simulated populations parameterized from results of the Swainson's Thrush analyses. Models describing survival rates as constant across large spatial scales did not fit the data. The model we chose as most appropriate to describe survival rates of Swainson's Thrush allowed survival rates to vary among Physiographic Provinces, included a separate parameter for the probability that a newly captured bird is a resident individual in the study population, and constrained capture probability to be constant across all stations. Estimated annual survival rates under this model varied from 0.42 to 0.75 among Provinces. The coefficient of variation of survival estimates ranged from 5.8 to 20% among Physiographic Provinces. Statistical power to detect exponentially declining trends was fairly low for small spatial scales, although large annual declines (3% of previous year's rate) were likely to be detected when monitoring was conducted for long periods of time (e.g. 20 years). Although our simulations and field results are based on only four years of data from a limited number and distribution of stations, it is likely that they illustrate genuine difficulties inherent to broadscale efforts to monitor survival rates of territorial landbirds. In particular, our results suggest that more attention needs to be paid to sampling schemes of monitoring programmes, particularly regarding the trade-off between precision and potential bias of parameter estimates at varying spatial scales.
Monitoring survival rates of Swainson's Thrush Catharus ustulatus at multiple spatial scales
Rosenberg, D.K.; DeSante, D.F.; McKelvey, K.S.; Hines, J.E.
1999-01-01
We estimated survival rates of Swainson's Thrush, a common, neotropical, migratory landbird, at multiple spatial scales, using data collected in the western USA from the Monitoring Avian Productivity and Survivorship Programme. We evaluated statistical power to detect spatially heterogeneous survival rates and exponentially declining survival rates among spatial scales with simulated populations parameterized from results of the Swainson's Thrush analyses. Models describing survival rates as constant across large spatial scales did not fit the data. The model we chose as most appropriate to describe survival rates of Swainson's Thrush allowed survival rates to vary among Physiographic Provinces, included a separate parameter for the probability that a newly captured bird is a resident individual in the study population, and constrained capture probability to be constant across all stations. Estimated annual survival rates under this model varied from 0.42 to 0.75 among Provinces. The coefficient of variation of survival estimates ranged from 5.8 to 20% among Physiographic Provinces. Statistical power to detect exponentially declining trends was fairly low for small spatial scales, although large annual declines (3% of previous year's rate) were likely to be detected when monitoring was conducted for long periods of time (e.g. 20 years). Although our simulations and field results are based on only four years of date from a limited number and distribution of stations, it is likely that they illustrate genuine difficulties inherent to broadscale efforts to monitor survival rates of territorial landbirds. In particular, our results suggest that more attention needs to be paid to sampling schemes of monitoring programmes particularly regarding the trade-off between precison and potential bias o parameter estimates at varying spatial scales.
Environmental Fate Studies on Certain Munition Wastewater Constituents - Literature Review
1980-03-01
gram-negative bacteria , actinaycetes, yeasts, and fungi. They found that TNT at 50 Mgtter severely inhibited the growth of these organisms in wost...i , conditions . I Biodegradation ,. Chambers et al. (1963) reported evidence of degradation of 2,4-DNT with phenol-adapted bacteria and 100 mg/liter...coefficient based on organic carbon contentoc H - Henry’s Law constant kA - Hydrolysis rate constant under acidic conditions k.M - Hydrolysis rate constant
Kinetics of FeII-polyaminocarboxylate oxidation by molecular oxygen
NASA Astrophysics Data System (ADS)
Wilson, Jessica M.; Farley, Kevin J.; Carbonaro, Richard F.
2018-03-01
Complexation of iron by naturally-occurring and synthetic organic ligands has a large effect on iron oxidation and reduction rates which in turn affect the aqueous geochemistry of many other chemical constituents. In this study, the kinetics of FeII oxidation in the presence of the polyaminocarboxylate synthetic chelating agents ethylene glycol tetraacetic acid (EGTA) and trimethylenediamine-N,N,N‧,N‧-tetraacetic acid (TMDTA) was investigated over the pH range 5.50-8.53. Batch oxidation experiments in the presence of molecular oxygen were conducted using a 2:1 M concentration ratio of polyaminocarboxylate (ligand, L) to FeII. The experimental data resembled first order kinetics for the oxidation of FeII-L to FeIII-L and observed rate constants at pH 6.0 were comparable to rate constants for the oxidation of inorganic FeII. Similar to other structurally-similar FeII-polyaminocarboxylate complexes, oxidation rates of FeII-EGTA and FeII-TMDTA decrease with increasing pH, which is the opposite trend for the oxidation of FeII complexed with inorganic ligands. However, the oxidation rates of FeII complexed with EGTA and TMDTA were considerably lower (4-5 orders of magnitude) than FeII complexed to ethylenediaminetetraacetic acid (EDTA). The distinguishing feature of the slower-reacting complexes is that they have a longer backbone between diamine functional groups. An analytical equilibrium model was developed to determine the contributions of the species FeIIL2- and FeII(H)L- to the overall oxidation rate of FeII-L. Application of this model indicated that the protonated FeII(H)L species are more than three orders of magnitude more reactive than FeIIL2-. These rate constants were used in a coupled kinetic equilibrium numerical model where the ligand to iron ratio (TOTL:TOTFe) and pH were varied to evaluate the effect on the FeII oxidation rate. Overall, increasing TOTL:TOTFe for EGTA and TMDTA enhances FeII oxidation rates at lower pH and inhibits FeII oxidation rates at higher pH. Finally, this work demonstrates that the rate of FeII oxidation is very sensitive to the identity and structure of the polyaminocarboxylate chelating agent, which has implications for any metal or organic chemical that reacts either directly or indirectly with iron.
Yogurtcu, Osman N.; Johnson, Margaret E.
2015-01-01
The dynamics of association between diffusing and reacting molecular species are routinely quantified using simple rate-equation kinetics that assume both well-mixed concentrations of species and a single rate constant for parameterizing the binding rate. In two-dimensions (2D), however, even when systems are well-mixed, the assumption of a single characteristic rate constant for describing association is not generally accurate, due to the properties of diffusional searching in dimensions d ≤ 2. Establishing rigorous bounds for discriminating between 2D reactive systems that will be accurately described by rate equations with a single rate constant, and those that will not, is critical for both modeling and experimentally parameterizing binding reactions restricted to surfaces such as cellular membranes. We show here that in regimes of intrinsic reaction rate (ka) and diffusion (D) parameters ka/D > 0.05, a single rate constant cannot be fit to the dynamics of concentrations of associating species independently of the initial conditions. Instead, a more sophisticated multi-parametric description than rate-equations is necessary to robustly characterize bimolecular reactions from experiment. Our quantitative bounds derive from our new analysis of 2D rate-behavior predicted from Smoluchowski theory. Using a recently developed single particle reaction-diffusion algorithm we extend here to 2D, we are able to test and validate the predictions of Smoluchowski theory and several other theories of reversible reaction dynamics in 2D for the first time. Finally, our results also mean that simulations of reactive systems in 2D using rate equations must be undertaken with caution when reactions have ka/D > 0.05, regardless of the simulation volume. We introduce here a simple formula for an adaptive concentration dependent rate constant for these chemical kinetics simulations which improves on existing formulas to better capture non-equilibrium reaction dynamics from dilute to dense systems. PMID:26328828
Gupta, Shikha; Basant, Nikita; Mohan, Dinesh; Singh, Kunwar P
2016-07-01
The persistence and the removal of organic chemicals from the atmosphere are largely determined by their reactions with the OH radical and O3. Experimental determinations of the kinetic rate constants of OH and O3 with a large number of chemicals are tedious and resource intensive and development of computational approaches has widely been advocated. Recently, ensemble machine learning (EML) methods have emerged as unbiased tools to establish relationship between independent and dependent variables having a nonlinear dependence. In this study, EML-based, temperature-dependent quantitative structure-reactivity relationship (QSRR) models have been developed for predicting the kinetic rate constants for OH (kOH) and O3 (kO3) reactions with diverse chemicals. Structural diversity of chemicals was evaluated using a Tanimoto similarity index. The generalization and prediction abilities of the constructed models were established through rigorous internal and external validation performed employing statistical checks. In test data, the EML QSRR models yielded correlation (R (2)) of ≥0.91 between the measured and the predicted reactivities. The applicability domains of the constructed models were determined using methods based on descriptors range, Euclidean distance, leverage, and standardization approaches. The prediction accuracies for the higher reactivity compounds were relatively better than those of the low reactivity compounds. Proposed EML QSRR models performed well and outperformed the previous reports. The proposed QSRR models can make predictions of rate constants at different temperatures. The proposed models can be useful tools in predicting the reactivities of chemicals towards OH radical and O3 in the atmosphere.
Electron-transfer oxidation properties of DNA bases and DNA oligomers.
Fukuzumi, Shunichi; Miyao, Hiroshi; Ohkubo, Kei; Suenobu, Tomoyoshi
2005-04-21
Kinetics for the thermal and photoinduced electron-transfer oxidation of a series of DNA bases with various oxidants having the known one-electron reduction potentials (E(red)) in an aqueous solution at 298 K were examined, and the resulting electron-transfer rate constants (k(et)) were evaluated in light of the free energy relationship of electron transfer to determine the one-electron oxidation potentials (E(ox)) of DNA bases and the intrinsic barrier of the electron transfer. Although the E(ox) value of GMP at pH 7 is the lowest (1.07 V vs SCE) among the four DNA bases, the highest E(ox) value (CMP) is only 0.19 V higher than that of GMP. The selective oxidation of GMP in the thermal electron-transfer oxidation of GMP results from a significant decrease in the pH dependent oxidation potential due to the deprotonation of GMP*+. The one-electron reduced species of the photosensitizer produced by photoinduced electron transfer are observed as the transient absorption spectra when the free energy change of electron transfer is negative. The rate constants of electron-transfer oxidation of the guanine moieties in DNA oligomers with Fe(bpy)3(3+) and Ru(bpy)3(3+) were also determined using DNA oligomers containing different guanine (G) sequences from 1 to 10 G. The rate constants of electron-transfer oxidation of the guanine moieties in single- and double-stranded DNA oligomers with Fe(bpy)3(2+) and Ru(bpy)3(3+) are dependent on the number of sequential guanine molecules as well as on pH.
Li, Lei; Gong, Li; Wang, Yi-Xuan; Liu, Qi; Zhang, Jie; Mu, Yang; Yu, Han-Qing
2016-07-01
The removal performance and mechanisms of halogenated emerging contaminants from water by palladium decorated nitrogen-doped graphene (Pd/NG) were investigated in this study. For comparison, three catalysts of Pd/NG, palladium decorated graphene (Pd/G) and commercial Pd/C were initially explored to degrade tetrabromobisphenol A (TBBPA). After that, the influence of various environmental parameters on TBBPA removal by the Pd/NG catalyst was evaluated. Moreover, both Langmuir-Hinshelwood model and density functional theory (DFT) were adopted to theoretically elucidate the adsorption and the activation of TBBPA on the catalyst. The results show that the apparent rate constant of TBBPA dehalogenation was increased by 26.7% and 39.0% in the presence of the Pd/NG catalyst compared to the Pd/G and Pd/C ones. Higher temperature, catalyst dosage and alkaline conditions resulted in the enhancement of TBBPA dehalogenation by the Pd/NG catalyst, while humic acid in the solution had a negatively effect on the transformation of TBBPA. The corresponding rate constant value exhibited a 2.1- and 1.8-fold increase with the rise of temperature from 298 to 328 K and initial pH from 6.5 to 9.0, respectively. On the contrary, the rate constant was decreased by 78.9% in the presence of 15 mg L(-1) humic acid. Theoretical analysis revealed that both adsorption and activation processes of TBBPA on the Pd/NG catalyst were enhanced through the N doping into graphene framework. Copyright © 2016 Elsevier Ltd. All rights reserved.
[Grades evaluation of Phellodendri chinensis cortex pieces based on quality constant].
Deng, Zhe; Jiao, Meng-Jiao; Zhang, Jun; Zhang, Qing; Cui, Wen-Jin; Shen, Li; Cheng, Jin-Tang; Liu, An
2017-09-01
Quality constant is a comprehensive grades evaluation method for traditional Chinese medicine decoction pieces, which is better but based on traditional way. In this paper, a new grading mode for Phellodendri chinensis pieces was established based on quality constant evaluation method. The results showed that the range of relative quality constant for 15 batches of different samples was from 0.41 to 0.96. As customary, if these samples were divided into three grades: the relative quality constant shall be ≥0.77 for first grade; <0.77 but ≥0.48 for the second grade; and <0.48 for the third grade. This research indicated that the quality constant mode can be used to effectively grade the P. chinensis pieces in a scientific, reasonable, objective and specific way. Simultaneously, it provided a beneficial reference for grading cortex herbal pieces or medicines. Copyright© by the Chinese Pharmaceutical Association.
Furman, Olha S; Yu, Miao; Teel, Amy L; Watts, Richard J
2013-11-01
The water quality parameters nitrate-nitrogen, dissolved organic carbon, and suspended solids were correlated with photodegradation rates of the herbicides atrazine and 2,4-D in samples collected from four sites in the Columbia River Basin, Washington, USA. Surface water samples were collected in May, July, and October 2010 and analyzed for the water quality parameters. Photolysis rates for the two herbicides in the surface water samples were then evaluated under a xenon arc lamp. Photolysis rates of atrazine and 2,4-D were similar with rate constants averaging 0.025 h(-1) for atrazine and 0.039 h(-1) for 2,4-D. Based on multiple regression analysis, nitrate-nitrogen was the primary predictor of photolysis for both atrazine and 2,4-D, with dissolved organic carbon also a predictor for some sites. However, at sites where suspended solids concentrations were elevated, photolysis rates of the two herbicides were controlled by the suspended solids concentration. The results of this research provide a basis for evaluating and predicting herbicide photolysis rates in shallow surface waters. Copyright © 2013 Elsevier Ltd. All rights reserved.
Stankovicha, Joseph J; Gritti, Fabrice; Beaver, Lois Ann; Stevensona, Paul G; Guiochon, Georges
2013-11-29
Five methods were used to implement fast gradient separations: constant flow rate, constant column-wall temperature, constant inlet pressure at moderate and high pressures (controlled by a pressure controller),and programmed flow constant pressure. For programmed flow constant pressure, the flow rates and gradient compositions are controlled using input into the method instead of the pressure controller. Minor fluctuations in the inlet pressure do not affect the mobile phase flow rate in programmed flow. There producibilities of the retention times, the response factors, and the eluted band width of six successive separations of the same sample (9 components) were measured with different equilibration times between 0 and 15 min. The influence of the length of the equilibration time on these reproducibilities is discussed. The results show that the average column temperature may increase from one separation to the next and that this contributes to fluctuation of the results.
Photocatalytic degradation of p,p'-DDT under UV and visible light using interstitial N-doped TiO₂.
Ananpattarachai, Jirapat; Kajitvichyanukul, Puangrat
2015-01-01
1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (or p,p'-DDT) is one of the most persistent pesticides. It is resistant to breakdown in nature and cause the water contamination problem. In this work, a major objective was to demonstrate the application of N-doped TiO2 in degradation and mineralization of the p,p'-DDT under UV and visible light in aqueous solution. The N-doped TiO2 nanopowders were prepared by a simple modified sol-gel procedure using diethanolamine (DEA) as a nitrogen source. The catalyst characteristics were investigated using XRD, SEM, TEM, and XPS. The adsorption and photocatalytic oxidation of p,p'-DDT using the synthesized N-doped TiO2 under UV and visible light were conducted in a batch photocatalytic experiment. The kinetics and p,p'-DDT degradation performance of the N-doped TiO2 were evaluated. Results show that the N-doped TiO2 can degrade p,p'-DDT effectively under both UV and visible lights. The rate constant of the p,p'-DDT degradation under UV light was only 0.0121 min(-1), whereas the rate constant of the p,p'-DDT degradation under visible light was 0.1282 min(-1). Under visible light, the 100% degradation of p,p'-DDT were obtained from N-doped TiO2 catalyst. The reaction rate of p,p'-DDT degradation using N-doped TiO2 under visible light was sixfold higher than that under UV light. According to Langmuir-Hinshelwood model, the adsorption equilibrium constant (K) for the N-doped TiO2 under visible light was 0.03078 L mg(-1), and the apparent reaction rate constant (k) was 1.3941 mg L(-1)-min. Major intermediates detected during the p,p'-DDT degradation were p,p'-DDE, o,p'-DDE, p,p'-DDD and p,p'-DDD. Results from this work can be applied further for the breakdown of p,p'-DDT molecule in the real contaminated water using this technology.
Appendix H of KABAM Version 1.0 documentation related to estimating the metabolism rate constant. KABAM is a simulation model used to predict pesticide concentrations in aquatic regions for use in exposure assessments.
[Surgical treatment strategy of the floating shoulder injury].
Song, Zhe; Xue, Han-Zhong; Li, Zhong; Zhuang, Yan; Wang, Qian; Ma, Teng; Zhang, Kun
2013-10-18
To discuss the clinical characteristics and the surgical treatment strategy of the floating shoulder injury. 26 cases with the floating shoulder injury between January 2006 and January 2012 were retrospectively evaluated. There were 15 males and 11 females with an average age of 35.2 (22-60) years. According to Wong's classification of floating shoulder injury: type IA, 3 cases; type IB, 9 cases; type II, 4 cases; type IIIA, 6 cases; type IIIB, 4 cases. All the 26 cases had accepted the surgical treatment. We observed the postoperative fracture reduction, damage repair, fracture healing and internal fixation through the X-ray films. We also evaluated the shoulder function regularly according to the Constant scores and Herscovici evaluation criteria. The 26 cases were followed up for an average of 16.8 (12-24) months.All the fractures healed for a mean time of 2.4 months, the mean Constant score was 89.4 (60-100). The effect of Herscovici evaluation criteria: excellent, 15 cases; good, 8 cases;fair, 3 cases;the excellent rate 88.5%. Open reduction and internal fixation is an effective method for the treatment of floating shoulder injury, but we should select the reset sequence and fixation methods according to the type of fracture and degree of displacement.
Bahreyni Toossi, Mohammad Taghi; Ghorbani, Mahdi; Mowlavi, Ali Asghar; Meigooni, Ali Soleimani
2012-01-01
Background Dosimetric characteristics of a high dose rate (HDR) GZP6 Co-60 brachytherapy source have been evaluated following American Association of Physicists in MedicineTask Group 43U1 (AAPM TG-43U1) recommendations for their clinical applications. Materials and methods MCNP-4C and MCNPX Monte Carlo codes were utilized to calculate dose rate constant, two dimensional (2D) dose distribution, radial dose function and 2D anisotropy function of the source. These parameters of this source are compared with the available data for Ralstron 60Co and microSelectron192Ir sources. Besides, a superimposition method was developed to extend the obtained results for the GZP6 source No. 3 to other GZP6 sources. Results The simulated value for dose rate constant for GZP6 source was 1.104±0.03 cGyh-1U-1. The graphical and tabulated radial dose function and 2D anisotropy function of this source are presented here. The results of these investigations show that the dosimetric parameters of GZP6 source are comparable to those for the Ralstron source. While dose rate constant for the two 60Co sources are similar to that for the microSelectron192Ir source, there are differences between radial dose function and anisotropy functions. Radial dose function of the 192Ir source is less steep than both 60Co source models. In addition, the 60Co sources are showing more isotropic dose distribution than the 192Ir source. Conclusions The superimposition method is applicable to produce dose distributions for other source arrangements from the dose distribution of a single source. The calculated dosimetric quantities of this new source can be introduced as input data to the GZP6 treatment planning system (TPS) and to validate the performance of the TPS. PMID:23077455
Phenrat, Tanapon; Kumloet, Itsaraphong
2016-12-15
In this study, a novel electromagnetically enhanced treatment concept is proposed for in situ remediation of a source zone of chlorinated dense non-aqueous phase liquid (DNAPL) that is slowly dissolved, causing contaminated groundwater for centuries. Here, we used polystyrene sulfonate (PSS)-modified nanoscale zerovalent iron (NZVI) particles (ferromagnetic) in combination with a low frequency (LF) (150 kHz) AC electromagnetic field (EMF) to accelerate the degradation of the DNAPLs via enhanced dissolution and reductive dechlorination. Trichloroethylene (TCE) and tetrachloroethylene (PCE) were used in a bench-scaled evaluation. The PSS-modified NZVI successfully targeted the DNAPL/water interface, as evidenced by the Pickering emulsion formation. Dechlorination of TCE- and PCE-DNAPL was measured by quantifying the by-product formation (acetylene, ethene, and ethane). Without magnetic induction heating (MIH) by LF EMF, PSS-modified NZVI transformed TCE- and PCE-DNAPL to ethene and ethane at the rate constants of 12.19 × 10 -3 and 1.00 × 10 -3 μmol/h/m 2 , respectively, following pseudo zero-order reactions. However, four MIH cycles of PSS-NZVI increased the temperature up to 87 °C and increased the rate constants of TCE-DNAPL and PCE-DNAPL up to 14.58 and 58.01 times, respectively, in comparison to the dechlorination rate without MIH. Theoretical analysis suggested that the MIH of the PSS-modified NZVI enhanced the dechlorination of TCE- and PCE-DNAPL via the combination of the enhanced thermal dissolution of DNAPL, the effect of increasing the temperature on the rate constant (the Arrhenius equation), and the accelerated NZVI corrosion. Nevertheless, the effect of the Arrhenius equation was dominant. For the first time, this proof-of-concept study reveals the potential for using polyelectrolyte-modified NZVI coupled with LF EMF as a combined remediation technique for increasing the rate and completeness of in situ chlorinated DNAPL source remediation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Owlia, P; Vasei, M; Goliaei, B; Nassiri, I
2011-04-01
The interests in journal impact factor (JIF) in scientific communities have grown over the last decades. The JIFs are used to evaluate journals quality and the papers published therein. JIF is a discipline specific measure and the comparison between the JIF dedicated to different disciplines is inadequate, unless a normalization process is performed. In this study, normalized impact factor (NIF) was introduced as a relatively simple method enabling the JIFs to be used when evaluating the quality of journals and research works in different disciplines. The NIF index was established based on the multiplication of JIF by a constant factor. The constants were calculated for all 54 disciplines of biomedical field during 2005, 2006, 2007, 2008 and 2009 years. Also, ranking of 393 journals in different biomedical disciplines according to the NIF and JIF were compared to illustrate how the NIF index can be used for the evaluation of publications in different disciplines. The findings prove that the use of the NIF enhances the equality in assessing the quality of research works produced by researchers who work in different disciplines. Copyright © 2010 Elsevier Inc. All rights reserved.
Health Status of Southeast Asian Refugees
Judson, Franklyn N.; Lince, Deborah M.; Anders, Bronwen J.; Tapy, Janet M.; Van, David Le; Cohn, David L.; Kicera, Tamara J.
1984-01-01
The rates of several diseases have been reported to be higher among Southeast Asian refugees compared with those of indigenous North Americans. When we prospectively evaluated 991 refugees new to the Denver metropolitan area for their health and immunization status over a 12-month period, 38% were found to be tuberculin-positive, 71% carried one or more enteric parasites, 15% were HBsAg-positive, 13% had anemia and 31% either presented without immunization records or required continuation of vaccination sequences begun in overseas camps. Age and ethnicity were important variables with regard to tuberculosis, hepatitis B and anemia. The rates of specific parasitic infestations varied among the four ethnic groups, though the overall rates of parasitosis remained constant across ethnic lines. PMID:6495722
Comparison of postinfusion phlebitis in intravenous push versus intravenous piggyback cefazolin.
Biggar, Constance; Nichols, Cynthia
2012-01-01
Reducing health care costs without adversely affecting patient safety is a constant challenge for health care institutions. Cefazolin prophylaxis via intravenous push (IVP) is more cost-effective than via intravenous piggyback (IVPB). The purpose of this study was to determine whether patient safety would be compromised (ie, an increased rate of phlebitis) with a change to the IVP method. Rates of phlebitis in orthopedic surgical patients receiving cefazolin prophylaxis via IVP versus IVPB were evaluated in a prospective quasi-experimental design of 240 patients. The first 120 subjects received cefazolin via IVPB, and the second 120 subjects received it via IVP. Results indicated no statistically significant difference in phlebitis rates in the IVPB (3.4%) versus the IVP groups (3.3%).
Zhao, Yong; Kan, Zhong-yuan; Zeng, Zhi-xiong; Hao, Yu-hua; Chen, Hua; Tan, Zheng
2004-10-20
Nucleic acid molecules may fold into secondary structures, and the formation of such structures is involved in many biological processes and technical applications. The folding and unfolding rate constants define the kinetics of conformation interconversion and the stability of these structures and is important in realizing their functions. We developed a method to determine these kinetic parameters using an optical biosensor based on surface plasmon resonance. The folding and unfolding of a nucleic acid is coupled with a hybridization reaction by immobilization of the target nucleic acid on a sensor chip surface and injection of a complementary probe nucleic acid over the sensor chip surface. By monitoring the time course of duplex formation, both the folding and unfolding rate constants for the target nucleic acid and the association and dissociation rate constants for the target-probe duplex can all be derived from the same measurement. We applied this method to determine the folding and unfolding rate constants of the G-quadruplex of human telomere sequence (TTAGGG)(4) and its association and dissociation rate constants with the complementary strand (CCCTAA)(4). The results show that both the folding and unfolding occur on the time scale of minutes at physiological concentration of K(+). We speculate that this property might be important for telomere elongation. A complete set of the kinetic parameters for both of the structures allows us to study the competition between the formation of the quadruplex and the duplex. Calculations indicate that the formation of both the quadruplex and the duplex is strand concentration-dependent, and the quadruplex can be efficiently formed at low strand concentration. This property may provide the basis for the formation of the quadruplex in vivo in the presence of a complementary strand.
Rate constant for the reaction SO + BrO yields SO2 + Br
NASA Technical Reports Server (NTRS)
Brunning, J.; Stief, L.
1986-01-01
The rate of the radical-radical reaction SO + BrO yields SO2 + Br has been determined at 298 K in a discharge flow system near 1 torr pressure with detection of SO and BrO via collision-free sampling mass spectrometry. The rate constant was determined using two different methods: measuring the decay of SO radicals in the presence of an excess of BrO and measuring the decay of BrO radicals in excess SO. The results from the two methods are in reasonable agreement and the simple mean of the two values gives the recommended rate constant at 298 K, k = (5.7 + or - 2.0) x 10 to the -11th cu cm/s. This represents the first determination of this rate constant and it is consistent with a previously derived lower limit based on SO2 formation. Comparison is made with other radical-radical reactions involving SO or BrO. The reaction SO + BrO yields SO2 + Br is of interest for models of the upper atmosphere of the earth and provides a potential coupling between atmospheric sulfur and bromine chemistry.
Kinetic rate constant prediction supports the conformational selection mechanism of protein binding.
Moal, Iain H; Bates, Paul A
2012-01-01
The prediction of protein-protein kinetic rate constants provides a fundamental test of our understanding of molecular recognition, and will play an important role in the modeling of complex biological systems. In this paper, a feature selection and regression algorithm is applied to mine a large set of molecular descriptors and construct simple models for association and dissociation rate constants using empirical data. Using separate test data for validation, the predicted rate constants can be combined to calculate binding affinity with accuracy matching that of state of the art empirical free energy functions. The models show that the rate of association is linearly related to the proportion of unbound proteins in the bound conformational ensemble relative to the unbound conformational ensemble, indicating that the binding partners must adopt a geometry near to that of the bound prior to binding. Mirroring the conformational selection and population shift mechanism of protein binding, the models provide a strong separate line of evidence for the preponderance of this mechanism in protein-protein binding, complementing structural and theoretical studies.
Nielson, Ryan M.; Gray, Brian R.; McDonald, Lyman L.; Heglund, Patricia J.
2011-01-01
Estimation of site occupancy rates when detection probabilities are <1 is well established in wildlife science. Data from multiple visits to a sample of sites are used to estimate detection probabilities and the proportion of sites occupied by focal species. In this article we describe how site occupancy methods can be applied to estimate occupancy rates of plants and other sessile organisms. We illustrate this approach and the pitfalls of ignoring incomplete detection using spatial data for 2 aquatic vascular plants collected under the Upper Mississippi River's Long Term Resource Monitoring Program (LTRMP). Site occupancy models considered include: a naïve model that ignores incomplete detection, a simple site occupancy model assuming a constant occupancy rate and a constant probability of detection across sites, several models that allow site occupancy rates and probabilities of detection to vary with habitat characteristics, and mixture models that allow for unexplained variation in detection probabilities. We used information theoretic methods to rank competing models and bootstrapping to evaluate the goodness-of-fit of the final models. Results of our analysis confirm that ignoring incomplete detection can result in biased estimates of occupancy rates. Estimates of site occupancy rates for 2 aquatic plant species were 19–36% higher compared to naive estimates that ignored probabilities of detection <1. Simulations indicate that final models have little bias when 50 or more sites are sampled, and little gains in precision could be expected for sample sizes >300. We recommend applying site occupancy methods for monitoring presence of aquatic species.
A novel frame-level constant-distortion bit allocation for smooth H.264/AVC video quality
NASA Astrophysics Data System (ADS)
Liu, Li; Zhuang, Xinhua
2009-01-01
It is known that quality fluctuation has a major negative effect on visual perception. In previous work, we introduced a constant-distortion bit allocation method [1] for H.263+ encoder. However, the method in [1] can not be adapted to the newest H.264/AVC encoder directly as the well-known chicken-egg dilemma resulted from the rate-distortion optimization (RDO) decision process. To solve this problem, we propose a new two stage constant-distortion bit allocation (CDBA) algorithm with enhanced rate control for H.264/AVC encoder. In stage-1, the algorithm performs RD optimization process with a constant quantization QP. Based on prediction residual signals from stage-1 and target distortion for smooth video quality purpose, the frame-level bit target is allocated by using a close-form approximations of ratedistortion relationship similar to [1], and a fast stage-2 encoding process is performed with enhanced basic unit rate control. Experimental results show that, compared with original rate control algorithm provided by H.264/AVC reference software JM12.1, the proposed constant-distortion frame-level bit allocation scheme reduces quality fluctuation and delivers much smoother PSNR on all testing sequences.
Polymerization Evaluation by Spectrophotometric Measurements.
ERIC Educational Resources Information Center
Dunach, Jaume
1985-01-01
Discusses polymerization evaluation by spectrophotometric measurements by considering: (1) association degrees and molar absorptivities; (2) association degrees and equilibrium constants; and (3) absorbance and equilibrium constants. (JN)
ERIC Educational Resources Information Center
Kessel, Robert; Lucke, Robert L.
2008-01-01
Shull, Gaynor and Grimes advanced a model for interresponse time distribution using probabilistic cycling between a higher-rate and a lower-rate response process. Both response processes are assumed to be random in time with a constant rate. The cycling between the two processes is assumed to have a constant transition probability that is…
NASA Astrophysics Data System (ADS)
Chaiyarit, Sakdithep; Thongboonkerd, Visith
2017-12-01
Crystal aggregation is one of the most crucial steps in kidney stone pathogenesis. However, previous studies of crystal aggregation were rarely done and quantitative analysis of aggregation degree was handicapped by a lack of the standard measurement. We thus performed an in vitro assay to generate aggregation of calcium oxalate monohydrate (COM) crystals with various concentrations (25-800 µg/ml) in saturated aggregation buffer. The crystal aggregates were analyzed by microscopic examination, UV-visible spectrophotometry, and GraphPad Prism6 software to define a total of 12 aggregation indices (including number of aggregates, aggregated mass index, optical density, aggregation coefficient, span, number of aggregates at plateau time-point, aggregated area index, aggregated diameter index, aggregated symmetry index, time constant, half-life, and rate constant). The data showed linear correlation between crystal concentration and almost all of these indices, except only for rate constant. Among these, number of aggregates provided the greatest regression coefficient (r=0.997; p<0.001), whereas the equally second rank included aggregated mass index and optical density (r=0.993; p<0.001 and r=‑0.993; p<0.001, respectively) and the equally forth were aggregation coefficient and span (r=0.991; p<0.001 for both). These five indices are thus recommended as the most appropriate indices for quantitative analysis of COM crystal aggregation in vitro.
An investigation of the kinetics of hydrogen chemisorption on iron metal surfaces
NASA Technical Reports Server (NTRS)
Shanabarger, M. R.
1982-01-01
The isothermal kinetics of H2, H2S, and O2 chemisorption onto epitaxially grown (III) oriented Fe films were studied. The measurements were made using the techniques of chemisorption induced resistance change and Auger electron spectroscopy (for adsorbed sulfur and oxygen). Also the origin of the chemisorption induced resistance change for these systems and its applicability to kinetic measurements were established. The chemisorption kinetics were interpreted as dissociative chemisorption via an adsorbed molecular species. The applicable rate constants were established. In none of the studies were the rate constants observed to be coverage dependent. By comparing the temperature dependence of the rate constants with absolute rate theory, the binding energies and activation energies of all the kinetic processes were obtained for the H2/Fe system. The initial sticking coefficient was pressure dependent for both the H2/Fe and H2S/Fe systems. This results from the step between the adsorbed molecular state and the dissociated chemisorbed state being the rate limiting step for absorption at certain pressures and temperatures. Estimates were obtained for the temperature dependence of the rate constants for the O2/Fe system.
Effects of alteration product precipitation on glass dissolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strachan, Denis M.; Neeway, James J.
2014-06-01
Understanding the mechanisms that control the durability of nuclear waste glass is paramount if reliable models are to be constructed so that the glass dissolution rate in a given geological repository can be calculated. Presently, it is agreed that (boro)silicate glasses dissolve in water at a rate dependent on the solution concentration of orthosilicic acid (H 4SiO 4) with higher [H 4SiO 4] leading to lower dissolution rates. Once the reaction has slowed as a result of the buildup of H 4SiO 4, another increase in the rate has been observed that corresponds to the precipitation of certain silica-bearing alterationmore » products. However, it has also been observed that the concentration of silica-bearing solution species does not significantly decrease, indicating saturation, while other glass tracer elements concentrations continue to increase, indicating that the glass is still dissolving. In this study, we have used the Geochemist’s Workbench code to investigate the relationship between glass dissolution rates and the precipitation rate of a representative zeolitic silica-bearing alteration product, analcime [Na(AlSi 2O 6)∙H 2O]. To simplify the calculations, we suppressed all alteration products except analcime, gibbsite (Al(OH) 3), and amorphous silica. The pseudo-equilibrium-constant matrix for amorphous silica was substituted for the glass pseudo-equilibrium-constant matrix because it has been shown that silicate glasses act as a silica-only solid with respect to kinetic considerations. In this article, we present the results of our calculations of the glass dissolution rate at different values for the analcime precipitation rate constant and the effects of varying the glass dissolution rate constant at a constant analcime precipitation rate constant. From the simulations we conclude, firstly, that the rate of glass dissolution is dependent on the kinetics of formation of the zeolitic phase. Therefore, the kinetics of secondary phase formation is an important parameter that should be taken into account in future glass dissolution modeling efforts. Secondly, the results indicate that, in the absence of a gel layer, the glass dissolution rate controls the rate of analcime precipitation in the long term. Finally, the meaning of these results pertinent to long-term glass durability is discussed.« less
Mapping {sup 15}O Production Rate for Proton Therapy Verification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grogg, Kira; Alpert, Nathaniel M.; Zhu, Xuping
Purpose: This work was a proof-of-principle study for the evaluation of oxygen-15 ({sup 15}O) production as an imaging target through the use of positron emission tomography (PET), to improve verification of proton treatment plans and to study the effects of perfusion. Methods and Materials: Dynamic PET measurements of irradiation-produced isotopes were made for a phantom and rabbit thigh muscles. The rabbit muscle was irradiated and imaged under both live and dead conditions. A differential equation was fitted to phantom and in vivo data, yielding estimates of {sup 15}O production and clearance rates, which were compared to live versus dead rates formore » the rabbit and to Monte Carlo predictions. Results: PET clearance rates agreed with decay constants of the dominant radionuclide species in 3 different phantom materials. In 2 oxygen-rich materials, the ratio of {sup 15}O production rates agreed with the expected ratio. In the dead rabbit thighs, the dynamic PET concentration histories were accurately described using {sup 15}O decay constant, whereas the live thigh activity decayed faster. Most importantly, the {sup 15}O production rates agreed within 2% (P>.5) between conditions. Conclusions: We developed a new method for quantitative measurement of {sup 15}O production and clearance rates in the period immediately following proton therapy. Measurements in the phantom and rabbits were well described in terms of {sup 15}O production and clearance rates, plus a correction for other isotopes. These proof-of-principle results support the feasibility of detailed verification of proton therapy treatment delivery. In addition, {sup 15}O clearance rates may be useful in monitoring permeability changes due to therapy.« less
Cain, Daniel J.; Croteau, Marie-Noele; Fuller, Christopher C.; Ringwood, Amy H.
2016-01-01
Whereas feeding inhibition caused by exposure to contaminants has been extensively documented, the underlying mechanism(s) are less well understood. For this study, the behavior of several key feeding processes, including ingestion rate and assimilation efficiency, that affect the dietary uptake of Cu were evaluated in the benthic grazer Lymnaea stagnalis following 4–5 h exposures to Cu adsorbed to synthetic hydrous ferric oxide (Cu–HFO). The particles were mixed with a cultured alga to create algal mats with Cu exposures spanning nearly 3 orders of magnitude at variable or constant Fe concentrations, thereby allowing first order and interactive effects of Cu and Fe to be evaluated. Results showed that Cu influx rates and ingestion rates decreased as Cu exposures of the algal mat mixture exceeded 104 nmol/g. Ingestion rate appeared to exert primary control on the Cu influx rate. Lysosomal destabilization rates increased directly with Cu influx rates. At the highest Cu exposure where the incidence of lysosomal membrane damage was greatest (51%), the ingestion rate was suppressed 80%. The findings suggested that feeding inhibition was a stress response emanating from excessive uptake of dietary Cu and cellular toxicity.
Rate of reaction of OH with HNO3
NASA Technical Reports Server (NTRS)
Wine, P. H.; Ravishankara, A. R.; Kreutter, N. M.; Shah, R. C.; Nicovich, J. M.; Thompson, R. L.; Wuebbles, D. J.
1981-01-01
Measurements of the kinetics of the reaction of OH with HNO3, and mechanisms of HNO3 removal from the stratosphere, are reported. Bimolecular rate constants were determined at temperatures between 224 and 366 K by monitoring the concentrations of OH radicals produced by HNO3 photolysis and HNO3 according to their resonance fluorescence and 184.9-nm absorption, respectively. The rate constant measured at 298 K is found to be somewhat faster than previously accepted values, with a negative temperature dependence. Calculations of a one-dimensional transport-kinetic atmospheric model on the basis of the new rate constant indicate reductions in O3 depletion due to chlorofluoromethane release and NOx injection, of magnitudes dependent on the nature of the reaction products.
Computer Calculation of First-Order Rate Constants
ERIC Educational Resources Information Center
Williams, Robert C.; Taylor, James W.
1970-01-01
Discusses the computer program used to calculate first-order rate constants. Discussion includes data preparation, weighting options, comparison techniques, infinity point adjustment, least-square fit, Guggenheim calculation, and printed outputs. Exemplifies the utility of the computer program by two experiments: (1) the thermal decomposition of…
Tang, Kai; Escola Casas, Monica; Ooi, Gordon T H; Kaarsholm, Kamilla M S; Bester, Kai; Andersen, Henrik R
2017-05-01
The degradation of organic micropollutants in wastewater treatment is suspected to depend on co-degradation i.e. be dependent on concentrations of substrate. This complicates predicting and modelling their fate. The effect of humic acid, as a model for complex organic substrate, was investigated in relation to the biodegradation of pharmaceuticals by suspended biofilm carriers adapted to polishing effluent water from a tertiary sewage treatment plant. Twelve out of 22 investigated pharmaceuticals were significantly biodegradable. The biodegradation rate constants of ten of those compounds were increasing with increased humic acid concentrations. At the highest humic acid concentration (30mgC/L), the biodegradation rate constants were four times higher than the biodegradation rate constants without added humic acid. This shows that the presence of complex substrate stimulates degradation via a co-metabolism-like mechanism and competitive inhibition does not occur. Increases of rate constant per mgC/L are tentatively calculated. Copyright © 2017 Elsevier GmbH. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
B. J. Mincher; S. K. Cole; W. J. Cooper
2007-02-01
Absolute rate constants for the free-radical-induced degradation of trichloronitromethane (TCNM, chloropicrin) were determined using electron pulse radiolysis and transient absorption spectroscopy. Rate constants for hydroxyl radical, OH, and hydrated electron, eaq-, reactions were (4.97 ± 0.28) × 107 M-1 s-1 and (2.13 ± 0.03) × 1010 M-1 s-1, respectively. It appears that the OH adds to the nitro-group, while the eaq- reacts via dissociative electron attachment to give two carbon centered radicals. The mechanisms of these free radical reactions with TCNM were investigated, using 60Co gamma irradiation at various absorbed doses, measuring the disappearance of TCNM and the appearance ofmore » the product nitrate and chloride ions. The rate constants and mechanistic data were combined in a kinetic computer model that was used to describe the major free radical pathways for the destruction of TCNM in solution. These data are applicable to other advanced oxidation/reduction processes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierleoni, Davide; Minelli, Matteo; Doghieri, Ferruccio
A novel experimental method for the analysis of volume relaxation induced by solvents in glassy polymers is presented. A gravimetric technique is used to evaluate the isothermal solvent mass uptake at controlled increasing/decreasing solvent pressure at constant rate. Fundamental properties of the solvent/polymer system can be obtained directly, and models can be applied, combining both nonequilibrium thermodynamics and mechanics of volume relaxation contribution. The fundamental case of polystyrene and toluene mixtures are thus accounted for, and various experimental conditions have been explored, varying the temperature, and spanning over different pressure increase/decrease rates. The results obtained allowed to evaluate the isothermalmore » second order transition induced by solvent sorption, as well as the determination of the effect of the pressure rate. Therefore, this work proposes a new standard for the characterization and the understanding of the relaxational behavior of glassy polymers.« less
Ojha, Deepak Kumar; Viju, Daniel; Vinu, R
2017-10-01
In this study, the apparent kinetics of fast pyrolysis of alkali lignin was evaluated by obtaining isothermal mass loss data in the timescale of 2-30s at 400-700°C in an analytical pyrolyzer. The data were analyzed using different reaction models to determine the rate constants and apparent rate parameters. First order and one dimensional diffusion models resulted in good fits with experimental data with apparent activation energy of 23kJmol -1 . Kinetic compensation effect was established using a large number of kinetic parameters reported in the literature for pyrolysis of different lignins. The time evolution of the major functional groups in the pyrolysate was analyzed using in situ Fourier transform infrared spectroscopy. Maximum production of the volatiles occurred around 10-12s. A clear transformation of guaiacols to phenol, catechol and their derivatives, and aromatic hydrocarbons was observed with increasing temperature. The plausible reaction steps involved in various transformations are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kaselis, Andrius; Treinys, Rimantas; Vosyliūtė, Rūta; Šatkauskas, Saulius
2014-03-01
Regeneration of embryonic and adult dorsal root ganglion (DRG) sensory axons is highly impeded when they encounter neuronal growth cone-collapsing factor semaphorin3A (Sema3A). On the other hand, increasing evidence shows that DRG axon's regeneration can be stimulated by nerve growth factor (NGF). In this study, we aimed to evaluate whether increased NGF concentrations can counterweight Sema3A-induced inhibitory responses in 15-day-old mouse embryo (E15) DRG axons. The DRG explants were grown in Neurobasal-based medium with different NGF concentrations ranging from 0 to 100 ng/mL and then treated with Sema3A at constant 10 ng/mL concentration. To evaluate interplay between NGF and Sema3A number of DRG axons, axon outgrowth distance and collapse rate were measured. We found that the increased NGF concentrations abolish Sema3A-induced inhibitory effect on axon outgrowth, while they have no effect on Sema3A-induced collapse rate.
Preparation of monolithic osmotic pump system by coating the indented core tablet.
Liu, Longxiao; Che, Binjie
2006-10-01
A method for the preparation of monolithic osmotic pump tablet was obtained by coating the indented core tablet compressed by the punch with a needle. Atenolol was used as the model drug, sodium chloride as osmotic agent and polyethylene oxide as suspending agent. Ethyl cellulose was employed as semipermeable membrane containing polyethylene glycol 400 as plasticizer for controlling membrane permeability. The formulation of atenolol osmotic pump tablet was optimized by orthogonal design and evaluated by similarity factor (f2). The optimal formulation was evaluated in various release media and agitation rates. Indentation size of core tablet hardly affected drug release in the range of (1.00-1.14) mm. The optimal osmotic tablet was found to be able to deliver atenolol at an approximately constant rate up to 24h, independent of both release media and agitation rate. The method that is simplified by coating the indented core tablet with the elimination of laser drilling may be promising in the field of the preparation of osmotic pump tablet.
NASA Technical Reports Server (NTRS)
Hanson, Curt; Miller, Chris; Wall, John H.; VanZwieten, Tannen S.; Gilligan, Eric T.; Orr, Jeb S.
2015-01-01
An Adaptive Augmenting Control (AAC) algorithm for the Space Launch System (SLS) has been developed at the Marshall Space Flight Center (MSFC) as part of the launch vehicle's baseline flight control system. A prototype version of the SLS flight control software was hosted on a piloted aircraft at the Armstrong Flight Research Center to demonstrate the adaptive controller on a full-scale realistic application in a relevant flight environment. Concerns regarding adverse interactions between the adaptive controller and a potential manual steering mode were also investigated by giving the pilot trajectory deviation cues and pitch rate command authority, which is the subject of this paper. Two NASA research pilots flew a total of 25 constant pitch rate trajectories using a prototype manual steering mode with and without adaptive control, evaluating six different nominal and off-nominal test case scenarios. Pilot comments and PIO ratings were given following each trajectory and correlated with aircraft state data and internal controller signals post-flight.
Quantitative Assessment of Heterogeneity in Tumor Metabolism Using FDG-PET
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vriens, Dennis, E-mail: d.vriens@nucmed.umcn.nl; Disselhorst, Jonathan A.; Oyen, Wim J.G.
2012-04-01
Purpose: [{sup 18}F]-fluorodeoxyglucose-positron emission tomography (FDG-PET) images are usually quantitatively analyzed in 'whole-tumor' volumes of interest. Also parameters determined with dynamic PET acquisitions, such as the Patlak glucose metabolic rate (MR{sub glc}) and pharmacokinetic rate constants of two-tissue compartment modeling, are most often derived per lesion. We propose segmentation of tumors to determine tumor heterogeneity, potentially useful for dose-painting in radiotherapy and elucidating mechanisms of FDG uptake. Methods and Materials: In 41 patients with 104 lesions, dynamic FDG-PET was performed. On MR{sub glc} images, tumors were segmented in quartiles of background subtracted maximum MR{sub glc} (0%-25%, 25%-50%, 50%-75%, and 75%-100%).more » Pharmacokinetic analysis was performed using an irreversible two-tissue compartment model in the three segments with highest MR{sub glc} to determine the rate constants of FDG metabolism. Results: From the highest to the lowest quartile, significant decreases of uptake (K{sub 1}), washout (k{sub 2}), and phosphorylation (k{sub 3}) rate constants were seen with significant increases in tissue blood volume fraction (V{sub b}). Conclusions: Tumor regions with highest MR{sub glc} are characterized by high cellular uptake and phosphorylation rate constants with relatively low blood volume fractions. In regions with less metabolic activity, the blood volume fraction increases and cellular uptake, washout, and phosphorylation rate constants decrease. These results support the hypothesis that regional tumor glucose phosphorylation rate is not dependent on the transport of nutrients (i.e., FDG) to the tumor.« less
NASA Astrophysics Data System (ADS)
Chakraborty, Souvik; Mondal, Debabrata; Motalab, Mohammad
2016-07-01
In this present study, the stress-strain behavior of the Human Anterior Cruciate Ligament (ACL) is studied under uniaxial loads applied with various strain rates. Tensile testing of the human ACL samples requires state of the art test facilities. Furthermore, difficulty in finding human ligament for testing purpose results in very limited archival data. Nominal Stress vs. deformation gradient plots for different strain rates, as found in literature, is used to model the material behavior either as a hyperelastic or as a viscoelastic material. The well-known five parameter Mooney-Rivlin constitutivemodel for hyperelastic material and the Prony Series model for viscoelastic material are used and the objective of the analyses comprises of determining the model constants and their variation-trend with strain rates for the Human Anterior Cruciate Ligament (ACL) material using the non-linear curve fitting tool. The relationship between the model constants and strain rate, using the Hyperelastic Mooney-Rivlin model, has been obtained. The variation of the values of each coefficient with strain rates, obtained using Hyperelastic Mooney-Rivlin model are then plotted and variation of the values with strain rates are obtained for all the model constants. These plots are again fitted using the software package MATLAB and a power law relationship between the model constants and strain rates is obtained for each constant. The obtained material model for Human Anterior Cruciate Ligament (ACL) material can be implemented in any commercial finite element software package for stress analysis.
1987-10-01
rivers. Freshwater mussels are essentially sessile filter-feeders and could be susceptible , to physiological disruption as a result of exposure to...turbulence and turbidity effects has been carried out on marine bivalves and has involved the continuous exposure of test animals to constant, and often...evaluated in the field. Typically, starving or semistarved invertebrates show changes in metabolic rates (Barnes, Barnes, and Finlayson 1963; Bayne 1973
NASA Astrophysics Data System (ADS)
Dhanavel, S.; Nivethaa, E. A. K.; Esther, G.; Narayanan, V.; Stephen, A.
2016-05-01
Chitosan supported Palladium nanoparticles were synthesized by a simple cost effective chemical reduction method using NaBH4. The prepared nanocomposite was characterized by X-Ray diffraction analysis, FESEM and Energy dispersive spectroscopy analysis of X-rays (EDAX). The catalytic performance of the nanocomposite was evaluated on the reduction of 2-Nitrophenol to the 2-Amino phenol with rate constant 1.08 × 10-3 S-1 by NaBH4 using Spectrophotometer.
Sirohi, S.K.; Goel, N.; Pandey, P.
2012-01-01
The present study was carried out to evaluate the effect of methanolic extracts of three plants, mehandi (Lawsonia inermis), jaiphal (Myristica fragrans) and green chili (Capsicum annuum) on methanogenesis, rumen fermentation and fermentation kinetic parameters by in vitro gas production techniques. Single dose of each plant extract (1 ml / 30 ml buffered rumen fluid) and two sorghum fodder containing diets (high and low fiber diets) were used for evaluating the effect on methanogenesis and rumen fermentation pattern, while sequential incubations (0, 1, 2, 3, 6 9, 12, 24, 36, 48, 60, 72 and 96 h) were carried out for gas production kinetics. Results showed that methane production was reduced, ammonia nitrogen was increased significantly, while no significant effect was found on pH and protozoal population following addition of different plant extracts in both diets except mehandi. Green chili significantly reduced digestibility of dry matter, total fatty acid and acetate concentration at incubation with sorghum based high and low fiber diets. Among all treatments, green chili increased potential gas production, while jaiphal decreased the gas production rate constant significantly. The present results demonstrate that methanolic extracts of different plants are promising rumen modifying agents. They have the potential to modulate the methane production, potential gas production, gas production rate constant, dry matter digestibility and microbial biomass synthesis. PMID:26623296
NASA Astrophysics Data System (ADS)
Mehrishal, Seyedahmad; Sharifzadeh, Mostafa; Shahriar, Korosh; Song, Jae-Jon
2017-04-01
In relation to the shearing of rock joints, the precise and continuous evaluation of asperity interlocking, dilation, and basic friction properties has been the most important task in the modeling of shear strength. In this paper, in order to investigate these controlling factors, two types of limestone joint samples were prepared and CNL direct shear tests were performed on these joints under various shear conditions. One set of samples were travertine and another were onyx marble with slickensided surfaces, surfaces ground to #80, and rough surfaces were tested. Direct shear experiments conducted on slickensided and ground surfaces of limestone indicated that by increasing the applied normal stress, under different shearing rates, the basic friction coefficient decreased. Moreover, in the shear tests under constant normal stress and shearing rate, the basic friction coefficient remained constant for the different contact sizes. The second series of direct shear experiments in this research was conducted on tension joint samples to evaluate the effect of surface roughness on the shear behavior of the rough joints. This paper deals with the dilation and roughness interlocking using a method that characterizes the surface roughness of the joint based on a fundamental combined surface roughness concept. The application of stress-dependent basic friction and quantitative roughness parameters in the continuous modeling of the shear behavior of rock joints is an important aspect of this research.
Sirohi, S K; Goel, N; Pandey, P
2012-01-01
The present study was carried out to evaluate the effect of methanolic extracts of three plants, mehandi (Lawsonia inermis), jaiphal (Myristica fragrans) and green chili (Capsicum annuum) on methanogenesis, rumen fermentation and fermentation kinetic parameters by in vitro gas production techniques. Single dose of each plant extract (1 ml / 30 ml buffered rumen fluid) and two sorghum fodder containing diets (high and low fiber diets) were used for evaluating the effect on methanogenesis and rumen fermentation pattern, while sequential incubations (0, 1, 2, 3, 6 9, 12, 24, 36, 48, 60, 72 and 96 h) were carried out for gas production kinetics. Results showed that methane production was reduced, ammonia nitrogen was increased significantly, while no significant effect was found on pH and protozoal population following addition of different plant extracts in both diets except mehandi. Green chili significantly reduced digestibility of dry matter, total fatty acid and acetate concentration at incubation with sorghum based high and low fiber diets. Among all treatments, green chili increased potential gas production, while jaiphal decreased the gas production rate constant significantly. The present results demonstrate that methanolic extracts of different plants are promising rumen modifying agents. They have the potential to modulate the methane production, potential gas production, gas production rate constant, dry matter digestibility and microbial biomass synthesis.
Oxidation of octylphenol by ferrate(VI).
Anquandah, George A K; Sharma, Virender K
2009-01-01
The rates of the oxidation of octylphenols (OP) by potassium ferrate(VI) (K(2)FeO(4)) in water were determined as a function of pH (8.0-10.9) at 25 degrees C. The rate law for the oxidation of OP by Fe(VI) was found to be first order with each reactant. The observed second-order rate constants, k(obs), for the oxidation of alkylphenols decreased with an increase in pH. The speciation of Fe(VI) (HFeO(4)(-) and FeO(4)(2 -)) and OP (OP-OH and OP-O(-)) species were used to determine individual rate constants of the reactions. Comparison of rate constants and half-lives of oxidation of OP by Fe(VI) with nonylphenol (NP) and bisphenol-A (BPA) were conducted to demonstrate that Fe(VI) efficiently oxidizes environmentally relevant alkylphenols in water.
Rodriguez, Kenneth R; Jones, Anthony E; Belmont, Barbara
2014-01-01
The goal of this project was to characterize the antioxidant powers of lyophilized Aloe Vera ( Aloe barbadensis ) and Nopal Cactus (Opuntia ficus-indica) by quantifying the phenolics content and radical scavenging abilities of preparations derived from these plants. Extracts of these lyophylized succulents were assayed for phenolic compounds by the Folin Ciocalteau method and compared for free radical scavenging capability by the DPPH method. We found that even though the Aloe lyophilizate extract contained more phenolic content, the Nopal lyophilizate exhibited better free radical scavenging ability. Aloe Vera extract contained 0.278 g/L of phenolic content and exhibited 11.1% free radical inhibition, with a free radical scavenging rate constant of 0.177±0.015 min -1 . Nopal Cactus extract contained 0.174 g/L of phenolic content and exhibited 13.2% free radical inhibition, with a free radical scavenging rate constant of 0.155±0.009 min -1 . These results showed Nopal to have greater antioxidant potency than Aloe.
Corrosion of austenitic and martensitic stainless steels in flowing 17Li83Pb alloy
NASA Astrophysics Data System (ADS)
Broc, M.; Flament, T.; Fauvet, P.; Sannier, J.
1988-07-01
With regard to the behaviour of 316 L stainless steel at 400°C in flowing anisothermal 17Li83Pb the mass transfer suffered by this steel appears to be quite important without noticeable influence of constant or cyclic stress. Evaluation made from solution-annealed specimens leads to a corrosion rate of approximately 30 μm yr -1 at steady state to which a depth of 25 μm has to be added to take into account the initial period phenomena. On the other hand, with semi-stagnant 17Li83Pb at 400° C, the mass transfer of 316 L steel appears to be lower and more acceptable after a 3000-h exposure; but long-time kinetics data have to be achieved in order to see if that better behaviour is persistent and does not correspond to a longer incubation period. As for the martensitic steels their corrosion rate at 450°C in the thermal convection loop TULIP is constant up to 3000 h and five times lower than that observed for 316 L steel in the same conditions.
Jones, Anthony E.; Belmont, Barbara
2016-01-01
The goal of this project was to characterize the antioxidant powers of lyophilized Aloe Vera (Aloe barbadensis) and Nopal Cactus (Opuntia ficus-indica) by quantifying the phenolics content and radical scavenging abilities of preparations derived from these plants. Extracts of these lyophylized succulents were assayed for phenolic compounds by the Folin Ciocalteau method and compared for free radical scavenging capability by the DPPH method. We found that even though the Aloe lyophilizate extract contained more phenolic content, the Nopal lyophilizate exhibited better free radical scavenging ability. Aloe Vera extract contained 0.278 g/L of phenolic content and exhibited 11.1% free radical inhibition, with a free radical scavenging rate constant of 0.177±0.015 min−1. Nopal Cactus extract contained 0.174 g/L of phenolic content and exhibited 13.2% free radical inhibition, with a free radical scavenging rate constant of 0.155±0.009 min−1. These results showed Nopal to have greater antioxidant potency than Aloe. PMID:27284273
Beelders, Theresa; de Beer, Dalene; Joubert, Elizabeth
2015-06-10
Degradation of the major benzophenones, iriflophenone-3-C-glucoside-4-O-glucoside and iriflophenone-3-C-glucoside, and the major xanthones, mangiferin and isomangiferin, of Cyclopia genistoides followed first-order reaction kinetics during high-temperature oxidation of the plant material at 80 and 90 °C. Iriflophenone-3-C-glucoside-4-O-glucoside was shown to be the most thermally stable compound. Isomangiferin was the second most stable compound at 80 °C, while its degradation rate constant was influenced the most by increased temperature. Mangiferin and iriflophenone-3-C-glucoside had comparable degradation rate constants at 80 °C. The thermal degradation kinetic model was subsequently evaluated by subjecting different batches of plant material to oxidative conditions (90 °C/16 h). The model accurately predicted the individual contents of three of the compounds in aqueous extracts prepared from oxidized plant material. The impact of benzophenone and xanthone degradation was reflected in the decreased total antioxidant capacity of the aqueous extracts, as determined using the oxygen radical absorbance capacity and DPPH(•) scavenging assays.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nachshon, Y.; Coleman, P.
1975-08-01
An experimental method, employing a fast population perturbation technique, is described to measure the vibrational-vibrational (VV) collisional probability P/sub r,r-1/sup/v,v+1/ of a diatomic molecule for large vibrational quantum numbers r and v. The relaxation of the perturbed gain of a pair of vibrational levels is a function of the vibrational populations and VV rate constants k/sub r,r-1/sup v,v+1/. The numerical inversion of the VV master rate equations determining this relaxation does not give unique value for k/sub r,r-1/ sup v,v+1/ (or P/sub r,r-1/sup v,v+1), but lower bounds can be evaluated and with empirical formulas, having several adjustable constants, it canmore » be shown that probabilities of the order of unity are required to satisfy the experimental data. The method has been specifically applied to the CO molecule, but other molecules such as HX(X = F, Cl, Br), NO, etc., could also be measured.« less
Mechanistic and kinetic studies on the OH-initiated atmospheric oxidation of fluoranthene.
Dang, Juan; Shi, Xiangli; Zhang, Qingzhu; Hu, Jingtian; Chen, Jianmin; Wang, Wenxing
2014-08-15
The atmospheric oxidation of polycyclic aromatic hydrocarbons (PAHs) can generate toxic derivatives which contribute to the carcinogenic potential of particulate organic matter. In this work, the mechanism of the OH-initiated atmospheric oxidation of fluoranthene (Flu) was investigated by using high-accuracy molecular orbital calculations. All of the possible oxidation pathways were discussed, and the theoretical results were compared with the available experimental observation. The rate constants of the crucial elementary reactions were evaluated by the Rice-Ramsperger-Kassel-Marcus (RRKM) theory. The main oxidation products are a range of ring-retaining and ring-opening chemicals containing fluoranthols, fluoranthones, fluoranthenequinones, nitro-fluoranthenes, dialdehydes and epoxides. The overall rate constant of the OH addition reaction is 1.72×10(-11) cm(3) molecule(-1) s(-1) at 298 K and 1 atm. The atmospheric lifetime of Flu determined by OH radicals is about 0.69 days. This work provides a comprehensive investigation of the OH-initiated oxidation of Flu and should help to clarify its atmospheric conversion. Copyright © 2014 Elsevier B.V. All rights reserved.
Transient state kinetics tutorial using the kinetics simulation program, KINSIM.
Wachsstock, D H; Pollard, T D
1994-01-01
This article provides an introduction to a computer tutorial on transient state kinetics. The tutorial uses our Macintosh version of the computer program, KINSIM, that calculates the time course of reactions. KINSIM is also available for other popular computers. This program allows even those investigators not mathematically inclined to evaluate the rate constants for the transitions between the intermediates in any reaction mechanism. These rate constants are one of the insights that are essential for understanding how biochemical processes work at the molecular level. The approach is applicable not only to enzyme reactions but also to any other type of process of interest to biophysicists, cell biologists, and molecular biologists in which concentrations change with time. In principle, the same methods could be used to characterize time-dependent, large-scale processes in ecology and evolution. Completion of the tutorial takes students 6-10 h. This investment is rewarded by a deep understanding of the principles of chemical kinetics and familiarity with the tools of kinetics simulation as an approach to solve everyday problems in the laboratory. PMID:7811941
NASA Astrophysics Data System (ADS)
Habibi, Mohammad Hossein; Rezvani, Zoya
2015-08-01
The degradation of C.I. Reactive Red 195 (3BF) in aqueous solution using copper cobaltite nanocomposite coated on glass by Doctor Blade method was studied. Structural, optical and morphological properties of nanocomposite coatings were characterized by X-ray powder diffractometry (XRD), diffuse reflectance spectroscopy (DRS) and field emission scanning electron microscopy (FESEM). The nanoparticles exhibit a particle size of 31 nm, showing a good nanoscale crystalline morphology. The photocatalytic activity of copper cobaltite nanocomposite coated on glass was studied by performing the photocatalytic degradation of 3BF at different irradiation time. The effect of irradiation time on the degradation of 3BF was studied and the results showed that more than 85% of the 3BF was degraded in 45 min of irradiation. The pseudo-first-order kinetic models were used and the rate constants were evaluated with pseudo first order rate constants of 4.10 × 10-2 min-1. The main advantage of the photocatalyst coated on glass overcomes the difficulties in separation and recycle of photocatalyst suspensions.
Zielinski, Robert A.
1979-01-01
Well-characterized samples of rhyolitic obsidian, perlite and felsite from a single lava flow are leached of U by alkaline oxidizing solutions under open-system conditions. Pressure, temperature, flow rate and solution composition are held constant in order to evaluate the relative importance of differences in surface area and crystallinity. Under the experimental conditions U removal from crushed glassy samples proceeds by a mechanism of glass dissolution in which U and silica are dissolved in approximately equal weight fractions. The rate of U removal from crushed glassy samples increases with decreasing average grain size (surface area). Initial rapid loss of a small component (≈ 2.5%) of the total U from crushed felsite. followed by much slower U loss, reflects variable rates of attack of numerous uranium sites. The fractions of U removed during the experiment ranged from 3.2% (felsite) to 27% (perlite). An empirical method for evaluating the relative rate of U loss from contemporaneous volcanic rocks is presented which incorporates leaching results and rock permeability data.
Flame Chemiluminescence Rate Constants for Quantitative Microgravity Combustion Diagnostics
NASA Technical Reports Server (NTRS)
Luque, Jorge; Smith, Gregory P.; Jeffries, Jay B.; Crosley, David R.; Weiland, Karen (Technical Monitor)
2001-01-01
Absolute excited state concentrations of OH(A), CH(A), and C2(d) were determined in three low pressure premixed methane-air flames. Two dimensional images of chemiluminescence from these states were recorded by a filtered CCD camera, processed by Abel inversion, and calibrated against Rayleigh scattering, Using a previously validated 1-D flame model with known chemistry and excited state quenching rate constants, rate constants are extracted for the reactions CH + O2 (goes to) OH(A) + CO and C2H + O (goes to) CH(A) + CO at flame temperatures. Variations of flame emission intensities with stoichiometry agree well with model predictions.
Nguyen, Thanh Lam; Stanton, John F.
2017-06-02
Hydrogen abstraction from NH 3 by OH to produce H 2O and NH 2 — an important reaction in combustion of NH 3 fuel — was studied with a theoretical approach that combines high level quantum chemistry and advanced chemical kinetics methods. Thermal rate constants calculated from first principles agree well (within 5 to 20%) with available experimental data over a temperature range that extends from 200 to 2500 K. Here, quantum mechanical tunneling effects were found to be important; they lead to a decided curvature and non-Arrhenius behavior for the rate constant.
Blum, Philipp; Hunkeler, Daniel; Weede, Matthias; Beyer, Christof; Grathwohl, Peter; Morasch, Barbara
2009-04-01
At a former wood preservation plant severely contaminated with coal tar oil, in situ bulk attenuation and biodegradation rate constants for several monoaromatic (BTEX) and polyaromatic hydrocarbons (PAH) were determined using (1) classical first order decay models, (2) Michaelis-Menten degradation kinetics (MM), and (3) stable carbon isotopes, for o-xylene and naphthalene. The first order bulk attenuation rate constant for o-xylene was calculated to be 0.0025 d(-1) and a novel stable isotope-based first order model, which also accounted for the respective redox conditions, resulted in a slightly smaller biodegradation rate constant of 0.0019 d(-1). Based on MM-kinetics, the o-xylene concentration decreased with a maximum rate of k(max)=0.1 microg/L/d. The bulk attenuation rate constant of naphthalene retrieved from the classical first order decay model was 0.0038 d(-1). The stable isotope-based biodegradation rate constant of 0.0027 d(-1) was smaller in the reduced zone, while residual naphthalene in the oxic part of the plume further downgradient was degraded at a higher rate of 0.0038 d(-1). With MM-kinetics a maximum degradation rate of k(max)=12 microg/L/d was determined. Although best fits were obtained by MM-kinetics, we consider the carbon stable isotope-based approach more appropriate as it is specific for biodegradation (not overall attenuation) and at the same time accounts for the dominant electron-accepting process. For o-xylene a field based isotope enrichment factor epsilon(field) of -1.4 could be determined using the Rayleigh model, which closely matched values from laboratory studies of o-xylene degradation under sulfate-reducing conditions.
Simulation evaluation of a speed-guidance law for Harrier approach transitions
NASA Technical Reports Server (NTRS)
Merrick, Vernon K.; Moralez, Ernesto; Stortz, Michael W.; Hardy, Gordon H.; Gerdes, Ronald M.
1991-01-01
An exponential-deceleration speed guidance law is formulated which mimics the technique currently used by Harrier pilots to perform decelerating approaches to a hover. This guidance law was tested along with an existing two-step constant deceleration speed guidance law, using a fixed-base piloted simulator programmed to represent a YAV-8B Harrier. Decelerating approaches to a hover at a predetermined station-keeping point were performed along a straight (-3 deg glideslope) path in headwinds up to 40 knots and turbulence up to 6 ft./sec. Visibility was fixed at one-quarter nautical mile and 100 ft. cloud ceiling. Three Harrier pilots participated in the experiment. Handling qualities with the aircraft equipped with the standard YAV-8B rate damped attitude stability augmentation system were adequate (level 2) using either speed guidance law. However, the exponential deceleration speed guidance law was rated superior to the constant-deceleration speed guidance law by a Cooper-Harper handling qualities rating of about one unit independent of the level of wind and turbulence. Replacing the attitude control system of the YAV-8B with a high fidelity model following attitude flight controller increased the approach accuracy and reduced the pilot workload. With one minor exception, the handling qualities for the approach were rated satisfactory (level 1). It is concluded that the exponential deceleration speed guidance law is the most cost effective.
Nitrous oxide production kinetics during nitrate reduction in river sediments.
Laverman, Anniet M; Garnier, Josette A; Mounier, Emmanuelle M; Roose-Amsaleg, Céline L
2010-03-01
A significant amount of nitrogen entering river basins is denitrified in riparian zones. The aim of this study was to evaluate the influence of nitrate and carbon concentrations on the kinetic parameters of nitrate reduction as well as nitrous oxide emissions in river sediments in a tributary of the Marne (the Seine basin, France). In order to determine these rates, we used flow-through reactors (FTRs) and slurry incubations; flow-through reactors allow determination of rates on intact sediment slices under controlled conditions compared to sediment homogenization in the often used slurry technique. Maximum nitrate reduction rates (R(m)) ranged between 3.0 and 7.1microg Ng(-1)h(-1), and affinity constant (K(m)) ranged from 7.4 to 30.7mg N-NO(3)(-)L(-1). These values were higher in slurry incubations with an R(m) of 37.9microg Ng(-1)h(-1) and a K(m) of 104mg N-NO(3)(-)L(-1). Nitrous oxide production rates did not follow Michaelis-Menten kinetics, and we deduced a rate constant with an average of 0.7 and 5.4ng Ng(-1)h(-1) for FTR and slurry experiments respectively. The addition of carbon (as acetate) showed that carbon was not limiting nitrate reduction rates in these sediments. Similar rates were obtained for FTR and slurries with carbon addition, confirming the hypothesis that homogenization increases rates due to release of and increasing access to carbon in slurries. Nitrous oxide production rates in FTR with carbon additions were low and represented less than 0.01% of the nitrate reduction rates and were even negligible in slurries. Maximum nitrate reduction rates revealed seasonality with high potential rates in fall and winter and low rates in late spring and summer. Under optimal conditions (anoxia, non-limiting nitrate and carbon), nitrous oxide emission rates were low, but significant (0.01% of the nitrate reduction rates). Copyright 2009 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kahveci, E. E.; Taymaz, I.
2018-03-01
In this study it was experimentally investigated the effect of mass flow rates of reactant gases which is one of the most important operational parameters of polymer electrolyte membrane (PEM) fuel cell on power density. The channel type is serpentine and single PEM fuel cell has an active area of 25 cm2. Design-Expert 8.0 (trial version) was used with four variables to investigate the effect of variables on the response using. Cell temperature, hydrogen mass flow rate, oxygen mass flow rate and humidification temperature were selected as independent variables. In addition, the power density was used as response to determine the combined effects of these variables. It was kept constant cell and humidification temperatures while changing mass flow rates of reactant gases. From the results an increase occurred in power density with increasing the hydrogen flow rates. But oxygen flow rate does not have a significant effect on power density within determined mass flow rates.
In-vivo force decay of nickel-titanium closed-coil springs.
Cox, Crystal; Nguyen, Tung; Koroluk, Lorne; Ko, Ching-Chang
2014-04-01
Nickel-titanium closed-coil springs are purported to deliver constant forces over extended ranges of activation and working times. In-vivo studies supporting this claim are limited. The objective of this study was to evaluate changes in force-decay properties of nickel-titanium closed-coil springs after clinical use. Pseudoelastic force-deflection curves for 30 nickel-titanium coil springs (used intraorally) and 15 matched laboratory control springs (simulated intraoral conditions: artificial saliva, 37°C) were tested before and after retrieval via dynamic mechanical analysis and a testing machine, respectively, to evaluate the amounts of force-loss and hysteresis change after 4, 8, or 12 weeks of working time (n = 10 per group). The effects of the oral environment and clinical use on force properties were evaluated by comparing in-vivo and in-vitro data. The springs studied showed a statistically significant decrease in force (approximately 12%) after 4 weeks of clinical use (P <0.01), with a further significant decrease (approximately 7%) from 4 to 8 weeks (P = 0.03), and force levels appearing to remain steady thereafter. Clinical space closure at an average rate of 0.91 mm per month was still observed despite this decrease in force. In-vivo and in-vitro force-loss data were not statistically different. Nickel-titanium closed-coil springs do not deliver constant forces when used intraorally, but they still allow for space-closure rates of approximately 1 mm per month. Copyright © 2014 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Lee, Myeong H.; Dunietz, Barry D.; Geva, Eitan
2014-03-01
Classical Marcus theory is commonly adopted in solvent-mediated charge transfer (CT) process to obtain the CT rate constant, but it can become questionable when the intramolecular vibrational modes dominate the CT process as in OPV devices because Marcus theory treats these modes classically and therefore nuclear tunneling is not accounted for. We present a computational scheme to obtain the electron transfer rate constant beyond classical Marcus theory. Within this approach, the nuclear vibrational modes are treated quantum-mechanically and a short-time approximation is avoided. Ab initio calculations are used to obtain the basic parameters needed for calculating the electron transfer rate constant. We apply our methodology to phthalocyanine(H2PC)-C60 organic photovoltaic system where one C60 acceptor and one or two H2PC donors are included to model the donor-acceptor interface configuration. We obtain the electron transfer and recombination rate constants for all accessible charge transfer (CT) states, from which the CT exciton dynamics is determined by employing a master equation. The role of higher lying excited states in CT exciton dynamics is discussed. This work is pursued as part of the Center for Solar and Thermal Energy Conversion, an Energy Frontier Research Center funded by the US Department of Energy Office of Science, Office of Basic Energy Sciences under 390 Award No. DE-SC0000957.
Gupta, S; Basant, N; Mohan, D; Singh, K P
2016-07-01
Experimental determinations of the rate constants of the reaction of NO3 with a large number of organic chemicals are tedious, and time and resource intensive; and the development of computational methods has widely been advocated. In this study, we have developed room-temperature (298 K) and temperature-dependent quantitative structure-reactivity relationship (QSRR) models based on the ensemble learning approaches (decision tree forest (DTF) and decision treeboost (DTB)) for predicting the rate constant of the reaction of NO3 radicals with diverse organic chemicals, under OECD guidelines. Predictive powers of the developed models were established in terms of statistical coefficients. In the test phase, the QSRR models yielded a correlation (r(2)) of >0.94 between experimental and predicted rate constants. The applicability domains of the constructed models were determined. An attempt has been made to provide the mechanistic interpretation of the selected features for QSRR development. The proposed QSRR models outperformed the previous reports, and the temperature-dependent models offered a much wider applicability domain. This is the first report presenting a temperature-dependent QSRR model for predicting the nitrate radical reaction rate constant at different temperatures. The proposed models can be useful tools in predicting the reactivities of chemicals towards NO3 radicals in the atmosphere, hence, their persistence and exposure risk assessment.
Influence of UV dose on the UV/H2O2 process for the degradation of carbamazepine in wastewater.
Somathilake, Purnima; Dominic, John Albino; Achari, Gopal; Langford, Cooper H; Tay, Joo-Hwa
2018-05-02
This study evaluates the influence of UV dose on degradation of carbamazepine (CBZ) in wastewater under UV-C (λ = 254 nm) photolysis with and without H 2 O 2 . The rate of degradation of CBZ exhibited a direct dependence on the intensity of incident UV irradiation as the rate of degradation was observed to increase linearly (R 2 = 0.98) with UV intensity between 1.67 and 8.95 × 10 17 photons/s. More than 95% of the CBZ that spiked in wastewater rapidly degraded within 4 min with a first-order rate constant of 1.2 min -1 for an optimum H 2 O 2 dose of 100 mg/L. Bench-scale continuous flow reactor experiments also showed that CBZ degraded with first-order kinetics at a rate constant of 1.02 min -1 . The kinetic parameters obtained for a continuous bench-scale reactor were in good agreement with the relationships developed through batch experiments with only a marginal deviation of ± 6.5%. The relationship between UV intensity and CBZ degradation rate obtained in this study was extrapolated to the UV disinfection unit of a wastewater treatment plant to predict possible degradation of CBZ during UV disinfection. The addition of 100 mg/L of H 2 O 2 to the secondary-treated effluent entering the UV disinfection unit is predicted to achieve over 60% degradation of CBZ.
Charring rate of wood exposed to a constant heat flux
R. H. White; H. C. Tran
1996-01-01
A critical factor in the fire endurance of a wood member is its rate of charring. Most available charring rate data have been obtained using the time-temperature curves of the standard fire resistance tests (ASTM E 119 and ISO 834) to define the fire exposure. The increased use of heat release calorimeters using exposures of constant heat flux levels has broadened the...
Adaptive data rate control TDMA systems as a rain attenuation compensation technique
NASA Technical Reports Server (NTRS)
Sato, Masaki; Wakana, Hiromitsu; Takahashi, Takashi; Takeuchi, Makoto; Yamamoto, Minoru
1993-01-01
Rainfall attenuation has a severe effect on signal strength and impairs communication links for future mobile and personal satellite communications using Ka-band and millimeter wave frequencies. As rain attenuation compensation techniques, several methods such as uplink power control, site diversity, and adaptive control of data rate or forward error correction have been proposed. In this paper, we propose a TDMA system that can compensate rain attenuation by adaptive control of transmission rates. To evaluate the performance of this TDMA terminal, we carried out three types of experiments: experiments using a Japanese CS-3 satellite with Ka-band transponders, in house IF loop-back experiments, and computer simulations. Experimental results show that this TDMA system has advantages over the conventional constant-rate TDMA systems, as resource sharing technique, in both bit error rate and total TDMA burst lengths required for transmitting given information.
NASA Astrophysics Data System (ADS)
Tapponnier, Paul; Ryerson, Frederick James; Van der Woerd, Jerome; Mériaux, Anne-Sophie; Lasserre, Cécile
2001-11-01
Over periods of thousands of years, active faults tend to slip at constant rates. Pioneer studies of large Asian faults show that cosmogenic radionuclides ( 10Be, 26Al) provide an unparalleled tool to date surface features, whose offsets yield the longest records of recent cumulative movement. The technique is thus uniquely suited to determine long-term (10-100 ka) slip rates. Such rates, combined with coseismic slip-amounts, can give access to recurrence times of earthquakes of similar sizes. Landform dating - morphochronology - is therefore essential to understand fault-behaviour, evaluate seismic hazard, and build physical earthquake models. It is irreplaceable because long-term slip-rates on interacting faults need not coincide with GPS-derived, interseismic rates, and can be difficult to obtain from paleo-seismological trenching.
Sharif, Fariya; Westerhoff, Paul; Herckes, Pierre
2014-02-01
Constructed wetlands remove trace organic contaminants via synergistic processes involving plant biomass that include hydrolysis, volatilization, sorption, biodegradation, and photolysis. Wetland design conditions, such as hydraulic loading rates (HLRs) and carbon loading rates (CLRs), influence these processes. Contaminant of emerging concern (CEC) removal by wetland plants was investigated at varying HLRs and CLRs. Rate constants and parameters obtained from batch-scale studies were used in a mechanistic model to evaluate the effect of these two loading rates on CEC removal. CLR significantly influenced CEC removal when wetlands were operated at HLR >5 cm/d. High values of CLR increased removal of estradiol and carbamazepine but lowered that of testosterone and atrazine. Without increasing the cumulative HLR, operating two wetlands in series with varying CLRs could be a way to improve CEC removal. Copyright © 2013 Elsevier Ltd. All rights reserved.
The ocean in near equilibrium with atmospheric methyl bromide
NASA Astrophysics Data System (ADS)
Hu, Lei; Yvon-Lewis, Shari; Liu, Yina; Bianchi, Thomas S.
2012-09-01
Saturation-anomaly measurements of methyl bromide (CH3Br) were made in the eastern Pacific (3/30-4/27, 2010) and the eastern Atlantic (10/25-11/26, 2010) to assess the oceanic saturation state as the phaseout of fumigation - non-Quarantine and Pre-Shipment (non-QPS) uses of CH3Br nears completion and atmospheric concentrations continue to decline. These cruises occurred 16 years after the Bromine Latitudinal Air-Sea Transect (BLAST) cruises, which were conducted in the same regions and first established a global oceanic net sink of -12.6 Gg yr-1 for atmospheric CH3Br in 1994. Results from this study suggest saturation anomalies of CH3Br in the surface ocean have become less negative than those observed 16 years ago as the atmospheric burden has declined over the past decade. The global net sea-to-air flux was estimated at 0 to 3 Gg yr-1 in 2010, suggesting that the ocean may become a net small source to atmospheric CH3Br. There are no significant differences between this study and previous studies for measured biological loss rate constants and calculated annual production rates, suggesting that annual production rates and biological degradation rate constants for CH3Br in the surface ocean have likely remained relatively constant over the past 16 years. When including the biological loss rate constants from this study and all previous studies, the mean global biological loss rate constant is constrained to 0.05 ± 0.01 d-1 (at a 95% confidence level). Combining chemical and eddy degradation rate constants, and using an updated gas transfer velocity, we estimate the CH3Br partial atmospheric lifetime with respect to oceanic loss to be 3.1 (2.3 to 5.0) years. Although the new partial atmospheric lifetime is about 1.3 years longer than the best prior estimate, it does not change the overall atmospheric lifetime of CH3Br, 0.8 (0.7-0.9) years.
Subcutaneous blood flow in psoriasis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klemp, P.
1985-03-01
The simultaneously recorded disappearance rates of /sup 133/xe from subcutaneous adipose tissue in the crus were studied in 10 patients with psoriasis vulgaris using atraumatic labeling of the tissue in lesional skin (LS) areas and symmetrical, nonlesional skin (NLS) areas. Control experiments were performed bilaterally in 10 younger, healthy subjects. The subcutaneous washout rate constant was significantly higher in LS, 0.79 +/- 0.05 min-1 x 10(2) compared to the washout rate constant of NLS, 0.56 +/- 0.07 min-1. 10(2), or the washout rate constant in the normal subjects, 0.46 +/- 0.17 min-1 x 10(2). The mean washout rate constant inmore » NLS was 25% higher than the mean washout rate constant in the normal subjects. The difference was, however, not statistically significant. Differences in the washout rate constants might be due to abnormal subcutaneous tissue-to-blood partition (lambda) in the LS--and therefore not reflecting the real differences in the subcutaneous blood flow (SBF). The lambda for /sup 133/Xe was therefore measured--using a double isotope washout method (/sup 133/Xe and (/sup 131/I)antipyrine)--in symmetrical sites of the lateral crus in LS and NLS of 10 patients with psoriasis vulgaris and in 10 legs of normal subjects. In LS the lambda was 4.52 +/- 1.67 ml/g, which was not statistically different from that of NLS, 5.25 +/- 2.19 ml/g, nor from that of normal subcutaneous tissue, 4.98 +/- 1.04 ml/g. Calculations of the SBF using the obtained lambda values gave a significantly higher SBF in LS, 3.57 +/- 0.23 ml/100 g/min, compared to SBF in the NLS, 2.94 +/- 0.37 ml/100 g/min. There was no statistically significant difference between SBF in NLS and SBF in the normal subjects. The increased SBF in LS of psoriatics might be a secondary phenomenon to an increased heat loss in the lesional skin.« less
Thompson, D S; Wilmshurst, P; Juul, S M; Waldron, C B; Jenkins, B S; Coltart, D J; Webb-Peploe, M M
1983-01-01
High fidelity measurements of left ventricular pressure were made at increasing pacing rates in 21 patients with hypertrophic cardiomyopathy and a control group of 11 patients investigated for chest pain who proved to have normal hearts. In both groups the fall in pressure during isovolumic relaxation from the point of min dp/dt approximated closely to a monoexponential, and could be described by a time constant and asymptote. The time constant shortened and the asymptote increased as heart rate rose in both groups. The time constant was longer and min dp/dt less in the cardiomyopathy group than controls at all heart rates. In the cardiomyopathy patients min dp/dt, but not the time constant, was related to systolic pressure. During pacing, eight cardiomyopathy patients developed metabolic evidence of myocardial ischaemia, but indices of relaxation did not differ between these eight and the other 13 either at basal heart rate or the highest pacing rate. In 10 cardiomyopathy patients measurements were repeated at comparable pacing rates after propranolol (0.2 mg/kg). Left ventricular end-diastolic pressure and indices of contractility decreased after the drug, but the time constant did not change. Eight patients received verapamil (20 mg) after which there were substantial reductions in systolic pressure and contractility. Min dp/dt decreased in proportion to systolic pressure, but the time constant was unchanged. At the highest pacing rate before drug administration three patients had abnormal lactate extraction which was corrected by either propranolol (one patient) or verapamil (two patients). Despite abolition of metabolic evidence of ischaemia, relaxation did not improve. It is concluded that abnormal isovolumic relaxation is common in patients with hypertrophic cardiomyopathy, but its severity correlates poorly with other features of the disease. Abnormal relaxation is not the result of ischaemia, and pressure derived indices of relaxation do not improve after the administration of propranolol or verapamil. PMID:6681978
Evaluation of Delamination Growth Characterization Methods Under Mode I Fatigue Loading
NASA Technical Reports Server (NTRS)
Murri, Gretchen B.
2012-01-01
Reliable delamination characterization data for laminated composites are needed for input to analytical models of structures to predict delamination. The double-cantilevered beam (DCB) specimen is used with laminated composites to measure fracture toughness, G(sub Ic), delamination onset strain energy release rate, and growth rate data under cyclic loading. In the current study, DCB specimens of IM7/8552 graphite/epoxy supplied by two different manufacturers were tested in static and fatigue to compare the measured characterization data from the two sources, and to evaluate a proposed ASTM standard for generating Paris Law equations. Static results were used to generate compliance calibration constants for the fatigue data, and a delamination resistance curve, G(sub IR), which was used to determine the effects of fiber-bridging on delamination growth. Specimens were tested in fatigue at a cyclic G(sub Imax) level equal to 50, 40 or 30% of G(sub Ic), to determine a delamination onset curve and delamination growth rate. The delamination onset curve equations had similar exponents and the same trends. Delamination growth rate was calculated by fitting a Paris Law to the da/dN versus G(sub Imax) data. Both a 2-point and a 7-point data reduction method were used and the Paris Law equations were compared. To determine the effects of fiber-bridging, growth rate results were normalized by the delamination resistance curve for each material and compared to the non-normalized results. Paris Law exponents were found to decrease by 31% to 37% due to normalizing the growth data. Normalizing the data also greatly reduced the amount of scatter between the different specimens. Visual data records from the fatigue testing were used to calculate individual compliance calibration constants from the fatigue data for some of the specimens. The resulting da/dN versus G(sub Imax) plots showed much improved repeatability between specimens. Gretchen
Scale-Dependent Rates of Uranyl Surface Complexation Reaction in Sediments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Chongxuan; Shang, Jianying; Kerisit, Sebastien N.
Scale-dependency of uranyl[U(VI)] surface complexation rates was investigated in stirred flow-cell and column systems using a U(VI)-contaminated sediment from the US Department of Energy, Hanford site, WA. The experimental results were used to estimate the apparent rate of U(VI) surface complexation at the grain-scale and in porous media. Numerical simulations using molecular, pore-scale, and continuum models were performed to provide insights into and to estimate the rate constants of U(VI) surface complexation at the different scales. The results showed that the grain-scale rate constant of U(VI) surface complexation was over 3 to 10 orders of magnitude smaller, dependent on themore » temporal scale, than the rate constant calculated using the molecular simulations. The grain-scale rate was faster initially and slower with time, showing the temporal scale-dependency. The largest rate constant at the grain-scale decreased additional 2 orders of magnitude when the rate was scaled to the porous media in the column. The scaling effect from the grain-scale to the porous media became less important for the slower sorption sites. Pore-scale simulations revealed the importance of coupled mass transport and reactions in both intragranular and inter-granular domains, which caused both spatial and temporal dependence of U(VI) surface complexation rates in the sediment. Pore-scale simulations also revealed a new rate-limiting mechanism in the intragranular porous domains that the rate of coupled diffusion and surface complexation reaction was slower than either process alone. The results provided important implications for developing models to scale geochemical/biogeochemical reactions.« less
NASA Astrophysics Data System (ADS)
Labhane, P. K.; Sapkal, B. M.; Sonawane, G. H.
2018-05-01
Carbon (C) doped ZnO rod like nanoparticles were prepared by simple co-precipitation method. The effect of C doping on ZnO has been evaluated by using XRD, Williamson-Hall Plot, FESEM and EDX data. UV light assisted photocatalytic activities of prepared samples were evaluated spectrophotometrically by the degradation of methylene blue (MB). C doped ZnO shows excellent catalytic efficiency compared to pure ZnO, degrading MB completely within 100 min under UV light. Photocatalysis follows the first order kinetics law and the calculated apparent reaction kinetics rate constant suggest the better activity of C-ZnO.
[Grades evaluation of Scutellariae Radix slices based on quality constant].
Deng, Zhe; Zhang, Jun; Jiao, Meng-Jiao; Zhong, Wen; Cui, Wen-Jin; Cheng, Jin-Tang; Chen, Sha; Wang, Yue-Sheng; Liu, An
2017-05-01
By measuring the morphological indexes and the marker components content of 22 batches of Scutellariae Radix slices as well as calculating the quality constant, this research was aimed to establish a new method of evaluating the specifications and grades of Scutellariae Radix slices. The quality constants of these samples were in the range of 0.04-0.49, which can be divided into several grades based on the real requirement. If they were divided into three grades, the quality constant was ≥0.39 for the first grade, <0.39 but ≥0.24 for the second grade, and <0.24 for the third grade. This work indicated that the quality constants characterizing both apparent parameters and intrinsic quality can be used as a comprehensive evaluation index to classify the grades of traditional Chinese medicine quantitatively, clearly and objectively. The research results in this paper would provide new ideas and references for evaluating the specifications and grades of traditional Chinese medicines. Copyright© by the Chinese Pharmaceutical Association.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sawada, Y.; Kawai, R.; McManaway, M.
(3H)Cyclofoxy (CF: 17-cyclopropylmethyl-3,14-dihydroxy-4,5-alpha-epoxy-6-beta-fluoromorp hinan) is an opioid antagonist with affinity to both mu and kappa subtypes that was synthesized for quantitative evaluation of opioid receptor binding in vivo. Two sets of experiments in rats were analyzed. The first involved determining the metabolite-corrected blood concentration and tissue distribution of CF in brain 1 to 60 min after i.v. bolus injection. The second involved measuring brain washout for 15 to 120 s following intracarotid artery injection of CF. A physiologically based model and a classical compartmental pharmacokinetic model were compared. The models included different assumptions for transport across the blood-brain barrier (BBB);more » estimates of nonspecific tissue binding and specific binding to a single opiate receptor site were found to be essentially the same with both models. The nonspecific binding equilibrium constant varied modestly in different brain structures (Keq = 3-9), whereas the binding potential (BP) varied over a much broader range (BP = 0.6-32). In vivo estimates of the opioid receptor dissociation constant were similar for different brain structures (KD = 2.1-5.2 nM), whereas the apparent receptor density (Bmax) varied between 1 (cerebellum) and 78 (thalamus) pmol/g of brain. The receptor dissociation rate constants in cerebrum (k4 = 0.08-0.16 min-1; koff = 0.16-0.23 min-1) and brain vascular permeability (PS = 1.3-3.4 ml/min/g) are sufficiently high to achieve equilibrium conditions within a reasonable period of time. Graphical analysis of the data is inappropriate due to the high tissue-loss rate constant for CF in brain. From these findings, CF should be a very useful opioid receptor ligand for the estimation of the receptor binding parameters in human subjects using (18F)CF and positron emission tomography.« less
We determined the number and the dissociation rate constants of different complexes formed from arsenite and two peptides containing either one (RV AVGNDYASGYHYGV for peptide 20) or three cysteines (LE AWQGK VEGTEHLYSMK K for peptide 10) via radioactive 73As labeled arsenite and ...
SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to calculate hydrolysis rate constants for carboxylic acid ester and phosphate ester compounds in aqueous non- aqueous and systems strictly from molecular structure. The energy diffe...
18 CFR 806.12 - Constant-rate aquifer testing.
Code of Federal Regulations, 2010 CFR
2010-04-01
... groundwater availability analysis to determine the availability of water during a 1-in-10-year recurrence... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Constant-rate aquifer testing. 806.12 Section 806.12 Conservation of Power and Water Resources SUSQUEHANNA RIVER BASIN...
RELATIVE RATE CONSTANTS OF CONTAMINANT CANDIDATE LIST PESTICIDES WITH HYDROXYL RADICALS
The objective of this study was to establish the rate constants for the reactions of selected pesticides listed on the US EPA Contaminant Candidate List, with UV and hydroxyl radicals (·OH). Batch experiments were conducted in phosphate buffered solution at pH 7. All pestici...
Arnot, Jon A; Mackay, Donald
2018-01-24
The chemical dietary absorption efficiency (E D ) quantifies the amount of chemical absorbed by an organism relative to the amount of chemical an organism is exposed to following ingestion. In particular, E D can influence the extent of bioaccumulation and biomagnification for hydrophobic chemicals. A new E D model is developed to quantify chemical process rates in the gastrointestinal tract (GIT). The new model is calibrated with critically evaluated measured E D values (n = 250) for 80 hydrophobic persistent chemicals. The new E D model is subsequently used to estimate chemical reaction rate constants (k R ) assumed to occur in the lumen of the GIT from experimental dietary exposure tests (n = 255) for 165 chemicals. The new k R estimates are corroborated with k R estimates for the same chemicals from the same data derived previously by other methods. The roles of k R and the biotransformation rate constant (k B ) on biomagnification factors (BMFs) determined under laboratory test conditions and on BMFs and bioaccumulation factors (BAFs) in the environment are examined with the new model. In this regard, differences in lab and field BMFs are highlighted. Recommendations to address uncertainty in E D and k R data are provided.
Short-crack growth behaviour in an aluminum alloy: An AGARD cooperative test program
NASA Technical Reports Server (NTRS)
Newman, J. C., Jr.; Edwards, P. R.
1988-01-01
An AGARD Cooperative Test Program on the growth of short fatigue cracks was conducted to define the significance of the short-crack effect, to compare test results from various laboratories, and to evaluate an existing analytical crack-growth prediction model. The initiation and growth of short fatigue cracks (5 micrometer to 2 mm) from the surface of a semi-circular notch in 2024-T3 aluminum alloy sheet material were monitored under various load histories. The cracks initiated from inclusion particle clusters or voids on the notch surface and generally grew as surface cracks. Tests were conducted under several constant-amplitude (stress ratios of -2, -1, 0, and 0.5) and spectrum (FALSTAFF and Gaussian) loading conditions at 3 stress levels each. Short crack growth was recorded using a plastic-replica technique. Over 250 edge-notched specimens were fatigue tested and nearly 950 cracks monitored by 12 participants from 9 countries. Long crack-growth rate data for cracks greater than 2 mm in length were obtained over a wide range in rates (10 to the -8 to 10 to the -1 mm/cycle) for all constant-amplitude loading conditions. Long crack-growth rate data for the FALSTAFF and Gaussian load sequences were also obtained.
Thermal stability of tagatose in solution.
Luecke, Katherine J; Bell, Leonard N
2010-05-01
Tagatose, a monosaccharide similar to fructose, has been shown to behave as a prebiotic. To deliver this prebiotic benefit, tagatose must not degrade during the processing of foods and beverages. The objective of this study was to evaluate the thermal stability of tagatose in solutions. Tagatose solutions were prepared in 0.02 and 0.1 M phosphate and citrate buffers at pHs 3 and 7, which were then held at 60, 70, and 80 degrees C. Pseudo-1st-order rate constants for tagatose degradation were determined. In citrate and phosphate buffers at pH 3, minimal tagatose was lost and slight browning was observed. At pH 7, tagatose degradation rates were enhanced. Degradation was faster in phosphate buffer than citrate buffer. Higher buffer concentrations also increased the degradation rate constants. Enhanced browning accompanied tagatose degradation in all buffer solutions at pH 7. Using the activation energies for tagatose degradation, less than 0.5% and 0.02% tagatose would be lost under basic vat and HTST pasteurization conditions, respectively. Although tagatose does breakdown at elevated temperatures, the amount of tagatose lost during typical thermal processing conditions would be virtually negligible. Practical Application: Tagatose degradation occurs minimally during pasteurization, which may allow for its incorporation into beverages as a prebiotic.
Reilly, Anthony M; Briesen, Heiko
2012-01-21
The feasibility of using the molecular dynamics (MD) simulation technique to study crystal growth from solution quantitatively, as well as to obtain transition rate constants, has been studied. The dynamics of an interface between a solution of Lennard-Jones particles and the (100) face of an fcc lattice comprised of solute particles have been studied using MD simulations, showing that MD is, in principle, capable of following growth behavior over large supersaturation and temperature ranges. Using transition state theory, and a nearest-neighbor approximation growth and dissolution rate constants have been extracted from equilibrium MD simulations at a variety of temperatures. The temperature dependence of the rates agrees well with the expected transition state theory behavior. © 2012 American Institute of Physics
Barlow, Peter W; Fisahn, Joachim; Yazdanbakhsh, Nima; Moraes, Thiago A; Khabarova, Olga V; Gallep, Cristiano M
2013-05-01
Correlative evidence suggests a relationship between the lunisolar tidal acceleration and the elongation rate of arabidopsis roots grown under free-running conditions of constant low light. Seedlings of Arabidopsis thaliana were grown in a controlled-climate chamber maintained at a constant temperature and subjected to continuous low-level illumination from fluorescent tubes, conditions that approximate to a 'free-running' state in which most of the abiotic factors that entrain root growth rates are excluded. Elongation of evenly spaced, vertical primary roots was recorded continuously over periods of up to 14 d using high temporal- and spatial-resolution video imaging and were analysed in conjunction with geophysical variables. The results confirm the lunisolar tidal/root elongation relationship. Also presented are relationships between the hourly elongation rates and the contemporaneous variations in geomagnetic activity, as evaluated from the disturbance storm time and ap indices. On the basis of time series of root elongation rates that extend over ≥4 d and recorded at different seasons of the year, a provisional conclusion is that root elongation responds to variation in the lunisolar force and also appears to adjust in accordance with variations in the geomagnetic field. Thus, both lunisolar tidal acceleration and the geomagnetic field should be considered as modulators of root growth rate, alongside other, stronger and more well-known abiotic environmental regulators, and perhaps unexplored factors such as air ions. Major changes in atmospheric pressure are not considered to be a factor contributing to oscillations of root elongation rate.