Sample records for evaluating corroded pipe

  1. 49 CFR 195.585 - What must I do to correct corroded pipe?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.585 What must I do to correct corroded pipe? (a) General corrosion. If you find pipe so generally corroded that the remaining wall thickness... restore the serviceability of the pipe. (b) Localized corrosion pitting. If you find pipe that has...

  2. 49 CFR 195.585 - What must I do to correct corroded pipe?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.585 What must I do to correct corroded pipe? (a) General corrosion. If you find pipe so generally corroded that the remaining wall thickness... restore the serviceability of the pipe. (b) Localized corrosion pitting. If you find pipe that has...

  3. 49 CFR 195.585 - What must I do to correct corroded pipe?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.585 What must I do to correct corroded pipe? (a) General corrosion. If you find pipe so generally corroded that the remaining wall thickness... restore the serviceability of the pipe. (b) Localized corrosion pitting. If you find pipe that has...

  4. 49 CFR 195.585 - What must I do to correct corroded pipe?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.585 What must I do to correct corroded pipe? (a) General corrosion. If you find pipe so generally corroded that the remaining wall thickness... restore the serviceability of the pipe. (b) Localized corrosion pitting. If you find pipe that has...

  5. 49 CFR 195.585 - What must I do to correct corroded pipe?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.585 What must I do to correct corroded pipe? (a) General corrosion. If you find pipe so generally corroded that the remaining wall thickness... restore the serviceability of the pipe. (b) Localized corrosion pitting. If you find pipe that has...

  6. 49 CFR 195.587 - What methods are available to determine the strength of corroded pipe?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... strength of corroded pipe? 195.587 Section 195.587 Transportation Other Regulations Relating to... methods are available to determine the strength of corroded pipe? Under § 195.585, you may use the procedure in ASME B31G, “Manual for Determining the Remaining Strength of Corroded Pipelines,” or the...

  7. 49 CFR 195.587 - What methods are available to determine the strength of corroded pipe?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... strength of corroded pipe? 195.587 Section 195.587 Transportation Other Regulations Relating to... methods are available to determine the strength of corroded pipe? Under § 195.585, you may use the procedure in ASME B31G, “Manual for Determining the Remaining Strength of Corroded Pipelines,” or the...

  8. Iron release from corroded iron pipes in drinking water distribution systems: effect of dissolved oxygen.

    PubMed

    Sarin, P; Snoeyink, V L; Bebee, J; Jim, K K; Beckett, M A; Kriven, W M; Clement, J A

    2004-03-01

    Iron release from corroded iron pipes is the principal cause of "colored water" problems in drinking water distribution systems. The corrosion scales present in corroded iron pipes restrict the flow of water, and can also deteriorate the water quality. This research was focused on understanding the effect of dissolved oxygen (DO), a key water quality parameter, on iron release from the old corroded iron pipes. Corrosion scales from 70-year-old galvanized iron pipe were characterized as porous deposits of Fe(III) phases (goethite (alpha-FeOOH), magnetite (Fe(3)O(4)), and maghemite (alpha-Fe(2)O(3))) with a shell-like, dense layer near the top of the scales. High concentrations of readily soluble Fe(II) content was present inside the scales. Iron release from these corroded pipes was investigated for both flow and stagnant water conditions. Our studies confirmed that iron was released to bulk water primarily in the ferrous form. When DO was present in water, higher amounts of iron release was observed during stagnation in comparison to flowing water conditions. Additionally, it was found that increasing the DO concentration in water during stagnation reduced the amount of iron release. Our studies substantiate that increasing the concentration of oxidants in water and maintaining flowing conditions can reduce the amount of iron release from corroded iron pipes. Based on our studies, it is proposed that iron is released from corroded iron pipes by dissolution of corrosion scales, and that the microstructure and composition of corrosion scales are important parameters that can influence the amount of iron released from such systems.

  9. Analysis of the microbial communities on corroded concrete sewer pipes--a case study.

    PubMed

    Vincke, E; Boon, N; Verstraete, W

    2001-12-01

    Conventional as well as molecular techniques have been used to determine the microbial communities present on the concrete walls of sewer pipes. The genetic fingerprint of the microbiota on corroded concrete sewer pipes was obtained by means of denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene fragments. The DGGE profiles of the bacterial communities present on the concrete surface changed as observed by shifts occurring at the level of the dominance of bands from non-corroded places to the most severely corroded places. By means of statistical tools, it was possible to distinguish two different groups, corresponding to the microbial communities on corroded and non-corroded surfaces, respectively. Characterization of the microbial communities indicated that the sequences of typical bands showed the highest level of identity to sequences from the bacterial strains Thiobacillus thiooxidans, Acidithiobacillus sp., Mycobacterium sp. and different heterotrophs belonging to the alpha-, beta- and gamma-Proteobacteria, Acidobacteria and Actinobacteria. In addition, the presence of N-acyl-homoserine lactone signal molecules was shown by two bio-assays of the biofilm on the concrete under the water level and at the most severely corroded places on the concrete surface of the sewer pipe.

  10. Metagenome Analyses of Corroded Concrete Wastewater Pipe Biofilms Reveals a Complex Microbial System

    EPA Science Inventory

    Analysis of whole-metagenome pyrosequencing data and 16S rRNA gene clone libraries was used to determine microbial composition and functional genes associated with biomass harvested from crown (top) and invert (bottom) sections of a corroded wastewater pipe. Taxonomic and functio...

  11. Microbial Community Profile of a Lead Service Line Removed from a Drinking Water Distribution System

    EPA Science Inventory

    A corroded lead water pipe was removed from a drinking water distribution system and the microbial community was profiled using 16S rDNA techniques. This is the first report of the characterization of biofilm on a surface of a corroded lead drinking water pipe. The majority of ...

  12. Corrosion of iron by iodide-oxidizing bacteria isolated from brine in an iodine production facility.

    PubMed

    Wakai, Satoshi; Ito, Kimio; Iino, Takao; Tomoe, Yasuyoshi; Mori, Koji; Harayama, Shigeaki

    2014-10-01

    Elemental iodine is produced in Japan from underground brine (fossil salt water). Carbon steel pipes in an iodine production facility at Chiba, Japan, for brine conveyance were found to corrode more rapidly than those in other facilities. The corroding activity of iodide-containing brine from the facility was examined by immersing carbon steel coupons in "native" and "filter-sterilized" brine samples. The dissolution of iron from the coupons immersed in native brine was threefold to fourfold higher than that in the filter-sterilized brine. Denaturing gradient gel electrophoresis analyses revealed that iodide-oxidizing bacteria (IOBs) were predominant in the coupon-containing native brine samples. IOBs were also detected in a corrosion deposit on the inner surface of a corroded pipe. These results strongly suggested the involvement of IOBs in the corrosion of the carbon steel pipes. Of the six bacterial strains isolated from a brine sample, four were capable of oxidizing iodide ion (I(-)) into molecular iodine (I(2)), and these strains were further phylogenetically classified into two groups. The iron-corroding activity of each of the isolates from the two groups was examined. Both strains corroded iron in the presence of potassium iodide in a concentration-dependent manner. This is the first report providing direct evidence that IOBs are involved in iron corrosion. Further, possible mechanisms by which IOBs corrode iron are discussed.

  13. Drinking water and biofilm disinfection by Fenton-like reaction.

    PubMed

    Gosselin, F; Madeira, L M; Juhna, T; Block, J C

    2013-10-01

    A Fenton-like disinfection process was conducted with Fenton's reagent (H2O2) at pH 3 or 5 on autochthonous drinking water biofilms grown on corroded or non-corroded pipe material. The biofilm disinfection by Fenton-like oxidation was limited by the low content of iron and copper in the biomass grown on non-corroded plumbing. It was slightly improved by spiking the distribution system with some additional iron source (soluble iron II or ferrihydrite particles appeared as interesting candidates). However successful in situ disinfection of biofilms was only achieved in fully corroded cast iron pipes using H2O2 and adjusting the pH to 5. These new results provide additional support for the use of Fenton's processes for cleaning drinking water distribution systems contaminated with biological agents or organics. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Optical profilometer using laser based conical triangulation for inspection of inner geometry of corroded pipes in cylindrical coordinates

    NASA Astrophysics Data System (ADS)

    Buschinelli, Pedro D. V.; Melo, João. Ricardo C.; Albertazzi, Armando; Santos, João. M. C.; Camerini, Claudio S.

    2013-04-01

    An axis-symmetrical optical laser triangulation system was developed by the authors to measure the inner geometry of long pipes used in the oil industry. It has a special optical configuration able to acquire shape information of the inner geometry of a section of a pipe from a single image frame. A collimated laser beam is pointed to the tip of a 45° conical mirror. The laser light is reflected in such a way that a radial light sheet is formed and intercepts the inner geometry and forms a bright laser line on a section of the inspected pipe. A camera acquires the image of the laser line through a wide angle lens. An odometer-based triggering system is used to shot the camera to acquire a set of equally spaced images at high speed while the device is moved along the pipe's axis. Image processing is done in real-time (between images acquisitions) thanks to the use of parallel computing technology. The measured geometry is analyzed to identify corrosion damages. The measured geometry and results are graphically presented using virtual reality techniques and devices as 3D glasses and head-mounted displays. The paper describes the measurement principles, calibration strategies, laboratory evaluation of the developed device, as well as, a practical example of a corroded pipe used in an industrial gas production plant.

  15. Handbook of corrosion resistant piping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schweitzer, P.A.

    1985-01-01

    The book deals with pertinent design, installation, corrosion resistance, and economic factors necessary to determine the optimum system to handle specific corrodents. Each of the materials, both metallic and nonmetallic, is discussed individually. Suitable construction materials are indicated for over 500 corrodents. Available sizes, weights, and types of fittings are given for each material. Tables of permissible working pressures based on the Petroleum Refinery Piping Code, USAS B31.3, have been calculated for each alloy. Service ratings are included for everything discussed.

  16. The Effects of Orthophosphate in Drinking Water on the Initial Copper Corrosion Using Atomic Force Microscopy

    EPA Science Inventory

    Corroding of copper piping used in household drinking water plumbing may potentially impacts consumer’s health and economics. Copper corrosion studies conducted on newly corroding material with atomic force microscopy (AFM) may be particularly useful in understanding the impact ...

  17. Corrosion Map for Metal Pipes in Coastal Louisiana

    DOT National Transportation Integrated Search

    2017-12-01

    Transportation agencies often allow metal pipes as an option for cross drains under/along roads and highways. Metal culverts can corrode over time at various rates based on their environmental conditions (e.g., corrosive nature of coastal soils, high...

  18. Chlorine fate and transport in drinking water distribution systems: Results from experimental and modeling studies

    NASA Astrophysics Data System (ADS)

    Clark, Robert M.

    2011-12-01

    It has become generally accepted that water quality can deteriorate in a distribution system through microbiological and chemical reactions in the bulk phase and/or at the pipe wall. The most serious aspect of water quality deterioration in a network is the loss of the disinfectant residual that can weaken the barrier against microbial contamination. Studies have suggested that one factor contributing to the loss of disinfectant residuals is the reaction between bulk phase disinfectants and pipe wall material. Free chlorine loss in corroded metal and PVC pipes, subject to changes in velocity, was assessed during an experiment conducted under controlled conditions in a specially constructed pipe loop located at the US Environmental Protection Agency's (EPA's) Test and Evaluation (T&E) Facility in Cincinnati, Ohio (USA). These studies demonstrated that in older unlined metal pipes, the loss of chlorine residual increases with velocity but that wall demand in PVC was negligible.

  19. Evaluation of Neutron Elastic Scatter (NES) technique for detection of graphitic corrosion in gas cast iron pipe. Final report, March 1996-April 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charatis, G.; Hugg, E.; McEllistrem, M.

    1997-04-01

    PENETRON, Inc., in two phases, demonstrated the effectiveness of its Neutron elastic Scatter (NES) techniques in detecting the change in the carbon weight percentage (CWt%) as a measure of corrosion in gray cast iron pipe. In Phase I, experiments were performed with synthetic standards supplied by IIT Research Institute (IITRI) to test the applicability of the NES techniques. Irradiation experiments performed at the University of Kentucky showed that CWt% could be detected, ranging from 1.6% to 13%, within an uncertainty of around 4%. In Phase II, experiments were performed on seven (7) corroded pipe sections supplied by MichCon. Tests weremore » made on pipe sliced lengthwise into quarter sections, and in re-assembled whole pipe sections. X-ray films of the quarter sections indicated probable areas of corrosion for each quarter section.« less

  20. Surface Characterization on Corrosion By-products on Cu in Drinking Water Pipes

    EPA Science Inventory

    Copper is widely used in house-hold plumbing due to its anti-corrosion property. However, as water travels within the distribution system into corroded copper pipes, copper may be released into consumer’s tap causing major problems. In an attempt to understand the mechanism and...

  1. Implications of nutrient release from iron metal for microbial regrowth in water distribution systems.

    PubMed

    Morton, Siyuan C; Zhang, Yan; Edwards, Marc A

    2005-08-01

    Control of microbial regrowth in iron pipes is a major challenge for water utilities. This work examines the inter-relationship between iron corrosion and bacterial regrowth, with a special focus on the potential of iron pipe to serve as a source of phosphorus. Under some circumstances, corroding iron and steel may serve as a source for all macronutrients necessary for bacterial regrowth including fixed carbon, fixed nitrogen and phosphorus. Conceptual models and experimental data illustrate that levels of phosphorus released from corroding iron are significant relative to that necessary to sustain high levels of biofilm bacteria. Consequently, it may not be possible to control regrowth on iron surfaces by limiting phosphorus in the bulk water.

  2. Morphological and physicochemical characteristics of iron corrosion scales formed under different water source histories in a drinking water distribution system.

    PubMed

    Yang, Fan; Shi, Baoyou; Gu, Junnong; Wang, Dongsheng; Yang, Min

    2012-10-15

    The corrosion scales on iron pipes could have great impact on the water quality in drinking water distribution systems (DWDS). Unstable and less protective corrosion scale is one of the main factors causing "discolored water" issues when quality of water entering into distribution system changed significantly. The morphological and physicochemical characteristics of corrosion scales formed under different source water histories in duration of about two decades were systematically investigated in this work. Thick corrosion scales or densely distributed corrosion tubercles were mostly found in pipes transporting surface water, but thin corrosion scales and hollow tubercles were mostly discovered in pipes transporting groundwater. Magnetite and goethite were main constituents of iron corrosion products, but the mass ratio of magnetite/goethite (M/G) was significantly different depending on the corrosion scale structure and water source conditions. Thick corrosion scales and hard shell of tubercles had much higher M/G ratio (>1.0), while the thin corrosion scales had no magnetite detected or with much lower M/G ratio. The M/G ratio could be used to identify the characteristics and evaluate the performances of corrosion scales formed under different water conditions. Compared with the pipes transporting ground water, the pipes transporting surface water were more seriously corroded and could be in a relatively more active corrosion status all the time, which was implicated by relatively higher siderite, green rust and total iron contents in their corrosion scales. Higher content of unstable ferric components such as γ-FeOOH, β-FeOOH and amorphous iron oxide existed in corrosion scales of pipes receiving groundwater which was less corroded. Corrosion scales on groundwater pipes with low magnetite content had higher surface area and thus possibly higher sorption capacity. The primary trace inorganic elements in corrosion products were Br and heavy metals. Corrosion products obtained from pipes transporting groundwater had higher levels of Br, Ti, Ba, Cu, Sr, V, Cr, La, Pb and As. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Effects of phosphate addition on biofilm bacterial communities and water quality in annular reactors equipped with stainless steel and ductile cast iron pipes.

    PubMed

    Jang, Hyun-Jung; Choi, Young-June; Ro, Hee-Myong; Ka, Jong-Ok

    2012-02-01

    The impact of orthophosphate addition on biofilm formation and water quality was studied in corrosion-resistant stainless steel (STS) pipe and corrosion-susceptible ductile cast iron (DCI) pipe using cultivation and culture-independent approaches. Sample coupons of DCI pipe and STS pipe were installed in annular reactors, which were operated for 9 months under hydraulic conditions similar to a domestic plumbing system. Addition of 5 mg/L of phosphate to the plumbing systems, under low residual chlorine conditions, promoted a more significant growth of biofilm and led to a greater rate reduction of disinfection by-products in DCI pipe than in STS pipe. While the level of THMs (trihalomethanes) increased under conditions of low biofilm concentration, the levels of HAAs (halo acetic acids) and CH (chloral hydrate) decreased in all cases in proportion to the amount of biofilm. It was also observed that chloroform, the main species of THM, was not readily decomposed biologically and decomposition was not proportional to the biofilm concentration; however, it was easily biodegraded after the addition of phosphate. Analysis of the 16S rDNA sequences of 102 biofilm isolates revealed that Proteobacteria (50%) was the most frequently detected phylum, followed by Firmicutes (10%) and Actinobacteria (2%), with 37% of the bacteria unclassified. Bradyrhizobium was the dominant genus on corroded DCI pipe, while Sphingomonas was predominant on non-corroded STS pipe. Methylobacterium and Afipia were detected only in the reactor without added phosphate. PCR-DGGE analysis showed that the diversity of species in biofilm tended to increase when phosphate was added regardless of the pipe material, indicating that phosphate addition upset the biological stability in the plumbing systems.

  4. Heat Pipe Systems

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Solar Fundamentals, Inc.'s hot water system employs space-derived heat pipe technology. It is used by a meat packing plant to heat water for cleaning processing machinery. Unit is complete system with water heater, hot water storage, electrical controls and auxiliary components. Other than fans and a circulating pump, there are no moving parts. System's unique design eliminates problems of balancing, leaking, corroding, and freezing.

  5. Characterization of corrosion scale formed on stainless steel delivery pipe for reclaimed water treatment.

    PubMed

    Cui, Yong; Liu, Shuming; Smith, Kate; Yu, Kanghua; Hu, Hongying; Jiang, Wei; Li, Yuhong

    2016-01-01

    To reveal corrosion behavior of stainless steel delivery pipe used in reclaimed water treatment, this research focused on the morphological, mineralogical and chemical characteristics of stainless steel corrosion scale and corroded passive film. Corrosion scale and coupon samples were taken from a type 304 pipe delivering reclaimed water to a clear well in service for more than 12 years. Stainless steel corrosion scales and four representative pipe coupons were investigated using mineralogy and material science research methods. The results showed corrosion scale was predominantly composed of goethite, lepidocrocite, hematite, magnetite, ferrous oxide, siderite, chrome green and chromite, the same as that of corroded pipe coupons. Hence, corrosion scale can be identified as podiform chromite deposit. The loss of chromium in passive film is a critical phenomenon when stainless steel passive film is damaged by localized corrosion. This may provide key insights toward improving a better comprehension of the formation of stainless steel corrosion scale and the process of localized corrosion. The localized corrosion behavior of stainless steel is directly connected with reclaimed water quality parameters such as residual chlorine, DO, Cl(-) and SO4(2-). In particular, when a certain amount of residual chlorine in reclaimed water is present as an oxidant, ferric iron is the main chemical state of iron minerals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Impact of water quality on chlorine demand of corroding copper

    EPA Pesticide Factsheets

    Copper is widely used in drinking water premise plumbing system materials. In buildings such ashospitals, large and complicated plumbing networks make it difficult to maintain good water quality.Sustaining safe disinfectant residuals throughout a building to protect against waterborne pathogenssuch as Legionella is particularly challenging since copper and other reactive distribution system materialscan exert considerable demands. The objective of this work was to evaluate the impact of pH andorthophosphate on the consumption of free chlorine associated with corroding copper pipes over time. Acopper test-loop pilot system was used to control test conditions and systematically meet the studyobjectives. Chlorine consumption trends attributed to abiotic reactions with copper over time weredifferent for each pH condition tested, and the total amount of chlorine consumed over the test runsincreased with increasing pH. Orthophosphate eliminated chlorine consumption trends with elapsedtime (i.e., chlorine demand was consistent across entire test runs). Orthophosphate also greatly reducedthe total amount of chlorine consumed over the test runs. Interestingly, the total amount of chlorineconsumed and the consumption rate were not pH dependent when orthophosphate was present. Thefindings reflect the complex and competing reactions at the copper pipe wall including corrosion,oxidation of Cu(I) minerals and ions, and possible oxidation of Cu(II) minerals, and the change in

  7. EFFECT OF BACTERIAL SULFATE REDUCTION ON IRON-CORROSION SCALES

    EPA Science Inventory

    Iron-sulfur geochemistry is important in many natural and engineered environments including drinking water systems. In the anaerobic environment beneath scales of corroding iron drinking water distribution system pipes, sulfate reducing bacteria (SRB) produce sulfide from natura...

  8. Remaining Strength of Corroded Pipe Under Secondary (Biaxial) Loading

    DOT National Transportation Integrated Search

    2009-08-01

    Corrosion metal-loss is one of the major damage mechanisms to transmission pipelines worldwide. Several methods have been developed for assessment of corrosion defects, such as ASME B31G, RSTRENG and LPC. These methods were derived based on experimen...

  9. Project #153M: Guidance for Assessing the Remaining Strength of Corroded Pipelines

    DOT National Transportation Integrated Search

    2010-04-01

    Incident statistics have consistently shown that corrosion is the primary cause of pipeline failures in liquid pipelines, and is the second largest cause of failures in natural gas transmission pipelines and distribution piping. Corrosion can cause m...

  10. GEOCHEMISTRY OF SULFUR IN IRON CORROSION SCALES FOUND IN DRINKING WATER DISTRIBUTION SYSTEMS

    EPA Science Inventory

    Iron-sulfur geochemistry is important in many natural and engineered environments, including drinking water systems. In the anaerobic environment beneath scales of corroding iron drinking water distribution system pipes, sulfate reducing bacteria (SRB) produce sulfide from natu...

  11. Ultrasonic Device Would Open Pipe Bombs

    NASA Technical Reports Server (NTRS)

    El-Raheb, Michael S.; Adams, Marc A.; Zwissler, James G.

    1991-01-01

    Piezoelectric ultrasonic transducer, energized by frequency generator and power supply, vibrates shell of pipe bomb while hardly disturbing explosive inner material. Frequency-control circuitry senses resonance in shell and holds generator at that frequency to induce fatigue cracking in threads of end cap. In addition to disarming bombs, ultrasonically induced fatigue may have other applications. In manufacturing, replaces some machining and cutting operations. In repair of equipment, cleanly and quickly disassembles corroded parts. In demolition of buildings used to dismember steel framework safely and controllably.

  12. THE EFFECT OF CHLORIDE AND ORTHOPHOSPHATE ON THE RELEASE OF IRON FROM DRINKING WATER DISTRIBUTION SYSTEM CAST IRON MAIN

    EPA Science Inventory

    “Colored water” resulting from suspended iron particles is a common drinking water consumer complaint which is largely impacted by water chemistry. A bench scale study, performed on a 90 year-old corroded cast-iron pipe section removed from a drinking water distribution system, w...

  13. Impact of water quality on chlorine demand of corroding copper.

    PubMed

    Lytle, Darren A; Liggett, Jennifer

    2016-04-01

    Copper is widely used in drinking water premise plumbing system materials. In buildings such as hospitals, large and complicated plumbing networks make it difficult to maintain good water quality. Sustaining safe disinfectant residuals throughout a building to protect against waterborne pathogens such as Legionella is particularly challenging since copper and other reactive distribution system materials can exert considerable demands. The objective of this work was to evaluate the impact of pH and orthophosphate on the consumption of free chlorine associated with corroding copper pipes over time. A copper test-loop pilot system was used to control test conditions and systematically meet the study objectives. Chlorine consumption trends attributed to abiotic reactions with copper over time were different for each pH condition tested, and the total amount of chlorine consumed over the test runs increased with increasing pH. Orthophosphate eliminated chlorine consumption trends with elapsed time (i.e., chlorine demand was consistent across entire test runs). Orthophosphate also greatly reduced the total amount of chlorine consumed over the test runs. Interestingly, the total amount of chlorine consumed and the consumption rate were not pH dependent when orthophosphate was present. The findings reflect the complex and competing reactions at the copper pipe wall including corrosion, oxidation of Cu(I) minerals and ions, and possible oxidation of Cu(II) minerals, and the change in chlorine species all as a function of pH. The work has practical applications for maintaining chlorine residuals in premise plumbing drinking water systems including large buildings such as hospitals. Published by Elsevier Ltd.

  14. Physical characterization and recovery of corroded fingerprint impressions from postblast copper pipe bomb fragments.

    PubMed

    Bond, John W; Brady, Thomas F

    2013-05-01

    Pipe bombs made from 1 mm thick copper pipe were detonated with a low explosive power powder. Analysis of the physical characteristics of fragments revealed that the copper had undergone work hardening with an increased Vickers Hardness of 107HV1 compared with 80HV1 for unexploded copper pipe. Mean plastic strain prior to fracture was calculated at 0.28 showing evidence of both plastic deformation and wall thinning. An examination of the external surface showed microfractures running parallel with the length of the pipe at approximately 100 μm intervals and 1-2 μm in width. Many larger fragments had folded "inside out" making the original outside surface inaccessible and difficult to fold back through work hardening. A visual examination for fingerprint corrosion revealed ridge details on several fragments that were enhanced by selective digital mapping of colors reflected from the surface of the copper. One of these fingerprints was identified partially to the original donor. © 2013 American Academy of Forensic Sciences.

  15. Assessment of water pipes durability under pressure surge

    NASA Astrophysics Data System (ADS)

    Pham Ha, Hai; Minh, Lanh Pham Thi; Tang Van, Lam; Bulgakov, Boris; Bazhenova, Soafia

    2017-10-01

    Surge phenomenon occurs on the pipeline by the closing valve or pump suddenly lost power. Due to the complexity of the water hammer simulation, previous researches have only considered water hammer on the single pipe or calculation of some positions on water pipe network, it have not been analysis for all of pipe on the water distribution systems. Simulation of water hammer due to closing valve on water distribution system and the influence level of pressure surge is evaluated at the defects on pipe. Water hammer on water supply pipe network are simulated by Water HAMMER software academic version and the capacity of defects are calculated by SINTAP. SINTAP developed from Brite-Euram projects in Brussels-Belgium with the aim to develop a process for assessing the integrity of the structure for the European industry. Based on the principle of mechanical fault, indicating the size of defects in materials affect the load capacity of the product in the course of work, the process has proposed setting up the diagram to fatigue assessment defect (FAD). The methods are applied for water pipe networks of Lien Chieu district, Da Nang city, Viet Nam, the results show the affected area of wave pressure by closing the valve and thereby assess the greatest pressure surge effect to corroded pipe. The SINTAP standard and finite element mesh analysis at the defect during the occurrence of pressure surge which will accurately assess the bearing capacity of the old pipes. This is one of the bases to predict the leakage locations on the water distribution systems. Amount of water hammer when identified on the water supply networks are decreasing due to local losses at the nodes as well as the friction with pipe wall, so this paper adequately simulate water hammer phenomena applying for actual water distribution systems. The research verified that pipe wall with defect is damaged under the pressure surge value.

  16. Decontamination of Bacillus spores adhered to iron and cement-mortar drinking water infrastructure in a model system using disinfectants.

    PubMed

    Szabo, Jeffrey G; Meiners, Greg; Heckman, Lee; Rice, Eugene W; Hall, John

    2017-02-01

    Decontamination of Bacillus spores adhered to common drinking water infrastructure surfaces was evaluated using a variety of disinfectants. Corroded iron and cement-mortar lined iron represented the infrastructure surfaces, and were conditioned in a 23 m long, 15 cm diameter (75 ft long, 6 in diameter) pilot-scale drinking water distribution pipe system. Decontamination was evaluated using increased water velocity (flushing) alone at 0.5 m s -1 (1.7 ft s -1 ), as well as free chlorine (5 and 25 mg L -1 ), monochloramine (25 mg L -1 ), chlorine dioxide (5 and 25 mg L -1 ), ozone (2.0 mg L -1 ), peracetic acid 25 mg L -1 ) and acidified nitrite (0.1 mol L -1 at pH 2 and 3), all followed by flushing at 0.3 m s -1 (1 ft s -1 ). Flushing alone reduced the adhered spores by 0.5 and 2.0 log 10 from iron and cement-mortar, respectively. Log 10 reduction on corroded iron pipe wall coupons ranged from 1.0 to 2.9 at respective chlorine dioxide concentrations of 5 and 25 mg L -1 , although spores were undetectable on the iron surface during disinfection at 25 mg L -1 . Acidified nitrite (pH 2, 0.1 mol L -1 ) yielded no detectable spores on the iron surface during the flushing phase after disinfection. Chlorine dioxide was the best performing disinfectant with >3.0 log 10 removal from cement-mortar at 5 and 25 mg L -1 . The data show that free chlorine, monochloramine, ozone and chlorine dioxide followed by flushing can reduce adhered spores by > 3.0 log 10 on cement-mortar. Published by Elsevier Ltd.

  17. Coliform culturability in over- versus undersaturated drinking waters.

    PubMed

    Grandjean, D; Fass, S; Tozza, D; Cavard, J; Lahoussine, V; Saby, S; Guilloteau, H; Block, J-C

    2005-05-01

    The culturability of Escherichia coli in undersaturated drinking water with respect to CaCO3 (corrosive water) or in oversaturated water (non-corrosive water) was tested in different reactors: glass flasks (batch, "non-reactive" wall); glass reactors (chemostat, "non-reactive" wall) versus a corroded cast iron Propella reactor (chemostat, "reactive" wall) and a 15-year-old distribution system pilot (chemostat, "reactive" wall with 1% corroded cast iron and 99% cement-lined cast iron). The E. coli in E. coli-spiked drinking water was not able to maintain its culturability and colonize the experimental systems. It appears from our results that the optimal pH for maintaining E. coli culturability was around 8.2 or higher. However, in reactors with a reactive wall (corroded cast iron), the decline in E. coli culturability was slower when the pH was adjusted to 7.9 or 7.7 (i.e. a reactor fed with corrosive water; pHpHs). We tentatively deduce that corrosion products coming from chemical reactions driven by corrosive waters on the pipe wall improve E. coli culturability.

  18. [Analysis of different pipe corrosion by ESEM and bacteria identification by API in pilot distribution network].

    PubMed

    Wu, Qing; Zhao, Xinhua; Yu, Qing; Li, Jun

    2008-07-01

    To understand the corrosion of different material water supply pipelines and bacterium in drinking water and biofilms. A pilot distribution network was built and water quality detection was made on popular pipelines of galvanized iron pipe, PPR and ABS plastic pipes by ESEM (environmental scanning electron microscopy). Bacterium in drinking water and biofilms were identified by API Bacteria Identification System 10s and 20E (Biomerieux, France), and pathogenicity of bacterium were estimated. Galvanized zinc pipes were seriously corroded; there were thin layers on inner face of PPR and ABS plastic pipes. 10 bacterium (got from water samples) were identified by API10S, in which 7 bacterium were opportunistic pathogens. 21 bacterium (got from water and biofilms samples) were identified by API20E, in which 5 bacterium were pathogens and 11 bacterium were opportunistic pathogens and 5 bacteria were not reported for their pathogenicities to human beings. The bacterial water quality of drinking water distribution networks were not good. Most bacterium in drinking water and biofilms on the inner face of pipeline of the drinking water distribution network were opportunistic pathogens, it could cause serious water supply accident, if bacteria spread in suitable conditions. In the aspect of pipe material, old pipelines should be changed by new material pipes.

  19. The Effect of Corrosion on the Seismic Behavior of Buried Pipelines and a Remedy for Their Seismic Retrofit

    NASA Astrophysics Data System (ADS)

    Hosseini, Mahmood; Salek, Shamila; Moradi, Masoud

    2008-07-01

    The effect of corrosion phenomenon has been investigated by performing some sets of 3-Dimensional Nonlinear Time History Analysis (3-D NLTHA) in which soil structure interaction as well as wave propagation effects have been taken into consideration. The 3-D NLTHA has been performed by using a finite element computer program, and both states of overall and local corrosions have been considered for the study. The corrosion has been modeled in the computer program by introducing decreased values of either pipe wall thickness or modulus of elasticity and Poisson ratio. Three sets of 3-component accelerograms have been used in analyses, and some appropriate numbers of zeros have been added at the beginning of records to take into account the wave propagation in soil and its multi-support excitation effect. The soil has been modeled by nonlinear springs in longitudinal, lateral, and vertical directions. A relatively long segment of the pipeline has been considered for the study and the effect of end conditions has been investigated by assuming different kinds end supports for the segment. After studying the corroded pipeline, a remedy has been considered for the seismic retrofit of corroded pipe by using a kind of Fiber Reinforced Polymers (FRP) cover. The analyses have been repeated for the retrofitted pipeline to realize the adequacy of FRP cover. Numerical results show that if the length of the pipeline segment is large enough, comparing to the wave length of shear wave in the soil, the end conditions do not have any major effect on the maximum stress and strain values in the pipe. Results also show that corrosion can lead to the increase in plastic strain values in the pipe up to 4 times in the case of overall corrosion and up to 20 times in the case of local corrosion. The satisfactory effect of using FRP cover is also shown by the analyses results, which confirm the decrease of strain values to 1/3.

  20. Metagenome analyses of corroded concrete wastewater pipe biofilms reveal a complex microbial system.

    PubMed

    Gomez-Alvarez, Vicente; Revetta, Randy P; Santo Domingo, Jorge W

    2012-06-22

    Concrete corrosion of wastewater collection systems is a significant cause of deterioration and premature collapse. Failure to adequately address the deteriorating infrastructure networks threatens our environment, public health, and safety. Analysis of whole-metagenome pyrosequencing data and 16S rRNA gene clone libraries was used to determine microbial composition and functional genes associated with biomass harvested from crown (top) and invert (bottom) sections of a corroded wastewater pipe. Taxonomic and functional analysis demonstrated that approximately 90% of the total diversity was associated with the phyla Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria. The top (TP) and bottom pipe (BP) communities were different in composition, with some of the differences attributed to the abundance of sulfide-oxidizing and sulfate-reducing bacteria. Additionally, human fecal bacteria were more abundant in the BP communities. Among the functional categories, proteins involved in sulfur and nitrogen metabolism showed the most significant differences between biofilms. There was also an enrichment of genes associated with heavy metal resistance, virulence (protein secretion systems) and stress response in the TP biofilm, while a higher number of genes related to motility and chemotaxis were identified in the BP biofilm. Both biofilms contain a high number of genes associated with resistance to antibiotics and toxic compounds subsystems. The function potential of wastewater biofilms was highly diverse with level of COG diversity similar to that described for soil. On the basis of the metagenomic data, some factors that may contribute to niche differentiation were pH, aerobic conditions and availability of substrate, such as nitrogen and sulfur. The results from this study will help us better understand the genetic network and functional capability of microbial members of wastewater concrete biofilms.

  1. Metagenome analyses of corroded concrete wastewater pipe biofilms reveal a complex microbial system

    PubMed Central

    2012-01-01

    Background Concrete corrosion of wastewater collection systems is a significant cause of deterioration and premature collapse. Failure to adequately address the deteriorating infrastructure networks threatens our environment, public health, and safety. Analysis of whole-metagenome pyrosequencing data and 16S rRNA gene clone libraries was used to determine microbial composition and functional genes associated with biomass harvested from crown (top) and invert (bottom) sections of a corroded wastewater pipe. Results Taxonomic and functional analysis demonstrated that approximately 90% of the total diversity was associated with the phyla Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria. The top (TP) and bottom pipe (BP) communities were different in composition, with some of the differences attributed to the abundance of sulfide-oxidizing and sulfate-reducing bacteria. Additionally, human fecal bacteria were more abundant in the BP communities. Among the functional categories, proteins involved in sulfur and nitrogen metabolism showed the most significant differences between biofilms. There was also an enrichment of genes associated with heavy metal resistance, virulence (protein secretion systems) and stress response in the TP biofilm, while a higher number of genes related to motility and chemotaxis were identified in the BP biofilm. Both biofilms contain a high number of genes associated with resistance to antibiotics and toxic compounds subsystems. Conclusions The function potential of wastewater biofilms was highly diverse with level of COG diversity similar to that described for soil. On the basis of the metagenomic data, some factors that may contribute to niche differentiation were pH, aerobic conditions and availability of substrate, such as nitrogen and sulfur. The results from this study will help us better understand the genetic network and functional capability of microbial members of wastewater concrete biofilms. PMID:22727216

  2. Modeling MIC copper release from drinking water pipes.

    PubMed

    Pizarro, Gonzalo E; Vargas, Ignacio T; Pastén, Pablo A; Calle, Gustavo R

    2014-06-01

    Copper is used for household drinking water distribution systems given its physical and chemical properties that make it resistant to corrosion. However, there is evidence that, under certain conditions, it can corrode and release unsafe concentrations of copper to the water. Research on drinking water copper pipes has developed conceptual models that include several physical-chemical mechanisms. Nevertheless, there is still a necessity for the development of mathematical models of this phenomenon, which consider the interaction among physical-chemical processes at different spatial scales. We developed a conceptual and a mathematical model that reproduces the main processes in copper release from copper pipes subject to stagnation and flow cycles, and corrosion is associated with biofilm growth on the surface of the pipes. We discuss the influence of the reactive surface and the copper release curves observed. The modeling and experimental observations indicated that after 10h stagnation, the main concentration of copper is located close to the surface of the pipe. This copper is associated with the reactive surface, which acts as a reservoir of labile copper. Thus, for pipes with the presence of biofilm the complexation of copper with the biomass and the hydrodynamics are the main mechanisms for copper release. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Sensory aspects of drinking water in contact with epoxy lined copper pipe.

    PubMed

    Heim, T H; Dietrich, A M

    2007-01-01

    Pipe relining via in situ epoxy lining is used to remediate corroded plumbing or distribution systems. This investigation examined the effects on odour, TOC, THM formation and disinfectant demand in water exposed to epoxy-lined copper pipes used for home plumbing. The study was conducted in accordance with the Utility Quick Test, a migration/leaching method for utilities to conduct sensory analysis of materials in contact with drinking water. The test was performed using water with no disinfectant and levels of chlorine and monochloramines representative of those found in the distribution system. Panelists repeatedly and consistently described a "plastic/adhesive/putty" odour in the water from the pipes. The odour intensity remained relatively constant for each of two subsequent flushes. Water samples stored in the epoxy-lined pipes showed a significant increase in the leaching of organic compounds (as TOC), and this TOC was demonstrated to react with free chlorine to form trichloromethane. Water stored in the pipes also showed a marked increase in disinfectant demand relative to the water stored in glass control flasks. A study conducted at a full scale installation at an apartment demonstrated that after installation and regular use, the epoxy lining did not yield detectable differences in water quality.

  4. [Effect of the change in sulphate and dissolved oxygen mass concentration on metal release in old cast iron distribution pipes].

    PubMed

    Wu, Yong-li; Shi, Bao-you; Sun, Hui-fang; Zhang, Zhi-huan; Gu, Jun-nong; Wang, Dong-sheng

    2013-09-01

    To understand the processes of corrosion by-product release and the consequent "red water" problems caused by the variation of water chemical composition in drinking water distribution system, the effect of sulphate and dissolved oxygen (DO) concentration on total iron release in corroded old iron pipe sections historically transporting groundwater was investigated in laboratory using small-scale pipe section reactors. The release behaviors of some low-level metals, such as Mn, As, Cr, Cu, Zn and Ni, in the process of iron release were also monitored. The results showed that the total iron and Mn release increased significantly with the increase of sulphate concentration, and apparent red water occurred when sulphate concentration was above 400 mg x L(-1). With the increase of sulfate concentration, the effluent concentrations of As, Cr, Cu, Zn and Ni also increased obviously, however, the effluent concentrations of these metals were lower than the influent concentrations under most circumstances, which indicated that adsorption of these metals by pipe corrosion scales occurred. Increasing DO within a certain range could significantly inhibit the iron release.

  5. Identification of failure type in corroded pipelines: a bayesian probabilistic approach.

    PubMed

    Breton, T; Sanchez-Gheno, J C; Alamilla, J L; Alvarez-Ramirez, J

    2010-07-15

    Spillover of hazardous materials from transport pipelines can lead to catastrophic events with serious and dangerous environmental impact, potential fire events and human fatalities. The problem is more serious for large pipelines when the construction material is under environmental corrosion conditions, as in the petroleum and gas industries. In this way, predictive models can provide a suitable framework for risk evaluation, maintenance policies and substitution procedure design that should be oriented to reduce increased hazards. This work proposes a bayesian probabilistic approach to identify and predict the type of failure (leakage or rupture) for steel pipelines under realistic corroding conditions. In the first step of the modeling process, the mechanical performance of the pipe is considered for establishing conditions under which either leakage or rupture failure can occur. In the second step, experimental burst tests are used to introduce a mean probabilistic boundary defining a region where the type of failure is uncertain. In the boundary vicinity, the failure discrimination is carried out with a probabilistic model where the events are considered as random variables. In turn, the model parameters are estimated with available experimental data and contrasted with a real catastrophic event, showing good discrimination capacity. The results are discussed in terms of policies oriented to inspection and maintenance of large-size pipelines in the oil and gas industry. 2010 Elsevier B.V. All rights reserved.

  6. Characteristics of iron corrosion scales and water quality variations in drinking water distribution systems of different pipe materials.

    PubMed

    Li, Manjie; Liu, Zhaowei; Chen, Yongcan; Hai, Yang

    2016-12-01

    Interaction between old, corroded iron pipe surfaces and bulk water is crucial to the water quality protection in drinking water distribution systems (WDS). Iron released from corrosion products will deteriorate water quality and lead to red water. This study attempted to understand the effects of pipe materials on corrosion scale characteristics and water quality variations in WDS. A more than 20-year-old hybrid pipe section assembled of unlined cast iron pipe (UCIP) and galvanized iron pipe (GIP) was selected to investigate physico-chemical characteristics of corrosion scales and their effects on water quality variations. Scanning Electron Microscope (SEM), Energy Dispersive X-ray Spectroscopy (EDS), Inductively Coupled Plasma (ICP) and X-ray Diffraction (XRD) were used to analyze micromorphology and chemical composition of corrosion scales. In bench testing, water quality parameters, such as pH, dissolved oxygen (DO), oxidation reduction potential (ORP), alkalinity, conductivity, turbidity, color, Fe 2+ , Fe 3+ and Zn 2+ , were determined. Scale analysis and bench-scale testing results demonstrated a significant effect of pipe materials on scale characteristics and thereby water quality variations in WDS. Characteristics of corrosion scales sampled from different pipe segments show obvious differences, both in physical and chemical aspects. Corrosion scales were found highly amorphous. Thanks to the protection of zinc coatings, GIP system was identified as the best water quality stability, in spite of high zinc release potential. It is deduced that the complicated composition of corrosion scales and structural break by the weld result in the diminished water quality stability in HP system. Measurement results showed that iron is released mainly in ferric particulate form. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Corrosive microenvironments at lead solder surfaces arising from galvanic corrosion with copper pipe.

    PubMed

    Nguyen, Caroline K; Stone, Kendall R; Dudi, Abhijeet; Edwards, Marc A

    2010-09-15

    As stagnant water contacts copper pipe and lead solder (simulated soldered joints), a corrosion cell is formed between the metals in solder (Pb, Sn) and the copper. If the resulting galvanic current exceeds about 2 μA/cm(2), a highly corrosive microenvironment can form at the solder surface, with pH < 2.5 and chloride concentrations at least 11 times higher than bulk water levels. Waters with relatively high chloride tend to sustain high galvanic currents, preventing passivation of the solder surface, and contributing to lead contamination of potable water supplies. The total mass of lead corroded was consistent with predictions based on the galvanic current, and lead leaching to water was correlated with galvanic current. If the concentration of sulfate in the water increased relative to chloride, galvanic currents and associated lead contamination could be greatly reduced, and solder surfaces were readily passivated.

  8. Effect of pipe corrosion scales on chlorine dioxide consumption in drinking water distribution systems.

    PubMed

    Zhang, Zhe; Stout, Janet E; Yu, Victor L; Vidic, Radisav

    2008-01-01

    Previous studies showed that temperature and total organic carbon in drinking water would cause chlorine dioxide (ClO(2)) loss in a water distribution system and affect the efficiency of ClO(2) for Legionella control. However, among the various causes of ClO(2) loss in a drinking water distribution system, the loss of disinfectant due to the reaction with corrosion scales has not been studied in detail. In this study, the corrosion scales from a galvanized iron pipe and a copper pipe that have been in service for more than 10 years were characterized by energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The impact of these corrosion scale materials on ClO(2) decay was investigated in de-ionized water at 25 and 45 degrees C in a batch reactor with floating glass cover. ClO(2) decay was also investigated in a specially designed reactor made from the iron and copper pipes to obtain more realistic reaction rate data. Goethite (alpha-FeOOH) and magnetite (Fe(3)O(4)) were identified as the main components of iron corrosion scale. Cuprite (Cu(2)O) was identified as the major component of copper corrosion scale. The reaction rate of ClO(2) with both iron and copper oxides followed a first-order kinetics. First-order decay rate constants for ClO(2) reactions with iron corrosion scales obtained from the used service pipe and in the iron pipe reactor itself ranged from 0.025 to 0.083 min(-1). The decay rate constant for ClO(2) with Cu(2)O powder and in the copper pipe reactor was much smaller and it ranged from 0.0052 to 0.0062 min(-1). Based on these results, it can be concluded that the corrosion scale will cause much more significant ClO(2) loss in corroded iron pipes of the distribution system than the total organic carbon that may be present in finished water.

  9. High-Cycle Fatigue of High-Strength Low Alloy Steel Q345 Subjected to Immersion Corrosion for Mining Wheel Applications

    NASA Astrophysics Data System (ADS)

    Dicecco, Sante; Altenhof, William; Hu, Henry; Banting, Richard

    2017-04-01

    In an effort to better understand the impact of material degradation on the fatigue life of mining wheels made of a high-strength low alloy carbon steel (Q345), this study seeks to evaluate the effect of surface corrosion on the high-cycle fatigue behavior of the Q345 alloy. The fatigue behavior of the polished and corroded alloy was investigated. Following exposure to a 3.5 wt.% NaCl saltwater solution, polished and corroded fatigue specimens were tested using an R.R. Moore rotating-bending fatigue apparatus. Microstructural analyses via both optical microscopy and scanning electron microscopy (SEM) revealed that one major phase, α-iron phase, ferrite, and one minor phase, colony pearlite, existed in the extracted Q345 alloy. The results of the fatigue testing showed that the polished and corroded specimens had an endurance strength of approximately 295 and 222 MPa, respectively, at 5,000,000 cycles. The corroded surface condition resulted in a decrease in the fatigue strength of the Q345 alloy by 24.6%. Scanning electron microscope fractography indicated that failure modes for polished and corroded fatigue specimens were consistent in the high-cycle low loading fatigue regime. Conversely, SEM fractography of low-cycle high-loading fatigue specimens found considerable differences in fracture surfaces between the corroded and polished fatigue specimens.

  10. Three-Dimensional Surface Parameters and Multi-Fractal Spectrum of Corroded Steel

    PubMed Central

    Shanhua, Xu; Songbo, Ren; Youde, Wang

    2015-01-01

    To study multi-fractal behavior of corroded steel surface, a range of fractal surfaces of corroded surfaces of Q235 steel were constructed by using the Weierstrass-Mandelbrot method under a high total accuracy. The multi-fractal spectrum of fractal surface of corroded steel was calculated to study the multi-fractal characteristics of the W-M corroded surface. Based on the shape feature of the multi-fractal spectrum of corroded steel surface, the least squares method was applied to the quadratic fitting of the multi-fractal spectrum of corroded surface. The fitting function was quantitatively analyzed to simplify the calculation of multi-fractal characteristics of corroded surface. The results showed that the multi-fractal spectrum of corroded surface was fitted well with the method using quadratic curve fitting, and the evolution rules and trends were forecasted accurately. The findings can be applied to research on the mechanisms of corroded surface formation of steel and provide a new approach for the establishment of corrosion damage constitutive models of steel. PMID:26121468

  11. Three-Dimensional Surface Parameters and Multi-Fractal Spectrum of Corroded Steel.

    PubMed

    Shanhua, Xu; Songbo, Ren; Youde, Wang

    2015-01-01

    To study multi-fractal behavior of corroded steel surface, a range of fractal surfaces of corroded surfaces of Q235 steel were constructed by using the Weierstrass-Mandelbrot method under a high total accuracy. The multi-fractal spectrum of fractal surface of corroded steel was calculated to study the multi-fractal characteristics of the W-M corroded surface. Based on the shape feature of the multi-fractal spectrum of corroded steel surface, the least squares method was applied to the quadratic fitting of the multi-fractal spectrum of corroded surface. The fitting function was quantitatively analyzed to simplify the calculation of multi-fractal characteristics of corroded surface. The results showed that the multi-fractal spectrum of corroded surface was fitted well with the method using quadratic curve fitting, and the evolution rules and trends were forecasted accurately. The findings can be applied to research on the mechanisms of corroded surface formation of steel and provide a new approach for the establishment of corrosion damage constitutive models of steel.

  12. High-Resolution Microbial Community Succession of Microbially Induced Concrete Corrosion in Working Sanitary Manholes

    PubMed Central

    Ling, Alison L.; Robertson, Charles E.; Harris, J. Kirk; Frank, Daniel N.; Kotter, Cassandra V.; Stevens, Mark J.; Pace, Norman R.; Hernandez, Mark T.

    2015-01-01

    Microbially-induced concrete corrosion in headspaces threatens wastewater infrastructure worldwide. Models for predicting corrosion rates in sewer pipe networks rely largely on information from culture-based investigations. In this study, the succession of microbes associated with corroding concrete was characterized over a one-year monitoring campaign using rRNA sequence-based phylogenetic methods. New concrete specimens were exposed in two highly corrosive manholes (high concentrations of hydrogen sulfide and carbon dioxide gas) on the Colorado Front Range for up to a year. Community succession on corroding surfaces was assessed using Illumina MiSeq sequencing of 16S bacterial rRNA amplicons and Sanger sequencing of 16S universal rRNA clones. Microbial communities associated with corrosion fronts presented distinct succession patterns which converged to markedly low α-diversity levels (< 10 taxa) in conjunction with decreasing pH. The microbial community succession pattern observed in this study agreed with culture-based models that implicate acidophilic sulfur-oxidizer Acidithiobacillus spp. in advanced communities, with two notable exceptions. Early communities exposed to alkaline surface pH presented relatively high α-diversity, including heterotrophic, nitrogen-fixing, and sulfur-oxidizing genera, and one community exposed to neutral surface pH presented a diverse transition community comprised of less than 20% sulfur-oxidizers. PMID:25748024

  13. High-resolution microbial community succession of microbially induced concrete corrosion in working sanitary manholes.

    PubMed

    Ling, Alison L; Robertson, Charles E; Harris, J Kirk; Frank, Daniel N; Kotter, Cassandra V; Stevens, Mark J; Pace, Norman R; Hernandez, Mark T

    2015-01-01

    Microbially-induced concrete corrosion in headspaces threatens wastewater infrastructure worldwide. Models for predicting corrosion rates in sewer pipe networks rely largely on information from culture-based investigations. In this study, the succession of microbes associated with corroding concrete was characterized over a one-year monitoring campaign using rRNA sequence-based phylogenetic methods. New concrete specimens were exposed in two highly corrosive manholes (high concentrations of hydrogen sulfide and carbon dioxide gas) on the Colorado Front Range for up to a year. Community succession on corroding surfaces was assessed using Illumina MiSeq sequencing of 16S bacterial rRNA amplicons and Sanger sequencing of 16S universal rRNA clones. Microbial communities associated with corrosion fronts presented distinct succession patterns which converged to markedly low α-diversity levels (< 10 taxa) in conjunction with decreasing pH. The microbial community succession pattern observed in this study agreed with culture-based models that implicate acidophilic sulfur-oxidizer Acidithiobacillus spp. in advanced communities, with two notable exceptions. Early communities exposed to alkaline surface pH presented relatively high α-diversity, including heterotrophic, nitrogen-fixing, and sulfur-oxidizing genera, and one community exposed to neutral surface pH presented a diverse transition community comprised of less than 20% sulfur-oxidizers.

  14. Failure of 307 basin transfer line and resultant ground contamination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denham, D.H.

    1970-01-01

    A leak of apparently long duration was discovered on December 9, 1965, in the transfer line from the 307 retention basins to the 340 contaminated waste system during the transfer of liquid from one of the 307 basins. This line was designed to carry only mildly-contaminated retention system waste. However, the uncovered line suggests that, over a period of time, the bottom half of the carbon steel transition section between the transfer line and the 340 contaminated waste system was corroded out. This permitted the highly contaminated waste to percolate into the soil beneath the missing pipe section. Since neithermore » the duration of leakage nor the exact origin or nature of the contaminants were known, this study was undertaken to: (1) estimate the amount of radioactivity released; (2) document its location with respect to the 340 Area and to the underlying groundwater; and (3) investigate its potential environmental impact. Soil samples were collected to determine the approximate location and quantity of each of the radionuclides which had leaked to the soil. One-digit accuracy was deemed sufficient to decide what, if any, action would be required. The findings from the several exploratory holes drilled at and adjacent to the site of the corroded transfer line are reported. (auth)« less

  15. Hydrogen sulphide removal from corroding concrete: comparison between surface removal rates and biomass activity.

    PubMed

    Jensen, H S; Nielsen, A H; Lens, P N L; Hvitved-Jacobsen, T; Vollertsen, J

    2009-11-01

    Corrosion of concrete sewer pipes caused by hydrogen sulphide is a problem in many sewer networks. The mechanisms of production and fate of hydrogen sulphide in the sewer biofilms and wastewater as well as its release to the sewer atmosphere are largely understood. In contrast, the mechanisms of the uptake of hydrogen sulphide on the concrete surfaces and subsequent concrete corrosion are basically unknown. To shed light on these mechanisms, the uptake of hydrogen sulphide from a sewer gas phase was compared to the biological hydrogen sulphide removal potential of the concrete corrosion products. The results showed that both microbial degradation at and sorption to the concrete surfaces were important for the uptake of hydrogen sulphide on the concrete surfaces.

  16. Attachment of Porphyromonas gingivalis to corroded commercially pure titanium and titanium-aluminum-vanadium alloy.

    PubMed

    Barão, Valentim A R; Yoon, Cheon Joo; Mathew, Mathew T; Yuan, Judy Chia-Chun; Wu, Christine D; Sukotjo, Cortino

    2014-09-01

    Titanium dental material can become corroded because of electrochemical interaction in the oral environment. The corrosion process may result in surface modification. It was hypothesized that a titanium surface modified by corrosion may enhance the attachment of periodontal pathogens. This study evaluates the effects of corroded titanium surfaces on the attachment of Porphyromonas gingivalis. Commercially pure titanium (cp-Ti) and titanium-aluminum-vanadium alloy (Ti-6Al-4V) disks were used. Disks were anodically polarized in a standard three-electrode setting in a simulated oral environment with artificial saliva at pH levels of 3.0, 6.5, or 9.0. Non-corroded disks were used as controls. Surface roughness was measured before and after corrosion. Disks were inoculated with P. gingivalis and incubated anaerobically at 37°C. After 6 hours, the disks with attached P. gingivalis were stained with crystal violet, and attachment was expressed based on dye absorption at optical density of 550 nm. All assays were performed independently three times in triplicate. Data were analyzed by two-way analysis of variance, the Tukey honestly significant difference test, t test, and Pearson's correlation test (α = 0.05). Both cp-Ti and Ti-6Al-4V alloy-corroded disks promoted significantly more bacterial attachment (11.02% and 41.78%, respectively; P <0.0001) than did the non-corroded controls. Significantly more (11.8%) P. gingivalis attached to the cp-Ti disks than to the Ti-6Al-4V alloy disks (P <0.05). No significant difference in P. gingivalis attachment was noted among the corroded groups for both cp-Ti and Ti-6Al-4V alloy (P >0.05). There was no significant correlation between surface roughness and P. gingivalis attachment. A higher degree of corrosion on the titanium surface may promote increased bacterial attachment by oral pathogens.

  17. Evaluating the use of laser radiation in cleaning of copper embroidery threads on archaeological Egyptian textiles

    NASA Astrophysics Data System (ADS)

    Abdel-Kareem, Omar; Harith, M. A.

    2008-07-01

    Cleaning of copper embroidery threads on archaeological textiles is still a complicated conservation process, as most textile conservators believe that the advantages of using traditional cleaning techniques are less than their disadvantages. In this study, the uses of laser cleaning method and two modified recipes of wet cleaning methods were evaluated for cleaning of the corroded archaeological Egyptian copper embroidery threads on an archaeological Egyptian textile fabric. Some corroded copper thread samples were cleaned using modified recipes of wet cleaning method; other corroded copper thread samples were cleaned with Q-switched Nd:YAG laser radiation of wavelength 532 nm. All tested metal thread samples before and after cleaning were investigated using a light microscope and a scanning electron microscope with an energy dispersive X-ray analysis unit. Also the laser-induced breakdown spectroscopy (LIBS) technique was used for the elemental analysis of laser-cleaned samples to follow up the laser cleaning procedure. The results show that laser cleaning is the most effective method among all tested methods in the cleaning of corroded copper threads. It can be used safely in removing the corrosion products without any damage to both metal strips and fibrous core. The tested laser cleaning technique has solved the problems caused by other traditional cleaning techniques that are commonly used in the cleaning of metal threads on museum textiles.

  18. Response of microbial growth to orthophosphate and organic carbon influx in copper and plastic based plumbing water systems.

    PubMed

    Park, Se-Keun; Kim, Yeong-Kwan; Choi, Sung-Chan

    2008-07-01

    Consequences of orthophosphate addition for corrosion control in water distribution pipes with respect to microbial growth were investigated using batch and dynamic tests. Batch tests showed that the release of copper in either low or high organic carbon content water was decreased by 69% and 56% with addition 206 microg PO(4)-P, respectively. Dosing of orthophosphate against corrosion did not increase microbial growth potential in the water and in the biofilm in both corroded and uncorroded systems receiving tap water with a low content of organic carbon and of biodegradable organic fraction. However, in tap water having a high concentration of organic carbon from acetate addition, orthophosphate addition promoted the growth of bacteria, allowed more bacteria to assemble on corroded and uncorroded surfaces, and increased the consumption of organic carbon. Orthophosphate consumption did not exceed 1% of the amount of easily biodegradable organic carbon required for microbial growth, and the orthophosphate demand for corrosion control greatly exceeded the nutritional requirement of microbial growth. The results of the dynamic tests demonstrated that there was a significant effect of interaction between biodegradable organic carbon and orthophosphate on biofilm growth, whereby the effect of orthophosphate flux on microbial growth was dependent on the levels of biodegradable organic carbon. Controlling an easily biodegradable organic carbon would be therefore necessary to minimize the microbial growth potential induced by orthophosphate-based anticorrosion treatment.

  19. Influence of De-icers on the Corrosion and Fatigue Behavior of 4140 Steel

    NASA Astrophysics Data System (ADS)

    Dean, William P.; Sanford, Brittain J.; Wright, Matthew R.; Evans, Jeffrey L.

    2012-11-01

    The purpose of this test was to evaluate the effects of calcium magnesium acetate (CMA) and sodium chloride (NaCl)—two common substances used to de-ice roadways—on the corrosion and fatigue behavior of annealed AISI 4140 steel. When CMA-corroded, NaCl-corroded, and as-machined samples were tested using R = 0.1, and f = 20 Hz, it was found that, within the scope of this study, samples corroded in both 3.5% CMA solution and 3.5% NaCl solution exhibited a lower fatigue strength than samples tested in the as-machined, uncorroded condition. For the short lives tested in this study, the difference in the effects of CMA and NaCl is minimal. However, at longer lives it is suspected, based on the trends, that the CMA solution would be less detrimental to the fatigue life.

  20. Guided-waves technique for inspecting the health of wall-covered building risers

    NASA Astrophysics Data System (ADS)

    Tse, Peter W.; Chen, J. M.; Wan, X.

    2015-03-01

    The inspection technique uses guided ultrasonic waves (GW) has been proven effective in detecting pipes' defects. However, as of today, the technique has not attracted much market attention because of insufficient field tests and lack of traceable records with proven results in commercial applications. In this paper, it presents the results obtained by using GW to inspect the defects occurred in real gas risers that are commonly installed in tall buildings. The purpose of having risers is to deliver gas from any building external piping system to each household unit of the building. The risers extend from the external wall of the building, penetrate thorough the concrete wall, into the kitchen or bathroom of each household unit. Similar to in-service pipes, risers are prone to corrosion due to water leaks into the concrete wall. However, the corrosion occurs in the section of riser, which is covered by the concrete wall, is difficult to be inspected by conventional techniques. Hence, GW technique was employed. The effectiveness of GW technique was tested by laboratory and on-site experiments using real risers gathered from tall buildings. The experimental results show that GW can partially penetrate thorough the riser's section that is covered by wall. The integrity of the wall-covered section of a riser can be determined by the reflected wave signals generated by the corroded area that may exit inside the wall-covered section. Based on the reflected wave signal, one can determine the health of the wall-covered riser.

  1. Monitoring and Failure Analysis of Corroded Bridge Cables under Fatigue Loading Using Acoustic Emission Sensors

    PubMed Central

    Li, Dongsheng; Ou, Jinping; Lan, Chengming; Li, Hui

    2012-01-01

    Cables play an important role in cable-stayed systems, but are vulnerable to corrosion and fatigue damage. There is a dearth of studies on the fatigue damage evolution of corroded cable. In the present study, the acoustic emission (AE) technology is adopted to monitor the fatigue damage evolution process. First, the relationship between stress and strain is determined through a tensile test for corroded and non-corroded steel wires. Results show that the mechanical performance of corroded cables is changed considerably. The AE characteristic parameters for fatigue damage are then established. AE energy cumulative parameters can accurately describe the fatigue damage evolution of corroded cables. The failure modes in each phase as well as the type of acoustic emission source are determined based on the results of scanning electron microscopy. The waveform characteristics, damage types, and frequency distribution of the corroded cable at different damage phases are collected. Finally, the number of broken wires and breakage time of the cables are determined according to the variation in the margin index. PMID:22666009

  2. Quantification and Characterization of Chloride Sources in the Rio Grande, Southwestern United States

    NASA Astrophysics Data System (ADS)

    Lacey, H. F.; Phillips, F. M.; Tidwell, V.; Hogan, J.; Bastien, E.; Oelsner, G.

    2005-12-01

    Salinization of rivers is a problem in the southwestern United States as well as in other semiarid and arid regions of the world. Arid and semiarid rivers including the Rio Grande often exhibit increasing salinity with distance downstream, which is commonly attributed to irrigated agriculture. Increased river salinity causes economic losses by reducing crop productivity, rendering the water unsuitable for many municipal and industrial uses, and corroding or plugging pipes. Although most salinization of the Rio Grande takes place in the United States, many of the effects are felt in Mexico. Recent studies have found that salinization of the Rio Grande is geologically controlled by the addition of deep saline brines at several distinct locations. However, these additions of deep brine have not been well quantified. We have designed a model using a system dynamics software program to analyze Rio Grande chloride data. The model uses historical chloride and gaging station data and high-resolution synoptic chloride samples collected between 2000 and 2005 to characterize and quantify additions of deep brine to the river. The model has also been used to evaluate the effect of the construction of Elephant Butte Reservoir on the chloride balance of the river using chloride concentration data from 1905-1907. The model can also be used to evaluate future climatic and management scenarios in order to plan for the future water needs of the basin.

  3. Compositional depth profiles of the type 316 stainless steel undergone the corrosion in liquid lithium using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Ying; Ke, Chuan; Liu, Xiang; Gou, Fujun; Duan, Xuru; Zhao, Yong

    2017-12-01

    Liquid metal lithium cause severe corrosion on the surface of metal structure material that used in the blanket and first wall of fusion device. Fast and accurate compositional depth profile measurement for the boundary layer of the corroded specimen will reveal the clues for the understanding and evaluation of the liquid lithium corrosion process as well as the involved corrosion mechanism. In this work, the feasibility of laser-induced breakdown spectroscopy for the compositional depth profile analysis of type 316 stainless steel which was corroded by liquid lithium in certain conditions was demonstrated. High sensitivity of LIBS was revealed especially for the corrosion medium Li in addition to the matrix elements of Fe, Cr, Ni and Mn by the spectral analysis of the plasma emission. Compositional depth profile analysis for the concerned elements which related to corrosion was carried out on the surface of the corroded specimen. Based on the verified local thermodynamic equilibrium shot-by-shot along the depth profile, the matrix effect was evaluated as negligible by the extracted physical parameter of the plasmas generated by each laser pulse in the longitudinal depth profile. In addition, the emission line intensity ratios were introduced to further reduce the impact on the emission line intensity variations arise from the strong inhomogeneities on the corroded surface. Compositional depth profiles for the matrix elements of Fe, Cr, Ni, Mn and the corrosion medium Li were constructed with their measured relative emission line intensities. The distribution and correlations of the concerned elements in depth profile may indicate the clues to the complicated process of composition diffusion and mass transfer. The results obtained demonstrate the potentiality of LIBS as an effective technique to perform spectrochemical measurement in the research fields of liquid metal lithium corrosion.

  4. 46 CFR 59.10-10 - Corroded surfaces.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... VESSELS AND APPURTENANCES Welding Repairs to Boilers and Pressure Vessels in -Service § 59.10-10 Corroded surfaces. (a) Corroded surfaces in the calking edges of circumferential seams may be built up by welding to... inches in length in a circumferential direction. (2) In all repairs to circumferential seams by welding...

  5. 46 CFR 59.10-10 - Corroded surfaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... VESSELS AND APPURTENANCES Welding Repairs to Boilers and Pressure Vessels in -Service § 59.10-10 Corroded surfaces. (a) Corroded surfaces in the calking edges of circumferential seams may be built up by welding to... inches in length in a circumferential direction. (2) In all repairs to circumferential seams by welding...

  6. 46 CFR 59.10-10 - Corroded surfaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... VESSELS AND APPURTENANCES Welding Repairs to Boilers and Pressure Vessels in -Service § 59.10-10 Corroded surfaces. (a) Corroded surfaces in the calking edges of circumferential seams may be built up by welding to... inches in length in a circumferential direction. (2) In all repairs to circumferential seams by welding...

  7. 46 CFR 59.10-10 - Corroded surfaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... VESSELS AND APPURTENANCES Welding Repairs to Boilers and Pressure Vessels in -Service § 59.10-10 Corroded surfaces. (a) Corroded surfaces in the calking edges of circumferential seams may be built up by welding to... inches in length in a circumferential direction. (2) In all repairs to circumferential seams by welding...

  8. 46 CFR 59.10-10 - Corroded surfaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... VESSELS AND APPURTENANCES Welding Repairs to Boilers and Pressure Vessels in -Service § 59.10-10 Corroded surfaces. (a) Corroded surfaces in the calking edges of circumferential seams may be built up by welding to... inches in length in a circumferential direction. (2) In all repairs to circumferential seams by welding...

  9. The effect of chloride ions on the corroded surface layer of 00Cr22Ni5Mo3N duplex stainless steel under cavitation.

    PubMed

    Wan, Tong; Xiao, Ning; Shen, Hanjie; Yong, Xingyue

    2016-11-01

    The effects of Cl(-) on the corroded surface layer of 00Cr22Ni5Mo3N duplex stainless steel under cavitation in chloride solutions were investigated using nanoindentation in conjunction with XRD and XPS. The results demonstrate that Cl(-) had a strong effect on the nano-mechanical properties of the corroded surface layer under cavitation, and there was a threshold Cl(-) concentration. Furthermore, a close relationship between the nano-mechanical properties and the cavitation corrosion resistance of 00Cr22Ni5Mo3N duplex stainless steel was observed. The degradation of the nano-mechanical properties of the corroded surface layer was accelerated by the synergistic effect between cavitation erosion and corrosion. A key factor was the adsorption of Cl(-), which caused a preferential dissolution of the ferrous oxides in the passive film layer on the corroded surface layer. Cavitation further promoted the preferential dissolution of the ferrous oxides in the passive film layer. Simultaneously, cavitation accelerated the erosion of the ferrite in the corroded surface layer, resulting in the degradation of the nano-mechanical properties of the corroded surface layer on 00Cr22Ni5Mo3N duplex stainless steel under cavitation. Copyright © 2016. Published by Elsevier B.V.

  10. Laboratory studies on biomachining of copper using Staphylococcus sp.

    PubMed

    Shikata, Shinji; Sreekumari, Kurissery R; Nandakumar, Kanavillil; Ozawa, Mazayoshi; Kikuchi, Yasushi

    2009-01-01

    The possibility of using bacteria to drill metallic surfaces has been demonstrated using Staphylococcus sp., a facultative anaerobic bacterium, isolated from corroded copper piping. The experiment involved exposure of copper coupons (25 mm x 15 mm x 3 mm) to a culture of Staphylococcus sp. for a maximum period of 7 days. Coupons exposed to sterile bacterial growth medium were used as controls. Exposed coupons were removed intermittently and observed microscopically for the extent of drilling. The total pit area and volume on these coupons were determined using image analysis. The results showed that both the biomachined area and volume increased with the duration of coupon exposure. In the drilling experiment, a copper thin film 2 microm thick was perforated by this bacterium within a period of 7 days. In conclusion, the results suggested that bacteria can be used as a tool for machining metallic surfaces.

  11. IMPROVED CORROSION RESISTANCE OF ALUMINA REFRACTORIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John P. Hurley; Patty L. Kleven

    2001-09-30

    The initial objective of this project was to do a literature search to define the problems of refractory selection in the metals and glass industries. The problems fall into three categories: Economic--What do the major problems cost the industries financially? Operational--How do the major problems affect production efficiency and impact the environment? and Scientific--What are the chemical and physical mechanisms that cause the problems to occur? This report presents a summary of these problems. It was used to determine the areas in which the EERC can provide the most assistance through bench-scale and laboratory testing. The final objective of thismore » project was to design and build a bench-scale high-temperature controlled atmosphere dynamic corrosion application furnace (CADCAF). The furnace will be used to evaluate refractory test samples in the presence of flowing corrodents for extended periods, to temperatures of 1600 C under controlled atmospheres. Corrodents will include molten slag, steel, and glass. This test should prove useful for the glass and steel industries when faced with the decision of choosing the best refractory for flowing corrodent conditions.« less

  12. Condition assessment of corroded steel rebar in free space using synthetic aperture radar images

    NASA Astrophysics Data System (ADS)

    Ingemi, Christopher M.; Owusu Twumasi, Jones; Litt, Swinderjit; Yu, Tzuyang

    2017-04-01

    Synthetic aperture radar (SAR) imaging of construction materials offers civil engineers an opportunity to better assess the condition of aging civil infrastructures such as reinforced concrete (RC) structures. Corrosion of steel rebar in RC structures is a major problem responsible for their premature failure and unexpected collapse. In this paper, SAR imaging is applied to the quantitative assessment of corroded steel rebar in free space as the first step toward the use of SAR imaging for subsurface sensing of aging RC structures. A 10 GHz stripmap SAR system was used inside an anechoic chamber. The bandwidth of the radar system was 1.5 GHz. Steel rebar specimens were artificially corroded to different levels by regularly applying a mist of 5% NaCl solution for different durations of time in order to simulate the condition of natural corrosion. Two sizes (No. 3 and No. 4) of steel rebar were used in this research. Different orientations of steel rebar were considered. Corrosion level was determined by measuring the mass loss of corroded steel rebar specimens. From our results, feasibility of SAR images for the condition assessment of corroded steel rebar was experimentally demonstrated. It was found that the presence of surface rust on corroded steel rebar reduces the amplitude in SAR images. The SAR image of corroded steel rebar also exhibited a distribution of SAR amplitudes different from the one of intact steel rebar. In addition, it was also found that there is an optimal range for the condition assessment of corroded steel rebar in free space. In our experiment, the optimal range was determined to be 30.4 cm.

  13. Ultimate Load Behaviour of Reinforced Concrete Beam with Corroded Reinforcement

    NASA Astrophysics Data System (ADS)

    Kanchana Devi, A.; Ramajaneyulu, K.; Sundarkumar, S.; Ramesh, G.; Bharat Kumar, B. H.; Krishna Moorthy, T. S.

    2017-12-01

    Corrosion of reinforcement reduces the load carrying capacity, energy dissipation and ductility of Reinforced Concrete (RC) members. In the present study, reinforcements of RC beam are subjected to 10, 25, and 30% corrosion and the respective RC beams are tested to evaluate their ultimate load behaviour. A huge drop in energy dissipation capacity of the RC beam is observed beyond the corrosion level of 10%. Further, nonlinear finite element analysis is employed to assess the load-displacement behaviour and ultimate load of RC beam. The corrosion induced damage to the reinforcement is represented in the finite element model by modifying its mechanical properties based on the results reported in the literature. The resultant load versus displacement curves of reinforced concrete beams are obtained. Good correlation is observed between the finite element analysis results and that obtained from experimental investigation on the control beam. The experimental results are also compared with the finite element analysis results for RC beams with corroded reinforcement. In order to understand the effect of corrosion on the mechanical properties of reinforcement, the corroded reinforcements are modelled in nonlinear finite element analysis by (i) reducing the area of reinforcement alone (ii) by reducing both area and mechanical properties and (iii) reducing the mechanical properties without reducing the area of steel as reported in literature. The results obtained for the beam with corroded reinforcement confirms reduction in yield stress and ultimate stress of the reinforcement steel.

  14. The influence of main bar corrosion on bond strength in selfcompacting concrete

    NASA Astrophysics Data System (ADS)

    Ayop, S. S.; Emhemed, A. N. K.; Jamaluddin, N.; Sadikin, A.

    2017-11-01

    The experimental study was conducted to determine the influence of main bar corrosion on bond strength in self-compacting concrete (SCC). A total 16 tension pullout tests specimens reinforced with 10 mm and 14 mm diameter bar were used for the bond strength test. The properties of SCC were determined from the slump flow, T50cm, V-funnel and L box test. Reinforcing bars in the concrete were submitted to impressed current to accelerate the corrosion of the bar. It was found that the relationship between bond strength and concrete strength in un-corroded specimens differed from that of corroded specimens set in high-strength concrete because of brittleness in the corroded specimens, which caused a sudden loss of bond strength. The results revealed that specimens of un-corroded and corroded showed a higher percentage of bond strength degradation during the pullout tests.

  15. Prediction of residual shear strength of corroded reinforced concrete beams

    NASA Astrophysics Data System (ADS)

    Imam, Ashhad; Azad, Abul Kalam

    2016-09-01

    With the aim of providing experimental data on the shear capacity and behavior of corroded reinforced concrete beams that may help in the development of strength prediction models, the test results of 13 corroded and four un-corroded beams are presented. Corrosion damage was induced by accelerated corrosion induction through impressed current. Test results show that loss of shear strength of beams is mostly attributable to two important damage factors namely, the reduction in stirrups area due to corrosion and the corrosion-induced cracking of concrete cover to stirrups. Based on the test data, a method is proposed to predict the residual shear strength of corroded reinforced concrete beams in which residual shear strength is calculated first by using corrosion-reduced steel area alone, and then it is reduced by a proposed reduction factor, which collectively represents all other applicable corrosion damage factors. The method seems to yield results that are in reasonable agreement with the available test data.

  16. Nondestructive corrosion detection in concrete through integrated heat induction and IR thermography

    NASA Astrophysics Data System (ADS)

    Kwon, Seung-Jun; Xue, Henry; Feng, Maria Q.; Baek, Seunghoon

    2011-04-01

    Steel corrosion in concrete is a main cause of deterioration and early failure of concrete structures. A novel integration of electromagnetic heat induction and infrared (IR) thermography is proposed for nondestructive detection of steel corrosion in concrete, by taking advantage of the difference in thermal characteristics of corroded and non-corroded steel. This paper focuses on experimental investigation of the concept. An inductive heater is developed to remotely heat the steel rebar from concrete surface, which is integrated with an IR camera. Bare rebar and concrete samples with different cover depths are prepared. Each concrete sample is embedded with a single steel rebar in the middle, resulting an identical cover depth from the front and the back surfaces, which enables heat induction from one surface and IR thermogrphay from the other simultaneously. The impressed current method is adopted to induce accelerated corrosion on the rebar. IR video images are recorded during both heating and cooling periods. The test results demonstrate a clear difference in thermal characteristics between corroded and non-corroded samples. The corroded samples show higher rates of heating and cooling as well as a higher peak IR intensity than those of the non-corroded samples. This study demonstrates a potential for nondestructive detection of rebar corrosion in concrete.

  17. A study of the effects of phosphates on copper corrosion in drinking water: Copper release, electrochemical, and surface analysis approach

    NASA Astrophysics Data System (ADS)

    Kang, Young C.

    The following work is the study to evaluate the impact of corrosion inhibitors on the copper metal in drinking water and to investigate the corrosion mechanism in the presence and absence of inhibitors. Electrochemical experiments were conducted to understand the effect of specific corrosion inhibitors in synthetic drinking water which was prepared with controlled specific water quality parameters. Water chemistry was studied by Inductively Coupled Plasma--Atomic Emission Spectroscopy (ICP--AES) to investigate the copper leaching rate with time. Surface morphology, crystallinity of corrosion products, copper oxidation status, and surface composition were characterized by various solid surface analysis methods, such as Scanning Electron Microscopy/Energy--Dispersive Spectrometry (SEM/EDS), Grazing-Incidence-angle X-ray Diffraction (GIXRD), X-ray Photoelectron Spectroscopy (XPS), and Time-of-Flight Secondary Ions Mass Spectrometry (ToF-SIMS). The purpose of the first set of experiments was to test various electrochemical techniques for copper corrosion for short term before studying a long term loop system. Surface analysis techniques were carried out to identify and study the corrosion products that form on the fresh copper metal surface when copper coupons were exposed to test solutions for 2 days of experiments time. The second phase of experiments was conducted with a copper pipe loop system in a synthetic tap water over an extended period of time, i.e., 4 months. Copper release and electrochemically measured corrosion activity profiles were monitored carefully with and without corrosion inhibitor, polyphosphate. A correlation between the copper released into the solution and the electrochemically measured corrosion activities was also attempted. To investigate corrosion products on the copper pipe samples, various surface analysis techniques were applied in this study. Especially, static mass spectra acquisition and element distribution mapping were carried out by ToF-SIMS. Dynamic SIMS provided shallow depth profile of corroded copper sample. The third set of the experiments was related to electrochemical noise (EN) measurement through copper coupons to pipes. Calculating corrosion rate of a metal and predicting exactly how long it lasts are problematic since the metal corrosion may be caused by combined corrosion types. Many other metals undergo not only uniform corrosion, but localized corrosion. Uniform corrosion may be conducive for copper pipe to prevent it from further severe corrosion and form passivated film, but localized corrosion causes pinhole leaks and limits the copper pipe applications. The objective of this set of experiment is to discuss the application of electrochemical noise approaches to drinking water copper corrosion problems. Specially, a fundamental description of EN is presented including a discussion of how to interpret the results and technique limitations. Although it was indicated with electrochemical analysis that the corrosion activity was affected by orthophosphate addition in the short-term test, no copper-phosphate complex or compound was found by copper surface characterization. Apparently, orthophosphate can inhibit corrosion by adsorption on the copper surface, but cannot form solid complexes with copper in such a short time, 2 days. When polyphosphate was added into recirculating copper pipe system, copper level increased and polarization resistance decreased. Greenish blue residue on the copper pipe was suspected as copper phosphate complex and corrosion inhibition mechanism was proposed.

  18. Identification of microorganisms associated with corrosion of offshore oil production systems

    NASA Astrophysics Data System (ADS)

    Sørensen, Ketil; Grigoryan, Aleksandr; Holmkvist, Lars; Skovhus, Torben; Thomsen, Uffe; Lundgaard, Thomas

    2010-05-01

    Microbiologically influenced corrosion (MIC) poses a major challenge to oil producers and distributors. The annual cost associated with MIC-related pipeline failures and general maintenance and surveillance of installations amounts to several billion dollar in the oil production sector alone. Hence, large efforts are undertaken by some producers to control and monitor microbial growth in pipelines and other installations, and extensive surveillance programs are carried out in order to detect and quantify potential MIC-promoting microorganisms. Traditionally, efforts to mitigate and survey microbial growth in oil production systems have focused on sulfate-reducing Bacteria (SRB), and microorganisms have usually been enumerated by the culture-dependent MPN (most probable number) -technique. Culture-independent molecular tools yielding much more detailed information about the microbial communities have now been implemented as a reliable tool for routine surveillance of oil production systems in the North Sea. This has resulted in new and hitherto unattainable information regarding the distribution of different microorganisms in hot reservoirs and associated oil production systems. This presentation will provide a review of recent insights regarding thermophilic microbial communities and their implication for steel corrosion in offshore oil production systems. Data collected from solids and biofilms in different corroded pipelines and tubes indicate that in addition to SRB, other groups such as methanogens and sulfate-reducing Archaea (SRA) are also involved in MIC. In the hot parts of the system where the temperature approaches 80 ⁰C, SRA closely related to Archaeoglobus fulgidus outnumber SRB by several orders of magnitude. Methanogens affiliated with the genus Methanothermococcus were shown to completely dominate the microbial community at the metal surface in a sample of highly corroded piping. Thus, the microbial communities associated with MIC appear to be more complex than previously recognized by the industry.

  19. Clostridium kogasensis sp. nov., a novel member of the genus Clostridium, isolated from soil under a corroded gas pipeline.

    PubMed

    Shin, Yeseul; Kang, Seok-Seong; Paek, Jayoung; Jin, Tae Eun; Song, Hong Seok; Kim, Hongik; Park, Hee-Moon; Chang, Young-Hyo

    2016-06-01

    Two bacterial strains, YHK0403(T) and YHK0508, isolated from soil under a corroded gas pipe line, were revealed as Gram-negative, obligately anaerobic, spore-forming and mesophilic bacteria. The cells were rod-shaped and motile by means of peritrichous flagella. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the isolates were members of the genus Clostridium and were the most closely related to Clostridium scatologenes KCTC 5588(T) (95.8% sequence similarity), followed by Clostridium magnum KCTC 15177(T) (95.8%), Clostridium drakei KCTC 5440(T) (95.7%) and Clostridium tyrobutyricum KCTC 5387(T) (94.9%). The G + C contents of the isolates were 29.6 mol%. Peptidoglycan in the cell wall was of the A1γ type with meso-diaminopimelic acid. The major polar lipid was diphosphatidylglycerol (DPG), and other minor lipids were revealed as phosphatidylglycerol (PG), phosphatidylethanolamine (PE), two unknown glycolipids (GL1 and GL2), an unknown aminoglycolipid (NGL), two unknown aminophospholipids (PN1 and PN2) and four unknown phospholipids (PL1 to PL4). Predominant fatty acids were C16:0 and C16:1cis9 DMA. The major end products from glucose fermentation were identified as butyrate (12.2 mmol) and acetate (9.8 mmol). Collectively, the results from a wide range of phenotypic tests, chemotaxonomic tests, and phylogenetic analysis indicated that the two isolates represent novel species of the genus Clostridium, for which the name Clostridium kogasensis sp. nov. (type strain, YHK0403(T) = KCTC 15258(T) = JCM 18719(T)) is proposed. Copyright © 2016. Published by Elsevier Ltd.

  20. Germinant-enhanced decontamination of Bacillus spores adhered to iron and cement-mortar drinking water infrastructures.

    PubMed

    Szabo, Jeffrey G; Muhammad, Nur; Heckman, Lee; Rice, Eugene W; Hall, John

    2012-04-01

    Germination was evaluated as an enhancement to decontamination methods for removing Bacillus spores from drinking water infrastructure. Germinating spores before chlorinating cement mortar or flushing corroded iron was more effective than chlorinating or flushing alone.

  1. Experimental Evaluation of Fatigue Crack Initiation from Corroded Hemispherical Notches in Aerospace Structural Materials

    NASA Technical Reports Server (NTRS)

    Garcia, Daniel B.; Forman, Royce; Shindo, David

    2010-01-01

    A test program was developed and executed to evaluate the influence of corroded hemispherical notches on the fatigue crack initiation and propagation in aluminum 7075-T7351, 4340 steel, and D6AC steel. Surface enhancements such as shot peening and laser shock peening were also incorporated as part of the test effort with the intent of improving fatigue performance. In addition to the testing, fracture mechanics and endurance limit based analysis methods were evaluated to characterize the results with the objective of challenging typical assumptions used in modeling fatigue cracks from corrosion pits. The results specifically demonstrate that the aluminum and steel alloys behave differently with respect to fatigue crack initiation from hemispherical corrosion pits. The aluminum test results were bounded by the fracture mechanics and endurance limit models while exhibiting a general insensitivity to the residual stress field generated by shot peening. The steel specimens were better characterized by the endurance limit fatigue properties and did exhibit sensitivities to residual stresses from the shot peening and laser shock peening

  2. Repair of through thickness corrosion/leaking defects in corroded pipelines using Fiber Reinforced Polymer overwrap

    NASA Astrophysics Data System (ADS)

    Nitheesh Kumar, P.; Khan, Vishwas Chandra; Balaganesan, G.; Pradhan, A. K.; Sivakumar, M. S.

    2018-04-01

    The present study is concerned with the repair of through thickness corrosion or leaking defects in metallic pipelines using a commercially available metallic seal and glass/epoxy composite. Pipe specimens are made with three different types of most commonly occurring through thickness corrosion/leaking defects. The metallic seal is applied over the through thickness corrosion/leaking defect and it is reinforced with glass/epoxy composite overwrap. The main objective of the metallic seal is to arrest the leak at live pressure. After reinforcing the metallic seal with glass/epoxy composite overwrap, the repaired composite wrap is able to sustain high pressures. Burst test is performed for different configurations of metallic seal and optimum configuration of metallic seal is determined. The optimum configurations of metallic seal for three different types of through thickness corrosion/leaking defects are further reinforced with glass/epoxy composite wrap and experimental failure pressure is determined by performing the burst test. An analytical model as per ISO 24817 has been developed to validate experimental results.

  3. Heat pipe heat rejection system and demonstration model for the nuclear electric propulsion (NEP) spacecraft

    NASA Technical Reports Server (NTRS)

    Ernst, D. M.

    1981-01-01

    The critical evaluation and subsequent redesign of the power conversion subsystem of the spacecraft are covered. As part of that evaluation and redesign, prototype heat pipe components for the heat rejection system were designed fabricated and tested. Based on the results of these tests in conjunction with changing mission requirements and changing energy conversion devices, new system designs were investigated. The initial evaluation and redesign was based on state-of-the-art fabrication and assembly techniques for high temperature liquid metal heat pipes and energy conversion devices. The hardware evaluation demonstrated the validity of several complicated heat pipe geometries and wick structures, including an annular-to-circular transition, bends in the heat pipe, long heat pipe condensers and arterial wicks. Additionally, a heat pipe computer model was developed which describes the end point temperature profile of long radiator heat pipes to within several degrees celsius.

  4. Germinant-Enhanced Decontamination of Bacillus Spores Adhered to Iron and Cement-Mortar Drinking Water Infrastructures

    PubMed Central

    Muhammad, Nur; Heckman, Lee; Rice, Eugene W.; Hall, John

    2012-01-01

    Germination was evaluated as an enhancement to decontamination methods for removing Bacillus spores from drinking water infrastructure. Germinating spores before chlorinating cement mortar or flushing corroded iron was more effective than chlorinating or flushing alone. PMID:22267659

  5. Will New Metal Heads Restore Mechanical Integrity of Corroded Trunnions?

    PubMed

    Derasari, Aditya; Gold, Jonathan E; Ismaily, Sabir; Noble, Philip C; Incavo, Stephen J

    2017-04-01

    Metal wear and corrosion from modular junctions in total hip arthroplasty can lead to further unwanted surgery. Trunnion tribocorrosion is recognized as an important contributor to failure. This study was performed to determine if new metal heads restore mechanical integrity of the original modular junction after impaction on corroded trunnions, and assess which variables affect stability of the new interface created at revision total hip arthroplasty. Twenty-two trunnions, cobalt-chromium (CoCr) and titanium alloy (TiAIV), (CoCr, n = 12; TiAIV, n = 10) and new metal heads were used, 10 trunnions in pristine condition and 12 with corrosion damage. Test states were performed using an MTS Machine and included the following: 1, Assembly; 2, Disassembly; 3, Assembly; 4, Toggling; and 5, Disassembly. During loading, three-dimensional motion of the head-trunnion junction was measured using a custom jig. There were no statistical differences in the tested mechanical properties between corroded and pristine trunnions implanted with a new metal femoral head. Average micromotion of the head versus trunnion interface was greatest at the start of loading, stabilizing after approximately 50 loading cycles at an average of 30.6 ± 3.2 μm. Corrosion at the trunnion does not disrupt mechanical integrity of the junction when a CoCr head is replaced with a CoCr trunnion. However, increased interface motion of a new metal head on a corroded titanium trunnion requires additional study. The evaluation of ball head size on mechanical integrity of trunnions would also be a potential subject of future investigation, as increasing the ball head size at the time of revision is not uncommon in revisions today. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Research notes : forensic analysis of a bridge.

    DOT National Transportation Integrated Search

    2000-07-01

    Oregon Department of Transportation (ODOT) had battled corrosion problems with this reinforced concrete structure since 1967, only twelve years after its construction. First, the steel rocker assemblies corroded. Soon, corroding steel reinforcement c...

  7. On impedance measurement of reinforced concrete on the surface for estimate of corroded rebar

    NASA Astrophysics Data System (ADS)

    Sasamoto, Akira; Yu, Jun; Harada, Yoshihisa; Iwata, Masahiro; Noguchi, Kazuhiro

    2017-04-01

    In an estimate of health monitoring for reinforced concrete, corrosion degree of rebar is important parameter but is not easy to be estimated by non destructive testing. A few test method such as half cell method or polarization resistance method could be a 'perfect' nondestructive method if luckily having had wired connection to rebar without destructing target concrete. In this presentation it is reported the experimental result that an impedance measurement on surface of reinforced concretes is able to distinguish corroded rebar from healthy rebar. The contact electrode on concrete surface are simple structure made of urethane sponge and needle. Impedance measurement are carried out with frequency response analyzer with frequency range from 0.01Hz to 1MHz, typical amplitude of imposed voltage are 10 volt. We made concrete specimens under two different corrosion process. One process(pre corrosion) has rebars corroded by electrolysis in salty water before concrete casting and another process (post corrosion) has concrete specimens being corroded during the curing. The results of application of developed method to these corroded specimens show the method is useful to estimate corrosion level of rebars.

  8. The behavior of silicon and boron in the surface of corroded nuclear waste glasses : an EFTEM study.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buck, E. C.; Smith, K. L.; Blackford, M. G.

    1999-11-23

    Using electron energy-loss filtered transmission electron microscopy (EFTEM), we have observed the formation of silicon-rich zones on the corroded surface of a West Valley (WV6) glass. This layer is approximately 100-200 nm thick and is directly underneath a precipitated smectite clay layer. Under conventional (C)TEM illumination, this layer is invisible; indeed, more commonly used analytical techniques, such as x-ray energy dispersive spectroscopy (EDS), have failed to describe fully the localized changes in the boron and silicon contents across this region. Similar silicon-rich and boron-depleted zones were not found on corroded Savannah River Laboratory (SRL) borosilicate glasses, including SRL-EA and SRL-51,more » although they possessed similar-looking clay layers. This study demonstrates a new tool for examining the corroded surfaces of materials.« less

  9. Crack stability in a representative piping system under combined inertial and seismic/dynamic displacement-controlled stresses. Subtask 1.3 final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, P.; Olson, R.; Wilkowski, O.G.

    1997-06-01

    This report presents the results from Subtask 1.3 of the International Piping Integrity Research Group (IPIRG) program. The objective of Subtask 1.3 is to develop data to assess analysis methodologies for characterizing the fracture behavior of circumferentially cracked pipe in a representative piping system under combined inertial and displacement-controlled stresses. A unique experimental facility was designed and constructed. The piping system evaluated is an expansion loop with over 30 meters of 16-inch diameter Schedule 100 pipe. The experimental facility is equipped with special hardware to ensure system boundary conditions could be appropriately modeled. The test matrix involved one uncracked andmore » five cracked dynamic pipe-system experiments. The uncracked experiment was conducted to evaluate piping system damping and natural frequency characteristics. The cracked-pipe experiments evaluated the fracture behavior, pipe system response, and stability characteristics of five different materials. All cracked-pipe experiments were conducted at PWR conditions. Material characterization efforts provided tensile and fracture toughness properties of the different pipe materials at various strain rates and temperatures. Results from all pipe-system experiments and material characterization efforts are presented. Results of fracture mechanics analyses, dynamic finite element stress analyses, and stability analyses are presented and compared with experimental results.« less

  10. Recent evaluations of crack-opening-area in circumferentially cracked pipes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahman, S.; Brust, F.; Ghadiali, N.

    1997-04-01

    Leak-before-break (LBB) analyses for circumferentially cracked pipes are currently being conducted in the nuclear industry to justify elimination of pipe whip restraints and jet shields which are present because of the expected dynamic effects from pipe rupture. The application of the LBB methodology frequently requires calculation of leak rates. The leak rates depend on the crack-opening area of the through-wall crack in the pipe. In addition to LBB analyses which assume a hypothetical flaw size, there is also interest in the integrity of actual leaking cracks corresponding to current leakage detection requirements in NRC Regulatory Guide 1.45, or for assessingmore » temporary repair of Class 2 and 3 pipes that have leaks as are being evaluated in ASME Section XI. The objectives of this study were to review, evaluate, and refine current predictive models for performing crack-opening-area analyses of circumferentially cracked pipes. The results from twenty-five full-scale pipe fracture experiments, conducted in the Degraded Piping Program, the International Piping Integrity Research Group Program, and the Short Cracks in Piping and Piping Welds Program, were used to verify the analytical models. Standard statistical analyses were performed to assess used to verify the analytical models. Standard statistical analyses were performed to assess quantitatively the accuracy of the predictive models. The evaluation also involved finite element analyses for determining the crack-opening profile often needed to perform leak-rate calculations.« less

  11. Closed Form Equations for the Preliminary Design of a Heat-Pipe-Cooled Leading Edge

    NASA Technical Reports Server (NTRS)

    Glass, David E.

    1998-01-01

    A set of closed form equations for the preliminary evaluation and design of a heat-pipe-cooled leading edge is presented. The set of equations can provide a leading-edge designer with a quick evaluation of the feasibility of using heat-pipe cooling. The heat pipes can be embedded in a metallic or composite structure. The maximum heat flux, total integrated heat load, and thermal properties of the structure and heat-pipe container are required input. The heat-pipe operating temperature, maximum surface temperature, heat-pipe length, and heat pipe-spacing can be estimated. Results using the design equations compared well with those from a 3-D finite element analysis for both a large and small radius leading edge.

  12. Thermo-Physical Properties of Intermediate Temperature Heat Pipe Fluids

    NASA Technical Reports Server (NTRS)

    Beach, Duane E. (Technical Monitor); Devarakonda, Angirasa; Anderson, William G.

    2005-01-01

    Heat pipes are among the most promising technologies for space radiator systems. The paper reports further evaluation of potential heat pipe fluids in the intermediate temperature range of 400 to 700 K in continuation of two recent reports. More thermo-physical property data are examined. Organic, inorganic, and elemental substances are considered. The evaluation of surface tension and other fluid properties are examined. Halides are evaluated as potential heat pipe fluids. Reliable data are not available for all fluids and further database development is necessary. Many of the fluids considered are promising candidates as heat pipe fluids. Water is promising as a heat pipe fluid up to 500 to 550 K. Life test data for thermo-chemical compatibility are almost non-existent.

  13. Thermo-Physical Properties of Intermediate Temperature Heat Pipe Fluids

    NASA Technical Reports Server (NTRS)

    Devarakonda, Angirasa; Anderson, William G.

    2004-01-01

    Heat pipes are among the most promising technologies for space radiator systems. The paper reports further evaluation of potential heat pipe fluids in the intermediate temperature range of 400 to 700 K in continuation of two recent reports. More thermo-physical property data are examined. Organic, inorganic and elemental substances are considered. The evaluation of surface tension and other fluid properties are examined. Halides are evaluated as potential heat pipe fluids. Reliable data are not available for all fluids and further database development in necessary. Many of the fluids considered are promising candidates as heat pipe fluids. Water is promising as a heat pipe fluid up to 500-550 K. Life test data for thermo-chemical compatibility are almost non-existent.

  14. Grades and Incentives: Assessing Competing Grade Point Average Measures and Postgraduate Outcomes

    ERIC Educational Resources Information Center

    Bailey, Michael A.; Rosenthal, Jeffrey S.; Yoon, Albert H.

    2016-01-01

    In many educational settings, students may have an incentive to take courses where high grades are easier to achieve, potentially corroding student learning, evaluation of student achievement, and the fairness and efficiency of post-graduation labor outcomes. A grading system that takes into account heterogeneity of teacher standards and student…

  15. Evaluation of fuel additives for reduction of material imcompatibilities in methanol-gasoline blends

    NASA Technical Reports Server (NTRS)

    Rodriguez, C. F.; Barbee, J. G.; Knutson, W. K.; Cuellar, J. P., Jr.

    1983-01-01

    Screening tests determined the efficacy of six commercially available additives as modifiers of methanol's corrosivity toward metals and its weakening of tensile properties of nonmetals in automotive fuel systems. From the screening phase, three additives which seemed to protect some of the metals were tested in higher concentrations and binary combinations in search of optimal application conditions. Results indicate that two of the additives have protective properties and combining them increases the protection of the metals corroded by methanol-gasoline blends. Half of the metals in the tests were not corroded. Testing at recommended concentrations and then at higher concentrations and in combinations shows that the additives would have no protective or harmful effects on the nonmetals. Two additives emerged as candidates for application to the protection of metals in automotive methanol-gasoline fuel systems. The additives tested were assigned letter codes to protect their proprietary nature.

  16. Assimilable organic carbon release, chemical migration, and drinking water impacts of multiple brands of plastic pipes available in the USA

    NASA Astrophysics Data System (ADS)

    Connell, Matthew

    Increased installation of polymer potable water pipes in United States plumbing systems has created a need to thoroughly evaluate their water quality impacts. Eleven brands of new polymer drinking water pipe were evaluated for assimilable organic carbon (AOC) release at room temperature for 28 days. They included polyvinyl chloride (PVC), high-density polyethylene (HDPE), polypropylene (PP), and cross-linked polyethylene (PEX) pipes. Three of eight PEX pipe brands exceeded a 100 microg/L AOC threshold for microbial regrowth for the first exposure period and no brands exceeded this value on day 28. No detectable increase in AOC was found for PP and PEX-a1 pipes; the remaining pipe brands contributed marginal AOC levels. Water quality impacts were more fully evaluated for two brands of PEX-b and one brand of PP pipe. PEX pipes released more total organic carbon (TOC), volatile organic compounds (VOC), and semivolatile organic compounds (SVOC) and caused greater odor than the PP pipe. All three materials showed reductions in these water quality parameters over 30 days. Three PEX pipe field studies revealed that aged systems did not display more intense odors than distribution systems. However, the organic releases from polymer pipes may still alter water quality and contribute to rapid microbial growth, even though the aesthetic impacts are temporary.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Y.J.; Sohn, G.H.; Kim, Y.J.

    Typical LBB (Leak-Before-Break) analysis is performed for the highest stress location for each different type of material in the high energy pipe line. In most cases, the highest stress occurs at the nozzle and pipe interface location at the terminal end. The standard finite element analysis approach to calculate J-Integral values at the crack tip utilizes symmetry conditions when modeling near the nozzle as well as away from the nozzle region to minimize the model size and simplify the calculation of J-integral values at the crack tip. A factor of two is typically applied to the J-integral value to accountmore » for symmetric conditions. This simplified analysis can lead to conservative results especially for small diameter pipes where the asymmetry of the nozzle-pipe interface is ignored. The stiffness of the residual piping system and non-symmetries of geometry along with different material for the nozzle, safe end and pipe are usually omitted in current LBB methodology. In this paper, the effects of non-symmetries due to geometry and material at the pipe-nozzle interface are presented. Various LBB analyses are performed for a small diameter piping system to evaluate the effect a nozzle has on the J-integral calculation, crack opening area and crack stability. In addition, material differences between the nozzle and pipe are evaluated. Comparison is made between a pipe model and a nozzle-pipe interface model, and a LBB PED (Piping Evaluation Diagram) curve is developed to summarize the results for use by piping designers.« less

  18. Lubricating Holes for Corroded Nuts and Bolts

    NASA Technical Reports Server (NTRS)

    Penn, B. G.; Clemons, J. M.; Ledbetter, Frank E., III

    1986-01-01

    Corroded fasteners taken apart more easily. Lubricating holes bored to thread from three of flats. Holes facilitate application of penetrating oil to help loosen nut when rusted onto bolt. Holes make it possible to apply lubricants and rust removers directly to more of thread than otherwise reachable.

  19. Repair of steel beam/girder ends with ultra high-strength concrete - phase II.

    DOT National Transportation Integrated Search

    2016-01-01

    A novel repair method has been developed at the University of Connecticut for corroded steel bridge girder : ends. The repair method consists of encasing the corroded steel area with UHPC. The UHPC panel is bonded : to the steel girder using headed s...

  20. Reciprocal interaction between dental alloy biocorrosion and Streptococcus mutans virulent gene expression.

    PubMed

    Zhang, Songmei; Qiu, Jing; Ren, Yanfang; Yu, Weiqiang; Zhang, Fuqiang; Liu, Xiuxin

    2016-04-01

    Corrosion of dental alloys is a major concern in dental restorations. Streptococcus mutans reduces the pH in oral cavity and induces demineralization of the enamel as well as corrosion of restorative dental materials. The rough surfaces of dental alloys induced by corrosion enhance the subsequent accumulation of plaque. In this study, the corrosion process of nickel-chromium (Ni-Cr) and cobalt-chromium (Co-Cr) alloys in a nutrient-rich medium containing S. mutans was studied using inductively coupled plasma atomic emission spectrometry (ICP-AES), X-ray photoelectron spectroscopy (XPS) and electrochemical corrosion test. Our results showed that the release of Ni and Co ions increased, particularly after incubation for 3 days. The electrochemical corrosion results showed a significant decrease in the corrosion resistance (Rp) value after the alloys were immersed in the media containing S. mutans for 3 days. Correspondingly, XPS revealed a reduction in the relative dominance of Ni, Co, and Cr in the surface oxides after the alloys were immersed in the S. mutans culture. After removal of the biofilm, the pre-corroded alloys were re-incubated in S. mutans medium, and the expressions of genes associated with the adhesion and acidogenesis of S. mutans, including gtfBCD, gbpB, fif and ldh, were evaluated by detecting the mRNA levels using real-time reverse transcription polymerase chain reaction (RT-PCR). We found that the gtfBCD, gbpB, ftf and Idh expression of S. mutans were noticeably increased after incubation with pre-corroded alloys for 24 h. This study demonstrated that S. mutans enhanced the corrosion behavior of the dental alloys, on the other hand, the presence of corroded alloy surfaces up-regulated the virulent gene expression in S. mutans. Compared with smooth surfaces, the rough corroded surfaces of dental alloys accelerated the bacteria-adhesion and corrosion process by changing the virulence gene expression of S. mutans.

  1. Acoustic emission monitoring of tensile testing of corroded and un-corroded clad aluminum 2024-T3 and characterization of effects of corrosion on AE source events and material tensile properties

    NASA Astrophysics Data System (ADS)

    Okafor, A. Chukwujekwu; Natarajan, Shridhar

    2014-02-01

    Corrosion damage affects structural integrity and deteriorates material properties of aluminum alloys in aircraft structures. Acoustic Emission (AE) is an effective nondestructive evaluation (NDE) technique for monitoring such damages and predicting failure in large structures of an aircraft. For successful interpretation of data from AE monitoring, sources of AE and factors affecting it need to be identified. This paper presents results of AE monitoring of tensile testing of corroded and un-corroded clad Aluminum 2024-T3 test specimens, and characterization of the effects of strain-rate and corrosion damage on material tensile properties and AE source events. Effect of corrosion was studied by inducing corrosion in the test specimens by accelerated corrosion testing in a Q-Fog accelerated corrosion chamber for 12 weeks. Eight (8) masked dog-bone shaped specimens were placed in the accelerated corrosion chamber at the beginning of the test. Two (2) dog-bone shaped specimens were removed from the corrosion chamber after exposure time of 3, 6, 9, and 12 weeks respectively, and subjected to tension testing till specimen failure along with AE monitoring, as well as two (2) reference samples not exposed to corrosion. Material tensile properties (yield strength, ultimate tensile strength, toughness, and elongation) obtained from tension test and AE parameters obtained from AE monitoring were analyzed and characterized. AE parameters increase with increase in exposure period of the specimens in the corrosive environment. Aluminum 2024-T3 is an acoustically silent material during tensile deformation without any damage. Acoustic emission events increase with increase of corrosion damage and with increase in strain rate above a certain value. Thus AE is suitable for structural health monitoring of corrosion damage. Ultimate tensile strength, toughness and elongation values decrease with increase of exposure period in corrosion chamber.

  2. Effect of Acidified Feronia elephantum Leaf Extract on the Corrosion Behavior of Mild Steel

    NASA Astrophysics Data System (ADS)

    Muthukrishnan, Pitchaipillai; Prakash, Periakaruppan; Ilayaraja, Murugan; Jeyaprabha, Balasubramanian; Shankar, Karikalan

    2015-03-01

    Mild steel is used as a structural material for pipes, tank, reaction vessels, etc. which are known to corrode invariably in contact with various solvents. From the view point of a nation's economy and financial implications of corrosion hazard, it is necessary to adopt appropriate means and ways to reduce the losses due to corrosion. The use of eco-friendly corrosion inhibitors are increasing day by day. Feronia elephantum leaf extract (FELE) has been tested as eco-friendly corrosion inhibitor for A262 mild steel in 1 M H2SO4 and 1 M HCl solutions using non-electrochemical (Gravimetric, X-ray diffraction analysis, scanning electron microscopy, and Fourier transform infrared spectroscopy) and electrochemical techniques (open circuit potential, potentiostatic polarization, and electrochemical impedance measurements). The protection efficiency is found to increase with increase in FELE concentration but decrease with temperature, which is suggestive of physical adsorption mechanism. The adsorption of FELE on mild steel surface obeys the Langmuir adsorption isotherm. SEM results confirm the formation of a protective layer by FELE over mild steel surface.

  3. The effect of brazing parameters on corrosion behavior of brazed aluminum joints

    NASA Astrophysics Data System (ADS)

    Ghasimakbari, Farzam; Hadian, Ali Mohammad; Ershadrad, Soheil; Omidazad, Amir Mansour

    2018-01-01

    Fluid transmission pipes made of aluminum are widely used in petrochemical industries. For many applications, they have to be brazed to each other. The brazed joints, in many cases, are encountered with corrosive medias. This paper reports a part of a work to investigate the corrosion behavior of brazed AA6061 using AA4047 as filler metal with and without the use of flux under different brazing atmospheres. The samples brazed under air, vacuum, argon, and hydrogen atmospheres. The interfacial area of the joints was examined to ensure being free of any defects. The sides of each test piece were covered with an insulator and the surface of the joint was encountered to polarization test. The results revealed a significant difference of corrosion resistance. The samples that brazed under argon and hydrogen atmospheres had better corrosion resistance than other samples. The microstructure of the corroded joints revealed that the presence of defects, impurities due to use of flux and depth of filter metal penetration in base metal are crucial variables on the corrosion resistance of the joints.

  4. Identification of sewer pipes to be cleaned for reduction of CSO pollutant load.

    PubMed

    Nagaiwa, Akihiro; Settsu, Katsushi; Nakajima, Fumiyuki; Furumai, Hiroaki

    2007-01-01

    To reduce the CSO (Combined Sewer Overflow) pollutant discharge, one of the effective options is cleaning of sewer pipes before rainfall events. To maximize the efficiency, identification of pipes to be cleaned is necessary. In this study, we discussed the location of pipe deposit in dry weather in a combined sewer system using a distributed model and investigated the effect of pipe cleaning to reduce the pollutant load from the CSO. First we simulated the dry weather flow in a combined sewer system. The pipe deposit distribution in the network was estimated after 3 days of dry weather period. Several specific pipes with structural defect and upper end pipes tend to have an accumulation of deposit. Wet weather simulations were conducted with and without pipe cleaning in rainfall events with different patterns. The SS loads in CSO with and without the pipe cleaning were compared. The difference in the estimated loads was interpreted as the contribution of wash-off in the cleaned pipe. The effect of pipe cleaning on reduction of the CSO pollutant load was quantitatively evaluated (e.g. the cleaning of one specific pipe could reduce 22% of total CSO load). The CSO simulations containing pipe cleaning options revealed that identification of pipes with accumulated deposit using the distributed model is very useful and informative to evaluate the applicability of pipe cleaning option for CSO pollutant reduction.

  5. Evaluation of abrasion resistance of pipe and pipe lining materials.

    DOT National Transportation Integrated Search

    2007-09-01

    This project summarizes an evaluation of pipe material resistance to abrasion over a 5-year period (2001-2006) at a site known to be abrasive. : The key focus of the project was to gather more information to compare against existing guidance to desig...

  6. Characterization of a carbon fiber reinforced polymer repair system for structurally deficient steel piping

    NASA Astrophysics Data System (ADS)

    Wilson, Jeffrey M.

    This Dissertation investigates a carbon fiber reinforced polymer repair system for structurally deficient steel piping. Numerous techniques exist for the repair of high-pressure steel piping. One repair technology that is widely gaining acceptance is composite over-wraps. Thermal analytical evaluations of the epoxy matrix material produced glass transition temperature results, a cure kinetic model, and a workability chart. These results indicate a maximum glass transition temperature of 80°C (176°F) when cured in ambient conditions. Post-curing the epoxy, however, resulted in higher glass-transition temperatures. The accuracy of cure kinetic model presented is temperature dependent; its accuracy improves with increased cure temperatures. Cathodic disbondment evaluations of the composite over-wrap show the epoxy does not breakdown when subjected to a constant voltage of -1.5V and the epoxy does not allow corrosion to form under the wrap from permeation. Combustion analysis of the composite over-wrap system revealed the epoxy is flammable when in direct contact with fire. To prevent combustion, an intumescent coating was developed to be applied on the composite over-wrap. Results indicate that damaged pipes repaired with the carbon fiber composite over-wrap withstand substantially higher static pressures and exhibit better fatigue characteristics than pipes lacking repair. For loss up to 80 percent of the original pipe wall thickness, the composite over-wrap achieved failure pressures above the pipe's specified minimum yield stress during monotonic evaluations and reached the pipe's practical fatigue limit during cyclical pressure testing. Numerous repairs were made to circular, thru-wall defects and monotonic pressure tests revealed containment up to the pipe's specified minimum yield strength for small diameter defects. The energy release rate of the composite over-wrap/steel interface was obtained from these full-scale, leaking pipe evaluations and results indicate a large amount of scatter is associated with this test method. Due to the large amount of scatter present in the leaking pipe evaluations (energy release rate tests), a new laboratory specimen was created to evaluate mixed mode debonding of composite over-wrapped piping. The laboratory specimen results are much more conservative than the leaking pipe evaluations. The laboratory specimen results, however, agree quite favorably to a closed form solution developed in this Dissertation, as well as to energy release rate calculations performed by two different finite element analysis methods, the Modified Crack Closure Integral and the change in compliance method.

  7. Graphene: corrosion-inhibiting coating.

    PubMed

    Prasai, Dhiraj; Tuberquia, Juan Carlos; Harl, Robert R; Jennings, G Kane; Rogers, Bridget R; Bolotin, Kirill I

    2012-02-28

    We report the use of atomically thin layers of graphene as a protective coating that inhibits corrosion of underlying metals. Here, we employ electrochemical methods to study the corrosion inhibition of copper and nickel by either growing graphene on these metals, or by mechanically transferring multilayer graphene onto them. Cyclic voltammetry measurements reveal that the graphene coating effectively suppresses metal oxidation and oxygen reduction. Electrochemical impedance spectroscopy measurements suggest that while graphene itself is not damaged, the metal under it is corroded at cracks in the graphene film. Finally, we use Tafel analysis to quantify the corrosion rates of samples with and without graphene coatings. These results indicate that copper films coated with graphene grown via chemical vapor deposition are corroded 7 times slower in an aerated Na(2)SO(4) solution as compared to the corrosion rate of bare copper. Tafel analysis reveals that nickel with a multilayer graphene film grown on it corrodes 20 times slower while nickel surfaces coated with four layers of mechanically transferred graphene corrode 4 times slower than bare nickel. These findings establish graphene as the thinnest known corrosion-protecting coating.

  8. Evaluation of the use of shredded tires around buried pipes : technical assistance report.

    DOT National Transportation Integrated Search

    1999-05-01

    The objective of this project was to assess the potential of placement and compaction of shredded tire chips and soil-tire mix in confined trenches around buried pipes and to evaluate the stability and deformation of metal pipes in such systems. The ...

  9. Study of the use of truck tire beads as drainage pipe and analysis of the economics of tire disposal in Oklahoma. Part 1. Culverts. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Everett, J.W.; Gattis, J.L.

    1994-07-01

    In an attempt to find alternate ways of dealing with waste truck tires, a private tire recycling company developed a pipe from the tire bead and sidewall. The tire-pipe has seen limited use as a roadway drainage culvert. To encourage wider use of this product, an evaluation of pipe performance was performed. The evaluation consisted of (1) inspections of existing installations; (2) structural tests; and (3) leakage tests. The study found that the majority of installations were performing well. Compared with corrugated steel and fiberglass pipes, the tire-pipe exhibited favorable structural performance. An individual tire-pipe section was found to bemore » watertight. However, when tested in the open-air (not in the ground), the tire-pipe joints were found to leak. Development of an improved end connection would improve the utility of the tire-pipe.« less

  10. A Capsule-Type Electromagnetic Acoustic Transducer for Fast Screening of External Corrosion in Nonmagnetic Pipes.

    PubMed

    Li, Yong; Cai, Rui; Yan, Bei; Zainal Abidin, Ilham Mukriz; Jing, Haoqing; Wang, Yi

    2018-05-28

    For fuel transmission and structural strengthening, small-diameter pipes of nonmagnetic materials are extensively adopted in engineering fields including aerospace, energy, transportation, etc. However, the hostile and corrosive environment leaves them vulnerable to external corrosion which poses a severe threat to structural integrity of pipes. Therefore, it is imperative to nondestructively detect and evaluate the external corrosion in nonmagnetic pipes. In light of this, a capsule-type Electromagnetic Acoustic Transducer (EMAT) for in-situ nondestructive evaluation of nonmagnetic pipes and fast screening of external corrosion is proposed in this paper. A 3D hybrid model for efficient prediction of responses from the proposed transducer to external corrosion is established. Closed-form expressions of field quantities of electromagnetics and EMAT signals are formulated. Simulations based on the hybrid model indicate feasibility of the proposed transducer in detection and evaluation of external corrosion in nonmagnetic pipes. In parallel, experiments with the fabricated transducer have been carried out. Experimental results are supportive of the conclusion drawn from simulations. The investigation via simulations and experiments implies that the proposed capsule-type EMAT is capable of fast screening of external corrosion, which is beneficial to the in-situ nondestructive evaluation of small-diameter nonmagnetic pipes.

  11. Effects of Corroded and Non-Corroded Biodegradable Mg and Mg Alloys on Viability, Morphology and Differentiation of MC3T3-E1 Cells Elicited by Direct Cell/Material Interaction

    PubMed Central

    Mostofi, Sepideh; Bonyadi Rad, Ehsan; Wiltsche, Helmar; Fasching, Ulrike; Szakacs, Gabor; Ramskogler, Claudia; Srinivasaiah, Sriveena; Ueçal, Muammer; Willumeit, Regine; Weinberg, Annelie-Martina; Schaefer, Ute

    2016-01-01

    This study investigated the effect of biodegradable Mg and Mg alloys on selected properties of MC3T3-E1 cells elicited by direct cell/material interaction. The chemical composition and morphology of the surface of Mg and Mg based alloys (Mg2Ag and Mg10Gd) were analysed by scanning electron microscopy (SEM) and EDX, following corrosion in cell culture medium for 1, 2, 3 and 8 days. The most pronounced difference in surface morphology, namely crystal formation, was observed when Pure Mg and Mg2Ag were immersed in cell medium for 8 days, and was associated with an increase in atomic % of oxygen and a decrease of surface calcium and phosphorous. Crystal formation on the surface of Mg10Gd was, in contrast, negligible at all time points. Time-dependent changes in oxygen, calcium and phosphorous surface content were furthermore not observed for Mg10Gd. MC3T3-E1 cell viability was reduced by culture on the surfaces of corroded Mg, Mg2Ag and Mg10Gd in a corrosion time-independent manner. Cells did not survive when cultured on 3 day pre-corroded Pure Mg and Mg2Ag, indicating crystal formation to be particular detrimental in this regard. Cell viability was not affected when cells were cultured on non-corroded Mg and Mg alloys for up to 12 days. These results suggest that corrosion associated changes in surface morphology and chemical composition significantly hamper cell viability and, thus, that non-corroded surfaces are more conducive to cell survival. An analysis of the differentiation potential of MC3T3-E1 cells cultured on non-corroded samples based on measurement of Collagen I and Runx2 expression, revealed a down-regulation of these markers within the first 6 days following cell seeding on all samples, despite persistent survival and proliferation. Cells cultured on Mg10Gd, however, exhibited a pronounced upregulation of collagen I and Runx2 between days 8 and 12, indicating an enhancement of osteointegration by this alloy that could be valuable for in vivo orthopedic applications. PMID:27459513

  12. Microbial community structures and in situ sulfate-reducing and sulfur-oxidizing activities in biofilms developed on mortar specimens in a corroded sewer system.

    PubMed

    Satoh, Hisashi; Odagiri, Mitsunori; Ito, Tsukasa; Okabe, Satoshi

    2009-10-01

    Microbially induced concrete corrosion (MICC) caused by sulfuric acid attack in sewer systems has been a serious problem for a long time. A better understanding of microbial community structures of sulfate-reducing bacteria (SRB) and sulfur-oxidizing bacteria (SOB) and their in situ activities is essential for the efficient control of MICC. In this study, the microbial community structures and the in situ hydrogen sulfide production and consumption rates within biofilms and corroded materials developed on mortar specimens placed in a corroded manhole was investigated by culture-independent 16S rRNA gene-based molecular techniques and microsensors for hydrogen sulfide, oxygen, pH and the oxidation-reduction potential. The dark-gray gel-like biofilm was developed in the bottom (from the bottom to 4 cm) and the middle (4-20 cm from the bottom of the manhole) parts of the mortar specimens. White filamentous biofilms covered the gel-like biofilm in the middle part. The mortar specimens placed in the upper part (30 cm above the bottom of the manhole) were corroded. The 16S rRNA gene-cloning analysis revealed that one clone retrieved from the bottom biofilm sample was related to an SRB, 12 clones and 6 clones retrieved from the middle biofilm and the corroded material samples, respectively, were related to SOB. In situ hybridization results showed that the SRB were detected throughout the bottom biofilm and filamentous SOB cells were mainly detected in the upper oxic layer of the middle biofilm. Microsensor measurements demonstrated that hydrogen sulfide was produced in and diffused out of the bottom biofilms. In contrast, in the middle biofilm the hydrogen sulfide produced in the deeper parts of the biofilm was oxidized in the upper filamentous biofilm. pH was around 3 in the corroded materials developed in the upper part of the mortar specimens. Therefore, it can be concluded that hydrogen sulfide provided from the bottom biofilms and the sludge settling tank was emitted to the sewer atmosphere, then oxidized to corrosive compounds in the upper and middle parts of the manhole, and only the upper part of the mortar specimens were corroded, because in the middle part of the manhole the generated corrosive compounds (e.g., sulfuric acid) was reduced in the deeper parts of the biofilm.

  13. Determining the Effect of Environmental Conditions on Iron Corrosion by Atomic Absorption

    ERIC Educational Resources Information Center

    Malel, Esteban; Shalev, Deborah E.

    2013-01-01

    Iron corrosion is a complex process that occurs when iron is exposed to oxygen and humidity and is exacerbated by the presence of chloride ions. The deterioration of iron structures or other components can be costly to society and is usually evaluated by following the properties of the corroding material. Here, the iron ions released into solution…

  14. Refractory Metal Heat Pipe Life Test - Test Plan and Standard Operating Procedures

    NASA Technical Reports Server (NTRS)

    Martin, J. J.; Reid, R. S.

    2010-01-01

    Refractory metal heat pipes developed during this project shall be subjected to various operating conditions to evaluate life-limiting corrosion factors. To accomplish this objective, various parameters shall be investigated, including the effect of temperature and mass fluence on long-term corrosion rate. The test series will begin with a performance test of one module to evaluate its performance and to establish the temperature and power settings for the remaining modules. The performance test will be followed by round-the-clock testing of 16 heat pipes. All heat pipes shall be nondestructively inspected at 6-month intervals. At longer intervals, specific modules will be destructively evaluated. Both the nondestructive and destructive evaluations shall be coordinated with Los Alamos National Laboratory. During the processing, setup, and testing of the heat pipes, standard operating procedures shall be developed. Initial procedures are listed here and, as hardware is developed, will be updated, incorporating findings and lessons learned.

  15. Heat pipe fatigue test specimen: Metallurgical evaluation

    NASA Technical Reports Server (NTRS)

    Walak, Steven E.; Cronin, Michael J.; Grobstein, Toni

    1992-01-01

    An innovative creep/fatigue test was run to simulate the temperature, mechanical load, and sodium corrosion conditions expected in a heat pipe designed to supply thermal energy to a Stirling cycle power converter. A sodium-charged Inconel 718 heat pipe with a Nickel 200 screen wick was operated for 1090 hr at temperatures between 950 K (1250 F) and 1050 K (1430 F) while being subjected to creep and fatigue loads in a servo-hydraulic testing machine. After testing, the heat pipe was sectioned and examined using optical microscopy, scanning electron microscopy, and electron microprobe analysis with wavelength dispersive x-ray spectroscopy. The analysis concentrated on evaluating topographic, microstructural, and chemical changes in the sodium exposed surfaces of the heat pipe wall and wick. Surface changes in the evaporator, condenser, and adiabatic sections of the heat pipe were examined in an effort to correlate the changes with the expected sodium environment in the heat pipe. This report describes the setup, operating conditions, and analytical results of the sodium heat pipe fatigue test.

  16. Hot corrosion evaluation of aluminide coated superalloys in support of an ASTM Round Robin program

    NASA Technical Reports Server (NTRS)

    Santoro, G.

    1975-01-01

    Commercial aluminized coatings on substrates were hot corroded at 900 C in a 0.3 Mach burner rig with 5 ppm synthetic sea salt and at two cycling frequencies. Extensive post-exposure examinations were conducted on the corroded specimens such as metallography, X-ray diffraction, scanning electron microscopy, microprobe raster scans, and spectrographic analyses. Thermodynamic calculations were made of the equilibrium burner flame composition and the calculations were compared to the experimental findings. It was found that localized spalling of the coatings preceded coating failure. It is suggested that the spalling of the coatings is due to the formation of localized stresses caused by the depletion of chromium and aluminum in the coating or the enrichment of the coating with sulfur. For the materials and test conditions investigated, it was found that coating life is dependent only upon the initial coating thickness and not on the type of aluminized coating, the substrate, or the cycle frequency.

  17. Heat pipe life and processing study

    NASA Technical Reports Server (NTRS)

    Antoniuk, D.; Luedke, E. E.

    1979-01-01

    The merit of adding water to the reflux charge in chemically and solvent cleaned aluminum/slab wick/ammonia heat pipes was evaluated. The effect of gas in the performance of three heat pipe thermal control systems was found significant in simple heat pipes, less significant in a modified simple heat pipe model with a short wickless pipe section. Use of gas data for the worst and best heat pipes of the matrix in a variable conductance heat pipe model showed a 3 C increase in the source temperature at full on condition after 20 and 246 years, respectively.

  18. 76 FR 62656 - Airworthiness Directives; Saab AB, Saab Aerosystems Model 340A (SAAB/SF340A) and SAAB 340B Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-11

    ... MLG's separation bolt harness for broken wires and corroded connectors, and any applicable corrective... unsafe condition as: In 2003, a number of reports had been received concerning broken wires and corroded... expected results; therefore, an improved separation bolt harness having part number (P/N) 7292520-691 has...

  19. Corrosion-Resistant Container for Molten-Material Processing

    NASA Technical Reports Server (NTRS)

    Stern, Theodore G.; McNaul, Eric

    2010-01-01

    In a carbothermal process, gaseous methane is passed over molten regolith, which is heated past its melting point to a temperature in excess of 1,625 C. At this temperature, materials in contact with the molten regolith (or regolith simulant) corrode and lose their structural properties. As a result, fabricating a crucible to hold the molten material and providing a method of contact heating have been problematic. Alternative containment approaches use a large crucible and limit the heat zone of the material being processed, which is inefficient because of volume and mass constraints. Alternative heating approaches use non-contact heating, such as by laser or concentrated solar energy, which can be inefficient in transferring heat and thus require higher power heat sources to accomplish processing. The innovation is a combination of materials, with a substrate material having high structural strength and stiffness and high-temperature capability, and a coating material with a high corrosion resistance and high-temperature capability. The material developed is a molybdenum substrate with an iridium coating. Creating the containment crucible or heater jacket using this material combination requires only that the molybdenum, which is easily processed by conventional methods such as milling, electric discharge machining, or forming and brazing, be fabricated into an appropriate shape, and that the iridium coating be applied to any surfaces that may come in contact with the corrosive molten material. In one engineering application, the molybdenum was fashioned into a container for a heat pipe. Since only the end of the heat pipe is used to heat the regolith, the container has a narrowing end with a nipple in which the heat pipe is snugly fit, and the external area of this nipple, which contacts the regolith to transfer heat into it, is coated with iridium. At the time of this reporting, no single material has been found that can perform the functions of this combination of materials, and other combinations of materials have not proven to be survivable to the corrosiveness of this environment. High-temperature processing of materials with similar constituencies as lunar regolith is fairly common. The carbo-thermal process is commonly used to make metallurgical-grade silicon for the semiconductor and solar-cell industries.

  20. Fatigue strength degradation of metals in corrosive environments

    NASA Astrophysics Data System (ADS)

    Adasooriya, N. D.; Hemmingsen, T.; Pavlou, D.

    2017-12-01

    Structures exposed to aggressive environmental conditions are often subjected to time-dependent loss of coating and loss of material due to corrosion; this causes reduction in the cross-sectional properties of the members, increased surface roughness, surface irregularities and corrosion pits, and degradation of material strengths. These effects have been identified and simulated in different research studies. However, time and corrosive media dependent fatigue strength curves for materials have not been discussed in the design or assessment guidelines for structures. This paper attempts to review the corrosion degradation process and available approaches/models used to determine the fatigue strength of corroded materials and to interpolate corrosion deterioration data. High cycle fatigue and full range fatigue life formulae for fatigue strength of corroded materials are proposed. The above formulae depend on the endurance limit of corroded material, in addition to the stress-life fatigue curve parameters of the uncorroded material. The endurance limit of corroded material can either be determined by a limited number of tests in the very high-cycle fatigue region or predicted by an analytical approach. Comparison with experimentally measured corrosion fatigue behavior of several materials is provided and discussed.

  1. For Piping Corrosive Wastes--Glass, Metal Or Plastic? Laboratory Design Notes.

    ERIC Educational Resources Information Center

    Sell, J. Clyde

    1964-01-01

    Materials (piping and joints) for waste-piping systems are evaluated and a material or materials best qualified for above ground service in health research facilities are recommended. Evaluation is based on cost and performance because the potential value of any material depends on its ability to compete in both areas. In general, the following…

  2. High temperature thermal energy storage in steel and sand

    NASA Technical Reports Server (NTRS)

    Turner, R. H.

    1979-01-01

    The technical and economic potential for high temperature (343 C, 650 F) thermal energy storage in hollow steel ingots, pipes embedded in concrete, and for pipes buried in sand was evaluated. Because it was determined that concrete would separate from pipes due to thermal stresses, concrete was replaced by sand, which is free from thermal stresses. Variations of the steel ingot concept were not cost effective compared to the sand-pipe approach, therefore, the sand-pipe thermal storage unit (TSU) was evaluated in depth to assess the approximate tube spacing requirements consistent with different system performance characteristics and also attendant system costs. For large TSUs which do not require fast response times, the sand-pipe approach offers attractive possibilities. A pipe diameter about 9 cm (3.5 in) and pipe spacing of approximately 25 cm (10 in), with sand filling the interspaces, appears appropriate. Such a TSU system designed for 8 hours charge/discharge cycle has an energy unit storage cost (CE) of $2.63/kWhr-t and a power unit storage cost (Cp) of $42/kW-t (in 1977 dollars).

  3. Performance evaluation of buried pipe installation.

    DOT National Transportation Integrated Search

    2010-05-01

    The purpose of this study is to determine the effects of geometric and mechanical parameters characterizing the soil structure interaction developed in a buried pipe installation located under roads/highways. The drainage pipes or culverts installed ...

  4. Defense Small Business Innovation Research Program (SBIR) Abstracts of Phase I Awards 1984.

    DTIC Science & Technology

    1985-04-16

    PROTECTION OF SATELLITES FROM DIRECTED ENERGY WEAPONS, IS THE UTILIZATION OF HEAT PIPES WITHIN A SHIELD STRUCTURE. HEAT PIPES COULD BE DESIGNED TO...780 EDEN ROAD LANCASTER, PA 17601 ROBERT M. SHAUBACK TITLE: ANALYSIS AND PERFORMNCE EVALUATION OF HEAT PIPES WITH MULTIPLE HEAT SOURCES TOPIC: 97... PIPES CAPABLE OF ACCEPTING HEAT FROM MULTIPLE HEAT SOURCES. THERE IS NO THOROUGH ANALYTICAL OR EXPERIMENTAL BASIS FOR THE DESIGN OF HEAT PIPES OF

  5. Corrosion/Degradation Monitoring Technology for Composite Materials used to Extend Building Service Life

    DTIC Science & Technology

    2014-07-01

    for patching concrete structures that have corroded reinforcing steel , but the Army largely avoids structural composite repair applications because...J. Dunmire (OUSD(AT&L)), Bernie Rodriguez (IMPW-FM), and Valerie D. Hines (DAIM-ODF). The work was performed by the Engineering and Materials...buildings in the Army inventory often have se- verely corroded reinforcing steel that necessitates structural upgrades for conformance to current safety

  6. A new analysis of Monturaqui Meteorites

    NASA Astrophysics Data System (ADS)

    Kaniansky, S.; Molnár, K.

    2015-01-01

    The Monturaqui meteorite crater, located in the Andes Mountains, is known to host corroded iron meteorites (Koch and Buchwald, 1994), of probable IAB type. Over three hundred suspicious rocks with an exterior appearance were collected during the two expeditions to Monturaqui crater. A sample has been analyzed in the Department of Earth and Atmospheric Sciences, University of Alberta, Canada. The analyses support the conclusion that the Monturaqui rocks are corroded iron meteorites.

  7. Microbial Community Profile of a Lead Service Line Removed from a Drinking Water Distribution System▿

    PubMed Central

    White, Colin; Tancos, Matthew; Lytle, Darren A.

    2011-01-01

    A corroded lead service line was removed from a drinking water distribution system, and the microbial community was profiled using 16S rRNA gene techniques. This is the first report of the characterization of a biofilm on the surface of a corroded lead drinking water service line. The majority of phylotypes have been linked to heavy-metal-contaminated environments. PMID:21652741

  8. Investigation on the thermographic detection of corrosion in RC structures

    NASA Astrophysics Data System (ADS)

    Tantele, Elia A.; Votsis, Renos A.; Kyriakides, Nicholas; Georgiou, Panagiota G.; Ioannou, Fotia G.

    2017-09-01

    Corrosion of the steel reinforcement is the main problem of reinforced concrete (RC) structures. Over the past decades, several methods have been developed aiming to detect the corrosion process early in order to minimise the structural damage and consequently the repairing costs. Emphasis was given in developing methods and techniques of non-destructive nature providing fast on-the-spot detection and covering large areas rather that concentrating on single locations. This study, investigates a non-destructive corrosion detection technique for reinforced concrete, which is based on infrared thermography and the difference in thermal characteristics of corroded and non-corroded steel rebars. The technique is based on the principle that corrosion products have poor heat conductivity, and they inhibit the diffusion of heat that is generated in the reinforcing bar due to heating. For the investigation RC specimens, have been constructed in the laboratory using embedded steel bars of different corrosion states. Afterward, one surface of the specimens was heated using an electric device while thermal images were captured at predefined time instants on the opposite surface with an IR camera. The test results showed a clear difference between the thermal characteristics of the corroded and the non-corroded samples, which demonstrates the potential of using thermography in corrosion detection in RC structures.

  9. Probabilistic pipe fracture evaluations for leak-rate-detection applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahman, S.; Ghadiali, N.; Paul, D.

    1995-04-01

    Regulatory Guide 1.45, {open_quotes}Reactor Coolant Pressure Boundary Leakage Detection Systems,{close_quotes} was published by the U.S. Nuclear Regulatory Commission (NRC) in May 1973, and provides guidance on leak detection methods and system requirements for Light Water Reactors. Additionally, leak detection limits are specified in plant Technical Specifications and are different for Boiling Water Reactors (BWRs) and Pressurized Water Reactors (PWRs). These leak detection limits are also used in leak-before-break evaluations performed in accordance with Draft Standard Review Plan, Section 3.6.3, {open_quotes}Leak Before Break Evaluation Procedures{close_quotes} where a margin of 10 on the leak detection limit is used in determining the crackmore » size considered in subsequent fracture analyses. This study was requested by the NRC to: (1) evaluate the conditional failure probability for BWR and PWR piping for pipes that were leaking at the allowable leak detection limit, and (2) evaluate the margin of 10 to determine if it was unnecessarily large. A probabilistic approach was undertaken to conduct fracture evaluations of circumferentially cracked pipes for leak-rate-detection applications. Sixteen nuclear piping systems in BWR and PWR plants were analyzed to evaluate conditional failure probability and effects of crack-morphology variability on the current margins used in leak rate detection for leak-before-break.« less

  10. Localised surface plasmon-like resonance generated by microwave electromagnetic waves in pipe defects

    NASA Astrophysics Data System (ADS)

    Alobaidi, Wissam M.; Nima, Zeid A.; Sandgren, Eric

    2018-01-01

    Localised surface plasmon (LSP)-like resonance phenomena were simulated in COMSOL Multiphysics™, and the electric field enhancement was evaluated in eight pipe defects using the microwave band from 1.80 to 3.00 GHz and analysed by finite element analysis (FEA). The simulation was carried out, in each defect case, on a pipe that has 762 mm length and 152.4 mm inner diameter, and 12.7 mm pipe wall thickness. Defects were positioned in the middle of the pipe and were named as follows; SD: Square Defect, FCD: fillet corner defect, FD: fillet defect, HCD: half circle defect, TCD: triangle corner defect, TD: triangle defect, ZD: zigzag defect, GD: gear defect. The LSP electric field, and scattering parametric (S21, and S11) waves were evaluated in all cases and found to be strongly dependent on the size and the shape of the defect rather than the pipe and or the medium materials.

  11. Promethus Hot Leg Piping Concept

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    AM Girbik; PA Dilorenzo

    2006-01-24

    The Naval Reactors Prime Contractor Team (NRPCT) recommended the development of a gas cooled reactor directly coupled to a Brayton energy conversion system as the Space Nuclear Power Plant (SNPP) for NASA's Project Prometheus. The section of piping between the reactor outlet and turbine inlet, designated as the hot leg piping, required unique design features to allow the use of a nickel superalloy rather than a refractory metal as the pressure boundary. The NRPCT evaluated a variety of hot leg piping concepts for performance relative to SNPP system parameters, manufacturability, material considerations, and comparison to past high temperature gas reactormore » (HTGR) practice. Manufacturability challenges and the impact of pressure drop and turbine entrance temperature reduction on cycle efficiency were discriminators between the piping concepts. This paper summarizes the NRPCT hot leg piping evaluation, presents the concept recommended, and summarizes developmental issues for the recommended concept.« less

  12. Performance Evaluation of an Air-Coupled Phased-Array Radar for Near-Field Detection of Steel

    DTIC Science & Technology

    2014-05-01

    Corrosion Process Metals tend to corrode in acids. The concrete mixture is made up of a Portland cement solution which is a strong alkaline that preserves...suggestions they made throughout the thesis process . Lastly, I would also like to thank the UVM colleagues that shared their knowledge, and helped me conduct...4 2.2. Concrete/Pavement Damage .................................................................................. 4 2.3. Steel Corrosion Process

  13. Performance of protective coatings on structural plate pipe arches.

    DOT National Transportation Integrated Search

    1978-01-01

    The performance of bituminous coatings on structural plate pipe and pipe arches was evaluated in a limited field study supplemented by a survey of information from other agencies. Of the two available application techniques, immersion of individual p...

  14. Tests of cryogenic pigs for use in liquefied gas pipelines

    NASA Astrophysics Data System (ADS)

    Hipple, D. L.; Oneal, W. C.

    1982-09-01

    Pipeline pigs are a key element in the design of a proposed spill test facility whose purpose is to evaluate the hazards of large spills of liquefied gaseous fuels (LGFs). A long pipe runs from the LGF storage tanks to the spill point; to produce a rapid spill, the pipe is filled with LGF and a pig will be pneumatically driven through the pipe to force out the LGF quickly and cleanly. Several pig designs were tested in a 6 inch diameter, 420 foot long pipe to evaluate their performance at liquid-nitrogen temperature and compare it with their performance at ambient temperature. For each test, the pig was placed in one end of the pipe and either water or liquid nitrogen was put into the pipe in front of the pig. Then pressurized drive gas, either nitrogen or helium, was admitted to the pipe behind the pig to push the pig and the fluid ahead of it out the exit nozzle. For some tests, the drive gas supply was shut off when the pig was part way through the pipe as a method of velocity control; in these cases, the pressurized gas trapped behind the pig continued to expand until it pushed the pig the remaining distance out of the pipe.

  15. Field investigation on structural performance of the buried UPVC pipes with and without geogrid reinforcement

    NASA Astrophysics Data System (ADS)

    Teja, Akkineni Surya; Rajkumar, R.; Gokula Krishnan, B.; Aravindh, R.

    2018-02-01

    Buried pipes are used mainly for water supply and drainage besides many other applications such as oil, liquefied natural gas, coal slurries and mine tailings. The pipes used may be rigid (reinforced concrete, vitrified clay and ductile iron) or flexible (Steel, UPVC, aluminium, Fiber glass and High-density polyethylene) although the distinction between them is blurring. Flexible pipe design is governed by deflection or buckling. UPVC pipes are preferred due to light weight, long term chemical stability and cost efficiency. This project aims to study the load deformation behaviour of the buried pipe and stress variation across the cross section of the pipe under static loading along with the influence of depth of embedment, density of backfill on the deformation and stresses in pipe and the deformation behaviour of buried pipe when soil is reinforced with geogrid reinforcement and evaluate the structural performance of the pipe.

  16. Inspection of Objects Retrieved from the Deep Ocean - AUTEC Acoustic Array

    DTIC Science & Technology

    1976-02-01

    were stalactite like rust tubercules . These tubercules were up to 8 inches long and 2 inchus in diameter. Their hard outer skins (1/4- inch thick...covered softer and often fluid interiors. After several hours exposure to the air the tubercules became brittle and crumbled. The interior portions of the...tubular steel members which showed these tubercules were uniformly corroded. The aluminum sections of the tracking arm assembly were heavily corroded

  17. Corroded Anchor Structure Stability/Reliability (CAS_Stab-R) Software for Hydraulic Structures

    DTIC Science & Technology

    2017-12-01

    This report describes software that provides a probabilistic estimate of time -to-failure for a corroding anchor strand system. These anchor...stability to the structure. A series of unique pull-test experiments conducted by Ebeling et al. (2016) at the U.S. Army Engineer Research and...Reliability (CAS_Stab-R) produces probabilistic Remaining Anchor Life time estimates for anchor cables based upon the direct corrosion rate for the

  18. Development of AC impedance methods for evaluating corroding metal surfaces and coatings

    NASA Technical Reports Server (NTRS)

    Knockemus, Ward

    1986-01-01

    In an effort to investigate metal surface corrosion and the breakdown of metal protective coatings the AC Impedance Method was applied to zinc chromate primer coated 2219-T87 aluminum. The model 368-1 AC Impedance Measurement System recently acquired by the MSFC Corrosion Research Branch was used to monitor changing properties of coated aluminum disks immersed in 3.5% NaCl buffered at ph 5.5 over three to four weeks. The DC polarization resistance runs were performed on the same samples. The corrosion system can be represented by an electronic analog called an equivalent circuit that consists of transistors and capacitors in specific arrangements. This equivalent circuit parallels the impedance behavior of the corrosion system during a frequency scan. Values for resistances and capacities that can be assigned in the equivalent circuit following a least squares analysis of the data describe changes that occur on the corroding metal surface and in the protective coating. A suitable equivalent circuit was determined that predicts the correct Bode phase and magnitude for the experimental sample. The DC corrosion current density data are related to equivalent circuit element parameters.

  19. Corrosion Assessment of Steel Bars Used in Reinforced Concrete Structures by Means of Eddy Current Testing

    PubMed Central

    de Alcantara, Naasson P.; da Silva, Felipe M.; Guimarães, Mateus T.; Pereira, Matheus D.

    2015-01-01

    This paper presents a theoretical and experimental study on the use of Eddy Current Testing (ECT) to evaluate corrosion processes in steel bars used in reinforced concrete structures. The paper presents the mathematical basis of the ECT sensor built by the authors; followed by a finite element analysis. The results obtained in the simulations are compared with those obtained in experimental tests performed by the authors. Effective resistances and inductances; voltage drops and phase angles of wound coil are calculated using both; simulated and experimental data; and demonstrate a strong correlation. The production of samples of corroded steel bars; by using an impressed current technique is also presented. The authors performed experimental tests in the laboratory using handmade sensors; and the corroded samples. In the tests four gauges; with five levels of loss-of-mass references for each one were used. The results are analyzed in the light of the loss-of-mass and show a strong linear behavior for the analyzed parameters. The conclusions emphasize the feasibility of the proposed technique and highlight opportunities for future works. PMID:26712754

  20. Simplified failure sequence evaluation of reactor pressure vessel head corroding in-core instrumentation assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McVicker, J.P.; Conner, J.T.; Hasrouni, P.N.

    1995-11-01

    In-Core Instrumentation (ICI) assemblies located on a Reactor Pressure Vessel Head have a history of boric acid leakage. The acid tends to corrode the nuts and studs which fasten the flanges of the assembly, thereby compromising the assembly`s structural integrity. This paper provides a simplified practical approach in determining the likelihood of an undetected progressing assembly stud deterioration, which would lead to a catastrophic loss of reactor coolant. The structural behavior of the In-Core Instrumentation flanged assembly is modeled using an elastic composite section assumption, with the studs transmitting tension and the pressure sealing gasket experiencing compression. Using the abovemore » technique, one can calculate the flange relative deflection and the consequential coolant loss flow rate, as well as the stress in any stud. A solved real life example develops the expected failure sequence and discusses the exigency of leak detection for safe shutdown. In the particular case of Calvert Cliffs Nuclear Power Plant (CCNPP) it is concluded that leak detection occurs before catastrophic failure of the ICI flange assembly.« less

  1. Corrosion Assessment of Steel Bars Used in Reinforced Concrete Structures by Means of Eddy Current Testing.

    PubMed

    de Alcantara, Naasson P; da Silva, Felipe M; Guimarães, Mateus T; Pereira, Matheus D

    2015-12-24

    This paper presents a theoretical and experimental study on the use of Eddy Current Testing (ECT) to evaluate corrosion processes in steel bars used in reinforced concrete structures. The paper presents the mathematical basis of the ECT sensor built by the authors; followed by a finite element analysis. The results obtained in the simulations are compared with those obtained in experimental tests performed by the authors. Effective resistances and inductances; voltage drops and phase angles of wound coil are calculated using both; simulated and experimental data; and demonstrate a strong correlation. The production of samples of corroded steel bars; by using an impressed current technique is also presented. The authors performed experimental tests in the laboratory using handmade sensors; and the corroded samples. In the tests four gauges; with five levels of loss-of-mass references for each one were used. The results are analyzed in the light of the loss-of-mass and show a strong linear behavior for the analyzed parameters. The conclusions emphasize the feasibility of the proposed technique and highlight opportunities for future works.

  2. TRACER DISPERSION STUDIES FOR HYDRAULIC CHARACTERIZATION OF PIPES

    EPA Science Inventory

    A series of experiments were conducted at the U. S. Environmental Protection Agency (EPA) Test & Evaluation (T&E) Facility in Cincinnati, Ohio, to quantify longitudinal dispersion of a sodium fluoride tracer in polyvinyl chloride (PVC) pipe and ductile iron pipe under laminar, tr...

  3. Development of a Computerized Data Base to Monitor Wheeled Vehicle Corrosion

    DTIC Science & Technology

    1989-10-01

    the region which corrodes. This potential difference , or voltage of these little batteries or cells, is due to the difference in the oxygen...availability at the point of attack. Differential aeration cells occur at all places where there is a difference in the availability of oxygen and can only...program is actually an evaluation of the various corrosion prevention systems and methods which were applied to the wheeled vehicles when they were

  4. EVALUATION OF THE COLD PIPE PRECHARGER

    EPA Science Inventory

    The article gives results of an evaluation of the performance of the cold pipe precharger, taking a more rigorous approach than had been previously taken. The approach required detailed descriptions of electrical characteristics, electro-hydrodynamics, and charging theory. The co...

  5. Metal pipe coupling study : final report.

    DOT National Transportation Integrated Search

    1975-11-01

    The specific aims of the study were: (1) to establish a standard design for the watertight coupling systems for the various kinds of metal culvert pipe and to evaluate the test method for determining watertight systems, (2) to evaluate seam connectio...

  6. An evaluation of bituminized fiber pipe culverts.

    DOT National Transportation Integrated Search

    1970-01-01

    This report describes the results to date in a limited study, including laboratory tests and field evaluations, of the suitability of bituminized fiber pipe for use as highway culverts. Crushing strength data obtained from three-edge bearing tests in...

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Kyoung Mo; Jee, Kye Kwang; Pyo, Chang Ryul

    The basis of the leak before break (LBB) concept is to demonstrate that piping will leak significantly before a double ended guillotine break (DEGB) occurs. This is demonstrated by quantifying and evaluating the leak process and prescribing safe shutdown of the plant on the basis of the monitored leak rate. The application of LBB for power plant design has reduced plant cost while improving plant integrity. Several evaluations employing LBB analysis on system piping based on DEGB design have been completed. However, the application of LBB on main steam (MS) piping, which is LBB applicable piping, has not been performedmore » due to several uncertainties associated with occurrence of steam hammer and dynamic strain aging (DSA). The objective of this paper is to demonstrate the applicability of the LBB design concept to main steam lines manufactured with SA106 Gr.C carbon steel. Based on the material properties, including fracture toughness and tensile properties obtained from the comprehensive material tests for base and weld metals, a parametric study was performed as described in this paper. The PICEP code was used to determine leak size crack (LSC) and the FLET code was used to perform the stability assessment of MS piping. The effects of material properties obtained from tests were evaluated to determine the LBB applicability for the MS piping. It can be shown from this parametric study that the MS piping has a high possibility of design using LBB analysis.« less

  8. Comments on Cadmium Alternatives and Testing - IHE vs. EHE (Briefing Charts)

    DTIC Science & Technology

    2011-11-17

    Boeing. All rights reserved. 6 • Provides Corrosion Protection to Steel - No red rust – Corrosion Resistant Coating in Salt Water (Compared to Zinc ...Cd corrosion rate in salt water is lower than zinc • Sacrificially Protects Steel – If Cd coating is scratched Cd coating will corrode first and...prevent steel from corroding • Soft and Ductile – Does Not Reduce the Fatigue Life of High Strength Steel (HSS) – Provides lubricous coating to

  9. Pressure pulsations in piping system excited by a centrifugal turbomachinery taking the damping characteristics into consideration

    NASA Astrophysics Data System (ADS)

    Hayashi, I.; Kaneko, S.

    2014-02-01

    Pressure pulsations excited by a centrifugal turbomachinery such as compressor, fan or pump at the blade passing frequency may cause severe noise and vibrations in piping system. Therefore, the practical evaluation method of pressure pulsations is strongly recommended. In particular, the maximum pressure amplitude under the resonant conditions should be appropriately evaluated. In this study, a one-dimensional excitation source model for a compressor or pump is introduced based on the equation of motion, so as to incorporate the non-linear damping proportional to velocity squared in the total piping system including the compressor or pump. The damping characteristics of the compressor or pump are investigated by using the semi-empirical model. It is shown that the resistance coefficient of the compressor or pump depends on the Reynolds number that is defined using the equivalent velocity of the pulsating flow. The frequency response of the pressure amplitude and the pressure distribution in the piping system can be evaluated by introducing the equivalent resistance of the compressor or pump and that of piping system. In particular, the relation of the maximum pressure amplitude in piping system to the location of the excitation source under resonant conditions can be evaluated. Finally, the reduction of the pressure pulsations by use of an orifice plate is discussed in terms of the pulsation energy loss.

  10. Procedures for testing and evaluating spacecraft-type heat pipes

    NASA Astrophysics Data System (ADS)

    Tower, L. K.; Kaufman, W. B.

    1984-04-01

    This report describes part of an effort to develop dependable, cost effective spacecraft thermal control heat pipes. In the program the reliability and performance of 30 commercially available heat pipes were assessed. The pipes comprised 10 groups of varying design, with aluminum and stainless steel as structural materials, and methanol and ammonia as working fluids. The factors studied were noncondensible gas accumulation and heat transfer capability in one g. The present report supplements a brief earlier report by describing in detail the procedures required to conduct a comprehensive evaluation of heat pipes for thermal control. It discusses the test facilities and testing procedures. The manner in which data may be taken for estimating useful life and comparing performance is described. Some of the pitfalls in making such judgments are illustrated. Originator supplied keywords include: heat transfer, and corrosion.

  11. Evaluation of ultraliner PVC alloy pipeliner.

    DOT National Transportation Integrated Search

    2013-12-01

    In an effort to evaluate promising pipe lining techniques, the Agency installed two Ultraliner : PVC Alloy Pipeliners in the town of Barton, Vermont in May of 2003; one in an 18 : - : inch (450 : mm nominal) reinforced concrete pipe (RCP) and one in ...

  12. Advanced radiator concepts utilizing honeycomb panel heat pipes (stainless steel)

    NASA Technical Reports Server (NTRS)

    Fleischman, G. L.; Tanzer, H. J.

    1985-01-01

    The feasibility of fabricating and processing moderate temperature range heat pipes in a low mass honeycomb sandwich panel configuration for highly efficient radiator fins for the NASA space station was investigated. A variety of honeycomb panel facesheet and core-ribbon wick concepts were evaluated within constraints dictated by existing manufacturing technology and equipment. Concepts evaluated include: type of material, material and panel thicknesses, wick type and manufacturability, liquid and vapor communication among honeycomb cells, and liquid flow return from condenser to evaporator facesheet areas. In addition, the overall performance of the honeycomb panel heat pipe was evaluated analytically.

  13. Relative Performance of Lindgren Multiple-Funnel, Intercept Panel, and Colossus Pipe Traps in Catching Cerambycidae and Associated Species in the Southeastern United States

    Treesearch

    Daniel R. Miller; Christopher M. Crowe

    2011-01-01

    In 2004, we evaluated the relative performance of 8-unit Lindgren multiple-funnel (funnel), Intercept panel (panel), and Colossus pipe (pipe) traps, baited with ethanol and -pinene lures, in catching saproxylic beetles (Coleoptera) in pine stands in northern Florida and western South Carolina. Panel traps were as good as, if not better than, funnel and pipe...

  14. Post-Test Analysis of a 10-Year Sodium Heat Pipe Life Test

    NASA Technical Reports Server (NTRS)

    Rosenfeld, John H.; Locci, Ivan E.; Sanzi, James L.; Hull, David R.; Geng, Steven M.

    2011-01-01

    High-temperature heat pipes are being evaluated for use in energy conversion applications such as fuel cells, gas turbine re-combustors, Stirling cycle heat sources; and with the resurgence of space nuclear power both as reactor heat removal elements and as radiator elements. Long operating life and reliable performance are critical requirements for these applications. Accordingly, long-term materials compatibility is being evaluated through the use of high-temperature life test heat pipes. Thermacore, Inc., has carried out a sodium heat pipe 10-year life test to establish long-term operating reliability. Sodium heat pipes have demonstrated favorable materials compatibility and heat transport characteristics at high operating temperatures in air over long time periods. A representative one-tenth segment Stirling Space Power Converter heat pipe with an Inconel 718 envelope and a stainless steel screen wick has operated for over 87,000 hr (10 years) at nearly 700 C. These life test results have demonstrated the potential for high-temperature heat pipes to serve as reliable energy conversion system components for power applications that require long operating lifetime with high reliability. Detailed design specifications, operating history, and post-test analysis of the heat pipe and sodium working fluid are described. Lessons learned and future life test plans are also discussed.

  15. Ten Year Operating Test Results and Post-Test Analysis of a 1/10 Segment Stirling Sodium Heat Pipe, Phase III

    NASA Technical Reports Server (NTRS)

    Rosenfeld, John, H; Minnerly, Kenneth, G; Dyson, Christopher, M.

    2012-01-01

    High-temperature heat pipes are being evaluated for use in energy conversion applications such as fuel cells, gas turbine re-combustors, Stirling cycle heat sources; and with the resurgence of space nuclear power both as reactor heat removal elements and as radiator elements. Long operating life and reliable performance are critical requirements for these applications. Accordingly, long-term materials compatibility is being evaluated through the use of high-temperature life test heat pipes. Thermacore, Inc., has carried out a sodium heat pipe 10-year life test to establish long-term operating reliability. Sodium heat pipes have demonstrated favorable materials compatibility and heat transport characteristics at high operating temperatures in air over long time periods. A representative one-tenth segment Stirling Space Power Converter heat pipe with an Inconel 718 envelope and a stainless steel screen wick has operated for over 87,000 hr (10 yr) at nearly 700 C. These life test results have demonstrated the potential for high-temperature heat pipes to serve as reliable energy conversion system components for power applications that require long operating lifetime with high reliability. Detailed design specifications, operating history, and post-test analysis of the heat pipe and sodium working fluid are described.

  16. Heat Pipe Materials Compatibility

    NASA Technical Reports Server (NTRS)

    Eninger, J. E.; Fleischman, G. L.; Luedke, E. E.

    1976-01-01

    An experimental program to evaluate noncondensable gas generation in ammonia heat pipes was completed. A total of 37 heat pipes made of aluminum, stainless steel and combinations of these materials were processed by various techniques, operated at different temperatures and tested at low temperature to quantitatively determine gas generation rates. In order of increasing stability are aluminum/stainless combination, all aluminum and all stainless heat pipes. One interesting result is the identification of intentionally introduced water in the ammonia during a reflux step as a means of surface passivation to reduce gas generation in stainless-steel/aluminum heat pipes.

  17. ERTS-C (Landsat 3) cryogenic heat pipe experiment definition

    NASA Technical Reports Server (NTRS)

    Brennan, P. J.; Kroliczek, E. J.

    1975-01-01

    A flight experiment designed to demonstrate current cryogenic heat pipe technology was defined and evaluated. The experiment package developed is specifically configured for flight aboard an ERTS type spacecraft. Two types of heat pipes were included as part of the experiment package: a transporter heat pipe and a thermal diode heat pipe. Each was tested in various operating modes. Performance data obtained from the experiment are applicable to the design of cryogenic systems for detector cooling, including applications where periodic high cooler temperatures are experienced as a result of cyclic energy inputs.

  18. Thermostructural applications of heat pipes

    NASA Technical Reports Server (NTRS)

    Peeples, M. E.; Reeder, J. C.; Sontag, K. E.

    1979-01-01

    The feasibility of integrating heat pipes in high temperature structure to reduce local hot spot temperature was evaluated for a variety of hypersonic aerospace vehicles. From an initial list of twenty-two potential applications, the single stage to orbit wing leading edge showed the greatest promise and was selected for preliminary design of an integrated heat pipe thermostructural system. The design consisted of a Hastelloy X assembly with sodium heat pipe passages aligned normal to the wing leading edge. A d-shaped heat pipe cross section was determined to be optimum from the standpoint of structural weight.

  19. Fabrication and Testing of Mo-Re Heat Pipes Embedded in Carbon/Carbon

    NASA Technical Reports Server (NTRS)

    Glass, David E.; Merrigan, Michael A.; Sena, J. Tom

    1998-01-01

    Refractory-composite/heat-pipe-cooled wing an tail leading edges are being considered for use on hypersonic vehicles to limit maximum temperatures to values below material reuse limits and to eliminate the need to actively cool the leading edges. The development of a refractory-composite/heat-pipe-cooled leading edge has evolved from the design stage to the fabrication and testing of heat pipes embedded in carbon/carbon (C/C). A three-foot-long, molybdenum-rhenium heat pipe with a lithium working fluid was fabricated and tested at an operating temperature of 2460 F to verify the individual heat-pipe design. Following the fabrication of this heat pipe, three additional heat pipes were fabricated and embedded in C/C. The C/C heat-pipe test article was successfully tested using quartz lamps in a vacuum chamber in both a horizontal and vertical orientation. Start up and steady state data are presented for the C/C heat-pipe test article. Radiography and eddy current evaluations were performed on the test article.

  20. Succession of Sulfur-Oxidizing Bacteria in the Microbial Community on Corroding Concrete in Sewer Systems† ▿

    PubMed Central

    Okabe, Satoshi; Odagiri, Mitsunori; Ito, Tsukasa; Satoh, Hisashi

    2007-01-01

    Microbially induced concrete corrosion (MICC) in sewer systems has been a serious problem for a long time. A better understanding of the succession of microbial community members responsible for the production of sulfuric acid is essential for the efficient control of MICC. In this study, the succession of sulfur-oxidizing bacteria (SOB) in the bacterial community on corroding concrete in a sewer system in situ was investigated over 1 year by culture-independent 16S rRNA gene-based molecular techniques. Results revealed that at least six phylotypes of SOB species were involved in the MICC process, and the predominant SOB species shifted in the following order: Thiothrix sp., Thiobacillus plumbophilus, Thiomonas intermedia, Halothiobacillus neapolitanus, Acidiphilium acidophilum, and Acidithiobacillus thiooxidans. A. thiooxidans, a hyperacidophilic SOB, was the most dominant (accounting for 70% of EUB338-mixed probe-hybridized cells) in the heavily corroded concrete after 1 year. This succession of SOB species could be dependent on the pH of the concrete surface as well as on trophic properties (e.g., autotrophic or mixotrophic) and on the ability of the SOB to utilize different sulfur compounds (e.g., H2S, S0, and S2O32−). In addition, diverse heterotrophic bacterial species (e.g., halo-tolerant, neutrophilic, and acidophilic bacteria) were associated with these SOB. The microbial succession of these microorganisms was involved in the colonization of the concrete and the production of sulfuric acid. Furthermore, the vertical distribution of microbial community members revealed that A. thiooxidans was the most dominant throughout the heavily corroded concrete (gypsum) layer and that A. thiooxidans was most abundant at the highest surface (1.5-mm) layer and decreased logarithmically with depth because of oxygen and H2S transport limitations. This suggested that the production of sulfuric acid by A. thiooxidans occurred mainly on the concrete surface and the sulfuric acid produced penetrated through the corroded concrete layer and reacted with the sound concrete below. PMID:17142362

  1. Heat Pipes and Heat Rejection Component Testing at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Sanzi, James L.; Jaworske, Donald A.

    2012-01-01

    Titanium-water heat pipes are being evaluated for use in the heat rejection system for space fission power systems. The heat rejection syst em currently comprises heat pipes with a graphite saddle and a composite fin. The heat input is a pumped water loop from the cooling of the power conversion system. The National Aeronautics and Space Administration has been life testing titanium-water heat pipes as well as eval uating several heat pipe radiator designs. The testing includes thermal modeling and verification of model, material compatibility, frozen startup of heat pipe radiators, and simulating low-gravity environments. Future thermal testing of titanium-water heat pipes includes low-g ravity testing of thermosyphons, radiation testing of heat pipes and fin materials, water pump performance testing, as well as Small Busine ss Innovation Research funded deliverable prototype radiator panels.

  2. A Pilot Study for Retrospective Evaluation of Cured-in-Place Pipe (CIPP) Rehabilitation of Municipal Gravity Sewers

    EPA Science Inventory

    Pipe rehabilitation and trenchless pipe replacement technologies have seen a steadily increasing use over the past 30 to 40 years. Despite the massive public investment in the rehabilitation of the US water and wastewater infrastructure, there has been little formal and quantita...

  3. National Database Structure for Life Cycle Performance Assessment of Water and Wastewater Rehabilitation Technologies (Retrospective Evaluation)

    EPA Science Inventory

    This report builds upon a previous pilot study to document the in-service performance of trenchless pipe rehabilitation techniques. The use of pipe rehabilitation and trenchless pipe replacement technologies has increased over the past 30 to 40 years and represents an increasing...

  4. Soil-pipe interaction modeling for pipe behavior prediction with super learning based methods

    NASA Astrophysics Data System (ADS)

    Shi, Fang; Peng, Xiang; Liu, Huan; Hu, Yafei; Liu, Zheng; Li, Eric

    2018-03-01

    Underground pipelines are subject to severe distress from the surrounding expansive soil. To investigate the structural response of water mains to varying soil movements, field data, including pipe wall strains in situ soil water content, soil pressure and temperature, was collected. The research on monitoring data analysis has been reported, but the relationship between soil properties and pipe deformation has not been well-interpreted. To characterize the relationship between soil property and pipe deformation, this paper presents a super learning based approach combining feature selection algorithms to predict the water mains structural behavior in different soil environments. Furthermore, automatic variable selection method, e.i. recursive feature elimination algorithm, were used to identify the critical predictors contributing to the pipe deformations. To investigate the adaptability of super learning to different predictive models, this research employed super learning based methods to three different datasets. The predictive performance was evaluated by R-squared, root-mean-square error and mean absolute error. Based on the prediction performance evaluation, the superiority of super learning was validated and demonstrated by predicting three types of pipe deformations accurately. In addition, a comprehensive understand of the water mains working environments becomes possible.

  5. Corrosion resistance of sodium sulfate coated cobalt-chromium-aluminum alloys at 900 C, 1000 C, and 1100 C

    NASA Technical Reports Server (NTRS)

    Santoro, G. J.

    1979-01-01

    The corrosion of sodium sulfate coated cobalt alloys was measured and the results compared to the cyclic oxidation of alloys with the same composition, and to the hot corrosion of compositionally equivalent nickel-base alloys. Cobalt alloys with sufficient aluminum content to form aluminum containing scales corrode less than their nickel-base counterparts. The cobalt alloys with lower aluminum levels form CoO scales and corrode more than their nickel-base counterparts which form NiO scales.

  6. Assessment of NDE Methods to Detect Lack of Fusion in HDPE Butt Fusion Joints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, Susan L.; Doctor, Steven R.; Cinson, Anthony D.

    2011-07-31

    Studies at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington, were conducted to evaluate nondestructive examinations (NDE) coupled with mechanical testing of butt fusion joints in high-density polyethylene (HDPE) pipe for assessing lack of fusion. The work provided information to the United States Nuclear Regulatory Commission (NRC) on the effectiveness of volumetric inspection techniques of HDPE butt fusion joints in Section III, Division 1, Class 3, buried piping systems in nuclear power plants. This paper describes results from assessments using ultrasonic and microwave nondestructive techniques and mechanical testing with the high-speed tensile impact test and the side-bend test formore » determining joint integrity. A series of butt joints were fabricated in 3408, 12-inch (30.5-cm) IPS DR-11 HDPE material by varying the fusion parameters to create good joints and joints containing a range of lack-of-fusion conditions. Six of these butt joints were volumetrically examined with time-of-flight diffraction (TOFD), phased-array (PA) ultrasound, and the Evisive microwave system. The outer diameter (OD) weld beads were removed for microwave evaluation and the pipes ultrasonically re-evaluated. In two of the six pipes, both the outer and inner diameter (ID) weld beads were removed and the pipe joints re-evaluated. Some of the pipes were sectioned and the joints destructively evaluated with the high-speed tensile test and the side-bend test. The fusion parameters, nondestructive and destructive evaluation results have been correlated to validate the effectiveness of what each NDE technology detects and what each does not detect. There was no single NDE method that detected all of the lack-of-fusion flaws but a combination of NDE methods did detect most of the flaws.« less

  7. Corrosion of stainless steel sternal wire after long-term implantation.

    PubMed

    Tomizawa, Yasuko; Hanawa, Takao; Kuroda, Daisuke; Nishida, Hiroshi; Endo, Masahiro

    2006-01-01

    A variety of metallic components have been used in medical devices where lifelong durability and physical strength are demanded. To investigate the in vivo changes of implanted metallic medical devices in humans, stainless steel sternal wires removed from patients were evaluated. Stainless steel (316L) sternal wires removed from four patients after 10, 13, 22, and 30 years of implantation were evaluated using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Macroscopically, the removed specimens maintained their metallic luster and color. Under SEM, small holes were observed sporadically at 10 years and they tended to connect in the drawing direction. The longer the implanted duration, the more numerous and deeper were the crevices observed. By EDS, sulfur, phosphorus, and calcium were identified in all areas at 10 years, in addition to the component elements of stainless steel, comprising iron, chromium, nickel, and manganese. Corrosion products observed at 30 years were identified as calcium phosphate. In conclusion, stainless steel sternal wires develop corroded pores that grow larger and deeper with time after implantation; however, the pores remain shallow even after decades of implantation and they may not be a cause of mechanical failure. An amount of metal ions equivalent to the corroded volume must have been released into the human body, but the effect of these metal ions on the body is not apparent.

  8. Determination of ac conductor and pipe loss in pipe-type cable systems. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silver, D.A.; Seman, G.W.

    1982-02-01

    The results are presented of investigations into the determination of the ac/dc resistance ratios of high and extra high voltage pipe-type cables with conventional and large size segmental conductors in carbon steel, stainless steel and aluminum pipes in three cable per pipe and single cable per pipe configurations. The measurements included 115 through 765 kV cables with copper, enamel coated copper, and aluminum conductors in sizes of 2000 kcmil (1015 mm/sup 2/), 3250 kcmil (1650 mm/sup 2/), and 3500 kcmil (1776 mm/sup 2/). Calculations using presently available techniques were employed to provide correlation between measured and calculated values in bothmore » magnetic and non-magnetic pipes. In addition, a number of new techniques in conductor construction, pipe material and pipe liners and cable wraps were investigated as means of decreasing the ac/dc resistance ratios of pipe-type cables. Finally, the various systems studied were compared on the basis of system MVA rating and by evaluation of installed and overall operating costs as compared to conventional three cable per pipe systems installed in carbon steel pipes.« less

  9. Collapse of Corroded Pipelines under Combined Tension and External Pressure

    PubMed Central

    Ye, Hao; Yan, Sunting; Jin, Zhijiang

    2016-01-01

    In this work, collapse of corroded pipeline under combined external pressure and tension is investigated through numerical method. Axially uniform corrosion with symmetric imperfections is firstly considered. After verifying with existing experimental results, the finite element model is used to study the effect of tension on collapse pressure. An extensive parametric study is carried out using Python script and FORTRAN subroutine to investigate the influence of geometric parameters on the collapse behavior under combined loads. The results are used to develop an empirical equation for estimating the collapse pressure under tension. In addition, the effects of loading path, initial imperfection length, yielding anisotropy and corrosion defect length on the collapse behavior are also investigated. It is found that tension has a significant influence on collapse pressure of corroded pipelines. Loading path and anisotropic yielding are also important factors affecting the collapse behavior. For pipelines with relatively long corrosion defect, axially uniform corrosion models could be used to estimate the collapse pressure. PMID:27111544

  10. Uniaxial low cycle fatigue behavior for pre-corroded 16MND5 bainitic steel in simulated pressurized water reactor environment

    NASA Astrophysics Data System (ADS)

    Chen, Xu; Ren, Bin; Yu, Dunji; Xu, Bin; Zhang, Zhe; Chen, Gang

    2018-06-01

    The effects of uniaxial tension properties and low cycle fatigue behavior of 16MND5 bainitic steel cylinder pre-corroded in simulated pressurized water reactor (PWR) were investigated by fatigue at room temperature in air and immersion test system, scanning electron microscopy (SEM), energy disperse spectroscopy (EDS). The experimental results indicated that the corrosion fatigue lives of 16MND5 specimen were significantly affected by the strain amplitude and simulated PWR environments. The compositions of corrosion products were complexly formed in simulated PWR environments. The porous corrosion surface of pre-corroded materials tended to generate pits as a result of promoting contact area to the fresh metal, which promoted crack initiation. For original materials, the fatigue cracks initiated at inclusions imbedded in the micro-cracks. Moreover, the simulated PWR environments degraded the mechanical properties and low cycle fatigue behavior of 16MND5 specimens remarkably. Pre-corrosion of 16MND5 specimen mainly affected the plastic term of the Coffin-Manson equation.

  11. Oxidation kinetics of hydride-bearing uranium metal corrosion products

    NASA Astrophysics Data System (ADS)

    Totemeier, Terry C.; Pahl, Robert G.; Frank, Steven M.

    The oxidation behavior of hydride-bearing uranium metal corrosion products from Zero Power Physics Reactor (ZPPR) fuel plates was studied using thermo-gravimetric analysis (TGA) in environments of Ar-4%O 2, Ar-9%O 2, and Ar-20%O 2. Ignition of corrosion product samples from two moderately corroded plates was observed between 125°C and 150°C in all environments. The rate of oxidation above the ignition temperature was found to be dependent only on the net flow rate of oxygen in the reacting gas. Due to the higher net oxygen flow rate, burning rates increased with increasing oxygen concentration. Oxidation rates below the ignition temperature were much slower and decreased with increasing test time. The hydride contents of the TGA samples from the two moderately corroded plates, determined from the total weight gain achieved during burning, were 47-61 wt% and 29-39 wt%. Samples from a lightly corroded plate were not reactive; X-ray diffraction (XRD) confirmed that they contained little hydride.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, T.; Shimizu, S.; Ogata, Y.

    For the primary coolant piping of PWRs in Japan, cast duplex stainless steel which is excellent in terms of strength, corrosion resistance, and weldability has conventionally been used. The cast duplex stainless steel contains the ferrite phase in the austenite matrix and thermal aging after long term service is known to change its material characteristics. It is considered appropriate to apply the methodology of elastic plastic fracture mechanics for an evaluation of the integrity of the primary coolant piping after thermal aging. Therefore we evaluated the integrity of the primary coolant piping for an initial PWR plant in Japan bymore » means of elastic plastic fracture mechanics. The evaluation results show that the crack will not grow into an unstable fracture and the integrity of the piping will be secured, even when such through wall crack length is assumed to equal the fatigue crack growth length for a service period of up to 60 years.« less

  13. Heat pipes for spacecraft temperature control: Their usefulness and limitations

    NASA Technical Reports Server (NTRS)

    Ollendorf, S.; Stipandic, E.

    1972-01-01

    Heat pipes are used in spacecraft to equalize the temperature of structures and maintain temperature control of electronic components. Information is provided for a designer on: (1) a typical mounting technique, (2) choices available in wick geometries and fluids, (3) tests involved in flight-qualifying the design, and (4) heat pipe limitations. An evaluation of several heat pipe designs showed that the behavior of heat pipes at room temperature does not necessarily correlate with the classic equations used to predict their performance. They are sensitive to such parameters as temperature, fluid inventory, orientation, and noncondensable gases.

  14. TESTING AND PERFORMANCE EVALUATION OF AN INNOVATIVE INTERNAL PIPE SEALING SYSTEM FOR WASTEWATER MAIN REHABILITATION

    EPA Science Inventory

    Many utilities are seeking emerging and innovative rehabilitation technologies to extend the service life of their infrastructure systems. This report describes the testing and performance evaluation of an internal pipe sealing system, which provides a permanent physical seal fo...

  15. Evaluation of commercially-available spacecraft-type heat pipes

    NASA Technical Reports Server (NTRS)

    Kaufman, W. B.; Tower, L. K.

    1978-01-01

    As part of an effort to develop reliable, cost effective spacecraft thermal control heat pipes, life tests on 30 commercially available heat pipes in 10 groups of different design and material combinations were conducted. Results for seven groups were reported herein. Materials are aluminum and stainless steel, and working fluids are methanol and ammonia. The formation of noncondensible gas was observed for times exceeding 11,000 hours. The heat transport capacities of the pipes were also determined.

  16. First Annual Progress Report on Transmission of Information by Acoustic Communication along Metal Pathways in Nuclear Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heifetz, A.; Bakhtiari, S.; Huang, X.

    The objective of this project is to develop and demonstrate methods for transmission of information in nuclear facilities by acoustic means along existing in-place metal piping infrastructure. Pipes are omnipresent in a nuclear facility, and penetrate enclosures and partitions, such as the containment building wall. In the envisioned acoustic communication (AC) system, packets of information will be transmitted as guided acoustic waves along pipes. Performance of AC hardware and network protocols for efficient and secure communications under development in this project will be eventually evaluated in a representative nuclear power plant environment. Research efforts in the first year of thismore » project have been focused on identification of appropriate transducers, and evaluation of their performance for information transmission along nuclear-grade metallic pipes. COMSOL computer simulations were performed to study acoustic wave generation, propagation, and attenuation on pipes. An experimental benchtop system was used to evaluate signal attenuation and spectral dispersion using piezo-electric transducers (PZTs) and electromagnetic acoustic transducers (EMATs). Communication protocols under evaluation consisted on-off keying (OOK) signal modulation, in particular amplitude shift keying (ASK) and phase shift keying (PSK). Tradeoffs between signal power and communication data rate were considered for ASK and PSK coding schemes.« less

  17. SLUDGE RETRIEVAL FROM HANFORD K WEST BASIN SETTLER TANKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ERPENBECK EG; LESHIKAR GA

    In 2010, an innovative, remotely operated retrieval system was deployed to successfully retrieve over 99.7% of the radioactive sludge from ten submerged tanks in Hanford's K-West Basin. As part of K-West Basin cleanup, the accumulated sludge needed to be removed from the 0.5 meter diameter by 5 meter long settler tanks and transferred approximately 45 meters to an underwater container for sampling and waste treatment. The abrasive, dense, non-homogeneous sludge was the product of the washing process of corroded nuclear fuel. It consists of small (less than 600 micron) particles of uranium metal, uranium oxide, and various other constituents, potentiallymore » agglomerated or cohesive after 10 years of storage. The Settler Tank Retrieval System (STRS) was developed to access, mobilize and pump out the sludge from each tank using a standardized process of retrieval head insertion, periodic high pressure water spray, retraction, and continuous pumping of the sludge. Blind operations were guided by monitoring flow rate, radiation levels in the sludge stream, and solids concentration. The technology developed and employed in the STRS can potentially be adapted to similar problematic waste tanks or pipes that must be remotely accessed to achieve mobilization and retrieval of the sludge within.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kot, C.A.; Srinivasan, M.G.; Hsieh, B.J.

    As part of the Phase II testing at the HDR Test Facility in Kahl/Main, FRG, two series of high-level seismic/vibrational experiments were performed. In the first of these (SHAG) a coast-down shaker, mounted on the reactor operating floor and capable of generating 1000 tonnes of force, was used to investigate full-scale structural response, soil-structure interaction (SSI), and piping/equipment response at load levels equivalent to those of a design basis earthquake. The HDR soil/structure system was tested to incipient failure exhibiting highly nonlinear response. In the load transmission from structure to piping/equipment significant response amplifications and shifts to higher frequencies occurred.more » The performance of various pipe support configurations was evaluated. This latter effort was continued in the second series of tests (SHAM), in which an in-plant piping system was investigated at simulated seismic loads (generated by two servo-hydraulic actuators each capable of generating 40 tonnes of force), that exceeded design levels manifold and resulted in considerable pipe plastification and failure of some supports (snubbers). The evaluation of six different support configurations demonstrated that proper system design (for a given spectrum) rather than number of supports or system stiffness is essential to limiting pipe stresses. Pipe strains at loads exceeding the design level eightfold were still tolerable, indicating that pipe failure even under extreme seismic loads is unlikely inspite of multiple support failures. Conservatively, an excess capacity (margin) of at least four was estimated for the piping system, and the pipe damping was found to be 4%. Comparisons of linear and nonlinear computational results with measurements showed that analytical predictions have wide scatter and do not necessarily yield conservative responses, underpredicting, in particular, peak support forces.« less

  19. In-line inspection of unpiggable buried live gas pipes using circumferential EMAT guided waves

    NASA Astrophysics Data System (ADS)

    Ren, Baiyang; Xin, Junjun

    2018-04-01

    Unpiggable buried gas pipes need to be inspected to ensure their structural integrity and safe operation. The CIRRIS XITM robot, developed and operated by ULC Robotics, conducts in-line nondestructive inspection of live gas pipes. With the no-blow launching system, the inspection operation has reduced disruption to the public and by eliminating the need to dig trenches, has minimized the site footprint. This provides a highly time and cost effective solution for gas pipe maintenance. However, the current sensor on the robot performs a point-by-point measurement of the pipe wall thickness which cannot cover the whole volume of the pipe in a reasonable timeframe. The study of ultrasonic guided wave technique is discussed to improve the volume coverage as well as the scanning speed. Circumferential guided wave is employed to perform axial scanning. Mode selection is discussed in terms of sensitivity to different defects and defect characterization capability. To assist with the mode selection, finite element analysis is performed to evaluate the wave-defect interaction and to identify potential defect features. Pulse-echo and through-transmission mode are evaluated and compared for their pros and cons in axial scanning. Experiments are also conducted to verify the mode selection and detect and characterize artificial defects introduced into pipe samples.

  20. A review of pipe and bamboo artificial refugia as sampling tools in anuran studies

    USGS Publications Warehouse

    Glorioso, Brad M.; Waddle, J. Hardin

    2014-01-01

    Artificial pipe-like refugia have been used for more than 40 years in anuran studies, and have captured 28 species, primarily (82%) hylid treefrogs. Early pipe-like refugia were made using cut pieces of bamboo in the tropical forests of Puerto Rico, but most recent studies have used synthetic pipes and have occurred primarily in the southeastern United States. Characteristics of artificial refugia (e.g., color, length, and diameter), and their placement in the environment have varied greatly among studies, making comparisons difficult. Here, we summarize and evaluate different pipe designs and placement, address potential concerns when using artificial pipe-like refugia, and suggest studies necessary to better interpret the data gained from this technique in anuran studies.

  1. Application of heat pipe technology in permanent mold casting of nonferrous alloys

    NASA Astrophysics Data System (ADS)

    Elalem, Kaled

    The issue of mold cooling is one, which presents a foundry with a dilemma. On the one hand; the use of air for cooling is safe and practical, however, it is not very effective and high cost. On the other hand, water-cooling can be very effective but it raises serious concerns about safety, especially with a metal such as magnesium. An alternative option that is being developed at McGill University uses heat pipe technology to carry out the cooling. The experimental program consisted of designing a permanent mold to produce AZ91E magnesium alloy and A356 aluminum alloy castings with shrinkage defects. Heat pipes were then used to reduce these defects. The heat pipes used in this work are novel and are patent pending. They are referred to as McGill Heat Pipes. Computer modeling was used extensively in designing the mold and the heat pipes. Final designs for the mold and the heat pipes were chosen based on the modeling results. Laboratory tests of the heat pipe were performed before conducting the actual experimental plan. The laboratory testing results verified the excellent performance of the heat pipes as anticipated by the model. An industrial mold made of H13 tool steel was constructed to cast nonferrous alloys. The heat pipes were installed and initial testing and actual industrial trials were conducted. This is the first time where a McGill heat pipe was used in an industrial permanent mold casting process for nonferrous alloys. The effects of cooling using heat pipes on AZ91E and A356 were evaluated using computer modeling and experimental trials. Microstructural analyses were conducted to measure the secondary dendrite arm spacing, SDAS, and the grain size to evaluate the cooling effects on the castings. The modeling and the experimental results agreed quite well. The metallurgical differences between AZ91E and A356 were investigated using modeling and experimental results. Selected results from modeling, laboratory and industrial trials are presented. The results show a promising future for heat pipe technology in cooling permanent molds for the casting of nonferrous alloys.

  2. An Overview of Long Duration Sodium Heat Pipe Tests

    NASA Astrophysics Data System (ADS)

    Rosenfeld, John H.; Ernst, Donald M.; Lindemuth, James E.; Sanzi, James L.; Geng, Steven M.; Zuo, Jon

    2004-02-01

    High temperature heat pipes are being evaluated for use in energy conversion applications such as fuel cells, gas turbine re-combustors, and Stirling cycle heat sources; with the resurgence of space nuclear power, additional applications include reactor heat removal elements and radiator elements. Long operating life and reliable performance are critical requirements for these applications. Accordingly long-term materials compatibility is being evaluated through the use of high temperature life test heat pipes. Thermacore, Inc. has carried out several sodium heat pipe life tests to establish long term operating reliability. Four sodium heat pipes have recently demonstrated favorable materials compatibility and heat transport characteristics at high operating temperatures in air over long time periods. A 316L stainless steel heat pipe with a sintered porous nickel wick structure and an integral brazed cartridge heater has successfully operated at 650C to 700C for over 115,000 hours without signs of failure. A second 316L stainless steel heat pipe with a specially-designed Inconel 601 rupture disk and a sintered nickel powder wick has demonstrated over 83,000 hours at 600C to 650C with similar success. A representative one-tenth segment Stirling Space Power Converter heat pipe with an Inconel 718 envelope and a stainless steel screen wick has operated for over 41,000 hours at nearly 700C. A hybrid (i.e. gas-fired and solar) heat pipe with a Haynes 230 envelope and a sintered porous nickel wick structure was operated for about 20,000 hours at nearly 700C without signs of degradation. These life test results collectively have demonstrated the potential for high temperature heat pipes to serve as reliable energy conversion system components for power applications that require long operating lifetime with high reliability. Detailed design specifications, operating history, and test results are described for each of these sodium heat pipes. Lessons learned and future life test plans are also discussed.

  3. An Overview of Long Duration Sodium Heat Pipe Tests

    NASA Technical Reports Server (NTRS)

    Rosenfeld, John H.; Ernst, Donald M.; Lindemuth, James E.; Sanzi, James L.; Geng, Steven M.; Zuo, Jon

    2004-01-01

    High temperature heat pipes are being evaluated for use in energy conversion applications such as fuel cells, gas turbine re-combustors, and Stirling cycle heat sources; with the resurgence of space nuclear power, additional applications include reactor heat removal elements and radiator elements. Long operating life and reliable performance are critical requirements for these applications. Accordingly long-term materials compatibility is being evaluated through the use of high temperature life test heat pipes. Thermacore International, Inc., has carried out several sodium heat pipe life tests to establish long term operating reliability. Four sodium heat pipes have recently demonstrated favorable materials compatibility and heat transport characteristics at high operating temperatures in air over long time periods. A 3l6L stainless steel heat pipe with a sintered porous nickel wick structure and an integral brazed cartridge heater has successfully operated at 650 to 700 C for over 115,000 hours without signs of failure. A second 3l6L stainless steel heat pipe with a specially-designed Inconel 60 I rupture disk and a sintered nickel powder wick has demonstrated over 83,000 hours at 600 to 650 C with similar success. A representative one-tenth segment Stirling Space Power Converter heat pipe with an Inconel 718 envelope and a stainless steel screen wick has operated for over 41 ,000 hours at nearly 700 0c. A hybrid (i.e. gas-fired and solar) heat pipe with a Haynes 230 envelope and a sintered porous nickel wick structure was operated for about 20,000 hours at nearly 700 C without signs of degradation. These life test results collectively have demonstrated the potential for high temperature heat pipes to serve as reliable energy conversion system components for power applications that require long operating lifetime with high reliability, Detailed design specifications, operating hi story, and test results are described for each of these sodium heat pipes. Lessons learned and future life test plans are also discussed.

  4. LDEF transverse flat plate heat pipe experiment /S1005/. [Long Duration Exposure Facility

    NASA Technical Reports Server (NTRS)

    Robinson, G. A., Jr.

    1979-01-01

    The paper describes the Transverse Flat Plate Heat Pipe Experiment. A transverse flat plate heat pipe is a thermal control device that serves the dual function of temperature control and mounting base for electronic equipment. In its ultimate application, the pipe would be a lightweight structure member that could be configured in a platform or enclosure and provide temperature control for large space structures, flight experiments, equipment, etc. The objective of the LDEF flight experiment is to evaluate the zero-g performance of a number of transverse flat plate heat pipe modules. Performance will include: (1) the pipes transport capability, (2) temperature drop, and (3) ability to maintain temperature over varying duty cycles and environments. Performance degradation, if any, will be monitored over the length of the LDEF mission. This information is necessary if heat pipes are to be considered for system designs where they offer benefits not available with other thermal control techniques, such as minimum weight penalty, long-life heat pipe/structural members.

  5. Start Up of a Nb-1%Zr Potassium Heat Pipe From the Frozen State

    NASA Technical Reports Server (NTRS)

    Glass, David E.; Merrigan, Michael A.; Sena, J. Tom

    1998-01-01

    The start up of a liquid metal heat pipe from the frozen state was evaluated experimentally with a Nb-1%Zr heat pipe with potassium as the working fluid. The heat pipe was fabricated and tested at Los Alamos National Laboratory. RF induction heating was used to heat 13 cm of the 1-m-long heat pipe. The heat pipe and test conditions are well characterized so that the test data may be used for comparison with numerical analyses. An attempt was made during steady state tests to calibrate the heat input so that the heat input would be known during the transient cases. The heat pipe was heated to 675 C with a throughput of 600 W and an input heat flux of 6 W/cm(exp 2). Steady state tests, start up from the frozen state, and transient variations from steady state were performed.

  6. Sodium Based Heat Pipe Modules for Space Reactor Concepts: Stainless Steel SAFE-100 Core

    NASA Technical Reports Server (NTRS)

    Martin, James J.; Reid, Robert S.

    2004-01-01

    A heat pipe cooled reactor is one of several candidate reactor cores being considered for advanced space power and propulsion systems to support future space exploration applications. Long life heat pipe modules, with designs verified through a combination of theoretical analysis and experimental lifetime evaluations, would be necessary to establish the viability of any of these candidates, including the heat pipe reactor option. A hardware-based program was initiated to establish the infrastructure necessary to build heat pipe modules. This effort, initiated by Los Alamos National Laboratory and referred to as the Safe Affordable Fission Engine (SAFE) project, set out to fabricate and perform non-nuclear testing on a modular heat pipe reactor prototype that can provide 100 kilowatt from the core to an energy conversion system at 700 C. Prototypic heat pipe hardware was designed, fabricated, filled, closed-out and acceptance tested.

  7. International Piping Integrity Research Group (IPIRG) Program. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilkowski, G.; Schmidt, R.; Scott, P.

    1997-06-01

    This is the final report of the International Piping Integrity Research Group (IPIRG) Program. The IPIRG Program was an international group program managed by the U.S. Nuclear Regulatory Commission and funded by a consortium of organizations from nine nations: Canada, France, Italy, Japan, Sweden, Switzerland, Taiwan, the United Kingdom, and the United States. The program objective was to develop data needed to verify engineering methods for assessing the integrity of circumferentially-cracked nuclear power plant piping. The primary focus was an experimental task that investigated the behavior of circumferentially flawed piping systems subjected to high-rate loadings typical of seismic events. Tomore » accomplish these objectives a pipe system fabricated as an expansion loop with over 30 meters of 16-inch diameter pipe and five long radius elbows was constructed. Five dynamic, cyclic, flawed piping experiments were conducted using this facility. This report: (1) provides background information on leak-before-break and flaw evaluation procedures for piping, (2) summarizes technical results of the program, (3) gives a relatively detailed assessment of the results from the pipe fracture experiments and complementary analyses, and (4) summarizes advances in the state-of-the-art of pipe fracture technology resulting from the IPIRG program.« less

  8. Anodic activation of iron corrosion in clay media under water-saturated conditions at 90 degrees C: characterization of the corrosion interface.

    PubMed

    Schlegel, Michel L; Bataillon, Christian; Blanc, Cécile; Prêt, Dimitri; Foy, Eddy

    2010-02-15

    To understand the process governing iron corrosion in clay over centuries, the chemical and mineralogical properties of solids formed by free or anodically activated corrosion of iron in water-saturated clay at 90 degrees C over 4 months were probed using microscopic and spectroscopic techniques. Free corrosion led to the formation of an internal discontinuous thin (<3 microm thick) magnetite layer, an external layer of Fe-rich phyllosilicate, and a clay transformation layer containing Ca-doped siderite (Ca(0.2)Fe(0.8)CO(3)). The thickness of corroded iron equaled approximately 5-7 microm, consistent with previous studies. Anodic polarization resulted in unequally distributed corrosion, with some areas corrosion-free and others heavily corroded. Activated corrosion led to the formation of an inner magnetite layer, an intermediate Fe(2)CO(3)(OH)(2) (chukanovite) layer, an outer layer of Fe-rich 7 A-phyllosilicate, and a transformed matrix layer containing siderite (FeCO(3)). The corroded thickness was estimated to 85 microm, less than 30% of the value expected from the supplied anodic charge. The difference was accounted for by reoxidation at the anodically polarized surface of cathodically produced H(2)(g). Thus, free or anodically activated corroding conditions led to structurally similar interfaces, indicating that anodic polarization can be used to probe the long-term corrosion of iron in clay. Finally, corrosion products retained only half of Fe oxidized by anodic activation. Missing Fe probably migrated in the clay, where it could interact with radionuclides released by alteration of nuclear glass.

  9. Persistence and Decontamination of Bacillus atrophaeus subsp. globigii Spores on Corroded Iron in a Model Drinking Water System▿

    PubMed Central

    Szabo, Jeffrey G.; Rice, Eugene W.; Bishop, Paul L.

    2007-01-01

    Persistence of Bacillus atrophaeus subsp. globigii spores on corroded iron coupons in drinking water was studied using a biofilm annular reactor. Spores were inoculated at 106 CFU/ml in the dechlorinated reactor bulk water. The dechlorination allowed for observation of the effects of hydraulic shear and biofilm sloughing on persistence. Approximately 50% of the spores initially adhered to the corroded iron surface were not detected after 1 month. Addition of a stable 10 mg/liter free chlorine residual after 1 month led to a 2-log10 reduction of adhered B. atrophaeus subsp. globigii, but levels on the coupons quickly stabilized thereafter. Increasing the free chlorine concentration to 25 or 70 mg/liter had no additional effect on inactivation. B. atrophaeus subsp. globigii spores injected in the presence of a typical distribution system chlorine residual (∼0.75 mg/liter) resulted in a steady reduction of adhered B. atrophaeus subsp. globigii over 1 month, but levels on the coupons eventually stabilized. Adding elevated chlorine levels (10, 25, and 70 mg/liter) after 1 month had no effect on the rate of inactivation. Decontamination with elevated free chlorine levels immediately after spore injection resulted in a 3-log10 reduction within 2 weeks, but the rate of inactivation leveled off afterward. This indicates that free chlorine did not reach portions of the corroded iron surface where B. atrophaeus subsp. globigii spores had adhered. B. atrophaeus subsp. globigii spores are capable of persisting for an extended time in the presence of high levels of free chlorine. PMID:17308186

  10. Flowpath evaluation and reconnaissance by remote field Eddy current testing (FERRET)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smoak, A.E.; Zollinger, W.T.

    1993-12-31

    This document describes the design and development of FERRET (Flowpath Evaluation and Reconnaisance by Remote-field Eddy current Testing). FERRET is a system for inspecting the steel pipes which carry cooling water to underground nuclear waste storage tanks. The FERRET system has been tested in a small scale cooling pipe mock-up, an improved full scale mock-up, and in flaw detection experiments. Early prototype designs of FERRET and the FERRET launcher (a device which inserts, moves, and retrieves probes from a piping system) as well as the field-ready design are discussed.

  11. Inspecting Pipe Radiographically Through Asbestos Insulation

    NASA Technical Reports Server (NTRS)

    Gianettino, David P.

    1994-01-01

    Welds between sections of insulated steampipe located and inspected radiographically. Unless need to repair defective weld, one avoids cost, time, and hazard of removing asbestos insulation. Enables inspectors to locate and evaluate nondestructively any weld in pipe system, without shutting down steam. Hidden weld joints first located by use of low-power fluoroscope, moved along pipe while technician observes fluoroscopic image. Low-energy x rays from fluoroscope penetrate insulation but not pipe. Weld bead appears in silhouette on fluoroscope screen. Technician then accurately marks weld sites on insulation for later inspection.

  12. Survival of hydrogen sulfide oxidizing bacteria on corroded concrete surfaces of sewer systems.

    PubMed

    Jensen, H S; Nielsen, A H; Hvitved-Jacobsen, T; Vollertsen, J

    2008-01-01

    The activity of hydrogen sulfide oxidizing bacteria within corroded concrete from a sewer manhole was investigated. The bacteria were exposed to hydrogen sulfide starvation for up till 18 months, upon which their hydrogen sulfide oxidizing activity was measured. It was tested whether the observed reduction in biological activity was caused by a biological lag phase or by decay of the bacteria. The results showed that the bacterial activity declined with approximately 40% pr. month during the first two months of hydrogen sulfide starvation. After 2-3 months of starvation, the activity stabilized. Even after 6 months of starvation, exposure to hydrogen sulfide for 6 hours a day on three successive days could restore the bacteriological activity to about 80% of the initial activity. After 12 months of starvation, the activity could, however, not be restored, and after 18 months the biological activity approached zero. The long-term survival aspect of concrete corroding bacteria has implications for predicting hydrogen sulfide corrosion in sewer systems subject to irregular hydrogen sulfide loadings, e.g. as they occur in temperate climates where hydrogen sulfide often is a summer-problem only.

  13. Support Services for Ceramic Fiber-Ceramic Matrix Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurley, J.P.; Crocker, C.R.

    2000-06-28

    Structural and functional materials used in solid- and liquid-fueled energy systems are subject to gas- and condensed-phase corrosion and erosion by entrained particles. For a given material, its temperature and the composition of the corrodents determine the corrosion rates, while gas flow conditions and particle aerodynamic diameters determine erosion rates. Because there are several mechanisms by which corrodents deposit on a surface, the corrodent composition depends not only on the composition of the fuel, but also on the temperature of the material and the size range of the particles being deposited. In general, it is difficult to simulate under controlledmore » laboratory conditions all of the possible corrosion and erosion mechanisms to which a material may be exposed in an energy system. Therefore, with funding from the Advanced Research Materials Program, the University of North Dakota Energy and Environmental Research Center (EERC) is coordinating with NCC Engineering and the National Energy Technology Laboratory (NETL) to provide researchers with no-cost opportunities to expose materials in pilot-scale systems to conditions of corrosion and erosion similar to those occurring in commercial power systems.« less

  14. Container materials in environments of corroded spent nuclear fuel

    NASA Astrophysics Data System (ADS)

    Huang, F. H.

    1996-07-01

    Efforts to remove corroded uranium metal fuel from the K Basins wet storage to long-term dry storage are underway. The multi-canister overpack (MCO) is used to load spent nuclear fuel for vacuum drying, staging, and hot conditioning; it will be used for interim dry storage until final disposition options are developed. Drying and conditioning of the corroded fuel will minimize the possibility of gas pressurization and runaway oxidation. During all phases of operations the MCO is subjected to radiation, temperature and pressure excursions, hydrogen, potential pyrophoric hazard, and corrosive environments. Material selection for the MCO applications is clearly vital for safe and efficient long-term interim storage. Austenitic stainless steels (SS) such as 304L SS or 316L SS appear to be suitable for the MCO. Of the two, Type 304L SS is recommended because it possesses good resistance to chemical corrosion, hydrogen embrittlement, and radiation-induced corrosive species. In addition, the material has adequate strength and ductility to withstand pressure and impact loading so that the containment boundary of the container is maintained under accident conditions without releasing radioactive materials.

  15. The Second International Piping Integrity Research Group (IPIRG-2) program. Final report, October 1991--April 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopper, A.; Wilowski, G.; Scott, P.

    1997-03-01

    The IPIRG-2 program was an international group program managed by the US NRC and funded by organizations from 15 nations. The emphasis of the IPIRG-2 program was the development of data to verify fracture analyses for cracked pipes and fittings subjected to dynamic/cyclic load histories typical of seismic events. The scope included: (1) the study of more complex dynamic/cyclic load histories, i.e., multi-frequency, variable amplitude, simulated seismic excitations, than those considered in the IPIRG-1 program, (2) crack sizes more typical of those considered in Leak-Before-Break (LBB) and in-service flaw evaluations, (3) through-wall-cracked pipe experiments which can be used to validatemore » LBB-type fracture analyses, (4) cracks in and around pipe fittings, such as elbows, and (5) laboratory specimen and separate effect pipe experiments to provide better insight into the effects of dynamic and cyclic load histories. Also undertaken were an uncertainty analysis to identify the issues most important for LBB or in-service flaw evaluations, updating computer codes and databases, the development and conduct of a series of round-robin analyses, and analyst`s group meetings to provide a forum for nuclear piping experts from around the world to exchange information on the subject of pipe fracture technology. 17 refs., 104 figs., 41 tabs.« less

  16. Seam-weld quality of modern ERW/HFI line pipe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Groeneveld, T.P.; Barnes, C.R.

    1991-09-01

    This study was undertaken to determine whether the seam-weld quality of modern ERW (electric resistance-welded)/HFI (high-frequency induction) welded pipe has been improved and justifies more widespread use of this type of pipe in critical applications. Wider use of ERW/HFI line pipe in gas-transmission lines would be expected to reduce construction costs. Five recently produced, heavy wall pipes fabricated using high-frequency electric-resistance welding (ERW) processes to make the seam weld and one pipe fabricated using the high-frequency induction (HFI) welding process to make the seam weld were studied. Four of the pipes were Grade X-60, one was Grade X-65, and onemore » was Grade X-70. All of the pipes were produced from microalloyed, controlled-rolled steels, and the weld zones were post-weld normalized. Ultrasonic inspection of the seam welds in the six pipe sections evaluated revealed no indications of defects. The tensile properties of all of the weld zones exceeded the minimum specified yield strengths for the respective grades of pipe and all of the pipes exhibited ductile failures either in the weld zone or in the base metal. Five of the six pipes exhibited ductile failures either in the weld zone or in the base metal. Five of the six pipes exhibited relatively low 85% shear area transition temperatures and relatively high upper-shelf energy absorptions as determined with Charpy V-notch specimens. In addition, for two of the three joints of pipe for which the properties were determined at both ends of the pipe, the tensile and impact properties showed little variation from end-to-end. However, for the other joint of pipe, the impact properties varied substantially from one end to the other.« less

  17. Heat pipe manufacturing study

    NASA Technical Reports Server (NTRS)

    Edelstein, F.

    1974-01-01

    Heat pipe manufacturing methods are examined with the goal of establishing cost effective procedures that will ultimately result in cheaper more reliable heat pipes. Those methods which are commonly used by all heat pipe manufacturers have been considered, including: (1) envelope and wick cleaning, (2) end closure and welding, (3) mechanical verification, (4) evacuation and charging, (5) working fluid purity, and (6) charge tube pinch off. The study is limited to moderate temperature aluminum and stainless steel heat pipes with ammonia, Freon-21 and methanol working fluids. Review and evaluation of available manufacturers techniques and procedures together with the results of specific manufacturing oriented tests have yielded a set of recommended cost-effective specifications which can be used by all manufacturers.

  18. The specific light output of cesium iodide crystals

    NASA Technical Reports Server (NTRS)

    Gregory, J. C.

    1976-01-01

    Large area ion chambers for a high energy cosmic ray experiment, scintillating plastic fibers as light pipes for a cosmic ray hodoscope, and an evaluation of clad scintillating light pipes were considered.

  19. Corrosion evaluation of alloys and MCrAlX coatings in molten carbonates for thermal solar applications

    DOE PAGES

    Gomez-Vidal, Judith C.; Noel, John; Weber, Jacob

    2016-07-30

    Here, stainless steels (SS) 310, 321, 347, Incoloy 800H (In800H), alumina-forming austenitic (AFA-OC6), Ni superalloy Inconel 625 (IN625), and MCrAlX (M: Ni, and/or Co; X: Y, Hf, Si, and/or Ta) coatings were corroded in molten carbonates in N 2 and bone-dry CO 2 atmospheres. Electrochemical tests in molten eutectics K 2CO 3-Na 2CO 3 and Na 2CO 3-K 2CO 3-Li 2CO 3 at temperatures higher than 600 °C were evaluated using an open-circuit potential followed by a potentiodynamic polarization sweep to determine the corrosion rates. Because the best-performing alloys at 750 °C were In800H followed by SS310, these two alloysmore » were selected as the substrate material for the MCrAlX coatings. The coatings were able to mitigate corrosion in molten carbonates environments. The corrosion of substrates SS310 and In800H was reduced from ~2500 um/year to 34 um/year when coated with high-velocity oxyfuel (HVOF) NiCoCrAlHfSiY and pre-oxidized (air, 900 °C, 24 h, 0.5 °C/min) before molten carbonate exposure at 700 °C in bone-dry CO 2 atmosphere. Metallographic characterization of the corroded surfaces showed that the formation of a uniform alumina scale during the pre-oxidation seems to protect the alloy from the molten carbonate attack.« less

  20. Heat pipes in solar collectors

    NASA Astrophysics Data System (ADS)

    Bairamov, R.; Toiliev, K.

    The diode property of heat pipes is evaluated for use in solar collectors. Model experiments show that the effect of heat pipes in solar collectors is most pronounced during the nighttime, when solar radiation is zero, due to a significant reduction in the heat loss from the transparent cover surface of the collector compared to that for conventional collectors. For a solar collector with a glass cover area of one square meter during the summer season when the maximum water temperature is 60 C and the discharge is 85 l/sq m/day, the water temperature in the accumulator tank of the solar collector with a heat pipe is 10-11 C higher than in the solar collector lacking a heat pipe. In addition, the design of a solar house with passive systems in which heat pipes serve as the heat eliminating mechanism is discussed

  1. Heat pipe investigations

    NASA Technical Reports Server (NTRS)

    Marshburn, J. P.

    1973-01-01

    Techniques associated with thermal-vacuum and bench testing, along with flight testing of the OAO-C spacecraft heat pipes are outlined, to show that the processes used in heat transfer design and testing are adequate for good performance evaluations.

  2. Long Duration Exposure Facility (LDEF) low-temperature Heat Pipe Experiment Package (HEPP) flight results

    NASA Technical Reports Server (NTRS)

    Mcintosh, Roy; Mccreight, Craig; Brennan, Patrick J.

    1992-01-01

    The Low Temperature Heat Pipe Flight Experiment (HEPP) is a fairly complicated thermal control experiment that was designed to evaluate the performance of two different low temperature ethane heat pipes and a n-Heptane Phase Change Material (PCM) canister. A total of 388 days of continuous operation with an axially grooved aluminum fixed conductance heat pipe of axially grooved stainless steel heat pipe diode was demonstrated before the EDS batteries lost power. The inability of the HEPP's radiator to cool below 190 K in flight prevented freezing of the PCM and the opportunity to conduct transport tests with the heat pipes. Post flight tests showed that the heat pipes and the PCM are still functioning. This paper presents a summary of the flight data analysis for the HEPP and its related support systems. Pre and post-flight thermal vacuum tests results are presented for the HEPP thermal control system along with individual heat pipe performance and PCM behavior. Appropriate SIG related systems data will also be included along with a 'lessons learned' summary.

  3. Strain Modal Analysis of Small and Light Pipes Using Distributed Fibre Bragg Grating Sensors

    PubMed Central

    Huang, Jun; Zhou, Zude; Zhang, Lin; Chen, Juntao; Ji, Chunqian; Pham, Duc Truong

    2016-01-01

    Vibration fatigue failure is a critical problem of hydraulic pipes under severe working conditions. Strain modal testing of small and light pipes is a good option for dynamic characteristic evaluation, structural health monitoring and damage identification. Unique features such as small size, light weight, and high multiplexing capability enable Fibre Bragg Grating (FBG) sensors to measure structural dynamic responses where sensor size and placement are critical. In this paper, experimental strain modal analysis of pipes using distributed FBG sensors ispresented. Strain modal analysis and parameter identification methods are introduced. Experimental strain modal testing and finite element analysis for a cantilever pipe have been carried out. The analysis results indicate that the natural frequencies and strain mode shapes of the tested pipe acquired by FBG sensors are in good agreement with the results obtained by a reference accelerometer and simulation outputs. The strain modal parameters of a hydraulic pipe were obtained by the proposed strain modal testing method. FBG sensors have been shown to be useful in the experimental strain modal analysis of small and light pipes in mechanical, aeronautic and aerospace applications. PMID:27681728

  4. Predicting the Probability of Failure of Cementitious Sewer Pipes Using Stochastic Finite Element Method

    PubMed Central

    Alani, Amir M.; Faramarzi, Asaad

    2015-01-01

    In this paper, a stochastic finite element method (SFEM) is employed to investigate the probability of failure of cementitious buried sewer pipes subjected to combined effect of corrosion and stresses. A non-linear time-dependant model is used to determine the extent of concrete corrosion. Using the SFEM, the effects of different random variables, including loads, pipe material, and corrosion on the remaining safe life of the cementitious sewer pipes are explored. A numerical example is presented to demonstrate the merit of the proposed SFEM in evaluating the effects of the contributing parameters upon the probability of failure of cementitious sewer pipes. The developed SFEM offers many advantages over traditional probabilistic techniques since it does not use any empirical equations in order to determine failure of pipes. The results of the SFEM can help the concerning industry (e.g., water companies) to better plan their resources by providing accurate prediction for the remaining safe life of cementitious sewer pipes. PMID:26068092

  5. Replacement of seam welded hot reheat pipe using narrow groove GTA machine welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richardson, R.R.; Yanes, J.; Bryant, R.

    1995-12-31

    Southern California Edison, recognizing a potential safety concern, scrutinized its existing seam welded hot reheat pipe manufactured by the same supplier as that which failed. Alternatives were narrowed to two in dealing with the installed seam welded pipe. The overriding consideration, however, was one of safety. With this in mind, the utility company evaluated replacement of the seam welded hot reheat pipe with seamless pipe or increasing the frequency of its inspection program. Although increased inspection was much costly, pipe replacement was chosen due to potential safety concerns with seam welded pipe even with more frequent inspection. The utility companymore » then proceeded to determine the most effective method to complete this work. Analysis showed machine-made (automatic) gas tungsten arc welds (GTAW) as the method of choice due to cleanliness and superior mechanical properties. In conjunction with this method, the narrow groove (3{degree} bevel) weld joint as opposed to the traditional groove (37 1/2{degree} bevel) was shown to provide significant technical advantages.« less

  6. Rotating optical geometry sensor for inner pipe-surface reconstruction

    NASA Astrophysics Data System (ADS)

    Ritter, Moritz; Frey, Christan W.

    2010-01-01

    The inspection of sewer or fresh water pipes is usually carried out by a remotely controlled inspection vehicle equipped with a high resolution camera and a lightning system. This operator-oriented approach based on offline analysis of the recorded images is highly subjective and prone to errors. Beside the subjective classification of pipe defects through the operator standard closed circuit television (CCTV) technology is not suitable for detecting geometrical deformations resulting from e.g. structural mechanical weakness of the pipe, corrosion of e.g. cast-iron material or sedimentations. At Fraunhofer Institute of Optronics, System Technologies and Image Exploitation (IOSB) in Karlsruhe, Germany, a new Rotating Optical Geometry Sensor (ROGS) for pipe inspection has been developed which is capable of measuring the inner pipe geometry very precisely over the whole pipe length. This paper describes the developed ROGS system and the online adaption strategy for choosing the optimal system parameters. These parameters are the rotation and traveling speed dependent from the pipe diameter. Furthermore, a practicable calibration methodology is presented which guarantees an identification of the several internal sensor parameters. ROGS has been integrated in two different systems: A rod based system for small fresh water pipes and a standard inspection vehicle based system for large sewer Pipes. These systems have been successfully applied to different pipe systems. With this measurement method the geometric information can be used efficiently for an objective repeatable quality evaluation. Results and experiences in the area of fresh water pipe inspection will be presented.

  7. Heat Pipe Solar Receiver for Oxygen Production of Lunar Regolith

    NASA Astrophysics Data System (ADS)

    Hartenstine, John R.; Anderson, William G.; Walker, Kara L.; Ellis, Michael C.

    2009-03-01

    A heat pipe solar receiver operating in the 1050° C range is proposed for use in the hydrogen reduction process for the extraction of oxygen from the lunar soil. The heat pipe solar receiver is designed to accept, isothermalize and transfer solar thermal energy to reactors for oxygen production. This increases the available area for heat transfer, and increases throughput and efficiency. The heat pipe uses sodium as the working fluid, and Haynes 230 as the heat pipe envelope material. Initial design requirements have been established for the heat pipe solar receiver design based on information from the NASA In-Situ Resource Utilization (ISRU) program. Multiple heat pipe solar receiver designs were evaluated based on thermal performance, temperature uniformity, and integration with the solar concentrator and the regolith reactor(s). Two designs were selected based on these criteria: an annular heat pipe contained within the regolith reactor and an annular heat pipe with a remote location for the reactor. Additional design concepts have been developed that would use a single concentrator with a single solar receiver to supply and regulate power to multiple reactors. These designs use variable conductance or pressure controlled heat pipes for passive power distribution management between reactors. Following the design study, a demonstration heat pipe solar receiver was fabricated and tested. Test results demonstrated near uniform temperature on the outer surface of the pipe, which will ultimately be in contact with the regolith reactor.

  8. Evaluating Heat Pipe Performance in 1/6 g Acceleration: Problems and Prospects

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; McCollum, Timothy A.; Gibson, Marc A.; Sanzi, James L.; Sechkar, Edward A.

    2011-01-01

    Heat pipes composed of titanium and water are being considered for use in the heat rejection system of a fission power system option for lunar exploration. Placed vertically on the lunar surface, the heat pipes would operate as thermosyphons in the 1/6 g environment. The design of thermosyphons for such an application is determined, in part, by the flooding limit. Flooding is composed of two components, the thickness of the fluid film on the walls of the thermosyphon and the interaction of the fluid flow with the concurrent vapor counter flow. Both the fluid thickness contribution and interfacial shear contribution are inversely proportional to gravity. Hence, evaluating the performance of a thermosyphon in a 1 g environment on Earth may inadvertently lead to overestimating the performance of the same thermosyphon as experienced in the 1/6 g environment on the moon. Several concepts of varying complexity have been proposed for evaluating thermosyphon performance in reduced gravity, ranging from tilting the thermosyphons on Earth based on a cosine function, to flying heat pipes on a low-g aircraft. This paper summarizes the problems and prospects for evaluating thermosyphon performance in 1/6 g.

  9. Intention to quit water pipe smoking among Arab Americans: Application of the theory of planned behavior.

    PubMed

    Athamneh, Liqa; Essien, E James; Sansgiry, Sujit S; Abughosh, Susan

    2017-01-01

    In this study, we examined the effect of theory of planned behavior (TPB) constructs on the intention to quit water pipe smoking by using an observational, survey-based, cross-sectional study design with a convenient sample of Arab American adults in Houston, Texas. Multivariate logistic regression models were used to determine predictors of intention to quit water pipe smoking in the next year. A total of 340 participants completed the survey. Behavioral evaluation, normative beliefs, and motivation to comply were significant predictors of an intention to quit water pipe smoking adjusting for age, gender, income, marital status, and education. Interventions and strategies that include these constructs will assist water pipe smokers in quitting.

  10. Developing a Systematic Corrosion Control Evaluation Approach in Flint

    EPA Science Inventory

    Presentation covers what the projects were that were recommended by the Flint Safe Drinking Water Task Force for corrosion control assessment for Flint, focusing on the sequential sampling project, the pipe rigs, and pipe scale analyses.

  11. Predicting, examining, and evaluating FAC in US power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohn, M.J.; Garud, Y.S.; Raad, J. de

    1999-11-01

    There have been many pipe failures in fossil and nuclear power plant piping systems caused by flow-accelerated corrosion (FAC). In some piping systems, this failure mechanism maybe the most important type of damage to mitigate because FAC damage has led to catastrophic failures and fatalities. Detecting the damage and mitigating the problem can significantly reduce future forced outages and increase personnel safety. This article discusses the implementation of recent developments to select FAC inspection locations, perform cost-effective examinations, evaluate results, and mitigate FAC failures. These advances include implementing the combination of software to assist in selecting examination locations and anmore » improved pulsed eddy current technique to scan for wall thinning without removing insulation. The use of statistical evaluation methodology and possible mitigation strategies also are discussed.« less

  12. Evaluation of the Aircraft Ground Equipment (AGE) at Pacific Air Force (PACAF) Locations

    DTIC Science & Technology

    2018-01-16

    repair • Dash 95: TC-21; Old DRMO, arrived at Kunsan 2001 • 7000 lb Bomb lift; MH10 Arrived at Kunsan 2011; CAT3 and never been painted • C1-12 stand...aluminum Sample taken by swabbing PBS soaked gauze back and forth three times K-MH10 Bomb lift and front of AGE Sample taken by swabbing PBS...soaked gauze back and forth three times Non-corroded area of bomb lift Sample taken by swabbing PBS soaked gauze back and forth three times

  13. Evaluating Corrosion in SAVY Containers using Non-Destructive Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davenport, Matthew Nicholas; Vaidya, Rajendra U.; Abeyta, Adrian Anthony

    Powerpoint presentation on Ultrasonic and Eddy Current NDT; UT Theory; Eddy current (ECA): How it works; Controlled Corrosion at NM Tech; Results – HCl Corrosion; Waveform Data for 10M HCl; Accuracy Statistics; Results – FeCl 3 Pitting; Waveforms for Anhydrous FeCl 3; Analyzing Corroded Stainless Steel 316L Plates; 316L Plate to Imitate Pitting; ECA Pit Depth Calibration Curve; C Scan Imaging; UT Pit Detection; SST Containers: Ultrasonic (UT) vs. CMM; UT Data Analysis; UT Conclusions and Observations; ECA Conclusions; Automated System Vision.

  14. Finite element residual stress analysis of induction heating bended ferritic steel piping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kima, Jong Sung; Kim, Kyoung-Soo; Oh, Young-Jin

    2014-10-06

    Recently, there is a trend to apply the piping bended by induction heating process to nuclear power plants. Residual stress can be generated due to thermo-mechanical mechanism during the induction heating bending process. It is well-known that the residual stress has important effect on crack initiation and growth. The previous studies have focused on the thickness variation. In part, some studies were performed for residual stress evaluation of the austenitic stainless steel piping bended by induction heating. It is difficult to find the residual stresses of the ferritic steel piping bended by the induction heating. The study assessed the residualmore » stresses of induction heating bended ferriticsteel piping via finite element analysis. As a result, it was identified that high residual stresses are generated on local outersurface region of the induction heating bended ferritic piping.« less

  15. INTERNAL REPAIR OF PIPELINES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bill Bruce; Nancy Porter; George Ritter

    2005-07-20

    The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Principal conclusions from a survey of natural gas transmission industry pipeline operators can be summarized in terms of the following performance requirements for internal repair: (1) Use of internal repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, undermore » congested intersections, and under railway crossings. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) The most common size range for 80% to 90% of operators surveyed is 508 mm (20 in.) to 762 mm (30 in.), with 95% using 558.8 mm (22 in.) pipe. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections without liners, indicating that this type of liner is only marginally effective at restoring the pressure containing capabilities of pipelines. Failure pressures for larger diameter pipe repaired with a semi-circular patch of carbon fiber-reinforced composite lines were also marginally greater than that of a pipe section with un-repaired simulated damage without a liner. These results indicate that fiber reinforced composite liners have the potential to increase the burst pressure of pipe sections with external damage Carbon fiber based liners are viewed as more promising than glass fiber based liners because of the potential for more closely matching the mechanical properties of steel. Pipe repaired with weld deposition failed at pressures lower than that of un-repaired pipe in both the virgin and damaged conditions, indicating that this repair technology is less effective at restoring the pressure containing capability of pipe than a carbon fiber-reinforced liner repair. Physical testing indicates that carbon fiber-reinforced liner repair is the most promising technology evaluated to-date. In lieu of a field installation on an abandoned pipeline, a preliminary nondestructive testing protocol is being developed to determine the success or failure of the fiber-reinforced liner pipeline repairs. Optimization and validation activities for carbon-fiber repair methods are ongoing.« less

  16. INTERNAL REPAIR OF PIPELINES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robin Gordon; Bill Bruce; Ian Harris

    2004-12-31

    The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Principal conclusions from a survey of natural gas transmission industry pipeline operators can be summarized in terms of the following performance requirements for internal repair: (1) Use of internal repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, undermore » congested intersections, and under railway crossings. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) The most common size range for 80% to 90% of operators surveyed is 508 mm (20 in.) to 762 mm (30 in.), with 95% using 558.8 mm (22 in.) pipe. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections without liners, indicating that this type of liner is only marginally effective at restoring the pressure containing capabilities of pipelines. Failure pressures for larger diameter pipe repaired with a semi-circular patch of carbon fiber-reinforced composite lines were also marginally greater than that of a pipe section with un-repaired simulated damage without a liner. These results indicate that fiber reinforced composite liners have the potential to increase the burst pressure of pipe sections with external damage Carbon fiber based liners are viewed as more promising than glass fiber based liners because of the potential for more closely matching the mechanical properties of steel. Pipe repaired with weld deposition failed at pressures lower than that of un-repaired pipe in both the virgin and damaged conditions, indicating that this repair technology is less effective at restoring the pressure containing capability of pipe than a carbon fiber-reinforced liner repair. Physical testing indicates that carbon fiber-reinforced liner repair is the most promising technology evaluated to-date. The first round of optimization and validation activities for carbon-fiber repairs are complete. Development of a comprehensive test plan for this process is recommended for use in the field trial portion of this program.« less

  17. INTERNAL REPAIR OF PIPELINES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robin Gordon; Bill Bruce; Ian Harris

    2004-08-17

    The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Principal conclusions from a survey of natural gas transmission industry pipeline operators can be summarized in terms of the following performance requirements for internal repair: (1) Use of internal repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, undermore » congested intersections, and under railway. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) The most common size range for 80% to 90% of operators surveyed is 508 mm (20 in.) to 762 mm (30 in.), with 95% using 558.8 mm (22 in.) pipe. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections without liners, indicating that this type of liner is only marginally effective at restoring the pressure containing capabilities of pipelines. Failure pressures for larger diameter pipe repaired with a semi-circular patch of carbon fiber-reinforced composite lines were also marginally greater than that of a pipe section with un-repaired simulated damage without a liner. These results indicate that fiber reinforced composite liners have the potential to increase the burst pressure of pipe sections with external damage Carbon fiber based liners are viewed as more promising than glass fiber based liners because of the potential for more closely matching the mechanical properties of steel. Pipe repaired with weld deposition failed at pressures lower than that of un-repaired pipe in both the virgin and damaged conditions, indicating that this repair technology is less effective at restoring the pressure containing capability of pipe than a carbon fiber-reinforced liner repair. Physical testing indicates that carbon fiber-reinforced liner repair is the most promising technology evaluated to-date. Development of a comprehensive test plan for this process is recommended for use in the field trial portion of this program.« less

  18. Plastic Pipe Failure, Risk, and Threat Analysis

    DOT National Transportation Integrated Search

    2009-04-29

    The three primary failure modes that may be exhibited by polyethylene (PE) gas pipe materials were described in detail. The modes are: ductile rupture, slow crack growth (SCG), and rapid crack propagation (RCP). Short term mechanical tests were evalu...

  19. Both sulfate-reducing bacteria and Enterobacteriaceae take part in marine biocorrosion of carbon steel.

    PubMed

    Bermont-Bouis, D; Janvier, M; Grimont, P A D; Dupont, I; Vallaeys, T

    2007-01-01

    In order to evaluate the part played in biocorrosion by microbial groups other than sulfate-reducing bacteria (SRB), we characterized the phylogenetic diversity of a corrosive marine biofilm attached to a harbour pile structure as well as to carbon steel surfaces (coupons) immersed in seawater for increasing time periods (1 and 8 months). We thus experimentally checked corroding abilities of defined species mixtures. Microbial community analysis was performed using both traditional cultivation techniques and polymerase chain reaction cloning-sequencing of 16S rRNA genes. Community structure of biofilms developing with time on immersed coupons tended to reach after 8 months, a steady state similar to the one observed on a harbour pile structure. Phylogenetic affiliations of isolates and cloned 16S rRNA genes (rrs) indicated that native biofilms (developing after 1-month immersion) were mainly colonized by gamma-proteobacteria. Among these, Vibrio species were detected in majority with molecular methods while cultivation techniques revealed dominance of Enterobacteriaceae such as Citrobacter, Klebsiella and Proteus species. Conversely, in mature biofilms (8-month immersion and pile structure), SRB, and to a lesser extent, spirochaetes were dominant. Corroding activity detection assays confirmed that Enterobacteriaceae (members of the gamma-proteobacteria) were involved in biocorrosion of metallic material in marine conditions. In marine biofilms, metal corrosion may be initiated by Enterobacteriaceae.

  20. Effect of ageing time and temperature on corrosion behaviour of aluminum alloy 2014

    NASA Astrophysics Data System (ADS)

    Gadpale, Vikas; Banjare, Pragya N.; Manoj, Manoranjan Kumar

    2018-03-01

    In this paper, the effect of corrosion behaviour of aluminium alloy 2014 were studied by potentiodynamic polarization in 1 mole of NaCl solution of aged sample. The experimental testing results concluded that, corrosion resistance of Aluminum alloy 2014 degraded with the increasing the temperature (150°C & 200°C) and time of ageing. Corroded surface of the aged specimens was tested under optical microscopes for microstructures for phase analysis. Optical micrographs of corroded surfaces showed general corrosion and pitting corrosion. The corrosion resistance of lower ageing temperature and lower ageing time is higher because of its fine distribution of precipitates in matrix phase.

  1. Distribution of fission products palladium, silver, cerium and cesium in the un-corroded areas of the locally corroded SiC layer of a neutron irradiated TRISO fuel particle

    DOE PAGES

    Wen, Haiming; van Rooyen, Isabella J.

    2017-04-14

    Here, detailed electron microscopy studies were performed to investigate the distribution and composition of fission products in the SiC layer of a tristructural isotropic coated particle exhibiting localized corrosion. Previous studies on this particle indicated that pure carbon areas in the SiC layer, resulting from localized corrosion of SiC by Pd, provide pathways for Ag, Cd and Cs migration. This study reveals the presence of Ag- and/or Cd-containing precipitates in un-corroded SiC areas. Ag/Cd may exist by themselves or coexist with Pd. Ag/Cd mainly transport along SiC grain boundaries. An Ag-Pd-Cd precipitate was identified at a stacking fault inside amore » SiC grain, suggesting that intragranular transport of Ag/Cd is possible. Ce is present with Pd or Pd-U in some precipitates >50 nm. U and Ce frequently coexist with each other, whereas Ag/Cd usually does not coexist with U or Ce. No Cs was detected in any precipitates in the areas examined.« less

  2. Rates of in vivo (arterial) and in vitro biocorrosion for pure magnesium.

    PubMed

    Bowen, Patrick K; Drelich, Adam; Drelich, Jaroslaw; Goldman, Jeremy

    2015-01-01

    The development of magnesium-based materials for bioabsorbable stents relies heavily on corrosion testing by immersion in pseudophysiological solutions, where magnesium degrades faster than it does in vivo. The quantitative difference in corrosion kinetics in vitro and in vivo is largely unknown, but, if determined, would help reduce dependence on animal models. In order to create a quantitative in vitro-in vivo correlation based on an accepted measure of corrosion (penetration rate), commercially pure magnesium wires were corroded in vivo in the abdominal aortas of rats for 5-32 days, and in vitro for up to 14 days using Dulbecco's modified eagle medium. Cross-sectioning, scanning electron microscopy, image analysis, a modified penetration rate tailored to degraded wires, and empirical modeling were used to analyze the corroded specimens. In vitro penetration rates were consistently higher than comparable in vivo rates by a factor of 1.2-1.9× (±0.2×). For a sample <20% corroded, an approximate in vitro-in vivo multiplier of 1.3 ± 0.2× was applied, whereas a multiplier of 1.8 ± 0.2× became appropriate when the magnesium specimen was 25-35% degraded. © 2014 Wiley Periodicals, Inc.

  3. Release of asbestos fibers from weathered and corroded asbestos cement products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spurny, K.R.

    The controversy on whether weathered and corroded asbestos cement products are emitting biologically significant asbestos fiber concentrations in ambient air has not been resolved. Nor is it known if the weathered and corroded asbestos cement products release asbestos fibers which have the same carcinogenic potency as standard chrysotile. The purpose of this research project was to develop a method for sampling and measuring asbestos fiber emissions from solid planar surfaces (i.e., roofs and facades) consisting of asbestos cement products and to develop methods for studying the physical and chemical changes and the carcinogenic potency of the emitted fibers. Using thismore » method asbestos fiber emissions in ambient air have been measured in the FRG during 1984/1986. The emissions of asbestos fibers longer than 5 microns were in the range 10(6) to 10(8) fibers/m2.hr. The ambient air concentrations of these asbestos fibers were for the most part less than 10(3) fibers/m3. It was shown that the emitted asbestos fibers were chemically changed and it was shown with animal experiments that their carcinogenic potency did not differ from the carcinogenicity of standard chrysotile fibers.« less

  4. Effects of blending of desalinated and conventionally treated surface water on iron corrosion and its release from corroding surfaces and pre-existing scales.

    PubMed

    Liu, Haizhou; Schonberger, Kenneth D; Peng, Ching-Yu; Ferguson, John F; Desormeaux, Erik; Meyerhofer, Paul; Luckenbach, Heidi; Korshin, Gregory V

    2013-07-01

    This study examined effects of blending desalinated water with conventionally treated surface water on iron corrosion and release from corroding metal surfaces and pre-existing scales exposed to waters having varying fractions of desalinated water, alkalinities, pH values and orthophosphate levels. The presence of desalinated water resulted in markedly decreased 0.45 μm-filtered soluble iron concentrations. However, higher fractions of desalinated water in the blends were also associated with more fragile corroding surfaces, lower retention of iron oxidation products and release of larger iron particles in the bulk water. SEM, XRD and XANES data showed that in surface water, a dense layer of amorphous ferrihydrite phase predominated in the corrosion products. More crystalline surface phases developed in the presence of desalinated water. These solid phases transformed from goethite to lepidocrocite with increased fraction of desalinated water. These effects are likely to result from a combination of chemical parameters, notably variations of the concentrations of natural organic matter, calcium, chloride and sulfate when desalinated and conventionally treated waters are blended. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Nanoscale imaging of alteration layers of corroded international simple glass particles using ToF-SIMS

    DOE PAGES

    Zhang, Jiandong; Neeway, James J.; Zhang, Yanyan; ...

    2017-02-24

    Glass particles with dimensions typically ranging from tens to hundreds of microns are often used in glass corrosion research in order to accelerate testing. Two-dimensional and three-dimensional nanoscale imaging techniques are badly needed to characterize the alteration layers at the surfaces of these corroded glass particles. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) can provide a lateral resolution as low as ~100 nm, and, compared to other imaging techniques, is sensitive to elements lighter than carbon. Here, we used ToF-SIMS to characterize the alteration layers of corroded international simple glass (ISG) particles. At most particle surfaces, we observed inhomogeneous or nomore » alteration layers, indicating that the thickness of the alterations layers may be too thin to be observable by ToF-SIMS imaging. Relatively thick (e.g., 1–10 µm) alteration layers were inhomogeneously distributed at a small portion of surfaces.Interestingly, some large-size (tens of microns) glass particles were fully altered. Above observations suggest that weak attachment and the defects on ISG particle surfaces play an important role in ISG glass corrosion.« less

  6. Study of the effects of gaseous environments on sulfidation attack of superalloys

    NASA Technical Reports Server (NTRS)

    Smeggil, J. G.; Bornstein, N. S.

    1977-01-01

    Studies were conducted to examine the effect of the gaseous corrodents NaCl, HCl, and NaOH on the high temperature oxidation and Na2SO4-induced corrosion behavior of the alumina former NiAl, the chromia former Ni-25 wt.% Cr, elemental Cr, and the superalloy B-1900. Experiments were conducted at 900 and 1050 C in air in the presence and absence of the gaseous corrodents. Effects involving both reaction rates and microstructural changes in oxide morphology were observed due to the presence of these corrodents at levels anticipated to be present in operating industrial and marine gas turbines. The effect of gaseous NaCl, HCl, and possibly NaOH on NiAl in simple oxidation was to remove aluminum from below the protective alumina layer and to simultaneously weaken the adherence of the protective alumina oxide scale to the substrate. The aluminum removed from below the oxide scale was redeposited on its surface as alpha-Al2O3 whiskers. With respect to the chromia formers, gaseous NaCl and HCl promoted breakaway oxidation kinetics and changes in the microstructures of the oxide scales.

  7. Nanoscale imaging of alteration layers of corroded international simple glass particles using ToF-SIMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jiandong; Neeway, James J.; Zhang, Yanyan

    Glass particles with dimensions typically ranging from tens to hundreds of microns are often used in glass corrosion research in order to accelerate testing. Two-dimensional and three-dimensional nanoscale imaging techniques are badly needed to characterize the alteration layers at the surfaces of these corroded glass particles. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) can provide a lateral resolution as low as ~100 nm, and, compared to other imaging techniques, is sensitive to elements lighter than carbon. In this work, we used ToF-SIMS to characterize the alteration layers of corroded international simple glass (ISG) particles. At most particle surfaces, inhomogeneous or nomore » alteration layers were observed, indicating that the thickness of the alterations layers may be too thin to be observable by ToF-SIMS imaging. Relatively thick (e.g., 1-10 microns) alteration layers were inhomogeneously distributed at a small portion of surfaces. More interestingly, some large-size (tens of microns) glass particles were fully altered. Above observations suggest that weak attachment and the defects on ISG particle surfaces play an important role in ISG glass corrosion.« less

  8. Experimental Analysis of the Effects of Inclination Angle and Working Fluid Amount on the Performance of a Heat Pipe

    NASA Astrophysics Data System (ADS)

    Mahdavi, Mahboobe; Tiari, Saeed; Qiu, Songgang

    2016-11-01

    Heat pipes are two-phase heat transfer devices, which operate based on evaporation and condensation of a working fluid inside a sealed container. In the current work, an experimental study was conducted to investigate the performance of a copper-water heat pipe. The performance was evaluated by calculating the corresponding thermal resistance as the ratio of temperature difference between evaporator and condenser to heat input. The effects of inclination angle and the amount of working fluid were studied on the equivalent thermal resistance. The results showed that if the heat pipe is under-filled with the working fluid, energy transferring capacity of the heat pipe decreases dramatically. However, overfilling heat pipe causes over flood and degrades heat pipe performance. The minimum thermal resistances were obtained for the case that 30% of the heat pipe volume was filled with working fluid. It was also found that in gravity-assisted orientations, the inclination angle does not have significant effect on the performance of the heat pipe. However, for gravity-opposed orientations, as the inclination angle increases, the temperature difference between the evaporator and condensation increases and higher thermal resistances are obtained. Authors appreciate the financial support by a research Grant from Temple University.

  9. FLOW SEPARATION CONDITIONS AT PIPE WALLS OF WATER DISTRIBUTION MAINS

    EPA Science Inventory

    Biofilm formations on pipe walls have been found in potable water distribution mains. The biofilm layers contribute to accelerated corrosion rates, increased flow resistance, and formation of encrustations that may deteriorate drinking water quality. Research to evaluate the depe...

  10. Research notes : drainage facility asset management : more than an inventory of pipes.

    DOT National Transportation Integrated Search

    2007-04-01

    The primary objectives for the research project were twofold: 1) To develop and implement an Oregon-specific system for inventorying and evaluating the condition of pipes, culverts, and stormwater facilities based on the FHWA Culvert Management Syste...

  11. Remediation System Evaluation, Northwest Pipe and Casing Site

    EPA Pesticide Factsheets

    The Northwest Pipe and Casing Site is located in Clackamas, Oregon, approximately 20 miles southeastof Portland. The site consists of approximately 53 acres, and has historically been divided into two parcels(Parcel A to the north and Parcel B to the..

  12. Performance evaluation of buried pipe installation : LTRC research project capsule 08-6GT.

    DOT National Transportation Integrated Search

    2008-03-01

    The Louisiana Department of : Transportation and Development : (LADOTD) is in the process of revising : the current specifications to obtain a : more cost efficient design and : installation of buried pipes for highway : infrastructure. It aims to de...

  13. Acoustic-based Technology to Detect Buried Pipes

    DOT National Transportation Integrated Search

    2011-07-29

    The objective of this project is to build a pre-commercial device, improve its performance to detect multiple buried pipes, and evaluate the pre-commercial device at utility sites. In the past, Gas Technology Institute (GTI) and SoniVerse Inc. (SVI) ...

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swamy, S.A.; Mandava, P.R.; Bhowmick, D.C.

    The leak-before-break (LBB) methodology is accepted as a technically justifiable approach for eliminating postulation of Double-Ended Guillotine Breaks (DEGB) in high energy piping systems. This is the result of extensive research, development, and rigorous evaluations by the NRC and the commercial nuclear power industry since the early 1970s. The DEGB postulation is responsible for the many hundreds of pipe whip restraints and jet shields found in commercial nuclear plants. These restraints and jet shields not only cost many millions of dollars, but also cause plant congestion leading to reduced reliability in inservice inspection and increased man-rem exposure. While use ofmore » leak-before-break technology saved hundreds of millions of dollars in backfit costs to many operating Westinghouse plants, value-impacts resulting from the application of this technology for future plants are greater on a per plant basis. These benefits will be highlighted in this paper. The LBB technology has been applied extensively to high energy piping systems in operating plants. However, there are differences between the application of LBB technology to an operating plant and to a new plant design. In this paper an approach is proposed which is suitable for application of LBB to a new plant design such as the Westinghouse AP600. The approach is based on generating Bounding Analyses Curves (BAC) for the candidate piping systems. The general methodology and criteria used for developing the BACs are based on modified GDC-4 and Standard Review Plan (SRP) 3.6.3. The BAC allows advance evaluation of the piping system from the LBB standpoint thereby assuring LBB conformance for the piping system. The piping designer can use the results of the BACs to determine acceptability of design loads and make modifications (in terms of piping layout and support configurations) as necessary at the design stage to assure LBB for the, piping systems under consideration.« less

  15. Evaluation of European District Heating Systems for Application to Army Installations in the United States

    DTIC Science & Technology

    2006-07-01

    pipes in hooded channels, and the steel insulated pipes are insulated with mineral wool . In the thermo- concrete laying system the insulation...depends on the type foam insulation used. • Class “A” steel carrier pipe with a mineral wool , foam glass, fiber glass, or calcium silicate insulation...with a mineral wool , foam glass, fiber glass, or calcium silicate insulation covered by a steel con- duit, which has a polyurethane foam insulation

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swamy, S.A.; Bhowmick, D.C.; Prager, D.E.

    The regulatory requirements for postulated pipe ruptures have changed significantly since the first nuclear plants were designed. The Leak-Before-Break (LBB) methodology is now accepted as a technically justifiable approach for eliminating postulation of double-ended guillotine breaks (DEGB) in high energy piping systems. The previous pipe rupture design requirements for nuclear power plant applications are responsible for all the numerous and massive pipe whip restraints and jet shields installed for each plant. This results in significant plant congestion, increased labor costs and radiation dosage for normal maintenance and inspection. Also the restraints increase the probability of interference between the piping andmore » supporting structures during plant heatup, thereby potentially impacting overall plant reliability. The LBB approach to eliminate postulating ruptures in high energy piping systems is a significant improvement to former regulatory methodologies, and therefore, the LBB approach to design is gaining worldwide acceptance. However, the methods and criteria for LBB evaluation depend upon the policy of individual country and significant effort continues towards accomplishing uniformity on a global basis. In this paper the historical development of the U.S. LBB criteria will be traced and the results of an LBB evaluation for a typical Japanese PWR primary loop applying U.S. NRC approved methods will be presented. In addition, another approach using the Japanese LBB criteria will be shown and compared with the U.S. criteria. The comparison will be highlighted in this paper with detailed discussion.« less

  17. Pulsed Eddy Current Sensing for Critical Pipe Condition Assessment.

    PubMed

    Ulapane, Nalika; Alempijevic, Alen; Vidal Calleja, Teresa; Valls Miro, Jaime

    2017-09-26

    Pulsed Eddy Current (PEC) sensing is used for Non-Destructive Evaluation (NDE) of the structural integrity of metallic structures in the aircraft, railway, oil and gas sectors. Urban water utilities also have extensive large ferromagnetic structures in the form of critical pressure pipe systems made of grey cast iron, ductile cast iron and mild steel. The associated material properties render NDE of these pipes by means of electromagnetic sensing a necessity. In recent years PEC sensing has established itself as a state-of-the-art NDE technique in the critical water pipe sector. This paper presents advancements to PEC inspection in view of the specific information demanded from water utilities along with the challenges encountered in this sector. Operating principles of the sensor architecture suitable for application on critical pipes are presented with the associated sensor design and calibration strategy. A Gaussian process-based approach is applied to model a functional relationship between a PEC signal feature and critical pipe wall thickness. A case study demonstrates the sensor's behaviour on a grey cast iron pipe and discusses the implications of the observed results and challenges relating to this application.

  18. A sensitivity study of the effects of evaporation/condensation accommodation coefficients on transient heat pipe modeling

    NASA Astrophysics Data System (ADS)

    Hall, Michael L.; Doster, J. Michael

    1990-03-01

    The dynamic behavior of liquid metal heat pipe models is strongly influenced by the choice of evaporation and condensation modeling techniques. Classic kinetic theory descriptions of the evaporation and condensation processes are often inadequate for real situations; empirical accommodation coefficients are commonly utilized to reflect nonideal mass transfer rates. The complex geometries and flow fields found in proposed heat pipe systems cause considerable deviation from the classical models. the THROHPUT code, which has been described in previous works, was developed to model transient liquid metal heat pipe behavior from frozen startup conditions to steady state full power operation. It is used here to evaluate the sensitivity of transient liquid metal heat pipe models to the choice of evaporation and condensation accommodation coefficients. Comparisons are made with experimental liquid metal heat pipe data. It is found that heat pipe behavior can be predicted with the proper choice of the accommodation coefficients. However, the common assumption of spatially constant accommodation coefficients is found to be a limiting factor in the model.

  19. Study of a pipe-scanning robot for use in post-construction evaluation during horizontal directional drilling.

    DOT National Transportation Integrated Search

    2015-06-01

    Trenchless Technology has become an increasingly popular underground utility construction method, beginning in : the early 1900s with pipe jacking beneath railroad lines. One method, horizontal directional drilling (HDD), became : more common in the ...

  20. User Evaluation of Biospice

    DTIC Science & Technology

    2006-10-01

    pipe facilities). The Dashboard is based on the NetBeans application platform, a Java-based tool kit. Tools may be written in any language...manner loosely analogous to UNIX shells (especially with respect to UNIX pipe facilities). The Dashboard is based on the NetBeans application

  1. Effect of Combined Loading Due to Bending and Internal Pressure on Pipe Flaw Evaluation Criteria

    NASA Astrophysics Data System (ADS)

    Miura, Naoki; Sakai, Shinsuke

    Considering a rule for the rationalization of maintenance of Light Water Reactor piping, reliable flaw evaluation criteria are essential for determining how a detected flaw will be detrimental to continuous plant operation. Ductile fracture is one of the dominant failure modes that must be considered for carbon steel piping and can be analyzed by elastic-plastic fracture mechanics. Some analytical efforts have provided various flaw evaluation criteria using load correction factors, such as the Z-factors in the JSME codes on fitness-for-service for nuclear power plants and the section XI of the ASME boiler and pressure vessel code. The present Z-factors were conventionally determined, taking conservativity and simplicity into account; however, the effect of internal pressure, which is an important factor under actual plant conditions, was not adequately considered. Recently, a J-estimation scheme, LBB.ENGC for the ductile fracture analysis of circumferentially through-wall-cracked pipes subjected to combined loading was developed for more accurate prediction under more realistic conditions. This method explicitly incorporates the contributions of both bending and tension due to internal pressure by means of a scheme that is compatible with an arbitrary combined-loading history. In this study, the effect of internal pressure on the flaw evaluation criteria was investigated using the new J-estimation scheme. The Z-factor obtained in this study was compared with the presently used Z-factors, and the predictability of the current flaw evaluation criteria was quantitatively evaluated in consideration of the internal pressure.

  2. Stirling engine external heat system design with heat pipe heater

    NASA Technical Reports Server (NTRS)

    Godett, Ted M.; Ziph, Benjamin

    1986-01-01

    This final report presents the conceptual design of a liquid fueled external heating system (EHS) and the preliminary design of a heat pipe heater for the STM-4120 Stirling cycle engine, to meet the Air Force mobile electric power (MEP) requirement for units in the range of 20 to 60 kW. The EHS design had the following constraints: (1) Packaging requirements limited the overall system dimensions to about 330 mm x 250 mm x 100 mm; (2) Heat flux to the sodium heat pipe evaporator was limited to an average of 100 kW/m and a maximum of 550 kW/m based on previous experience; and (3) The heat pipe operating temperature was specified to be 800 C based on heat input requirements of the STM4-120. An analysis code was developed to optimize the EHS performance parameters and an analytical development of the sodium heat pipe heater was performed; both are presented and discussed. In addition, construction techniques were evaluated and scale model heat pipe testing performed.

  3. Evaluation of an earth heated bridge deck.

    DOT National Transportation Integrated Search

    1984-04-01

    The design, construction, performance and analysis of the first ground heat pipe : system to heat an entire bridge deck are detailed. Each of the sixty heat pipes in : this system is comprised of a 6 em (2.4") diameter, 31 m (lOO')_long vertical grou...

  4. A Retrospective Evaluation of Cured-in-Place Pipe (CIPP) Used in Municipal Gravity Sewers

    EPA Science Inventory

    Pipe rehabilitation and trenchless replacement technologies have seen a steadily increasing use and represent an increasing proportion of the annual expenditure on operations and maintenance of the nation’s water and wastewater infrastructure. Despite public investment in use of...

  5. Evaluating and Improving Water Treatment Plant Processes at Fixed Army Installations.

    DTIC Science & Technology

    1985-05-01

    blender with variable speeds to handle different flow rates through the plant. * A coagulant feed system using orifices (facing upstream) may help achieve...cause the pipe to rupture. Tubercules are formed on pipe surfaces when iron ions are oxidized and ferric hydroxide precipitates: 2 + 2Fe + 5H20 + 1/20...2 2Fe (01)3 + 4H + " The tubercules interfere with flow and reduce the carrying capacity of the pipe . Several factors affect the rate of corrosion

  6. Verification of the proteus two-dimensional Navier-Stokes code for flat plate and pipe flows

    NASA Technical Reports Server (NTRS)

    Conley, Julianne M.; Zeman, Patrick L.

    1991-01-01

    The Proteus Navier-Stokes Code is evaluated for 2-D/axisymmetric, viscous, incompressible, internal, and external flows. The particular cases to be discussed are laminar and turbulent flows over a flat plate, laminar and turbulent developing pipe flows, and turbulent pipe flow with swirl. Results are compared with exact solutions, empirical correlations, and experimental data. A detailed description of the code set-up, including boundary conditions, initial conditions, grid size, and grid packing is given for each case.

  7. Critical Evaluation of State-of-the-Art In Situ Thermal Treatment Technologies for DNAPL Source Zone Treatment. State-of-the-Practice Overview

    DTIC Science & Technology

    2009-05-01

    recovery in their design. Electrodes have been constructed from steel pipe , copper plate for heating distinct zones, and sheet pile. Sheet pile...energy transfer/ heating in the subsurface) The components required to implement ERH include: • Electrodes (steel pipe , copper plate, well points...including piping , blower, and condenser • A vapor treatment system Electrical Resistance Heating (Smith) A-3 • An ERH power control unit to

  8. Non-Newtonian Liquid Flow through Small Diameter Piping Components: CFD Analysis

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Tarun Kanti; Das, Sudip Kumar

    2016-10-01

    Computational Fluid Dynamics (CFD) analysis have been carried out to evaluate the frictional pressure drop across the horizontal pipeline and different piping components, like elbows, orifices, gate and globe valves for non-Newtonian liquid through 0.0127 m pipe line. The mesh generation is done using GAMBIT 6.3 and FLUENT 6.3 is used for CFD analysis. The CFD results are verified with our earlier published experimental data. The CFD results show the very good agreement with the experimental values.

  9. Fatigue evaluation of socket welded piping in nuclear power plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vecchio, R.S.

    1996-12-01

    Fatigue failures in piping systems occur, almost without exception, at the welded connections. In nuclear power plant systems, such failures occur predominantly at the socket welds of small diameter piping ad fillet attachment welds under high-cycle vibratory conditions. Nearly all socket weld fatigue failures are identified by leaks which, though not high in volume, generally are costly due to attendant radiological contamination. Such fatigue cracking was recently identified in the 3/4 in. diameter recirculation and relief piping socket welds from the reactor coolant system (RCS) charging pumps at a nuclear power plant. Consequently, a fatigue evaluation was performed to determinemore » the cause of cracking and provide an acceptable repair. Socket weld fatigue life was evaluated using S-N type fatigue life curves for welded structures developed by AASHTO and the assessment of an effective cyclic stress range adjacent to each socket weld. Based on the calculated effective tress ranges and assignment of the socket weld details to the appropriate AASHTO S-N curves, the socket weld fatigue lives were calculated and found to be in excellent agreement with the accumulated cyclic life to-date.« less

  10. Heat Rejection from a Variable Conductance Heat Pipe Radiator Panel

    NASA Technical Reports Server (NTRS)

    Jaworske, D. A.; Gibson, M. A.; Hervol, D. S.

    2012-01-01

    A titanium-water heat pipe radiator having an innovative proprietary evaporator configuration was evaluated in a large vacuum chamber equipped with liquid nitrogen cooled cold walls. The radiator was manufactured by Advanced Cooling Technologies, Inc. (ACT), Lancaster, PA, and delivered as part of a Small Business Innovative Research effort. The radiator panel consisted of five titanium-water heat pipes operating as thermosyphons, sandwiched between two polymer matrix composite face sheets. The five variable conductance heat pipes were purposely charged with a small amount of non-condensable gas to control heat flow through the condenser. Heat rejection was evaluated over a wide range of inlet water temperature and flow conditions, and heat rejection was calculated in real-time utilizing a data acquisition system programmed with the Stefan-Boltzmann equation. Thermography through an infra-red transparent window identified heat flow across the panel. Under nominal operation, a maximum heat rejection value of over 2200 Watts was identified. The thermal vacuum evaluation of heat rejection provided critical information on understanding the radiator s performance, and in steady state and transient scenarios provided useful information for validating current thermal models in support of the Fission Power Systems Project.

  11. Comparative Investigation and Operational Performance Characteristics of a Wick Assisted and Axially Square Grooved Heat Pipe

    NASA Astrophysics Data System (ADS)

    Naik, Rudra, Dr.; Rama Narasihma, K., Dr.; Anikivi, Atmanand

    2018-04-01

    The present work reported here involves the experimental investigation and performance evaluation of wick assisted and axially square grooved heat pipes of outer diameter 8mm, inner diameter 4mm with a length of 150mm.The objective of this work is to design, fabricate and test the heat pipes with and without an axial square groove for horizontal and gravity assisted conditions. The performance of the heat pipes was measured in terms of thermal resistance and heat transfer coefficients. In the present investigation four different working fluids were chosen namely acetone, ethanol, methanol and distilled water. Experiments were conducted by varying the heat load from 2 W to 10 W for different fill charge ratios in the range of 25% to 75% of evaporator volume for wick assisted heat pipe and 8 W to 18 W for axially square grooved heat pipe. From the experiments, it was found that there is a steady increase in temperature with the increase in heat input. The overall heat transfer coefficient was found to increase with the increase heat load for wick assisted heat pipe. In case of axially square grooved heat pipe, an attempt was made to experiment the heat pipe in different orientations. The maximum heat transfer coefficient of 7000 W/m2 °C is found for Acetone at 180° orientation.

  12. Effect of PVC and iron materials on Mn(II) deposition in drinking water distribution systems.

    PubMed

    Cerrato, José M; Reyes, Lourdes P; Alvarado, Carmen N; Dietrich, Andrea M

    2006-08-01

    Polyvinyl chloride (PVC) and iron pipe materials differentially impacted manganese deposition within a drinking water distribution system that experiences black water problems because it receives soluble manganese from a surface water reservoir that undergoes biogeochemical cycling of manganese. The water quality study was conducted in a section of the distribution system of Tegucigalpa, Honduras and evaluated the influence of iron and PVC pipe materials on the concentrations of soluble and particulate iron and manganese, and determined the composition of scales formed on PVC and iron pipes. As expected, total Fe concentrations were highest in water from iron pipes. Water samples obtained from PVC pipes showed higher total Mn concentrations and more black color than that obtained from iron pipes. Scanning electron microscopy demonstrated that manganese was incorporated into the iron tubercles and thus not readily dislodged from the pipes by water flow. The PVC pipes contained a thin surface scale consisting of white and brown layers of different chemical composition; the brown layer was in contact with the water and contained 6% manganese by weight. Mn composed a greater percentage by weight of the PVC scale than the iron pipe scale; the PVC scale was easily dislodged by flowing water. This research demonstrates that interactions between water and the infrastructure used for its supply affect the quality of the final drinking water.

  13. Long-term study of migration of volatile organic compounds from cross-linked polyethylene (PEX) pipes and effects on drinking water quality.

    PubMed

    Lund, Vidar; Anderson-Glenna, Mary; Skjevrak, Ingun; Steffensen, Inger-Lise

    2011-09-01

    The objectives of this study were to investigate migration of volatile organic compounds (VOCs) from cross-linked polyethylene (PEX) pipes used for drinking water produced by different production methods, and to evaluate their potential risk for human health and/or influence on aesthetic drinking water quality. The migration tests were carried out in accordance with EN-1420-1, and VOCs were analysed by gas chromatography-mass spectrometry. The levels of VOC migrating from new PEX pipes were generally low, and decreasing with time of pipe use. No association was found between production method of PEX pipes and concentration of migration products. 2,4-di-tert-butyl phenol and methyl tert-butyl ether (MTBE) were two of the major individual components detected. In three new PEX pipes, MTBE was detected in concentrations above the recommended US EPA taste and odour value for drinking water, but decreased below this value after 5 months in service. However, the threshold odour number (TON) values for two pipes were similar to new pipes even after 1 year in use. For seven chemicals for which conclusions on potential health risk could be drawn, this was considered of no or very low concern. However, odour from some of these pipes could negatively affect drinking water for up to 1 year.

  14. COMPILATION OF DISPOSABLE SOLID WASTE CASK EVALUATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    THIELGES, J.R.; CHASTAIN, S.A.

    The Disposable Solid Waste Cask (DSWC) is a shielded cask capable of transporting, storing, and disposing of six non-fuel core components or approximately 27 cubic feet of radioactive solid waste. Five existing DSWCs are candidates for use in storing and disposing of non-fuel core components and radioactive solid waste from the Interim Examination and Maintenance Cell, ultimately shipping them to the 200 West Area disposal site for burial. A series of inspections, studies, analyses, and modifications were performed to ensure that these casks can be used to safely ship solid waste. These inspections, studies, analyses, and modifications are summarized andmore » attached in this report. Visual inspection of the casks interiors provided information with respect to condition of the casks inner liners. Because water was allowed to enter the casks for varying lengths of time, condition of the cask liner pipe to bottom plate weld was of concern. Based on the visual inspection and a corrosion study, it was concluded that four of the five casks can be used from a corrosion standpoint. Only DSWC S/N-004 would need additional inspection and analysis to determine its usefulness. The five remaining DSWCs underwent some modification to prepare them for use. The existing cask lifting inserts were found to be corroded and deemed unusable. New lifting anchor bolts were installed to replace the existing anchors. Alternate lift lugs were fabricated for use with the new lifting anchor bolts. The cask tiedown frame was modified to facilitate adjustment of the cask tiedowns. As a result of the above mentioned inspections, studies, analysis, and modifications, four of the five existing casks can be used to store and transport waste from the Interim Examination and Maintenance Cell to the disposal site for burial. The fifth cask, DSWC S/N-004, would require further inspections before it could be used.« less

  15. Study program for encapsulation materials interface for low cost silicon solar array

    NASA Technical Reports Server (NTRS)

    Kaelble, D. H.; Mansfeld, F. B.; Lunsden, J. B., III; Leung, C.

    1980-01-01

    An atmospheric corrosion model was developed and verified by five months of corrosion rate and climatology data acquired at the Mead, Nebraska LSA test site. Atmospheric corrosion rate monitors (ACM) show that moisture condensation probability and ionic conduction at the corroding surface or interface are controlling factors in corrosion rate. Protection of the corroding surface by encapsulant was shown by the ACM recordings to be maintained, independent of climatology, over the five months outdoor exposure period. The macroscopic corrosion processes which occur at Mead are shown to be reproduced in the climatology simulator. Controlled experiments with identical moisture and temperature aging cycles show that UV radiation causes corrosion while UV shielding inhibits LSA corrosion.

  16. Development of a Remote External Repair Tool for Damaged or Defective Polyethylene Pipe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenneth H. Green; Willie E. Rochefort; Nick Wannenmacher

    2006-06-30

    Current procedures for repairing polyethylene (PE) gas pipe require excavation, isolation, and removal of the damaged section of pipe followed by fusing a new section of pipe into place. These techniques are costly and very disruptive. An alternative repair method was developed at Timberline Tool with support from Oregon State University (OSU) and funding by the U. S. Department of Energy National Energy Technology Laboratory (DOE/NETL). This project was undertaken to design, develop and test a tool and method for repairing damaged PE pipe remotely and externally in situ without squeezing off the flow of gas, eliminating the need formore » large-scale excavations. Through an iterative design and development approach, a final engineered prototype was developed that utilizes a unique thermo-chemical and mechanical process to apply a permanent external patch to repair small nicks, gouges and punctures under line pressure. The project identified several technical challenges during the design and development process. The repair tool must be capable of being installed under live conditions and operate in an 18-inch keyhole. This would eliminate the need for extensive excavations thus reducing the cost of the repair. Initially, the tool must be able to control the leak by encapsulating the pipe and apply slight pressure at the site of damage. Finally, the repair method must be permanent at typical operating pressures. The overall results of the project have established a permanent external repair method for use on damaged PE gas pipe in a safe and cost-effective manner. The engineered prototype was subjected to comprehensive testing and evaluation to validate the performance. Using the new repair tool, samples of 4-inch PE pipe with simulated damage were successfully repaired under line pressure to the satisfaction of DOE/NETL and the following natural gas companies: Northwest Natural; Sempra Energy, Southwest Gas Corporation, Questar, and Nicor. However, initial results of accelerated age testing on repaired pipe samples showed that the high density polyethylene (HDPE) pipe patch material developed a small crack at the high stress areas surrounding the patched hole within the first 48 hours of hot water testing, indicating that the patch material has a 25-year lifespan. Based on these results, further research is continuing to develop a stronger repair patch for a satisfactory 50-year patch system. Additional tests were also conducted to evaluate whether any of the critical performance properties of the PE pipe were reduced or compromised by the repair technique. This testing validated a satisfactory 50-year patch system for the pipe.« less

  17. Insights Gained from Ultrasonic Testing of Piping Welds Subjected to the Mechanical Stress Improvement Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Michael T.; Cinson, Anthony D.; Crawford, Susan L.

    2010-12-01

    Pacific Northwest National Laboratory (PNNL) is assisting the United States Nuclear Regulatory Commission (NRC) in developing a position on the management of primary water stress corrosion cracking (PWSCC) in leak-before-break piping systems. Part of this involves determining whether inspections alone, or inspections plus mitigation, are needed. This work addresses the reliability of ultrasonic testing (UT) of cracks that have been mitigated by the mechanical stress improvement process (MSIP). The MSIP has been approved by the NRC (NUREG-0313) since 1986 and modifies residual stresses remaining after welding with compressive, or neutral, stresses near the inner diameter surface of the pipe. Thismore » compressive stress is thought to arrest existing cracks and inhibit new crack formation. To evaluate the effectiveness of the MSIP and the reliability of ultrasonic inspections, flaws were evaluated both before and after MSIP application. An initial investigation was based on data acquired from cracked areas in 325-mm-diameter piping at the Ignalina Nuclear Power Plant (INPP) in Lithuania. In a follow-on exercise, PNNL acquired and evaluated similar UT data from a dissimilar metal weld (DMW) specimen containing implanted thermal fatigue cracks. The DMW specimen is a carbon steel nozzle-to-safe end-to-stainless steel pipe section that simulates a pressurizer surge nozzle. The flaws were implanted in the nozzle-to-safe end Alloy 82/182 butter region. Results are presented on the effects of MSIP on specimen surfaces, and on UT flaw responses.« less

  18. Solar central receiver hybrid power system, phase 1. Volume 3: Appendices

    NASA Astrophysics Data System (ADS)

    1979-09-01

    Parametric salt piping data, sample heat exchanger calculations, and salt/materials compatibility evaluations are presented. Data lists that include the heliostat field coordinates, the STEAEC program input data, the hybrid receiver design drawings and models, and the piping stress analysis are also presented.

  19. Evaluation and analysis of current compaction methods for FDOT pipe trench backfills in areas of high water tables

    DOT National Transportation Integrated Search

    1999-01-01

    This research project was undertaken to examine the practicality and adequacy of the FDOT specifications regarding compaction methods for pipe trench backfills under high water table. Given the difficulty to determine density and to attain desired de...

  20. Failure mechanisms and lifetime prediction methodology for polybutylene pipe in water distribution system

    NASA Astrophysics Data System (ADS)

    Niu, Xiqun

    Polybutylene (PB) is a semicrystalline thermoplastics. It has been widely used in potable water distribution piping system. However, field practice shows that failure occurs much earlier than the expected service lifetime. What are the causes and how to appropriately evaluate its lifetime motivate this study. In this thesis, three parts of work have been done. First is the understanding of PB, which includes material thermo and mechanical characterization, aging phenomena and notch sensitivity. The second part analyzes the applicability of the existing lifetime testing method for PB. It is shown that PB is an anomaly in terms of the temperature-lifetime relation because of the fracture mechanism transition across the testing temperature range. The third part is the development of the methodology of lifetime prediction for PB pipe. The fracture process of PB pipe consists of three stages, i.e., crack initiation, slow crack growth (SCG) and crack instability. The practical lifetime of PB pipe is primarily determined by the duration of the first two stages. The mechanism of crack initiation and the quantitative estimation of the time to crack initiation are studied by employing environment stress cracking technique. A fatigue slow crack growth testing method has been developed and applied in the study of SCG. By using Paris-Erdogan equation, a model is constructed to evaluate the time for SCG. As a result, the total lifetime is determined. Through this work, the failure mechanisms of PB pipe has been analyzed and the lifetime prediction methodology has been developed.

  1. The impact of aqueous washing on the ability of βFeOOH to corrode iron.

    PubMed

    Watkinson, D E; Emmerson, N J

    2017-01-01

    Controlling the corrosion of historical and archaeological ferrous metal objects presents a significant challenge to conservators. Chloride is a major corrosion accelerator in coastal areas for historic ferrous metal structures and for the many chloride-containing archaeological objects within museums. Corrosion reactions involve the formation of akaganéite (βFeOOH) which incorporates chloride within its crystal structure and adsorbs it onto its surface. The mobility of the surface-adsorbed chloride in aqueous systems and atmospheric moisture means βFeOOH can itself cause iron to corrode. The extraction of chloride from βFeOOH by aqueous Soxhlet hot wash and aqueous room temperature washing is measured. The impact of this washing on the ability of βFeOOH to corrode iron is quantitatively investigated by determining the oxygen consumption of unwashed, Soxhlet-washed and room temperature-washed samples of βFeOOH mixed with iron powder and exposed to 80 % relative humidity. This acts as a proxy measurement for the corrosion rate of iron. The results are discussed relative to climatic factors for outdoor heritage objects and the treatment of archaeological iron in museums. Delivering better understanding of the properties of βFeOOH supports the development of evidence-based treatments and management procedures in heritage conservation.

  2. Quantitative sensing of corroded steel rebar embedded in cement mortar specimens using ultrasonic testing

    NASA Astrophysics Data System (ADS)

    Owusu Twumasi, Jones; Le, Viet; Tang, Qixiang; Yu, Tzuyang

    2016-04-01

    Corrosion of steel reinforcing bars (rebars) is the primary cause for the deterioration of reinforced concrete structures. Traditional corrosion monitoring methods such as half-cell potential and linear polarization resistance can only detect the presence of corrosion but cannot quantify it. This study presents an experimental investigation of quantifying degree of corrosion of steel rebar inside cement mortar specimens using ultrasonic testing (UT). A UT device with two 54 kHz transducers was used to measure ultrasonic pulse velocity (UPV) of cement mortar, uncorroded and corroded reinforced cement mortar specimens, utilizing the direct transmission method. The results obtained from the study show that UPV decreases linearly with increase in degree of corrosion and corrosion-induced cracks (surface cracks). With respect to quantifying the degree of corrosion, a model was developed by simultaneously fitting UPV and surface crack width measurements to a two-parameter linear model. The proposed model can be used for predicting the degree of corrosion of steel rebar embedded in cement mortar under similar conditions used in this study up to 3.03%. Furthermore, the modeling approach can be applied to corroded reinforced concrete specimens with additional modification. The findings from this study show that UT has the potential of quantifying the degree of corrosion inside reinforced cement mortar specimens.

  3. Ion and laser microprobes applied to the measurement of corrosion produced hydrogen on a microscopic scale.

    NASA Technical Reports Server (NTRS)

    Gray, H. R.

    1972-01-01

    Use of an ion microprobe and a laser microprobe to measure concentrations of corrosion-produced hydrogen on a microscopic scale. Hydrogen concentrations of several thousand ppm were measured by both analytical techniques below corroded and fracture surfaces of hot salt stress corroded titanium alloy specimens. This extremely high concentration compares with only about 100 ppm hydrogen determined by standard vacuum fusion chemical analyses of bulk samples. Both the ion and laser microprobes were used to measure hydrogen concentration profiles in stepped intervals to substantial depths below the original corroded and fracture surfaces. For the ion microprobe, the area of local analysis was 22 microns in diameter and for the laser microprobe, the area of local analysis was about 300 microns in diameter. The segregation of hydrogen below fracture surfaces supports a previously proposed theory that corrosion-produced hydrogen is responsible for hot salt stress corrosion embrittlement and cracking of titanium alloys. These advanced analytical techniques suggest great potential for many areas of stress corrosion and hydrogen embrittlement research, quality control, and field inspection of corrosion problems. For example, it appears possible that a contour map of hydrogen distribution at notch roots and crack tips could be quantitatively determined. Such information would be useful in substantiating current theories of stress corrosion and hydrogen embrittlement.

  4. Degradation and mechanism of the mechanics and durability of reinforced concrete slab in a marine environment

    NASA Astrophysics Data System (ADS)

    Wu, Sheng-xing; Liu, Guan-guo; Bian, Han-bing; Lv, Wei-bo; Jiang, Jian-hua

    2016-04-01

    An experimental research was conducted to determine the corrosion and bearing capacity of a reinforced concrete (RC) slab at different ages in a marine environment. Results show that the development of corrosion-induced cracks on a slab in a marine environment can be divided into three stages according to crack morphology at the bottom of the slab. In the first stage, cracks appear. In the second stage, cracks develop from the edges to the middle of the slab. In the third stage, longitudinal and transverse corrosion-induced cracks coexist. The corrosion ratio of reinforcements nonlinearly increases with the age, and the relationship between the corrosion ratio of the reinforcements and the corrosion-induced crack width of the concrete is established. The flexural capacity of the corroded RC slab nonlinearly decreases with the age, and the model for the bearing capacity factor of the corroded RC slab is established. The mid-span deflection of the corroded RC slab that corresponds to the yield of the reinforcements linearly increases with the increase in corrosion ratio. Finally, the mechanisms of corrosion morphology and the degradation of the mechanical properties of an RC slab in a marine environment are discussed on the basis of the basic theories of steel corrosion in concrete and concrete structure design.

  5. Pulsed Eddy Current Sensing for Critical Pipe Condition Assessment

    PubMed Central

    2017-01-01

    Pulsed Eddy Current (PEC) sensing is used for Non-Destructive Evaluation (NDE) of the structural integrity of metallic structures in the aircraft, railway, oil and gas sectors. Urban water utilities also have extensive large ferromagnetic structures in the form of critical pressure pipe systems made of grey cast iron, ductile cast iron and mild steel. The associated material properties render NDE of these pipes by means of electromagnetic sensing a necessity. In recent years PEC sensing has established itself as a state-of-the-art NDE technique in the critical water pipe sector. This paper presents advancements to PEC inspection in view of the specific information demanded from water utilities along with the challenges encountered in this sector. Operating principles of the sensor architecture suitable for application on critical pipes are presented with the associated sensor design and calibration strategy. A Gaussian process-based approach is applied to model a functional relationship between a PEC signal feature and critical pipe wall thickness. A case study demonstrates the sensor’s behaviour on a grey cast iron pipe and discusses the implications of the observed results and challenges relating to this application. PMID:28954392

  6. Capillary Pump Loop (CPL) heat pipe development status report

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The capillary pump loop (CPL) was re-introduced as a potential candidate for the management of large heat loads. It is currently being evaluated for application in the thermal management of large space structures. Test efforts were conducted to establish the feasibility of the CPL heat pipe design.

  7. Study made of pneumatic high pressure piping materials /10,000 psi/

    NASA Technical Reports Server (NTRS)

    Loeb, M. B.; Smith, J. C.

    1967-01-01

    Evaluations of five types of steel for use in high pressure pneumatic piping systems include tests for impact strength, tensile and yield strengths, elongation and reduction in area, field weldability, and cost. One type, AISI 4615, was selected as most advantageous for extensive use in future flight vehicles.

  8. An investigation of electrohydrodynamic heat pipes

    NASA Technical Reports Server (NTRS)

    Loehrke, R. I.

    1977-01-01

    The principles of electrohydrodynamic heat pip operation are first discussed. Evaporator conductance experiments are then described. A heat pipe was designed in which grooved and ungrooved evaporator surfaces could be interchanged to evaluate the necessity of capillary grooves. Optimum electrode spacing was also studied. Finally, heat convection in evaporating thin films is considered.

  9. DEVELOPMENTAL EXPOSURE TO DI-N-BUTYLTIN DICHLORIDE (DBTC): IMMUNOTOXIC AND NEUROTOXIC EVALUATION

    EPA Science Inventory

    Organotins are incorporated as stabilizers in PVC water supply pipe. Particularly when new, mono- and di-substituted methyl- and butyltins leach from the pipe and are thus of regulatory concern to EPA. These contaminants have adverse effects on both the immune and nervous systems...

  10. Heat pipe development

    NASA Technical Reports Server (NTRS)

    Bienart, W. B.

    1973-01-01

    The objective of this program was to investigate analytically and experimentally the performance of heat pipes with composite wicks--specifically, those having pedestal arteries and screwthread circumferential grooves. An analytical model was developed to describe the effects of screwthreads and screen secondary wicks on the transport capability of the artery. The model describes the hydrodynamics of the circumferential flow in triangular grooves with azimuthally varying capillary menisci and liquid cross-sections. Normalized results were obtained which give the influence of evaporator heat flux on the axial heat transport capability of the arterial wick. In order to evaluate the priming behavior of composite wicks under actual load conditions, an 'inverted' glass heat pipe was designed and constructed. The results obtained from the analysis and from the tests with the glass heat pipe were applied to the OAO-C Level 5 heat pipe, and an improved correlation between predicted and measured evaporator and transport performance were obtained.

  11. High Energy Vibration for Gas Piping

    NASA Astrophysics Data System (ADS)

    Lee, Gary Y. H.; Chan, K. B.; Lee, Aylwin Y. S.; Jia, ShengXiang

    2017-07-01

    In September 2016, a gas compressor in offshore Sarawak has its rotor changed out. Prior to this change-out, pipe vibration study was carried-out by the project team to evaluate any potential high energy pipe vibration problems at the compressor’s existing relief valve downstream pipes due to process condition changes after rotor change out. This paper covers high frequency acoustic excitation (HFAE) vibration also known as acoustic induced vibration (AIV) study and discusses detailed methodologies as a companion to the Energy Institute Guidelines for the avoidance of vibration induced fatigue failure, which is a common industry practice to assess and mitigate for AIV induced fatigue failure. Such detailed theoretical studies can help to minimize or totally avoid physical pipe modification, leading to reduce offshore plant shutdown days to plant shutdowns only being required to accommodate gas compressor upgrades, reducing cost without compromising process safety.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, T.; Kameyama, M.; Urabe, Y.

    At present, cast duplex stainless steel has been used for the primary coolant piping of PWRs in Japan and joints of dissimilar material have been applied for welding to reactor vessels and steam generators. For the primary coolant piping of the next APWR plants, application of low alloy steel that results in designing main loops with the same material is being studied. It means that there is no need to weld low alloy steel with stainless steel and that makes it possible to reduce the welding length. Attenuation of Ultra Sonic Wave Intensity is lower for low alloy steel thanmore » for stainless steel and they have advantageous inspection characteristics. In addition to that, the thermal expansion rate is smaller for low alloy steel than for stainless steel. In consideration of the above features of low alloy steel, the overall reliability of primary coolant piping is expected to be improved. Therefore, for the evaluation of crack stability of low alloy steel piping to be applied for primary loops, elastic-plastic future mechanics analysis was performed by means of a three-dimensioned FEM. The evaluation results for the low alloy steel pipings show that cracks will not grow into unstable fractures under maximum design load conditions, even when such a circumferential crack is assumed to be 6 times the size of the wall thickness.« less

  13. Chemical resistance and cleanability of glazed surfaces

    NASA Astrophysics Data System (ADS)

    Hupa, Leena; Bergman, Roger; Fröberg, Linda; Vane-Tempest, Stina; Hupa, Mikko; Kronberg, Thomas; Pesonen-Leinonen, Eija; Sjöberg, Anna-Maija

    2005-06-01

    Adhesion of soil on glazed surfaces and their cleanability depends on chemical composition, phase composition, and roughness of the surface. The surface can be glossy consisting mainly of a smooth glassy phase. A matt and rough surface consists of a glassy phase and one or more crystalline phases. The origin and composition of the crystalline phases affect the chemical resistance and the cleanability of the surface. Fifteen experimental glossy and matt glazes were soaked in a slightly alkaline cleaning agent solution. The surfaces were spin-coated with sebum, i.e. a soil component typical for sanitary facilities. After wiping out the soil film in a controlled manner, the surface conditions and the soil left were evaluated with colour measurements, SEM/EDXA and COM. The results show that wollastonite-type crystals in the glaze surfaces were attacked in aqueous solutions containing typical cleaning agents. This corrosion led to significant decrease in the cleanability of the surface. The other crystal types observed, i.e. diopside and quartz crystals were not corroded, and the cleanability of glazes containing only these crystals was not changed in the cleaning agent exposures. Also the glassy phase was found to be attacked in some formulations leading to a somewhat decreased cleanability. The repeated soiling and cleaning procedures indicated that soil is accumulated on rough surfaces and surfaces which were clearly corroded by the cleaning agent.

  14. Atmosphere

    NASA Astrophysics Data System (ADS)

    Ghosh, D.; Mitra, S. K.

    2014-05-01

    This paper investigates the high-temperature corrosion behavior of microstructurally different regions of the weldment of 9 Cr-1 Mo steel used in thermal power plant boiler in SO2 + O2 environment. The weldment is produced by tungsten inert gas welding method, and the different regions of the weldment (weld metal, heat-affected zone, and base metal) are exposed in SO2 + O2 (ratio 2:1) environment at 973 K for 120 h. The reaction kinetics and corrosion growth rate of different regions of weldment in isothermal condition are evaluated. The post corroded scales of the different specimens are studied in SEM, EDS, and XRD. The results indicate that the weld metal shows higher corrosion rate followed by HAZ and base metal. The higher rate of corrosion of weldmetal is mainly attributed to the least protective inner scale of Cr2O3 with minimum Cr Content. This is due to the formation of delta ferrite, which leads to the precipitation of the Cr-based secondary phases and depletes the free Cr from the matrix. The thermal cycles during welding at high temperature are favorable for the formation of delta ferrite. On the other hand, in absence of delta ferrite, the base metal and HAZ regions of the weldment show lower corrosion rate than weld metal. The difference in corrosion rate in the three regions of the weldment is supplemented by post-corroded scale characterizations.

  15. A new finding on the in-vivo crevice corrosion damage in a CoCrMo hip implant.

    PubMed

    Oskouei, Reza H; Barati, Mohammad Reza; Farhoudi, Hamidreza; Taylor, Mark; Solomon, Lucian Bogdan

    2017-10-01

    A detailed investigation was performed to characterize the fretting wear and corrosion damage to the neck component of a CoCrMo stem from a metal-on-polyethylene implant retrieved after 99months. The stem was a low-carbon (0.07wt%) wrought Co-28Cr-6Mo alloy with no secondary carbide phases in the matrix (γ-phase). The original design of the neck surface contained an intentionally fabricated knurled profile with a valley-to-peak range of approximately 11μm. Roughness measurements indicated that the tip of the knurled profile was significantly damaged, especially in the distal medial region of the neck, with up to a 22% reduction in the mean peak-to-valley height (R a ) compared to the original profile. As a new finding, the channels between the peaks of the profile created an additional crevice site in the presence of stagnant body fluid within the head-neck taper junction. These channels were observed to contain the most severe corroded areas and surface oxide layers with micro-cracks. SEM/EDS, XRD and XPS evaluations identified the formation of Cr 2 O 3 as a corrosion product. Also, decobaltification was found to occur in these corroded areas. The findings of this work indicate the important role of the knurled profile in inducing additional crevice corrosion. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Friction Stir Welding of Line-Pipe Steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanderson, Samuel; Mahoney, Murray; Feng, Zhili

    Friction stir welding (FSW) offers both economic and technical advantages over conventional fusion welding practices for welding line-pipe. For offshore line-pipe construction, the economic savings has been shown to be considerable, approaching a calculated 25%. Offshore pipe is relatively small diameter but heavy wall compared to onshore pipe. One concern is the ability to achieve consistent full weld penetration in an on-site offshore FSW operation, e.g., on a lay-barge. In addition, depending on the size and morphology of the unwelded zone, lack of penetration at the weld root can be difficult if not impossible to detect by conventional NDE methods.more » Thus, an approach to assure consistent full penetration via process control is required for offshore line-pipe construction using FSW. For offshore construction, an internal structural mandrel can be used offering the opportunity to use a sacrificial anvil FSW approach. With this approach, a small volume of sacrificial material can be inserted into the structural anvil. The FSW tool penetrates into the sacrificial anvil, beyond the inner diameter of the pipe wall, thus assuring full penetration. The sacrificial material is subsequently removed from the pipe inner wall. In the work presented herein, FSW studies were completed on both 6 mm and 12 mm wall thickness line-pipe. Lastly, post-FSW evaluations including radiography, root-bend tests, and metallography demonstrated the merits of the sacrificial anvil approach to achieve consistent full penetration.« less

  17. Capacitance probe for detection of anomalies in non-metallic plastic pipe

    DOEpatents

    Mathur, Mahendra P.; Spenik, James L.; Condon, Christopher M.; Anderson, Rodney; Driscoll, Daniel J.; Fincham, Jr., William L.; Monazam, Esmail R.

    2010-11-23

    The disclosure relates to analysis of materials using a capacitive sensor to detect anomalies through comparison of measured capacitances. The capacitive sensor is used in conjunction with a capacitance measurement device, a location device, and a processor in order to generate a capacitance versus location output which may be inspected for the detection and localization of anomalies within the material under test. The components may be carried as payload on an inspection vehicle which may traverse through a pipe interior, allowing evaluation of nonmetallic or plastic pipes when the piping exterior is not accessible. In an embodiment, supporting components are solid-state devices powered by a low voltage on-board power supply, providing for use in environments where voltage levels may be restricted.

  18. Elimination of Acid Cleaning of High Temperature Salt Water Heat Exchangers: Redesigned Pre-Production Full-Scale Heat Pipe Bleed Air Cooler for Shipboard Evaluation

    DTIC Science & Technology

    2011-11-01

    Cleaning of High Temperature Salt Water Heat Exchangers ESTCP WP-200302 Subtitle: Redesigned Pre-production Full-Scale Heat Pipe Bleed Air Cooler For...FINAL 3. DATES COVERED (From - To) 1-Jan-2003 – 1-Oct-2009 4. TITLE AND SUBTITLE Elimination of Acid Cleaning of High Temperature Salt Water Heat...6-5 Figure 6- 6 HP-BAC Tube Sheet Being Immersed in Ultrasonic Cleaning Tank ..................................... 6-6 Figure 6- 7 Heat Pipe

  19. Fracture control for the Oman India Pipeline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruno, T.V.

    1996-12-31

    This paper describes the evaluation of the resistance to fracture initiation and propagation for the high-strength, heavy-wall pipe required for the Oman India Pipeline (OIP). It discusses the unique aspects of this pipeline and their influence on fracture control, reviews conventional fracture control design methods, their limitations with regard to the pipe in question, the extent to which they can be utilized for this project, and other approaches being explored. Test pipe of the size and grade required for the OIP show fracture toughness well in excess of the minimum requirements.

  20. The effect of trench width on the behavior of buried rigid pipes

    NASA Astrophysics Data System (ADS)

    Balkaya, Müge; Saǧlamer, Ahmet

    2014-12-01

    In this study, in order to determine the effect of trench width (Bd) on the behavior of buried rigid pipes, a concrete pipe having an outside diameter of 150 cm and wall thickness (t) of 15 cm was analyzed using 2D PLAXIS finite element program. In the analyses, three different trench widths (Bd = 2.20 m, 3.40 m, and 4.40 m) were modeled. The results of the analyses indicated that, as the width of the trench increases, the axial force, shear force, bending moment, effective normal stress, and the earth load acting on the pipe increased. The variations of the loads acting on the pipe due to the increasing trench widths were also evaluated using the Marston load theory. When the loads calculated by the Marston Load Theory and the finite element analysis were compared with each other, it was seen that the Marston Load Theory resulted in slightly higher load values than the finite element analysis. On the other hand, for the two methods, the loads acting on the pipe increased with increasing trench width.

  1. Long Duration Exposure Facility (LDEF) low temperature Heat Pipe Experiment Package (HEPP) flight results

    NASA Technical Reports Server (NTRS)

    Mcintosh, Roy; Mccreight, Craig; Brennan, Patrick J.

    1993-01-01

    The Low Temperature Heat Pipe Flight Experiment (HEPP) is a fairly complicated thermal control experiment that was designed to evaluate the performance of two different low temperature ethane heat pipes and a low-temperature (182 K) phase change material. A total of 390 days of continuous operation with an axially grooved aluminum fixed conductance heat pipe and an axially grooved stainless steel heat pipe diode was demonstrated before the data acquisition system's batteries lost power. Each heat pipe had approximately 1 watt applied throughout this period. The HEPP was not able to cool below 188.6 K during the mission. As a result, the preprogrammed transport test sequence which initiates when the PCM temperature drops below 180 K was never exercised, and transport tests with both pipes and the diode reverse mode test could not be run in flight. Also, because the melt temperature of the n-heptane PCM is 182 K, its freeze/thaw behavior could not be tested. Post-flight thermal vacuum tests and thermal analyses have indicated that there was an apparent error in the original thermal analyses that led to this unfortunate result. Post-flight tests have demonstrated that the performance of both heat pipes and the PCM has not changed since being fabricated more than 14 years ago. A summary of HEPP's flight data and post-flight test results are presented.

  2. Mass Median Plume Angle: A novel approach to characterize plume geometry in solution based pMDIs.

    PubMed

    Moraga-Espinoza, Daniel; Eshaghian, Eli; Smyth, Hugh D C

    2018-05-30

    High-speed laser imaging (HSLI) is the preferred technique to characterize the geometry of the plume in pressurized metered dose inhalers (pMDIs). However, current methods do not allow for simulation of inhalation airflow and do not use drug mass quantification to determine plume angles. To address these limitations, a Plume Induction Port Evaluator (PIPE) was designed to characterize the plume geometry based on mass deposition patterns. The method is easily adaptable to current pMDI characterization methodologies, uses similar calculations methods, and can be used under airflow. The effect of airflow and formulation on the plume geometry were evaluated using PIPE and HSLI. Deposition patterns in PIPE were highly reproducible and log-normal distributed. Mass Median Plume Angle (MMPA) was a new characterization parameter to describe the effective angle of the droplets deposited in the induction port. Plume angles determined by mass showed a significant decrease in size as ethanol increases which correlates to the decrease on vapor pressure in the formulation. Additionally, airflow significantly decreased the angle of the plumes when cascade impactor was operated under flow. PIPE is an alternative to laser-based characterization methods to evaluate the plume angle of pMDIs based on reliable drug quantification while simulating patient inhalation. Copyright © 2018. Published by Elsevier B.V.

  3. An investigation of the oxidation behaviour of zirconium alloys using isotopic tracers and high resolution SIMS

    NASA Astrophysics Data System (ADS)

    Yardley, Sean S.; Moore, Katie L.; Ni, Na; Wei, Jang Fei; Lyon, Stuart; Preuss, Michael; Lozano-Perez, Sergio; Grovenor, Chris R. M.

    2013-11-01

    High resolution secondary ion mass spectrometry (SIMS) analysis has been used to study the oxidation mechanisms when commercial low tin ZIRLO™Low tin ZIRLO™ is a trademark of Westinghouse Electric Company LLC in the United States and may be registered in other countries throughout the world. Unauthorized use is strictly prohibited.1 and Zircaloy 4 materials are exposed to corroding environments containing both 18O and 2H isotopes. Clear evidence has been shown for different characteristic distributions of 18O before and after the kinetic transitions, and this behaviour has been correlated with the development of porosity in the oxide which allows the corroding medium to penetrate locally to the metal/oxide interface.

  4. Bridge maintenance to enhance corrosion resistance and performance of steel girder bridges

    NASA Astrophysics Data System (ADS)

    Moran Yanez, Luis M.

    The integrity and efficiency of any national highway system relies on the condition of the various components. Bridges are fundamental elements of a highway system, representing an important investment and a strategic link that facilitates the transport of persons and goods. The cost to rehabilitate or replace a highway bridge represents an important expenditure to the owner, who needs to evaluate the correct time to assume that cost. Among the several factors that affect the condition of steel highway bridges, corrosion is identified as the main problem. In the USA corrosion is the primary cause of structurally deficient steel bridges. The benefit of regular high-pressure superstructure washing and spot painting were evaluated as effective maintenance activities to reduce the corrosion process. The effectiveness of steel girder washing was assessed by developing models of corrosion deterioration of composite steel girders and analyzing steel coupons at the laboratory under atmospheric corrosion for two alternatives: when high-pressure washing was performed and when washing was not considered. The effectiveness of spot painting was assessed by analyzing the corrosion on steel coupons, with small damages, unprotected and protected by spot painting. A parametric analysis of corroded steel girder bridges was considered. The emphasis was focused on the parametric analyses of corroded steel girder bridges under two alternatives: (a) when steel bridge girder washing is performed according to a particular frequency, and (b) when no bridge washing is performed to the girders. The reduction of structural capacity was observed for both alternatives along the structure service life, estimated at 100 years. An economic analysis, using the Life-Cycle Cost Analysis method, demonstrated that it is more cost-effective to perform steel girder washing as a scheduled maintenance activity in contrast to the no washing alternative.

  5. Investigating pitting in X65 carbon steel using potentiostatic polarisation

    NASA Astrophysics Data System (ADS)

    Mohammed, Sikiru; Hua, Yong; Barker, R.; Neville, A.

    2017-11-01

    Although pitting corrosion in passive materials is generally well understood, the growth of surface pits in actively-corroding materials has received much less attention to date and remains poorly understood. One of the key challenges which exists is repeatedly and reliably generating surface pits in a practical time-frame in the absence of deformation and/or residual stress so that studies on pit propagation and healing can be performed. Another pertinent issue is how to evaluate pitting while addressing general corrosion in low carbon steel. In this work, potentiostatic polarisation was employed to induce corrosion pits (free from deformation or residual stress) on actively corroding X65 carbon steel. The influence of applied potential (50 mV, 100 mV and 150 mV vs open circuit potential) was investigated over 24 h in a CO2-saturated, 3.5 wt.% NaCl solution at 30 °C and pH 3.8. Scanning electron microscopy (SEM) was utilised to examine pits, while surface profilometry was conducted to measure pit depth as a function of applied potential over the range considered. Analyses of light pitting (up to 120 μm) revealed that pit depth increased linearly with increase in applied potential. This paper relates total pit volume (measured using white light interferometry) to dissipated charge or total mass loss (using the current response for potentiostatic polarisation in conjunction with Faraday's law). By controlling the potential of the surface (anodic) the extent of pitting and general corrosion could be controlled. This allowed pits to be evaluated for their ability to continue to propagate after the potentiostatic technique was employed. Linear growth from a depth of 70 μm at pH 3.8, 80 °C was demonstrated. The technique offers promise for the study of inhibition of pitting.

  6. Rust transformation/rust compatible primers

    NASA Technical Reports Server (NTRS)

    Emeric, Dario A.; Miller, Christopher E.

    1993-01-01

    Proper surface preparation has been the key to obtain good performance by a surface coating. The major obstacle in preparing a corroded or rusted surface is the complete removal of the contaminants and the corrosion products. Sandblasting has been traditionally used to remove the corrosion products before painting. However, sandblasting can be expensive, may be prohibited by local health regulations and is not applicable in every situation. To get around these obstacles, Industry developed rust converters/rust transformers and rust compatible primers (high solids epoxies). The potential use of these products for military equipment led personnel of the Belvoir Research, Development and Engineering Center (BRDEC) to evaluate the commercially available rust transformers and rust compatible primers. Prior laboratory experience with commercially available rust converters, as well as field studies in Hawaii and Puerto Rico, revealed poor performance, several inherent limitations, and lack of reliability. It was obvious from our studies that the performance of rust converting products was more dependent on the amount and type of rust present, as well as the degree of permeability of the coating, than on the product's ability to form an organometallic complex with the rust. Based on these results, it was decided that the Military should develop their own rust converter formulation and specification. The compound described in the specification is for use on a rusted surface before the application of an organic coating (bituminous compounds, primer or topcoat). These coatings should end the need for sandblasting or the removing of the adherent corrosion products. They also will prepare the surface for the application of the organic coating. Several commercially available rust compatible primers (RCP) were also tested using corroded surfaces. All of the evaluated RCP failed our laboratory tests for primers.

  7. A retrospective evaluation of the performance of liner systems used to rehabilitate municipal gravity sewers

    EPA Science Inventory

    This paper provides new results gathered as part of a 6-year project funded by the U.S. Environmental Protection Agency (USEPA) to document the in-service performance of trenchless pipe rehabilitation techniques. The results from a pilot study focusing on cured-in-place pipe (CI...

  8. Intrusion of Soil Water through Pipe Cracks

    EPA Science Inventory

    This report describes a series of experiments conducted at U.S. EPA’s Test and Evaluation Facility in 2013-2014 to study the intrusion of contaminated soil water into a pipe crack during simulated backflow events. A test rig was used consisting of a 3’ x 3’ x 3’ acrylic soil bo...

  9. 46 CFR 58.30-15 - Pipe, tubing, valves, fittings, pumps, and motors.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Fluid Power and Control Systems § 58.30-15 Pipe... shall be evaluated on the basis of physical and chemical properties. To assure these properties, the specifications shall specify and require such physical and chemical testing as considered necessary by the...

  10. 46 CFR 58.30-15 - Pipe, tubing, valves, fittings, pumps, and motors.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Fluid Power and Control Systems § 58.30-15 Pipe... shall be evaluated on the basis of physical and chemical properties. To assure these properties, the specifications shall specify and require such physical and chemical testing as considered necessary by the...

  11. 46 CFR 58.30-15 - Pipe, tubing, valves, fittings, pumps, and motors.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Fluid Power and Control Systems § 58.30-15 Pipe... shall be evaluated on the basis of physical and chemical properties. To assure these properties, the specifications shall specify and require such physical and chemical testing as considered necessary by the...

  12. 46 CFR 58.30-15 - Pipe, tubing, valves, fittings, pumps, and motors.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Fluid Power and Control Systems § 58.30-15 Pipe... shall be evaluated on the basis of physical and chemical properties. To assure these properties, the specifications shall specify and require such physical and chemical testing as considered necessary by the...

  13. Thermostructural applications of heat pipes for cooling leading edges of high-speed aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Camarda, Charles J.; Glass, David E.

    1992-01-01

    Heat pipes have been considered for use on wing leading edge for over 20 years. Early concepts envisioned metal heat pipes cooling a metallic leading edge. Several superalloy/sodium heat pipes were fabricated and successfully tested for wing leading edge cooling. Results of radiant heat and aerothermal testing indicate the feasibility of using heat pipes to cool the stagnation region of shuttle-type space transportation systems. The test model withstood a total seven radiant heating tests, eight aerothermal tests, and twenty-seven supplemental radiant heating tests. Cold-wall heating rates ranged from 21 to 57 Btu/sq ft-s and maximum operating temperatures ranged from 1090 to 1520 F. Follow-on studies investigated the application of heat pipes to cool the stagnation regions of single-stage-to-orbit and advanced shuttle vehicles. Results of those studies indicate that a 'D-shaped' structural design can reduce the mass of the heat-pipe concept by over 44 percent compared to a circular heat-pipe geometry. Simple analytical models for heat-pipe startup from the frozen state (working fluid initially frozen) were adequate to approximate transient, startup, and steady-state heat-pipe performance. Improvement in analysis methods has resulted in the development of a finite-element analysis technique to predict heat-pipe startup from the frozen state. However, current requirements of light-weight design and reliability suggest that metallic heat pipes embedded in a refractory composite material should be used. This concept is the concept presently being evaluated for NASP. A refractory-composite/heat-pipe-cooled wing leading edge is currently being considered for the National Aero-Space Plane (NASP). This concept uses high-temperature refractory-metal/lithium heat pipes embedded within a refractory-composite structure and is significantly lighter than an actively cooled wing leading edge because it eliminates the need for active cooling during ascent and descent. Since the NASP vehicle uses cryogenic hydrogen to cool structural components and then burns this fuel in the combustor, hydrogen necessary for descent cooling only, when the vehicle is unpowered, is considered to be a weight penalty. Details of the design of the refractory-composite/heat-pipe-cooled wing leading edge are currently being investigated. Issues such as thermal contact resistance and thermal stress are also being investigated.

  14. Thermostructural applications of heat pipes for cooling leading edges of high-speed aerospace vehicles

    NASA Astrophysics Data System (ADS)

    Camarda, Charles J.; Glass, David E.

    1992-10-01

    Heat pipes have been considered for use on wing leading edge for over 20 years. Early concepts envisioned metal heat pipes cooling a metallic leading edge. Several superalloy/sodium heat pipes were fabricated and successfully tested for wing leading edge cooling. Results of radiant heat and aerothermal testing indicate the feasibility of using heat pipes to cool the stagnation region of shuttle-type space transportation systems. The test model withstood a total seven radiant heating tests, eight aerothermal tests, and twenty-seven supplemental radiant heating tests. Cold-wall heating rates ranged from 21 to 57 Btu/sq ft-s and maximum operating temperatures ranged from 1090 to 1520 F. Follow-on studies investigated the application of heat pipes to cool the stagnation regions of single-stage-to-orbit and advanced shuttle vehicles. Results of those studies indicate that a 'D-shaped' structural design can reduce the mass of the heat-pipe concept by over 44 percent compared to a circular heat-pipe geometry. Simple analytical models for heat-pipe startup from the frozen state (working fluid initially frozen) were adequate to approximate transient, startup, and steady-state heat-pipe performance. Improvement in analysis methods has resulted in the development of a finite-element analysis technique to predict heat-pipe startup from the frozen state. However, current requirements of light-weight design and reliability suggest that metallic heat pipes embedded in a refractory composite material should be used. This concept is the concept presently being evaluated for NASP. A refractory-composite/heat-pipe-cooled wing leading edge is currently being considered for the National Aero-Space Plane (NASP). This concept uses high-temperature refractory-metal/lithium heat pipes embedded within a refractory-composite structure and is significantly lighter than an actively cooled wing leading edge because it eliminates the need for active cooling during ascent and descent. Since the NASP vehicle uses cryogenic hydrogen to cool structural components and then burns this fuel in the combustor, hydrogen necessary for descent cooling only, when the vehicle is unpowered, is considered to be a weight penalty. Details of the design of the refractory-composite/heat-pipe-cooled wing leading edge are currently being investigated. Issues such as thermal contact resistance and thermal stress are also being investigated.

  15. The effect of various deformation processes on the corrosion behavior of casing and tubing carbon steels in sweet environment

    NASA Astrophysics Data System (ADS)

    Elramady, Alyaa Gamal

    The aim of this research project is to correlate the plastic deformation and mechanical instability of casing steel materials with corrosion behavior and surface change, in order to identify a tolerable degree of deformation for casing steel materials. While the corrosion of pipeline and casing steels has been investigated extensively, corrosion of these steels in sweet environments with respect to plastic deformation due to bending, rolling, autofrettage, or handling needs more investigation. Downhole tubular expansion of pipes (casings) is becoming standard practice in the petroleum industry to repair damaged casings, shutdown perforations, and ultimately achieve mono-diameter wells. Tubular expansion is a cold-drawing metal forming process, which consists of running conical mandrels through casings either mechanically using a piston or hydraulically by applying a back pressure. This mechanism subjects the pipes to large radial plastic deformations of up to 30 pct. of the inner diameter. It is known that cold-working is a way of strengthening materials such as low carbon steel, but given that this material will be subjected to corrosive environments, susceptibility to stress corrosion cracking (SCC) should be investigated. This research studies the effect of cold-work, in the form of cold-rolling and cold-expansion, on the surface behavior of API 5CT steels when it is exposed to a CO2-containing environment. Cold-work has a pronounced influence on the corrosion behavior of both API 5CT K55 and P110 grade steels. The lowest strength grade steel, API 5CT K55, performed poorly in a corrosive environment in the slow strain rate test. The ductile material exhibited the highest loss in strength and highest susceptibility to stress corrosion cracking in a CO 2-containing environment. The loss in strength declined with cold-rolling, which can be ascribed to the surface compressive stresses induced by cold-work. On the other hand, API 5CT P110 grade steels showed higher susceptibility to SCC when they were cold-rolled and cold-expanded. The research found that surface compressive stresses have an effect on the SCC behavior of casing and tubing steels. The CO2 corrosion behavior and atomic processes at the corroding interface were investigated at laboratory temperature using electrochemical techniques. Cold-work was found to have an influence on the corrosion behavior of both API 5CT K55 and P110 grade steels. These behaviors were found to be material and process dependent. Surface evaluation techniques such as field emission scanning electron microscope (FE-SEM) and X-ray diffraction (XRD) analysis did not detect formation of a protective scale. X-ray diffraction and X-ray photoelectron spectroscopy (XPS) analysis both detected the appearance of a scale that was traced back to magnetite.

  16. Biodeterioration of the Cement Composites

    NASA Astrophysics Data System (ADS)

    Luptáková, Alena; Eštoková, Adriana; Mačingová, Eva; Kovalčíková, Martina; Jenčárová, Jana

    2016-10-01

    The destruction of natural and synthetic materials is the spontaneous and irreversible process of the elements cycling in nature. It can by accelerated or decelerated by physical, chemical and biological influences. Biological influences are represented by the influence of the vegetation and microorganisms (MO). The destruction of cement composites by different MO through the diverse mechanisms is entitled as the concrete biodeterioration. Several sulphur compounds and species of MO are involved in this complex process. Heterotrophic and chemolithotrophic bacteria together with fungi have all been found in samples of corroding cement composites. The MO involved in the process metabolise the presented sulphur compounds (hydrogen sulphide, elemental sulphur etc.) to sulphuric acid reacting with concrete. When sulphuric acid reacts with a concrete matrix, the first step involves a reaction between the acid and the calcium hydroxide forming calcium sulphate. This is subsequently hydrated to form gypsum, the appearance of which on the surface of concrete pipes takes the form of a white, mushy substance which has no cohesive properties. In the continuing attack, the gypsum would react with the calcium aluminate hydrate to form ettringite, an expansive product. The use supplementary cementing composite materials have been reported to improve the resistance of concrete to biodeterioration. The aim of this work was the study of the cement composites biodeterioration by the bacteria Acidithiobacillus thiooxidans. Experimental works were focused on the comparison of special cement composites and its resistance affected by the activities of used sulphur-oxidising

  17. Dopant-assisted negative photoionization Ion mobility spectrometry coupled with on-line cooling inlet for real-time monitoring H2S concentration in sewer gas.

    PubMed

    Peng, Liying; Jiang, Dandan; Wang, Zhenxin; Hua, Lei; Li, Haiyang

    2016-06-01

    Malodorous hydrogen sulfide (H2S) gas often exists in the sewer system and associates with the problems of releasing the dangerous odor to the atmosphere and causing sewer pipe to be corroded. A simple method is in demand for real-time measuring H2S level in the sewer gas. In this paper, an innovated method based on dopant-assisted negative photoionization ion mobility spectrometry (DANP-IMS) with on-line semiconductor cooling inlet was put forward and successfully applied for the real-time measurement of H2S in sewer gas. The influence of moisture was effectively reduced via an on-line cooling method and a non-equilibrium dilution with drift gas. The limits of quantitation for the H2S in ≥60% relative humidity air could be obtained at ≤79.0ng L(-1) with linear ranges of 129-2064ng L(-1). The H2S concentration in a sewer manhole was successfully determined while its product ions were identified by an ion-mobility time-of-fight mass spectrometry. Finally, the correlation between sewer H2S concentration and the daily routines and habits of residents was investigated through hourly or real-time monitoring the variation of sewer H2S in manholes, indicating the power of this DANP-IMS method in assessing the H2S concentration in sewer system. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Detection of Fatigue Crack in Basalt FRP Laminate Composite Pipe using Electrical Potential Change Method

    NASA Astrophysics Data System (ADS)

    Altabey, Wael A.; Noori, Mohammed

    2017-05-01

    Novel modulation electrical potential change (EPC) method for fatigue crack detection in a basalt fibre reinforced polymer (FRP) laminate composite pipe is carried out in this paper. The technique is applied to a laminate pipe with an embedded crack in three layers [0º/90º/0º]s. EPC is applied for evaluating the dielectric properties of basalt FRP pipe by using an electrical capacitance sensor (ECS) to discern damages in the pipe. Twelve electrodes are mounted on the outer surface of the pipe and the changes in the modulation dielectric properties of the piping system are analyzed to detect damages in the pipe. An embedded crack is created by a fatigue internal pressure test. The capacitance values, capacitance change and node potential distribution of ECS electrodes are calculated before and after crack initiates using a finite element method (FEM) by ANSYS and MATLAB, which are combined to simulate sensor characteristics and fatigue behaviour. The crack lengths of the basalt FRP are investigated for various number of cycles to failure for determining crack growth rate. Response surfaces are adopted as a tool for solving inverse problems to estimate crack lengths from the measured electric potential differences of all segments between electrodes to validate the FEM results. The results show that, the good convergence between the FEM and estimated results. Also the results of this study show that the electrical potential difference of the basalt FRP laminate increases during cyclic loading, caused by matrix cracking. The results indicate that the proposed method successfully provides fatigue crack detection for basalt FRP laminate composite pipes.

  19. Defect Detection and Segmentation Framework for Remote Field Eddy Current Sensor Data

    PubMed Central

    2017-01-01

    Remote-Field Eddy-Current (RFEC) technology is often used as a Non-Destructive Evaluation (NDE) method to prevent water pipe failures. By analyzing the RFEC data, it is possible to quantify the corrosion present in pipes. Quantifying the corrosion involves detecting defects and extracting their depth and shape. For large sections of pipelines, this can be extremely time-consuming if performed manually. Automated approaches are therefore well motivated. In this article, we propose an automated framework to locate and segment defects in individual pipe segments, starting from raw RFEC measurements taken over large pipelines. The framework relies on a novel feature to robustly detect these defects and a segmentation algorithm applied to the deconvolved RFEC signal. The framework is evaluated using both simulated and real datasets, demonstrating its ability to efficiently segment the shape of corrosion defects. PMID:28984823

  20. Defect Detection and Segmentation Framework for Remote Field Eddy Current Sensor Data.

    PubMed

    Falque, Raphael; Vidal-Calleja, Teresa; Miro, Jaime Valls

    2017-10-06

    Remote-Field Eddy-Current (RFEC) technology is often used as a Non-Destructive Evaluation (NDE) method to prevent water pipe failures. By analyzing the RFEC data, it is possible to quantify the corrosion present in pipes. Quantifying the corrosion involves detecting defects and extracting their depth and shape. For large sections of pipelines, this can be extremely time-consuming if performed manually. Automated approaches are therefore well motivated. In this article, we propose an automated framework to locate and segment defects in individual pipe segments, starting from raw RFEC measurements taken over large pipelines. The framework relies on a novel feature to robustly detect these defects and a segmentation algorithm applied to the deconvolved RFEC signal. The framework is evaluated using both simulated and real datasets, demonstrating its ability to efficiently segment the shape of corrosion defects.

  1. Marginal abatement cost curves for NOx that account for ...

    EPA Pesticide Factsheets

    A marginal abatement cost curve (MACC) traces out the relationship between the quantity of pollution abated and the marginal cost of abating each additional unit. In the context of air quality management, MACCs typically are developed by sorting end-of-pipe controls by their respective cost effectiveness. Alternative measures, such as renewable electricity, energy efficiency, and fuel switching (RE/EE/FS), are not considered as it is difficult to quantify their abatement potential. In this paper, we demonstrate the use of an energy system model to develop a MACC for nitrogen oxides (NOx) that incorporates both end-of-pipe controls and these alternative measures. We decompose the MACC by sector, and evaluate the cost-effectiveness of RE/EE/FS relative to end-of-pipe controls. RE/EE/FS are shown to produce considerable emission reductions after end-of-pipe controls have been exhausted. Furthermore, some RE/EE/FS are shown to be cost-competitive with end-of-pipe controls. Demonstrate how the MARKAL energy system model can be used to evaluate the potential role of renewable electricity, energy efficiency and fuel switching (RE/EE/FS) in achieving NOx reductions. For this particular analysis, we show that RE/EE/FSs are able to increase the quantity of NOx reductions available for a particular marginal cost (ranging from $5k per ton to $40k per ton) by approximately 50%.

  2. INTERNAL REPAIR OF PIPELINES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robin Gordon; Bill Bruce; Ian Harris

    2004-04-12

    The two broad categories of deposited weld metal repair and fiber-reinforced composite liner repair technologies were reviewed for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Preliminary test programs were developed for both deposited weld metal repair and for fiber-reinforced composite liner repair. Evaluation trials have been conducted using a modified fiber-reinforced composite liner provided by RolaTube and pipe sections without liners. All pipe section specimens failed in areas of simulated damage. Pipe sections containing fiber-reinforcedmore » composite liners failed at pressures marginally greater than the pipe sections without liners. The next step is to evaluate a liner material with a modulus of elasticity approximately 95% of the modulus of elasticity for steel. Preliminary welding parameters were developed for deposited weld metal repair in preparation of the receipt of Pacific Gas & Electric's internal pipeline welding repair system (that was designed specifically for 559 mm (22 in.) diameter pipe) and the receipt of 559 mm (22 in.) pipe sections from Panhandle Eastern. The next steps are to transfer welding parameters to the PG&E system and to pressure test repaired pipe sections to failure. A survey of pipeline operators was conducted to better understand the needs and performance requirements of the natural gas transmission industry regarding internal repair. Completed surveys contained the following principal conclusions: (1) Use of internal weld repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway crossings. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling (HDD) when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) Pipe diameter sizes range from 50.8 mm (2 in.) through 1,219.2 mm (48 in.). The most common size range for 80% to 90% of operators surveyed is 508 mm to 762 mm (20 in. to 30 in.), with 95% using 558.8 mm (22 in.) pipe. An evaluation of potential repair methods clearly indicates that the project should continue to focus on the development of a repair process involving the use of GMAW welding and on the development of a repair process involving the use of fiber-reinforced composite liners.« less

  3. An Experimental Study of Contaminant Intrusion Through Pipe Cracks

    EPA Science Inventory

    This report describes a series of experiments conducted at U.S. EPA’s Test and Evaluation Facility in 2013-2014 to study the intrusion of contaminated soil water into a pipe crack during simulated backflow events. A test rig was used consisting of a 3’ x 3’ x 3’ acrylic soil bo...

  4. A Heat Pipe Coupled Planar Thermionic Converter: Performance Characterization, Nondestructive Testing, and Evaluation.

    DTIC Science & Technology

    1992-03-15

    Pipes, Computer Modelling, Nondestructive Testing. Tomography , Planar Converter, Cesium Reservoir 19. ABSTRACT (Continue on reverse if necessary and...Investigation ........................ 32 4.3 Computed Tomography ................................ 33 4.4 X-Ray Radiography...25 3.4 LEOS generated output data for Mo-Re converter ................ 26 4.1 Distance along converter imaged by the computed tomography

  5. An Evaluation of Microbial and Chemical Contamination Sources Related to the Deterioration of Tap Water Quality in the Household Water Supply System

    PubMed Central

    Lee, Yoonjin

    2013-01-01

    The predominant microorganisms in samples taken from shower heads in residences in the Korean city “N” were Stenotrophomonas maltophilia, Sphingomonas paucimobilis, Acidovorax temperans, and Microbacterium lacticum. Legionella was not detected in this case. The volatile organic compounds (VOCs) vinylacetate, NN-DMA, cis-1,2-dichloroethylene, epichlorohydrin, and styrene were measured in five types of plastic pipes: PVC, PB, PP, PE, and cPVC. The rate of multiplication of the heterotrophic plate count (HPC) attached on the copper pipe in contact with hot tap water was higher than the rate for the copper pipe in contact with cold tap water. Biofilm accumulation on stainless steel pipes with added acetate (3 mg/L) was 2.56 times higher than the non-supplemented condition. Therefore, the growth of HPC in the pipe system was affected by the type and availability of nutrients and depended on variables such as heating during the hot water supply. PMID:24018837

  6. Crack instability analysis methods for leak-before-break program in piping systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mattar Neto, M.; Maneschy, E.; Nobrega, P.G.B. da

    1995-11-01

    The instability evaluation of cracks in piping systems is a step that is considered when a high-energy line is investigated in a leak-before-break (LBB) program. Different approaches have been used to assess stability of cracks: (a) local flow stress (LFS); (b) limit load (LL); (c) elastic-plastic fracture mechanics (EPFM) as J-integral versus tearing modulus (J-T) analysis. The first two methods are used for high ductile materials, when it is assumed that remaining ligament of the cracked pipe section becomes fully plastic prior to crack extension. EPFM is considered for low ductile piping when the material reaches unstable ductile tearing priormore » to plastic collapse in the net section. In this paper the LFS, LL and EPFM J-T methodologies were applied to calculate failure loads in circumferential through-wall cracked pipes with different materials, geometries and loads. It presents a comparison among the results obtained from the above three formulations and also compares them with experimental data available in the literature.« less

  7. An evaluation of microbial and chemical contamination sources related to the deterioration of tap water quality in the household water supply system.

    PubMed

    Lee, Yoonjin

    2013-09-06

    The predominant microorganisms in samples taken from shower heads in residences in the Korean city "N" were Stenotrophomonas maltophilia, Sphingomonas paucimobilis, Acidovorax temperans, and Microbacterium lacticum. Legionella was not detected in this case. The volatile organic compounds (VOCs) vinylacetate, NN-DMA, cis-1,2-dichloroethylene, epichlorohydrin, and styrene were measured in five types of plastic pipes: PVC, PB, PP, PE, and cPVC. The rate of multiplication of the heterotrophic plate count (HPC) attached on the copper pipe in contact with hot tap water was higher than the rate for the copper pipe in contact with cold tap water. Biofilm accumulation on stainless steel pipes with added acetate (3 mg/L) was 2.56 times higher than the non-supplemented condition. Therefore, the growth of HPC in the pipe system was affected by the type and availability of nutrients and depended on variables such as heating during the hot water supply.

  8. Quantitative evaluation of thickness reduction in corroded steel plates using surface SH waves

    NASA Astrophysics Data System (ADS)

    Suzuki, Keigo; Ha, Nguyen Phuong; Otobe, Yuichi; Tamura, Hiroshi; Sasaki, Eiichi

    2018-04-01

    This study evaluates the effect of reduction in plate thickness for a steel plate existing in concrete on guided ultrasonic SH (g-SH) waves. It has been found that the time of flight (TOF) increases if the plate thickness is reduced. The parameter investigated in this study is a delay time obtained from a TOF comparison between a healthy and a damaged plate. The wave propagation is simulated by dynamic Finite Element Analysis (FEA). The resulting data are then used to propose a theoretical equation for predicting TOF. The prediction of delay time obtained from the proposed equation is found to be in general agreement, with an error of 10% (or less), when compared with the experiment results, if the thickness reduction is over 3.65mm.

  9. Summary of Structural Evaluation and Design Support for the Underground Nuclear Test Program.

    DTIC Science & Technology

    1979-07-01

    consider using API -5LX pipe as this pipe has been shown to have high ductility (better than A36). This pipe comes in several grades (X42, X46, X52 , X56, X60...X65, X70) with the grade number representing the yield strength (ksi) of the steel. Grades X42 and X52 are readily available while the higher yield...strength steels are less readily available. I believe X52 has certainly a high enough yield strength (52,000 psi) for your application and that even

  10. Repair, Evaluation, Maintenance, and Rehabilitation Research Program: Proceedings of REMR Workshop on New Remedial Seepage Control Methods for Embankment-Dams and Soil Foundations Held in Vicksburg, Mississippi on 21-22 October 1986.

    DTIC Science & Technology

    1988-01-01

    otten us f or O ,,,¢0 pirprt-. CMerT s, lnrltdln the new microfine products, and acrvlites ,I1 W- -M -mrs a W- Wv - are the materials most suitable...availability - Ground freezing require a relatively Ismall amount of materials, principal!y steel (or aluminum), pipe, rubber hose and plastic tubing ...external confining pressure, or stresses imposed during installation. Plastic pipe should be avoided, except for inner tubing or surface piping, because

  11. Coupled reactor kinetics and heat transfer model for heat pipe cooled reactors

    NASA Astrophysics Data System (ADS)

    Wright, Steven A.; Houts, Michael

    2001-02-01

    Heat pipes are often proposed as cooling system components for small fission reactors. SAFE-300 and STAR-C are two reactor concepts that use heat pipes as an integral part of the cooling system. Heat pipes have been used in reactors to cool components within radiation tests (Deverall, 1973); however, no reactor has been built or tested that uses heat pipes solely as the primary cooling system. Heat pipe cooled reactors will likely require the development of a test reactor to determine the main differences in operational behavior from forced cooled reactors. The purpose of this paper is to describe the results of a systems code capable of modeling the coupling between the reactor kinetics and heat pipe controlled heat transport. Heat transport in heat pipe reactors is complex and highly system dependent. Nevertheless, in general terms it relies on heat flowing from the fuel pins through the heat pipe, to the heat exchanger, and then ultimately into the power conversion system and heat sink. A system model is described that is capable of modeling coupled reactor kinetics phenomena, heat transfer dynamics within the fuel pins, and the transient behavior of heat pipes (including the melting of the working fluid). This paper focuses primarily on the coupling effects caused by reactor feedback and compares the observations with forced cooled reactors. A number of reactor startup transients have been modeled, and issues such as power peaking, and power-to-flow mismatches, and loading transients were examined, including the possibility of heat flow from the heat exchanger back into the reactor. This system model is envisioned as a tool to be used for screening various heat pipe cooled reactor concepts, for designing and developing test facility requirements, for use in safety evaluations, and for developing test criteria for in-pile and out-of-pile test facilities. .

  12. Study of Strain-Stress Behavior of Non-Pressure Reinforced Concrete Pipes Used in Road Building

    NASA Astrophysics Data System (ADS)

    Rakitin, B. A.; Pogorelov, S. N.; Kolmogorova, A. O.

    2017-11-01

    The article contains the results of the full-scale tests performed for special road products - large-diameter non-pressure concrete pipes reinforced with a single space cylindrical frame manufactured with the technology of high-frequency vertical vibration molding with an immediate demolding. The authors studied the change in the strain-stress behavior of reinforced concrete pipes for underground pipeline laying depending on their laying depth in the trench and the transport load considering the properties of the surrounding ground mass. The strain-stress behavior of the reinforced concrete pipes was evaluated using the strain-gauge method based on the application of active resistance strain gauges. Based on the completed research, the authors made a conclusion on the applicability of a single space frame for reinforcement of large-diameter non-pressure concrete pipes instead of a double frame which allows one to significantly reduce the metal consumption for the production of one item. As a result of the full-scale tests of reinforced concrete pipes manufactured by vertical vibration molding, the authors obtained new data on the deformation of a pipeline cross-section depending on the placement of the transport load with regard to the axis.

  13. Heat Rejection Concepts for Brayton Power Conversion Systems

    NASA Technical Reports Server (NTRS)

    Siamidis, John; Mason, Lee; Beach, Duane; Yuko, James

    2005-01-01

    This paper describes potential heat rejection design concepts for closed Brayton cycle (CBC) power conversion systems. Brayton conversion systems are currently under study by NASA for Nuclear Electric Propulsion (NEP) applications. The Heat Rejection Subsystem (HRS) must dissipate waste heat generated by the power conversion system due to inefficiencies in the thermal-to-electric conversion process. Space Brayton conversion system designs tend to optimize at efficiencies of about 20 to 25 percent with radiator temperatures in the 400 to 600 K range. A notional HRS was developed for a 100 kWe-class Brayton power system that uses a pumped sodium-potassium (NaK) heat transport loop coupled to a water heat pipe radiator. The radiator panels employ a sandwich construction consisting of regularly-spaced circular heat pipes contained within two composite facesheets. Heat transfer from the NaK fluid to the heat pipes is accomplished by inserting the evaporator sections into the NaK duct channel. The paper evaluates various design parameters including heat pipe diameter, heat pipe spacing, and facesheet thickness. Parameters were varied to compare design options on the basis of NaK pump pressure rise and required power, heat pipe unit power and radial flux, radiator panel areal mass, and overall HRS mass.

  14. Experience with flexible pipe in sour service environment: A case study (the Arabian Gulf)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Maslamani, M.J.

    The suitability of a flexible pipe was evaluated on a trial basis for a lift gas line in a sour oil field in the State of Qatar, in the Arabian Gulf. Flexible pipes have been successfully used in the oil and gas industries for transportation of methanol, benzene and gas condensates in wet sweet environment at temperatures of up to 80 C. However, there is little or no information available as to its corrosion resistance in sour service wells containing 6% CO{sub 2} with 3% mole H{sub 2}S and at moderate temperatures. The present experience with a flexible pipe inmore » the gas field of Qatar has shown that under sour service conditions, the layered, composite material can suffer severe degradation leading to failure. A detailed inspection and failure analysis of the flexible pipe forms the basis of this paper. The failure demonstrates the significant effects of stress level, environmental aggressiveness, and localized hard zones in promoting Sulfide Stress Cracking (SSC). Permeability of this sour gas through the composite layer of the flexible pipe resulted in varying degree of sulfide attack and hydrogen embrittlement depending on the susceptibility of the multi layered material.« less

  15. Ultrasonic Measurement of Erosion/corrosion Rates in Industrial Piping Systems

    NASA Astrophysics Data System (ADS)

    Sinclair, A. N.; Safavi, V.; Honarvar, F.

    2011-06-01

    Industrial piping systems that carry aggressive corrosion or erosion agents may suffer from a gradual wall thickness reduction that eventually threatens pipe integrity. Thinning rates could be estimated from the very small change in wall thickness values measured by conventional ultrasound over a time span of at least a few months. However, measurements performed over shorter time spans would yield no useful information—minor signal distortions originating from grain noise and ultrasonic equipment imperfections prevent a meaningful estimate of the minuscule reduction in echo travel time. Using a Model-Based Estimation (MBE) technique, a signal processing scheme has been developed that enables the echo signals from the pipe wall to be separated from the noise. This was implemented in a laboratory experimental program, featuring accelerated erosion/corrosion on the inner wall of a test pipe. The result was a reduction in the uncertainty in the wall thinning rate by a factor of four. This improvement enables a more rapid response by system operators to a change in plant conditions that could pose a pipe integrity problem. It also enables a rapid evaluation of the effectiveness of new corrosion inhibiting agents under plant operating conditions.

  16. Metallurgical causes for the occurrence of creep damage in longitudinally seam-welded Cr-Mo high-energy piping

    NASA Astrophysics Data System (ADS)

    Zhou, Gang

    A continuous occurrence of catastrophic failures, leaks and cracks of the Cr-Mo steam piping has created widespread utility concern for the integrity and serviceability of the seam-welded piping systems in power plants across USA. Cr-Mo steels are the materials widely used for elevated temperature service in fossil-fired generating stations. A large percentage of the power plant units with the Cr-Mo seam-welded steam piping have been in operation for a long duration such that the critical components of the units have been employed beyond the design life (30 or 40 years). This percentage will increase even more significantly in the near future. There is a strong desire to extend and thus there is a need to assess the remaining life of these units. Thus, understanding of the metallurgical causes for the failures and damage in the Cr-Mo seam-welded piping plays a major role in estimating possible life-extension and decision making on whether to operate, repair or replace. In this study, an optical metallographic method and a Cryo-Crack fractographic method have been developed for characterization and quantification of the damage in seam-welded steam piping. More than 500 metallographic assessments, from more than 25 power plants, have been accomplished using the optical metallographic method, and more than 200 fractographic specimens from 10 power plants have been evaluated using the "Cryo-Crack" fractographic technique. For comparison, "virgin" SA welds were fabricated using the Mohave welding procedure with re-N&T Mohave base metal with both "acid" and "basic" fluxes. The damage mechanism, damage distribution pattern, damage classification, correlation of the damage with the microstructural features of these SA welds and the impurity segregation patterns have been determined. A physical model for cavitation (leading to failure) in Cr-Mo SA weld metals and evaluation methodologies for high energy piping are proposed.

  17. Report of sampling and analysis results, Addison Army housing units, Addison, Illinois. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-09-01

    The objectives of this sampling and analysis effort include further characterization of environmental contamination identified in an enhanced preliminary assessment carried out in 1989. The specific activities performed at this site were identification, evaluation of the condition, and collection of samples from specific suspected asbestos-containing materials, including floor tiles, pipe run and pipe fitting insulation, dust in the ductwork, and exterior siding, where present. These evaluation were necessary to clarify potential environmental issues identified in the earlier report, prior to the sale or realignment of the property.

  18. Slow crack growth test method for polyethylene gas pipes. Volume 1. Topical report, December 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leis, B.; Ahmad, J.; Forte, T.

    1992-12-01

    In spite of the excellent performance record of polyethylene (PE) pipes used for gas distribution, a small number of leaks occur in distribution systems each year because of slow growth of cracks through pipe walls. The Slow Crack Growth Test (SCG) has been developed as a key element in a methodology for the assessment of the performance of polyethylene gas distribution systems to resist such leaks. This tropical report describes work conducted in the first part of the research directed at the initial development of the SCG test, including a critical evaluation of the applicability of the SCG test asmore » an element in PE gas pipe system performance methodology. Results of extensive experiments and analysis are reported. The results show that the SCG test should be very useful in performance assessment.« less

  19. Design of Refractory Metal Life Test Heat Pipe and Calorimeter

    NASA Technical Reports Server (NTRS)

    Martin, J. J.; Reid, R. S.; Bragg-Sitton, S. M.

    2010-01-01

    Heat pipe life tests have seldom been conducted on a systematic basis. Typically, one or more heat pipes are built and tested for an extended period at a single temperature with simple condenser loading. Results are often reported describing the wall material, working fluid, test temperature, test duration, and occasionally the nature of any failure. Important information such as design details, processing procedures, material assay, power throughput, and radial power density are usually not mentioned. We propose to develop methods to generate carefully controlled data that conclusively establish heat pipe operating life with material-fluid combinations capable of extended operation. The test approach detailed in this Technical Publication will use 16 Mo-44.5%Re alloy/sodium heat pipe units that have an approximate12-in length and 5/8-in diameter. Two specific test series have been identified: (1) Long-term corrosion rates based on ASTM-G-68-80 (G-series) and (2) corrosion trends in a cross-correlation sequence at various temperatures and mass fluences based on a Fisher multifactor design (F-series). Evaluation of the heat pipe hardware will be performed in test chambers purged with an inert purified gas (helium or helium/argon mixture) at low pressure (10-100 torr) to provide thermal coupling between the heat pipe condenser and calorimeter. The final pressure will be selected to minimize the potential for voltage breakdown between the heat pipe and radio frequency (RF) induction coil (RF heating is currently the planned method of powering the heat pipes). The proposed calorimeter is constructed from a copper alloy and relies on a laminar flow water-coolant channel design to absorb and transport energy

  20. Fabrication and development of several heat pipe honeycomb sandwich panel concepts. [airframe integrated scramjet engine

    NASA Technical Reports Server (NTRS)

    Tanzer, H. J.

    1982-01-01

    The feasibility of fabricating and processing liquid metal heat pipes in a low mass honeycomb sandwich panel configuration for application on the NASA Langley airframe-integrated Scramjet engine was investigated. A variety of honeycomb panel facesheet and core-ribbon wick concepts was evaluated within constraints dictated by existing manufacturing technology and equipment. The chosen design consists of an all-stainless steel structure, sintered screen facesheets, and two types of core-ribbon; a diffusion bonded wire mesh and a foil-screen composite. Cleaning, fluid charging, processing, and process port sealing techniques were established. The liquid metals potassium, sodium and cesium were used as working fluids. Eleven honeycomb panels 15.24 cm X 15.24 cm X 2.94 cm were delivered to NASA Langley for extensive performance testing and evaluation; nine panels were processed as heat pipes, and two panels were left unprocessed.

  1. Feasibility study of a passive aeration reactor equipped with vertical pipes for compost stabilization of cow manure.

    PubMed

    Sylla, Youssouf Boundou; Kuroda, Masao; Yamada, Masayuki; Matsumoto, Naoko

    2006-10-01

    Pilot-scale composting was carried out with cow manure to evaluate the performances of two passive aeration systems: a conventional passive aeration system equipped with horizontal pipes and an unusual passive aeration method based on air delivery by means of vertical pipes. The effects of both types of passive aeration apparatus were investigated in order to determine the degree of composting rate by continuously monitoring temperature, moisture content, organic matter, electrical conductivity, pH and C/N ratio in the piles. Temperatures in the range of thermophily (55-65 degrees C) were reached in all runs within 1-2 days then lasting for about 1 week, a span long enough for pathogen abatement. Results suggest that passive aeration carried out by vertical pipes is more effective for air delivery into compost piles than conventional passive aeration of air adduction with horizontal pipes. The variation in the number of vertical pipes was revealed to be an important parameter for the control of composting rate and temperature. Composting rates estimated from the heat balance equation were substantially in agreement with those computed through the conversion ratio of total organic matter decrement. The conversion ratios and composting rates obtained in this study using passive aeration with vertical pipes were well aligned with those found using forced air delivery systems.

  2. Simultaneous sound velocity and thickness measurement by the ultrasonic pitch-catch method for corrosion-layer-forming polymeric materials.

    PubMed

    Kusano, Masahiro; Takizawa, Shota; Sakai, Tetsuya; Arao, Yoshihiko; Kubouchi, Masatoshi

    2018-01-01

    Since thermosetting resins have excellent resistance to chemicals, fiber reinforced plastics composed of such resins and reinforcement fibers are widely used as construction materials for equipment in chemical plants. Such equipment is usually used for several decades under severe corrosive conditions so that failure due to degradation may result. One of the degradation behaviors in thermosetting resins under chemical solutions is "corrosion-layer-forming" degradation. In this type of degradation, surface resins in contact with a solution corrode, and some of them remain asa corrosion layer on the pristine part. It is difficult to precisely measure the thickness of the pristine part of such degradation type materials by conventional pulse-echo ultrasonic testing, because the sound velocity depends on the degree of corrosion of the polymeric material. In addition, the ultrasonic reflection interface between the pristine part and the corrosion layer is obscure. Thus, we propose a pitch-catch method using a pair of normal and angle probes to measure four parameters: the thicknesses of the pristine part and the corrosion layer, and their respective sound velocities. The validity of the proposed method was confirmed by measuring a two-layer sample and a sample including corroded parts. The results demonstrate that the pitch-catch method can successfully measure the four parameters and evaluate the residual thickness of the pristine part in the corrosion-layer-forming sample. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Electroplate Short Mix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2017-06-19

    Modifying the surface chemistry of materials by aluminization can protect vulnerable materials from corroding in harsh environments. The industry deals with corrosion issues is to regularly inspect components and replace them with corrosion resistant components.

  4. High performance flexible heat pipes

    NASA Technical Reports Server (NTRS)

    Shaubach, R. M.; Gernert, N. J.

    1985-01-01

    A Phase I SBIR NASA program for developing and demonstrating high-performance flexible heat pipes for use in the thermal management of spacecraft is examined. The program combines several technologies such as flexible screen arteries and high-performance circumferential distribution wicks within an envelope which is flexible in the adiabatic heat transport zone. The first six months of work during which the Phase I contract goal were met, are described. Consideration is given to the heat-pipe performance requirements. A preliminary evaluation shows that the power requirement for Phase II of the program is 30.5 kilowatt meters at an operating temperature from 0 to 100 C.

  5. Characterization of bond line discontinuities in a high-Mn TWIP steel pipe welded by HF-ERW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Gitae; Kim, Bongyoon; Kang, Yongjoon

    In this work, the microstructure and defects in a high-frequency electrical resistance welded (HF-ERW) pipe of high-Mn twinning-induced plasticity (TWIP) steel were characterized. The microstructure of the base metal and the bond line were examined using both optical microscopy and scanning electron microscopy. The features of the bond line were similar to those of conventional steel. Simultaneously, the circumferential ductility was evaluated via a flaring test. It was concluded that the deterioration of the circumferential ductility in a high-Mn TWIP steel pipe was caused by irregular shaped oxide defects and a penetrator that had been formed during welding. Specifically, themore » penetrator, which is composed of MnO and Mn{sub 2}SiO{sub 4}, was found to be the most influential on the circumferential ductility of the welded pipe. The penetrator was analyzed using both an electron probe micro analyzer and transmission electron microscopy, and the formation sequence of the penetrator was evaluated. - Highlights: •This study focused on applying the HF-ERW process to the seam welding of expandable pipe using TWIP steels. •For improvement of the circumferential ductility, deterioration factors were characterized. •Penetrator which would mainly deteriorate the circumferential ductility consisted of round MnO and Mn{sub 2}SiO{sub 4}. •Metallurgical evidence of existing theory regarding the mechanism of defect formation during the HF-ERW was characterized.« less

  6. Numerical Analysis on Effect of Areal Gas Distribution Pipe on Characteristics Inside COREX Shaft Furnace

    NASA Astrophysics Data System (ADS)

    Wu, Shengli; Du, Kaiping; Xu, Jian; Shen, Wei; Kou, Mingyin; Zhang, Zhekai

    2014-07-01

    In recent years, two parallel pipes of areal gas distribution (AGD) were installed into the COREX shaft furnace to improve the furnace efficiency. A three-dimensional mathematical model at steady state, which takes a modified three-interface unreacted core model into consideration, is developed in the current work to describe the effect of the AGD pipe on the inner characteristics of shaft furnace. The accuracy of the model is evaluated using the plant operational data. The AGD pipe effectively improves the uniformity of reducing gas distribution, which leads to an increase in gas temperature and concentration of CO or H2 around the AGD pipe, and hence it further contributes to the iron oxide reduction. As a result, the top gas utilization rate and the solid metallization rate (MR) at the bottom outlet are increased by 0.015 and 0.11, respectively. In addition, the optimizations of the flow volume ratio (FVR) of the reducing gas fed through the AGD inlet and the AGD pipe arrangement are further discussed based on the gas flow distribution and the solid MR. Despite the relative suitability of the current FVR (60%), it is still meaningful to enable a manual adjustment of FVR, instead of having it driven by pressure difference, to solve certain production problems. On the other hand, considering the flatter distribution of gas flow, the higher solid MR, and easy installation and replacement, the cross distribution arrangement of AGD pipe with a length of 3 m is recommended to replace the current AGD pipe arrangement.

  7. Duralumin and Its Corrosion

    NASA Technical Reports Server (NTRS)

    Nelson, WM

    1927-01-01

    The types of corrosion and factors of corrosion of duralumin are investigated. Salt water is the most common of the corroding media with which designers have to contend in using duralumin in aircraft and ships.

  8. Using heat pipe to make isotherm condition in catalytic converters of sulfuric acid plants

    NASA Astrophysics Data System (ADS)

    Yousefi, M.; Pahlavanzadeh, H.; Sadrameli, S. M.

    2017-08-01

    In this study, for the first time, it is tried to construct a pilot reactor, for surveying the possibility of creating isothermal condition in the catalytic convertors where SO2 is converted to SO3 in the sulfuric acid plants by heat pipe. The thermodynamic and thermo-kinetic conditions were considered the same as the sulfuric acid plants converters. Also, influence of SO2 gas flow rate on isothermal condition, has been studied. A thermo-siphon type heat pipe contains the sulfur + 5% iodine as working fluid, was used for disposing the heat of reaction from catalytic bed. Our results show that due to very high energy-efficiency, isothermal and passive heat transfer mechanism of heat pipe, it is possible to reach more than 95% conversion in one isothermal catalytic bed. As the results, heat pipe can be used as a certain piece of equipment to create isothermal condition in catalytic convertors of sulphuric acid plants. With this work a major evaluation in design of sulphuric acid plants can be taken place.

  9. Megawatt Class Nuclear Space Power Systems (MCNSPS) conceptual design and evaluation report. Volume 1: Objectives, summary results and introduction

    NASA Technical Reports Server (NTRS)

    Wetch, J. R.

    1988-01-01

    The objective was to determine which reactor, conversion, and radiator technologies would best fulfill future Megawatt Class Nuclear Space Power System Requirements. Specifically, the requirement was 10 megawatts for 5 years of full power operation and 10 years systems life on orbit. A variety of liquid metal and gas cooled reactors, static and dynamic conversion systems, and passive and dynamic radiators were considered. Four concepts were selected for more detailed study. The concepts are: a gas cooled reactor with closed cycle Brayton turbine-alternator conversion with heat pipe and pumped tube-fin heat rejection; a lithium cooled reactor with a free piston Stirling engine-linear alternator and a pumped tube-fin radiator; a lithium cooled reactor with potassium Rankine turbine-alternator and heat pipe radiator; and a lithium cooled incore thermionic static conversion reactor with a heat pipe radiator. The systems recommended for further development to meet a 10 megawatt long life requirement are the lithium cooled reactor with the K-Rankine conversion and heat pipe radiator, and the lithium cooled incore thermionic reactor with heat pipe radiator.

  10. Nest movement by piping plovers in response to changing habitat conditions

    USGS Publications Warehouse

    Wiltermuth, Mark T.; Anteau, Michael J.; Sherfy, Mark H.; Shaffer, Terry L.

    2009-01-01

    Birds that nest along reservoir or river shorelines may face fluctuating water levels that threaten nest survival. On Lake Sakakawea of the upper Missouri River, 37 and 70% of Piping Plover (Charadrius melodus) nests found in 2007 and 2008, respectively, were initiated at elevations inundated prior to projected hatch date. We describe eight events at seven nests in which adult Piping Plovers appeared to have moved active nests threatened by rising water or gathered eggs apparently displaced by rising water on Lake Sakakawea and the Garrison reach of the upper Missouri River. Additionally, we describe one nest that was moved after the habitat at the nest site had been disturbed by domestic cattle. Our observations and evidence indicate that adult Piping Plovers are capable of moving eggs and establishing nests at new sites during incubation. Furthermore, our results suggest that Piping Plovers evaluate their reproductive investment under potential threat of nest loss and may be capable of acting prospectively (moving nests prior to inundation) and reactively (regathering eggs after inundation) to avoid nest failure.

  11. Use of Bacteria To Stabilize Archaeological Iron

    PubMed Central

    Comensoli, Lucrezia; Maillard, Julien; Albini, Monica; Sandoz, Frederic

    2017-01-01

    ABSTRACT Iron artifacts are common among the findings of archaeological excavations. The corrosion layer formed on these objects requires stabilization after their recovery, without which the destruction of the item due to physicochemical damage is likely. Current technologies for stabilizing the corrosion layer are lengthy and generate hazardous waste products. Therefore, there is a pressing need for an alternative method for stabilizing the corrosion layer on iron objects. The aim of this study was to evaluate an alternative conservation-restoration method using bacteria. For this, anaerobic iron reduction leading to the formation of stable iron minerals in the presence of chlorine was investigated for two strains of Desulfitobacterium hafniense (strains TCE1 and LBE). Iron reduction was observed for soluble Fe(III) phases as well as for akaganeite, the most troublesome iron compound in the corrosion layer of archaeological iron objects. In terms of biogenic mineral production, differential efficiencies were observed in assays performed on corroded iron coupons. Strain TCE1 produced a homogeneous layer of vivianite covering 80% of the corroded surface, while on the coupons treated with strain LBE, only 10% of the surface was covered by the same mineral. Finally, an attempt to reduce iron on archaeological objects was performed with strain TCE1, which led to the formation of both biogenic vivianite and magnetite on the surface of the artifacts. These results demonstrate the potential of this biological treatment for stabilizing archaeological iron as a promising alternative to traditional conservation-restoration methods. IMPORTANCE Since the Iron Age, iron has been a fundamental material for the building of objects used in everyday life. However, due to its reactivity, iron can be easily corroded, and the physical stability of the object built is at risk. This is particularly true for archaeological objects on which a potentially unstable corrosion layer is formed during the time the object is buried. After excavation, changes in environmental conditions (e.g., higher oxygen concentration or lower humidity) alter the stability of the corrosion layer and can lead to the total destruction of the object. In this study, we demonstrate the feasibility of an innovative treatment based on bacterial iron reduction and biogenic mineral formation to stabilize the corrosion layer and protect these objects. PMID:28283522

  12. Acid Rain: The Silent Environmental Threat.

    ERIC Educational Resources Information Center

    Zmud, Mia

    1992-01-01

    Describes the silent environmental threat posed by acid rain. Caused mainly by manmade pollutants, acid rain damages water and trees, decreases visibility, corrodes monuments, and threatens public health. The article includes guidelines for action. (SM)

  13. The Corrosion Characteristics and Tensile Behavior of Reinforcement under Coupled Carbonation and Static Loading

    PubMed Central

    Xu, Yidong

    2015-01-01

    This paper describes the non-uniform corrosion characteristics and mechanical properties of reinforcement under coupled action of carbonation and static loading. The two parameters, namely area-box (AB) value and arithmetical mean deviation (Ra), are adopted to characterize the corrosion morphology and pitting distribution from experimental observations. The results show that the static loading affects the corrosion characteristics of reinforcement. Local stress concentration in corroded reinforcement caused by tensile stress drives the corrosion pit pattern to be more irregular. The orthogonal test results from finite element simulations show that pit shape and pit depth are the two significant factors affecting the tensile behavior of reinforcement. Under the condition of similar corrosion mass loss ratio, the maximum plastic strain of corroded reinforcement increases with the increase of Ra and load time-history significantly. PMID:28793729

  14. Surface integrity and corrosion performance of biomedical magnesium-calcium alloy processed by hybrid dry cutting-finish burnishing.

    PubMed

    Salahshoor, M; Li, C; Liu, Z Y; Fang, X Y; Guo, Y B

    2018-02-01

    Biodegradable magnesium-calcium (MgCa) alloy is a very attractive orthopedic biomaterial compared to permanent metallic alloys. However, the critical issue is that MgCa alloy corrodes too fast in the human organism. Compared to dry cutting, the synergistic dry cutting-finish burnishing can significantly improve corrosion performance of MgCa0.8 (wt%) alloy by producing a superior surface integrity including good surface finish, high compressive hook-shaped residual stress profile, extended strain hardening in subsurface, and little change of grain size. A FEA model was developed to understand the plastic deformation of MgCa materials during burnishing process. The measured polarization curves, surface micrographs, and element distributions of the corroded surfaces by burnishing show an increasing and uniform corrosion resistance to simulated body fluid. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Fission product palladium-silicon carbide interaction in htgr fuel particles

    NASA Astrophysics Data System (ADS)

    Minato, Kazuo; Ogawa, Toru; Kashimura, Satoru; Fukuda, Kousaku; Shimizu, Michio; Tayama, Yoshinobu; Takahashi, Ishio

    1990-07-01

    Interaction of fission product palladium (Pd) with the silicon carbide (SiC) layer was observed in irradiated Triso-coated uranium dioxide particles for high temperature gas-cooled reactors (HTGR) with an optical microscope and electron probe microanalyzers. The SiC layers were attacked locally or the reaction product formed nodules at the attack site. Although the main element concerned with the reaction was palladium, rhodium and ruthenium were also detected at the corroded areas in some particles. Palladium was detected on both the hot and cold sides of the particles, but the corroded areas and the palladium accumulations were distributed particularly on the cold side of the particles. The observed Pd-SiC reaction depths were analyzed on the assumption that the release of palladium from the fuel kernel controls the whole Pd-SiC reaction.

  16. Products of in Situ Corrosion of Depleted Uranium Ammunition in Bosnia and Herzegovina Soils.

    PubMed

    Wang, Yuheng; von Gunten, Konstantin; Bartova, Barbora; Meisser, Nicolas; Astner, Markus; Burger, Mario; Bernier-Latmani, Rizlan

    2016-11-15

    Hundreds of tons of depleted uranium (DU) ammunition were used in previous armed conflicts in Iraq, Bosnia and Herzegovina, and Serbia/Kosovo. The majority (>90%) of DU penetrators miss their target and, if left in the environment, corrode in these postconflict zones. Thus, the best way to understand the fate of bulk DU material in the environment is to characterize the corrosion products of intact DU penetrators under field conditions for extended periods of time. However, such studies are scarce. To fill this knowledge gap, we characterized corrosion products formed from two intact DU penetrators that remained in soils in Bosnia and Herzegovina for over seven years. We used a combination of X-ray powder diffraction, electron microscopy, and X-ray absorption spectroscopy. The results show that metaschoepite (UO 3 (H 2 O) 2 ) was a main component of the two DU corrosion products. Moreover, studtite ((UO 2 )O 2 (H 2 O) 2 ·2(H 2 O)) and becquerelite (Ca(UO 2 ) 6 O 4 (OH) 6 ·8(H 2 O)) were also identified in the corrosion products. Their formation through transformation of metaschoepite was a result of the geochemical conditions under which the penetrators corroded. Moreover, we propose that the transformation of metaschoepite to becquerelite or studtite in the DU corrosion products would decrease the potential for mobilization of U from corroded DU penetrators exposed to similar environments in postconflict areas.

  17. Three dimensional contact/impact methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulak, R.F.

    1987-01-01

    The simulation of three-dimensional interface mechanics between reactor components and structures during static contact or dynamic impact is necessary to realistically evaluate their structural integrity to off-normal loads. In our studies of postulated core energy release events, we have found that significant structure-structure interactions occur in some reactor vessel head closure designs and that fluid-structure interactions occur within the reactor vessel. Other examples in which three-dimensional interface mechanics play an important role are: (1) impact response of shipping casks containing spent fuel, (2) whipping pipe impact on reinforced concrete panels or pipe-to-pipe impact after a pipe break, (3) aircraft crashmore » on secondary containment structures, (4) missiles generated by turbine failures or tornados, and (5) drops of heavy components due to lifting accidents. The above is a partial list of reactor safety problems that require adequate treatment of interface mechanics and are discussed in this paper.« less

  18. The Effect of Ultrasonic Peening on Service Life of the Butt-Welded High-Temperature Steel Pipes

    NASA Astrophysics Data System (ADS)

    Daavari, Morteza; Vanini, Seyed Ali Sadough

    2015-09-01

    Residual stresses introduced by manufacturing processes such as casting, forming, machining, and welding have harmful effects on the mechanical behavior of the structures. In addition to the residual stresses, weld toe stress concentration can play a determining effect. There are several methods to improve the mechanical properties such as fatigue behavior of the welded structures. In this paper, the effects of ultrasonic peening on the fatigue life of the high-temperature seamless steel pipes, used in the petrochemical environment, have been investigated. These welded pipes are fatigued due to thermal and mechanical loads caused by the cycle of cooling, heating, and internal pressure fluctuations. Residual stress measurements, weld geometry estimation, electrochemical evaluations, and metallography investigations were done as supplementary examinations. Results showed that application of ultrasonic impact treatment has led to increased fatigue life, fatigue strength, and corrosion resistance of A106-B welded steel pipes in petrochemical corrosive environment.

  19. Experimental Study of Thermal Energy Storage Characteristics using Heat Pipe with Nano-Enhanced Phase Change Materials

    NASA Astrophysics Data System (ADS)

    Krishna, Jogi; Kishore, P. S.; Brusly Solomon, A.

    2017-08-01

    The paper presents experimental investigations to evaluate thermal performance of heat pipe using Nano Enhanced Phase Change Material (NEPCM) as an energy storage material (ESM) for electronic cooling applications. Water, Tricosane and nano enhanced Tricosane are used as energy storage materials, operating at different heating powers (13W, 18W and 23W) and fan speeds (3.4V and 5V) in the PCM cooling module. Three different volume percentages (0.5%, 1% and 2%) of Nano particles (Al2O3) are mixed with Tricosane which is the primary PCM. This experiment is conducted to study the temperature distributions of evaporator, condenser and PCM during the heating as well as cooling. The cooling module with heat pipe and nano enhanced Tricosane as energy storage material found to save higher fan power consumption compared to the cooling module that utilities only a heat pipe.

  20. Integrated heat pipe-thermal storage system performance evaluation

    NASA Technical Reports Server (NTRS)

    Keddy, E.; Sena, J. T.; Merrigan, M.; Heidenreich, Gary

    1987-01-01

    An integrated thermal energy storage (TES) system, developed as a part of an organic Rankine cycle solar dynamic power system is described, and the results of the performance verification tests of this TES system are presented. The integrated system consists of potassium heat-pipe elements that incorporate TES canisters within the vapor space, along with an organic fluid heater tube used as the condenser region of the heat pipe. The heat pipe assembly was operated through the range of design conditions from the nominal design input of 4.8 kW to a maximum of 5.7 kW. The performance verification tests show that the system meets the functional requirements of absorbing the solar energy reflected by the concentrator, transporting the energy to the organic Rankine heater, providing thermal storage for the eclipse phase, and allowing uniform discharge from the thermal storage to the heater.

  1. Velocity and stage data collected in a laboratory flume for water-surface slope determination using a pipe manometer

    USGS Publications Warehouse

    Lee, Jonathan K.; Visser, H.M.; Jenter, H.L.; Duff, M.P.

    2000-01-01

    U.S. Geological Survey (USGS) hydrologists and ecologist are conducting studies to quantify vegetative flow resistance in order to improve numerical models of surface-water flow in the Florida Everglades. Water-surface slope is perhaps the most difficult of the flow resistance parameters to measure in the Everglades due to the very low gradients of the topography and flow. In an effort to measure these very small slopes, a unique pipe manometer was developed for the local measurement of water-surface slopes on the order of 1 centimeter per kilometer (cm/km). According to theory, a very precise measurement of centerline velocity obtained inside the pipe manometer should serve as a unique proxy for water-surface slope in the direction of the pipe axis. In order to confirm this theoretical relationship and calibrate the pipe manometer, water-surface elevation and pipe centerline velocity data were simultaneously measured in a set of experiments carried out in the tilting flume at the USGS Hydraulic Laboratory Facility at Stennis Space Center, Mississippi. A description of the instrumentation and methods used to evaluate this technique for measuring water-surface slope as well as a summary of the entire data set is presented.

  2. Degradation of specific aromatic compounds migrating from PEX pipes into drinking water.

    PubMed

    Ryssel, Sune Thyge; Arvin, Erik; Lützhøft, Hans-Christian Holten; Olsson, Mikael Emil; Procházková, Zuzana; Albrechtsen, Hans-Jørgen

    2015-09-15

    Nine specific compounds identified to migrate from polyethylene (PE) and cross-linked polyethylene (PEX) to drinking water were investigated for their degradation in drinking water. Three sample types were studied: field samples (collected at consumer taps), PEX pipe water extractions, and water samples spiked with target compounds. Four compounds were quantified in field samples at concentrations of 0.15-8.0 μg/L. During PEX pipe water extraction 0.42 ± 0.20 mg NVOC/L was released and five compounds quantified (0.5-6.1 μg/L). The degradation of these compounds was evaluated in PEX-pipe water extractions and spiked samples. 4-ethylphenol was degraded within 22 days. Eight compounds were, however, only partially degradable under abiotic and biotic conditions within the timeframe of the experiments (2-4 weeks). Neither inhibition nor co-metabolism was observed in the presence of acetate or PEX pipe derived NVOC. Furthermore, the degradation in drinking water from four different locations with three different water works was similar. In conclusion, eight out of the nine compounds studied would - if being released from the pipes - reach consumers with only minor concentration decrease during water distribution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Experimental Study on the Thermal Start-Up Performance of the Graphene/Water Nanofluid-Enhanced Solar Gravity Heat Pipe.

    PubMed

    Zhao, Shanguo; Xu, Guoying; Wang, Ning; Zhang, Xiaosong

    2018-01-28

    The solar gravity heat pipe has been widely used for solar thermal water heating because of its high efficient heat transfer and thermal diode characteristics. Operated on fluctuant and low intensity solar radiation conditions, a solar gravity heat pipe may frequently start up. This severely affects its solar collection performance. To enhance the thermal performance of the solar gravity heat pipe, this study proposes using graphene/water nanofluid as the working fluid instead of deionized water. The stability of the prepared graphene/water nanofluid added with PVP was firstly investigated to obtain the optimum mass ratios of the added dispersant. Thermophysical properties-including the thermal conductivity and viscosity-of nanofluid with various graphene nanoplatelets (GNPs) concentrations were measured at different temperatures for further analysis. Furthermore, based on the operational evaluation on a single heat pipe's start-up process, the performance of nanofluid-enhanced solar gravity heat pipes using different concentrations of GNPs were compared by using water heating experiments. Results indicated that the use of 0.05 wt % graphene/water nanofluid instead of water could achieve a 15.1% and 10.7% reduction in start-up time under 30 and 60 W input heating conditions, respectively. Consequently, a higher thermal efficiency for solar collection could be expected.

  4. Analytical solution for tension-saturated and unsaturated flow from wicking porous pipes in subsurface irrigation: The Kornev-Philip legacies revisited

    NASA Astrophysics Data System (ADS)

    Kacimov, A. R.; Obnosov, Yu. V.

    2017-03-01

    The Russian engineer Kornev in his 1935 book raised perspectives of subsurface "negative pressure" irrigation, which have been overlooked in modern soil science. Kornev's autoirrigation utilizes wicking of a vacuumed water from a porous pipe into a dry adjacent soil. We link Kornev's technology with a slightly modified Philip (1984)'s analytical solutions for unsaturated flow from a 2-D cylindrical pipe in an infinite domain. Two Darcian flows are considered and connected through continuity of pressure along the pipe-soil contact. The first fragment is a thin porous pipe wall in which water seeps at tension saturation; the hydraulic head is a harmonic function varying purely radially across the wall. The Thiem solution in this fragment gives the boundary condition for azimuthally varying suction pressure in the second fragment, ambient soil, making the exterior of the pipe. The constant head, rather than Philip's isobaricity boundary condition, along the external wall slightly modifies Philip's formulae for the Kirchhoff potential and pressure head in the soil fragment. Flow characteristics (magnitudes of the Darcian velocity, total flow rate, and flow net) are explicitly expressed through series of Macdonald's functions. For a given pipe's external diameter, wall thickness, position of the pipe above a free water datum in the supply tank, saturated conductivities of the wall and soil, and soil's sorptive number, a nonlinear equation with respect to the total discharge from the pipe is obtained and solved by a computer algebra routine. Efficiency of irrigation is evaluated by computation of the moisture content within selected zones surrounding the porous pipe.Plain Language SummarySubsurface irrigation by "automatic" gadgets like pitchers or porous pipes is a water saving technology which minimizes evaporative losses and deep percolation. Moisture is emitted by capillary suction of a relatively dry soil and "thirsty" roots just in "right quantities", spontaneously and continuously, i.e. without any electronic or mechanical controls. Almost a century ago the Russian engineer Vasily Kornev designed and tested this "smart watering" technology in France and USSR. Later, the Australian soil physicist John Philip developed mathematical models which predicted how much water is emitted from a porous pipe and how this moisture is distributed in the near-emitter soil. We develop further Philip's theory and match it with Kornev's farmers-level design and irrigation practices. Namely, we predict how the pipe wall properties and negative water pressure in porous pipes are controlling soil water conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29751693','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29751693"><span>Lay-Up and Consolidation of a Composite Pipe by In Situ Ultrasonic Welding of a Thermoplastic Matrix Composite Tape.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dell'Anna, Riccardo; Lionetto, Francesca; Montagna, Francesco; Maffezzoli, Alfonso</p> <p>2018-05-11</p> <p>In this work, the potential of preformed thermoplastic matrix composite tapes for the manufacturing of composite pipes by filament winding assisted by in situ ultrasonic welding was evaluated. Unidirectional tapes of E-glass-reinforcedamorphous poly (ethylene terephthalate) were laid up and consolidated in a filament winding machine that was modified with a set-up enabling ultrasonic welding. The obtained composite specimens were characterized by means of morphological and dynamic mechanical analysis as well as void content evaluation, in order to correlate welding parameters to composite properties.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5978163','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5978163"><span>Lay-Up and Consolidation of a Composite Pipe by In Situ Ultrasonic Welding of a Thermoplastic Matrix Composite Tape</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Dell’Anna, Riccardo; Montagna, Francesco</p> <p>2018-01-01</p> <p>In this work, the potential of preformed thermoplastic matrix composite tapes for the manufacturing of composite pipes by filament winding assisted by in situ ultrasonic welding was evaluated. Unidirectional tapes of E-glass-reinforcedamorphous poly (ethylene terephthalate) were laid up and consolidated in a filament winding machine that was modified with a set-up enabling ultrasonic welding. The obtained composite specimens were characterized by means of morphological and dynamic mechanical analysis as well as void content evaluation, in order to correlate welding parameters to composite properties. PMID:29751693</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AIPC.1042..263C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AIPC.1042..263C"><span>An Hybrid Glass/hemp Fibers Solution Frp Pipes: Technical and Economic Advantages of Hand Lay up VS Light Rtm</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cicala, G.; Cristaldi, G.; Recca, G.; Ziegmann, G.; ElSabbagh, A.; Dickert, M.</p> <p>2008-08-01</p> <p>The aim of the present research was to investigate the replacement of glass fibers with hemp fibers for applications in the piping industry. The choice of hemp fibers was mainly related to the needs, expressed by some companies operating in this sector, for cost reduction without adversely reducing the performances of the pipes. Two processing techniques, namely hand lay up and light RTM, were evaluated. The pipe selected for the study was a curved fitting (90°) flanged at both ends. The fitting must withstand an internal pressure of 10 bar and the presence of acid aqueous solutions. The original lay-up used to build the pipe is a sequence of C-glass, glass mats and glass fabric. Commercial epoxy vinyl ester resin was used as thermoset matrix. Hemp fibers mats were selected as potential substitute of glass fibers mats because of their low cost and ready availability from different commercial sources. The data obtained from the mechanical characterization were used to define a favorable design of the pipe using hemp mats as internal layer. The proposed design for the fittings allowed for a cost reduction of about 24% and a weight saving of about 23% without any drawback in terms of the final performances. The light RTM techniques was developed on purpose for the manufacturing of the curved pipe. The comparison between hand lay up and light RTM evidenced a substantial cost reduction when light RTM was used.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21152514-hybrid-glass-hemp-fibers-solution-frp-pipes-technical-economic-advantages-hand-lay-up-vs-light-rtm','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21152514-hybrid-glass-hemp-fibers-solution-frp-pipes-technical-economic-advantages-hand-lay-up-vs-light-rtm"><span>AN HYBRID GLASS/HEMP FIBERS SOLUTION FRP PIPES: TECHNICAL AND ECONOMIC ADVANTAGES OF HAND LAY UP VS LIGHT RTM</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Cicala, G.; Cristaldi, G.; Recca, G.</p> <p>2008-08-28</p> <p>The aim of the present research was to investigate the replacement of glass fibers with hemp fibers for applications in the piping industry. The choice of hemp fibers was mainly related to the needs, expressed by some companies operating in this sector, for cost reduction without adversely reducing the performances of the pipes. Two processing techniques, namely hand lay up and light RTM, were evaluated. The pipe selected for the study was a curved fitting (90 deg.) flanged at both ends. The fitting must withstand an internal pressure of 10 bar and the presence of acid aqueous solutions. The originalmore » lay-up used to build the pipe is a sequence of C-glass, glass mats and glass fabric. Commercial epoxy vinyl ester resin was used as thermoset matrix.Hemp fibers mats were selected as potential substitute of glass fibers mats because of their low cost and ready availability from different commercial sources. The data obtained from the mechanical characterization were used to define a favorable design of the pipe using hemp mats as internal layer. The proposed design for the fittings allowed for a cost reduction of about 24% and a weight saving of about 23% without any drawback in terms of the final performances.The light RTM techniques was developed on purpose for the manufacturing of the curved pipe. The comparison between hand lay up and light RTM evidenced a substantial cost reduction when light RTM was used.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009JSMME...3...38B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009JSMME...3...38B"><span>Welding Penetration Control of Fixed Pipe in TIG Welding Using Fuzzy Inference System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Baskoro, Ario Sunar; Kabutomori, Masashi; Suga, Yasuo</p> <p></p> <p>This paper presents a study on welding penetration control of fixed pipe in Tungsten Inert Gas (TIG) welding using fuzzy inference system. The welding penetration control is essential to the production quality welds with a specified geometry. For pipe welding using constant arc current and welding speed, the bead width becomes wider as the circumferential welding of small diameter pipes progresses. Having welded pipe in fixed position, obviously, the excessive arc current yields burn through of metals; in contrary, insufficient arc current produces imperfect welding. In order to avoid these errors and to obtain the uniform weld bead over the entire circumference of the pipe, the welding conditions should be controlled as the welding proceeds. This research studies the intelligent welding process of aluminum alloy pipe 6063S-T5 in fixed position using the AC welding machine. The monitoring system used a charge-coupled device (CCD) camera to monitor backside image of molten pool. The captured image was processed to recognize the edge of molten pool by image processing algorithm. Simulation of welding control using fuzzy inference system was constructed to simulate the welding control process. The simulation result shows that fuzzy controller was suitable for controlling the welding speed and appropriate to be implemented into the welding system. A series of experiments was conducted to evaluate the performance of the fuzzy controller. The experimental results show the effectiveness of the control system that is confirmed by sound welds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21371028-pulsed-eddy-current-thickness-measurement-selective-phase-corrosion-nickel-aluminum-bronze-valves','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21371028-pulsed-eddy-current-thickness-measurement-selective-phase-corrosion-nickel-aluminum-bronze-valves"><span>PULSED EDDY CURRENT THICKNESS MEASUREMENT OF SELECTIVE PHASE CORROSION ON NICKEL ALUMINUM BRONZE VALVES</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Krause, T. W.; Harlley, D.; Babbar, V. K.</p> <p></p> <p>Nickel Aluminum Bronze (NAB) is a material with marine environment applications that under certain conditions can undergo selective phase corrosion (SPC). SPC involves the removal of minority elements while leaving behind a copper matrix. Pulsed eddy current (PEC) was evaluated for determination of SPC thickness on a NAB valve section with access from the surface corroded side. A primarily linear response of PEC amplitude, up to the maximum available SPC thickness of 4 mm was observed. The combination of reduced conductivity and permeability in the SPC phase relative to the base NAB was used to explain the observed sensitivity ofmore » PEC to SPC thickness variations.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/27460','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/27460"><span>Modeling reinforced concrete durability : [summary].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2014-06-01</p> <p>Many Florida bridges are built of steel-reinforced concrete. Floridas humid and marine : environments subject steel in these structures : to corrosion once water and salt penetrate the : concrete and contact the steel. Corroded steel : takes up mo...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA239598','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA239598"><span>Guidelines for Design, Construction, and Evaluation of Airport Pavement Drainage</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1990-10-01</p> <p>AISI for storm sewers (11). To prevent suspended matter from depositing in the pipes, it is important to maintain sufficient velocity within the pipes...IN FEET/DAY "KS 4090 1 4100 J:HS/DS 4110 ’ 4120 X=WS/DS 4130 ’ 4140 Yz(1-J)/X 4150 ’ 4160 ’OUTFLOW 4170 QS=Y*KS*SS A-6 4180 1 4190 PRINT "OUTFLOW TO</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19770011442','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19770011442"><span>Thermal control of power supplies with electronic packaging techniques. [using low cost heat pipes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1977-01-01</p> <p>The integration of low-cost commercial heat pipes in the design of a NASA candidate standard modular power supply with a 350 watt output resulted in a 44% weight reduction. Part temperatures were also appreciably reduced, increasing the environmental capability of the unit. A complete 350- watt modular power converter was built and tested to evaluate thermal performance of the redesigned supply.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28329709','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28329709"><span>Potential impacts of changing supply-water quality on drinking water distribution: A review.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Liu, Gang; Zhang, Ya; Knibbe, Willem-Jan; Feng, Cuijie; Liu, Wentso; Medema, Gertjan; van der Meer, Walter</p> <p>2017-06-01</p> <p>Driven by the development of water purification technologies and water quality regulations, the use of better source water and/or upgraded water treatment processes to improve drinking water quality have become common practices worldwide. However, even though these elements lead to improved water quality, the water quality may be impacted during its distribution through piped networks due to the processes such as pipe material release, biofilm formation and detachment, accumulation and resuspension of loose deposits. Irregular changes in supply-water quality may cause physiochemical and microbiological de-stabilization of pipe material, biofilms and loose deposits in the distribution system that have been established over decades and may harbor components that cause health or esthetical issues (brown water). Even though it is clearly relevant to customers' health (e.g., recent Flint water crisis), until now, switching of supply-water quality is done without any systematic evaluation. This article reviews the contaminants that develop in the water distribution system and their characteristics, as well as the possible transition effects during the switching of treated water quality by destabilization and the release of pipe material and contaminants into the water and the subsequent risks. At the end of this article, a framework is proposed for the evaluation of potential transition effects. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1999SPIE.3823..235M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1999SPIE.3823..235M"><span>Quality assurance in the production of pipe fittings by automatic laser-based material identification</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moench, Ingo; Peter, Laszlo; Priem, Roland; Sturm, Volker; Noll, Reinhard</p> <p>1999-09-01</p> <p>In plants of the chemical, nuclear and off-shore industry, application specific high-alloyed steels are used for pipe fittings. Mixing of different steel grades can lead to corrosion with severe consequential damages. Growing quality requirements and environmental responsibilities demand a 100% material control in the production of the pipe fittings. Therefore, LIFT, an automatic inspection machine, was developed to insure against any mix of material grades. LIFT is able to identify more than 30 different steel grades. The inspection method is based on Laser-Induced Breakdown Spectrometry (LIBS). An expert system, which can be easily trained and recalibrated, was developed for the data evaluation. The result of the material inspection is transferred to an external handling system via a PLC interface. The duration of the inspection process is 2 seconds. The graphical user interface was developed with respect to the requirements of an unskilled operator. The software is based on a realtime operating system and provides a safe and reliable operation. An interface for the remote maintenance by modem enables a fast operational support. Logged data are retrieved and evaluated. This is the basis for an adaptive improvement of the configuration of LIFT with respect to changing requirements in the production line. Within the first six months of routine operation, about 50000 pipe fittings were inspected.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017E3SWC..1903004C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017E3SWC..1903004C"><span>Forming of film surface of very viscous liquid flowing with gas in pipes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Czernek, Krystian; Witczak, Stanisław</p> <p>2017-10-01</p> <p>The study presents the possible use of optoelectronic system for the measurement of the values, which are specific for hydrodynamics of two-phase gas liquid flow in vertical pipes, where a very-high-viscosity liquid forms a falling film in a pipe. The experimental method was provided, and the findings were presented and analysed for selected values, which characterize the two-phase flow. Attempt was also made to evaluate the effects of flow parameters and properties of the liquid on the gas-liquid interface value, which is decisive for the conditions of heat exchange and mass transfer in falling film equipment. The nature and form of created waves at various velocities were also described.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19890011820','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19890011820"><span>High capacity demonstration of honeycomb panel heat pipes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tanzer, H. J.</p> <p>1989-01-01</p> <p>The feasibility of performance enhancing the sandwich panel heat pipe was investigated for moderate temperature range heat rejection radiators on future-high-power spacecraft. The hardware development program consisted of performance prediction modeling, fabrication, ground test, and data correlation. Using available sandwich panel materials, a series of subscale test panels were augumented with high-capacity sideflow and temperature control variable conductance features, and test evaluated for correlation with performance prediction codes. Using the correlated prediction model, a 50-kW full size radiator was defined using methanol working fluid and closely spaced sideflows. A new concept called the hybrid radiator individually optimizes heat pipe components. A 2.44-m long hybrid test vehicle demonstrated proof-of-principle performance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013Geomo.192....1V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013Geomo.192....1V"><span>Impact of soil characteristics and land use on pipe erosion in a temperate humid climate: Field studies in Belgium</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Verachtert, E.; Van Den Eeckhaut, M.; Martínez-Murillo, J. F.; Nadal-Romero, E.; Poesen, J.; Devoldere, S.; Wijnants, N.; Deckers, J.</p> <p>2013-06-01</p> <p>This study investigates the role of soil characteristics and land use in the development of soil pipes in the loess belt of Belgium. First, we tested the hypothesis that discontinuities in the soil profile enhance lateral flow and piping by impeding vertical infiltration. We focus on discontinuities in soil characteristics that can vary with soil depth, including texture, saturated hydraulic conductivity, penetration resistance, and bulk density. These characteristics as well as soil biological activity were studied in detail on 12 representative soil profiles for different land use types. Twelve sites were selected in the Flemish Ardennes (Belgium): four pastures with collapsed pipes (CP), four pastures without CP, two sites under arable land without CP and two sites under forest without CP. Secondly, this study aimed at evaluating the interaction of groundwater table positions (through soil augerings) and CP in a larger area, with a focus on pastures. Pasture is the land use where almost all CP in the study area are observed. Therefore, the position of the groundwater table was compared for 15 pastures with CP and 14 pastures without CP, having comparable topographical characteristics in terms of slope gradient and contributing area. Finally, the effect of land use history on the occurrence of pipe collapse was evaluated for a database of 84 parcels with CP and 84 parcels without CP, currently under pasture. As to the first hypothesis, no clear discontinuities for abiotic soil characteristics in soil profiles were observed at the depth where pipes occur, but pastures with CP had significantly more earthworm channels and mole burrows at larger depths (> 120 cm: mean of > 200 earthworm channels per m2) than pastures without CP, arable land or forest (> 120 cm depth, a few or no earthworm channels left). The land use history appeared to be similar for the pastures with and without CP. Combining all results from soil profiles and soil augering indicates that intense biological activity (especially by earthworms and moles), in combination with a sufficiently high groundwater table, favours the development of soil pipes in the study area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1817704F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1817704F"><span>Role of fluid in the mechanism of formation of volcaniclastic and coherent kimberlite facies: a diamond perspective</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fedortchouk, Yana; Chinn, Ingrid</p> <p>2016-04-01</p> <p>Dissolution features on diamonds recovered from kimberlites vary depending on the dissolution conditions and can be used as a reliable proxy for volatiles and their role in kimberlite emplacement. Volatiles determine the mechanism of magma emplacement; variation in volatile content and CO2/CO2+H2O ratio may affect the geology of kimberlite bodies and formation of coherent vs. volcaniclastic kimberlite facies. Here we examine the evolution of a kimberlite system during ascent using the resorption morphology of its diamond population. We use 655 macro-diamonds from a complex kimberlite pipe in the Orapa kimberlite field (Botswana) to examine the role of volatiles in the formation of the three facies comprising this pipe: two coherent kimberlite facies (CKA and CKB) and one massive volcaniclastic facies (MVK). The diamonds come from three drillholes through each of the studied kimberlite facies. Separate diamond samples derived from 2 - 13 m intervals were combined into 40 m depth intervals for statistical purposes. Four independent morphological methods allowed us to reliably discriminate products of resorption in kimberlite magma from resorption in the mantle, and use the former in our study. We found that the proportion of diamonds with kimberlitic resorption is the lowest in CKA - 22%, medium in MVK - 50%, and highest in CKB - 73%, and it increases with depth in each of the drillholes. Each kimberlite facies shows its own style of kimberlite-induced resorption on rounded tetrahexahedron (THH) diamonds: glossy surfaces in MVK, rough corroded surfaces in CKB, and combination of glossy surfaces with chains of circular pits in CKA, where these pits represent the initial stages of development of corrosive features observed on CKB diamonds. Based on the results of our previous experimental studies we propose that resorption of MVK diamonds is a product of interaction with COH fluid, resorption of CKB diamonds is a product of interaction with a volatile-undersaturated melt (possibly carbonatitic), and CKA diamonds show an overprint of melt-controlled resorption over a fluid-controlled resorption. We propose an early separation of the fluid phase during the ascent of this kimberlite magma, segregation of this fluid and rise towards the top of the magma column. Over-pressurisation caused by the expansion of this fluid worked as a driving force for the magma ascent acceleration. The magma column has separated into two parts: (1) the bubble-rich magma towards the top, explosive emplacement of which formed the MVK facies, followed by the "tailing" bubble-poor magma quietly arriving to form the CKA facies, and (2) magma that lost volatiles to the upwardly escaping bubbles, in which a slower ascent caused more intensive diamond resorption and delayed emplacement, forming the CKB facie. It is possible that formation, buoyancy, and growth of fluid bubbles controls the ascent of the kimberlite magma, where emplacement of bubble-rich magma forms volcaniclastic kimberlite facies, while fast rise of the bubbles through the magma column separates the fluid-rich phase that moves up preparing the conduit in the surrounding rocks and forms an explosive pipe at the surface, from a volatile-depleted magma, which slowly rises and fills the pipe with CK kimberlite facies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1901c0009I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1901c0009I"><span>Mechanical properties of three layer glass fibre reinforced unsaturated polyester filled with P84 Polyimide</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ibrahim, Nik Noor Idayu Nik; Mamauod, Siti Nur Liyana; Romli, Ahmad Zafir</p> <p>2017-12-01</p> <p>The glass fibre reinforced orthophthalic unsaturated polyester composite was widely used in the pipeline industry as a replacement to the corroded steel pipes. A filler which possesses high mechanical performance at high temperature; P84 Polyimide used as the particulate reinforcement in the unsaturated polyester matrix system to increase the mechanical performance of the glass fibre reinforced unsaturated polyester. The glass fibre composite laminates were prepared through a hand lay-up technique and fabricated into three layer laminate. Prior to be used as the matrix system in the lamination process, the unsaturated polyester resin was mixed with masterbatch P84 Polyimide at three loadings amount of 1, 3, and 5 wt%. The addition of P84 Polyimide at 1, 3, and 5 wt% increased the tensile properties and flexural properties especially at 1 wt% filler loading. As the filler loading increased, the tensile properties and flexural properties showed decreasing pattern. In the dynamic mechanical analysis, the values of storage modulus were taken at two points; 50 °C and 150 °C which were the storage modulus before and after the glass transition temperature. All storage modulus showed fluctuation trend for both before and after Tg. However, the storage modulus of the filled composite laminates after Tg showed higher values than unfilled composite laminates at all filler loading. Since the P84 Polyimide possesses high thermal stability, the presence of P84 Polyimide inside the composite system had assisted in delaying the Tg. In terms of the filler dispersion, the Cole-Cole plot showed an imperfect semi-circular shape which indicated good filler dispersion.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27668545','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27668545"><span>Verification of Frequency in Species of Nontuberculous Mycobacteria in Kermanshah Drinking Water Supplies Using the PCR-Sequencing Method.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mohajeri, Parviz; Yazdani, Laya; Shahraki, Abdolrazagh Hashemi; Alvandi, Amirhoshang; Atashi, Sara; Farahani, Abbas; Almasi, Ali; Rezaei, Mansour</p> <p>2017-04-01</p> <p>Nontuberculous mycobacteria are habitants of environment, especially in aquatic systems. Some of them cause problems in immunodeficient patients. Over the last decade, 16S rRNA gene sequencing was established in 45 novel species of nontuberculous mycobacteria. Experiences revealed that this method underestimates the diversity, but does not distinguish between some of mycobacterium subsp. To recognize emerging rapidly growing mycobacteria and identify their subsp, rpoB gene sequencing has been developed. To better understand the transmission of nontuberculous mycobacterial species from drinking water and preventing the spread of illness with these bacteria, the aim of this study was to detect the presence of bacteria by PCR-sequencing techniques. Drinking water samples were collected from different areas of Kermanshah city in west of IRAN. After decontamination with cetylpyridinium chloride, samples were filtered with 0.45-micron filters, the filter transferred directly on growth medium waiting to appear in colonies, then DNA extraction and PCR were performed, and products were sent to sequencing. We found 35/110 (32%) nontuberculous mycobacterial species in drinking water samples, isolates included Mycobacterium goodii, Mycobacterium aurum, and Mycobacterium gastri with the most abundance (11.5%), followed by Mycobacterium smegmatis, Mycobacterium porcinum, Mycobacterium peregrinum, Mycobacterium mucogenicum, and Mycobacterium chelonae (8%). In this study, we recognized the evidence of contamination by nontuberculous mycobacteria in corroded water pipes. As a result of the high prevalence of these bacteria in drinking water in Kermanshah, this is important evidence of transmission through drinking water. This finding can also help public health policy makers control these isolates in drinking water supplies in Kermanshah.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AIPC..813..108M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AIPC..813..108M"><span>Life Test Approach for Refractory Metal/Sodium Heat Pipes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Martin, James J.; Reid, Robert S.</p> <p>2006-01-01</p> <p>Heat pipe life tests described in the literature have seldom been conducted on a systematic basis. Typically one or more heat pipes are built and tested for an extended period at a single temperature with simple condenser loading. The objective of this work was to establish an approach to generate carefully controlled data that can conclusively establish heat pipe operating life with material-fluid combinations capable of extended operation. Approximately 10 years of operational life might be compressed into 3 years of laboratory testing through a combination of increased temperature and mass fluence. To accomplish this goal test series have been identified, based on American Society for Testing and Materials (ASTM) specifications, to investigate long term corrosion rates. The heat pipes selected for demonstration purposes are fabricated from a Molybdenum-44.5%Rhenium refractory metal alloy and include an internal crescent annular wick design formed by hot isostatic pressing. A processing methodology has been devised that incorporates vacuum distillation filling with an integrated purity sampling technique for the sodium working fluid. Energy is supplied by radio frequency induction coils coupled to the heat pipe evaporator with an input range of 1 to 5 kW per unit while a static gas gap coupled water calorimeter provides condenser cooling for heat pipe temperatures ranging from 1123 to 1323 K. The test chamber's atmosphere would require active purification to maintain low oxygen concentrations at an operating pressure of approximately 75 torr. The test is designed to operate round-the-clock with 6-month non-destructive inspection intervals to identify the onset and level of corrosion. At longer intervals specific heat pipes are destructively evaluated to verify the non-destructive observations. Accomplishments prior to project cancellation included successful demonstration of the heat pipe wick fabrication technique, establishment of all engineering designs, baselined operational test requirements and procurement/assembly of supporting test hardware systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JOM....66e.793G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JOM....66e.793G"><span>Microstructural Features in Corroded Celtic Iron Age Sword Blades</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ghiara, G.; Piccardo, P.; Campodonico, S.; Carnasciali, M. M.</p> <p>2014-05-01</p> <p>Archaeological artefacts made from iron and steel are often of critical importance for archaeometallurgical studies, which aim to understand the process of manufacturing, as the nearly complete alloy mineralization does not allow for any type of metallographic interpretation. In this study, three Iron Age sword blades dated from the second century BC (LaTène B2/D1) found in the archaeological site of Tintignac (Commune de Naves, Corrèze, France), were investigated. A multianalytical approach was employed to acquire a complete range of data from the partially or totally corroded objects. Analyses were carried out with the use of light optical microscopy, micro Raman spectroscopy, and scanning electron microscopy equipped with energy-dispersive x-ray spectroscopy (EDXS). Remnants of metallographic features—ghost microstructure—in the corrosion layers of the blades were observed, allowing for a partial reconstruction of the manufacturing process.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/4005360','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/4005360"><span>Binding of corroded ions to human saliva.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mueller, H J</p> <p>1985-05-01</p> <p>Employing equilibrium dialysis, the binding abilities of Cu, Al, Co and Cr ions from corroded Cu-Al and Co-Cr dental casting alloys towards human saliva and two of its gel chromatographic fractions were determined. Results indicate that both Cu and Co bind to human saliva i.e. 0.045 and 0.027 mg/mg protein, respectively. Besides possessing the largest binding ability, Cu also possessed the largest binding capacity. The saturation of Cu binding was not reached up to the limit of 0.35 mg protein/ml employed in the tests, while Co reached full saturation at about 0.2 mg protein/ml. Chromium showed absolutely no binding to human saliva while Al ions did not pass through the dialysis membranes. Compared to the binding with solutions that were synthetically made up to contain added salivary-type proteins, it is shown that the binding to human saliva is about 1 order of magnitude larger, at least for Cu ions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23107456','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23107456"><span>Relative benefits of on-plot water supply over other 'improved' sources in rural Vietnam.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Brown, Joe; Hien, Vo Thi; McMahan, Lanakila; Jenkins, Marion W; Thie, Lauren; Liang, Kaida; Printy, Erin; Sobsey, Mark D</p> <p>2013-01-01</p> <p>Access to improved water sources is rapidly expanding in rural central Vietnam. We examined one NGO-led piped water supply programme to assess the drinking water quality and health impacts of piped water systems where access to 'improved' water sources is already good. This longitudinal, prospective cohort study followed 300 households in seven project areas in Da Nang province, Vietnam: 224 households who paid for an on-plot piped water connection and 76 control households from the same areas relying primarily on 'improved' water sources outside the home. The 4-month study was intended to measure the impact of the NGO-led water programmes on households' drinking water quality and health and to evaluate system performance. We found that: (i) households connected to a piped water supply had consistently better drinking water quality than those relying on other sources, including 'improved' sources and (ii) connected households experienced less diarrhoea than households without a piped water connection (adjusted longitudinal prevalence ratio: 0.57 (95% CI 0.39-0.86, P = 0.006) and households using an 'improved' source not piped to the plot: (adjusted longitudinal prevalence ratio: 0.59 (95% CI 0.39-0.91, P = 0.018). Our results suggest that on-plot water service yields benefits over other sources that are considered 'improved' by the WHO/UNICEF Joint Monitoring Programme. © 2012 Blackwell Publishing Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016RaPC..126..103P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016RaPC..126..103P"><span>Evaluation of fatigue crack behavior in electron beam irradiated polyethylene pipes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pokharel, Pashupati; Jian, Wei; Choi, Sunwoong</p> <p>2016-09-01</p> <p>A cracked round bar (CRB) fatigue test was employed to determine the slow crack growth (SCG) behavior of samples from high density polyethylene (HDPE) pipes using PE4710 resin. The structure property relationships of fatigue failure of polyethylene CRB specimens which have undergone various degree of electron beam (EB) irradiation were investigated by observing fatigue failure strength and the corresponding fracture surface morphology. Tensile test of these HDPE specimens showed improvements in modulus and yield strength while the failure strain decreased with increasing EB irradiation. The CRB fatigue test of HDPE pipe showed remarkable effect of EB irradiation on number of cycles to failure. The slopes of the stress-cycles to failure curve were similar for 0-100 kGy; however, significantly higher slope was observed for 500 kGy EB irradiated pipe. Also, the cycle to fatigue failure was seen to decrease as with EB irradiation in the high stress range, ∆σ=(16 MPa to 10.8 MPa); however, 500 kGy EB irradiated samples showed longer cycles to failure than the un-irradiated specimens at the stress range below 9.9 MPa and the corresponding initial stress intensity factor (∆KI,0)=0.712 MPa m1/2. The fracture surface morphology indicated that the cross-linked network in 500 kGy EB irradiated PE pipe can endure low dynamic load more effectively than the parent pipe.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970024877','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970024877"><span>Insoluble Coatings for Stirling Engine Heat Pipe Condenser Surfaces</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Dussinger, Peter M.; Lindemuth, James E.</p> <p>1997-01-01</p> <p>The principal objective of this Phase 2 SBIR program was to develop and demonstrate a practically insoluble coating for nickel-based superalloys for Stirling engine heat pipe applications. Specific technical objectives of the program were: (1) Determine the solubility corrosion rates for Nickel 200, Inconel 718, and Udimet 72OLI in a simulated Stirling engine heat pipe environment, (2) Develop coating processes and techniques for capillary groove and screen wick structures, (3) Evaluate the durability and solubility corrosion rates for capillary groove and screen wick structures coated with an insoluble coating in cylindrical heat pipes operating under Stirling engine conditions, and (4) Design and fabricate a coated full-scale, partial segment of the current Stirling engine heat pipe for the Stirling Space Power Convertor program. The work effort successfully demonstrated a two-step nickel aluminide coating process for groove wick structures and interior wall surfaces in contact with liquid metals; demonstrated a one-step nickel aluminide coating process for nickel screen wick structures; and developed and demonstrated a two-step aluminum-to-nickel aluminide coating process for nickel screen wick structures. In addition, the full-scale, partial segment was fabricated and the interior surfaces and wick structures were coated. The heat pipe was charged with sodium, processed, and scheduled to be life tested for up to ten years as a Phase 3 effort.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950026006','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950026006"><span>Baseline experimental investigation of an electrohydrodynamically assisted heat pipe</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Duncan, A. B.</p> <p>1995-01-01</p> <p>The increases in power demand and associated thermal management requirements of future space programs such as potential Lunar/Mars missions will require enhancing the operating efficiencies of thermal management devices. Currently, the use of electrohydrodynamically (EHD) assisted thermal control devices is under consideration as a potential method of increasing thermal management system capacity. The objectives of the currently described investigation included completing build-up of the EHD-Assisted Heat Pipe Test bed, developing test procedures for an experimental evaluation of the unassisted heat pipe, developing an analytical model capable of predicting the performance limits of the unassisted heat pipe, and obtaining experimental data which would define the performance characteristics of the unassisted heat pipe. The information obtained in the currently proposed study will be used in order to provide extensive comparisons with the EHD-assisted performance observations to be obtained during the continuing investigation of EHD-Assisted heat transfer devices. Through comparisons of the baseline test bed data and the EHD assisted test bed data, accurate insight into the performance enhancing characteristics of EHD augmentation may be obtained. This may lead to optimization, development, and implementation of EHD technology for future space programs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21905215','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21905215"><span>A simplified in vivo approach for evaluating the bioabsorbable behavior of candidate stent materials.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pierson, Daniel; Edick, Jacob; Tauscher, Aaron; Pokorney, Ellen; Bowen, Patrick; Gelbaugh, Jesse; Stinson, Jon; Getty, Heather; Lee, Chee Huei; Drelich, Jaroslaw; Goldman, Jeremy</p> <p>2012-01-01</p> <p>Metal stents are commonly used to revascularize occluded arteries. A bioabsorbable metal stent that harmlessly erodes away over time may minimize the normal chronic risks associated with permanent implants. However, there is no simple, low-cost method of introducing candidate materials into the arterial environment. Here, we developed a novel experimental model where a biomaterial wire is implanted into a rat artery lumen (simulating bioabsorbable stent blood contact) or artery wall (simulating bioabsorbable stent matrix contact). We use this model to clarify the corrosion mechanism of iron (≥99.5 wt %), which is a candidate bioabsorbable stent material due to its biocompatibility and mechanical strength. We found that iron wire encapsulation within the arterial wall extracellular matrix resulted in substantial biocorrosion by 22 days, with a voluminous corrosion product retained within the vessel wall at 9 months. In contrast, the blood-contacting luminal implant experienced minimal biocorrosion at 9 months. The importance of arterial blood versus arterial wall contact for regulating biocorrosion was confirmed with magnesium wires. We found that magnesium was highly corroded when placed in the arterial wall but was not corroded when exposed to blood in the arterial lumen for 3 weeks. The results demonstrate the capability of the vascular implantation model to conduct rapid in vivo assessments of vascular biomaterial corrosion behavior and to predict long-term biocorrosion behavior from material analyses. The results also highlight the critical role of the arterial environment (blood vs. matrix contact) in directing the corrosion behavior of biodegradable metals. Copyright © 2011 Wiley Periodicals, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1394112-corrosion-resistance-mcralx-coatings-molten-chloride-thermal-storage-concentrating-solar-power-applications','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1394112-corrosion-resistance-mcralx-coatings-molten-chloride-thermal-storage-concentrating-solar-power-applications"><span>Corrosion resistance of MCrAlX coatings in a molten chloride for thermal storage in concentrating solar power applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Gomez-Vidal, Judith C.</p> <p>2017-09-18</p> <p>Corrosion evaluations of Incoloy 800 H (In800H) and stainless steel AISI 310 (310SS), in bare and coated conditions, were performed in 34.42 wt% NaCl – 55.47 wt% KCl at 700 °C in a nitrogen atmosphere. This NaCl–KCl composition has a melting point of 657 °C, which makes it suitable for latent-heat thermal energy storage in concentrating solar power applications. Several nickel-based MCrAlX coatings were tested, where M = Ni and/or Co and X = Y, Ta, Hf, and/or Si. Electrochemical testing was carried out to determine corrosion rates. The bare In800H and 310SS alloys corroded rapidly (~2500 and 4500 µm/yr,more » respectively, assuming uniform corrosion). Concentrating solar power plants need containment materials with a lifetime of at least 30 years; thus, these corrosion rates are excessive. Corrosion mitigation approaches are being investigated to obtain degradation on the order of 20 µm/yr or lower. The lowest corrosion rate of 190 µm/yr was obtained for atmospheric plasma spray NiCoCrAlY coatings pre-oxidized in air at 900 °C for 24 h with a heating/cooling rate of 0.5 °C/min. Metallographic characterization of the corroded surfaces showed that the formation of a uniform thin alumina scale before exposure to the molten chloride system considerably reduced the corrosion of the alloy. However, the rates of corrosion determined herein are considerable, highlighting the relevance of testing materials durability in solar power applications.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1394112','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1394112"><span>Corrosion resistance of MCrAlX coatings in a molten chloride for thermal storage in concentrating solar power applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Gomez-Vidal, Judith C.</p> <p></p> <p>Corrosion evaluations of Incoloy 800 H (In800H) and stainless steel AISI 310 (310SS), in bare and coated conditions, were performed in 34.42 wt% NaCl – 55.47 wt% KCl at 700 °C in a nitrogen atmosphere. This NaCl–KCl composition has a melting point of 657 °C, which makes it suitable for latent-heat thermal energy storage in concentrating solar power applications. Several nickel-based MCrAlX coatings were tested, where M = Ni and/or Co and X = Y, Ta, Hf, and/or Si. Electrochemical testing was carried out to determine corrosion rates. The bare In800H and 310SS alloys corroded rapidly (~2500 and 4500 µm/yr,more » respectively, assuming uniform corrosion). Concentrating solar power plants need containment materials with a lifetime of at least 30 years; thus, these corrosion rates are excessive. Corrosion mitigation approaches are being investigated to obtain degradation on the order of 20 µm/yr or lower. The lowest corrosion rate of 190 µm/yr was obtained for atmospheric plasma spray NiCoCrAlY coatings pre-oxidized in air at 900 °C for 24 h with a heating/cooling rate of 0.5 °C/min. Metallographic characterization of the corroded surfaces showed that the formation of a uniform thin alumina scale before exposure to the molten chloride system considerably reduced the corrosion of the alloy. However, the rates of corrosion determined herein are considerable, highlighting the relevance of testing materials durability in solar power applications.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21536201','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21536201"><span>Comparison of friction force between corroded and noncorroded titanium nitride plating of metal brackets.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kao, Chia-Tze; Guo, Jia-Uei; Huang, Tsui-Hsien</p> <p>2011-05-01</p> <p>Titanium nitride (TiN) plating is a method to prevent metal corrosion and can increase the surface smoothness. The purpose of this study was to evaluate the friction forces between the orthodontic bracket, with or without TiN plating, and stainless steel wire after it was corroded in fluoride-containing solution. In total, 540 metal brackets were divided into a control group and a TiN-coated experimental group. The electrochemical corrosion was performed in artificial saliva with 1.23% acidulated phosphate fluoride (APF) as the electrolytes. Static and kinetic friction were measured by an EZ-test machine (Shimadazu, Tokyo, Japan) with a crosshead speed of 10 mm per minute over a 5-mm stretch of stainless steel archwire. The data were analyzed by using unpaired t test and analysis of variance (ANOVA). Both the control and TiN-coated groups' corrosion potential was higher with 1.23% APF solution than with artificial solution (P <0.05). In brackets without corrosion, both the static and kinetic friction force between the control and TiN-coated brackets groups showed a statistically significant difference (P <0.05). In brackets with corrosion, the control group showed no statistical difference on kinetic or static friction. The TiN-coated brackets showed a statistical difference (P <0.05) on kinetic and static friction in different solutions. TiN-coated metal brackets, with corrosion or without corrosion, cannot reduce the frictional force. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1035251','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1035251"><span>Innovative Acoustic Sensor Technologies for Leak Detection in Challenging Pipe Types</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2016-12-30</p> <p>consuming field surveys using sounders (listening sticks) that relied heavily upon operator skill or noise correlators that were tuned for finding leaks...installation and setup cost • Annual service fee Periodic Inspection Deployed in a “lift and shift” survey using acoustic cross- correlation ...the correlator , a zero reading is displayed and one of the sensors can be placed to evaluate the next pipe segment in the field survey . Table 2</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA580220','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA580220"><span>Critical Evaluation of State-of-the-Art In Situ Thermal Treatment Technologies for DNAPL Source Zone Treatment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2010-01-01</p> <p>from steel pipe , copper plate for heating distinct zones and sheet pile. Sheet pile electrodes allow for quick installation with little to no drilling...as electrodes. Electrodes constructed using Thermal Remediation Services - Electrical Resistance Heating ER-0314 18 Appendix B steel pipe are...who authored state- of-the-art descriptions for the most common in-situ thermal technologies currently employed:  Electrical Resistance Heating</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017E%26ES...87h2044S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017E%26ES...87h2044S"><span>Justification of indirect methods of bending stresses polyethylene pipes evaluation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Serebrennikov, A. A.; Serebrennikov, D. A.; Hakimov, Z. R.</p> <p>2017-10-01</p> <p>The world and Russian companies have a long experience of the polyethylene pipeline installation and operation. At the same time, the significant attention is paid to the improvement of the relevant machines and the production technology. The polyethylene pipeline installation experience proves that its operation properties (reliability and durability) depend on physical and mechanical characteristics of polyethylene, which should be saved during its installation. Defects can occur, including in cases when the pipe is subjected to the significant bending stresses during installation. To evaluate these stresses, including when exposed to cold weather conditions, an indirect method based on the relationship between strength characteristics and occurred deformations is proposed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AIPC.1244..232B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AIPC.1244..232B"><span>Calculation of Local Stress and Fatigue Resistance due to Thermal Stratification on Pressurized Surge Line Pipe</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bandriyana, B.; Utaja</p> <p>2010-06-01</p> <p>Thermal stratification introduces thermal shock effect which results in local stress and fatique problems that must be considered in the design of nuclear power plant components. Local stress and fatique calculation were performed on the Pressurize Surge Line piping system of the Pressurize Water Reactor of the Nuclear Power Plant. Analysis was done on the operating temperature between 177 to 343° C and the operating pressure of 16 MPa (160 Bar). The stagnant and transient condition with two kinds of stratification model has been evaluated by the two dimensional finite elements method using the ANSYS program. Evaluation of fatigue resistance is developed based on the maximum local stress using the ASME standard Code formula. Maximum stress of 427 MPa occurred at the upper side of the top half of hot fluid pipe stratification model in the transient case condition. The evaluation of the fatigue resistance is performed on 500 operating cycles in the life time of 40 years and giving the usage value of 0,64 which met to the design requirement for class 1 of nuclear component. The out surge transient were the most significant case in the localized effects due to thermal stratification.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2012/1059/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2012/1059/"><span>Foraging ecology of least terns and piping plovers nesting on Central Platte River sandpits and sandbars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Sherfy, Mark H.; Anteau, Michael J.; Shaffer, Terry L.; Sovada, Marsha A.; Stucker, Jennifer H.</p> <p>2012-01-01</p> <p>Federally listed least terns (Sternula antillarum) and piping plovers (Charadrius melodus) nest on riverine sandbars on many major midcontinent river systems. On the Central Platte River, availability of sandbar habitat is limited, and both species nest on excavated sandpits in the river's floodplain. However, the extent to which sandpit-nesting birds use riverine habitats for foraging is unknown. We evaluated use of foraging habitats by least terns and piping plovers by collecting data on movements, behavior, foraging habitat, and productivity. We radiomarked 16 piping plovers and 23 least terns in 2009-2010 and monitored their movements using a network of fixed telemetry dataloggers. Piping plovers were detected primarily by the datalogger located in their nesting sandpit, whereas least terns were more frequently detected on dataloggers outside of the nesting sandpit. Telemetry data and behavioral observations showed that least terns tended to concentrate at the Kearney Canal Diversion Gates, where forage fish were apparently readily available. Fish sampling data suggested that forage fish were more abundant in riverine than in sandpit habitats, and behavioral observations showed that least terns foraged more frequently in riverine than in sandpit habitats. Piping plovers tended to forage in wet substrates along sandpit shorelines, but also used dry substrates and sandpit interior habitats. The greater mobility of least terns makes a wider range of potential foraging habitats available during brood rearing, making them able to exploit concentrations of fish outside the nesting colony. Thus, our data suggest that different spatial scales should be considered in managing nesting and foraging habitat complexes for piping plovers and least terns.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..1211439J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..1211439J"><span>The iron source in phreatomagmatic pipes in the Tunguska Basin (eastern Siberia): insights into hydrothermal-metasomatic leaching processes from Fe isotopes, microstructures, and mass balances.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>John, Timm; Svensen, Henrik; Weyer, Stefan; Polozov, Alexander; Planke, Sverre</p> <p>2010-05-01</p> <p>The Siberian iron-bearing phreatomagmatic pipes represent world class Fe-ore deposit, and 5-6 are currently mined in eastern Siberia. The pipes formed within the vast Tunguska Basin, cutting thick accumulations of carbonates (dolostones) and evaporites (anhydrite, halite, dolostone). These sediments were intruded by the sub-volcanic part of the Siberian Traps at 252 Ma, and sills and dykes are abundant throughout the basin. The pipes formed during sediment-magma interactions in the deep parts of the basin, and the degassing is believed to have triggered the end-Permian environmental crisis. A major problem with understanding the pipe formation is related to the source of iron. Available hypotheses state that the iron was leached from a Fe-enriched magmatic melt that incorporated dolostones. It is currently unclear how the magmatic, hydrothermal, and sedimentary processes interacted to form the deposits, as there are no actual constraints to pin down the iron source. We hypothesize two end-member scenarios to account for the magnetite enrichment and deposition, which is testable by analyzing Fe-isotopes of magnetite: 1) Iron sourced from dolerite magma through leaching and metasomatism by chloride brines. 2) Leaching of iron from sedimentary rocks (shale, dolostone) during magma-sediment interactions. We focus on understanding the Fe-isotopic architecture of the pipes in order constrain the source of the Fe and the mechanism that caused this significant Fe redistribution. We further evaluate possible fractionation during fast metasomatic ore-forming process that took place soon after pipe formation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110008315','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110008315"><span>Design of Refractory Metal Heat Pipe Life Test Environment Chamber, Cooling System, and Radio Frequency Heating System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Martin, J. J.; Bragg-Sitton, S. M.; Reid, R. S.; Stewart, E. T.; Davis, J. D.</p> <p>2011-01-01</p> <p>A series of 16 Mo-44.5%Re alloy/sodium heat pipes will be experimentally tested to examine heat pipe aging. To support this evaluation, an environmental test chamber and a number of auxiliary subsystems are required. These subsystems include radio frequency (RF) power supplies/inductive coils, recirculation water coolant loops, and chamber gas conditioning. The heat pipes will be grouped, based on like power and gas mixture requirements, into three clusters of five units each, configured in a pentagonal arrangement. The highest powered heat pipe will be tested separately. Test chamber atmospheric purity is targeted at <0.3 ppb oxygen at an approximate operating pressure of 76 torr (.1.5 psia), maintained by active purification (oxygen level is comparable to a 10(exp -6) torr environment). Treated water will be used in two independent cooling circuits to remove .85 kW. One circuit will service the RF hardware while the other will maintain the heat pipe calorimetry. Initial procedures for the startup and operation of support systems have been identified. Each of these subsystems is outfitted with a variety of instrumentation, integrated with distributed real-time controllers and computers. A local area network provides communication between all devices. This data and control network continuously monitors the health of the test hardware, providing warning indicators followed by automatic shutdown should potentially damaging conditions develop. During hardware construction, a number of checkout tests.many making use of stainless steel prototype heat pipes that are already fabricated.will be required to verify operation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28006758','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28006758"><span>Effects of brining on the corrosion of ZVI and its subsequent As(III/V) and Se(IV/VI) removal from water.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yang, Zhe; Xu, Hui; Shan, Chao; Jiang, Zhao; Pan, Bingcai</p> <p>2017-03-01</p> <p>Zero-valent iron (ZVI) has been extensively applied in water remediation, and most of the ZVI materials employed in practical applications are iron scraps, which have usually been corroded to certain extent under different conditions. In this study, the effects of brining with six solutions (NaCl, Na 2 SO 4 , NaHCO 3 , Na 2 SiO 3 , NH 4 Cl, and NaH 2 PO 4 ) on the corrosion of ZVI and its performance in the removal of As(III/V)/Se(IV/VI) were systematically investigated. All the studied solutions enhanced the corrosion of ZVI except for Na 2 SiO 3 , and the degrees of corrosion followed the order of NH 4 Cl > NaH 2 PO 4  > Na 2 SO 4  > NaCl > NaHCO 3  > H 2 O > Na 2 SiO 3 . The corrosion products derived from ZVI were identified by SEM and XRD, and the dominant corrosion products varied with the type of brine solution. The positive correlation between the degree of ZVI corrosion and As(III/V)/Se(IV/VI) removal by the pre-corroded ZVI (pcZVI) was verified. In addition, As and Se removal by pcZVI was realized via a comprehensive process including adsorption and reduction, as further supported by the XPS analysis. We believe this study will shed new light upon the selection of iron materials pre-corroded under different saline conditions for practical water remediation. Copyright © 2016 Elsevier Ltd. All rights reserved.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=59521&Lab=NRMRL&keyword=chemistry+AND+engineers&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=59521&Lab=NRMRL&keyword=chemistry+AND+engineers&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>PHOSPHATE CHEMICALS FOR BUILDING POTABLE WATER TREATMENT</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Buildings can contribute significant quantities of trace metal contamination to drinking water, particularly lead, copper and zinc. Discolored water may also result in corroded galvanized and steel plumbing and after prolonged stagnation times. To protect human health as well as ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/32871','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/32871"><span>Route 139 rehabilitation : Pulaski Skyway contract 2 : final report.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2017-06-01</p> <p>After being outside and exposed to the elements during many years of service, concrete and the reinforcement within begins to deteriorate and corrode, which affects the performance of concrete bridge balustrades, especially those built in the 1930...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/22619','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/22619"><span>Research notes : washing bridges to reduce corrosion.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2003-12-01</p> <p>Reinforced concrete bridges on Oregons coast are exposed to chloride ions from marine salt that penetrate into the concrete and cause the reinforcing steel to corrode. The corrosion causes the concrete to spall from the bridge and also reduces the...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/29071','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/29071"><span>Laboratory investigation of concrete beam-end treatments : [tech transfer summary].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2015-05-01</p> <p>The ends of prestressed concrete beams located under bridge expansion : joints are often exposed to extended periods of moisture and chlorides. This : exposure can cause the beam ends to deteriorate prematurely, corrode the : prestressing strands, de...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5842328-performance-variances-galvanized-steel-mortar-concrete','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5842328-performance-variances-galvanized-steel-mortar-concrete"><span>Performance variances of galvanized steel in mortar and concrete</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hime, W.G.; Machin, M.</p> <p></p> <p>Mild steel is used as reinforcement in concrete structures because it is passivated by the highly alkaline cement paste system, preventing typical corrosion. Two processes can corrode the initially passivated steel: air carbonation and chloride (Cl[sup [minus</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19870007315','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19870007315"><span>Advanced thermal energy management: A thermal test bed and heat pipe simulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Barile, Ronald G.</p> <p>1986-01-01</p> <p>Work initiated on a common-module thermal test simulation was continued, and a second project on heat pipe simulation was begun. The test bed, constructed from surplus Skylab equipment, was modeled and solved for various thermal load and flow conditions. Low thermal load caused the radiator fluid, Coolanol 25, to thicken due to its temperature avoided by using a regenerator-heat-exchanger. Other possible solutions modeled include a radiator heater and shunting heat from the central thermal bus to the radiator. Also, module air temperature can become excessive with high avionics load. A second preoject concerning advanced heat pipe concepts was initiated. A program was written which calculates fluid physical properties, liquid and vapor pressure in the evaporator and condenser, fluid flow rates, and thermal flux. The program is directed to evaluating newer heat pipe wicks and geometries, especially water in an artery surrounded by six vapor channels. Effects of temperature, groove and slot dimensions, and wick properties are reported.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20020039696&hterms=power+cables&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dpower%2Bcables','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20020039696&hterms=power+cables&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dpower%2Bcables"><span>Heat Transfer Study for HTS Power Transfer Cables</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Augustynowicz, S.; Fesmire, J.</p> <p>2002-01-01</p> <p>Thermal losses are a key factor in the successful application of high temperature superconducting (HTS) power cables. Existing concepts and prototypes rely on the use of multilayer insulation (MLI) systems that are subject to large variations in actual performance. The small space available for the thermal insulation materials makes the application even more difficult because of bending considerations, mechanical loading, and the arrangement between the inner and outer piping. Each of these mechanical variables affects the heat leak rate. These factors of bending and spacing are examined in this study. Furthermore, a maintenance-free insulation system (high vacuum level for 20 years or longer) is a practical requirement. A thermal insulation system simulating a section of a flexible FITS power cable was constructed for test and evaluation on a research cryostat. This paper gives experimental data for the comparison of ideal MLI, MLI on rigid piping, and MLI between flexible piping. A section of insulated flexible piping was tested under cryogenic vacuum conditions including simulated bending and spacers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19770029955&hterms=Thermal+power+plant&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DThermal%2Bpower%2Bplant','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19770029955&hterms=Thermal+power+plant&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DThermal%2Bpower%2Bplant"><span>Economic optimization of the energy transport component of a large distributed solar power plant</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Turner, R. H.</p> <p>1976-01-01</p> <p>A solar thermal power plant with a field of collectors, each locally heating some transport fluid, requires a pipe network system for eventual delivery of energy power generation equipment. For a given collector distribution and pipe network geometry, a technique is herein developed which manipulates basic cost information and physical data in order to design an energy transport system consistent with minimized cost constrained by a calculated technical performance. For a given transport fluid and collector conditions, the method determines the network pipe diameter and pipe thickness distribution and also insulation thickness distribution associated with minimum system cost; these relative distributions are unique. Transport losses, including pump work and heat leak, are calculated operating expenses and impact the total system cost. The minimum cost system is readily selected. The technique is demonstrated on six candidate transport fluids to emphasize which parameters dominate the system cost and to provide basic decision data. Three different power plant output sizes are evaluated in each case to determine severity of diseconomy of scale.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ApCM...25..321W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ApCM...25..321W"><span>Finite-Element Analysis of Crack Arrest Properties of Fiber Reinforced Composites Application in Semi-Elliptical Cracked Pipelines</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Linyuan; Song, Shulei; Deng, Hongbo; Zhong, Kai</p> <p>2018-04-01</p> <p>In nowadays, repair method using fiber reinforced composites as the mainstream pipe repair technology, it can provide security for X100 high-grade steel energy long-distance pipelines in engineering. In this paper, analysis of cracked X100 high-grade steel pipe was conducted, simulation analysis was made on structure of pipes and crack arresters (CAs) to obtain the J-integral value in virtue of ANSYS Workbench finite element software and evaluation on crack arrest effects was done through measured elastic-plastic fracture mechanics parameter J-integral and the crack arrest coefficient K, in a bid to summarize effect laws of composite CAs and size of pipes and cracks for repairing CAs. The results indicate that the K value is correlated with laying angle λ, laying length L2/D1, laying thickness T1/T2of CAs, crack depth c/T1 and crack length a/c, and calculate recommended parameters for repairing fiber reinforced composite CAs in terms of two different crack forms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhFl...30e5101F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhFl...30e5101F"><span>Further experiments for mean velocity profile of pipe flow at high Reynolds number</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Furuichi, N.; Terao, Y.; Wada, Y.; Tsuji, Y.</p> <p>2018-05-01</p> <p>This paper reports further experimental results obtained in high Reynolds number actual flow facility in Japan. The experiments were performed in a pipe flow with water, and the friction Reynolds number was varied up to Reτ = 5.3 × 104. This high Reynolds number was achieved by using water as the working fluid and adopting a large-diameter pipe (387 mm) while controlling the flow rate and temperature with high accuracy and precision. The streamwise velocity was measured by laser Doppler velocimetry close to the wall, and the mean velocity profile, called log-law profile U+ = (1/κ) ln(y+) + B, is especially focused. After careful verification of the mean velocity profiles in terms of the flow rate accuracy and an evaluation of the consistency of the present results with those from previously measurements in a smaller pipe (100 mm), it was found that the value of κ asymptotically approaches a constant value of κ = 0.384.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1344668-evaluation-ultrasonic-phased-array-detection-planar-flaws-high-density-polyethylene-hdpe-butt-fusion-joints','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1344668-evaluation-ultrasonic-phased-array-detection-planar-flaws-high-density-polyethylene-hdpe-butt-fusion-joints"><span>EVALUATION OF ULTRASONIC PHASED-ARRAY FOR DETECTION OF PLANAR FLAWS IN HIGH-DENSITY POLYETHYLENE (HDPE) BUTT-FUSION JOINTS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Prowant, Matthew S.; Denslow, Kayte M.; Moran, Traci L.</p> <p>2016-09-21</p> <p>The desire to use high-density polyethylene (HDPE) piping in buried Class 3 service and cooling water systems in nuclear power plants is primarily motivated by the material’s high resistance to corrosion relative to that of steel and metal alloys. The rules for construction of Class 3 HDPE pressure piping systems were originally published in Code Case N-755 and were recently incorporated into the American Society of Mechanical Engineers Boiler and Pressure Vessel Code (ASME BPVC) Section III as Mandatory Appendix XXVI (2015 Edition). The requirements for HDPE examination are guided by criteria developed for metal pipe and are based onmore » industry-led HDPE research or conservative calculations.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1167129','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1167129"><span>Corrosion impact of reductant on DWPF and downstream facilities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Mickalonis, J. I.; Imrich, K. J.; Jantzen, C. M.</p> <p>2014-12-01</p> <p>Glycolic acid is being evaluated as an alternate reductant in the preparation of high level waste for the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS). During processing, the glycolic acid is not completely consumed and small quantities of the glycolate anion are carried forward to other high level waste (HLW) facilities. The impact of the glycolate anion on the corrosion of the materials of construction throughout the waste processing system has not been previously evaluated. A literature review had revealed that corrosion data in glycolate-bearing solution applicable to SRS systems were not available. Therefore, testing wasmore » recommended to evaluate the materials of construction of vessels, piping and components within DWPF and downstream facilities. The testing, conducted in non-radioactive simulants, consisted of both accelerated tests (electrochemical and hot-wall) with coupons in laboratory vessels and prototypical tests with coupons immersed in scale-up and mock-up test systems. Eight waste or process streams were identified in which the glycolate anion might impact the performance of the materials of construction. These streams were 70% glycolic acid (DWPF feed vessels and piping), SRAT/SME supernate (Chemical Processing Cell (CPC) vessels and piping), DWPF acidic recycle (DWPF condenser and recycle tanks and piping), basic concentrated recycle (HLW tanks, evaporators, and transfer lines), salt processing (ARP, MCU, and Saltstone tanks and piping), boric acid (MCU separators), and dilute waste (HLW evaporator condensate tanks and transfer line and ETF components). For each stream, high temperature limits and worst-case glycolate concentrations were identified for performing the recommended tests. Test solution chemistries were generally based on analytical results of actual waste samples taken from the various process facilities or of prototypical simulants produced in the laboratory. The materials of construction for most vessels, components and piping were not impacted with the presence of glycolic acid or the impact is not expected to affect the service life. However, the presence of the glycolate anion was found to affect corrosion susceptibility of some materials of construction in the DWPF and downstream facilities, especially at elevated temperatures. The following table summarizes the results of the electrochemical and hot wall testing and indicates expected performance in service with the glycolate anion present.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110014483','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110014483"><span>Design for On-Sun Evaluation of Evaporator Receivers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jaworske, Donald A.; Colozza, Anthony; Sechkar, Edward A.</p> <p>2011-01-01</p> <p>A heat pipe designed for operation as a solar power receiver should be optimized to accept the solar energy flux and transfer this heat into a reactor. Optical properties of the surface, thermal conductance of the receiver wall, contact resistance of the heat pipe wick, and other heat pipe wick properties ultimately define the maximum amount of power that can be extracted from the concentrated sunlight impinging on the evaporator surface. Modeling of solar power receivers utilizing optical and physical properties provides guidance to their design. On-sun testing is another important means of gathering information on performance. A test rig is being designed and built to conduct on-sun testing. The test rig is incorporating a composite strip mirror concentrator developed as part of a Small Business Innovative Research effort and delivered to NASA Glenn Research Center. In the strip concentrator numerous, lightweight composite parabolic strips of simple curvature were combined to form an array 1.5 m x 1.5 m in size. The line focus of each strip is superimposed in a central area simulating a point of focus. A test stand is currently being developed to hold the parabolic strip concentrator, track the sun, and turn the beam downward towards the ground. The hardware is intended to be sufficiently versatile to accommodate on-sun testing of several receiver concepts, including those incorporating heat pipe evaporators. Characterization devices are also being developed to evaluate the effectiveness of the solar concentrator, including a receiver designed to conduct calorimetry. This paper describes the design and the characterization devices of the on-sun test rig, and the prospect of coupling the concentrated sunlight to a heat pipe solar power receiver developed as part of another Small Business Innovative Research effort.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4083634','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4083634"><span>Experimentation with and knowledge regarding water-pipe tobacco smoking among medical students at a major university in Brazil*, **</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Martins, Stella Regina; Paceli, Renato Batista; Bussacos, Marco Antônio; Fernandes, Frederico Leon Arrabal; Prado, Gustavo Faibischew; Lombardi, Elisa Maria Siqueira; Terra-Filho, Mário; Santos, Ubiratan Paula</p> <p>2014-01-01</p> <p>OBJECTIVE: Water-pipe tobacco smoking is becoming increasingly more common among young people. The objective of this study was to estimate the prevalence of the use of water pipes and other forms of tobacco use, including cigarette smoking, among medical students, as well as to examine the attitudes, beliefs, and knowledge of those students regarding this issue. METHODS: We administered a questionnaire to students enrolled in the University of São Paulo School of Medicine, in São Paulo, Brazil. The respondents were evaluated in their third and sixth years of medical school, between 2008 and 2013. Comparisons were drawn between the two years. RESULTS: We evaluated 586 completed questionnaires. Overall, the prevalence of current cigarette smokers was low, with a decline among males (9.78% vs. 5.26%) and an increase among females (1.43% vs. 2.65%) in the 3rd and 6th year, respectively. All respondents believed that health professionals should advise patients to quit smoking. However, few of the medical students who smoked received physician advice to quit. Experimentation with other forms of tobacco use was more common among males (p<0.0001). Despite their knowledge of its harmful effects, students experimented with water-pipe tobacco smoking in high proportions (47.32% and 46.75% of the third- and sixth-year students, respectively). CONCLUSIONS: The prevalence of experimentation with water-pipe tobacco smoking and other forms of tobacco use is high among aspiring physicians. Our findings highlight the need for better preventive education programs at medical schools, not only to protect the health of aspiring physicians but also to help them meet the challenge posed by this new epidemic. PMID:24831393</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120012960','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120012960"><span>Structural Dynamic Assessment of the GN2 Piping System for NASA's New and Powerful Reverberant Acoustic Test Facility</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>McNelis, Mark E.; Staab, Lucas D.; Akers, James C.; Hughes, William O.; Chang, Li C.; Hozman, Aron D.; Henry, Michael W.</p> <p>2012-01-01</p> <p>The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) has led the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC's Plum Brook Station in Sandusky, Ohio, USA from 2007 to 2011. SAIC-Benham has completed construction of a new reverberant acoustic test facility to support the future testing needs of NASA's space exploration program and commercial customers. The large Reverberant Acoustic Test Facility (RATF) is approximately 101,000 cubic feet in volume and was designed to operate at a maximum empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world s known active reverberant acoustic test facilities. Initial checkout acoustic testing was performed on March 2011 by SAIC-Benham at test levels up to 161 dB OASPL. During testing, several branches of the gaseous nitrogen (GN2) piping system, which supply the fluid to the noise generating acoustic modulators, failed at their T-junctions connecting the 12 in. supply line to their respective 4 in. branch lines. The problem was initially detected when the oxygen sensors in the horn room indicated a lower than expected oxygen level from which was inferred GN2 leaks in the piping system. In subsequent follow up inspections, cracks were identified in the failed T-junction connections through non-destructive evaluation testing. Through structural dynamic modeling of the piping system, the root cause of the T-junction connection failures was determined. The structural dynamic assessment identified several possible corrective design improvements to the horn room piping system. The effectiveness of the chosen design repairs were subsequently evaluated in September 2011 during acoustic verification testing to 161 dB OASPL.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120016846','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120016846"><span>Structural Dynamic Assessment of the GN2 Piping System for NASA's New and Powerful Reverberant Acoustic Test Facility</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>McNelis, Mark E.; Staab, Lucas D.; Akers, James C.; Hughes, WIlliam O.; Chang, Li, C.; Hozman, Aron D.; Henry, Michael W.</p> <p>2012-01-01</p> <p>The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) has led the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC's Plum Brook Station in Sandusky, Ohio, USA from 2007-2011. SAIC-Benham has completed construction of a new reverberant acoustic test facility to support the future testing needs of NASA's space exploration program and commercial customers. The large Reverberant Acoustic Test Facility (RATF) is approximately 101,000 cu ft in volume and was designed to operate at a maximum empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world's known active reverberant acoustic test facilities. Initial checkout acoustic testing was performed on March 2011 by SAIC-Benham at test levels up to 161 dB OASPL. During testing, several branches of the gaseous nitrogen (GN2) piping system, which supply the fluid to the noise generating acoustic modulators, failed at their "t-junctions" connecting the 12 inch supply line to their respective 4 inch branch lines. The problem was initially detected when the oxygen sensors in the horn room indicated a lower than expected oxygen level from which was inferred GN2 leaks in the piping system. In subsequent follow up inspections, cracks were identified in the failed "t-junction" connections through non-destructive evaluation testing . Through structural dynamic modeling of the piping system, the root cause of the "t-junction" connection failures was determined. The structural dynamic assessment identified several possible corrective design improvements to the horn room piping system. The effectiveness of the chosen design repairs were subsequently evaluated in September 2011 during acoustic verification testing to 161 dB OASPL.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA564146','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA564146"><span>Evaluation of Jet Fuel Induced Hearing Loss in Rats</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2011-10-13</p> <p>flow of approximately 20 liters per minute (lpm) through the nebulizer. This air flow coupled with the nebulizer nozzle design created an...inch PVC pipe contained the spray pattern. The pipe was initially reduced in size to accept an orifice plate which can be used to measure flow rate...chamber flow . Two drain ports were used to remove residual jet fuel which accumulated after a day‟s exposure. To achieve the 10 1500 mg/m 3</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1982STIN...8310299A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1982STIN...8310299A"><span>Rain fall data for the design of sewer pipe systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Arnell, V.</p> <p>1982-03-01</p> <p>A comparison of designs of sewer pipes for different types of rainfall data is presented. Local coefficients were evaluated from an 18-year historical rainfall record for the following design storms: The Average-Intensity-Duration Design Storm, The Chicago Design Storm, The Sifalda Design Storm, The Illinois State Water Survey Design Storm, and The Flood Studies Report Design Storm. Historical rainfalls as well as the above design storms were used for the calculations of peak-flow values.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29370137','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29370137"><span>Impact of an Outdoor Smoking Ban at Secondary Schools on Cigarettes, E-Cigarettes and Water Pipe Use among Adolescents: An 18-Month Follow-Up.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rozema, Andrea D; Hiemstra, Marieke; Mathijssen, Jolanda J P; Jansen, Maria W J; van Oers, Hans J A M</p> <p>2018-01-25</p> <p>Abstract : The effectiveness of outdoor smoking bans on smoking behavior among adolescents remains inconclusive. This study evaluates the long-term impact of outdoor school ground smoking bans among adolescents at secondary schools on the use of conventional cigarettes, e-cigarettes (with/without nicotine) and water pipes. Outdoor smoking bans at 19 Dutch secondary schools were evaluated using a quasi-experimental design. Data on 7733 adolescents were obtained at baseline, and at 6 and 18-month follow-up. The impact of outdoor smoking bans on 'ever use of conventional cigarettes', 'smoking onset', 'ever use of e-cigarette with nicotine', 'e-cigarette without nicotine', and 'water pipe' was measured. Multilevel logistic regression analysis was used. At schools with a ban, implementation fidelity was checked. At schools where a ban was implemented, at 18-month follow-up more adolescents had started smoking compared to the control condition. No effect of implementation of the ban was found for smoking prevalence, e-cigarettes with/without nicotine, and water pipe use. Implementation fidelity was sufficient. No long-term effects were found of an outdoor smoking ban, except for smoking onset. The ban might cause a reversal effect when schools encounter difficulties with its enforcement or when adolescents still see others smoking. Additional research is required with a longer follow-up than 18 months.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/489322','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/489322"><span>Determination of leakage areas in nuclear piping</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Keim, E.</p> <p>1997-04-01</p> <p>For the design and operation of nuclear power plants the Leak-Before-Break (LBB) behavior of a piping component has to be shown. This means that the length of a crack resulting in a leak is smaller than the critical crack length and that the leak is safely detectable by a suitable monitoring system. The LBB-concept of Siemens/KWU is based on computer codes for the evaluation of critical crack lengths, crack openings, leakage areas and leakage rates, developed by Siemens/KWU. In the experience with the leak rate program is described while this paper deals with the computation of crack openings and leakagemore » areas of longitudinal and circumferential cracks by means of fracture mechanics. The leakage areas are determined by the integration of the crack openings along the crack front, considering plasticity and geometrical effects. They are evaluated with respect to minimum values for the design of leak detection systems, and maximum values for controlling jet and reaction forces. By means of fracture mechanics LBB for subcritical cracks has to be shown and the calculation of leakage areas is the basis for quantitatively determining the discharge rate of leaking subcritical through-wall cracks. The analytical approach and its validation will be presented for two examples of complex structures. The first one is a pipe branch containing a circumferential crack and the second one is a pipe bend with a longitudinal crack.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018EPJWC.18002013C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018EPJWC.18002013C"><span>Comparison of turbulence models and CFD solution options for a plain pipe</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Canli, Eyub; Ates, Ali; Bilir, Sefik</p> <p>2018-06-01</p> <p>Present paper is partly a declaration of state of a currently ongoing PhD work about turbulent flow in a thick walled pipe in order to analyze conjugate heat transfer. An ongoing effort on CFD investigation of this problem using cylindrical coordinates and dimensionless governing equations is identified alongside a literature review. The mentioned PhD work will be conducted using an in-house developed code. However it needs preliminary evaluation by means of commercial codes available in the field. Accordingly ANSYS CFD was utilized in order to evaluate mesh structure needs and asses the turbulence models and solution options in terms of computational power versus difference signification. Present work contains a literature survey, an arrangement of governing equations of the PhD work, CFD essentials of the preliminary analysis and findings about the mesh structure and solution options. Mesh element number was changed between 5,000 and 320,000. k-ɛ, k-ω, Spalart-Allmaras and Viscous-Laminar models were compared. Reynolds number was changed between 1,000 and 50,000. As it may be expected due to the literature, k-ɛ yields more favorable results near the pipe axis and k-ωyields more convenient results near the wall. However k-ɛ is found sufficient to give turbulent structures for a conjugate heat transfer problem in a thick walled plain pipe.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1404640','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1404640"><span>Benzene, benzo(a)pyrene, and lead in smoke from tobacco products other than cigarettes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Appel, B R; Guirguis, G; Kim, I S; Garbin, O; Fracchia, M; Flessel, C P; Kizer, K W; Book, S A; Warriner, T E</p> <p>1990-01-01</p> <p>Benzene, benzo(a)pyrene (BaP), and lead in mainstream smoke from cigars, roll-your-own (RYO) cigarette and pipe tobaccos were sampled to evaluate their potential health significance. Results with reference cigarettes were consistent with published values, providing support for the methodology employed. The emissions of benzene and BaP, expressed as mass emitted per gram of tobacco consumed, were similar for all products evaluated; for benzene, the mean values for cigars, RYO cigarette and pipe tobaccos were 156 +/- 52, 68 +/- 11, and 242 +/- 126 micrograms/g, respectively. Mean values for BaP were 42 +/- 7 and 48 +/- 4 ng/g for cigars and RYO cigarette tobacco, respectively. Lead values were below the limit of reliable quantitation in all cases. The mean benzene concentrations in a puff ranged from 1 to 2 x 10(5) micrograms/m3 for cigars, RYO cigarette and pipe tobaccos. For BaP, the puff concentration averaged about 60 micrograms/m3 for cigars and RYO cigarette tobacco. The results suggest that smoking cigars, pipes or RYO cigarettes leads to potential exposures which exceed the No Significant Risk levels of benzene and BaP set pursuant to California's Proposition 65. These tobacco products are now required to bear a health hazard warning when sold in California. We recommend that this be adopted as national policy. PMID:2327532</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5090704-evaluation-flaws-carbon-steel-piping-final-report','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5090704-evaluation-flaws-carbon-steel-piping-final-report"><span>Evaluation of flaws in carbon steel piping. Final report</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zahoor, A.; Gamble, R.M.; Mehta, H.S.</p> <p>1986-10-01</p> <p>The objective of this program was to develop flaw evaluation procedures and allowable flaw sizes for ferritic piping used in light water reactor (LWR) power generation facilities. The program results provide relevant ASME Code groups with the information necessary to define flaw evaluation procedures, allowable flaw sizes, and their associated bases for Section XI of the code. Because there are several possible flaw-related failure modes for ferritic piping over the LWR operating temperature range, three analysis methods were employed to develop the evaluation procedures. These include limit load analysis for plastic collapse, elastic plastic fracture mechanics (EPFM) analysis for ductilemore » tearing, and linear elastic fracture mechanics (LEFM) analysis for non ductile crack extension. To ensure the appropriate analysis method is used in an evaluation, a step by step procedure also is provided to identify the relevant acceptance standard or procedure on a case by case basis. The tensile strength and toughness properties required to complete the flaw evaluation for any of the three analysis methods are included in the evaluation procedure. The flaw evaluation standards are provided in tabular form for the plastic collapse and ductile tearing modes, where the allowable part through flaw depth is defined as a function of load and flaw length. For non ductile crack extension, linear elastic fracture mechanics analysis methods, similar to those in Appendix A of Section XI, are defined. Evaluation flaw sizes and procedures are developed for both longitudinal and circumferential flaw orientations and normal/upset and emergency/faulted operating conditions. The tables are based on margins on load of 2.77 and 1.39 for circumferential flaws and 3.0 and 1.5 for longitudinal flaws for normal/upset and emergency/faulted conditions, respectively.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4983456','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4983456"><span>PIPE: a protein–protein interaction passage extraction module for BioCreative challenge</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Chu, Chun-Han; Su, Yu-Chen; Chen, Chien Chin; Hsu, Wen-Lian</p> <p>2016-01-01</p> <p>Identifying the interactions between proteins mentioned in biomedical literatures is one of the frequently discussed topics of text mining in the life science field. In this article, we propose PIPE, an interaction pattern generation module used in the Collaborative Biocurator Assistant Task at BioCreative V (http://www.biocreative.org/) to capture frequent protein-protein interaction (PPI) patterns within text. We also present an interaction pattern tree (IPT) kernel method that integrates the PPI patterns with convolution tree kernel (CTK) to extract PPIs. Methods were evaluated on LLL, IEPA, HPRD50, AIMed and BioInfer corpora using cross-validation, cross-learning and cross-corpus evaluation. Empirical evaluations demonstrate that our method is effective and outperforms several well-known PPI extraction methods. Database URL: PMID:27524807</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/80067','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/80067"><span>Part C: Geochemistry of Soil Samples from 50 Solution-Collapse Features on the Coconino Plateau, Northern Arizona</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Van Gosen, Bradley S.; Wenrich, Karen J.</p> <p>1991-01-01</p> <p>Soil sampling surveys were conducted during 1984-1986 across 50 solution-collapse features exposed on the Coconino Plateau of northern Arizona in order to determine whether soil geochemistry can be used to distinguish mineralized breccia pipes from unmineralized collapse features. The 50 sampled features represent the variety of collapse features that crop out on plateau surfaces in northwestern Arizonaoodeeplyorooted solution-collapse breccia pipes, near-surface gypsum collapses, and sinkholes. Of the 50 features that were sampled in this study, 3 are confirmed breccia pipes that contain significant uranium and base-metal minerals, I is believed to be a sinkhole with no economic potential, and 4 are stratabound copper deposits whose possible relationship to breccia pipes is yet to be determined. The remaining collapse features are suspected to overlie breccia pipes, although some of these may represent near surface gypsum collapse features. However, no exploratory drilling results or breccia exposures exist to indicate their underlying structure. The low cost and ease of soil sampling suggested that this technique be evaluated for breccia pipe exploration. This report provides the locations and geochemical results for the soil sampling surveys and brief descriptions of the 50 collapse features. The analytical results of almost 2,000 soil samples are provided in tabular hardcopy and dBase III Plus diskcopy format. The analytical data is provided in digital format to allow the reader to choose their own methods for evaluating the effectiveness of soil sampling over known and suspected breccia pipes. A pilot survey conducted over 17 collapse features in 1984 suggested that soil sampling might be useful in distinguishing mineralized breccia pipes from other circular features. Followup detailed surveys in 1985 and 1986 used a radial sampling pattern at each of 50 sites; at least one third of the samples were collected from areas outside of the collapse feature to provide background data. Samples were consistently collected from 3-4 inches depth after the pilot survey showed that metal concentrations were similar in samples from 3-4 inches and 7-8 inches depth. The geochemical analyses of the <80 mesh fractions of the soil samples were performed by the U.S. Geological Survey Analytical Laboratories and Geochemical Services, Inc. The analytical methods applied to these samples by the U.S. Geological Survey laboratories included inductively coupled plasma-atomic emission spectroscopy, X-ray fluorescence spectrometry, neutron activation, atomic absorption, delayed neutron activation, and classical wet chemistry for carbon, fluorine, and sulfur. Geochemical Services, Inc. analyzed the soil samples by inductively coupled plasma emission spectroscopy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/49542','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/49542"><span>Part B: Geochemistry of Soil Samples from 50 Solution-Collapse Features on the Coconino Plateau, Northern Arizona</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Van Gosen, Bradley S.; Wenrich, Karen J.</p> <p>1991-01-01</p> <p>Soil sampling surveys were conducted during 1984-1986 across 50 solution-collapse features exposed on the Coconino Plateau of northern Arizona in order to determine whether soil geochemistry can be used to distinguish mineralized breccia pipes from unmineralized collapse features. The 50 sampled features represent the variety of collapse features that crop out on plateau surfaces in northwestern Arizonaoodeeplyorooted solution-collapse breccia pipes, near-surface gypsum collapses, and sinkholes. Of the 50 features that were sampled in this study, 3 are confirmed breccia pipes that contain significant uranium and base-metal minerals, I is believed to be a sinkhole with no economic potential, and 4 are stratabound copper deposits whose possible relationship to breccia pipes is yet to be determined. The remaining collapse features are suspected to overlie breccia pipes, although some of these may represent near surface gypsum collapse features. However, no exploratory drilling results or breccia exposures exist to indicate their underlying structure. The low cost and ease of soil sampling suggested that this technique be evaluated for breccia pipe exploration. This report provides the locations and geochemical results for the soil sampling surveys and brief descriptions of the 50 collapse features. The analytical results of almost 2,000 soil samples are provided in tabular hardcopy and dBase III Plus diskcopy format. The analytical data is provided in digital format to allow the reader to choose their own methods for evaluating the effectiveness of soil sampling over known and suspected breccia pipes. A pilot survey conducted over 17 collapse features in 1984 suggested that soil sampling might be useful in distinguishing mineralized breccia pipes from other circular features. Followup detailed surveys in 1985 and 1986 used a radial sampling pattern at each of 50 sites; at least one third of the samples were collected from areas outside of the collapse feature to provide background data. Samples were consistently collected from 3-4 inches depth after the pilot survey showed that metal concentrations were similar in samples from 3-4 inches and 7-8 inches depth. The geochemical analyses of the <80 mesh fractions of the soil samples were performed by the U.S. Geological Survey Analytical Laboratories and Geochemical Services, Inc. The analytical methods applied to these samples by the U.S. Geological Survey laboratories included inductively coupled plasma-atomic emission spectroscopy, X-ray fluorescence spectrometry, neutron activation, atomic absorption, delayed neutron activation, and classical wet chemistry for carbon, fluorine, and sulfur. Geochemical Services, Inc. analyzed the soil samples by inductively coupled plasma emission spectroscopy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1991/0594a/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1991/0594a/report.pdf"><span>Geochemistry of Soil Samples from 50 Solution-Collapse Features on the Coconino Plateau, Northern Arizona</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Van Gosen, Bradley S.; Wenrich, Karen J.</p> <p>1991-01-01</p> <p>Soil sampling surveys were conducted during 1984-1986 across 50 solution-collapse features exposed on the Coconino Plateau of northern Arizona in order to determine whether soil geochemistry can be used to distinguish mineralized breccia pipes from unmineralized collapse features. The 50 sampled features represent the variety of collapse features that crop out on plateau surfaces in northwestern Arizonaoodeeplyorooted solution-collapse breccia pipes, near-surface gypsum collapses, and sinkholes. Of the 50 features that were sampled in this study, 3 are confirmed breccia pipes that contain significant uranium and base-metal minerals, I is believed to be a sinkhole with no economic potential, and 4 are stratabound copper deposits whose possible relationship to breccia pipes is yet to be determined. The remaining collapse features are suspected to overlie breccia pipes, although some of these may represent near surface gypsum collapse features. However, no exploratory drilling results or breccia exposures exist to indicate their underlying structure. The low cost and ease of soil sampling suggested that this technique be evaluated for breccia pipe exploration. This report provides the locations and geochemical results for the soil sampling surveys and brief descriptions of the 50 collapse features. The analytical results of almost 2,000 soil samples are provided in tabular hardcopy and dBase III Plus diskcopy format. The analytical data is provided in digital format to allow the reader to choose their own methods for evaluating the effectiveness of soil sampling over known and suspected breccia pipes. A pilot survey conducted over 17 collapse features in 1984 suggested that soil sampling might be useful in distinguishing mineralized breccia pipes from other circular features. Followup detailed surveys in 1985 and 1986 used a radial sampling pattern at each of 50 sites; at least one third of the samples were collected from areas outside of the collapse feature to provide background data. Samples were consistently collected from 3-4 inches depth after the pilot survey showed that metal concentrations were similar in samples from 3-4 inches and 7-8 inches depth. The geochemical analyses of the <80 mesh fractions of the soil samples were performed by the U.S. Geological Survey Analytical Laboratories and Geochemical Services, Inc. The analytical methods applied to these samples by the U.S. Geological Survey laboratories included inductively coupled plasma-atomic emission spectroscopy, X-ray fluorescence spectrometry, neutron activation, atomic absorption, delayed neutron activation, and classical wet chemistry for carbon, fluorine, and sulfur. Geochemical Services, Inc. analyzed the soil samples by inductively coupled plasma emission spectroscopy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/80068','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/80068"><span>Part D: Geochemistry of Soil Samples from 50 Solution-Collapse Features on the Coconino Plateau, Northern Arizona</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Van Gosen, Bradley S.; Wenrich, Karen J.</p> <p>1991-01-01</p> <p>Soil sampling surveys were conducted during 1984-1986 across 50 solution-collapse features exposed on the Coconino Plateau of northern Arizona in order to determine whether soil geochemistry can be used to distinguish mineralized breccia pipes from unmineralized collapse features. The 50 sampled features represent the variety of collapse features that crop out on plateau surfaces in northwestern Arizonaoodeeplyorooted solution-collapse breccia pipes, near-surface gypsum collapses, and sinkholes. Of the 50 features that were sampled in this study, 3 are confirmed breccia pipes that contain significant uranium and base-metal minerals, I is believed to be a sinkhole with no economic potential, and 4 are stratabound copper deposits whose possible relationship to breccia pipes is yet to be determined. The remaining collapse features are suspected to overlie breccia pipes, although some of these may represent near surface gypsum collapse features. However, no exploratory drilling results or breccia exposures exist to indicate their underlying structure. The low cost and ease of soil sampling suggested that this technique be evaluated for breccia pipe exploration. This report provides the locations and geochemical results for the soil sampling surveys and brief descriptions of the 50 collapse features. The analytical results of almost 2,000 soil samples are provided in tabular hardcopy and dBase III Plus diskcopy format. The analytical data is provided in digital format to allow the reader to choose their own methods for evaluating the effectiveness of soil sampling over known and suspected breccia pipes. A pilot survey conducted over 17 collapse features in 1984 suggested that soil sampling might be useful in distinguishing mineralized breccia pipes from other circular features. Followup detailed surveys in 1985 and 1986 used a radial sampling pattern at each of 50 sites; at least one third of the samples were collected from areas outside of the collapse feature to provide background data. Samples were consistently collected from 3-4 inches depth after the pilot survey showed that metal concentrations were similar in samples from 3-4 inches and 7-8 inches depth. The geochemical analyses of the <80 mesh fractions of the soil samples were performed by the U.S. Geological Survey Analytical Laboratories and Geochemical Services, Inc. The analytical methods applied to these samples by the U.S. Geological Survey laboratories included inductively coupled plasma-atomic emission spectroscopy, X-ray fluorescence spectrometry, neutron activation, atomic absorption, delayed neutron activation, and classical wet chemistry for carbon, fluorine, and sulfur. Geochemical Services, Inc. analyzed the soil samples by inductively coupled plasma emission spectroscopy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/22605','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/22605"><span>Research notes : wearing surfaces for plastic bridge decks.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2005-07-01</p> <p>Fiber reinforced polymer (FRP) composite bridge decks based on fiberglass materials are being installed on bridges across the country. In addition to being light-weight and quick to install, these decks do not corrode. Oregon has three state-owned an...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?direntryid=336812','PESTICIDES'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?direntryid=336812"><span>Decontamination of Bacillus spores adhered to iron and ...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.epa.gov/pesticides/search.htm">EPA Pesticide Factsheets</a></p> <p></p> <p></p> <p>Journal Article This study examines the effectiveness of decontaminating Bacillus globigii spores attached to corroded iron and cement-mortar coupons with free chlorine at two pH levels, monochloramine, chlorine dioxide, ozone, peracetic acid (PAA) and acidified nitrite, followed by flushing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19780023265','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19780023265"><span>Inhibition of hot salt corrosion by metallic additives</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Deadmore, D. L.; Lowell, C. E.</p> <p>1978-01-01</p> <p>The effectiveness of several potential fuel additives in reducing the effects of sodium sulfate-induced hot corrosion was evaluated in a cyclic Mach 0.3 burner rig. The potential inhibitors examined were salts of Al, Si, Cr, Fe, Zn, Mg, Ca, and Ba. The alloys tested were IN-100, U-700, IN-738, IN-792, Mar M-509, and 304 stainless steel. Each alloy was exposed for 100 cycles of 1 hour each at 900 C in combustion gases doped with the corrodant and inhibitor salts and the extent of attack was determined by measuring maximum metal thickness loss. The most effective and consistent inhibitor additive was Ba (NO3)2 which reduced the hot corrosion attack to nearly that of simple oxidation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/489311','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/489311"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Chattopadhyay, J.; Dutta, B.K.; Kushwaha, H.S.</p> <p></p> <p>Leak-Before-Break (LBB) is being used to design the primary heat transport piping system of 500 MWe Indian Pressurized Heavy Water Reactors (IPHWR). The work is categorized in three directions to demonstrate three levels of safety against sudden catastrophic break. Level 1 is inherent in the design procedure of piping system as per ASME Sec.III with a well defined factor of safety. Level 2 consists of fatigue crack growth study of a postulated part-through flaw at the inside surface of pipes. Level 3 is stability analysis of a postulated leakage size flaw under the maximum credible loading condition. Developmental work relatedmore » to demonstration of level 2 and level 3 confidence is described in this paper. In a case study on fatigue crack growth on PHT straight pipes for level 2, negligible crack growth is predicted for the life of the reactor. For level 3 analysis, the R6 method has been adopted. A database to evaluate SIF of elbows with throughwall flaws under combined internal pressure and bending moment has been generated to provide one of the inputs for R6 method. The methodology of safety assessment of elbow using R6 method has been demonstrated for a typical pump discharge elbow. In this analysis, limit load of the cracked elbow has been determined by carrying out elasto-plastic finite element analysis. The limit load results compared well with those given by Miller. However, it requires further study to give a general form of limit load solution. On the experimental front, a set of small diameter pipe fracture experiments have been carried out at room temperature and 300{degrees}C. Two important observations of the experiments are - appreciable drop in maximum load at 300{degrees}C in case of SS pipes and out-of-plane crack growth in case of CS pipes. Experimental load deflection curves are finally compared with five J-estimation schemes predictions. A material database of PHT piping materials is also being generated for use in LBB analysis.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/3028767','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/3028767"><span>Stability and effectiveness of chlorine disinfectants in water distribution systems.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Olivieri, V P; Snead, M C; Krusé, C W; Kawata, K</p> <p>1986-11-01</p> <p>A test system for water distribution was used to evaluate the stability and effectiveness of three residual disinfectants--free chlorine, combined chlorine, and chlorine dioxide--when challenged with a sewage contaminant. The test distribution system consisted of the street main and internal plumbing for two barracks at Fort George G. Meade, MD. To the existing pipe network, 152 m (500 ft) of 13-mm (0.5 in.) copper pipe were added for sampling, and 60 m (200 ft) of 2.54-cm (1.0 in.) plastic pipe were added for circulation. The levels of residual disinfectants tested were 0.2 mg/L and 1.0 mg/L as available chlorine. In the absence of a disinfectant residual, microorganisms in the sewage contaminant were consistently recovered at high levels. The presence of any disinfectant residual reduced the microorganism level and frequency of occurrence at the consumer's tap. Free chlorine was the most effective residual disinfectant and may serve as a marker or flag in the distribution network. Free chlorine and chlorine dioxide were the least stable in the pipe network. The loss of disinfectant in the pipe network followed first-order kinetics. The half-life determined in static tests for free chlorine, chlorine dioxide, and combined chlorine was 140, 93, and 1680 min.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1474301','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1474301"><span>Stability and effectiveness of chlorine disinfectants in water distribution systems.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Olivieri, V P; Snead, M C; Krusé, C W; Kawata, K</p> <p>1986-01-01</p> <p>A test system for water distribution was used to evaluate the stability and effectiveness of three residual disinfectants--free chlorine, combined chlorine, and chlorine dioxide--when challenged with a sewage contaminant. The test distribution system consisted of the street main and internal plumbing for two barracks at Fort George G. Meade, MD. To the existing pipe network, 152 m (500 ft) of 13-mm (0.5 in.) copper pipe were added for sampling, and 60 m (200 ft) of 2.54-cm (1.0 in.) plastic pipe were added for circulation. The levels of residual disinfectants tested were 0.2 mg/L and 1.0 mg/L as available chlorine. In the absence of a disinfectant residual, microorganisms in the sewage contaminant were consistently recovered at high levels. The presence of any disinfectant residual reduced the microorganism level and frequency of occurrence at the consumer's tap. Free chlorine was the most effective residual disinfectant and may serve as a marker or flag in the distribution network. Free chlorine and chlorine dioxide were the least stable in the pipe network. The loss of disinfectant in the pipe network followed first-order kinetics. The half-life determined in static tests for free chlorine, chlorine dioxide, and combined chlorine was 140, 93, and 1680 min. PMID:3028767</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AIPC..746..150M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AIPC..746..150M"><span>Multiple Restart Testing of a Stainless Steel Sodium Heat Pipe Module</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Martin, James; Mireles, Omar; Reid, Robert</p> <p>2005-02-01</p> <p>A heat pipe cooled reactor is one of several candidate reactor concepts being considered for space power and propulsion systems to support future space exploration activities. Long life heat pipe modules, with concepts verified through a combination of theoretical analysis and experimental evaluations, would be necessary to establish the viability of this option. A number of stainless steel/sodium heat pipe modules have been designed and fabricated to support experimental testing of a Safe Affordable Fission Engine (SAFE) project, a 100-kWt core design pursued jointly by the Marshall Space Flight Center and the Los Alamos National Laboratory. One of the SAFE heat pipe modules was successfully subjected to over 200 restarts, examining the behavior of multiple passive freeze/thaw operations. Typical operation included a 1-hour startup to an average evaporator temperature of 1000 K followed by a 15-minute hold at temperature. Nominal maximum input power to the evaporator (measured at the power supply) during the hold period was 1.9 kW, with approximately 1.6 kW calculated as the axial power transfer to the condenser (the 300W difference was lost to environment at the evaporator surface). Between heating cycles the module was cooled to less than 325 K, returning the sodium to a frozen state in preparation for the next startup cycle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5853704','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5853704"><span>Experimental Study on the Thermal Start-Up Performance of the Graphene/Water Nanofluid-Enhanced Solar Gravity Heat Pipe</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Zhao, Shanguo; Xu, Guoying; Wang, Ning; Zhang, Xiaosong</p> <p>2018-01-01</p> <p>The solar gravity heat pipe has been widely used for solar thermal water heating because of its high efficient heat transfer and thermal diode characteristics. Operated on fluctuant and low intensity solar radiation conditions, a solar gravity heat pipe may frequently start up. This severely affects its solar collection performance. To enhance the thermal performance of the solar gravity heat pipe, this study proposes using graphene/water nanofluid as the working fluid instead of deionized water. The stability of the prepared graphene/water nanofluid added with PVP was firstly investigated to obtain the optimum mass ratios of the added dispersant. Thermophysical properties—including the thermal conductivity and viscosity—of nanofluid with various graphene nanoplatelets (GNPs) concentrations were measured at different temperatures for further analysis. Furthermore, based on the operational evaluation on a single heat pipe’s start-up process, the performance of nanofluid-enhanced solar gravity heat pipes using different concentrations of GNPs were compared by using water heating experiments. Results indicated that the use of 0.05 wt % graphene/water nanofluid instead of water could achieve a 15.1% and 10.7% reduction in start-up time under 30 and 60 W input heating conditions, respectively. Consequently, a higher thermal efficiency for solar collection could be expected. PMID:29382094</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050109914','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050109914"><span>Multiple Restart Testing of a Stainless Steel Sodium Heat Pipe Module</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Martin, James; Mireles, Omar; Reid, Robert</p> <p>2005-01-01</p> <p>A heat pipe cooled reactor is one of several candidate reactor cores being considered for space power and propulsion systems to support future space exploration activities. Long life heat pipe modules. with designs verified through a combination of theoretical analysis and experimental evaluations. would be necessary to establish the viability of this option. A hardware-based program was initiated to begin experimental testing of components to verify compliance of proposed designs. To this end, a number of stainless steel/sodium heat pipe modules have been designed and fabricated to support experimental testing of a Safe Affordable Fission Engine (SAFE) project, a 100-kWt core design pursued jointly by the Marshall Space Flight Center and the Los Alamos National Laboratory. One of the SAFE heat pipe modules was successfully subjected to over 200 restarts. examining the behavior of multiple passive freeze/thaw operations. Typical operation included a 1-hour startup to an average evaporator temperature of 1000 K followed by a 15 minute hold at temperature. Nominal maximum input power during the hold period was 1.9 kW. Between heating cycles the module was cooled to less than 325 K, returning the sodium to a frozen state in preparation fop the next startup cycle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPhCS.891a2151G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPhCS.891a2151G"><span>The evaluation of energy efficiency of convective heat transfer surfaces in tube bundles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Grigoriev, B. A.; Pronin, V. A.; Salohin, V. I.; Sidenkov, D. V.</p> <p>2017-11-01</p> <p>When evaluating the effectiveness of the heat exchange surfaces in the main considered characteristics such as heat flow (Q, Watt), the power required for pumps (N, Watt), and surface area of heat transfer (F, m2). The most correct comparison provides a comparison “ceteris paribus”. Carried out performance comparison “ceteris paribus” in-line and staggered configurations of bundles with a circular pipes can serve as a basis for the development of physical models of flow and heat transfer in tube bundles with tubes of other geometric shapes, considering intertubular stream with attached eddies. The effect of longitudinal and transverse steps of the pipes on the energy efficiency of different configurations would take into account by mean of physical relations between the structure of shell side flow with attached eddies and intensity of transfer processes of heat and momentum. With the aim of energy-efficient placement of tubes, such an approach opens up great opportunities for the synthesis of a plurality of tubular heat exchange surfaces, in particular, the layout of the twisted and in-line-diffuser type with a drop-shaped pipes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19880028733&hterms=solar+use&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dsolar%2Buse','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19880028733&hterms=solar+use&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dsolar%2Buse"><span>Modelling the performance of the monogroove with screen heat pipe for use in the radiator of the solar dynamic power system of the NASA Space Station</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Evans, Austin Lewis</p> <p>1987-01-01</p> <p>A computer code to model the steady-state performance of a monogroove heat pipe for the NASA Space Station is presented, including the effects on heat pipe performance of a screen in the evaporator section which deals with transient surges in the heat input. Errors in a previous code have been corrected, and the new code adds additional loss terms in order to model several different working fluids. Good agreement with existing performance curves is obtained. From a preliminary evaluation of several of the radiator design parameters it is found that an optimum fin width could be achieved but that structural considerations limit the thickness of the fin to a value above optimum.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1220003','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1220003"><span>Measure Guideline. Steam System Balancing and Tuning for Multifamily Residential Buildings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Choi, Jayne; Ludwig, Peter; Brand, Larry</p> <p>2013-04-01</p> <p>This guideline provides building owners, professionals involved in multifamily audits, and contractors insights for improving the balance and tuning of steam systems. It provides readers an overview of one-pipe steam heating systems, guidelines for evaluating steam systems, typical costs and savings, and guidelines for ensuring quality installations. It also directs readers to additional resources for details not included here. Measures for balancing a distribution system that are covered include replacing main line vents and upgrading radiator vents. Also included is a discussion on upgrading boiler controls and the importance of tuning the settings on new or existing boiler controls. Themore » guideline focuses on one-pipe steam systems, though many of the assessment methods can be generalized to two-pipe steam systems.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=311279&keyword=PH+AND+test&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=311279&keyword=PH+AND+test&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Impact of Water Quality on Chlorine Demand of Corroding Copper</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Copper is the most widely used material in drinking water premise plumbing systems. In buildings such as hospitals, large and complicated plumbing networks make it difficult to maintain good water quality. Sustaining safe disinfectant residuals throughout a building to protect ag...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/20382','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/20382"><span>Design and construction of precast piles with stainless reinforcing steel.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2014-02-01</p> <p>The service life of prestressed concrete piles is, in part, dictated by the time required to corrode the steel once : chloride ions are at the surface of the steel. Stainless steel materials, although limited in availability in strand : form, have a ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/33757','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/33757"><span>Effects of Corrosion and Fatigue on the Load-Carrying Capacity of Structural and Reinforcing Steel</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>1994-03-01</p> <p>Pitting and crevice corrosion have profound effects on the fatigue life of structural and reinforcing steels used in bridge construction. Stress concentration factors were measured on actual corroded plates with strain gage instrumentation. Using cor...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/489308','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/489308"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Brochard, J.; Charras, T.; Ghoudi, M.</p> <p></p> <p>Modifications to a computer code for ductile fracture assessment of piping systems with postulated circumferential through-wall cracks under static or dynamic loading are very briefly described. The modifications extend the capabilities of the CASTEM2000 code to the determination of fracture parameters under creep conditions. The main advantage of the approach is that thermal loads can be evaluated as secondary stresses. The code is applicable to piping systems for which crack propagation predictions differ significantly depending on whether thermal stresses are considered as primary or secondary stresses.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA212067','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA212067"><span>Proceedings of REMR Workshop on Research Priorities for Drainage System and Relief Well Problems. Repair, Evaluation, Maintenance, and Rehabilitation Research Program</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1989-07-01</p> <p>were checked by means of a cone penetrometer. Because of concerns that clogging would occur in the ran- dom zones, a special filter cloth sock was...that surrounded the pipes was dirty Figure 3. Old 24-in. BCCMP from toe drain; perforations are essentially plugged due to incrustation 46 Figure 4...associated deposits of ferric hydroxide have resulted in discolored water, unpalatable taste and odors , and reductions in flow through pipes. Additionally</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003AIPC..657.1830L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003AIPC..657.1830L"><span>Numerical Prediction of Signal for Magnetic Flux Leakage Benchmark Task</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lunin, V.; Alexeevsky, D.</p> <p>2003-03-01</p> <p>Numerical results predicted by the finite element method based code are presented. The nonlinear magnetic time-dependent benchmark problem proposed by the World Federation of Nondestructive Evaluation Centers, involves numerical prediction of normal (radial) component of the leaked field in the vicinity of two practically rectangular notches machined on a rotating steel pipe (with known nonlinear magnetic characteristic). One notch is located on external surface of pipe and other is on internal one, and both are oriented axially.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21869528','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21869528"><span>Preliminary evaluation of septic-system absorption-field architecture types in a profile-limited soil.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mathis, Amanda J; Brye, Kristofor R; Dunn, Sam</p> <p>2011-01-01</p> <p>Managing household wastewater is an issue that affects hundreds of thousands of people in rural communities nationwide, many of whom rely on septic systems as their primary means of household wastewater disposal. Septic system absorption field products with architectures quite different from traditional pipe-and-gravel systems are being installed in many states with variances from initial design specifications. The objective of this study was to evaluate the performance, as measured by the in-product height of stored solution, of four differing absorption-field product architecture types in a profile-limited soil that was loaded at the maximum allowable rate based on soil morphology. Five chamber, two gravel-less pipe, two polystyrene aggregate, and four pipe-and-gravel systems were installed in a profile-limited, Captina silt loam soil (fine-silty, siliceous, active, mesic Typic Fragiudult) and dosed with raw effluent at rates determined by current State of Arkansas regulations via individual peristaltic pumps. Free-solution monitoring ports were installed within each product, where the depth to free solution was measured periodically and used to evaluate product performance. Data collected from January through August 2009 indicated that preliminary system performance was unaffected by product architecture type. All products performed similarly under dry soil conditions. However, differences among individual products were observed during periods of hydrologic stress (i.e., wet soil conditions). Surfacing of effluent was not observed atop any product, indicating that the current loading rate design method is functioning properly. Preliminary results indicate that some alternative absorption-field products perform similarly to the traditional pipe-and-gravel system, thus providing flexibility and options for homeowners. by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20182075','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20182075"><span>Assessment of the best available wastewater management techniques for a textile mill: cost and benefit analysis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dogan, Bugce; Kerestecioglu, Merih; Yetis, Ulku</p> <p>2010-01-01</p> <p>In the present study, several water recovery and end-of-pipe wastewater treatment alternatives were evaluated towards the evaluation of Best Available Techniques (BATs) for the management of wastewaters from a denim textile mill in accordance with the European Union's Integrated Pollution Prevention and Control (IPPC) Directive. For this purpose, an assessment that translates the key environmental aspects into a quantitative measure of environmental performance and also financial analysis was performed for each of the alternatives. The alternatives considered for water recovery from dyeing wastewaters were nanofiltration (NF) with coagulation and/or microfiltration (MF) pre-treatment, ozonation or peroxone and Fenton oxidation. On the other hand, for the end-of-pipe treatment of the mill's mixed wastewater, ozonation, Fenton oxidation, membrane bioreactor (MBR) and activated sludge (AS) process followed by membrane filtration technologies were evaluated. The results have indicated that membrane filtration process with the least environmental impacts is the BAT for water recovery. On the other side, MBR technology has appeared as the BAT for the end-of-pipe treatment of the mill's mixed wastewater. A technical and financial comparison of these two BAT alternatives revealed that water recovery via membrane filtration from dyeing wastewaters is selected as the BAT for the water and wastewater management in the mill.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1343776','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1343776"><span>Corrective Action Investigation Plan for Corrective Action Unit 576: Miscellaneous Radiological Sites and Debris Nevada National Security Site, Nevada, Revision 0</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Matthews, Patrick</p> <p></p> <p>Corrective Action Unit (CAU) 576 is located in Areas 2, 3, 5, 8, and 9 of the Nevada National Security Site, which is approximately 65 miles northwest of Las Vegas, Nevada. CAU 576 is a grouping of sites where there has been a suspected release of contamination associated with nuclear testing. This document describes the planned investigation of CAU 576, which comprises the following corrective action sites (CASs): 00-99-01, Potential Source Material; 02-99-12, U-2af (Kennebec) Surface Rad-Chem Piping; 03-99-20, Area 3 Subsurface Rad-Chem Piping; 05-19-04, Frenchman Flat Rad Waste Dump ; 09-99-08, U-9x (Allegheny) Subsurface Rad-Chem Piping; 09-99-09, U-9its u24more » (Avens-Alkermes) Surface Contaminated Flex Line These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the Corrective Action Decision Document (CADD).« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19780008374','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19780008374"><span>Axially grooved heat pipe study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1977-01-01</p> <p>A technology evaluation study on axially grooved heat pipes is presented. The state-of-the-art is reviewed and present and future requirements are identified. Analytical models, the Groove Analysis Program (GAP) and a closed form solution, were developed to facilitate parametric performance evaluations. GAP provides a numerical solution of the differential equations which govern the hydrodynamic flow. The model accounts for liquid recession, liquid/vapor shear interaction, puddle flow as well as laminar and turbulent vapor flow conditions. The closed form solution was developed to reduce computation time and complexity in parametric evaluations. It is applicable to laminar and ideal charge conditions, liquid/vapor shear interaction, and an empirical liquid flow factor which accounts for groove geometry and liquid recession effects. The validity of the closed form solution is verified by comparison with GAP predictions and measured data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/963764','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/963764"><span>ADAPTION OF NONSTANDARD PIPING COMPONENTS INTO PRESENT DAY SEISMIC CODES</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>D. T. Clark; M. J. Russell; R. E. Spears</p> <p>2009-07-01</p> <p>With spiraling energy demand and flat energy supply, there is a need to extend the life of older nuclear reactors. This sometimes requires that existing systems be evaluated to present day seismic codes. Older reactors built in the 1960s and early 1970s often used fabricated piping components that were code compliant during their initial construction time period, but are outside the standard parameters of present-day piping codes. There are several approaches available to the analyst in evaluating these non-standard components to modern codes. The simplest approach is to use the flexibility factors and stress indices for similar standard components withmore » the assumption that the non-standard component’s flexibility factors and stress indices will be very similar. This approach can require significant engineering judgment. A more rational approach available in Section III of the ASME Boiler and Pressure Vessel Code, which is the subject of this paper, involves calculation of flexibility factors using finite element analysis of the non-standard component. Such analysis allows modeling of geometric and material nonlinearities. Flexibility factors based on these analyses are sensitive to the load magnitudes used in their calculation, load magnitudes that need to be consistent with those produced by the linear system analyses where the flexibility factors are applied. This can lead to iteration, since the magnitude of the loads produced by the linear system analysis depend on the magnitude of the flexibility factors. After the loading applied to the nonstandard component finite element model has been matched to loads produced by the associated linear system model, the component finite element model can then be used to evaluate the performance of the component under the loads with the nonlinear analysis provisions of the Code, should the load levels lead to calculated stresses in excess of Allowable stresses. This paper details the application of component-level finite element modeling to account for geometric and material nonlinear component behavior in a linear elastic piping system model. Note that this technique can be applied to the analysis of B31 piping systems.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/19876','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/19876"><span>Parameters governing the corrosion protection efficiency of fusion-bonded epoxy coatings on reinforcing steel.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2008-01-01</p> <p>The purpose of this study was to investigate various epoxy coating and exposure parameters to determine their effects on the corrosion of reinforcing steel. The parameters investigated were: chloride content at the bar depth, coated bar corroded area...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/15332','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/15332"><span>Cathodic protection of culverts : field application and expert system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>1999-06-01</p> <p>Coated metal culverts are used throughout the state of Louisiana. These culverts are susceptible to both internal and external corrosion once they are placed in the ground. It is simply a matter of time before all of the culverts in the state corrode...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/34813','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/34813"><span>Carbon Fiber Reinforced Polymer Grids for Shear and End Zone Reinforcement in Bridge Beams</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2018-01-01</p> <p>Corrosion of reinforcing steel reduces life spans of bridges throughout the United States; therefore, using non-corroding carbon fiber reinforced polymer (CFRP) reinforcement is seen as a way to increase service life. The use of CFRP as the flexural ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1380038-dilute-condition-corrosion-behavior-glass-ceramic-waste-form','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1380038-dilute-condition-corrosion-behavior-glass-ceramic-waste-form"><span>Dilute condition corrosion behavior of glass-ceramic waste form</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Crum, Jarrod V.; Neeway, James J.; Riley, Brian J.; ...</p> <p>2016-08-11</p> <p>Borosilicate glass-ceramics are being developed to immobilize high-level waste generated by aqueous reprocessing into a stable waste form. The corrosion behavior of this multiphase waste form is expected to be complicated by multiple phases and crystal-glass interfaces. A modified single-pass flow-through test was performed on polished monolithic coupons at a neutral pH (25 °C) and 90 °C for 33 d. The measured glass corrosion rates by micro analysis in the samples ranged from 0.019 to 0.29 g m -2 d -1 at a flow rate per surface area = 1.73 × 10 -6 m s -1. The crystal phases (oxyapatitemore » and Ca-rich powellite) corroded below quantifiable rates, by micro analysis. While, Ba-rich powellite corroded considerably in O10 sample. The corrosion rates of C1 and its replicate C20 were elevated an order of magnitude by mechanical stresses at crystal-glass interface caused by thermal expansion mismatch during cooling and unique morphology (oxyapatite clustering).« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JMEP...22.1120L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JMEP...22.1120L"><span>Effect of Host Media on Microbial Influenced Corrosion due to Desulfotomaculum nigrificans</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lata, Suman; Sharma, Chhaya; Singh, Ajay K.</p> <p>2013-04-01</p> <p>This article reports about the tests carried to investigate microbial-induced corrosion on stainless steels due to sulfate-reducing bacteria sp. Desulfotomaculum nigrificans in different host media. Stainless steel 304L, 316L, and 2205 were selected for the test. Modified Baar's media (BM), sodium chloride solution, and artificial sea water (SW) were used as test solutions in anaerobic conditions. Electrochemical polarization and immersion test were performed to estimate the extent of corrosion rate and pitting on stainless steels. SEM/EDS were used to study the details inside/outside pits formed on the corroded samples. Biofilm formed on corroded coupons was analyzed for its components by UV/Visible spectroscopy. Corrosion attack on the test samples was observed maximum in case of exposure to SW followed by NaCl solution, both having sulfide and chloride whereas stainless steel exposed to BM, having sulfide, showed minimum attack. Tendency of extracellular polymeric substances to bind metal ions is observed to be responsible for governing the extent of corrosion attack.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910025730&hterms=scanning+electron+microscope&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dscanning%2Belectron%2Bmicroscope','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910025730&hterms=scanning+electron+microscope&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dscanning%2Belectron%2Bmicroscope"><span>Electron microscopy study of the iron meteorite Santa Catharina</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zhang, J.; Williams, D. B.; Goldstein, J. I.; Clarke, R. S., Jr.</p> <p>1990-01-01</p> <p>A characterization of the microstructural features of Santa Catharina (SC) from the millimeter to submicron scale is presented. The same specimen was examined using an optical microscope, a scanning electron microscope, an electron probe microanalyzer, and an analytical electron microscope. Findings include the fact that SC metal nodules may have different bulk Ni values, leading to different microstructures upon cooling; that SC USNM 6293 is the less corroded sample, as tetrataenite exists as less than 10 nm ordered domains throughout the entire fcc matrix (it is noted that this structure is the same as that of the Twin City meteorite and identical to clear taenite II in the retained taenite regions of the octahedrites); that SC USNM 3043 has a more complicated microstructure due to corrosion; and that the low Ni phase of the cloudy zone was selectively corroded in some areas and formed the dark regions, indicating that the SC meteorite corrosion process was electrochemical in nature and may involve Cl-containing akaganeite.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4529538','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4529538"><span>Metallic Zinc Exhibits Optimal Biocompatibility for Bioabsorbable Endovascular Stents</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Bowen, Patrick K.; Guillory, Roger J.; Shearier, Emily R.; Seitz, Jan-Marten; Drelich, Jaroslaw; Bocks, Martin; Zhao, Feng; Goldman, Jeremy</p> <p>2015-01-01</p> <p>Although corrosion resistant bare metal stents are considered generally effective, their permanent presence in a diseased artery is an increasingly recognized limitation due to the potential for long-term complications. We previously reported that metallic zinc exhibited an ideal biocorrosion rate within murine aortas, thus raising the possibility of zinc as a candidate base material for endovascular stenting applications. This study was undertaken to further assess the arterial biocompatibility of metallic zinc. Metallic zinc wires were punctured and advanced into the rat abdominal aorta lumen for up to 6.5 months. This study demonstrated that metallic zinc did not provoke responses that often contribute to restenosis. Low cell densities and neointimal tissue thickness, along with tissue regeneration within the corroding implant, point to optimal biocompatibility of corroding zinc. Furthermore, the lack of progression in neointimal tissue thickness over 6.5 months or the presence of smooth muscle cells near the zinc implant suggest that the products of zinc corrosion may suppress the activities of inflammatory and smooth muscle cells. PMID:26249616</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1380038-dilute-condition-corrosion-behavior-glass-ceramic-waste-form','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1380038-dilute-condition-corrosion-behavior-glass-ceramic-waste-form"><span>Dilute condition corrosion behavior of glass-ceramic waste form</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Crum, Jarrod V.; Neeway, James J.; Riley, Brian J.</p> <p></p> <p>Borosilicate glass-ceramics are being developed to immobilize high-level waste generated by aqueous reprocessing into a stable waste form. The corrosion behavior of this multiphase waste form is expected to be complicated by multiple phases and crystal-glass interfaces. A modified single-pass flow-through test was performed on polished monolithic coupons at a neutral pH (25 °C) and 90 °C for 33 d. The measured glass corrosion rates by micro analysis in the samples ranged from 0.019 to 0.29 g m -2 d -1 at a flow rate per surface area = 1.73 × 10 -6 m s -1. The crystal phases (oxyapatitemore » and Ca-rich powellite) corroded below quantifiable rates, by micro analysis. While, Ba-rich powellite corroded considerably in O10 sample. The corrosion rates of C1 and its replicate C20 were elevated an order of magnitude by mechanical stresses at crystal-glass interface caused by thermal expansion mismatch during cooling and unique morphology (oxyapatite clustering).« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JNuM..490...85C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JNuM..490...85C"><span>Hot corrosion behavior of magnesia-stabilized ceramic material in a lithium molten salt</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cho, Soo-Haeng; Kim, Sung-Wook; Kim, Dae-Young; Lee, Jong-Hyeon; Hur, Jin-Mok</p> <p>2017-07-01</p> <p>The isothermal and cyclic corrosion behaviors of magnesia-stabilized zirconia in a LiCl-Li2O molten salt were investigated at 650 °C in an argon atmosphere. The weights of as-received and corroded specimens were measured and the microstructures, morphologies, and chemical compositions were analyzed by scanning electron microscopy, X-ray energy dispersive spectroscopy, and X-ray diffraction. For processes where Li is formed at the cathode during electrolysis, the corrosion rate was about five times higher than those of isothermal and thermal cycling processes. During isothermal tests, the corrosion product Li2ZrO3 was formed after 216 h. During thermal cycling, Li2ZrO3 was not detected until after the completion of 14 cycles. There was no evidence of cracks, pores, or spallation on the corroded surfaces, except when Li was formed. We demonstrate that magnesia-stabilized zirconia is beneficial for increasing the hot corrosion resistance of structural materials subjected to high temperature molten salts containing Li2O.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20566509','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20566509"><span>Catalyst supports for polymer electrolyte fuel cells.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Subban, Chinmayee; Zhou, Qin; Leonard, Brian; Ranjan, Chinmoy; Edvenson, Heather M; Disalvo, F J; Munie, Semeret; Hunting, Janet</p> <p>2010-07-28</p> <p>A major challenge in obtaining long-term durability in fuel cells is to discover catalyst supports that do not corrode, or corrode much more slowly than the current carbon blacks used in today's polymer electrolyte membrane fuel cells. Such materials must be sufficiently stable at low pH (acidic conditions) and high potential, in contact with the polymer membrane and under exposure to hydrogen gas and oxygen at temperatures up to perhaps 120 degrees C. Here, we report the initial discovery of a promising class of doped oxide materials for this purpose: Ti(1-x)M(x)O(2), where M=a variety of transition metals. Specifically, we show that Ti(0.7)W(0.3)O(2) is electrochemically inert over the appropriate potential range. Although the process is not yet optimized, when Pt nanoparticles are deposited on this oxide, electrochemical experiments show that hydrogen is oxidized and oxygen reduced at rates comparable to those seen using a commercial Pt on carbon black support.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?direntryid=309836&keyword=homeland%20security&subject=homeland%20security%20research&showcriteria=2&fed_org_id=111&datebeginpublishedpresented=03/01/2012&dateendpublishedpresented=03/01/2017&sortby=pubdateyear','PESTICIDES'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?direntryid=309836&keyword=homeland%20security&subject=homeland%20security%20research&showcriteria=2&fed_org_id=111&datebeginpublishedpresented=03/01/2012&dateendpublishedpresented=03/01/2017&sortby=pubdateyear"><span>Decontamination of Drinking Water Infrastructure ...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.epa.gov/pesticides/search.htm">EPA Pesticide Factsheets</a></p> <p></p> <p></p> <p>Technical Brief This study examines the effectiveness of decontaminating corroded iron and cement-mortar coupons that have been contaminated with spores of Bacillus atrophaeus subsp. globigii (B. globigii), which is often used as a surrogate for pathogenic B. anthracis (anthrax) in disinfection studies. Bacillus spores are persistent on common drinking water material surfaces like corroded iron, requiring physical or chemical methods to decontaminate the infrastructure. In the United States, free chlorine and monochloramine are the primary chemical disinfectants used by the drinking water industry to inactivate microorganisms. Flushing is also a common, easily implemented practice in drinking water distribution systems, although large volumes of contaminated water needing treatment could be generated. Identifying readily available alternative disinfectant formulations for infrastructure decontamination could give water utilities options for responding to specific types of contamination events. In addition to presenting data on flushing alone, which demonstrated the persistence of spores on water infrastructure in the absence of high levels of disinfectants, data on acidified nitrite, chlorine dioxide, free chlorine, monochloramine, ozone, peracetic acid, and followed by flushing are provided.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3544769','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3544769"><span>Application of Gurson–Tvergaard–Needleman Constitutive Model to the Tensile Behavior of Reinforcing Bars with Corrosion Pits</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Xu, Yidong; Qian, Chunxiang</p> <p>2013-01-01</p> <p>Based on meso-damage mechanics and finite element analysis, the aim of this paper is to describe the feasibility of the Gurson–Tvergaard–Needleman (GTN) constitutive model in describing the tensile behavior of corroded reinforcing bars. The orthogonal test results showed that different fracture pattern and the related damage evolution process can be simulated by choosing different material parameters of GTN constitutive model. Compared with failure parameters, the two constitutive parameters are significant factors affecting the tensile strength. Both the nominal yield and ultimate tensile strength decrease markedly with the increase of constitutive parameters. Combining with the latest data and trial-and-error method, the suitable material parameters of GTN constitutive model were adopted to simulate the tensile behavior of corroded reinforcing bars in concrete under carbonation environment attack. The numerical predictions can not only agree very well with experimental measurements, but also simplify the finite element modeling process. PMID:23342140</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1360014-corrosion-behaviour-friction-bit-joined-weld-bonded-aa7075-t6-galvannealed-dp980','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1360014-corrosion-behaviour-friction-bit-joined-weld-bonded-aa7075-t6-galvannealed-dp980"><span>Corrosion behaviour of friction-bit-joined and weld-bonded AA7075-T6/galvannealed DP980</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Lim, Yong Chae; Squires, Lile; Pan, Tsung-Yu; ...</p> <p>2016-12-22</p> <p>Joining of aluminium alloys 7075-T6 and galvannealed dual phase 980 steel was achieved by friction bit joining (FBJ) and weld-bonding (FBJ + adhesive) processes. Accelerated laboratory-scale corrosion tests were performed on both FBJ only and weld-bonded specimens to study joint strength under a corrosive environment. Static lap shear tests showed that both FBJ only and weld-bonded cases generally retained more than 80% of the joint strength of non-corroded specimens at the end of corrosion testing. The presence of Zn/Fe coating on the steel substrate resulted in improved corrosion resistance for FBJ specimens, compared to joints produced with bare steel. Finally,more » an optical microscopy was used for cross-sectional analysis of corroded specimens. Some corrosion on the joining bit was observed near the bit head. However, the joining bit was still intact on the steel substrate, indicating that the primary bond was sound.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18482377','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18482377"><span>Visualization of latent fingerprint corrosion of metallic surfaces.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bond, John W</p> <p>2008-07-01</p> <p>Chemical reactions between latent fingerprints and a variety of metal surfaces are investigated by heating the metal up to temperatures of approximately 600 degrees C after deposition of the fingerprint. Ionic salts present in the fingerprint residue corrode the metal surface to produce an image of the fingerprint that is both durable and resistant to cleaning of the metal. The degree of fingerprint enhancement appears independent of the elapsed time between deposition and heating but is very dependent on both the composition of the metal and the level of salt secretion by the fingerprint donor. Results are presented that show practical applications for the enhancement to fingerprints deposited in arson crime scenes, contaminated by spray painting, or deposited on brass cartridge cases prior to discharge. The corrosion of the metal surface is further exploited by the demonstration of a novel technique for fingerprint enhancement based on the electrostatic charging of the metal and then the preferential adherence of a metallic powder to the corroded part of the metal surface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1360014','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1360014"><span>Corrosion behaviour of friction-bit-joined and weld-bonded AA7075-T6/galvannealed DP980</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lim, Yong Chae; Squires, Lile; Pan, Tsung-Yu</p> <p></p> <p>Joining of aluminium alloys 7075-T6 and galvannealed dual phase 980 steel was achieved by friction bit joining (FBJ) and weld-bonding (FBJ + adhesive) processes. Accelerated laboratory-scale corrosion tests were performed on both FBJ only and weld-bonded specimens to study joint strength under a corrosive environment. Static lap shear tests showed that both FBJ only and weld-bonded cases generally retained more than 80% of the joint strength of non-corroded specimens at the end of corrosion testing. The presence of Zn/Fe coating on the steel substrate resulted in improved corrosion resistance for FBJ specimens, compared to joints produced with bare steel. Finally,more » an optical microscopy was used for cross-sectional analysis of corroded specimens. Some corrosion on the joining bit was observed near the bit head. However, the joining bit was still intact on the steel substrate, indicating that the primary bond was sound.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26736189','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26736189"><span>FBG-based sensorized light pipe for robotic intraocular illumination facilitates bimanual retinal microsurgery.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Horise, Yuki; He, Xingchi; Gehlbach, Peter; Taylor, Russell; Iordachita, Iulian</p> <p>2015-01-01</p> <p>In retinal surgery, microsurgical instruments such as micro forceps, scissors and picks are inserted through the eye wall via sclerotomies. A handheld intraocular light source is typically used to visualize the tools during the procedure. Retinal surgery requires precise and stable tool maneuvers as the surgical targets are micro scale, fragile and critical to function. Retinal surgeons typically control an active surgical tool with one hand and an illumination source with the other. In this paper, we present a "smart" light pipe that enables true bimanual surgery via utilization of an active, robot-assisted source of targeted illumination. The novel sensorized smart light pipe measures the contact force between the sclerotomy and its own shaft, thereby accommodating the motion of the patient's eye. Forces at the point of contact with the sclera are detected by fiber Bragg grating (FBG) sensors on the light pipe. Our calibration and validation results demonstrate reliable measurement of the contact force as well as location of the sclerotomy. Preliminary experiments have been conducted to functionally evaluate robotic intraocular illumination.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19830010576','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19830010576"><span>Study of a heat rejection system for the Nuclear Electric Propulsion (NEP) spacecraft</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ernest, D. M.</p> <p>1982-01-01</p> <p>Two different heat pipe radiator elements, one intended for use with the power conversion subsystem of the NASA funded nuclear electric propulsion (NEP) spacecraft, and one intended for use with the DOE funded space power advanced reactor (SPAR) system were tested and evaluated. The NEP stainless steel/sodium heat pipe was 4.42 meters long and had a 1 cm diameter. Thermal performance testing at 920 K showed a non-limited power level of 3560 watts, well in excess of the design power of 2600 watts. This test verified the applicability of screen arteries for use in long radiator heat pipes. The SPAR titanium/potassium heat pipe was 5.5 meters long and had a semicircular crossection with a 4 cm diameter. Thermal performance testing at 775 K showed a maximum power level of 1.86 kW, somewhat short of the desired 2.6 kW beginning of life design requirement. The reduced performance was shown to be the result of the inability of the evaporator wall wick (shot blasted evaporator wall) to handle the required liquid flow.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/392625-trials-flexible-pipe-sour-service-reveal-degradation','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/392625-trials-flexible-pipe-sour-service-reveal-degradation"><span>Trials of flexible pipe in sour service reveal degradation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Al-Maslamani, M.J.</p> <p></p> <p>Field trials on flexible pipe offshore Qatar have shown that, under sour conditions, the layered, composite material can suffer severe degradation leading to failure. The failure demonstrates the significant effects of stress level, environmental aggressiveness, and localized hard zones in promoting sulfide stress cracking. Permeability of the sour gas through the composite layer of the flexible pipe resulted in varying degrees of sulfide attack and hydrogen embrittlement, depending on the susceptibility of the multilayered material. In the trials, the material was used as a gas-lift line in a sour-oil field in the Arabian Gulf. Flexible pipes have been used successfullymore » for transporting methanol, benzene, and gas condensates in wet sweet environments at temperatures of up to 80 C. Little or no information, however, has been available as to its corrosion resistance in sour-service wells containing 6% CO{sub 2} with 3% H{sub 2}S partial pressures and at moderate temperatures. The paper discusses an underwater survey to evaluate the damage, visual inspection, mechanical tests, metallographic exam, and trial results.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20050214066&hterms=NCC&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DNCC','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20050214066&hterms=NCC&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DNCC"><span>NASA National Combustion Code Simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Iannetti, Anthony; Davoudzadeh, Farhad</p> <p>2001-01-01</p> <p>A systematic effort is in progress to further validate the National Combustion Code (NCC) that has been developed at NASA Glenn Research Center (GRC) for comprehensive modeling and simulation of aerospace combustion systems. The validation efforts include numerical simulation of the gas-phase combustor experiments conducted at the Center for Turbulence Research (CTR), Stanford University, followed by comparison and evaluation of the computed results with the experimental data. Presently, at GRC, a numerical model of the experimental gaseous combustor is built to simulate the experimental model. The constructed numerical geometry includes the flow development sections for air annulus and fuel pipe, 24 channel air and fuel swirlers, hub, combustor, and tail pipe. Furthermore, a three-dimensional multi-block, multi-grid grid (1.6 million grid points, 3-levels of multi-grid) is generated. Computational simulation of the gaseous combustor flow field operating on methane fuel has started. The computational domain includes the whole flow regime starting from the fuel pipe and the air annulus, through the 12 air and 12 fuel channels, in the combustion region and through the tail pipe.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140017324','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140017324"><span>Operational Evaluation of the Root Modules of the Advanced Plant Habitat</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Monje, O.</p> <p>2014-01-01</p> <p>Photosynthetic and growth data were collected on APH Root Module. Described Stand pipe system for active moisture control. Tested germination in wicks. Evaluated EC-5 moisture sensors. Demonstrated that Wheat plants can grow in the APH Root Module.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/867157','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/867157"><span>Double wall vacuum tubing and method of manufacture</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Stahl, Charles R.; Gibson, Michael A.; Knudsen, Christian W.</p> <p>1989-01-01</p> <p>An evacuated double wall tubing is shown together with a method for the manufacture of such tubing which includes providing a first pipe of predetermined larger diameter and a second pipe having an O.D. substantially smaller than the I.D. of the first pipe. An evacuation opening is then in the first pipe. The second pipe is inserted inside the first pipe with an annular space therebetween. The pipes are welded together at one end. A stretching tool is secured to the other end of the second pipe after welding. The second pipe is then prestressed mechanically with the stretching tool an amount sufficient to prevent substantial buckling of the second pipe under normal operating conditions of the double wall pipe. The other ends of the first pipe and the prestressed second pipe are welded together, preferably by explosion welding, without the introduction of mechanical spacers between the pipes. The annulus between the pipes is evacuated through the evacuation opening, and the evacuation opening is finally sealed. The first pipe is preferably of steel and the second pipe is preferably of titanium. The pipes may be of a size and wall thickness sufficient for the double wall pipe to be structurally load bearing or may be of a size and wall thickness insufficient for the double wall pipe to be structurally load bearing, and the double wall pipe positioned with a sliding fit inside a third pipe of a load-bearing size.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21873489','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21873489"><span>Relationships between free-living protozoa, cultivable Legionella spp., and water quality characteristics in three drinking water supplies in the Caribbean.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Valster, Rinske M; Wullings, Bart A; van den Berg, Riemsdijk; van der Kooij, Dick</p> <p>2011-10-01</p> <p>The study whose results are presented here aimed at identifying free-living protozoa (FLP) and conditions favoring the growth of these organisms and cultivable Legionella spp. in drinking water supplies in a tropical region. Treated and distributed water (±30°C) of the water supplies of three Caribbean islands were sampled and investigated with molecular techniques, based on the 18S rRNA gene. The protozoan host Hartmannella vermiformis and cultivable Legionella pneumophila were observed in all three supplies. Operational taxonomic units (OTUs) with the highest similarity to the potential or candidate hosts Acanthamoeba spp., Echinamoeba exundans, E. thermarum, and an Neoparamoeba sp. were detected as well. In total, 59 OTUs of FLP were identified. The estimated protozoan richness did not differ significantly between the three supplies. In supply CA-1, the concentration of H. vermiformis correlated with the concentration of Legionella spp. and clones related to Amoebozoa predominated (82%) in the protozoan community. These observations, the low turbidity (<0.2 nephelometric turbidity units [NTU]), and the varying ATP concentrations (1 to 12 ng liter(-1)) suggest that biofilms promoted protozoan growth in this supply. Ciliophora represented 25% of the protozoan OTUs in supply CA-2 with elevated ATP concentrations (maximum, 55 ng liter(-1)) correlating with turbidity (maximum, 62 NTU) caused by corroding iron pipes. Cercozoan types represented 70% of the protozoan clones in supply CA-3 with ATP concentrations of <1 ng liter(-1) and turbidity of <0.5 NTU in most samples of distributed water. The absence of H. vermiformis in most samples from supply CA-3 suggests that growth of this protozoan is limited at ATP concentrations of <1 ng liter(-1).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3194851','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3194851"><span>Relationships between Free-Living Protozoa, Cultivable Legionella spp., and Water Quality Characteristics in Three Drinking Water Supplies in the Caribbean▿†</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Valster, Rinske M.; Wullings, Bart A.; van den Berg, Riemsdijk; van der Kooij, Dick</p> <p>2011-01-01</p> <p>The study whose results are presented here aimed at identifying free-living protozoa (FLP) and conditions favoring the growth of these organisms and cultivable Legionella spp. in drinking water supplies in a tropical region. Treated and distributed water (±30°C) of the water supplies of three Caribbean islands were sampled and investigated with molecular techniques, based on the 18S rRNA gene. The protozoan host Hartmannella vermiformis and cultivable Legionella pneumophila were observed in all three supplies. Operational taxonomic units (OTUs) with the highest similarity to the potential or candidate hosts Acanthamoeba spp., Echinamoeba exundans, E. thermarum, and an Neoparamoeba sp. were detected as well. In total, 59 OTUs of FLP were identified. The estimated protozoan richness did not differ significantly between the three supplies. In supply CA-1, the concentration of H. vermiformis correlated with the concentration of Legionella spp. and clones related to Amoebozoa predominated (82%) in the protozoan community. These observations, the low turbidity (<0.2 nephelometric turbidity units [NTU]), and the varying ATP concentrations (1 to 12 ng liter−1) suggest that biofilms promoted protozoan growth in this supply. Ciliophora represented 25% of the protozoan OTUs in supply CA-2 with elevated ATP concentrations (maximum, 55 ng liter−1) correlating with turbidity (maximum, 62 NTU) caused by corroding iron pipes. Cercozoan types represented 70% of the protozoan clones in supply CA-3 with ATP concentrations of <1 ng liter−1 and turbidity of <0.5 NTU in most samples of distributed water. The absence of H. vermiformis in most samples from supply CA-3 suggests that growth of this protozoan is limited at ATP concentrations of <1 ng liter−1. PMID:21873489</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JHyd..502...10S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JHyd..502...10S"><span>Impervious surfaces and sewer pipe effects on stormwater runoff temperature</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sabouri, F.; Gharabaghi, B.; Mahboubi, A. A.; McBean, E. A.</p> <p>2013-10-01</p> <p>The warming effect of the impervious surfaces in urban catchment areas and the cooling effect of underground storm sewer pipes on stormwater runoff temperature are assessed. Four urban residential catchment areas in the Cities of Guelph and Kitchener, Ontario, Canada were evaluated using a combination of runoff monitoring and modelling. The stormwater level and water temperature were monitored at 10 min interval at the inlet of the stormwater management ponds for three summers 2009, 2010 and 2011. The warming effect of the ponds is also studied, however discussed in detail in a separate paper. An artificial neural network (ANN) model for stormwater temperature was trained and validated using monitoring data. Stormwater runoff temperature was most sensitive to event mean temperature of the rainfall (EMTR) with a normalized sensitivity coefficient (Sn) of 1.257. Subsequent levels of sensitivity corresponded to the longest sewer pipe length (LPL), maximum rainfall intensity (MI), percent impervious cover (IMP), rainfall depth (R), initial asphalt temperature (AspT), pipe network density (PND), and rainfall duration (D), respectively. Percent impervious cover of the catchment area (IMP) was the key parameter that represented the warming effect of the paved surfaces; sensitivity analysis showed IMP increase from 20% to 50% resulted in runoff temperature increase by 3 °C. The longest storm sewer pipe length (LPL) and the storm sewer pipe network density (PND) are the two key parameters that control the cooling effect of the underground sewer system; sensitivity analysis showed LPL increase from 345 to 966 m, resulted in runoff temperature drop by 2.5 °C.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011FrES....5..400C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011FrES....5..400C"><span>Evaluating the risk of water distribution system failure: A shared frailty model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Clark, Robert M.; Thurnau, Robert C.</p> <p>2011-12-01</p> <p>Condition assessment (CA) Modeling is drawing increasing interest as a technique that can assist in managing drinking water infrastructure. This paper develops a model based on the application of a Cox proportional hazard (PH)/shared frailty model and applies it to evaluating the risk of failure in drinking water networks using data from the Laramie Water Utility (located in Laramie, Wyoming, USA). Using the risk model a cost/ benefit analysis incorporating the inspection value method (IVM), is used to assist in making improved repair, replacement and rehabilitation decisions for selected drinking water distribution system pipes. A separate model is developed to predict failures in prestressed concrete cylinder pipe (PCCP). Various currently available inspection technologies are presented and discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19690000084','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19690000084"><span>Improved pH buffering agent for sodium hypochlorite</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Nash, J. R.; Veeder, L. N.</p> <p>1969-01-01</p> <p>Sodium citrate/citric acid was found to be an effective buffer for pH control when used with sodium hypochlorite. The mixture does not corrode aluminum. The buffer appears to form a type of conversion coating that may provide corrosion-resistant properties to aluminum in other applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=43593&Lab=ORD&keyword=WELDING&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=43593&Lab=ORD&keyword=WELDING&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>SECURING CONTAINERIZED HAZARDOUS WASTES WITH WELDED POLYETHYLENE ENCAPSULATES</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Full-scale encapsulation of 208-liter (55-gal) drums was studied as a means for managing corroding containers of hazardous wastes in the field and rendering them suitable for transport and safe deposit within a final disposal site such as a landfill. Polyethylene (PE) receivers w...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2772207','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2772207"><span>Enhanced Biocompatibility of Porous Nitinol</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Munroe, Norman; Pulletikurthi, Chandan; Haider, Waseem</p> <p>2009-01-01</p> <p>Porous Nitinol (PNT) has found vast applications in the medical industry as interbody fusion devices, synthetic bone grafts, etc. However, the tendency of the PNT to corrode is anticipated to be greater as compared to solid nitinol since there is a larger surface area in contact with body fluids. In such cases, surface preparation is known to play a major role in a material’s biocompatibility. In an effort to check the effect of surface treatments on the in vitro corrosion properties of PNT, in this investigation, they were subjected to different surface treatments such as boiling in water, dry heating, and passivation. The localized corrosion resistance of alloys before and after each treatment was evaluated in phosphate buffer saline solution (PBS) using cyclic polarization tests in accordance with ASTM F 2129-08. PMID:19956797</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009JMEP...18..765M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009JMEP...18..765M"><span>Enhanced Biocompatibility of Porous Nitinol</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Munroe, Norman; Pulletikurthi, Chandan; Haider, Waseem</p> <p>2009-08-01</p> <p>Porous Nitinol (PNT) has found vast applications in the medical industry as interbody fusion devices, synthetic bone grafts, etc. However, the tendency of the PNT to corrode is anticipated to be greater as compared to solid nitinol since there is a larger surface area in contact with body fluids. In such cases, surface preparation is known to play a major role in a material’s biocompatibility. In an effort to check the effect of surface treatments on the in vitro corrosion properties of PNT, in this investigation, they were subjected to different surface treatments such as boiling in water, dry heating, and passivation. The localized corrosion resistance of alloys before and after each treatment was evaluated in phosphate buffer saline solution (PBS) using cyclic polarization tests in accordance with ASTM F 2129-08.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21415553','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21415553"><span>Corrosion resistance evaluation of Pd-free Ag-Au-Pt-Cu dental alloys.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fujita, Takeshi; Shiraishi, Takanobu; Takuma, Yasuko; Hisatsune, Kunihiro</p> <p>2011-01-01</p> <p>The corrosion resistance of nine experimental Pd-free Ag-Au-Pt-Cu dental alloys in a 0.9% NaCl solution was investigated using cyclic voltammetry (CV), optical microscopy, and scanning electron microscopy (SEM). CV measurements revealed that the breakdown potential (E(bd)) and zero current potential (E(zc)) increased with increasing Au/(Au+Ag) atomic ratio. Thus, the Au/(Au+Ag) atomic ratio, but not the Cu content, influenced the corrosion resistance of Ag-Au-Pt-Cu alloys. After the forward scan of CV, both optical and scanning electron microscope images showed that in all the experimental alloys, the matrix phase was corroded but not the second phase. From corrosion resistance viewpoint, the Ag-Au-Pt-Cu alloys seemed to be suitable for clinical application.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28249510','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28249510"><span>Deconvolution imaging of weak reflective pipe defects using guided-wave signals captured by a scanning receiver.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sun, Zeqing; Sun, Anyu; Ju, Bing-Feng</p> <p>2017-02-01</p> <p>Guided-wave echoes from weak reflective pipe defects are usually interfered by coherent noise and difficult to interpret. In this paper, a deconvolution imaging method is proposed to reconstruct defect images from synthetically focused guided-wave signals, with enhanced axial resolution. A compact transducer, circumferentially scanning around the pipe, is used to receive guided-wave echoes from discontinuities at a distance. This method achieves a higher circumferential sampling density than arrayed transducers-up to 72 sampling spots per lap for a pipe with a diameter of 180 mm. A noise suppression technique is used to enhance the signal-to-noise ratio. The enhancement in both signal-to-noise ratio and axial resolution of the method is experimentally validated by the detection of two kinds of artificial defects: a pitting defect of 5 mm in diameter and 0.9 mm in maximum depth, and iron pieces attached to the pipe surface. A reconstructed image of the pitting defect is obtained with a 5.87 dB signal-to-noise ratio. It is revealed that a high circumferential sampling density is important for the enhancement of the inspection sensitivity, by comparing the images reconstructed with different down-sampling ratios. A modified full width at half maximum is used as the criterion to evaluate the circumferential extent of the region where iron pieces are attached, which is applicable for defects with inhomogeneous reflection intensity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?direntryid=327000','PESTICIDES'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?direntryid=327000"><span>Testing large volume water treatment and crude oil ...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.epa.gov/pesticides/search.htm">EPA Pesticide Factsheets</a></p> <p></p> <p></p> <p>Report EPA’s Homeland Security Research Program (HSRP) partnered with the Idaho National Laboratory (INL) to build the Water Security Test Bed (WSTB) at the INL test site outside of Idaho Falls, Idaho. The WSTB was built using an 8-inch (20 cm) diameter cement-mortar lined drinking water pipe that was previously taken out of service. The pipe was exhumed from the INL grounds and oriented in the shape of a small drinking water distribution system. Effluent from the pipe is captured in a lagoon. The WSTB can support drinking water distribution system research on a variety of drinking water treatment topics including biofilms, water quality, sensors, and homeland security related contaminants. Because the WSTB is constructed of real drinking water distribution system pipes, research can be conducted under conditions similar to those in a real drinking water system. In 2014, WSTB pipe was experimentally contaminated with Bacillus globigii spores, a non-pathogenic surrogate for the pathogenic B. anthracis, and then decontaminated using chlorine dioxide. In 2015, the WSTB was used to perform the following experiments: • Four mobile disinfection technologies were tested for their ability to disinfect large volumes of biologically contaminated “dirty” water from the WSTB. B. globigii spores acted as the biological contaminant. The four technologies evaluated included: (1) Hayward Saline C™ 6.0 Chlorination System, (2) Advanced Oxidation Process (A</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=333090','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=333090"><span>Initial evaluation of floor cooling on lactating sows under severe acute heat stress</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>The objectives were to evaluate an acute heat stress protocol for lactating sows and evaluate preliminary estimates of water flow rates required to cool sows. Twelve multiparous sows were provided with a cooling pad built with an aluminum plate surface, high-density polyethylene base and copper pipe...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19860001776','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19860001776"><span>Langley Research Center Standard for the Evaluation of Socket Welds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Berry, R. F., Jr.</p> <p>1985-01-01</p> <p>A specification utilized for the nondestructive evaluation of socket type pipe joints at Langley Research Center (LaRC) is discussed. The scope of hardware shall include, but is not limited to, all common pipe fittings: tees, elbows, couplings, caps, and so forth, socket type flanges, unions, and valves. In addition, the exterior weld of slip on flanges shall be inspected using this specification. At the discretion of the design engineer, standard practice engineer, Fracture Mechanics Engineering Section, Pressure Systems Committee, or other authority, four nondestructive evaluation techniques may be utilized exclusively, or in combination, to inspect socket type welds. These techniques are visual, radiographic, magnetic particle, and dye penetrant. Under special circumstances, other techniques (such as eddy current or ultrasonics) may be required and their application shall be guided by the appropriate sections of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (B&PVC).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2432054','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2432054"><span>Evaluation of the Webler-Brown model for estimating tetrachloroethylene exposure from vinyl-lined asbestos-cement pipes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Spence, Lisa A; Aschengrau, Ann; Gallagher, Lisa E; Webster, Thomas F; Heeren, Timothy C; Ozonoff, David M</p> <p>2008-01-01</p> <p>Background From May 1968 through March 1980, vinyl-lined asbestos-cement (VL/AC) water distribution pipes were installed in New England to avoid taste and odor problems associated with asbestos-cement pipes. The vinyl resin was applied to the inner pipe surface in a solution of tetrachloroethylene (perchloroethylene, PCE). Substantial amounts of PCE remained in the liner and subsequently leached into public drinking water supplies. Methods Once aware of the leaching problem and prior to remediation (April-November 1980), Massachusetts regulators collected drinking water samples from VL/AC pipes to determine the extent and severity of the PCE contamination. This study compares newly obtained historical records of PCE concentrations in water samples (n = 88) with concentrations estimated using an exposure model employed in epidemiologic studies on the cancer risk associated with PCE-contaminated drinking water. The exposure model was developed by Webler and Brown to estimate the mass of PCE delivered to subjects' residences. Results The mean and median measured PCE concentrations in the water samples were 66 and 0.5 μg/L, respectively, and the range extended from non-detectable to 2432 μg/L. The model-generated concentration estimates and water sample concentrations were moderately correlated (Spearman rank correlation coefficient = 0.48, p < 0.0001). Correlations were higher in samples taken at taps and spigots vs. hydrants (ρ = 0.84 vs. 0.34), in areas with simple vs. complex geometry (ρ = 0.51 vs. 0.38), and near pipes installed in 1973–1976 vs. other years (ρ = 0.56 vs. 0.42 for 1968–1972 and 0.37 for 1977–1980). Overall, 24% of the variance in measured PCE concentrations was explained by the model-generated concentration estimates (p < 0.0001). Almost half of the water samples had undetectable concentrations of PCE. Undetectable levels were more common in areas with the earliest installed VL/AC pipes, at the beginning and middle of VL/AC pipes, at hydrants, and in complex pipe configurations. Conclusion PCE concentration estimates generated using the Webler-Brown model were moderately correlated with measured water concentrations. The present analysis suggests that the exposure assessment process used in prior epidemiological studies could be improved with more accurate characterization of water flow. This study illustrates one method of validating an exposure model in an epidemiological study when historical measurements are not available. PMID:18518975</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18518975','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18518975"><span>Evaluation of the Webler-Brown model for estimating tetrachloroethylene exposure from vinyl-lined asbestos-cement pipes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Spence, Lisa A; Aschengrau, Ann; Gallagher, Lisa E; Webster, Thomas F; Heeren, Timothy C; Ozonoff, David M</p> <p>2008-06-02</p> <p>From May 1968 through March 1980, vinyl-lined asbestos-cement (VL/AC) water distribution pipes were installed in New England to avoid taste and odor problems associated with asbestos-cement pipes. The vinyl resin was applied to the inner pipe surface in a solution of tetrachloroethylene (perchloroethylene, PCE). Substantial amounts of PCE remained in the liner and subsequently leached into public drinking water supplies. Once aware of the leaching problem and prior to remediation (April-November 1980), Massachusetts regulators collected drinking water samples from VL/AC pipes to determine the extent and severity of the PCE contamination. This study compares newly obtained historical records of PCE concentrations in water samples (n = 88) with concentrations estimated using an exposure model employed in epidemiologic studies on the cancer risk associated with PCE-contaminated drinking water. The exposure model was developed by Webler and Brown to estimate the mass of PCE delivered to subjects' residences. The mean and median measured PCE concentrations in the water samples were 66 and 0.5 microg/L, respectively, and the range extended from non-detectable to 2432 microg/L. The model-generated concentration estimates and water sample concentrations were moderately correlated (Spearman rank correlation coefficient = 0.48, p < 0.0001). Correlations were higher in samples taken at taps and spigots vs. hydrants (rho = 0.84 vs. 0.34), in areas with simple vs. complex geometry (rho = 0.51 vs. 0.38), and near pipes installed in 1973-1976 vs. other years (rho = 0.56 vs. 0.42 for 1968-1972 and 0.37 for 1977-1980). Overall, 24% of the variance in measured PCE concentrations was explained by the model-generated concentration estimates (p < 0.0001). Almost half of the water samples had undetectable concentrations of PCE. Undetectable levels were more common in areas with the earliest installed VL/AC pipes, at the beginning and middle of VL/AC pipes, at hydrants, and in complex pipe configurations. PCE concentration estimates generated using the Webler-Brown model were moderately correlated with measured water concentrations. The present analysis suggests that the exposure assessment process used in prior epidemiological studies could be improved with more accurate characterization of water flow. This study illustrates one method of validating an exposure model in an epidemiological study when historical measurements are not available.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title49-vol3/pdf/CFR-2013-title49-vol3-sec180-411.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title49-vol3/pdf/CFR-2013-title49-vol3-sec180-411.pdf"><span>49 CFR 180.411 - Acceptable results of tests and inspections.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-10-01</p> <p>... 49 Transportation 3 2013-10-01 2013-10-01 false Acceptable results of tests and inspections. 180.411 Section 180.411 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE... results of tests and inspections. (a) Corroded or abraded areas. The minimum thickness may not be less...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title49-vol3/pdf/CFR-2012-title49-vol3-sec180-411.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title49-vol3/pdf/CFR-2012-title49-vol3-sec180-411.pdf"><span>49 CFR 180.411 - Acceptable results of tests and inspections.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-10-01</p> <p>... 49 Transportation 3 2012-10-01 2012-10-01 false Acceptable results of tests and inspections. 180.411 Section 180.411 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE... results of tests and inspections. (a) Corroded or abraded areas. The minimum thickness may not be less...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title49-vol2/pdf/CFR-2010-title49-vol2-sec180-411.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title49-vol2/pdf/CFR-2010-title49-vol2-sec180-411.pdf"><span>49 CFR 180.411 - Acceptable results of tests and inspections.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-10-01</p> <p>... 49 Transportation 2 2010-10-01 2010-10-01 false Acceptable results of tests and inspections. 180.411 Section 180.411 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS... results of tests and inspections. (a) Corroded or abraded areas. The minimum thickness may not be less...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title36-vol3/pdf/CFR-2011-title36-vol3-sec1237-16.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title36-vol3/pdf/CFR-2011-title36-vol3-sec1237-16.pdf"><span>36 CFR 1237.16 - How do agencies store audiovisual records?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>... other descriptive mechanisms; (d) Store series of permanent and unscheduled x-ray films, i.e, x-rays... subchapter. Store series of temporary x-ray films under conditions that will ensure their preservation for... unscheduled records, use audiovisual storage containers or enclosures made of non-corroding metal, inert...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title36-vol3/pdf/CFR-2010-title36-vol3-sec1237-16.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title36-vol3/pdf/CFR-2010-title36-vol3-sec1237-16.pdf"><span>36 CFR 1237.16 - How do agencies store audiovisual records?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-07-01</p> <p>... other descriptive mechanisms; (d) Store series of permanent and unscheduled x-ray films, i.e, x-rays... subchapter. Store series of temporary x-ray films under conditions that will ensure their preservation for... unscheduled records, use audiovisual storage containers or enclosures made of non-corroding metal, inert...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2013-10-31/pdf/2013-25629.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2013-10-31/pdf/2013-25629.pdf"><span>78 FR 65198 - Airworthiness Directives; Bombardier, Inc. Airplanes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2013-10-31</p> <p>... rudder feel trim unit (RFTU). This AD requires an inspection to determine if certain RFTUs are installed... impeded. An investigation showed that the Rudder Feel Trim Unit (RFTU) trunnion shaft was corroded. The..., equipped with rudder feel trim unit (RFTU) part number (P/N) 399500-1007. [[Page 65200</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=154814&Lab=NRMRL&keyword=sand+AND+quality&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=154814&Lab=NRMRL&keyword=sand+AND+quality&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>DIAGNOSIS OF TRACE PB IN DOMESTIC WELLS, UPPER GLOUCESTER CATCHMENT, MAINE</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Dissolved Pb in 32 wells associated with corroding submersible pumps is examined within a rural water district after almost 20 years (1984 to 2002). Groundwater Pb ranged from 0.4 – 24.9 µg L<SUP>-1</SUP> after 24 hr pump flushing. Preliminary geochemistry and represent...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=plastic&pg=6&id=EJ1050704','ERIC'); return false;" href="https://eric.ed.gov/?q=plastic&pg=6&id=EJ1050704"><span>Coffee Stirrers and Drinking Straws as Disposable Spatulas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Turano, Morgan A.; Lobuono, Cinzia; Kirschenbaum, Louis J.</p> <p>2015-01-01</p> <p>Although metal spatulas are damaged through everyday use and become discolored and corroded by chemical exposure, plastic drinking straws are inexpensive, sterile, and disposable, reducing the risk of cross-contamination during laboratory procedures. Drinking straws are also useful because they come in a variety of sizes; narrow sample containers…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013SPIE.8705E..0TG','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013SPIE.8705E..0TG"><span>Evaluating quality of adhesive joints in glass-fiber plastic piping by using active thermal NDT</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Grosso, M.; Marinho, C. A.; Nesteruk, D. A.; Rebello, J. M.; Soares, S. D.; Vavilov, V. P.</p> <p>2013-05-01</p> <p>GRP-type composites (Glass-fibre Reinforced Plastics) have been continuously employed in the oil industry in recent years, often on platforms, especially in pipes for water or oil under moderate temperatures. In this case, the pipes are usually connected through adhesive joints and, consequently, the detection of defects in these joints, as areas without adhesive or adhesive failure (disbonding), gains great importance. One-sided inspection on the joint surface (front side) is a challenging task because the material thickness easily exceeds 10 mm that is far beyond the limits of the capacity of thermography applied to GRP inspection, as confirmed by the experience. Detection limits have been evaluated both theoretically and experimentally as a function of outer wall thickness and defect lateral size. The 3D modeling was accomplished by using the ThermoCalc-6L software. The experimental unit consisted of a FLIR SC640 and NEC TH- 9100 IR imagers and some home-made heaters with the power from 1,5 to 30 kW. The results obtained by applying pulsed heating have demonstrated that the inspection efficiency is strongly dependent on the outer wall thickness with a value of about 8 mm being a detection limit.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70159782','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70159782"><span>Breeding sites and winter site fidelity of Piping Plovers wintering in The Bahamas, a previously unknown major wintering area</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Gratto-Trevor, Cheri; Haig, Susan M.; Miller, Mark P.; Mullins, Thomas D.; Maddock, Sidney; Roche, Erin A.; Moore, Predensa</p> <p>2016-01-01</p> <p>Most of the known wintering areas of Piping Plovers (Charadrius melodus) are along the Atlantic and Gulf coasts of the United States and into Mexico, and in the Caribbean. However, 1066 threatened/endangered Piping Plovers were recently found wintering in The Bahamas, an area not previously known to be important for the species. Although representing about 27% of the birds counted during the 2011 International Piping Plover Winter Census, the location of their breeding site(s) was unknown. Thus, our objectives were to determine the location(s) of their breeding site(s) using molecular markers and by tracking banded individuals, identify spring and fall staging sites, and examine site fidelity and survival. We captured and color-banded 57 birds in January and February 2010 in The Bahamas. Blood samples were also collected for genetic evaluation of the likely subspecies wintering in The Bahamas. Band re-sightings and DNA analysis revealed that at least 95% of the Piping Plovers wintering in The Bahamas originated on the Atlantic coast of the United States and Canada. Re-sightings of birds banded in The Bahamas spanned the breeding distribution of the species along the Atlantic coast from Newfoundland to North Carolina. Site fidelity to breeding and wintering sites was high (88–100%). Spring and fall staging sites were located along the Atlantic coast of the United States, with marked birds concentrating in the Carolinas. Our estimate of true survival for the marked birds was 0.71 (95% CI: 0.61–0.80). Our results indicate that more than one third of the Piping Plover population that breeds along the Atlantic coast winters in The Bahamas. By determining the importance of The Bahamas to the Atlantic subspecies of Piping Plovers, future conservation efforts for these populations can be better focused on where they are most needed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/865258','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/865258"><span>Piping support system for liquid-metal fast-breeder reactor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Brussalis, Jr., William G.</p> <p>1984-01-01</p> <p>A pipe support consisting of a rigid link pivotally attached to a pipe and an anchor, adapted to generate stress or strain in the link and pipe due to pipe thermal movement, which stress or strain can oppose further pipe movement and generally provides pipe support. The pipe support can be used in multiple combinations with other pipe supports to form a support system. This support system is most useful in applications in which the pipe is normally operated at a constant elevated or depressed temperature such that desired stress or strain can be planned in advance of pipe and support installation. The support system is therefore especially useful in steam stations and in refrigeration equipment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=secondary+AND+flow+AND+pipes&id=ED376374','ERIC'); return false;" href="https://eric.ed.gov/?q=secondary+AND+flow+AND+pipes&id=ED376374"><span>Pipe Drafting with CAD. Teacher Edition.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Smithson, Buddy</p> <p></p> <p>This teacher's guide contains nine units of instruction for a course on computer-assisted pipe drafting. The course covers the following topics: introduction to pipe drafting with CAD (computer-assisted design); flow diagrams; pipe and pipe components; valves; piping plans and elevations; isometrics; equipment fabrication drawings; piping design…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title49-vol3/pdf/CFR-2014-title49-vol3-part192-appB.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title49-vol3/pdf/CFR-2014-title49-vol3-part192-appB.pdf"><span>49 CFR Appendix B to Part 192 - Qualification of Pipe</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-10-01</p> <p>...—Steel pipe, “Standard Specification for Seamless Carbon Steel Pipe for High Temperature Service... pipe, “Standard Specification for Metal-Arc-Welded Steel Pipe for Use with High-Pressure Transmission...). ASTM A672—Steel pipe, “Standard Specification for Electric-Fusion-Welded Steel Pipe for High-Pressure...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title49-vol3/pdf/CFR-2012-title49-vol3-part192-appB.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title49-vol3/pdf/CFR-2012-title49-vol3-part192-appB.pdf"><span>49 CFR Appendix B to Part 192 - Qualification of Pipe</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-10-01</p> <p>...—Steel pipe, “Standard Specification for Seamless Carbon Steel Pipe for High Temperature Service... pipe, “Standard Specification for Metal-Arc-Welded Steel Pipe for Use with High-Pressure Transmission...). ASTM A672—Steel pipe, “Standard Specification for Electric-Fusion-Welded Steel Pipe for High-Pressure...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title49-vol3/pdf/CFR-2013-title49-vol3-part192-appB.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title49-vol3/pdf/CFR-2013-title49-vol3-part192-appB.pdf"><span>49 CFR Appendix B to Part 192 - Qualification of Pipe</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-10-01</p> <p>...—Steel pipe, “Standard Specification for Seamless Carbon Steel Pipe for High Temperature Service... pipe, “Standard Specification for Metal-Arc-Welded Steel Pipe for Use with High-Pressure Transmission...). ASTM A672—Steel pipe, “Standard Specification for Electric-Fusion-Welded Steel Pipe for High-Pressure...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45.2396B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45.2396B"><span>Was the Deepwater Horizon Well Discharge Churn Flow? Implications on the Estimation of the Oil Discharge and Droplet Size Distribution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Boufadel, Michel C.; Gao, Feng; Zhao, Lin; Özgökmen, Tamay; Miller, Richard; King, Thomas; Robinson, Brian; Lee, Kenneth; Leifer, Ira</p> <p>2018-03-01</p> <p>Improved understanding of the character of an uncontrolled pipeline flow is critical for the estimation of the oil discharge and droplet size distribution both essential for evaluating oil spill impact. Measured oil and gas properties at the wellhead of the Macondo255 and detailed numerical modeling suggested that the flow within the pipe could have been "churn," whereby oil and gas tumble violently within the pipe and is different from the bubbly flow commonly assumed for that release. The churn flow would have produced 5 times the energy loss in the pipe compared to bubbly flow, and its plume would have entrained 35% more water than that of the bubbly flow. Both findings suggest that the oil discharge in Deepwater Horizon could have been overestimated, by up to 200%. The resulting oil droplet size distribution of churn flow is likely smaller than that of bubbly flow.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/10125347-piping-equipment-resistance-seismic-generated-missiles','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/10125347-piping-equipment-resistance-seismic-generated-missiles"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>LaSalle, F.R.; Golbeg, P.R.; Chenault, D.M.</p> <p></p> <p>For reactor and nuclear facilities, both Title 10, Code of Federal Regulations, Part 50, and US Department of Energy Order 6430.1A require assessments of the interaction of non-Safety Class 1 piping and equipment with Safety Class 1 piping and equipment during a seismic event to maintain the safety function. The safety class systems of nuclear reactors or nuclear facilities are designed to the applicable American Society of Mechanical Engineers standards and Seismic Category 1 criteria that require rigorous analysis, construction, and quality assurance. Because non-safety class systems are generally designed to lesser standards and seismic criteria, they may become missilesmore » during a safe shutdown earthquake. The resistance of piping, tubing, and equipment to seismically generated missiles is addressed in the paper. Gross plastic and local penetration failures are considered with applicable test verification. Missile types and seismic zones of influence are discussed. Field qualification data are also developed for missile evaluation.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70015601','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70015601"><span>An interpretation of induced electric currents in long pipelines caused by natural geomagnetic sources of the upper atmosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Campbell, W.H.</p> <p>1986-01-01</p> <p>Electric currents in long pipelines can contribute to corrosion effects that limit the pipe's lifetime. One cause of such electric currents is the geomagnetic field variations that have sources in the Earth's upper atmosphere. Knowledge of the general behavior of the sources allows a prediction of the occurrence times, favorable locations for the pipeline effects, and long-term projections of corrosion contributions. The source spectral characteristics, the Earth's conductivity profile, and a corrosion-frequency dependence limit the period range of the natural field changes that affect the pipe. The corrosion contribution by induced currents from geomagnetic sources should be evaluated for pipelines that are located at high and at equatorial latitudes. At midlatitude locations, the times of these natural current maxima should be avoided for the necessary accurate monitoring of the pipe-to-soil potential. ?? 1986 D. Reidel Publishing Company.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28226251','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28226251"><span>Effects of sulfate on heavy metal release from iron corrosion scales in drinking water distribution system.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sun, Huifang; Shi, Baoyou; Yang, Fan; Wang, Dongsheng</p> <p>2017-05-01</p> <p>Trace heavy metals accumulated in iron corrosion scales within a drinking water distribution system (DWDS) could potentially be released to bulk water and consequently deteriorate the tap water quality. The objective of this study was to identify and evaluate the release of trace heavy metals in DWDS under changing source water conditions. Experimental pipe loops with different iron corrosion scales were set up to simulate the actual DWDS. The effects of sulfate levels on heavy metal release were systemically investigated. Heavy metal releases of Mn, Ni, Cu, Pb, Cr and As could be rapidly triggered by sulfate addition but the releases slowly decreased over time. Heavy metal release was more severe in pipes transporting groundwater (GW) than in pipes transporting surface water (SW). There were strong positive correlations (R 2  > 0.8) between the releases of Fe and Mn, Fe and Ni, Fe and Cu, and Fe and Pb. When switching to higher sulfate water, iron corrosion scales in all pipe loops tended to be more stable (especially in pipes transporting GW), with a larger proportion of stable constituents (mainly Fe 3 O 4 ) and fewer unstable compounds (β-FeOOH, γ-FeOOH, FeCO 3 and amorphous iron oxides). The main functional iron reducing bacteria (IRB) communities were favorable for the formation of Fe 3 O 4 . The transformation of corrosion scales and the growth of sulfate reducing bacteria (SRB) accounted for the gradually reduced heavy metal release with time. The higher metal release in pipes transporting GW could be due to increased Fe 6 (OH) 12 CO 3 content under higher sulfate concentrations. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/143184-strain-corrosion-cracking-rpm-sewer-piping','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/143184-strain-corrosion-cracking-rpm-sewer-piping"><span>Strain corrosion cracking in rpm sewer piping</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hopkins, S.W.; Wachob, H.F.; Duffner, D.H.</p> <p>1993-12-31</p> <p>Long term, aggressive environmental exposure can result in localized failure of large diameter, glass reinforced plastic mortar (RPM) piping. In order to evaluate the performance of the liner and glass reinforced matrix polyester resin, accelerated strain corrosion tests were performed on samples of RPM piping that had already experienced almost 15 years of service. To assess the sensitivity of RPM pipe to acidic environments and to correlate the fractography of the laboratory produced failures with the excavated crack, short segments of 8-inch and 48-inch diameter piping were statically loaded to produce various known surface strains. After preloading the specimens tomore » fixed strain levels, these samples were then exposed to sulfuric acid solutions having pH values of 2.7 and 4.7 and monitored as a function of time until failure. The resulting lifetimes were related to initial surface strains and showed a decreasing logarithmic relationship. Fractographic examination of the excavated crack revealed the typical strain corrosion fractography of glass fibers after almost a 1000 hour exposure at 1.3 % strain; similar fractographic observations were obtained from failed laboratory samples. At shorter times, failure appeared to be overload in nature and exhibited little, if any, timedependent fracture features. Fractographic examination of the excavated crack strongly indicated that the crack had been present for a significant time. The extremely aggressive environment had totally dissolved the exposed glass reinforcement. Based on the laboratory strain corrosion performance, the nature of the contained cracking, and fractography of the failed surface, cracking of the excavated RPM pipe was believed to be the result of an early overload failure that subsequently propagated slowly via strain corrosion in an extremely aggressive environment.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MS%26E..257a2026G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MS%26E..257a2026G"><span>Application of displacement monitoring system on high temperature steam pipe</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ghaffar, M. H. A.; Husin, S.; Baek, J. E.</p> <p>2017-10-01</p> <p>High-energy piping systems of power plants such as Main Steam (MS) pipe or Hot Reheat (HR) pipe are operating at high temperature and high pressure at base and cyclic loads. In the event of transient condition, a pipe can be deflected dramatically and caused high stress in the pipe, yielding to failure of the piping system. Periodic monitoring and walk down can identify abnormalities but limitations exist in the standard walk down practice. This paper provides a study of pipe displacement monitoring on MS pipe of coal-fired power plant to continuously capture the pipe movement behaviour at different load using 3-Dimensional Displacement Measuring System (3DDMS). The displacement trending at Location 5 and 6 (north and south) demonstrated pipes displace less than 25% to that of design movement. It was determined from synchronisation analysis that Location 7 (north) and Location 8 (south) pipe actual movement difference has exceeded the design movement difference. Visual survey at specified locations with significant displacement trending reveals issues of hydraulic snubber and piping interferences. The study demonstrated that the displacement monitoring is able to capture pipe movement at all time and allows engineer to monitor pipe movement behaviour, aids in identifying issue early for remedy action.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title24-vol5/pdf/CFR-2013-title24-vol5-sec3280-705.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title24-vol5/pdf/CFR-2013-title24-vol5-sec3280-705.pdf"><span>24 CFR 3280.705 - Gas piping systems.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-04-01</p> <p>... § 3280.705(b) (1) through (4). (1) Steel or wrought-iron pipe shall comply with ANSI Standard B36.10-1979, Welded and Seamless Wrought Steel Pipe. Threaded brass pipe in iron pipe sizes may be used. Threaded brass pipe shall comply with ASTM B43-91, Standard Specification for Seamless Red Brass Pipe, Standard...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title24-vol5/pdf/CFR-2012-title24-vol5-sec3280-705.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title24-vol5/pdf/CFR-2012-title24-vol5-sec3280-705.pdf"><span>24 CFR 3280.705 - Gas piping systems.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-04-01</p> <p>... § 3280.705(b) (1) through (4). (1) Steel or wrought-iron pipe shall comply with ANSI Standard B36.10-1979, Welded and Seamless Wrought Steel Pipe. Threaded brass pipe in iron pipe sizes may be used. Threaded brass pipe shall comply with ASTM B43-91, Standard Specification for Seamless Red Brass Pipe, Standard...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title24-vol5/pdf/CFR-2010-title24-vol5-sec3280-705.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title24-vol5/pdf/CFR-2010-title24-vol5-sec3280-705.pdf"><span>24 CFR 3280.705 - Gas piping systems.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-04-01</p> <p>... § 3280.705(b) (1) through (4). (1) Steel or wrought-iron pipe shall comply with ANSI Standard B36.10-1979, Welded and Seamless Wrought Steel Pipe. Threaded brass pipe in iron pipe sizes may be used. Threaded brass pipe shall comply with ASTM B43-91, Standard Specification for Seamless Red Brass Pipe, Standard...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title24-vol5/pdf/CFR-2011-title24-vol5-sec3280-705.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title24-vol5/pdf/CFR-2011-title24-vol5-sec3280-705.pdf"><span>24 CFR 3280.705 - Gas piping systems.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-04-01</p> <p>... § 3280.705(b) (1) through (4). (1) Steel or wrought-iron pipe shall comply with ANSI Standard B36.10-1979, Welded and Seamless Wrought Steel Pipe. Threaded brass pipe in iron pipe sizes may be used. Threaded brass pipe shall comply with ASTM B43-91, Standard Specification for Seamless Red Brass Pipe, Standard...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/87746','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/87746"><span>Apparatus for moving a pipe inspection probe through piping</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Zollinger, W.T.; Appel, D.K.; Lewis, G.W.</p> <p>1995-07-18</p> <p>A method and apparatus are disclosed for controllably moving devices for cleaning or inspection through piping systems, including piping systems with numerous piping bends therein, by using hydrostatic pressure of a working fluid introduced into the piping system. The apparatus comprises a reservoir or other source for supplying the working fluid to the piping system, a launch tube for admitting the device into the launcher and a reversible, positive displacement pump for controlling the direction and flow rate of the working fluid. The device introduced into the piping system moves with the flow of the working fluid through the piping system. The launcher attaches to the valved ends of a piping system so that fluids in the piping system can recirculate in a closed loop. The method comprises attaching the launcher to the piping system, supplying the launcher with working fluid, admitting the device into the launcher, pumping the working fluid in the direction and at the rate desired so that the device moves through the piping system for pipe cleaning or inspection, removing the device from the launcher, and collecting the working fluid contained in the launcher. 8 figs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/869981','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/869981"><span>Apparatus for moving a pipe inspection probe through piping</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Zollinger, W. Thor; Appel, D. Keith; Lewis, Gregory W.</p> <p>1995-01-01</p> <p>A method and apparatus for controllably moving devices for cleaning or inspection through piping systems, including piping systems with numerous piping bends therein, by using hydrostatic pressure of a working fluid introduced into the piping system. The apparatus comprises a reservoir or other source for supplying the working fluid to the piping system, a launch tube for admitting the device into the launcher and a reversible, positive displacement pump for controlling the direction and flow rate of the working fluid. The device introduced into the piping system moves with the flow of the working fluid through the piping system. The launcher attaches to the valved ends of a piping system so that fluids in the piping system can recirculate in a closed loop. The method comprises attaching the launcher to the piping system, supplying the launcher with working fluid, admitting the device into the launcher, pumping the working fluid in the direction and at the rate desired so that the device moves through the piping system for pipe cleaning or inspection, removing the device from the launcher, and collecting the working fluid contained in the launcher.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=211928&Lab=NRMRL&keyword=technology+AND+history&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=211928&Lab=NRMRL&keyword=technology+AND+history&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Retrospective Evaluation of Cured-in-Place Pipe Technology for Municipal Gravity Sewer Rehabilitation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>One of the top research needs identified at the September 2008 U.S. EPA International Technology Forum on Rehabilitation of Water and Wastewater Systems is to undertake a broad and quantitative retrospective evaluation of the performance of previously rehabilitated systems. Curr...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19890009596','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19890009596"><span>Megawatt Class Nuclear Space Power Systems (MCNSPS) conceptual design and evaluation report. Volume 4: Concepts selection, conceptual designs, recommendations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wetch, J. R.</p> <p>1988-01-01</p> <p>A study was conducted by NASA Lewis Research Center for the Triagency SP-100 program office. The objective was to determine which reactor, conversion and radiator technologies would best fulfill future Megawatt Class Nuclear Space Power System Requirements. The requirement was 10 megawatts for 5 years of full power operation and 10 years system life on orbit. A variety of liquid metal and gas cooled reactors, static and dynamic conversion systems, and passive and dynamic radiators were considered. Four concepts were selected for more detailed study: (1) a gas cooled reactor with closed cycle Brayton turbine-alternator conversion with heatpipe and pumped tube fin rejection, (2) a Lithium cooled reactor with a free piston Stirling engine-linear alternator and a pumped tube-fin radiator,(3) a Lithium cooled reactor with a Potassium Rankine turbine-alternator and heat pipe radiator, and (4) a Lithium cooled incore thermionic static conversion reactor with a heat pipe radiator. The systems recommended for further development to meet a 10 megawatt long life requirement are the Lithium cooled reactor with the K-Rankine conversion and heat pipe radiator, and the Lithium cooled incore thermionic reactor with heat pipe radiator.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AIPC.1096.1687M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AIPC.1096.1687M"><span>Robotic Inspection System for Non-Destructive Evaluation (nde) of Pipes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mackenzie, L. D.; Pierce, S. G.; Hayward, G.</p> <p>2009-03-01</p> <p>The demand for remote inspection of pipework in the processing cells of nuclear plant provides significant challenges of access, navigation, inspection technique and data communication. Such processing cells typically contain several kilometres of densely packed pipework whose actual physical layout may be poorly documented. Access to these pipes is typically afforded through the radiation shield via a small removable concrete plug which may be several meters from the actual inspection site, thus considerably complicating practical inspection. The current research focuses on the robotic deployment of multiple NDE payloads for weld inspection along non-ferritic steel pipework (thus precluding use of magnetic traction options). A fully wireless robotic inspection platform has been developed that is capable of travelling along the outside of a pipe at any orientation, while avoiding obstacles such as pipe hangers and delivering a variety of NDE payloads. An eddy current array system provides rapid imaging capabilities for surface breaking defects while an on-board camera, in addition to assisting with navigation tasks, also allows real time image processing to identify potential defects. All sensor data can be processed by the embedded microcontroller or transmitted wirelessly back to the point of access for post-processing analysis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22308840-bubble-detection-system-propellant-filling-pipeline','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22308840-bubble-detection-system-propellant-filling-pipeline"><span>A bubble detection system for propellant filling pipeline</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wen, Wen; Zong, Guanghua; Bi, Shusheng</p> <p>2014-06-15</p> <p>This paper proposes a bubble detection system based on the ultrasound transmission method, mainly for probing high-speed bubbles in the satellite propellant filling pipeline. First, three common ultrasonic detection methods are compared and the ultrasound transmission method is used in this paper. Then, the ultrasound beam in a vertical pipe is investigated, suggesting that the width of the beam used for detection is usually smaller than the internal diameter of the pipe, which means that when bubbles move close to the pipe wall, they may escape from being detected. A special device is designed to solve this problem. It canmore » generate the spiral flow to force all the bubbles to ascend along the central line of the pipe. In the end, experiments are implemented to evaluate the performance of this system. Bubbles of five different sizes are generated and detected. Experiment results show that the sizes and quantity of bubbles can be estimated by this system. Also, the bubbles of different radii can be distinguished from each other. The numerical relationship between the ultrasound attenuation and the bubble radius is acquired and it can be utilized for estimating the unknown bubble size and measuring the total bubble volume.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AIPC.1027.1420M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AIPC.1027.1420M"><span>Slump Flows inside Pipes: Numerical Results and Comparison with Experiments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Malekmohammadi, S.; Naccache, M. F.; Frigaard, I. A.; Martinez, D. M.</p> <p>2008-07-01</p> <p>In this work an analysis of the buoyancy-driven slumping flow inside a pipe is presented. This flow usually occurs when an oil well is sealed by a plug cementing process, where a cement plug is placed inside the pipe filled with a lower density fluid, displacing it towards the upper cylinder wall. Both the cement and the surrounding fluids have a non Newtonian behavior. The cement is viscoplastic and the surrounding fluid presents a shear thinning behavior. A numerical analysis was performed to evaluate the effects of some governing parameters on the slump length development. The conservation equations of mass and momentum were solved via a finite volume technique, using Fluent software (Ansys Inc.). The Volume of Fluid surface-tracking method was used to obtain the interface between the fluids and the slump length as a function of time. The results were obtained for different values of fluids densities differences, fluids rheology and pipe inclinations. The effects of these parameters on the interface shape and on the slump length versus time curve were analyzed. Moreover, the numerical results were compared to experimental ones, but some differences are observed, possibly due to chemical effects at the interface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28544559','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28544559"><span>PipeCraft: Flexible open-source toolkit for bioinformatics analysis of custom high-throughput amplicon sequencing data.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Anslan, Sten; Bahram, Mohammad; Hiiesalu, Indrek; Tedersoo, Leho</p> <p>2017-11-01</p> <p>High-throughput sequencing methods have become a routine analysis tool in environmental sciences as well as in public and private sector. These methods provide vast amount of data, which need to be analysed in several steps. Although the bioinformatics may be applied using several public tools, many analytical pipelines allow too few options for the optimal analysis for more complicated or customized designs. Here, we introduce PipeCraft, a flexible and handy bioinformatics pipeline with a user-friendly graphical interface that links several public tools for analysing amplicon sequencing data. Users are able to customize the pipeline by selecting the most suitable tools and options to process raw sequences from Illumina, Pacific Biosciences, Ion Torrent and Roche 454 sequencing platforms. We described the design and options of PipeCraft and evaluated its performance by analysing the data sets from three different sequencing platforms. We demonstrated that PipeCraft is able to process large data sets within 24 hr. The graphical user interface and the automated links between various bioinformatics tools enable easy customization of the workflow. All analytical steps and options are recorded in log files and are easily traceable. © 2017 John Wiley & Sons Ltd.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>