Supply-demand 3D dynamic model in water resources evaluation: taking Lebanon as an example
NASA Astrophysics Data System (ADS)
Fang, Hong; Hou, Zhimin
2017-05-01
In this paper, supply-demand 3D dynamic model is adopted to create a measurement of a region’s capacity to provide available water to meet the needs of its population. First of all, we draw a diagram between supply and demand. Then taking the main dynamic factors into account, we establish an index to evaluate the balance of supply and demand. The three dimension vector reflects the scarcity of industrial, agricultural and residential water. Lebanon is chosen as the object of case study, and we do quantitative analysis of its current situation. After data collecting and processing, we calculate the 3D vector in 2012, which reveals that agriculture is susceptible to water scarcity. Water resources of Lebanon are “physical rich” but “economic scarcity” according to the correlation chart and other statistical analysis.
NASA Technical Reports Server (NTRS)
Arellano, Patrick; Patton, Marc; Schwartz, Alan; Stanton, David
2006-01-01
The Low Pressure Oxidizer Turbopump (LPOTP) inducer on the Block II configuration Space Shuttle Main Engine (SSME) experienced blade leading edge ripples during hot firing. This undesirable condition led to a minor redesign of the inducer blades. This resulted in the need to evaluate the performance and the dynamic environment of the redesign, relative to the current configuration, as part of the design acceptance process. Sub-scale water model tests of the two inducer configurations were performed, with emphasis on the dynamic environment due to cavitation induced vibrations. Water model tests were performed over a wide range of inlet flow coefficient and pressure conditions, representative of the scaled operating envelope of the Block II SSME, both in flight and in ground hot-fire tests, including all power levels. The water test hardware, facility set-up, type and placement of instrumentation, the scope of the test program, specific test objectives, data evaluation process and water test results that characterize and compare the two SSME LPOTP inducers are discussed. In addition, dynamic characteristics of the two water models were compared to hot fire data from specially instrumented ground tests. In general, good agreement between the water model and hot fire data was found, which confirms the value of water model testing for dynamic characterization of rocket engine turbomachinery.
Wedberg, Rasmus; Abildskov, Jens; Peters, Günther H
2012-03-01
In nonaqueous enzymology, control of enzyme hydration is commonly approached by fixing the thermodynamic water activity of the medium. In this work, we present a strategy for evaluating the water activity in molecular dynamics simulations of proteins in water/organic solvent mixtures. The method relies on determining the water content of the bulk phase and uses a combination of Kirkwood-Buff theory and free energy calculations to determine corresponding activity coefficients. We apply the method in a molecular dynamics study of Candida antarctica lipase B in pure water and the organic solvents methanol, tert-butyl alcohol, methyl tert-butyl ether, and hexane, each mixture at five different water activities. It is shown that similar water activity yields similar enzyme hydration in the different solvents. However, both solvent and water activity are shown to have profound effects on enzyme structure and flexibility.
The use of an integrated variable fuzzy sets in water resources management
NASA Astrophysics Data System (ADS)
Qiu, Qingtai; Liu, Jia; Li, Chuanzhe; Yu, Xinzhe; Wang, Yang
2018-06-01
Based on the evaluation of the present situation of water resources and the development of water conservancy projects and social economy, optimal allocation of regional water resources presents an increasing need in the water resources management. Meanwhile it is also the most effective way to promote the harmonic relationship between human and water. In view of the own limitations of the traditional evaluations of which always choose a single index model using in optimal allocation of regional water resources, on the basis of the theory of variable fuzzy sets (VFS) and system dynamics (SD), an integrated variable fuzzy sets model (IVFS) is proposed to address dynamically complex problems in regional water resources management in this paper. The model is applied to evaluate the level of the optimal allocation of regional water resources of Zoucheng in China. Results show that the level of allocation schemes of water resources ranging from 2.5 to 3.5, generally showing a trend of lower level. To achieve optimal regional management of water resources, this model conveys a certain degree of accessing water resources management, which prominently improve the authentic assessment of water resources management by using the eigenvector of level H.
Furmanchuk, Al'ona; Isayev, Olexandr; Gorb, Leonid; Shishkin, Oleg V; Hovorun, Dmytro M; Leszczynski, Jerzy
2011-03-14
In the present work, the conventional static ab initio picture of a water-assisted mechanism of the tautomerization of Nucleic Acid Bases (NABs) in an aqueous environment is enhanced by the classical and Car-Parrinello molecular dynamics simulations. The inclusion of the dynamical contribution is vital because the formation and longevity of the NAB-water bridge complexes represent decisive factors for further tautomerization. The results of both molecular dynamic techniques indicate that the longest time when such complexes exist is significantly shorter than the time required for proton transfer suggested by the static ab initio level of theory. New rate constants of tautomerization corrected for the dynamic effect of environment are proposed based on the first principles molecular dynamics data. Those values are used for the evaluation of a water-assisted mechanism that is feasible in such biological systems as E. coli cell.
NASA Astrophysics Data System (ADS)
Jerng, Dong Wook; Kim, Dong Eok
2018-01-01
The dynamic Leidenfrost phenomenon is governed by three types of pressure potentials induced via vapor hydrodynamics, liquid dynamic pressure, and the water hammer effect resulting from the generation of acoustic waves at the liquid-vapor interface. The prediction of the Leidenfrost temperature for a dynamic droplet needs quantitative evaluation and definition for each of the pressure fields. In particular, the textures on a heated surface can significantly affect the vapor hydrodynamics and the water hammer pressure. We present a quantitative model for evaluating the water hammer pressure on micro-textured surfaces taking into account the absorption of acoustic waves into the thin vapor layer. The model demonstrates that the strength of the acoustic flow into the liquid droplet, which directly contributes to the water hammer pressure, depends on the magnitude of the acoustic resistance (impedance) in the droplet and the vapor region. In consequence, the micro-textures of the surface and the increased spacing between them reduce the water hammer coefficient ( kh ) defined as the ratio of the acoustic flow into the droplet to total generated flow. Aided by numerical calculations that solve the laminar Navier-Stokes equation for the vapor flow, we also predict the dynamic Leidenfrost temperature on a micro-textured surface with reliable accuracy consistent with the experimental data.
Global water dynamics: issues for the 21st century.
Simonovic, Slobodan P
2002-01-01
The WorldWater system dynamics model has been developed for modeling the global world water balance and capturing the dynamic character of the main variables affecting water availability and use in the future. Despite not being a novel approach, system dynamics offers a new way of addressing complex systems. WorldWater simulations are clearly demonstrating the strong feedback relation between water availability and different aspects of world development. Results of numerous simulations are contradictory to the assumption made by many global modelers that water is not an issue on the global scale. Two major observations can be made from early simulations: (a) the use of clean water for dilution and transport of wastewater, if not dealt with in other ways, imposes a major stress on the global world water balance; and (b) water use by different sectors is demonstrating quite different dynamics than predicted by classical forecasting tools and other water-models. Inherent linkages between water quantity and quality sectors with food, industry, persistent pollution, technology, and non-renewable resources sectors of the model create shoot and collapse behavior in water use dynamics. This paper discusses a number of different water-related scenarios and their implications on the global water balance. In particular, two extreme scenarios (business as usual - named "Chaos", and unlimited desalination - named "Ocean") are presented in the paper. Based on the conclusions derived from these two extreme cases a set of more moderate and realistic scenarios (named "Conservation") is proposed and their consequences on the global water balance are evaluated.
Economic efficiency of short-term versus long-term water rights buyouts
USDA-ARS?s Scientific Manuscript database
Because of the decline of the Ogallala Aquifer, water districts, regional water managers, and state water officers are becoming increasingly interested in conservation policies. This study evaluates both short-term and long-term water rights buyout policies. This research develops dynamic production...
NASA Astrophysics Data System (ADS)
Vakhonin, N.
The problems connected to ground water dynamics take place in various areas of the people economic activity. For want of it in some branches the greatest interest rep- resents creation of quantitative parameters of a water mode, in one cases - of a level mode H(t) (land reclamation, agricultural and forest economy, ecology), in other - cre- ation of water discharge Q (t) (water-intakes for a water-supply or on the contrary - protective system from mines and quarry submerge). In a number of branches the ex- treme interest is represented by ground water quality dynamics (potable water-supply, inflow to rivers and lakes used for fish-breeding etc.). Each from these cases requires the account of features for want of creation of ground water dynamics models, re- alization of monitoring for their identification. With allowance for aid above in the report, the problems connected to ground water dynamics are bro-ken on three types: 1) evaluations of the system state and matching with normative parameters or match- ing of various objects among themselves; 2) prognosises of dynamics of ground water amount and quality; 3) problems of decision making support (optimization of ground water management), formalized as: The analysis is conducted for each of them and the conditions of choice of a generality level of a variable state describing ground stream dynamics (soil humidity, ground wa- ter level, water volume in the camera) and alternate variants, appropriate to them, of models describing water dynamics are shown: physical with the distributed parameters (equation of joint filtering of the bicomponent environment water-air, water-transfer equation, Boussinesk equation; with lumped parameters (chamber model with cam- eras of a various degree aggregating down to "a black box"), and also non-physical (statistical, regressive and neural networks) model. The possibility of using by each from these models for three selected types of problems is shown. On an example of reclamated agricultural object the correlation of ground water dynamics with other sub-systems is shown: by open channel streams, drains etc. also by processes: evapo- transpiration, infiltra-tion, snow melting etc. The possible versions of the processes in- teraction description with ground wa-ter dynamics are analyzed. The kinds of bound- ary conditions 1-st, 2-nd, 3-rd kind for internal and external boundaries of filtration stream are typed. There is formulated the request about necessity of monitoring real- 1 ization for the statistical task of source effects on more broad boundary of filtration stream, than optimized system. The model identification is carried out on the base of 24-year's monitoring data in the reclamated catchment of the river Yaselda. 2
System Dynamics Modeling of Transboundary Systems: the Bear River Basin Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerald Sehlke; Jacob J. Jacobson
2005-09-01
System dynamics is a computer-aided approach to evaluating the interrelationships of different components and activities within complex systems. Recently, system dynamics models have been developed in areas such as policy design, biological and medical modeling, energy and the environmental analysis, and in various other areas in the natural and social sciences. The Idaho National Engineering and Environmental Laboratory, a multi-purpose national laboratory managed by the Department of Energy, has developed a systems dynamics model in order to evaluate its utility for modeling large complex hydrological systems. We modeled the Bear River Basin, a transboundary basin that includes portions of Idaho,more » Utah and Wyoming. We found that system dynamics modeling is very useful for integrating surface water and ground water data and for simulating the interactions between these sources within a given basin. In addition, we also found system dynamics modeling is useful for integrating complex hydrologic data with other information (e.g., policy, regulatory and management criteria) to produce a decision support system. Such decision support systems can allow managers and stakeholders to better visualize the key hydrologic elements and management constraints in the basin, which enables them to better understand the system via the simulation of multiple “what-if” scenarios. Although system dynamics models can be developed to conduct traditional hydraulic/hydrologic surface water or ground water modeling, we believe that their strength lies in their ability to quickly evaluate trends and cause–effect relationships in large-scale hydrological systems; for integrating disparate data; for incorporating output from traditional hydraulic/hydrologic models; and for integration of interdisciplinary data, information and criteria to support better management decisions.« less
High Pressure Oxidizer Turbopump (HPOTP) inducer dynamic design environment
NASA Technical Reports Server (NTRS)
Herda, D. A.; Gross, R. S.
1995-01-01
The dynamic environment must be known to evaluate high pressure oxidizer turbopump inducer fatigue life. This report sets the dynamic design loads for the alternate turbopump inducer as determined by water-flow rig testing. Also, guidelines are given for estimating the dynamic environment for other inducer and impeller applications.
Dielectric relaxation measurement and analysis of restricted water structure in rice kernels
NASA Astrophysics Data System (ADS)
Yagihara, Shin; Oyama, Mikio; Inoue, Akio; Asano, Megumi; Sudo, Seiichi; Shinyashiki, Naoki
2007-04-01
Dielectric relaxation measurements were performed for rice kernels by time domain reflectometry (TDR) with flat-end coaxial electrodes. Difficulties in good contact between the surfaces of the electrodes and the kernels are eliminated by a TDR set-up with a sample holder for a kernel, and the water content could be evaluated from relaxation curves. Dielectric measurements were performed for rice kernels, rice flour and boiled rice with various water contents, and the water amount and dynamic behaviour of water molecules were explained from restricted dynamics of water molecules and also from the τ-β (relaxation time versus the relaxation-time distribution parameter of the Cole-Cole equation) diagram. In comparison with other aqueous systems, the dynamic structure of water in moist rice is more similar to aqueous dispersion systems than to aqueous solutions.
NASA Astrophysics Data System (ADS)
Azovtseva, N. A.; Smagin, A. V.
2018-01-01
Physical (water content, density, and air and water regimes) and physicochemical (electrical conductivity, pH, and SAR) properties of urban soils were investigated on test plots of Moscow to evaluate their dynamics under anthropogenic impact. The wilting point and the dependence of the capillary-sorption and total water potentials of the soil water content were determined in laboratory experiments with natural and artificially saline soil samples to evaluate the effect of salt antifreeze substances on water availability for plants under conditions of active application of deicing reagents. Seasonal dynamics of these parameters were investigated. It was found that electrolytes display a steady tendency for the accumulation and redistribution in the root zone rather than for their deep leaching despite humid climatic conditions in Moscow megalopolis. In summer, regular droughts result in drying of the root zone to critical values and to the concentration of electrolytes up to the values that make the total water potential of soil unsuitable for water uptake by roots. The key factor of soil degradation under the impact of electrolytes is the soil dispersity: the finer the texture, the higher the soil salinization and solonetzicity and the stronger irreversible changes in the soil water retention capacity and physical properties.
NASA Astrophysics Data System (ADS)
Jablonska, J.; Kozubkova, M.
2017-08-01
Static and dynamic characteristics of flow in technical practice are very important and serious problem and can be solved by experimental measurement or mathematical modeling. Unsteady flow presents time changes of the flow and water hammer can be an example of this phenomenon. Water hammer is caused by rapid changes in the water flow by means the closure or opening of the control valve. The authors deal with by hydraulic hammer at the multiphase flow (water and air), its one-dimensional modeling (Matlab SimHydraulics) and modeling with the use of the finite volume method (Ansys Fluent) in article. The circuit elements are defined by static and dynamic characteristics. The results are verified with measurements. The article evaluates different approaches, their advantages, disadvantages and specifics in solving of water hammer.
Sayed-Hossein Sadeghi; Troy R. Peters; Mohammad Z. Amini; Sparkle L. Malone; Hank W. Loescher
2015-01-01
The increased need for water and food security requires the development of new approaches to save water through irrigation management strategies, particularly for center pivot irrigation. To do so entails monitoring of the dynamic variation in wind drift and evaporation losses (WDELs) of irrigation systems under different weather conditions and for relatively long time...
NASA Astrophysics Data System (ADS)
Márquez Damián, J. I.; Granada, J. R.; Malaspina, D. C.
2014-04-01
In this work we present an evaluation in ENDF-6 format of the scattering law for light and heavy water computed using the LEAPR module of NJOY99. The models used in this evaluation are based on experimental data on light water dynamics measured by Novikov, partial structure factors obtained by Soper, and molecular dynamics calculations performed with GROMACS using a reparameterized version of the flexible SPC model by Toukan and Rahman. The models use the Egelstaff-Schofield diffusion equation for translational motion, and a continuous spectrum calculated from the velocity autocorrelation function computed with GROMACS. The scattering law for H in H2O is computed using the incoherent approximation, and the scattering law D and O in D2O are computed using the Sköld approximation for coherent scattering. The calculations show significant improvement over ENDF/B-VI and ENDF/B-VII when compared with measurements of the total cross section, differential scattering experiments and quasi-elastic neutron scattering experiments (QENS).
Evaluating the Classical Versus an Emerging Conceptual Model of Peatland Methane Dynamics
Wendy H. Yang; Gavin McNicol; Yit Arn Teh; Katerina Estera-Molina; Tana E. Wood; Whendee L. Silver
2017-01-01
Methane (CH4) is a potent greenhouse gas that is both produced and consumed in soils by microbially mediated processes sensitive to soil redox. We evaluated the classical conceptual model of peatland CH4 dynamicsâin which the water table position determines the vertical distribution of methanogenesis and methanotrophyâ...
NASA Technical Reports Server (NTRS)
Alberotanza, L.; Lechi, G. M.
1977-01-01
Surveys employing a two channel Daedalus infrared scanner and multispectral photography were performed. The spring waning tide, the velocity of the water mass, and the types of suspended matter were among the topics studied. Temperature, salinity, sediment transport, and ebb stream velocity were recorded. The bottom topography was correlated with the dynamic characteristics of the sea surface.
NASA Astrophysics Data System (ADS)
Takemura, Kazuhiro; Guo, Hao; Sakuraba, Shun; Matubayasi, Nobuyuki; Kitao, Akio
2012-12-01
We propose a method to evaluate binding free energy differences among distinct protein-protein complex model structures through all-atom molecular dynamics simulations in explicit water using the solution theory in the energy representation. Complex model structures are generated from a pair of monomeric structures using the rigid-body docking program ZDOCK. After structure refinement by side chain optimization and all-atom molecular dynamics simulations in explicit water, complex models are evaluated based on the sum of their conformational and solvation free energies, the latter calculated from the energy distribution functions obtained from relatively short molecular dynamics simulations of the complex in water and of pure water based on the solution theory in the energy representation. We examined protein-protein complex model structures of two protein-protein complex systems, bovine trypsin/CMTI-1 squash inhibitor (PDB ID: 1PPE) and RNase SA/barstar (PDB ID: 1AY7), for which both complex and monomer structures were determined experimentally. For each system, we calculated the energies for the crystal complex structure and twelve generated model structures including the model most similar to the crystal structure and very different from it. In both systems, the sum of the conformational and solvation free energies tended to be lower for the structure similar to the crystal. We concluded that our energy calculation method is useful for selecting low energy complex models similar to the crystal structure from among a set of generated models.
Takemura, Kazuhiro; Guo, Hao; Sakuraba, Shun; Matubayasi, Nobuyuki; Kitao, Akio
2012-12-07
We propose a method to evaluate binding free energy differences among distinct protein-protein complex model structures through all-atom molecular dynamics simulations in explicit water using the solution theory in the energy representation. Complex model structures are generated from a pair of monomeric structures using the rigid-body docking program ZDOCK. After structure refinement by side chain optimization and all-atom molecular dynamics simulations in explicit water, complex models are evaluated based on the sum of their conformational and solvation free energies, the latter calculated from the energy distribution functions obtained from relatively short molecular dynamics simulations of the complex in water and of pure water based on the solution theory in the energy representation. We examined protein-protein complex model structures of two protein-protein complex systems, bovine trypsin/CMTI-1 squash inhibitor (PDB ID: 1PPE) and RNase SA/barstar (PDB ID: 1AY7), for which both complex and monomer structures were determined experimentally. For each system, we calculated the energies for the crystal complex structure and twelve generated model structures including the model most similar to the crystal structure and very different from it. In both systems, the sum of the conformational and solvation free energies tended to be lower for the structure similar to the crystal. We concluded that our energy calculation method is useful for selecting low energy complex models similar to the crystal structure from among a set of generated models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shu, Liu; Qigang, Jiang; Zhang, Xuesong
Elevation measurements from the Ice, Cloud and Land Elevation Satellite (ICESat) have been applied to monitor dynamics of lakes and other surface water bodies. Despite such potential, the true utility of ICESat--more generally, satellite laser altimetry--for tracking surface water dynamics over time has not been adequately assessed, especially in the continental or global contexts. Here, we analyzed ICESat elevation data for the conterminous United States and examined the potential and limitations of satellite laser altimetry in measuring water-level dynamics. Owing to a lack of spatially-explicit ground-based water-level data, we first resorted to high-fidelity land elevation data acquired by airborne lidarmore » to quantify ICESat’s ranging accuracy. We then performed trend and frequency analyses to evaluate how reliably ICESat could capture water-level dynamics over a range of temporal scales, as compared to in-situ gauge measurements. Our analyses showed that ICESat had a vertical ranging error of 0.16 m at the footprint level—a limit on the detectable range of water-level dynamics. The sparsity of data over time was identified as a major factor limiting the use of ICESat for water dynamics studies. Of all the US lakes, only 361 had quality ICESat measurements for more than two flight passes. Even for those lakes with sufficient temporal coverage, ICESat failed to capture the true interannual water-level dynamics in 68% of the cases. Our frequency analysis suggested that even with a repeat cycle of two months, ICESat could capture only 60% of the variations in water-level dynamics for at most 34 % of the US lakes. To capture 60% of the water-level variation for most of the US lakes, a weekly repeat cycle (e.g., less than 5 days) is needed – a requirement difficult to meet in current designs of spaceborne laser altimetry. Overall, our results highlight that current or near-future satellite laser missions, though with high ranging accuracies, are unlikely to fulfill the general needs in remotely monitoring water surface dynamics for lakes or reservoirs.« less
Test results on reuse of reclaimed shower water - A summary
NASA Technical Reports Server (NTRS)
Verostko, Charles E.; Garcia, Rafael; Sauer, Richard; Reysa, Richard P.; Linton, Arthur T.
1989-01-01
Results are presented from tests to evaluate a microgravity whole body shower and waste water recovery system design for possible use on the Space Station. Several water recovery methods were tested, including phase change distillation, a thermoelectric hollow fiber membrane evaporation subsystem, and a reverse osmosis dynamic membrane system. Consideration is given to the test hardware, the types of soaps evaluated, the human response to showering with reclaimed water, chemical treatment for microbial control, the procedures for providing hygienic water, and the quality of water produced by the systems. All three of the waste water recovery systems tested successfully produced reclaimed water for reuse.
Total water storage dynamics derived from tree-ring records and terrestrial gravity observations
NASA Astrophysics Data System (ADS)
Creutzfeldt, Benjamin; Heinrich, Ingo; Merz, Bruno
2015-10-01
For both societal and ecological reasons, it is important to understand past and future subsurface water dynamics but estimating subsurface water storage is notoriously difficult. In this pilot study, we suggest the reconstruction of subsurface water dynamics by a multi-disciplinary approach combining hydrology, dendrochronology and geodesy. In a first step, nine complete years of high-precision gravimeter observations are used to estimate water storage changes in the subsurface at the Geodetic Observatory Wettzell in the Bavarian Forest, Germany. The record is extended to 63 years by calibrating a hydrological model against the 9 years of gravimeter observations. The relationship between tree-ring growth and water storage changes is evaluated as well as that between tree-ring growth and supplementary hydro-meteorological data. Results suggest that tree-ring growth is influenced primarily by subsurface water storage. Other variables related to the overall moisture status (e.g., Standardized Precipitation Index, Palmer Drought Severity Index, streamflow) are also strongly correlated with tree-ring width. While these indices are all indicators of water stored in the landscape, water storage changes of the subsurface estimated by depth-integral measurements give us the unique opportunity to directly reconstruct subsurface water storage dynamics from records of tree-ring width. Such long reconstructions will improve our knowledge of past water storage variations and our ability to predict future developments. Finally, knowing the relationship between subsurface storage dynamics and tree-ring growth improves the understanding of the different signal components contained in tree-ring chronologies.
Embedding an evolving agricultural system within a water resources planning model
NASA Astrophysics Data System (ADS)
Young, C.; Joyce, B.; Purkey, D.; Dale, L.; Mehta, V.
2008-12-01
The Water Evaluation and Planning (WEAP) system is a comprehensive, fully integrated water basin analysis tool. It is a simulation model that includes a robust and flexible representation of water demands from all sectors and flexible, programmable operating rules for infrastructure elements such as reservoirs, canals, and hydropower projects. Additionally, it has watershed rainfall-runoff modeling capabilities that allow all portions of the water infrastructure and demand to be dynamically nested within the underlying hydrological processes. WEAP also allows for linking with other models to provide feedback mechanisms whereby the management regime can be altered to respond to changing water supply conditions. This study presents an application wherein the year-to-year cropping decisions of farmers in California's Central Valley are reactive to changes in water supply conditions. To capture this dynamic, we have included in WEAP a link to an agricultural economics model (the Central Valley Production Model) that relates cropping decisions to water supply conditions (surface water allocations and depth to groundwater) and economic considerations (cost of electricity) at the time of planting. This linked model was used to evaluate changes in water supply and demand in the context of projected climate change over the next century.
The alteration of lipid bilayer dynamics by phloretin and 6-ketocholestanol.
Przybylo, M; Procek, J; Hof, M; Langner, M
2014-02-01
Lipid bilayer properties are quantified with a variety of arbitrary selected parameters such as molecular packing and dynamics, electrostatic potentials or permeability. In the paper we determined the effect of phloretin and 6-ketocholestanol (dipole potential modifying agents) on the membrane hydration and efficiency of the trans-membrane water flow. The dynamics of water molecules within the lipid bilayer interface was evaluated using solvent relaxation method, whereas the osmotically induced trans-membrane water flux was estimated with the stopped-flow method using the liposome shrinkage kinetics. The presence of phloretin or 6-ketocholestanol resulted in a change of both, the interfacial hydration level and osmotically driven water fluxes. Specifically, the presence of 6-ketocholestanol reduced the amount and mobility of water in the membrane interface. It also slows the osmotically induced water flow. The interfacial hydration change caused by phloretin was much smaller and the effect on osmotically induced water flow was opposite to that of 6-ketocholestanol. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Blaiotta, Giuseppe; Di Capua, Marika; Romano, Annalisa; Coppola, Raffaele; Aponte, Maria
2014-09-01
Chestnuts are very perishable fruits, whose quality may be compromised during postharvest handling. Damage can be caused both by insects and fungi. Water curing, a commonly used postharvest method, is based on soaking fruits in water typically for about one week. Factors that affect effectiveness of water curing have only been explained partially. A decrease in pH, likely imputable to a light fermentation caused by lactic acid bacteria, may inhibit the growth of moulds. In this study a Lactobacillus pentosus strain was selected for its ability to inhibit fungi, and used as a starter culture during water curing. As second goal, a reduction of the environmental impact of the process was evaluated by using water that had been re-cycled from a previous curing treatment. Experiments were performed on pilot as well as on farm scale. In all trials, microbial dynamics were evaluated by means of a polyphasic approach including conventional and molecular-based analyses. According to results, the employment of an adjunct culture appears as a very promising opportunity. Even if no reduction in the duration of the process was achieved, waters exhibited a minor microbial complexity and fruits did not lose the natural lustre after the process. Copyright © 2014 Elsevier Ltd. All rights reserved.
76 FR 21857 - Endangered and Threatened Species; Take of Anadromous Fish
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-19
... permit to conduct research for scientific purposes from the United Water Conservation District (United... altered channel with a dynamic groundwater and surface water interchange, and (2) evaluate the effects of increased water temperature during surface flow loss and how this affects migration rates of smolts and the...
Konrad, Christopher P.
2014-01-01
Marine bivalves such as clams, mussels, and oysters are an important component of the food web, which influence nutrient dynamics and water quality in many estuaries. The role of bivalves in nutrient dynamics and, particularly, the contribution of commercial shellfish activities, are not well understood in Puget Sound, Washington. Numerous approaches have been used in other estuaries to quantify the effects of bivalves on nutrient dynamics, ranging from simple nutrient budgeting to sophisticated numerical models that account for tidal circulation, bioenergetic fluxes through food webs, and biochemical transformations in the water column and sediment. For nutrient management in Puget Sound, it might be possible to integrate basic biophysical indicators (residence time, phytoplankton growth rates, and clearance rates of filter feeders) as a screening tool to identify places where nutrient dynamics and water quality are likely to be sensitive to shellfish density and, then, apply more sophisticated methods involving in-situ measurements and simulation models to quantify those dynamics.
USDA-ARS?s Scientific Manuscript database
Water is a critical nutrient for dairy cows, with intake varying with environment, production, and diet. However, little work has evaluated the effects of water intake on rumen parameters. Using dietary potassium carbonate (Kcarb) as a K supplement to increase water intake, the objective of this stu...
J.M. Warren; F.C. Meinzer; J.R. Brooks; J.C. Domec
2005-01-01
We characterized vertical variation in the seasonal release of stored soil moisture in old-growth ponderosa pine (OG-PP, xeric), and young and old-growth Douglas-fir (Y-DF, OG-DF, mesic) forests to evaluate changes in water availability for root uptake. Soil water potential (ψ) and volumetric water content (θ...
Price impact on urban residential water demand: A dynamic panel data approach
NASA Astrophysics Data System (ADS)
ArbuéS, Fernando; BarberáN, Ramón; Villanúa, Inmaculada
2004-11-01
In this paper, we formulate and estimate a model of residential water demand with the aim of evaluating the potential of pricing policies as a mechanism for managing residential water. The proposed econometric model offers a new perspective on urban water demand analysis by combining microlevel data with a dynamic panel data estimation procedure. The empirical application suggests that residential users are more responsive to a lagged average price specification. Another result of the estimated model is that price is a moderately effective tool in reducing residential water demand within the present range of prices, with the estimated values for income elasticity and "elasticity of consumption with respect to family size" reinforcing this conclusion.
Estimation of river pollution index in a tidal stream using kriging analysis.
Chen, Yen-Chang; Yeh, Hui-Chung; Wei, Chiang
2012-08-29
Tidal streams are complex watercourses that represent a transitional zone between riverine and marine systems; they occur where fresh and marine waters converge. Because tidal circulation processes cause substantial turbulence in these highly dynamic zones, tidal streams are the most productive of water bodies. Their rich biological diversity, combined with the convenience of land and water transports, provide sites for concentrated populations that evolve into large cities. Domestic wastewater is generally discharged directly into tidal streams in Taiwan, necessitating regular evaluation of the water quality of these streams. Given the complex flow dynamics of tidal streams, only a few models can effectively evaluate and identify pollution levels. This study evaluates the river pollution index (RPI) in tidal streams by using kriging analysis. This is a geostatistical method for interpolating random spatial variation to estimate linear grid points in two or three dimensions. A kriging-based method is developed to evaluate RPI in tidal streams, which is typically considered as 1D in hydraulic engineering. The proposed method efficiently evaluates RPI in tidal streams with the minimum amount of water quality data. Data of the Tanshui River downstream reach available from an estuarine area validate the accuracy and reliability of the proposed method. Results of this study demonstrate that this simple yet reliable method can effectively estimate RPI in tidal streams.
An evaluation of Dynamic TOPMODEL for low flow simulation
NASA Astrophysics Data System (ADS)
Coxon, G.; Freer, J. E.; Quinn, N.; Woods, R. A.; Wagener, T.; Howden, N. J. K.
2015-12-01
Hydrological models are essential tools for drought risk management, often providing input to water resource system models, aiding our understanding of low flow processes within catchments and providing low flow predictions. However, simulating low flows and droughts is challenging as hydrological systems often demonstrate threshold effects in connectivity, non-linear groundwater contributions and a greater influence of water resource system elements during low flow periods. These dynamic processes are typically not well represented in commonly used hydrological models due to data and model limitations. Furthermore, calibrated or behavioural models may not be effectively evaluated during more extreme drought periods. A better understanding of the processes that occur during low flows and how these are represented within models is thus required if we want to be able to provide robust and reliable predictions of future drought events. In this study, we assess the performance of dynamic TOPMODEL for low flow simulation. Dynamic TOPMODEL was applied to a number of UK catchments in the Thames region using time series of observed rainfall and potential evapotranspiration data that captured multiple historic droughts over a period of several years. The model performance was assessed against the observed discharge time series using a limits of acceptability framework, which included uncertainty in the discharge time series. We evaluate the models against multiple signatures of catchment low-flow behaviour and investigate differences in model performance between catchments, model diagnostics and for different low flow periods. We also considered the impact of surface water and groundwater abstractions and discharges on the observed discharge time series and how this affected the model evaluation. From analysing the model performance, we suggest future improvements to Dynamic TOPMODEL to improve the representation of low flow processes within the model structure.
Duarte, Ian Drumond; Silva, Nayara Heloisa Vieira Fraga; da Costa Souza, Iara; de Oliveira, Larissa Bassani; Rocha, Lívia Dorsch; Morozesk, Mariana; Bonomo, Marina Marques; de Almeida Pereira, Thaís; Dias, Mauro Cesar; de Oliveira Fernandes, Valéria; Matsumoto, Silvia Tamie
2017-04-01
Assessment of water resources requires interdisciplinary studies that include multiple ecosystem aspects. This study evaluated the water quality of Juara Lagoon (ES, Brazil) based on physical and chemical variables, cytogenetic responses in Allium cepa and phytoplankton dynamics. Three sampling sites were defined and water samples were collected during two sampling periods. Analyses such as determination of photic zone, conductivity, and concentrations of nutrients and metals were conducted as well as cytotoxic, mutagenic, and genotoxic potentials using A. cepa test. The main attributes of phytoplankton community, such as total richness, total density, density by class, dominance, and diversity, were also evaluated. Results have revealed that Juara Lagoon has signs of artificial eutrophication at two sampling sites due to high levels of total phosphorus and ammonia nitrogen. Cytotoxic, genotoxic, and mutagenic potentials were detected as well as high concentrations of Fe and Mn. Furthermore, 165 phytoplankton taxa were recorded, with highest richness in Chlorophyceae and Cyanophyceae classes. In addition, Cyanophyceae presented as the highest density class. A. cepa test and phytoplankton community evaluation indicated that the ecological quality of Juara Lagoon is compromised.
Water dynamics and retrogradation of ultrahigh pressurized wheat starch.
Doona, Christopher J; Feeherry, Florence E; Baik, Moo-Yeol
2006-09-06
The water dynamics and retrogradation kinetics behavior of gelatinized wheat starch by either ultrahigh pressure (UHP) processing or heat are investigated. Wheat starch completely gelatinized in the condition of 90, 000 psi at 25 degrees C for 30 min (pressurized gel) or 100 degrees C for 30 min (heated gel). The physical properties of the wheat starches were characterized in terms of proton relaxation times (T2 times) measured using time-domain nuclear magnetic resonance spectroscopy and evaluated using commercially available continuous distribution modeling software. Different T2 distributions in both micro- and millisecond ranges between pressurized and heated wheat starch gels suggest distinctively different water dynamics between pressurized and heated wheat starch gels. Smaller water self-diffusion coefficients were observed for pressurized wheat starch gels and are indicative of more restricted translational proton mobility than is observed with heated wheat starch gels. The physical characteristics associated with changes taking place during retrogradation were evaluated using melting curves obtained with differential scanning calorimetry. Less retrogradation was observed in pressurized wheat starch, and it may be related to a smaller quantity of freezable water in pressurized wheat starch. Starches comprise a major constituent of many foods proposed for commercial potential using UHP, and the present results furnish insight into the effect of UHP on starch gelatinization and the mechanism of retrogradation during storage.
Effects of Water-Based Training on Static and Dynamic Balance of Older Women.
Bento, Paulo Cesar Barauce; Lopes, Maria de Fátima A; Cebolla, Elaine Cristine; Wolf, Renata; Rodacki, André L F
2015-08-01
The aim of this study was to evaluate the effects of a water-based exercise program on static and dynamic balance. Thirty-six older women were randomly assigned to a water-based training (3 days/week for 12 weeks) or control group. Water level was kept at the level of the xiphoid process and temperature at ∼28-30°C. Each session included aerobic activities and lower limb strength exercises. The medial-lateral, the anterior-posterior amplitude, and displacement of the center of pressure (CP-D) were measured in a quiet standing position (60 sec eyes opened and closed). The dynamic balance and 8-Foot Up-and-Go tests were also applied. Group comparisons were made using two-way analysis of variance (ANOVA) with repeated measures. No differences were found in the center of pressure variables; however, the WBT group showed better performance in the 8 Foot Up-and-Go Test after training (5.61±0.76 vs. 5.18±0.42; p<0.01). The water-based training was effective in improving dynamic balance, but not static balance.
Simulation of 1998-Big Flood in Changjiang River Catchment, China
NASA Astrophysics Data System (ADS)
Nakayama, T.; Watanabe, M.
2006-05-01
Almost every year, China is affected by severe flooding, which causes considerable economic loss and serious damage to towns and farms. Big floods are mainly concentrated in the middle and lower reaches of the "seven big rivers", which include the Changjiang (Yangtze) River, the Yellow (Huanghe) River, and the Huaihe River. The Changjiang River is the fourth largest water resource to the oceans after the Amazon, Zaire, and Orinoco Rivers. In addition to abnormal weather, artificial effects were considered as main causes of the big flood disaster in the Changjiang River catchment by the previous researches; (i) extreme deforestation and soil erosion in the upper reaches, (ii) shrinking of lake water volumes and their reduced connection with the Changjiang River due to reclamation of lakes that retarded water in the middle reaches, and (iii) restriction of channel capacity following levee construction. Because there is an urgent need to quantify these relations on the spatial scale of the whole catchment in order to prevent flood damage as small as possible, it is very important to evaluate the complicated phenomena of water/heat dynamics in the Changjiang River catchment by using process-based models. The present research focuses on simulating the water/heat dynamics for 1998 big-flood with 60-year recurrent period in the Changjiang River catchment. We compared the flood period of 1998 with the normal period of 1987-1988. We expanded the NIES Integrated Catchment-based Eco-hydrology (NICE) model (Nakayama and Watanabe, 2004; Nakayama et al., 2006) for the application to broader catchments in order to evaluate large- scale flooding in the Changjiang River (NICE-FLD). We simulated the water/heat dynamics in the entire catchment (3,000 km wide by 1,000 km long) with a resolution of 10 km mesh by using the NICE-FLD. The model reproduced excellently the river discharge, soil moisture, evapotranspiration, groundwater level, et al. Furthermore, we evaluated the role of flood storage capacity in the lakes and farms in relation to the water/heat budgets, and simulated the change of water/heat dynamics by human activity in order to help decision-making on sustainable development in the catchment.
An integrated soil-crop system model for water and nitrogen management in North China
Liang, Hao; Hu, Kelin; Batchelor, William D.; Qi, Zhiming; Li, Baoguo
2016-01-01
An integrated model WHCNS (soil Water Heat Carbon Nitrogen Simulator) was developed to assess water and nitrogen (N) management in North China. It included five main modules: soil water, soil temperature, soil carbon (C), soil N, and crop growth. The model integrated some features of several widely used crop and soil models, and some modifications were made in order to apply the WHCNS model under the complex conditions of intensive cropping systems in North China. The WHCNS model was evaluated using an open access dataset from the European International Conference on Modeling Soil Water and N Dynamics. WHCNS gave better estimations of soil water and N dynamics, dry matter accumulation and N uptake than 14 other models. The model was tested against data from four experimental sites in North China under various soil, crop, climate, and management practices. Simulated soil water content, soil nitrate concentrations, crop dry matter, leaf area index and grain yields all agreed well with measured values. This study indicates that the WHCNS model can be used to analyze and evaluate the effects of various field management practices on crop yield, fate of N, and water and N use efficiencies in North China. PMID:27181364
NASA Astrophysics Data System (ADS)
Avanzi, Francesco; Yamaguchi, Satoru; Hirashima, Hiroyuki; De Michele, Carlo
2016-04-01
Liquid water in snow rules runoff dynamics and wet snow avalanches release. Moreover, it affects snow viscosity and snow albedo. As a result, measuring and modeling liquid water dynamics in snow have important implications for many scientific applications. However, measurements are usually challenging, while modeling is difficult due to an overlap of mechanical, thermal and hydraulic processes. Here, we evaluate the use of a simple one-layer one-dimensional model to predict hourly time-series of bulk volumetric liquid water content in seasonal snow. The model considers both a simple temperature-index approach (melt only) and a coupled melt-freeze temperature-index approach that is able to reconstruct melt-freeze dynamics. Performance of this approach is evaluated at three sites in Japan. These sites (Nagaoka, Shinjo and Sapporo) present multi-year time-series of snow and meteorological data, vertical profiles of snow physical properties and snow melt lysimeters data. These data-sets are an interesting opportunity to test this application in different climatic conditions, as sites span a wide latitudinal range and are subjected to different snow conditions during the season. When melt-freeze dynamics are included in the model, results show that median absolute differences between observations and predictions of bulk volumetric liquid water content are consistently lower than 1 vol%. Moreover, the model is able to predict an observed dry condition of the snowpack in 80% of observed cases at a non-calibration site, where parameters from calibration sites are transferred. Overall, the analysis show that a coupled melt-freeze temperature-index approach may be a valid solution to predict average wetness conditions of a snow cover at local scale.
Long-term dynamics of dissolved organic carbon: implications for drinking water supply.
Ledesma, José L J; Köhler, Stephan J; Futter, Martyn N
2012-08-15
Surface waters are the main source of drinking water in many regions. Increasing organic carbon concentrations are a cause for concern in Nordic countries since both dissolved and particulate organic carbon can transport contaminants and adversely affect drinking water treatment processes. We present a long-term study of dynamics of total (particulate and dissolved) organic carbon (TOC) concentrations in the River Fyris. This river supplies drinking water to approximately 200000 people in Uppsala, Sweden. The River Fyris is a main tributary to Lake Mälaren, which supplies drinking water to approximately 2 million people in the greater Stockholm area. Utilities responsible for drinking water supply in both Uppsala and Stockholm have expressed concerns about possible increases in TOC. We evaluate organic carbon dynamics within the Fyris catchment by calculating areal mass exports using observed TOC concentrations and modeled flows and by modeling dissolved organic carbon (as a proxy for TOC) using the dynamic, process based INCA-C model. Exports of TOC from the catchment ranged from 0.8 to 5.8 g m(-2) year(-1) in the period 1995-2010. The variation in annual exports was related to climatic variability which influenced seasonality and amount of runoff. Exports and discharge uncoupled at the end of 2008. A dramatic increase in TOC concentrations was observed in 2009, which gradually declined in 2010-2011. INCA-C successfully reproduced the intra- and inter-annual variation in concentrations during 1996-2008 and 2010-2011 but failed to capture the anomalous increase in 2009. We evaluated a number of hypotheses to explain the anomaly in 2009 TOC values, ultimately none proved satisfactory. We draw two main conclusions: there is at least one unknown or unmeasured process controlling or influencing surface water TOC and INCA-C can be used as part of the decision-making process for current and future use of rivers for drinking water supply. Copyright © 2012 Elsevier B.V. All rights reserved.
Water resources planning based on complex system dynamics: A case study of Tianjin city
NASA Astrophysics Data System (ADS)
Zhang, X. H.; Zhang, H. W.; Chen, B.; Chen, G. Q.; Zhao, X. H.
2008-12-01
A complex system dynamic (SD) model focusing on water resources, termed as TianjinSD, is developed for the integrated and scientific management of the water resources of Tianjin, which contains information feedback that governs interactions in the system and is capable of synthesizing component-level knowledge into system behavior simulation at an integrated level, thus presenting reasonable predictive results for policy-making on water resources allocation and management. As for the Tianjin city, interactions among 96 components for 12 years are explored and four planning alternatives are chosen, one of which is based on the conventional mode assuming that the existing pattern of human activities will be prevailed, while the others are alternative planning designs based on the interaction of local authorities and planning researchers. Optimal mode is therefore obtained according to different scenarios when compared the simulation results for evaluation of different decisions and dynamic consequences.
Whole-body continuously moving table fat-water MRI with dynamic B0 shimming at 3 Tesla.
Sengupta, Saikat; Smith, David S; Gifford, Aliya; Welch, E Brian
2016-07-01
The purpose of this work was to develop a rapid and robust whole-body fat-water MRI (FWMRI) method using a continuously moving table (CMT) with dynamic field corrections at 3 Tesla. CMT FWMRI was developed at 3 Tesla with a multiecho golden angle (GA) radial trajectory and dynamic B0 field shimming. Whole-body imaging was performed with 4 echoes and superior-inferior coverage of 1.8 meters without shims in 90 s. 716 axial images were reconstructed with GA profile binning followed by B0 field map generation using fast three-point seeded region growing fat-water separation and slice-specific 0(th) and 1(st) order shim calculation. Slice-specific shims were applied dynamically in a repeated CMT FWMRI scan in the same session. The resulting images were evaluated for field homogeneity improvements and quality of fat-water separation with a whole-image energy optimized algorithm. GA sampling allowed high quality whole-body FWMRI from multiecho CMT data. Dynamic B0 shimming greatly improved field homogeneity in the body and produced high quality water and fat only images as well as fat signal fraction and R2 * relaxivity maps. A rapid and robust technique for whole-body fat-water quantification has been developed with CMT MRI with dynamic B0 field correction. Magn Reson Med 76:183-190, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Rodrigues, Luis Monteiro; Pinto, Pedro Contreiras; Pereira, Luis Marcelo
2003-02-01
In vivo water assessment would greatly benefit from a dynamical approach since the evaluation of common related variables such as trans-epidermal water loss or "capacitance" measurements is always limited to instantaneous data. Mathematical modelling is still an attractive alternative already attempted with bi-exponential empirical models. A classical two-compartment interpretation of such models raises a number of questions about the underlying fundamentals, which can hardly be experimentally confirmed. However, in a system analysis sense, skin water dynamics may be approached as an ensemble of many factors, impossible to discretize, but conceptually grouped in terms of feasible properties of the system. The present paper explores the applicability of this strategy to the in vivo water dynamics assessment. From the plastic occlusion stress test (POST) skin water balance is assessed by modelling trans-epidermal water loss (TEWL) and "capacitance" data obtained at skin's surface. With system analysis (disposition-decomposition analysis) the distribution function, H(t), modelled as a sum of exponential terms, covers only the distribution characteristics of water molecules traversing the skin. This may correspond macroscopically to the experimental data accessed by "corneometry". Separately, the hyperbolic elimination function Q(TEWL) helps to characterise the dynamic aspects of water influx through the skin. In the observable range there seems to be a linear relationship between the net amount of water lost at the surface by evaporation, and the capability of the system to replenish that loss. This may be a specific characteristic of the system related to what may be described as the skin's "intrinsic hydration capacity" (IHC) a new functional parameter only identified by this strategy. These new quantitative tools are expected to find different applicabilities (from the in vivo skin characterisation to efficacy testing) contributing to disclose the dynamical nature of the skin water balance process. Copyright Blackwell Munksgaard 2003
CHALLENGES AND SUCCESSES MODELING THE INFLUENCES OF LAND USE CHANGES ON MERCURY DYNAMICS
Linked sets of atmospheric, watershed, water body, and food web models and supporting data are required to evaluate the effectiveness of proposals to regulate atmospheric mercury emissions. Simulating mercury dynamics in watersheds is a key step linking changes in atmospheric de...
Evaluation of water-quality data and monitoring program for Lake Travis, near Austin, Texas
Rast, Walter; Slade, Raymond M.
1998-01-01
The multiple-comparison tests indicate that, for some constituents, a single sampling site for a constituent or property might adequately characterize the water quality of Lake Travis for that constituent or property. However, multiple sampling sites are required to provide information of sufficient temporal and spatial resolution to accurately evaluate other water-quality constituents for the reservoir. For example, the water-quality data from surface samples and from bottom samples indicate that nutrients (nitrogen, phosphorus) might require additional sampling sites for a more accurate characterization of their in-lake dynamics.
Use of Hyperspectral Remote Sensing to Evaluate Efficacy of Aquatic Plant Management
USDA-ARS?s Scientific Manuscript database
Invasive aquatic weeds negatively affect biodiversity, fluvial dynamics, water quality, and water storage and conveyance for a variety of human resource demands. In California’s Sacramento-San Joaquin River Delta one submersed species - Brazilian waterweed (Egeria densa) - and one floating species ...
Evaluating Water Conservation and Reuse Policies Using a Dynamic Water Balance Model
NASA Astrophysics Data System (ADS)
Qaiser, Kamal; Ahmad, Sajjad; Johnson, Walter; Batista, Jacimaria R.
2013-02-01
A dynamic water balance model is created to examine the effects of different water conservation policies and recycled water use on water demand and supply in a region faced with water shortages and significant population growth, the Las Vegas Valley (LVV). The model, developed using system dynamics approach, includes an unusual component of the water system, return flow credits, where credits are accrued for returning treated wastewater to the water supply source. In LVV, Lake Mead serves as, both the drinking water source and the receiving body for treated wastewater. LVV has a consumptive use allocation from Lake Mead but return flow credits allow the water agency to pull out additional water equal to the amount returned as treated wastewater. This backdrop results in a scenario in which conservation may cause a decline in the available water supply. Current water use in LVV is 945 lpcd (250 gpcd), which the water agency aims to reduce to 752 lpcd (199 gpcd) by 2035, mainly through water conservation. Different conservation policies focused on indoor and outdoor water use, along with different population growth scenarios, are modeled for their effects on the water demand and supply. Major contribution of this study is in highlighting the importance of outdoor water conservation and the effectiveness of reducing population growth rate in addressing the future water shortages. The water agency target to decrease consumption, if met completely through outdoor conservation, coupled with lower population growth rate, can potentially satisfy the Valley's water demands through 2035.
Rehan, R; Knight, M A; Unger, A J A; Haas, C T
2013-12-15
This paper develops causal loop diagrams and a system dynamics model for financially sustainable management of urban water distribution networks. The developed causal loop diagrams are a novel contribution in that it illustrates the unique characteristics and feedback loops for financially self-sustaining water distribution networks. The system dynamics model is a mathematical realization of the developed interactions among system variables over time and is comprised of three sectors namely watermains network, consumer, and finance. This is the first known development of a water distribution network system dynamics model. The watermains network sector accounts for the unique characteristics of watermain pipes such as service life, deterioration progression, pipe breaks, and water leakage. The finance sector allows for cash reserving by the utility in addition to the pay-as-you-go and borrowing strategies. The consumer sector includes controls to model water fee growth as a function of service performance and a household's financial burden due to water fees. A series of policy levers are provided that allow the impact of various financing strategies to be evaluated in terms of financial sustainability and household affordability. The model also allows for examination of the impact of different management strategies on the water fee in terms of consistency and stability over time. The paper concludes with a discussion on how the developed system dynamics water model can be used by water utilities to achieve a variety of utility short and long-term objectives and to establish realistic and defensible water utility policies. It also discusses how the model can be used by regulatory bodies, government agencies, the financial industry, and researchers. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Water quality assessment of the Li Canal using a functional fuzzy synthetic evaluation model.
Feng, Yan; Ling, Liu
2014-07-01
Through introducing functional data analysis (FDA) theory into the conventional fuzzy synthetic evaluation (FSE) method, the functional fuzzy synthetic evaluation (FFSE) model is established. FFSE keeps the property of the conventional FSE that the fuzziness in the water quality condition can be suitably measured. Furthermore, compared with FSE, FFSE has the following advantages: (1) FFSE requires fewer conditions for observation, for example, pollutants can be monitored at different times, and missing data is accepted; (2) the dynamic variation of the water quality condition can be represented more comprehensively and intuitively. The procedure of FFSE is discussed and the water quality of the Li Canal in 2012 is evaluated as an illustration. The synthetic classification of the Li Canal is "II" in January, February and July, and "I" in other months, which can satisfy the requirement of the Chinese South-to-North Water Diversion Project.
Multi-Terrain Impact Testing and Simulation of a Composite Energy Absorbing Fuselage Section
NASA Technical Reports Server (NTRS)
Fasanella, Edwin L.; Jackson, Karen E.; Lyle, Karen H.; Sparks, Chad E.; Sareen, Ashish K.
2007-01-01
Comparisons of the impact performance of a 5-ft diameter crashworthy composite fuselage section were investigated for hard surface, soft soil, and water impacts. The fuselage concept, which was originally designed for impacts onto a hard surface only, consisted of a stiff upper cabin, load bearing floor, and an energy absorbing subfloor. Vertical drop tests were performed at 25-ft/s onto concrete, soft-soil, and water at NASA Langley Research Center. Comparisons of the peak acceleration values, pulse durations, and onset rates were evaluated for each test at specific locations on the fuselage. In addition to comparisons of the experimental results, dynamic finite element models were developed to simulate each impact condition. Once validated, these models can be used to evaluate the dynamic behavior of subfloor components for improved crash protection for hard surface, soft soil, and water impacts.
Multi-Terrain Impact Testing and Simulation of a Composite Energy Absorbing Fuselage Section
NASA Technical Reports Server (NTRS)
Fasanella, Edwin L.; Lyle, Karen H.; Sparks, Chad E.; Sareen, Ashish K.
2004-01-01
Comparisons of the impact performance of a 5-ft diameter crashworthy composite fuselage section were investigated for hard surface, soft soil, and water impacts. The fuselage concept, which was originally designed for impacts onto a hard surface only, consisted of a stiff upper cabin, load bearing floor, and an energy absorbing subfloor. Vertical drop tests were performed at 25-ft/s onto concrete, soft-soil, and water at NASA Langley Research Center. Comparisons of the peak acceleration values, pulse durations, and onset rates were evaluated for each test at specific locations on the fuselage. In addition to comparisons of the experimental results, dynamic finite element models were developed to simulate each impact condition. Once validated, these models can be used to evaluate the dynamic behavior of subfloor components for improved crash protection for hard surface, soft soil, and water impacts.
POSTFUNDOPLICATION DYSPHAGIA CAUSES SIMILAR WATER INGESTION DYNAMICS AS ACHALASIA.
Dantas, Roberto Oliveira; Santos, Carla Manfredi; Cassiani, Rachel Aguiar; Alves, Leda Maria Tavares; Nascimento, Weslania Viviane
2016-01-01
- After surgical treatment of gastroesophageal reflux disease dysphagia is a symptom in the majority of patients, with decrease in intensity over time. However, some patients may have persistent dysphagia. - The objective of this investigation was to evaluate the dynamics of water ingestion in patients with postfundoplication dysphagia compared with patients with dysphagia caused by achalasia, idiopathic or consequent to Chagas' disease, and controls. - Thirty-three patients with postfundoplication dysphagia, assessed more than one year after surgery, together with 50 patients with Chagas' disease, 27 patients with idiopathic achalasia and 88 controls were all evaluated by the water swallow test. They drunk, in triplicate, 50 mL of water without breaks while being precisely timed and the number of swallows counted. Also measured was: (a) inter-swallows interval - the time to complete the task, divided by the number of swallows during the task; (b) swallowing flow - volume drunk divided by the time taken; (c) volume of each swallow - volume drunk divided by the number of swallows. - Patients with postfundoplication dysphagia, Chagas' disease and idiopathic achalasia took longer to ingest all the volume, had an increased number of swallows, an increase in interval between swallows, a decrease in swallowing flow and a decrease in water volume of each swallow compared with the controls. There was no difference between the three groups of patients. There was no correlation between postfundoplication time and the results. - It was concluded that patients with postfundoplication dysphagia have similar water ingestion dynamics as patients with achalasia.
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Flores, Luis; Fleming, Land; Throop, Daiv
2002-01-01
A hybrid discrete/continuous simulation tool, CONFIG, has been developed to support evaluation of the operability life support systems. CON FIG simulates operations scenarios in which flows and pressures change continuously while system reconfigurations occur as discrete events. In simulations, intelligent control software can interact dynamically with hardware system models. CONFIG simulations have been used to evaluate control software and intelligent agents for automating life support systems operations. A CON FIG model of an advanced biological water recovery system has been developed to interact with intelligent control software that is being used in a water system test at NASA Johnson Space Center
Peter L. Lorio; Frederick M. Stephen; Timothy D. Paine
1995-01-01
We evaluated the impact of tree resistance on within-tree population dynamics of southern pine beetle, Dendroctonus frontalis Zimm. (Coleoptera: Scolytidae) in loblolly pine, Pinus taeda L., as affected by prevailing water regimes, acute water deficits imposed by applying dry-ice (solid CO2) collars to tree boles, and by the seasonal ontogeny of...
Water surface modeling from a single viewpoint video.
Li, Chuan; Pickup, David; Saunders, Thomas; Cosker, Darren; Marshall, David; Hall, Peter; Willis, Philip
2013-07-01
We introduce a video-based approach for producing water surface models. Recent advances in this field output high-quality results but require dedicated capturing devices and only work in limited conditions. In contrast, our method achieves a good tradeoff between the visual quality and the production cost: It automatically produces a visually plausible animation using a single viewpoint video as the input. Our approach is based on two discoveries: first, shape from shading (SFS) is adequate to capture the appearance and dynamic behavior of the example water; second, shallow water model can be used to estimate a velocity field that produces complex surface dynamics. We will provide qualitative evaluation of our method and demonstrate its good performance across a wide range of scenes.
NASA Astrophysics Data System (ADS)
Corona, R.; Montaldo, N.; Albertson, J. D.
2016-12-01
Water limited conditions strongly impacts soil and vegetation dynamics in Mediterranean regions, which are commonly heterogeneous ecosystems, characterized by inter-annual rainfall variability, topography variability and contrasting plant functional types (PFTs) competing for water use. Historical human influences (e.g., deforestation, urbanization) further altered these ecosystems. Sardinia island is a representative region of Mediterranean ecosystems. It is low urbanized except some plan areas close to the main cities where main agricultural activities are concentrated. Two contrasting case study sites are within the Flumendosa river basin (1700 km2). The first site is a typical grassland on an alluvial plan valley (soil depth > 2m) while the second is a patchy mixture of Mediterranean vegetation species (mainly wild olive trees and C3 herbaceous) that grow in a soil bounded from below by a rocky layer of basalt, partially fractured (soil depth 15 - 40 cm). In both sites land-surface fluxes and CO2 fluxes are estimated by the eddy correlation technique while soil moisture was continuously estimated with water content reflectometers, and periodically leaf area index (LAI) was estimated. The following objectives are addressed:1) pointing out the dynamics of land surface fluxes, soil moisture, CO2 and vegetation cover for two contrasting water-limited ecosystems; 2) assess the impact of the soil depth and type on the CO2 and water balance dynamics; 3) evaluate the impact of past and future climate change scenarios on the two contrasting ecosystems. For reaching the objectives an ecohydrologic model that couples a vegetation dynamic model (VDM), and a 3-component (bare soil, grass and woody vegetation) land surface model (LSM) has been used. Historical meteorological data are available from 1922 and hydro-meteorological scenarios are then generated using a weather generator. The VDM-LSM model predict soil water balance and vegetation dynamics for the generated hydrometeorological scenarios in the two contrasting ecosystems. Results demonstrate that vegetation dynamics are influenced by the inter-annual variability of atmospheric forcing, with vegetation density changing significantly according to seasonal rainfall amount. At the same time the vegetation dynamics affect the soil water balance.
Yang, Ye; Chui, Ting Fong May; Shen, Ping Ping; Yang, Yang; Gu, Ji Dong
2018-03-15
Anthropogenic activities such as land reclamation are threatening tidal marshes worldwide. This study's hypothesis is that land reclamation in a semi-enclosed bay alters the seasonal dynamics of intertidal benthic infauna, which is a key component in the tidal marsh ecosystem. Mai Po Tidal Marsh, Deep Bay, Pearl River Estuary, China was used as a case study to evaluate the hypothesis. Ecological models that simulate benthic biomass dynamics with governing environmental factors were developed, and various scenario experiments were conducted to evaluate the impact of reclamations. Environmental variables, selected from the areas of hydrodynamics, meteorology, and water quality based on correlation analysis, were used to generate Bayesian regression models for biomass prediction. The best-performing model, which considered average water age (i.e., a hydrodynamic indicator of estuarine circulation) in the previous month, salinity variation (i.e., standard deviation of salinity), and the total sunny period in the current month, captured well both seasonal and yearly trends in the benthic infauna observations from 2002 to 2008. This model was then used to simulate biomass dynamics with varying inputs of water age and salinity variation from coastal numerical models of different reclamation scenarios. The simulation results suggest that the reclamation in 2007 decreased the spatial and annual average benthic infauna biomass in the tidal marsh by 20%, which agreed with the 28% biomass decrease recorded by field survey. The range of biomass seasonal variation also decreased significantly from 2.1 to 230.5g/m 2 (without any reclamation) to 1.2 to 131.1g/m 2 (after the 2007 reclamation), which further demonstrates the substantial ecological impact of reclamation. The ecological model developed in this study could simulate seasonal biomass dynamics and evaluate the ecological impact of reclamation projects. It can therefore be applied to evaluate the ecological impact of coastal engineering projects for tidal marsh management, conservation, and restoration. Copyright © 2017 Elsevier B.V. All rights reserved.
Dynamic data analysis of climate and recharge conditions over time in the Edwards Aquifer, Texas
NASA Astrophysics Data System (ADS)
Pierce, S. A.; Collins, J.; Banner, J.
2017-12-01
Understanding the temporal patterns in datasets related to climate, recharge, and water resource conditions is important for informing water management and policy decisions. Data analysis and pipelines for evaluating these disparate sources of information are challenging to set up and rely on emerging informatics tools to complete. This project gathers data from both historical and recent sources for the Edwards Aquifer of central Texas. The Edwards faces a unique array of challenges, as it is composed of karst limestone, is susceptible to contaminants and climate change, and is expected to supply water for a rapidly growing population. Given these challenges, new approaches to integrating data will be particularly important. Case study data from the Edwards is used to evaluate aquifer and hydrologic system conditions over time as well as to discover patterns and possible relationships across the information sources. Prior research that evaluated trends in discharge and recharge of the aquifer is revisited by considering new data from 1992-2015, and the sustainability of the Edwards as a water resource within the more recent time period is addressed. Reusable and shareable analytical data pipelines are constructed using Jupyter Notebooks and Python libraries, and an interactive visualization is implemented with the information. In addition to the data sources that are utilized for the water balance analyses, the Global Surface Water Monitoring System from the University of Minnesota, a tool that integrates a wide number of satellite datasets with known surface water dynamics and machine learning, is used to evaluate water body persistence and change over time at regional scales. Preliminary results indicate that surface water body over the Edwards with differing aerial extents are declining, excepting some dam-controlled lakes in the region. Other existing tools and machine learning applications are also considered. Results are useful to the Texas Water Research Network and provide a reproducible geoinformatics approach to integrated data analysis for water resources at regional scales.
Dynamic river networks as the context for evaluating riparian influence on river basin solute export
Many studies have examined the influence of riparian areas on nitrogen as water drains from hillslopes and through riparian zones at the stream reach scale. Most of these studies have been conducted along relatively small streams. However, water quality concerns typically deal wi...
De Donno, Antonella; Bagordo, Francesco; Rollo, Maria Concetta; Quattrocchi, Manuela; Campa, Annamaria; Guido, Marcello
2006-01-01
The aim of this study was to evaluate the water quality of the port of Otranto (Italy), through a combined approach which integrates monitoring of traditional microbiological parameters and studying the dynamics of some autochthonous bacterial communities. The fecal contamination indicators, total coliforms, fecal coliforms, and fecal streptococci were measured to evaluate the sanitary aspects, while the presence of organic matter was considered as a parameter strictly related to dumping. In addition, being the port of Otranto especially exposed to hydrocarbon pollution, hydrocarbon-oxidizing bacteria were evaluated. Fecal contamination indicators were consistently found to be below the threshold values set by the Italian legislative decree N. 470/82 for bathing waters, indicating a good microbiological quality of these waters. A higher density of hydrocarbon-oxidizing bacteria was found at mooring and craft transit areas. This parameter was therefore found to be useful for evaluating port water hydrocarbon pollution.
NASA Astrophysics Data System (ADS)
Rakhimbekova, S.; O'Carroll, D. M.; Robinson, C. E.
2017-12-01
Groundwater-coastal water interactions play an important role in controlling the behavior of inorganic chemicals in nearshore aquifers and the subsequent flux of these chemicals to receiving coastal waters. Previous studies have shown that dynamic groundwater flows and water exchange across the sediment-water interface can set up strong geochemical gradients and an important reaction zone in a nearshore aquifer that affect the fate of reactive chemicals. There is limited understanding of the impact of transient coastal forcing such as wave conditions on groundwater dynamics and geochemistry in a nearshore aquifer. The goal of this study was to assess the impact of intensified wave conditions on the behavior of arsenic in a nearshore aquifer and to determine the hydrological and geochemical factors controlling its fate and ultimate delivery to receiving coastal waters. Field investigations were conducted over the period of intensified wave conditions on a freshwater beach on Lake Erie, Canada. High spatial resolution aqueous and sediment sampling was conducted to characterize the subsurface distribution of inorganic species in the nearshore aquifer. Numerical groundwater flow and transport simulations were conducted to evaluate wave-induced perturbations in the flow dynamics including characterizing changes in the groundwater flow recirculations in the nearshore aquifer. The combination of field data and numerical simulations reveal that varying wave conditions alter groundwater flows and set up geochemical transition zones within the aquifer resulting in the release and sequestration of arsenic. Interactions between oxic surface water, mildly reducing shallow groundwater, and reducing sulfur- and iron-rich deep groundwater promote dynamic iron, sulfur and manganese cycling which control the mobility of arsenic in the aquifer. The findings of this study have potential implications for the fate and transport of other reactive chemicals (e.g. phosphorus, mercury) in nearshore marine and freshwater aquifers exposed to transient coastal forcing. Understanding the fate of chemicals and the dynamics of the reaction zone in nearshore aquifers is critical for evaluating the importance of groundwater as a pathway for delivering pollutants to coastal waters.
Wutich, Amber; Budds, Jessica; Eichelberger, Laura; Geere, Jo; Harris, Leila; Horney, Jennifer; Jepson, Wendy; Norman, Emma; O'Reilly, Kathleen; Pearson, Amber; Shah, Sameer; Shinn, Jamie; Simpson, Karen; Staddon, Chad; Stoler, Justin; Teodoro, Manuel P; Young, Sera
2017-11-01
Household water insecurity has serious implications for the health, livelihoods and wellbeing of people around the world. Existing methods to assess the state of household water insecurity focus largely on water quality, quantity or adequacy, source or reliability, and affordability. These methods have significant advantages in terms of their simplicity and comparability, but are widely recognized to oversimplify and underestimate the global burden of household water insecurity. In contrast, a broader definition of household water insecurity should include entitlements and human capabilities, sociocultural dynamics, and political institutions and processes. This paper proposes a mix of qualitative and quantitative methods that can be widely adopted across cultural, geographic, and demographic contexts to assess hard-to-measure dimensions of household water insecurity. In doing so, it critically evaluates existing methods for assessing household water insecurity and suggests ways in which methodological innovations advance a broader definition of household water insecurity.
USDA-ARS?s Scientific Manuscript database
A three-year (2013-2015) field study was conducted to evaluate the effect of integrated nutrient management (NM) and three irrigation scheduling methods (IS): irrigator pro (IPro); normalized difference vegetative index (NDVI) and soil water potentials (SWP) on phosphorus (P) dynamics and phosphatas...
Estimating Biofuel Feedstock Water Footprints Using System Dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inman, Daniel; Warner, Ethan; Stright, Dana
Increased biofuel production has prompted concerns about the environmental tradeoffs of biofuels compared to petroleum-based fuels. Biofuel production in general, and feedstock production in particular, is under increased scrutiny. Water footprinting (measuring direct and indirect water use) has been proposed as one measure to evaluate water use in the context of concerns about depleting rural water supplies through activities such as irrigation for large-scale agriculture. Water footprinting literature has often been limited in one or more key aspects: complete assessment across multiple water stocks (e.g., vadose zone, surface, and ground water stocks), geographical resolution of data, consistent representation of manymore » feedstocks, and flexibility to perform scenario analysis. We developed a model called BioSpatial H2O using a system dynamics modeling and database framework. BioSpatial H2O could be used to consistently evaluate the complete water footprints of multiple biomass feedstocks at high geospatial resolutions. BioSpatial H2O has the flexibility to perform simultaneous scenario analysis of current and potential future crops under alternative yield and climate conditions. In this proof-of-concept paper, we modeled corn grain (Zea mays L.) and soybeans (Glycine max) under current conditions as illustrative results. BioSpatial H2O links to a unique database that houses annual spatially explicit climate, soil, and plant physiological data. Parameters from the database are used as inputs to our system dynamics model for estimating annual crop water requirements using daily time steps. Based on our review of the literature, estimated green water footprints are comparable to other modeled results, suggesting that BioSpatial H2O is computationally sound for future scenario analysis. Our modeling framework builds on previous water use analyses to provide a platform for scenario-based assessment. BioSpatial H2O's system dynamics is a flexible and user-friendly interface for on-demand, spatially explicit, water use scenario analysis for many US agricultural crops. Built-in controls permit users to quickly make modifications to the model assumptions, such as those affecting yield, and to see the implications of those results in real time. BioSpatial H2O's dynamic capabilities and adjustable climate data allow for analyses of water use and management scenarios to inform current and potential future bioenergy policies. The model could also be adapted for scenario analysis of alternative climatic conditions and comparison of multiple crops. The results of such an analysis would help identify risks associated with water use competition among feedstocks in certain regions. Results could also inform research and development efforts that seek to reduce water-related risks of biofuel pathways.« less
Season-ahead water quality forecasts for the Schuylkill River, Pennsylvania
NASA Astrophysics Data System (ADS)
Block, P. J.; Leung, K.
2013-12-01
Anticipating and preparing for elevated water quality parameter levels in critical water sources, using weather forecasts, is not uncommon. In this study, we explore the feasibility of extending this prediction scale to a season-ahead for the Schuylkill River in Philadelphia, utilizing both statistical and dynamical prediction models, to characterize the season. This advance information has relevance for recreational activities, ecosystem health, and water treatment, as the Schuylkill provides 40% of Philadelphia's water supply. The statistical model associates large-scale climate drivers with streamflow and water quality parameter levels; numerous variables from NOAA's CFSv2 model are evaluated for the dynamical approach. A multi-model combination is also assessed. Results indicate moderately skillful prediction of average summertime total coliform and wintertime turbidity, using season-ahead oceanic and atmospheric variables, predominantly from the North Atlantic Ocean. Models predicting the number of elevated turbidity events across the wintertime season are also explored.
NASA Astrophysics Data System (ADS)
Scukins, A.; Nerukh, D.; Pavlov, E.; Karabasov, S.; Markesteijn, A.
2015-09-01
A multiscale Molecular Dynamics/Hydrodynamics implementation of the 2D Mercedes Benz (MB or BN2D) [1] water model is developed and investigated. The concept and the governing equations of multiscale coupling together with the results of the two-way coupling implementation are reported. The sensitivity of the multiscale model for obtaining macroscopic and microscopic parameters of the system, such as macroscopic density and velocity fluctuations, radial distribution and velocity autocorrelation functions of MB particles, is evaluated. Critical issues for extending the current model to large systems are discussed.
Evaluating water conservation and reuse policies using a dynamic water balance model.
Qaiser, Kamal; Ahmad, Sajjad; Johnson, Walter; Batista, Jacimaria R
2013-02-01
A dynamic water balance model is created to examine the effects of different water conservation policies and recycled water use on water demand and supply in a region faced with water shortages and significant population growth, the Las Vegas Valley (LVV). The model, developed using system dynamics approach, includes an unusual component of the water system, return flow credits, where credits are accrued for returning treated wastewater to the water supply source. In LVV, Lake Mead serves as, both the drinking water source and the receiving body for treated wastewater. LVV has a consumptive use allocation from Lake Mead but return flow credits allow the water agency to pull out additional water equal to the amount returned as treated wastewater. This backdrop results in a scenario in which conservation may cause a decline in the available water supply. Current water use in LVV is 945 lpcd (250 gpcd), which the water agency aims to reduce to 752 lpcd (199 gpcd) by 2035, mainly through water conservation. Different conservation policies focused on indoor and outdoor water use, along with different population growth scenarios, are modeled for their effects on the water demand and supply. Major contribution of this study is in highlighting the importance of outdoor water conservation and the effectiveness of reducing population growth rate in addressing the future water shortages. The water agency target to decrease consumption, if met completely through outdoor conservation, coupled with lower population growth rate, can potentially satisfy the Valley's water demands through 2035.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herholz, K.; Pietrzyk, U.; Wienhard, K.
1989-09-01
In 20 patients with ischemic cerebrovascular disease, classic migraine, or angiomas, we compared paired dynamic positron emission tomographic measurements of regional cerebral blood flow using both ({sup 15}O)water and ({sup 18}F)fluoromethane as tracers. Cerebral blood flow was also determined according to the autoradiographic technique with a bolus injection of ({sup 15}O)water. There were reasonable overall correlations between dynamic ({sup 15}O)water and ({sup 18}F)fluoromethane values for cerebral blood flow (r = 0.82) and between dynamic and autoradiographic ({sup 15}O)water values for cerebral blood flow (r = 0.83). We found a close correspondence between abnormal pathologic findings and visually evaluated cerebral bloodmore » flow tomograms obtained with the two tracers. On average, dynamic ({sup 15}O)water cerebral blood flow was 6% lower than that measured with ({sup 18}F)fluoromethane. There also was a general trend toward a greater underestimation with ({sup 15}O)water in high-flow areas, particularly in hyperemic areas, probably due to incomplete first-pass extraction of ({sup 15}O)water. Underestimation was not detected in low-flow areas or in the cerebellum. Absolute cerebral blood flow values were less closely correlated between tracers and techniques than cerebral blood flow patterns. The variability of the relation between absolute flow values was probably caused by confounding effects of the variation in the circulatory delay time. The autoradiographic technique was most sensitive to this type error.« less
Collet, Lila; Ruelland, Denis; Borrell-Estupina, Valérie; Dezetter, Alain; Servat, Eric
2013-09-01
Assessing water supply capacity is crucial to meet stakeholders' needs, notably in the Mediterranean region. This region has been identified as a climate change hot spot, and as a region where water demand is continuously increasing due to population growth and the expansion of irrigated areas. The Hérault River catchment (2500 km(2), France) is a typical example and a negative trend in discharge has been observed since the 1960s. In this context, local stakeholders need first to understand the processes controlling the evolution of water resources and demands in the past to latter evaluate future water supply capacity and anticipate the tensions users could be confronted to in the future. A modelling framework is proposed at a 10-day time step to assess whether water resources have been able to meet water demands over the last 50 years. Water supply was evaluated using hydrological modelling and a dam management model. Water demand dynamics were estimated for the domestic and agricultural sectors. A water supply capacity index is computed to assess the extent and the frequency to which water demand has been satisfied at the sub-basin scale. Simulated runoff dynamics were in good agreement with observations over the calibration and validation periods. Domestic water demand has increased considerably since the 1980s and is characterized by a seasonal peak in summer. Agricultural demand has increased in the downstream sub-basins and decreased upstream where irrigated areas have decreased. As a result, although most water demands were satisfied between 1961 and 1980, irrigation requirements in summer have sometimes not been satisfied since the 1980s. This work is the first step toward evaluating possible future changes in water allocation capacity in the catchment, using future climate change, dam management and water use scenarios. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hager, P.; Czupalla, M.; Walter, U.
2010-11-01
In this paper we report on the development of a dynamic MATLAB SIMULINK® model for the water and electrolyte balance inside the human body. This model is part of an environmentally sensitive dynamic human model for the optimization and verification of environmental control and life support systems (ECLSS) in space flight applications. An ECLSS provides all vital supplies for supporting human life on board a spacecraft. As human space flight today focuses on medium- to long-term missions, the strategy in ECLSS is shifting to closed loop systems. For these systems the dynamic stability and function over long duration are essential. However, the only evaluation and rating methods for ECLSS up to now are either expensive trial and error breadboarding strategies or static and semi-dynamic simulations. In order to overcome this mismatch the Exploration Group at Technische Universität München (TUM) is developing a dynamic environmental simulation, the "Virtual Habitat" (V-HAB). The central element of this simulation is the dynamic and environmentally sensitive human model. The water subsystem simulation of the human model discussed in this paper is of vital importance for the efficiency of possible ECLSS optimizations, as an over- or under-scaled water subsystem would have an adverse effect on the overall mass budget. On the other hand water has a pivotal role in the human organism. Water accounts for about 60% of the total body mass and is educt and product of numerous metabolic reactions. It is a transport medium for solutes and, due to its high evaporation enthalpy, provides the most potent medium for heat load dissipation. In a system engineering approach the human water balance was worked out by simulating the human body's subsystems and their interactions. The body fluids were assumed to reside in three compartments: blood plasma, interstitial fluid and intracellular fluid. In addition, the active and passive transport of water and solutes between those compartments was modeled dynamically. A kidney model regulates the electrolyte concentration in body fluids (osmolality) in narrow confines and a thirst mechanism models the urge to ingest water. A controlled exchange of water and electrolytes with other human subsystems, as well as with the environment, is implemented. Finally, the changes in body composition due to muscle growth are accounted for. The outcome of this is a dynamic water and electrolyte balance, which is capable of representing body reactions like thirst and headaches, as well as heat stroke and collapse, as a response to its work load and environment.
Static and dynamic removal of aquatic natural organic matter by carbon nanotubes.
Ajmani, Gaurav S; Cho, Hyun-Hee; Abbott Chalew, Talia E; Schwab, Kellogg J; Jacangelo, Joseph G; Huang, Haiou
2014-08-01
Carbon nanotubes (CNTs) were investigated for their capability and mechanisms to simultaneously remove colloidal natural organic matter (NOM) and humic substances from natural surface water. Static removal testing was conducted via adsorption experiments while dynamic removal was evaluated by layering CNTs onto substrate membranes and filtering natural water through the CNT-layered membranes. Analyses of treated water samples showed that removal of humic substances occurred via adsorption under both static and dynamic conditions. Removal of colloidal NOM occurred at a moderate level of 36-66% in static conditions, independent of the specific surface area (SSA) of CNTs. Dynamic removal of colloidal NOM increased from approximately 15% with the unmodified membrane to 80-100% with the CNT-modified membranes. Depth filtration played an important role in colloidal NOM removal. A comparison of the static and dynamic removal of humic substances showed that equilibrium static removal was higher than dynamic (p < 0.01), but there was also a significant linear relationship between static and dynamic removal (p < 0.05). Accounting for contact time of CNTs with NOM during filtration, it appeared that CNT mat structure was an important determinant of removal efficiencies for colloidal NOM and humic substances during CNT membrane filtration. Copyright © 2014 Elsevier Ltd. All rights reserved.
Spatio-Temporal Dynamics of Maize Yield Water Constraints under Climate Change in Spain
Ferrero, Rosana; Lima, Mauricio; Gonzalez-Andujar, Jose Luis
2014-01-01
Many studies have analyzed the impact of climate change on crop productivity, but comparing the performance of water management systems has rarely been explored. Because water supply and crop demand in agro-systems may be affected by global climate change in shaping the spatial patterns of agricultural production, we should evaluate how and where irrigation practices are effective in mitigating climate change effects. Here we have constructed simple, general models, based on biological mechanisms and a theoretical framework, which could be useful in explaining and predicting crop productivity dynamics. We have studied maize in irrigated and rain-fed systems at a provincial scale, from 1996 to 2009 in Spain, one of the most prominent “hot-spots” in future climate change projections. Our new approach allowed us to: (1) evaluate new structural properties such as the stability of crop yield dynamics, (2) detect nonlinear responses to climate change (thresholds and discontinuities), challenging the usual linear way of thinking, and (3) examine spatial patterns of yield losses due to water constraints and identify clusters of provinces that have been negatively affected by warming. We have reduced the uncertainty associated with climate change impacts on maize productivity by improving the understanding of the relative contributions of individual factors and providing a better spatial comprehension of the key processes. We have identified water stress and water management systems as being key causes of the yield gap, and detected vulnerable regions where efforts in research and policy should be prioritized in order to increase maize productivity. PMID:24878747
Spatio-temporal dynamics of maize yield water constraints under climate change in Spain.
Ferrero, Rosana; Lima, Mauricio; Gonzalez-Andujar, Jose Luis
2014-01-01
Many studies have analyzed the impact of climate change on crop productivity, but comparing the performance of water management systems has rarely been explored. Because water supply and crop demand in agro-systems may be affected by global climate change in shaping the spatial patterns of agricultural production, we should evaluate how and where irrigation practices are effective in mitigating climate change effects. Here we have constructed simple, general models, based on biological mechanisms and a theoretical framework, which could be useful in explaining and predicting crop productivity dynamics. We have studied maize in irrigated and rain-fed systems at a provincial scale, from 1996 to 2009 in Spain, one of the most prominent "hot-spots" in future climate change projections. Our new approach allowed us to: (1) evaluate new structural properties such as the stability of crop yield dynamics, (2) detect nonlinear responses to climate change (thresholds and discontinuities), challenging the usual linear way of thinking, and (3) examine spatial patterns of yield losses due to water constraints and identify clusters of provinces that have been negatively affected by warming. We have reduced the uncertainty associated with climate change impacts on maize productivity by improving the understanding of the relative contributions of individual factors and providing a better spatial comprehension of the key processes. We have identified water stress and water management systems as being key causes of the yield gap, and detected vulnerable regions where efforts in research and policy should be prioritized in order to increase maize productivity.
Spatiotemporal dynamics of landscape pattern and hydrologic process in watershed systems
NASA Astrophysics Data System (ADS)
Randhir, Timothy O.; Tsvetkova, Olga
2011-06-01
SummaryLand use change is influenced by spatial and temporal factors that interact with watershed resources. Modeling these changes is critical to evaluate emerging land use patterns and to predict variation in water quantity and quality. The objective of this study is to model the nature and emergence of spatial patterns in land use and water resource impacts using a spatially explicit and dynamic landscape simulation. Temporal changes are predicted using a probabilistic Markovian process and spatial interaction through cellular automation. The MCMC (Monte Carlo Markov Chain) analysis with cellular automation is linked to hydrologic equations to simulate landscape patterns and processes. The spatiotemporal watershed dynamics (SWD) model is applied to a subwatershed in the Blackstone River watershed of Massachusetts to predict potential land use changes and expected runoff and sediment loading. Changes in watershed land use and water resources are evaluated over 100 years at a yearly time step. Results show high potential for rapid urbanization that could result in lowering of groundwater recharge and increased storm water peaks. The watershed faces potential decreases in agricultural and forest area that affect open space and pervious cover of the watershed system. Water quality deteriorated due to increased runoff which can also impact stream morphology. While overland erosion decreased, instream erosion increased from increased runoff from urban areas. Use of urban best management practices (BMPs) in sensitive locations, preventive strategies, and long-term conservation planning will be useful in sustaining the watershed system.
USDA-ARS?s Scientific Manuscript database
In this paper we develop an isotope-based statistical framework to evaluate the dynamics of the relationship between water supplies used for human consumption and several hydrological factors, including the spatiotemporal distribution of precipitation and snowmelt as well as the timing and rates of ...
abstract for journal article We characterized vertical variation in the seasonal depletion of stored soil moisture in old-growth ponderosa pine (OG-PP, xeric), and young and old-growth Douglas-fir (Y-DF, OG-DF, mesic) forests to evaluate changes in water availability for root up...
Impact of Multiple Environmental Stresses on Wetland Vegetation Dynamics
NASA Astrophysics Data System (ADS)
Muneepeerakul, C. P.; Tamea, S.; Muneepeerakul, R.; Miralles-Wilhelm, F. R.; Rinaldo, A.; Rodriguez-Iturbe, I.
2009-12-01
This research quantifies the impacts of climate change on the dynamics of wetland vegetation under the effect of multiple stresses, such as drought, water-logging, shade and nutrients. The effects of these stresses are investigated through a mechanistic model that captures the co-evolving nature between marsh emergent plant species and their resources (water, nitrogen, light, and oxygen). The model explicitly considers the feedback mechanisms between vegetation, light and nitrogen dynamics as well as the specific dynamics of plant leaves, rhizomes, and roots. Each plant species is characterized by three independent traits, namely leaf nitrogen (N) content, specific leaf area, and allometric carbon (C) allocation to rhizome storage, which govern the ability to gain and maintain resources as well as to survive in a particular multi-stressed environment. The modeling of plant growth incorporates C and N into the construction of leaves and roots, whose amount of new biomass is determined by the dynamic plant allocation scheme. Nitrogen is internally recycled between pools of plants, litter, humus, microbes, and mineral N. The N dynamics are modeled using a parallel scheme, with the major modifications being the calculation of the aerobic and anoxic periods and the incorporation of the anaerobic processes. A simple hydrologic model with stochastic rainfall is used to describe the water level dynamics and the soil moisture profile. Soil water balance is evaluated at the daily time scale and includes rainfall, evapotranspiration and lateral flow to/from an external water body, with evapotranspiration loss equal to the potential value, governed by the daily average condition of atmospheric water demand. The resulting feedback dynamics arising from the coupled system of plant-soil-microbe are studied in details and species’ fitnesses in the 3-D trait space are compared across various rainfall patterns with different mean and fluctuations. The model results are then compared with those from experiments and field studies reported in the literature, providing insights about the physiological features that enable plants to thrive in different wetland environments and climate regimes.
Damping measurements in flowing water
NASA Astrophysics Data System (ADS)
Coutu, A.; Seeley, C.; Monette, C.; Nennemann, B.; Marmont, H.
2012-11-01
Fluid-structure interaction (FSI), in the form of mass loading and damping, governs the dynamic response of water turbines, such as Francis turbines. Water added mass and damping are both critical quantities in evaluating the dynamic response of the turbine component. Although the effect of fluid added mass is well documented, fluid damping, a critical quantity to limit vibration amplitudes during service, and therefore to help avoiding possible failure of the turbines, has received much less attention in the literature. This paper presents an experimental investigation of damping due to FSI. The experimental setup, designed to create dynamic characteristics similar to the ones of Francis turbine blades is discussed, together with the experimental protocol and examples of measurements obtained. The paper concludes with the calculated damping values and a discussion on the impact of the observed damping behaviour on the response of hydraulic turbine blades to FSI.
Model estimation of land-use effects on water levels of northern Prairie wetlands
Voldseth, R.A.; Johnson, W.C.; Gilmanov, T.; Guntenspergen, G.R.; Millett, B.V.
2007-01-01
Wetlands of the Prairie Pothole Region exist in a matrix of grassland dominated by intensive pastoral and cultivation agriculture. Recent conservation management has emphasized the conversion of cultivated farmland and degraded pastures to intact grassland to improve upland nesting habitat. The consequences of changes in land-use cover that alter watershed processes have not been evaluated relative to their effect on the water budgets and vegetation dynamics of associated wetlands. We simulated the effect of upland agricultural practices on the water budget and vegetation of a semipermanent prairie wetland by modifying a previously published mathematical model (WETSIM). Watershed cover/land-use practices were categorized as unmanaged grassland (native grass, smooth brome), managed grassland (moderately heavily grazed, prescribed burned), cultivated crops (row crop, small grain), and alfalfa hayland. Model simulations showed that differing rates of evapotranspiration and runoff associated with different upland plant-cover categories in the surrounding catchment produced differences in wetland water budgets and linked ecological dynamics. Wetland water levels were highest and vegetation the most dynamic under the managed-grassland simulations, while water levels were the lowest and vegetation the least dynamic under the unmanaged-grassland simulations. The modeling results suggest that unmanaged grassland, often planted for waterfowl nesting, may produce the least favorable wetland conditions for birds, especially in drier regions of the Prairie Pothole Region. These results stand as hypotheses that urgently need to be verified with empirical data.
Coverage-dependent amplifiers of vegetation change on global water cycle dynamics
NASA Astrophysics Data System (ADS)
Feng, Huihui; Zou, Bin; Luo, Juhua
2017-07-01
The terrestrial water cycle describes the circulation of water worldwide from one store to another via repeated evapotranspiration (E) from land and precipitation (P) back to the surface. The cycle presents significant spatial variability, which is strongly affected by natural climate and anthropogenic influences. As one of the major anthropogenic influences, vegetation change unavoidably alters surface property and subsequent the terrestrial water cycle, while its contribution is yet difficult to isolate from the mixed influences. Here, we use satellite and in-situ datasets to identify the terrestrial water cycle dynamics in spatial detail and to evaluate the impact of vegetation change. Methodologically, the water cycle is identified by the indicator of difference between evapotranspiration and precipitation (E-P). Then the scalar form of the indicator's trend (ΔE + ΔP) is used for evaluating the dynamics of water cycle, with the positive value means acceleration and negative means deceleration. Then, the contributions of climate and vegetation change are isolated by the trajectory-based method. Our results indicate that 4 accelerating and 4 decelerating water cycles can be identified, affecting 42.11% of global land. The major water cycle type is characterized by non-changing precipitation and increasing evapotranspiration (PNO-EIN), which covers 20.88% of globally land. Vegetation change amplifies both accelerating and decelerating water cycles. It tends to intensify the trend of the decelerating water cycles, while climate change weakens the trend. In the accelerating water cycles, both vegetation and climate change present positive effect to intensify the trend. The effect of plant cover change varies with the coverage. In particular, vegetation change intensifies the water cycle in moderately vegetated regions (0.1 < NDVI < 0.6), but weakens the cycle in sparsely or highly vegetated regions (NDVI < 0.1 or 0.6 < NDVI < 0.8). In extremely vegetated regions (NDVI > 0.85), the water cycle is accelerated because of the significant increase of precipitation. We conclude that vegetation change acts as an amplifier for both accelerating and decelerating terrestrial water cycles, depending on the degree of vegetation coverage.
System Dynamics Modeling of Transboundary Systems: The Bear River Basin Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerald Sehlke; Jake Jacobson
2005-09-01
System dynamics is a computer-aided approach to evaluating the interrelationships of different components and activities within complex systems. Recently, system dynamics models have been developed in areas such as policy design, biological and medical modeling, energy and the environmental analysis, and in various other areas in the natural and social sciences. The Idaho National Engineering and Environmental Laboratory, a multi-purpose national laboratory managed by the Department of Energy, has developed a systems dynamics model in order to evaluate its utility for modeling large complex hydrological systems. We modeled the Bear River Basin, a transboundary basin that includes portions of Idaho,more » Utah and Wyoming. We found that system dynamics modeling is very useful for integrating surface water and groundwater data and for simulating the interactions between these sources within a given basin. In addition, we also found system dynamics modeling is useful for integrating complex hydrologic data with other information (e.g., policy, regulatory and management criteria) to produce a decision support system. Such decision support systems can allow managers and stakeholders to better visualize the key hydrologic elements and management constraints in the basin, which enables them to better understand the system via the simulation of multiple “what-if” scenarios. Although system dynamics models can be developed to conduct traditional hydraulic/hydrologic surface water or groundwater modeling, we believe that their strength lies in their ability to quickly evaluate trends and cause–effect relationships in large-scale hydrological systems; for integrating disparate data; for incorporating output from traditional hydraulic/hydrologic models; and for integration of interdisciplinary data, information and criteria to support better management decisions.« less
Economic Efficiency and Investment Timing for Dual Water Systems
NASA Astrophysics Data System (ADS)
Leconte, Robert; Hughes, Trevor C.; Narayanan, Rangesan
1987-10-01
A general methodology to evaluate the economic feasibility of dual water systems is presented. In a first step, a static analysis (evaluation at a single point in time) is developed. The analysis requires the evaluation of consumers' and producer's surpluses from water use and the capital cost of the dual (outdoor) system. The analysis is then extended to a dynamic approach where the water demand increases with time (as a result of a population increase) and where the dual system is allowed to expand. The model determines whether construction of a dual system represents a net benefit, and if so, what is the best time to initiate the system (corresponding to maximization of social welfare). Conditions under which an analytic solution is possible are discussed and results of an application are summarized (including sensitivity to different parameters). The analysis allows identification of key parameters influencing attractiveness of dual water systems.
NASA Astrophysics Data System (ADS)
Engda, T. A.; Kelleners, T. J.; Paige, G. B.
2013-12-01
Soil water content plays an important role in the complex interaction between terrestrial ecosystems and the atmosphere. Automated soil water content sensing is increasingly being used to assess agricultural drought conditions. A one-dimensional vertical model that calculates incoming solar radiation, canopy energy balance, surface energy balance, snow pack dynamics, soil water flow, snow-soil heat exchange is applied to calculate water flow and heat transport in a Rangeland soil located near Lingel, Wyoming. The model is calibrated and validated using three years of measured soil water content data. Long-term average soil water content dynamics are calculated using a 30 year historical data record. The difference between long-term average soil water content and observed soil water content is compared with plant biomass to evaluate the usefulness of soil water content as a drought indicator. Strong correlation between soil moisture surplus/deficit and plant biomass may prove our hypothesis that soil water content is a good indicator of drought conditions. Soil moisture based drought index is calculated using modeled and measured soil water data input and is compared with measured plant biomass data. A drought index that captures local drought conditions proves the importance of a soil water monitoring network for Wyoming Rangelands to fill the gap between large scale drought indices, which are not detailed enough to assess conditions at local level, and local drought conditions. Results from a combined soil moisture monitoring and computer modeling, and soil water based drought index soil are presented to quantify vertical soil water flow, heat transport, historical soil water variations and drought conditions in the study area.
Rivett, Michael O; Cuthbert, Mark O; Gamble, Richard; Connon, Lucy E; Pearson, Andrew; Shepley, Martin G; Davis, John
2016-09-15
Dynamic impact to the water environment of deicing salt application at a major highway (motorway) interchange in the UK is quantitatively evaluated for two recent severe UK winters. The contaminant transport pathway studied allowed controls on dynamic highway runoff and storm-sewer discharge to a receiving stream and its subsequent leakage to an underlying sandstone aquifer, including possible contribution to long-term chloride increases in supply wells, to be evaluated. Logged stream electrical-conductivity (EC) to estimate chloride concentrations, stream flow, climate and motorway salt application data were used to assess salt fate. Stream loading was responsive to salt applications and climate variability influencing salt release. Chloride (via EC) was predicted to exceed the stream Environmental Quality Standard (250mg/l) for 33% and 18% of the two winters. Maximum stream concentrations (3500mg/l, 15% sea water salinity) were ascribed to salt-induced melting and drainage of highway snowfall without dilution from, still frozen, catchment water. Salt persistance on the highway under dry-cold conditions was inferred from stream observations of delayed salt removal. Streambed and stream-loss data demonstrated chloride infiltration could occur to the underlying aquifer with mild and severe winter stream leakage estimated to account for 21 to 54% respectively of the 70t of increased chloride (over baseline) annually abstracted by supply wells. Deicing salt infiltration lateral to the highway alongside other urban/natural sources were inferred to contribute the shortfall. Challenges in quantifying chloride mass/fluxes (flow gauge accuracy at high flows, salt loading from other roads, weaker chloride-EC correlation at low concentrations), may be largely overcome by modest investment in enhanced data acquisition or minor approach modification. The increased understanding of deicing salt dynamic loading to the water environment obtained is relevant to improved groundwater resource management, highway salt application practice, surface-water - ecosystem management, and decision making on highway drainage to ground. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Qu, X. E.; Zhang, L. L.
2017-08-01
In this paper, a comprehensive evaluation of the water resources bearing capacity of Xi’an is performed. By constructing a comprehensive evaluation index system of the water resources bearing capacity that included water resources, economy, society, and ecological environment, we empirically studied the dynamic change and regional differences of the water resources bearing capacities of Xi’an districts through the TOPSIS method (Technique for Order Preference by Similarity to an Ideal Solution). Results show that the water resources bearing capacity of Xi’an significantly increased over time, and the contributions of the subsystems from high to low are as follows: water resources subsystem, social subsystem, ecological subsystem, and economic subsystem. Furthermore, there are large differences between the water resources bearing capacities of the different districts in Xi’an. The water resources bearing capacities from high to low are urban areas, Huxian, Zhouzhi, Gaoling, and Lantian. Overall, the water resources bearing capacity of Xi’an is still at a the lower level, which is highly related to the scarcity of water resources, population pressure, insufficient water saving consciousness, irrational industrial structure, low water-use efficiency, and so on.
Iguchi, I; Kamiyama, K; Ohashi, T; Wang, X; Imanishi, J
1996-11-01
To establish a new method for evaluation of contact lens materials, we studied the porcine endothelial cell injury caused by dynamic contact (rotatory rubbing) with three kinds of hard contact lenses (HCL). The HCLs used were 1) PMMA HCL, 2) oxygen-permeable HCL composed of a graft copolymer of dextran derivative and methylmethacrylate (MMA) (Suncon Mild II, 12 Dk), and 3) oxygen-permeable-HCL composed of a copolymer of a monomer containing silicone, a monomer containing fluorine, and MMA (RGPL-A, 216 Dk). Cell injury rates were significantly different among these HCLs (Suncon Mild II < PMMA < RGPL-A) although there were no differences in rotatory rubbing forces. The smoothness of HCL surface, the qualities of injured cell layers observed by scanning electron microscopy, and the water wettability of HCLs were not correlated with cell injury rate. These results suggest that physicochemical properties of materials other than rotatory rubbing force, smoothness, and water wettability were involved in the cell injury. Our evaluation method for biomaterials that injure the corneal endothelial cells by dynamic contact should be very useful for the development of biomaterials or medical devices, including HCLs and intracardiac and urethral catheters.
Warne, A.G.; Meade, R.H.; White, W.A.; Guevara, E.H.; Gibeaut, J.; Smyth, R.C.; Aslan, A.; Tremblay, T.
2002-01-01
Interacting river discharge, tidal oscillation, and tropical rainfall across the 22,000 km2 Orinoco delta plain support diverse fresh and brackish water ecosystems. To develop environmental baseline information for this largely unpopulated region, we evaluate major coastal plain, shallow marine, and river systems of northeastern South America, which serves to identify principal sources and controls of water and sediment flow into, through, and out of the Orinoco Delta. The regional analysis includes a summary of the geology, hydrodynamics, sediment dynamics, and geomorphic characteristics of the Orinoco drainage basin, river, and delta system. Because the Amazon River is a major source of sediment deposited along the Orinoco coast, we summarize Amazon water and sediment input to the northeastern South American littoral zone. We investigate sediment dynamics and geomorphology of the Guiana coast, where marine processes and Holocene history are similar to the Orinoco coast. Major factors controlling Orinoco Delta water and sediment dynamics include the pronounced annual flood discharge; the uneven distribution of water and sediment discharge across the delta plain; discharge of large volumes of water with low sediment concentrations through the Rio Grande and Araguao distributaries; water and sediment dynamics associated with the Guayana littoral current along the northeastern South American coast; inflow of large volumes of Amazon sediment to the Orinoco coast; development of a fresh water plume seaward of Boca Grande; disruption of the Guayana Current by Trinidad, Boca de Serpientes, and Gulf of Paria; and the constriction at Boca de Serpientes. ?? 2002 Elsevier Science B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yoon, J.; Klassert, C. J. A.; Lachaut, T.; Selby, P. D.; Knox, S.; Gorelick, S.; Rajsekhar, D.; Tilmant, A.; Avisse, N.; Harou, J. J.; Medellin-Azuara, J.; Gawel, E.; Klauer, B.; Mustafa, D.; Talozi, S.; Sigel, K.; Zhang, H.
2016-12-01
Our work focuses on development of a multi-agent, hydroeconomic model for water policy evaluation in Jordan. Jordan ranks among the most water-scarce countries in the world, a situation exacerbated due to a recent influx of refugees escaping the ongoing civil war in neighboring Syria. The modular, multi-agent model is used to evaluate interventions for enhancing Jordan's water security, integrating biophysical modules that simulate natural and engineered phenomena with human modules that represent behavior at multiple levels of decision making. The hydrologic modules are developed using spatially-distributed groundwater and surface water models, which are translated into compact simulators for efficient integration into the multi-agent model. For the multi-agent model, we explicitly account for human agency at multiple levels of decision making, with agents representing riparian, management, supplier, and water user groups. Human agents are implemented as autonomous entities in the model that make decisions in relation to one another and in response to hydrologic and socioeconomic conditions. The integrated model is programmed in Python using Pynsim, a generalizable, open-source object-oriented software framework for modeling network-based water resource systems. The modeling time periods include historical (2006-2014) and future (present-2050) time spans. For the historical runs, the model performance is validated against historical data for several observations that reflect the interacting dynamics of both the hydrologic and human components of the system. A historical counterfactual scenario is also constructed to isolate and identify the impacts of the recent Syrian civil war and refugee crisis on Jordan's water system. For the future period, model runs are conducted to evaluate potential supply, demand, and institutional interventions over a wide range of plausible climate and socioeconomic scenarios. In addition, model sensitivity analysis is conducted revealing the hydrologic and human aspects of the system that most strongly influence water security outcomes, providing insight into coupled human-water system dynamics as well as priority areas of focus for continued model improvement.
HABITAT EVALUATIONS OF AQUATIC CREATURES USING HSI MODEL CONSIDERING THE RIVER WATER TEMPERATURE
NASA Astrophysics Data System (ADS)
Nukazawa, Kei; Shiraiwa, Jun-Ichi; Kazama, So
Habitats of aquatic creatures (fishes Oncorhynchus masou masou, Plecoglossus altivelis altivel and Cyprinus carpio, fireflies Luciola cruciata and Luciola lateralis, and frogs Anura sp) in the Natori River basin located at the middle of Miyagi prefecture were evaluated dynamically using the water temperature as one of the environmental indices. HSI (Habitat Suitability Index) and WUA (Weighted Useable Area) of aquatic creatures were quantitatively calculated from numerical map information and hydrological simulation with a heat budget model. As results, general HSI of fireflies increased but of frogs decreased by adding the factor water temperature. Migration of Plecoglossus altivelis altivel could be represented by the variation of WUA.
A dynamic simulation based water resources education tool.
Williams, Alison; Lansey, Kevin; Washburne, James
2009-01-01
Educational tools to assist the public in recognizing impacts of water policy in a realistic context are not generally available. This project developed systems with modeling-based educational decision support simulation tools to satisfy this need. The goal of this model is to teach undergraduate students and the general public about the implications of common water management alternatives so that they can better understand or become involved in water policy and make more knowledgeable personal or community decisions. The model is based on Powersim, a dynamic simulation software package capable of producing web-accessible, intuitive, graphic, user-friendly interfaces. Modules are included to represent residential, agricultural, industrial, and turf uses, as well as non-market values, water quality, reservoir, flow, and climate conditions. Supplementary materials emphasize important concepts and lead learners through the model, culminating in an open-ended water management project. The model is used in a University of Arizona undergraduate class and within the Arizona Master Watershed Stewards Program. Evaluation results demonstrated improved understanding of concepts and system interactions, fulfilling the project's objectives.
Simulation of irrigation effect on water cycle in Yellow River catchment, China
NASA Astrophysics Data System (ADS)
Nakayama, T.; Watanabe, M.
2006-12-01
The Yellow River is 5,464 km long with a catchment area of 794,712 km2 if the Erdos inner flow area is included. This river catchment is divided between the upper region (length: 3472 km, area: 428,235 km2) from the headwater to Lanzhou in Gansu province, the middle region (length: 1,206 km, area: 343,751 km2) from Lanzhou to Huayuankou in Henan province, and the lower region (length: 786 km, area: 22,726 km2) from Huayuankou to the estuary. This river is well known for high sand content, frequent floods, unique channel characteristics in the lower reach (the river bed is higher than the land outside the banks), and the limited water resources. Since the competition of a large-scale irrigation project in 1969, noticeable river drying has been observed in the Yellow River. This flow dry-up phenomena, i.e., zero-flow in sections of the river channel, resulting from the intense competition between water supply and water demand, has occurred more and more often during the last 30 years. It is very important for decision making to ensure sustainable water resource utilization whether human activities were the only cause of the water shortage, the climate has changed during the last several decades in this catchment, and the water shortage has anything to do with climatic warming. The present research focuses on simulating the groundwater/river irrigation-effects on the water/heat dynamics in the Yellow River catchment. We combined the NIES Integrated Catchment-based Eco-hydrology (NICE) model (Nakayama and Watanabe, 2004, 2006; Nakayama et al., 2006) with the agricultural model in order to evaluate river drying in the Yellow River (NICE-DRY). We simulated the water/heat dynamics in the entire catchment with a resolution of 10 km mesh by using the NICE-DRY. The model reproduced excellently the river discharge, soil moisture, evapotranspiration, groundwater level, crop water use, crop productivity, et al. Furthermore, we evaluated the role of irrigation on the water/heat budgets, and simulated the change of water/heat dynamics by human activity in order to help decision-making on sustainable development in the catchment.
Decoding the Role of Water Dynamics in Ligand-Protein Unbinding: CRF1R as a Test Case.
Bortolato, Andrea; Deflorian, Francesca; Weiss, Dahlia R; Mason, Jonathan S
2015-09-28
The residence time of a ligand-protein complex is a crucial aspect in determining biological effect in vivo. Despite its importance, the prediction of ligand koff still remains challenging for modern computational chemistry. We have developed aMetaD, a fast and generally applicable computational protocol to predict ligand-protein unbinding events using a molecular dynamics (MD) method based on adiabatic-bias MD and metadynamics. This physics-based, fully flexible, and pose-dependent ligand scoring function evaluates the maximum energy (RTscore) required to move the ligand from the bound-state energy basin to the next. Unbinding trajectories are automatically analyzed and translated into atomic solvation factor (SF) values representing the water dynamics during the unbinding event. This novel computational protocol was initially tested on two M3 muscarinic receptor and two adenosine A2A receptor antagonists and then evaluated on a test set of 12 CRF1R ligands. The resulting RTscores were used successfully to classify ligands with different residence times. Additionally, the SF analysis was used to detect key differences in the degree of accessibility to water molecules during the predicted ligand unbinding events. The protocol provides actionable working hypotheses that are applicable in a drug discovery program for the rational optimization of ligand binding kinetics.
Zomorodian, Mehdi; Lai, Sai Hin; Homayounfar, Mehran; Ibrahim, Shaliza; Pender, Gareth
2017-01-01
Conflicts over water resources can be highly dynamic and complex due to the various factors which can affect such systems, including economic, engineering, social, hydrologic, environmental and even political, as well as the inherent uncertainty involved in many of these factors. Furthermore, the conflicting behavior, preferences and goals of stakeholders can often make such conflicts even more challenging. While many game models, both cooperative and non-cooperative, have been suggested to deal with problems over utilizing and sharing water resources, most of these are based on a static viewpoint of demand points during optimization procedures. Moreover, such models are usually developed for a single reservoir system, and so are not really suitable for application to an integrated decision support system involving more than one reservoir. This paper outlines a coupled simulation-optimization modeling method based on a combination of system dynamics (SD) and game theory (GT). The method harnesses SD to capture the dynamic behavior of the water system, utilizing feedback loops between the system components in the course of the simulation. In addition, it uses GT concepts, including pure-strategy and mixed-strategy games as well as the Nash Bargaining Solution (NBS) method, to find the optimum allocation decisions over available water in the system. To test the capability of the proposed method to resolve multi-reservoir and multi-objective conflicts, two different deterministic simulation-optimization models with increasing levels of complexity were developed for the Langat River basin in Malaysia. The later is a strategic water catchment that has a range of different stakeholders and managerial bodies, which are however willing to cooperate in order to avoid unmet demand. In our first model, all water users play a dynamic pure-strategy game. The second model then adds in dynamic behaviors to reservoirs to factor in inflow uncertainty and adjust the strategies for the reservoirs using the mixed-strategy game and Markov chain methods. The two models were then evaluated against three performance indices: Reliability, Resilience and Vulnerability (R-R-V). The results showed that, while both models were well capable of dealing with conflict resolution over water resources in the Langat River basin, the second model achieved a substantially improved performance through its ability to deal with dynamicity, complexity and uncertainty in the river system.
Lai, Sai Hin; Homayounfar, Mehran; Ibrahim, Shaliza; Pender, Gareth
2017-01-01
Conflicts over water resources can be highly dynamic and complex due to the various factors which can affect such systems, including economic, engineering, social, hydrologic, environmental and even political, as well as the inherent uncertainty involved in many of these factors. Furthermore, the conflicting behavior, preferences and goals of stakeholders can often make such conflicts even more challenging. While many game models, both cooperative and non-cooperative, have been suggested to deal with problems over utilizing and sharing water resources, most of these are based on a static viewpoint of demand points during optimization procedures. Moreover, such models are usually developed for a single reservoir system, and so are not really suitable for application to an integrated decision support system involving more than one reservoir. This paper outlines a coupled simulation-optimization modeling method based on a combination of system dynamics (SD) and game theory (GT). The method harnesses SD to capture the dynamic behavior of the water system, utilizing feedback loops between the system components in the course of the simulation. In addition, it uses GT concepts, including pure-strategy and mixed-strategy games as well as the Nash Bargaining Solution (NBS) method, to find the optimum allocation decisions over available water in the system. To test the capability of the proposed method to resolve multi-reservoir and multi-objective conflicts, two different deterministic simulation-optimization models with increasing levels of complexity were developed for the Langat River basin in Malaysia. The later is a strategic water catchment that has a range of different stakeholders and managerial bodies, which are however willing to cooperate in order to avoid unmet demand. In our first model, all water users play a dynamic pure-strategy game. The second model then adds in dynamic behaviors to reservoirs to factor in inflow uncertainty and adjust the strategies for the reservoirs using the mixed-strategy game and Markov chain methods. The two models were then evaluated against three performance indices: Reliability, Resilience and Vulnerability (R-R-V). The results showed that, while both models were well capable of dealing with conflict resolution over water resources in the Langat River basin, the second model achieved a substantially improved performance through its ability to deal with dynamicity, complexity and uncertainty in the river system. PMID:29216200
NASA Astrophysics Data System (ADS)
Gabrieli, Andrea; Sant, Marco; Izadi, Saeed; Shabane, Parviz Seifpanahi; Onufriev, Alexey V.; Suffritti, Giuseppe B.
2018-02-01
Classical molecular dynamics simulations were performed to study the high-temperature (above 300 K) dynamic behavior of bulk water, specifically the behavior of the diffusion coefficient, hydrogen bond, and nearest-neighbor lifetimes. Two water potentials were compared: the recently proposed "globally optimal" point charge (OPC) model and the well-known TIP4P-Ew model. By considering the Arrhenius plots of the computed inverse diffusion coefficient and rotational relaxation constants, a crossover from Vogel-Fulcher-Tammann behavior to a linear trend with increasing temperature was detected at T* ≈ 309 and T* ≈ 285 K for the OPC and TIP4P-Ew models, respectively. Experimentally, the crossover point was previously observed at T* ± 315-5 K. We also verified that for the coefficient of thermal expansion α P ( T, P), the isobaric α P ( T) curves cross at about the same T* as in the experiment. The lifetimes of water hydrogen bonds and of the nearest neighbors were evaluated and were found to cross near T*, where the lifetimes are about 1 ps. For T < T*, hydrogen bonds persist longer than nearest neighbors, suggesting that the hydrogen bonding network dominates the water structure at T < T*, whereas for T > T*, water behaves more like a simple liquid. The fact that T* falls within the biologically relevant temperature range is a strong motivation for further analysis of the phenomenon and its possible consequences for biomolecular systems.
Bioheat model evaluations of laser effects on tissues: role of water evaporation and diffusion
NASA Astrophysics Data System (ADS)
Nagulapally, Deepthi; Joshi, Ravi P.; Thomas, Robert J.
2011-03-01
A two-dimensional, time-dependent bioheat model is applied to evaluate changes in temperature and water content in tissues subjected to laser irradiation. Our approach takes account of liquid-to-vapor phase changes and a simple diffusive flow of water within the biotissue. An energy balance equation considers blood perfusion, metabolic heat generation, laser absorption, and water evaporation. The model also accounts for the water dependence of tissue properties (both thermal and optical), and variations in blood perfusion rates based on local tissue injury. Our calculations show that water diffusion would reduce the local temperature increases and hot spots in comparison to simple models that ignore the role of water in the overall thermal and mass transport. Also, the reduced suppression of perfusion rates due to tissue heating and damage with water diffusion affect the necrotic depth. Two-dimensional results for the dynamic temperature, water content, and damage distributions will be presented for skin simulations. It is argued that reduction in temperature gradients due to water diffusion would mitigate local refractive index variations, and hence influence the phenomenon of thermal lensing. Finally, simple quantitative evaluations of pressure increases within the tissue due to laser absorption are presented.
NASA Astrophysics Data System (ADS)
Basu, N. B.; Van Meter, K. J.; Tate, E.
2012-12-01
In semi-arid to arid landscapes under intensive irrigation, groundwater salinization can be a persistent and critical problem, leading to reduced agricultural productivity, limited access to fresh drinking water, and ultimately desertification. It is estimated that in India alone, problems of salinity are now affecting over 6 million hectares of agricultural land. In villages of the Mewat district of Haryana in Northern India, subsistence-level farming is the primary source of income, and farming families live under serious threat from increasing salinity levels, both in terms of crop production and adequate supplies of drinking water. The Institute for Rural Research and Development (IRRAD), a non-governmental organization (NGO) working in Mewat, has taken an innovative approach in this area to problems of groundwater salinization, using check dams and rainwater harvesting ponds to recharge aquifers in the freshwater zones of upstream hill areas, and to create freshwater pockets within the saline groundwater zones of down-gradient areas. Initial, pilot-scale efforts have led to apparent success in raising groundwater levels in freshwater zones and changing the dynamics of encroaching groundwater salinity, but the expansion of such efforts to larger-scale restoration is constrained by the availability of adequate resources. Under such resource constraints, which are typical of international development work, it becomes critical to utilize a decision-analysis framework to quantify both the immediate and long-term effectiveness and sustainability of interventions by NGOs such as IRRAD. In the present study, we have developed such a framework, linking the climate-hydrological dynamics of monsoon driven systems with village-scale socio-economic attributes to evaluate the sustainability of current restoration efforts and to prioritize future areas for intervention. We utilize a multi-dimensional metric that takes into account both physical factors related to water availability as well as socio-economic factors related to the capacity to deal with water stress. This metric allows us to evaluate and compare water-driven sustainability at the village, block, and district levels in Northern India based on a combination of readily available census and water resource data. Further, we utilize a pressure-response framework that considers monsoonal dynamics and effectively evaluates the effects of intervention efforts over time. Our results indicate that in arid to semi-arid regions, where problems of groundwater salinity are paramount, scaling factors corresponding to salinity levels as well as the relative size of the saline zone must be incorporated into indicators of water access and availability to accurately reflect overall sustainability. More importantly, the results point towards the value of incorporating dynamic, multi-dimensional sustainability metrics into decision-analysis frameworks used to aid in resource prioritization and the evaluation of intervention efforts.
Elizondo-García, Mariana E; Márquez-Miranda, Valeria; Araya-Durán, Ingrid; Valencia-Gallegos, Jesús A; González-Nilo, Fernando D
2018-04-21
Amphiphilic Janus dendrimers (JDs) are repetitively branched molecules with hydrophilic and hydrophobic components that self-assemble in water to form a variety of morphologies, including vesicles analogous to liposomes with potential pharmaceutical and medical application. To date, the self-assembly of JDs has not been fully investigated thus it is important to gain insight into its mechanism and dependence on JDs’ molecular structure. In this study, the aggregation behavior in water of a second-generation bis-MPA JD was evaluated using experimental and computational methods. Dispersions of JDs in water were carried out using the thin-film hydration and ethanol injection methods. Resulting assemblies were characterized by dynamic light scattering, confocal microscopy, and atomic force microscopy. Furthermore, a coarse-grained molecular dynamics (CG-MD) simulation was performed to study the mechanism of JDs aggregation. The obtaining of assemblies in water with no interdigitated bilayers was confirmed by the experimental characterization and CG-MD simulation. Assemblies with dendrimersome characteristics were obtained using the ethanol injection method. The results of this study establish a relationship between the molecular structure of the JD and the properties of its aggregates in water. Thus, our findings could be relevant for the design of novel JDs with tailored assemblies suitable for drug delivery systems.
NASA Astrophysics Data System (ADS)
van Emmerik, T. H. M.; Mirfenderesgi, G.; Bohrer, G.; Steele-Dunne, S. C.; Van De Giesen, N.
2015-12-01
Water stress is one of the most important environmental factors that influence plant water dynamics. To prevent excessive water loss and physiological damage, plants can regulate transpiration by adjusting the stomatal aperture. This enhances survival, but also reduced photosynthesis and productivity. During periods of low water availability, stomatal regulation is a trade-off between optimization of either survival or production. Water stress defence mechanisms lead to significant changes in plant dynamics, e.g. leaf and stem water content. Recent research has shown that water content in a corn canopy can change up to 30% diurnally as a result of water stress, which has a considerable influence on radar backscatter from a corn canopy [1]. This highlighted the potential of water stress detection using radar. To fully explore the potential of water stress monitoring using radar, we need to understand the driving forces governing plant water potential. For this study, the recently developed the Finite-Element Tree-Crown Hydrodynamic model version 2 (FETCH2) model is applied to a corn canopy. FETCH2 is developed to resolve the hydrodynamic processes within a plant using the porous media analogy, allowing investigation of the influence of environmental stress factors on plant dynamics such as transpiration, photosynthesis, stomatal conductance, and leaf and stem water content. The model is parameterized and evaluated using a detailed dataset obtained during a three-month field experiment in Flevoland, the Netherlands, on a corn canopy. [1] van Emmerik, T., S. Steele-Dunne, J. Judge and N. van de Giesen: "Impact of Diurnal Variation in Vegetation Water Content on Radar Backscatter of Maize During Water Stress", Geosciences and Remote Sensing, IEEE Transactions on, vol. 52, issue 7, doi: 10.1109/TGRS.2014.2386142, 2015.
NASA Astrophysics Data System (ADS)
Brion, Natacha; Carbonnel, Vincent; Elskens, Marc; Claeys, Philippe; Verbanck, Michel A.
2017-04-01
In densely populated regions, human activities profoundly modify natural water circulation as well as water quality, with increased hydrological risks (floods, droughts,…) and chemical hazards (untreated sewage releases, industrial pollution,…) as consequence. In order to assess water and pollutants dynamics and their mass-balance in strongly modified river system, it is important to take into account high flow events as a significant fraction of water and pollutants loads may occur during these short events which are generally underrepresented in classical mass balance studies. A good example of strongly modified river systems is the Zenne river in and around the city of Brussels (Belgium).The Zenne River (Belgium) is a rather small but dynamic rain fed river (about 10 m3/s in average) that is under the influence of strong contrasting anthropogenic pressures along its stretch. While the upstream part of its basin is rather characterized by agricultural land-use, urban and industrial areas dominate the downstream part. In particular, the city of Brussels (1.1M inhabitants) discharges in the Zenne River amounts of wastewater that are large compared to the natural riverine flow. In order to assess water and pollutants dynamics and their mass-balance in the Zenne hydrographic network, we followed water flows and concentrations of several water quality tracers during several flood episodes with an hourly frequency and at different locations along the stretch of the River. These parameters were chosen as indicators of a whole range of pollutions and anthropogenic activities. Knowledge of the high-frequency pollutants dynamics during floods is required for establishing accurate mass-balances of these elements. We thus report here the dynamics of selected parameters during entire flood events, from the baseline to the decreasing phase and at hourly frequency. Dynamics at contrasting locations, in agricultural or urban environments are compared. In particular, the importance of combined sewer overflows are evaluated and discussed. Results from this study were obtained in the framework of the OSIRIS research project (INNOVIRIS Anticipate 2015-2019).
Afshin Pourmokhtarian; Charles T. Driscoll; John L. Campbell; Katharine Hayhoe
2012-01-01
Dynamic hydrochemical models are useful tools for understanding and predicting the interactive effects of climate change, atmospheric CO2, and atmospheric deposition on the hydrology and water quality of forested watersheds. We used the biogeochemical model, PnET-BGC, to evaluate the effects of potential future changes in temperature,...
Balistrieri, Laurie S.; Nimick, David A.; Mebane, Christopher A.
2012-01-01
Evaluating water quality and the health of aquatic organisms is challenging in systems with systematic diel (24 hour) or less predictable runoff-induced changes in water composition. To advance our understanding of how to evaluate environmental health in these dynamic systems, field studies of diel cycling were conducted in two streams (Silver Bow Creek and High Ore Creek) affected by historical mining activities in southwestern Montana. A combination of sampling and modeling tools were used to assess the toxicity of metals in these systems. Diffusive Gradients in Thin Films (DGT) samplers were deployed at multiple time intervals during diel sampling to confirm that DGT integrates time-varying concentrations of dissolved metals. Thermodynamic speciation calculations using site specific water compositions, including time-integrated dissolved metal concentrations determined from DGT, and a competitive, multiple-metal biotic ligand model incorporated into the Windemere Humic Aqueous Model Version 6.0 (WHAM VI) were used to determine the chemical speciation of dissolved metals and biotic ligands. The model results were combined with previously collected toxicity data on cutthroat trout to derive a relationship that predicts the relative survivability of these fish at a given site. This integrative approach may prove useful for assessing water quality and toxicity of metals to aquatic organisms in dynamic systems and evaluating whether potential changes in environmental health of aquatic systems are due to anthropogenic activities or natural variability.
An evaluation of Dynamic TOPMODEL in natural and human-impacted catchments for low flow simulation
NASA Astrophysics Data System (ADS)
Coxon, Gemma; Freer, Jim; Lane, Rosanna; Musuuza, Jude; Woods, Ross; Wagener, Thorsten; Howden, Nicholas
2017-04-01
Models of catchment hydrology are essential tools for drought risk management, often providing input to water resource system models, aiding our understanding of low flow processes within catchments and providing low flow simulations and predictions. However, simulating low flows is challenging as hydrological systems often demonstrate threshold effects in connectivity, non-linear groundwater contributions and a greater influence of anthropogenic modifications such as surface and ground water abstractions during low flow periods. These processes are typically not well represented in commonly used hydrological models due to knowledge, data and model limitations. Hence, a better understanding of the natural and human processes that occur during low flows, how these are represented within models and how they could be improved is required to be able to provide robust and reliable predictions of future drought events. The aim of this study is to assess the skill of dynamic TOPMODEL during low flows for both natural and human-impacted catchments. Dynamic TOPMODEL was chosen for this study as it is able to explicitly characterise connectivity and fluxes across landscapes using hydrological response units (HRU's) while still maintaining flexibility in how spatially complex the model is configured and what specific functions (i.e. abstractions or groundwater stores) are represented. We apply dynamic TOPMODEL across the River Thames catchment using daily time series of observed rainfall and potential evapotranspiration data for the period 1999 - 2014, covering two major droughts in the Thames catchment. Significantly, to assess the impact of abstractions on low flows across the Thames catchment, we incorporate functions to characterise over 3,500 monthly surface water and ground water abstractions covering the simulation period into dynamic TOPMODEL. We evaluate dynamic TOPMODEL at over 90 gauging stations across the Thames catchment against multiple signatures of catchment low-flow behaviour in a 'limits of acceptability' GLUE framework. We investigate differences in model performance between signatures, different low flow periods and for natural and human impacted catchments to better understand the ability of dynamic TOPMODEL to represent low flows in space and time. Finally, we discuss future developments of dynamic TOPMODEL to improve low flow simulation and the implications of these results for modelling hydrological extremes in natural and human impacted catchments across the UK and the world.
Torres-Ruiz, Jose M; Diaz-Espejo, Antonio; Perez-Martin, Alfonso; Hernandez-Santana, Virginia
2015-04-01
The control of plant transpiration by stomata under water stress and recovery conditions is of paramount importance for plant performance and survival. Although both chemical and hydraulic signals emitted within a plant are considered to play a major role in controlling stomatal dynamics, they have rarely been assessed together. The aims of this study were to evaluate (i) the dynamics of chemical and hydraulic signals at leaf, stem and root level, and (ii) their effect on the regulation of stomatal conductance (gs) during water stress and recovery. Measurements of gs, water potential, abscisic acid (ABA) content and loss of hydraulic functioning at leaf, stem and root level were conducted during a water stress and recovery period imposed on 1-year-old olive plants (Olea europaea L.). Results showed a strong hydraulic segmentation in olive plants, with higher hydraulic functioning losses in roots and leaves than in stems. The dynamics of hydraulic conductance of roots and leaves observed as water stress developed could explain both a protection of the hydraulic functionality of larger organs of the plant (i.e., branches, etc.) and a role in the down-regulation of gs. On the other hand, ABA also increased, showing a similar pattern to gs dynamics, and thus its effect on gs in response to water stress cannot be ruled out. However, neither hydraulic nor non-hydraulic factors were able to explain the delay in the full recovery of gs after soil water availability was restored. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Das, Subhadip; Baghel, Vikesh Singh; Roy, Sudip; Kumar, Rajnish
2015-04-14
One of the options suggested for methane recovery from natural gas hydrates is molecular replacement of methane by suitable guests like CO2 and N2. This approach has been found to be feasible through many experimental and molecular dynamics simulation studies. However, the long term stability of the resultant hydrate needs to be evaluated; the decomposition rate of these hydrates is expected to depend on the interaction between these guest and water molecules. In this work, molecular dynamics simulation has been performed to illustrate the effect of guest molecules with different sizes and interaction strengths with water on structure I (SI) hydrate decomposition and hence the stability. The van der Waals interaction between water of hydrate cages and guest molecules is defined by Lennard Jones potential parameters. A wide range of parameter spaces has been scanned by changing the guest molecules in the SI hydrate, which acts as a model gas for occupying the small and large cages of the SI hydrate. All atomistic simulation results show that the stability of the hydrate is sensitive to the size and interaction of the guest molecules with hydrate water. The increase in the interaction of guest molecules with water stabilizes the hydrate, which in turn shows a slower rate of hydrate decomposition. Similarly guest molecules with a reasonably small (similar to Helium) or large size increase the decomposition rate. The results were also analyzed by calculating the structural order parameter to understand the dynamics of crystal structure and correlated with the release rate of guest molecules from the solid hydrate phase. The results have been explained based on the calculation of potential energies felt by guest molecules in amorphous water, hydrate bulk and hydrate-water interface regions.
Fluid Dynamics Assessment of the VPCAR Water Recovery System in Partial and Microgravity
NASA Technical Reports Server (NTRS)
Niederhaus, Charles; Nahra, Henry; Flynn, Michael
2006-01-01
The Vapor Phase Catalytic Ammonia Removal (VPCAR) system is being developed to recycle water for future NASA Exploration Missions. Testing was recently conducted on NASA s C-9B Reduced Gravity Aircraft to determine the microgravity performance of a key component of the VPCAR water recovery system. Six flights were conducted to evaluate the fluid dynamics of the Wiped-Film Rotating Disk (WFRD) distillation component of the VPCAR system in microgravity, focusing on the water delivery method. The experiments utilized a simplified system to study the process of forming a thin film on a disk similar to that in the evaporator section of VPCAR. Fluid issues are present with the current configuration, and the initial alternative configurations were only partial successful in microgravity operation. The underlying causes of these issues are understood, and new alternatives are being designed to rectify the problems.
Multi-water-bag models of ion temperature gradient instability in cylindrical geometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coulette, David; Besse, Nicolas
2013-05-15
Ion temperature gradient instabilities play a major role in the understanding of anomalous transport in core fusion plasmas. In the considered cylindrical geometry, ion dynamics is described using a drift-kinetic multi-water-bag model for the parallel velocity dependency of the ion distribution function. In a first stage, global linear stability analysis is performed. From the obtained normal modes, parametric dependencies of the main spectral characteristics of the instability are then examined. Comparison of the multi-water-bag results with a reference continuous Maxwellian case allows us to evaluate the effects of discrete parallel velocity sampling induced by the Multi-Water-Bag model. Differences between themore » global model and local models considered in previous works are discussed. Using results from linear, quasilinear, and nonlinear numerical simulations, an analysis of the first stage saturation dynamics of the instability is proposed, where the divergence between the three models is examined.« less
An index for plant water deficit based on root-weighted soil water content
NASA Astrophysics Data System (ADS)
Shi, Jianchu; Li, Sen; Zuo, Qiang; Ben-Gal, Alon
2015-03-01
Governed by atmospheric demand, soil water conditions and plant characteristics, plant water status is dynamic, complex, and fundamental to efficient agricultural water management. To explore a centralized signal for the evaluation of plant water status based on soil water status, two greenhouse experiments investigating the effect of the relative distribution between soil water and roots on wheat and rice were conducted. Due to the significant offset between the distributions of soil water and roots, wheat receiving subsurface irrigation suffered more from drought than wheat under surface irrigation, even when the arithmetic averaged soil water content (SWC) in the root zone was higher. A significant relationship was found between the plant water deficit index (PWDI) and the root-weighted (rather than the arithmetic) average SWC over root zone. The traditional soil-based approach for the estimation of PWDI was improved by replacing the arithmetic averaged SWC with the root-weighted SWC to take the effect of the relative distribution between soil water and roots into consideration. These results should be beneficial for scheduling irrigation, as well as for evaluating plant water consumption and root density profile.
Dai, Qian; Pan, De-lu; He, Xian-qiang; Zhu, Qian-kun; Gong, Fang; Huang, Hai-qing
2015-11-01
In situ measurement of water spectrum is the basis of the validation of the ocean color remote sensing. The traditional method to obtain the water spectrum is based on the shipboard measurement at limited stations, which is difficult to meet the requirement of validation of ocean color remote sensing in the highly dynamic coastal waters. To overcome this shortage, continuously observing systems of water spectrum have been developed in the world. However, so far, there are still few high-frequency observation systems of the water spectrum in coastal waters, especially in the highly turbid and high-dynamic waters. Here, we established a high-frequency water-spectrum observing system based on tower in the Hangzhou Bay. The system measures the water spectrum at a step of 3 minutes, which can fully match the satellite observation. In this paper, we primarily developed a data processing method for the tower-based high-frequency water spectrum data, to realize automatic judgment of clear sky, sun glint, platform shadow, and weak illumination, etc. , and verified the processing results. The results show that the normalized water-leaving radiance spectra obtained through tower observation have relatively high consistency with the shipboard measurement results, with correlation coefficient of more than 0. 99, and average relative error of 9.96%. In addition, the long-term observation capability of the tower-based high-frequency water-spectrum observing system was evaluated, and the results show that although the system has run for one year, the normalized water-leaving radiance obtained by this system have good consistency with the synchronously measurement by Portable spectrometer ASD in respect of spectral shape and value, with correlation coefficient of more than 0.90 and average relative error of 6.48%. Moreover, the water spectra from high-frequency observation by the system can be used to effectively monitor the rapid dynamic variation in concentration of suspended materials with tide. The tower-based high-frequency water-spectrum observing system provided rich in situ spectral data for the validation of ocean color remote sensing in turbid waters, especially for validation of the high temporal-resolution geostationary satellite ocean color remote sensing.
Water, gravity and trees: Relationship of tree-ring widths and total water storage dynamics
NASA Astrophysics Data System (ADS)
Creutzfeldt, B.; Heinrich, I.; Merz, B.; Blume, T.; Güntner, A.
2012-04-01
Water stored in the subsurface as groundwater or soil moisture is the main fresh water source not only for drinking water and food production but also for the natural vegetation. In a changing environment water availability becomes a critical issue in many different regions. Long-term observations of the past are needed to improve the understanding of the hydrological system and the prediction of future developments. Tree ring data have repeatedly proved to be valuable sources for reconstructing long-term climate dynamics, e.g. temperature, precipitation and different hydrological variables. In water-limited environments, tree growth is primarily influenced by total water stored in the subsurface and hence, tree-ring records usually contain information about subsurface water storage. The challenge is to retrieve the information on total water storage from tree rings, because a training dataset of water stored in the sub-surface is required for calibration against the tree-ring series. However, measuring water stored in the subsurface is notoriously difficult. We here present high-precision temporal gravimeter measurements which allow for the depth-integrated quantification of total water storage dynamics at the field scale. In this study, we evaluate the relationship of total water storage change and tree ring growth also in the context of the complex interactions of other meteorological forcing factors. A tree-ring chronology was derived from a Norway spruce stand in the Bavarian Forest, Germany. Total water storage dynamics were measured directly by the superconducting gravimeter of the Geodetic Observatory Wettzell for a 9-years period. Time series were extended to 63-years period by a hydrological model using gravity data as the only calibration constrain. Finally, water storage changes were reconstructed based on the relationship between the hydrological model and the tree-ring chronology. Measurement results indicate that tree-ring growth is primarily controlled by total water storage in the subsurface. But high uncertainties intervals of the correlation coefficient urges for the extension of the measurement period. This multi-disciplinary study, combining hydrology, dendrochronology and geodesy shows that temporal gravimeter measurements may give us the unique opportunity to retrieve the information of total water storage contained in tree-ring records to reconstruct total water storage dynamics. Knowing the relationship of water storage and tree-ring growth can also support the reconstruction of other climate records based on tree-ring series, help with hydrological model testing and can improve our knowledge of long-term variations of water storage in the past.
NASA Astrophysics Data System (ADS)
Wang, Yuanyuan; Xie, Zhenghui; Jia, Binghao
2016-09-01
Roots are responsible for the uptake of water and nutrients by plants and have the plasticity to dynamically respond to different environmental conditions. However, most land surface models currently prescribe rooting profiles as a function only of vegetation type, with no consideration of the surroundings. In this study, a dynamic rooting scheme, which describes root growth as a compromise between water and nitrogen availability, was incorporated into CLM4.5 with carbon-nitrogen (CN) interactions (CLM4.5-CN) to investigate the effects of a dynamic root distribution on eco-hydrological modeling. Two paired numerical simulations were conducted for the Tapajos National Forest km83 (BRSa3) site and the Amazon, one using CLM4.5-CN without the dynamic rooting scheme and the other including the proposed scheme. Simulations for the BRSa3 site showed that inclusion of the dynamic rooting scheme increased the amplitudes and peak values of diurnal gross primary production (GPP) and latent heat flux (LE) for the dry season, and improved the carbon (C) and water cycle modeling by reducing the RMSE of GPP by 0.4 g C m-2 d-1, net ecosystem exchange by 1.96 g C m-2 d-1, LE by 5.0 W m-2, and soil moisture by 0.03 m3 m-3, at the seasonal scale, compared with eddy flux measurements, while having little impact during the wet season. For the Amazon, regional analysis also revealed that vegetation responses (including GPP and LE) to seasonal drought and the severe drought of 2005 were better captured with the dynamic rooting scheme incorporated.
NASA Astrophysics Data System (ADS)
Martinez Baquero, G. F.; Furnans, J.; Hudson, C.; Magan, C.
2012-12-01
Management decisions on rivers and associated habitats require sound tools to identify major drivers for spatial and temporal variations of temperature and related water quality variables. 3D hydrodynamic and water quality models are key components to abstract flow dynamics in complex river systems as they allow extrapolating available observations to ungaged locations and alternative scenarios. The data collection and model development are intended to support the Mid-Columbia Fisheries Enhancement Group in conjunction with the Benton Conservation District in efforts to understand how seasonal flow patterns in the Yakima and Columbia rivers interact with the Yakima delta geometry to cause the relatively high water temperatures previously observed west of Bateman Island. These high temperatures are suspected of limiting salmonid success in the area, possibly contributing to adjustments in migration patterns and increased predation. The Environmental Fluid Dynamics Code (EFDC) and Water Quality Analysis Simulation Program (WASP) are used to model flow patterns and enable simulations of temperature distributions and water quality parameters at the confluence. Model development is supported by a bathymetric campaign in 2011 to evaluate delta geometry and to construct the EFDC domain, a sonar river survey in 2012 to measure velocity profiles and to enable model calibration, and a continuous collection of temperature and dissolved oxygen records from Level Scout probes at key locations during last year to drive water quality simulations. The current model is able to reproduce main flow features observed at the confluence and is being prepared to integrate previous and current temperature observations. The final model is expected to evaluate scenarios for the removal or alteration of the Bateman Island Causeway. Alterations to the causeway that permit water passage to the south of Bateman Island are likely to dramatically alter the water flow patterns through the Yakima and Columbia River confluence, which in turn will alter water temperature distributions, sediment transport pathways, and salmonid migration routes.
Dynamics of emulsification and demulsification of water in crude oil emulsions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhardwaj, A.; Hartland, S.
1994-05-01
The effect of aging on the crude oil/water interface has been studied, and the slow buildup of natural surfactants present in the crude oil at the interface was observed. Interfacial tension data and microvideography were used to evaluate the buildup of surface concentration. The methodology adopted in this work permits the calculation of the actual surface excess of natural surfactants at the crude oil/water interface, without having to isolate them from the crude oil and without knowing their bulk molar concentration. The rate of adsorption of demulsifier at the interface was determined by measurement of the dynamic interfacial tension bymore » a microprocessor-controlled drop volume method apparatus. Temperature, concentration, and nature of the medium (crude oil or brine) were found to be very important parameters governing adsorption of demulsifier at the interface. Diffusion of the emulsifier to the oil/water interface was much slower when demulsifier was present in the oil phase than when it was present in the water phase.« less
New method for qualitative simulations of water resources systems. 2. Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antunes, M.P.; Seixas, M.J.; Camara, A.S.
1987-11-01
SLIN (Simulacao Linguistica) is a new method for qualitative dynamic simulation. As was presented previously, SLIN relies upon a categorical representation of variables which are manipulated by logical rules. Two applications to water resources systems are included to illustrate SLIN's potential usefulness: the environmental impact evaluation of a hydropower plant and the assessment of oil dispersion in the sea after a tanker wreck.
Dynamic Change of Water Quality in Hyporheic Zone at Water Curtain Cultivation Area, Cheongju, Korea
NASA Astrophysics Data System (ADS)
Moon, S. H.; Kim, Y.
2015-12-01
There has been recently growing numbers of facilities for water curtain cultivation of strawberry and lettuce in Korea. These areas are nearly all located in the fluvial deposits near streams which can replenish water resources into exhausted groundwater aquifers during peak season. The purpose of this study is on groundwater chemistry and the change in physical and chemical properties due to stream-groundwater exchange or mixing in the representative agricultural area among the Jurassic granitic terrain of Korea. In the study area, groundwater level continuously decreased from November through March due to intensive use of groundwater, which forced stream water into aquifer. After March, groundwater level was gradually recovered to the original state. To evaluate the extent and its variations of stream water mixing into aquifer, field parameters including T, pH, EC and DO values, concentrations of major ions and oxygen and hydrogen stable isotopic ratios were used. Field measurements and water sample collections were performed several times from 2012 to 2015 mainly during peak time of groundwater use. To compare the temporal variations and areal differences, 21 wells from four cross sections perpendicular to stream line were used. While water temperature, EC values and concentrations of Ca, Mg, Si, HCO3 showed roughly gradual increase from stream line to 150 m distance, pH and DO values showed reverse phenomenon. This can be used to evaluate the extent and limit of stream water introduction into aquifer. However, individual wells showed yearly variations in those parameters and this dynamic and unstable feature indicates that mixing intensity of stream water over groundwater in this hyporheic zone varied year by year according to amounts of groundwater use and decrease of groundwater level.
Determining the Ecosystem Services Important for Urban Landscapes
Urban ecosystems present special considerations and challenges in researching and evaluating ecosystem functions and services. A case study of nitrate retention and loss in forested, urban wetlands illustrates these challenges. Water table dynamics, in situ nitrogen cy...
NASA Astrophysics Data System (ADS)
Englert, A.; Brinkmann, K.; Kobbe, S.; Buerkert, A.
2016-12-01
The south-western region of Madagascar is characterized by limited water resources throughout the year and recurrent droughts, which affect agricultural production and increase the risk of food insecurity. To deliver reliable estimates on the availability and dynamics of water resources, we studied the hydrogeology of several villages in the Mahafaly region. Detailed investigations were conducted for a selected village on a calcareous plateau to predict the local water resources under changing boundary conditions including enhanced water abstraction and changes in groundwater recharge. In 2014 a participatory monitoring network was established, which allowed groundwater level measurements in three wells twice a day. Additional hydrogeological investigations included pumping tests, automatic monitoring of meteorological data, daily groundwater abstraction appraisal and mapping of the spatial extent of the perched aquifer using satellite data. Analysis of the measured data unraveled the aquifer dynamic to be dominated by a groundwater level driven leakage process. The latter is superimposed by groundwater recharge in the rainy season and a daily groundwater abstraction. Based on these findings we developed a model for the aquifer, which allows to predict the duration of groundwater availability as a function of annual precipitation and daily water abstraction. The latter will be implemented in an agent-based land-use model, were groundwater abstraction is a function of population and livestock. The main objective is to model land use scenarios and global trends (climate, market trends and population development) through explicit imbedding of artificial and natural groundwater dynamics. The latter is expected to enable the evaluation of additional water abstraction for agricultural purposes without endangering water supply of the local population and their livestock.
Kotir, Julius H; Smith, Carl; Brown, Greg; Marshall, Nadine; Johnstone, Ron
2016-12-15
In a rapidly changing water resources system, dynamic models based on the notion of systems thinking can serve as useful analytical tools for scientists and policy-makers to study changes in key system variables over time. In this paper, an integrated system dynamics simulation model was developed using a system dynamics modelling approach to examine the feedback processes and interaction between the population, the water resource, and the agricultural production sub-sectors of the Volta River Basin in West Africa. The objective of the model is to provide a learning tool for policy-makers to improve their understanding of the long-term dynamic behaviour of the basin, and as a decision support tool for exploring plausible policy scenarios necessary for sustainable water resource management and agricultural development. Structural and behavioural pattern tests, and statistical test were used to evaluate and validate the performance of the model. The results showed that the simulated outputs agreed well with the observed reality of the system. A sensitivity analysis also indicated that the model is reliable and robust to uncertainties in the major parameters. Results of the business as usual scenario showed that total population, agricultural, domestic, and industrial water demands will continue to increase over the simulated period. Besides business as usual, three additional policy scenarios were simulated to assess their impact on water demands, crop yield, and net-farm income. These were the development of the water infrastructure (scenario 1), cropland expansion (scenario 2) and dry conditions (scenario 3). The results showed that scenario 1 would provide the maximum benefit to people living in the basin. Overall, the model results could help inform planning and investment decisions within the basin to enhance food security, livelihoods development, socio-economic growth, and sustainable management of natural resources. Copyright © 2016 Elsevier B.V. All rights reserved.
Roy, S; Gruenbaum, S M; Skinner, J L
2014-12-14
The structural stability and function of biomolecules is strongly influenced by the dynamics and hydrogen bonding of interfacial water. Understanding and characterizing the dynamics of these water molecules require a surface-sensitive technique such as two-dimensional vibrational sum-frequency generation (2DSFG) spectroscopy. We have combined theoretical 2DSFG calculations with molecular dynamics simulations in order to investigate the dynamics of water near different lipid and surfactant monolayer surfaces. We show that 2DSFG can distinguish the dynamics of interfacial water as a function of the lipid charge and headgroup chemistry. The dynamics of water is slow compared to the bulk near water-zwitterionic and water-anionic interfaces due to conformational constraints on interfacial water imposed by strong phosphate-water hydrogen bonding. The dynamics of water is somewhat faster near water-cationic lipid interfaces as no such constraint is present. Using hydrogen bonding and rotational correlation functions, we characterize the dynamics of water as a function of the distance from the interface between water and zwitterionic lipids. We find that there is a transition from bulk-like to interface-like dynamics approximately 7 Å away from a zwitterionic phosphatidylcholine monolayer surface.
Evaluating the impact of water conservation on fate of outdoor water use: a study in an arid region.
Qaiser, Kamal; Ahmad, Sajjad; Johnson, Walter; Batista, Jacimaria
2011-08-01
In this research, the impact of several water conservation policies and return flow credits on the fate of water used outdoors in an arid region is evaluated using system dynamics modeling approach. Return flow credits is a strategy where flow credits are obtained for treated wastewater returned to a water body, allowing for the withdrawal of additional water equal to the amount returned as treated wastewater. In the return credit strategy, treated wastewater becomes a resource. This strategy creates a conundrum in which conservation may lead to an apparent decrease in water supply because less wastewater is generated and returned to water body. The water system of the arid Las Vegas Valley in Nevada, USA is used as basis for the dynamic model. The model explores various conservation scenarios to attain the daily per capita demand target of 752 l by 2035: (i) status quo situation where conservation is not implemented, (ii) conserving water only on the outdoor side, (iii) conserving water 67% outdoor and 33% indoor, (iv) conserving equal water both in the indoor and outdoor use (v) conserving water only on the indoor side. The model is validated on data from 1993 to 2008 and future simulations are carried out up to 2035. The results show that a substantial portion of the water used outdoor either evapo-transpires (ET) or infiltrates to shallow groundwater (SGW). Sensitivity analysis indicated that seepage to groundwater is more susceptible to ET compared to any other variable. The all outdoor conservation scenario resulted in the highest return flow credits and the least ET and SGW. A major contribution of this paper is in addressing the water management issues that arise when wastewater is considered as a resource and developing appropriate conservation policies in this backdrop. The results obtained can be a guide in developing outdoor water conservation policies in arid regions. Copyright © 2011 Elsevier Ltd. All rights reserved.
Ecohydrological dynamics of peatlands and adjacent upland forests in the Rocky Mountains
NASA Astrophysics Data System (ADS)
Millar, D.; Parsekian, A.; Mercer, J.; Ewers, B. E.; Mackay, D. S.; Williams, D. G.; Cooper, D. J.; Ronayne, M. J.
2017-12-01
Mountain peatlands are susceptible to a changing climate via changes in the water cycle. Understanding the impacts of such changes requires knowledge of the hydrological processes within these peatlands and in the upland forests that supply them with water. We investigated hydrological processes in peatland catchments in the Rocky Mountains by developing empirical models of groundwater dynamics, and are working to improve subsurface water dynamics in a ecohydrological process model, the Terrestrial Regional Ecosystem Exchange Simulator (TREES). Results from empirical models showed major differences in water budget components between two peatlands with differing climate, vegetation, and hydrogeological settings. Several-fold higher rates of evapotranspiration from the saturated zone, and groundwater inflow were observed for a sloping fen in southern Wyoming than that of a basin fen in southwestern Colorado, where rainfall was two-fold higher due to stronger influence of the North American monsoon. We also present ongoing work coupling stable water isotope and borehole nuclear magnetic resonance analyses to test which soil water pools (bound or mobile) are used by dominant upland and peatland vegetation in two catchments in southern Wyoming. These data are being used to test whether the root hydraulic mechanisms in TREES can simulate water uptake from these two soil water pools, and sap flux measurements are being used to evaluate simulated transpiration. Preliminary results from this work suggest that upland vegetation utilize tightly-bound soil water pools, as these pools comprise the largest amount of subsurface water (> 80%) in the vadose zone long after snow melt. Conversely, it appears that herbaceous peatland hydrophytes may preferentially utilize mobile soil water pools, since their roots extend below the water table. The results of this work are expected to increase predictive understanding of hydrological processes in these important ecosystems.
NASA Technical Reports Server (NTRS)
Wong, Sun; Del Genio, Anthony; Wang, Tao; Kahn, Brian; Fetzer, Eric J.; L'Ecuyer, Tristan S.
2015-01-01
Goals: Water budget-related dynamical phase space; Connect large-scale dynamical conditions to atmospheric water budget (including precipitation); Connect atmospheric water budget to cloud type distributions.
Test results on re-use of reclaimed shower water: Summary. [space stations
NASA Technical Reports Server (NTRS)
Verostko, C. E.; Garcia, R.; Sauer, R.; Linton, A. T.; Elms, T.; Reysa, R. P.
1988-01-01
A microgravity whole body shower (WBS) and waste water recovery systems (WWRS) were evaluated in three separate closed loop tests. Following a protocol similar to that anticipated for the U.S. Space Station, test subjects showered in a prototype whole body shower. The WWRS processes evaluated during the test series were phase change and reverse osmosis (RO). A preprototype Thermoelectric Integrated Hollow Fiber Membrane Evaporation Subsystem phase change process was used for the initial test with chemical pretreatment of the shower water waste input. The second and third tests concentrated on RO technologies. The second test evaluated a dynamic RO membrane consisting of zirconium oxide polyacrylic acid (ZOPA) membranes deposited on the interior diameter of 316L porous stainless steel tubes while the final test employed a thin semipermeable RO membrane deposited on the interior surface of polysulfone hollow fibers. All reclaimed water was post-treated for purity using ion exchange and granular activated carbon beds immediately followed by microbial control treatment using both heat and iodine. The test hardware, controls exercised for whole body showering, types of soaps evaluated, shower subject response to reclaimed water showering, and shower water collection and chemical pretreatment (if required) for microbial control are described. The WWRS recovered water performance and the effectiveness of the reclaimed water post-treatment techniques used for maintaining water purity and microorganism control are compared. Results on chemical and microbial impurity content of the water samples obtained from various locations in the shower water reuse system are summarized.
A spatial simulation model of hydrology and vegetation dynamics in semi-permanent prairie wetlands
Poiani, Karen A.; Johnson, W. Carter
1993-01-01
The objective of this study was to construct a spatial simulation model of the vegetation dynamics in semi-permanent prairie wetlands. A hydrologic submodel estimated water levels based on precipitation, runoff, and potential evapotranspiration. A vegetation submodel calculated the amount and distribution of emergent cover and open water using a geographic information system. The response of vegetation to water-level changes was based on seed bank composition, seedling recruitment and establishment, and plant survivorship. The model was developed and tested using data from the Cottonwood Lake study site in North Dakota. Data from semi-permanent wetland P1 were used to calibrate the model. Data from a second wetland, P4, were used to evaluate model performance. Simulation results were compared with actual water data from 1797 through 1989. Test results showed that differences between calculated and observed water levels were within 10 cm 75% of the time. Open water over the past decade ranged from 0 to 7% in wetland P4 and from 0 to 8% in submodel simulations. Several model parameters including evapotranspiration and timing of seedling germination could be improved with more complex techniques or relatively minor adjustments. Despite these differences the model adequately represented vegetation dynamics of prairie wetlands and can be used to examine wetland response to natural or human-induced climate change.
USDA-ARS?s Scientific Manuscript database
AgroEcoSystem-Watershed (AgES-W) is a modular, Java-based spatially distributed model which implements hydrologic/water quality simulation components under the Object Modeling System Version 3 (OMS3). The AgES-W model was previously evaluated for streamflow and recently has been enhanced with the ad...
Long-Term Bacterial Dynamics in a Full-Scale Drinking Water Distribution System
Prest, E. I.; Weissbrodt, D. G.; Hammes, F.; van Loosdrecht, M. C. M.; Vrouwenvelder, J. S.
2016-01-01
Large seasonal variations in microbial drinking water quality can occur in distribution networks, but are often not taken into account when evaluating results from short-term water sampling campaigns. Temporal dynamics in bacterial community characteristics were investigated during a two-year drinking water monitoring campaign in a full-scale distribution system operating without detectable disinfectant residual. A total of 368 water samples were collected on a biweekly basis at the water treatment plant (WTP) effluent and at one fixed location in the drinking water distribution network (NET). The samples were analysed for heterotrophic plate counts (HPC), Aeromonas plate counts, adenosine-tri-phosphate (ATP) concentrations, and flow cytometric (FCM) total and intact cell counts (TCC, ICC), water temperature, pH, conductivity, total organic carbon (TOC) and assimilable organic carbon (AOC). Multivariate analysis of the large dataset was performed to explore correlative trends between microbial and environmental parameters. The WTP effluent displayed considerable seasonal variations in TCC (from 90 × 103 cells mL-1 in winter time up to 455 × 103 cells mL-1 in summer time) and in bacterial ATP concentrations (<1–3.6 ng L-1), which were congruent with water temperature variations. These fluctuations were not detected with HPC and Aeromonas counts. The water in the network was predominantly influenced by the characteristics of the WTP effluent. The increase in ICC between the WTP effluent and the network sampling location was small (34 × 103 cells mL-1 on average) compared to seasonal fluctuations in ICC in the WTP effluent. Interestingly, the extent of bacterial growth in the NET was inversely correlated to AOC concentrations in the WTP effluent (Pearson’s correlation factor r = -0.35), and positively correlated with water temperature (r = 0.49). Collecting a large dataset at high frequency over a two year period enabled the characterization of previously undocumented seasonal dynamics in the distribution network. Moreover, high-resolution FCM data enabled prediction of bacterial cell concentrations at specific water temperatures and time of year. The study highlights the need to systematically assess temporal fluctuations in parallel to spatial dynamics for individual drinking water distribution systems. PMID:27792739
Long-Term Bacterial Dynamics in a Full-Scale Drinking Water Distribution System.
Prest, E I; Weissbrodt, D G; Hammes, F; van Loosdrecht, M C M; Vrouwenvelder, J S
2016-01-01
Large seasonal variations in microbial drinking water quality can occur in distribution networks, but are often not taken into account when evaluating results from short-term water sampling campaigns. Temporal dynamics in bacterial community characteristics were investigated during a two-year drinking water monitoring campaign in a full-scale distribution system operating without detectable disinfectant residual. A total of 368 water samples were collected on a biweekly basis at the water treatment plant (WTP) effluent and at one fixed location in the drinking water distribution network (NET). The samples were analysed for heterotrophic plate counts (HPC), Aeromonas plate counts, adenosine-tri-phosphate (ATP) concentrations, and flow cytometric (FCM) total and intact cell counts (TCC, ICC), water temperature, pH, conductivity, total organic carbon (TOC) and assimilable organic carbon (AOC). Multivariate analysis of the large dataset was performed to explore correlative trends between microbial and environmental parameters. The WTP effluent displayed considerable seasonal variations in TCC (from 90 × 103 cells mL-1 in winter time up to 455 × 103 cells mL-1 in summer time) and in bacterial ATP concentrations (<1-3.6 ng L-1), which were congruent with water temperature variations. These fluctuations were not detected with HPC and Aeromonas counts. The water in the network was predominantly influenced by the characteristics of the WTP effluent. The increase in ICC between the WTP effluent and the network sampling location was small (34 × 103 cells mL-1 on average) compared to seasonal fluctuations in ICC in the WTP effluent. Interestingly, the extent of bacterial growth in the NET was inversely correlated to AOC concentrations in the WTP effluent (Pearson's correlation factor r = -0.35), and positively correlated with water temperature (r = 0.49). Collecting a large dataset at high frequency over a two year period enabled the characterization of previously undocumented seasonal dynamics in the distribution network. Moreover, high-resolution FCM data enabled prediction of bacterial cell concentrations at specific water temperatures and time of year. The study highlights the need to systematically assess temporal fluctuations in parallel to spatial dynamics for individual drinking water distribution systems.
Pore-size dependence and characteristics of water diffusion in slitlike micropores
Diallo, S. O.
2015-07-16
The temperature dependence of the dynamics of water inside microporous activated carbon fibers (ACF) is investigated by means of incoherent elastic and quasielastic neutron-scattering techniques. The aim is to evaluate the effect of increasing pore size on the water dynamics in these primarily hydrophobic slit-shaped channels. Using two different micropore sizes (similar to 12 and 18 angstrom, denoted, respectively, ACF-10 and ACF-20), a clear suppression of the mobility of the water molecules is observed as the pore gap or temperature decreases. Suppression, we found, is accompanied by a systematic dependence of the average translational diffusion coefficient D-r and relaxation timemore » [tau(0)] of the restricted water on pore size and temperature. We observed D-r values and tested against a proposed scaling law, in which the translational diffusion coefficient D-r of water within a porous matrix was found to depend solely on two single parameters, a temperature-independent translational diffusion coefficient D-c associated with the water bound to the pore walls and the ratio theta of this strictly confined water to the total water inside the pore, yielding unique characteristic parameters for water transport in these carbon channels across the investigated temperature range.« less
Bessonov, Kyrylo; Vassall, Kenrick A; Harauz, George
2013-02-01
We have parameterized and evaluated the proline homologue Aze (azetidine-2-carboxylic acid) for the gromos56a3 force-field for use in molecular dynamics simulations using GROMACS. Using bi-phasic cyclohexane/water simulation systems and homo-pentapeptides, we measured the Aze solute interaction potential energies, ability to hydrogen bond with water, and overall compaction, for comparison to Pro, Gly, and Lys. Compared to Pro, Aze has a slightly higher H-bonding potential, and stronger electrostatic but weaker non-electrostatic interactions with water. The 20-ns simulations revealed the preferential positioning of Aze and Pro at the interface of the water and cyclohexane layers, with Aze spending more time in the aqueous layer. We also demonstrated through simulations of the homo-pentapeptides that Aze has a greater propensity than Pro to undergo trans→cis peptide bond isomerization, which results in a severe 180° bend in the polypeptide chain. The results provide evidence for the hypothesis that the misincorporation of Aze within proline-rich regions of proteins could disrupt the formation of poly-proline type II structures and compromise events such as recognition and binding by SH3-domains. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Van Stan, J. T.; Stubbins, A.; Reichard, J. S.; Wright, K.; Jenkins, R. B.
2013-12-01
Epiphyte coverage on forest canopies can drastically alter the volume and chemical composition of rainwater reaching soils. Along subtropical and tropical coastlines Tillandisa usneoides L. (Spanish moss), in particular, can envelop urban and natural tree crowns. Several cities actively manage their 'moss' covered forest to enhance aesthetics in the most active tourist areas (e.g., Savannah GA, St. Augustine FL, Charleston SC). Since T. usneoides survives through atmospheric water and solute exchange from specialized trichomes (scales), we hypothesized that T. usneoides water storage dynamics and leachate chemistry may be altered by exposure to this active urban atmosphere. 30 samples of T. usneoides from managed forests around the tourist center of Savannah, Georgia, USA were collected to compare with 30 samples from the pristine maritime live oak (Quercus virginiana Mill.) forests of a nearby undeveloped barrier island (St. Catherines Island, Georgia, USA). Maximum water storage capacities were determined via submersion (for all 60 samples) along with dissolved ion (DI) and organic matter (DOM) concentrations (for 15 samples each) after simulated throughfall generation using milliQ ultrapurified water. Further, DOM quality was evaluated (for 15 samples each) using absorbance and fluorescence spectroscopy (EEMS). Results show significant alterations to water storage dynamics, DI, DOM, and DOM quality metrics under urban atmospheric conditions, suggesting modified C and water cycling in urban forest canopies that may, in turn, influence intrasystem nutrient cycles in urban catchment soils or streams via runoff.
Focks, D A; McLaughlin, R E; Smith, B M
1988-09-01
During the past decade, the rice agroecosystem and its associated mosquitoes have been the subject of an extensive research effort directed toward the development and implementation of integrated pest management (IPM) strategies. The objective of this work was to synthesize the literature and unpublished data on the rice agroecosystem into a comprehensive simulation model of the key elements of the system known to influence the population dynamics of Psorophora columbiae. Subsequent companion papers will present a validation of these models, provide an in-depth analysis of the population dynamics of Ps. columbiae, and evaluate current and proposed IPM strategies for this mosquito. This paper describes the development of 2 models: WaterMod: Because spatial and temporal distributions of surface water and soil moisture play a decisive role in the dynamics of Ps. columbiae, an essentially hydrological simulator was developed. Its purpose is to provide environmental inputs for a second model (PcSim) which simulates the population dynamics of Ps. columbiae. WaterMod utilizes data on weather, agricultural practices, and soil characteristics for a particular region to generate a data set containing daily estimates of soil moisture and depth of water table for 12 representative areas comprising the rice agroecosystem. This model could be used to provide hydrologic inputs for additional simulation models of other riceland mosquito species. PcSim: This model simulates the population dynamics of Ps. columbiae by using the computer to maintain a daily accounting of the absolute number of mosquitoes within each daily age class for each life stage. The model creates estimates of the number of eggs, larvae, pupae, and adults for a representative l-ha area of a rice agroecosystem.
Dynamic versus static allocation policies in multipurpose multireservoir systems
NASA Astrophysics Data System (ADS)
Tilmant, A.; Goor, Q.; Pinte, D.; van der Zaag, P.
2007-12-01
As the competition for water is likely to increase in the near future due to socioeconomic development and population growth, water resources managers will face hard choices when allocating water between competing users. Because water is a vital resource used in multiple sectors, including the environment, the allocation is inherently a political and social process, which is likely to become increasingly scrutinized as the competition grows between the different sectors. Since markets are usually absent or ineffective, the allocation of water between competing demands is achieved administratively taking into account key objectives such as economic efficiency, equity and maintaining the ecological integrity. When crop irrigation is involved, water is usually allocated by a system of annual rights to use a fixed, static, volume of water. In a fully-allocated basin, moving from a static to a dynamic allocation process, whereby the policies are regularly updated according to the hydrologic status of the river basin, is the first step towards the development of river basin management strategies that increase the productivity of water. More specifically, in a multipurpose multireservoir system, continuously adjusting release and withdrawal decisions based on the latest hydrologic information will increase the benefits derived from the system. However, the extent to which such an adjustment can be achieved results from complex spatial and temporal interactions between the physical characteristics of the water resources system (storage, natural flows), the economic and social consequences of rationing and the impacts on natural ecosystems. The complexity of the decision-making process, which requires the continuous evaluation of numerous trade-offs, calls for the use of integrated hydrologic-economic models. This paper compares static and dynamic management approaches for a cascade of hydropower-irrigation reservoirs using stochastic dual dynamic programming (SDDP) formulations. As its name indicates, SDDP is an extension of SDP that removes the curse of dimensionality found in discrete SDP and can therefore be used to analyze large-scale water resources systems. For the static approach, the multiobjective (irrigation-hydropower) optimization problem is solved using the constraint method, i.e. net benefits from hydropower generation are maximized and irrigation water withdrawals are additional constraints. In the dynamic approach, the SDDP model seeks to maximize the net benefits of both hydropower and irrigation crop production. A cascade of 8 reservoirs in the Turkish and Syrian parts of the Euphrates river basin is used as a case study.
Bhatnagar, Navendu; Kamath, Ganesh; Chelst, Issac; Potoff, Jeffrey J
2012-07-07
The 1-octanol-water partition coefficient log K(ow) of a solute is a key parameter used in the prediction of a wide variety of complex phenomena such as drug availability and bioaccumulation potential of trace contaminants. In this work, adaptive biasing force molecular dynamics simulations are used to determine absolute free energies of hydration, solvation, and 1-octanol-water partition coefficients for n-alkanes from methane to octane. Two approaches are evaluated; the direct transfer of the solute from 1-octanol to water phase, and separate transfers of the solute from the water or 1-octanol phase to vacuum, with both methods yielding statistically indistinguishable results. Calculations performed with the TIP4P and SPC∕E water models and the TraPPE united-atom force field for n-alkanes show that the choice of water model has a negligible effect on predicted free energies of transfer and partition coefficients for n-alkanes. A comparison of calculations using wet and dry octanol phases shows that the predictions for log K(ow) using wet octanol are 0.2-0.4 log units lower than for dry octanol, although this is within the statistical uncertainty of the calculation.
Water Dynamics in Gyroid Phases of Self-Assembled Gemini Surfactants
Roy, Santanu; Skoff, David; Perroni, Dominic V.; ...
2016-02-14
Water-mediated ion transport through functional nanoporous materials depends on the dynamics of water confined within a given nanostructured morphology. In this study, we investigate hydrogen-bonding dynamics of interfacial water within a ‘normal’ (Type I) lyotropic gyroid phase formed by a gemini dicarboxylate surfactant self-assembly using a combina- tion of 2DIR spectroscopy and molecular dynamics simulations. Experiments and simulations demonstrate that water dynamics in the normal gyroid phase is one order of magnitude slower than that in bulk water, due to specific interactions between water, the ionic surfactant headgroups, and counterions. However, the dynamics of water in the normal gyroid phasemore » are faster than those of water confined in a reverse spherical micelle of a sulfonate surfactant, given that the water pool in the reverse micelle and the water pore in the gyroid phase have roughly the same diameters. This difference in confined water dynamics likely arises from the significantly reduced curvature- induced frustration at the convex interfaces of the normal gyroid, as compared to the concave interfaces of a reverse spherical micelle. These detailed insights into confined water dynamics may guide the future design of artificial membranes that rapidly transport protons and other ions.« less
Guenot, J.; Kollman, P. A.
1992-01-01
Although aqueous simulations with periodic boundary conditions more accurately describe protein dynamics than in vacuo simulations, these are computationally intensive for most proteins. Trp repressor dynamic simulations with a small water shell surrounding the starting model yield protein trajectories that are markedly improved over gas phase, yet computationally efficient. Explicit water in molecular dynamics simulations maintains surface exposure of protein hydrophilic atoms and burial of hydrophobic atoms by opposing the otherwise asymmetric protein-protein forces. This properly orients protein surface side chains, reduces protein fluctuations, and lowers the overall root mean square deviation from the crystal structure. For simulations with crystallographic waters only, a linear or sigmoidal distance-dependent dielectric yields a much better trajectory than does a constant dielectric model. As more water is added to the starting model, the differences between using distance-dependent and constant dielectric models becomes smaller, although the linear distance-dependent dielectric yields an average structure closer to the crystal structure than does a constant dielectric model. Multiplicative constants greater than one, for the linear distance-dependent dielectric simulations, produced trajectories that are progressively worse in describing trp repressor dynamics. Simulations of bovine pancreatic trypsin were used to ensure that the trp repressor results were not protein dependent and to explore the effect of the nonbonded cutoff on the distance-dependent and constant dielectric simulation models. The nonbonded cutoff markedly affected the constant but not distance-dependent dielectric bovine pancreatic trypsin inhibitor simulations. As with trp repressor, the distance-dependent dielectric model with a shell of water surrounding the protein produced a trajectory in better agreement with the crystal structure than a constant dielectric model, and the physical properties of the trajectory average structure, both with and without a nonbonded cutoff, were comparable. PMID:1304396
Lakade, Sameer S; Borrull, Francesc; Furton, Kenneth G; Kabir, Abuzar; Marcé, Rosa Maria; Fontanals, Núria
2016-07-22
This paper describes for the first time the use of a new extraction technique, based on fabric phase sorptive extraction (FPSE). This new mode proposes the extraction of the analytes in dynamic mode in order to reduce the extraction time. Dynamic fabric phase sorptive extraction (DFPSE) followed by liquid chromatography-tandem mass spectrometry was evaluated for the extraction of a group of pharmaceuticals and personal care products (PPCPs) from environmental water samples. Different parameters affecting the extraction were optimized and best conditions were achieved when 50mL of sample at pH 3 was passed through 3 disks and analytes retained were eluted with 10mL of ethyl acetate. The recoveries were higher than 60% for most of compounds with the exception of the most polar ones (between 8% and 38%). The analytical method was validated with environmental samples such as river water and effluent and influent wastewater, and good performance was obtained. The analysis of samples revealed the presence of some PPCPs at low ngL(-1) concentrations. Copyright © 2016 Elsevier B.V. All rights reserved.
Schmidt, Steven R; Katti, Dinesh R; Ghosh, Pijush; Katti, Kalpana S
2005-08-16
The mechanical response of the interlayer of hydrated montmorillonite was evaluated using steered molecular dynamics. An atomic model of the sodium montmorillonite was previously constructed. In the current study, the interlayer of the model was hydrated with multiple layers of water. Using steered molecular dynamics, external forces were applied to individual atoms of the clay surface, and the response of the model was studied. The displacement versus applied stress and stress versus strain relationships of various parts of the interlayer were studied. The paper describes the construction of the model, the simulation procedure, and results of the simulations. Some results of the previous work are further interpreted in the light of the current research. The simulations provide quantitative stress deformation relationships as well as an insight into the molecular interactions taking place between the clay surface and interlayer water and cations.
Oberhuber, Walter
2017-04-01
High-resolution time series of stem radius variations (SRVs) record fluctuations in tree water status and temporal dynamics of radial growth. The focus of this study was to evaluate the influence of tree size (i.e., saplings vs. mature trees) and soil water availability on SRVs. Dendrometers were installed on Pinus sylvestris at an open xeric site and on Picea abies at a dry-mesic site, and the SRVs of co-occurring saplings and mature trees were analyzed during two consecutive years. The results revealed that irrespective of tree size, radial growth in P. sylvestris occurred in April-May, whereas the main growing period of P. abies was April-June (saplings) and May-June (mature trees). Linear relationships between growth-detrended SRVs (SSRVs) of mature trees vs. saplings and climate-SSRV relationships revealed greater use of water reserves by mature P. abies compared with saplings. This suggests that the strikingly depressed growth of saplings compared with mature P. abies was caused by source limitation, i.e., restricted photosynthesis beneath the dense canopy. In contrast, a tree size effect on the annual increment, SSRV, and climate-SSRV relationships was less obvious in P. sylvestris , indicating comparable water status in mature trees and saplings under an open canopy. The results of this study provided evidence that water availability and a canopy atmosphere can explain differences in temporal dynamics of radial growth and use of stem water reserves among mature trees and saplings.
NASA Astrophysics Data System (ADS)
Tsai, W. P.; Chang, F. J.; Lur, H. S.; Fan, C. H.; Hu, M. C.; Huang, T. L.
2016-12-01
Water, food and energy are the most essential natural resources needed to sustain life. Water-Food-Energy Nexus (WFE Nexus) has nowadays caught global attention upon natural resources scarcity and their interdependency. In the past decades, Taiwan's integrative development has undergone drastic changes due to population growth, urbanization and excessive utilization of natural resources. The research intends to carry out interdisciplinary studies on WFE Nexus based on data collection and analysis as well as technology innovation, with a mission to develop a comprehensive solution to configure the synergistic utilization of WFE resources in an equal and secure manner for building intelligent dynamic green cities. This study aims to establish the WFE Nexus through interdisciplinary research. This study will probe the appropriate and secure resources distribution and coopetition relationship by applying and developing techniques of artificial intelligence, system dynamics, life cycle assessment, and synergy management under data mining, system analysis and scenario analysis. The issues of synergy effects, economic benefits and sustainable social development will be evaluated as well. First, we will apply the system dynamics to identify the interdependency indicators of WFE Nexus in response to urbanization and build the dynamic relationship among food production, irrigation water resource and energy consumption. Then, we conduct comparative studies of WFE Nexus between the urbanization and the un-urbanization area (basin) to provide a referential guide for optimal resource-policy nexus management. We expect to the proposed solutions can help achieve the main goals of the research, which is the promotion of human well-being and moving toward sustainable green economy and prosperous society.
Molecular Dynamics Analysis of Lysozyme Protein in Ethanol- Water Mixed Solvent
2012-01-01
molecular dynamics simulations of solvent effect on lysozyme protein, using water, ethanol, and different concentrations of water-ethanol mixtures as...understood. This work focuses on detailed molecular dynamics simulations of solvent effect on lysozyme protein, using water, ethanol, and different...using GROMACS molecular dynamics simulation (MD) code. Compared to water environment, the lysozyme structure showed remarkable changes in water
NASA Astrophysics Data System (ADS)
Sun, Shanlei; Sun, Ge; Cohen, Erika; McNulty, Steven G.; Caldwell, Peter V.; Duan, Kai; Zhang, Yang
2016-03-01
Quantifying the potential impacts of climate change on water yield and ecosystem productivity is essential to developing sound watershed restoration plans, and ecosystem adaptation and mitigation strategies. This study links an ecohydrological model (Water Supply and Stress Index, WaSSI) with WRF (Weather Research and Forecasting Model) using dynamically downscaled climate data of the HadCM3 model under the IPCC SRES A2 emission scenario. We evaluated the future (2031-2060) changes in evapotranspiration (ET), water yield (Q) and gross primary productivity (GPP) from the baseline period of 1979-2007 across the 82 773 watersheds (12-digit Hydrologic Unit Code level) in the coterminous US (CONUS). Across the CONUS, the future multi-year means show increases in annual precipitation (P) of 45 mm yr-1 (6 %), 1.8° C increase in temperature (T), 37 mm yr-1 (7 %) increase in ET, 9 mm yr-1 (3 %) increase in Q, and 106 gC m-2 yr-1 (9 %) increase in GPP. We found a large spatial variability in response to climate change across the CONUS 12-digit HUC watersheds, but in general, the majority would see consistent increases all variables evaluated. Over half of the watersheds, mostly found in the northeast and the southern part of the southwest, would see an increase in annual Q (> 100 mm yr-1 or 20 %). In addition, we also evaluated the future annual and monthly changes of hydrology and ecosystem productivity for the 18 Water Resource Regions (WRRs) or two-digit HUCs. The study provides an integrated method and example for comprehensive assessment of the potential impacts of climate change on watershed water balances and ecosystem productivity at high spatial and temporal resolutions. Results may be useful for policy-makers and land managers to formulate appropriate watershed-specific strategies for sustaining water and carbon sources in the face of climate change.
NASA Astrophysics Data System (ADS)
Sun, S.; Sun, G.; Cohen, E.; McNulty, S. G.; Caldwell, P.; Duan, K.; Zhang, Y.
2015-12-01
Quantifying the potential impacts of climate change on water yield and ecosystem productivity (i.e., carbon balances) is essential to developing sound watershed restoration plans, and climate change adaptation and mitigation strategies. This study links an ecohydrological model (Water Supply and Stress Index, WaSSI) with WRF (Weather Research and Forecasting Model) dynamically downscaled climate projections of the HadCM3 model under the IPCC SRES A2 emission scenario. We evaluated the future (2031-2060) changes in evapotranspiration (ET), water yield (Q) and gross primary productivity (GPP) from the baseline period of 1979-2007 across the 82 773 watersheds (12 digit Hydrologic Unit Code level) in the conterminous US (CONUS), and evaluated the future annual and monthly changes of hydrology and ecosystem productivity for the 18 Water Resource Regions (WRRs) or 2-digit HUCs. Across the CONUS, the future multi-year means show increases in annual precipitation (P) of 45 mm yr-1 (6 %), 1.8 °C increase in temperature (T), 37 mm yr-1 (7 %) increase in ET, 9 mm yr-1 (3 %) increase in Q, and 106 g C m-2 yr-1 (9 %) increase in GPP. Response to climate change was highly variable across the 82, 773 watersheds, but in general, the majority would see consistent increases in all variables evaluated. Over half of the 82 773 watersheds, mostly found in the northeast and the southern part of the southwest would have an increase in annual Q (>100 mm yr-1 or 20 %). This study provides an integrated method and example for comprehensive assessment of the potential impacts of climate change on watershed water balances and ecosystem productivity at high spatial and temporal resolutions. Results will be useful for policy-makers and land managers in formulating appropriate watershed-specific strategies for sustaining water and carbon sources in the face of climate change.
QMRAcatch: Microbial Quality Simulation of Water Resources including Infection Risk Assessment
Schijven, Jack; Derx, Julia; de Roda Husman, Ana Maria; Blaschke, Alfred Paul; Farnleitner, Andreas H.
2016-01-01
Given the complex hydrologic dynamics of water catchments and conflicts between nature protection and public water supply, models may help to understand catchment dynamics and evaluate contamination scenarios and may support best environmental practices and water safety management. A catchment model can be an educative tool for investigating water quality and for communication between parties with different interests in the catchment. This article introduces an interactive computational tool, QMRAcatch, that was developed to simulate concentrations in water resources of Escherichia coli, a human-associated Bacteroidetes microbial source tracking (MST) marker, enterovirus, norovirus, Campylobacter, and Cryptosporidium as target microorganisms and viruses (TMVs). The model domain encompasses a main river with wastewater discharges and a floodplain with a floodplain river. Diffuse agricultural sources of TMVs that discharge into the main river are not included in this stage of development. The floodplain river is fed by the main river and may flood the plain. Discharged TMVs in the river are subject to dilution and temperature-dependent degradation. River travel times are calculated using the Manning–Gauckler–Strickler formula. Fecal deposits from wildlife, birds, and visitors in the floodplain are resuspended in flood water, runoff to the floodplain river, or infiltrate groundwater. Fecal indicator and MST marker data facilitate calibration. Infection risks from exposure to the pathogenic TMVs by swimming or drinking water consumption are calculated, and the required pathogen removal by treatment to meet a health-based quality target can be determined. Applicability of QMRAcatch is demonstrated by calibrating the tool for a study site at the River Danube near Vienna, Austria, using field TMV data, including a sensitivity analysis and evaluation of the model outcomes. PMID:26436266
NASA Astrophysics Data System (ADS)
Shi, Junqin; Chen, Juan; Fang, Liang; Sun, Kun; Sun, Jiapeng; Han, Jing
2018-03-01
The effect of water film on the nanoscratching behavior of monocrystalline Cu was studied by molecular dynamics (MD) simulation. The results indicate that the friction force acting on abrasive particle increases due to the resistance of water film accumulating ahead of particle, but the water film with lubrication decreases friction force acting on Cu surface. The accumulation of water molecules around particle causes the anisotropy of ridge and the surface damage around the groove, and the water molecules remaining in the groove lead to the non-regular groove structure. The dislocation evolution displays the re-organization of the dislocation network in the nanoscratching process. The evaluation of removal efficiency shows the number of removed Cu atoms decreases with water film thickness. It is considered that an appropriate rather than a high removal efficiency should be adopted to evaluate the polishing process in real (chemical mechanical polishing) CMP. These results are helpful to reveal the polishing mechanism under the effect of water film from physical perspective, which benefits the development of ultra-precision manufacture and miniaturized components, as well as the innovation of CMP technology.
Socioeconomic dynamics of water quality in the Egyptian Nile
NASA Astrophysics Data System (ADS)
Malik, Maheen; Nisar, Zainab; Karakatsanis, Georgios
2016-04-01
The Nile River remains the most important source of freshwater for Egypt as it accounts for nearly all of the country's drinking and irrigation water. About 95% of the total population is accounted to live along the Banks of the Nile(1). Therefore, water quality deterioration in addition to general natural scarcity of water in the region(2) is the main driver for carrying out this study. What further aggravates this issue is the water conflict in the Blue Nile region. The study evaluates different water quality parameters and their concentrations in the Egyptian Nile; further assessing the temporal dynamics of water quality in the area with (a) the Environmental Kuznets Curve (EKC)(3) and (b) the Jevons Paradox (JP)(4) in order to identify water quality improvements or degradations using selected socioeconomic variables(5). For this purpose various environmental indicators including BOD, COD, DO, Phosphorus and TDS were plotted against different economic variables including Population, Gross Domestic Product (GDP), Annual Fresh Water Withdrawal and Improved Water Source. Mathematically, this was expressed by 2nd and 3rd degree polynomial regressions generating the EKC and JP respectively. The basic goal of the regression analysis is to model and highlight the dynamic trend of water quality indicators in relation to their established permissible limits, which will allow the identification of optimal future water quality policies. The results clearly indicate that the dependency of water quality indicators on socioeconomic variables differs for every indicator; while COD was above the permissible limits in all the cases despite of its decreasing trend in each case, BOD and phosphate signified increasing concentrations for the future, if they continue to follow the present trend. This could be an indication of rebound effect explained by the Jevons Paradox i.e. water quality deterioration after its improvement, either due to increase of population or intensification of economic activities related to these indicators. Keywords: Water quality dynamics, Environmental Kuznets Curve (EKC), Jevons Paradox (JP), economic variables, polynomial regressions, environmental indicators, permissible limit References: (1)Evans, A. (2007). River of Life River Nile. (2)Egypt's Water Crisis - Recipe for Disaster. (2016). [Blog] EcoMENA- Echoing Sustainability. (3)Alstine, J. and Neumayer, E. (2010). The Environmental Kuznets Curve. (4)Garrett, T. (2014). Rebound, Backfire, and the Jevons Paradox. [Blog] (5)Data.worldbank.org
An evaluation of Computational Fluid dynamics model for flood risk analysis
NASA Astrophysics Data System (ADS)
Di Francesco, Silvia; Biscarini, Chiara; Montesarchio, Valeria
2014-05-01
This work presents an analysis of the hydrological-hydraulic engineering requisites for Risk evaluation and efficient flood damage reduction plans. Most of the research efforts have been dedicated to the scientific and technical aspects of risk assessment, providing estimates of possible alternatives and of the risk associated. In the decision making process for mitigation plan, the contribute of scientist is crucial, due to the fact that Risk-Damage analysis is based on evaluation of flow field ,of Hydraulic Risk and on economical and societal considerations. The present paper will focus on the first part of process, the mathematical modelling of flood events which is the base for all further considerations. The evaluation of potential catastrophic damage consequent to a flood event and in particular to dam failure requires modelling of the flood with sufficient detail so to capture the spatial and temporal evolutions of the event, as well of the velocity field. Thus, the selection of an appropriate mathematical model to correctly simulate flood routing is an essential step. In this work we present the application of two 3D Computational fluid dynamics models to a synthetic and real case study in order to evaluate the correct evolution of flow field and the associated flood Risk . The first model is based on a opensource CFD platform called openFoam. Water flow is schematized with a classical continuum approach based on Navier-Stokes equation coupled with Volume of fluid (VOF) method to take in account the multiphase character of river bottom-water- air systems. The second model instead is based on the Lattice Boltzmann method, an innovative numerical fluid dynamics scheme based on Boltzmann's kinetic equation that represents the flow dynamics at the macroscopic level by incorporating a microscopic kinetic approach. Fluid is seen as composed by particles that can move and collide among them. Simulation results from both models are promising and congruent to experimental results available in literature, thought the LBM model requires less computational effort respect to the NS one.
Wagner, Paul D; Bhallamudi, S Murty; Narasimhan, Balaji; Kantakumar, Lakshmi N; Sudheer, K P; Kumar, Shamita; Schneider, Karl; Fiener, Peter
2016-01-01
Rapid land use and land-cover changes strongly affect water resources. Particularly in regions that experience seasonal water scarcity, land use scenario assessments provide a valuable basis for the evaluation of possible future water shortages. The objective of this study is to dynamically integrate land use model projections with a hydrologic model to analyze potential future impacts of land use change on the water resources of a rapidly developing catchment upstream of Pune, India. For the first time projections from the urban growth and land use change model SLEUTH are employed as a dynamic input to the hydrologic model SWAT. By this means, impacts of land use changes on the water balance components are assessed for the near future (2009-2028) employing four different climate conditions (baseline, IPCC A1B, dry, wet). The land use change modeling results in an increase of urban area by +23.1% at the fringes of Pune and by +12.2% in the upper catchment, whereas agricultural land (-14.0% and -0.3%, respectively) and semi-natural area (-9.1% and -11.9%, respectively) decrease between 2009 and 2028. Under baseline climate conditions, these land use changes induce seasonal changes in the water balance components. Water yield particularly increases at the onset of monsoon (up to +11.0mm per month) due to increased impervious area, whereas evapotranspiration decreases in the dry season (up to -15.1mm per month) as a result of the loss of irrigated agricultural area. As the projections are made for the near future (2009-2028) land use change impacts are similar under IPCC A1B climate conditions. Only if more extreme dry years occur, an exacerbation of the land use change impacts can be expected. Particularly in rapidly changing environments an implementation of both dynamic land use change and climate change seems favorable to assess seasonal and gradual changes in the water balance. Copyright © 2015 Elsevier B.V. All rights reserved.
Wahl, Joel; Smiesko, Martin
2018-05-04
Computational methods, namely Molecular Dynamics Simulations (MD simulations) in combination with Inhomogeneous Fluid Solvation Theory (IFST) were used to retrospectively investigate various cases of ligand structure modifications that led to the displacement of binding site water molecules. Our findings are that the water displacement per se is energetically unfavorable in the discussed examples, and that it is merely the fine balance between change in protein-ligand interaction energy, ligand solvation free energies and binding site solvation free energies that determine if water displacement is favorable or not. We furthermore evaluated if we can reproduce experimental binding affinities by a computational approach combining changes in solvation free energies with changes in protein-ligand interaction energies and entropies. In two of the seven cases, this estimation led to large errors, implying that accurate predictions of relative binding free energies based on solvent thermodynamics is challenging. Still, MD simulations can provide insights into which water molecules can be targeted for displacement. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
1983-01-01
The results of water impact loads tests using aft skirt end ring, and mid ring segments of the Space Shuttle Solid Rocket Booster (SRB) are examined. Dynamic structural response data is developed and an evaluation of the model in various configurations is presented. Impact velocities are determined for the SRB with the larger main chute system. Various failure modes are also investigated.
Coherent Path Beamformer Front End for High Performance Acoustic Modems
1999-09-30
transmission underwater. This knowledge will be used to develop a test model for evaluating under water acoustic modem and other shallow water sonar ...rates can be achieved, as shown in the following two sections. WORK COMPLETED Two systems have been developed in the Sonar Laboratory of Ocean...2) More performant variable gain preamplifiers have been installed and the software updated for a better control of the dynamic range. 3) An
A new method for qualitative simulation of water resources systems: 2. Applications
NASA Astrophysics Data System (ADS)
Antunes, M. P.; Seixas, M. J.; Camara, A. S.; Pinheiro, M.
1987-11-01
SLIN (Simulação Linguistica) is a new method for qualitative dynamic simulation. As was presented previously (Camara et al., this issue), SLIN relies upon a categorical representation of variables which are manipulated by logical rules. Two applications to water resources systems are included to illustrate SLIN's potential usefulness: the environmental impact evaluation of a hydropower plant and the assessment of oil dispersion in the sea after a tanker wreck.
Dynamical resource nexus assessments: from accounting to sustainability approaches
NASA Astrophysics Data System (ADS)
Salmoral, Gloria; Yan, Xiaoyu
2017-04-01
Continued economic development and population growth result in increasing pressures on natural resources, from local to international levels, for meeting societal demands on water, energy and food. To date there are a few tools that link models to identify the relationships and to account for flows of water, energy and food. However, these tools in general can offer only a static view often at national level and with annual temporal resolution. Moreover, they can only account flows but cannot consider the required amounts and conditions of the natural capital that supplies and maintains these flows. With the emerging nexus thinking, our research is currently focused on promoting dynamical environmental analyses beyond the conventional silo mentalities. Our study aims to show new advancements in existing tools (e.g., dynamical life cycle assessment) and develop novel environmental indicators relevant for the resource nexus assessment. We aim to provide a step forward when sustainability conditions and resilience thresholds are aligned with flows under production (e.g., food, water and energy), process level under analysis (e.g., local production, transport, manufacturing, final consumption, reuse, disposal) and existing biophysical local conditions. This approach would help to embrace and better characterise the spatiotemporal dynamics, complexity and existing links between and within the natural and societal systems, which are crucial to evaluate and promote more environmentally sustainable economic activities.
Measuring water level in rivers and lakes from lightweight Unmanned Aerial Vehicles
NASA Astrophysics Data System (ADS)
Bandini, Filippo; Jakobsen, Jakob; Olesen, Daniel; Reyna-Gutierrez, Jose Antonio; Bauer-Gottwein, Peter
2017-05-01
The assessment of hydrologic dynamics in rivers, lakes, reservoirs and wetlands requires measurements of water level, its temporal and spatial derivatives, and the extent and dynamics of open water surfaces. Motivated by the declining number of ground-based measurement stations, research efforts have been devoted to the retrieval of these hydraulic properties from spaceborne platforms in the past few decades. However, due to coarse spatial and temporal resolutions, spaceborne missions have several limitations when assessing the water level of terrestrial surface water bodies and determining complex water dynamics. Unmanned Aerial Vehicles (UAVs) can fill the gap between spaceborne and ground-based observations, and provide high spatial resolution and dense temporal coverage data, in quick turn-around time, using flexible payload design. This study focused on categorizing and testing sensors, which comply with the weight constraint of small UAVs (around 1.5 kg), capable of measuring the range to water surface. Subtracting the measured range from the vertical position retrieved by the onboard Global Navigation Satellite System (GNSS) receiver, we can determine the water level (orthometric height). Three different ranging payloads, which consisted of a radar, a sonar and an in-house developed camera-based laser distance sensor (CLDS), have been evaluated in terms of accuracy, precision, maximum ranging distance and beam divergence. After numerous flights, the relative accuracy of the overall system was estimated. A ranging accuracy better than 0.5% of the range and a maximum ranging distance of 60 m were achieved with the radar. The CLDS showed the lowest beam divergence, which is required to avoid contamination of the signal from interfering surroundings for narrow fields of view. With the GNSS system delivering a relative vertical accuracy better than 3-5 cm, water level can be retrieved with an overall accuracy better than 5-7 cm.
Evaluating the application of multi-satellite observation in hydrologic modeling
USDA-ARS?s Scientific Manuscript database
When monitoring local or regional hydrosphere dynamics for applications such as agricultural productivity or drought and flooding events, it is necessary to have accurate, high-resolution estimates of terrestrial water and energy storages. Though in-situ observations provide reliable estimates of hy...
McGuire, A.D.; Wirth, C.; Apps, M.; Beringer, J.; Clein, J.; Epstein, H.; Kicklighter, D.W.; Bhatti, J.; Chapin, F. S.; De Groot, B.; Efremov, D.; Eugster, W.; Fukuda, M.; Gower, T.; Hinzman, L.; Huntley, B.; Jia, G.J.; Kasischke, E.; Melillo, J.; Romanovsky, V.; Shvidenko, A.; Vaganov, E.; Walker, D.
2002-01-01
The responses of high latitude ecosystems to global change involve complex interactions among environmental variables, vegetation distribution, carbon dynamics, and water and energy exchange. These responses may have important consequences for the earth system. In this study, we evaluated how vegetation distribution, carbon stocks and turnover, and water and energy exchange are related to environmental variation spanned by the network of the IGBP high latitude transects. While the most notable feature of the high latitude transects is that they generally span temperature gradients from southern to northern latitudes, there are substantial differences in temperature among the transects. Also, along each transect temperature co-varies with precipitation and photosynthetically active radiation, which are also variable among the transects. Both climate and disturbance interact to influence latitudinal patterns of vegetation and soil carbon storage among the transects, and vegetation distribution appears to interact with climate to determine exchanges of heat and moisture in high latitudes. Despite limitations imposed by the data we assembled, the analyses in this study have taken an important step toward clarifying the complexity of interactions among environmental variables, vegetation distribution, carbon stocks and turnover, and water and energy exchange in high latitude regions. This study reveals the need to conduct coordinated global change studies in high latitudes to further elucidate how interactions among climate, disturbance, and vegetation distribution influence carbon dynamics and water and energy exchange in high latitudes.
A Stochastic Water Balance Framework for Lowland Watersheds
NASA Astrophysics Data System (ADS)
Thompson, Sally; MacVean, Lissa; Sivapalan, Murugesu
2017-11-01
The water balance dynamics in lowland watersheds are influenced not only by local hydroclimatic controls on energy and water availability, but also by imports of water from the upstream watershed. These imports result in a stochastic extent of inundation in lowland watersheds that is determined by the local flood regime, watershed topography, and the rate of loss processes such as drainage and evaporation. Thus, lowland watershed water balances depend on two stochastic processes—rainfall and local inundation dynamics. Lowlands are high productivity environments that are disproportionately associated with urbanization, high productivity agriculture, biodiversity, and flood risk. Consequently, they are being rapidly altered by human development—generally with clear economic and social motivation—but also with significant trade-offs in ecosystem services provision, directly related to changes in the components and variability of the lowland water balance. We present a stochastic framework to assess the lowland water balance and its sensitivity to two common human interventions—replacement of native vegetation with alternative land uses, and construction of local flood protection levees. By providing analytical solutions for the mean and PDF of the water balance components, the proposed framework provides a mechanism to connect human interventions to hydrologic outcomes, and, in conjunction with ecosystem service production estimates, to evaluate trade-offs associated with lowland watershed development.
Patino, Eduardo; Conrads, Paul; Swain, Eric; Beerens, James M.
2017-10-30
IntroductionThe Everglades Depth Estimation Network (EDEN) provides scientists and resource managers with regional maps of daily water levels and depths in the freshwater part of the Greater Everglades landscape. The EDEN domain includes all or parts of five Water Conservation Areas, Big Cypress National Preserve, Pennsuco Wetlands, and Everglades National Park. Daily water-level maps are interpolated from water-level data at monitoring gages, and depth is estimated by using a digital elevation model of the land surface. Online datasets provide time series of daily water levels at gages and rainfall and evapotranspiration data (https://sofia.usgs.gov/eden/). These datasets are used by scientists and resource managers to guide large-scale field operations, describe hydrologic changes, and support biological and ecological assessments that measure ecosystem response to the implementation of the Comprehensive Everglades Restoration Plan. EDEN water-level data have been used in a variety of biological and ecological studies including (1) the health of American alligators as a function of water depth, (2) the variability of post-fire landscape dynamics in relation to water depth, (3) the habitat quality for wading birds with dynamic habitat selection, and (4) an evaluation of the habitat of the Cape Sable seaside sparrow.
Osti, Naresh C.; Mamontov, Eugene; Ramirez-cuesta, A.; ...
2015-12-10
Understanding the molecular behavior of water in spatially restricted environments is important to better understanding its role in many biological, chemical and geological processes. Here we examine the translational diffusion of water confined to a variety of substrates, from flat surfaces to nanoporous media, in the context of a recently proposed universal scaling law (Chiavazzo 2014) [1]. Using over a dozen previous neutron scattering results, we test the validity of this law, evaluating separately the influence of the hydration amount, and the effects of the size and morphology of the confining medium. Additionally, we investigate the effects of changing instrumentmore » resolutions and fitting models on the applicability of this law. Finally, we perform quasi-elastic neutron scattering measurements on water confined inside nanoporous silica to further evaluate this predictive law, in the temperature range 250≤T≤290 K.« less
NASA Astrophysics Data System (ADS)
Di Lella, Santiago; Petruk, Ariel A.; Armiño, Diego J. Alonso de; Álvarez, Rosa M. S.
2010-08-01
Water molecules, rigidly associated to protein surfaces, play a key role in stabilizing biomolecules and participating in their biological functions. Recent studies on the solvation properties of the carbohydrate recognition domain of Galectin-1 by means of molecular dynamic simulations have revealed the existence of several water sites which were well correlated to both the bound water molecules observed in the crystal structure of the protein in the free state and to some of the hydroxyl groups of the carbohydrate ligand observed in the crystal structure of the complexed protein. In this work, we present a study using quantum mechanical methods (B3LYP/6-311++G(3df,3dp)//B3LYP/6-31+G(d)) to determine the energy involved in the binding of these water molecules to specific amino acids in the carbohydrate recognition domain of the protein. By modeling the hydroxyl groups of the carbohydrate by methanol, the energies associated to the local interactions between the ligand and the protein have been evaluated by replacing specific water molecules with methanol. The values of the binding energies have been compared to those previously obtained by the molecular dynamic method.
Evaluating Aquatic Life Benefits of Reducing Nutrient Loading ...
Theoretical linkages between excess nutrient loading, nutrient-enhanced community metabolism (i.e., production and respiration), and hypoxia in estuaries are well-understood. In seasonally-stratified estuaries and coastal systems (e.g., Chesapeake Bay, northern Gulf of Mexico), hypoxia is predominantly seasonal, such that the spatial extent indicates potential aquatic life impacts. However, in relatively small and shallow Gulf of Mexico bays and bayous, hypoxia frequently occurs episodically or on a diel basis. This study utilized continuous DO monitoring and 3-D hydrodynamic (Environmental Fluid Dynamics Code) and water quality (Water Quality Analysis Simulation Program) models to examine physical and biological controls on DO dynamics and ecosystem metabolism in Weeks Bay, AL. Observed vertical DO gradients varied on a diel basis, with larger amplitude variations at depth relative to the surface, underscoring the importance of benthic production and respiration as a driver of ecosystem metabolism in shallow estuaries. Hydrodynamic and water quality models simulated seasonal and event-driven dynamics, but struggled to resolve the amplitude of daily DO fluctuations, particularly in bottom waters. Using these data in conjunction with the 10-year continuous O2 record from Weeks Bay, we applied empirical relationships and simple scaling relations to predict how reducing nutrient loading may affect the frequency, severity and duration of hypoxia. We further applied
Zhao, Lei; Cheng, Jiangtao
2017-09-07
In this paper, we report molecular kinetic analyses of water spreading on hydrophobic surfaces via molecular dynamics simulation. The hydrophobic surfaces are composed of amorphous polytetrafluoroethylene (PTFE) with a static contact angle of ~112.4° for water. On the basis of the molecular kinetic theory (MKT), the influences of both viscous damping and solid-liquid retarding were analyzed in evaluating contact line friction, which characterizes the frictional force on the contact line. The unit displacement length on PTFE was estimated to be ~0.621 nm and is ~4 times as long as the bond length of C-C backbone. The static friction coefficient was found to be ~[Formula: see text] Pa·s, which is on the same order of magnitude as the dynamic viscosity of water, and increases with the droplet size. A nondimensional number defined by the ratio of the standard deviation of wetting velocity to the characteristic wetting velocity was put forward to signify the strength of the inherent contact line fluctuation and unveil the mechanism of enhanced energy dissipation in nanoscale, whereas such effect would become insignificant in macroscale. Moreover, regarding a liquid droplet on hydrophobic or superhydrophobic surfaces, an approximate solution to the base radius development was derived by an asymptotic expansion approach.
Ab initio simulation of particle momentum distributions in high-pressure water
NASA Astrophysics Data System (ADS)
Ceriotti, M.
2014-12-01
Applying pressure to water reduces the average oxygen-oxygen distance, and facilitates the delocalisation of protons along the hydrogen bond. This pressure-induced delocalisation is further enhanced by the quantum nature of hydrogen nuclei, which is very significant even well above room temperature. Here we will evaluate the quantum kinetic energy and the particle momentum distribution of hydrogen and oxygen nuclei in water at extreme pressure, using ab initio path integral molecular dynamics. We will show that (transient) dissociation of water molecules induce measurable changes in the kinetic energy hydrogen atoms, although current deep inelastic scattering experiments are probably unable to capture the heterogeneity of the sample.
Hydrologic Variability Governs Population Dynamics of a Vulnerable Amphibian in an Arid Environment
Zylstra, Erin R.; Steidl, Robert J.; Swann, Don E.; Ratzlaff, Kristina
2015-01-01
Dynamics of many amphibian populations are governed by the distribution and availability of water. Therefore, understanding the hydrological mechanisms that explain spatial and temporal variation in occupancy and abundance will improve our ability to conserve and recover populations of vulnerable amphibians. We used 16 years of survey data from intermittent mountain streams in the Sonoran Desert to evaluate how availability of surface water affected survival and adult recruitment of a threatened amphibian, the lowland leopard frog (Lithobates yavapaiensis). Across the entire study period, monthly survival of adults ranged from 0.72 to 0.99 during summer and 0.59 to 0.94 during winter and increased with availability of surface water (Z = 7.66; P < 0.01). Recruitment of frogs into the adult age class occurred primarily during winter and ranged from 1.9 to 3.8 individuals/season/pool; like survival, recruitment increased with availability of surface water (Z = 3.67; P < 0.01). Although abundance of frogs varied across seasons and years, we found no evidence of a systematic trend during the 16-year study period. Given the strong influence of surface water on population dynamics of leopard frogs, conservation of many riparian obligates in this and similar arid regions likely depends critically on minimizing threats to structures and ecosystem processes that maintain surface waters. Understanding the influence of surface-water availability on riparian organisms is particularly important because climate change is likely to decrease precipitation and increase ambient temperatures in desert riparian systems, both of which have the potential to alter fundamentally the hydrology of these systems. PMID:26030825
Influences of Electrification and Salt on Hydrophobicity of Sample Surface in Dynamic Drop Test
NASA Astrophysics Data System (ADS)
Shiibara, Daiki; Arata, Yoshihiro; Haji, Kenichi; Miyake, Takuma; Sakoda, Tatsuya; Otsubo, Masahisa
Studies on the development of deterioration/ performance evaluation method for outdoor electric insulation of polymer materials are pushed forward now in the International Council on Large Electric Systems (CIGRE). The small scale test method (Dynamic drop test; DDT) which could evaluate disappearance characteristics of hydrophobicity easily was suggested. This test is to evaluate resistance of a sample to loss of hydrophobicity due to moisture and simultaneous electric stress. As factors for deterioration of hydrophobicity on a sample in DDT, various factors such as electrical influence, physical influence by water droplets and so on were considered. In this study, we investigated two kinds of factors (electrification and salt) affecting deterioration of hydrophobicity on the surface of a silicone rubber until ignition of continuous electrical discharge in DDT.
NASA Astrophysics Data System (ADS)
Kaune, Alexander; López, Patricia; Werner, Micha; de Fraiture, Charlotte
2017-04-01
Hydrological information on water availability and demand is vital for sound water allocation decisions in irrigation districts, particularly in times of water scarcity. However, sub-optimal water allocation decisions are often taken with incomplete hydrological information, which may lead to agricultural production loss. In this study we evaluate the benefit of additional hydrological information from earth observations and reanalysis data in supporting decisions in irrigation districts. Current water allocation decisions were emulated through heuristic operational rules for water scarce and water abundant conditions in the selected irrigation districts. The Dynamic Water Balance Model based on the Budyko framework was forced with precipitation datasets from interpolated ground measurements, remote sensing and reanalysis data, to determine the water availability for irrigation. Irrigation demands were estimated based on estimates of potential evapotranspiration and coefficient for crops grown, adjusted with the interpolated precipitation data. Decisions made using both current and additional hydrological information were evaluated through the rate at which sub-optimal decisions were made. The decisions made using an amended set of decision rules that benefit from additional information on demand in the districts were also evaluated. Results show that sub-optimal decisions can be reduced in the planning phase through improved estimates of water availability. Where there are reliable observations of water availability through gauging stations, the benefit of the improved precipitation data is found in the improved estimates of demand, equally leading to a reduction of sub-optimal decisions.
Multiregional input-output model for the evaluation of Spanish water flows.
Cazcarro, Ignacio; Duarte, Rosa; Sánchez Chóliz, Julio
2013-01-01
We construct a multiregional input-output model for Spain, in order to evaluate the pressures on the water resources, virtual water flows, and water footprints of the regions, and the water impact of trade relationships within Spain and abroad. The study is framed with those interregional input-output models constructed to study water flows and impacts of regions in China, Australia, Mexico, or the UK. To build our database, we reconcile regional IO tables, national and regional accountancy of Spain, trade and water data. Results show an important imbalance between origin of water resources and final destination, with significant water pressures in the South, Mediterranean, and some central regions. The most populated and dynamic regions of Madrid and Barcelona are important drivers of water consumption in Spain. Main virtual water exporters are the South and Central agrarian regions: Andalusia, Castile-La Mancha, Castile-Leon, Aragon, and Extremadura, while the main virtual water importers are the industrialized regions of Madrid, Basque country, and the Mediterranean coast. The paper shows the different location of direct and indirect consumers of water in Spain and how the economic trade and consumption pattern of certain areas has significant impacts on the availability of water resources in other different and often drier regions.
NASA Astrophysics Data System (ADS)
Ma, Y.; Song, X.; Kumar, P.; Wu, Y.; Woo, D.; Le, P. V.; Ma, C.
2016-12-01
Increased temperature affects the agricultural hydrologic cycle not only by changing precipitation levels, evapotranspiration and the magnitude and timing of run-off, but also by impacting water flows and soil water dynamics. Accurate prediction of hydrologic change under global warming requires high-precision experiment and mathematical model to determine water interaction between interfaces in the soil-plant-atmosphere continuum. In this study, the weighting lysimeter and chamber were coupled to monitor water balance component dynamics of maize under controlled ambient temperature and elevated temperature of 2°C conditions. A mechanistic multilayer canopy-soil-root system model (MLCan) was used to predict hydrologic fluxes variation under different elevated temperature scenarios after calibration with experimental results. The results showed that maize growth period reduced 8 days under increased temperature of 2°C. The mean daily evapotranspiration, soil water storage change, and drainage was 2.66 mm, -2.75 mm, and 0.22 mm under controlled temperature condition, respectively. When temperature was elevated by 2°C, the average daily ET for maize significantly increased about 6.7% (p<0.05). However, there were non-significant impacts of increased temperature on the daily soil water storage change and drainage (p>0.05). Quantification of changes in water balance components induced by temperature increase for maize is critical for optimizing irrigation water management practices and improving water use efficiency.
The ecohydrology of water limited landscapes
NASA Astrophysics Data System (ADS)
Huxman, T. E.
2011-12-01
Developing a mechanistic understanding of the coupling of ecological and hydrological systems is crucial for understanding the land-surface response of large areas of the globe to changes in climate. The distribution of biodiversity, the quantity and quality of streamflow, the biogeochemistry that constrains vegetation cover and production, and the stability of soil systems in watersheds are all functions of water-life coupling. Many key ecosystem services are governed by the dynamics of near-surface hydrology and biological feedbacks on the landscape occur through plant influence over available soil moisture. Thus, ecohydrology has tremendous potential to contribute to a predictive framework for understanding earth system dynamics. Despite the importance of such couplings and water as a major limiting resource in ecosystems throughout the globe, ecology still struggles with a mechanistic understanding of how changes in rainfall affect the biology of plants and microbes, or how changes in plant communities affect hydrological dynamics in watersheds. Part of the problem comes from our lack of understanding of how plants effectively partition available water among individuals in communities and how that modifies the physical environment, affecting additional resource availability and the passage of water along other hydrological pathways. The partitioning of evapotranspiration between transpiration by plants and evaporation from the soil surface is key to interrelated ecological, hydrological, and atmospheric processes and likely varies with vegetation structure and atmospheric dynamics. In addition, the vertical stratification of autotrophic and heterotrophic components in the soil profile, and the speed at which each respond to increased water, exert strong control over the carbon cycle. The magnitude of biosphere-atmosphere carbon exchange depends on the time-depth-distribution of soil moisture, a fundamental consequence of local precipitation pulse characteristics, soil texture and plant functional type. The transport of metabolic products within plants and their differential activation result in non-intuitive patterns of exchange associated with the major drivers creating problems with the scaling of physiological processes of individual plants to ecosystems. Such dynamics, along with hysteretic behavior creates challenges for measurement, evaluation, modeling and predicting ecosystem behavior. New frameworks and conceptual approaches to modeling ecosystem metabolism and the role of water are helping to describe the consequences of precipitation variability and change.
NASA Astrophysics Data System (ADS)
Hall, J. W.
2015-12-01
Our recent research on water security (Sadoff et al., 2015, Dadson et al., 2015) has revealed the dynamic relationship between water security and human well-being. A version of this dynamic is materialising in the coastal polder areas of Khulna, Bangladesh. Repeated coastal floods increase salinity, wipe out agricultural yields for several years and increase out-migration. As a tool to help inform and target future cycles of investment in improvements to the coastal embankments, in this paper we propose a dynamical model of biophysical processes and human well-being, which downscales our previous research to the Khulna region. State variables in the model include agricultural production, population, life expectancy and child mortality. Possible infrastructure interventions include embankment improvements, groundwater wells and drainage infrastructure. Hazard factors include flooding, salinization and drinking water pollution. Our system model can be used to inform adaptation decision making by testing the dynamical response of the system to a range of possible policy interventions, under uncertain future conditions. The analysis is intended to target investment and enable adaptive resource reallocation based on learning about the system response to interventions over the seven years of our research programme. The methodology and paper will demonstrate the complex interplay of factors that determine system vulnerability to climate change. The role of climate change uncertainties (in terms of mean sea level rise and storm surge frequency) will be evaluated alongside multiple other uncertain factors that determine system response. Adaptive management in a 'learning system' will be promoted as a mechanism for coping with climate uncertainties. References:Dadson, S., Hall, J.W., Garrick, D., Sadoff, C. and Grey, D. Water security, risk and economic growth: lessons from a dynamical systems model, Global Environmental Change, in review.Sadoff, C.W., Hall, J.W., Grey, D., Aerts, J.C.J.H., Ait-Kadi, M., Brown, C., Cox, A., Dadson, S., Garrick, D., Kelman, J., McCornick, P., Ringler, C., Rosegrant, M., Whittington, D. and Wiberg, D. Securing Water, Sustaining Growth: Report of the GWP/OECD Task Force on Water Security and Sustainable Growth, University of Oxford, April 2015, 180pp.
Nutrient Dynamics in Flooded Wetlands. II: Model Application
In this paper we applied and evaluated the wetland nutrient model described in an earlier paper. Hydrologic and water quality data from a small restored wetland located on Kent Island, Maryland, which is part of the Delmarva Peninsula on the Eastern shores of the Chesapeake Bay...
Long term management practices influenced soil aggregation and carbon dynamics
USDA-ARS?s Scientific Manuscript database
Soil aggregation protects soil organic C (SOC) against rapid decomposition, improves soil quality, and reduces soil erosion potential. The objectives of this study are to evaluate the effects of long-term (21 yrs.) management practices on SOC, water stable aggregate (WSA), and aggregate-associated ...
NASA Astrophysics Data System (ADS)
Georgakakos, A. P.; Kistenmacher, M.; Yao, H.; Georgakakos, K. P.
2014-12-01
The 2014 National Climate Assessment of the US Global Change Research Program emphasizes that water resources managers and planners in most US regions will have to cope with new risks, vulnerabilities, and opportunities, and recommends the development of adaptive capacity to effectively respond to the new water resources planning and management challenges. In the face of these challenges, adaptive reservoir regulation is becoming all the more ncessary. Water resources management in Northern California relies on the coordinated operation of several multi-objective reservoirs on the Trinity, Sacramento, American, Feather, and San Joaquin Rivers. To be effective, reservoir regulation must be able to (a) account for forecast uncertainty; (b) assess changing tradeoffs among water uses and regions; and (c) adjust management policies as conditions change; and (d) evaluate the socio-economic and environmental benefits and risks of forecasts and policies for each region and for the system as a whole. The Integrated Forecast and Reservoir Management (INFORM) prototype demonstration project operated in Northern California through the collaboration of several forecast and management agencies has shown that decision support systems (DSS) with these attributes add value to stakeholder decision processes compared to current, less flexible management practices. Key features of the INFORM DSS include: (a) dynamically downscaled operational forecasts and climate projections that maintain the spatio-temporal coherence of the downscaled land surface forcing fields within synoptic scales; (b) use of ensemble forecast methodologies for reservoir inflows; (c) assessment of relevant tradeoffs among water uses on regional and local scales; (d) development and evaluation of dynamic reservoir policies with explicit consideration of hydro-climatic forecast uncertainties; and (e) focus on stakeholder information needs.This article discusses the INFORM integrated design concept, underlying methodologies, and selected applications with the California water resources system.
Dynamics of rain-induced pollutographs of solubles in sewers.
Rutsch, M; Müller, I; Krebs, P
2005-01-01
When looking at acute receiving water impacts due to combined sewer overflows the characteristics of the background diurnal sewage flux variation may influence the peak loads from combined sewer overflows (CSO) and wastewater treatment plant (WWTP) effluent significantly. In this paper, effects on the dynamic compounds transported in the sewer, on CSO discharges and WWTP loading are evaluated by means of hydrodynamic simulations. The simulations are based on different scenarios for diurnal dry-weather flow variations induced by different infiltration rates.
Watras, Carl J; Morrow, Michael; Morrison, Ken; Scannell, Sean; Yaziciaglu, Steve; Read, Jordan S; Hu, Yu-Hen; Hanson, Paul C; Kratz, Tim
2014-02-01
Here, we describe and evaluate two low-power wireless sensor networks (WSNs) designed to remotely monitor wetland hydrochemical dynamics over time scales ranging from minutes to decades. Each WSN (one student-built and one commercial) has multiple nodes to monitor water level, precipitation, evapotranspiration, temperature, and major solutes at user-defined time intervals. Both WSNs can be configured to report data in near real time via the internet. Based on deployments in two isolated wetlands, we report highly resolved water budgets, transient reversals of flow path, rates of transpiration from peatlands and the dynamics of chromophoric-dissolved organic matter and bulk ionic solutes (specific conductivity)-all on daily or subdaily time scales. Initial results indicate that direct precipitation and evapotranspiration dominate the hydrologic budget of both study wetlands, despite their relatively flat geomorphology and proximity to elevated uplands. Rates of transpiration from peatland sites were typically greater than evaporation from open waters but were more challenging to integrate spatially. Due to the high specific yield of peat, the hydrologic gradient between peatland and open water varied with precipitation events and intervening periods of dry out. The resultant flow path reversals implied that the flux of solutes across the riparian boundary varied over daily time scales. We conclude that WSNs can be deployed in remote wetland-dominated ecosystems at relatively low cost to assess the hydrochemical impacts of weather, climate, and other perturbations.
Harvey, Judson W.; Noe, Gregory B.; Larsen, Laurel G.; Crimaldi, John P.
2009-01-01
Transport of particulate organic material can impact watershed sediment and nutrient budgets and can alter the geomorphologic evolution of shallow aquatic environments. Prediction of organic aggregate (“floc”) transport in these environments requires knowledge of how hydraulics and biota affect the entrainment, settling, and aggregation of particles. This study evaluated the aggregation and field transport dynamics of organic floc from a low‐gradient floodplain wetland with flow‐parallel ridges and sloughs in the Florida Everglades. Floc dynamics were evaluated in a rotating annular flume and in situ in the field. Under present managed conditions in the Everglades, floc is not entrained by mean flows but is suspended via biological production in the water column and bioturbation. Aggregation was a significant process affecting Everglades floc at high flume flow velocities (7.0 cm s−1) and during recovery from high flow; disaggregation was not significant for the tested flows. During moderate flows when floc dynamics are hydrodynamically controlled, it is possible to model floc transport using a single “operative floc diameter” that accurately predicts fluxes downstream and to the bed. In contrast, during high flows and recovery from high flows, aggregation dynamics should be simulated. When entrained by flow in open‐water sloughs, Everglades floc will be transported downstream in multiple deposition and reentrainment events but will undergo net settling when transported onto ridges of emergent vegetation. We hypothesize that net transport of material from open to vegetated areas during high flows is critical for forming and maintaining distinctive topographic patterning in the Everglades and other low‐gradient floodplains.
NASA Astrophysics Data System (ADS)
Fan, Yang; Qi, Yang; Bing, Gao; Rong, Xia; Yanjie, Le; Iroegbu, Paul Ikechukwu
2018-03-01
Water tree is the predominant defect in high-voltage crosslinked polyethylene cables. The microscopic mechanism in the discharge process is not fully understood; hence, a drawback is created towards an effective method to evaluate the insulation status. In order to investigate the growth of water tree, a plasma-chemical model is developed. The dynamic characteristics of the discharge process including voltage waveform, current waveform, electron density, electric potential, and electric field intensity are analyzed. Our results show that the distorted electric field is the predominant contributing factor of electron avalanche formation, which inevitably leads to the formation of pulse current. In addition, it is found that characteristic parameters such as the pulse width and pulse number have a great relevance to the length of water tree. Accordingly, the growth of water tree can be divided into the initial stage, development stage, and pre-breakdown stage, which provides a reference for evaluating the deteriorated stages of crosslinked polyethylene cables.
Unusual dynamic properties of water near the ice-binding plane of hyperactive antifreeze protein
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuffel, Anna; Czapiewski, Dariusz; Zielkiewicz, Jan, E-mail: jaz@chem.pg.gda.pl
2015-10-07
The dynamical properties of solvation water of hyperactive antifreeze protein from Choristoneura fumiferana (CfAFP) are analyzed and discussed in context of its antifreeze activity. The protein comprises of three well-defined planes and one of them binds to the surface of ice. The dynamical properties of solvation water around each of these planes were analyzed separately; the results are compared with the dynamical properties of solvation water of ice around its two crystallographic planes: basal and prism. Three main conclusions are inferred from our investigations. The first one is that the solvation shell of CfAFP does not seem to be particularlymore » far-ranged, at least not beyond what is usually observed for proteins that do not interact with ice. Therefore, it does not appear to us that the antifreeze activity is enhanced by a long-ranged retardation of water mobility. Also the correlation between the collective mobility of water and the collective mobility of protein atoms highly resembles the one measured for the protein that does not interact with ice. Our second conclusion is that the dynamical properties of solvation water of CfAFP are non-uniform. The dynamics of solvation water of ice-binding plane is, in some respects, different from the dynamics of solvation water of the two remaining planes. The feature that distinguishes the dynamics of solvation water of the three planes is the activation energy of diffusion process. The third conclusion is that—from the three analyzed solvation shells of CfAFP—the dynamical properties of solvation water of the ice-binding plane resemble the most the properties of solvation water of ice; note, however, that these properties still clearly differ from the dynamic properties of solvation water of ice.« less
NASA Astrophysics Data System (ADS)
Seyoum, Wondwosen M.; Milewski, Adam M.
2017-12-01
Investigating terrestrial water cycle dynamics is vital for understanding the recent climatic variability and human impacts in the hydrologic cycle. In this study, a downscaling approach was developed and tested, to improve the applicability of terrestrial water storage (TWS) anomaly data from the Gravity Recovery and Climate Experiment (GRACE) satellite mission for understanding local terrestrial water cycle dynamics in the Northern High Plains region. A non-parametric, artificial neural network (ANN)-based model, was utilized to downscale GRACE data by integrating it with hydrological variables (e.g. soil moisture) derived from satellite and land surface model data. The downscaling model, constructed through calibration and sensitivity analysis, was used to estimate TWS anomaly for watersheds ranging from 5000 to 20,000 km2 in the study area. The downscaled water storage anomaly data were evaluated using water storage data derived from an (1) integrated hydrologic model, (2) land surface model (e.g. Noah), and (3) storage anomalies calculated from in-situ groundwater level measurements. Results demonstrate the ANN predicts monthly TWS anomaly within the uncertainty (conservative error estimate = 34 mm) for most of the watersheds. Seasonal derived groundwater storage anomaly (GWSA) from the ANN correlated well (r = ∼0.85) with GWSAs calculated from in-situ groundwater level measurements for a watershed size as small as 6000 km2. ANN downscaled TWSA matches closely with Noah-based TWSA compared to standard GRACE extracted TWSA at a local scale. Moreover, the ANN-downscaled change in TWS replicated the water storage variability resulting from the combined effect of climatic and human impacts (e.g. abstraction). The implications of utilizing finer resolution GRACE data for improving local and regional water resources management decisions and applications are clear, particularly in areas lacking in-situ hydrologic monitoring networks.
Steinhoff, Daniel F.; Monaghan, Andrew J.; Eisen, Lars; Barlage, Michael J.; Hopson, Thomas M.; Tarakidzwa, Isaac; Ortiz-Rosario, Karielys; Lozano-Fuentes, Saul; Hayden, Mary H.; Bieringer, Paul E.; Welsh Rodríguez, Carlos M.
2017-01-01
The mosquito virus vector Aedes (Ae.) aegypti exploits a wide range of containers as sites for egg laying and development of the immature life stages, yet the approaches for modeling meteorologically sensitive container water dynamics have been limited. This study introduces the Water Height and Temperature in Container Habitats Energy Model (WHATCH’EM), a state-of-the-science, physically based energy balance model of water height and temperature in containers that may serve as development sites for mosquitoes. The authors employ WHATCH’EM to model container water dynamics in three cities along a climatic gradient in México ranging from sea level, where Ae. aegypti is highly abundant, to ~2100 m, where Ae. aegypti is rarely found. When compared with measurements from a 1-month field experiment in two of these cities during summer 2013, WHATCH’EM realistically simulates the daily mean and range of water temperature for a variety of containers. To examine container dynamics for an entire season, WHATCH’EM is also driven with field-derived meteorological data from May to September 2011 and evaluated for three commonly encountered container types. WHATCH’EM simulates the highly nonlinear manner in which air temperature, humidity, rainfall, clouds, and container characteristics (shape, size, and color) determine water temperature and height. Sunlight exposure, modulated by clouds and shading from nearby objects, plays a first-order role. In general, simulated water temperatures are higher for containers that are larger, darker, and receive more sunlight. WHATCH’EM simulations will be helpful in understanding the limiting meteorological and container-related factors for proliferation of Ae. aegypti and may be useful for informing weather-driven early warning systems for viruses transmitted by Ae. aegypti. PMID:29123363
Monitoring terrestrial dissolved organic carbon export at land-water interfaces using remote sensing
NASA Astrophysics Data System (ADS)
Yu, Q.; Li, J.; Tian, Y. Q.
2017-12-01
Carbon flux from land to oceans and lakes is a crucial component of carbon cycling. However, this lateral carbon flow at land-water interface is often neglected in the terrestrial carbon cycle budget, mainly because observations of the carbon dynamics are very limited. Monitoring CDOM/DOC dynamics using remote sensing and assessing DOC export from land to water remains a challenge. Current CDOM retrieval algorithms in the field of ocean color are not simply applicable to inland aquatic ecosystems since they were developed for coarse resolution ocean-viewing imagery and less complex water types in open-sea. We developed a new semi-analytical algorithm, called SBOP (Shallow water Bio-Optical Properties algorithm) to adapt to shallow inland waters. SBOP was first developed and calibrated based on in situ hyperspectral radiometer data. Then we applied it to the Landsat-8 OLI images and evaluated the effectiveness of the multispectral images on inversion of CDOM absorption based on our field sampling at the Saginaw Bay in the Lake Huron. The algorithm performances (RMSE = 0.17 and R2 = 0.87 in the Saginaw Bay; R2 = 0.80 in the northeastern US lakes) is promising and we conclude the CDOM absorption can be derived from Landsat-8 OLI image in both optically deep and optically shallow waters with high accuracy. Our method addressed challenges on employing appropriate atmospheric correction, determining bottom reflectance influence for shallow waters, and improving for bio-optical properties retrieval, as well as adapting to both hyperspectral and the multispectral remote sensing imagery. Over 100 Landsat-8 images in Lake Huron, northeastern US lakes, and the Arctic major rivers were processed to understand the CDOM spatio-temporal dynamics and its associated driving factors.
Effect of collector molecular structure on the wettability of gold for froth flotation
NASA Astrophysics Data System (ADS)
Moncayo-Riascos, Ivan; Hoyos, Bibian A.
2017-10-01
Molecular dynamics simulations were conducted to evaluate the alteration of the hydrophilic state of gold surfaces caused by the adsorption of collectors with different molecular structures, using the contact angle of water droplets as an evaluation parameter. Four collectors were evaluated: SDS (with twelve hydrogenated carbon atoms), PAX (with five hydrogenated carbon atoms), DTP (with two branched aliphatic chains) and MBT (with an aromatic ring). The contact angle was evaluated for coatings of a monolayer (ML) and for surface densities of 2.89 μmol/m2 for each collector. For a ML, the hydrophobic effect generated by the aromatic ring of the MBT collector is comparable with the effect of the non-polar short chain of the PAX collector. The increase in hydrophobicity for the gold surfaces achieved by collectors with aliphatic chains is because the water-collector interaction energy is significantly higher (repulsive) than the water-gold interactions (attractive). The lowest increase in hydrophobicity was achieved with the MBT collector, since the carbon-water interaction energy of the aromatic ring is stronger than the interaction with the carbon atoms in the aliphatic chains. The calculated contact angles of the water droplets deviated less than 4% with respect to the experimental values.
NASA Astrophysics Data System (ADS)
Hirl, Regina; Schnyder, Hans; Auerswald, Karl; Vetter, Sylvia; Ostler, Ulrike; Schleip, Inga; Wingate, Lisa; Ogée, Jérôme
2015-04-01
The oxygen isotope composition (δ18O) of water in terrestrial ecosystems usually shows strong and dynamic variations within and between the various compartments. These variations originate from changes in the δ18O of water inputs (e.g. rain or water vapour) and from 18O fractionation phenomena in the soil-plant-atmosphere continuum. Investigations of δ18O in ecosystem water pools and of their main drivers can help us understand water relations at plant, canopy or ecosystem scale and interpret δ18O signals in plant and animal tissues as paleo-climate proxies. During the vegetation periods of 2006 to 2012, soil, leaf and stem water as well as atmospheric humidity, rain water and groundwater were sampled at bi-weekly intervals in a temperate humid pasture of the Grünschwaige Grassland Research Station near Munich (Germany). The sampling was performed following standardised MIBA (Moisture Isotopes in the Biosphere and Atmosphere) protocols. Leaf water samples were prepared from a mixture of co-dominant species in the plant community in order to obtain a canopy-scale leaf water δ18O signal. All samples were then analysed for their δ18O compositions. The measured δ18O of leaf, stem and soil water were then compared with the δ18O signatures simulated by the process-based isotope-enabled ecosystem model MuSICA (Multi-layer Simulator of the Interactions between a vegetation Canopy and the Atmosphere). MuSICA integrates current mechanistic understanding of processes in the soil-plant-atmosphere continuum. Hence, the comparison of modelled and measured data allows the identification of gaps in current knowledge and of questions to be tackled in the future. Soil and plant characteristics for model parameterisation were derived from investigations at the experimental site and supplemented by values from the literature. Eddy-covariance measurements of ecosystem CO2 (GPP, NEE) and energy (H, LE) fluxes and soil temperature data were used for model evaluation. The comparison of measured and predicted ecosystem fluxes showed that the model captured the main features of the diurnal cycles of GPP, NEE, LE and H, as well as the soil temperature dynamics. In this presentation I will present the main results of this model-data comparison, as well as results from a model sensitivity analysis performed over a range of soil, plant and meteorological parameters to evaluate the relative importance of each parameter on the δ18O signatures of the various water pools.
Garcia-Molina, Rafael; Abril, Isabel; Heredia-Avalos, Santiago; Kyriakou, Ioanna; Emfietzoglou, Dimitris
2011-10-07
We have evaluated the spatial distribution of energy deposition by proton beams in liquid water using the simulation code SEICS (Simulation of Energetic Ions and Clusters through Solids), which combines molecular dynamics and Monte Carlo techniques and includes the main interaction phenomena between the projectile and the target constituents: (i) the electronic stopping force due to energy loss to target electronic excitations, including fluctuations due to the energy-loss straggling, (ii) the elastic scattering with the target nuclei, with their corresponding energy loss and (iii) the dynamical changes in projectile charge state due to electronic capture and loss processes. An important feature of SEICS is the accurate account of the excitation spectrum of liquid water, based on a consistent solid-state description of its energy-loss-function over the whole energy and momentum space. We analyse how the above-mentioned interactions affect the depth distribution of the energy delivered in liquid water by proton beams with incident energies of the order of several MeV. Our simulations show that the position of the Bragg peak is determined mainly by the stopping power, whereas its width can be attributed to the energy-loss straggling. Multiple elastic scattering processes contribute slightly only at the distal part of the Bragg peak. The charge state of the projectiles only changes when approaching the end of their trajectories, i.e. near the Bragg peak. We have also simulated the proton-beam energy distribution at several depths in the liquid water target, and found that it is determined mainly by the fluctuation in the energy loss of the projectile, evaluated through the energy-loss straggling. We conclude that a proper description of the target excitation spectrum as well as the inclusion of the energy-loss straggling is essential in the calculation of the proton beam depth-dose distribution.
Dynamics of Water in Gemini Surfactant-Based Lyotropic Liquid Crystals
McDaniel, Jesse G.; Mantha, Sriteja; Yethiraj, Arun
2016-09-26
The dynamics of water confined to nanometer-sized domains is important in a variety of applications ranging from proton exchange membranes to crowding effects in biophysics. In this work we study the dynamics of water in gemini surfactant-based lyotropic liquid crystals (LLCs) using molecular dynamics simulations. These systems have well characterized morphologies, e.g., hexagonal, gyroid, and lamellar, and the surfaces of the confining regions can be controlled by modifying the headgroup of the surfactants. This allows one to study the effect of topology, functionalization, and interfacial curvature on the dynamics of confined water. Through analysis of the translational diffusion and rotationalmore » relaxation we conclude that the hydration level and resulting confinement lengthscale is the predominate determiner of the rates of water dynamics, and other effects, namely surface functionality and curvature, are largely secondary. In conclusion, this novel analysis of the water dynamics in these LLC systems provides an important comparison for previous studies of water dynamics in lipid bilayers and reverse micelles.« less
Price, Peter W; Hunter, Mark D
2015-06-01
The interaction between the arroyo willow, Salix lasiolepis Bentham, and its specialist herbivore, the arroyo willow stem-galling sawfly, Euura lasiolepis Smith (Hymenoptera: Tenthredinidae), was studied for 32 yr in Flagstaff, AZ, emphasizing a mechanistic understanding of insect population dynamics. Long-term weather records were evaluated to provide a climatic context for this study. Previously, predictive models of sawfly dynamics were developed from estimates of sawfly gall density made between 1981 and 2002; one model each for drier and wetter sites. Predictor variables in these models included winter precipitation and the Palmer Drought Severity Index, which impact the willow growth, with strong bottom-up effects on sawflies. We now evaluate original model predictions of sawfly population dynamics using new data (from 2003-2012). Additionally, willow resources were evaluated in 1986 and in 2012, using as criteria clone area, shoot density, and shoot length. The dry site model accounted for 40% of gall population density variation between 2003 and 2012 (69% over the 32 yr), providing strong support for the bottom-up, mechanistic hypothesis that water supply to willow hosts impacts sawfly populations. The current drying trend stressed willow clones: in drier sites, willow resources declined and gall density decreased by 98%. The wet site model accounted for 23% of variation in gall population density between 2003 and 2012 (48% over 30 yr), consistent with less water limitation. Nonetheless, gall populations were reduced by 72%. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Miller, M. A.; Miller, N. L.; Sale, M. J.; Springer, E. P.; Wesely, M. L.; Bashford, K. E.; Conrad, M. E.; Costigan, K. R.; Kemball-Cook, S.; King, A. W.; Klazura, G. E.; Lesht, B. M.; Machavaram, M. V.; Sultan, M.; Song, J.; Washington-Allen, R.
2001-12-01
A multi-laboratory Department of Energy (DOE) team (Argonne National Laboratory, Brookhaven National Laboratory, Los Alamos National Laboratory, Lawrence Berkeley National Laboratory, Oak Ridge National Laboratory) has begun an investigation of hydrometeorological processes at the Whitewater subbasin of the Walnut River Watershed in Kansas. The Whitewater sub-basin is viewed as a DOE long-term hydrologic research watershed and resides within the well-instrumented Atmospheric Radiation Measurement/Cloud Radiation Atmosphere Testbed (ARM/CART) and the proposed Arkansas-Red River regional hydrologic testbed. The focus of this study is the development and evaluation of coupled regional to watershed scale models that simulate atmospheric, land surface, and hydrologic processes as systems with linkages and feedback mechanisms. This pilot is the precursor to the proposed DOE Water Cycle Dynamics Prediction Program. An important new element is the introduction of water isotope budget equations into mesoscale and hydrologic modeling. Two overarching hypotheses are part of this pilot study: (1) Can the predictability of the regional water balance be improved using high-resolution model simulations that are constrained and validated using new water isotope and hydrospheric water measurements? (2) Can water isotopic tracers be used to segregate different pathways through the water cycle and predict a change in regional climate patterns? Initial results of the pilot will be presented along with a description and copies of the proposed DOE Water Cycle Dynamics Prediction Program.
Preliminary Computational Fluid Dynamics (CFD) Simulation of EIIB Push Barge in Shallow Water
NASA Astrophysics Data System (ADS)
Beneš, Petr; Kollárik, Róbert
2011-12-01
This study presents preliminary CFD simulation of EIIb push barge in inland conditions using CFD software Ansys Fluent. The RANSE (Reynolds Averaged Navier-Stokes Equation) methods are used for the viscosity solution of turbulent flow around the ship hull. Different RANSE methods are used for the comparison of their results in ship resistance calculations, for selecting the appropriate and removing inappropriate methods. This study further familiarizes on the creation of geometrical model which considers exact water depth to vessel draft ratio in shallow water conditions, grid generation, setting mathematical model in Fluent and evaluation of the simulations results.
NASA Astrophysics Data System (ADS)
Ma, Ning; Niu, Guo-Yue; Xia, Youlong; Cai, Xitian; Zhang, Yinsheng; Ma, Yaoming; Fang, Yuanhao
2017-11-01
Accurate simulation of energy, water, and carbon fluxes exchanging between the land surface and the atmosphere is beneficial for improving terrestrial ecohydrological and climate predictions. We systematically assessed the Noah land surface model (LSM) with mutiparameterization options (Noah-MP) in simulating these fluxes and associated variations in terrestrial water storage (TWS) and snow cover fraction (SCF) against various reference products over 18 United States Geological Survey two-digital hydrological unit code regions of the continental United States (CONUS). In general, Noah-MP captures better the observed seasonal and interregional variability of net radiation, SCF, and runoff than other variables. With a dynamic vegetation model, it overestimates gross primary productivity by 40% and evapotranspiration (ET) by 22% over the whole CONUS domain; however, with a prescribed climatology of leaf area index, it greatly improves ET simulation with relative bias dropping to 4%. It accurately simulates regional TWS dynamics in most regions except those with large lakes or severely affected by irrigation and/or impoundments. Incorporating the lake water storage variations into the modeled TWS variations largely reduces the TWS simulation bias more obviously over the Great Lakes with model efficiency increasing from 0.18 to 0.76. Noah-MP simulates runoff well in most regions except an obvious overestimation (underestimation) in the Rio Grande and Lower Colorado (New England). Compared with North American Land Data Assimilation System Phase 2 (NLDAS-2) LSMs, Noah-MP shows a better ability to simulate runoff and a comparable skill in simulating Rn but a worse skill in simulating ET over most regions. This study suggests that future model developments should focus on improving the representations of vegetation dynamics, lake water storage dynamics, and human activities including irrigation and impoundments.
Global sensitivity analysis of a dynamic agroecosystem model under different irrigation treatments
USDA-ARS?s Scientific Manuscript database
Savings in consumptive use through limited or deficit irrigation in agriculture has become an increasingly viable source of additional water for places with high population growth such as the Colorado Front Range, USA. Crop models provide a mechanism to evaluate various management methods without pe...
Using measures of information content and complexity of time series as hydrologic metrics
USDA-ARS?s Scientific Manuscript database
The information theory has been previously used to develop metrics that allowed to characterize temporal patterns in soil moisture dynamics, and to evaluate and to compare performance of soil water flow models. The objective of this study was to apply information and complexity measures to characte...
Calero, Carles; Stanley, H.; Franzese, Giancarlo
2016-04-27
Hydration water determines the stability and function of phospholipid membranes as well as the interaction of membranes with other molecules. Experiments and simulations have shown that water dynamics slows down dramatically as the hydration decreases, suggesting that the interfacial water that dominates the average dynamics at low hydration is slower than water away from the membrane. Here, based on all-atom molecular dynamics simulations, we provide an interpretation of the slowdown of interfacial water in terms of the structure and dynamics of water–water and water–lipid hydrogen bonds (HBs). We calculate the rotational and translational slowdown of the dynamics of water confinedmore » in stacked phospholipid membranes at different levels of hydration, from completely hydrated to poorly hydrated membranes. For all hydrations, we analyze the distribution of HBs and find that water–lipids HBs last longer than water–water HBs and that at low hydration most of the water is in the interior of the membrane. We also show that water–water HBs become more persistent as the hydration is lowered. We attribute this effect (i) to HBs between water molecules that form, in turn, persistent HBs with lipids; (ii) to the hindering of the H-bonding switching between water molecules due to the lower water density at the interface; and (iii) to the higher probability of water–lipid HBs as the hydration decreases. Lastly, our interpretation of the large dynamic slowdown in water under dehydration is potentially relevant in understanding membrane biophysics at different hydration levels.« less
Atomistic details of protein dynamics and the role of hydration water
Khodadadi, Sheila; Sokolov, Alexei P.
2016-05-04
The importance of protein dynamics for their biological activity is nowwell recognized. Different experimental and computational techniques have been employed to study protein dynamics, hierarchy of different processes and the coupling between protein and hydration water dynamics. But, understanding the atomistic details of protein dynamics and the role of hydration water remains rather limited. Based on overview of neutron scattering, molecular dynamic simulations, NMR and dielectric spectroscopy results we present a general picture of protein dynamics covering time scales from faster than ps to microseconds and the influence of hydration water on different relaxation processes. Internal protein dynamics spread overmore » a wide time range fromfaster than picosecond to longer than microseconds. We suggest that the structural relaxation in hydrated proteins appears on the microsecond time scale, while faster processes present mostly motion of side groups and some domains. Hydration water plays a crucial role in protein dynamics on all time scales. It controls the coupled protein-hydration water relaxation on 10 100 ps time scale. Our process defines the friction for slower protein dynamics. Analysis suggests that changes in amount of hydration water affect not only general friction, but also influence significantly the protein's energy landscape.« less
Atomistic details of protein dynamics and the role of hydration water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khodadadi, Sheila; Sokolov, Alexei P.
The importance of protein dynamics for their biological activity is nowwell recognized. Different experimental and computational techniques have been employed to study protein dynamics, hierarchy of different processes and the coupling between protein and hydration water dynamics. But, understanding the atomistic details of protein dynamics and the role of hydration water remains rather limited. Based on overview of neutron scattering, molecular dynamic simulations, NMR and dielectric spectroscopy results we present a general picture of protein dynamics covering time scales from faster than ps to microseconds and the influence of hydration water on different relaxation processes. Internal protein dynamics spread overmore » a wide time range fromfaster than picosecond to longer than microseconds. We suggest that the structural relaxation in hydrated proteins appears on the microsecond time scale, while faster processes present mostly motion of side groups and some domains. Hydration water plays a crucial role in protein dynamics on all time scales. It controls the coupled protein-hydration water relaxation on 10 100 ps time scale. Our process defines the friction for slower protein dynamics. Analysis suggests that changes in amount of hydration water affect not only general friction, but also influence significantly the protein's energy landscape.« less
The dynamical crossover phenomenon in bulk water, confined water and protein hydration water.
Mallamace, Francesco; Corsaro, Carmelo; Baglioni, Piero; Fratini, Emiliano; Chen, Sow-Hsin
2012-02-15
We discuss a phenomenon regarding water that was until recently a subject of scientific controversy, i.e. the dynamical crossover from fragile-to-strong glass-forming material, for both bulk and protein hydration water. Such a crossover is characterized by a temperature T(L) at which significant dynamical changes occur, such as violation of the Stokes-Einstein relation and changes of behaviour of homologous transport parameters such as the density relaxation time and the viscosity. In this respect we will consider carefully the dynamic properties of water-protein systems. More precisely, we will study proteins and their hydration water as far as bulk and confined water. In order to clarify the controversy we will discuss in a comparative way many previous and new experimental data that have emerged using different techniques and molecular dynamic simulation (MD). We point out the reasons for the different dynamical findings from the use of different experimental techniques.
Integrated Analysis of Flow, Form, and Function for River Management and Design Testing
NASA Astrophysics Data System (ADS)
Lane, B. A. A.; Pasternack, G. B.; Sandoval Solis, S.
2017-12-01
Rivers are highly complex, dynamic systems that support numerous ecosystem functions including transporting sediment, modulating biogeochemical processes, and regulating habitat availability for native species. The extent and timing of these functions is largely controlled by the interplay of hydrologic dynamics (i.e. flow) and the shape and composition of the river corridor (i.e. form). This study applies synthetic channel design to the evaluation of river flow-form-function linkages, with the aim of evaluating these interactions across a range of flows and forms to inform process-driven management efforts with limited data and financial requirements. In an application to California's Mediterranean-montane streams, the interacting roles of channel form, water year type, and hydrologic impairment were evaluated across a suite of ecosystem functions related to hydrogeomorphic processes, aquatic habitat, and riparian habitat. Channel form acted as the dominant control on hydrogeomorphic processes considered, while water year type controlled salmonid habitat functions. Streamflow alteration for hydropower increased redd dewatering risk and altered aquatic habitat availability and riparian recruitment dynamics. Study results highlight critical tradeoffs in ecosystem function performance and emphasize the significance of spatiotemporal diversity of flow and form at multiple scales for maintaining river ecosystem integrity. The approach is broadly applicable and extensible to other systems and ecosystem functions, where findings can be used to characterize complex controls on river ecosystems, assess impacts of proposed flow and form alterations, and inform river restoration strategies.
Physico-chemical characteristics and antimicrobial studies of silver doped hydroxyapatite
NASA Astrophysics Data System (ADS)
Predoi, D.; Predoi, M. V.; Kettani, Moncef Ech Cherif El; Leduc, Damien; Iconaru, S. L.; Ciobanu, C. S.; Buton, N.; Petre, C. C.; Prodan, A. M.
2018-02-01
The present research is focused on the synthesis, structural and morphological characterization and antimicrobial evaluation of silver doped hydroxyapatite (AgHAp) in water. The preliminary ultrasonic characterizations of the AgHAp in water synthesized by an adapted co-precipitation method are also presented. X-ray diffraction result showed that silver ions were substituted in the hydroxyapatite structure. The lattice parameters increased when the silver substitution increased. The morphology of AgHAp were evaluated by Scanning Electron Microscopy (SEM). By EDX analysis the constituents elements of hydroxyapatite were detected in all analyzed samples. The silver was also found in the samples with xAg = 0.5 and 0.2. The colloidal properties of the resulted AgHAp (xAg = 0.0, 0.05 and 0.2) in water were analyzed by Dynamic Light Scattering (DLS) and zeta potential. On the other hand, the novelty of our research consists of preliminary ultrasonic measurements (US) conducted on AgHAp in water. Furthermore, the antimicrobial activity of AgHAp was evaluated and a decrease in the number of surviving cells was established.
Póvoa, P; Oehmen, A; Inocêncio, P; Matos, J S; Frazão, A
2017-05-01
The main objective of this paper is to demonstrate the importance of applying dynamic modelling and real energy prices on a full scale water resource recovery facility (WRRF) for the evaluation of control strategies in terms of energy costs with aeration. The Activated Sludge Model No. 1 (ASM1) was coupled with real energy pricing and a power consumption model and applied as a dynamic simulation case study. The model calibration is based on the STOWA protocol. The case study investigates the importance of providing real energy pricing comparing (i) real energy pricing, (ii) weighted arithmetic mean energy pricing and (iii) arithmetic mean energy pricing. The operational strategies evaluated were (i) old versus new air diffusers, (ii) different DO set-points and (iii) implementation of a carbon removal controller based on nitrate sensor readings. The application in a full scale WRRF of the ASM1 model coupled with real energy costs was successful. Dynamic modelling with real energy pricing instead of constant energy pricing enables the wastewater utility to optimize energy consumption according to the real energy price structure. Specific energy cost allows the identification of time periods with potential for linking WRRF with the electric grid to optimize the treatment costs, satisfying operational goals.
Mapping the Dynamics of Surface Water Extent 1999-2015 with Landsat 5, 7, and 8 Archives
NASA Astrophysics Data System (ADS)
Pickens, A. H.; Hansen, M.; Hancher, M.; Potapov, P.
2016-12-01
Surface water extent fluctuates through both seasons and years due to changes in climatic conditions and human extraction and impoundments. This study maps the presence of surface water every month since January 1999, evaluates the detection reliability, visualizes the trends, and explores future applications. The Global Land Analysis and Discovery group at the University of Maryland developed a 30-m mask of persistent water during the growing seasons of 2000-2012 in conjunction with the Global Forest Change product published by Hansen et al. in 2013. A total of 654,178 Landsat 7 scenes were used for the study. Persistent water was defined as all pixels with water classified in more than 50% of observations over the study period. We validated this mask by stratifying and comparing against a random sample of 135 RapidEye, single-date images at 5-m resolution. It was found to have estimated user's and producer's accuracies of 94% and 88%, respectively. This estimated error is due primarily to temporal differences, such as dam construction, and to mixed water-land pixels along water body edges and narrow rivers. In order to investigate temporal extent dynamics, we expanded our analysis of surface water to classify every Landsat 5, 7, and 8 scene since 1999, augmented with elevation data from SRTM and ASTER, via a series of decision trees applied using Google Earth Engine. The water and land observations are aggregated per each month of each year. We developed a model to visualize the dynamic trend in surface water presence since 1999, either per month or annually as shown below. This model can be used directly to assess the seasonal and inter-annual trends globally or regionally, or the raw monthly counts can be used for more intensive hydrological analysis and as inputs for other related studies such as wetland mapping.
Zhang, Yan; Qian, Jie-feng; Liu, Lan-xia; Zhao, Hui-qin
2013-01-01
To establish and compare the method of static headspace gas chromatography hydrogen flame detector (static headspace method) and purge and trap gas chromatography-mass spectrometry (dynamic headspace method) of anisole in water. Nitrogen gas was used as carrier gas in the static headspace method, 5 g NaCl as matrix modifier was added into 10 ml water. The sample was balanced with high speed vibration at 75°C for 30 min, and anisole was detected by gas chromatography and quantified with external standard. Helium was used as carrier gas in dynamic headspace method, 5.0 ml water and 0.004 mg/L internal standard fluorobenzene was purged into the purge and trap apparatus. After purging, trapping and desorption, anisole was detected by the gas chromatography-mass spectrograph, confirmed by the retention time and comparison of mass-spectrogram in spectrum library and quantified with internal standard. The repeatability and sensitivity of assay were evaluated. A good linear range for anisole was observed in static headspace gas chromatography and dynamic headspace gas chromatography-mass spectrometry, within the range of 10 - 500 µg/L and 0.5 - 60.0 µg/L respectively. The linear regression equation was Y = 782.150X + 1.3446 and Y = 0.0358X - 0.0209 respectively, both the correlation coefficient ≥ 0.999. The detection limit (LOD) were 0.002 µg/L and 0.110 µg/L, the lower limit of quantitation (LOQ) were 0.006 µg/L and 0.350 µg/L, the relative standard deviation (RSD) were 1.8% - 2.3% and 2.0% - 3.4%, and the spiking recovery were 93% - 101% and 96% - 101% respectively. The methods of static headspace gas chromatography and dynamic headspace gas chromatography-mass spectrometry are simple and can measure anisole in water quickly, sensitively and accurately.
Flow caused by the stalk contraction of Vorticella
NASA Astrophysics Data System (ADS)
Ryu, Sangjin; Chung, Eun-Gul; Admiraal, David
2016-11-01
Vorticella is a stalked protozoan, and its ultrafast stalk contraction moves the spherically-shrunken cell body (zooid) and thus causes surrounding water to flow. Because the fluid dynamics of this water flow is important for understanding the motility of Vorticella, we investigated the flow based on various fluid dynamics approaches. To find why Vorticella contracts its stalk, we propose a hypothesis that the protist utilizes the contraction-induced water flow to augment transport of food particles. This hypothesis was investigated using a computational fluid dynamics (CFD) model, which was validated with an experimental scale model of Vorticella. The CFD model enabled calculating the motion of particles around Vorticella and thus quantifying the transport effect of the stalk contraction. Also, we have developed a hydrodynamic drag model for easier estimation of Vorticella's contractility without using the CFD model. Because the contractile force of the stalk equals the drag on the moving zooid, the model enabled evaluating the contractile force and energetics of Vorticella based on its contraction speed. Analyses using the drag model show that the stalk contractility of Vorticella depends on the stalk length. This study was supported by UNL Layman Seed Grant and Nebraska EPSCoR First Award Grant.
Using continuous in-situ measurements to adaptively trigger urban storm water samples
NASA Astrophysics Data System (ADS)
Wong, B. P.; Kerkez, B.
2015-12-01
Until cost-effective in-situ sensors are available for biological parameters, nutrients and metals, automated samplers will continue to be the primary source of reliable water quality measurements. Given limited samples bottles, however, autosamplers often obscure insights on nutrient sources and biogeochemical processes which would otherwise be captured using a continuous sampling approach. To that end, we evaluate the efficacy a novel method to measure first-flush nutrient dynamics in flashy, urban watersheds. Our approach reduces the number of samples required to capture water quality dynamics by leveraging an internet-connected sensor node, which is equipped with a suite of continuous in-situ sensors and an automated sampler. To capture both the initial baseflow as well as storm concentrations, a cloud-hosted adaptive algorithm analyzes the high-resolution sensor data along with local weather forecasts to optimize a sampling schedule. The method was tested in a highly developed urban catchment in Ann Arbor, Michigan and collected samples of nitrate, phosphorus, and suspended solids throughout several storm events. Results indicate that the watershed does not exhibit first flush dynamics, a behavior that would have been obscured when using a non-adaptive sampling approach.
Henrique F. Duarte; Brett M. Raczka; Daniel M. Ricciuto; John C. Lin; Charles D. Koven; Peter E. Thornton; David R. Bowling; Chun-Ta Lai; Kenneth J. Bible; James R. Ehleringer
2017-01-01
Droughts in the western United States are expected to intensify with climate change. Thus, an adequate representation of ecosystem response to water stress in land models is critical for predicting carbon dynamics. The goal of this study was to evaluate the performance of the Community Land Model (CLM) version 4.5 against observations at an old-growth coniferous forest...
Geiger, Michel; Jagtap, Anil; Kaushik, Monu; Sun, Han; Stöppler, Daniel; Sigurdsson, Snorri; Corzilius, Björn; Oschkinat, Hartmut
2018-05-09
Nitroxide biradicals are very efficient polarizing agents in magic angle spinning (MAS) cross effect (CE) dynamic nuclear polarization (DNP) nuclear magnetic resonance (NMR). Many recently synthesized, new radicals show superior DNP-efficiency in organic solvents but suffer from insufficient solubility in water or glycerol/water for biological applications. We report DNP efficiencies for two new radicals, the particularly well-water soluble bcTol-M and cyolyl-TOTAPOL, and include a comparison with three known biradicals, TOTAPOL, bcTol, and AMUPol. They differ by linker groups, featuring either a 3-aminopropane-1,2-diol or a urea tether, or by the structure of the alkyl substituents that flank the nitroxide groups. For evaluating their performances, we measured both signal enhancements and DNP-enhanced sensitivity κ, and compared the results to electron spin relaxation data recorded at the same magnetic field strength (9.4 T). In our study, differences in DNP efficiency correlate with changes in the nuclear polarization dynamics rather than electron relaxation. The ratios of their individual ε and κ differ by up to 20%, which is explained by starkly different nuclear polarization build-up rates. For the radicals compared here empirically, using proline standard solutions, the new radical bcTol-M performs best while being most soluble in water/glycerol mixtures. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Scale-dependent temporal variations in stream water geochemistry.
Nagorski, Sonia A; Moore, Iohnnie N; McKinnon, Temple E; Smith, David B
2003-03-01
A year-long study of four western Montana streams (two impacted by mining and two "pristine") evaluated surface water geochemical dynamics on various time scales (monthly, daily, and bi-hourly). Monthly changes were dominated by snowmelt and precipitation dynamics. On the daily scale, post-rain surges in some solute and particulate concentrations were similar to those of early spring runoff flushing characteristics on the monthly scale. On the bi-hourly scale, we observed diel (diurnal-nocturnal) cycling for pH, dissolved oxygen, water temperature, dissolved inorganic carbon, total suspended sediment, and some total recoverable metals at some or all sites. A comparison of the cumulative geochemical variability within each of the temporal groups reveals that for many water quality parameters there were large overlaps of concentration ranges among groups. We found that short-term (daily and bi-hourly) variations of some geochemical parameters covered large proportions of the variations found on a much longer term (monthly) time scale. These results show the importance of nesting short-term studies within long-term geochemical study designs to separate signals of environmental change from natural variability.
Scale-dependent temporal variations in stream water geochemistry
Nagorski, S.A.; Moore, J.N.; McKinnon, Temple E.; Smith, D.B.
2003-01-01
A year-long study of four western Montana streams (two impacted by mining and two "pristine") evaluated surface water geochemical dynamics on various time scales (monthly, daily, and bi-hourly). Monthly changes were dominated by snowmelt and precipitation dynamics. On the daily scale, post-rain surges in some solute and particulate concentrations were similar to those of early spring runoff flushing characteristics on the monthly scale. On the bi-hourly scale, we observed diel (diurnal-nocturnal) cycling for pH, dissolved oxygen, water temperature, dissolved inorganic carbon, total suspended sediment, and some total recoverable metals at some or all sites. A comparison of the cumulative geochemical variability within each of the temporal groups reveals that for many water quality parameters there were large overlaps of concentration ranges among groups. We found that short-term (daily and bi-hourly) variations of some geochemical parameters covered large proportions of the variations found on a much longer term (monthly) time scale. These results show the importance of nesting short-term studies within long-term geochemical study designs to separate signals of environmental change from natural variability.
Real-time management of a multipurpose water reservoir with a heteroscedastic inflow model
NASA Astrophysics Data System (ADS)
Pianosi, F.; Soncini-Sessa, R.
2009-10-01
Stochastic dynamic programming has been extensively used as a method for designing optimal regulation policies for water reservoirs. However, the potential of this method is dramatically reduced by its computational burden, which often forces to introduce strong approximations in the model of the system, especially in the description of the reservoir inflow. In this paper, an approach to partially remedy this problem is proposed and applied to a real world case study. It foresees solving the management problem on-line, using a reduced model of the system and the inflow forecast provided by a dynamic model. By doing so, all the hydrometeorological information that is available in real-time is fully exploited. The model here proposed for the inflow forecasting is a nonlinear, heteroscedastic model that provides both the expected value and the standard deviation of the inflow through dynamic relations. The effectiveness of such model for the purpose of the reservoir regulation is evaluated through simulation and comparison with the results provided by conventional homoscedastic inflow models.
Pal, Parimal; Das, Pallabi; Chakrabortty, Sankha; Thakura, Ritwik
2016-11-01
Dynamic modelling and simulation of a nanofiltration-forward osmosis integrated complete system was done along with economic evaluation to pave the way for scale up of such a system for treating hazardous pharmaceutical wastes. The system operated in a closed loop not only protects surface water from the onslaught of hazardous industrial wastewater but also saves on cost of fresh water by turning wastewater recyclable at affordable price. The success of dynamic modelling in capturing the relevant transport phenomena is well reflected in high overall correlation coefficient value (R 2 > 0.98), low relative error (<0.1) and Willmott d-index (<0.95). The system could remove more than 97.5 % chemical oxygen demand (COD) from real pharmaceutical wastewater having initial COD value as high as 3500 mg/L while ensuring operation of the forward osmosis loop at a reasonably high flux of 56-58 l per square meter per hour.
Monosaccharides as Versatile Units for Water-Soluble Supramolecular Polymers.
Leenders, Christianus M A; Jansen, Gijs; Frissen, Martijn M M; Lafleur, René P M; Voets, Ilja K; Palmans, Anja R A; Meijer, E W
2016-03-18
We introduce monosaccharides as versatile water-soluble units to compatibilise supramolecular polymers based on the benzene-1,3,5-tricarboxamide (BTA) moiety with water. A library of monosaccharide-based BTAs is evaluated, varying the length of the alkyl chain (hexyl, octyl, decyl and dodecyl) separating the BTA and saccharide units, as well as the saccharide units (α-glucose, β-glucose, α-mannose and α-galactose). In all cases, the monosaccharides impart excellent water compatibility. The length of the alkyl chain is the determining factor to obtain either long, one-dimensional supramolecular polymers (dodecyl spacer), small aggregates (decyl spacer) or molecularly dissolved (octyl and hexyl) BTAs in water. For the BTAs comprising a dodecyl spacer, our results suggest that a cooperative self-assembly process is operative and that the introduction of different monosaccharides does not significantly change the self- assembly behaviour. Finally, we investigate the potential of post-assembly functionalisation of the formed supramolecular polymers by taking advantage of dynamic covalent bond formation between the monosaccharides and benzoxaboroles. We observe that the supramolecular polymers readily react with a fluorescent benzoxaborole derivative permitting imaging of these dynamic complexes by confocal fluorescence microscopy. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Xu, Xiangtao; Medvigy, David; Powers, Jennifer S; Becknell, Justin M; Guan, Kaiyu
2016-10-01
We assessed whether diversity in plant hydraulic traits can explain the observed diversity in plant responses to water stress in seasonally dry tropical forests (SDTFs). The Ecosystem Demography model 2 (ED2) was updated with a trait-driven mechanistic plant hydraulic module, as well as novel drought-phenology and plant water stress schemes. Four plant functional types were parameterized on the basis of meta-analysis of plant hydraulic traits. Simulations from both the original and the updated ED2 were evaluated against 5 yr of field data from a Costa Rican SDTF site and remote-sensing data over Central America. The updated model generated realistic plant hydraulic dynamics, such as leaf water potential and stem sap flow. Compared with the original ED2, predictions from our novel trait-driven model matched better with observed growth, phenology and their variations among functional groups. Most notably, the original ED2 produced unrealistically small leaf area index (LAI) and underestimated cumulative leaf litter. Both of these biases were corrected by the updated model. The updated model was also better able to simulate spatial patterns of LAI dynamics in Central America. Plant hydraulic traits are intercorrelated in SDTFs. Mechanistic incorporation of plant hydraulic traits is necessary for the simulation of spatiotemporal patterns of vegetation dynamics in SDTFs in vegetation models. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Gerrity, Daniel; Arnold, Mayara; Dickenson, Eric; Moser, Duane; Sackett, Joshua D; Wert, Eric C
2018-05-15
Microbial community structure in the ozone-biofiltration systems of two drinking water and two wastewater treatment facilities was characterized using 16S rRNA gene sequencing. Collectively, these datasets enabled comparisons by facility, water type (drinking water, wastewater), pre-oxidation (ozonation, chlorination), media type (anthracite, activated carbon), media depth, and backwash dynamics. Proteobacteria was the most abundant phylum in drinking water filters, whereas Bacteroidetes, Chloroflexi, Firmicutes, and Planctomycetes were differentially abundant in wastewater filters. A positive correlation was observed between media depth and relative abundance of Cyanobacteria in drinking water filters, but there was only a slight increase in one alpha diversity metric with depth in the wastewater filters. Media type had a significant effect on beta but not alpha diversity in drinking water and wastewater filters. Pre-ozonation caused a significant decrease in alpha diversity in the wastewater filters, but the effect on beta diversity was not statistically significant. An evaluation of backwash dynamics resulted in two notable observations: (1) endosymbionts such as Neochlamydia and Legionella increased in relative abundance following backwashing and (2) nitrogen-fixing Bradyrhizobium dominated the microbial community in wastewater filters operated with infrequent backwashing. Bradyrhizobium is known to generate extracellular polymeric substances (EPS), which may adversely impact biofilter performance and effluent water quality. These findings have important implications for public health and the operation and resiliency of biofiltration systems. Copyright © 2018 Elsevier Ltd. All rights reserved.
Molinos-Senante, María; Maziotis, Alexandros; Sala-Garrido, Ramon
2017-07-15
The assessment of productivity change and its drivers across water companies and over time is a powerful tool for both regulators and companies when setting water tariffs. Water and sewerage companies (WaSCs) and water only companies (WoCs) provide different services. Hence, their productivity change cannot directly be evaluated jointly. In this paper and for the first time, we provide a pioneering approach to assess and compare the dynamics of productivity change of WaSCs and WoCs. To achieve this, both the traditional Malmquist productivity index and the metafrontier Malmquist productivity index and its components are computed to assess the productivity change for a sample of English and Welsh water companies over the period 2001-2014. The findings from both indices indicate that productivity for both WaSCs and WoCs did not improve during this period, mainly due to the negative shift in the production frontier which offset the positive effect of efficiency change. It is also reported that the performance of the WoCs over time was slightly better than that of the WaSCs. Finally, our study provides some insights into the relationship between productivity change and the regulatory cycle. This information is essential to improve the regulation of water and sewerage services, contributing to the long-term sustainability of the urban water cycle. Copyright © 2017 Elsevier Ltd. All rights reserved.
Shallow bedrock limits groundwater seepage-based headwater climate refugia
Briggs, Martin A.; Lane, John W.; Snyder, Craig D.; White, Eric A.; Johnson, Zachary; Nelms, David L.; Hitt, Nathaniel P.
2018-01-01
Groundwater/surface-water exchanges in streams are inexorably linked to adjacent aquifer dynamics. As surface-water temperatures continue to increase with climate warming, refugia created by groundwater connectivity is expected to enable cold water fish species to survive. The shallow alluvial aquifers that source groundwater seepage to headwater streams, however, may also be sensitive to seasonal and long-term air temperature dynamics. Depth to bedrock can directly influence shallow aquifer flow and thermal sensitivity, but is typically ill-defined along the stream corridor in steep mountain catchments. We employ rapid, cost-effective passive seismic measurements to evaluate the variable thickness of the shallow colluvial and alluvial aquifer sediments along a headwater stream supporting cold water-dependent brook trout (Salvelinus fontinalis) in Shenandoah National Park, VA, USA. Using a mean depth to bedrock of 2.6 m, numerical models predicted strong sensitivity of shallow aquifer temperature to the downward propagation of surface heat. The annual temperature dynamics (annual signal amplitude attenuation and phase shift) of potential seepage sourced from the shallow modeled aquifer were compared to several years of paired observed stream and air temperature records. Annual stream water temperature patterns were found to lag local air temperature by ∼8–19 d along the stream corridor, indicating that thermal exchange between the stream and shallow groundwater is spatially variable. Locations with greater annual signal phase lag were also associated with locally increased amplitude attenuation, further suggestion of year-round buffering of channel water temperature by groundwater seepage. Numerical models of shallow groundwater temperature that incorporate regional expected climate warming trends indicate that the summer cooling capacity of this groundwater seepage will be reduced over time, and lower-elevation stream sections may no longer serve as larger-scale climate refugia for cold water fish species, even with strong groundwater discharge.
Water dynamics in large and small reverse micelles: From two ensembles to collective behavior
Moilanen, David E.; Fenn, Emily E.; Wong, Daryl; Fayer, Michael D.
2009-01-01
The dynamics of water in Aerosol-OT reverse micelles are investigated with ultrafast infrared spectroscopy of the hydroxyl stretch. In large reverse micelles, the dynamics of water are separable into two ensembles: slow interfacial water and bulklike core water. As the reverse micelle size decreases, the slowing effect of the interface and the collective nature of water reorientation begin to slow the dynamics of the core water molecules. In the smallest reverse micelles, these effects dominate and all water molecules have the same long time reorientational dynamics. To understand and characterize the transition in the water dynamics from two ensembles to collective reorientation, polarization and frequency selective infrared pump-probe experiments are conducted on the complete range of reverse micelle sizes from a diameter of 1.6–20 nm. The crossover between two ensemble and collective reorientation occurs near a reverse micelle diameter of 4 nm. Below this size, the small number of confined water molecules and structural changes in the reverse micelle interface leads to homogeneous long time reorientation. PMID:19586114
Structure and dynamics of protein waters revealed by radiolysis and mass spectrometry
Gupta, Sayan; D’Mello, Rhijuta; Chance, Mark R.
2012-01-01
Water is critical for the structure, stability, and functions of macromolecules. Diffraction and NMR studies have revealed structure and dynamics of bound waters at atomic resolution. However, localizing the sites and measuring the dynamics of bound waters, particularly on timescales relevant to catalysis and macromolecular assembly, is quite challenging. Here we demonstrate two techniques: first, temperature-dependent radiolytic hydroxyl radical labeling with a mass spectrometry (MS)-based readout to identify sites of bulk and bound water interactions with surface and internal residue side chains, and second, H218O radiolytic exchange coupled MS to measure the millisecond dynamics of bound water interactions with various internal residue side chains. Through an application of the methods to cytochrome c and ubiquitin, we identify sites of water binding and measure the millisecond dynamics of bound waters in protein crevices. As these MS-based techniques are very sensitive and not protein size limited, they promise to provide unique insights into protein–water interactions and water dynamics for both small and large proteins and their complexes. PMID:22927377
NASA Technical Reports Server (NTRS)
Mitchell, Julie L.; Broyan, James L.; Pickering, Karen D.; Adam, Niklas; Casteel, Michael; Callaham, Michael; Carrier, Chris
2011-01-01
In support of the Urine Processor Assembly Precipitation Prevention Project (UPA PPP), multiple technologies were explored to prevent CaSO4 dot 2H2O (gypsum) precipitation during the on-orbit distillation process. Gypsum precipitation currently limits the water recovery rate onboard the International Space Station (ISS) to 70% versus the planned 85% target water recovery rate. Due to its advanced performance in removing calcium cations in pretreated augmented urine (PTAU), ion exchange was selected as one of the technologies for further development by the PPP team. A total of 12 ion exchange resins were evaluated in various equilibrium and dynamic column tests with solutions of dissolved gypsum, urine ersatz, PTAU, and PTAU brine at 85% water recovery. While initial evaluations indicated that the Purolite SST60 resin had the highest calcium capacity in PTAU (0.30 meq/mL average), later tests showed that the Dowex G26 and Amberlite FPC12H resins had the highest capacity (0.5 meq/mL average). Further dynamic column testing proved that G26 performance is +/- 10% of that value at flow rates of 0.45 and 0.79 Lph under continuous flow, and 10.45 Lph under pulsed flow. Testing at the Marshall Spaceflight Center (MSFC) integrates the ion exchange technology with a UPA ground article under flight-like pulsed flow conditions with PTAU. To date, no gypsum precipitation has taken place in any of the initial evaluations.
Response of walleye and yellow perch to water-level fluctuations in glacial lakes
Dembkowski, D.J.; Chipps, Steven R.; Blackwell, B. G.
2014-01-01
The influence of water levels on population characteristics of yellow perch, Perca flavescens (Mitchill), and walleye, Sander vitreus (Mitchill), was evaluated across a range of glacial lakes in north-eastern South Dakota, USA. Results showed that natural variation in water levels had an important influence on frequently measured fish population characteristics. Yellow perch abundance was significantly (P<0.10) greater during elevated water levels. Yellow perch size structure, as indexed by the proportional size distribution of quality- and preferred-length fish (PSD and PSD-P), was significantly greater during low-water years, as was walleye PSD. Mean relative weight of walleye increased significantly during high-water periods. The dynamic and unpredictable nature of water-level fluctuations in glacial lakes ultimately adds complexity to management of these systems.
Evaluation of a distributed catchment scale water balance model
NASA Technical Reports Server (NTRS)
Troch, Peter A.; Mancini, Marco; Paniconi, Claudio; Wood, Eric F.
1993-01-01
The validity of some of the simplifying assumptions in a conceptual water balance model is investigated by comparing simulation results from the conceptual model with simulation results from a three-dimensional physically based numerical model and with field observations. We examine, in particular, assumptions and simplifications related to water table dynamics, vertical soil moisture and pressure head distributions, and subsurface flow contributions to stream discharge. The conceptual model relies on a topographic index to predict saturation excess runoff and on Philip's infiltration equation to predict infiltration excess runoff. The numerical model solves the three-dimensional Richards equation describing flow in variably saturated porous media, and handles seepage face boundaries, infiltration excess and saturation excess runoff production, and soil driven and atmosphere driven surface fluxes. The study catchments (a 7.2 sq km catchment and a 0.64 sq km subcatchment) are located in the North Appalachian ridge and valley region of eastern Pennsylvania. Hydrologic data collected during the MACHYDRO 90 field experiment are used to calibrate the models and to evaluate simulation results. It is found that water table dynamics as predicted by the conceptual model are close to the observations in a shallow water well and therefore, that a linear relationship between a topographic index and the local water table depth is found to be a reasonable assumption for catchment scale modeling. However, the hydraulic equilibrium assumption is not valid for the upper 100 cm layer of the unsaturated zone and a conceptual model that incorporates a root zone is suggested. Furthermore, theoretical subsurface flow characteristics from the conceptual model are found to be different from field observations, numerical simulation results, and theoretical baseflow recession characteristics based on Boussinesq's groundwater equation.
NASA Astrophysics Data System (ADS)
Marques, G.; Fraga, C. C. S.; Medellin-Azuara, J.
2016-12-01
The expansion and operation of urban water supply systems under growing demands, hydrologic uncertainty and water scarcity requires a strategic combination of supply sources for reliability, reduced costs and improved operational flexibility. The design and operation of such portfolio of water supply sources involves integration of long and short term planning to determine what and when to expand, and how much to use of each supply source accounting for interest rates, economies of scale and hydrologic variability. This research presents an integrated methodology coupling dynamic programming optimization with quadratic programming to optimize the expansion (long term) and operations (short term) of multiple water supply alternatives. Lagrange Multipliers produced by the short-term model provide a signal about the marginal opportunity cost of expansion to the long-term model, in an iterative procedure. A simulation model hosts the water supply infrastructure and hydrologic conditions. Results allow (a) identification of trade offs between cost and reliability of different expansion paths and water use decisions; (b) evaluation of water transfers between urban supply systems; and (c) evaluation of potential gains by reducing water system losses as a portfolio component. The latter is critical in several developing countries where water supply system losses are high and often neglected in favor of more system expansion.
Anomalous Dynamics of Water Confined in Protein-Protein and Protein-DNA Interfaces.
Chong, Song-Ho; Ham, Sihyun
2016-10-06
Confined water often exhibits anomalous properties not observable in the bulk phase. Although water in hydrophobic confinement has been the focus of intense investigation, the behavior of water confined between hydrophilic surfaces, which are more frequently found in biological systems, has not been fully explored. Here, we investigate using molecular dynamics simulations dynamical properties of the water confined in hydrophilic protein-protein and protein-DNA interfaces. We find that the interfacial water exhibits glassy slow relaxations even at 300 K. In particular, the rotational dynamics show a logarithmic decay that was observed in glass-forming liquids at deeply supercooled states. We argue that such slow water dynamics are indeed induced by the hydrophilic binding surfaces, which is in opposition to the picture that the hydration water slaves protein motions. Our results will significantly impact the view on the role of water in biomolecular interactions.
Conrads, Paul; Roehl, Edwin A.; Daamen, Ruby C.; Cook, John B.
2013-01-01
Potential changes in climate could alter interactions between environmental and societal systems and adversely affect the availability of water resources in many coastal communities. Changes in streamflow patterns in conjunction with sea-level rise may change the salinity-intrusion dynamics of coastal rivers. Several municipal water-supply intakes are located along the Georgia and South Carolina coast that are proximal to the present day saltwater-freshwater interface of tidal rivers. Increases in the extent of salinity intrusion resulting from climate change could threaten the availability of freshwater supplies in the vicinity of these intakes. To effectively manage these supplies, water-resource managers need estimates of potential changes in the frequency, duration, and magnitude of salinity intrusion near their water-supply intakes that may occur as a result of climate change. This study examines potential effects of climate change, including altered streamflow and sea-level rise, on the dynamics of saltwater intrusion near municipal water-supply intakes in two coastal areas. One area consists of the Atlantic Intracoastal Waterway (AIW) and the Waccamaw River near Myrtle Beach along the Grand Strand of the South Carolina Coast, and the second area is on or near the lower Savannah River near Savannah, Georgia. The study evaluated how future sea-level rise and a reduction in streamflows can potentially affect salinity intrusion and threaten municipal water supplies and the biodiversity of freshwater tidal marshes in these two areas. Salinity intrusion occurs as a result of the interaction between three principal forces—streamflow, mean coastal water levels, and tidal range. To analyze and simulate salinity dynamics at critical coastal gaging stations near four municipal water-supply intakes, various data-mining techniques, including artificial neural network (ANN) models, were used to evaluate hourly streamflow, salinity, and coastal water-level data collected over a period exceeding 10 years. The ANN models were trained (calibrated) to learn the specific interactions that cause salinity intrusions, and resulting models were able to accurately simulate historical salinity dynamics in both study areas. Changes in sea level and streamflow quantity and timing can be simulated by the salinity intrusion models to evaluate various climate-change scenarios. The salinity intrusion models for the study areas are deployed in a decision support system to facilitate the use of the models for management decisions by coastal water-resource managers. The report describes the use of the salinity-intrusion models decision support system to evaluate salinity-intrusion dynamics for various climate-change scenarios, including incremental increases in sea level in combination with incremental decreases in streamflow. Operation of municipal water-treatment plants is problematic when the specific-conductance values for source water are greater than 1,000 to 2,000 microsiemens per centimeter (µS/cm). High specific-conductance values contribute to taste problems that require treatment. Data from a gage downstream from a municipal water intake indicate specific conductance exceeded 1,000 µS/cm about 5.4 percent of the time over the 14-year period from August 1995 to August 2008. Simulations of specific conductance at this gaging station that incorporates sea-level rises resulted in a doubling of the exceedances to 11.0 percent for a 1-foot increase and 17.6 percent for a 2-foot increase. The frequency of intrusion of water with specific conductance values of 1,000 µS/cm was less sensitive to incremental reductions in streamflow than to incremental increases in sea level. Simulations of conditions associated with a 10-percent reduction in streamflow, in combination with a 1-foot rise in sea level, increased the percentage of time specific conductance exceeded 1,000 µS/cm at this site from 11.0 to 13.3 percent, and a 20-percent reduction in streamflow increased the percentage of time to 16.6 percent. Precipitation and temperature data from a global circulation model were used, after scale adjustments, as input to a watershed model of the Yadkin-Pee Dee River basin, which flows into the Waccamaw River and Atlantic Intracoastal Waterway study area in South Carolina. The simulated streamflow for historical conditions and projected climate change in the future was used as input for the ANN model in decision support system. Results of simulations incorporating climate-change projections for alterations in streamflow indicate an increase in the frequency of salinity-intrusion events and a shift in the seasonal occurrence of the intrusion events from the summer to the fall.
NASA Astrophysics Data System (ADS)
Dinar, Ariel; Aillery, Marcel P.; Moore, Michael R.
1993-06-01
This paper presents a dynamic model of irrigated agriculture that accounts for drainage generation and salinity accumulation. Critical model relationships involving crop production, soil salinity, and irrigation drainage are based on newly estimated functions derived from lysimeter field tests. The model allocates land and water inputs over time based on an intertemporal profit maximization objective function and soil salinity accumulation process. The model is applied to conditions in the San Joaquin Valley of California, where environmental degradation from irrigation drainage has become a policy issue. Findings indicate that in the absence of regulation, drainage volumes increase over time before reaching a steady state as increased quantities of water are allocated to leaching soil salts. The model is used to evaluate alternative drainage abatement scenarios involving drainage quotas and taxes, water supply quotas and taxes, and irrigation technology subsidies. In our example, direct drainage policies are more cost-effective in reducing drainage than policies operating indirectly through surface water use, although differences in cost efficiency are relatively small. In some cases, efforts to control drainage may result in increased soil salinity accumulation, with implications for long-term cropland productivity. While policy adjustments may alter the direction and duration of convergence to a steady state, findings suggest that a dynamic model specification may not be necessary due to rapid convergence to a comon steady state under selected scenarios.
Fortini, Lucas Berio; Bruna, Emilio M; Zarin, Daniel J; Vasconcelos, Steel S; Miranda, Izildinha S
2010-04-01
Despite research demonstrating that water and nutrient availability exert strong effects on multiple ecosystem processes in tropical forests, little is known about the effect of these factors on the demography and population dynamics of tropical trees. Over the course of 5 years, we monitored two common Amazonian secondary forest species-Lacistema pubescens and Myrcia sylvatica-in dry-season irrigation, litter-removal and control plots. We then evaluated the effects of altered water and nutrient availability on population demography and dynamics using matrix models and life table response experiments. Our results show that despite prolonged experimental manipulation of water and nutrient availability, there were nearly no consistent and unidirectional treatment effects on the demography of either species. The patterns and significance of observed treatment effects were largely dependent on cross-year variability not related to rainfall patterns, and disappeared once we pooled data across years. Furthermore, most of these transient treatment effects had little effect on population growth rates. Our results suggest that despite major experimental manipulations of water and nutrient availability-factors considered critical to the ecology of tropical pioneer tree species-autogenic light limitation appears to be the primary regulator of tree demography at early/mid successional stages. Indeed, the effects of light availability may completely override those of other factors thought to influence the successional development of Amazonian secondary forests.
Investigating water transport through the xylem network in vascular plants.
Kim, Hae Koo; Park, Joonghyuk; Hwang, Ildoo
2014-04-01
Our understanding of physical and physiological mechanisms depends on the development of advanced technologies and tools to prove or re-evaluate established theories, and test new hypotheses. Water flow in land plants is a fascinating phenomenon, a vital component of the water cycle, and essential for life on Earth. The cohesion-tension theory (CTT), formulated more than a century ago and based on the physical properties of water, laid the foundation for our understanding of water transport in vascular plants. Numerous experimental tools have since been developed to evaluate various aspects of the CTT, such as the existence of negative hydrostatic pressure. This review focuses on the evolution of the experimental methods used to study water transport in plants, and summarizes the different ways to investigate the diversity of the xylem network structure and sap flow dynamics in various species. As water transport is documented at different scales, from the level of single conduits to entire plants, it is critical that new results be subjected to systematic cross-validation and that findings based on different organs be integrated at the whole-plant level. We also discuss the functional trade-offs between optimizing hydraulic efficiency and maintaining the safety of the entire transport system. Furthermore, we evaluate future directions in sap flow research and highlight the importance of integrating the combined effects of various levels of hydraulic regulation.
Yurek, Simeon; DeAngelis, Donald L.; Trexler, Joel C.; Klassen, Stephen; Larsen, Laurel G.
2016-01-01
In flood-pulsed ecosystems, hydrology and landscape structure mediate transfers of energy up the food chain by expanding and contracting in area, enabling spatial expansion and growth of fish populations during rising water levels, and subsequent concentration during the drying phase. Connectivity of flooded areas is dynamic as waters rise and fall, and is largely determined by landscape geomorphology and anisotropy. We developed a methodology for simulating fish dispersal and concentration on spatially-explicit, dynamic floodplain wetlands with pulsed food web dynamics, to evaluate how changes in connectivity through time contribute to the concentration of fish biomass that is essential for higher trophic levels. The model also tracks a connectivity index (DCI) over different compass directions to see if fish biomass dynamics can be related in a simple way to topographic pattern. We demonstrate the model for a seasonally flood-pulsed, oligotrophic system, the Everglades, where flow regimes have been greatly altered. Three dispersing populations of functional fish groups were simulated with empirically-based dispersal rules on two landscapes, and two twelve-year time series of managed water levels for those areas were applied. The topographies of the simulations represented intact and degraded ridge-and-slough landscapes (RSL). Simulation results showed large pulses of biomass concentration forming during the onset of the drying phase, when water levels were falling and fish began to converge into the sloughs. As water levels fell below the ridges, DCI declined over different directions, closing down dispersal lanes, and fish density spiked. Persistence of intermediate levels of connectivity on the intact RSL enabled persistent concentration events throughout the drying phase. The intact landscape also buffered effects of wet season population growth. Water level reversals on both landscapes negatively affected fish densities by depleting fish populations without allowing enough time for them to regenerate. Testable, spatiotemporal predictions of the timing, location, duration, and magnitude of fish concentration pulses were produced by the model, and can be applied to restoration planning.
Estimation of mussel population response to hydrologic alteration in a southeastern U.S. stream
Peterson, J.T.; Wisniewski, J.M.; Shea, C.P.; Rhett, Jackson C.
2011-01-01
The southeastern United States has experienced severe, recurrent drought, rapid human population growth, and increasing agricultural irrigation during recent decades, resulting in greater demand for the water resources. During the same time period, freshwater mussels (Unioniformes) in the region have experienced substantial population declines. Consequently, there is growing interest in determining how mussel population declines are related to activities associated with water resource development. Determining the causes of mussel population declines requires, in part, an understanding of the factors influencing mussel population dynamics. We developed Pradel reverse-time, tag-recapture models to estimate survival, recruitment, and population growth rates for three federally endangered mussel species in the Apalachicola- Chattahoochee-Flint River Basin, Georgia. The models were parameterized using mussel tag-recapture data collected over five consecutive years from Sawhatchee Creek, located in southwestern Georgia. Model estimates indicated that mussel survival was strongly and negatively related to high flows during the summer, whereas recruitment was strongly and positively related to flows during the spring and summer. Using these models, we simulated mussel population dynamics under historic (1940-1969) and current (1980-2008) flow regimes and under increasing levels of water use to evaluate the relative effectiveness of alternative minimum flow regulations. The simulations indicated that the probability of simulated mussel population extinction was at least 8 times greater under current hydrologic regimes. In addition, simulations of mussel extinction under varying levels of water use indicated that the relative risk of extinction increased with increased water use across a range of minimum flow regulations. The simulation results also indicated that our estimates of the effects of water use on mussel extinction were influenced by the assumptions about the dynamics of the system, highlighting the need for further study of mussel population dynamics. ?? 2011 Springer Science+Business Media, LLC (outside the USA).
NASA Astrophysics Data System (ADS)
Orlowski, Natalie; Kraft, Philipp; Pferdmenges, Jakob; Breuer, Lutz
2016-09-01
A dual stable water isotope (δ2H and δ18O) study was conducted in the developed (managed) landscape of the Schwingbach catchment (Germany). The 2-year weekly to biweekly measurements of precipitation, stream, and groundwater isotopes revealed that surface and groundwater are isotopically disconnected from the annual precipitation cycle but showed bidirectional interactions between each other. Apparently, snowmelt played a fundamental role for groundwater recharge explaining the observed differences to precipitation δ values. A spatially distributed snapshot sampling of soil water isotopes at two soil depths at 52 sampling points across different land uses (arable land, forest, and grassland) revealed that topsoil isotopic signatures were similar to the precipitation input signal. Preferential water flow paths occurred under forested soils, explaining the isotopic similarities between top- and subsoil isotopic signatures. Due to human-impacted agricultural land use (tilling and compression) of arable and grassland soils, water delivery to the deeper soil layers was reduced, resulting in significant different isotopic signatures. However, the land use influence became less pronounced with depth and soil water approached groundwater δ values. Seasonally tracing stable water isotopes through soil profiles showed that the influence of new percolating soil water decreased with depth as no remarkable seasonality in soil isotopic signatures was obvious at depths > 0.9 m and constant values were observed through space and time. Since classic isotope evaluation methods such as transfer-function-based mean transit time calculations did not provide a good fit between the observed and calculated data, we established a hydrological model to estimate spatially distributed groundwater ages and flow directions within the Vollnkirchener Bach subcatchment. Our model revealed that complex age dynamics exist within the subcatchment and that much of the runoff must has been stored for much longer than event water (average water age is 16 years). Tracing stable water isotopes through the water cycle in combination with our hydrological model was valuable for determining interactions between different water cycle components and unravelling age dynamics within the study area. This knowledge can further improve catchment-specific process understanding of developed, human-impacted landscapes.
Sparkle L. Malone; Mirela G. Tulbure; Antonio J. Perez-Luque; Timothy J. Assal; Leah L. Bremer; Debora P. Drucker; Vicken Hillis; Sara Varela; Michael L. Goulden
2016-01-01
Drought is a global issue that is exacerbated by climate change and increasing anthropogenic water demands. The recent occurrence of drought in California provides an important opportunity to examine drought response across ecosystem classes (forests, shrublands, grasslands, and wetlands), which is essential to understand how climate influences ecosystem structure and...
Yottha Srithep; Lih-Sheng Turng; Ronald Sabo; Craig Clemons
2012-01-01
Polyvinyl alcohol (PVOH) and its nanofibrillated cellulose (NFC) reinforced nanocomposites were produced and foamed and its properties-such as the dynamic mechanical properties, crystallization behavior, and solubility of carbon dioxide (CO2)were evaluated. PVOH was mixed with an NFC fiber suspension in water followed by casting. Transmission...
USDA-ARS?s Scientific Manuscript database
Soil moisture dynamics reflect the complex interactions of meteorological conditions with soil, vegetation and terrain properties. In this study, intermediate-scale soil moisture estimates from the cosmic-ray neutron sensing (CRNS) method are evaluated for two semiarid ecosystems in the southwestern...
Sediment Resuspension and Transport in Water Distribution ...
Journal article This journal article addresses the question of how likely tank sediments are to be resuspended and to drain from the tank, potentially impacting human health. AUsing computational fluid dynamics software, and sediment models from the literature, a variety of normal tank operating conditions are assessed to evaluate the likelihood of tank sediment resuspension.
In the mid-1990s the Tampa Bay Estuary Program proposed a nutrient reduction strategy focused on improving water clarity to promote seagrass expansion within Tampa Bay. A System Dynamics Model is being developed to evaluate spatially and temporally explicit impacts of nutrient r...
NASA Technical Reports Server (NTRS)
Korte, John J.
1990-01-01
A numerical simulation of the actuation system for the propulsion control valve (PCV) of the NASA Langley Aircraft Landing Dynamics Facility was developed during the preliminary design of the PCV and used throughout the entire project. The simulation is based on a predictive model of the PCV which is used to evaluate and design the actuation system. The PCV controls a 1.7 million-pound thrust water jet used in propelling a 108,000-pound test carriage. The PCV can open and close in 0.300 second and deliver over 9,000 gallons of water per sec at pressures up to 3150 psi. The numerical simulation results are used to predict transient performance and valve opening characteristics, specify the hydraulic control system, define transient loadings on components, and evaluate failure modes. The mathematical model used for numerically simulating the mechanical fluid power system is described, and numerical results are demonstrated for a typical opening and closing cycle of the PCV. A summary is then given on how the model is used in the design process.
Structure and dynamics of water inside hydrophobic and hydrophilic nanotubes
NASA Astrophysics Data System (ADS)
Köhler, Mateus Henrique; Bordin, José Rafael; da Silva, Leandro B.; Barbosa, Marcia C.
2018-01-01
We have used Molecular Dynamics simulations to investigate the structure and dynamics of TIP4P/2005 water confined inside nanotubes. The nanotubes have distinct sizes and were built with hydrophilic or hydrophobic sites, and we compare the water behavior inside each nanotube. Our results shows that the structure and dynamics are strongly influenced by polarity inside narrow nanotubes, where water layers were observed, and the influence is negligible for wider nanotubes, where the water has a bulk-like density profile. As well, we show that water at low density can have a smaller diffusion inside nanotubes than water at higher densities. This result is a consequence of water diffusion anomaly.
Integrating Flow, Form, and Function for Improved Environmental Water Management
NASA Astrophysics Data System (ADS)
Albin Lane, Belize Arela
Rivers are complex, dynamic natural systems. The performance of river ecosystem functions, such as habitat availability and sediment transport, depends on the interplay of hydrologic dynamics (flow) and geomorphic settings (form). However, most river restoration studies evaluate the role of either flow or form without regard for their dynamic interactions. Despite substantial recent interest in quantifying environmental water requirements to support integrated water management efforts, the absence of quantitative, transferable relationships between river flow, form, and ecosystem functions remains a major limitation. This research proposes a novel, process-driven methodology for evaluating river flow-form-function linkages in support of basin-scale environmental water management. This methodology utilizes publically available geospatial and time-series data and targeted field data collection to improve basic understanding of river systems with limited data and resource requirements. First, a hydrologic classification system is developed to characterize natural hydrologic variability across a highly altered, physio-climatically diverse landscape. Next, a statistical analysis is used to characterize reach-scale geomorphic variability and to investigate the utility of topographic variability attributes (TVAs, subreach-scale undulations in channel width and depth), alongside traditional reach-averaged attributes, for distinguishing dominant geomorphic forms and processes across a hydroscape. Finally, the interacting roles of flow (hydrologic regime, water year type, and hydrologic impairment) and form (channel morphology) are quantitatively evaluated with respect to ecosystem functions related to hydrogeomorphic processes, aquatic habitat, and riparian habitat. Synthetic river corridor generation is used to evaluate and isolate the role of distinct geomorphic attributes without the need for intensive topographic surveying. This three-part methodology was successfully applied in the Sacramento Basin of California, USA, a large, heavily altered Mediterranean-montane basin. A spatially-explicit hydrologic classification of California distinguished eight natural hydrologic regimes representing distinct flow sources, hydrologic characteristics, and rainfall-runoff controls. A hydro-geomorphic sub-classification of the Sacramento Basin based on stratified random field surveys of 161 stream reaches distinguished nine channel types consisting of both previously identified and new channel types. Results indicate that TVAs provide a quantitative basis for interpreting non-uniform as well as uniform geomorphic processes to better distinguish linked channel forms and functions of ecological significance. Finally, evaluation of six ecosystem functions across alternative flow-form scenarios in the Yuba River watershed highlights critical tradeoffs in ecosystem performance and emphasizes the significance of spatiotemporal diversity of flow and form for maintaining ecosystem integrity. The methodology developed in this dissertation is broadly applicable and extensible to other river systems and ecosystem functions, where findings can be used to characterize complex controls on river ecosystems, assess impacts of proposed flow and form alterations, and inform river restoration strategies. Overall, this research improves scientific understanding of the linkages between hydrology, geomorphology, and river ecosystems to more efficiently allocate scare water resources for human and environmental objectives across natural and built landscapes.
Technological change in irrigated agriculture in a semiarid region of Spain
NASA Astrophysics Data System (ADS)
Philip, Jean-Marc; Sánchez-Chóliz, Julio; Sarasa, Cristina
2014-12-01
Technological change plays a decisive role in irrigated agriculture, which is particularly challenging in semiarid regions. The main objective of this paper is to assess four kinds of alternative technological improvements aimed at dealing with future water availability, especially in the case of extreme events like drought. We evaluate these technologies for a better understanding of what form should be applied in irrigated agriculture in a context of limits on natural resources. We develop a dynamic computable general equilibrium (CGE) model, whose production structure distinguishes between rainfed and irrigated crops, and between a variety of irrigated crops. Land use changes are also evaluated. As well as technological change, we consider the Water Framework Directive (EC 2000/60), which establishes water cost recovery as a key goal. Thus, we assess strategies that combine irrigation water pricing strategies and improved technology. Our results show that policy strategies that focus on fostering technical progress can mitigate the long-term economic effects of downward trends in water supplies, even in drought years. The study also confirms that the absence of price volatility achieved through a water pricing strategy could improve the sustainable use of water.
Bouchet, Sylvain; Tessier, Emmanuel; Monperrus, Mathilde; Bridou, Romain; Clavier, Jacques; Thouzeau, Gerard; Amouroux, David
2011-05-01
The elemental mercury evasion from non-impacted natural areas is of significant importance in the global Hg cycle due to their large spatial coverage. Intertidal areas represent a dynamic environment promoting the transformations of Hg species and their subsequent redistribution. A major challenge remains in providing reliable data on Hg species variability and fluxes under typical transient tidal conditions found in such environment. Field experiments were thus carried out to allow the assessment and comparison of the magnitude of the gaseous Hg fluxes at the three interfaces, sediment-water, sediment-atmosphere and water-atmosphere of a mesotidal temperate lagoon (Arcachon Bay, Aquitaine, France) over three distinct seasonal conditions. The fluxes between the sediment-water and the sediment-atmosphere interfaces were directly evaluated with field flux chambers, respectively static or dynamic. Water-atmosphere fluxes were evaluated from ambient concentrations using a gas exchange model. The fluxes at the sediment-water interface ranged from -5.0 to 5.1 ng m(-2) h(-1) and appeared mainly controlled by diffusion. The occurrence of macrophytic covers (i.e.Zostera noltii sp.) enhanced the fluxes under light radiations. The first direct measurements of sediment-atmosphere fluxes are reported here. The exchanges were more intense and variable than the two other interfaces, ranging between -78 and 40 ng m(-2) h(-1) and were mostly driven by the overlying atmospheric Hg concentrations and superficial sediment temperature. The exchanges between the water column and the atmosphere, computed as a function of wind speed and gaseous mercury saturation ranged from 0.4 to 14.5 ng m(-2) h(-1). The flux intensities recorded over the intertidal sediments periodically exposed to the atmosphere were roughly 2 to 3 times higher than the fluxes of the other interfaces. The evasion of elemental mercury from emerged intertidal sediments is probably a significant pathway for Hg evasion in such tidal environments exhibiting background contamination level.
NASA Astrophysics Data System (ADS)
Vanella, Daniela; Boaga, Jacopo; Perri, Maria Teresa; Consoli, Simona; Cassiani, Giorgio
2015-04-01
The comprehension of the hydrological processes involving plant root dynamics is crucial for implementing water saving measures in agriculture. This is particular urgent in areas, like those Mediterranean, characterized by scarce water availability. The study of root water dynamics should not be separated from a more general analysis of the mass and energy fluxes transferred in the soil-plant-atmosphere continuum. In our study, in order to carry this inclusive approach, minimal invasive 3D time-lapse electrical resistivity tomography (ERT) for soil moisture estimation was combined with plant transpiration fluxes directly measured with Sap Flow (SF) techniques and Eddy Covariance methods, and volumetric soil moisture measurements by TDR probes. The main objective of this inclusive approach was to accurately define root-zone water dynamics and individuate the root-area effectively active for water and nutrient uptake process. The monitoring was carried out in Eastern Sicily (south Italy) in summers 2013 and 2014, within an experimental orange orchard farm. During the first year of experiment (October 2013), ERT measurements were carried out around the pertinent volume of one fully irrigated tree, characterized by a vegetation ground cover of 70%; in the second year (June 2014), ERT monitoring was conducted considering a cutting plant, thus to evaluate soil water dynamics without the significant plant transpiration contribution. In order to explore the hydrological dynamics of the root zone volume surrounded by the monitored tree, the resistivity data acquired during the ERT monitoring were converted into soil moisture content distribution by a laboratory calibration based on the soil electrical properties as a function of moisture content and pore water electrical conductivity. By using ERT data in conjunction with the agro-meteorological information (i.e. irrigation rates, rainfall, evapotranspiration by Eddy Covariance, transpiration by Sap Flow and soil moisture content by TRD) of the test area, a spatially distributed one-dimensional (1D) model that solves the Richards' equation was applied; in the model the van Genuchten parameters were obtained by laboratory analysis of soil water retention and soil permeability at saturation. Results of the 1D model were successfully compared with both ERT-based soil moisture dynamics and TDR measurements of soil moisture. The modelling allows to defining the soil volume interested by root water uptake process and its extent. In particular, this volume results significantly smaller (i.e. surface area of 1.75 m2, with 0.4 m cm thickness) than expected, considering the design of the drip irrigation scheme adopted in the farm. The obtained results confirm that ERT is a technique that (i) can provide a lot of information on small scale and vegetation related processes; (ii) the integration with physical modelling is essential to capture the meaning of space-time signal changes; (iii) in the case of the orange orchard, this approach shows that about half of the irrigated water is wasted.
Evaluating the impact of municipal water fluoridation on the aquatic environment.
Osterman, J W
1990-01-01
Although highly beneficial for dental health, low concentrations of fluoride in environmental waters may be toxic to several organisms. In an era of heightened public awareness about the environment, this may lead city officials to withhold implementing water fluoridation for environmental reasons. This paper presents a mass balance approach to evaluate this perceived risk. Generally speaking, fluoridated water loss during use, dilution of sewage by rain and ground water infiltrate, fluoride removal during secondary sewage treatment, and diffusion dynamics at effluent outfall combine to eliminate fluoridation-related environmental effects. In Montreal, water fluoridation would raise average aquatic fluoride levels in the waste water plume immediately below effluent outfall by only 0.05-0.09 mg/l. Downstream, these changes would be only 0.02-0.05 mg/l at 1 km, and 0.01-0.03 mg/l at 2 km below outfall. Overall river fluoride concentrations theoretically would be raised by 0.001-0.002 mg/l, a value not measurable by current analytical techniques. All resulting concentrations would be well below those recommended for environmental safety and would not exceed natural levels found elsewhere in Quebec. A literature review did not reveal any examples of municipal water fluoridation causing recommended environmental concentrations to be exceeded, although excesses occurred in several cases of severe industrial water pollution. PMID:2400035
Jiang, Yueyang; Zhuang, Qianlai; O'Donnell, Jonathan A.
2012-01-01
Thawing and freezing processes are key components in permafrost dynamics, and these processes play an important role in regulating the hydrological and carbon cycles in the northern high latitudes. In the present study, we apply a well-developed soil thermal model that fully couples heat and water transport, to simulate the thawing and freezing processes at daily time steps across multiple sites that vary with vegetation cover, disturbance history, and climate. The model performance was evaluated by comparing modeled and measured soil temperatures at different depths. We use the model to explore the influence of climate, fire disturbance, and topography (north- and south-facing slopes) on soil thermal dynamics. Modeled soil temperatures agree well with measured values for both boreal forest and tundra ecosystems at the site level. Combustion of organic-soil horizons during wildfire alters the surface energy balance and increases the downward heat flux through the soil profile, resulting in the warming and thawing of near-surface permafrost. A projection of 21st century permafrost dynamics indicates that as the climate warms, active layer thickness will likely increase to more than 3 meters in the boreal forest site and deeper than one meter in the tundra site. Results from this coupled heat-water modeling approach represent faster thaw rates than previously simulated in other studies. We conclude that the discussed soil thermal model is able to well simulate the permafrost dynamics and could be used as a tool to analyze the influence of climate change and wildfire disturbance on permafrost thawing.
The water-energy-food nexus of biofuels in a globalized world
NASA Astrophysics Data System (ADS)
D'Odorico, P.; Rulli, M. C.
2016-12-01
New renewable energy policies, investment opportunities, and energy security needs, have recently led to an escalation in the reliance on first generation biofuels. This phenomenon is contributing to changes in land use, market dynamics, property rights, and systems of agricultural production, with important impacts on rural livelihoods. Despite these effects of biofuels on food security, their nexus with land and water use remains poorly understood. We investigate recent production trends of bioenergy crops, their patterns of trade, and evaluate the associated displacement of water and land use. We find that bioethanol is produced with domestic crops while biodiesel production relies also on international trade and large scale land acquisitions in the developing world, particularly in Southeast Asia. Altogether, biofuels account for about 2-3% of the global water and land use in agriculture, and 30% of the food required to eradicate malnourishment worldwide. We evaluate the food-energy tradeoffs of biofuels and their impact of the number of people the plant can feed.
NASA Astrophysics Data System (ADS)
Guoxing, Zheng; Minghu, Jiang; Hongliang, Gong; Nannan, Zhang; Jianguang, Wei
2018-02-01
According to basic principles of combining series of strata and demands of same-well injection-production technique, the optimization designing method of same-well injection-production technique’s injection-production circulatory system is given. Based on oil-water two-phase model with condition of arbitrarily well network, a dynamic forecast method for the application of same-well injection-production reservoir is established with considering the demands and capacity of same-well injection-production technique, sample wells are selected to launch the forecast evaluation and analysis of same-well injection-production reservoir application’s effect. Results show: single-test-well composite water cut decreases by 4.7% and test-well-group composite water cut decreases by 1.56% under the condition of basically invariant ground water injection rate. The method provides theoretical support for the proof of same-well injection-production technique’s reservoir development improving effect and further tests.
Rana, Malay Kumar; Chandra, Amalendu
2013-05-28
The behavior of water near a graphene sheet is investigated by means of ab initio and classical molecular dynamics simulations. The wetting of the graphene sheet by ab initio water and the relation of such behavior to the strength of classical dispersion interaction between surface atoms and water are explored. The first principles simulations reveal a layered solvation structure around the graphene sheet with a significant water density in the interfacial region implying no drying or cavitation effect. It is found that the ab initio results of water density at interfaces can be reproduced reasonably well by classical simulations with a tuned dispersion potential between the surface and water molecules. Calculations of vibrational power spectrum from ab initio simulations reveal a shift of the intramolecular stretch modes to higher frequencies for interfacial water molecules when compared with those of the second solvation later or bulk-like water due to the presence of free OH modes near the graphene sheet. Also, a weakening of the water-water hydrogen bonds in the vicinity of the graphene surface is found in our ab initio simulations as reflected in the shift of intermolecular vibrational modes to lower frequencies for interfacial water molecules. The first principles calculations also reveal that the residence and orientational dynamics of interfacial water are somewhat slower than those of the second layer or bulk-like molecules. However, the lateral diffusion and hydrogen bond relaxation of interfacial water molecules are found to occur at a somewhat faster rate than that of the bulk-like water molecules. The classical molecular dynamics simulations with tuned Lennard-Jones surface-water interaction are found to produce dynamical results that are qualitatively similar to those of ab initio molecular dynamics simulations.
Evaluation of the dynamic behavior of a Pelton runner based on strain gauge measurements
NASA Astrophysics Data System (ADS)
Mack, Reiner; Probst, Christian
2016-11-01
A reliable mechanical design of Pelton runners is very important in the layout of new installations and modernizations. Especially in horizontal machines, where the housing is not embedded into concrete, a rupture of a runner bucket can have severe consequences. Even if a crack in the runner is detected on time, the outage time that follows the malfunction of the runner is shortening the return of investment. It is a fact that stresses caused by the runner rotation and the jet forces are superposed by high frequent dynamic stresses. In case of resonance it even can be the dominating effect that is limiting the lifetime of a runner. Therefore a clear understanding of the dynamic mechanisms is essential for a safe runner design. This paper describes the evaluation of the dynamic behavior of a Pelton runner installed in a model turbine based on strain gauge measurements. Equipped with strain gauges at the root area of the buckets, the time responses of the strains under the influence of various operational parameters were measured. As a result basic theories for the jet bucket excitation were verified and the influence of the water mass was detected by evaluating the frequency shift in case of resonance. Furthermore, the influence of the individual bucket masses onto the dynamic behaviour for different mode shapes got measured.
Das Mahanta, Debasish; Patra, Animesh; Samanta, Nirnay; Luong, Trung Quan; Mukherjee, Biswaroop; Mitra, Rajib Kumar
2016-10-28
A combined experimental (mid- and far-infrared FTIR spectroscopy and THz time domain spectroscopy (TTDS) (0.3-1.6 THz)) and molecular dynamics (MD) simulation technique are used to understand the evolution of the structure and dynamics of water in its binary mixture with 1,2-dimethoxy ethane (DME) over the entire concentration range. The cooperative hydrogen bond dynamics of water obtained from Debye relaxation of TTDS data reveals a non-monotonous behaviour in which the collective dynamics is much faster in the low X w region (where X w is the mole fraction of water in the mixture), whereas in X w ∼ 0.8 region, the dynamics gets slower than that of pure water. The concentration dependence of the reorientation times of water, calculated from the MD simulations, also captures this non-monotonous character. The MD simulation trajectories reveal presence of large amplitude angular jumps, which dominate the orientational relaxation. We rationalize the non-monotonous, concentration dependent orientational dynamics by identifying two different physical mechanisms which operate at high and low water concentration regimes.
Presti, Davide; Pedone, Alfonso; Mancini, Giordano; Duce, Celia; Tiné, Maria Rosaria; Barone, Vincenzo
2016-01-21
Density functional theory calculations and classical molecular dynamics simulations have been used to investigate the structure and dynamics of water molecules on kaolinite surfaces and confined in the interlayer of a halloysite model of nanometric dimension. The first technique allowed us to accurately describe the structure of the tetrahedral-octahedral slab of kaolinite in vacuum and in interaction with water molecules and to assess the performance of two widely employed empirical force fields to model water/clay interfaces. Classical molecular dynamics simulations were used to study the hydrogen bond network structure and dynamics of water adsorbed on kaolinite surfaces and confined in the halloysite interlayer. The results are in nice agreement with the few experimental data available in the literature, showing a pronounced ordering and reduced mobility of water molecules at the hydrophilic octahedral surfaces of kaolinite and confined in the halloysite interlayer, with respect to water interacting with the hydrophobic tetrahedral surfaces and in the bulk. Finally, this investigation provides new atomistic insights into the structural and dynamical properties of water-clay interfaces, which are of fundamental importance for both natural processes and industrial applications.
Ultrafast dynamics of liquid water: Frequency fluctuations of the OH stretch and the HOH bend
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imoto, Sho; Xantheas, Sotiris S.; Saito, Shinji
2013-07-28
Frequency fluctuations of the OH stretch and the HOH bend in liquid water are reported from the third-order response function evaluated using the TTM3-F potential for water. The simulated two-dimensional infrared (IR) spectra of the OH stretch are similar to previously reported theoretical results. The present study suggests that the frequency fluctuation of the HOH bend is faster than that of the OH stretch. The ultrafast loss of the frequency correlation of the HOH bend is due to the strong couplings with the OH stretch as well as the intermolecular hydrogen bond bend.
Sediment dynamics in restored riparian forest with different widths and agricultural surroundings
NASA Astrophysics Data System (ADS)
Stucchi Boschi, Raquel; Simões da Silva, Laura; Ribeiro Rodrigues, Ricardo; Cooper, Miguel
2016-04-01
The riparian forests are essential to maintaining the quality of water resources, aquifer recharge and biodiversity. Due to the ecological services provided by riparian forests, these areas are considered by the law as Permanent Preservation Areas, being mandatory maintenance and restoration. However, the obligation of restoration and the extent of the Permanent Preservation Areas as defined by the Brazilian Forest Code, based on water body width, elucidates the lack of accurate scientific data on the influence of the size of the riparian forest in maintaining their ecological functions, particularly regarding the retention of sediments. Studies that evaluate the ideal width of riparian forests to guarantee their ecological functions are scarce and not conclusive, especially when we consider newly restored forests, located in agricultural areas. In this study, we investigate the dynamics of erosion and sedimentation in restored riparian forests with different widths situated in agricultural areas. The two study areas are located in a Semideciduous Tropical Forest inserted in sugarcane landscapes of São Paulo state, Brazil. The installed plots had 60 and 100 m in length and the riparian forest has a width of 15, 30 and 50 m. The characteristics of the sediments inside the plots were evaluated by detailed morphological and micromorphological studies as well as physical characterization. The dynamics of deposition and the amount of deposited sediments have been assessed with graded metal stakes partially buried inside the plots. The intensity, frequency and distribution of rainfall, as well as the occurrence of extreme events, have been evaluated by data collected from rain gauges installed in the areas. We expect that smaller widths are not able to retain sediments originated from the adjacent sugarcane areas. We also believe that extreme events are responsible for generating most of the sediments. The results will be important to support the discussion about an ideal width of riparian vegetation to ensure the retention of sediments and quality of water bodies.
NASA Astrophysics Data System (ADS)
Coelho, J. P.; Lillebø, A. I.; Crespo, D.; Leston, S.; Dolbeth, M.
2018-05-01
The main aim of this study was to evaluate the impact of the alien invasive bivalve Corbicula fluminea (Müller, 1774) in the nutrient dynamics of temperate estuarine systems (oligohaline areas) under climate change scenarios. The scenarios simulated shifts in climatic conditions, following salinity (0 or 5) and temperature (24 or 30 °C) changes, usual during drought and heat wave events. The effect of the individual size/age (different size classes with fixed biomass) and density (various densities of <1 cm clams) on the bioturbation-associated nutrient dynamics were also evaluated under an 18-day laboratory experimental setup. Results highlight the significant effect of C. fluminea on the ecosystem nutrient dynamics, enhancing the efflux of both phosphate and dissolved inorganic nitrogen (DIN) from the sediments to the water column. Both drought and heat wave events will have an impact on the DIN dynamics within C. fluminea colonized systems, favouring a higher NH4-N efflux. The population structure of C. fluminea will have a decisive role on the impact of the species, with stronger nutrient effluxes associated with a predominantly juvenile population structure.
New evaluation of thermal neutron scattering libraries for light and heavy water
NASA Astrophysics Data System (ADS)
Marquez Damian, Jose Ignacio; Granada, Jose Rolando; Cantargi, Florencia; Roubtsov, Danila
2017-09-01
In order to improve the design and safety of thermal nuclear reactors and for verification of criticality safety conditions on systems with significant amount of fissile materials and water, it is necessary to perform high-precision neutron transport calculations and estimate uncertainties of the results. These calculations are based on neutron interaction data distributed in evaluated nuclear data libraries. To improve the evaluations of thermal scattering sub-libraries, we developed a set of thermal neutron scattering cross sections (scattering kernels) for hydrogen bound in light water, and deuterium and oxygen bound in heavy water, in the ENDF-6 format from room temperature up to the critical temperatures of molecular liquids. The new evaluations were generated and processable with NJOY99 and also with NJOY-2012 with minor modifications (updates), and with the new version of NJOY-2016. The new TSL libraries are based on molecular dynamics simulations with GROMACS and recent experimental data, and result in an improvement of the calculation of single neutron scattering quantities. In this work, we discuss the importance of taking into account self-diffusion in liquids to accurately describe the neutron scattering at low neutron energies (quasi-elastic peak problem). To improve modeling of heavy water, it is important to take into account temperature-dependent static structure factors and apply Sköld approximation to the coherent inelastic components of the scattering matrix. The usage of the new set of scattering matrices and cross-sections improves the calculation of thermal critical systems moderated and/or reflected with light/heavy water obtained from the International Criticality Safety Benchmark Evaluation Project (ICSBEP) handbook. For example, the use of the new thermal scattering library for heavy water, combined with the ROSFOND-2010 evaluation of the cross sections for deuterium, results in an improvement of the C/E ratio in 48 out of 65 international benchmark cases calculated with the Monte Carlo code MCNP5, in comparison with the existing library based on the ENDF/B-VII.0 evaluation.
Mansouri, Hayet; Carmona, Rocio J; Gomis-Berenguer, Alicia; Souissi-Najar, Souad; Ouederni, Abdelmottaleb; Ania, Conchi O
2015-07-01
This work investigates the competitive adsorption under dynamic and equilibrium conditions of ibuprofen (IBU) and amoxicillin (AMX), two widely consumed pharmaceuticals, on nanoporous carbons of different characteristics. Batch adsorption experiments of pure components in water and their binary mixtures were carried out to measure both adsorption equilibrium and kinetics, and dynamic tests were performed to validate the simultaneous removal of the mixtures in breakthrough experiments. The equilibrium adsorption capacities evaluated from pure component solutions were higher than those measured in dynamic conditions, and were found to depend on the porous features of the adsorbent and the nature of the specific/dispersive interactions that are controlled by the solution pH, density of surface change on the carbon and ionization of the pollutant. A marked roll-up effect was observed for AMX retention on the hydrophobic carbons, not seen for the functionalized adsorbent likely due to the lower affinity of amoxicillin towards the carbon adsorbent. Dynamic adsorption of binary mixtures from wastewater of high salinity and alkalinity showed a slight increase in IBU uptake and a reduced adsorption of AMX, demonstrating the feasibility of the simultaneous removal of both compounds from complex water matrices. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Hoy, Jerad; Poulter, Benjamin; Emmett, Kristen; Cross, Molly; Al-Chokhachy, Robert; Maneta, Marco
2016-04-01
Integrated terrestrial ecosystem models simulate the dynamics and feedbacks between climate, vegetation, disturbance, and hydrology and are used to better understand biogeography and biogeochemical cycles. Extending dynamic vegetation models to the aquatic interface requires coupling surface and sub-surface runoff to catchment routing schemes and has the potential to enhance how researchers and managers investigate how changes in the environment might impact the availability of water resources for human and natural systems. In an effort towards creating such a coupled model, we developed catchment-based hydrologic routing and stream temperature model to pair with LPJ-GUESS, a dynamic global vegetation model. LPJ-GUESS simulates detailed stand-level vegetation dynamics such as growth, carbon allocation, and mortality, as well as various physical and hydrologic processes such as canopy interception and through-fall, and can be applied at small spatial scales, i.e., 1 km. We demonstrate how the coupled model can be used to investigate the effects of transient vegetation dynamics and CO2 on seasonal and annual stream discharge and temperature regimes. As a direct management application, we extend the modeling framework to predict habitat suitability for fish habitat within the Greater Yellowstone Ecosystem, a 200,000 km2 region that provides critical habitat for a range of aquatic species. The model is used to evaluate, quantitatively, the effects of management practices aimed to enhance hydrologic resilience to climate change, and benefits for water storage and fish habitat in the coming century.
Aisopou, Angeliki; Stoianov, Ivan; Graham, Nigel J D
2012-01-01
Monitoring the quality of drinking water from the treatment plant to the consumers tap is critical to ensure compliance with national standards and/or WHO guideline levels. There are a number of processes and factors affecting the water quality during transmission and distribution which are little understood. A significant obstacle for gaining a detailed knowledge of various physical and chemical processes and the effect of the hydraulic conditions on the water quality deterioration within water supply systems is the lack of reliable and low-cost (both capital and O & M) water quality sensors for continuous monitoring. This paper has two objectives. The first one is to present a detailed evaluation of the performance of a novel in-pipe multi-parameter sensor probe for reagent- and membrane-free continuous water quality monitoring in water supply systems. The second objective is to describe the results from experimental research which was conducted to acquire continuous water quality and high-frequency hydraulic data for the quantitative assessment of the water quality changes occurring under steady and unsteady-state flow conditions. The laboratory and field evaluation of the multi-parameter sensor probe showed that the sensors have a rapid dynamic response, average repeatability and unreliable accuracy. The uncertainties in the sensor data present significant challenges for the analysis and interpretation of the acquired data and their use for water quality modelling, decision support and control in operational systems. Notwithstanding these uncertainties, the unique data sets acquired from transmission and distribution systems demonstrated the deleterious effect of unsteady state flow conditions on various water quality parameters. These studies demonstrate: (i) the significant impact of the unsteady-state hydraulic conditions on the disinfectant residual, turbidity and colour caused by the re-suspension of sediments, scouring of biofilms and tubercles from the pipe and increased mixing, and the need for further experimental research to investigate these interactions; (ii) important advances in sensor technologies which provide unique opportunities to study both the dynamic hydraulic conditions and water quality changes in operational systems. The research in these two areas is critical to better understand and manage the water quality deterioration in ageing water transmission and distribution systems. Copyright © 2011 Elsevier Ltd. All rights reserved.
The Value of GRACE Data in Improving, Assessing and Evaluating Land Surface and Climate Models
NASA Astrophysics Data System (ADS)
Yang, Z.
2011-12-01
I will review how the Gravity Recovery and Climate Experiment (GRACE) satellite measurements have improved land surface models that are developed for weather, climate, and hydrological studies. GRACE-derived terrestrial water storage (TWS) changes have been successfully used to assess and evaluate the improved representations of land-surface hydrological processes such as groundwater-soil moisture interaction, frozen soil and infiltration, and the topographic control on runoff production, as evident in the simulations from the latest Noah-MP, the Community Land Model, and the Community Climate System Model. GRACE data sets have made it possible to estimate key terrestrial water storage components (snow mass, surface water, groundwater or water table depth), biomass, and surface water fluxes (evapotranspiration, solid precipitation, melt of snow/ice). Many of the examples will draw from my Land, Environment and Atmosphere Dynamics group's work on land surface model developments, snow mass retrieval, and multi-sensor snow data assimilation using the ensemble Karman filter and the ensemble Karman smoother. Finally, I will briefly outline some future directions in using GRACE in land surface modeling.
Bi, S P; An, S Q; Yang, M; Chen, T
2001-05-01
This paper reports an investigation of the dynamics of aluminum (Al) speciation in the forest-well waters from study site 110 of the Rhode River watershed, a representative sub-unit of Chesapeake Bay. Seasonal changes of Al speciation are evaluated by a modified MINEQL computer model using chemical equilibrium calculation. It was found that Al-F and Al-Org complexes were the dominate forms, whereas toxic forms of Al3+ and Al-OH were not significant. This indicates that Al toxicity is not very serious in the Rhode River area due to the high concentrations of fluoride and organic materials, even though sometimes pH is very low (approximately 4). Increased H+ or some other associated factors may be responsible for the decline in fish and amphibian population on the watershed.
Numerical and Experimental Case Study of Blasting Works Effect
NASA Astrophysics Data System (ADS)
Papán, Daniel; Valašková, Veronika; Drusa, Marian
2016-10-01
This article introduces the theoretical and experimental case study of dynamic monitoring of the geological environment above constructed highway tunnel. The monitored structure is in this case a very important water supply pipeline, which crosses the tunnel and was made from steel tubes with a diameter of 800 mm. The basic dynamic parameters had been monitored during blasting works, and were compared with the FEM (Finite Element Method) calculations and checked by the Slovak standard limits. A calibrated FEM model based on the experimental measurement data results was created and used in order to receive more realistic results in further predictions, time and space extrapolations. This case study was required and demanded by the general contractor company and also by the owner of water pipeline, and it was an answer of public safety evaluation of risks during tunnel construction.
NASA Astrophysics Data System (ADS)
Shvetsov, V. N.; Dubasov, P. V.; Golovin, D. V.; Kozyrev, A. S.; Krylov, A. R.; Krylov, V. A.; Litvak, M. L.; Malakhov, A. V.; Mitrofanov, I. G.; Mokrousov, M. I.; Sanin, A. B.; Timoshenko, G. N.; Vostrukhin, A. A.; Zontikov, A. O.
2017-07-01
The results of the Dynamic Albedo of Neutrons (DAN) instrument ground tests in the passive mode of operation are presented in comparison with the numerical calculations. These test series were conducted to support the current surface measurements of DAN onboard the MSL Curiosity rover. The instrument sensitivity to detect thin subsurface layers of water ice buried at different depths in the analog of Martian soil has been evaluated during these tests. The experiments have been done with a radioisotope Pu-Be neutron source (analog of the MMRTG neutron source onboard the Curiosity rover) and the Martian soil model assembled from silicon-rich window glass pane. Water ice layers were simulated with polyethylene sheets. All experiments have been performed at the test facility built at the Joint Institute for Nuclear Research (Dubna, Russia).
NASA Astrophysics Data System (ADS)
Castro-Camus, E.; Palomar, M.; Covarrubias, A. A.
2013-10-01
The declining water availability for agriculture is becoming problematic for many countries. Therefore the study of plants under water restriction is acquiring extraordinary importance. Botanists currently follow the dehydration of plants comparing the fresh and dry weight of excised organs, or measuring their osmotic or water potentials; these are destructive methods inappropriate for in-vivo determination of plants' hydration dynamics. Water is opaque in the terahertz band, while dehydrated biological tissues are partially transparent. We used terahertz spectroscopy to study the water dynamics of Arabidopsis thaliana by comparing the dehydration kinetics of leaves from plants under well-irrigated and water deficit conditions. We also present measurements of the effect of dark-light cycles and abscisic acid on its water dynamics. The measurements we present provide a new perspective on the water dynamics of plants under different external stimuli and confirm that terahertz can be an excellent non-contact probe of in-vivo tissue hydration.
NASA Astrophysics Data System (ADS)
Du, E.; Cai, X.; Minsker, B. S.
2014-12-01
Agriculture comprises about 80 percent of the total water consumption in the US. Under conditions of water shortage and fully committed water rights, market-based water allocations could be promising instruments for agricultural water redistribution from marginally profitable areas to more profitable ones. Previous studies on water market have mainly focused on theoretical or statistical analysis. However, how water users' heterogeneous physical attributes and decision rules about water use and water right trading will affect water market efficiency has been less addressed. In this study, we developed an agent-based model to evaluate the benefits of an agricultural water market in the Guadalupe River Basin during drought events. Agricultural agents with different attributes (i.e., soil type for crops, annual water diversion permit and precipitation) are defined to simulate the dynamic feedback between water availability, irrigation demand and water trading activity. Diversified crop irrigation rules and water bidding rules are tested in terms of crop yield, agricultural profit, and water-use efficiency. The model was coupled with a real-time hydrologic model and run under different water scarcity scenarios. Preliminary results indicate that an agricultural water market is capable of increasing crop yield, agricultural profit, and water-use efficiency. This capability is more significant under moderate drought scenarios than in mild and severe drought scenarios. The water market mechanism also increases agricultural resilience to climate uncertainty by reducing crop yield variance in drought events. The challenges of implementing an agricultural water market under climate uncertainty are also discussed.
Water Plan 2030: A Dynamic Education Model for Teaching Water Management Issues
NASA Astrophysics Data System (ADS)
Rupprecht, C.; Washburne, J.; Lansey, K.; Williams, A.
2006-12-01
Dynamic educational tools to assist teachers and students in recognizing the impacts of water management decisions in a realistic context are not readily available. Water policy issues are often complex and difficult for students trying to make meaningful connections between system components. To fill this need, we have developed a systems modeling-based educational decision support system (DSS) with supplementary materials. This model, called Water Plan 2030, represents a general semi-arid watershed; it allows users to examine water management alternatives by changing input values for various water uses and basin conditions and immediately receive graphical outputs to compare decisions. The main goal of our DSS model is to foster students' abilities to make knowledgeable decisions with regard to water resources issues. There are two reasons we have developed this model for traditional classroom settings. First, the DSS model provides teachers with a mechanism for educating students about inter-related hydrologic concepts, complex systems and facilitates discussion of water resources issues. Second, Water Plan 2030 encourages student discovery of cause/effect relationships in a dynamic, hands-on environment and develops the ability to realize the implications of water management alternatives. The DSS model has been utilized in an undergraduate, non-major science class for 5 course hours, each of the past 4 semesters. Accompanying the PC-based model are supplementary materials to improve the effectiveness of implementation by emphasizing important concepts and guiding learners through the model components. These materials include in-class tutorials, introductory questions, role-playing activities and homework extensions that have been revised after each user session, based on student and instructor feedback. Most recently, we have developed individual lessons that teach specific model functions and concepts. These modules provide teachers the flexibility to adapt the model to meet numerous teaching goals. Evaluation results indicate that students improved their understanding of fundamental concepts and system interactions and showed the most improvement in questions related to water use by sector and sustainability issues. Model modifications have also improved student feedback of the model effectiveness and user- friendliness. Positive results from this project have created the demand for a web-based version, which will be online in late 2006.
NASA Technical Reports Server (NTRS)
1975-01-01
Solid polymer electrolyte technology used in a water electrolysis system (WES) to generate oxygen and hydrogen for manned space station applications was investigated. A four-man rated, low pressure breadboard water electrolysis system with the necessary instrumentation and controls was fabricated and tested. A six man rated, high pressure, high temperature, advanced preprototype WES was developed. This configuration included the design and development of an advanced water electrolysis module, capable of operation at 400 psig and 200 F, and a dynamic phase separator/pump in place of a passive phase separator design. Evaluation of this system demonstrated the goal of safe, unattended automated operation at high pressure and high temperature with an accumulated gas generation time of over 1000 hours.
Shi, X. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Thornton, P. E. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Ricciuto, D. M. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Hanson, P. J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Mao, J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Sebestyen, S. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Griffiths, N. A. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Bisht, G. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.
2016-09-01
Here we provide model code, inputs, outputs and evaluation datasets for a new configuration of the Community Land Model (CLM) for SPRUCE, which includes a fully prognostic water table calculation for SPRUCE. Our structural and process changes to CLM focus on modifications needed to represent the hydrologic cycle of bogs environment with perched water tables, as well as distinct hydrologic dynamics and vegetation communities of the raised hummock and sunken hollow microtopography characteristic of SPRUCE and other peatland bogs. The modified model was parameterized and independently evaluated against observations from an ombrotrophic raised-dome bog in northern Minnesota (S1-Bog), the site for the Spruce and Peatland Responses Under Climatic and Environmental Change experiment (SPRUCE).
Fan, Zhaosheng; Jastrow, Julie D; Liang, Chao; Matamala, Roser; Miller, Raymond Michael
2013-01-01
Laboratory studies show that introduction of fresh and easily decomposable organic carbon (OC) into soil-water systems can stimulate the decomposition of soil OC (SOC) via priming effects in temperate forests, shrublands, grasslands, and agro-ecosystems. However, priming effects are still not well understood in the field setting for temperate ecosystems and virtually nothing is known about priming effects (e.g., existence, frequency, and magnitude) in boreal ecosystems. In this study, a coupled dissolved OC (DOC) transport and microbial biomass dynamics model was developed to simultaneously simulate co-occurring hydrological, physical, and biological processes and their interactions in soil pore-water systems. The developed model was then used to examine the importance of priming effects in two black spruce forest soils, with and without underlying permafrost. Our simulations showed that priming effects were strongly controlled by the frequency and intensity of DOC input, with greater priming effects associated with greater DOC inputs. Sensitivity analyses indicated that priming effects were most sensitive to variations in the quality of SOC, followed by variations in microbial biomass dynamics (i.e., microbial death and maintenance respiration), highlighting the urgent need to better discern these key parameters in future experiments and to consider these dynamics in existing ecosystem models. Water movement carries DOC to deep soil layers that have high SOC stocks in boreal soils. Thus, greater priming effects were predicted for the site with favorable water movement than for the site with limited water flow, suggesting that priming effects might be accelerated for sites where permafrost degradation leads to the formation of dry thermokarst.
Spatially distributed potential evapotranspiration modeling and climate projections.
Gharbia, Salem S; Smullen, Trevor; Gill, Laurence; Johnston, Paul; Pilla, Francesco
2018-08-15
Evapotranspiration integrates energy and mass transfer between the Earth's surface and atmosphere and is the most active mechanism linking the atmosphere, hydrosphsophere, lithosphere and biosphere. This study focuses on the fine resolution modeling and projection of spatially distributed potential evapotranspiration on the large catchment scale as response to climate change. Six potential evapotranspiration designed algorithms, systematically selected based on a structured criteria and data availability, have been applied and then validated to long-term mean monthly data for the Shannon River catchment with a 50m 2 cell size. The best validated algorithm was therefore applied to evaluate the possible effect of future climate change on potential evapotranspiration rates. Spatially distributed potential evapotranspiration projections have been modeled based on climate change projections from multi-GCM ensembles for three future time intervals (2020, 2050 and 2080) using a range of different Representative Concentration Pathways producing four scenarios for each time interval. Finally, seasonal results have been compared to baseline results to evaluate the impact of climate change on the potential evapotranspiration and therefor on the catchment dynamical water balance. The results present evidence that the modeled climate change scenarios would have a significant impact on the future potential evapotranspiration rates. All the simulated scenarios predicted an increase in potential evapotranspiration for each modeled future time interval, which would significantly affect the dynamical catchment water balance. This study addresses the gap in the literature of using GIS-based algorithms to model fine-scale spatially distributed potential evapotranspiration on the large catchment systems based on climatological observations and simulations in different climatological zones. Providing fine-scale potential evapotranspiration data is very crucial to assess the dynamical catchment water balance to setup management scenarios for the water abstractions. This study illustrates a transferable systematic method to design GIS-based algorithms to simulate spatially distributed potential evapotranspiration on the large catchment systems. Copyright © 2018 Elsevier B.V. All rights reserved.
Nitrogen dynamics in a tidal river zone influenced by highly urbanization, western Japan
NASA Astrophysics Data System (ADS)
Saito, M.; Onodera, S. I.; Shimizu, Y.; Maruyama, Y.; Jin, G.; Aritomi, D.
2014-12-01
Tidal river and estuary are the transition zone between freshwater and seawater with high biological production. These areas have characteristics of water level fluctuation which causes surface water-groundwater interaction and the associated change in dynamics of nitrogen. Generally in coastal megacities, severe groundwater depression and high contaminants load influence on the environment of tidal river. However, these effects on the nitrogen dynamics and its load from a river to sea have not been fully evaluated in previous studies. Therefore, we aimed to clarify the characteristics of the nitrogen dynamics with the surface water-groundwater interaction in the tidal river zone of Osaka metropolitan city, western Japan. We conducted the field survey from the river mouth to the 7km upstream area of Yamato River, which has a length of 68km and a watershed area of 1,070 km2. Spatial variations in radon (222Rn) concentrations and the difference of hydraulic potential between river waters and the pore waters suggest that the groundwater discharges to the river channel in the upstream area. In contrast, the river water recharged into the groundwater near the river mouth area. It may be caused by the lowering of groundwater level associated with the excess abstraction in the urban area. The spatial and temporal variations in nutrient concentration indicate that nitrate-nitrogen (NO3-N) concentration changed temporally and it was negatively correlated with dissolved organic nitrogen (DON) concentration. Based on the mass balance estimation in winter and summer periods, nitrogen was removed in tidal river zone in both periods which was estimated to be about 10 % of total nitrogen (TN) load from the upstream. However, dissolved inorganic nitrogen (DIN) and DON was re-produced in winter and summer periods, respectively. NO3-N concentrations were negatively correlated with velocity of river water, which suggests the progress of denitrification in the tidal river zone under low discharge condition. Nitrogen and oxygen stable isotope ratios (δ15N, δ18O) of nitrate (NO3-) suggests the possibility of nitrification progress in the winter periods.
Simultaneous water activation and glucose metabolic rate imaging with PET
NASA Astrophysics Data System (ADS)
Verhaeghe, Jeroen; Reader, Andrew J.
2013-02-01
A novel imaging and signal separation strategy is proposed to be able to separate [18F]FDG and multiple [15O]H2O signals from a simultaneously acquired dynamic PET acquisition of the two tracers. The technique is based on the fact that the dynamics of the two tracers are very distinct. By adopting an appropriate bolus injection strategy and by defining tailored sets of basis functions that model either the FDG or water component, it is possible to separate the FDG and water signal. The basis functions are inspired from the spectral analysis description of dynamic PET studies and are defined as the convolution of estimated generating functions (GFs) with a set of decaying exponential functions. The GFs are estimated from the overall measured head curve, while the decaying exponential functions are pre-determined. In this work, the time activity curves (TACs) are modelled post-reconstruction but the model can be incorporated in a global 4D reconstruction strategy. Extensive PET simulation studies are performed considering single [18F]FDG and 6 [15O]H2O bolus injections for a total acquisition time of 75 min. The proposed method is evaluated at multiple noise levels and different parameters were estimated such as [18F]FDG uptake and blood flow estimated from the [15O]H2O component, requiring a full dynamic analysis of the two components, static images of [18F]FDG and the water components as well as [15O]H2O activation. It is shown that the resulting images and parametric values in ROIs are comparable to images obtained from separate imaging, illustrating the feasibility of simultaneous imaging of [18F]FDG and [15O]H2O components. For more information on this article, see medicalphysicsweb.org
Černý, Jiří; Schneider, Bohdan; Biedermannová, Lada
2017-07-14
Water molecules represent an integral part of proteins and a key determinant of protein structure, dynamics and function. WatAA is a newly developed, web-based atlas of amino-acid hydration in proteins. The atlas provides information about the ordered first hydration shell of the most populated amino-acid conformers in proteins. The data presented in the atlas are drawn from two sources: experimental data and ab initio quantum-mechanics calculations. The experimental part is based on a data-mining study of a large set of high-resolution protein crystal structures. The crystal-derived data include 3D maps of water distribution around amino-acids and probability of occurrence of each of the identified hydration sites. The quantum mechanics calculations validate and extend this primary description by optimizing the water position for each hydration site, by providing hydrogen atom positions and by quantifying the interaction energy that stabilizes the water molecule at the particular hydration site position. The calculations show that the majority of experimentally derived hydration sites are positioned near local energy minima for water, and the calculated interaction energies help to assess the preference of water for the individual hydration sites. We propose that the atlas can be used to validate water placement in electron density maps in crystallographic refinement, to locate water molecules mediating protein-ligand interactions in drug design, and to prepare and evaluate molecular dynamics simulations. WatAA: Atlas of Protein Hydration is freely available without login at .
Castaldi, Paola; Garau, Giovanni; Melis, Pietro
2008-01-01
In this work the dynamics of biochemical (enzymatic activities) and chemical (water-soluble fraction) parameters during 100 days of municipal solid wastes composting were studied to evaluate their suitability as tools for compost characterization. The hydrolase (protease, urease, cellulase, beta-glucosidase) and dehydrogenase activities were characterized by significant changes during the first 2 weeks of composting, because of the increase of easily decomposable organic compounds. After the 4th week a "maturation phase" was identified in which the enzymatic activities tended to gently decrease, suggesting the stabilisation of organic matter. Also the water-soluble fractions (water-soluble carbon, nitrogen, carbohydrates and phenols), which are involved in many degradation processes, showed major fluctuations during the first month of composting. The results obtained showed that the hydrolytic activities and the water-soluble fractions did not vary statistically during the last month of composting. Significant correlations between the enzymatic activities, as well as between enzyme activities and water-soluble fractions, were also highlighted. These results highlight the suitability of both enzymatic activities and water soluble fractions as suitable indicators of the state and evolution of the organic matter during composting. However, since in the literature the amount of each activity or fraction at the end of composting depends on the raw material used for composting, single point determinations appear inadequate for compost characterization. This emphasizes the importance of the characterization of the dynamics of enzymatic activities and water-soluble fractions during the process.
Qin, Hua-Peng; Su, Qiong; Khu, Soon-Thiam
2013-01-15
Integrated water environmental management in a rapidly urbanizing area often requires combining social, economic and engineering measures in order to be effective. However, in reality, these measures are often considered independently by different planners, and decisions are made in a hierarchical manner; this has led to problems in environmental pollution control and also an inability to devise innovative solutions due to technological lock-in. In this paper, we use a novel coupled system dynamics and water environmental model (SyDWEM) to simulate the dynamic interactions between the socio-economic system, water infrastructure and receiving water in a rapidly urbanizing catchment in Shenzhen, China. The model is then applied to assess the effects of proposed socio-economic or engineering measures on environmental and development indicators in the catchment for 2011-2020. The results indicate that 1) measures to adjust industry structures have a positive effect on both water quantity and quality in the catchment; 2) measures to increase the labor productivity, the water use efficiency, the water transfer quota or the reclaimed wastewater reuse can alleviate the water shortage, but cannot improve water quality in the river; 3) measures to increase the wastewater treatment rate or the pollutant removal rate can improve water quality in the river, but have no effect on water shortage. Based on the effectiveness of the individual measures, a combination of socio-economic and engineering measures is proposed, which can achieve water environmental sustainability in the study area. Thus, we demonstrate that SyDWEM has the capacity to evaluate the effects of both socio-economic and engineering measures; it also provides a tool for integrated decision making by socio-economic and water infrastructure planners. Copyright © 2012 Elsevier Ltd. All rights reserved.
Can Water-Injected Turbomachines Provide Cost-Effective Emissions and Maintenance Reductions?
NASA Technical Reports Server (NTRS)
Hendricks, Robert C.; Daggett, David L.; Shouse, Dale T.; Roquemore, William M.; Brankovic, Andreja; Ryder, Robert C., Jr.
2011-01-01
An investigation has been performed to evaluate the effect of water injection on the performance of the Air Force Research Laboratory (AFRL, Wright-Patterson Air Force Base (WPAFB)) experimental trapped vortex combustor (TVC) over a range of fuel-to-air and water-to-fuel ratios. Performance is characterized by combustor exit quantities: temperature and emissions measurements using rakes, and overall pressure drop, from upstream plenum to combustor exit. Combustor visualization is performed using gray-scale and color still photographs and high-frame-rate videos. A parallel investigation evaluated the performance of a computational fluid dynamics (CFD) tool for the prediction of the reacting flow in a liquid fueled combustor (e.g., TVC) that uses water injection for control of pollutant emissions and turbine inlet temperature. Generally, reasonable agreement is found between data and NO(x) computations. Based on a study assessing the feasibility and performance impact of using water injection on a Boeing 747-400 aircraft to reduce NO(x) emissions during takeoff, retrofitting does not appear to be cost effective; however, an operator of a newly designed engine and airframe might be able to save up to 1.0 percent in operating costs. Other challenges of water injection will be discussed.
Modeling the Dynamics of Soil Structure and Water in Agricultural Soil
NASA Astrophysics Data System (ADS)
Weller, U.; Lang, B.; Rabot, E.; Stössel, B.; Urbanski, L.; Vogel, H. J.; Wiesmeier, M.; Wollschlaeger, U.
2017-12-01
The impact of agricultural management on soil functions is manifold and severe. It has both positive and adverse influence. Our goal is to develop model tools quantifying the agricultural impact on soil functions based on a mechanistic understanding of soil processes to support farmers and decision makers. The modeling approach is based on defining relevant soil components, i.e. soil matrix, macropores, organisms, roots and organic matter. They interact and form the soil's macroscopic properties and functions including water and gas dynamics, and biochemical cycles. Based on existing literature information we derive functional interaction processes and combine them in a network of dynamic soil components. In agricultural soils, a major issue is linked to changes in soil structure and their influence on water dynamics. Compaction processes are well studied in literature, but for the resilience due to root growth and activity of soil organisms the information is scarcer. We implement structural dynamics into soil water and gas simulations using a lumped model that is both coarse enough to allow extensive model runs while still preserving some important, yet rarely modeled phenomenons like preferential flow, hysteretic and dynamic behavior. For simulating water dynamics, at each depth, the model assumes water at different binding energies depending on soil structure, i.e. the pore size distribution. Non-equilibrium is postulated, meaning that free water may occur even if the soil is not fully saturated. All energy levels are interconnected allowing water to move, both within a spatial node, and between neighboring nodes (adding gravity). Structure dynamics alters the capacity of this water compartments, and the conductance of its connections. Connections are switched on and off depending on whether their sources contain water or their targets have free capacity. This leads to piecewise linear system behavior that allows fast calculation for extended time steps. Based on this concept, the dynamics of soil structure can be directly linked to soil water dynamics as a main driver for other soil processes. Further steps will include integration of temperature and solute leaching as well as defining the feedback of the water regime on the structure forming processes.
Influence of Cholesterol on the Dynamics of Hydration in Phospholipid Bilayers.
Elola, M Dolores; Rodriguez, Javier
2018-06-07
We investigate the dynamics of interfacial waters in dipalmitoylphosphatidylcholine (DPPC) bilayers upon the addition of cholesterol, by molecular dynamics simulations. Our data reveal that the inclusion of cholesterol modifies the membrane aqueous interfacial dynamics: waters diffuse faster, their rotational decay time is shorter, and the DPPC/water hydrogen bond dynamics relaxes faster than in the pure DPPC membrane. The observed acceleration of the translational water dynamics agrees with recent experimental results, in which, by means of NMR techniques, an increment of the surface water diffusivity is measured upon the addition of cholesterol. A microscopic analysis of the lipid/water hydrogen bond network at the interfacial region suggests that the mechanism underlying the observed water mobility enhancement is given by the rupture of a fraction of interlipid water bridge hydrogen bonds connecting two different DPPC molecules, concomitant to the formation of new lipid/solvent bonds, whose dynamics is faster than that of the former. The consideration of a simple two-state model for the decay of the hydrogen bond correlation function yielded excellent results, obtaining two well-separated characteristic time scales: a slow one (∼250 ps) associated with bonds linking two DPPC molecules, and a fast one (∼15 ps), related to DPPC/solvent bonds.
Coupled diffusion in lipid bilayers upon close approach
Pronk, Sander; Lindahl, Erik; Kasson, Peter M.
2014-12-23
Biomembrane interfaces create regions of slowed water dynamics in their vicinity. When two lipid bilayers come together, this effect is further accentuated, and the associated slowdown can affect the dynamics of larger-scale processes such as membrane fusion. We have used molecular dynamics simulations to examine how lipid and water dynamics are affected as two lipid bilayers approach each other. These two interacting fluid systems, lipid and water, both slow and become coupled when the lipid membranes are separated by a thin water layer. We show in particular that the water dynamics become glassy, and diffusion of lipids in the apposedmore » leaflets becomes coupled across the water layer, while the “outer” leaflets remain unaffected. This dynamic coupling between bilayers appears mediated by lipid–water–lipid hydrogen bonding, as it occurs at bilayer separations where water–lipid hydrogen bonds become more common than water–water hydrogen bonds. We further show that such coupling occurs in simulations of vesicle–vesicle fusion prior to the fusion event itself. As a result, such altered dynamics at membrane–membrane interfaces may both stabilize the interfacial contact and slow fusion stalk formation within the interface region.« less
Nutrient dynamics in shallow lakes of Northern Greece.
Petaloti, Christina; Voutsa, Dimitra; Samara, Constantini; Sofoniou, Mihalis; Stratis, Ioannis; Kouimtzis, Themistocles
2004-01-01
GOAL, SCOPE, BACKGROUND: Shallow lakes display a number of features that set them apart from the more frequently studied deeper systems. The majority of lakes in Northern Greece are small to moderate in size with a relatively low depth and are considered as sites of high value of the wetland habitat. However, the water quality of these lakes has only been evaluated segmentally and occasionally. The objectives of this study were to thoroughly investigate nitrogen and phosphorus speciation in lakes of a high ecological significance located in N. Greece, in order to evaluate their eutrophication status and possible nutrient limitation factors, and to investigate the main factors/sources that affect the water quality of these systems. An extensive survey was carried out during the period from 1998-1999. Water samples were collected on a monthly basis from lakes Koronia, Volvi, Doirani, Mikri Prespa and Megali Prespa located in N. Greece. Water quality parameters (temperature, dissolved oxygen, pH and conductivity), organic indices (COD, BOD5), and N- and P-species (NO3(-), NO2(-), NH4(+), and PO4(3-), Kieldahl nitrogen and acid-hydrolysable phosphorus) were determined according to standard methods for surface water. Statistical treatment of the data was employed. The physicochemical parameters determined in the lakes studied revealed a high temporal variation. The trophic state of the lakes ranged from meso- to hypertrophic. The nutrient limiting factor varied among lakes suggesting either P-limitation conditions or mixed conditions changing from P- to N-limitation throughout the year. Urban/industrial activities and agricultural runoff are the major factors affecting all lakes, although with a varying contribution. This lake-specific research offers valuable information about water quality and nutrient dynamics in lakes of significant ecological value located in N. Greece that can be useful for an effective pollution control/management of these systems. Due to the large intra-annual variability of certain physicochemical parameters, a properly designed monitoring program of lake water is recommended.
Effects of water scarcity and chemical pollution in aquatic ecosystems: State of the art.
Arenas-Sánchez, Alba; Rico, Andreu; Vighi, Marco
2016-12-01
Water scarcity is an expanding climate and human related condition, which drives and interacts with other stressors in freshwater ecosystems such as chemical pollution. In this study we provide an overview of the existing knowledge regarding the chemical fate, biological dynamics and the ecological risks of chemicals under water scarcity conditions. We evaluated a total of 15 studies dealing with the combined effects of chemicals and water scarcity under laboratory conditions and in the field. The results of these studies have been elaborated in order to evaluate additive, synergistic or antagonistic responses of the studied endpoints. As a general rule, it can be concluded that, in situations of water scarcity, the impacts of extreme water fluctuations are much more relevant than those of an additional chemical stressor. Nevertheless, the presence of chemical pollution may result in exacerbated ecological risks in some particular cases. We conclude that further investigations on this topic would take advantage on the focus on some specific issues. Experimental (laboratory and model ecosystem) studies should be performed on different biota groups and life stages (diapausing eggs, immature stages), with particular attention to those including traits relevant for the adaptation to water scarcity. More knowledge on species adaptations and recovery capacity is essential to predict community responses to multiple stressors and to assess the community vulnerability. Field studies should be performed at different scales, particularly in lotic systems, in order to integrate different functional dynamics of the river ecosystem. Combining field monitoring and experimental studies would be the best option to reach more conclusive, causal relationships on the effects of co-occurring stressors. Contribution of these studies to develop ecological models and scenarios is also suggested as an improvement for the prospective aquatic risk assessment of chemicals in (semi-)arid areas. Copyright © 2016 Elsevier B.V. All rights reserved.
Gupta, Rini; Chandra, Amalendu
2007-07-14
We have performed a series of molecular dynamics simulations of water-acetone mixtures containing either an ionic solute or a neutral hydrophobic solute to study the extent of nonideality in the dynamics of these solutes with variation of composition of the mixtures. The diffusion coefficients of the charged solutes, both cationic and anionic, are found to change nonmonotonically with the composition of the mixtures showing strong nonideality of their dynamics. Also, the extent of nonideality in the diffusion of these charged solutes is found to be similar to the nonideality that is observed for the diffusion and orientational relaxation of water and acetone molecules in these mixtures which show a somewhat similar changes in the solvation characteristics of charged and dipolar solutes with changes of composition of water-acetone mixtures. The diffusion of the hydrophobic solute, however, shows a monotonic increase with increase of acetone concentration showing its different solvation characteristics as compared to the charged and dipolar solutes. The links between the nonideality in diffusion and solvation structures are further confirmed through calculations of the relevant solute-solvent and solvent-solvent radial distribution functions for both ionic and hydrophobic solutes. We have also calculated various pair dynamical properties such as the relaxation of water-water and acetone-water hydrogen bonds and residence dynamics of water molecules in water and acetone hydration shells. The lifetimes of both water-water and acetone-water hydrogen bonds and also the residence times of water molecules are found to increase steadily with increase in acetone concentration. No maximum or minimum was found in the composition dependence of these pair dynamical quantities. The lifetimes of water-water hydrogen bonds are always found to be longer than that of acetone-water hydrogen bonds in these mixtures. The residence times of water molecules are also found to follow a similar trend.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saide, Pablo; Spak, S. N.; Carmichael, Gregory
2012-03-30
We evaluate a regional-scale simulation with the WRF-Chem model for the VAMOS (Variability of the American Monsoon Systems) Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx), which sampled the Southeast Pacific's persistent stratocumulus deck. Evaluation of VOCALS-REx ship-based and aircraft observations focuses on analyzing how aerosol loading affects marine boundary layer (MBL) dynamics and cloud microphysics. We compare local time series and campaign averaged longitudinal gradients, and highlight differences in model simulations with (W) and without wet (NW) deposition processes. The higher aerosol loadings in the NW case produce considerable changes in MBL dynamics and cloud microphysics, in accordance with the established conceptualmore » model of aerosol indirect effects. These include increase in cloud albedo, increase in MBL and cloud heights, drizzle suppression, increase in liquid water content, and increase in cloud lifetime. Moreover, better statistical representation of aerosol mass and number concentration improves model fidelity in reproducing observed spatial and temporal variability in cloud properties, including top and base height, droplet concentration, water content, rain rate, optical depth (COD) and liquid water path (LWP). Together, these help to quantify confidence in WRF-Chem's modeled aerosol-cloud interactions, while identifying structural and parametric uncertainties including: irreversibility in rain wet removal; overestimation of marine DMS and sea salt emissions and accelerated aqueous sulfate conversion. Our findings suggest that WRF-Chem simulates marine cloud-aerosol interactions at a level sufficient for applications in forecasting weather and air quality and studying aerosol climate forcing, including the reliability required for policy analysis and geo-engineering applications.« less
NASA Astrophysics Data System (ADS)
Cui, Qiyuan; Wang, Difeng; Gong, Fang; Pan, Delu; Hao, Zengzhou; Wang, Tianyu; Zhu, Qiankun
2017-10-01
With its broad spatial coverage and fine temporal resolution, ocean color remote sensing data represents an effective tool for monitoring large areas of ocean, and has the potential to provide crucial information in coastal waters where routine monitoring is either lacking or unsatisfactory. The semi-analytical or empirical algorithms that work well in Case 1 waters encounter many problems in offshore areas where the water is often optically complex and presents difficulties for atmospheric correction. Zhejiang is one of the most developed provinces in eastern China, and its adjacent seas have been greatly affected by recent rapid economic development. Various islands and semi-closed bays along the Zhejiang coast promote the formation of muddy tidal flats. Moreover, large quantities of terrestrial substances coming down with the Yangtze River and other local rivers also have a great impact on the coastal waters of the province. MODIS, VIIRS and GOCI are three commonly used ocean color sensors covering the East China Sea. Several ocean color products such as remote-sensing reflectance (Rrs) and the concentrations of chlorophyll a (Chl-a) and total suspended matter (TSM) of the above three sensors on the Zhejiang coast have been evaluated. Cloud-free satellite images with synchronous field measurements taken between 2012 and 2015 were used for comparison. It is shown that there is a good correlation between the MODIS and GOCI spectral data, while some outliers were found in the VIIRS images. The low signal-to-noise ratio at short wavelengths in highly turbid waters also reduced the correlation between different sensors. In addition, it was possible to obtain more valid data with GOCI in shallow waters because of the use of an appropriate atmospheric correction algorithm. The standard Chl-a and TSM products of the three satellites were also evaluated, and it was found that the Chl-a and TSM concentrations calculated by the OC3G and Case 2 algorithms, respectively, were more suitable for use in the study area. Moreover, GOCI has been proved to be effective for monitoring the diurnal dynamics in coastal waters, and the concentration of TSM had a good negative correlation with water level. Overall, compared with MODIS and VIIRS, GOCI is more effective for monitoring the fine changes and diurnal dynamics in the seas adjacent to Zhejiang Province.
Grid-to-rod flow-induced impact study for PWR fuel in reactor
Jiang, Hao; Qu, Jun; Lu, Roger Y.; ...
2016-06-10
The source for grid-to-rod fretting in a pressurized water nuclear reactor (PWR) is the dynamic contact impact from hydraulic flow-induced fuel assembly vibration. In order to support grid-to-rod fretting wear mitigation research, finite element analysis (FEA) was used to evaluate the hydraulic flow-induced impact intensity between the fuel rods and the spacer grids. Three-dimensional FEA models, with detailed geometries of the dimple and spring of the actual spacer grids along with fuel rods, were developed for flow impact simulation. The grid-to-rod dynamic impact simulation provided insights of the contact phenomena at grid-rod interface. Finally, it is an essential and effectivemore » way to evaluate contact forces and provide guidance for simulative bench fretting-impact tests.« less
Whitehead, P G; Jin, L; Crossman, J; Comber, S; Johnes, P J; Daldorph, P; Flynn, N; Collins, A L; Butterfield, D; Mistry, R; Bardon, R; Pope, L; Willows, R
2014-05-15
The issues of diffuse and point source phosphorus (P) pollution in the Hampshire Avon and Blashford Lakes are explored using a catchment model of the river system. A multibranch, process based, dynamic water quality model (INCA-P) has been applied to the whole river system to simulate water fluxes, total phosphorus (TP) and soluble reactive phosphorus (SRP) concentrations and ecology. The model has been used to assess impacts of both agricultural runoff and point sources from waste water treatment plants (WWTPs) on water quality. The results show that agriculture contributes approximately 40% of the phosphorus load and point sources the other 60% of the load in this catchment. A set of scenarios have been investigated to assess the impacts of alternative phosphorus reduction strategies and it is shown that a combined strategy of agricultural phosphorus reduction through either fertiliser reductions or better phosphorus management together with improved treatment at WWTPs would reduce the SRP concentrations in the river to acceptable levels to meet the EU Water Framework Directive (WFD) requirements. A seasonal strategy for WWTP phosphorus reductions would achieve significant benefits at reduced cost. Copyright © 2014 Elsevier B.V. All rights reserved.
Connections between the growth of Arctica islandica and phytoplankton dynamics on the Faroe Shelf
NASA Astrophysics Data System (ADS)
Bonitz, Fabian; Andersson, Carin; Trofimova, Tamara
2017-04-01
In this study we use molluscan sclerochronological techniques in order to obtain closer insights into environmental and ecological dynamics of Faroe Shelf waters. The Faroe Shelf represents a special ecosystem with rich benthic and neritic communities, which also have great importance for many economically relevant fish stocks. Thus, a better understanding of seasonal and year-to-year phytoplankton and stratification dynamics would be useful because they also have implications for higher trophic levels. The water masses of the Faroe Shelf are fairly homogenous and isolated from off-shelf waters but at a certain depth, which is referred to as transition zone, seasonal stratification and horizontal exchange occur. Systematic observations and phytoplankton dynamic investigations have only been performed during the last 29 years but longer records are missing. Thus, we use the growth increment variability in long-lived Arctica islandica shells from the transition zone of the eastern Faroe Shelf to evaluate its potential to estimate on-shelf phytoplankton and stratification dynamics since previous studies have shown that the growth of A. islandica is highly dependent on food availability. We have built a shell-based master-chronology reaching back to the 17th century. Comparisons between the growth indices of our chronology and fluorescence data reveal significant positive relationships. In combination with an index that accounts for stratification even stronger correlations are obtained. This indicates that the growth of A. islandica is largely influenced by a combination of how much phytoplankton is produced and how much actually reaches the bottom, i.e. how well-mixed the water column is. Further significant positive correlations can also be found between the growth indices and other primary productivity data from the Faroe Shelf. In conclusion, our results suggest that the growth indices can be related to year-to-year changes in phytoplankton production and stratification on the Faroe Shelf and may allow past reconstructions of phytoplankton production.
Soil water dynamics of lateritic catchments as affected by forest clearing for pasture
NASA Astrophysics Data System (ADS)
Sharma, M. L.; Barron, R. J. W.; Williamson, D. R.
1987-10-01
Aspects of soil water dynamics as affected by land use changes were examined over a period of five years (1974-1979) in two groups of adjacent catchments located in 1200 mm yr -1 and 800 mm yr -1 rainfall zones near Collie, Western Australia. In the summer of 1976/1977, after three years of calibration, 100% of one high rainfall catchment, Wights, and 53% of one lower rainfall catchment, Lemon, was cleared of native eucalyptus forest and replaced with pasture. The soil water storage down to 6m was measured in-situ using a neutron probe in fifteen access tubes located at five stratified sites in each catchment. Considerable spatial variability in soil water storage was encountered within a site, between sites within a catchment, and between paired catchments; the dominant variability being between sites. Comparisons between the pre- and postclearing states within a catchment and between the cleared and uncleared control catchments were used to evaluate the effect of change in land use on soil water dynamics. Within two years of the change from forest to pasture, a significant increase in soil water storage had occurred in the profiles in both cleared catchments. Concurrently, there was a small decrease in the uncleared control catchments. The increases following clearing were greater in the higher than in the lower rainfall catchment, more pronounced in the first year than in the second year, and occurred mostly at depths greater than 2m. In Wights catchment, the increase in summer minimum soil water storage in the first and second years amounted to 220 and 58 mm respectively, whilst for Lemon catchment the increase for the first year was < 50 mm. This increased soil water storage was due to a substantially lower evapotranspiration from the shallow-rooted, seasonally active pasture which extracts water from the top 1 m or so, compared with the perennial native eucalyptus forest which extracts water from depths down to 6 m and beyond. Due to the relatively low water holding capacity of the surface lateritic soils, the drainage beyond 1 m is substantially increased under pasture, and this results in an increased recharge to the underlying aquifer.
Hydrodynamic modelling of a tidal delta wetland using an enhanced quasi-2D model
NASA Astrophysics Data System (ADS)
Wester, Sjoerd J.; Grimson, Rafael; Minotti, Priscilla G.; Booija, Martijn J.; Brugnach, Marcela
2018-04-01
Knowledge about the hydrological regime of wetlands is key to understand their physical and biological properties. Modelling hydrological and hydrodynamic processes within a wetland is therefore becoming increasingly important. 3D models have successfully modelled wetland dynamics but depend on very detailed bathymetry and land topography. Many 1D and 2D models of river deltas highly simplify the interaction between the river and wetland area or simply neglect the wetland area. This study proposes an enhanced quasi-2D modelling strategy that captures the interaction between river discharge and moon tides and the resulting hydrodynamics, while using the scarce data available. The water flow equations are discretised with an interconnected irregular cell scheme, in which a simplification of the 1D Saint-Venant equations is used to define the water flow between cells. The spatial structure of wetlands is based on the ecogeomorphology in complex estuarine deltas. The islands within the delta are modelled with levee cells, creek cells and an interior cell representing a shallow marsh wetland. The model is calibrated for an average year and the model performance is evaluated for another average year and additionally an extreme dry three-month period and an extreme wet three-month period. The calibration and evaluation are done based on two water level measurement stations and two discharge measurement stations, all located in the main rivers. Additional calibration is carried out with field water level measurements in a wetland area. Accurate simulations are obtained for both calibration and evaluation with high correlations between observed and simulated water levels and simulated discharges in the same order of magnitude as observed discharges. Calibration against field measurements showed that the model can successfully simulate the overflow mechanism in wetland areas. A sensitivity analysis for several wetland parameters showed that these parameters are all influencing the water level fluctuation within the wetlands to varying degrees. The enhanced quasi-2D model has the potential to accurately simulate river and wetland dynamics for large wetland areas and help to understand their hydrodynamics.
Lee, Mal -Soon; Peter McGrail, B.; Rousseau, Roger; ...
2015-10-12
Here, the interface between a solid and a complex multi-component liquid forms a unique reaction environment whose structure and composition can significantly deviate from either bulk or liquid phase and is poorly understood due the innate difficulty to obtain molecular level information. Feldspar minerals, as typified by the Ca-end member Anorthite, serve as prototypical model systems to assess the reactivity and ion mobility at solid/water-bearing supercritical fluid (WBSF) interfaces due to recent X-ray based measurements that provide information on water-film formation, and cation vacancies at these surfaces. Using density functional theory based molecular dynamics, which allows the evaluation of reactivitymore » and condensed phase dynamics on equal footing, we report on the structure and dynamics of water nucleation and surface aggregation, carbonation and Ca mobilization under geologic carbon sequestration scenarios (T = 323 K and P = 90 bar). We find that water has a strong enthalpic preference for aggregation on a Ca-rich, O-terminated anorthite (001) surface, but entropy strongly hinders the film formation at very low water concentrations. Carbonation reactions readily occur at electron-rich terminal Oxygen sites adjacent to cation vacancies, when in contact with supercritical CO 2. Cation vacancies of this type can form readily in the presence of a water layer that allows for facile and enthalpicly favorable Ca 2+ extraction and solvation. Apart from providing unprecedented molecular level detail of a complex three component (mineral, water and scCO 2) system), this work highlights the ability of modern capabilities of AIMD methods to begin to qualitatively and quantitatively address structure and reactivity at solid-liquid interfaces of high chemical complexity. This work was supported by the US Department of Energy, Office of Fossil Energy (M.-S. L., B. P. M. and V.-A. G.) and the Office of Basic Energy Science, Division of Chemical Sciences, Geosciences and Biosciences (R.R.), and performed at the Pacific Northwest National Laboratory (PNNL). PNNL is a multi-program national laboratory operated for DOE by Battelle. Computational resources were provided by PNNL’s Platform for Institutional Computing (PIC), the W. R. Wiley Environmental Molecular Science Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy’s Office of Biological and Environmental Research located at PNNL and the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory.« less
Seeing real-space dynamics of liquid water through inelastic x-ray scattering.
Iwashita, Takuya; Wu, Bin; Chen, Wei-Ren; Tsutsui, Satoshi; Baron, Alfred Q R; Egami, Takeshi
2017-12-01
Water is ubiquitous on earth, but we know little about the real-space motion of molecules in liquid water. We demonstrate that high-resolution inelastic x-ray scattering measurement over a wide range of momentum and energy transfer makes it possible to probe real-space, real-time dynamics of water molecules through the so-called Van Hove function. Water molecules are found to be strongly correlated in space and time with coupling between the first and second nearest-neighbor molecules. The local dynamic correlation of molecules observed here is crucial to a fundamental understanding of the origin of the physical properties of water, including viscosity. The results also suggest that the quantum-mechanical nature of hydrogen bonds could influence its dynamics. The approach used here offers a powerful experimental method for investigating real-space dynamics of liquids.
The Roles of Water in the Protein Matrix: A Largely Untapped Resource for Drug Discovery.
Spyrakis, Francesca; Ahmed, Mostafa H; Bayden, Alexander S; Cozzini, Pietro; Mozzarelli, Andrea; Kellogg, Glen E
2017-08-24
The value of thoroughly understanding the thermodynamics specific to a drug discovery/design study is well known. Over the past decade, the crucial roles of water molecules in protein structure, function, and dynamics have also become increasingly appreciated. This Perspective explores water in the biological environment by adopting its point of view in such phenomena. The prevailing thermodynamic models of the past, where water was seen largely in terms of an entropic gain after its displacement by a ligand, are now known to be much too simplistic. We adopt a set of terminology that describes water molecules as being "hot" and "cold", which we have defined as being easy and difficult to displace, respectively. The basis of these designations, which involve both enthalpic and entropic water contributions, are explored in several classes of biomolecules and structural motifs. The hallmarks for characterizing water molecules are examined, and computational tools for evaluating water-centric thermodynamics are reviewed. This Perspective's summary features guidelines for exploiting water molecules in drug discovery.
Moualeu-Ngangue, Dany P.; Chen, Tsu-Wei; Stützel, Hartmut
2016-01-01
Water use efficiency (WUE) is considered as a determinant of yield under stress and a component of crop drought resistance. Stomatal behavior regulates both transpiration rate and net assimilation and has been suggested to be crucial for improving crop WUE. In this work, a dynamic model was used to examine the impact of dynamic properties of stomata on WUE. The model includes sub-models of stomatal conductance dynamics, solute accumulation in the mesophyll, mesophyll water content, and water flow to the mesophyll. Using the instantaneous value of stomatal conductance, photosynthesis, and transpiration rate were simulated using a biochemical model and Penman-Monteith equation, respectively. The model was parameterized for a cucumber leaf and model outputs were evaluated using climatic data. Our simulations revealed that WUE was higher on a cloudy than a sunny day. Fast stomatal reaction to light decreased WUE during the period of increasing light (e.g., in the morning) by up to 10.2% and increased WUE during the period of decreasing light (afternoon) by up to 6.25%. Sensitivity of daily WUE to stomatal parameters and mesophyll conductance to CO2 was tested for sunny and cloudy days. Increasing mesophyll conductance to CO2 was more likely to increase WUE for all climatic conditions (up to 5.5% on the sunny day) than modifications of stomatal reaction speed to light and maximum stomatal conductance. PMID:27379150
Chen, Ying; Bylaska, Eric J.; Weare, John H.
2017-03-31
Many important geochemical and biogeochemical reactions occur in the mineral/formation water interface of the highly abundant mineral, goethite (α-Fe(OOH). Ab-initio molecular dynamics (AIMD) simulations of the goethite α-FeOOH (100) surface and the structure, water bond formation and dynamics of water molecules in the mineral/aqueous interface are presented. Here, several exchange correlation functionals were employed (PBE96, PBE96+Grimme, and PBE0) in the simulations of a (3 x 2) goethite surface with 65 absorbed water molecules in a 3D-periodic supercell (a=30 Å, FeOOH slab ~12 Å thick, solvation layer ~18 Å thick).
Kessler, Jan; Elgabarty, Hossam; Spura, Thomas; Karhan, Kristof; Partovi-Azar, Pouya; Hassanali, Ali A; Kühne, Thomas D
2015-08-06
The structure and dynamics of the water/vapor interface is revisited by means of path-integral and second-generation Car-Parrinello ab initio molecular dynamics simulations in conjunction with an instantaneous surface definition [Willard, A. P.; Chandler, D. J. Phys. Chem. B 2010, 114, 1954]. In agreement with previous studies, we find that one of the OH bonds of the water molecules in the topmost layer is pointing out of the water into the vapor phase, while the orientation of the underlying layer is reversed. Therebetween, an additional water layer is detected, where the molecules are aligned parallel to the instantaneous water surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Ying; Bylaska, Eric J.; Weare, John H.
Many important geochemical and biogeochemical reactions occur in the mineral/formation water interface of the highly abundant mineral, goethite (α-Fe(OOH). Ab-initio molecular dynamics (AIMD) simulations of the goethite α-FeOOH (100) surface and the structure, water bond formation and dynamics of water molecules in the mineral/aqueous interface are presented. Here, several exchange correlation functionals were employed (PBE96, PBE96+Grimme, and PBE0) in the simulations of a (3 x 2) goethite surface with 65 absorbed water molecules in a 3D-periodic supercell (a=30 Å, FeOOH slab ~12 Å thick, solvation layer ~18 Å thick).
Young runoff fractions control streamwater age and solute concentration dynamics
Paolo Benettin; Scott W. Bailey; Andrea Rinaldo; Gene E. Likens; Kevin J. McGuire; Gianluca Botter
2017-01-01
We introduce a new representation of coupled solute and water age dynamics at the catchment scale, which shows how the contributions of young runoff waters can be directly referenced to observed water quality patterns. The methodology stems from recent trends in hydrologic transport that acknowledge the dynamic nature of streamflow age and explores the use of water age...
NASA Astrophysics Data System (ADS)
Pezzotti, Simone; Serva, Alessandra; Gaigeot, Marie-Pierre
2018-05-01
Following our previous work where the existence of a special 2-Dimensional H-Bond (2D-HB)-Network was revealed at the air-water interface [S. Pezzotti et al., J. Phys. Chem. Lett. 8, 3133 (2017)], we provide here a full structural and dynamical characterization of this specific arrangement by means of both Density Functional Theory based and Force Field based molecular dynamics simulations. We show in particular that water at the interface with air reconstructs to maximize H-Bonds formed between interfacial molecules, which leads to the formation of an extended and non-interrupted 2-Dimensional H-Bond structure involving on average ˜90% of water molecules at the interface. We also show that the existence of such an extended structure, composed of H-Bonds all oriented parallel to the surface, constrains the reorientional dynamics of water that is hence slower at the interface than in the bulk. The structure and dynamics of the 2D-HB-Network provide new elements to possibly rationalize several specific properties of the air-water interface, such as water surface tension, anisotropic reorientation of interfacial water under an external field, and proton hopping.
Accounting for system dynamics in reserve design.
Leroux, Shawn J; Schmiegelow, Fiona K A; Cumming, Steve G; Lessard, Robert B; Nagy, John
2007-10-01
Systematic conservation plans have only recently considered the dynamic nature of ecosystems. Methods have been developed to incorporate climate change, population dynamics, and uncertainty in reserve design, but few studies have examined how to account for natural disturbance. Considering natural disturbance in reserve design may be especially important for the world's remaining intact areas, which still experience active natural disturbance regimes. We developed a spatially explicit, dynamic simulation model, CONSERV, which simulates patch dynamics and fire, and used it to evaluate the efficacy of hypothetical reserve networks in northern Canada. We designed six networks based on conventional reserve design methods, with different conservation targets for woodland caribou habitat, high-quality wetlands, vegetation, water bodies, and relative connectedness. We input the six reserve networks into CONSERV and tracked the ability of each to maintain initial conservation targets through time under an active natural disturbance regime. None of the reserve networks maintained all initial targets, and some over-represented certain features, suggesting that both effectiveness and efficiency of reserve design could be improved through use of spatially explicit dynamic simulation during the planning process. Spatial simulation models of landscape dynamics are commonly used in natural resource management, but we provide the first illustration of their potential use for reserve design. Spatial simulation models could be used iteratively to evaluate competing reserve designs and select targets that have a higher likelihood of being maintained through time. Such models could be combined with dynamic planning techniques to develop a general theory for reserve design in an uncertain world.
NASA Astrophysics Data System (ADS)
You, Xiaofang; Wei, Hengbin; Zhu, Xianchang; Lyu, Xianjun; Li, Lin
2018-07-01
Molecular dynamics simulations were employed to study the effects of oxygen functional groups for structure and dynamics properties of interfacial water molecules on the subbituminous coal surface. Because of complex composition and structure, the graphite surface modified by hydroxyl, carboxyl and carbonyl groups was used to represent the surface model of subbituminous coal according to XPS results, and the composing proportion for hydroxyl, carbonyl and carboxyl is 25:3:5. The hydration energy with -386.28 kJ/mol means that the adsorption process between water and coal surface is spontaneous. Density profiles for oxygen atoms and hydrogen atoms indicate that the coal surface properties affect the structural and dynamic characteristics of the interfacial water molecules. The interfacial water exhibits much more ordering than bulk water. The results of radial distribution functions, mean square displacement and local self-diffusion coefficient for water molecule related to three oxygen moieties confirmed that the water molecules prefer to absorb with carboxylic groups, and adsorption of water molecules at the hydroxyl and carbonyl is similar.
Using Isotopic Age of Water as a Constraint on Model Identification at a Critical Zone Observatory
NASA Astrophysics Data System (ADS)
Duffy, C.; Thomas, E.; Bhatt, G.; George, H.; Boyer, E. W.; Sullivan, P. L.
2016-12-01
This paper presents an ecohydrologic model constrained by comprehensive space and time observations of water and stable isotopes of oxygen and hydrogen for an upland catchment, the Susquehanna/Shale Hills Critical Zone Observatory (SSH_CZO). The paper first develops the theoretical basis for simulation of flow, isotope ratios and "age" as water moves through the canopy, to the unsaturated and saturated zones and finally to an intermittent stream. The model formulation demonstrates that the residence time and age of environmental tracers can be directly simulated without knowledge of the form of the underlying residence time distribution function and without the addition of any new physical parameters. The model is used to explore the observed rapid attenuation of event and seasonal isotopic ratios in precipitation over the depth of the soil zone and the impact of decreasing hydraulic conductivity with depth on the dynamics of streamflow and stream isotope ratios. The results suggest the importance of mobile macropore flow on recharge to groundwater during the non-growing cold-wet season. The soil matrix is also recharged during this season with a cold-season isotope signature. During the growing-dry season, root uptake and evaporation from the soil matrix along with a declining water table provides the main source of water for plants and determines the growing season signature. Flow path changes during storm events and transient overland flow is inferred by comparing the frequency distribution of groundwater and stream isotope histories with model results. Model uncertainty is evaluated for conditions of matrix-macropore partitioning and heterogeneous variations in conductivity with depth. The paper concludes by comparing the fully dynamical model with the simplified mixing model form in dynamic equilibrium. The comparison illustrates the importance of system memory on the time scales for flow and mixing processes and the limitations of the dynamic equilibrium assumption on estimated age and residence time.
Molecular dynamics studies of interfacial water at the alumina surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Argyris, Dr. Dimitrios; Ho, Thomas; Cole, David
2011-01-01
Interfacial water properties at the alumina surface were investigated via all-atom equilibrium molecular dynamics simulations at ambient temperature. Al-terminated and OH-terminated alumina surfaces were considered to assess the structural and dynamic behavior of the first few hydration layers in contact with the substrates. Density profiles suggest water layering up to {approx}10 {angstrom} from the solid substrate. Planar density distribution data indicate that water molecules in the first interfacial layer are organized in well-defined patterns dictated by the atomic terminations of the alumina surface. Interfacial water exhibits preferential orientation and delayed dynamics compared to bulk water. Water exhibits bulk-like behavior atmore » distances greater than {approx}10 {angstrom} from the substrate. The formation of an extended hydrogen bond network within the first few hydration layers illustrates the significance of water?water interactions on the structural properties at the interface.« less
NASA Astrophysics Data System (ADS)
Green, Timothy R.; Erskine, Robert H.
2011-12-01
Dynamics of profile soil water vary with terrain, soil, and plant characteristics. The objectives addressed here are to quantify dynamic soil water content over a range of slope positions, infer soil profile water fluxes, and identify locations most likely influenced by multidimensional flow. The instrumented 56 ha watershed lies mostly within a dryland (rainfed) wheat field in semiarid eastern Colorado. Dielectric capacitance sensors were used to infer hourly soil water content for approximately 8 years (minus missing data) at 18 hillslope positions and four or more depths. Based on previous research and a new algorithm, sensor measurements (resonant frequency) were rescaled to estimate soil permittivity, then corrected for temperature effects on bulk electrical conductivity before inferring soil water content. Using a mass-conservation method, we analyzed multitemporal changes in soil water content at each sensor to infer the dynamics of water flux at different depths and landscape positions. At summit positions vertical processes appear to control profile soil water dynamics. At downslope positions infrequent overland flow and unsaturated subsurface lateral flow appear to influence soil water dynamics. Crop water use accounts for much of the variability in soil water between transects that are either cropped or fallow in alternating years, while soil hydraulic properties and near-surface hydrology affect soil water variability across landscape positions within each management zone. The observed spatiotemporal patterns exhibit the joint effects of short-term hydrology and long-term soil development. Quantitative methods of analyzing soil water patterns in space and time improve our understanding of dominant soil hydrological processes and provide alternative measures of model performance.
Future Carbon Dynamics of the Northern Rockies Ecoregion due to Climate Impacts and Fire Effects
NASA Astrophysics Data System (ADS)
Weller, U.; Lang, B.; Rabot, E.; Stössel, B.; Urbanski, L.; Vogel, H. J.; Wiesmeier, M.; Wollschlaeger, U.
2016-12-01
The impact of agricultural management on soil functions is manifold and severe. It has both positive and adverse influence. Our goal is to develop model tools quantifying the agricultural impact on soil functions based on a mechanistic understanding of soil processes to support farmers and decision makers. The modeling approach is based on defining relevant soil components, i.e. soil matrix, macropores, organisms, roots and organic matter. They interact and form the soil's macroscopic properties and functions including water and gas dynamics, and biochemical cycles. Based on existing literature information we derive functional interaction processes and combine them in a network of dynamic soil components. In agricultural soils, a major issue is linked to changes in soil structure and their influence on water dynamics. Compaction processes are well studied in literature, but for the resilience due to root growth and activity of soil organisms the information is scarcer. We implement structural dynamics into soil water and gas simulations using a lumped model that is both coarse enough to allow extensive model runs while still preserving some important, yet rarely modeled phenomenons like preferential flow, hysteretic and dynamic behavior. For simulating water dynamics, at each depth, the model assumes water at different binding energies depending on soil structure, i.e. the pore size distribution. Non-equilibrium is postulated, meaning that free water may occur even if the soil is not fully saturated. All energy levels are interconnected allowing water to move, both within a spatial node, and between neighboring nodes (adding gravity). Structure dynamics alters the capacity of this water compartments, and the conductance of its connections. Connections are switched on and off depending on whether their sources contain water or their targets have free capacity. This leads to piecewise linear system behavior that allows fast calculation for extended time steps. Based on this concept, the dynamics of soil structure can be directly linked to soil water dynamics as a main driver for other soil processes. Further steps will include integration of temperature and solute leaching as well as defining the feedback of the water regime on the structure forming processes.
A simplified model to predict diurnal water temperature dynamics in a shallow tropical water pool.
Paaijmans, Krijn P; Heusinkveld, Bert G; Jacobs, Adrie F G
2008-11-01
Water temperature is a critical regulator in the growth and development of malaria mosquito immatures, as they are poikilothermic. Measuring or estimating the diurnal temperature ranges to which these immatures are exposed is of the utmost importance, as these immatures will develop into adults that can transmit malaria. Recent attempts to predict the daily water temperature dynamics in mosquito breeding sites in Kenya have been successful. However, the developed model may be too complex, as the sophisticated equipment that was used for detailed meteorological observations is not widely distributed in Africa, making it difficult to predict the daily water temperature dynamics on a local scale. Therefore, we compared two energy budget models with earlier made observations of the daily water temperature dynamics in a small, shallow and clear water pool (diameter 0.96 m, depth 0.32 m) in Kenya. This paper describes (1) a complex 1-Dimensional model, and (2) a simplified second model, and (3) shows that both models mimic the water temperature dynamics in the water pool accurately. The latter model has the advantage that it only needs common weather data (air temperature, air humidity, wind speed and cloud cover) to estimate the diurnal temperature dynamics in breeding sites of African malaria mosquitoes.
NASA Astrophysics Data System (ADS)
Haji, Kenichi; Shiibara, Daiki; Arata, Yoshihiro; Sakoda, Tatsuya; Otsubo, Masahisa
The dynamic drop test was proposed as a method to evaluate hydrophobicity reduction of polymer materials. In this test, the formation change of a water channel was confirmed, and thereafter, the remained droplets and the dropped droplets on the sampled surface were repulsed each other. The distributions of electrification on the droplet and the sample surface were measured. The influence of the electrified droplet on the hydrophobicity reduction was examined. The results showed that the polarity on the sample surface changed by the dropped droplet, leading to the hydrophobicity loss.
The dynamic two-fluid model OLGA; Theory and application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bendiksen, K.H.; Maines, D.; Moe, R.
1991-05-01
Dynamic two-fluid models have found a wide range of application in the simulation of two-phase-flow systems, particularly for the analysis of steam/water flow in the core of a nuclear reactor. Until quite recently, however, very few attempts have been made to use such models in the simulation of two-phase oil and gas flow in pipelines. This paper presents a dynamic two-fluid model, OLGA, in detail, stressing the basic equations and the two-fluid models applied. Predictions of steady-state pressure drop, liquid hold-up, and flow-regime transitions are compared with data from the SINTEF Two-Phase Flow Laboratory and from the literature. Comparisons withmore » evaluated field data are also presented.« less
NASA Astrophysics Data System (ADS)
Moriarty, Julia M.; Harris, Courtney K.; Fennel, Katja; Friedrichs, Marjorie A. M.; Xu, Kehui; Rabouille, Christophe
2017-04-01
Observations indicate that resuspension and associated fluxes of organic material and porewater between the seabed and overlying water can alter biogeochemical dynamics in some environments, but measuring the role of sediment processes on oxygen and nutrient dynamics is challenging. A modeling approach offers a means of quantifying these fluxes for a range of conditions, but models have typically relied on simplifying assumptions regarding seabed-water-column interactions. Thus, to evaluate the role of resuspension on biogeochemical dynamics, we developed a coupled hydrodynamic, sediment transport, and biogeochemical model (HydroBioSed) within the Regional Ocean Modeling System (ROMS). This coupled model accounts for processes including the storage of particulate organic matter (POM) and dissolved nutrients within the seabed; fluxes of this material between the seabed and the water column via erosion, deposition, and diffusion at the sediment-water interface; and biogeochemical reactions within the seabed. A one-dimensional version of HydroBioSed was then implemented for the Rhône subaqueous delta in France. To isolate the role of resuspension on biogeochemical dynamics, this model implementation was run for a 2-month period that included three resuspension events; also, the supply of organic matter, oxygen, and nutrients to the model was held constant in time. Consistent with time series observations from the Rhône Delta, model results showed that erosion increased the diffusive flux of oxygen into the seabed by increasing the vertical gradient of oxygen at the seabed-water interface. This enhanced supply of oxygen to the seabed, as well as resuspension-induced increases in ammonium availability in surficial sediments, allowed seabed oxygen consumption to increase via nitrification. This increase in nitrification compensated for the decrease in seabed oxygen consumption due to aerobic remineralization that occurred as organic matter was entrained into the water column. Additionally, entrainment of POM into the water column during resuspension events, and the associated increase in remineralization there, also increased oxygen consumption in the region of the water column below the pycnocline. During these resuspension events, modeled rates of oxygen consumption increased by factors of up to ˜ 2 and ˜ 8 in the seabed and below the pycnocline, respectively. When averaged over 2 months, the intermittent cycles of erosion and deposition led to a ˜ 16 % increase of oxygen consumption in the seabed, as well as a larger increase of ˜ 140 % below the pycnocline. These results imply that observations collected during quiescent periods, and biogeochemical models that neglect resuspension or use typical parameterizations for resuspension, may underestimate net oxygen consumption at sites like the Rhône Delta. Local resuspension likely has the most pronounced effect on oxygen dynamics at study sites with a high oxygen concentration in bottom waters, only a thin seabed oxic layer, and abundant labile organic matter.
Valeriani, F; Gianfranceschi, G; Vitali, M; Protano, C; Romano Spica, V
2017-01-01
Hygiene and surveillance in swimming pools are established by WHO Guidelines and national laws. Progress in water management and pool construction is revolutionizing the field, introducing new materials, systems, disinfection procedures or monitoring markers. Innovation advances challenge the upgrading of safety and quality in pools and the appropriate implementation of guidelines. In order to provide a device for laboratory test, a prototype was realized and applied to study and compare swimming pool materials and treatments. A pool scale-model was engineered and evaluated by computational fluid dynamics algorithms. An automated real time monitoring assured steady state. Critical control points along the water circuit were made accessible to allow the placing of different biocides or water sampling. Simulations were safely performed in a standard hood. Materials for pool surfaces and pipelines were evaluated for biofilm formation under different disinfection conditions. Adherent microorganisms were assayed by mfDNA analysis using real time PCR. The prototype reached the steady state within 5-25 hours under different conditions, showing chemical, physical and fluid-dynamic stability. A method was optimized for testing materials showing their different response to biofilm induction. Several innovative PVC samples displayed highest resistance to bacterial adhesion. A device and method was developed for testing swimming pool hygienic parameters in laboratory. It allowed to test materials for pools hygiene and maintenance, including biofilm formation. It can be applied to simulate contaminations under different water treatments or disinfection strategies. It may support technical decisions and help policymakers in acquiring evidences for comparing or validating innovative solutions.
NASA Astrophysics Data System (ADS)
Yu, Zhongbo; Xu, Shiqin; Ji, Xibin; Sudicky, Edward A.
2018-06-01
Accurate estimates of evapotranspiration and its components are essential for quantifying the water and energy fluxes and water resources management in arid regions. To this end, daily actual evapotranspiration (ETa), pan evaporation, and concurrent microclimate from an arid shrublands were measured over two growing seasons (2014-2015) to determine water budgets and to test the validity of the complementary relationship (CR) at this temporal scale. The average ETa is 229.32 ± 45.86 mm during two growing seasons, while canopy transpiration, soil evaporation, and interception accounted for 68.1 ± 16.5%, 29.1 ± 2.5% and 2.8 ± 0.6%, respectively. Actual evapotranspiration and Penman potential evapotranspiration, or pan evaporation exhibit complementary behavior, where the complementary relationship is asymmetric. Daily ETa rates are significantly overestimated by the symmetric Advection-Aridity (AA) model. Employing the modified AA model, where parameters are calibrated locally and wet environment evapotranspiration is evaluated at wet environment air temperature as opposed to the measured air temperature, the prediction accuracy of ETa is dramatically improved. With calibrated parameters, the E601B sunken pan can satisfactorily describe the dynamics of daily ETa, while the D20 aboveground pan underestimates it to some extent. Moreover, the modified AA model is able to capture the dynamics of groundwater usage by vegetation during dry summer. These findings gain our new knowledge on the capability of CR theory to resolve special issue occurred in phreatophytic shrublands, and can also provide beneficial reference to water resource and eco-environment management in arid regions.
Bonhommeau, David A; Perret, Alexandre; Nuzillard, Jean-Marc; Cilindre, Clara; Cours, Thibaud; Alijah, Alexander; Liger-Belair, Gérard
2014-12-18
The diffusion coefficients of carbon dioxide (CO2) and ethanol (EtOH) in carbonated hydroalcoholic solutions and Champagne wines are evaluated as a function of temperature by classical molecular dynamics (MD) simulations and (13)C NMR spectroscopy measurements. The excellent agreement between theoretical and experimental diffusion coefficients suggest that ethanol is the main molecule, apart from water, responsible for the value of the CO2 diffusion coefficients in typical Champagne wines, a result that could likely be extended to most sparkling wines with alike ethanol concentrations. CO2 and EtOH hydrodynamical radii deduced from viscometry measurements by applying the Stokes-Einstein relationship are found to be mostly constant and in close agreement with MD predictions. The reliability of our approach should be of interest to physical chemists aiming to model transport phenomena in supersaturated aqueous solutions or water/alcohol mixtures.
Physicochemical, mechanical and thermal properties of chitosan films with and without sorbitol.
Liu, Mei; Zhou, Yibin; Zhang, Yang; Yu, Chen; Cao, Shengnan
2014-09-01
The effect of sorbitol on the physicochemical, mechanical and thermal properties of chitosan films with different degrees of deacetylation (DD; i.e., DD85% and DD95%) was investigated. The thickness, moisture content (MC), water solubility (WS) and water-vapor permeability (WVP) of the films were evaluated. Sorbitol addition reduced MC, increased WS and significantly (p<0.01) reduced WVP of both film types. DD95% films had lower MC and WVP, and higher WS than DD85% films. Static (thermomechanical analysis) and dynamic (dynamic mechanical analysis) tests indicated that sorbitol increased the strain and decreased stress for both DD films, but DD95% could sustain higher strain and DD85% could sustain higher stress. Thermogravimetrics analysis and differential scanning calorimetry showed that sorbitol elicited a lower degradation temperature for both films, and that DD95% films exhibited higher thermal stability than DD85% films. Copyright © 2014 Elsevier B.V. All rights reserved.
Retardation of Bulk Water Dynamics by Disaccharide Osmolytes
NASA Astrophysics Data System (ADS)
Shukla, Nimesh; Chen, Lee; Pomarico, Enrico; Chergui, Majed; Othon, Christina
Bioprotective nature of disaccharides is hypothesized to derive from the modification of the hydrogen bonding network of water which protects biomolecules through lowered water activity at the protein interface. Using ultrafast fluorescence spectroscopy, we measured the relaxation of bulk water dynamics around the induced dipole moment of two fluorescent probes (Lucifer Yellow Ethylenediamine and Tryptophan). Our results indicate a reduction in bulk water reorganization rate of approximately 30%. We observe this retardation in the low concentration regime measured at 0.1 and 0.25 M, far below the onset of glassy dynamics. This water structuring should be significant in crowded biological systems, contributing to a global change in protein energy landscape, resulting in a significant enhancement of protein stability under environmental stress. We observed similar dynamic reduction for two disaccharide osmolytes, sucrose and trehalose, with trehalose being the more effective in reducing solvation dynamics.
Seeing real-space dynamics of liquid water through inelastic x-ray scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iwashita, Takuya; Wu, Bin; Chen, Wei-Ren
Water is ubiquitous on earth, but we know little about the real-space motion of molecules in liquid water. We demonstrate that high-resolution inelastic x-ray scattering measurement over a wide range of momentum and energy transfer makes it possible to probe real-space, real-time dynamics of water molecules through the so-called Van Hove function. Water molecules are found to be strongly correlated in space and time with coupling between the first and second nearest-neighbor molecules. The local dynamic correlation of molecules observed here is crucial to a fundamental understanding of the origin of the physical properties of water, including viscosity. The resultsmore » also suggest that the quantum-mechanical nature of hydrogen bonds could influence its dynamics. Finally, the approach used here offers a powerful experimental method for investigating real-space dynamics of liquids.« less
Seeing real-space dynamics of liquid water through inelastic x-ray scattering
Iwashita, Takuya; Wu, Bin; Chen, Wei-Ren; ...
2017-12-22
Water is ubiquitous on earth, but we know little about the real-space motion of molecules in liquid water. We demonstrate that high-resolution inelastic x-ray scattering measurement over a wide range of momentum and energy transfer makes it possible to probe real-space, real-time dynamics of water molecules through the so-called Van Hove function. Water molecules are found to be strongly correlated in space and time with coupling between the first and second nearest-neighbor molecules. The local dynamic correlation of molecules observed here is crucial to a fundamental understanding of the origin of the physical properties of water, including viscosity. The resultsmore » also suggest that the quantum-mechanical nature of hydrogen bonds could influence its dynamics. Finally, the approach used here offers a powerful experimental method for investigating real-space dynamics of liquids.« less
The Dynamics of Flowing Waters.
ERIC Educational Resources Information Center
Mattingly, Rosanna L.
1987-01-01
Describes a series of activities designed to help students understand the dynamics of flowing water. Includes investigations into determining water discharge, calculating variable velocities, utilizing flood formulas, graphing stream profiles, and learning about the water cycle. (TW)
Pollution source localization in an urban water supply network based on dynamic water demand.
Yan, Xuesong; Zhu, Zhixin; Li, Tian
2017-10-27
Urban water supply networks are susceptible to intentional, accidental chemical, and biological pollution, which pose a threat to the health of consumers. In recent years, drinking-water pollution incidents have occurred frequently, seriously endangering social stability and security. The real-time monitoring for water quality can be effectively implemented by placing sensors in the water supply network. However, locating the source of pollution through the data detection obtained by water quality sensors is a challenging problem. The difficulty lies in the limited number of sensors, large number of water supply network nodes, and dynamic user demand for water, which leads the pollution source localization problem to an uncertainty, large-scale, and dynamic optimization problem. In this paper, we mainly study the dynamics of the pollution source localization problem. Previous studies of pollution source localization assume that hydraulic inputs (e.g., water demand of consumers) are known. However, because of the inherent variability of urban water demand, the problem is essentially a fluctuating dynamic problem of consumer's water demand. In this paper, the water demand is considered to be stochastic in nature and can be described using Gaussian model or autoregressive model. On this basis, an optimization algorithm is proposed based on these two dynamic water demand change models to locate the pollution source. The objective of the proposed algorithm is to find the locations and concentrations of pollution sources that meet the minimum between the analogue and detection values of the sensor. Simulation experiments were conducted using two different sizes of urban water supply network data, and the experimental results were compared with those of the standard genetic algorithm.
Van Haute, S; López-Gálvez, F; Gómez-López, V M; Eriksson, Markus; Devlieghere, F; Allende, Ana; Sampers, I
2015-09-02
A methodology to i) assess the feasibility of water disinfection in fresh-cut leafy greens wash water and ii) to compare the disinfectant efficiency of water disinfectants was defined and applied for a combination of peracetic acid (PAA) and lactic acid (LA) and comparison with free chlorine was made. Standardized process water, a watery suspension of iceberg lettuce, was used for the experiments. First, the combination of PAA+LA was evaluated for water recycling. In this case disinfectant was added to standardized process water inoculated with Escherichia coli (E. coli) O157 (6logCFU/mL). Regression models were constructed based on the batch inactivation data and validated in industrial process water obtained from fresh-cut leafy green processing plants. The UV254(F) was the best indicator for PAA decay and as such for the E. coli O157 inactivation with PAA+LA. The disinfection efficiency of PAA+LA increased with decreasing pH. Furthermore, PAA+LA efficacy was assessed as a process water disinfectant to be used within the washing tank, using a dynamic washing process with continuous influx of E. coli O157 and organic matter in the washing tank. The process water contamination in the dynamic process was adequately estimated by the developed model that assumed that knowledge of the disinfectant residual was sufficient to estimate the microbial contamination, regardless the physicochemical load. Based on the obtained results, PAA+LA seems to be better suited than chlorine for disinfecting process wash water with a high organic load but a higher disinfectant residual is necessary due to the slower E. coli O157 inactivation kinetics when compared to chlorine. Copyright © 2015 Elsevier B.V. All rights reserved.
Optimal water resource allocation modelling in the Lowveld of Zimbabwe
NASA Astrophysics Data System (ADS)
Mhiribidi, Delight; Nobert, Joel; Gumindoga, Webster; Rwasoka, Donald T.
2018-05-01
The management and allocation of water from multi-reservoir systems is complex and thus requires dynamic modelling systems to achieve optimality. A multi-reservoir system in the Southern Lowveld of Zimbabwe is used for irrigation of sugarcane estates that produce sugar for both local and export consumption. The system is burdened with water allocation problems, made worse by decommissioning of dams. Thus the aim of this research was to develop an operating policy model for the Lowveld multi-reservoir system.The Mann Kendall Trend and Wilcoxon Signed-Rank tests were used to assess the variability of historic monthly rainfall and dam inflows for the period 1899-2015. The WEAP model was set up to evaluate the water allocation system of the catchment and come-up with a reference scenario for the 2015/2016 hydrologic year. Stochastic Dynamic Programming approach was used for optimisation of the multi-reservoirs releases.Results showed no significant trend in the rainfall but a significantly decreasing trend in inflows (p < 0.05). The water allocation model (WEAP) showed significant deficits ( ˜ 40 %) in irrigation water allocation in the reference scenario. The optimal rule curves for all the twelve months for each reservoir were obtained and considered to be a proper guideline for solving multi- reservoir management problems within the catchment. The rule curves are effective tools in guiding decision makers in the release of water without emptying the reservoirs but at the same time satisfying the demands based on the inflow, initial storage and end of month storage.
NASA Astrophysics Data System (ADS)
Weng, Lindong; Ziaei, Shima; Elliott, Gloria D.
2016-07-01
Dry preservation of biologics in sugar glasses is regarded as a promising alternative to conventional cryopreservation. Evidence from various studies has suggested that there is a critical range of water content beyond which the viability of preserved biologics can be greatly compromised. In this study the viability of T-cells was determined as a function of end water content after microwave-assisted drying in trehalose solutions. Hydrogen-bonding and clustering phenomena in trehalose solutions of the same moisture content were also evaluated using molecular dynamics simulation. Post-rehydration viability decreased dramatically within the range of 0.1-1 gH2O/gdw. Molecular modeling revealed that as the water content approached 0.1 gH2O/gdw the matrix formed a large interconnected trehalose skeleton with a minimal number of bound water molecules scattered in the bulk. The diffusion coefficients of trehalose oxygen atoms most distant from the glycosidic linkage fluctuated around 7.5 × 10-14 m2/s within the range of 0.02-0.1 gH2O/gdw and increased again to ~1.13 × 10-13 m2/s at 0.01 gH2O/gdw and below due to the loss of water in the free volume between trehalose molecules. These insights can guide the optimal selection of final moisture contents to advance dry preservation methods.
Weng, Lindong; Ziaei, Shima; Elliott, Gloria D
2016-07-08
Dry preservation of biologics in sugar glasses is regarded as a promising alternative to conventional cryopreservation. Evidence from various studies has suggested that there is a critical range of water content beyond which the viability of preserved biologics can be greatly compromised. In this study the viability of T-cells was determined as a function of end water content after microwave-assisted drying in trehalose solutions. Hydrogen-bonding and clustering phenomena in trehalose solutions of the same moisture content were also evaluated using molecular dynamics simulation. Post-rehydration viability decreased dramatically within the range of 0.1-1 gH2O/gdw. Molecular modeling revealed that as the water content approached 0.1 gH2O/gdw the matrix formed a large interconnected trehalose skeleton with a minimal number of bound water molecules scattered in the bulk. The diffusion coefficients of trehalose oxygen atoms most distant from the glycosidic linkage fluctuated around 7.5 × 10(-14) m(2)/s within the range of 0.02-0.1 gH2O/gdw and increased again to ~1.13 × 10(-13) m(2)/s at 0.01 gH2O/gdw and below due to the loss of water in the free volume between trehalose molecules. These insights can guide the optimal selection of final moisture contents to advance dry preservation methods.
Numerical Simulation of the Effects of Water Surface in Building Environment
NASA Astrophysics Data System (ADS)
Li, Guangyao; Pan, Yuqing; Yang, Li
2018-03-01
Water body could affect the thermal environment and airflow field in the building districts, because of its special thermal characteristics, evaporation and flat surface. The thermal influence of water body in Tongji University Jiading Campus front area was evaluated. First, a suitable evaporation model was selected and then was applied to calculate the boundary conditions of the water surface in the Fluent software. Next, the computational fluid dynamics (CFD) simulations were conducted on the models both with and without water, following the CFD practices guidelines. Finally, the outputs of the two simulations were compared with each other. Results showed that the effect of evaporative cooling from water surface strongly depends on the wind direction and temperature decrease was about 2∼5°C. The relative humidity within the enclosing area was affected by both the building arrangement and surrounding water. An increase of about 0.1∼0.2m/s of wind speed induced by the water evaporation was observed in the open space.
NASA Astrophysics Data System (ADS)
De Marco, Luigi; Haky, Andrew; Tokmakoff, Andrei
Two-dimensional infrared (2D IR) spectroscopy has proven itself an indispensable tool for studying molecular dynamics and intermolecular interactions on ultrafast timescales. Using a novel source of broadband mid-IR pulses, we have collected 2D IR spectra of protein films at varying levels of hydration. With 2D IR, we can directly observe coupling between water's motions and the protein's. Protein films provide us with the ability to discriminate hydration waters from bulk water and thus give us access to studying water dynamics along the protein backbone, fluctuations in the protein structure, and the interplay between the molecular dynamics of the two. We present two representative protein films: poly-L-proline (PLP) and hen egg-white lysozyme (HEWL). Having no N-H groups, PLP allows us to look at water dynamics without interference from resonant energy transfer between the protein N-H stretch and the water O-H stretch. We conclude that at low hydration levels water-protein interactions dominate, and the water's dynamics are tied to those of the protein. In HEWL films, we take advantage of the robust secondary structure to partially deuterate the film, allowing us to spectrally distinguish the protein core from the exterior. From this, we show that resonant energy transfer to water provides an effective means of dissipating excess energy within the protein, while maintaining the structure. These methods are general and can easily be extended to studying specific protein-water interactions.
NASA Astrophysics Data System (ADS)
Gaur, N.; Jaimes, A.; Vaughan, S.; Morgan, C.; Moore, G. W.; Miller, G. R.; Everett, M. E.; Lawing, M.; Mohanty, B.
2017-12-01
Applications varying from improving water conservation practices at the field scale to predicting global hydrology under a changing climate depend upon our ability to achieve water budget closure. 1) Prevalent heterogeneity in soils, geology and land-cover, 2) uncertainties in observations and 3) space-time scales of our control volume and available data are the main factors affecting the percentage of water budget closure that we can achieve. The Texas Water Observatory presents a unique opportunity to observe the major components of the water cycle (namely precipitation, evapotranspiration, root zone soil moisture, streamflow and groundwater) in varying eco-hydrological regions representative of the lower Brazos River basin at multiple scales. The soils in these regions comprise of heavy clays that swell and shrink to create complex preferential pathways in the sub-surface, thus, making the hydrology in this region difficult to quantify. This work evaluates the water budget of the region by varying the control volume in terms of 3 temporal (weekly, monthly and seasonal) and 3 different spatial scales. The spatial scales are 1) Point scale - that is typical for process understanding of water dynamics, 2) Eddy Covariance footprint scale - that is typical of most eco-hydrological applications at the field scale and, 3) Satellite footprint scale- that is typically used in regional and global hydrological analysis. We employed a simple water balance model to evaluate the water budget at all scales. The point scale water budget was assessed using direct observations from hydro-geo-thematically located observation locations within different eddy covariance footprints. At the eddy covariance footprint scale, the sub-surface of each eddy covariance footprint was intensively characterized using electromagnetic induction (EM 38) and the resultant data was used to calculate the inter-point variability to upscale the sub-surface storage while the satellite scale water budget was evaluated using SMAP satellite observations supplemented with reanalysis products. At the point scale, we found differences in sub-surface storage in the same land-cover depending on the landscape position of the observation point while land-cover significantly affected water budget at the larger scales.
Dynamic drought risk assessment using crop model and remote sensing techniques
NASA Astrophysics Data System (ADS)
Sun, H.; Su, Z.; Lv, J.; Li, L.; Wang, Y.
2017-02-01
Drought risk assessment is of great significance to reduce the loss of agricultural drought and ensure food security. The normally drought risk assessment method is to evaluate its exposure to the hazard and the vulnerability to extended periods of water shortage for a specific region, which is a static evaluation method. The Dynamic Drought Risk Assessment (DDRA) is to estimate the drought risk according to the crop growth and water stress conditions in real time. In this study, a DDRA method using crop model and remote sensing techniques was proposed. The crop model we employed is DeNitrification and DeComposition (DNDC) model. The drought risk was quantified by the yield losses predicted by the crop model in a scenario-based method. The crop model was re-calibrated to improve the performance by the Leaf Area Index (LAI) retrieved from MODerate Resolution Imaging Spectroradiometer (MODIS) data. And the in-situ station-based crop model was extended to assess the regional drought risk by integrating crop planted mapping. The crop planted area was extracted with extended CPPI method from MODIS data. This study was implemented and validated on maize crop in Liaoning province, China.
van der Loop, Tibert H; Panman, Matthijs R; Lotze, Stephan; Zhang, Jing; Vad, Thomas; Bakker, Huib J; Sager, Wiebke F C; Woutersen, Sander
2012-07-28
We study the structure and reorientation dynamics of nanometer-sized water droplets inside nonionic reverse micelles (water/Igepal-CO-520/cyclohexane) with time-resolved mid-infrared pump-probe spectroscopy and small angle x-ray scattering. In the time-resolved experiments, we probe the vibrational and orientational dynamics of the O-D bonds of dilute HDO:H(2)O mixtures in Igepal reverse micelles as a function of temperature and micelle size. We find that even small micelles contain a large fraction of water that reorients at the same rate as water in the bulk, which indicates that the polyethylene oxide chains of the surfactant do not penetrate into the water volume. We also observe that the confinement affects the reorientation dynamics of only the first hydration layer. From the temperature dependent surface-water dynamics, we estimate an activation enthalpy for reorientation of 45 ± 9 kJ mol(-1) (11 ± 2 kcal mol(-1)), which is close to the activation energy of the reorientation of water molecules in ice.
Sahin, Oz; Bertone, Edoardo; Beal, Cara; Stewart, Rodney A
2018-06-01
Population growth, coupled with declining water availability and changes in climatic conditions underline the need for sustainable and responsive water management instruments. Supply augmentation and demand management are the two main strategies used by water utilities. Water demand management has long been acknowledged as a least-cost strategy to maintain water security. This can be achieved in a variety of ways, including: i) educating consumers to limit their water use; ii) imposing restrictions/penalties; iii) using smart and/or efficient technologies; and iv) pricing mechanisms. Changing water consumption behaviours through pricing or restrictions is challenging as it introduces more social and political issues into the already complex water resources management process. This paper employs a participatory systems modelling approach for: (1) evaluating various forms of a proposed tiered scarcity adjusted water budget and pricing structure, and (2) comparing scenario outcomes against the traditional restriction policy regime. System dynamics modelling was applied since it can explicitly account for the feedbacks, interdependencies, and non-linear relations that inherently characterise the water tariff (price)-demand-revenue system. A combination of empirical water use data, billing data and customer feedback on future projected water bills facilitated the assessment of the suitability and likelihood of the adoption of scarcity-driven tariff options for a medium-sized city within Queensland, Australia. Results showed that the tiered scarcity adjusted water budget and pricing structure presented was preferable to restrictions since it could maintain water security more equitably with the lowest overall long-run marginal cost. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ding, Lei; Chen, Kun-lun; Cheng, Sheng-gao; Wang, Xu
With the excessive development of social economy, water scarcity and water environment deterioration become a common phenomenon in metropolis. As a crucial component of urban water environment system, urban lake is mainly influenced by social economic system and tourism system. In this paper, a framework for quantitatively evaluating development sustainability of urban lake was established by a multi-objective model that represented water ecological carrying capacity (WECC). And nine key indicators including population, irrigation area, tourist quantity, the average number of hotel daily reception, TP, TN, CODMn, BOD5 were chosen from urban social-economy system and natural resilience aspects, with their index weight was determined by using the Structure Entropy Weight method. Then, we took Wuhan East Lake, the largest urban lake in China as a case study, and selected five time sections including 2002, 2004, 2007, 2009 and 2012 to synthetically evaluate and comparatively analyze the dynamic change of WECC. The results showed that: firstly, the water ecological carrying capacity values of the East Lake in five time sections were 1.17, 1.07, 1.64, 1.53 and 2.01 respectively, which all exceeded 1 and increased fluctuation. The rapid growth of population and GDP lead to sharply increasing demand for water quantity. However, a large amount of the domestic sewage and industrial waste led by economic development increases pressure on ecological environment of urban lakes. Secondly, the carrying capacity of the East Lake for tourist activities was still low. The value in 2012 was only 0.22, keeping at a slowly increasing phase, which indicates that the East Lake has large opportunity and space for developing the water resource carrying capacity and could make further efforts to attract tourists. Moreover, the WECC of the East Lake was mainly affected by rapid social and economic development and water environment damage caused by organic pollutants. From the view of urban water sustainable management, we must deeply recognize the reality that water shortages and the limited carrying capacity, and dynamic assessment of WECC provides an early warning approach and control direction of water environment. For the East Lake, it is the primary target to mitigate the carrying capacity of social-economy, especially for prevention of lake area encroachment shrinking and domestic wastewater discharge.
The properties of water in swollen cross-linked polystyrene sulfo acids
NASA Astrophysics Data System (ADS)
Gagarin, A. N.; Tokmachev, M. G.; Kovaleva, S. S.; Ferapontov, N. B.
2008-11-01
The properties of water in polystyrene sulfo acid gels with various cross-linking degrees were studied by optical volumetry and dynamic desorption porosimetry. The isotherms of water desorption obtained by dynamic desorption porosimetry coincided with isopiestic isotherms, which allowed this method to be recommended for the determination of the amount of water in polymer gels. Joint optical volumetry and dynamic desorption porosimetry studies showed that the interphase boundary in the cross-liked hydrophilic polymer-water system did not coincide with the visible gel boundary, because gels were two-phase systems, which contained water of two types, “free” and “bound.” The influence of the degree of polymer cross-linking on the amounts and properties of water of the two types was studied. It was shown that constants of water distribution in the polymer could be calculated from the dynamic desorption porosimetry data.
Incorporating human-water dynamics in a hyper-resolution land surface model
NASA Astrophysics Data System (ADS)
Vergopolan, N.; Chaney, N.; Wanders, N.; Sheffield, J.; Wood, E. F.
2017-12-01
The increasing demand for water, energy, and food is leading to unsustainable groundwater and surface water exploitation. As a result, the human interactions with the environment, through alteration of land and water resources dynamics, need to be reflected in hydrologic and land surface models (LSMs). Advancements in representing human-water dynamics still leave challenges related to the lack of water use data, water allocation algorithms, and modeling scales. This leads to an over-simplistic representation of human water use in large-scale models; this is in turn leads to an inability to capture extreme events signatures and to provide reliable information at stakeholder-level spatial scales. The emergence of hyper-resolution models allows one to address these challenges by simulating the hydrological processes and interactions with the human impacts at field scales. We integrated human-water dynamics into HydroBlocks - a hyper-resolution, field-scale resolving LSM. HydroBlocks explicitly solves the field-scale spatial heterogeneity of land surface processes through interacting hydrologic response units (HRUs); and its HRU-based model parallelization allows computationally efficient long-term simulations as well as ensemble predictions. The implemented human-water dynamics include groundwater and surface water abstraction to meet agricultural, domestic and industrial water demands. Furthermore, a supply-demand water allocation scheme based on relative costs helps to determine sectoral water use requirements and tradeoffs. A set of HydroBlocks simulations over the Midwest United States (daily, at 30-m spatial resolution for 30 years) are used to quantify the irrigation impacts on water availability. The model captures large reductions in total soil moisture and water table levels, as well as spatiotemporal changes in evapotranspiration and runoff peaks, with their intensity related to the adopted water management strategy. By incorporating human-water dynamics in a hyper-resolution LSM this work allows for progress on hydrological monitoring and predictions, as well as drought preparedness and water impact assessments at relevant decision-making scales.
Hydrogen-bond dynamics at the bio-water interface in hydrated proteins: a molecular-dynamics study.
Nandi, Prithwish K; English, Niall J; Futera, Zdenek; Benedetto, Antonio
2016-12-21
Water is fundamental to the biochemistry of enzymes. It is well known that without a minimum amount of water, enzymes are not biologically active. Bare minimal solvation for biological function corresponds to about a single layer of water covering enzymes' surfaces. Many contradictory studies on protein-hydration-water-coupled dynamics have been published in recent decades. Following prevailing wisdom, a dynamical crossover in hydration water (at around 220 K for hydrated lysozymes) can trigger larger-amplitude motions of the protein, activating, in turn, biological functions. Here, we present a molecular-dynamics-simulation study on a solvated model protein (hen egg-white lysozyme), in which we determine, inter alia, the relaxation dynamics of the hydrogen-bond network between the protein and its hydration water molecules on a residue-per-residue basis. Hydrogen-bond breakage/formation kinetics is rather heterogeneous in temperature dependence (due to the heterogeneity of the free-energy surface), and is driven by the magnitude of thermal motions of various different protein residues which provide enough thermal energy to overcome energy barriers to rupture their respective hydrogen bonds with water. In particular, arginine residues exhibit the highest number of such hydrogen bonds at low temperatures, losing almost completely such bonding above 230 K. This suggests that hydration water's dynamical crossover, observed experimentally for hydrated lysozymes at ∼220 K, lies not at the origin of the protein residues' larger-amplitude motions, but rather arises as a consequence thereof. This highlights the need for new experimental investigations, and new interpretations to link protein dynamics to functions, in the context of key interrelationships with the solvation layer.
Dynamics of Water Associated with Lithium Ions Distributed in Polyethylene Oxide
Zhang, Zhe; Ohl, Michael; Diallo, Souleymane O.; ...
2015-11-03
We studied the dynamics of water in polyethylene oxide (PEO)/LiCl solution with quasielastic neutron scattering experiments and molecular dynamics (MD) simulations. Two different time scales of water diffusion representing interfacial water and bulk water dynamics have been identified. Furthermore, the measured diffusion coefficient of interfacial water remained 5–10 times smaller than that of bulk water, but both were slowed by approximately 50% in the presence of Li +. Detailed analysis of MD trajectories suggests that Li + is favorably found at the surface of the hydration layer, and the probability to find the caged Li + configuration formed by themore » PEO is lower than for the noncaged Li +-PEO configuration. In both configurations, however, the slowing down of water molecules is driven by reorienting water molecules and creating water-Li + hydration complexes. Moreover, performing the MD simulation with different ions (Na + and K +) revealed that smaller ionic radius of the ions is a key factor in disrupting the formation of PEO cages by allowing spaces for water molecules to come in between the ion and PEO.« less
Dynamics of Water Associated with Lithium Ions Distributed in Polyethylene Oxide
NASA Astrophysics Data System (ADS)
Zhang, Zhe; Ohl, Michael; Diallo, Souleymane O.; Jalarvo, Niina H.; Hong, Kunlun; Han, Youngkyu; Smith, Gregory S.; Do, Changwoo
2015-11-01
The dynamics of water in polyethylene oxide (PEO)/LiCl solution has been studied with quasielastic neutron scattering experiments and molecular dynamics (MD) simulations. Two different time scales of water diffusion representing interfacial water and bulk water dynamics have been identified. The measured diffusion coefficient of interfacial water remained 5-10 times smaller than that of bulk water, but both were slowed by approximately 50% in the presence of Li+ . Detailed analysis of MD trajectories suggests that Li+ is favorably found at the surface of the hydration layer, and the probability to find the caged Li+ configuration formed by the PEO is lower than for the noncaged Li+-PEO configuration. In both configurations, however, the slowing down of water molecules is driven by reorienting water molecules and creating water-Li+ hydration complexes. Performing the MD simulation with different ions (Na+ and K+ ) revealed that smaller ionic radius of the ions is a key factor in disrupting the formation of PEO cages by allowing spaces for water molecules to come in between the ion and PEO.
Dynamics of Water Associated with Lithium Ions Distributed in Polyethylene Oxide.
Zhang, Zhe; Ohl, Michael; Diallo, Souleymane O; Jalarvo, Niina H; Hong, Kunlun; Han, Youngkyu; Smith, Gregory S; Do, Changwoo
2015-11-06
The dynamics of water in polyethylene oxide (PEO)/LiCl solution has been studied with quasielastic neutron scattering experiments and molecular dynamics (MD) simulations. Two different time scales of water diffusion representing interfacial water and bulk water dynamics have been identified. The measured diffusion coefficient of interfacial water remained 5-10 times smaller than that of bulk water, but both were slowed by approximately 50% in the presence of Li(+). Detailed analysis of MD trajectories suggests that Li(+) is favorably found at the surface of the hydration layer, and the probability to find the caged Li(+) configuration formed by the PEO is lower than for the noncaged Li(+)-PEO configuration. In both configurations, however, the slowing down of water molecules is driven by reorienting water molecules and creating water-Li(+) hydration complexes. Performing the MD simulation with different ions (Na(+) and K(+)) revealed that smaller ionic radius of the ions is a key factor in disrupting the formation of PEO cages by allowing spaces for water molecules to come in between the ion and PEO.
NASA Astrophysics Data System (ADS)
Foroutan, Masumeh; Darvishi, Mehdi; Fatemi, S. Mahmood
2017-09-01
The positioning, adsorption, and movement of water on substrates is dependent upon the chemical nature and arrangement of the atoms of the surface. Therefore the behavior of water molecules on a substrate is a reflection of properties of the surface. Based on this premise, graphene and gold substrates were chosen to study this subject from a molecular perspective. In this work, the structural and dynamical behaviors of a water nanodroplet on Au (100) and the graphene interfaces have been studied by molecular dynamics simulation. The results have shown how the structural and dynamical behaviors of water molecules at the interface reflect the characteristics of these surfaces. The results have demonstrated that residence time and hydrogen bonds' lifetime at the water-Au (100) interface are bigger than at the water-graphene interface. Energy contour map analysis indicates a more uniform surface energy on graphene than on the gold surface. The obtained results illustrate that water clusters on gold and graphene form tetramer and hexamer structures, respectively. Furthermore, the water molecules are more ordered on the gold surface than on graphene. The study of hydrogen bonds showed that the order, stability, and the number of hydrogen bonds is higher on the gold surface. The positioning pattern of water molecules is also similar to the arrangement of gold atoms while no regularity was observed on graphene. The study of dynamical behavior of water molecules revealed that the movement of water on gold is much less than on graphene which is in agreement with the strong water-gold interaction in comparison to the water-graphene interaction.
Eller, Cleiton B; Burgess, Stephen S O; Oliveira, Rafael S
2015-04-01
Trees from tropical montane cloud forest (TMCF) display very dynamic patterns of water use. They are capable of downwards water transport towards the soil during leaf-wetting events, likely a consequence of foliar water uptake (FWU), as well as high rates of night-time transpiration (Enight) during drier nights. These two processes might represent important sources of water losses and gains to the plant, but little is known about the environmental factors controlling these water fluxes. We evaluated how contrasting atmospheric and soil water conditions control diurnal, nocturnal and seasonal dynamics of sap flow in Drimys brasiliensis (Miers), a common Neotropical cloud forest species. We monitored the seasonal variation of soil water content, micrometeorological conditions and sap flow of D. brasiliensis trees in the field during wet and dry seasons. We also conducted a greenhouse experiment exposing D. brasiliensis saplings under contrasting soil water conditions to deuterium-labelled fog water. We found that during the night D. brasiliensis possesses heightened stomatal sensitivity to soil drought and vapour pressure deficit, which reduces night-time water loss. Leaf-wetting events had a strong suppressive effect on tree transpiration (E). Foliar water uptake increased in magnitude with drier soil and during longer leaf-wetting events. The difference between diurnal and nocturnal stomatal behaviour in D. brasiliensis could be attributed to an optimization of carbon gain when leaves are dry, as well as minimization of nocturnal water loss. The leaf-wetting events on the other hand seem important to D. brasiliensis water balance, especially during soil droughts, both by suppressing tree transpiration (E) and as a small additional water supply through FWU. Our results suggest that decreases in leaf-wetting events in TMCF might increase D. brasiliensis water loss and decrease its water gains, which could compromise its ecophysiological performance and survival during dry periods. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Microscopic mechanism of protein cryopreservation in an aqueous solution with trehalose
Corradini, Dario; Strekalova, Elena G.; Stanley, H. Eugene; Gallo, Paola
2013-01-01
In order to investigate the cryoprotective mechanism of trehalose on proteins, we use molecular dynamics computer simulations to study the microscopic dynamics of water upon cooling in an aqueous solution of lysozyme and trehalose. We find that the presence of trehalose causes global retardation of the dynamics of water. Comparing aqueous solutions of lysozyme with/without trehalose, we observe that the dynamics of water in the hydration layers close to the protein is dramatically slower when trehalose is present in the system. We also analyze the structure of water and trehalose around the lysozyme and find that the trehalose molecules form a cage surrounding the protein that contains very slow water molecules. We conclude that the transient cage of trehalose molecules that entraps and slows the water molecules prevents the crystallisation of protein hydration water upon cooling. PMID:23390573
Microscopic mechanism of protein cryopreservation in an aqueous solution with trehalose.
Corradini, Dario; Strekalova, Elena G; Stanley, H Eugene; Gallo, Paola
2013-01-01
In order to investigate the cryoprotective mechanism of trehalose on proteins, we use molecular dynamics computer simulations to study the microscopic dynamics of water upon cooling in an aqueous solution of lysozyme and trehalose. We find that the presence of trehalose causes global retardation of the dynamics of water. Comparing aqueous solutions of lysozyme with/without trehalose, we observe that the dynamics of water in the hydration layers close to the protein is dramatically slower when trehalose is present in the system. We also analyze the structure of water and trehalose around the lysozyme and find that the trehalose molecules form a cage surrounding the protein that contains very slow water molecules. We conclude that the transient cage of trehalose molecules that entraps and slows the water molecules prevents the crystallisation of protein hydration water upon cooling.
Structured Ionomer Thin Films at Water Interface: Molecular Dynamics Simulation Insight
Aryal, Dipak; Agrawal, Anupriya; Perahia, Dvora; ...
2017-08-23
Controlling the structure and dynamics of thin films of ionizable polymers at water interfaces is critical to their many applications. As the chemical diversity within one polymer is increased, controlling the structure and dynamics of the polymer, which is a key to their use, becomes a challenge. Here molecular dynamics simulations (MD) are used to obtain molecular insight into the structure and dynamics of thin films of one such macromolecule at the interface with water. The polymer consists of an ABCBA topology with randomly sulfonated polystyrene (C), tethered symmetrically to flexible poly(ethylene- r-propylene) blocks (B), and end-capped by a poly(more » t-butylstyrene) block (A). The compositions of the interfacial and bulk regions of thin films of the ABCBA polymers are followed as a function of exposure time to water. We find that interfacial rearrangements take place where buried ionic segments migrate toward the water interface. The hydrophobic blocks collapse and rearrange to minimize their exposure to water. In conclusion, the water that initially drives interfacial reengagements breaks the ionic clusters within the film, forming a dynamic hydrophilic internal network within the hydrophobic segments.« less
Ramakrishnan, Gopakumar; González-Jiménez, Mario; Lapthorn, Adrian J; Wynne, Klaas
2017-07-06
Water dynamics in the solvation shell of solutes plays a very important role in the interaction of biomolecules and in chemical reaction dynamics. However, a selective spectroscopic study of the solvation shell is difficult because of the interference of the solute dynamics. Here we report on the observation of heavily slowed down water dynamics in the solvation shell of different solutes by measuring the low-frequency spectrum of solvation water, free from the contribution of the solute. A slowdown factor of ∼50 is observed even for relatively low concentrations of the solute. We go on to show that the effect can be generalized to different solutes including proteins.
Evaluating competing forces constraining glacial grounding-line stability (Invited)
NASA Astrophysics Data System (ADS)
Powell, R. D.
2013-12-01
Stability of grounding lines of marine-terminating glaciers and ice sheets is of concern due to their importance in governing rates of ice mass loss and consequent sea level rise during global warming. Although processes are similar at tidewater and floating grounding zones their relative magnitudes in terms of their influence on grounding-line stability vary between these two end members. Processes considered Important for this discussion are ice dynamics, ice surface melting and crevassing, ocean dynamics, subglacial sediment and water dynamics, and subglacial bed geometries. Models have continued to improve in their representation of these complex interactions but reliable field measurements and data continue to be hard earned and too few to properly constrain the range of boundary conditions in this complicated system. Some data will be presented covering a range of regimes from Alaska, Svalbard and Antarctica. Certainly more data are required on subglacial sediment/water dynamics and fluxes to fully represent the spectrum of glacial regimes and to assess the significance of grounding-zone sediment systems in counteracting the other processes to force grounding-line stability. Especially important here is constraining the duration of the stability that could be maintained by sediment flux - present data appear to show that it is likely to be a limited period.
Lee, Kang M; Driever, Steven M; Heuvelink, Ep; Rüger, Simon; Zimmermann, Ulrich; de Gelder, Arie; Marcelis, Leo F M
2012-12-01
Relative changes in cell turgor of leaves of well-watered tomato plants were evaluated using the leaf patch clamp pressure probe (LPCP) under dynamic greenhouse climate conditions. LPCP changes, a measure for relative changes in cell turgor, were monitored at three different heights of transpiring and non-transpiring leaves of tomato plants on sunny and cloudy days simultaneously with whole plant water uptake. Clear diel patterns were observed for relative changes of cell turgor of both transpiring and non-transpiring leaves, which were stronger on sunny days than on cloudy days. A clear effect of canopy height was also observed. Non-transpiring leaves showed relative changes in cell turgor that closely followed plant water uptake throughout the day. However, in the afternoon the relative changes of cell turgor of the transpiring leaves displayed a delayed response in comparison to plant water uptake. Subsequent recovery of cell turgor loss of transpiring leaves during the following night appeared insufficient, as the pre-dawn turgescent state similar to the previous night was not attained. Copyright © Physiologia Plantarum 2012.
Yáñez, Alejandra; Tapia, Gerardo; Guerra, Fernando; Del Pozo, Alejandro
2017-01-01
The genetic and physiological mechanisms underlying the relationship between water-soluble carbohydrates (WSC) and water stress tolerance are scarcely known. This study aimed to evaluate the main WSC in stems, and the expression of genes involved in fructan metabolism in wheat genotypes growing in a glasshouse with water stress (WS; 50% field capacity from heading) and full irrigation (FI; 100% field capacity). Eight wheat genotypes (five tolerant and three susceptible to water stress) were evaluated initially (experiment 1) and the two most contrasting genotypes in terms of WSC accumulation were evaluated in a subsequent experiment (experiment 2). Maximum accumulation of WSC occurred 10-20 days after anthesis. Under WS, the stress-tolerant genotype exhibited higher concentrations of WSC, glucose, fructose and fructan in the stems, compared to FI. In addition, the stress-tolerant genotype exhibited higher up-regulation of the fructan 1-fructosyltransferase B (1-FFTB) and fructan 1-exohydrolase w2 (1-FEHw2) genes, whereas the susceptible cultivar presented an up-regulation of the fructan 6-fructosyltransferase (6-SFT) and fructan 1-exohydrolase w3 (1-FEHw3) genes. Our results indicated clear differences in the pattern of WSC accumulation and the expression of genes regulating fructan metabolism between the tolerant and susceptible genotypes under WS.
Yáñez, Alejandra; Tapia, Gerardo; Guerra, Fernando
2017-01-01
The genetic and physiological mechanisms underlying the relationship between water-soluble carbohydrates (WSC) and water stress tolerance are scarcely known. This study aimed to evaluate the main WSC in stems, and the expression of genes involved in fructan metabolism in wheat genotypes growing in a glasshouse with water stress (WS; 50% field capacity from heading) and full irrigation (FI; 100% field capacity). Eight wheat genotypes (five tolerant and three susceptible to water stress) were evaluated initially (experiment 1) and the two most contrasting genotypes in terms of WSC accumulation were evaluated in a subsequent experiment (experiment 2). Maximum accumulation of WSC occurred 10–20 days after anthesis. Under WS, the stress-tolerant genotype exhibited higher concentrations of WSC, glucose, fructose and fructan in the stems, compared to FI. In addition, the stress-tolerant genotype exhibited higher up-regulation of the fructan 1-fructosyltransferase B (1-FFTB) and fructan 1-exohydrolase w2 (1-FEHw2) genes, whereas the susceptible cultivar presented an up-regulation of the fructan 6-fructosyltransferase (6-SFT) and fructan 1-exohydrolase w3 (1-FEHw3) genes. Our results indicated clear differences in the pattern of WSC accumulation and the expression of genes regulating fructan metabolism between the tolerant and susceptible genotypes under WS. PMID:28552955
Somatic growth dynamics of West Atlantic hawksbill sea turtles: a spatio-temporal perspective
Bjorndal, Karen A.; Chaloupka, Milani; Saba, Vincent S.; Diez, Carlos E.; van Dam, Robert P.; Krueger, Barry H.; Horrocks, Julia A.; Santos, Armando J.B.; Bellini, Cláudio; Marcovaldi, Maria A.G.; Nava, Mabel; Willis, Sue; Godley, Brendan J.; Gore, Shannon; Hawkes, Lucy A.; McGowan, Andrew; Witt, Matthew J.; Stringell, Thomas B.; Sanghera, Amdeep; Richardson, Peter B.; Broderick, Annette C.; Phillips, Quinton; Calosso, Marta C.; Claydon, John A.B.; Blumenthal, Janice; Moncada, Felix; Nodarse, Gonzalo; Medina, Yosvani; Dunbar, Stephen G.; Wood, Lawrence D.; Lagueux, Cynthia J.; Campbell, Cathi L.; Meylan, Anne B.; Meylan, Peter A.; Burns Perez, Virginia R.; Coleman, Robin A.; Strindberg, Samantha; Guzmán-H, Vicente; Hart, Kristen M.; Cherkiss, Michael S.; Hillis-Starr, Zandy; Lundgren, Ian; Boulon, Ralf H.; Connett, Stephen; Outerbridge, Mark E.; Bolten, Alan B.
2016-01-01
Somatic growth dynamics are an integrated response to environmental conditions. Hawksbill sea turtles (Eretmochelys imbricata) are long-lived, major consumers in coral reef habitats that move over broad geographic areas (hundreds to thousands of kilometers). We evaluated spatio-temporal effects on hawksbill growth dynamics over a 33-yr period and 24 study sites throughout the West Atlantic and explored relationships between growth dynamics and climate indices. We compiled the largest ever data set on somatic growth rates for hawksbills – 3541 growth increments from 1980 to 2013. Using generalized additive mixed model analyses, we evaluated 10 covariates, including spatial and temporal variation, that could affect growth rates. Growth rates throughout the region responded similarly over space and time. The lack of a spatial effect or spatio-temporal interaction and the very strong temporal effect reveal that growth rates in West Atlantic hawksbills are likely driven by region-wide forces. Between 1997 and 2013, mean growth rates declined significantly and steadily by 18%. Regional climate indices have significant relationships with annual growth rates with 0- or 1-yr lags: positive with the Multivariate El Niño Southern Oscillation Index (correlation = 0.99) and negative with Caribbean sea surface temperature (correlation = −0.85). Declines in growth rates between 1997 and 2013 throughout the West Atlantic most likely resulted from warming waters through indirect negative effects on foraging resources of hawksbills. These climatic influences are complex. With increasing temperatures, trajectories of decline of coral cover and availability in reef habitats of major prey species of hawksbills are not parallel. Knowledge of how choice of foraging habitats, prey selection, and prey abundance are affected by warming water temperatures is needed to understand how climate change will affect productivity of consumers that live in association with coral reefs. Main conclusions The decadal declines in growth rates between 1997 and 2013 throughout the West Atlantic most likely resulted from warming waters through indirect negative effects on the foraging resources of hawksbills. These climatic influences are complex. With increasing temperatures, the trajectories of decline of coral cover and availability in reef habitats of major prey species of hawksbills are not parallel. Knowledge of how choice of foraging habitats, prey selection, and prey abundance are affected by warming water temperatures is needed to understand how climate change will affect productivity of consumers that live in association with coral reefs.
Vezzaro, L; Sharma, A K; Ledin, A; Mikkelsen, P S
2015-03-15
The estimation of micropollutant (MP) fluxes in stormwater systems is a fundamental prerequisite when preparing strategies to reduce stormwater MP discharges to natural waters. Dynamic integrated models can be important tools in this step, as they can be used to integrate the limited data provided by monitoring campaigns and to evaluate the performance of different strategies based on model simulation results. This study presents an example where six different control strategies, including both source-control and end-of-pipe treatment, were compared. The comparison focused on fluxes of heavy metals (copper, zinc) and organic compounds (fluoranthene). MP fluxes were estimated by using an integrated dynamic model, in combination with stormwater quality measurements. MP sources were identified by using GIS land usage data, runoff quality was simulated by using a conceptual accumulation/washoff model, and a stormwater retention pond was simulated by using a dynamic treatment model based on MP inherent properties. Uncertainty in the results was estimated with a pseudo-Bayesian method. Despite the great uncertainty in the MP fluxes estimated by the runoff quality model, it was possible to compare the six scenarios in terms of discharged MP fluxes, compliance with water quality criteria, and sediment accumulation. Source-control strategies obtained better results in terms of reduction of MP emissions, but all the simulated strategies failed in fulfilling the criteria based on emission limit values. The results presented in this study shows how the efficiency of MP pollution control strategies can be quantified by combining advanced modeling tools (integrated stormwater quality model, uncertainty calibration). Copyright © 2014 Elsevier Ltd. All rights reserved.
Three-dimensional audio-magnetotelluric sounding in monitoring coalbed methane reservoirs
NASA Astrophysics Data System (ADS)
Wang, Nan; Zhao, Shanshan; Hui, Jian; Qin, Qiming
2017-03-01
Audio-magnetotelluric (AMT) sounding is widely employed in rapid resistivity delineation of objective geometry in near surface exploration. According to reservoir patterns and electrical parameters obtained in Qinshui Basin, China, two-dimensional and three-dimensional synthetic "objective anomaly" models were designed and inverted with the availability of a modular system for electromagnetic inversion (ModEM). The results revealed that 3-D full impedance inversion yielded the subsurface models closest to synthetic models. One or more conductive targets were correctly recovered. Therefore, conductive aquifers in the study area, including hydrous coalbed methane (CBM) reservoirs, were suggested to be the interpretation signs for reservoir characterization. With the aim of dynamic monitoring of CBM reservoirs, the AMT surveys in continuous years (June 2013-May 2015) were carried out. 3-D inversion results demonstrated that conductive anomalies accumulated around the producing reservoirs at the corresponding depths if CBM reservoirs were in high water production rates. In contrast, smaller conductive anomalies were generally identical with rapid gas production or stopping production of reservoirs. These analyses were in accordance with actual production history of CBM wells. The dynamic traces of conductive anomalies revealed that reservoir water migrated deep or converged in axial parts and wings of folds, which contributed significantly to formations of CBM traps. Then the well spacing scenario was also evaluated based on the dynamic production analysis. Wells distributed near closed faults or flat folds, rather than open faults, had CBM production potential to ascertain stable gas production. Therefore, three-dimensional AMT sounding becomes an attractive option with the ability of dynamic monitoring of CBM reservoirs, and lays a solid foundation of quantitative evaluation of reservoir parameters.
The Calibration and Use of Capacitance Sensors to Monitor Stem Water Content in Trees.
Matheny, Ashley M; Garrity, Steven R; Bohrer, Gil
2017-12-27
Water transport and storage through the soil-plant-atmosphere continuum is critical to the terrestrial water cycle, and has become a major research focus area. Biomass capacitance plays an integral role in the avoidance of hydraulic impairment to transpiration. However, high temporal resolution measurements of dynamic changes in the hydraulic capacitance of large trees are rare. Here, we present procedures for the calibration and use of capacitance sensors, typically used to monitor soil water content, to measure the volumetric water content in trees in the field. Frequency domain reflectometry-style observations are sensitive to the density of the media being studied. Therefore, it is necessary to perform species-specific calibrations to convert from the sensor-reported values of dielectric permittivity to volumetric water content. Calibration is performed on a harvested branch or stem cut into segments that are dried or re-hydrated to produce a full range of water contents used to generate a best-fit regression with sensor observations. Sensors are inserted into calibration segments or installed in trees after pre-drilling holes to a tolerance fit using a fabricated template to ensure proper drill alignment. Special care is taken to ensure that sensor tines make good contact with the surrounding media, while allowing them to be inserted without excessive force. Volumetric water content dynamics observed via the presented methodology align with sap flow measurements recorded using thermal dissipation techniques and environmental forcing data. Biomass water content data can be used to observe the onset of water stress, drought response and recovery, and has the potential to be applied to the calibration and evaluation of new plant-level hydrodynamics models, as well as to the partitioning of remotely sensed moisture products into above- and belowground components.
Zhou, Hao; Lei, Guo Ping; Yang, Xue Xin; Zhao, Yu Hui; Zhang, Ji Xin
2018-04-01
Under the scenarios of climate change, balancing the land and water resources is one of the key problems needed to be solved in land development. To reveal the water dynamics of the cultivated land in Naoli River Basin, we simulated the future scenarios by using the future land use simulation model based on Landsat Satellite images, the DEM data and the meteorological data. Results showed that the growth rate of cultivated land gradually decreased. It showed different changing characteristics in different time periods, which led to different balancing effect between land and water resources. In 1990, the water dynamics of the cultivated land resources was in good state, At the same time, the adjustment of crops structure caused the paddy fields increased dramatically. During 2002 to 2014, the cultivated land that in moderate and serious moisture shortage state increased slightly, the water deficit was deteriorating to a certain degree, and maintained sound development of water profit and loss situation gradually. By comparing the simulation accuracy with different spatial resolutions and time scales, we selected 200 m as the spatial resolution of the simulation, and simulated the land use status in 2038. The simulation results showed that the cultivated land's water profit and loss degree in the river basin showed significant polarization characteristic, in that the water profit and loss degree of the cultivated land would be further intensified, the area with the higher grades of moisture profit and loss degree would distribute more centralized, and partially high evaluated grades for the moisture shortage would expand. It is needed to develop the cultivated land irrigation schemes and adjust the cultivated land in Naoli River Basin to balance soil and water resources.
Solubility of NaCl in water by molecular simulation revisited.
Aragones, J L; Sanz, E; Vega, C
2012-06-28
In this paper, the solubility of NaCl in water is evaluated by using computer simulations for three different force fields. The condition of chemical equilibrium (i.e., equal chemical potential of the salt in the solid and in the solution) is obtained at room temperature and pressure to determine the solubility of the salt. We used the same methodology that was described in our previous work [E. Sanz and C. Vega, J. Chem. Phys. 126, 014507 (2007)] although several modifications were introduced to improve the accuracy of the calculations. It is found that the predictions of the solubility are quite sensitive to the details of the force field used. Certain force fields underestimate the experimental solubility of NaCl in water by a factor of four, whereas the predictions of other force fields are within 20% of the experimental value. Direct coexistence molecular dynamic simulations were also performed to determine the solubility of the salt. Reasonable agreement was found between the solubility obtained from free energy calculations and that obtained from direct coexistence simulations. This work shows that the evaluation of the solubility of salts in water can now be performed in computer simulations. The solubility depends on the ion-ion, ion-water, and water-water interactions. For this reason, the prediction of the solubility can be quite useful in future work to develop force fields for ions in water.
A coupled human-water system from a systems dynamics perspective
NASA Astrophysics Data System (ADS)
Kuil, Linda; Blöschl, Günter; Carr, Gemma
2013-04-01
Traditionally, models used in hydrological studies have frequently assumed stationarity. Moreover, human-induced water resources management activities are often included as external forcings in water cycle dynamics. However, considering humans' current impact on the water cycle in terms of a growing population, river basins increasingly being managed and a climate considerably changing, it has recently been questioned whether this is still correct. Furthermore, research directed at the evolution of water resources and society has shown that the components constituting the human-water system are changing interdependently. Goal of this study is therefore to approach water cycle dynamics from an integrated perspective in which humans are considered as endogenous forces to the system. The method used to model a coupled, urban human-water system is system dynamics. In system dynamics, particular emphasis is placed on feedback loops resulting in dynamic behavior. Time delays and non-linearity can relatively easily be included, making the method appropriate for studying complex systems that change over time. The approach of this study is as follows. First, a conceptual model is created incorporating the key components of the urban human-water system. Subsequently, only those components are selected that are both relevant and show causal loop behavior. Lastly, the causal narratives are translated into mathematical relationships. The outcome will be a simple model that shows only those characteristics with which we are able to explore the two-way coupling between the societal behavior and the water system we depend on.
Cold-start characteristics of polymer electrolyte fuel cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishler, Jeff; Mukundan, Rangachary; Wang, Yun
2010-01-01
In this paper, we investigate the electrochemical reaction kinetics, species transport, and solid water dynamics in a polymer electrolyte fuel cell (PEFC) during cold start. A simplitied analysis is developed to enable the evaluation of the impact of ice volume fraction on cell performance during coldstart. Supporting neutron imaging data are also provided to reveal the real-time water evolution. Temperature-dependent voltage changes due to the reaction kinetics and ohmic loss are also analyzed based on the ionic conductivity of the membrane at subfreezing temperature. The analysis is valuable for the fundamental study of PEFC cold-start.
Differential effects of fine root morphology on water dynamics in the root-soil interface
NASA Astrophysics Data System (ADS)
DeCarlo, K. F.; Bilheux, H.; Warren, J.
2017-12-01
Soil water uptake form plants, particularly in the rhizosphere, is a poorly understood question in the plant and soil sciences. Our study analyzed the role of belowground plant morphology on soil structural and water dynamics of 5 different plant species (juniper, grape, maize, poplar, maple), grown in sandy soils. Of these, the poplar system was extended to capture drying dynamics. Neutron radiography was used to characterize in-situ dynamics of the soil-water-plant system. A joint map of root morphology and soil moisture was created for the plant systems using digital image processing, where soil pixels were connected to associated root structures via minimum distance transforms. Results show interspecies emergent behavior - a sigmoidal relationship was observed between root diameter and bulk/rhizosphere soil water content difference. Extending this as a proxy for extent of rhizosphere development with root age, we observed a logistic growth pattern for the rhizosphere: minimal development in the early stages is superceded by rapid onset of rhizosphere formation, which then stabilizes/decays with the likely root suberization. Dynamics analysis of water content differences between the root/rhizosphere, and rhizosphere/bulk soil interface highlight the persistently higher water content in the root at all water content and root size ranges. At the rhizosphere/bulk soil interface, we observe a shift in soil water dynamics by root size: in super fine roots, we observe that water content is primarily lower in the rhizosphere under wetter conditions, which then gradually increases to a relatively higher water content under drier conditions. This shifts to a persistently higher rhizosphere water content relative to bulk soil in both wet/dry conditions with increased root size, suggesting that, by size, the finest root structures may contribute the most to total soil water uptake in plants.
Molecular dynamics simulation of nonlinear spectroscopies of intermolecular motions in liquid water.
Yagasaki, Takuma; Saito, Shinji
2009-09-15
Water is the most extensively studied of liquids because of both its ubiquity and its anomalous thermodynamic and dynamic properties. The properties of water are dominated by hydrogen bonds and hydrogen bond network rearrangements. Fundamental information on the dynamics of liquid water has been provided by linear infrared (IR), Raman, and neutron-scattering experiments; molecular dynamics simulations have also provided insights. Recently developed higher-order nonlinear spectroscopies open new windows into the study of the hydrogen bond dynamics of liquid water. For example, the vibrational lifetimes of stretches and a bend, intramolecular features of water dynamics, can be accurately measured and are found to be on the femtosecond time scale at room temperature. Higher-order nonlinear spectroscopy is expressed by a multitime correlation function, whereas traditional linear spectroscopy is given by a one-time correlation function. Thus, nonlinear spectroscopy yields more detailed information on the dynamics of condensed media than linear spectroscopy. In this Account, we describe the theoretical background and methods for calculating higher order nonlinear spectroscopy; equilibrium and nonequilibrium molecular dynamics simulations, and a combination of both, are used. We also present the intermolecular dynamics of liquid water revealed by fifth-order two-dimensional (2D) Raman spectroscopy and third-order IR spectroscopy. 2D Raman spectroscopy is sensitive to couplings between modes; the calculated 2D Raman signal of liquid water shows large anharmonicity in the translational motion and strong coupling between the translational and librational motions. Third-order IR spectroscopy makes it possible to examine the time-dependent couplings. The 2D IR spectra and three-pulse photon echo peak shift show the fast frequency modulation of the librational motion. A significant effect of the translational motion on the fast frequency modulation of the librational motion is elucidated by introducing the "translation-free" molecular dynamics simulation. The isotropic pump-probe signal and the polarization anisotropy decay show fast transfer of the librational energy to the surrounding water molecules, followed by relaxation to the hot ground state. These theoretical methods do not require frequently used assumptions and can thus be called ab initio methods; together with multidimensional nonlinear spectroscopies, they provide powerful methods for examining the inter- and intramolecular details of water dynamics.
OTEC modular experiment cold water pipe concept evaluation. Volume III. Appendices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-04-01
The Cold Water Pipe System Design Study was undertaken to evaluate the diverse CWP concepts, recommend the most viable alternatives for a 1984 deployment of the 10 to 40 MWe MEP, and carry out preliminary designs of three concepts. The concept evaluation phase reported involved a systems analysis of design alternatives in the broad categories of rigid walled (with hinges), compliant walled, stockade and bottom mounted buoyant. Quantitative evaluations were made of concept performance, availability, deployment schedule, technical feasibility and cost. CWP concepts were analyzed to determine if they met or could be made to meet established system requirements andmore » could be deployed by 1984. Fabrication, construction and installation plans were developed for successful concepts, and costs were determined in a WBS format. Evaluations were performed on the basis of technical and cost risk. This volume includes the following appendices: (A) materials and associated design criteria; (B) summary of results of dynamic flow and transportation analysis; (C) CWP sizing analysis; (D) CWP thermal performance; and (E) investigation of the APL/ABAM CWP design. (WHK)« less
NASA Astrophysics Data System (ADS)
Cai, X.; Yang, Z.-L.; Fisher, J. B.; Zhang, X.; Barlage, M.; Chen, F.
2016-01-01
Climate and terrestrial biosphere models consider nitrogen an important factor in limiting plant carbon uptake, while operational environmental models view nitrogen as the leading pollutant causing eutrophication in water bodies. The community Noah land surface model with multi-parameterization options (Noah-MP) is unique in that it is the next-generation land surface model for the Weather Research and Forecasting meteorological model and for the operational weather/climate models in the National Centers for Environmental Prediction. In this study, we add a capability to Noah-MP to simulate nitrogen dynamics by coupling the Fixation and Uptake of Nitrogen (FUN) plant model and the Soil and Water Assessment Tool (SWAT) soil nitrogen dynamics. This model development incorporates FUN's state-of-the-art concept of carbon cost theory and SWAT's strength in representing the impacts of agricultural management on the nitrogen cycle. Parameterizations for direct root and mycorrhizal-associated nitrogen uptake, leaf retranslocation, and symbiotic biological nitrogen fixation are employed from FUN, while parameterizations for nitrogen mineralization, nitrification, immobilization, volatilization, atmospheric deposition, and leaching are based on SWAT. The coupled model is then evaluated at the Kellogg Biological Station - a Long Term Ecological Research site within the US Corn Belt. Results show that the model performs well in capturing the major nitrogen state/flux variables (e.g., soil nitrate and nitrate leaching). Furthermore, the addition of nitrogen dynamics improves the modeling of net primary productivity and evapotranspiration. The model improvement is expected to advance the capability of Noah-MP to simultaneously predict weather and water quality in fully coupled Earth system models.
Paloncýová, Markéta; Langer, Michal; Otyepka, Michal
2018-04-10
Carbon dots (CDs), one of the youngest members of the carbon nanostructure family, are now widely experimentally studied for their tunable fluorescence properties, bleaching resistance, and biocompatibility. Their interaction with biomolecular systems has also been explored experimentally. However, many atomistic details still remain unresolved. Molecular dynamics (MD) simulations enabling atomistic and femtosecond resolutions simultaneously are a well-established tool of computational chemistry which can provide useful insights into investigated systems. Here we present a full procedure for performing MD simulations of CDs. We developed a builder for generating CDs of a desired size and with various oxygen-containing surface functional groups. Further, we analyzed the behavior of various CDs differing in size, surface functional groups, and degrees of functionalization by MD simulations. These simulations showed that surface functionalized CDs are stable in a water environment through the formation of an extensive hydrogen bonding network. We also analyzed the internal dynamics of individual layers of CDs and evaluated the role of surface functional groups on CD stability. We observed that carboxyl groups interconnected the neighboring layers and decreased the rate of internal rotations. Further, we monitored changes in the CD shape caused by an excess of charged carboxyl groups or carbonyl groups. In addition to simulations in water, we analyzed the behavior of CDs in the organic solvent DMF, which decreased the stability of pure CDs but increased the level of interlayer hydrogen bonding. We believe that the developed protocol, builder, and parameters will facilitate future studies addressing various aspects of structural features of CDs and nanocomposites containing CDs.
Szczotko, Maciej; Stankiewicz, Agnieszka; Jamsheer-Bratkowska, Małgorzata
Plumbing materials in water distribution networks and indoor installations are constantly evolving. The application of new, more economical solutions with plastic materials eliminates the corrosion problems, however, do not fully protect the consumer against secondary microbial contamination of water intended for human consumption caused by the presence of a biofilm on the inner surface of materials applied. National Institute of Public Health - National Institute of Hygiene conducts research aimed at a comprehensive assessment of this type of materials, resulting their further marketing authorization in Poland. Evaluation and comparison of polymer and rubber materials intended to contact with water for the susceptibility to biofilm formation. Plastic materials (polyethylene, polypropylene, polyvinyl chloride) and rubber compounds (EPDM, NBR), from different manufacturers were evaluated. The study was carried out on 37 samples, which were divided into groups according to the material of which they were made. The testing was conducted according to the method based on conditions of dynamic flow of tap water. The level of bioluminescence in swabs taken from the surface of the tested materials was investigated with a luminometer. Evaluation of plastic materials does not show major objections in terms of hygienic assessment. All materials met the evaluation criteria established for methodology used. In case of rubber compounds, a substantial part clearly exceeded the limit values, which resulted in their negative assessment and elimination of these materials from domestic market. High susceptibility to the formation of biofilm in the group of products made of rubber compounds has been demonstrated. Examined plastic materials, except for several cases, do not revealed susceptibility to biofilm formation, but application of plastics for distribution of water intended for human consumption does not fully protect water from secondary, microbiological contamination. Complete verification of plumbing materials including biofilm formation test before their introduction into the domestic market should be continued.
Water dynamics in protein hydration shells: the molecular origins of the dynamical perturbation.
Fogarty, Aoife C; Laage, Damien
2014-07-17
Protein hydration shell dynamics play an important role in biochemical processes including protein folding, enzyme function, and molecular recognition. We present here a comparison of the reorientation dynamics of individual water molecules within the hydration shell of a series of globular proteins: acetylcholinesterase, subtilisin Carlsberg, lysozyme, and ubiquitin. Molecular dynamics simulations and analytical models are used to access site-resolved information on hydration shell dynamics and to elucidate the molecular origins of the dynamical perturbation of hydration shell water relative to bulk water. We show that all four proteins have very similar hydration shell dynamics, despite their wide range of sizes and functions, and differing secondary structures. We demonstrate that this arises from the similar local surface topology and surface chemical composition of the four proteins, and that such local factors alone are sufficient to rationalize the hydration shell dynamics. We propose that these conclusions can be generalized to a wide range of globular proteins. We also show that protein conformational fluctuations induce a dynamical heterogeneity within the hydration layer. We finally address the effect of confinement on hydration shell dynamics via a site-resolved analysis and connect our results to experiments via the calculation of two-dimensional infrared spectra.
Water Dynamics in Protein Hydration Shells: The Molecular Origins of the Dynamical Perturbation
2014-01-01
Protein hydration shell dynamics play an important role in biochemical processes including protein folding, enzyme function, and molecular recognition. We present here a comparison of the reorientation dynamics of individual water molecules within the hydration shell of a series of globular proteins: acetylcholinesterase, subtilisin Carlsberg, lysozyme, and ubiquitin. Molecular dynamics simulations and analytical models are used to access site-resolved information on hydration shell dynamics and to elucidate the molecular origins of the dynamical perturbation of hydration shell water relative to bulk water. We show that all four proteins have very similar hydration shell dynamics, despite their wide range of sizes and functions, and differing secondary structures. We demonstrate that this arises from the similar local surface topology and surface chemical composition of the four proteins, and that such local factors alone are sufficient to rationalize the hydration shell dynamics. We propose that these conclusions can be generalized to a wide range of globular proteins. We also show that protein conformational fluctuations induce a dynamical heterogeneity within the hydration layer. We finally address the effect of confinement on hydration shell dynamics via a site-resolved analysis and connect our results to experiments via the calculation of two-dimensional infrared spectra. PMID:24479585
Alp, E; Melching, C S; Zhang, H; Lanyon, R
2007-01-01
An Use Attainability Analysis (UAA) has been initiated to evaluate what water-quality standards can be achieved in the Chicago Waterway System (CWS). There are nearly 200 combined sewer overflow (CSO) locations discharging to the CWS by gravity. Three CSO pumping stations also drain approximately 140 km2. Because of the dynamic nature of the CWS the DUFLOW model that is capable of simulating hydraulics and water-quality processes under unsteady-flow conditions was used to evaluate the effectiveness of water-quality improvement techniques identified by the UAA including CSO treatment. Several CSO treatment levels were applied at gravity flow CSOs to evaluate improvement in dissolved oxygen (DO). The results show that pollutant removal at CSOs improves DO to a certain degree, but it still was not sufficient to bring DO concentrations to 5 mg/L or higher for 90% of the time during wet weather at most locations on the CWS. Flow from the pumping stations results in substantial stress on DO since a huge amount of un-treated water with a high pollution load is discharged into the CWS in a short period of time at a certain location. The simulation results indicate that CSO treatment does not effectively improve DO during wet-weather periods on the CWS.
Utesch, Tillmann; Daminelli, Grazia; Mroginski, Maria Andrea
2011-11-01
Bone morphogenetic protein-2 (BMP-2) plays a crucial role in osteoblast differentiation and proliferation. Its effective therapeutic use for ectopic bone and cartilage regeneration depends, among other factors, on the interaction with the carrier at the implant site. In this study, we used classical molecular dynamics (MD) and a hybrid approach of steered molecular dynamics (SMD) combined with MD simulations to investigate the initial stages of the adsorption of BMP-2 when approaching two implant surfaces, hydrophobic graphite and hydrophilic titanium dioxide rutile. Surface adsorption was evaluated for six different orientations of the protein, two end-on and four side-on, in explicit water environment. On graphite, we observed a weak but stable adsorption. Depending on the initial orientation, hydrophobic patches as well as flexible loops of the protein were involved in the interaction with graphite. On the contrary, BMP-2 adsorbed only loosely to hydrophilic titanium dioxide. Despite a favorable interaction energy between protein and the TiO(2) surface, the rapid formation of a two-layer water structure prevented the direct interaction between protein and titanium dioxide. The first water adlayer had a strong repulsive effect on the protein, while the second attracted the protein toward the surface. For both surfaces, hydrophobic graphite and hydrophilic titanium dioxide, denaturation of BMP-2 induced by adsorption was not observed on the nanosecond time scale.
Nakanishi, Takahiro; Atarashi-Andoh, Mariko; Koarashi, Jun; Saito-Kokubu, Yoko; Hirai, Keizo
2014-02-01
Water-extractable organic carbon (WEOC) in soil consists of a mobile and bioavailable portion of the dissolved organic carbon (DOC) pool. WEOC plays an important role in dynamics of soil organic carbon (SOC) and transport of radionuclides in forest soils. Although considerable research has been conducted on the importance of recent litter versus older soil organic matter as WEOC sources in forest soil, a more thorough evaluation of the temporal pattern of WEOC is necessary. We investigated the seasonal variation in WEOC in a Japanese cool-temperate beech forest soil by using the carbon isotopic composition ((14)C and (13)C) of WEOC as a tracer for the carbon sources. Our observations demonstrated that fresh leaf litter DOC significantly contributed to WEOC in May (35-52%) when the spring snowmelt occurred because of the high water flux and low temperature. In the rainy season, increases in the concentration of WEOC and the proportion of hydrophobic compounds were caused by high microbial activity under wetter conditions. From summer to autumn, the WEOC in the mineral soil horizons was also dominated by microbial release from SOC (>90%). These results indicate that the origin and dynamics of WEOC are strongly controlled by seasonal events such as the spring snowmelt and the rainy season's intense rainfall. Copyright © 2013 Elsevier Ltd. All rights reserved.
Stewart, A.R.; Saiki, M.K.; Kuwabara, J.S.; Alpers, Charles N.; Marvin-DiPasquale, M.; Krabbenhoft, D.P.
2008-01-01
Physical and biogeochemical characteristics of the aquatic environment that affect growth dynamics of phytoplankton and the zooplankton communities that depend on them may also affect uptake of methylmercury (MeHg) into the pelagic food web of oligotrophic reservoirs. We evaluated changes in the quality and quantity of suspended particulate material, zooplankton taxonomy, and MeHg concentrations coincident with seasonal changes in water storage of a mining-impacted reservoir in northern California, USA. MeHg concentrations in bulk zooplankton increased from 4 ng??g-1 at low water to 77 ?? 6.1 ng??g-1 at high water and were positively correlated with cladoceran biomass (r = 0.66) and negatively correlated with rotifer biomass (r = -0.65). Stable isotope analysis revealed overall higher MeHg concentrations in the pelagic-based food web relative to the benthic-based food web. Statistically similar patterns of trophic enrichment of MeHg (slopes) for the pelagic and benthic food webs and slightly higher MeHg concentrations in zooplankton than in benthic invertebrates suggest that the difference in MeHg bioaccumulation among trophic pathways is set at the base of the food webs. These results suggest an important role for plankton dynamics in driving the MeHg content of zooplankton and ultimately MeHg bioaccumulation in top predators in pelagic-based food webs. ?? 2008 NRC.
Analysis of dynamic thresholds for the normalized difference water index
Ji, Lei; Zhang, Li; Wylie, Bruce K.
2009-01-01
The normalized difference water index (NDWI) has been successfully used to delineate surface water features. However, two major problems have been often encountered: (a) NDWIs calculated from different band combinations [visible, nearinfrared, or shortwave-infrared (SWIR)] can generate different results, and (b) NDWI thresholds vary depending on the proportions of subpixel water/non-water components. We need to evaluate all the NDWIS for determining the best performing index and to establish appropriate thresholds for clearly identifying water features. We used the spectral data obtained from a spectral library to simulate the satellite sensors Landsat ETM+, SPOT-5, ASTER, and MODIS, and calculated the simulated NDWI in different forms. We found that the NDWI calculated from (green - swm)/(green + SWIR), where SWIR is the shorter wavelength region (1.2 to 1.8 ??m), has the most stable threshold. We recommend this NDWI be employed for mapping water, but adjustment of the threshold based on actual situations is necessary. ?? 2009 American Society for Photogrammetry and Remote Sensing.
NASA Astrophysics Data System (ADS)
Crootof, A.
2017-12-01
Understanding coupled human-water dynamics offers valuable insights to address fundamental water resources challenges posed by environmental change. With hydropower reshaping human-water interactions in mountain river basins, there is a need for a socio-hydrology framework—which examines two-way feedback loops between human and water systems—to more effectively manage water resources. This paper explores the cross-scalar interactions and feedback loops between human and water systems in river basins affected by run-of-the-river hydropower and highlights the utility of a socio-hydrology perspectives to enhance water management in the face of environmental change. In the Himalayas, the rapid expansion of run-of-the-river hydropower—which diverts streamflow for energy generation—is reconfiguring the availability, location, and timing of water resources. This technological intervention in the river basin not only alters hydrologic dyanmics but also shapes social outcomes. Using hydropower development in the highlands of Uttarakhand, India as a case study, I first illustrate how run-of-the-river projects transform human-water dynamics by reshaping the social and physical landscape of a river basin. Second, I emphasize how examining cross-scalar feedbacks among structural dynamics, social outcomes, and values and norms in this coupled human-water system can inform water management. Third, I present hydrological and social literature, raised separately, to indicate collaborative research needs and knowledge gaps for coupled human-water systems affected by run-of-the-river hydropower. The results underscore the need to understand coupled human-water dynamics to improve water resources management in the face of environmental change.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hepworth, H.K.; Davidson, J.S.; Hooyman, J.L.
1997-03-01
Commercially available admixtures have been developed for placing traditional concrete products under water. This paper evaluates adapting anti-washout admixture (AWA) and high range water reducing admixture (HRWRA) products to enhance controlled low-strength materials (CLSMs) for underwater placement. A simple experimental scale model (based on dynamic and geometric similitude) of typical grout pump emplacement equipment has been developed to determine the percentage of cementing material washed out. The objective of this study was to identify proportions of admixtures and underwater CLSM emplacement procedures which would minimize the cross-contamination of the displaced water while maintaining the advantages of CLSM. Since the displacedmore » water from radioactively contaminated systems must be subsequently treated prior to release to the environment, the amount of cross-contamination is important for cases in which cementing material could form hard sludges in a water treatment facility and contaminate the in-place CLSM stabilization medium.« less
Research on the identification of inefficient and invalid circulation in ultra-high water cut stage
NASA Astrophysics Data System (ADS)
Han, Shaoxin
2018-06-01
After oil field entered into ultra-high water cut stage, big channels are formed in some oil and water wells and lead to the inefficient and ineffective circulation of injected water, which not only inhibit the increase of recovery ratio of oil and gas, but also cause the waste of resources. This article selects three static parameters and four dynamic parameters which can perform inefficient and ineffective circulation characteristics between oil and water wells, integrates the fuzzy mathematics theory, establishes fuzzy comprehensive evaluation model to identify the inefficient and ineffective circulation wells in the research area, on this basis, inefficient and ineffective circulation position is further determined through the logging curve characteristics and logging ratio method, the identification of inefficient and ineffective circulation "determine well and layer" is achieved, and provide powerful basis for governance work of inefficient and ineffective circulation.
Futuristic isotope hydrology in the Gulf region
NASA Astrophysics Data System (ADS)
Saravana Kumar, U.; Hadi, Khaled
2018-03-01
The Gulf region is one of the most water-stressed parts in the world. Water in the region is very scarce, shortage of supply and lacking of renewable water resources, while the demand for water is growing day by day. It is thus essential to implement modern approaches and technologies in addressing water-related issues. In this context, isotope hydrology will provide invaluable aid. Some of the most important areas of futuristic applications of isotope hydrology include evaluation of aquifer recharge, storage and their recovery system, understanding of dynamic changes due to long-term exploitation of the groundwater, development and management of shared groundwater aquifers, fresh groundwater discharge along the Arabian Gulf, identification and quantification of hydrocarbon contamination in groundwater; soil moisture and solute movement in unsaturated zone, paleoclimate reconstruction, etc. Literature survey suggests, in general, not many isotope studies on the above have been reported.
WScore: A Flexible and Accurate Treatment of Explicit Water Molecules in Ligand-Receptor Docking.
Murphy, Robert B; Repasky, Matthew P; Greenwood, Jeremy R; Tubert-Brohman, Ivan; Jerome, Steven; Annabhimoju, Ramakrishna; Boyles, Nicholas A; Schmitz, Christopher D; Abel, Robert; Farid, Ramy; Friesner, Richard A
2016-05-12
We have developed a new methodology for protein-ligand docking and scoring, WScore, incorporating a flexible description of explicit water molecules. The locations and thermodynamics of the waters are derived from a WaterMap molecular dynamics simulation. The water structure is employed to provide an atomic level description of ligand and protein desolvation. WScore also contains a detailed model for localized ligand and protein strain energy and integrates an MM-GBSA scoring component with these terms to assess delocalized strain of the complex. Ensemble docking is used to take into account induced fit effects on the receptor conformation, and protein reorganization free energies are assigned via fitting to experimental data. The performance of the method is evaluated for pose prediction, rank ordering of self-docked complexes, and enrichment in virtual screening, using a large data set of PDB complexes and compared with the Glide SP and Glide XP models; significant improvements are obtained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saide P. E.; Springston S.; Spak, S. N.
2012-03-29
We evaluate a regional-scale simulation with the WRF-Chem model for the VAMOS (Variability of the American Monsoon Systems) Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx), which sampled the Southeast Pacific's persistent stratocumulus deck. Evaluation of VOCALS-REx ship-based and three aircraft observations focuses on analyzing how aerosol loading affects marine boundary layer (MBL) dynamics and cloud microphysics. We compare local time series and campaign-averaged longitudinal gradients, and highlight differences in model simulations with (W) and without (NW) wet deposition processes. The higher aerosol loadings in the NW case produce considerable changes in MBL dynamics and cloud microphysics, in accordance with the established conceptualmore » model of aerosol indirect effects. These include increase in cloud albedo, increase in MBL and cloud heights, drizzle suppression, increase in liquid water content, and increase in cloud lifetime. Moreover, better statistical representation of aerosol mass and number concentration improves model fidelity in reproducing observed spatial and temporal variability in cloud properties, including top and base height, droplet concentration, water content, rain rate, optical depth (COD) and liquid water path (LWP). Together, these help to quantify confidence in WRF-Chem's modeled aerosol-cloud interactions, especially in the activation parameterization, while identifying structural and parametric uncertainties including: irreversibility in rain wet removal; overestimation of marine DMS and sea salt emissions, and accelerated aqueous sulfate conversion. Our findings suggest that WRF-Chem simulates marine cloud-aerosol interactions at a level sufficient for applications in forecasting weather and air quality and studying aerosol climate forcing, and may do so with the reliability required for policy analysis.« less
Kazadi Mbamba, Christian; Flores-Alsina, Xavier; John Batstone, Damien; Tait, Stephan
2016-09-01
The focus of modelling in wastewater treatment is shifting from single unit to plant-wide scale. Plant-wide modelling approaches provide opportunities to study the dynamics and interactions of different transformations in water and sludge streams. Towards developing more general and robust simulation tools applicable to a broad range of wastewater engineering problems, this paper evaluates a plant-wide model built with sub-models from the Benchmark Simulation Model No. 2-P (BSM2-P) with an improved/expanded physico-chemical framework (PCF). The PCF includes a simple and validated equilibrium approach describing ion speciation and ion pairing with kinetic multiple minerals precipitation. Model performance is evaluated against data sets from a full-scale wastewater treatment plant, assessing capability to describe water and sludge lines across the treatment process under steady-state operation. With default rate kinetic and stoichiometric parameters, a good general agreement is observed between the full-scale datasets and the simulated results under steady-state conditions. Simulation results show differences between measured and modelled phosphorus as little as 4-15% (relative) throughout the entire plant. Dynamic influent profiles were generated using a calibrated influent generator and were used to study the effect of long-term influent dynamics on plant performance. Model-based analysis shows that minerals precipitation strongly influences composition in the anaerobic digesters, but also impacts on nutrient loading across the entire plant. A forecasted implementation of nutrient recovery by struvite crystallization (model scenario only), reduced the phosphorus content in the treatment plant influent (via centrate recycling) considerably and thus decreased phosphorus in the treated outflow by up to 43%. Overall, the evaluated plant-wide model is able to jointly describe the physico-chemical and biological processes, and is advocated for future use as a tool for design, performance evaluation and optimization of whole wastewater treatment plants. Copyright © 2016 Elsevier Ltd. All rights reserved.
Optimizing stream water mercury sampling for calculation of fish bioaccumulation factors
Riva-Murray, Karen; Bradley, Paul M.; Journey, Celeste A.; Brigham, Mark E.; Scudder Eikenberry, Barbara C.; Knightes, Christopher; Button, Daniel T.
2013-01-01
Mercury (Hg) bioaccumulation factors (BAFs) for game fishes are widely employed for monitoring, assessment, and regulatory purposes. Mercury BAFs are calculated as the fish Hg concentration (Hgfish) divided by the water Hg concentration (Hgwater) and, consequently, are sensitive to sampling and analysis artifacts for fish and water. We evaluated the influence of water sample timing, filtration, and mercury species on the modeled relation between game fish and water mercury concentrations across 11 streams and rivers in five states in order to identify optimum Hgwater sampling approaches. Each model included fish trophic position, to account for a wide range of species collected among sites, and flow-weighted Hgwater estimates. Models were evaluated for parsimony, using Akaike’s Information Criterion. Better models included filtered water methylmercury (FMeHg) or unfiltered water methylmercury (UMeHg), whereas filtered total mercury did not meet parsimony requirements. Models including mean annual FMeHg were superior to those with mean FMeHg calculated over shorter time periods throughout the year. FMeHg models including metrics of high concentrations (80th percentile and above) observed during the year performed better, in general. These higher concentrations occurred most often during the growing season at all sites. Streamflow was significantly related to the probability of achieving higher concentrations during the growing season at six sites, but the direction of influence varied among sites. These findings indicate that streamwater Hg collection can be optimized by evaluating site-specific FMeHg - UMeHg relations, intra-annual temporal variation in their concentrations, and streamflow-Hg dynamics.
ESTIMATION OF SHEAR STRESS WORKING ON SUBMERGED HOLLOW FIBRE MEMBRANE BY CFD METHOD IN MBRs
NASA Astrophysics Data System (ADS)
Zaw, Hlwan Moe; Li, Tairi; Nagaoka, Hiroshi
This study was conducted to evaluate shear stress working on submerged hollow fibre membrane by CFD (Computation Fluid Dynamics) method in MBRs. Shear stress on hollow fibre membrane caused by aeration was measured directly using a two-direction load sensor. The measurement of water-phase flow velocity was done also by using laser doppler velocimeter. It was confirmed that the shear stress was possible to be evaluated from the water-phase flow velocityby the result of comparison of time average shear stress actually measured with one hollow fibre membrane and the one calculated by the water-phase flow velocity. In the estimation of the water-phase flow velocity using the CFD method, time average water-phase flow velocity estimated by consideration of the fluid resistance of the membrane module nearly coincided with the measured values, and it was shown that it was possible to be estimated also within the membrane module. Moreover, the measured shear stress and drag force well coincided with the values calculated from the estimated water-phase flow velocity outside of membrane module and in the center of membrane module, and it was suggested that the shear stress on the hollow fibre membrane could be estimated by the CFD method in MBRs.
Structure and dynamics of complex liquid water: Molecular dynamics simulation
NASA Astrophysics Data System (ADS)
S, Indrajith V.; Natesan, Baskaran
2015-06-01
We have carried out detailed structure and dynamical studies of complex liquid water using molecular dynamics simulations. Three different model potentials, namely, TIP3P, TIP4P and SPC-E have been used in the simulations, in order to arrive at the best possible potential function that could reproduce the structure of experimental bulk water. All the simulations were performed in the NVE micro canonical ensemble using LAMMPS. The radial distribution functions, gOO, gOH and gHH and the self diffusion coefficient, Ds, were calculated for all three models. We conclude from our results that the structure and dynamical parameters obtained for SPC-E model matched well with the experimental values, suggesting that among the models studied here, the SPC-E model gives the best structure and dynamics of bulk water.
NASA Astrophysics Data System (ADS)
Testi, D.; Schito, E.; Menchetti, E.; Grassi, W.
2014-11-01
Constructions built in Italy before 1945 (about 30% of the total built stock) feature low energy efficiency. Retrofit actions in this field can lead to valuable energetic and economic savings. In this work, we ran a dynamic simulation of a historical building of the University of Pisa during the heating season. We firstly evaluated the energy requirements of the building and the performance of the existing natural gas boiler, validated with past billings of natural gas. We also verified the energetic savings obtainable by the substitution of the boiler with an air-to-water electrically-driven modulating heat pump, simulated through a cycle-based model, evaluating the main economic metrics. The cycle-based model of the heat pump, validated with manufacturers' data available only at specified temperature and load conditions, can provide more accurate results than the simplified models adopted by current technical standards, thus increasing the effectiveness of energy audits.
Epting, Jannis; Page, Rebecca M; Auckenthaler, Adrian; Huggenberger, Peter
2018-06-01
The presented work illustrates to what extent field investigations as well as monitoring and modeling approaches are necessary to understand the high discharge dynamics and vulnerability of Karst springs. In complex settings the application of 3D geological models is essential for evaluating the vulnerability of Karst systems. They allow deriving information on catchment characteristics, as the geometry of aquifers and aquitards as well as their displacements along faults. A series of Karst springs in northwestern Switzerland were compared and Karst system dynamics with respect to qualitative and quantitative issues were evaluated. The main objective of the studies was to combine information of catchment characteristics and data from novel monitoring systems (physicochemical and microbiological parameters) to assess the intrinsic vulnerability of Karst springs to microbiological contamination with simulated spring discharges derived from numerical modeling (linear storage models). The numerically derived relation of fast and slow groundwater flow components enabled us to relate different sources of groundwater recharge and to characterize the dynamics of the Karst springs. Our study illustrates that comparably simple model-setups were able to reproduce the overall dynamic intrinsic vulnerability of several Karst systems and that one of the most important processes involved was the temporal variation of groundwater recharge (precipitation, evapotranspiration and snow melt). Furthermore, we make a first attempt on how to link intrinsic to specific vulnerability of Karst springs, which involves activities within the catchment area as human impacts from agriculture and settlements. Likewise, by a more detailed representation of system dynamics the influence of surface water, which is impacted by release events from storm sewers, infiltrating into the Karst system, could be considered. Overall, we demonstrate that our approach can be the basis for a more flexible and differentiated management and monitoring of raw-water quality of Karst springs. Copyright © 2017 Elsevier B.V. All rights reserved.
Debris-covered Glacier Dynamics in the Eastern Kunlun Mountain from CORONA and Landsat Imagery
NASA Astrophysics Data System (ADS)
Ho, N. L.; Liu, L.
2017-12-01
Glaciers are widespread in western China but their dynamics in response to climate change are poorly understood. Since glaciers are sensitive to changes in climatic conditions, quantifying and understanding their dynamics and long-term changes can help to evaluate the influences of climate changes to the glaciological, geomorphological and hydrological systems of the vulnerable high-altitude region. Apart from clean glaciers, glaciers covered with debris can also be found in the region. Studying the dynamics of debris-covered glaciers can help better estimates of the net insulating effect of debris which can improve projections of future ice loss and its impacts on water resources downstream. In this study, a debris-covered glacier near the eastern Kunlun Mountain (Kunlun Shan) is selected as the target for investigating the temporal changes using high-resolution optical satellite imagery. Declassified CORONA KH-4B satellite images and Landsat 8 images are used to evaluate the glacier dynamics from the 1960s to 2010s. As a prerequisite for visual interpretation, the CORONA images are geometrically corrected using Rational Polynomial Coefficients (RPC) Orthorectification tool built in ENVI. Our results show that the glacier consists of three ice cliffs with ground ice exposed to the surface at the cliff boundaries. The surface ice has been becoming clearer observed within 50 years of time. Moreover, a proglacial lake of size about 300 m by 100 m formed at the southern tip of the glacier body. Another two small water bodies can also be found near the center of the glacier. These observations suggest that the debris-covered glacier is undergoing strong degradation in recent years probably related to the warming trend in air temperature. The ongoing degradation may destabilize the slopes in this alpine region and pose a threat to the nearby infrastructures such as the Qinghai-Tibet Railway and G109 Highway.
NASA Astrophysics Data System (ADS)
Morecroft, John
System dynamics is an approach for thinking about and simulating situations and organisations of all kinds and sizes by visualising how the elements fit together, interact and change over time. This chapter, written by John Morecroft, describes modern system dynamics which retains the fundamentals developed in the 1950s by Jay W. Forrester of the MIT Sloan School of Management. It looks at feedback loops and time delays that affect system behaviour in a non-linear way, and illustrates how dynamic behaviour depends upon feedback loop structures. It also recognises improvements as part of the ongoing process of managing a situation in order to achieve goals. Significantly it recognises the importance of context, and practitioner skills. Feedback systems thinking views problems and solutions as being intertwined. The main concepts and tools: feedback structure and behaviour, causal loop diagrams, dynamics, are practically illustrated in a wide variety of contexts from a hot water shower through to a symphony orchestra and the practical application of the approach is described through several real examples of its use for strategic planning and evaluation.
Structure and Dynamical Influence of Water Vapor in the Lower Tropical Troposphere
NASA Astrophysics Data System (ADS)
Stevens, Bjorn; Brogniez, Hélène; Kiemle, Christoph; Lacour, Jean-Lionel; Crevoisier, Cyril; Kiliani, Johannes
In situ, airborne and satellite measurements are used to characterize the structure of water vapor in the lower tropical troposphere—below the height, z *, of the triple-point isotherm, T *. The measurements are evaluated in light of understanding of how lowertropospheric water vapor influences clouds, convection and circulation, through both radiative and thermodynamic effects. Lower-tropospheric water vapor, which concentrates in the first few kilometers above the boundary layer, controls the radiative cooling profile of the boundary layer and lower troposphere. Elevated moist layers originating from a preferred level of convective detrainment induce a profile of radiative cooling that drives circulations which reinforce such features. A theory for this preferred level of cumulus termination is advanced, whereby the difference between T * and the temperature at which primary ice forms gives a `first-mover advantage' to glaciating cumulus convection, thereby concentrating the regions of the deepest convection and leading to more clouds and moisture near the triple point. A preferred level of convective detrainment near T * implies relative humidity reversals below z * which are difficult to identify using retrievals from satellite-borne microwave and infrared sounders. Isotopologues retrievals provide a hint of such features and their ability to constrain the structure of the vertical humidity profile merits further study. Nonetheless, it will likely remain challenging to resolve dynamically important aspects of the vertical structure of water vapor from space using only passive sensors.
Structure and Dynamical Influence of Water Vapor in the Lower Tropical Troposphere
NASA Astrophysics Data System (ADS)
Stevens, Bjorn; Brogniez, Hélène; Kiemle, Christoph; Lacour, Jean-Lionel; Crevoisier, Cyril; Kiliani, Johannes
2017-11-01
In situ, airborne and satellite measurements are used to characterize the structure of water vapor in the lower tropical troposphere—below the height, z_*, of the triple-point isotherm, T_*. The measurements are evaluated in light of understanding of how lower-tropospheric water vapor influences clouds, convection and circulation, through both radiative and thermodynamic effects. Lower-tropospheric water vapor, which concentrates in the first few kilometers above the boundary layer, controls the radiative cooling profile of the boundary layer and lower troposphere. Elevated moist layers originating from a preferred level of convective detrainment induce a profile of radiative cooling that drives circulations which reinforce such features. A theory for this preferred level of cumulus termination is advanced, whereby the difference between T_* and the temperature at which primary ice forms gives a `first-mover advantage' to glaciating cumulus convection, thereby concentrating the regions of the deepest convection and leading to more clouds and moisture near the triple point. A preferred level of convective detrainment near T_* implies relative humidity reversals below z* which are difficult to identify using retrievals from satellite-borne microwave and infrared sounders. Isotopologues retrievals provide a hint of such features and their ability to constrain the structure of the vertical humidity profile merits further study. Nonetheless, it will likely remain challenging to resolve dynamically important aspects of the vertical structure of water vapor from space using only passive sensors.
Dynamic water exercise in individuals with late poliomyelitis.
Willén, C; Sunnerhagen, K S; Grimby, G
2001-01-01
To evaluate the specific effects of general dynamic water exercise in individuals with late effects of poliomyelitis. Before-after tests. A university hospital department. Twenty-eight individuals with late effects of polio, 15 assigned to the training group (TG) and 13 to the control group (CG). The TG completed a 40-minute general fitness training session in warm water twice weekly. Assessment instruments included the bicycle ergometer test, isokinetic muscle strength, a 30-meter walk indoors, Berg balance scale, a pain drawing, a visual analog scale, the Physical Activity Scale for the Elderly, and the Nottingham Health Profile (NHP). Peak load, peak work load, peak oxygen uptake, peak heart rate (HR), muscle function in knee extensors and flexors, and pain dimension of the NHP. The average training period was 5 months; compliance was 75% (range, 55-98). No negative effects were seen. The exercise did not influence the peak work load, peak oxygen uptake, or muscle function in knee extensors compared with the controls. However, a decreased HR at the same individual work load was seen, as well as a significantly lower distress in the dimension pain of the NHP. Qualitative aspects such as increased well-being, pain relief, and increased physical fitness were reported. A program of nonswimming dynamic exercises in heated water has a positive impact on individuals with late effects of polio, with a decreased HR at exercise, less pain, and a subjective positive experience. The program was well tolerated (no adverse effects were reported) and can be recommended for this group of individuals.
Gunda, Thushara; Turner, B. L.; Tidwell, Vincent C.
2018-03-14
Sociohydrological studies use interdisciplinary approaches to explore the complex interactions between physical and social water systems and increase our understanding of emergent and paradoxical system behaviors. The dynamics of community values and social cohesion, however, have received little attention in modeling studies due to quantification challenges. Social structures associated with community-managed irrigation systems around the world, in particular, reflect these communities' experiences with a multitude of natural and social shocks. Using the Valdez acequia (a communally-managed irrigation community in northern New Mexico) as a simulation case study, we evaluate the impact of that community's social structure in governing its responsesmore » to water availability stresses posed by climate change. Specifically, a system dynamics model (developed using insights from community stakeholders and multiple disciplines that captures biophysical, socioeconomic, and sociocultural dynamics of acequia systems) was used to generate counterfactual trajectories to explore how the community would behave with streamflow conditions expected under climate change. We found that earlier peak flows, combined with adaptive measures of shifting crop selection, allowed for greater production of higher value crops and fewer people leaving the acequia. The economic benefits were lost, however, if downstream water pressures increased. Even with significant reductions in agricultural profitability, feedbacks associated with community cohesion buffered the community's population and land parcel sizes from more detrimental impacts, indicating the community's resilience under natural and social stresses. In conclusion, continued exploration of social structures is warranted to better understand these systems' responses to stress and identify possible leverage points for strengthening community resilience.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gunda, Thushara; Turner, B. L.; Tidwell, Vincent C.
Sociohydrological studies use interdisciplinary approaches to explore the complex interactions between physical and social water systems and increase our understanding of emergent and paradoxical system behaviors. The dynamics of community values and social cohesion, however, have received little attention in modeling studies due to quantification challenges. Social structures associated with community-managed irrigation systems around the world, in particular, reflect these communities' experiences with a multitude of natural and social shocks. Using the Valdez acequia (a communally-managed irrigation community in northern New Mexico) as a simulation case study, we evaluate the impact of that community's social structure in governing its responsesmore » to water availability stresses posed by climate change. Specifically, a system dynamics model (developed using insights from community stakeholders and multiple disciplines that captures biophysical, socioeconomic, and sociocultural dynamics of acequia systems) was used to generate counterfactual trajectories to explore how the community would behave with streamflow conditions expected under climate change. We found that earlier peak flows, combined with adaptive measures of shifting crop selection, allowed for greater production of higher value crops and fewer people leaving the acequia. The economic benefits were lost, however, if downstream water pressures increased. Even with significant reductions in agricultural profitability, feedbacks associated with community cohesion buffered the community's population and land parcel sizes from more detrimental impacts, indicating the community's resilience under natural and social stresses. In conclusion, continued exploration of social structures is warranted to better understand these systems' responses to stress and identify possible leverage points for strengthening community resilience.« less
NASA Astrophysics Data System (ADS)
Gunda, T.; Turner, B. L.; Tidwell, V. C.
2018-04-01
Sociohydrological studies use interdisciplinary approaches to explore the complex interactions between physical and social water systems and increase our understanding of emergent and paradoxical system behaviors. The dynamics of community values and social cohesion, however, have received little attention in modeling studies due to quantification challenges. Social structures associated with community-managed irrigation systems around the world, in particular, reflect these communities' experiences with a multitude of natural and social shocks. Using the Valdez acequia (a communally-managed irrigation community in northern New Mexico) as a simulation case study, we evaluate the impact of that community's social structure in governing its responses to water availability stresses posed by climate change. Specifically, a system dynamics model (developed using insights from community stakeholders and multiple disciplines that captures biophysical, socioeconomic, and sociocultural dynamics of acequia systems) was used to generate counterfactual trajectories to explore how the community would behave with streamflow conditions expected under climate change. We found that earlier peak flows, combined with adaptive measures of shifting crop selection, allowed for greater production of higher value crops and fewer people leaving the acequia. The economic benefits were lost, however, if downstream water pressures increased. Even with significant reductions in agricultural profitability, feedbacks associated with community cohesion buffered the community's population and land parcel sizes from more detrimental impacts, indicating the community's resilience under natural and social stresses. Continued exploration of social structures is warranted to better understand these systems' responses to stress and identify possible leverage points for strengthening community resilience.
Towards A Synthesis Of Land Dynamics And Hydrological Processes Across Central Asia
NASA Astrophysics Data System (ADS)
Sokolik, I. N.; Tatarskii, V.; Shiklomanov, A. I.; Henebry, G. M.; de Beurs, K.; Laruelle, M.
2016-12-01
We present results from an ongoing project that aims to synthesize land dynamics, hydrological processes, and socio-economic changes across the five countries of Central Asia. We have developed a fully coupled model that takes into account the reconstructed land cover and land use dynamics to simulate dust emissions. A comparable model has been developed to model smoke emissions from wildfires. Both models incorporate land dynamics explicitly. We also present a characterization of land surface change based on a suite of MODIS products including vegetation indices, evapotranspiration, land surface temperature, and albedo. These results are connected with ongoing land privatization reforms that different across the region. We also present a regional analysis of water resources, including the significant impact of using surface water for irrigation in an arid landscape. We applied the University of New Hampshire hydrological model to understand the consequences of changes in climate, water, and land use on regional hydrological processes and water use. Water security and its dynamic have been estimated through an analysis of multiple indices and variables characterizing the water availability and water use. The economic consequences of the water privatization processes will be presented.
Molecular Dynamics implementation of BN2D or 'Mercedes Benz' water model
NASA Astrophysics Data System (ADS)
Scukins, Arturs; Bardik, Vitaliy; Pavlov, Evgen; Nerukh, Dmitry
2015-05-01
Two-dimensional 'Mercedes Benz' (MB) or BN2D water model (Naim, 1971) is implemented in Molecular Dynamics. It is known that the MB model can capture abnormal properties of real water (high heat capacity, minima of pressure and isothermal compressibility, negative thermal expansion coefficient) (Silverstein et al., 1998). In this work formulas for calculating the thermodynamic, structural and dynamic properties in microcanonical (NVE) and isothermal-isobaric (NPT) ensembles for the model from Molecular Dynamics simulation are derived and verified against known Monte Carlo results. The convergence of the thermodynamic properties and the system's numerical stability are investigated. The results qualitatively reproduce the peculiarities of real water making the model a visually convenient tool that also requires less computational resources, thus allowing simulations of large (hydrodynamic scale) molecular systems. We provide the open source code written in C/C++ for the BN2D water model implementation using Molecular Dynamics.
Kwee, Ingrid L.
2017-01-01
The unique properties of brain capillary endothelium, critical in maintaining the blood-brain barrier (BBB) and restricting water permeability across the BBB, have important consequences on fluid hydrodynamics inside the BBB hereto inadequately recognized. Recent studies indicate that the mechanisms underlying brain water dynamics are distinct from systemic tissue water dynamics. Hydrostatic pressure created by the systolic force of the heart, essential for interstitial circulation and lymphatic flow in systemic circulation, is effectively impeded from propagating into the interstitial fluid inside the BBB by the tightly sealed endothelium of brain capillaries. Instead, fluid dynamics inside the BBB is realized by aquaporin-4 (AQP-4), the water channel that connects astrocyte cytoplasm and extracellular (interstitial) fluid. Brain interstitial fluid dynamics, and therefore AQP-4, are now recognized as essential for two unique functions, namely, neurovascular coupling and glymphatic flow, the brain equivalent of systemic lymphatics. PMID:28820467
Nakada, Tsutomu; Kwee, Ingrid L; Igarashi, Hironaka; Suzuki, Yuji
2017-08-18
The unique properties of brain capillary endothelium, critical in maintaining the blood-brain barrier (BBB) and restricting water permeability across the BBB, have important consequences on fluid hydrodynamics inside the BBB hereto inadequately recognized. Recent studies indicate that the mechanisms underlying brain water dynamics are distinct from systemic tissue water dynamics. Hydrostatic pressure created by the systolic force of the heart, essential for interstitial circulation and lymphatic flow in systemic circulation, is effectively impeded from propagating into the interstitial fluid inside the BBB by the tightly sealed endothelium of brain capillaries. Instead, fluid dynamics inside the BBB is realized by aquaporin-4 (AQP-4), the water channel that connects astrocyte cytoplasm and extracellular (interstitial) fluid. Brain interstitial fluid dynamics, and therefore AQP-4, are now recognized as essential for two unique functions, namely, neurovascular coupling and glymphatic flow, the brain equivalent of systemic lymphatics.
Colin A. Penn; Beverley C. Wemple; John L. Campbell
2012-01-01
Many factors influence snow depth, water content and duration in forest ecosystems. The effects of forest cover and canopy gap geometry on snow accumulation has been well documented in coniferous forests of western North America and other regions; however, few studies have evaluated these effects on snowpack dynamics in mixed deciduous forests of the northeastern USA....
Evaluation of Marsh/Estuarine Water Quality and Ecological Models: An Interim Guide
1982-01-01
benthic oxygen demand, benthic scour and deposition, photosynthesis and respiration of aquatic plants, and nitrification (Dobbins 1964; O’Connor 1967... photosynthesis , algal respiration, decom- position, and mixing processes play dominant roles, the understanding and characterization of significant pro...Adams, S. M. 1979. "A Mathematical Model of Trophic Dynamics in Estuarine Seagrass Communities," Marsh-Estuarine Systems Simulation, Dame, R. F., ed
Towards a covariance matrix of CAB model parameters for H(H2O)
NASA Astrophysics Data System (ADS)
Scotta, Juan Pablo; Noguere, Gilles; Damian, José Ignacio Marquez
2017-09-01
Preliminary results on the uncertainties of hydrogen into light water thermal scattering law of the CAB model are presented. It was done through a coupling between the nuclear data code CONRAD and the molecular dynamic simulations code GROMACS. The Generalized Least Square method was used to adjust the model parameters on evaluated data and generate covariance matrices between the CAB model parameters.
Insights on the energy-water nexus through modeling of the integrated water cycle
NASA Astrophysics Data System (ADS)
Leung, L. R.; Li, H. Y.; Zhang, X.; Wan, W.; Voisin, N.; Leng, G.
2016-12-01
For sustainable energy planning, understanding the impacts of climate change, land use change, and water management is essential as they all exert notable controls on streamflow and stream temperature that influence energy production. An integrated water model representing river processes, irrigation water use and water management has been developed and coupled to a land surface model to investigate the energy-water nexus. Simulations driven by two climate change projections with the RCP 4.5 and RCP 8.5 emissions scenarios, with and without water management, are analyzed to evaluate the individual and combined effects of climate change and water management on streamflow and stream temperature. The simulations revealed important impacts of climate change and water management on both floods and droughts. The simulations also revealed the dynamics of competition between changes in water demand and water availability in the climate mitigation (RCP 4.5) and business as usual (RCP 8.5) scenarios that influence streamflow and stream temperature, with important consequences to energy production. The integrated water model is being implemented to the Accelerated Climate Modeling for Energy (ACME) to enable investigation of the energy-water nexus in the fully coupled Earth system.
Diversity and Activity of Diazotrophs in Great Barrier Reef Surface Waters.
Messer, Lauren F; Brown, Mark V; Furnas, Miles J; Carney, Richard L; McKinnon, A D; Seymour, Justin R
2017-01-01
Discrepancies between bioavailable nitrogen (N) concentrations and phytoplankton growth rates in the oligotrophic waters of the Great Barrier Reef (GBR) suggest that undetermined N sources must play a significant role in supporting primary productivity. One such source could be biological dinitrogen (N 2 ) fixation through the activity of "diazotrophic" bacterioplankton. Here, we investigated N 2 fixation and diazotroph community composition over 10° S of latitude within GBR surface waters. Qualitative N 2 fixation rates were found to be variable across the GBR but were relatively high in coastal, inner and outer GBR waters, reaching 68 nmol L -1 d -1 . Diazotroph assemblages, identified by amplicon sequencing of the nifH gene, were dominated by the cyanobacterium Trichodesmium erythraeum , γ-proteobacteria from the Gamma A clade, and δ-proteobacterial phylotypes related to sulfate-reducing genera. However, diazotroph communities exhibited significant spatial heterogeneity, correlated with shifts in dissolved inorganic nutrient concentrations. Specifically, heterotrophic diazotrophs generally increased in relative abundance with increasing concentrations of phosphate and N, while Trichodesmium was proportionally more abundant when concentrations of these nutrients were low. This study provides the first in-depth characterization of diazotroph community composition and N 2 fixation dynamics within the oligotrophic, N-limited surface waters of the GBR. Our observations highlight the need to re-evaluate N cycling dynamics within oligotrophic coral reef systems, to include diverse N 2 fixing assemblages as a potentially significant source of dissolved N within the water column.
Chiang, Fu-Tsai; Li, Pei-Jung; Chung, Shih-Ping; Pan, Lung-Fa; Pan, Lung-Kwang
2016-01-01
ABSTRACT This study analyzed multiple biokinetic models using a dynamic water phantom. The phantom was custom-made with acrylic materials to model metabolic mechanisms in the human body. It had 4 spherical chambers of different sizes, connected by 8 ditches to form a complex and adjustable water loop. One infusion and drain pole connected the chambers to an auxiliary silicon-based hose, respectively. The radio-active compound solution (TC-99m-MDP labeled) formed a sealed and static water loop inside the phantom. As clean feed water was infused to replace the original solution, the system mimicked metabolic mechanisms for data acquisition. Five cases with different water loop settings were tested and analyzed, with case settings changed by controlling valve poles located in the ditches. The phantom could also be changed from model A to model B by transferring its vertical configuration. The phantom was surveyed with a clinical gamma camera to determine the time-dependent intensity of every chamber. The recorded counts per pixel in each chamber were analyzed and normalized to compare with theoretical estimations from the MATLAB program. Every preset case was represented by uniquely defined, time-dependent, simultaneous differential equations, and a corresponding MATLAB program optimized the solutions by comparing theoretical calculations and practical measurements. A dimensionless agreement (AT) index was recommended to evaluate the comparison in each case. ATs varied from 5.6 to 48.7 over the 5 cases, indicating that this work presented an acceptable feasibility study. PMID:27286096
NASA Astrophysics Data System (ADS)
Lowry, T. S.; Tidwell, V. C.; Cardwell, H. E.; Ockner, G.; Rea, M. T.; Primozich, D.
2006-12-01
Water managers on the Willamette River in the state of Oregon are facing a new biological opinion and potentially strict TMDL regulations for temperature that will require actions by various stakeholders over the next few decades. Considerable public planning has already been accomplished in the basin with much of the assessment and planning phases for solving the basin's problems codified in a TMDL that was issued in 2006. Various alternatives have been proposed to meet the TMDL requirement, including operational changes at US Army Corps-operated reservoirs, projects that increase stream shading or restore the floodplain or hyporheic zone, and operational or technological changes at point sources such as waste water treatment plants and pulp and paper plants. To help meet the TMDL in a shorter time horizon, a collection of stakeholders formed the Willamette Partnership to develop an ecosystem marketplace where water quality and conservation credits can be traded. The marketplace will develop currencies in temperature and other environmental goods and services, and requires tools to describe linkages between credit trades, water operations, and other management changes (e.g. increases in stream shading) that control water temperature. These tools will link basin hydrology to temperature, water quality, and other concerns using a systems dynamics approach to provide real-time feedback to support conflict negotiation and decision making. Here, we present the development and conceptualization of those tools and their use in evaluating the potential and implementation of the ecosystem marketplace.
Nonlinear Dynamic Characteristics of Oil-in-Water Emulsions
NASA Astrophysics Data System (ADS)
Yin, Zhaoqi; Han, Yunfeng; Ren, Yingyu; Yang, Qiuyi; Jin, Ningde
2016-08-01
In this article, the nonlinear dynamic characteristics of oil-in-water emulsions under the addition of surfactant were experimentally investigated. Firstly, based on the vertical upward oil-water two-phase flow experiment in 20 mm inner diameter (ID) testing pipe, dynamic response signals of oil-in-water emulsions were recorded using vertical multiple electrode array (VMEA) sensor. Afterwards, the recurrence plot (RP) algorithm and multi-scale weighted complexity entropy causality plane (MS-WCECP) were employed to analyse the nonlinear characteristics of the signals. The results show that the certainty is decreasing and the randomness is increasing with the increment of surfactant concentration. This article provides a novel method for revealing the nonlinear dynamic characteristics, complexity, and randomness of oil-in-water emulsions with experimental measurement signals.
Water dynamics in rigid ionomer networks.
Osti, N C; Etampawala, T N; Shrestha, U M; Aryal, D; Tyagi, M; Diallo, S O; Mamontov, E; Cornelius, C J; Perahia, D
2016-12-14
The dynamics of water within ionic polymer networks formed by sulfonated poly(phenylene) (SPP), as revealed by quasi-elastic neutron scattering (QENS), is presented. These polymers are distinguished from other ionic macromolecules by their rigidity and therefore in their network structure. QENS measurements as a function of temperature as the fraction of ionic groups and humidity were varied have shown that the polymer molecules are immobile while absorbed water molecules remain dynamic. The water molecules occupy multiple sites, either bound or loosely constrained, and bounce between the two. With increasing temperature and hydration levels, the system becomes more dynamic. Water molecules remain mobile even at subzero temperatures, illustrating the applicability of the SPP membrane for selective transport over a broad temperature range.
Applying A Multi-Objective Based Procedure to SWAT Modelling in Alpine Catchments
NASA Astrophysics Data System (ADS)
Tuo, Y.; Disse, M.; Chiogna, G.
2017-12-01
In alpine catchments, water management practices can lead to conflicts between upstream and downstream stakeholders, like in the Adige river basin (Italy). A correct prediction of available water resources plays an important part, for example, in defining how much water can be stored for hydropower production in upstream reservoirs without affecting agricultural activities downstream. Snow is a crucial hydrological component that highly affects seasonal behavior of streamflow. Therefore, a realistic representation of snow dynamics is fundamental for water management operations in alpine catchments. The Soil and Water Assessment Tool (SWAT) model has been applied in alpine catchments worldwide. However, during model calibration of catchment scale applications, snow parameters were generally estimated based on streamflow records rather than on snow measurements. This may lead to streamflow predictions with wrong snow melt contribution. This work highlights the importance of considering snow measurements in the calibration of the SWAT model for alpine hydrology and compares various calibration methodologies. In addition to discharge records, snow water equivalent time series of both subbasin scale and monitoring station were also utilized to evaluate the model performance by comparing with the SWAT subbasin and elevation band snow outputs. Comparing model results obtained calibrating the model using discharge data only and discharge data along with snow water equivalent data, we show that the latter approach allows us to improve the reliability of snow simulations while maintaining good estimations of streamflow. With a more reliable representation of snow dynamics, the hydrological model can provide more accurate references for proposing adequate water management solutions. This study offers to the wide SWAT user community an effective approach to improve streamflow predictions in alpine catchments and hence support decision makers in water allocation.
Effects of Dimethyl Sulfoxide on Surface Water near Phospholipid Bilayers.
Lee, Yuno; Pincus, Philip A; Hyeon, Changbong
2016-12-06
Despite much effort to probe the properties of dimethyl sulfoxide (DMSO) solution, the effects of DMSO on water, especially near plasma membrane surfaces, still remain elusive. By performing molecular dynamics simulations at varying DMSO concentrations (X DMSO ), we study how DMSO affects structural and dynamical properties of water in the vicinity of phospholipid bilayers. As proposed by a number of experiments, our simulations confirm that DMSO induces dehydration from bilayer surfaces and disrupts the H-bond structure of water. However, DMSO-enhanced water diffusivity at solvent-bilayer interfaces, an intriguing discovery reported by a spin-label measurement, is not confirmed in our simulations. To resolve this discrepancy, we examine the location of the spin label (Tempo) relative to the solvent-bilayer interface. In accord with the evidence in the literature, our simulations, which explicitly model Tempo-phosphatidylcholine, find that the Tempo moiety is equilibrated at ∼8-10 Å below the bilayer surface. Furthermore, the DMSO-enhanced surface-water diffusion is confirmed only when water diffusion is analyzed around the Tempo moiety that is immersed below the bilayer surface, which implies that the experimentally detected signal of water using Tempo stems from the interior of bilayers, not from the interface. Our analysis finds that the increase of water diffusion below the bilayer surface is coupled to the increase of area per lipid with an increasing X DMSO (≲10mol%). Underscoring the hydrophobic nature of the Tempo moiety, our study calls for careful re-evaluation of the use of Tempo in measurements on lipid bilayer surfaces. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Pflugbeil, Thomas; Pöschke, Franziska; Noffke, Anna; Winde, Vera; Wolf, Thomas
2017-04-01
Lake Constance is one of most important drinking water resources in southern Germany. Furthermore, the lake and its catchment is a meaningful natural habitat as well as economical and cultural area. In this context, sustainable development and conservation of the lake ecosystem and drinking water quality is of high importance. However, anthropogenic pressures (e.g. waste water, land use, industry in catchment area) on the lake itself and its external inflows are high. The project "SeeZeichen" (ReWaM-project cluster by BMBF, funding number 02WRM1365) is investigating different immission pathways (groundwater, river, superficial inputs) and their impact on the water quality of Lake Constance. The investigation includes the direct inflow areas as well as the lake-wide context. The present simulation study investigates the mixing dynamics of Lake Constance and its impacts on river inflows and vice versa. It considers different seasonal (mixing and stratification periods), hydrological (flood events, average and low discharge) and transport conditions (sediment loads). The simulations are focused on two rivers: The River Alpenrhein delivers about 60 % of water and material input into Lake Constance. The River Schussen was chosen since it is highly anthropogenic influenced. For this purpose, a high-resolution three-dimensional hydrodynamic model of the Lake Constance is set up with Delft3D-Flow model system. The model is calibrated and validated with long term data sets of water levels, discharges and temperatures. The model results will be analysed for residence times of river water within the lake and particle distributions to evaluate potential impacts of river plume water constituents on the general water quality of the lake.
Seasonal Dynamics of River Corridor Exchange Across the Continental United States
NASA Astrophysics Data System (ADS)
Gomez-Velez, J. D.; Harvey, J. W.; Scott, D.; Boyer, E. W.; Schmadel, N. M.
2017-12-01
River corridors store and convey mass and energy from landscapes to the ocean, altering water quality and ecosystem functioning at the local, reach, and watershed scales. As water moves through river corridors from headwaters streams to coastal estuaries, dynamic exchange between the river channel and its adjacent riparian, floodplain, and hyporheic zones, combined with ponded waters such as lakes and reservoirs, results in the emergence of hot spots and moments for biogeochemical transformations. In this work, we used the model Networks with EXchange and Subsurface Storage (NEXSS) to estimate seasonal variations in river corridor exchange fluxes and residence times along the continental United States. Using a simple routing scheme, we translate these estimates into a cumulative measure of river corridor connectivity at the watershed scale, differentiating the contributions of hyporheic zones, floodplains, and ponded waters. We find that the relative role of these exchange subsystems changes seasonally, driven by the intra-seasonal variability of discharge. In addition, we find that seasonal variations in discharge and the biogeochemical potential of hyporheic zones are out of phase. This behavior results in a significant reduction in hyporheic water quality functions during high flows and emphasizes the potential importance of reconnecting floodplains for managing water quality during seasonal high flows. Physical parameterizations of river corridor processes are critical to model and predict water quality and to sustainably manage water resources under present and future socio-economic and climatic conditions. Parsimonious models like NEXSS can play a key role in the design, implementation, and evaluation of sustainable management practices that target both water quantity and quality at the scale of the nation. This research is a product of the John Wesley Powell Center River Corridor Working Group.
NASA Astrophysics Data System (ADS)
Onodera, S.; Saito, M.; Maruyama, Y.; Jin, G.; Miyaoka, K.; Shimizu, Y.
2013-12-01
In coastal megacities, sever groundwater depression and water pollution occurred. These impacts affected to river environment change. Especially, the river mouth area has been deposited the polluted matters. These areas have characteristics of water level fluctuation which causes river water-groundwater interaction and the associated change in dynamics of nutrients. However, these effects on the nutrient transport in tidal reaches and nutrient load to the sea have not been fully evaluated in previous studies. Therefore, we aimed to clarify the characteristics of the nutrient transport with the river water-groundwater interaction in the tidal river of Osaka metropolitan city. We conducted the field survey from the river mouth to the 7km upstream area of Yamato River, which has a length of 68km and a watershed area of 1070 km2. Spatial variations in radon (222Rn) concentrations and the difference of hydraulic potential between river waters and the pore waters suggest that the groundwater discharges to the river channel in the upstream area. In contrast, the river water recharged into the groundwater near the river mouth area. It may be caused by the lowering of groundwater level associated with the excess abstraction of groundwater in the urban area. The result also implies the seawater intrusion would accelerate the salinization of groundwater. The spatial and temporal variations in nutrient concentrations indicate that nitrate-nitrogen (NO3-N) concentrations changed temporally and it negative correlated with dissolved organic nitrogen (DON) concentrations. Inorganic phosphorous (PO4-P) concentrations showed the increasing trend with the increase of the river water level. Based on the mass balance, nutrient reproduction from the river bed was suggested in tidal reach. That was estimated to be 10 % of total nitrogen and 3% of phosphorus loads from the upstream.
NASA Astrophysics Data System (ADS)
Mathias, Gerald; Egwolf, Bernhard; Nonella, Marco; Tavan, Paul
2003-06-01
We present a combination of the structure adapted multipole method with a reaction field (RF) correction for the efficient evaluation of electrostatic interactions in molecular dynamics simulations under periodic boundary conditions. The algorithm switches from an explicit electrostatics evaluation to a continuum description at the maximal distance that is consistent with the minimum image convention, and, thus, avoids the use of a periodic electrostatic potential. A physically motivated switching function enables charge clusters interacting with a given charge to smoothly move into the solvent continuum by passing through the spherical dielectric boundary surrounding this charge. This transition is complete as soon as the cluster has reached the so-called truncation radius Rc. The algorithm is used to examine the dependence of thermodynamic properties and correlation functions on Rc in the three point transferable intermolecular potential water model. Our test simulations on pure liquid water used either the RF correction or a straight cutoff and values of Rc ranging from 14 Å to 40 Å. In the RF setting, the thermodynamic properties and the correlation functions show convergence for Rc increasing towards 40 Å. In the straight cutoff case no such convergence is found. Here, in particular, the dipole-dipole correlation functions become completely artificial. The RF description of the long-range electrostatics is verified by comparison with the results of a particle-mesh Ewald simulation at identical conditions.
NASA Astrophysics Data System (ADS)
Kang, W.
2017-12-01
Ecosystem carbon-energy-water circles have significant effect on function and structure and vice verse. Based on these circles mechanism, some eco-physiological indicators, like Transpiration (T), gross primary productivity (GPP), light use efficiency (LUE) and water use efficiency (WUE), are commonly applied to assess terrestrial ecosystem function and structure dynamics. The ecosystem weakened function and simple structure in Northeast dryland regions resulted from land degradation or desertification, which could be demonstrated by above-mentioned indicators. In this study, based on MODIS atmosphere (MYD07, MYD04, MYD06 data) and land products (MYD13A2 NDVI, MYD11A1 LST, MYD15A2 LAI and land cover data), we first retrieved transpiration and LUE via Penman-Monteith Model and modified Vegetation Photosynthesis Model (VPM), respectively; and then evaluated dynamics of these eco-physiological indicators (Tair, VPD, T, LUE, GPP and WUE) and some hotspots were found for next land degradation assessment. The results showed: (1) LUE and WUE are lower in barren or sparsely vegetated area and grasslands than in forest and croplands. (2) Whereas, all indicators presented higher variability in grassland area, particularly in east Mongolia. (3) GPP and transpiration have larger variability than other indicators due to fraction of absorbed Photosynthetically active radiation (FPAR). These eco-physiological indicators are expected to continue to change under future climate change and to help to assess land degradation from ecosystem energy-water-carbon perspectives.
STABLE ISOTOPES AS INDICATORS OF SOIL WATER DYNAMICS IN WATERSHEDS
Stream water quality and quantity depend on discharge rates of water and nutrients from soils. However, soil-water storage is very dynamic and strongly influenced by plants. We analyzed stable isotopes of oxygen and hydrogen to quantify spatial and temporal changes in evaporati...
Kilpatrick, John M.
1996-01-01
To improve understanding of the hydrologic characteristics of the shallow aquifer in the vicinity of the Management Systems Evaluation Area site near Shelton, Nebraska, water levels were measured in approximately 130 observation wells in both June and September 1991. Two water-table maps and a water-level-change map were drawn on the basis of these measurements. In addition, historical data from U.S. Geological Survey computer files and published reports were used to determine the approximate configuration of the water table in 1931 and to draw one short-term and two-long term water- level hydrographs. Comparison of the three water- table maps indicates general similarities. The average horizontal hydraulic gradient in the shallow aquifer is about 7.5 feet per mile, and the flow direction is to the east-northeast. The water table declined 2 to 10 feet between June and September 1991, with the greatest decline occurring in a wedge-shaped area south of the Wood River and north of the Platte River. The 1991 water-table configurations appear to indicate that the aquifer either was discharging to the Platte River in this reach or there was little flow between the river and the aquifer. Comparison of the 1931 and 1991 water-table maps indicates that, except for short-term variations, the water-table configuration changed little during this 61-year period. Two long-term water-level hydrographs confirm this conclusion, indicating that the shallow aquifer in this area has been in long-term, dynamic equilibrium.
Yang, Shuailing; Liu, Xuye; Jin, Yan; Li, Xingfang; Chen, Feng; Zhang, Mingdi; Lin, Songyi
2016-03-16
Water absorbed into the bulk amorphous structure of peptides can have profound effects on their properties. Here, we elucidated water dynamics in Asp-His-Thr-Lys-Glu (DHTKE), an antioxidant peptide derived from egg white ovalbumin, using water dynamic vapor sorption (DVS) and low-field nuclear magnetic resonance (LF-NMR). The DVS results indicated that parallel exponential kinetics model fitted well to the data of sorption kinetics behavior of DHTKE. Four different proton fractions with different mobilities were identified based on the degree of interaction between peptide and water. The water could significantly change the proton distribution and structure of the sample. The different phases of moisture absorption were reflected in the T2 parameters. In addition, the combined water content was dominant in the hygroscopicity of DHTKE. This study provides an effective real-time monitoring method for water mobility and distribution in synthetic peptides, and this method may have applications in promoting peptide quality assurance.
Dynamic Assessment of Water Quality Based on a Variable Fuzzy Pattern Recognition Model
Xu, Shiguo; Wang, Tianxiang; Hu, Suduan
2015-01-01
Water quality assessment is an important foundation of water resource protection and is affected by many indicators. The dynamic and fuzzy changes of water quality lead to problems for proper assessment. This paper explores a method which is in accordance with the water quality changes. The proposed method is based on the variable fuzzy pattern recognition (VFPR) model and combines the analytic hierarchy process (AHP) model with the entropy weight (EW) method. The proposed method was applied to dynamically assess the water quality of Biliuhe Reservoir (Dailan, China). The results show that the water quality level is between levels 2 and 3 and worse in August or September, caused by the increasing water temperature and rainfall. Weights and methods are compared and random errors of the values of indicators are analyzed. It is concluded that the proposed method has advantages of dynamism, fuzzification and stability by considering the interval influence of multiple indicators and using the average level characteristic values of four models as results. PMID:25689998
Dynamic assessment of water quality based on a variable fuzzy pattern recognition model.
Xu, Shiguo; Wang, Tianxiang; Hu, Suduan
2015-02-16
Water quality assessment is an important foundation of water resource protection and is affected by many indicators. The dynamic and fuzzy changes of water quality lead to problems for proper assessment. This paper explores a method which is in accordance with the water quality changes. The proposed method is based on the variable fuzzy pattern recognition (VFPR) model and combines the analytic hierarchy process (AHP) model with the entropy weight (EW) method. The proposed method was applied to dynamically assess the water quality of Biliuhe Reservoir (Dailan, China). The results show that the water quality level is between levels 2 and 3 and worse in August or September, caused by the increasing water temperature and rainfall. Weights and methods are compared and random errors of the values of indicators are analyzed. It is concluded that the proposed method has advantages of dynamism, fuzzification and stability by considering the interval influence of multiple indicators and using the average level characteristic values of four models as results.
Yin, Su; Dongjie, Guan; Weici, Su; Weijun, Gao
2017-11-01
The demand for global freshwater is growing, while global freshwater available for human use is limited within a certain time and space. Its security has significant impacts on both the socio-economic system and ecological system. Recently, studies have focused on the urban water security system (UWSS) in terms of either water quantity or water quality. In this study, water resources, water environment, and water disaster issues in the UWSS were combined to establish an evaluation index system with system dynamics (SD) and geographic information systems (GIS). The GIS method performs qualitative analysis from the perspective of the spatial dimension; meanwhile, the SD method performs quantitative calculation about related water security problems from the perspective of the temporal dimension. We established a UWSS model for Guizhou province, China to analyze influencing factors, main driving factors, and system variation law, by using the SD method. We simulated the water security system from 2005 to 2025 under four scenarios (Guiyang scenario, Zunyi scenario, Bijie scenario and combined scenario). The results demonstrate that: (1) the severity of water security in cities is ranked as follows: three cities are secure in Guizhou province, four cities are in basic security and two cities are in a situation of insecurity from the spatial dimension of GIS through water security synthesis; and (2) the major driving factors of UWSS in Guizhou province include agricultural irrigation water demand, soil and water losses area, a ratio increase to the standard of water quality, and investment in environmental protection. A combined scenario is the best solution for UWSS by 2025 in Guizhou province under the four scenarios from the temporal dimension of SD. The results of this study provide a useful suggestion for the management of freshwater for the cities of Guizhou province in southwest China.
Proton dynamics and the phase diagram of dense water ice.
Hernandez, J-A; Caracas, R
2018-06-07
All the different phases of water ice between 2 GPa and several megabars are based on a single body-centered cubic sub-lattice of oxygen atoms. They differ only by the behavior of the hydrogen atoms. In this study, we investigate the dynamics of the H atoms at high pressures and temperatures in water ice from first-principles molecular dynamics simulations. We provide a detailed analysis of the O-H⋯O bonding dynamics over the entire stability domain of the body-centered cubic (bcc) water ices and compute transport properties and vibrational density-of-states. We report the first ab initio evidence for a plastic phase of water and we propose a coherent phase diagram for bcc water ices compatible with the two groups of melting curves and with the multiple anomalies reported in ice VII around 15 GPa.
Flexible design in water and wastewater engineering--definitions, literature and decision guide.
Spiller, Marc; Vreeburg, Jan H G; Leusbrock, Ingo; Zeeman, Grietje
2015-02-01
Urban water and wastewater systems face uncertain developments including technological progress, climate change and urban development. To ensure the sustainability of these systems under dynamic conditions it has been proposed that technologies and infrastructure should be flexible, adaptive and robust. However, in literature it is often unclear what these technologies and infrastructure are. Furthermore, the terms flexible, adaptive and robust are often used interchangeably, despite important differences. In this paper we will i) define the terminology, ii) provide an overview of the status of flexible infrastructure design alternatives for water and wastewater networks and treatment, and iii) develop guidelines for the selection of flexible design alternatives. Results indicate that, with the exception of Net Present Valuation methods, there is little research available on the design and evaluation of technologies that can enable flexibility. Flexible design alternatives reviewed include robust design, phased design, modular design, modular/component platform design and design for remanufacturing. As developments in the water sector are driven by slow variables (climate change, urban development), rather than market forces, it is suggested that phased design or component platform designs are suitable for responding to change, while robust design is an option when operations face highly dynamic variability. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yuanyuan; Liu, Chongxuan; Nelson, William C.
Nitrogen (N) transformation in hyporheic zone (HZ) is an important component in N-cycling in ecosystems. A column study was conducted to investigate N transformation in a HZ sediment with a focus on how characteristic HZ properties including water chemistry, fluid residence time, and dynamic groundwater and surface water exchange affect on N transformation. Metagenomic and quantitative polymerase chain reaction (qPCR) analyses were performed to evaluate the dynamic changes in microbial community structure and its function in response to N transformation. The results indicated that N transformation in the HZ sediment was collectively controlled by microbial community functions including: denitrification, dissimilatorymore » nitrate reduction to ammonium (DNRA), nitrification, and anaerobic ammonium oxidation (anammox). However, the spatial distribution of the microbial community functions and associated biogeochemical reaction rates and products changed quickly in response to experimental perturbation, and was influenced by various factors including water chemistry (dissolved O2 and N species), desorption of sediment associated organic carbon, ion exchange reactions of NH4+, and fluid residence time. The results of this study implied that the microbial community in the HZ would exhibit strong function zonation along N and O gradients, which in turn would control the rates and products of N transformation.« less
Optimal Dynamics of Intermittent Water Supply
NASA Astrophysics Data System (ADS)
Lieb, Anna; Wilkening, Jon; Rycroft, Chris
2014-11-01
In many urban areas of the developing world, piped water is supplied only intermittently, as valves direct water to different parts of the water distribution system at different times. The flow is transient, and may transition between free-surface and pressurized, resulting in complex dynamical features with important consequences for water suppliers and users. These consequences include degradation of distribution system components, compromised water quality, and inequitable water availability. The goal of this work is to model the important dynamics and identify operating conditions that mitigate certain negative effects of intermittent water supply. Specifically, we will look at valve parameters occurring as boundary conditions in a network model of transient, transition flow through closed pipes. Optimization will be used to find boundary values to minimize pressure gradients and ensure equitable water availability.
Yamaguchi, Akira; Namekawa, Manato; Itoh, Tetsuji; Teramae, Norio
2012-01-01
The fluorescence dynamics of rhodamine B (RhB) immobilized on the pore surface of aminopropyl (AP)-modified mesoporous silica (diameter of the silica framework, 3.1 nm) was examined at temperatures between 293 and 193 K to study the microviscosity of supercooled water confined inside the pores. The mesoporous silica specimen with a dense AP layer (2.1 molecules nm(-2)) was prepared, and RhB isothiocyanate was covalently bound to part of the surface AP groups. The fluorescence lifetime of the surface RhB increased with decreasing temperature from 293 to 223 K, indicating that freezing of the confined water did not occur in this temperature range. The microviscosity of the supercooled confined water was evaluated from an analysis of the lifetime data based on a frequency-dependent friction model.
Water confined in carbon nanotubes: Magnetic response and proton chemical shieldings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, P; Schwegler, E; Galli, G
2008-11-14
We study the proton nuclear magnetic resonance ({sup 1}H-NMR) of a model system consisting of liquid water in infinite carbon nanotubes (CNT). Chemical shieldings are evaluated from linear response theory, where the electronic structure is derived from density functional theory (DFT) with plane-wave basis sets and periodic boundary conditions. The shieldings are sampled from trajectories generated via first-principles molecular dynamics simulations at ambient conditions, for water confined in (14,0) and (19,0) CNTs with diameters d = 11 {angstrom} and 14.9 {angstrom}, respectively. We find that confinement within the CNT leads to a large ({approx} -23 ppm) upfield shift relative tomore » bulk liquid water. This shift is a consequence of strongly anisotropic magnetic fields induced in the CNT by an applied magnetic field.« less
NASA Astrophysics Data System (ADS)
Narayanan, S. Shankara; Sinha, Sudarson Sekhar; Sarkar, Rupa; Pal, Samir Kumar
2008-02-01
We report the effect of different geometrical restrictions on the dynamical properties of water using dynamic light scattering (DLS), Fourier transform infrared (FTIR) and picosecond-resolved fluorescence studies. By preparing AOT/lecithin mixed reverse micelles (RMs) of different morphologies (spherical and ellipsoidal), we have investigated the effect of the degree of confinement on the mobility of water in the mixed RMs of similar degree of hydration. The FTIR studies along with solvation dynamics of two fluorescent probes, ANS and coumarin 500 in the RMs reveal structural and dynamical information about the micellar water, which varies with the morphology of the mixed RMs.
Systems Reliability Framework for Surface Water Sustainability and Risk Management
NASA Astrophysics Data System (ADS)
Myers, J. R.; Yeghiazarian, L.
2016-12-01
With microbial contamination posing a serious threat to the availability of clean water across the world, it is necessary to develop a framework that evaluates the safety and sustainability of water systems in respect to non-point source fecal microbial contamination. The concept of water safety is closely related to the concept of failure in reliability theory. In water quality problems, the event of failure can be defined as the concentration of microbial contamination exceeding a certain standard for usability of water. It is pertinent in watershed management to know the likelihood of such an event of failure occurring at a particular point in space and time. Microbial fate and transport are driven by environmental processes taking place in complex, multi-component, interdependent environmental systems that are dynamic and spatially heterogeneous, which means these processes and therefore their influences upon microbial transport must be considered stochastic and variable through space and time. A physics-based stochastic model of microbial dynamics is presented that propagates uncertainty using a unique sampling method based on artificial neural networks to produce a correlation between watershed characteristics and spatial-temporal probabilistic patterns of microbial contamination. These results are used to address the question of water safety through several sustainability metrics: reliability, vulnerability, resilience and a composite sustainability index. System reliability is described uniquely though the temporal evolution of risk along watershed points or pathways. Probabilistic resilience describes how long the system is above a certain probability of failure, and the vulnerability metric describes how the temporal evolution of risk changes throughout a hierarchy of failure levels. Additionally our approach allows for the identification of contributions in microbial contamination and uncertainty from specific pathways and sources. We expect that this framework will significantly improve the efficiency and precision of sustainable watershed management strategies through providing a better understanding of how watershed characteristics and environmental parameters affect surface water quality and sustainability. With microbial contamination posing a serious threat to the availability of clean water across the world, it is necessary to develop a framework that evaluates the safety and sustainability of water systems in respect to non-point source fecal microbial contamination. The concept of water safety is closely related to the concept of failure in reliability theory. In water quality problems, the event of failure can be defined as the concentration of microbial contamination exceeding a certain standard for usability of water. It is pertinent in watershed management to know the likelihood of such an event of failure occurring at a particular point in space and time. Microbial fate and transport are driven by environmental processes taking place in complex, multi-component, interdependent environmental systems that are dynamic and spatially heterogeneous, which means these processes and therefore their influences upon microbial transport must be considered stochastic and variable through space and time. A physics-based stochastic model of microbial dynamics is presented that propagates uncertainty using a unique sampling method based on artificial neural networks to produce a correlation between watershed characteristics and spatial-temporal probabilistic patterns of microbial contamination. These results are used to address the question of water safety through several sustainability metrics: reliability, vulnerability, resilience and a composite sustainability index. System reliability is described uniquely though the temporal evolution of risk along watershed points or pathways. Probabilistic resilience describes how long the system is above a certain probability of failure, and the vulnerability metric describes how the temporal evolution of risk changes throughout a hierarchy of failure levels. Additionally our approach allows for the identification of contributions in microbial contamination and uncertainty from specific pathways and sources. We expect that this framework will significantly improve the efficiency and precision of sustainable watershed management strategies through providing a better understanding of how watershed characteristics and environmental parameters affect surface water quality and sustainability.
Master Middle Ware: A Tool to Integrate Water Resources and Fish Population Dynamics Models
NASA Astrophysics Data System (ADS)
Yi, S.; Sandoval Solis, S.; Thompson, L. C.; Kilduff, D. P.
2017-12-01
Linking models that investigate separate components of ecosystem processes has the potential to unify messages regarding management decisions by evaluating potential trade-offs in a cohesive framework. This project aimed to improve the ability of riparian resource managers to forecast future water availability conditions and resultant fish habitat suitability, in order to better inform their management decisions. To accomplish this goal, we developed a middleware tool that is capable of linking and overseeing the operations of two existing models, a water resource planning tool Water Evaluation and Planning (WEAP) model and a habitat-based fish population dynamics model (WEAPhish). First, we designed the Master Middle Ware (MMW) software in Visual Basic for Application® in one Excel® file that provided a familiar framework for both data input and output Second, MMW was used to link and jointly operate WEAP and WEAPhish, using Visual Basic Application (VBA) macros to implement system level calls to run the models. To demonstrate the utility of this approach, hydrological, biological, and middleware model components were developed for the Butte Creek basin. This tributary of the Sacramento River, California is managed for both hydropower and the persistence of a threatened population of spring-run Chinook salmon (Oncorhynchus tschawytscha). While we have demonstrated the use of MMW for a particular watershed and fish population, MMW can be customized for use with different rivers and fish populations, assuming basic data requirements are met. This model integration improves on ad hoc linkages for managing data transfer between software programs by providing a consistent, user-friendly, and familiar interface across different model implementations. Furthermore, the data-viewing capabilities of MMW facilitate the rapid interpretation of model results by hydrologists, fisheries biologists, and resource managers, in order to accelerate learning and management decision making.
Cosolvent effect on the dynamics of water in aqueous binary mixtures
NASA Astrophysics Data System (ADS)
Zhang, Xia; Zhang, Lu; Jin, Tan; Zhang, Qiang; Zhuang, Wei
2018-04-01
Water rotational dynamics in the mixtures of water and amphiphilic molecules, such as acetone and dimethyl sulfoxide (DMSO), measured by femtosecond infrared, often vary non-monotonically as the amphiphilic molecule's molar fraction changes from 0 to 1. Recent study has attributed the non-ideal water rotation with concentration in DMSO-water mixtures to different microscopic hydrophilic-hydrophobic segregation structure in water-rich and water-poor mixtures. Interestingly, the acetone molecule has very similar molecular structure to DMSO, but the extremum of the water rotational time in the DMSO-water mixtures significantly shifts to lower concentration and the rotation of water is much faster than those in acetone-water mixtures. The simulation results here shows that the non-ideal rotational dynamics of water in both mixtures are due to the frame rotation during the interval of hydrogen bond (HB) switchings. A turnover of the frame rotation with concentration takes place as the structure transition of mixture from the hydrogen bond percolation structure to the hydrophobic percolation structure. The weak acetone-water hydrogen bond strengthens the hydrophobic aggregation and accelerates the relaxation of the hydrogen bond, so that the structure transition takes places at lower concentration and the rotation of water is faster in acetone-water mixture than in DMSO-water mixture. A generally microscopic picture on the mixing effect on the water dynamics in binary aqueous mixtures is presented here.
NASA Astrophysics Data System (ADS)
Campbell, P. K. E.; Huemmrich, K. F.; Middleton, E.; Voorhis, S.; Landis, D.
2016-12-01
Spatial heterogeneity and seasonal dynamics in vegetation function contribute significantly to the uncertainties in regional and global CO2 budgets. High spectral resolution imaging spectroscopy ( 10 nm, 400-2500 nm) provides an efficient tool for synoptic evaluation of the factors significantly affecting the ability of the vegetation to sequester carbon and to reflect radiation, due to changes in vegetation chemical and structural composition. EO-1 Hyperion has collected more than 15 years of repeated observations for vegetation studies, and currently Hyperion time series are available for study of vegetation carbon dynamics at a number of FLUX sites. This study presents results from the analysis of EO-1 Hyperion and FLUX seasonal composites for a range of ecosystems across the globe. Spectral differences and seasonal trends were evaluated for each vegetation type and specific phenology. Evaluating the relationships between CO2 flux parameters (e.g., Net ecosystem production - NEP; Gross Ecosystem Exchange - GEE, CO2 flux, μmol m-2 s-1) and spectral parameters for these very different ecosystems, high correlations were established to parameters associated with canopy water and chlorophyll content for deciduous, and photosynthetic function for conifers. Imaging spectrometry provided high spatial resolution maps of CO2 fluxes absorbed by vegetation, and was efficient in tracing seasonal flux dynamics. This study will present examples for key ecosystem tipes to demonstrate the ability of imaging spectrometry and EO-1 Hyperion to map and compare CO2 flux dynamics across the globe.
Hydraulics of sprinkler and microirrigation systems
USDA-ARS?s Scientific Manuscript database
The fluid dynamics of sprinkler and microirrigation systems are complex. Water moves dynamically from the water source through the pump into the pipe network. Water often goes through a series of screens and filters depending on the source and type of irrigation system. From the pipe network, water ...
Evaluation ofthe Middle East and North Africa Land Data Assimilation System
NASA Technical Reports Server (NTRS)
Bolten, John D.; Rodell, Matthew; Zaitchik, Benjamin; Ozdogan, Mutlu; Anderson, Martha; Bergaoui, Karim B.; Khalaf, Adla J.; McDonnell, Rachael A.
2012-01-01
The Middle East and North Africa (MENA) region is dominated by dry, warm deserts, areas of dense population, and inefficient use of fresh water resources. Due to the scarcity, high intensity, and short duration of rainfall in the MENA, the region is prone to hydro climatic extremes that are realized by devastating floods and times of drought. However, given its widespread water stress and the considerable demand for water, the MENA remains relatively poorly monitored. This is due in part to the shortage of meteorological observations and the lack of data sharing between nations. As a result, the accurate monitoring of the dynamics of the water cycle in the MENA is difficult. The Land Data Assimilation System for the MENA region (MENA LDAS) has been developed to provide regional, gridded fields of hydrological states and fluxes relevant for water resources assessments. As an extension of the Global Land Data Assimilation System (GLDAS), the MENA LDAS was designed to aid in the identification and evaluation of regional hydrological anomalies by synergistically combining the physically-based Catchment Land Surface Model (CLSM) with observations from several independent data products including soil-water storage variations from the Gravity Recovery and Climate Experiment (GRACE) and irrigation intensity derived from the Moderate Resolution Imaging Spectroradiometer (MODIS). In this fashion, we estimate the mean and seasonal cycle of the water budget components across the MENA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujiwara, Satoru, E-mail: fujiwara.satoru@jaea.go.jp; Plazanet, Marie; Oda, Toshiro
2013-02-15
Highlights: ► Quasielastic neutron scattering spectra of F-actin and G-actin were measured. ► Analysis of the samples in D{sub 2}O and H{sub 2}O provided the spectra of hydration water. ► The first layer hydration water around F-actin is less mobile than around G-actin. ► This difference in hydration water is in concert with the internal dynamics of actin. ► Water outside the first layer behaves bulk-like but influenced by the first layer. -- Abstract: In order to characterize dynamics of water molecules around F-actin and G-actin, quasielastic neutron scattering experiments were performed on powder samples of F-actin and G-actin, hydratedmore » either with D{sub 2}O or H{sub 2}O, at hydration ratios of 0.4 and 1.0. By combined analysis of the quasielastic neutron scattering spectra, the parameter values characterizing the dynamics of the water molecules in the first hydration layer and those of the water molecules outside of the first layer were obtained. The translational diffusion coefficients (D{sub T}) of the hydration water in the first layer were found to be 1.2 × 10{sup −5} cm{sup 2}/s and 1.7 × 10{sup −5} cm{sup 2}/s for F-actin and G-actin, respectively, while that for bulk water was 2.8 × 10{sup −5} cm{sup 2}/s. The residence times were 6.6 ps and 5.0 ps for F-actin and G-actin, respectively, while that for bulk water was 0.62 ps. These differences between F-actin and G-actin, indicating that the hydration water around G-actin is more mobile than that around F-actin, are in concert with the results of the internal dynamics of F-actin and G-actin, showing that G-actin fluctuates more rapidly than F-actin. This implies that the dynamics of the hydration water is coupled to the internal dynamics of the actin molecules. The D{sub T} values of the water molecules outside of the first hydration layer were found to be similar to that of bulk water though the residence times are strongly affected by the first hydration layer. This supports the recent observation on intracellular water that shows bulk-like behavior.« less
NASA Astrophysics Data System (ADS)
Mendez-Barroso, L. A.; Vivoni, E.; Robles-Morua, A.; Yepez, E. A.; Rodriguez, J. C.; Watts, C.; Saiz-Hernandez, J.
2013-05-01
Seasonal vegetation changes highly affect the energy and hydrologic fluxes in semiarid regions around the world. Accounting for different water use strategies among drought-deciduous ecosystems is important for understanding how these exploit the temporally brief and localized rainfall pulses of the North American Monsoon (NAM). Furthermore, quantifying these plant-water relations can help elucidate the spatial patterns of ecohydrological processes at catchment scale in the NAM region. In this effort, we focus on the San Miguel river basin (~ 3500 km2) in Sonora, Mexico, which exhibits seasonal vegetation greening that varies across ecosystems organized along mountain fronts. To assess the spatial variability of ecohydrological conditions, we relied on diverse tools that included multi-temporal remote sensing observations, model-based meteorological forcing, ground-based water and energy flux measurements and hydrologic simulations carried out at multiple scales. We evaluated the impact of seasonal vegetation dynamics on evapotranspiration (ET), its partitioning into soil evaporation (E) and plant transpiration (T), as well as their spatiotemporal patterns over the course of the NAM season. We utilized ground observations of soil moisture and evapotranspiration estimated by the eddy covariance method at two sites, as well as inferences of ET partitioning from stable isotope measurements, to test the numerical simulations. We found that ecosystem phenological differences lead to variations in the time to peak in transpiration during a season and in the overall seasonal ratio of transpiration to evapotranspiration (T/ET). A sensitivity analysis of the numerical simulations revealed that vegetation cover and the soil moisure threshold at which stomata close exert strong controls on the seasonal dominance of transpiration or evaporation. The dynamics of ET and its partitioning are then mapped spatially revealing that mountain front ecosystems utilize water differently. The results of this study aid in understanding how variations in water use and phenological strategies affect how soil water is returned to the atmosphere with implications on the watershed runoff response.
2017-01-01
The selectivity filter of the KcsA K+ channel has two typical conformations—the conductive and the collapsed conformations, respectively. The transition from the conductive to the collapsed filter conformation can represent the process of inactivation that depends on many environmental factors. Water molecules permeating behind the filter can influence the collapsed filter stability. Here we perform the molecular dynamics simulations to study the stability of the collapsed filter of the KcsA K+ channel under the different water patterns. We find that the water patterns are dynamic behind the collapsed filter and the filter stability increases with the increasing number of water molecules. In addition, the stability increases significantly when water molecules distribute uniformly behind the four monomeric filter chains, and the stability is compromised if water molecules only cluster behind one or two adjacent filter chains. The altered filter stabilities thus suggest that the collapsed filter can inactivate gradually under the dynamic water patterns. We also demonstrate how the different water patterns affect the filter recovery from the collapsed conformation. PMID:29049423
Wu, Di
2017-01-01
The selectivity filter of the KcsA K+ channel has two typical conformations-the conductive and the collapsed conformations, respectively. The transition from the conductive to the collapsed filter conformation can represent the process of inactivation that depends on many environmental factors. Water molecules permeating behind the filter can influence the collapsed filter stability. Here we perform the molecular dynamics simulations to study the stability of the collapsed filter of the KcsA K+ channel under the different water patterns. We find that the water patterns are dynamic behind the collapsed filter and the filter stability increases with the increasing number of water molecules. In addition, the stability increases significantly when water molecules distribute uniformly behind the four monomeric filter chains, and the stability is compromised if water molecules only cluster behind one or two adjacent filter chains. The altered filter stabilities thus suggest that the collapsed filter can inactivate gradually under the dynamic water patterns. We also demonstrate how the different water patterns affect the filter recovery from the collapsed conformation.
Combining Mechanistic Approaches for Studying Eco-Hydro-Geomorphic Coupling
NASA Astrophysics Data System (ADS)
Francipane, A.; Ivanov, V.; Akutina, Y.; Noto, V.; Istanbullouglu, E.
2008-12-01
Vegetation interacts with hydrology and geomorphic form and processes of a river basin in profound ways. Despite recent advances in hydrological modeling, the dynamic coupling between these processes is yet to be adequately captured at the basin scale to elucidate key features of process interaction and their role in the organization of vegetation and landscape morphology. In this study, we present a blueprint for integrating a geomorphic component into the physically-based, spatially distributed ecohydrological model, tRIBS- VEGGIE, which reproduces essential water and energy processes over the complex topography of a river basin and links them to the basic plant life regulatory processes. We present a preliminary design of the integrated modeling framework in which hillslope and channel erosion processes at the catchment scale, will be coupled with vegetation-hydrology dynamics. We evaluate the developed framework by applying the integrated model to Lucky Hills basin, a sub-catchment of the Walnut Gulch Experimental Watershed (Arizona). The evaluation is carried out by comparing sediment yields at the basin outlet, that follows a detailed verification of simulated land-surface energy partition, biomass dynamics, and soil moisture states.
Dutta, Priyanka; Botlani, Mohsen; Varma, Sameer
2014-12-26
The dynamical properties of water at protein-water interfaces are unlike those in the bulk. Here we utilize molecular dynamics simulations to study water dynamics in interstitial regions between two proteins. We consider two natural protein-protein complexes, one in which the Nipah virus G protein binds to cellular ephrin B2 and the other in which the same G protein binds to ephrin B3. While the two complexes are structurally similar, the two ephrins share only a modest sequence identity of ∼50%. X-ray crystallography also suggests that these interfaces are fairly extensive and contain exceptionally large amounts of waters. We find that while the interstitial waters tend to occupy crystallographic sites, almost all waters exhibit residence times of less than hundred picoseconds in the interstitial region. We also find that while the differences in the sequence of the two ephrins result in quantitative differences in the dynamics of interstitial waters, the trends in the shifts with respect to bulk values are similar. Despite the high wetness of the protein-protein interfaces, the dynamics of interstitial waters are considerably slower compared to the bulk-the interstitial waters diffuse an order of magnitude slower and have 2-3 fold longer hydrogen bond lifetimes and 2-1000 fold slower dipole relaxation rates. To understand the role of interstitial waters, we examine how implicit solvent models compare against explicit solvent models in producing ephrin-induced shifts in the G conformational density. Ephrin-induced shifts in the G conformational density are critical to the allosteric activation of another viral protein that mediates fusion. We find that in comparison with the explicit solvent model, the implicit solvent model predicts a more compact G-B2 interface, presumably because of the absence of discrete waters at the G-B2 interface. Simultaneously, we find that the two models yield strikingly different induced changes in the G conformational density, even for those residues whose conformational densities in the apo state are unaffected by the treatment of the bulk solvent. Together, these results show that the explicit treatment of interstitial water molecules is necessary for a proper description of allosteric transitions.
Identifying the Dynamic Catchment Storage That Does Not Drive Runoff
NASA Astrophysics Data System (ADS)
Dralle, D.; Hahm, W. J.; Rempe, D.; Karst, N.; Thompson, S. E.; Dietrich, W. E.
2017-12-01
The central importance of subsurface water storage in hydrology has resulted in numerous attempts to develop hydrograph and mass balance based techniques to quantify catchment storage state or capacity. In spite of these efforts, relatively few studies have linked catchment scale storage metrics to Critical Zone (CZ) structure and the status of water in hillslopes. Elucidating these relationships would increase the interpretability of catchment storage metrics, and aid the development of hydrologic models. Here, we propose that catchment storage consists of a dynamic component that varies on seasonal timescales, and a static component with negligible time variation. Discharge is assumed to be explicitly sensitive to changes in some fraction of the dynamic storage, while the remaining dynamic storage varies without directly influencing flow. We use a coupled mass balance and storage-discharge function approach to partition dynamic storage between these driving and non-driving storage pools, and compare inferences with direct observations of saturated and unsaturated dynamic water storages at two field sites in Northern California. We find that most dynamic catchment water storage does not drive streamflow in both sites, even during the wettest times of year. Moreover, the physical character of non-driving dynamic storage depends strongly on catchment CZ structure. At a site with a deep profile of weathered rock, the dynamic storage that drives streamflow occurs as a seasonally perched groundwater table atop fresh bedrock, and that which does not drive streamflow resides as seasonally dynamic unsaturated water in shallow soils and deep, weathered rock. At a second site with a relatively thin weathered zone, water tables rapidly rise to intersect the ground surface with the first rains of the wet season, yet only a small fraction of this dynamic saturated zone storage drives streamflow. Our findings emphasize how CZ structure governs the overlap in time and space of three pools of subsurface water: (i) seasonally dynamic vs. static; (ii) unsaturated vs. saturated, and (iii) storage whose magnitude directly influences runoff vs. that which does not. These results highlight the importance of hillslope monitoring for physically interpreting methods of runoff-based hydrologic analysis.
Phase transitions and dynamics of bulk and interfacial water.
Franzese, G; Hernando-Martínez, A; Kumar, P; Mazza, M G; Stokely, K; Strekalova, E G; de los Santos, F; Stanley, H E
2010-07-21
New experiments on water at the surface of proteins at very low temperature display intriguing dynamic behaviors. The extreme conditions of these experiments make it difficult to explore the wide range of thermodynamic state points needed to offer a suitable interpretation. Detailed simulations suffer from the same problem, where equilibration times at low temperature become extremely long. We show how Monte Carlo simulations and mean field calculations using a tractable model of water help interpret the experimental results. Here we summarize the results for bulk water and investigate the thermodynamic and dynamic properties of supercooled water at an interface.
Hydration Dynamics of Hyaluronan and Dextran
Hunger, Johannes; Bernecker, Anja; Bakker, Huib J.; Bonn, Mischa; Richter, Ralf P.
2012-01-01
Hyaluronan is a polysaccharide, which is ubiquitous in vertebrates and has been reported to be strongly hydrated in a biological environment. We study the hydration of hyaluronan in solution using the rotational dynamics of water as a probe. We measure these dynamics with polarization-resolved femtosecond-infrared and terahertz time-domain spectroscopies. Both experiments reveal that a subensemble of water molecules is slowed down in aqueous solutions of hyaluronan amounting to ∼15 water molecules per disaccharide unit. This quantity is consistent with what would be expected for the first hydration shell. Comparison of these results to the water dynamics in aqueous dextran solution, a structurally similar polysaccharide, yields remarkably similar results. This suggests that the observed interaction with water is a common feature for hydrophilic polysaccharides and is not specific to hyaluronan. PMID:22828349
Paolo Benettin; Scott W. Bailey; John L. Campbell; Mark B. Green; Andrea Rinaldo; Gene E. Likens; Kevin J. McGuire; Gianluca Botter
2015-01-01
We combine experimental and modeling results from a headwater catchment at the Hubbard Brook Experimental Forest (HBEF), New Hampshire, USA, to explore the link between stream solute dynamics and water age. A theoretical framework based on water age dynamics, which represents a general basis for characterizing solute transport at the catchment scale, is here applied to...
Molecular dynamics simulation of membrane in room temperature ionic liquids
NASA Astrophysics Data System (ADS)
Theng, Soong Guan; Jumbri, Khairulazhar bin; Wirzal, Mohd Dzul Hakim
2017-10-01
The polyvinylidene difluoride (PVDF) membrane has been a popular material in membrane separation process. In this work, molecular dynamic simulation was done on the PVDF membrane with 100 wt% IL and 50 wt% IL in GROningen MAchine for Chemical Simulations (GROMACS). The results was evaluated based on potential energy, root mean square deviation (RMSD) and radial distribution function (RDF). The stability and interaction of PVDF were evaluated. Results reveal that PVDF has a stronger interaction to [C2bim]+ cation compared to water and bromine anion. Both potential energy and RMSD were lower when the weight percentage of IL is higher. This indicates that the IL is able to stabilize the PVDF structure. RMSD reveals that [C2bim]+ cation is dominant at short distance (less than 1 nm), indicating that strong interaction of cation to PVDF. This understanding of the behavior of PVDF-IL could be used as a reference for future development of stronger membrane.
Soil CO2 Dynamics in a Tree Island Soil of the Pantanal: The Role of Soil Water Potential
Johnson, Mark S.; Couto, Eduardo Guimarães; Pinto Jr, Osvaldo B.; Milesi, Juliana; Santos Amorim, Ricardo S.; Messias, Indira A. M.; Biudes, Marcelo Sacardi
2013-01-01
The Pantanal is a biodiversity hotspot comprised of a mosaic of landforms that differ in vegetative assemblages and flooding dynamics. Tree islands provide refuge for terrestrial fauna during the flooding period and are particularly important to the regional ecosystem structure. Little soil CO2 research has been conducted in this region. We evaluated soil CO2 dynamics in relation to primary controlling environmental parameters (soil temperature and soil water). Soil respiration was computed using the gradient method using in situ infrared gas analyzers to directly measure CO2 concentration within the soil profile. Due to the cost of the sensors and associated equipment, this study was unreplicated. Rather, we focus on the temporal relationships between soil CO2 efflux and related environmental parameters. Soil CO2 efflux during the study averaged 3.53 µmol CO2 m−2 s−1, and was equivalent to an annual soil respiration of 1220 g C m−2 y−1. This efflux value, integrated over a year, is comparable to soil C stocks for 0–20 cm. Soil water potential was the measured parameter most strongly associated with soil CO2 concentrations, with high CO2 values observed only once soil water potential at the 10 cm depth approached zero. This relationship was exhibited across a spectrum of timescales and was found to be significant at a daily timescale across all seasons using conditional nonparametric spectral Granger causality analysis. Hydrology plays a significant role in controlling CO2 efflux from the tree island soil, with soil CO2 dynamics differing by wetting mechanism. During the wet-up period, direct precipitation infiltrates soil from above and results in pulses of CO2 efflux from soil. The annual flood arrives later, and saturates soil from below. While CO2 concentrations in soil grew very high under both wetting mechanisms, the change in soil CO2 efflux was only significant when soils were wet from above. PMID:23762259
Soil CO₂ dynamics in a tree island soil of the Pantanal: the role of soil water potential.
Johnson, Mark S; Couto, Eduardo Guimarães; Pinto, Osvaldo B; Milesi, Juliana; Santos Amorim, Ricardo S; Messias, Indira A M; Biudes, Marcelo Sacardi
2013-01-01
The Pantanal is a biodiversity hotspot comprised of a mosaic of landforms that differ in vegetative assemblages and flooding dynamics. Tree islands provide refuge for terrestrial fauna during the flooding period and are particularly important to the regional ecosystem structure. Little soil CO₂ research has been conducted in this region. We evaluated soil CO₂ dynamics in relation to primary controlling environmental parameters (soil temperature and soil water). Soil respiration was computed using the gradient method using in situ infrared gas analyzers to directly measure CO₂ concentration within the soil profile. Due to the cost of the sensors and associated equipment, this study was unreplicated. Rather, we focus on the temporal relationships between soil CO₂ efflux and related environmental parameters. Soil CO₂ efflux during the study averaged 3.53 µmol CO₂ m⁻² s⁻¹, and was equivalent to an annual soil respiration of 1220 g C m⁻² y⁻¹. This efflux value, integrated over a year, is comparable to soil C stocks for 0-20 cm. Soil water potential was the measured parameter most strongly associated with soil CO₂ concentrations, with high CO₂ values observed only once soil water potential at the 10 cm depth approached zero. This relationship was exhibited across a spectrum of timescales and was found to be significant at a daily timescale across all seasons using conditional nonparametric spectral Granger causality analysis. Hydrology plays a significant role in controlling CO₂ efflux from the tree island soil, with soil CO₂ dynamics differing by wetting mechanism. During the wet-up period, direct precipitation infiltrates soil from above and results in pulses of CO₂ efflux from soil. The annual flood arrives later, and saturates soil from below. While CO₂ concentrations in soil grew very high under both wetting mechanisms, the change in soil CO₂ efflux was only significant when soils were wet from above.
Purcell, Kevin M.; Nance, James M.; Smith, Martin D.; Bennear, Lori S.
2017-01-01
The northwestern Gulf of Mexico shelf experiences one of the largest seasonal hypoxic zones in the western hemisphere. Hypoxia (dissolved oxygen, DO ≤ 2.0 mg·L-1) is most severe from May to August during the height of the Gulf shrimp fishery, but its effects on the fishery are not well known. Prior studies indicate that hypoxia alters the spatial dynamics of shrimp and other species through habitat loss and aggregation in nearby oxygenated refuge habitats. We hypothesized that hypoxia-induced changes in the distribution of shrimp also alter the spatial dynamics of the Gulf shrimp fleet. We integrated data on the geographic distribution of shrimp tows and bottom DO to evaluate the effects of hypoxia on spatial patterns in shrimping effort. Our analyses indicate that shrimping effort declines in low DO waters on both the Texas and Louisiana shelf, but that considerable effort still occurs in low DO waters off Louisiana, likely because riverine nutrients fuel both benthic production and low bottom DO in the same general regions. The response of the shrimp fleet to hypoxia on the Louisiana shelf was complex with shifts in effort inshore, offshore, westward, and eastward of the hypoxic zone, as well as to an oxygenated area between two hypoxia regimes associated with the Mississippi and the Atchafalaya River outflows. In contrast, effort on the Texas shelf mostly shifted offshore in response to low DO but also shifted inshore in some years. Spatial patterns in total shrimping effort were driven primarily by the number of shrimp tows, consistent with aggregation of the fleet outside of hypoxic waters, though tow duration also declined in low DO waters. Overall, our results demonstrate that hypoxia alters the spatial dynamics of the Gulf shrimp fishery with potential consequences for harvest interactions and the economic condition of the fishery. PMID:28837674
Purcell, Kevin M; Craig, J Kevin; Nance, James M; Smith, Martin D; Bennear, Lori S
2017-01-01
The northwestern Gulf of Mexico shelf experiences one of the largest seasonal hypoxic zones in the western hemisphere. Hypoxia (dissolved oxygen, DO ≤ 2.0 mg·L-1) is most severe from May to August during the height of the Gulf shrimp fishery, but its effects on the fishery are not well known. Prior studies indicate that hypoxia alters the spatial dynamics of shrimp and other species through habitat loss and aggregation in nearby oxygenated refuge habitats. We hypothesized that hypoxia-induced changes in the distribution of shrimp also alter the spatial dynamics of the Gulf shrimp fleet. We integrated data on the geographic distribution of shrimp tows and bottom DO to evaluate the effects of hypoxia on spatial patterns in shrimping effort. Our analyses indicate that shrimping effort declines in low DO waters on both the Texas and Louisiana shelf, but that considerable effort still occurs in low DO waters off Louisiana, likely because riverine nutrients fuel both benthic production and low bottom DO in the same general regions. The response of the shrimp fleet to hypoxia on the Louisiana shelf was complex with shifts in effort inshore, offshore, westward, and eastward of the hypoxic zone, as well as to an oxygenated area between two hypoxia regimes associated with the Mississippi and the Atchafalaya River outflows. In contrast, effort on the Texas shelf mostly shifted offshore in response to low DO but also shifted inshore in some years. Spatial patterns in total shrimping effort were driven primarily by the number of shrimp tows, consistent with aggregation of the fleet outside of hypoxic waters, though tow duration also declined in low DO waters. Overall, our results demonstrate that hypoxia alters the spatial dynamics of the Gulf shrimp fishery with potential consequences for harvest interactions and the economic condition of the fishery.
Structure and Dynamics of Water Confined in Imogolite Nanotubes.
Scalfi, Laura; Fraux, Guillaume; Boutin, Anne; Coudert, François-Xavier
2018-06-12
We have studied the properties of water adsorbed inside nanotubes of hydrophilic imogolite, an aluminum silicate clay mineral, by means of molecular simulations. We used a classical force field to describe the water and the flexible imogolite nanotube and validated it against the data obtained from first-principles molecular dynamics. With it, we observe a strong structuration of the water confined in the nanotube, with specific adsorption sites and a distribution of hydrogen bond patterns. The combination of number of adsorption sites, their geometry, and the preferential tetrahedral hydrogen bonding pattern of water leads to frustration and disorder. We further characterize the dynamics of the water, as well as the hydrogen bonds formed between water molecules and the nanotube, which is found to be more than 1 order of magnitude longer than water-water hydrogen bonds.
NASA Astrophysics Data System (ADS)
Hardiman, Steven C.; Butchart, Neal; O'Connor, Fiona M.; Rumbold, Steven T.
2017-03-01
Free-running and nudged versions of a Met Office chemistry-climate model are evaluated and used to investigate the impact of dynamics versus transport and chemistry within the model on the simulated evolution of stratospheric ozone. Metrics of the dynamical processes relevant for simulating stratospheric ozone are calculated, and the free-running model is found to outperform the previous model version in 10 of the 14 metrics. In particular, large biases in stratospheric transport and tropical tropopause temperature, which existed in the previous model version, are substantially reduced, making the current model more suitable for the simulation of stratospheric ozone. The spatial structure of the ozone hole, the area of polar stratospheric clouds, and the increased ozone concentrations in the Northern Hemisphere winter stratosphere following sudden stratospheric warmings, were all found to be sensitive to the accuracy of the dynamics and were better simulated in the nudged model than in the free-running model. Whilst nudging can, in general, provide a useful tool for removing the influence of dynamical biases from the evolution of chemical fields, this study shows that issues can remain in the climatology of nudged models. Significant biases in stratospheric vertical velocities, age of air, water vapour, and total column ozone still exist in the Met Office nudged model. Further, these can lead to biases in the downward flux of ozone into the troposphere.
Sharma, Anirban; Ghorai, Pradip Kr
2016-03-21
Composition dependent structural and dynamical properties of aqueous hydrophobic 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) ionic liquid (IL) have been investigated by using all-atom molecular dynamics simulation. We observe that addition of water does not increase significant number of dissociated ions in the solution over the pure state. As a consequence, self-diffusion coefficient of the cation and anion is comparable to each other at all water concentration similar to that is observed for the pure state. Voronoi polyhedra analysis exhibits strong dependence on the local environment of IL concentration. Void and neck distributions in Voronoi tessellation are approximately Gaussian for pure IL but upon subsequent addition of water, we observe deviation from the Gaussian behaviour with an asymmetric broadening with long tail of exponential decay at large void radius, particularly at higher water concentrations. The increase in void space and neck size at higher water concentration facilitates ionic motion, thus, decreasing dynamical heterogeneity and IL reorientation time and increases self-diffusion coefficient significantly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Anirban; Ghorai, Pradip Kr., E-mail: pradip@iiserkol.ac.in
2016-03-21
Composition dependent structural and dynamical properties of aqueous hydrophobic 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF{sub 6}]) ionic liquid (IL) have been investigated by using all-atom molecular dynamics simulation. We observe that addition of water does not increase significant number of dissociated ions in the solution over the pure state. As a consequence, self-diffusion coefficient of the cation and anion is comparable to each other at all water concentration similar to that is observed for the pure state. Voronoi polyhedra analysis exhibits strong dependence on the local environment of IL concentration. Void and neck distributions in Voronoi tessellation are approximately Gaussian for pure ILmore » but upon subsequent addition of water, we observe deviation from the Gaussian behaviour with an asymmetric broadening with long tail of exponential decay at large void radius, particularly at higher water concentrations. The increase in void space and neck size at higher water concentration facilitates ionic motion, thus, decreasing dynamical heterogeneity and IL reorientation time and increases self-diffusion coefficient significantly.« less
McCarney, Evan R; Armstrong, Brandon D; Kausik, Ravinath; Han, Songi
2008-09-16
We present a unique analysis tool for the selective detection of local water inside soft molecular assemblies (hydrophobic cores, vesicular bilayers, and micellar structures) suspended in bulk water. Through the use of dynamic nuclear polarization (DNP), the (1)H NMR signal of water is amplified, as it interacts with stable radicals that possess approximately 658 times higher spin polarization. We utilized stable nitroxide radicals covalently attached along the hydrophobic tail of stearic acid molecules that incorporate themselves into surfactant-based micelle or vesicle structures. Here, we present a study of local water content and fluid viscosity inside oleate micelles and vesicles and Triton X-100 micelles to serve as model systems for soft molecular assemblies. This approach is unique because the amplification of the NMR signal is performed in bulk solution and under ambient conditions with site-specific spin labels that only detect the water that is directly interacting with the localized spin labels. Continuous wave (cw) electron spin resonance (ESR) analysis provides rotational dynamics of the spin-labeled molecular chain segments and local polarity parameters that can be related to hydration properties, whereas we show that DNP-enhanced (1)H NMR analysis of fluid samples directly provides translational water dynamics and permeability of the local environment probed by the spin label. Our technique therefore has the potential to become a powerful analysis tool, complementary to cw ESR, to study hydration characteristics of surfactant assemblies, lipid bilayers, or protein aggregates, where water dynamics is a key parameter of their structure and function. In this study, we find that there is significant penetration of water inside the oleate micelles with a higher average local water viscosity (approximately 1.8 cP) than in bulk water, and Triton X-100 micelles and oleate vesicle bilayers mostly exclude water while allowing for considerable surfactant chain motion and measurable water permeation through the soft structure.
Evaluating the Role of Small Impoundments in Legacy Sediment Storage
NASA Astrophysics Data System (ADS)
Bain, D. J.; Salant, N.; Green, M. B.; Wreschnig, A. J.; Urbanova, T.
2009-12-01
Recent research highlighting the prevalence of dams built for water power in the mid-1800s has led to suggestions that strategies for managing legacy sediment in the Eastern United States should be re-evaluated. However, the link between reach-scale observations of historic dam sites to processes at the catchment scale have not been examined, nor have the role of other, similar historic changes been evaluated. This presentation will compare dam dynamics, including mill density data and synthetic estimates of beaver populations with sedimentation rates recorded in sediment cores. If low-head dams were a dominant mechanism in sediment storage, we expect to see changes in sedimentation rates with the expatriation of the beaver and the rise and decline of water power. Further, we expect to see spatial variation in these changes as beaver and mill densities and potential sediment yield are spatially heterogeneous. Ultimately, dramatic changes in sediment yield due to land use and hydrological alterations likely drove sedimentation rates; the mechanistic importance of storage likely depends on temporal coincidence.
2018-01-01
The structural heterogeneity of water at various interfaces can be revealed by time-resolved sum-frequency generation spectroscopy. The vibrational dynamics of the O–H stretch vibration of interfacial water can reflect structural variations. Specifically, the vibrational lifetime is typically found to increase with increasing frequency of the O–H stretch vibration, which can report on the hydrogen-bonding heterogeneity of water. We compare and contrast vibrational dynamics of water in contact with various surfaces, including vapor, biomolecules, and solid interfaces. The results reveal that variations in the vibrational lifetime with vibrational frequency are very typical, and can frequently be accounted for by the bulk-like heterogeneous response of interfacial water. Specific interfaces exist, however, for which the behavior is less straightforward. These insights into the heterogeneity of interfacial water thus obtained contribute to a better understanding of complex phenomena taking place at aqueous interfaces, such as photocatalytic reactions and protein folding. PMID:29490138
NASA Astrophysics Data System (ADS)
Ferreyra, R.; Stockle, C. O.; Huggins, D. R.
2014-12-01
Soil water storage and dynamics are of critical importance for a variety of processes in terrestrial ecosystems, including agriculture. Many of those systems are under significant pressure in terms of water availability and use. Therefore, assessing alternative scenarios through hydrological models is an increasingly valuable exercise. Soil water holding capacity is defined by the concepts of soil field capacity and plant available water, which are directly related to soil physical properties. Both concepts define the energy status of water in the root system and closely interact with plant physiological processes. Furthermore, these concepts play a key role in the environmental transport of nutrients and pollutants. Soil physical parameters (e.g. saturated hydraulic conductivity, total porosity and water release curve) are required as input for field-scale soil water redistribution models. These parameters are normally not easy to measure or monitor, and estimation through pedotransfer functions is often inadequate. Our objectives are to improve field-scale hydrological modeling by: (1) assessing new undisturbed methodologies for determining important soil physical parameters necessary for model inputs; and (2) evaluating model outputs, making a detailed specification of soil parameters and the particular boundary condition that are driving water movement under two contrasting environments. Soil physical properties (saturated hydraulic conductivity and determination of water release curves) were quantified using undisturbed laboratory methodologies for two different soil textural classes (silt loam and sandy loam) and used to evaluate two soil water redistribution models (finite difference solution and hourly cascade approach). We will report on model corroboration results performed using in situ, continuous, field measurements with soil water content capacitance probes and digital tensiometers. Here, natural drainage and water redistribution were monitored following a controlled water application where the study areas were isolated from other water inputs and outputs. We will also report on the assessment of two soil water sensors (Decagon Devices 5TM capacitance probe and UMS T4 tensiometers) for the two soil textural classes in terms of consistency and replicability.
Rational Exploitation and Utilizing of Groundwater in Jiangsu Coastal Area
NASA Astrophysics Data System (ADS)
Kang, B.; Lin, X.
2017-12-01
Jiangsu coastal area is located in the southeast coast of China, where is a new industrial base and an important coastal and Land Resources Development Zone of China. In the areas with strong human exploitation activities, regional groundwater evolution is obviously affected by human activities. In order to solve the environmental geological problems caused by groundwater exploitation fundamentally, we must find out the forming conditions of regional groundwater hydrodynamic field, and the impact of human activities on groundwater hydrodynamic field evolution and hydrogeochemical evolition. Based on these results, scientific management and reasonable exploitation of the regional groundwater resources can be provided for the utilization. Taking the coastal area of Jiangsu as the research area, we investigate and analyze of the regional hydrogeological conditions. The numerical simulation model of groundwater flow was established according to the water power, chemical and isotopic methods, the conditions of water flow and the influence of hydrodynamic field on the water chemical field. We predict the evolution of regional groundwater dynamics under the influence of human activities and climate change and evaluate the influence of groundwater dynamic field evolution on the environmental geological problems caused by groundwater exploitation under various conditions. We get the following conclusions: Three groundwater exploitation optimal schemes were established. The groundwater salinization was taken as the primary control condition. The substitution model was proposed to model groundwater exploitation and water level changes by BP network method.Then genetic algorithm was used to solve the optimization solution. Three groundwater exploitation optimal schemes were submit to local water resource management. The first sheme was used to solve the groundwater salinization problem. The second sheme focused on dual water supply. The third sheme concerned on emergency water supppy. This is the first time environment problem taken as water management objectinve in this coastal area.
NASA Astrophysics Data System (ADS)
Swenson, Jan; Elamin, Khalid; Chen, Guo; Lohstroh, Wiebke; Sakai, Victoria Garcia
2014-12-01
The molecular dynamics of solutions of di-propylene glycol methylether (2PGME) and H2O (or D2O) confined in 28 Å pores of MCM-41 have been studied by quasielastic neutron scattering and differential scanning calorimetry over the concentration range 0-90 wt.% water. This system is of particular interest due to its pronounced non-monotonic concentration dependent dynamics of 2PGME in the corresponding bulk system, showing the important role of hydrogen bonding for the dynamics. In this study we have elucidated how this non-monotonic concentration dependence is affected by the confined geometry. The results show that this behaviour is maintained in the confinement, but the slowest diffusive dynamics of 2PGME is now observed at a considerably higher water concentration; at 75 wt.% water in MCM-41 compared to 30 wt.% water in the corresponding bulk system. This difference can be explained by an improper mixing of the two confined liquids. The results suggest that water up to a concentration of about 20 wt.% is used to hydrate the hydrophilic hydroxyl surface groups of the silica pores, and that it is only at higher water contents the water becomes partly mixed with 2PGME. Hence, due to this partial micro-phase separation of the two liquids larger, and thereby slower relaxing, structural entities of hydrogen bonded water and 2PGME molecules can only be formed at higher water contents than in the bulk system. However, the Q-dependence is unchanged with confinement, showing that the nature of the molecular motions is preserved. Thus, there is no indication of localization of the dynamics at length scales of less than 20 Å. The dynamics of both water and 2PGME is strongly dominated by translational diffusion at a temperature of 280 K.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swenson, Jan, E-mail: jan.swenson@chalmers.se; Elamin, Khalid; Chen, Guo
2014-12-07
The molecular dynamics of solutions of di-propylene glycol methylether (2PGME) and H{sub 2}O (or D{sub 2}O) confined in 28 Å pores of MCM-41 have been studied by quasielastic neutron scattering and differential scanning calorimetry over the concentration range 0–90 wt.% water. This system is of particular interest due to its pronounced non-monotonic concentration dependent dynamics of 2PGME in the corresponding bulk system, showing the important role of hydrogen bonding for the dynamics. In this study we have elucidated how this non-monotonic concentration dependence is affected by the confined geometry. The results show that this behaviour is maintained in the confinement,more » but the slowest diffusive dynamics of 2PGME is now observed at a considerably higher water concentration; at 75 wt.% water in MCM-41 compared to 30 wt.% water in the corresponding bulk system. This difference can be explained by an improper mixing of the two confined liquids. The results suggest that water up to a concentration of about 20 wt.% is used to hydrate the hydrophilic hydroxyl surface groups of the silica pores, and that it is only at higher water contents the water becomes partly mixed with 2PGME. Hence, due to this partial micro-phase separation of the two liquids larger, and thereby slower relaxing, structural entities of hydrogen bonded water and 2PGME molecules can only be formed at higher water contents than in the bulk system. However, the Q-dependence is unchanged with confinement, showing that the nature of the molecular motions is preserved. Thus, there is no indication of localization of the dynamics at length scales of less than 20 Å. The dynamics of both water and 2PGME is strongly dominated by translational diffusion at a temperature of 280 K.« less
Dynamics of water bound to crystalline cellulose
DOE Office of Scientific and Technical Information (OSTI.GOV)
O’Neill, Hugh; Pingali, Sai Venkatesh; Petridis, Loukas
Interactions of water with cellulose are of both fundamental and technological importance. Here, we characterize the properties of water associated with cellulose using deuterium labeling, neutron scattering and molecular dynamics simulation. Quasi-elastic neutron scattering provided quantitative details about the dynamical relaxation processes that occur and was supported by structural characterization using small-angle neutron scattering and X-ray diffraction. We can unambiguously detect two populations of water associated with cellulose. The first is “non-freezing bound” water that gradually becomes mobile with increasing temperature and can be related to surface water. The second population is consistent with confined water that abruptly becomes mobilemore » at ~260 K, and can be attributed to water that accumulates in the narrow spaces between the microfibrils. Quantitative analysis of the QENS data showed that, at 250 K, the water diffusion coefficient was 0.85 ± 0.04 × 10-10 m2sec-1 and increased to 1.77 ± 0.09 × 10-10 m2sec-1 at 265 K. MD simulations are in excellent agreement with the experiments and support the interpretation that water associated with cellulose exists in two dynamical populations. Our results provide clarity to previous work investigating the states of bound water and provide a new approach for probing water interactions with lignocellulose materials.« less
NASA Astrophysics Data System (ADS)
Kitao, Akio; Hirata, Fumio; Gō, Nobuhiro
1991-12-01
The effects of solvent on the conformation and dynamics of protein is studied by computer simulation. The dynamics is studied by focusing mainly on collective motions of the protein molecule. Three types of simulation, normal mode analysis, molecular dynamics in vacuum, and molecular dynamics in water are applied to melittin, the major component of bee venom. To define collective motions principal, component analysis as well as normal mode analysis has been carried out. The principal components with large fluctuation amplitudes have a very good correspondence with the low-frequency normal modes. Trajectories of the molecular dynamics simulation are projected onto the principal axes. From the projected motions time correlation functions are calculated. The results indicate that the very-low-frequency modes, whose frequencies are less than ≈ 50 cm -1, are overdamping in water with relaxation times roushly twice as long as the period of the oscillatory motion. Effective Langevin mode analysis is carried out by using the friction coefficient matrix determined from the velocity correlation function calculated from the molecular dynamics trajectory in water. This analysis reproduces the results of the simulation in water reasonably well. The presence of the solvent water is found also to affect the shape of the potential energy surface in such a way that it produces many local minima with low-energy barriers in between, the envelope of which is given by the surface in vacuum. Inter-minimum transitions endow the conformational dynamics of proteins in water another diffusive character, which already exists in the intra-minimum collective motions.
Malo de Molina, Paula; Alvarez, Fernando; Frick, Bernhard; Wildes, Andrew; Arbe, Arantxa; Colmenero, Juan
2017-10-18
We applied quasielastic neutron scattering (QENS) techniques to samples with two different contrasts (deuterated solute/hydrogenated solvent and the opposite label) to selectively study the component dynamics of proline/water solutions. Results on diluted and concentrated solutions (31 and 6 water molecules/proline molecule, respectively) were analyzed in terms of the susceptibility and considering a recently proposed model for water dynamics [Arbe et al., Phys. Rev. Lett., 2016, 117, 185501] which includes vibrations and the convolution of localized motions and diffusion. We found that proline molecules not only reduce the average diffusion coefficient of water but also extend the time/frequency range of the crossover region ('cage') between the vibrations and purely diffusive behavior. For the high proline concentration we also found experimental evidence of water heterogeneous dynamics and a distribution of diffusion coefficients. Complementary molecular dynamics simulations show that water molecules start to perform rotational diffusion when they escape the cage regime but before the purely diffusive behavior is established. The rotational diffusion regime is also retarded by the presence of proline molecules. On the other hand, a strong coupling between proline and water diffusive dynamics which persists with decreasing temperature is directly observed using QENS. Not only are the temperature dependences of the diffusion coefficients of both components the same, but their absolute values also approach each other with increasing proline concentration. We compared our results with those reported using other techniques, in particular using dielectric spectroscopy (DS). A simple approach based on molecular hydrodynamics and a molecular treatment of DS allows rationalizing the a priori puzzling inconsistency between QENS and dielectric results regarding the dynamic coupling of the two components. The interpretation proposed is based on general grounds and therefore should be applicable to other biomolecular solutions.
Water Dynamics in the Hydration Shells of Biomolecules
2017-01-01
The structure and function of biomolecules are strongly influenced by their hydration shells. Structural fluctuations and molecular excitations of hydrating water molecules cover a broad range in space and time, from individual water molecules to larger pools and from femtosecond to microsecond time scales. Recent progress in theory and molecular dynamics simulations as well as in ultrafast vibrational spectroscopy has led to new and detailed insight into fluctuations of water structure, elementary water motions, electric fields at hydrated biointerfaces, and processes of vibrational relaxation and energy dissipation. Here, we review recent advances in both theory and experiment, focusing on hydrated DNA, proteins, and phospholipids, and compare dynamics in the hydration shells to bulk water. PMID:28248491
Glasslike dynamical behavior of the plastocyanin hydration water
NASA Astrophysics Data System (ADS)
Bizzarri, Anna Rita; Paciaroni, Alessandro; Cannistraro, Salvatore
2000-09-01
The dynamical behavior of water around plastocyanin has been investigated in a wide temperature range by molecular dynamics simulation. The mean square displacements of water oxygen atoms show, at long times, a tα trend for all temperatures. Below 150 K, α is constant and equal to 1; at higher temperatures it drops to a value significantly smaller than 1, and thereafter decreases with increasing temperature. The occurrence of such an anomalous diffusion matches the onset of the dynamical transition observed in the protein. The intermediate scattering function of water is characterized, at high temperature, by a stretched exponential decay evolving, at low temperature, toward a two step relaxation behavior, which becomes more evident on increasing the exchanged wave vector q. Both the mean square displacements and the intermediate scattering functions show, beyond the ballistic regime, a plateau, which progressively extends for longer times as long as the temperature is lowered, such behavior reflecting trapping of water molecules within a cage formed by the nearest neighbors. At low temperature, a low frequency broad inelastic peak is observed in the dynamical structure factor of hydration water; such an excess of vibrational modes being reminiscent of the boson peak, characteristic of disordered, amorphous systems. All these features, which are typical of complex systems, can be traced back to the glassy character of the hydration water and suggest a dynamical coupling occurring at the macromolecule-solvent interface.
Dynamics of two-dimensional monolayer water confined in hydrophobic and charged environments.
Kumar, Pradeep; Han, Sungho
2012-09-21
We perform molecular dynamics simulations to study the effect of charged surfaces on the intermediate and long time dynamics of water in nanoconfinements. Here, we use the transferable interaction potential with five points (TIP5P) model of a water molecule confined in both hydrophobic and charged surfaces. For a single molecular layer of water between the surfaces, we find that the temperature dependence of the lateral diffusion constant of water up to very high temperatures remains Arrhenius with a high activation energy. In case of charged surfaces, however, the dynamics of water in the intermediate time regime is drastically modified presumably due to the transient coupling of dipoles of water molecules with electric field fluctuations induced by charges on the confining surfaces. Specifically, the lateral mean square displacements display a distinct super-diffusive behavior at intermediate time scale, defined as the time scale between ballistic and diffusive regimes. This change in the intermediate time-scale dynamics in the charged confinement leads to the enhancement of long-time dynamics as reflected in increasing diffusion constant. We introduce a simple model for a possible explanation of the super-diffusive behavior and find it to be in good agreement with our simulation results. Furthermore, we find that confinement and the surface polarity enhance the low frequency vibration in confinement compared to bulk water. By introducing a new effective length scale of coupling between translational and orientational motions, we find that the length scale increases with the increasing strength of the surface polarity. Further, we calculate the correlation between the diffusion constant and the excess entropy and find a disordering effect of polar surfaces on the structure of water. Finally, we find that the empirical relation between the diffusion constant and the excess entropy holds for a monolayer of water in nanoconfinement.
Responses of plant available water and forest productivity to variably layered coarse textured soils
NASA Astrophysics Data System (ADS)
Huang, Mingbin; Barbour, Lee; Elshorbagy, Amin; Si, Bing; Zettl, Julie
2010-05-01
Reforestation is a primary end use for reconstructed soils following oil sands mining in northern Alberta, Canada. Limited soil water conditions strongly restrict plant growth. Previous research has shown that layering of sandy soils can produce enhanced water availability for plant growth; however, the effect of gradation on these enhancements is not well defined. The objective of this study was to evaluate the effect of soil texture (gradation and layering) on plant available water and consequently on forest productivity for reclaimed coarse textured soils. A previously validated system dynamics (SD) model of soil moisture dynamics was coupled with ecophysiological and biogeochemical processes model, Biome-BGC-SD, to simulate forest dynamics for different soil profiles. These profiles included contrasting 50 cm textural layers of finer sand overlying coarser sand in which the sand layers had either a well graded or uniform soil texture. These profiles were compared to uniform profiles of the same sands. Three tree species of jack pine (Pinus banksiana Lamb.), white spruce (Picea glauce Voss.), and trembling aspen (Populus tremuloides Michx.) were simulated using a 50 year climatic data base from northern Alberta. Available water holding capacity (AWHC) was used to identify soil moisture regime, and leaf area index (LAI) and net primary production (NPP) were used as indices of forest productivity. Published physiological parameters were used in the Biome-BGC-SD model. Relative productivity was assessed by comparing model predictions to the measured above-ground biomass dynamics for the three tree species, and was then used to study the responses of forest leaf area index and potential productivity to AWHC on different soil profiles. Simulated results indicated soil layering could significantly increase AWHC in the 1-m profile for coarse textured soils. This enhanced AWHC could result in an increase in forest LAI and NPP. The increased extent varied with soil textures and vegetative types. The simulated results showed that the presence of 50 cm of coarser graded sand overlying 50 cm of finer graded sand is the most effective reclaimed prescription to increase AWHC and forest productivity among the studied soil profiles.
NASA Astrophysics Data System (ADS)
Pivato, M.; Carniello, L.; Silvestri, S.; Marani, M.; Gardner, J.
2016-12-01
Water temperature represents one of the crucial factors driving the ecological processes in water bodies. Many contributions are available in the literature that describe temperature dynamics in deep basins as lakes or seas. Those basins are typically stratified which makes important to represent the vertical profile of the water temperature. Dealing with shallow water bodies, such as rivers, shallow lakes and lagoons, simplifies the problem because the water temperature can be assumed uniform in the water column. Conversely, the heat exchange at the soil-water interface assumes an important role in the water temperature dynamics. Notwithstanding, very few studies and data about this process are available in the literature. In order to provide more insight on the soil contribution to water temperature dynamics, we performed ad hoc field measurements in the Venice lagoon,. We selected a location on a tidal flat in the northern part of the lagoon, close to the Sant'Erasmo Island, where we measured the temperature within the water column and the first 1.5 m of the soil. Data collection started in July 2015 and is still ongoing. We used the data to characterize the heat flux at the water-soil interface in different periods of the year and to develop a "point" model for describing the evolution of the temperature in the water column. The insight on the process provided by the data and by the point model: i) enabled us to determine the soil thermal properties (diffusivity and heat capacity); ii) confirms the uniform profile of the water temperature in the water column; iii) demonstrates that the heat flux at the soil-water interface is comparable with other fluxes at the air-water interface and iv) highlights the important role exerted by advective water fluxes. The latter will be accounted for developing a module for describing the dynamic of the temperature to be coupled with an already existing 2D hydrodynamic model of the Venice lagoon.
LIS-HYMAP coupled Hydrological Modeling in the Nile River Basin and the Greater Horn of Africa
NASA Astrophysics Data System (ADS)
Jung, H. C.; Getirana, A.; Policelli, F. S.
2015-12-01
Water scarcity and resources in Africa have been exacerbated by periodic droughts and floods. However, few studies show the quantitative analysis of water balance or basin-scale hydrological modeling in Northeast Africa. The NASA Land Information System (LIS) is implemented to simulate land surface processes in the Nile River Basin and the Greater Horn of Africa. In this context, the Noah land surface model (LSM) and the Hydrological Modeling and Analysis Platform (HYMAP) are used to reproduce the water budget and surface water (rivers and floodplains) dynamics in that region. The Global Data Assimilation System (GDAS) meteorological dataset is used to force the system . Due to the unavailability of recent ground-based observations, satellite data are considered to evaluate first model outputs. Water levels at 10 Envisat virtual stations and water discharges at a gauging station are used to provide model performance coefficients (e.g. Nash-Sutcliffe, delay index, relative error). We also compare the spatial and temporal variations of flooded areas from the model with the Global Inundation Extent from Multi-Satellites (GIEMS) and the Alaska Satellite Facility (ASF)'s MEaSUREs Wetland data. Finally, we estimate surface water storage variations using a hypsographic curve approach with Shuttle Radar Topography Mission (SRTM) topographic data and evaluate the model-derived water storage changes in both river and floodplain. This study demonstrates the feasibility of using LIS-HYMAP coupled modeling to support seasonal forecast methods for prediction of decision-relevant metrics of hydrologic extremes.
Monitoring for contaminants of emerging concern in drinking water using POCIS passive samplers.
Metcalfe, Chris; Hoque, M Ehsanul; Sultana, Tamanna; Murray, Craig; Helm, Paul; Kleywegt, Sonya
2014-03-01
Contaminants of emerging concern (CEC) have been detected in drinking water world-wide. The source of most of these compounds is generally attributed to contamination from municipal wastewater. Traditional water sampling methods (grab or composite) often require the concentration of large amounts of water in order to detect trace levels of these contaminants. The Polar Organic Compounds Integrative Sampler (POCIS) is a passive sampling technology that has been developed to concentrate trace levels of CEC to provide time-weighted average concentrations for individual compounds in water. However, few studies to date have evaluated whether POCIS is suitable for monitoring contaminants in drinking water. In this study, the POCIS was evaluated as a monitoring tool for CEC in drinking water over a period of 2 and 4 weeks with comparisons to typical grab samples. Seven "indicator compounds" which included carbamazepine, trimethoprim, sulfamethoxazole, ibuprofen, gemfibrozil, estrone and sucralose, were monitored in five drinking water treatment plants (DWTPs) in Ontario. All indicator compounds were detected in raw water samples from the POCIS in comparison to six from grab samples. Similarly, four compounds were detected in grab samples of treated drinking water, whereas six were detected in the POCIS. Sucralose was the only compound that was detected consistently at all five plants. The POCIS technique provided integrative exposures of CECs in drinking water at lower detection limits, while episodic events were captured via traditional sampling methods. There was evidence that the accumulation of target compounds by POCIS is a dynamic process, with adsorption and desorption on the sorbent occurring in response to ambient levels of the target compounds in water. CECs in treated drinking water were present at low ng L(-1) concentrations, which are not considered to be a threat to human health.
Insuring Water Sustainability for Resource Extraction in the New Mexico Permian Basin
NASA Astrophysics Data System (ADS)
Lowry, T. S.; Schuhen, M. D.; Lofton, O. W.; Walker, L. T. N.; Johnson, P. B.; Land, L. A.; Herrell, D.
2017-12-01
Advancements in directional drilling and well completion technologies have resulted in an exponential growth in the use of hydraulic fracturing for oil and gas extraction. Within the New Mexico portion of the Permian Basin (see figure), water demand to complete each hydraulically fractured well is estimated to average 7.3 acre-feet (2.4 million gallons), which has resulted in an increase in the regional water demand of over 5000 acre-feet per year. The rise in demand along with proposed rule changes that govern the regulation and management of hydraulic fracturing on Federal and Indian lands (40 CFS 3160) has created concern as to the regions ability to meet the demand in a manner that can sustainably meet the needs of the variety of water users and other stakeholders in the region while also protecting human health and the environment. Funded by the Bureau of Land Management who is charged with managing the regions water resources on Federal lands, this project is addressing those concerns using a multi-disciplinary approach that synthesizes data collection, field verification, and system dynamics (SD) modeling to better understand the dynamics of the regional water supply and demand under different management, policy, and growth scenarios. The scientific challenge has been in bringing together disparate data in a manner that exposes the temporal and spatial dynamics of the regional water supply in the context of increasing demands and changing policy and management scenarios. Field verification and testing activities are used to evaluate existing borehole data to insure that the data are accurate and up to date. The SD model simulates forecasted increases in drilling activity and water demand relative to each water source to identify areas that are most vulnerable and to estimate risk to water sustainability. Key to this is the models ability to seamlessly handle uncertainty such that it produces probabilistic outputs that allow decision makers to explore and better understand the conditions that may render their actions harmful or ineffective, and provides a means to adaptively manage as real-life conditions change over time. This presentation details the field work and data collection activities, the model conceptualization and development process, and provides real-world examples of the models application.
NASA Astrophysics Data System (ADS)
Moreno Ródenas, Antonio Manuel; Cecinati, Francesca; ten Veldhuis, Marie-Claire; Langeveld, Jeroen; Clemens, Francois
2016-04-01
Maintaining water quality standards in highly urbanised hydrological catchments is a worldwide challenge. Water management authorities struggle to cope with changing climate and an increase in pollution pressures. Water quality modelling has been used as a decision support tool for investment and regulatory developments. This approach led to the development of integrated catchment models (ICM), which account for the link between the urban/rural hydrology and the in-river pollutant dynamics. In the modelled system, rainfall triggers the drainage systems of urban areas scattered along a river. When flow exceeds the sewer infrastructure capacity, untreated wastewater enters the natural system by combined sewer overflows. This results in a degradation of the river water quality, depending on the magnitude of the emission and river conditions. Thus, being capable of representing these dynamics in the modelling process is key for a correct assessment of the water quality. In many urbanised hydrological systems the distances between draining sewer infrastructures go beyond the de-correlation length of rainfall processes, especially, for convective summer storms. Hence, spatial and temporal scales of selected rainfall inputs are expected to affect water quality dynamics. The objective of this work is to evaluate how the use of rainfall data from different sources and with different space-time characteristics affects modelled output concentrations of dissolved oxygen in a simplified ICM. The study area is located at the Dommel, a relatively small and sensitive river flowing through the city of Eindhoven (The Netherlands). This river stretch receives the discharge of the 750,000 p.e. WWTP of Eindhoven and from over 200 combined sewer overflows scattered along its length. A pseudo-distributed water quality model has been developed in WEST (mikedhi.com); this is a lumped-physically based model that accounts for urban drainage processes, WWTP and river dynamics for several pollutant typologies. Different rainfall products are tested: 1) Block kriging of a single reliable rain gauge, 2) Block kriging product from a network of 13 rain gauges and, 3) Universal block kriging with 13 rain gauges and KNMI weather radar estimates as a covariate. Different temporal accumulation levels are compared ranging from 10min to 1h. A geostatistical approach is used to allocate the prediction of the rainfall input in each of the urban hydrological units composing the model. The change in model performance is then assessed by contrasting it with dissolved oxygen monitoring data in a series of events.
Global change and terrestrial plant community dynamics
Franklin, Janet; Serra-Diaz, Josep M.; Syphard, Alexandra D.; ...
2016-02-29
Anthropogenic drivers of global change include rising atmospheric concentrations of carbon dioxide and other greenhouse gasses and resulting changes in the climate, as well as nitrogen deposition, biotic invasions, altered disturbance regimes, and land-use change. Predicting the effects of global change on terrestrial plant communities is crucial because of the ecosystem services vegetation provides, from climate regulation to forest products. In this article, we present a framework for detecting vegetation changes and attributing them to global change drivers that incorporates multiple lines of evidence from spatially extensive monitoring networks, distributed experiments, remotely sensed data, and historical records. Based on amore » literature review, we summarize observed changes and then describe modeling tools that can forecast the impacts of multiple drivers on plant communities in an era of rapid change. Observed responses to changes in temperature, water, nutrients, land use, and disturbance show strong sensitivity of ecosystem productivity and plant population dynamics to water balance and long-lasting effects of disturbance on plant community dynamics. Persistent effects of land-use change and human-altered fire regimes on vegetation can overshadow or interact with climate change impacts. Models forecasting plant community responses to global change incorporate shifting ecological niches, population dynamics, species interactions, spatially explicit disturbance, ecosystem processes, and plant functional responses. Lastly, monitoring, experiments, and models evaluating multiple change drivers are needed to detect and predict vegetation changes in response to 21st century global change.« less
Assimilating uncertain, dynamic and intermittent streamflow observations in hydrological models
NASA Astrophysics Data System (ADS)
Mazzoleni, Maurizio; Alfonso, Leonardo; Chacon-Hurtado, Juan; Solomatine, Dimitri
2015-09-01
Catastrophic floods cause significant socio-economical losses. Non-structural measures, such as real-time flood forecasting, can potentially reduce flood risk. To this end, data assimilation methods have been used to improve flood forecasts by integrating static ground observations, and in some cases also remote sensing observations, within water models. Current hydrologic and hydraulic research works consider assimilation of observations coming from traditional, static sensors. At the same time, low-cost, mobile sensors and mobile communication devices are becoming also increasingly available. The main goal and innovation of this study is to demonstrate the usefulness of assimilating uncertain streamflow observations that are dynamic in space and intermittent in time in the context of two different semi-distributed hydrological model structures. The developed method is applied to the Brue basin, where the dynamic observations are imitated by the synthetic observations of discharge. The results of this study show how model structures and sensors locations affect in different ways the assimilation of streamflow observations. In addition, it proves how assimilation of such uncertain observations from dynamic sensors can provide model improvements similar to those of streamflow observations coming from a non-optimal network of static physical sensors. This can be a potential application of recent efforts to build citizen observatories of water, which can make the citizens an active part in information capturing, evaluation and communication, helping simultaneously to improvement of model-based flood forecasting.
Global change and terrestrial plant community dynamics
Franklin, Janet; Serra-Diaz, Josep M.; Syphard, Alexandra D.; Regan, Helen M.
2016-01-01
Anthropogenic drivers of global change include rising atmospheric concentrations of carbon dioxide and other greenhouse gasses and resulting changes in the climate, as well as nitrogen deposition, biotic invasions, altered disturbance regimes, and land-use change. Predicting the effects of global change on terrestrial plant communities is crucial because of the ecosystem services vegetation provides, from climate regulation to forest products. In this paper, we present a framework for detecting vegetation changes and attributing them to global change drivers that incorporates multiple lines of evidence from spatially extensive monitoring networks, distributed experiments, remotely sensed data, and historical records. Based on a literature review, we summarize observed changes and then describe modeling tools that can forecast the impacts of multiple drivers on plant communities in an era of rapid change. Observed responses to changes in temperature, water, nutrients, land use, and disturbance show strong sensitivity of ecosystem productivity and plant population dynamics to water balance and long-lasting effects of disturbance on plant community dynamics. Persistent effects of land-use change and human-altered fire regimes on vegetation can overshadow or interact with climate change impacts. Models forecasting plant community responses to global change incorporate shifting ecological niches, population dynamics, species interactions, spatially explicit disturbance, ecosystem processes, and plant functional responses. Monitoring, experiments, and models evaluating multiple change drivers are needed to detect and predict vegetation changes in response to 21st century global change. PMID:26929338
Yau, Wai-Ming; Thurber, Kent R.; Tycko, Robert
2014-01-01
We describe the synthesis of new nitroxide-based biradical, triradical, and tetraradical compounds and the evaluation of their performance as paramagnetic dopants in dynamic nuclear polarization (DNP) experiments in solid state nuclear magnetic resonance (NMR) spectroscopy with magic-angle spinning (MAS). Under our experimental conditions, which include temperatures in the 25–30 K range, a 9.4 T magnetic field, MAS frequencies of 6.2–6.8 kHz, and microwave irradiation at 264.0 GHz from a 800 mW extended interaction oscillator source, the most effective compounds are triradicals that are related to the previously-described compound DOTOPA-TEMPO (see Thurber et al., 2010), but have improved solubility in glycerol/water solvent near neutral pH. Using these compounds at 30 mM total nitroxide concentration, we observe DNP enhancement factors of 92–128 for cross-polarized 13C NMR signals from 15N,13C-labeled melittin in partially protonated glycerol/water, and build-up times of 2.6–3.8 s for 1H spin polarizations. Net sensitivity enhancements with biradical and tetraradical dopants, taking into account absolute 13C NMR signal amplitudes and build-up times, are approximately 2–4 times lower than with the best triradicals. PMID:24887201
NASA Astrophysics Data System (ADS)
Yau, Wai-Ming; Thurber, Kent R.; Tycko, Robert
2014-07-01
We describe the synthesis of new nitroxide-based biradical, triradical, and tetraradical compounds and the evaluation of their performance as paramagnetic dopants in dynamic nuclear polarization (DNP) experiments in solid state nuclear magnetic resonance (NMR) spectroscopy with magic-angle spinning (MAS). Under our experimental conditions, which include temperatures in the 25-30 K range, a 9.4 T magnetic field, MAS frequencies of 6.2-6.8 kHz, and microwave irradiation at 264.0 GHz from a 800 mW extended interaction oscillator source, the most effective compounds are triradicals that are related to the previously-described compound DOTOPA-TEMPO (see Thurber et al., 2010), but have improved solubility in glycerol/water solvent near neutral pH. Using these compounds at 30 mM total nitroxide concentration, we observe DNP enhancement factors of 92-128 for cross-polarized 13C NMR signals from 15N,13C-labeled melittin in partially protonated glycerol/water, and build-up times of 2.6-3.8 s for 1H spin polarizations. Net sensitivity enhancements with biradical and tetraradical dopants, taking into account absolute 13C NMR signal amplitudes and build-up times, are approximately 2-4 times lower than with the best triradicals.
Yau, Wai-Ming; Thurber, Kent R; Tycko, Robert
2014-07-01
We describe the synthesis of new nitroxide-based biradical, triradical, and tetraradical compounds and the evaluation of their performance as paramagnetic dopants in dynamic nuclear polarization (DNP) experiments in solid state nuclear magnetic resonance (NMR) spectroscopy with magic-angle spinning (MAS). Under our experimental conditions, which include temperatures in the 25-30 K range, a 9.4 T magnetic field, MAS frequencies of 6.2-6.8 kHz, and microwave irradiation at 264.0 GHz from a 800 mW extended interaction oscillator source, the most effective compounds are triradicals that are related to the previously-described compound DOTOPA-TEMPO (see Thurber et al., 2010), but have improved solubility in glycerol/water solvent near neutral pH. Using these compounds at 30 mM total nitroxide concentration, we observe DNP enhancement factors of 92-128 for cross-polarized (13)C NMR signals from (15)N,(13)C-labeled melittin in partially protonated glycerol/water, and build-up times of 2.6-3.8s for (1)H spin polarizations. Net sensitivity enhancements with biradical and tetraradical dopants, taking into account absolute (13)C NMR signal amplitudes and build-up times, are approximately 2-4 times lower than with the best triradicals. Published by Elsevier Inc.
A molecular dynamic investigation for shock induced phase transition of water
NASA Astrophysics Data System (ADS)
Mitra, Nilanjan; Neogi, Anupam
2015-06-01
Atomistic equilibrium molecular dynamics (EMD) was carried out to investigate shock induced phase transition of bulk liquid water. Multi-scale shock technique (MSST) was utilized to investigate low (US = 2 . 5km /s) to strong (US = 6 . 5km /s) intensity shock response on an extended flexible three point model up to 100 ns. The thermodynamic pathway of phase transition from liquid water to ice VII was investigated using temporal variation of thermodynamic state variables, power spectrum analyses of O-H bond vibration along with temporal evolution of pair correlation function between O-O, O-H and H-H atoms. Static structure factor along with pair-distribution function extended up to 20 Å was calculated and compared against the ideal ice VII to get information regarding long range ordering. Bragg reflection at different crystal planes were evaluated to investigate percentage of crystallinity of the shocked sample. Specific questions answered in this work involves: What is the exact time frame after the passage of shock at certain intensity in which nucleation of solid phase can be observed? Is it a complete or partial phase transition? Are external nucleators essential for this transformation? What is the percentage of crystallinity of the nucleated phase?
Khajeh, Masoud; Safigholi, Habib
2015-01-01
A miniature X-ray source has been optimized for electronic brachytherapy. The cooling fluid for this device is water. Unlike the radionuclide brachytherapy sources, this source is able to operate at variable voltages and currents to match the dose with the tumor depth. First, Monte Carlo (MC) optimization was performed on the tungsten target-buffer thickness layers versus energy such that the minimum X-ray attenuation occurred. Second optimization was done on the selection of the anode shape based on the Monte Carlo in water TG-43U1 anisotropy function. This optimization was carried out to get the dose anisotropy functions closer to unity at any angle from 0° to 170°. Three anode shapes including cylindrical, spherical, and conical were considered. Moreover, by Computational Fluid Dynamic (CFD) code the optimal target-buffer shape and different nozzle shapes for electronic brachytherapy were evaluated. The characterization criteria of the CFD were the minimum temperature on the anode shape, cooling water, and pressure loss from inlet to outlet. The optimal anode was conical in shape with a conical nozzle. Finally, the TG-43U1 parameters of the optimal source were compared with the literature. PMID:26966563
Integrated Data & Analysis in Support of Informed and Transparent Decision Making
NASA Astrophysics Data System (ADS)
Guivetchi, K.
2012-12-01
The California Water Plan includes a framework for improving water reliability, environmental stewardship, and economic stability through two initiatives - integrated regional water management to make better use of local water sources by integrating multiple aspects of managing water and related resources; and maintaining and improving statewide water management systems. The Water Plan promotes ways to develop a common approach for data standards and for understanding, evaluating, and improving regional and statewide water management systems, and for common ways to evaluate and select from alternative management strategies and projects. The California Water Plan acknowledges that planning for the future is uncertain and that change will continue to occur. It is not possible to know for certain how population growth, land use decisions, water demand patterns, environmental conditions, the climate, and many other factors that affect water use and supply may change by 2050. To anticipate change, our approach to water management and planning for the future needs to consider and quantify uncertainty, risk, and sustainability. There is a critical need for information sharing and information management to support over-arching and long-term water policy decisions that cross-cut multiple programs across many organizations and provide a common and transparent understanding of water problems and solutions. Achieving integrated water management with multiple benefits requires a transparent description of dynamic linkages between water supply, flood management, water quality, land use, environmental water, and many other factors. Water Plan Update 2013 will include an analytical roadmap for improving data, analytical tools, and decision-support to advance integrated water management at statewide and regional scales. It will include recommendations for linking collaborative processes with technical enhancements, providing effective analytical tools, and improving and sharing data and information. Specifically, this includes achieving better integration and consistency with other planning activities; obtaining consensus on quantitative deliverables; building a common conceptual understanding of the water management system; developing common schematics of the water management system; establishing modeling protocols and standards; and improving transparency and exchange of Water Plan information.
Modeling water table dynamics in managed and restored peatlands
NASA Astrophysics Data System (ADS)
Cresto Aleina, Fabio; Rasche, Livia; Hermans, Renée; Subke, Jens-Arne; Schneider, Uwe; Brovkin, Victor
2016-04-01
European peatlands have been extensively managed over past centuries. Typical management activities consisted of drainage and afforestation, which lead to considerable damage to the peat and potentially significant carbon loss. Recent efforts to restore previously managed peatlands have been carried out throughout Europe. These restoration efforts have direct implications for water table depth and greenhouse gas emissions, thus impacting on the ecosystem services provided by peatland areas. In order to quantify the impact of peatland restoration on water table depth and greenhouse gas budget, We coupled the Environmental Policy Integrated Climate (EPIC) model to a process-based model for methane emissions (Walter and Heimann, 2000). The new model (EPIC-M) can potentially be applied at the European and even at the global scale, but it is yet to be tested and evaluated. We present results of this new tool from different peatlands in the Flow Country, Scotland. Large parts of the peatlands of the region have been drained and afforested during the 1980s, but since the late 1990s, programs to restore peatlands in the Flow Country have been enforced. This region offers therefore a range of peatlands, from near pristine, to afforested and drained, with different resoration ages in between, where we can apply the EPIC-M model and validate it against experimental data from all land stages of restoration Goals of this study are to evaluate the EPIC-M model and its performances against in situ measurements of methane emissions and water table changes in drained peatlands and in restored ones. Secondly, our purpose is to study the environmental impact of peatland restoration, including methane emissions, due to the rewetting of drained surfaces. To do so, we forced the EPIC-M model with local meteorological and soil data, and simulated soil temperatures, water table dynamics, and greenhouse gas emissions. This is the first step towards a European-wide application of the EPIC-M model for the assessment of the environmental impact of peatland restoration.
NASA Astrophysics Data System (ADS)
Covino, T. P.; Wegener, P.; Weiss, T.; Wohl, E.; Rhoades, C.
2017-12-01
River networks of mountain landscapes tend to be dominated by steep, valley-confined channels that have limited floodplain area and low hydrologic buffering capacity. Interspersed between the narrow segments are wide, low-gradient segments where extensive floodplains, wetlands, and riparian areas can develop. Although they tend to be limited in their frequency relative to the narrow valley segments, the low-gradient, wide portions of mountain channel networks can be particularly important to hydrologic buffering and can be sites of high nutrient retention and ecosystem productivity. Hydrologic buffering along the wide valley segments is dependent on lateral hydrologic connectivity between the river and floodplain, however these connections have been increasingly severed as a result of various land and water management practices. We evaluated the role of river-floodplain connectivity in influencing water, dissolved organic carbon (DOC), and nutrient flux in river networks of the Colorado Rockies. We found that disconnected segments with limited floodplain/riparian area had limited buffering capacity, while connected segments exhibited variable source-sink dynamics as a function of flow. Specifically, connected segments were typically a sink for water, DOC, and nutrients during high flows, and subsequently became a source as flows decreased. Shifts in river-floodplain hydrologic connectivity across flows related to higher and more variable aquatic ecosystem metabolism rates along connected relative to disconnected segments. Our data suggest that lateral hydrologic connectivity in wide valleys can enhance hydrologic and biogeochemical buffering, and promote high rates of aquatic ecosystem metabolism. While hydrologic disconnection in one river-floodplain system is unlikely to influence water resources at larger scales, the cumulative effects of widespread disconnection may be substantial. Because intact river-floodplain (i.e., connected) systems provide numerous hydrologic and ecologic benefits, understanding the dynamics and cumulative effects of disconnection is an important step toward improved water resource and ecosystem management.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peek, Dennis W.
The approach was to perform a document search, supplemented by a visual site inspection, to identify potential environmental contamination associated with the property. Factors evaluated included hazardous substances; petroleum products and derivatives; environmental restoration sites; areas of concern; storage tanks; oil/water separators; grease traps; wash racks; waste tanks; pesticides; military munitions/ordnance; medical or bio-hazardous waste; radioactive waste; solid/municipal waste; indoor air quality; groundwater; wastewater treatment, collection, and disposal/discharge; drinking water quality; utilities; asbestos; polychlorinated biphenyls (PCBs); radon; lead-based paint; cultural resources; floodplains; and natural/biological resources.
Overview of SPH-ALE applications for hydraulic turbines in ANDRITZ Hydro
NASA Astrophysics Data System (ADS)
Rentschler, M.; Marongiu, J. C.; Neuhauser, M.; Parkinson, E.
2018-02-01
Over the past 13 years, ANDRITZ Hydro has developed an in-house tool based on the SPH-ALE method for applications in flow simulations in hydraulic turbines. The initial motivation is related to the challenging simulation of free surface flows in Pelton turbines, where highly dynamic water jets interact with rotating buckets, creating thin water jets traveling inside the housing and possibly causing disturbances on the runner. The present paper proposes an overview of industrial applications allowed by the developed tool, including design evaluation of Pelton runners and casings, transient operation of Pelton units and free surface flows in hydraulic structures.
Cai, X.; Yang, Z. -L.; Fisher, J. B.; ...
2016-01-15
Climate and terrestrial biosphere models consider nitrogen an important factor in limiting plant carbon uptake, while operational environmental models view nitrogen as the leading pollutant causing eutrophication in water bodies. The community Noah land surface model with multi-parameterization options (Noah-MP) is unique in that it is the next-generation land surface model for the Weather Research and Forecasting meteorological model and for the operational weather/climate models in the National Centers for Environmental Prediction. Here in this study, we add a capability to Noah-MP to simulate nitrogen dynamics by coupling the Fixation and Uptake of Nitrogen (FUN) plant model and the Soilmore » and Water Assessment Tool (SWAT) soil nitrogen dynamics. This model development incorporates FUN's state-of-the-art concept of carbon cost theory and SWAT's strength in representing the impacts of agricultural management on the nitrogen cycle. Parameterizations for direct root and mycorrhizal-associated nitrogen uptake, leaf retranslocation, and symbiotic biological nitrogen fixation are employed from FUN, while parameterizations for nitrogen mineralization, nitrification, immobilization, volatilization, atmospheric deposition, and leaching are based on SWAT. The coupled model is then evaluated at the Kellogg Biological Station – a Long Term Ecological Research site within the US Corn Belt. Results show that the model performs well in capturing the major nitrogen state/flux variables (e.g., soil nitrate and nitrate leaching). Furthermore, the addition of nitrogen dynamics improves the modeling of net primary productivity and evapotranspiration. The model improvement is expected to advance the capability of Noah-MP to simultaneously predict weather and water quality in fully coupled Earth system models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, X.; Yang, Z. -L.; Fisher, J. B.
Climate and terrestrial biosphere models consider nitrogen an important factor in limiting plant carbon uptake, while operational environmental models view nitrogen as the leading pollutant causing eutrophication in water bodies. The community Noah land surface model with multi-parameterization options (Noah-MP) is unique in that it is the next-generation land surface model for the Weather Research and Forecasting meteorological model and for the operational weather/climate models in the National Centers for Environmental Prediction. Here in this study, we add a capability to Noah-MP to simulate nitrogen dynamics by coupling the Fixation and Uptake of Nitrogen (FUN) plant model and the Soilmore » and Water Assessment Tool (SWAT) soil nitrogen dynamics. This model development incorporates FUN's state-of-the-art concept of carbon cost theory and SWAT's strength in representing the impacts of agricultural management on the nitrogen cycle. Parameterizations for direct root and mycorrhizal-associated nitrogen uptake, leaf retranslocation, and symbiotic biological nitrogen fixation are employed from FUN, while parameterizations for nitrogen mineralization, nitrification, immobilization, volatilization, atmospheric deposition, and leaching are based on SWAT. The coupled model is then evaluated at the Kellogg Biological Station – a Long Term Ecological Research site within the US Corn Belt. Results show that the model performs well in capturing the major nitrogen state/flux variables (e.g., soil nitrate and nitrate leaching). Furthermore, the addition of nitrogen dynamics improves the modeling of net primary productivity and evapotranspiration. The model improvement is expected to advance the capability of Noah-MP to simultaneously predict weather and water quality in fully coupled Earth system models.« less
Hydrologic controls of methane dynamics in a karst subterranean estuary
NASA Astrophysics Data System (ADS)
Brankovits, D.; Pohlman, J.; Ganju, N. K.; Lowell, N. S.; Roth, E.; Lapham, L.
2017-12-01
Subterranean estuaries extend into carbonate landmasses where abundant cave networks influence the hydrology and biogeochemistry of the coastal aquifer environment. Enhanced density stratification between meteoric freshwater and saline groundwater facilitates the development of sharp salinity and redox gradients associated with the production and consumption of methane, a potent greenhouse gas. These processes impact methane-dynamics in the coastal zone and provide nutritive resources for the cave-adapted estuarine food web in this oligotrophic habitat. These observations were based on sampling in discrete time periods, leaving questions about the effects of temporally dynamic hydrology on the production, consumption and transport of methane. In this study, we evaluated hydro-biogeochemical controls of methane dynamics in a subterranean estuary to quantify the magnitude of the methane sink in the coastal karst platform of the Yucatan Peninsula, Mexico. We deployed osmotically-driven sampling devices (OsmoSamplers) in flooded cave passages to document temporal variability in methane concentrations and δ13C values, as well as major ions in the groundwater. Water level, current velocities, water and air temperatures, and precipitation were also monitored. Using these records, we built an integrated model to provide a first-order calculation on methane consumption rates for the coastal aquifer. The year-long water chemistry record reveals higher source concentrations of methane in the dry season (5849 ± 1198 nM) than in the wet season (4265 ± 778 nM) with depleted δ13C values (-65.4 ± 2.1 ‰) throughout the year. Our analyses suggest the methane sink potential and ecosystem function are significantly affected by precipitation induced hydrological changes within the tropical subterranean karst estuary.
NASA Astrophysics Data System (ADS)
Chen, X.; Song, X.; Shuai, P.; Hammond, G. E.; Ren, H.; Zachara, J. M.
2017-12-01
Hydrologic exchange flows (HEFs) in rivers play vital roles in watershed ecological and biogeochemical functions due to their strong capacity to attenuate contaminants and process significant quantities of carbon and nutrients. While most of existing HEF studies focus on headwater systems with the assumption of steady-state flow, there is lack of understanding of large-scale HEFs in high-order regulated rivers that experience high-frequency stage fluctuations. The large variability of HEFs is a result of interactions between spatial heterogeneity in hydrogeologic properties and temporal variation in river discharge induced by natural or anthropogenic perturbations. Our 9-year spatially distributed dataset (water elevation, specific conductance, and temperature) combined with mechanistic hydrobiogeochemical simulations have revealed complex spatial and temporal dynamics in km-scale HEFs and their significant impacts on contaminant plume mobility and hyporheic biogeochemical processes along the Hanford Reach. Extended multidirectional flow behaviors of unconfined, river corridor groundwater were observed hundreds of meters inland from the river shore resulting from discharge-dependent HEFs. An appropriately sized modeling domain to capture the impact of regional groundwater flow as well as knowledge of subsurface structures controlling intra-aquifer hydrologic connectivity were essential to realistically model transient storage in this large-scale river corridor. This work showed that both river water and mobile groundwater contaminants could serve as effective tracers of HEFs, thus providing valuable information for evaluating and validating the HEF models. Multimodal residence time distributions with long tails were resulted from the mixture of long and short exchange pathways, which consequently impact the carbon and nutrient cycling within the river corridor. Improved understanding of HEFs using integrated observational and modeling approaches sheds light on developing fundamental understanding of the influences of HEFs on water quality, nutrient dynamics, and ecosystem health in dynamic river corridor systems.
NASA Astrophysics Data System (ADS)
Werner, Christian; Liakka, Johan; Schmid, Manuel; Fuentes, Juan-Pablo; Ehlers, Todd A.; Hickler, Thomas
2017-04-01
Vegetation composition and establishment is strongly dependent on climate conditions but also a result of vegetation dynamics (competition for light, water and nutrients). In addition, vegetation exerts control over the development of landscapes as it mediates the climatic and hydrological forces shaping the terrain via hillslope and fluvial processes. At the same time, topography as well as soil texture and soil depth affect the microclimate, soil water storage and rooting space that is defining the environmental envelope for vegetation development. Within the EarthShape research program (www.earthshape.net) we evaluate these interactions by simulating the co-evolution of landscape and vegetation with a dynamic vegetation model (LPJ-GUESS) and a landscape evolution model (LandLab). LPJ-GUESS is a mechanistic model driven by daily or monthly weather data and explicitly simulates vegetation physiology, succession, competition and water and nutrient cycling. Here we present the results of first transient vegetation simulations from 21kyr BP to present-day using the TraCE-21ka climate dataset for four focus sites along the coastal cordillera of Chile that are exposed to a substantial meridional climate gradient (ranging from hyper-arid to humid-temperate conditions). We show that the warming occurring in the region from LGM to present, in addition to the increase of atmospheric CO2 concentrations, led to a shift in vegetation composition and surface cover. Future work will show how these changes resonate in the dynamics of hillslope and fluvial erosion and ultimately bi-directional feedback mechanisms of vegetation development and landscape evolution/ soil formation (see also companion presentation by Schmid et al., this session).
Reactive solute transport in streams: A surface complexation approach for trace metal sorption
Runkel, Robert L.; Kimball, Briant A.; McKnight, Diane M.; Bencala, Kenneth E.
1999-01-01
A model for trace metals that considers in-stream transport, metal oxide precipitation-dissolution, and pH-dependent sorption is presented. Linkage between a surface complexation submodel and the stream transport equations provides a framework for modeling sorption onto static and/or dynamic surfaces. A static surface (e.g., an iron- oxide-coated streambed) is defined as a surface with a temporally constant solid concentration. Limited contact between solutes in the water column and the static surface is considered using a pseudokinetic approach. A dynamic surface (e.g., freshly precipitated metal oxides) has a temporally variable solid concentration and is in equilibrium with the water column. Transport and deposition of solute mass sorbed to the dynamic surface is represented in the stream transport equations that include precipitate settling. The model is applied to a pH-modification experiment in an acid mine drainage stream. Dissolved copper concentrations were depressed for a 3 hour period in response to the experimentally elevated pH. After passage of the pH front, copper was desorbed, and dissolved concentrations returned to ambient levels. Copper sorption is modeled by considering sorption to aged hydrous ferric oxide (HFO) on the streambed (static surface) and freshly precipitated HFO in the water column (dynamic surface). Comparison of parameter estimates with reported values suggests that naturally formed iron oxides may be more effective in removing trace metals than synthetic oxides used in laboratory studies. The model's ability to simulate pH, metal oxide precipitation-dissolution, and pH-dependent sorption provides a means of evaluating the complex interactions between trace metal chemistry and hydrologic transport at the field scale.
The volume and complexity of their vascular systems make the dynamics of long-distance water transport difficult to study. We used heat and deuterated water (D2O) as tracers to characterize whole-tree water transport and storage properties in individual trees belonging to the co...
Li, Min; Zhang, John Z H
2017-03-08
The development of polarizable water models at coarse-grained (CG) levels is of much importance to CG molecular dynamics simulations of large biomolecular systems. In this work, we combined the newly developed two-bead multipole force field (TMFF) for proteins with the two-bead polarizable water models to carry out CG molecular dynamics simulations for benchmark proteins. In our simulations, two different two-bead polarizable water models are employed, the RTPW model representing five water molecules by Riniker et al. and the LTPW model representing four water molecules. The LTPW model is developed in this study based on the Martini three-bead polarizable water model. Our simulation results showed that the combination of TMFF with the LTPW model significantly stabilizes the protein's native structure in CG simulations, while the use of the RTPW model gives better agreement with all-atom simulations in predicting the residue-level fluctuation dynamics. Overall, the TMFF coupled with the two-bead polarizable water models enables one to perform an efficient and reliable CG dynamics study of the structural and functional properties of large biomolecules.
Ferrage, Fabien; Reichel, Amy; Battacharya, Shibani; Cowburn, David; Ghose, Ranajeet
2013-01-01
Measurement of steady-state 15N-{1H} nuclear Overhauser effects forms a cornerstone of most methods to determine protein backbone dynamics from spin-relaxation data, since it is the most reliable probe of very fast motions on the ps-ns timescale. We have, in two previous publications (J. Magn. Reson. 192 (2008), 302-313; J. Am. Chem. Soc. 131 (2009), 6048-6049) reevaluated spin-dynamics during steady-state (or “saturated”) and reference experiments, both of which are required to determine the NOE ratio. Here we assess the performance of several windowed and windowless sequences to achieve effective saturation of protons in steady-state experiments. We also evaluate the influence of the residual water signal due to radiation damping on the NOE ratio. We suggest a recipe that allows one to determine steady-state 15N-{1H} NOE's without artifacts and with the highest possible accuracy. PMID:20951618
Khataee, Alireza; Bayat, Golchehreh; Azamat, Jafar
2017-01-01
Salt rejection phenomenon was investigated using armchair silicon carbide (SiC) nanotubes under applied electric fields. The systems included the (7,7) and (8,8) SiC nanotubes surrounded by silicon nitride membrane immersed in a 0.4mol/L aqueous solution of sodium chloride. Results of molecular dynamics (MD) simulations for selective separation of Na + and Cl - ions showed that the (7,7) SiC nanotube is suitable for separation of cations and the (8,8) SiC nanotube can be used for separating anions. The water desalination by SiC nanotubes was demonstrated by potential of mean force for Na + and Cl - ions in each SiC nanotube. Furthermore, the ionic current, ion residence time, and the radial distribution functions of species were measured to evaluate the properties of the system. Based on the results of this research, the studied SiC nanotubes can be recommended as a nanostructure model for water desalination. Copyright © 2016 Elsevier Inc. All rights reserved.
Aretano, Roberta; Parlagreco, Luca; Semeraro, Teodoro; Zurlini, Giovanni; Petrosillo, Irene
2017-10-15
This work carries out a landscape analysis for the last 60years to compare the degree of preservation of two areas on the same Italian coastline characterized by different environmental protection levels: a National designated protected areas and a highly tourist coastal destination. The conversion of natural land-covers into human land uses were detected for protected and unprotected coastal stretches highlighting that the only establishment of a protected area is not enough to stem undesirable land-use outcomes. A survey analysis was also conducted to assess attitudes of beach users and to evaluate their perception of natural habitats, beach and coastal water quality, and coastal dynamic over time. The results of 2071 questionnaires showed that there is similarity between subjective and objective data. However, several beach users perceived a bad quality of coastal water in the legally unprotected coastal area. The implications from a planning and management perspective are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Troitzsch, Raphael Z.; Tulip, Paul R.; Crain, Jason; Martyna, Glenn J.
2008-01-01
Aqueous proline solutions are deceptively simple as they can take on complex roles such as protein chaperones, cryoprotectants, and hydrotropic agents in biological processes. Here, a molecular level picture of proline/water mixtures is developed. Car-Parrinello ab initio molecular dynamics (CPAIMD) simulations of aqueous proline amino acid at the B-LYP level of theory, performed using IBM's Blue Gene/L supercomputer and massively parallel software, reveal hydrogen-bonding propensities that are at odds with the predictions of the CHARMM22 empirical force field but are in better agreement with results of recent neutron diffraction experiments. In general, the CPAIMD (B-LYP) simulations predict a simplified structural model of proline/water mixtures consisting of fewer distinct local motifs. Comparisons of simulation results to experiment are made by direct evaluation of the neutron static structure factor S(Q) from CPAIMD (B-LYP) trajectories as well as to the results of the empirical potential structure refinement reverse Monte Carlo procedure applied to the neutron data. PMID:18790850
NASA Astrophysics Data System (ADS)
Ferrer, Gabriel; Sáez, Esteban; Ledezma, Christian
2018-01-01
Copper production is an essential component of the Chilean economy. During the extraction process of copper, large quantities of waste materials (tailings) are produced, which are typically stored in large tailing ponds. Thickened Tailings Disposal (TTD) is an alternative to conventional tailings ponds. In TTD, a considerable amount of water is extracted from the tailings before their deposition. Once a thickened tailings layer is deposited, it loses water and it shrinks, forming a relatively regular structure of tailings blocks with vertical cracks in between, which are then filled up with "fresh" tailings once the new upper layer is deposited. The dynamic response of a representative column of this complex structure made out of tailings blocks with softer material in between was analyzed using a periodic half-space finite element model. The tailings' behavior was modeled using an elasto-plastic multi-yielding constitutive model, and Chilean earthquake records were used for the seismic analyses. Special attention was given to the liquefaction potential evaluation of TTD.
Troitzsch, Raphael Z; Tulip, Paul R; Crain, Jason; Martyna, Glenn J
2008-12-01
Aqueous proline solutions are deceptively simple as they can take on complex roles such as protein chaperones, cryoprotectants, and hydrotropic agents in biological processes. Here, a molecular level picture of proline/water mixtures is developed. Car-Parrinello ab initio molecular dynamics (CPAIMD) simulations of aqueous proline amino acid at the B-LYP level of theory, performed using IBM's Blue Gene/L supercomputer and massively parallel software, reveal hydrogen-bonding propensities that are at odds with the predictions of the CHARMM22 empirical force field but are in better agreement with results of recent neutron diffraction experiments. In general, the CPAIMD (B-LYP) simulations predict a simplified structural model of proline/water mixtures consisting of fewer distinct local motifs. Comparisons of simulation results to experiment are made by direct evaluation of the neutron static structure factor S(Q) from CPAIMD (B-LYP) trajectories as well as to the results of the empirical potential structure refinement reverse Monte Carlo procedure applied to the neutron data.
Pinto, Ameet J.; Schroeder, Joanna; Lunn, Mary; Sloan, William
2014-01-01
ABSTRACT Bacterial communities migrate continuously from the drinking water treatment plant through the drinking water distribution system and into our built environment. Understanding bacterial dynamics in the distribution system is critical to ensuring that safe drinking water is being supplied to customers. We present a 15-month survey of bacterial community dynamics in the drinking water system of Ann Arbor, MI. By sampling the water leaving the treatment plant and at nine points in the distribution system, we show that the bacterial community spatial dynamics of distance decay and dispersivity conform to the layout of the drinking water distribution system. However, the patterns in spatial dynamics were weaker than those for the temporal trends, which exhibited seasonal cycling correlating with temperature and source water use patterns and also demonstrated reproducibility on an annual time scale. The temporal trends were driven by two seasonal bacterial clusters consisting of multiple taxa with different networks of association within the larger drinking water bacterial community. Finally, we show that the Ann Arbor data set robustly conforms to previously described interspecific occupancy abundance models that link the relative abundance of a taxon to the frequency of its detection. Relying on these insights, we propose a predictive framework for microbial management in drinking water systems. Further, we recommend that long-term microbial observatories that collect high-resolution, spatially distributed, multiyear time series of community composition and environmental variables be established to enable the development and testing of the predictive framework. PMID:24865557
Durrieu, Gilles; Pham, Quang-Khoai; Foltête, Anne-Sophie; Maxime, Valérie; Grama, Ion; Tilly, Véronique Le; Duval, Hélène; Tricot, Jean-Marie; Naceur, Chiraz Ben; Sire, Olivier
2016-07-01
Water quality can be evaluated using biomarkers such as tissular enzymatic activities of endemic species. Measurement of molluscs bivalves activity at high frequency (e.g., valvometry) during a long time period is another way to record the animal behavior and to evaluate perturbations of the water quality in real time. As the pollution affects the activity of oysters, we consider the valves opening and closing velocities to monitor the water quality assessment. We propose to model the huge volume of velocity data collected in the framework of valvometry using a new nonparametric extreme values statistical model. The objective is to estimate the tail probabilities and the extreme quantiles of the distribution of valve closing velocity. The tail of the distribution function of valve closing velocity is modeled by a Pareto distribution with parameter t,τ , beyond a threshold τ according to the time t of the experiment. Our modeling approach reveals the dependence between the specific activity of two enzymatic biomarkers (Glutathione-S-transferase and acetylcholinesterase) and the continuous recording of oyster valve velocity, proving the suitability of this tool for water quality assessment. Thus, valvometry allows in real-time in situ analysis of the bivalves behavior and appears as an effective early warning tool in ecological risk assessment and marine environment monitoring.
Lavoratti, Alessandra; Scienza, Lisete Cristine; Zattera, Ademir José
2016-01-20
Composites of unsaturated polyester resin (UPR) and cellulose nanofibers (CNFs) obtained from dry cellulose waste of softwood (Pinus sp.) and hardwood (Eucalyptus sp.) were developed. The fiber properties and the influence of the CNFs in the dynamic-mechanical and thermomechanical properties of the composites were evaluated. CNFs with a diameter of 70-90 nm were obtained. Eucalyptus sp. has higher α-cellulose content than Pinus sp. fibers. The crystallinity of the cellulose pulps decreased after grinding. However, high values were still obtained. The chemical composition of the fibers was not significantly altered by the grinding process. Eucalyptus sp. CNF composites had water absorption close to the neat resin at 1 wt% filler. The dynamic-mechanical properties of Eucalyptus sp. CNFs were slightly increased and the thermal stability was improved. Copyright © 2015 Elsevier Ltd. All rights reserved.
Climate Adaptation Capacity for Conventional Drinking Water Treatment Facilities
NASA Astrophysics Data System (ADS)
Levine, A.; Goodrich, J.; Yang, J.
2013-12-01
Water supplies are vulnerable to a host of climate- and weather-related stressors such as droughts, intense storms/flooding, snowpack depletion, sea level changes, and consequences from fires, landslides, and excessive heat or cold. Surface water resources (lakes, reservoirs, rivers, and streams) are especially susceptible to weather-induced changes in water availability and quality. The risks to groundwater systems may also be significant. Typically, water treatment facilities are designed with an underlying assumption that water quality from a given source is relatively predictable based on historical data. However, increasing evidence of the lack of stationarity is raising questions about the validity of traditional design assumptions, particularly since the service life of many facilities can exceed fifty years. Given that there are over 150,000 public water systems in the US that deliver drinking water to over 300 million people every day, it is important to evaluate the capacity for adapting to the impacts of a changing climate. Climate and weather can induce or amplify changes in physical, chemical, and biological water quality, reaction rates, the extent of water-sediment-air interactions, and also impact the performance of treatment technologies. The specific impacts depend on the watershed characteristics and local hydrological and land-use factors. Water quality responses can be transient, such as erosion-induced increases in sediment and runoff. Longer-term impacts include changes in the frequency and intensity of algal blooms, gradual changes in the nature and concentration of dissolved organic matter, dissolved solids, and modulation of the microbiological community structure, sources and survival of pathogens. In addition, waterborne contaminants associated with municipal, industrial, and agricultural activities can also impact water quality. This presentation evaluates relationships between climate and weather induced water quality variability and the capacity of treatment facilities and supporting water infrastructure to deliver safe drinking water consistently and reliably. Simulation models of water treatment facilities are used to evaluate the outcome of specific source water quality scenarios on treatment system performance and reliability. Modeling results are used to evaluate the process and operational capacity to respond to transient water quality changes and adapt to longer-term variability in water quality and availability. In some cases, changes in temperature and mineral content serve to improve the overall treatment performance. In addition, the integration of microbially enhanced treatment systems such as biological filtration can provide additional capacity. Conversely, changes in the nutrient and temperature dynamics can trigger algal and cyanobacterial blooms that can impair performance. Research needs are identified and the importance of developing more integrated modeling systems is highlighted.
Molecular-Scale Description of SPAN80 Desorption from a Squalane-Water Interface.
Tan, L; Pratt, L R; Chaudhari, M I
2018-04-05
Extensive all-atom molecular dynamics calculations on the water-squalane interface for nine different loadings with sorbitan monooleate (SPAN80), at T = 300 K, are analyzed for the surface tension equation of state, desorption free-energy profiles as they depend on loading, and to evaluate escape times for adsorbed SPAN80 into the bulk phases. These results suggest that loading only weakly affects accommodation of a SPAN80 molecule by this squalane-water interface. Specifically, the surface tension equation of state is simple through the range of high tension to high loading studied, and the desorption free-energy profiles are weakly dependent on loading here. The perpendicular motion of the centroid of the SPAN80 headgroup ring is well-described by a diffusional model near the minimum of the desorption free-energy profile. Lateral diffusional motion is weakly dependent on loading. Escape times evaluated on the basis of a diffusional model and the desorption free energies are 7 × 10 -2 s (into the squalane) and 3 × 10 2 h (into the water). The latter value is consistent with desorption times of related lab-scale experimental work.
Matsuoka, Takahide; Takatsuka, Kazuo
2017-04-07
A theory for dynamics of molecular photoionization from nonadiabatic electron wavepackets driven by intense pulse lasers is proposed. Time evolution of photoelectron distribution is evaluated in terms of out-going electron flux (current of the probability density of electrons) that has kinetic energy high enough to recede from the molecular system. The relevant electron flux is in turn evaluated with the complex-valued electronic wavefunctions that are time evolved in nonadiabatic electron wavepacket dynamics in laser fields. To uniquely rebuild such wavefunctions with its electronic population being lost by ionization, we adopt the complex-valued natural orbitals emerging from the electron density as building blocks of the total wavefunction. The method has been implemented into a quantum chemistry code, which is based on configuration state mixing for polyatomic molecules. Some of the practical aspects needed for its application will be presented. As a first illustrative example, we show the results of hydrogen molecule and its isotope substitutes (HD and DD), which are photoionized by a two-cycle pulse laser. Photon emission spectrum associated with above threshold ionization is also shown. Another example is taken from photoionization dynamics from an excited state of a water molecule. Qualitatively significant effects of nonadiabatic interaction on the photoelectron spectrum are demonstrated.
Reconfigurable water-substrate based antennas with temperature control
NASA Astrophysics Data System (ADS)
Mobashsher, Ahmed Toaha; Abbosh, Amin
2017-06-01
We report an unexplored reconfigurable antenna development technique utilizing the concept of temperature variable electromagnetic properties of water. By applying this physical phenomena, we present highly efficient water-substrate based antennas whose operating frequencies can be continuously tuned. While taking the advantage of cost-effectiveness of liquid water, this dynamic tuning technique also alleviates the roadblocks to widespread use of reconfigurable liquid-based antennas for VHF and UHF bands. The dynamic reconfigurability is controlled merely via external thermal stimulus and does not require any physical change of the resonating structure. We demonstrate dynamic control of omnidirectional and directional antennas covering more than 14 and 12% fractional bandwidths accordingly, with more than 85% radiation efficiency. Our temperature control approach paves the intriguing way of exploring dynamic reconfigurability of water-based compact electromagnetic devices for non-static, in-motion and low-cost real-world applications.
Molecular dynamics approach to water structure of HII mesophase of monoolein
NASA Astrophysics Data System (ADS)
Kolev, Vesselin; Ivanova, Anela; Madjarova, Galia; Aserin, Abraham; Garti, Nissim
2012-02-01
The goal of the present work is to study theoretically the structure of water inside the water cylinder of the inverse hexagonal mesophase (HII) of glyceryl monooleate (monoolein, GMO), using the method of molecular dynamics. To simplify the computational model, a fixed structure of the GMO tube is maintained. The non-standard cylindrical geometry of the system required the development and application of a novel method for obtaining the starting distribution of water molecules. A predictor-corrector schema is employed for generation of the initial density of water. Molecular dynamics calculations are performed at constant volume and temperature (NVT ensemble) with 1D periodic boundary conditions applied. During the simulations the lipid structure is kept fixed, while the dynamics of water is unrestrained. Distribution of hydrogen bonds and density as well as radial distribution of water molecules across the water cylinder show the presence of water structure deep in the cylinder (about 6 Å below the GMO heads). The obtained results may help understanding the role of water structure in the processes of insertion of external molecules inside the GMO/water system. The present work has a semi-quantitative character and it should be considered as the initial stage of more comprehensive future theoretical studies.
Yang, Lei; Guo, Yanjie; Diao, Dongfeng
2017-05-31
Recently, water flow confined in nanochannels has become an interesting topic due to its unique properties and potential applications in nanofluidic devices. The trapped water is predicted to experience high pressure in the gigapascal regime. Theoretical and experimental studies have reported various novel structures of the confined water under high pressure. However, the role of this high pressure on the dynamic properties of water has not been elucidated to date. In the present study, the structure evolution and interfacial friction behavior of water constrained in a graphene nanochannel were investigated via molecular dynamics simulations. Transitions of the confined water to different ice phases at room temperature were observed in the presence of lateral pressure at the gigapascal level. The friction coefficient at the water/graphene interface was found to be dependent on the lateral pressure and nanochannel height. Further theoretical analyses indicate that the pressure dependence of friction is related to the pressure-induced change in the structure of water and the confinement dependence results from the variation in the water/graphene interaction energy barrier. These findings provide a basic understanding of the dynamics of the nanoconfined water, which is crucial in both fundamental and applied science.
Nagano, Y; Teraguchi, T; Lieu, P K; Furumai, H
2014-01-01
In the Citadel area of Hue City, drainage systems that include canals and ponds are considerable sources of fecal contaminants to inundated water during the rainy season because canals and ponds receive untreated wastewater. It is important to investigate the characteristics of hydraulics and water pollution in canals and ponds. At the canals and ponds, water sampling was conducted during dry and wet weather periods in order to evaluate fecal contamination and to investigate changes in water pollution caused by runoff inflow. Inundated water was also collected from streets during heavy rainfall. At the canals and ponds, concentrations of Escherichia coli and total coliform exceeded the Vietnamese regulation values for surface water in 23 and 24 out of 27 samples (85 and 89%), respectively. The water samples were categorized based on the characteristics of water pollution using cluster analysis. In the rainy season, continuous monitoring was conducted at the canals and ponds using water depth and electrical conductivity (EC) sensors to investigate the dynamic relationship between water level and water pollution. It is suggested that in the canals, high EC meant water stagnation and low EC signified river water inflow. Therefore, EC might be a good indicator of water flow change in canals.
Modeling energy consumption in membrane bioreactors for wastewater treatment in north Africa.
Skouterisl, George; Arnot, Tom C; Jraou, Mouna; Feki, Firas; Sayadi, Sami
2014-03-01
Two pilot-scale membrane bioreactors were operated alongside a full-sized activated sludge plant in Tunisia in order to compare specific energy demand and treated water quality. Energy consumption rates were measured for the complete membrane bioreactor systems and for their different components. Specific energy demand was measured for the systems and compared with the activated sludge plant, which operated at around 3 kWh m(-3). A model was developed for each membrane bioreactor based on both dynamic and steady-state mass balances, microbial kinetics and stoichiometry, and energy balance. Energy consumption was evaluated as a function of mixed-liquor suspended solids concentration, net permeate fluxes, and the resultant treated water quality. This work demonstrates the potential for using membrane bioreactors in decentralised domestic water treatment in North Africa, at energy consumption levels similar or lower than conventional activated sludge systems, with the added benefit of producing treated water suitable for unrestricted crop irrigation.
Water entrapment and structure ordering as protection mechanisms for protein structural preservation
NASA Astrophysics Data System (ADS)
Arsiccio, A.; Pisano, R.
2018-02-01
In this paper, molecular dynamics is used to further gain insight into the mechanisms by which typical pharmaceutical excipients preserve the protein structure. More specifically, the water entrapment scenario will be analyzed, which states that excipients form a cage around the protein, entrapping and slowing water molecules. Human growth hormone will be used as a model protein, but the results obtained are generally applicable. We will show that water entrapment, as well as the other mechanisms of protein stabilization in the dried state proposed so far, may be related to the formation of a dense hydrogen bonding network between excipient molecules. We will also present a simple phenomenological model capable of explaining the behavior and stabilizing effect provided by typical cryo- and lyo-protectants. This model uses, as input data, molecular properties which can be easily evaluated. We will finally show that the model predictions compare fairly well with experimental data.
Cyanobacterial flora from polluted industrial effluents.
Parikh, Amit; Shah, Vishal; Madamwar, Datta
2006-05-01
Effluents originating from pesticides, agro-chemicals, textile dyes and dyestuffs industries are always associated with high turbidity, colour, nutrient load, and heavy metals, toxic and persistent compounds. But even with such an anthropogenic nature, these effluents contain dynamic cyanobacterial communities. Documentation of cyanobacterial cultures along the water channels of effluents discharged by above mentioned industries along the west coast of India and their relationship with water quality is reported in this study. Intensity of pollution was evaluated by physico-chemical analysis of water. Higher load of solids, carbon and nutrients were found to be persistent throughout the analysis. Sediment and water samples were found to be colored in nature. Cyanobacterial community structure was found to be influenced by the anthropogenic pollution. 40 different cyanobacterial species were recorded from 14 genera of 5 families and an elevated occurrence of Phormidium, Oscillatoria and Chroococcus genera was observed in all the sampling sites.
Erkelens, Mason; Ball, Andrew S; Lewis, David M
2014-04-01
The use of recycled media has been shown to be a necessary step within the lifecycle of microalgal biofuels for economic sustainability and reducing the water footprint. However the impact of the harvesting of microalgae on the bacterial load of the recycled water has yet to be investigated. Within this study PCR-DGGE and real-time PCR was used to evaluate the bacterial community dynamics within the recycled water following harvest and concentration steps for a pilot scale open pond system (120,000L), which was developed for the production of green crude oil from Tetraselmis sp. in hyper saline water. Two stages were used in the harvesting; Stage 1 electroflocculation, and Stage 2 centrifugation. Electroflocculation was shown to have little effect on the bacterial cell concentration. In contrast bacterial diversity and cell concentration within the centrifugation step was greatly reduced. Copyright © 2014 Elsevier Ltd. All rights reserved.
Besmer, Michael D; Epting, Jannis; Page, Rebecca M; Sigrist, Jürg A; Huggenberger, Peter; Hammes, Frederik
2016-12-07
Detailed measurements of physical, chemical and biological dynamics in groundwater are key to understanding the important processes in place and their influence on water quality - particularly when used for drinking water. Measuring temporal bacterial dynamics at high frequency is challenging due to the limitations in automation of sampling and detection of the conventional, cultivation-based microbial methods. In this study, fully automated online flow cytometry was applied in a groundwater system for the first time in order to monitor microbial dynamics in a groundwater extraction well. Measurements of bacterial concentrations every 15 minutes during 14 days revealed both aperiodic and periodic dynamics that could not be detected previously, resulting in total cell concentration (TCC) fluctuations between 120 and 280 cells μL -1 . The aperiodic dynamic was linked to river water contamination following precipitation events, while the (diurnal) periodic dynamic was attributed to changes in hydrological conditions as a consequence of intermittent groundwater extraction. Based on the high number of measurements, the two patterns could be disentangled and quantified separately. This study i) increases the understanding of system performance, ii) helps to optimize monitoring strategies, and iii) opens the possibility for more sophisticated (quantitative) microbial risk assessment of drinking water treatment systems.
Besmer, Michael D.; Epting, Jannis; Page, Rebecca M.; Sigrist, Jürg A.; Huggenberger, Peter; Hammes, Frederik
2016-01-01
Detailed measurements of physical, chemical and biological dynamics in groundwater are key to understanding the important processes in place and their influence on water quality – particularly when used for drinking water. Measuring temporal bacterial dynamics at high frequency is challenging due to the limitations in automation of sampling and detection of the conventional, cultivation-based microbial methods. In this study, fully automated online flow cytometry was applied in a groundwater system for the first time in order to monitor microbial dynamics in a groundwater extraction well. Measurements of bacterial concentrations every 15 minutes during 14 days revealed both aperiodic and periodic dynamics that could not be detected previously, resulting in total cell concentration (TCC) fluctuations between 120 and 280 cells μL−1. The aperiodic dynamic was linked to river water contamination following precipitation events, while the (diurnal) periodic dynamic was attributed to changes in hydrological conditions as a consequence of intermittent groundwater extraction. Based on the high number of measurements, the two patterns could be disentangled and quantified separately. This study i) increases the understanding of system performance, ii) helps to optimize monitoring strategies, and iii) opens the possibility for more sophisticated (quantitative) microbial risk assessment of drinking water treatment systems. PMID:27924920
Yoneda, Shigetaka; Sugawara, Yoko; Urabe, Hisako
2005-01-27
The dynamics of crystal water molecules of guanosine dihydrate are investigated in detail by molecular dynamics (MD) simulation. A 2 ns simulation is performed using a periodic boundary box composed of 4 x 5 x 8 crystallographic unit cells and using the particle-mesh Ewald method for calculation of electrostatic energy. The simulated average atomic positions and atomic displacement parameters are remarkably coincident with the experimental values determined by X-ray analysis, confirming the high accuracy of this simulation. The dynamics of crystal water are analyzed in terms of atomic displacement parameters, orientation vectors, order parameters, self-correlation functions of the orientation vectors, time profiles of hydrogen-bonding probability, and translocations. The simulation clarifies that the average structure is composed of various stable and transient structures of the molecules. The simulated guanosine crystal forms a layered structure, with four water sites per asymmetric unit, classified as either interlayer water or intralayer water. From a detailed analysis of the translocations of water molecules in the simulation, columns of intralayer water molecules along the c axis appear to represent a pathway for hydration and dehydration by a kind of molecular valve mechanism.
Characterization of water bodies for mosquito habitat using a multi-sensor approach
NASA Astrophysics Data System (ADS)
Midekisa, A.; Wimberly, M. C.; Senay, G. B.
2012-12-01
Malaria is a major health problem in Ethiopia. Anopheles arabiensis, which inhabits and breeds in a variety of aquatic habitats, is the major mosquito vector for malaria transmission in the region. In the Amhara region of Ethiopia, mosquito breeding sites are heterogeneously distributed. Therefore, accurate characterization of aquatic habitats and potential breeding sites can be used as a proxy to measure the spatial distribution of malaria risk. Satellite remote sensing provides the ability to map the spatial distribution and monitor the temporal dynamics of surface water. The objective of this study is to map the probability of surface water accumulation to identify potential vector breeding sites for Anopheles arabiensis using remote sensing data from sensors at multiple spatial and temporal resolutions. The normalized difference water index (NDWI), which is based on reflectance in the green and the near infrared (NIR) bands were used to estimate fractional cover of surface water. Temporal changes in surface water were mapped using NDWI indices derived from MODIS surface reflectance product (MOD09A1) for the period 2001-2012. Landsat TM and ETM+ imagery were used to train and calibrate model results from MODIS. Results highlighted interannual variation and seasonal changes in surface water that were observed from the MODIS time series. Static topographic indices that estimate the potential for water accumulation were generated from 30 meter Shuttle Radar Topography Mission (SRTM) elevation data. Integrated fractional surface water cover was developed by combining the static topographic indices and dynamic NDWI indices using Geographic Information System (GIS) overlay methods. Accuracy of the results was evaluated based on ground truth data that was collected on presence and absence of surface water immediately after the rainy season. The study provided a multi-sensor approach for mapping areas with a high potential for surface water accumulation that are potential breeding habitats for anopheline mosquitoes. The resulting products are useful for public health decision making towards effective prevention and control of the malaria burden in the Amhara region of Ethiopia.