Evidence-based evaluation of the cumulative effects of ecosystem restoration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diefenderfer, Heida L.; Johnson, Gary E.; Thom, Ronald M.
Evaluating the cumulative effects of large-scale ecological restoration programs is necessary to inform adaptive ecosystem management and provide society with resilient and sustainable services. However, complex linkages between restorative actions and ecosystem responses make evaluations problematic. Despite long-term federal investments in restoring aquatic ecosystems, no standard evaluation method has been adopted and most programs focus on monitoring and analysis, not synthesis and evaluation. In this paper, we demonstrate a new transdisciplinary approach integrating techniques from evidence-based medicine, critical thinking, and cumulative effects assessment. Tiered hypotheses are identified using an ecosystem conceptual model. The systematic literature review at the core ofmore » evidence-based assessment becomes one of many lines of evidence assessed collectively, using critical thinking strategies and causal criteria from a cumulative effects perspective. As a demonstration, we analyzed data from 166 locations on the Columbia River and estuary representing 12 indicators of habitat and fish response to floodplain restoration actions intended to benefit threatened and endangered salmon. Synthesis of seven lines of evidence showed that hydrologic reconnection promoted macrodetritis export, prey availability, and fish access and feeding. The evidence was sufficient to infer cross-boundary, indirect, compounding and delayed cumulative effects, and suggestive of nonlinear, landscape-scale, and spatial density effects. On the basis of causal inferences regarding food web functions, we concluded that the restoration program has a cumulative beneficial effect on juvenile salmon. As a result, this evidence-based approach will enable the evaluation of restoration in complex coastal and riverine ecosystems where data have accumulated without sufficient synthesis.« less
Evidence-based evaluation of the cumulative effects of ecosystem restoration
Diefenderfer, Heida L.; Johnson, Gary E.; Thom, Ronald M.; ...
2016-03-18
Evaluating the cumulative effects of large-scale ecological restoration programs is necessary to inform adaptive ecosystem management and provide society with resilient and sustainable services. However, complex linkages between restorative actions and ecosystem responses make evaluations problematic. Despite long-term federal investments in restoring aquatic ecosystems, no standard evaluation method has been adopted and most programs focus on monitoring and analysis, not synthesis and evaluation. In this paper, we demonstrate a new transdisciplinary approach integrating techniques from evidence-based medicine, critical thinking, and cumulative effects assessment. Tiered hypotheses are identified using an ecosystem conceptual model. The systematic literature review at the core ofmore » evidence-based assessment becomes one of many lines of evidence assessed collectively, using critical thinking strategies and causal criteria from a cumulative effects perspective. As a demonstration, we analyzed data from 166 locations on the Columbia River and estuary representing 12 indicators of habitat and fish response to floodplain restoration actions intended to benefit threatened and endangered salmon. Synthesis of seven lines of evidence showed that hydrologic reconnection promoted macrodetritis export, prey availability, and fish access and feeding. The evidence was sufficient to infer cross-boundary, indirect, compounding and delayed cumulative effects, and suggestive of nonlinear, landscape-scale, and spatial density effects. On the basis of causal inferences regarding food web functions, we concluded that the restoration program has a cumulative beneficial effect on juvenile salmon. As a result, this evidence-based approach will enable the evaluation of restoration in complex coastal and riverine ecosystems where data have accumulated without sufficient synthesis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Gary E.; Diefenderfer, Heida L.; Thom, Ronald M.
This is the seventh and final annual report of a project (2004–2010) addressing evaluation of the cumulative effects of habitat restoration actions in the 235-km-long lower Columbia River and estuary. The project, called the Cumulative Effects (CE) study, was conducted for the U.S. Army Corps of Engineers Portland District by a collaboration of research agencies led by the Pacific Northwest National Laboratory. We achieved the primary goal of the CE study to develop a methodology to evaluate the cumulative effects of habitat actions in the Columbia Estuary Ecosystem Restoration Program. We delivered 1) standard monitoring protocols and methods to prioritizemore » monitoring activities; 2) the theoretical and empirical basis for a CE methodology using levels-of-evidence; 3) evaluations of cumulative effects using ecological relationships, geo-referenced data, hydrodynamic modeling, and meta-analyses; and 4) an adaptive management process to coordinate and coalesce restoration efforts in the LCRE. A solid foundation has been laid for future comprehensive evaluations of progress made by the Columbia Estuary Ecosystem Restoration Program to understand, conserve, and restore ecosystems in the lower Columbia River and estuary.« less
Zong Bo Shang; Hong S. He; Weimin Xi; Stephen R. Shifley; Brian J. Palik
2012-01-01
Public forest management requires consideration of numerous objectives including protecting ecosystem health, sustaining habitats for native communities, providing sustainable forest products, and providing noncommodity ecosystem services. It is difficult to evaluate the long-term, cumulative effects and tradeoffs these and other associated management objectives. To...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Gary E.; Diefenderfer, Heida L.; Borde, Amy B.
The goal of this multi-year study (2004-2010) is to develop a methodology to evaluate the cumulative effects of multiple habitat restoration projects intended to benefit ecosystems supporting juvenile salmonids in the lower Columbia River and estuary. Literature review in 2004 revealed no existing methods for such an evaluation and suggested that cumulative effects could be additive or synergistic. Field research in 2005, 2006, and 2007 involved intensive, comparative studies paired by habitat type (tidal swamp vs. marsh), trajectory (restoration vs. reference site), and restoration action (tide gate vs. culvert vs. dike breach). The field work established two kinds of monitoringmore » indicators for eventual cumulative effects analysis: core and higher-order indicators. Management implications of limitations and applications of site-specific effectiveness monitoring and cumulative effects analysis were identified.« less
Key ecological responses to nitrogen are altered by climate change
Greaver, T.L.; Clark, C.M.; Compton, J.E.; Vallano, D.; Talhelm, A. F.; Weaver, C.P.; Band, L.E.; Baron, Jill S.; Davidson, E.A.; Tague, C.L.; Felker-Quinn, E.; Lynch, J.A.; Herrick, J.D.; Liu, L.; Goodale, C.L.; Novak, K. J.; Haeuber, R. A.
2016-01-01
Climate change and anthropogenic nitrogen deposition are both important ecological threats. Evaluating their cumulative effects provides a more holistic view of ecosystem vulnerability to human activities, which would better inform policy decisions aimed to protect the sustainability of ecosystems. Our knowledge of the cumulative effects of these stressors is growing, but we lack an integrated understanding. In this Review, we describe how climate change alters key processes in terrestrial and freshwater ecosystems related to nitrogen cycling and availability, and the response of ecosystems to nitrogen addition in terms of carbon cycling, acidification and biodiversity.
Key ecological responses to nitrogen are altered by climate change
NASA Astrophysics Data System (ADS)
Greaver, T. L.; Clark, C. M.; Compton, J. E.; Vallano, D.; Talhelm, A. F.; Weaver, C. P.; Band, L. E.; Baron, J. S.; Davidson, E. A.; Tague, C. L.; Felker-Quinn, E.; Lynch, J. A.; Herrick, J. D.; Liu, L.; Goodale, C. L.; Novak, K. J.; Haeuber, R. A.
2016-09-01
Climate change and anthropogenic nitrogen deposition are both important ecological threats. Evaluating their cumulative effects provides a more holistic view of ecosystem vulnerability to human activities, which would better inform policy decisions aimed to protect the sustainability of ecosystems. Our knowledge of the cumulative effects of these stressors is growing, but we lack an integrated understanding. In this Review, we describe how climate change alters key processes in terrestrial and freshwater ecosystems related to nitrogen cycling and availability, and the response of ecosystems to nitrogen addition in terms of carbon cycling, acidification and biodiversity.
DNA barcodes for assessment of the biological integrity of aquatic ecosystems
Water quality regulations and aquatic ecosystem monitoring increasingly rely on direct assessments of biological integrity. Because these aquatic “bioassessments” evaluate the incidence and abundance of sensitive aquatic species, they are able to measure cumulative ecosystem eff...
Key ecological responses to nitrogen are altered by climate ...
Here we review the effects of nitrogen and climate (e.g. temperature and precipitation) on four aspects of ecosystem structure and function including hydrologic-coupled nitrogen cycling, carbon cycling, acidification and biodiversity. Ecosystems are simultaneously exposed to multiple stressors; two dominant drivers threatening ecosystems are anthropogenic nitrogen loading and climate change. Evaluating the cumulative effects of these stressors provides a holistic view of ecosystem vulnerability, which would better inform policy decisions aimed to protect the sustainability of ecosystems. Our current knowledge of the cumulative effects of these stressors is growing, but limited. The goal of this paper is to synthesize the state of scientific knowledge on how ecosystems are affected by the interactions of meteorlogic/climatic factors (e.g., temperature and precipitation) and nitrogen addition. Understanding the interactions of meteorlogic/climatic factors and nitrogen will help to inform how current and projected variability may affect ecosystem response.
Estimating the Cumulative Ecological Effect of Local Scale Landscape Changes in South Florida
Hogan, Dianna M.; Labiosa, William; Pearlstine, Leonard; Hallac, David; Strong, David; Hearn, Paul; Bernknopf, Richard
2012-01-01
Ecosystem restoration in south Florida is a state and national priority centered on the Everglades wetlands. However, urban development pressures affect the restoration potential and remaining habitat functions of the natural undeveloped areas. Land use (LU) planning often focuses at the local level, but a better understanding of the cumulative effects of small projects at the landscape level is needed to support ecosystem restoration and preservation. The South Florida Ecosystem Portfolio Model (SFL EPM) is a regional LU planning tool developed to help stakeholders visualize LU scenario evaluation and improve communication about regional effects of LU decisions. One component of the SFL EPM is ecological value (EV), which is evaluated through modeled ecological criteria related to ecosystem services using metrics for (1) biodiversity potential, (2) threatened and endangered species, (3) rare and unique habitats, (4) landscape pattern and fragmentation, (5) water quality buffer potential, and (6) ecological restoration potential. In this article, we demonstrate the calculation of EV using two case studies: (1) assessing altered EV in the Biscayne Gateway area by comparing 2004 LU to potential LU in 2025 and 2050, and (2) the cumulative impact of adding limestone mines south of Miami. Our analyses spatially convey changing regional EV resulting from conversion of local natural and agricultural areas to urban, industrial, or extractive use. Different simulated local LU scenarios may result in different alterations in calculated regional EV. These case studies demonstrate methods that may facilitate evaluation of potential future LU patterns and incorporate EV into decision making.
40 CFR 230.11 - Factual determinations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... proposed disposal site, and the availability of contaminants. (e) Aquatic ecosystem and organism... individually and cumulatively, on the structure and function of the aquatic ecosystem and organisms... aquatic ecosystem. (1) Cumulative impacts are the changes in an aquatic ecosystem that are attributable to...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diefenderfer, Heida L.; Johnson, Gary E.; Thom, Ronald M.
The listing of 13 salmon and steelhead stocks in the Columbia River basin (hereafter collectively referred to as “salmon”) under the Endangered Species Act of 1973, as amended, has stimulated tidal wetland restoration in the lower 235 kilometers of the Columbia River and estuary for juvenile salmon habitat functions. The purpose of the research reported herein was to evaluate the effect on listed salmon of the restoration effort currently being conducted under the auspices of the federal Columbia Estuary Ecosystem Restoration Program (CEERP). Linking changes in the quality and landscape pattern of tidal wetlands in the lower Columbia River andmore » estuary (LCRE) to salmon recovery is a complex problem because of the characteristics of the ecosystem, the salmon, the restoration actions, and available sampling technologies. Therefore, we designed an evidence-based approach to develop, synthesize, and evaluate information to determine early-stage (~10 years) outcomes of the CEERP. We developed an ecosystem conceptual model and from that, a primary hypothesis that habitat restoration activities in the LCRE have a cumulative beneficial effect on juvenile salmon. There are two necessary conditions of the hypothesis: • habitat-based indicators of ecosystem controlling factors, processes, and structures show positive effects from restoration actions, and • fish-based indicators of ecosystem processes and functions show positive effects from restoration actions and habitats undergoing restoration. Our evidence-based approach to evaluate the primary hypothesis incorporated seven lines of evidence, most of which are drawn from the LCRE. The lines of evidence are spatial and temporal synergies, cumulative net ecosystem improvement, estuary-wide meta-analysis, offsite benefits to juvenile salmon, landscape condition evaluation, and evidence-based scoring of global literature. The general methods we used to develop information for the lines of evidence included field measurements, data analyses, modeling, meta-analysis, and reanalysis of previously collected data sets. We identified a set of 12 ancillary hypotheses regarding habitat and salmon response. Each ancillary hypothesis states that the response metric will trend toward conditions at relatively undisturbed reference sites. We synthesized the evidence for and against the two necessary conditions by using eleven causal criteria: strength, consistency, specificity, temporality, biological gradient, plausibility, coherence, experiment, analogy, complete exposure pathway, and predictive performance. Our final evaluation included cumulative effects assessment because restoration is occurring at multiple sites and the collective effect is important to salmon recovery. We concluded that all five lines of evidence from the LCRE indicated positive habitat-based and fish-based responses to the restoration performed under the CEERP, although tide gate replacements on small sloughs were an exception. Our analyses suggested that hydrologic reconnections restore access for fish to move into a site to find prey produced there. Reconnections also restore the potential for the flux of prey from the site to the main stem river, where our data show that they are consumed by salmon. We infer that LCRE ecosystem restoration supports increased juvenile salmon growth and enhanced fitness (condition), thereby potentially improving survival rates during the early ocean stage.« less
Study on the cumulative impact of reclamation activities on ecosystem health in coastal waters.
Shen, Chengcheng; Shi, Honghua; Zheng, Wei; Li, Fen; Peng, Shitao; Ding, Dewen
2016-02-15
The purpose of this study is to develop feasible tools to investigate the cumulative impact of reclamations on coastal ecosystem health, so that the strategies of ecosystem-based management can be applied in the coastal zone. An indicator system and model were proposed to assess the cumulative impact synthetically. Two coastal water bodies, namely Laizhou Bay (LZB) and Tianjin coastal waters (TCW), in the Bohai Sea of China were studied and compared, each in a different phase of reclamations. Case studies showed that the indicator scores of coastal ecosystem health in LZB and TCW were 0.75 and 0.68 out of 1.0, respectively. It can be concluded that coastal reclamations have a historically cumulative effect on benthic environment, whose degree is larger than that on aquatic environment. The ecosystem-based management of coastal reclamations should emphasize the spatially and industrially intensive layout. Copyright © 2015 Elsevier Ltd. All rights reserved.
Singh, Gerald G; Sinner, Jim; Ellis, Joanne; Kandlikar, Milind; Halpern, Benjamin S; Satterfield, Terre; Chan, Kai M A
2017-09-01
Coastal environments are some of the most populated on Earth, with greater pressures projected in the future. Managing coastal systems requires the consideration of multiple uses, which both benefit from and threaten multiple ecosystem services. Thus understanding the cumulative impacts of human activities on coastal ecosystem services would seem fundamental to management, yet there is no widely accepted approach for assessing these. This study trials an approach for understanding the cumulative impacts of anthropogenic change, focusing on Tasman and Golden Bays, New Zealand. Using an expert elicitation procedure, we collected information on three aspects of cumulative impacts: the importance and magnitude of impacts by various activities and stressors on ecosystem services, and the causal processes of impact on ecosystem services. We assessed impacts to four ecosystem service benefits - fisheries, shellfish aquaculture, marine recreation and existence value of biodiversity-addressing three main research questions: (1) how severe are cumulative impacts on ecosystem services (correspondingly, what potential is there for restoration)?; (2) are threats evenly distributed across activities and stressors, or do a few threats dominate?; (3) do prominent activities mainly operate through direct stressors, or do they often exacerbate other impacts? We found (1) that despite high uncertainty in the threat posed by individual stressors and impacts, total cumulative impact is consistently severe for all four ecosystem services. (2) A subset of drivers and stressors pose important threats across the ecosystem services explored, including climate change, commercial fishing, sedimentation and pollution. (3) Climate change and commercial fishing contribute to prominent indirect impacts across ecosystem services by exacerbating regional impacts, namely sedimentation and pollution. The prevalence and magnitude of these indirect, networked impacts highlights the need for approaches like this to understand mechanisms of impact, in order to develop strategies to manage them. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Gary E.; Diefenderfer, Heida L.; Borde, Amy B.
This is the sixth annual report of a seven-year project (2004 through 2010) to evaluate the cumulative effects of habitat restoration actions in the lower Columbia River and estuary (LCRE). The project, called the Cumulative Effects Study, is being conducted for the U.S. Army Corps of Engineers Portland District (USACE) by the Marine Sciences Laboratory of the Pacific Northwest National Laboratory (PNNL), the Pt. Adams Biological Field Station of the National Marine Fisheries Service (NMFS), the Columbia River Estuary Study Taskforce (CREST), and the University of Washington. The goal of the Cumulative Effects Study is to develop a methodology tomore » evaluate the cumulative effects of multiple habitat restoration projects intended to benefit ecosystems supporting juvenile salmonids in the 235-km-long LCRE. Literature review in 2004 revealed no existing methods for such an evaluation and suggested that cumulative effects could be additive or synergistic. From 2005 through 2009, annual field research involved intensive, comparative studies paired by habitat type (tidal swamp versus marsh), trajectory (restoration versus reference site), and restoration action (tidegate replacement vs. culvert replacement vs. dike breach).« less
NASA Astrophysics Data System (ADS)
Zona, D.; Lipson, D. A.; Richards, J. H.; Phoenix, G. K.; Liljedahl, A. K.; Ueyama, M.; Sturtevant, C. S.; Oechel, W. C.
2013-12-01
The importance and mode of action of extreme events on the global carbon budget are inadequately understood. This includes the differential impact of extreme events on various ecosystem components, lag effects, recovery times, and compensatory processes. Summer 2007 in Barrow, Arctic Alaska, experienced unusually high air temperatures (fifth warmest over a 65 yr period) and record low precipitation (lowest over a 65 yr period). These abnormal conditions resulted in strongly reduced net Sphagnum CO2 uptake, but no effect neither on vascular plant development nor on net ecosystem exchange (NEE) from this arctic tundra ecosystem. Gross primary production (GPP) and ecosystem respiration (Reco) were both generally greater during most of this extreme summer. Cumulative ecosystem C uptake in 2007 was similar to the previous summers, showing the capacity of the ecosystem to compensate in its net ecosystem exchange (NEE) despite the impact on other functions and structure such as substantial necrosis of the Sphagnum layer. Surprisingly, the lowest ecosystem C uptake (2005-2009) was observed during the 2008 summer, i.e the year directly following the extremely summer. In 2008, cumulative C uptake was ∼70% lower than prior years. This reduction cannot solely be attributed to mosses, which typically contribute with ∼40% - of the entire ecosystem C uptake. The minimum summer cumulative C uptake in 2008 suggests that the entire ecosystem experienced difficulty readjusting to more typical weather after experiencing exceptionally warm and dry conditions. Importantly, the return to a substantial cumulative C uptake occurred two summers after the extreme event, which suggest a high resilience of this tundra ecosystem. Overall, these results show a highly complex response of the C uptake and its sub-components to atypically dry conditions. The impact of multiple extreme events still awaits further investigation.
Micheli, Fiorenza; Halpern, Benjamin S.; Walbridge, Shaun; Ciriaco, Saul; Ferretti, Francesco; Fraschetti, Simonetta; Lewison, Rebecca; Nykjaer, Leo; Rosenberg, Andrew A.
2013-01-01
Management of marine ecosystems requires spatial information on current impacts. In several marine regions, including the Mediterranean and Black Sea, legal mandates and agreements to implement ecosystem-based management and spatial plans provide new opportunities to balance uses and protection of marine ecosystems. Analyses of the intensity and distribution of cumulative impacts of human activities directly connected to the ecological goals of these policy efforts are critically needed. Quantification and mapping of the cumulative impact of 22 drivers to 17 marine ecosystems reveals that 20% of the entire basin and 60–99% of the territorial waters of EU member states are heavily impacted, with high human impact occurring in all ecoregions and territorial waters. Less than 1% of these regions are relatively unaffected. This high impact results from multiple drivers, rather than one individual use or stressor, with climatic drivers (increasing temperature and UV, and acidification), demersal fishing, ship traffic, and, in coastal areas, pollution from land accounting for a majority of cumulative impacts. These results show that coordinated management of key areas and activities could significantly improve the condition of these marine ecosystems. PMID:24324585
Watershed Assessment: Moving from Indicators to Better Process Understanding and Models
Watershed assessment is a critical approach to evaluate the effects of anthropogenic activities on ecosystem components and humans. Cumulative effects of these stressors in both time and space represent an important challenge in watershed assessment. Many of the indicator approac...
Random forests as cumulative effects models: A case study of lakes and rivers in Muskoka, Canada.
Jones, F Chris; Plewes, Rachel; Murison, Lorna; MacDougall, Mark J; Sinclair, Sarah; Davies, Christie; Bailey, John L; Richardson, Murray; Gunn, John
2017-10-01
Cumulative effects assessment (CEA) - a type of environmental appraisal - lacks effective methods for modeling cumulative effects, evaluating indicators of ecosystem condition, and exploring the likely outcomes of development scenarios. Random forests are an extension of classification and regression trees, which model response variables by recursive partitioning. Random forests were used to model a series of candidate ecological indicators that described lakes and rivers from a case study watershed (The Muskoka River Watershed, Canada). Suitability of the candidate indicators for use in cumulative effects assessment and watershed monitoring was assessed according to how well they could be predicted from natural habitat features and how sensitive they were to human land-use. The best models explained 75% of the variation in a multivariate descriptor of lake benthic-macroinvertebrate community structure, and 76% of the variation in the conductivity of river water. Similar results were obtained by cross-validation. Several candidate indicators detected a simulated doubling of urban land-use in their catchments, and a few were able to detect a simulated doubling of agricultural land-use. The paper demonstrates that random forests can be used to describe the combined and singular effects of multiple stressors and natural environmental factors, and furthermore, that random forests can be used to evaluate the performance of monitoring indicators. The numerical methods presented are applicable to any ecosystem and indicator type, and therefore represent a step forward for CEA. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Development of a new approach to cumulative effects assessment: a northern river ecosystem example.
Dubé, Monique; Johnson, Brian; Dunn, Gary; Culp, Joseph; Cash, Kevin; Munkittrick, Kelly; Wong, Isaac; Hedley, Kathlene; Booty, William; Lam, David; Resler, Oskar; Storey, Alex
2006-02-01
If sustainable development of Canadian waters is to be achieved, a realistic and manageable framework is required for assessing cumulative effects. The objective of this paper is to describe an approach for aquatic cumulative effects assessment that was developed under the Northern Rivers Ecosystem Initiative. The approach is based on a review of existing monitoring practices in Canada and the presence of existing thresholds for aquatic ecosystem health assessments. It suggests that a sustainable framework is possible for cumulative effects assessment of Canadian waters that would result in integration of national indicators of aquatic health, integration of national initiatives (e.g., water quality index, environmental effects monitoring), and provide an avenue where long-term monitoring programs could be integrated with baseline and follow-up monitoring conducted under the environmental assessment process.
Emergent Properties Delineate Marine Ecosystem Perturbation and Recovery.
Link, Jason S; Pranovi, Fabio; Libralato, Simone; Coll, Marta; Christensen, Villy; Solidoro, Cosimo; Fulton, Elizabeth A
2015-11-01
Whether there are common and emergent patterns from marine ecosystems remains an important question because marine ecosystems provide billions of dollars of ecosystem services to the global community, but face many perturbations with significant consequences. Here, we develop cumulative trophic patterns for marine ecosystems, featuring sigmoidal cumulative biomass (cumB)-trophic level (TL) and 'hockey-stick' production (cumP)-cumB curves. The patterns have a trophodynamic theoretical basis and capitalize on emergent, fundamental, and invariant features of marine ecosystems. These patterns have strong global support, being observed in over 120 marine ecosystems. Parameters from these curves elucidate the direction and magnitude of marine ecosystem perturbation or recovery; if biomass and productivity can be monitored effectively over time, such relations may prove to be broadly useful. Curve parameters are proposed as possible ecosystem thresholds, perhaps to better manage the marine ecosystems of the world. Published by Elsevier Ltd.
Cumulative human impacts on marine predators.
Maxwell, Sara M; Hazen, Elliott L; Bograd, Steven J; Halpern, Benjamin S; Breed, Greg A; Nickel, Barry; Teutschel, Nicole M; Crowder, Larry B; Benson, Scott; Dutton, Peter H; Bailey, Helen; Kappes, Michelle A; Kuhn, Carey E; Weise, Michael J; Mate, Bruce; Shaffer, Scott A; Hassrick, Jason L; Henry, Robert W; Irvine, Ladd; McDonald, Birgitte I; Robinson, Patrick W; Block, Barbara A; Costa, Daniel P
2013-01-01
Stressors associated with human activities interact in complex ways to affect marine ecosystems, yet we lack spatially explicit assessments of cumulative impacts on ecologically and economically key components such as marine predators. Here we develop a metric of cumulative utilization and impact (CUI) on marine predators by combining electronic tracking data of eight protected predator species (n=685 individuals) in the California Current Ecosystem with data on 24 anthropogenic stressors. We show significant variation in CUI with some of the highest impacts within US National Marine Sanctuaries. High variation in underlying species and cumulative impact distributions means that neither alone is sufficient for effective spatial management. Instead, comprehensive management approaches accounting for both cumulative human impacts and trade-offs among multiple stressors must be applied in planning the use of marine resources.
Fremier, Alexander K.; Girvetz, Evan H.; Greco, Steven E.; Larsen, Eric W.
2014-01-01
Environmental legislation in the US (i.e. NEPA) requires defining baseline conditions on current rather than historical ecosystem conditions. For ecosystems with long histories of multiple environmental impacts, this baseline method can subsequently lead to a significantly altered environment; this has been termed a ‘sliding baseline’. In river systems, cumulative effects caused by flow regulation, channel revetment and riparian vegetation removal significantly impact floodplain ecosystems by altering channel dynamics and precluding subsequent ecosystem processes, such as primary succession. To quantify these impacts on floodplain development processes, we used a model of river channel meander migration to illustrate the degree to which flow regulation and riprap impact migration rates, independently and synergistically, on the Sacramento River in California, USA. From pre-dam conditions, the cumulative effect of flow regulation alone on channel migration is a reduction by 38%, and 42–44% with four proposed water diversion project scenarios. In terms of depositional area, the proposed water project would reduce channel migration 51–71 ha in 130 years without current riprap in place, and 17–25 ha with riprap. Our results illustrate the utility of a modeling approach for quantifying cumulative impacts. Model-based quantification of environmental impacts allow scientists to separate cumulative and synergistic effects to analytically define mitigation measures. Additionally, by selecting an ecosystem process that is affected by multiple impacts, it is possible to consider process-based mitigation scenarios, such as the removal of riprap, to allow meander migration and create new floodplains and allow for riparian vegetation recruitment. PMID:24964145
NASA Astrophysics Data System (ADS)
Johnston, J. M.
2013-12-01
Freshwater habitats provide fishable, swimmable and drinkable resources and are a nexus of geophysical and biological processes. These processes in turn influence the persistence and sustainability of populations, communities and ecosystems. Climate change and landuse change encompass numerous stressors of potential exposure, including the introduction of toxic contaminants, invasive species, and disease in addition to physical drivers such as temperature and hydrologic regime. A systems approach that includes the scientific and technologic basis of assessing the health of ecosystems is needed to effectively protect human health and the environment. The Integrated Environmental Modeling Framework 'iemWatersheds' has been developed as a consistent and coherent means of forecasting the cumulative impact of co-occurring stressors. The Framework consists of three facilitating technologies: Data for Environmental Modeling (D4EM) that automates the collection and standardization of input data; the Framework for Risk Assessment of Multimedia Environmental Systems (FRAMES) that manages the flow of information between linked models; and the Supercomputer for Model Uncertainty and Sensitivity Evaluation (SuperMUSE) that provides post-processing and analysis of model outputs, including uncertainty and sensitivity analysis. Five models are linked within the Framework to provide multimedia simulation capabilities for hydrology and water quality processes: the Soil Water Assessment Tool (SWAT) predicts surface water and sediment runoff and associated contaminants; the Watershed Mercury Model (WMM) predicts mercury runoff and loading to streams; the Water quality Analysis and Simulation Program (WASP) predicts water quality within the stream channel; the Habitat Suitability Index (HSI) model scores physicochemical habitat quality for individual fish species; and the Bioaccumulation and Aquatic System Simulator (BASS) predicts fish growth, population dynamics and bioaccumulation of toxic substances. The capability of the Framework to address cumulative impacts will be demonstrated for freshwater ecosystem services and mountaintop mining.
Nash, Michael A; Hoffmann, Ary A; Thomson, Linda J
2010-09-01
Communities of arthropods providing ecosystem services (e.g., pest control, pollination, and soil nutrient cycling) to agricultural production systems are influenced by pesticide inputs, yet the impact of pesticide applications on nontarget organisms is normally evaluated through standardized sets of laboratory tests involving individual pesticides applied to a few representative species. By combining season-long pesticide applications of various insecticides and fungicides into a metric based on the International Organization for Biological and Integrated Control (IOBC) toxicity ratings, we evaluate season-long pesticide impacts on communities of indigenous and exotic arthropods across 61 vineyards assessed for an entire growing season. The composition of arthropod communities, identified mostly at the family level, but in some cases at the species level, was altered depending on season-long pesticide use. Numbers of mostly indigenous parasitoids, predatory mites, and coccinellids in the canopy, as well as carabid/tenebrionid beetles and some spider families on the ground, were decreased at higher cumulative pesticide metric scores. In contrast, numbers of one invasive millipede species (Ommatoiulus moreletti Lucas, Julida: Julidae) increased under higher cumulative pesticide metric scores. These changing community patterns were detected despite the absence of broad-spectrum insecticide applications in the vineyards. Pesticide effects were mostly due to indoxacarb and sulphur, applied as a fungicide. The reduction of beneficial arthropods and increase in an invasive herbivorous millipede under high cumulative pesticide metric scores highlights the need to manage nontarget season-long pesticide impacts in vineyards. A cumulative pesticide metric, based on IOBC toxicity ratings, provides a way of assessing overall toxicity effects, giving managers a means to estimate and consider potential negative season-long pesticide impacts on ecosystem services provided through arthropod communities.
Towards a framework for assessment and management of cumulative human impacts on marine food webs.
Giakoumi, Sylvaine; Halpern, Benjamin S; Michel, Loïc N; Gobert, Sylvie; Sini, Maria; Boudouresque, Charles-François; Gambi, Maria-Cristina; Katsanevakis, Stelios; Lejeune, Pierre; Montefalcone, Monica; Pergent, Gerard; Pergent-Martini, Christine; Sanchez-Jerez, Pablo; Velimirov, Branko; Vizzini, Salvatrice; Abadie, Arnaud; Coll, Marta; Guidetti, Paolo; Micheli, Fiorenza; Possingham, Hugh P
2015-08-01
Effective ecosystem-based management requires understanding ecosystem responses to multiple human threats, rather than focusing on single threats. To understand ecosystem responses to anthropogenic threats holistically, it is necessary to know how threats affect different components within ecosystems and ultimately alter ecosystem functioning. We used a case study of a Mediterranean seagrass (Posidonia oceanica) food web and expert knowledge elicitation in an application of the initial steps of a framework for assessment of cumulative human impacts on food webs. We produced a conceptual seagrass food web model, determined the main trophic relationships, identified the main threats to the food web components, and assessed the components' vulnerability to those threats. Some threats had high (e.g., coastal infrastructure) or low impacts (e.g., agricultural runoff) on all food web components, whereas others (e.g., introduced carnivores) had very different impacts on each component. Partitioning the ecosystem into its components enabled us to identify threats previously overlooked and to reevaluate the importance of threats commonly perceived as major. By incorporating this understanding of system vulnerability with data on changes in the state of each threat (e.g., decreasing domestic pollution and increasing fishing) into a food web model, managers may be better able to estimate and predict cumulative human impacts on ecosystems and to prioritize conservation actions. © 2015 Society for Conservation Biology.
P. V. Caldwell; G. Sun; S. G. McNulty; E. C. Cohen; J. A. Moore Myers
2012-01-01
Rivers are essential to aquatic ecosystem and societal sustainability, but are increasingly impacted by water withdrawals, land-use change, and climate change. The relative and cumulative effects of these stressors on continental river flows are relatively unknown. In this study, we used an integrated water balance and flow routing model to evaluate the impacts of...
Pteropods on the edge: Cumulative effects of ocean acidification, warming, and deoxygenation
NASA Astrophysics Data System (ADS)
Bednaršek, Nina; Harvey, Chris J.; Kaplan, Isaac C.; Feely, Richard A.; Možina, Jasna
2016-06-01
We review the state of knowledge of the individual and community responses of euthecosome (shelled) pteropods in the context of global environmental change. In particular, we focus on their responses to ocean acidification, in combination with ocean warming and ocean deoxygenation, as inferred from a growing body of empirical literature, and their relatively nascent place in ecosystem-scale models. Our objectives are: (1) to summarize the threats that these stressors pose to pteropod populations; (2) to demonstrate that pteropods are strong candidate indicators for cumulative effects of OA, warming, and deoxygenation in marine ecosystems; and (3) to provide insight on incorporating pteropods into population and ecosystem models, which will help inform ecosystem-based management of marine resources under future environmental regimes.
A pebble count procedure for assessing watershed cumulative effects
Gregory S. Bevenger; Rudy M. King
1995-01-01
Land mangement activities can result in the delivery of fine sediment to streams. Over time, such delivery can lead to cumulative impacts to the aquactic ecosystem. Because numerous laws require Federal land managers to analyze watershed cumulative effects, field personnel need simple monitoring procedures that can be used directly and consistently. One approach to...
Yan, Zhengbing; Han, Wenxuan; Peñuelas, Josep; Sardans, Jordi; Elser, James J; Du, Enzai; Reich, Peter B; Fang, Jingyun
2016-10-01
Combined effects of cumulative nutrient inputs and biogeochemical processes that occur in freshwater under anthropogenic eutrophication could lead to myriad shifts in nitrogen (N):phosphorus (P) stoichiometry in global freshwater ecosystems, but this is not yet well-assessed. Here we evaluated the characteristics of N and P stoichiometries in bodies of freshwater and their herbaceous macrophytes across human-impact levels, regions and periods. Freshwater and its macrophytes had higher N and P concentrations and lower N : P ratios in heavily than lightly human-impacted environments, further evidenced by spatiotemporal comparisons across eutrophication gradients. N and P concentrations in freshwater ecosystems were positively correlated and N : P was negatively correlated with population density in China. These results indicate a faster accumulation of P than N in human-impacted freshwater ecosystems, which could have large effects on the trophic webs and biogeochemical cycles of estuaries and coastal areas by freshwater loadings, and reinforce the importance of rehabilitating these ecosystems. © 2016 John Wiley & Sons Ltd/CNRS.
Integrating human health and ecological concerns in risk assessments.
Cirone, P A; Bruce Duncan, P
2000-11-03
The interconnections between ecosystems, human health and welfare have been increasingly recognized by the US government, academia, and the public. This paper continues this theme by addressing the use of risk assessment to integrate people into a single assessment. In a broad overview of the risk assessment process we stress the need to build a conceptual model of the whole system including multiple species (humans and other ecological entities), stressors, and cumulative effects. We also propose converging landscape ecology and evaluation of ecosystem services with risk assessment to address these cumulative responses. We first look at how this integration can occur within the problem formulation step in risk assessment where the system is defined, a conceptual model created, a subset of components and functions selected, and the analytical framework decided in a context that includes the management decisions. A variety of examples of problem formulations (salmon, wild insects, hyporheic ecosystems, ultraviolet (UV) radiation, nitrogen fertilization, toxic chemicals, and oil spills) are presented to illustrate how treating humans as components of the landscape can add value to risk assessments. We conclude that the risk assessment process should help address the urgent needs of society in proportion to importance, to provide a format to communicate knowledge and understanding, and to inform policy and management decisions.
Joint analysis of stressors and ecosystem services to enhance restoration effectiveness.
Allan, J David; McIntyre, Peter B; Smith, Sigrid D P; Halpern, Benjamin S; Boyer, Gregory L; Buchsbaum, Andy; Burton, G A; Campbell, Linda M; Chadderton, W Lindsay; Ciborowski, Jan J H; Doran, Patrick J; Eder, Tim; Infante, Dana M; Johnson, Lucinda B; Joseph, Christine A; Marino, Adrienne L; Prusevich, Alexander; Read, Jennifer G; Rose, Joan B; Rutherford, Edward S; Sowa, Scott P; Steinman, Alan D
2013-01-02
With increasing pressure placed on natural systems by growing human populations, both scientists and resource managers need a better understanding of the relationships between cumulative stress from human activities and valued ecosystem services. Societies often seek to mitigate threats to these services through large-scale, costly restoration projects, such as the over one billion dollar Great Lakes Restoration Initiative currently underway. To help inform these efforts, we merged high-resolution spatial analyses of environmental stressors with mapping of ecosystem services for all five Great Lakes. Cumulative ecosystem stress is highest in near-shore habitats, but also extends offshore in Lakes Erie, Ontario, and Michigan. Variation in cumulative stress is driven largely by spatial concordance among multiple stressors, indicating the importance of considering all stressors when planning restoration activities. In addition, highly stressed areas reflect numerous different combinations of stressors rather than a single suite of problems, suggesting that a detailed understanding of the stressors needing alleviation could improve restoration planning. We also find that many important areas for fisheries and recreation are subject to high stress, indicating that ecosystem degradation could be threatening key services. Current restoration efforts have targeted high-stress sites almost exclusively, but generally without knowledge of the full range of stressors affecting these locations or differences among sites in service provisioning. Our results demonstrate that joint spatial analysis of stressors and ecosystem services can provide a critical foundation for maximizing social and ecological benefits from restoration investments.
Joint analysis of stressors and ecosystem services to enhance restoration effectiveness
Allan, J. David; McIntyre, Peter B.; Smith, Sigrid D. P.; Halpern, Benjamin S.; Boyer, Gregory L.; Buchsbaum, Andy; Burton, G. A.; Campbell, Linda M.; Chadderton, W. Lindsay; Ciborowski, Jan J. H.; Doran, Patrick J.; Eder, Tim; Infante, Dana M.; Johnson, Lucinda B.; Joseph, Christine A.; Marino, Adrienne L.; Prusevich, Alexander; Read, Jennifer G.; Rose, Joan B.; Rutherford, Edward S.; Sowa, Scott P.; Steinman, Alan D.
2013-01-01
With increasing pressure placed on natural systems by growing human populations, both scientists and resource managers need a better understanding of the relationships between cumulative stress from human activities and valued ecosystem services. Societies often seek to mitigate threats to these services through large-scale, costly restoration projects, such as the over one billion dollar Great Lakes Restoration Initiative currently underway. To help inform these efforts, we merged high-resolution spatial analyses of environmental stressors with mapping of ecosystem services for all five Great Lakes. Cumulative ecosystem stress is highest in near-shore habitats, but also extends offshore in Lakes Erie, Ontario, and Michigan. Variation in cumulative stress is driven largely by spatial concordance among multiple stressors, indicating the importance of considering all stressors when planning restoration activities. In addition, highly stressed areas reflect numerous different combinations of stressors rather than a single suite of problems, suggesting that a detailed understanding of the stressors needing alleviation could improve restoration planning. We also find that many important areas for fisheries and recreation are subject to high stress, indicating that ecosystem degradation could be threatening key services. Current restoration efforts have targeted high-stress sites almost exclusively, but generally without knowledge of the full range of stressors affecting these locations or differences among sites in service provisioning. Our results demonstrate that joint spatial analysis of stressors and ecosystem services can provide a critical foundation for maximizing social and ecological benefits from restoration investments. PMID:23248308
Lee H. MacDonald; Drew Coe; Sandra Litschert
2004-01-01
Cumulative effects result from the combined impact of multiple activities over space and time. Land and aquatic resource managers are particularly concerned with cumulative watershed effects (CWEs). CWEs can encompass a broad range of concerns, but primary issues are changes in runoff, water quality, channel morphology, and aquatic ecosystems at the watershed scale (...
Ecosystem Risk Assessment Using the Comprehensive Assessment of Risk to Ecosystems (CARE) Tool
NASA Astrophysics Data System (ADS)
Battista, W.; Fujita, R.; Karr, K.
2016-12-01
Effective Ecosystem Based Management requires a localized understanding of the health and functioning of a given system as well as of the various factors that may threaten the ongoing ability of the system to support the provision of valued services. Several risk assessment models are available that can provide a scientific basis for understanding these factors and for guiding management action, but these models focus mainly on single species and evaluate only the impacts of fishing in detail. We have developed a new ecosystem risk assessment model - the Comprehensive Assessment of Risk to Ecosystems (CARE) - that allows analysts to consider the cumulative impact of multiple threats, interactions among multiple threats that may result in synergistic or antagonistic impacts, and the impacts of a suite of threats on whole-ecosystem productivity and functioning, as well as on specific ecosystem services. The CARE model was designed to be completed in as little as two hours, and uses local and expert knowledge where data are lacking. The CARE tool can be used to evaluate risks facing a single site; to compare multiple sites for the suitability or necessity of different management options; or to evaluate the effects of a proposed management action aimed at reducing one or more risks. This analysis can help users identify which threats are the most important at a given site, and therefore where limited management resources should be targeted. CARE can be applied to virtually any system, and can be modified as knowledge is gained or to better match different site characteristics. CARE builds on previous ecosystem risk assessment tools to provide a comprehensive assessment of fishing and non-fishing threats that can be used to inform environmental management decisions across a broad range of systems.
Ecosystem Risk Assessment Using the Comprehensive Assessment of Risk to Ecosystems (CARE) Tool
NASA Astrophysics Data System (ADS)
Battista, W.; Fujita, R.; Karr, K.
2016-02-01
Effective Ecosystem Based Management requires a localized understanding of the health and functioning of a given system as well as of the various factors that may threaten the ongoing ability of the system to support the provision of valued services. Several risk assessment models are available that can provide a scientific basis for understanding these factors and for guiding management action, but these models focus mainly on single species and evaluate only the impacts of fishing in detail. We have developed a new ecosystem risk assessment model - the Comprehensive Assessment of Risk to Ecosystems (CARE) - that allows analysts to consider the cumulative impact of multiple threats, interactions among multiple threats that may result in synergistic or antagonistic impacts, and the impacts of a suite of threats on whole-ecosystem productivity and functioning, as well as on specific ecosystem services. The CARE model was designed to be completed in as little as two hours, and uses local and expert knowledge where data are lacking. The CARE tool can be used to evaluate risks facing a single site; to compare multiple sites for the suitability or necessity of different management options; or to evaluate the effects of a proposed management action aimed at reducing one or more risks. This analysis can help users identify which threats are the most important at a given site, and therefore where limited management resources should be targeted. CARE can be applied to virtually any system, and can be modified as knowledge is gained or to better match different site characteristics. CARE builds on previous ecosystem risk assessment tools to provide a comprehensive assessment of fishing and non-fishing threats that can be used to inform environmental management decisions across a broad range of systems.
Kondolf, G. Mathias; Angermeier, Paul L.; Cummins, Kenneth; Dunne, Thomas; Healey, Michael; Kimmerer, Wim; Moyle, Peter B.; Murphy, Dennis; Patten, Duncan; Railsback, Steve F.; Reed, Denise J.; Spies, Robert B.; Twiss, Robert
2008-01-01
Despite increasingly large investments, the potential ecological effects of river restoration programs are still small compared to the degree of human alterations to physical and ecological function. Thus, it is rarely possible to “restore” pre-disturbance conditions; rather restoration programs (even large, well-funded ones) will nearly always involve multiple small projects, each of which can make some modest change to selected ecosystem processes and habitats. At present, such projects are typically selected based on their attributes as individual projects (e.g., consistency with programmatic goals of the funders, scientific soundness, and acceptance by local communities), and ease of implementation. Projects are rarely prioritized (at least explicitly) based on how they will cumulatively affect ecosystem function over coming decades. Such projections require an understanding of the form of the restoration response curve, or at least that we assume some plausible relations and estimate cumulative effects based thereon. Drawing on our experience with the CALFED Bay-Delta Ecosystem Restoration Program in California, we consider potential cumulative system-wide benefits of a restoration activity extensively implemented in the region: isolating/filling abandoned floodplain gravel pits captured by rivers to reduce predation of outmigrating juvenile salmon by exotic warmwater species inhabiting the pits. We present a simple spreadsheet model to show how different assumptions about gravel pit bathymetry and predator behavior would affect the cumulative benefits of multiple pit-filling and isolation projects, and how these insights could help managers prioritize which pits to fill.
Toward a standard lexicon for ecosystem services
The complex, widely dispersed, and cumulative environmental challenges currently facing society require holistic, transdisciplinary approaches to resolve. The concept of ecosystem services (ES) has become more widely accepted both as a framework that cuts across the dimensions of...
Looking up, down, and sideways: Reconceiving cumulative effects assessment as a mindset
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinclair, A. John, E-mail: jsincla@umanitoba.ca; Doelle, Meinhard, E-mail: mdoelle@dal.ca; Duinker, Peter N., E-mail: peter.duinker@dal.ca
Despite all the effort that has gone into defining, researching and establishing best practices for cumulative effects assessment (CEA), understanding remains weak and practice wanting. At one extreme of implementation, CEA can be described as merely an irritant to the completion of a project-specific environmental assessment (EA). At the other extreme, the conceptual view is that all effects in EA should be deemed cumulative unless demonstrated otherwise. Our purpose here is to consider how we might reconceive CEA as a mindset that is at the heart of absolutely every assessment of valued ecosystem component (VEC) to ensure that we understandmore » the relative contributions of various stressors and can decide when cumulative effects may foreclose future activities due to impacts on VECs. Conceptually, we ground the CEA mindset in the context of three lenses that must all be functioning and working together for the mindset to be operative: a technical lens; a law and policy lens; and a participatory lens. Our arguments are based on a review of the CEA, strategic effects assessment (SEA) and regional effects assessment literatures, an examination and consideration of Canadian EA and SEA case practice, and our combined professional experiences. Through using the Bay of Fundy in Canada as a case example, we establish the concept of the CEA mindset and an approach for moving forward with implementation. - Highlights: • Conceptualization of cumulative effects assessment as a mindset. • Elaboration of technical, law and policy and participation lenses critical to CEA • Coordination and integration of cumulative effects for valued ecosystem components • Application in Bay of Fundy ecosystem and terrestrial watershed.« less
Ball, Murray A; Noble, Bram F; Dubé, Monique G
2013-07-01
The accumulating effects of human development are threatening water quality and availability. In recognition of the constraints to cumulative effects assessment (CEA) under traditional environmental impact assessment (EIA), there is an emerging body of research dedicated to watershed-based cumulative effects assessment (WCEA). To advance the science of WCEA, however, a standard set of ecosystem components and indicators is required that can be used at the watershed scale, to inform effects-based understanding of cumulative change, and at the project scale, to inform regulatory-based project based impact assessment and mitigation. A major challenge, however, is that it is not clear how such ecosystem components and indicators for WCEA can or should be developed. This study examined the use of aquatic ecosystem components and indicators in EIA practice in the South Saskatchewan River watershed, Canada, to determine whether current practice at the project scale could be "scaled up" to support ecosystem component and indicator development for WCEA. The hierarchy of assessment components and indicators used in a sample of 35 environmental impact assessments was examined and the factors affecting aquatic ecosystem component selection and indicator use were identified. Results showed that public environmental impact statements are not necessarily publically accessible, thus limiting opportunities for data and information sharing from the project to the watershed scale. We also found no consistent terminology across the sample of impact statements, thus making comparison of assessment processes and results difficult. Regulatory compliance was found to be the dominant factor influencing the selection of ecosystem components and indicators for use in project assessment, rather than scientific reasoning, followed by the mandate of the responsible government agency for the assessment, public input to the assessment process, and preexisting water licensing arrangements external to the assessment process. The current approach to project-based assessment offered little support for WCEA initiatives. It did not provide a standard set of aquatic ecosystem components and indicators or allow the sharing of information across projects and from the project to the watershed scale. We suggest that determining priority assessment parameters for WCEA requires adoption of a standardized framework of component and indicator terminology, which can then be populated for the watershed of concern based on both watershed-based priorities and project-specific regulatory requirements. Copyright © 2012 SETAC.
Effects of ultraviolet radiation and contaminant-related stressors on arctic freshwater ecosystems.
Wrona, Frederick J; Prowse, Terry D; Reist, James D; Hobbie, John E; Lévesque, Lucie M J; Macdonald, Robie W; Vincent, Warwick F
2006-11-01
Climate change is likely to act as a multiple stressor, leading to cumulative and/or synergistic impacts on aquatic systems. Projected increases in temperature and corresponding alterations in precipitation regimes will enhance contaminant influxes to aquatic systems, and independently increase the susceptibility of aquatic organisms to contaminant exposure and effects. The consequences for the biota will in most cases be additive (cumulative) and multiplicative (synergistic). The overall result will be higher contaminant loads and biomagnification in aquatic ecosystems. Changes in stratospheric ozone and corresponding ultraviolet radiation regimes are also expected to produce cumulative and/or synergistic effects on aquatic ecosystem structure and function. Reduced ice cover is likely to have a much greater effect on underwater UV radiation exposure than the projected levels of stratospheric ozone depletion. A major increase in UV radiation levels will cause enhanced damage to organisms (biomolecular, cellular, and physiological damage, and alterations in species composition). Allocations of energy and resources by aquatic biota to UV radiation protection will increase, probably decreasing trophic-level productivity. Elemental fluxes will increase via photochemical pathways.
NASA Astrophysics Data System (ADS)
Suttidate, Naparat
Humans are changing the Earth's ecosystems, which has profound consequences for biodiversity. To understand how species respond to these changes, biodiversity science requires accurate assessments of biodiversity. However, biodiversity assessments are still limited in tropical regions. The Dynamic Habitat Indices (DHIs), derived from satellite data, summarize dynamic patterns of annual primary productivity: (a) cumulative annual productivity, (b) minimum annual productivity, and (c) seasonal variation in productivity. The DHIs have been successfully used in temperate regions, but not yet in the tropics. My goal was to evaluate the importance of primary productivity measured via the DHIs for assessing patterns of species richness and distributions in Thailand. First, I assessed the relationships between the DHIs and tropical bird species richness. I also evaluated the complementarity of the DHIs and topography, climate, latitudinal gradients, habitat heterogeneity, and habitat area in explaining bird species richness. I found that among three DHIs, cumulative annual productivity was the most important factor in explaining bird species richness and that the DHIs outperformed other environmental variables. Second, I developed texture measures derive from DHI cumulative annual productivity, and compared them to habitat composition and fragmentation as predictors of tropical forest bird distributions. I found that adding texture measures to habitat composition and fragmentation models improved the prediction of tropical bird distributions, especially area- and edge-sensitive tropical forest bird species. Third, I predicted the effects of trophic interactions between primary productivity, prey, and predators in relation to habitat connectivity for Indochinese tigers (Panthera tigris). I found that including trophic interactions improved habitat suitability models for tigers. However, tiger habitat is highly fragmented with few dispersal corridors. I also identified potential habitat patches and corridors that could serve as target sites for conservation. In summary, my dissertation reveals the relationship between species diversity and dynamic patterns of primary productivity. The DHIs are effective measures to identify assess broad-scale patterns of biodiversity in tropical ecosystems, and assist conservation planning and resource management. My dissertation research contributes substantially to biodiversity science, and has broad societal relevance, in striving to protect biodiversity and the ecosystem services given rapid environmental changes.
NASA Astrophysics Data System (ADS)
Covino, T. P.; Wegener, P.; Weiss, T.; Wohl, E.; Rhoades, C.
2017-12-01
River networks of mountain landscapes tend to be dominated by steep, valley-confined channels that have limited floodplain area and low hydrologic buffering capacity. Interspersed between the narrow segments are wide, low-gradient segments where extensive floodplains, wetlands, and riparian areas can develop. Although they tend to be limited in their frequency relative to the narrow valley segments, the low-gradient, wide portions of mountain channel networks can be particularly important to hydrologic buffering and can be sites of high nutrient retention and ecosystem productivity. Hydrologic buffering along the wide valley segments is dependent on lateral hydrologic connectivity between the river and floodplain, however these connections have been increasingly severed as a result of various land and water management practices. We evaluated the role of river-floodplain connectivity in influencing water, dissolved organic carbon (DOC), and nutrient flux in river networks of the Colorado Rockies. We found that disconnected segments with limited floodplain/riparian area had limited buffering capacity, while connected segments exhibited variable source-sink dynamics as a function of flow. Specifically, connected segments were typically a sink for water, DOC, and nutrients during high flows, and subsequently became a source as flows decreased. Shifts in river-floodplain hydrologic connectivity across flows related to higher and more variable aquatic ecosystem metabolism rates along connected relative to disconnected segments. Our data suggest that lateral hydrologic connectivity in wide valleys can enhance hydrologic and biogeochemical buffering, and promote high rates of aquatic ecosystem metabolism. While hydrologic disconnection in one river-floodplain system is unlikely to influence water resources at larger scales, the cumulative effects of widespread disconnection may be substantial. Because intact river-floodplain (i.e., connected) systems provide numerous hydrologic and ecologic benefits, understanding the dynamics and cumulative effects of disconnection is an important step toward improved water resource and ecosystem management.
Planning Sustainability: A Master Plan For Stella, Missouri
Human Life is conditional upon intact ecosystems that provide goods and services required to sustain human life. Because development will incrementally and cumulative consume the biophysical environment, the conditions of intact ecosystems must be the basis for how the environme...
Considering Environment, Economy, And Society In Land-Use: A Case Study - Stella, Missouri
Human life is conditional upon intact ecosystems that provide goods and services required to sustain human life. Because development will incrementally and cumulative consume the biophysical environment, the conditions of intact ecosystems must be the basis for how the environme...
Spatial and temporal changes in cumulative human impacts on the world's ocean.
Halpern, Benjamin S; Frazier, Melanie; Potapenko, John; Casey, Kenneth S; Koenig, Kellee; Longo, Catherine; Lowndes, Julia Stewart; Rockwood, R Cotton; Selig, Elizabeth R; Selkoe, Kimberly A; Walbridge, Shaun
2015-07-14
Human pressures on the ocean are thought to be increasing globally, yet we know little about their patterns of cumulative change, which pressures are most responsible for change, and which places are experiencing the greatest increases. Managers and policymakers require such information to make strategic decisions and monitor progress towards management objectives. Here we calculate and map recent change over 5 years in cumulative impacts to marine ecosystems globally from fishing, climate change, and ocean- and land-based stressors. Nearly 66% of the ocean and 77% of national jurisdictions show increased human impact, driven mostly by climate change pressures. Five percent of the ocean is heavily impacted with increasing pressures, requiring management attention. Ten percent has very low impact with decreasing pressures. Our results provide large-scale guidance about where to prioritize management efforts and affirm the importance of addressing climate change to maintain and improve the condition of marine ecosystems.
Spatial and temporal changes in cumulative human impacts on the world's ocean
Halpern, Benjamin S.; Frazier, Melanie; Potapenko, John; Casey, Kenneth S.; Koenig, Kellee; Longo, Catherine; Lowndes, Julia Stewart; Rockwood, R. Cotton; Selig, Elizabeth R.; Selkoe, Kimberly A.; Walbridge, Shaun
2015-01-01
Human pressures on the ocean are thought to be increasing globally, yet we know little about their patterns of cumulative change, which pressures are most responsible for change, and which places are experiencing the greatest increases. Managers and policymakers require such information to make strategic decisions and monitor progress towards management objectives. Here we calculate and map recent change over 5 years in cumulative impacts to marine ecosystems globally from fishing, climate change, and ocean- and land-based stressors. Nearly 66% of the ocean and 77% of national jurisdictions show increased human impact, driven mostly by climate change pressures. Five percent of the ocean is heavily impacted with increasing pressures, requiring management attention. Ten percent has very low impact with decreasing pressures. Our results provide large-scale guidance about where to prioritize management efforts and affirm the importance of addressing climate change to maintain and improve the condition of marine ecosystems. PMID:26172980
2012-05-01
and PNNL , with funding from the U.S. Environ- mental Protection Agency, are developing a GIS platform with layers for a habitat change analysis , a... PNNL -20296 Prepared for the U.S. Army Corps of Engineers, Portland District Under an Interagency Agreement with the U.S. Department of Energy...University of Washington May 2012 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information is
Freshwater habitats provide fishable, swimmable and drinkable resources and are a nexus of geophysical and biological processes. These processes in turn influence the persistence and sustainability of populations, communities and ecosystems. Climate change and landuse change enco...
A Functional Response Metric for the Temperature Sensitivity of Tropical Ecosystems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keppel-Aleks, Gretchen; Basile, Samantha J.; Hoffman, Forrest M.
Earth system models (ESMs) simulate a large spread in carbon cycle feedbacks to climate change, particularly in their prediction of cumulative changes in terrestrial carbon storage. Evaluating the performance of ESMs against observations and assessing the likelihood of long-term climate predictions are crucial for model development. Here, we assessed the use of atmospheric CO 2 growth rate variations to evaluate the sensitivity of tropical ecosystem carbon fluxes to interannual temperature variations. We found that the temperature sensitivity of the observed CO 2 growth rate depended on the time scales over which atmospheric CO 2 observations were averaged. The temperature sensitivitymore » of the CO 2 growth rate during Northern Hemisphere winter is most directly related to the tropical carbon flux sensitivity since winter variations in Northern Hemisphere carbon fluxes are relatively small. This metric can be used to test the fidelity of interactions between the physical climate system and terrestrial ecosystems within ESMs, which is especially important since the short-term relationship between ecosystem fluxes and temperature stress may be related to the long-term feedbacks between ecosystems and climate. If the interannual temperature sensitivity is used to constrain long-term temperature responses, the inferred sensitivity may be biased by 20%, unless the seasonality of the relationship between the observed CO 2 growth rate and tropical fluxes is taken into account. Lastly, these results suggest that atmospheric data can be used directly to evaluate regional land fluxes from ESMs, but underscore that the interaction between the time scales for land surface processes and those for atmospheric processes must be considered.« less
A Functional Response Metric for the Temperature Sensitivity of Tropical Ecosystems
Keppel-Aleks, Gretchen; Basile, Samantha J.; Hoffman, Forrest M.
2018-04-23
Earth system models (ESMs) simulate a large spread in carbon cycle feedbacks to climate change, particularly in their prediction of cumulative changes in terrestrial carbon storage. Evaluating the performance of ESMs against observations and assessing the likelihood of long-term climate predictions are crucial for model development. Here, we assessed the use of atmospheric CO 2 growth rate variations to evaluate the sensitivity of tropical ecosystem carbon fluxes to interannual temperature variations. We found that the temperature sensitivity of the observed CO 2 growth rate depended on the time scales over which atmospheric CO 2 observations were averaged. The temperature sensitivitymore » of the CO 2 growth rate during Northern Hemisphere winter is most directly related to the tropical carbon flux sensitivity since winter variations in Northern Hemisphere carbon fluxes are relatively small. This metric can be used to test the fidelity of interactions between the physical climate system and terrestrial ecosystems within ESMs, which is especially important since the short-term relationship between ecosystem fluxes and temperature stress may be related to the long-term feedbacks between ecosystems and climate. If the interannual temperature sensitivity is used to constrain long-term temperature responses, the inferred sensitivity may be biased by 20%, unless the seasonality of the relationship between the observed CO 2 growth rate and tropical fluxes is taken into account. Lastly, these results suggest that atmospheric data can be used directly to evaluate regional land fluxes from ESMs, but underscore that the interaction between the time scales for land surface processes and those for atmospheric processes must be considered.« less
Anthropogenic calcium depletion: a unique threat to forest ecosystem health?
Paul G. Schaberg; Donald H. DeHayes; Gary J. Hawley
2001-01-01
Numerous anthropogenic factors can deplete calcium (Ca) from forest ecosystems. Because an adequate supply of Ca is needed to support fundamental biological functions, including cell membrane stability and stress response, the potential for Ca deficiency following the individual, cumulative, or potentially synergistic, influences of anthropogenic factors raises...
Willsteed, Edward; Gill, Andrew B; Birchenough, Silvana N R; Jude, Simon
2017-01-15
Assessing and managing the cumulative impacts of human activities on the environment remains a major challenge to sustainable development. This challenge is highlighted by the worldwide expansion of marine renewable energy developments (MREDs) in areas already subject to multiple activities and climate change. Cumulative effects assessments in theory provide decision makers with adequate information about how the environment will respond to the incremental effects of licensed activities and are a legal requirement in many nations. In practise, however, such assessments are beset by uncertainties resulting in substantial delays during the licensing process that reduce MRED investor confidence and limit progress towards meeting climate change targets. In light of these targets and ambitions to manage the marine environment sustainably, reducing the uncertainty surrounding MRED effects and cumulative effects assessment are timely and vital. This review investigates the origins and evolution of cumulative effects assessment to identify why the multitude of approaches and pertinent research have emerged, and discusses key considerations and challenges relevant to assessing the cumulative effects of MREDs and other activities on ecosystems. The review recommends a shift away from the current reliance on disparate environmental impact assessments and limited strategic environmental assessments, and a move towards establishing a common system of coordinated data and research relative to ecologically meaningful areas, focussed on the needs of decision makers tasked with protecting and conserving marine ecosystems and services. Copyright © 2016. Published by Elsevier B.V.
Marzloff, Martin Pierre; Melbourne-Thomas, Jessica; Hamon, Katell G; Hoshino, Eriko; Jennings, Sarah; van Putten, Ingrid E; Pecl, Gretta T
2016-07-01
As a consequence of global climate-driven changes, marine ecosystems are experiencing polewards redistributions of species - or range shifts - across taxa and throughout latitudes worldwide. Research on these range shifts largely focuses on understanding and predicting changes in the distribution of individual species. The ecological effects of marine range shifts on ecosystem structure and functioning, as well as human coastal communities, can be large, yet remain difficult to anticipate and manage. Here, we use qualitative modelling of system feedback to understand the cumulative impacts of multiple species shifts in south-eastern Australia, a global hotspot for ocean warming. We identify range-shifting species that can induce trophic cascades and affect ecosystem dynamics and productivity, and evaluate the potential effectiveness of alternative management interventions to mitigate these impacts. Our results suggest that the negative ecological impacts of multiple simultaneous range shifts generally add up. Thus, implementing whole-of-ecosystem management strategies and regular monitoring of range-shifting species of ecological concern are necessary to effectively intervene against undesirable consequences of marine range shifts at the regional scale. Our study illustrates how modelling system feedback with only limited qualitative information about ecosystem structure and range-shifting species can predict ecological consequences of multiple co-occurring range shifts, guide ecosystem-based adaptation to climate change and help prioritise future research and monitoring. © 2016 John Wiley & Sons Ltd.
Analysis of changes in water-level dynamics at selected sites in the Florida Everglades
Conrads, Paul; Benedict, Stephen T.
2013-01-01
The historical modification and regulation of the hydrologic patterns in the Florida Everglades have resulted in changes in the ecosystem of South Florida and the Florida Everglades. Since the 1970s, substantial focus has been given to the restoration of the Everglades ecosystem. The U.S. Geological Survey through its Greater Everglades Priority Ecosystem Science and National Water-Quality Assessment Programs has been providing scientific information to resource managers to assist in the Everglades restoration efforts. The current investigation included development of a simple method to identify and quantify changes in historical hydrologic behavior within the Everglades that could be used by researchers to identify responses of ecological communities to those changes. Such information then could be used by resource managers to develop appropriate water-management practices within the Everglades to promote restoration. The identification of changes in historical hydrologic behavior within the Everglades was accomplished by analyzing historical time-series water-level data from selected gages in the Everglades using (1) break-point analysis of cumulative Z-scores to identify hydrologic changes and (2) cumulative water-level frequency distribution curves to evaluate the magnitude of those changes. This analytical technique was applied to six long-term water-level gages in the Florida Everglades. The break-point analysis for the concurrent period of record (1978–2011) identified 10 common periods of changes in hydrologic behavior at the selected gages. The water-level responses at each gage for the 10 periods displayed similarity in fluctuation patterns, highlighting the interconnectedness of the Florida Everglades hydrologic system. While the patterns were similar, the analysis also showed that larger fluctuations in water levels between periods occurred in Water Conservation Areas 2 and 3 in contrast to those in Water Conservation Area 1 and the Everglades National Park. Results from the analysis indicate that the cumulative Z-score curve, in conjunction with cumulative water-level frequency distribution curves, can be a useful tool in identifying and quantifying changes in historical hydrologic behavior within the Everglades. In addition to the analysis, a spreadsheet application was developed to assist in applying these techniques to time-series water-level data at gages within the Everglades and is included with this report.
Hernández-Delgado, E A
2015-12-15
Climate change has significantly impacted tropical ecosystems critical for sustaining local economies and community livelihoods at global scales. Coastal ecosystems have largely declined, threatening the principal source of protein, building materials, tourism-based revenue, and the first line of defense against storm swells and sea level rise (SLR) for small tropical islands. Climate change has also impacted public health (i.e., altered distribution and increased prevalence of allergies, water-borne, and vector-borne diseases). Rapid human population growth has exacerbated pressure over coupled social-ecological systems, with concomitant non-sustainable impacts on natural resources, water availability, food security and sovereignty, public health, and quality of life, which should increase vulnerability and erode adaptation and mitigation capacity. This paper examines cumulative and synergistic impacts of climate change in the challenging context of highly vulnerable small tropical islands. Multiple adaptive strategies of coupled social-ecological ecosystems are discussed. Multi-level, multi-sectorial responses are necessary for adaptation to be successful. Copyright © 2015 Elsevier Ltd. All rights reserved.
Philip E. Dennison; Dar A. Roberts; Sommer R. Thorgusen; Jon C. Regelbrugge; David Weise; Christopher Lee
2003-01-01
Live fuel moisture, an important determinant of fire danger in Mediterranean ecosystems, exhibits seasonal changes in response to soil water availability. Both drought stress indices based on meteorological data and remote sensing indices based on vegetation water absorption can be used to monitor live fuel moisture. In this study, a cumulative water balance index (...
The challenges and opportunities in cumulative effects assessment
Foley, Melissa M.; Mease, Lindley A; Martone, Rebecca G; Prahler, Erin E; Morrison, Tiffany H; Clarke Murray, Cathryn; Wojcik, Deborah
2016-01-01
The cumulative effects of increasing human use of the ocean and coastal zone have contributed to a rapid decline in ocean and coastal resources. As a result, scientists are investigating how multiple, overlapping stressors accumulate in the environment and impact ecosystems. These investigations are the foundation for the development of new tools that account for and predict cumulative effects in order to more adequately prevent or mitigate negative effects. Despite scientific advances, legal requirements, and management guidance, those who conduct assessments—including resource managers, agency staff, and consultants—continue to struggle to thoroughly evaluate cumulative effects, particularly as part of the environmental assessment process. Even though 45 years have passed since the United States National Environmental Policy Act was enacted, which set a precedent for environmental assessment around the world, defining impacts, baseline, scale, and significance are still major challenges associated with assessing cumulative effects. In addition, we know little about how practitioners tackle these challenges or how assessment aligns with current scientific recommendations. To shed more light on these challenges and gaps, we undertook a comparative study on how cumulative effects assessment (CEA) is conducted by practitioners operating under some of the most well-developed environmental laws around the globe: California, USA; British Columbia, Canada; Queensland, Australia; and New Zealand. We found that practitioners used a broad and varied definition of impact for CEA, which led to differences in how baseline, scale, and significance were determined. We also found that practice and science are not closely aligned and, as such, we highlight opportunities for managers, policy makers, practitioners, and scientists to improve environmental assessment.
The challenges and opportunities in cumulative effects assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foley, Melissa M., E-mail: mfoley@usgs.gov; Center for Ocean Solutions, Stanford University, 99 Pacific St., Monterey, CA 93940; Mease, Lindley A., E-mail: lamease@stanford.edu
The cumulative effects of increasing human use of the ocean and coastal zone have contributed to a rapid decline in ocean and coastal resources. As a result, scientists are investigating how multiple, overlapping stressors accumulate in the environment and impact ecosystems. These investigations are the foundation for the development of new tools that account for and predict cumulative effects in order to more adequately prevent or mitigate negative effects. Despite scientific advances, legal requirements, and management guidance, those who conduct assessments—including resource managers, agency staff, and consultants—continue to struggle to thoroughly evaluate cumulative effects, particularly as part of the environmentalmore » assessment process. Even though 45 years have passed since the United States National Environmental Policy Act was enacted, which set a precedent for environmental assessment around the world, defining impacts, baseline, scale, and significance are still major challenges associated with assessing cumulative effects. In addition, we know little about how practitioners tackle these challenges or how assessment aligns with current scientific recommendations. To shed more light on these challenges and gaps, we undertook a comparative study on how cumulative effects assessment (CEA) is conducted by practitioners operating under some of the most well-developed environmental laws around the globe: California, USA; British Columbia, Canada; Queensland, Australia; and New Zealand. We found that practitioners used a broad and varied definition of impact for CEA, which led to differences in how baseline, scale, and significance were determined. We also found that practice and science are not closely aligned and, as such, we highlight opportunities for managers, policy makers, practitioners, and scientists to improve environmental assessment.« less
G. Scott Haulton
2013-01-01
Disturbance plays an important role in forest development processes. Present-day forest condition can be viewed as the cumulative result of various historical disturbance events; therefore, an understanding of disturbance history is important when describing overall forest condition. Pre-treatment studies of the Hardwood Ecosystem Experiment (HEE) have described...
Impact of soil moisture deficit on ecosystem function across the United States
Susan Moran; Morgan Ross; Mallory Burns
2016-01-01
The cumulative effect of recent prolonged warm drought on regional ecosystem function is still uncertain. Large regions of the United States are experiencing new hydroclimatic conditions with extreme variability in climate drivers such as total precipitation, precipitation patterns (e.g., storm size, intensity and frequency), and seasonal temperatures.
Talhelm, Alan F; Pregitzer, Kurt S; Kubiske, Mark E; Zak, Donald R; Campany, Courtney E; Burton, Andrew J; Dickson, Richard E; Hendrey, George R; Isebrands, J G; Lewin, Keith F; Nagy, John; Karnosky, David F
2014-08-01
Three young northern temperate forest communities in the north-central United States were exposed to factorial combinations of elevated carbon dioxide (CO2 ) and tropospheric ozone (O3 ) for 11 years. Here, we report results from an extensive sampling of plant biomass and soil conducted at the conclusion of the experiment that enabled us to estimate ecosystem carbon (C) content and cumulative net primary productivity (NPP). Elevated CO2 enhanced ecosystem C content by 11%, whereas elevated O3 decreased ecosystem C content by 9%. There was little variation in treatment effects on C content across communities and no meaningful interactions between CO2 and O3 . Treatment effects on ecosystem C content resulted primarily from changes in the near-surface mineral soil and tree C, particularly differences in woody tissues. Excluding the mineral soil, cumulative NPP was a strong predictor of ecosystem C content (r(2) = 0.96). Elevated CO2 enhanced cumulative NPP by 39%, a consequence of a 28% increase in canopy nitrogen (N) content (g N m(-2) ) and a 28% increase in N productivity (NPP/canopy N). In contrast, elevated O3 lowered NPP by 10% because of a 21% decrease in canopy N, but did not impact N productivity. Consequently, as the marginal impact of canopy N on NPP (∆NPP/∆N) decreased through time with further canopy development, the O3 effect on NPP dissipated. Within the mineral soil, there was less C in the top 0.1 m of soil under elevated O3 and less soil C from 0.1 to 0.2 m in depth under elevated CO2 . Overall, these results suggest that elevated CO2 may create a sustained increase in NPP, whereas the long-term effect of elevated O3 on NPP will be smaller than expected. However, changes in soil C are not well-understood and limit our ability to predict changes in ecosystem C content. © 2014 The Authors Global Change Biology Published by John Wiley & Sons Ltd.
Long-term Ecosystem Experiments, Data Assimilation, and Meta-Analysis
NASA Astrophysics Data System (ADS)
Hungate, B. A.; Van Groenigen, K. J.; Osenberg, C. W.; van Gestel, N.
2015-12-01
Land ecosystems affect climate and the atmosphere, and climate and atmospheric change affects ecosystems. Syntheses of ecosystem experiments investigating their responses to environmental change holds promise for understanding how to model these interactions, and thereby gain insight into Earth's future biosphere, atmosphere, and climate. Long-term experiments examining ecosystem responses are thought to be especially important in this effort, for their potential to reveal cumulative and progressive effects, subtle effects initially undetectable experimentally, but manifest more clearly over time, often with stronger implications for modeled responses than the more dramatic, short-term experimental responses. Here, we present new analyses of long-term experiments manipulating temperature, CO2 concentration, and precipitation, testing the general hypothesis that there are common temporal patterns of responses that reveal general biogeochemical characterizing ecosystem responses to these environmental changes. For example, we show that increased carbon input with elevated CO2 stimulates emissions of nitrous oxide and methane, important greenhouse gases, and that effects show no signs of diminishing over the duration of experiments that have documented responses. At the same time, we show that the temporal resolution for this response is limited, pointing to a potential limitation in the ability of experiments to address clearly long-term hypotheses. We also show that warming tends to have limited cumulative effects on total soil carbon stocks in long-term experiments, and explore the mechanisms underlying this response. Finally, we discuss the implications of these findings for models used to simulate long-term ecosystem responses to these environmental forcings, as well as the implications of these findings for the next generation of terrestrial ecosystem experiments.
Net ecosystem production in a Little Ice Age moraine: the role of plant functional traits
NASA Astrophysics Data System (ADS)
Varolo, E.; Zanotelli, D.; Tagliavini, M.; Zerbe, S.; Montagnani, L.
2015-07-01
Current glacier retreat allows vast mountain ranges available for vegetation establishment and growth. Little is known about the effective carbon (C) budget of these new ecosystems and how the presence of different vegetation communities, characterized by their specific physiology and life forms influences C fluxes. In this study, using a comparative analysis of the C fluxes of two contrasting vegetation types, we intend to evaluate if the different physiologies of the main species have an effect on Ecosystem Respiration (Reco), Gross Primary Production (GPP), annual cumulated Net Ecosystem Exchange (NEE), and long-term carbon accumulation in soil. The NEE of two plant communities present on a Little Ice Age moraine in the Matsch glacier forefield (Alps, Italy) was measured over two growing seasons. They are a typical C3 grassland, dominated by Festuca halleri All. and a community dominated by CAM rosettes Sempervivum montanum L. on rocky soils. Using transparent and opaque chambers, we extrapolated the ecophysiological responses to the main environmental drivers and performed the partition of NEE into Reco and GPP. Soil samples were collected from the same site to measure long-term C accumulation in the ecosystem. The two communities showed contrasting GPP but similar Reco patterns and as a result significantly different in NEE. The grassland acted mainly as a carbon sink with a total cumulated value of -46.4 ± 35.5 g C m-2 NEE while the plots dominated by the CAM rosettes acted as a source with 31.9 ± 22.4 g C m-2. In spite of the NEE being different in the two plant communities, soil analysis did not reveal significant differences in carbon accumulation. Grasslands showed 1.76 ± 0.12 kg C m-2, while CAM rosettes showed 2.06 ± 0.23 kg C m-2. This study demonstrates that carbon dynamics of two vegetation communities can be distinct even though the growing environment is similar. The physiological traits of the dominant species determine large differences in the carbon cycle. Therefore, to analyze NEE of any glacier forefield ecosystem, different functional traits of the vegetation communities must be taken into consideration. Moreover, to assess the net ecosystem carbon balance it is necessary to consider the lateral fluxes of carbon via animal consumption, winter respiration, and in a broader temporal perspective, the different stages characterizing the primary succession.
NASA Astrophysics Data System (ADS)
Piroddi, Chiara; Coll, Marta; Liquete, Camino; Macias, Diego; Greer, Krista; Buszowski, Joe; Steenbeek, Jeroen; Danovaro, Roberto; Christensen, Villy
2017-03-01
The Mediterranean Sea has been defined “under siege” because of intense pressures from multiple human activities; yet there is still insufficient information on the cumulative impact of these stressors on the ecosystem and its resources. We evaluate how the historical (1950-2011) trends of various ecosystems groups/species have been impacted by changes in primary productivity (PP) combined with fishing pressure. We investigate the whole Mediterranean Sea using a food web modelling approach. Results indicate that both changes in PP and fishing pressure played an important role in driving species dynamics. Yet, PP was the strongest driver upon the Mediterranean Sea ecosystem. This highlights the importance of bottom-up processes in controlling the biological characteristics of the region. We observe a reduction in abundance of important fish species (~34%, including commercial and non-commercial) and top predators (~41%), and increases of the organisms at the bottom of the food web (~23%). Ecological indicators, such as community biomass, trophic levels, catch and diversity indicators, reflect such changes and show overall ecosystem degradation over time. Since climate change and fishing pressure are expected to intensify in the Mediterranean Sea, this study constitutes a baseline reference for stepping forward in assessing the future management of the basin.
Disturbance and Recovery of Arctic Alaskan Tundra Terrain. A Review of Recent Investigations.
1987-07-01
ecosystem within ahuman life span, but a return to the original ecosystem can rarely be expected for major impacts. 3) The concept of recovery must be based...The climate of the region is cool and relatively tential cumulative impacts. dry (140-267 mm of precipitation annually). The report consists of three...disruptive influences. Recovery is a prag- diverse ecosystem may result; this happens, for ex- matic term that is useful in terms of human life ample, when
Brosnan, Deborah; Wein, Anne; Wilson, Rick; Ross, Stephanie L.; Jones, Lucile
2014-01-01
We evaluate the effects of the SAFRR Tsunami Scenario on California’s ecosystems, species, natural resources, and fisheries. We discuss mitigation and preparedness approaches that can be useful in Tsunami planning. The chapter provides an introduction to the role of ecosystems and natural resources in tsunami events (Section 1). A separate section focuses on specific impacts of the SAFRR Tsunami Scenario on California’s ecosystems and endangered species (Section 2). A section on commercial fisheries and the fishing fleet (Section 3) documents the plausible effects on California’s commercial fishery resources, fishing fleets, and communities. Sections 2 and 3 each include practical preparedness options for communities and suggestions on information needs or research.Our evaluation indicates that many low-lying coastal habitats, including beaches, marshes and sloughs, rivers and waterways connected to the sea, as well as nearshore submarine habitats will be damaged by the SAFRR Tsunami Scenario. Beach erosion and complex or high volumes of tsunami-generated debris would pose major challenges for ecological communities. Several endangered species and protected areas are at risk. Commercial fisheries and fishing fleets will be affected directly by the tsunami and indirectly by dependencies on infrastructure that is damaged. There is evidence that in some areas intact ecosystems, notably sand dunes, will act as natural defenses against the tsunami waves. However, ecosystems do not provide blanket protection against tsunami surge. The consequences of ecological and natural resource damage are estimated in the millions of dollars. These costs are driven partly by the loss of ecosystem services, as well as cumulative and follow-on impacts where, for example, increased erosion during the tsunami can in turn lead to subsequent damage and loss to coastal properties. Recovery of ecosystems, natural resources and fisheries is likely to be lengthy and expensive. Preparedness is key to enhancing resilience to ecological impacts.
Beguin, Julien; McIntire, Eliot J B; Raulier, Frédéric
2015-11-01
Protected area networks are the dominant conservation approach that is used worldwide for protecting biodiversity. Conservation planning in managed forests, however, presents challenges when endangered species use old-growth forests targeted by the forest industry for timber supply. In many ecosystems, this challenge is further complicated by the occurrence of natural disturbance events that disrupt forest attributes at multiple scales. Using spatially explicit landscape simulation experiments, we gather insights into how these large scale, multifaceted processes (fire risk, timber harvesting and the amount of protected area) influenced both the persistence of the threatened boreal caribou and the level of timber supply in the boreal forest of eastern Canada. Our result showed that failure to account explicitly and a priori for fire risk in the calculation of timber supply led to an overestimation of timber harvest volume, which in turn led to rates of cumulative disturbances that threatened both the long-term persistence of boreal caribou and the sustainability of the timber supply itself. Salvage logging, however, allowed some compensatory cumulative effects. It minimised the reductions of timber supply within a range of ∼10% while reducing the negative impact of cumulative disturbances caused by fire and logging on caribou. With the global increase of the human footprint on forest ecosystems, our approach and results provide useful tools and insights for managers to resolve what often appear as lose-lose situation between the persistence of species at risk and timber harvest in other forest ecosystems. These tools contribute to bridge the gap between conservation and forest management, two disciplines that remain too often disconnected in practice. Copyright © 2015 Elsevier Ltd. All rights reserved.
Large-scale degradation of Amazonian freshwater ecosystems
NASA Astrophysics Data System (ADS)
Castello, L.; Macedo, M.
2016-12-01
The integrity of freshwater ecosystems depends on their hydrological connectivity with land, water, and climate systems. Hydrological connectivity regulates the structure and function of Amazonian freshwater ecosystems and the provisioning of services that sustain local populations. However, the hydrological connectivity of Amazonian freshwater ecosystems is increasingly disrupted by construction of dams, mining, land-cover changes, and global climate change. This review analyzes these drivers of degradation; evaluates their impacts on hydrological connectivity; and identifies policy deficiencies that hinder freshwater ecosystem protection. There are 155 large hydroelectric dams in operation, 21 dams under construction, and there will be only three free-flowing tributaries if all 277 planned dams for the Basin are built. Land-cover changes driven by mining, dam and road construction, and agriculture and cattle ranching have already affected 20% of the Basin and up to 50% of riparian forests in some regions. Global climate change will likely exacerbate these impacts by creating warmer and dryer conditions, with less predictable rainfall and more extreme events (e.g. droughts and floods). The resulting hydrological alterations are rapidly degrading freshwater ecosystems both independently and via complex feedbacks and synergistic interactions. The ecosystem impacts include biodiversity loss, warmer stream temperatures, stronger and more frequent floodplain fires, and changes to biogeochemical cycles, transport of organic and inorganic materials, and freshwater community structure and function. The impacts also include reductions in water quality, fish yields, and availability of water for navigation, power generation, and human use. This degradation of Amazonian freshwater ecosystems cannot be curbed presently because existing policies are inconsistent across the Basin, ignore cumulative effects, and do not consider the hydrological connectivity of freshwater ecosystems. Maintaining the integrity of these freshwater ecosystems requires a basin-wide research and policy framework to understand and manage hydrological connectivity across multiple spatial scales and jurisdictional boundaries.
Habitat risk assessment for regional ocean planning in the U.S. Northeast and Mid-Atlantic.
Wyatt, Katherine H; Griffin, Robert; Guerry, Anne D; Ruckelshaus, Mary; Fogarty, Michael; Arkema, Katie K
2017-01-01
Coastal habitats provide important benefits to people, including habitat for species targeted by fisheries and opportunities for tourism and recreation. Yet, such human activities also can imperil these habitats and undermine the ecosystem services they provide to people. Cumulative risk assessment provides an analytical framework for synthesizing the influence of multiple stressors across habitats and decision-support for balancing human uses and ecosystem health. To explore cumulative risk to habitats in the U.S. Northeast and Mid-Atlantic Ocean Planning regions, we apply the open-source InVEST Habitat Risk Assessment model to 13 habitats and 31 stressors in an exposure-consequence framework. In doing so, we advance the science priorities of EBM and both regional planning bodies by synthesizing the wealth of available data to improve our understanding of human uses and how they affect marine resources. We find that risk to ecosystems is greatest first, along the coast, where a large number of stressors occur in close proximity and secondly, along the continental shelf, where fewer, higher consequence activities occur. Habitats at greatest risk include soft and hard-bottom nearshore areas, tidal flats, soft-bottom shelf habitat, and rocky intertidal zones-with the degree of risk varying spatially. Across all habitats, our results indicate that rising sea surface temperatures, commercial fishing, and shipping consistently and disproportionally contribute to risk. Further, our findings suggest that management in the nearshore will require simultaneously addressing the temporal and spatial overlap as well as intensity of multiple human activities and that management in the offshore requires more targeted efforts to reduce exposure from specific threats. We offer a transparent, generalizable approach to evaluating cumulative risk to multiple habitats and illustrate the spatially heterogeneous nature of impacts along the eastern Atlantic coast and the importance of spatial scale in estimating such impacts. These results offer a valuable decision-support tool by helping to constrain the decision space, focus attention on habitats and locations at the greatest risk, and highlight effect management strategies.
Habitat risk assessment for regional ocean planning in the U.S. Northeast and Mid-Atlantic
Guerry, Anne D.; Ruckelshaus, Mary; Fogarty, Michael; Arkema, Katie K.
2017-01-01
Coastal habitats provide important benefits to people, including habitat for species targeted by fisheries and opportunities for tourism and recreation. Yet, such human activities also can imperil these habitats and undermine the ecosystem services they provide to people. Cumulative risk assessment provides an analytical framework for synthesizing the influence of multiple stressors across habitats and decision-support for balancing human uses and ecosystem health. To explore cumulative risk to habitats in the U.S. Northeast and Mid-Atlantic Ocean Planning regions, we apply the open-source InVEST Habitat Risk Assessment model to 13 habitats and 31 stressors in an exposure-consequence framework. In doing so, we advance the science priorities of EBM and both regional planning bodies by synthesizing the wealth of available data to improve our understanding of human uses and how they affect marine resources. We find that risk to ecosystems is greatest first, along the coast, where a large number of stressors occur in close proximity and secondly, along the continental shelf, where fewer, higher consequence activities occur. Habitats at greatest risk include soft and hard-bottom nearshore areas, tidal flats, soft-bottom shelf habitat, and rocky intertidal zones—with the degree of risk varying spatially. Across all habitats, our results indicate that rising sea surface temperatures, commercial fishing, and shipping consistently and disproportionally contribute to risk. Further, our findings suggest that management in the nearshore will require simultaneously addressing the temporal and spatial overlap as well as intensity of multiple human activities and that management in the offshore requires more targeted efforts to reduce exposure from specific threats. We offer a transparent, generalizable approach to evaluating cumulative risk to multiple habitats and illustrate the spatially heterogeneous nature of impacts along the eastern Atlantic coast and the importance of spatial scale in estimating such impacts. These results offer a valuable decision-support tool by helping to constrain the decision space, focus attention on habitats and locations at the greatest risk, and highlight effect management strategies. PMID:29261672
Spatial relationships of levees and wetland systems within floodplains of the Wabash Basin, USA
NASA Astrophysics Data System (ADS)
Bray, E. N.; Morrison, R. R.; Nardi, F.; Annis, A.; Dong, Q.
2017-12-01
Given the unique biogeochemical, physical, and hydrologic services provided by floodplain wetlands, proper management of river systems should include an understanding of how floodplain modifications influences wetland ecosystems. The construction of levees can reduce river-floodplain connectivity, yet it is unclear how levees affect wetlands within a river system, let alone the cumulative impacts within an entire watershed. This paper explores spatial relationships between levee and floodplain wetland systems in the Wabash basin, United States. We used a hydrogeomorphic floodplain delineation technique to map floodplain extents and identify wetlands that may be hydrologically connected to river networks. We then spatially examined the relationship between levee presence, wetland area, and other river network attributes within discrete HUC-12 sub-basins. Our results show that cumulative wetland area is relatively constant in sub-basins that contain levees, regardless of maximum stream order within the sub-basin. In sub-basins that do not contain levees, cumulative wetland area increases with maximum stream order. However, we found that wetland distributions around levees can be complex, and further studies on the influence of levees on wetland habitat may need to be evaluated at finer-resolution spatial scales.
Assessment of freshwater ecosystem services in the Beas River Basin, Himalayas region, India
NASA Astrophysics Data System (ADS)
Ncube, Sikhululekile; Beevers, Lindsay; Adeloye, Adebayo J.; Visser, Annie
2018-06-01
River systems provide a diverse range of ecosystem services, examples include: flood regulation (regulating), fish (provisioning), nutrient cycling (supporting) and recreation (cultural). Developing water resources through the construction of dams (hydropower or irrigation) can enhance the delivery of provisioning ecosystem services. However, these hydrologic alterations result in reductions in less tangible regulating, cultural and supporting ecosystem services. This study seeks to understand how multiple impoundments, abstractions and transfers within the upper Beas River Basin, Western Himalayas, India, are affecting the delivery of supporting ecosystem services. Whilst approaches for assessing supporting ecosystem services are under development, the immediate aim of this paper is to set out a framework for their quantification, using the macroinvertebrate index Lotic-Invertebrate Index for Flow Evaluation (LIFE). LIFE is a weighted measure of the flow velocity preferences of the macroinvertebrate community. Flow records from multiple gauging stations within the basin were used to investigate flow variability at seasonal, inter-annual and decadal time scales. The findings show that both mean monthly and seasonal cumulative flows have decreased over time in the Beas River Basin. A positive hydroecological relationship between LIFE and flow was also identified, indicative of macroinvertebrate response to seasonal changes in the flow regime. For example, high LIFE scores (7.7-9.3) in the winter and summer seasons indicate an abundance of macroinvertebrates with a preference for high flows; this represents a high potential for instream supporting ecosystem services delivery. However, further analysis is required to understand these hydroecological interactions in the study basin and the impact on instream supporting ecosystem services delivery.
Gattuso, J-P; Magnan, A; Billé, R; Cheung, W W L; Howes, E L; Joos, F; Allemand, D; Bopp, L; Cooley, S R; Eakin, C M; Hoegh-Guldberg, O; Kelly, R P; Pörtner, H-O; Rogers, A D; Baxter, J M; Laffoley, D; Osborn, D; Rankovic, A; Rochette, J; Sumaila, U R; Treyer, S; Turley, C
2015-07-03
The ocean moderates anthropogenic climate change at the cost of profound alterations of its physics, chemistry, ecology, and services. Here, we evaluate and compare the risks of impacts on marine and coastal ecosystems—and the goods and services they provide—for growing cumulative carbon emissions under two contrasting emissions scenarios. The current emissions trajectory would rapidly and significantly alter many ecosystems and the associated services on which humans heavily depend. A reduced emissions scenario—consistent with the Copenhagen Accord's goal of a global temperature increase of less than 2°C—is much more favorable to the ocean but still substantially alters important marine ecosystems and associated goods and services. The management options to address ocean impacts narrow as the ocean warms and acidifies. Consequently, any new climate regime that fails to minimize ocean impacts would be incomplete and inadequate. Copyright © 2015, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Creed, I. F.; Webster, K. L.; Kreutzweiser, D. P.; Beall, F.
2014-12-01
Canada's boreal forest supports many aquatic ecosystem services (AES) due to the intimate linkage between aquatic systems and their surrounding terrestrial watersheds in forested landscapes. There is an increasing risk to AES because natural development activities (forest management, mining, energy) have resulted in disruptions that deteriorate aquatic ecosystems at local (10s of km2) to regional (100s of km2) scales. These activities are intensifying and expanding, placing at risk the healthy aquatic ecosystems that provide AES and may threaten the continued development of the energy, forest, and mining sectors. Remarkably, we know little about the consequences of these activities on AES. The idea that AES should be explicitly integrated into modern natural resource management regulations is gaining broad acceptance. A major need is the ability to measure cumulative effects and determine thresholds (the points where aquatic ecosystems and their services cannot recover to a desired state within a reasonable time frame) in these cumulative effects. However, there is no single conceptual approach to assessing cumulative effects that is widely accepted by both scientists and managers. We present an integrated science-policy framework that enables the integration of AES into forest management risk assessment and prevention/mitigation strategies. We use this framework to explore the risk of further deterioration of AES by (1) setting risk criteria; (2) using emerging technologies to map process-based indicators representing causes and consequences of risk events to the deterioration of AES; (3) assessing existing prevention and mitigation policies in place to avoid risk events; and (4) identifying priorities for policy change needed to reduce risk event. Ultimately, the success of this framework requires that higher value be placed on AES, and in turn to improve the science and management of the boreal forest.
Peter S. Murdoch; John L. Hom; Yude Pan; Jeffrey M. Fischer
2008-01-01
To complete the collaborative monitoring study of forested landscapes within the DRB, regional perspective on the cumulative effect of different disturbances on overall ecosystem health. This section describes two modeling activities used as integrating tools for the CEMRI database and a validation system that used nested river monitoring stations.
Anthropogenic nitrogen emissions during the Holocene and their possible effects on remote ecosystems
NASA Astrophysics Data System (ADS)
KopáčEk, Jiří; Posch, Maximilian
2011-06-01
Reactive nitrogen (Nr = NH3-N + NOx-N) is an important atmospheric pollutant, contributing to acidification, eutrophication and biodiversity changes in ecosystems. This study estimates Nr emissions from anthropogenic sources on a global scale since the advent of agriculture ˜8000 B.C., using a simple model based on the development of human population and per capita factors of Nr emissions originating from livestock production, biomass burning (biofuel use and forest and savannah burning), and other anthropogenic sources (humans and pets, N-fertilizer use, and fossil fuel combustion). The estimated global cumulative anthropogenic emissions of Nr to the atmosphere are ˜17.4 Pg N (8.6 Pg NH3-N and 8.8 Pg NOx-N) for 8000 B.C. through the year 2000 A.D., with 28% of this amount emitted during 1850-2000 A.D., 42% during 1-1850 A.D., and 30% during the previous 8000 years. Forest and savannah burning represent the major cumulative flux of both NH3-N and NOx-N (3.5 and 5.8 Pg, respectively). Livestock production and biofuel burning are responsible for emissions of 3.3 and 1.2 Pg NH3-N, respectively, while the application of synthetic fertilizers contributes 0.26 Pg NH3-N. The different duration of biofuel and fossil fuel use (10,000 versus ˜150 years) causes the higher cumulative NOx-N emissions from biofuel than from fossil fuel use (1.9 versus 1.1 Pg). The cumulative Nr emissions on a land area basis are 1.3 and 3.0 Mg N ha-1 globally and in Europe, respectively. Since an estimated 60% of Nr emitted in Europe is also deposited there, the average cumulative anthropogenic Nr deposition would be ˜1.8 Mg N ha-1, representing ˜30% of the current N pools in forest and alpine meadow soils of European glaciated areas (i.e., soils of similar age as the emissions). Despite large uncertainties in the model (13.7-30.5 Pg N over the last 10,000 years), the relative temporal distributions of total cumulative Nr emissions vary within relatively narrow ranges for different assumptions, with 70%-84% of the emissions occurring prior to 1850 A.D. We conclude that the majority of the total cumulative Nr flux from anthropogenic sources over the last 10,000 years occurred in the preindustrial period and could have increased soil N pools of some remote ecosystems much earlier than is currently assumed.
Public Lakes, Private Lakeshore: Modeling Protection of Native Aquatic Plants
NASA Astrophysics Data System (ADS)
Schroeder, Susan A.; Fulton, David C.
2013-07-01
Protection of native aquatic plants is an important proenvironmental behavior, because plant loss coupled with nutrient loading can produce changes in lake ecosystems. Removal of aquatic plants by lakeshore property owners is a diffuse behavior that may lead to cumulative impacts on lake ecosystems. This class of behavior is challenging to manage because collective impacts are not obvious to the actors. This paper distinguishes positive and negative beliefs about aquatic plants, in models derived from norm activation theory (Schwartz, Adv Exp Soc Psychol 10:221-279, 1977) and the theory of reasoned action (Fishbein and Ajzen, Belief, attitude, intention, and behavior: an introduction to theory and research, Addison-Wesley, Boston 1975), to examine protection of native aquatic plants by Minnesota lakeshore property owners. We clarify how positive and negative evaluations of native aquatic plants affect protection or removal of these plants. Results are based on a mail survey ( n = 3,115). Results suggest that positive evaluations of aquatic plants (i.e., as valuable to lake ecology) may not connect with the global attitudes and behavioral intentions that direct plant protection or removal. Lakeshore property owners' behavior related to aquatic plants may be driven more by tangible personal benefits derived from accessible, carefully managed lakeshore than intentional action taken to sustain lake ecosystems. The limited connection of positive evaluations of aquatic plants to global attitudes and behavioral intentions may reflect either lack of knowledge of what actions are needed to protect lake health and/or unwillingness to lose perceived benefits derived from lakeshore property.
Large-scale degradation of Amazonian freshwater ecosystems.
Castello, Leandro; Macedo, Marcia N
2016-03-01
Hydrological connectivity regulates the structure and function of Amazonian freshwater ecosystems and the provisioning of services that sustain local populations. This connectivity is increasingly being disrupted by the construction of dams, mining, land-cover changes, and global climate change. This review analyzes these drivers of degradation, evaluates their impacts on hydrological connectivity, and identifies policy deficiencies that hinder freshwater ecosystem protection. There are 154 large hydroelectric dams in operation today, and 21 dams under construction. The current trajectory of dam construction will leave only three free-flowing tributaries in the next few decades if all 277 planned dams are completed. Land-cover changes driven by mining, dam and road construction, agriculture and cattle ranching have already affected ~20% of the Basin and up to ~50% of riparian forests in some regions. Global climate change will likely exacerbate these impacts by creating warmer and dryer conditions, with less predictable rainfall and more extreme events (e.g., droughts and floods). The resulting hydrological alterations are rapidly degrading freshwater ecosystems, both independently and via complex feedbacks and synergistic interactions. The ecosystem impacts include biodiversity loss, warmer stream temperatures, stronger and more frequent floodplain fires, and changes to biogeochemical cycles, transport of organic and inorganic materials, and freshwater community structure and function. The impacts also include reductions in water quality, fish yields, and availability of water for navigation, power generation, and human use. This degradation of Amazonian freshwater ecosystems cannot be curbed presently because existing policies are inconsistent across the Basin, ignore cumulative effects, and overlook the hydrological connectivity of freshwater ecosystems. Maintaining the integrity of these freshwater ecosystems requires a basinwide research and policy framework to understand and manage hydrological connectivity across multiple spatial scales and jurisdictional boundaries. © 2015 John Wiley & Sons Ltd.
Gaydos, Joseph K; Thixton, Sofie; Donatuto, Jamie
2015-01-01
Despite the merit of managing natural resources on the scale of ecosystems, evaluating threats and managing risk in ecosystems that span multiple countries or jurisdictions can be challenging. This requires each government involved to consider actions in concert with actions being taken in other countries by co-managing entities. Multiple proposed fossil fuel-related and port development projects in the Salish Sea, a 16,925 km2 inland sea shared by Washington State (USA), British Columbia (Canada), and Indigenous Coast Salish governments, have the potential to increase marine vessel traffic and negatively impact natural resources. There is no legal mandate or management mechanism requiring a comprehensive review of the potential cumulative impacts of these development activities throughout the Salish Sea and across the international border. This project identifies ongoing and proposed energy-related development projects that will increase marine vessel traffic in the Salish Sea and evaluates the threats each project poses to natural resources important to the Coast Salish. While recognizing that Coast Salish traditions identify all species as important and connected, we used expert elicitation to identify 50 species upon which we could evaluate impact. These species were chosen because Coast Salish depend upon them heavily for harvest revenue or as a staple food source, they were particularly culturally or spiritually significant, or they were historically part of Coast Salish lifeways. We identified six development projects, each of which had three potential impacts (pressures) associated with increased marine vessel traffic: oil spill, vessel noise and vessel strike. Projects varied in their potential for localized impacts (pressures) including shoreline development, harbor oil spill, pipeline spill, coal dust accumulation and nearshore LNG explosion. Based on available published data, impact for each pressure/species interaction was rated as likely, possible or unlikely. Impacts are likely to occur in 23 to 28% of the possible pressure/species scenarios and are possible in another 15 to 28% additional pressure/species interactions. While it is not clear which impacts will be additive, synergistic, or potentially antagonistic, studies that manipulate multiple stressors in marine ecosystems suggest that threats associated with these six projects are likely to have an overall additive or even synergistic interaction and therefore impact species of major cultural importance to the Coast Salish, an important concept that would be lost by merely evaluating each project independently. Failure to address multiple impacts will affect the Coast Salish and the 7 million other people that also depend on this ecosystem. These findings show the value of evaluating multiple threats, and ultimately conducting risk assessments at the scale of ecosystems and highlight the serious need for managers of multinational ecosystems to actively collaborate on evaluating threats, assessing risk, and managing resources.
Gaydos, Joseph K.; Thixton, Sofie; Donatuto, Jamie
2015-01-01
Despite the merit of managing natural resources on the scale of ecosystems, evaluating threats and managing risk in ecosystems that span multiple countries or jurisdictions can be challenging. This requires each government involved to consider actions in concert with actions being taken in other countries by co-managing entities. Multiple proposed fossil fuel-related and port development projects in the Salish Sea, a 16,925 km2 inland sea shared by Washington State (USA), British Columbia (Canada), and Indigenous Coast Salish governments, have the potential to increase marine vessel traffic and negatively impact natural resources. There is no legal mandate or management mechanism requiring a comprehensive review of the potential cumulative impacts of these development activities throughout the Salish Sea and across the international border. This project identifies ongoing and proposed energy-related development projects that will increase marine vessel traffic in the Salish Sea and evaluates the threats each project poses to natural resources important to the Coast Salish. While recognizing that Coast Salish traditions identify all species as important and connected, we used expert elicitation to identify 50 species upon which we could evaluate impact. These species were chosen because Coast Salish depend upon them heavily for harvest revenue or as a staple food source, they were particularly culturally or spiritually significant, or they were historically part of Coast Salish lifeways. We identified six development projects, each of which had three potential impacts (pressures) associated with increased marine vessel traffic: oil spill, vessel noise and vessel strike. Projects varied in their potential for localized impacts (pressures) including shoreline development, harbor oil spill, pipeline spill, coal dust accumulation and nearshore LNG explosion. Based on available published data, impact for each pressure/species interaction was rated as likely, possible or unlikely. Impacts are likely to occur in 23 to 28% of the possible pressure/species scenarios and are possible in another 15 to 28% additional pressure/species interactions. While it is not clear which impacts will be additive, synergistic, or potentially antagonistic, studies that manipulate multiple stressors in marine ecosystems suggest that threats associated with these six projects are likely to have an overall additive or even synergistic interaction and therefore impact species of major cultural importance to the Coast Salish, an important concept that would be lost by merely evaluating each project independently. Failure to address multiple impacts will affect the Coast Salish and the 7 million other people that also depend on this ecosystem. These findings show the value of evaluating multiple threats, and ultimately conducting risk assessments at the scale of ecosystems and highlight the serious need for managers of multinational ecosystems to actively collaborate on evaluating threats, assessing risk, and managing resources. PMID:26691860
Mantyka-Pringle, Chrystal S; Jardine, Timothy D; Bradford, Lori; Bharadwaj, Lalita; Kythreotis, Andrew P; Fresque-Baxter, Jennifer; Kelly, Erin; Somers, Gila; Doig, Lorne E; Jones, Paul D; Lindenschmidt, Karl-Erich
2017-05-01
Cumulative environmental impacts driven by anthropogenic stressors lead to disproportionate effects on indigenous communities that are reliant on land and water resources. Understanding and counteracting these effects requires knowledge from multiple sources. Yet the combined use of Traditional Knowledge (TK) and Scientific Knowledge (SK) has both technical and philosophical hurdles to overcome, and suffers from inherently imbalanced power dynamics that can disfavour the very communities it intends to benefit. In this article, we present a 'two-eyed seeing' approach for co-producing and blending knowledge about ecosystem health by using an adapted Bayesian Belief Network for the Slave River and Delta region in Canada's Northwest Territories. We highlight how bridging TK and SK with a combination of field data, interview transcripts, existing models, and expert judgement can address key questions about ecosystem health when considerable uncertainty exists. SK indicators (e.g., bird counts, mercury in fish, water depth) were graded as moderate, whereas TK indicators (e.g., bird usage, fish aesthetics, changes to water flow) were graded as being poor in comparison to the past. SK indicators were predominantly spatial (i.e., comparing to other locations) while the TK indicators were predominantly temporal (i.e., comparing across time). After being populated by 16 experts (local harvesters, Elders, governmental representatives, and scientists) using both TK and SK, the model output reported low probabilities that the social-ecological system is healthy as it used to be. We argue that it is novel and important to bridge TK and SK to address the challenges of environmental change such as the cumulative impacts of multiple stressors on ecosystems and the services they provide. This study presents a critical social-ecological tool for widening the evidence-base to a more holistic understanding of the system dynamics of multiple environmental stressors in ecosystems and for developing more effective knowledge-inclusive partnerships between indigenous communities, researchers and policy decision-makers. This represents new transformational empirical insights into how wider knowledge discourses can contribute to more effective adaptive co-management governance practices and solutions for the resilience and sustainability of ecosystems in Northern Canada and other parts of the world with strong indigenous land tenure. Copyright © 2017 Elsevier Ltd. All rights reserved.
The risk assessment of heavy metals in the ecosystem of urban creeks.
Komínková, D; Nabelková, J
2006-01-01
This paper is focused on risk assessment of heavy metals in freshwater ecosystems of urban creeks. The paper reports changes in an aquatic ecosystem leading to remobilization of heavy metals and consequently to changes of bioavailability. Concentrations of metals in water, bed sediment and benthic organisms from several small urban streams are monitored and evaluated. In the small urban streams studied copper, zinc and lead were determined as the most significant hazard metals. Although concentrations of these metals in water are very low (often below the detection limit of analytical equipment), concentrations in sediment were found in risky levels mainly in sampling sites affected by CSOs and SSOs from industrial and heavy traffic areas. The benthic organisms showed different ability to accumulate heavy metals (HM). The feeding type collector gatherer had in most cases the highest body concentration of HM and the predator species cumulate, to a high level, only zinc which has a high tendency to release from sediment, hence it is the most bio-available. The collector-filterer had mostly low values. The differences among species are due to the different feeding habits of each trophic level.
Ecosystem Services and Climate Change Considerations for ...
Freshwater habitats provide fishable, swimmable and drinkable resources and are a nexus of geophysical and biological processes. These processes in turn influence the persistence and sustainability of populations, communities and ecosystems. Climate change and landuse change encompass numerous stressors of potential exposure, including the introduction of toxic contaminants, invasive species, and disease in addition to physical drivers such as temperature and hydrologic regime. A systems approach that includes the scientific and technologic basis of assessing the health of ecosystems is needed to effectively protect human health and the environment. The Integrated Environmental Modeling Framework “iemWatersheds” has been developed as a consistent and coherent means of forecasting the cumulative impact of co-occurring stressors. The Framework consists of three facilitating technologies: Data for Environmental Modeling (D4EM) that automates the collection and standardization of input data; the Framework for Risk Assessment of Multimedia Environmental Systems (FRAMES) that manages the flow of information between linked models; and the Supercomputer for Model Uncertainty and Sensitivity Evaluation (SuperMUSE) that provides post-processing and analysis of model outputs, including uncertainty and sensitivity analysis. Five models are linked within the Framework to provide multimedia simulation capabilities for hydrology and water quality processes: the Soil Water
[Impacts of hydroelectric cascade exploitation on river ecosystem and landscape: a review].
Yang, Kun; Deng, Xi; Li, Xue-Ling; Wen, Ping
2011-05-01
Hydroelectric cascade exploitation, one of the major ways for exploiting water resources and developing hydropower, not only satisfies the needs of various national economic sectors, but also promotes the socio-economic sustainable development of river basin. unavoidable anthropogenic impacts on the entire basin ecosystem. Based on the process of hydroelectric cascade exploitation and the ecological characteristics of river basins, this paper reviewed the major impacts of hydroelectric cascade exploitation on dam-area ecosystems, river reservoirs micro-climate, riparian ecosystems, river aquatic ecosystems, wetlands, and river landscapes. Some prospects for future research were offered, e.g., strengthening the research of chain reactions and cumulative effects of ecological factors affected by hydroelectric cascade exploitation, intensifying the study of positive and negative ecological effects under the dam networks and their joint operations, and improving the research of successional development and stability of basin ecosystems at different temporal and spatial scales.
Zhang, Yi; Baral, Anil; Bakshi, Bhavik R
2010-04-01
Despite the essential role of ecosystem goods and services in sustaining all human activities, they are often ignored in engineering decision making, even in methods that are meant to encourage sustainability. For example, conventional Life Cycle Assessment focuses on the impact of emissions and consumption of some resources. While aggregation and interpretation methods are quite advanced for emissions, similar methods for resources have been lagging, and most ignore the role of nature. Such oversight may even result in perverse decisions that encourage reliance on deteriorating ecosystem services. This article presents a step toward including the direct and indirect role of ecosystems in LCA, and a hierarchical scheme to interpret their contribution. The resulting Ecologically Based LCA (Eco-LCA) includes a large number of provisioning, regulating, and supporting ecosystem services as inputs to a life cycle model at the process or economy scale. These resources are represented in diverse physical units and may be compared via their mass, fuel value, industrial cumulative exergy consumption, or ecological cumulative exergy consumption or by normalization with total consumption of each resource or their availability. Such results at a fine scale provide insight about relative resource use and the risk and vulnerability to the loss of specific resources. Aggregate indicators are also defined to obtain indices such as renewability, efficiency, and return on investment. An Eco-LCA model of the 1997 economy is developed and made available via the web (www.resilience.osu.edu/ecolca). An illustrative example comparing paper and plastic cups provides insight into the features of the proposed approach. The need for further work in bridging the gap between knowledge about ecosystem services and their direct and indirect role in supporting human activities is discussed as an important area for future work.
Freeman, Mary C.; Pringle, C.M.; Jackson, C.R.
2007-01-01
Cumulatively, headwater streams contribute to maintaining hydrologic connectivity and ecosystem integrity at regional scales. Hydrologic connectivity is the water-mediated transport of matter, energy and organisms within or between elements of the hydrologic cycle. Headwater streams compose over two-thirds of total stream length in a typical river drainage and directly connect the upland and riparian landscape to the rest of the stream ecosystem. Altering headwater streams, e.g., by channelization, diversion through pipes, impoundment and burial, modifies fluxes between uplands and downstream river segments and eliminates distinctive habitats. The large-scale ecological effects of altering headwaters are amplified by land uses that alter runoff and nutrient loads to streams, and by widespread dam construction on larger rivers (which frequently leaves free-flowing upstream portions of river systems essential to sustaining aquatic biodiversity). We discuss three examples of large-scale consequences of cumulative headwater alteration. Downstream eutrophication and coastal hypoxia result, in part, from agricultural practices that alter headwaters and wetlands while increasing nutrient runoff. Extensive headwater alteration is also expected to lower secondary productivity of river systems by reducing stream-system length and trophic subsidies to downstream river segments, affecting aquatic communities and terrestrial wildlife that utilize aquatic resources. Reduced viability of freshwater biota may occur with cumulative headwater alteration, including for species that occupy a range of stream sizes but for which headwater streams diversify the network of interconnected populations or enhance survival for particular life stages. Developing a more predictive understanding of ecological patterns that may emerge on regional scales as a result of headwater alterations will require studies focused on components and pathways that connect headwaters to river, coastal and terrestrial ecosystems. Linkages between headwaters and downstream ecosystems cannot be discounted when addressing large-scale issues such as hypoxia in the Gulf of Mexico and global losses of biodiversity.
Biota connect aquatic habitats throughout freshwater ecosystem mosaics
Schofield, Kate A.; Alexander, Laurie C.; Ridley, Caroline E.; Vanderhoof, Melanie; Fritz, Ken M.; Autrey, Bradley; DeMeester, Julie; Kepner, William G.; Lane, Charles R.; Leibowitz, Scott; Pollard, Amina I.
2018-01-01
Freshwater ecosystems are linked at various spatial and temporal scales by movements of biota adapted to life in water. We review the literature on movements of aquatic organisms that connect different types of freshwater habitats, focusing on linkages from streams and wetlands to downstream waters. Here, streams, wetlands, rivers, lakes, ponds, and other freshwater habitats are viewed as dynamic freshwater ecosystem mosaics (FEMs) that collectively provide the resources needed to sustain aquatic life. Based on existing evidence, it is clear that biotic linkages throughout FEMs have important consequences for biological integrity and biodiversity. All aquatic organisms move within and among FEM components, but differ in the mode, frequency, distance, and timing of their movements. These movements allow biota to recolonize habitats, avoid inbreeding, escape stressors, locate mates, and acquire resources. Cumulatively, these individual movements connect populations within and among FEMs and contribute to local and regional diversity, resilience to disturbance, and persistence of aquatic species in the face of environmental change. Thus, the biological connections established by movement of biota among streams, wetlands, and downstream waters are critical to the ecological integrity of these systems. Future research will help advance our understanding of the movements that link FEMs and their cumulative effects on downstream waters.
Interactive effects of body-size structure and adaptive foraging on food-web stability.
Heckmann, Lotta; Drossel, Barbara; Brose, Ulrich; Guill, Christian
2012-03-01
Body-size structure of food webs and adaptive foraging of consumers are two of the dominant concepts of our understanding how natural ecosystems maintain their stability and diversity. The interplay of these two processes, however, is a critically important yet unresolved issue. To fill this gap in our knowledge of ecosystem stability, we investigate dynamic random and niche model food webs to evaluate the proportion of persistent species. We show that stronger body-size structures and faster adaptation stabilise these food webs. Body-size structures yield stabilising configurations of interaction strength distributions across food webs, and adaptive foraging emphasises links to resources closer to the base. Moreover, both mechanisms combined have a cumulative effect. Most importantly, unstructured random webs evolve via adaptive foraging into stable size-structured food webs. This offers a mechanistic explanation of how size structure adaptively emerges in complex food webs, thus building a novel bridge between these two important stabilising mechanisms. © 2012 Blackwell Publishing Ltd/CNRS.
Public lakes, private lakeshore: Modeling protection of native aquatic plants
Schroeder, Susan A.; Fulton, David C.
2013-01-01
Protection of native aquatic plants is an important proenvironmental behavior, because plant loss coupled with nutrient loading can produce changes in lake ecosystems. Removal of aquatic plants by lakeshore property owners is a diffuse behavior that may lead to cumulative impacts on lake ecosystems. This class of behavior is challenging to manage because collective impacts are not obvious to the actors. This paper distinguishes positive and negative beliefs about aquatic plants, in models derived from norm activation theory (Schwartz, Adv Exp Soc Psychol 10:221–279, 1977) and the theory of reasoned action (Fishbein and Ajzen, Belief, attitude, intention, and behavior: an introduction to theory and research, Addison-Wesley, Boston 1975), to examine protection of native aquatic plants by Minnesota lakeshore property owners. We clarify how positive and negative evaluations of native aquatic plants affect protection or removal of these plants. Results are based on a mail survey (n = 3,115). Results suggest that positive evaluations of aquatic plants (i.e., as valuable to lake ecology) may not connect with the global attitudes and behavioral intentions that direct plant protection or removal. Lakeshore property owners’ behavior related to aquatic plants may be driven more by tangible personal benefits derived from accessible, carefully managed lakeshore than intentional action taken to sustain lake ecosystems. The limited connection of positive evaluations of aquatic plants to global attitudes and behavioral intentions may reflect either lack of knowledge of what actions are needed to protect lake health and/or unwillingness to lose perceived benefits derived from lakeshore property.
Measuring dry plant residues in grasslands: A case study using AVIRIS
NASA Technical Reports Server (NTRS)
Fitzgerald, Michael; Ustin, Susan L.
1992-01-01
Grasslands, savannah, and hardwood rangelands are critical ecosystems and sensitive to disturbance. Approximately 20 percent of the Earth's surface are grasslands and represent 3 million ha. in California alone. Developing a methodology for estimating disturbance and the effects of cumulative impacts on grasslands and rangelands is needed to effectively monitor these ecosystems. Estimating the dry biomass residue remaining on rangelands at the end of the growing season provides a basis for evaluating the effectiveness of land management practices. The residual biomass is indicative of the grazing pressure and provides a measure of the system capacity for nutrient cycling since it represents the maximum organic matter available for decomposition, and finally, provides a measure of the erosion potential for the ecosystem. Remote sensing presents a possible method for measuring dry residue. However, current satellites have had limited application due to the coarse spatial scales (relative to the patch dynamics) and insensitivity of the spectral coverage to resolve dry plant material. Several hypotheses for measuring the biochemical constituents of dry plant material, particularly cellulose and lignin, using high spectral resolution sensors were proposed. The use of Airborne Visible/Infrared Imaging Spectrometers (AVIRIS) to measure dry plant residues over an oak savannah on the eastern slopes of the Coast Range in central California was investigated and it was asked what spatial and spectral resolutions are needed to quantitatively measure dry plant biomass in this ecosystem.
PLACES: A Tool For Sustainable Land Use
Rapid development of the human made environment to meet human needs and expand the economy is largely responsible for environmental losses. Because all land uses will incrementally and cumulatively degrade ecosystems that sustain human life, site-level land use decisions must ac...
40 CFR 230.11 - Factual determinations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... changes will cause violations of applicable water quality standards. Consideration should also be given to..., particularly concentrations of constituents, amount of material, type of material (sand, silt, clay, etc.) and... the productivity and water quality of existing aquatic ecosystems. (2) Cumulative effects attributable...
NASA Astrophysics Data System (ADS)
Wagle, Pradeep; Bhattarai, Nishan; Gowda, Prasanna H.; Kakani, Vijaya G.
2017-06-01
Robust evapotranspiration (ET) models are required to predict water usage in a variety of terrestrial ecosystems under different geographical and agrometeorological conditions. As a result, several remote sensing-based surface energy balance (SEB) models have been developed to estimate ET over large regions. However, comparison of the performance of several SEB models at the same site is limited. In addition, none of the SEB models have been evaluated for their ability to predict ET in rain-fed high biomass sorghum grown for biofuel production. In this paper, we evaluated the performance of five widely used single-source SEB models, namely Surface Energy Balance Algorithm for Land (SEBAL), Mapping ET with Internalized Calibration (METRIC), Surface Energy Balance System (SEBS), Simplified Surface Energy Balance Index (S-SEBI), and operational Simplified Surface Energy Balance (SSEBop), for estimating ET over a high biomass sorghum field during the 2012 and 2013 growing seasons. The predicted ET values were compared against eddy covariance (EC) measured ET (ETEC) for 19 cloud-free Landsat image. In general, S-SEBI, SEBAL, and SEBS performed reasonably well for the study period, while METRIC and SSEBop performed poorly. All SEB models substantially overestimated ET under extremely dry conditions as they underestimated sensible heat (H) and overestimated latent heat (LE) fluxes under dry conditions during the partitioning of available energy. METRIC, SEBAL, and SEBS overestimated LE regardless of wet or dry periods. Consequently, predicted seasonal cumulative ET by METRIC, SEBAL, and SEBS were higher than seasonal cumulative ETEC in both seasons. In contrast, S-SEBI and SSEBop substantially underestimated ET under too wet conditions, and predicted seasonal cumulative ET by S-SEBI and SSEBop were lower than seasonal cumulative ETEC in the relatively wetter 2013 growing season. Our results indicate the necessity of inclusion of soil moisture or plant water stress component in SEB models for the improvement of their performance, especially under too dry or wet environments.
Form and function relationships revealed by long-term research in a semiarid mountain catchment
NASA Astrophysics Data System (ADS)
McNamara, J. P.; Benner, S. G.; Chandler, D. G.; Flores, A. N.; Marshall, H. P.; Seyfried, M. S.; Poulos, M. J.; Pierce, J. L.
2017-12-01
Fifteen years of cumulative research in the Dry Creek Experimental Watershed in southwest Idaho, USA has revealed relationships between catchment form and function and contributed to improved fundamental understanding of Critical Zone structure, function, and evolution that would not have been possible through independent short term projects alone. The impacts of aspect and elevation on incident energy and water, coupled with climate seasonality, has produced tightly connected landforms properties and hydrologic processes. North-facing hillslopes have steeper slopes, thicker soil mantles, and finer soil texture than their south-facing counterparts. Finer soils enable higher water holding capacities on north facing slopes, which when coupled with thicker soils produces higher soil water storage capacity. The storage of water first as snow, then as soil moisture determines how upland ecosystems survive the seasonal and persistent water stress that happens each year, and sustains streamflow throughout the year. The cumulative body of local knowledge has improved general understanding of catchment science, serves as a resource for developing, evaluating, and improving conceptual and numerical of process-based models, and for data-driven hydrologic education.
Effects of road deicer (NaCl) and amphibian grazers on detritus processing in pond mesocosms.
Van Meter, Robin J; Swan, Christopher M; Trossen, Carrie A
2012-10-01
Road deicers have been identified as potential stressors in aquatic habitats throughout the United States, but we know little regarding associated impacts to ecosystem function. A critical component of ecosystem function that has not previously been evaluated with respect to freshwater salinization is the impact on organic matter breakdown. The purpose of this study was to evaluate cumulative effects of road deicers and tadpole grazers on leaf litter breakdown rate (g d(-1) ) and microbial respiration (mg O(2) g leaf(-1) h(-1) ). To test this interaction, in May 2008 the authors added dry leaf litter (Quercus spp.) to forty 600-L pond mesocosms and inoculated each with algae and zooplankton. In a full-factorial design, they manipulated a realistic level of road salt (ambient or elevated at 645 mg L(-1) Cl(-) ) and tadpole (Hyla versicolor) presence or absence. The elevated chloride treatment reduced microbial respiration by 24% in the presence of tadpoles. The breakdown of leaf litter by tadpoles occurred 9.7% faster under ambient chloride conditions relative to the elevated chloride treatment. Results of the present study suggest that the microbial community is directly impacted by road deicers and heavy tadpole grazing under ambient conditions limits microbial capacity to process detritus. Road salts and tadpoles interact to limit microbial respiration, but to a lesser extent leaf mass loss rate, thereby potentially restricting energy flow from detrital sources in pond ecosystems. Copyright © 2012 SETAC.
Cumulative impacts of oil fields on northern Alaskan landscapes
Walker, D.A.; Webber, P.J.; Binnian, Emily F.; Everett, K.R.; Lederer, N.D.; Nordstrand, E.A.; Walker, M.D.
1987-01-01
Proposed further developments on Alaska's Arctic Coastal Plain raise questions about cumulative effects on arctic tundra ecosystems of development of multiple large oil fields. Maps of historical changes to the Prudhoe Bay Oil Field show indirect impacts can lag behind planned developments by many years and the total area eventually disturbed can greatly exceed the planned area of construction. For example, in the wettest parts of the oil field (flat thaw-lake plains), flooding and thermokarst covered more than twice the area directly affected by roads and other construction activities. Protecting critical wildlife habitat is the central issue for cumulative impact analysis in northern Alaska. Comprehensive landscape planning with the use of geographic information system technology and detailed geobotanical maps can help identify and protect areas of high wildlife use.
NASA Astrophysics Data System (ADS)
Black, B.; Harte, M.; Goldfinger, C.
2017-12-01
Participating in a ten-year monitoring project to assess the ecological, social, and socioeconomic impacts of Oregon's Marine Protected Areas (MPAs), we have worked in partnership with the Oregon Department of Fish and Wildlife (ODFW) to develop a Bayesian geospatial method to evaluate the spatial and temporal variance in the provision of ecosystem services produced by Oregon's MPAs. Probabilistic (Bayesian) approaches to Marine Spatial Planning (MSP) show considerable potential for addressing issues such as uncertainty, cumulative effects, and the need to integrate stakeholder-held information and preferences into decision making processes. To that end, we have created a Bayesian-based geospatial approach to MSP capable of modelling the evolution of the provision of ecosystem services before and after the establishment of Oregon's MPAs. Our approach permits both planners and stakeholders to view expected impacts of differing policies, behaviors, or choices made concerning Oregon's MPAs and surrounding areas in a geospatial (map) format while simultaneously considering multiple parties' beliefs on the policies or uses in question. We quantify the influence of the MPAs as the shift in the spatial distribution of ecosystem services, both inside and outside the protected areas, over time. Once the MPAs' influence on the provision of coastal ecosystem services has been evaluated, it is possible to view these impacts through geovisualization techniques. As a specific example of model use and output, a user could investigate the effects of altering the habitat preferences of a rockfish species over a prescribed period of time (5, 10, 20 years post-harvesting restrictions, etc.) on the relative intensity of spillover from nearby reserves (please see submitted figure). Particular strengths of our Bayesian-based approach include its ability to integrate highly disparate input types (qualitative or quantitative), to accommodate data gaps, address uncertainty, and to investigate temporal and spatial variation. This approach conveys the modeled outcome of proposed policy changes and is also a vehicle through which stakeholders and planners can work together to compare and deliberate on the impacts of policy and management changes, a capacity of considerable utility for planners and stakeholders engaged in MSP.
Modelling the process-based controls of long term CO2 exchange in High Arctic heath ecosystems
NASA Astrophysics Data System (ADS)
Zhang, W.; Jansson, P. E.; Elberling, B.
2016-12-01
Frozen organic carbon (C) stored in northern permafrost soils may become vulnerable due to the rapid warming of the Arctic. The loss of C as greenhouse gases may imply a critical warming potential, resulting in positive feedbacks to global climate change. However, how permafrost ecosystems C dynamics is associated with changes in hydrothermal conditions (e.g. extent and duration of snow, soil water content and active layer depth) and changes in the responses of ecosystem biogeochemistry to climate (e.g. carbon assimilation of the entire growing season, falling rates of plants' litter, and turnover rates of different soil carbon pools) is still unclear and needs to be distinguished from site to site. Here, we use a process-oriented model (CoupModel) that couples heat and mass transfer within the high resolution soil-plant-atmosphere profile to simulate the high Arctic Cassiope tetragona Heath ecosystems in Northeast Greenland. The 15 years of net ecosystem exchange (NEE) flux (2000-2014) measured during the growing season indicate that the ecosystems may be at a transition from a C sink to a C source. We calibrated the model with the NEE flux transformed from hourly data to daily, yearly and total cumulative data to identify ensembles of parameters that best described the various patterns in the observed C fluxes. Only the ensembles of yearly and total cumulative transformation described reasonably well for seasonal variability, inter-annual variability and long term trends of measurements. The correlations between parameters and simulation performance described the relative importance of physical or biological parameters that contributes to the short- and long-term variation of C flux from biogeochemical processes of such ecosystems. The estimated C budget including internal fluxes and redistribution between various pools showed that the ecosystem functioned as a C source in the first-half period and a week C sink in the second-half period. The respiration outside the growing season was mainly from the autotropic respiration of plants, occupying a considerable portion of the total yearly respiration. The dynamics of soil C fluxes were associated with the variations of air temperature, snow fall and soil moisture of the shoulder seasons.
Yang, Yuting; Guan, Huade; Shen, Miaogen; Liang, Wei; Jiang, Lei
2015-02-01
Vegetation phenology is a sensitive indicator of the dynamic response of terrestrial ecosystems to climate change. In this study, the spatiotemporal pattern of vegetation dormancy onset date (DOD) and its climate controls over temperate China were examined by analysing the satellite-derived normalized difference vegetation index and concurrent climate data from 1982 to 2010. Results show that preseason (May through October) air temperature is the primary climatic control of the DOD spatial pattern across temperate China, whereas preseason cumulative precipitation is dominantly associated with the DOD spatial pattern in relatively cold regions. Temporally, the average DOD over China's temperate ecosystems has delayed by 0.13 days per year during the past three decades. However, the delay trends are not continuous throughout the 29-year period. The DOD experienced the largest delay during the 1980s, but the delay trend slowed down or even reversed during the 1990s and 2000s. Our results also show that interannual variations in DOD are most significantly related with preseason mean temperature in most ecosystems, except for the desert ecosystem for which the variations in DOD are mainly regulated by preseason cumulative precipitation. Moreover, temperature also determines the spatial pattern of temperature sensitivity of DOD, which became significantly lower as temperature increased. On the other hand, the temperature sensitivity of DOD increases with increasing precipitation, especially in relatively dry areas (e.g. temperate grassland). This finding stresses the importance of hydrological control on the response of autumn phenology to changes in temperature, which must be accounted in current temperature-driven phenological models. © 2014 John Wiley & Sons Ltd.
Earth observation for regional scale environmental and natural resources management
NASA Astrophysics Data System (ADS)
Bernknopf, R.; Brookshire, D.; Faulkner, S.; Chivoiu, B.; Bridge, B.; Broadbent, C.
2013-12-01
Earth observations (EO) provide critical information to natural resource assessment. Three examples are presented: conserving potable groundwater in intense agricultural regions, maximizing ecosystem service benefits at regional scales from afforestation investment and management, and enabling integrated natural and behavioral sciences for resource management and policy analysis. In each of these cases EO of different resolutions are used in different ways to help in the classification, characterization, and availability of natural resources and ecosystem services. To inform decisions, each example includes a spatiotemporal economic model to optimize the net societal benefits of resource development and exploitation. 1) EO is used for monitoring land use in intensively cultivated agricultural regions. Archival imagery is coupled to a hydrogeological process model to evaluate the tradeoff between agrochemical use and retention of potable groundwater. EO is used to couple individual producers and regional resource managers using information from markets and natural systems to aid in the objective of maximizing agricultural production and maintaining groundwater quality. The contribution of EO is input to a nitrate loading and transport model to estimate the cumulative impact on groundwater at specified distances from specific sites (wells) for 35 Iowa counties and two aquifers. 2) Land use/land cover (LULC) derived from EO is used to compare biological carbon sequestration alternatives and their provisioning of ecosystem services. EO is used to target land attributes that are more or less desirable for enhancing ecosystem services in two parishes in Louisiana. Ecological production functions are coupled with value data to maximize the expected return on investment in carbon sequestration and other ancillary ecosystem services while minimizing the risk. 3) Environmental and natural resources management decisions employ probabilistic estimates of yet-to-find or yet-to-develop volumes of natural and environmental resources and ecosystem services. The potential quantities of resources available are of great societal relevance, as are the resources that are necessarily disturbed in the development of economic reserves. EO is input to a multidimensional decision framework for natural resources and ecosystem services. Imagery supports a spatiotemporal model of regional resource extraction and the associated impacts on ecosystem services. The framework is used to assess societal tradeoffs by evaluating the benefits and costs of future development or preservation in a comparison of regional development options.
NASA Astrophysics Data System (ADS)
Sarker, Subrata; Lemke, Peter; Wiltshire, Karen H.
2018-05-01
Explaining species diversity as a function of ecosystem variability is a long-term discussion in community-ecology research. Here, we aimed to establish a causal relationship between ecosystem variability and phytoplankton diversity in a shallow-sea ecosystem. We used long-term data on biotic and abiotic factors from Helgoland Roads, along with climate data to assess the effect of ecosystem variability on phytoplankton diversity. A point cumulative semi-variogram method was used to estimate the long-term ecosystem variability. A Markov chain model was used to estimate dynamical processes of species i.e. occurrence, absence and outcompete probability. We identified that the 1980s was a period of high ecosystem variability while the last two decades were comparatively less variable. Ecosystem variability was found as an important predictor of phytoplankton diversity at Helgoland Roads. High diversity was related to low ecosystem variability due to non-significant relationship between probability of a species occurrence and absence, significant negative relationship between probability of a species occurrence and probability of a species to be outcompeted by others, and high species occurrence at low ecosystem variability. Using an exceptional marine long-term data set, this study established a causal relationship between ecosystem variability and phytoplankton diversity.
Fishery Resources and Threatened Coastal Habitats in the Northern Gulf of Mexico (Abstract)
We have explored relationships between selected fishery species of the northern Gulf of Mexico and important features of their habitats. The principal goal of our research is to predict the cumulative effects of habitat alterations on coastal resources and ecosystems. Pink shrimp...
The integrity of aquatic ecosystems and habitats at the land-sea interface is challeneged by several forces, ranging from plot scale destruction and disturbance, to watershed scale perturbations, to global changes in climate and human demographis. The scientific challenge is to ...
Careful logging, partial cutting and the protection of terrestrial and aquatic habitats
Daniel C. Dey
1994-01-01
Stand management activites influence (1) tree growth and quality; (2) stand structure, stocking and composition; (3) wildlife and aquatic habitat quality; and (4) long-term site productivity. The cumulative impacts of stand-level treatments affect ecosystem structure and function at the landscape level.
Symposium 9: Rocky Mountain futures: preserving, utilizing, and sustaining Rocky Mountain ecosystems
Baron, Jill S.; Seastedt, Timothy; Fagre, Daniel B.; Hicke, Jeffrey A.; Tomback, Diana; Garcia, Elizabeth; Bowen, Zachary H.; Logan, Jesse A.
2013-01-01
In 2002 we published Rocky Mountain Futures, an Ecological Perspective (Island Press) to examine the cumulative ecological effects of human activity in the Rocky Mountains. We concluded that multiple local activities concerning land use, hydrologic manipulation, and resource extraction have altered ecosystems, although there were examples where the “tyranny of small decisions” worked in a positive way toward more sustainable coupled human/environment interactions. Superimposed on local change was climate change, atmospheric deposition of nitrogen and other pollutants, regional population growth, and some national management policies such as fire suppression.
NASA Astrophysics Data System (ADS)
Millar, David J.; Ewers, Brent E.; Mackay, D. Scott; Peckham, Scott; Reed, David E.; Sekoni, Adewale
2017-09-01
Mountain pine beetle outbreaks in western North America have led to extensive forest mortality, justifiably generating interest in improving our understanding of how this type of ecological disturbance affects hydrological cycles. While observational studies and simulations have been used to elucidate the effects of mountain beetle mortality on hydrological fluxes, an ecologically mechanistic model of forest evapotranspiration (ET) evaluated against field data has yet to be developed. In this work, we use the Terrestrial Regional Ecosystem Exchange Simulator (TREES) to incorporate the ecohydrological impacts of mountain pine beetle disturbance on ET for a lodgepole pine-dominated forest equipped with an eddy covariance tower. An existing degree-day model was incorporated that predicted the life cycle of mountain pine beetles, along with an empirically derived submodel that allowed sap flux to decline as a function of temperature-dependent blue stain fungal growth. The eddy covariance footprint was divided into multiple cohorts for multiple growing seasons, including representations of recently attacked trees and the compensatory effects of regenerating understory, using two different spatial scaling methods. Our results showed that using a multiple cohort approach matched eddy covariance-measured ecosystem-scale ET fluxes well, and showed improved performance compared to model simulations assuming a binary framework of only areas of live and dead overstory. Cumulative growing season ecosystem-scale ET fluxes were 8 - 29% greater using the multicohort approach during years in which beetle attacks occurred, highlighting the importance of including compensatory ecological mechanism in ET models.
Chapter 6. Temporal and spatial scales
Robert R. Ziemer
1997-01-01
Human activities have degraded substantial portions of the nationâs ecological resources, including physical and biological aquatic systems. The effects are continuing and cumulative, and few high-quality aquatic ecosystems remain in the United States. Concern about these diminishing resources has resulted in numerous restoration programs. Some are well conceived...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-02
... Availability of a Draft Programmatic Environmental Assessment for Fisheries Research Conducted and Funded by... Research Conducted and Funded by the Southwest Fisheries Science Center (SWFSC).'' Publication of this... cumulative impacts of conducting and funding fisheries and ecosystem research along the U.S. West Coast...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ito, Akihiko; Inatomi, Motoko; Huntzinger, Deborah N.
The seasonal-cycle amplitude (SCA) of the atmosphere–ecosystem carbon dioxide (CO 2) exchange rate is a useful metric of the responsiveness of the terrestrial biosphere to environmental variations. It is unclear, however, what underlying mechanisms are responsible for the observed increasing trend of SCA in atmospheric CO 2 concentration. Using output data from the Multi-scale Terrestrial Model Intercomparison Project (MsTMIP), we investigated how well the SCA of atmosphere–ecosystem CO 2 exchange was simulated with 15 contemporary terrestrial ecosystem models during the period 1901–2010. Also, we made attempt to evaluate the contributions of potential mechanisms such as atmospheric CO 2, climate, land-use,more » and nitrogen deposition, through factorial experiments using different combinations of forcing data. Under contemporary conditions, the simulated global-scale SCA of the cumulative net ecosystem carbon flux of most models was comparable in magnitude with the SCA of atmospheric CO 2 concentrations. Results from factorial simulation experiments showed that elevated atmospheric CO 2 exerted a strong influence on the seasonality amplification. When the model considered not only climate change but also land-use and atmospheric CO 2 changes, the majority of the models showed amplification trends of the SCAs of photosynthesis, respiration, and net ecosystem production (+0.19 % to +0.50 % yr -1). In the case of land-use change, it was difficult to separate the contribution of agricultural management to SCA because of inadequacies in both the data and models. The simulated amplification of SCA was approximately consistent with the observational evidence of the SCA in atmospheric CO 2 concentrations. Large inter-model differences remained, however, in the simulated global tendencies and spatial patterns of CO 2 exchanges. Further studies are required to identify a consistent explanation for the simulated and observed amplification trends, including their underlying mechanisms. Nevertheless, this study implied that monitoring of ecosystem seasonality would provide useful insights concerning ecosystem dynamics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ito, Akihiko; Inatomi, Motoko; Huntzinger, Deborah N.
The seasonal-cycle amplitude (SCA) of the atmosphere–ecosystem carbon dioxide (CO 2) exchange rate is a useful metric of the responsiveness of the terrestrial biosphere to environmental variations. It is unclear, however, what underlying mechanisms are responsible for the observed increasing trend of SCA in atmospheric CO 2 concentration. Using output data from the Multi-scale Terrestrial Model Intercomparison Project (MsTMIP), we investigated how well the SCA of atmosphere–ecosystem CO 2 exchange was simulated with 15 contemporary terrestrial ecosystem models during the period 1901–2010. Also, we made attempt to evaluate the contributions of potential mechanisms such as atmospheric CO 2, climate, land-use,more » and nitrogen deposition, through factorial experiments using different combinations of forcing data. Under contemporary conditions, the simulated global-scale SCA of the cumulative net ecosystem carbon flux of most models was comparable in magnitude with the SCA of atmospheric CO 2 concentrations. Results from factorial simulation experiments showed that elevated atmospheric CO 2 exerted a strong influence on the seasonality amplification. When the model considered not only climate change but also land-use and atmospheric CO 2 changes, the majority of the models showed amplification trends of the SCAs of photosynthesis, respiration, and net ecosystem production (+0.19 % to +0.50 % yr –1). In the case of land-use change, it was difficult to separate the contribution of agricultural management to SCA because of inadequacies in both the data and models. The simulated amplification of SCA was approximately consistent with the observational evidence of the SCA in atmospheric CO 2 concentrations. Large inter-model differences remained, however, in the simulated global tendencies and spatial patterns of CO 2 exchanges. Further studies are required to identify a consistent explanation for the simulated and observed amplification trends, including their underlying mechanisms. Furthermore, this study implied that monitoring of ecosystem seasonality would provide useful insights concerning ecosystem dynamics.« less
Ito, Akihiko; Inatomi, Motoko; Huntzinger, Deborah N.; ...
2016-05-12
The seasonal-cycle amplitude (SCA) of the atmosphere–ecosystem carbon dioxide (CO 2) exchange rate is a useful metric of the responsiveness of the terrestrial biosphere to environmental variations. It is unclear, however, what underlying mechanisms are responsible for the observed increasing trend of SCA in atmospheric CO 2 concentration. Using output data from the Multi-scale Terrestrial Model Intercomparison Project (MsTMIP), we investigated how well the SCA of atmosphere–ecosystem CO 2 exchange was simulated with 15 contemporary terrestrial ecosystem models during the period 1901–2010. Also, we made attempt to evaluate the contributions of potential mechanisms such as atmospheric CO 2, climate, land-use,more » and nitrogen deposition, through factorial experiments using different combinations of forcing data. Under contemporary conditions, the simulated global-scale SCA of the cumulative net ecosystem carbon flux of most models was comparable in magnitude with the SCA of atmospheric CO 2 concentrations. Results from factorial simulation experiments showed that elevated atmospheric CO 2 exerted a strong influence on the seasonality amplification. When the model considered not only climate change but also land-use and atmospheric CO 2 changes, the majority of the models showed amplification trends of the SCAs of photosynthesis, respiration, and net ecosystem production (+0.19 % to +0.50 % yr –1). In the case of land-use change, it was difficult to separate the contribution of agricultural management to SCA because of inadequacies in both the data and models. The simulated amplification of SCA was approximately consistent with the observational evidence of the SCA in atmospheric CO 2 concentrations. Large inter-model differences remained, however, in the simulated global tendencies and spatial patterns of CO 2 exchanges. Further studies are required to identify a consistent explanation for the simulated and observed amplification trends, including their underlying mechanisms. Furthermore, this study implied that monitoring of ecosystem seasonality would provide useful insights concerning ecosystem dynamics.« less
Cumulative environmental impacts and integrated coastal management: the case of Xiamen, China.
Xue, Xiongzhi; Hong, Huasheng; Charles, Anthony T
2004-07-01
This paper examines the assessment of cumulative environmental impacts and the implementation of integrated coastal management within the harbour of Xiamen, China, an urban region in which the coastal zone is under increasing pressure as a result of very rapid economic growth. The first stage of analysis incorporates components of a cumulative effects assessment, including (a) identification of sources of environmental impacts, notably industrial expansion, port development, shipping, waste disposal, aquaculture and coastal construction, (b) selection of a set of valued ecosystem components, focusing on circulation and siltation, water quality, sediment, the benthic community, and mangrove forests, and (c) use of a set of key indicators to examine cumulative impacts arising from the aggregate of human activities. In the second stage of analysis, the paper describes and assesses the development of an institutional framework for integrated coastal management in Xiamen, one that combines policy and planning (including legislative and enforcement mechanisms) with scientific and monitoring mechanisms (including an innovative 'marine functional zoning' system). The paper concludes that the integrated coastal management framework in Xiamen has met all relevant requirements for 'integration' as laid out in the literature, and has explicitly incorporated consideration of cumulative impacts within its management and monitoring processes.
Tran, Liem T; Knight, C Gregory; O'Neill, Robert V; Smith, Elizabeth R; Riitters, Kurt H; Wickham, James
2002-06-01
A fuzzy decision analysis method for integrating ecological indicators was developed. This was a combination of a fuzzy ranking method and the analytic hierarchy process (AHP). The method was capable of ranking ecosystems in terms of environmental conditions and suggesting cumulative impacts across a large region. Using data on land cover, population, roads, streams, air pollution, and topography of the Mid-Atlantic region, we were able to point out areas that were in relatively poor condition and/or vulnerable to future deterioration. The method offered an easy and comprehensive way to combine the strengths of fuzzy set theory and the AHP for ecological assessment. Furthermore, the suggested method can serve as a building block for the evaluation of environmental policies.
Steyer, G.D.; Sasser, C.E.; Visser, J.M.; Swenson, E.M.; Nyman, J.A.; Raynie, R.C.
2003-01-01
Wetland restoration efforts conducted in Louisiana under the Coastal Wetlands Planning, Protection and Restoration Act require monitoring the effectiveness of individual projects as well as monitoring the cumulative effects of all projects in restoring, creating, enhancing, and protecting the coastal landscape. The effectiveness of the traditional paired-reference monitoring approach in Louisiana has been limited because of difficulty in finding comparable reference sites. A multiple reference approach is proposed that uses aspects of hydrogeomorphic functional assessments and probabilistic sampling. This approach includes a suite of sites that encompass the range of ecological condition for each stratum, with projects placed on a continuum of conditions found for that stratum. Trajectories in reference sites through time are then compared with project trajectories through time. Plant community zonation complicated selection of indicators, strata, and sample size. The approach proposed could serve as a model for evaluating wetland ecosystems.
Steyer, Gregory D; Sasser, Charles E; Visser, Jenneke M; Swenson, Erick M; Nyman, John A; Raynie, Richard C
2003-01-01
Wetland restoration efforts conducted in Louisiana under the Coastal Wetlands Planning, Protection and Restoration Act require monitoring the effectiveness of individual projects as well as monitoring the cumulative effects of all projects in restoring, creating, enhancing, and protecting the coastal landscape. The effectiveness of the traditional paired-reference monitoring approach in Louisiana has been limited because of difficulty in finding comparable reference sites. A multiple reference approach is proposed that uses aspects of hydrogeomorphic functional assessments and probabilistic sampling. This approach includes a suite of sites that encompass the range of ecological condition for each stratum, with projects placed on a continuum of conditions found for that stratum. Trajectories in reference sites through time are then compared with project trajectories through time. Plant community zonation complicated selection of indicators, strata, and sample size. The approach proposed could serve as a model for evaluating wetland ecosystems.
Gu, Yingxin; Wylie, Bruce K.; Zhang, Li; Gilmanov, Tagir G.
2012-01-01
This study evaluates the carbon fluxes and trends and examines the environmental sustainability (e.g., carbon budget, source or sink) of the potential biofuel feedstock sites identified in the Greater Platte River Basin (GPRB). A 9-year (2000–2008) time series of net ecosystem production (NEP), a measure of net carbon absorption or emission by ecosystems, was used to assess the historical trends and budgets of carbon flux for grasslands in the GPRB. The spatially averaged annual NEP (ANEP) for grassland areas that are possibly suitable for biofuel expansion (productive grasslands) was 71–169 g C m−2 year−1 during 2000–2008, indicating a carbon sink (more carbon is absorbed than released) in these areas. The spatially averaged ANEP for areas not suitable for biofuel feedstock development (less productive or degraded grasslands) was −47 to 69 g C m−2 year−1 during 2000–2008, showing a weak carbon source or a weak carbon sink (carbon emitted is nearly equal to carbon absorbed). The 9-year pre-harvest cumulative ANEP was 1166 g C m−2 for the suitable areas (a strong carbon sink) and 200 g C m−2 for the non-suitable areas (a weak carbon sink). Results demonstrate and confirm that our method of dynamic modeling of ecosystem performance can successfully identify areas desirable and sustainable for future biofuel feedstock development. This study provides useful information for land managers and decision makers to make optimal land use decisions regarding biofuel feedstock development and sustainability.
NASA Astrophysics Data System (ADS)
Lucas, M.; Miura, T.; Trauernicht, C.; Frazier, A. G.
2017-12-01
A drought which results in prolonged and extended deficit in naturally available water supply and creates multiple stresses across ecosystems is classified as an ecological drought. Detecting and understanding the dynamics and response of such droughts in tropical systems, specifically across various vegetation and climatic gradients is fairly undetermined, yet increasingly important for better understandings of the ecological effects of drought. To understanding the link between what lengths and intensities of known meteorological drought triggers detectable ecological vegetation responses, a landscape scale regression analysis evaluating the response (slope) and relationship strength (R-squared) of several cumulative SPI (standard precipitation index) lengths(1, 3, 6, 12, 18, 24, 36, 48, and 60 month), to various satellite derived monthly vegetation indices anomalies (NDVI, EVI, EVI2, and LSWI) was performed across a matrix of dominant vegetation covers (grassland, shrubland, and forest) and climatic moisture zones (arid, dry, mesic, and wet). The nine different SPI lags across these climactic and vegetation gradients was suggest that stronger relationships and steeper slopes were found in dryer climates (across all vegetation covers) and finer vegetation types (across all moisture zones). Overall NDVI, EVI and EVI2 showed the best utility in these dryer climatic zones across all vegetation types. Within arid and dry areas "best" fits showed increasing lengths of cumulative SPI were with increasing vegetation coarseness respectively. Overall these findings suggest that rainfall driven drought may have a stronger impact on the ecological condition of vegetation in water limited systems with finer vegetation types ecologically responding more rapidly to meteorological drought events than coarser woody vegetation systems. These results suggest that previously and newly documented trends of decreasing rainfall and increasing drought in Hawaiian drylands may have drastic and lasting impacts on these unique ecosystems.
[Environmental impact assessment of the land use change in china based on ecosystem service value].
Ran, Sheng-hong; Lü, Chang-he; Jia, Ke-jing; Qi, Yong-hua
2006-10-01
The environmental impact of land use change is long-term and cumulative. The ecosystem service change results from land use change. Therefore, the ecosystem service function change is the key object in the environmental impact assessment of land use change. According to the specific situation of China, this paper adjusted the unit ecosystem service value of different land use types. Based on this, the ecosystem service value change of different provinces in China resulted from the land use change since the implementation of the last plan of land use (1997-2010) was analyzed. The results show that the ecosystem service value in China increased 0.91% from 1996 to 2004. Thereinto, Tianjin is the province that the ecosystem service value increased most quickly, which was 5.69% from 1996 to 2004, while Shanghai is the province that the value decreased most quickly, which was 9.79%. Furthermore, the change of 17 types of ecosystem services was analyzed. Among them, the climate regulation function enhanced 3.43% from 1996 to 2004 and the biology resource control was weakened by 2.26% in this period. The results also indicate that the increase of the area of water surface and forest is the main reason for why the ecosystem service value increased in China in that period.
Sexton, Ken
2012-01-01
Systematic evaluation of cumulative health risks from the combined effects of multiple environmental stressors is becoming a vital component of risk-based decisions aimed at protecting human populations and communities. This article briefly examines the historical development of cumulative risk assessment as an analytical tool, and discusses current approaches for evaluating cumulative health effects from exposure to both chemical mixtures and combinations of chemical and nonchemical stressors. A comparison of stressor-based and effects-based assessment methods is presented, and the potential value of focusing on viable risk management options to limit the scope of cumulative evaluations is discussed. The ultimate goal of cumulative risk assessment is to provide answers to decision-relevant questions based on organized scientific analysis; even if the answers, at least for the time being, are inexact and uncertain. PMID:22470298
Global change in the trophic functioning of marine food webs.
Maureaud, Aurore; Gascuel, Didier; Colléter, Mathieu; Palomares, Maria L D; Du Pontavice, Hubert; Pauly, Daniel; Cheung, William W L
2017-01-01
The development of fisheries in the oceans, and other human drivers such as climate warming, have led to changes in species abundance, assemblages, trophic interactions, and ultimately in the functioning of marine food webs. Here, using a trophodynamic approach and global databases of catches and life history traits of marine species, we tested the hypothesis that anthropogenic ecological impacts may have led to changes in the global parameters defining the transfers of biomass within the food web. First, we developed two indicators to assess such changes: the Time Cumulated Indicator (TCI) measuring the residence time of biomass within the food web, and the Efficiency Cumulated Indicator (ECI) quantifying the fraction of secondary production reaching the top of the trophic chain. Then, we assessed, at the large marine ecosystem scale, the worldwide change of these two indicators over the 1950-2010 time-periods. Global trends were identified and cluster analyses were used to characterize the variability of trends between ecosystems. Results showed that the most common pattern over the study period is a global decrease in TCI, while the ECI indicator tends to increase. Thus, changes in species assemblages would induce faster and apparently more efficient biomass transfers in marine food webs. Results also suggested that the main driver of change over that period had been the large increase in fishing pressure. The largest changes occurred in ecosystems where 'fishing down the marine food web' are most intensive.
Cumulative effects: Managing natural resources for resilience in the urban context
Sarah C. Low
2014-01-01
Cities throughout the United States have started developing policies and plans that prioritize the installation of green infrastructure for the reduction of stormwater runoff. The installation of green infrastructure as a managed asset involves relying on natural resources to provide a predictable ecosystem service, stormwater retention. The placement of green...
Disturbance regimes and the historical range and variation in terrestrial ecosystems
Robert Keane
2017-01-01
Disturbances are major drivers of ecological dynamics and it is the cumulative effects of disturbances across space and time that define a disturbance regime and dictate biodiversity by influencing the ranges of vegetation structures, compositions, and processes on landscapes. This range and variation of landscape characteristics under historical disturbance regimes...
Alan Gallegos
2002-01-01
Watershed analyses and assessments for the Kings River Sustainable Forest Ecosystems Project were done on about 33,000 acres of the 45,500-acre Big Creek watershed and 32,000 acres of the 85,100-acre Dinkey Creek watershed. Following procedures developed for analysis of cumulative watershed effects (CWE) in the Pacific Northwest Region of the USDA Forest Service, the...
Benchmarking Terrestrial Ecosystem Models in the South Central US
NASA Astrophysics Data System (ADS)
Kc, M.; Winton, K.; Langston, M. A.; Luo, Y.
2016-12-01
Ecosystem services and products are the foundation of sustainability for regional and global economy since we are directly or indirectly dependent on the ecosystem services like food, livestock, water, air, wildlife etc. It has been increasingly recognized that for sustainability concerns, the conservation problems need to be addressed in the context of entire ecosystems. This approach is even more vital in the 21st century with formidable increasing human population and rapid changes in global environment. This study was conducted to find the state of the science of ecosystem models in the South-Central region of US. The ecosystem models were benchmarked using ILAMB diagnostic package developed as a result of International Land Model Benchmarking (ILAMB) project on four main categories; viz, Ecosystem and Carbon Cycle, Hydrology Cycle, Radiation and Energy Cycle and Climate forcings. A cumulative assessment was generated with weighted seven different skill assessment metrics for the ecosystem models. This synthesis on the current state of the science of ecosystem modeling in the South-Central region of US will be highly useful towards coupling these models with climate, agronomic, hydrologic, economic or management models to better represent ecosystem dynamics as affected by climate change and human activities; and hence gain more reliable predictions of future ecosystem functions and service in the region. Better understandings of such processes will increase our ability to predict the ecosystem responses and feedbacks to environmental and human induced change in the region so that decision makers can make an informed management decisions of the ecosystem.
River rehabilitation for the delivery of multiple ecosystem services at the river network scale.
Gilvear, David J; Spray, Chris J; Casas-Mulet, Roser
2013-09-15
This paper presents a conceptual framework and methodology to assist with optimising the outcomes of river rehabilitation in terms of delivery of multiple ecosystem services and the benefits they represent for humans at the river network scale. The approach is applicable globally, but was initially devised in the context of a project critically examining opportunities and constraints on delivery of river rehabilitation in Scotland. The spatial-temporal approach highlighted is river rehabilitation measure, rehabilitation scale, location on the stream network, ecosystem service and timescale specific and could be used as initial scoping in the process of planning rehabilitation at the river network scale. The levels of service delivered are based on an expert-derived scoring system based on understanding how the rehabilitation measure assists in reinstating important geomorphological, hydrological and ecological processes and hence intermediate or primary ecosystem function. The framework permits a "total long-term (>25 years) ecosystem service score" to be calculated which is the cumulative result of the combined effect of the number of and level of ecosystem services delivered over time. Trajectories over time for attaining the long-term ecosystem service score for each river rehabilitation measures are also given. Scores could also be weighted according to societal values and economic valuation. These scores could assist decision making in relation to river rehabilitation at the catchment scale in terms of directing resources towards alternative scenarios. A case study is presented of applying the methodology to the Eddleston Water in Scotland using proposed river rehabilitation options for the catchment to demonstrate the value of the approach. Our overall assertion is that unless sound conceptual frameworks are developed that permit the river network scale ecosystem services of river rehabilitation to be evaluated as part of the process of river basin planning and management, the total benefit of river rehabilitation may well be reduced. River rehabilitation together with a 'vision' and framework within which it can be developed, is fundamental to future success in river basin management. Copyright © 2013 Elsevier Ltd. All rights reserved.
Intensification of Climate-Carbon Feedbacks after 2100 and Implications for Disturbance Regimes
NASA Astrophysics Data System (ADS)
Randerson, J. T.; Lindsay, K. T.; Munoz, E.; Fu, W.; Hoffman, F. M.; Moore, J. K.; Doney, S. C.; Mahowald, N. M.; Bonan, G. B.
2014-12-01
Long-term ecosystem and carbon cycle responses to climate change are needed to inform mitigation policy, yet our understanding of how these responses may evolve after 2100 remains highly uncertain. Using the Community Earth System Model (version 1.0), we quantified climate-carbon feedbacks from 1850 to 2300 for the Representative Concentration Pathway 8.5 (and its extension). In three simulations, land and ocean biogeochemical models were exposed to the same trajectory of increasing atmospheric CO2. In one simulation, atmospheric CO2 and other forcing agents were radiatively active (fully coupled), modifying temperature and other aspects of climate. In another, CO2 was radiatively uncoupled, and in the third, both CO2 and other atmospheric forcing agents (including CH4, N2O, and aerosols) were radiatively uncoupled. In the fully coupled simulation, global mean air temperatures increased by 9.3°C from 1850 to 2300, with 4.4°C of this warming occurring after 2100. Without radiative forcing from CO2, cumulative warming was much lower at 2.4°C, but exceeding 2°C targets needed to avoid dangerous interference with the climate system. In response to climate change, ocean and land rates of carbon uptake were reduced, with the size of the impact increasing over time. In the oceans, reductions in cumulative carbon uptake from climate change increased from 3% during the 20th century to 40% during the 23rd century. By 2300, climate change had reduced cumulative ocean uptake by 330 Pg C, from 1410 Pg C to 1080 Pg C. Most of this reduction occurred after 2100 as a consequence of increases in surface stratification and decreases in Atlantic meridional overturning circulation. Land fluxes similarly diverged over time, with climate change inducing a cumulative loss of 230 Pg C by 2300. On land the intensification of the hydrological cycle globally increased terrestrial water storage, although asymmetric responses were observed across different continents in the tropics. Net loss of carbon from tropical forest ecosystems, in response to large temperature increases, were partly offset by increases in carbon uptake in temperate and high latitude ecosystems. We conclude by presenting an assessment of how climate variability over land and burned area change century by century.
NASA Astrophysics Data System (ADS)
Gaichas, Sarah; Skaret, Georg; Falk-Petersen, Jannike; Link, Jason S.; Overholtz, William; Megrey, Bernard A.; Gjøsæter, Harald; Stockhausen, William T.; Dommasnes, Are; Friedland, Kevin D.; Aydin, Kerim
2009-04-01
Energy budget models for five marine ecosystems were compared to identify differences and similarities in trophic and community structure. We examined the Gulf of Maine and Georges Bank in the northwest Atlantic Ocean, the combined Norwegian/Barents Seas in the northeast Atlantic Ocean, and the eastern Bering Sea and the Gulf of Alaska in the northeast Pacific Ocean. Comparable energy budgets were constructed for each ecosystem by aggregating information for similar species groups into consistent functional groups. Several ecosystem indices (e.g., functional group production, consumption and biomass ratios, cumulative biomass, food web macrodescriptors, and network metrics) were compared for each ecosystem. The comparative approach clearly identified data gaps for each ecosystem, an important outcome of this work. Commonalities across the ecosystems included overall high primary production and energy flow at low trophic levels, high production and consumption by carnivorous zooplankton, and similar proportions of apex predator to lower trophic level biomass. Major differences included distinct biomass ratios of pelagic to demersal fish, ranging from highest in the combined Norwegian/Barents ecosystem to lowest in the Alaskan systems, and notable differences in primary production per unit area, highest in the Alaskan and Georges Bank/Gulf of Maine ecosystems, and lowest in the Norwegian ecosystems. While comparing a disparate group of organisms across a wide range of marine ecosystems is challenging, this work demonstrates that standardized metrics both elucidate properties common to marine ecosystems and identify key distinctions useful for fisheries management.
NASA Astrophysics Data System (ADS)
Wegener, Pam; Covino, Tim; Wohl, Ellen
2017-06-01
River networks that drain mountain landscapes alternate between narrow and wide valley segments. Within the wide segments, beaver activity can facilitate the development and maintenance of complex, multithread planform. Because the narrow segments have limited ability to retain water, carbon, and nutrients, the wide, multithread segments are likely important locations of retention. We evaluated hydrologic dynamics, nutrient flux, and aquatic ecosystem metabolism along two adjacent segments of a river network in the Rocky Mountains, Colorado: (1) a wide, multithread segment with beaver activity; and, (2) an adjacent (directly upstream) narrow, single-thread segment without beaver activity. We used a mass balance approach to determine the water, carbon, and nutrient source-sink behavior of each river segment across a range of flows. While the single-thread segment was consistently a source of water, carbon, and nitrogen, the beaver impacted multithread segment exhibited variable source-sink dynamics as a function of flow. Specifically, the multithread segment was a sink for water, carbon, and nutrients during high flows, and subsequently became a source as flows decreased. Shifts in river-floodplain hydrologic connectivity across flows related to higher and more variable aquatic ecosystem metabolism rates along the multithread relative to the single-thread segment. Our data suggest that beaver activity in wide valleys can create a physically complex hydrologic environment that can enhance hydrologic and biogeochemical buffering, and promote high rates of aquatic ecosystem metabolism. Given the widespread removal of beaver, determining the cumulative effects of these changes is a critical next step in restoring function in altered river networks.
An Interactive Risk Detection Tool to Aid Decision-Making in Global Mangrove Restoration
NASA Astrophysics Data System (ADS)
Goldberg, L.; Lagomasino, D.
2017-12-01
Mangrove ecosystems hold high ecological and economic value in coastal communities worldwide; detecting potential regions of mangrove stress is therefore critical to strategic planning of forest and coastal resources. In order to address the need for a unified risk management system for mangrove loss, a Risk Evaluation for MAngroves Portal (REMaP) was developed to identify the locations and causes of mangrove degradation worldwide, as well as project future areas of stress or loss. Long-term Earth observations from LANDSAT, MODIS, and TRMM were used in identifying regions with low, medium, and high vulnerability. Regions were categorized by vulnerability level based upon disturbance metrics in NDVI, land surface temperature, and precipitation using designated thresholds. Natural risks such as erosion and degradation were also evaluated through an analysis of NDVI time series trends from calendar year 1984 to 2017. Future trends in ecosystem vulnerability and resiliency were modeled using IPCC climate scenarios. Risk maps for anthropogenic-based disturbances such as urbanization and the expansion of agriculture and aquaculture through rice, rubber, shrimp, and oil palm farming were also included. The natural and anthropogenic risk factors evaluated were then aggregated to generate a cumulative estimate for total mangrove vulnerability in each region. This interactive modeling tool can aid decision-making on the regional, national, and international levels on an ongoing basis to continuously identify areas best suited for mangrove restoration measures, assisting governments and local communities in addressing a wide range of Sustainable Development Goals for coastal areas.
Wyoming Basin Rapid Ecoregional Assessment: Work Plan
Carr, Natasha B.; Garman, Steven L.; Walters, Annika; Ray, Andrea; Melcher, Cynthia P.; Wesner, Jeff S.; O’Donnell, Michael S.; Sherrill, Kirk R.; Babel, Nils C.; Bowen, Zachary H.
2013-01-01
The overall goal of the Rapid Ecoregional Assessments (REAs) being conducted for the Bureau of Land Management (BLM) is to provide information that supports regional planning and analysis for the management of ecological resources. The REA provides an assessment of baseline ecological conditions, an evaluation of current risks from drivers of ecosystem change, and a predictive capacity for evaluating future risks. The REA also may be used for identifying priority areas for conservation or restoration and for assessing the cumulative effects of a variety of land uses. There are several components of the REAs. Management Questions, developed by the BLM and partners for the ecoregion, identify the information needed for addressing land-management responsibilities. Conservation Elements represent regionally significant aquatic and terrestrial species and communities that are to be conserved and (or) restored. The REA also will evaluate major drivers of ecosystem change (Change Agents) currently affecting or likely to affect the status of Conservation Elements. We selected 8 major biomes and 19 species or species assemblages to be included as Conservation Elements. We will address the four primary Change Agents—development, fire, invasive species, and climate change—required for the REA. The purpose of the work plan for the Wyoming Basin REA is to document the selection process for, and final list of, Management Questions, Conservation Elements, and Change Agents. The work plan also presents the overall assessment framework that will be used to assess the status of Conservation Elements and answer Management Questions.
NASA Astrophysics Data System (ADS)
Thienelt, T. S.; Anderson, D. E.; Powell, K. M.
2011-12-01
Urban ecosystems are currently characterized by rapid growth, are expected to continually expand and, thus, represent an important driver of land use change. A significant component of urban ecosystems is lawns, potentially the single largest irrigated "crop" in the U.S. Beginning in March of 2011 (ahead of the growing season), eddy covariance measurements of net carbon exchange and evapotranspiration along with energy balance fluxes were conducted for a well-watered, fertilized lawn (rye-bluegrass-mix) in metropolitan Denver and for a nearby tallgrass prairie (big bluestem, switchgrass, cheatgrass, blue grama). Due to the semi-arid climate conditions of the Denver region, differences in management (i.e., irrigation and fertilization) are expected to have a discernible impact on ecosystem productivity and thus on carbon sequestration rates, evapotranspiration, and the sensible and latent heat partitioning of the energy balance. By mid-July, preliminary data indicated that cumulative evapotranspiration was approximately 270 mm and 170 mm for urban and native grasslands, respectively, although cumulative carbon sequestration at that time was similar for both (approximately 40 mg/m2). However, the pattern of carbon exchange differed between the grasslands. Both sites showed daily net uptake of carbon starting in late May, but the urban lawn displayed greater diurnal variability as well as greater uptake rates in general, especially following fertilization in mid-June. In contrast, the trend of carbon uptake at the prairie site was occasionally reversed following strong convective precipitation events, resulting in a temporary net release of carbon. The continuing acquisition of data and investigation of these relations will help us assess the potential impact of urban growth on regional carbon sequestration.
Liem T. Tran; C. Gregory Knight; Robert V. O' Neill; Elizabeth R. Smith; Kurt H. Riitters; James D. Wickham
2002-01-01
A fuzzy decision analysis method for integrating ecological indicators was developed. This was a combination of a fuzzy ranking method and the analytic hierarchy process (AHP). The method was capable of ranking ecosystems in terms of environmental conditions and suggesting cumulative impacts across a large region. Using data on land cover, population, roads, streams,...
Incorporating ecosystem services into environmental management of deep-seabed mining
NASA Astrophysics Data System (ADS)
Le, Jennifer T.; Levin, Lisa A.; Carson, Richard T.
2017-03-01
Accelerated exploration of minerals in the deep sea over the past decade has raised the likelihood that commercial mining of the deep seabed will commence in the near future. Environmental concerns create a growing urgency for development of environmental regulations under commercial exploitation. Here, we consider an ecosystem services approach to the environmental policy and management of deep-sea mineral resources. Ecosystem services link the environment and human well-being, and can help improve sustainability and stewardship of the deep sea by providing a quantitative basis for decision-making. This paper briefly reviews ecosystem services provided by habitats targeted for deep-seabed mining (hydrothermal vents, seamounts, nodule provinces, and phosphate-rich margins), and presents practical steps to incorporate ecosystem services into deep-seabed mining regulation. The linkages and translation between ecosystem structure, ecological function (including supporting services), and ecosystem services are highlighted as generating human benefits. We consider criteria for identifying which ecosystem services are vulnerable to potential mining impacts, the role of ecological functions in providing ecosystem services, development of ecosystem service indicators, valuation of ecosystem services, and implementation of ecosystem services concepts. The first three steps put ecosystem services into a deep-seabed mining context; the last two steps help to incorporate ecosystem services into a management and decision-making framework. Phases of environmental planning discussed in the context of ecosystem services include conducting strategic environmental assessments, collecting baseline data, monitoring, establishing marine protected areas, assessing cumulative impacts, identifying thresholds and triggers, and creating an environmental damage compensation regime. We also identify knowledge gaps that need to be addressed in order to operationalize ecosystem services concepts in deep-seabed mining regulation and propose potential tools to fill them.
NASA Astrophysics Data System (ADS)
Yeo, I. Y.
2016-12-01
Wetlands are valuable landscape features that provide important ecosystem functions and services. The ecosystem processes in wetlands are highly dependent on the hydrology. However, hydroperiod (i.e., change dynamics in inundation extent) is highly variable spatially and temporarily, and extremely difficult to predict owing to the complexity in hydrological processes within wetlands and its interaction with surrounding areas. This study reports the challenges and progress in assessing the catchment scale benefits of wetlands to regulate hydrological regime and water quality improvement in agricultural watershed. A process-based watershed model, Soil and Water Assessment Tool (SWAT) was improved to simulate the cumulative impacts of wetlands on downstream. Newly developed remote sensing products from LiDAR intensity and time series Landsat records, which show the inter-annual changes in fraction inundation, were utilized to describe the change status of inundated areas within forested wetlands, develop spatially varying wetland parameters, and evaluate the predicted inundated areas at the landscape level. We outline the challenges on developing the time series inundation mapping products at a high spatial and temporal resolution and reconciling the catchment scale model with the moderate remote sensing products. We then highlight the importance of integrating spatialized information to model calibration and evaluation to address the issues of equi-finality and prediction uncertainty. This integrated approach was applied to the upper region of Choptank River Watershed, the agricultural watershed in the Coastal Plain of Chesapeake Bay Watershed (in US). In the Mid- Atlantic US, the provision of pollution regulation services provided by wetlands has been emphasized due to declining water quality within the Chesapeake Bay and watersheds, and the preservation and restoration of wetlands has become the top priority to manage nonpoint source water pollution.
Conceptual ecological models to guide integrated landscape monitoring of the Great Basin
Miller, D.M.; Finn, S.P.; Woodward, Andrea; Torregrosa, Alicia; Miller, M.E.; Bedford, D.R.; Brasher, A.M.
2010-01-01
The Great Basin Integrated Landscape Monitoring Pilot Project was developed in response to the need for a monitoring and predictive capability that addresses changes in broad landscapes and waterscapes. Human communities and needs are nested within landscapes formed by interactions among the hydrosphere, geosphere, and biosphere. Understanding the complex processes that shape landscapes and deriving ways to manage them sustainably while meeting human needs require sophisticated modeling and monitoring. This document summarizes current understanding of ecosystem structure and function for many of the ecosystems within the Great Basin using conceptual models. The conceptual ecosystem models identify key ecological components and processes, identify external drivers, develop a hierarchical set of models that address both site and landscape attributes, inform regional monitoring strategy, and identify critical gaps in our knowledge of ecosystem function. The report also illustrates an approach for temporal and spatial scaling from site-specific models to landscape models and for understanding cumulative effects. Eventually, conceptual models can provide a structure for designing monitoring programs, interpreting monitoring and other data, and assessing the accuracy of our understanding of ecosystem functions and processes.
Conditions favouring Bromus tectorum dominance of endangered sagebrush steppe ecosystems
Reisner, Michael D.; Grace, James B.; Pyke, David A.; Doescher, Paul S.
2013-01-01
4. Synthesis and applications. Grazing exacerbates Bromus tectorum dominance in one of North America's most endangered ecosystems by adversely impacting key mechanisms mediating resistance to invasion. If the goal is to conserve and restore resistance of these systems, managers should consider maintaining or restoring: (i) high bunchgrass cover and structure characterized by spatially dispersed bunchgrasses and small gaps between them; (ii) a diverse assemblage of bunchgrass species to maximize competitive interactions with B. tectorum in time and space; and (iii) biological soil crusts to limit B. tectorum establishment. Passive restoration by reducing cumulative cattle grazing may be one of the most effective means of achieving these three goals.
Global change in the trophic functioning of marine food webs
Gascuel, Didier; Colléter, Mathieu; Palomares, Maria L. D.; Du Pontavice, Hubert; Pauly, Daniel; Cheung, William W. L.
2017-01-01
The development of fisheries in the oceans, and other human drivers such as climate warming, have led to changes in species abundance, assemblages, trophic interactions, and ultimately in the functioning of marine food webs. Here, using a trophodynamic approach and global databases of catches and life history traits of marine species, we tested the hypothesis that anthropogenic ecological impacts may have led to changes in the global parameters defining the transfers of biomass within the food web. First, we developed two indicators to assess such changes: the Time Cumulated Indicator (TCI) measuring the residence time of biomass within the food web, and the Efficiency Cumulated Indicator (ECI) quantifying the fraction of secondary production reaching the top of the trophic chain. Then, we assessed, at the large marine ecosystem scale, the worldwide change of these two indicators over the 1950–2010 time-periods. Global trends were identified and cluster analyses were used to characterize the variability of trends between ecosystems. Results showed that the most common pattern over the study period is a global decrease in TCI, while the ECI indicator tends to increase. Thus, changes in species assemblages would induce faster and apparently more efficient biomass transfers in marine food webs. Results also suggested that the main driver of change over that period had been the large increase in fishing pressure. The largest changes occurred in ecosystems where ‘fishing down the marine food web’ are most intensive. PMID:28800358
Effect of land use on methane flux from soil.
Chan, A S; Parkin, T B
2001-01-01
The precise effects of natural and disturbed terrestrial systems on the atmospheric CH4 pool are uncertain. This study was conducted to quantify and compare CH4 fluxes from a variety of ecosystems in central Iowa. We investigated agricultural systems under different management practices, a hardwood forest site, native and restored prairies, and a municipal landfill. Flux measurements were obtained using a closed-chamber method, and measurements were compiled by sampling over the 1993 and 1994 growing seasons. In 1993, most of the agricultural sites were net CH4 producers with cumulative CH4 fluxes ranging from -0.02 to 3.19 g m(-2) over the 258-d sampling season, while the natural ecosystems were net CH4 consumers, with cumulative seasonal fluxes ranging from -0.27 to -0.07 g m-2 258 d(-1). In 1994, only the landfill and the agricultural site treated with broadcast liquid swine manure (LSM) were net CH4 producers, while the remainder of the natural and agricultural ecosystems were net CH4 consumers, with mean seasonal flux rates ranging from -0.43 to -0.008 g m(-2) 271 d(-1). We hypothesize that the differences in CH4 fluxes between the two years are due to differences in rainfall. To illustrate the integration between land use and CH4 flux, we computed an area-weighted soil CH4 flux for the state of Iowa. Our calculations yielded a net average soil CH4 flux of 139,000 Mg CH4 for 1993 and 1994.
Rising tides, cumulative impacts and cascading changes to estuarine ecosystem functions.
O'Meara, Theresa A; Hillman, Jenny R; Thrush, Simon F
2017-08-31
In coastal ecosystems, climate change affects multiple environmental factors, yet most predictive models are based on simple cause-and-effect relationships. Multiple stressor scenarios are difficult to predict because they can create a ripple effect through networked ecosystem functions. Estuarine ecosystem function relies on an interconnected network of physical and biological processes. Estuarine habitats play critical roles in service provision and represent global hotspots for organic matter processing, nutrient cycling and primary production. Within these systems, we predicted functional changes in the impacts of land-based stressors, mediated by changing light climate and sediment permeability. Our in-situ field experiment manipulated sea level, nutrient supply, and mud content. We used these stressors to determine how interacting environmental stressors influence ecosystem function and compared results with data collected along elevation gradients to substitute space for time. We show non-linear, multi-stressor effects deconstruct networks governing ecosystem function. Sea level rise altered nutrient processing and impacted broader estuarine services ameliorating nutrient and sediment pollution. Our experiment demonstrates how the relationships between nutrient processing and biological/physical controls degrade with environmental stress. Our results emphasise the importance of moving beyond simple physically-forced relationships to assess consequences of climate change in the context of ecosystem interactions and multiple stressors.
NASA Astrophysics Data System (ADS)
Zagaria, Cecilia; de Vente, Joris; Perez-Cutillas, Pedro
2014-05-01
Topical research investigating climate, land-use and management scenarios in the Segura catchment (SE Spain), depicts a landscape at high-risk of, quite literally, deserting agriculture. Land degradation in the semi-arid region of SE Spain is characterized by water shortage, high erosion rates and salinization, increasingly exacerbated by climatic changes, scarce vegetation cover and detrimental farming practices. Future climate scenarios predict increases in aridity, variability and intensity of rainfall events, leading to increasing pressure on scarce soil and water resources. This study conceptualized the impending crisis of agro-ecological systems of the Segura basin (18800 km2) as a crisis of ecosystem service deterioration. In light of existing land degradation drivers and future climate scenarios, the potential of Sustainable Land Management (SLM) strategies was evaluated to target three priority ecosystem services (water provision, sediment retention and carbon sequestration) as a means to achieve climate change adaptation and mitigation. A preceding thorough process of stakeholder engagement (as part of the EU funded DESIRE project) indicated five SLM technologies for potential implementation, all with a focus upon reducing soil erosion, increasing soil water holding capacity and soil organic matter content. These technologies have been tested for over four years in local experimental field plots, and have provided results on the local effects upon individual environmental parameters. Despite the growing emphasis witnessed in literature upon the context-specificity which characterizes adaptation solutions, the frequent analysis at the field scale is limited in both scope and utility. There is a need to investigate the effects of adaptive SLM solutions at wider, regional scales. Thus, this study modeled the cumulative effect of each of the five selected SLM technologies with InVEST, a spatial analyst tool designed for ecosystem service quantification and valuation. Scenario impacts upon the three prioritized ecosystem services were evaluated under present and expected future climate conditions (IPCC A1B scenario storyline for 2050) using ensemble regional climate model predictions. Results are given for both the entire Segura catchment as well as for delineated sub-catchments. This study's value lies in providing relevant stakeholders with quantitative information upon which SLM strategies result in greatest ecosystem service provision and tradeoffs, and thus greatest resilience to expected climate change impacts. Furthermore, this research hopes to contribute towards the mainstreaming of the ecosystem services concept in land management policy and research, and thus to familiarize relevant stakeholders with the concept, facilitating scaling-up processes by communicating the necessity and a means to successfully achieve climate adaptation.
Brian M. Steele; Swarna K. Reddy; Robert E. Keane
2006-01-01
Fire frequency and severity, and vegetation composition and structure have been altered across much of North America during the past century because of fire exclusion and other land management practices. The cumulative results are now recognized to be partly responsible for dramatic increases in wildland fire severity and declines in ecosystem health. In response, the...
Definition and applications of a versatile chemical pollution footprint methodology.
Zijp, Michiel C; Posthuma, Leo; van de Meent, Dik
2014-09-16
Because of the great variety in behavior and modes of action of chemicals, impact assessment of multiple substances is complex, as is the communication of its results. Given calls for cumulative impact assessments, we developed a methodology that is aimed at expressing the expected cumulative impacts of mixtures of chemicals on aquatic ecosystems for a region and subsequently allows to present these results as a chemical pollution footprint, in short: a chemical footprint. Setting and using a boundary for chemical pollution is part of the methodology. Two case studies were executed to test and illustrate the methodology. The first case illustrates that the production and use of organic substances in Europe, judged with the European water volume, stays within the currently set policy boundaries for chemical pollution. The second case shows that the use of pesticides in Northwestern Europe, judged with the regional water volume, has exceeded the set boundaries, while showing a declining trend over time. The impact of mixtures of substances in the environment could be expressed as a chemical footprint, and the relative contribution of substances to that footprint could be evaluated. These features are a novel type of information to support risk management, by helping prioritization of management among chemicals and environmental compartments.
Radioecological studies at the Kraton-3 underground nuclear explosion site in 1978-2007: a review.
Ramzaev, V; Mishin, A; Golikov, V; Argunova, T; Ushnitski, V; Zhuravskaya, A; Sobakin, P; Brown, J; Strand, P
2009-12-01
Within this paper, radioecological data concerning the "peaceful" underground nuclear explosion Kraton-3, conducted at a remote Arctic location (65.9 degrees N, 112.3 degrees E) within the former USSR in 1978, are reviewed. The data and estimates published in the available literature sources before September 2008 could be grouped as following: (a) characterisation of the current radioactive contamination (gamma-, beta- and alpha-emitters) of environmental compartments in terms of radionuclides composition, activity concentration, area contamination density; (b) determination of current gamma dose rates in air, including mapping using GPS; (c) evaluation of cumulative gamma doses in air (with calculations and thermoluminiscence measurements in ceramic objects); (d) description of the visually distinguishable changes in the terrestrial ecosystem; (e) description and quantitative evaluation of morphological abnormalities in the organs of adult plants as well as in seeds and seedlings of some herbs and shrubs, and in small mammals; (f) application of countermeasures. Knowledge gaps and possible further studies are indicated.
Practical management of cumulative anthropogenic impacts with working marine examples.
Wright, Andrew J; Kyhn, Line A
2015-04-01
Human pressure on the environment is expanding and intensifying, especially in coastal and offshore areas. Major contributors to this are the current push for offshore renewable energy sources, which are thought of as environmentally friendly sources of power, as well as the continued demand for petroleum. Human disturbances, including the noise almost ubiquitously associated with human activity, are likely to increase the incidence, magnitude, and duration of adverse effects on marine life, including stress responses. Stress responses have the potential to induce fitness consequences for individuals, which add to more obvious directed takes (e.g., hunting or fishing) to increase the overall population-level impact. To meet the requirements of marine spatial planning and ecosystem-based management, many efforts are ongoing to quantify the cumulative impacts of all human actions on marine species or populations. Meanwhile, regulators face the challenge of managing these accumulating and interacting impacts with limited scientific guidance. We believe there is scientific support for capping the level of impact for (at a minimum) populations in decline or with unknown statuses. This cap on impact can be facilitated through implementation of regular application cycles for project authorization or improved programmatic and aggregated impact assessments that simultaneously consider multiple projects. Cross-company collaborations and a better incorporation of uncertainty into decision making could also help limit, if not reduce, cumulative impacts of multiple human activities. These simple management steps may also form the basis of a rudimentary form of marine spatial planning and could be used in support of future ecosystem-based management efforts. © 2014 Society for Conservation Biology.
Evaluating CO2 and CH4 dynamics of Alaskan ecosystems during the Holocene Thermal Maximum
He, Yujie; Jones, Miriam C.; Zhuang, Qianlai; Bochicchio, Christopher; Felzer, B. S.; Mason, Erik; Yu, Zicheng
2014-01-01
The Arctic has experienced much greater warming than the global average in recent decades due to polar amplification. Warming has induced ecological changes that have impacted climate carbon-cycle feedbacks, making it important to understand the climate and vegetation controls on carbon (C) dynamics. Here we used the Holocene Thermal Maximum (HTM, 11–9 ka BP, 1 ka BP = 1000 cal yr before present) in Alaska as a case study to examine how ecosystem Cdynamics responded to the past warming climate using an integrated approach of combining paleoecological reconstructions and ecosystem modeling. Our paleoecological synthesis showed expansion of deciduous broadleaf forest (dominated by Populus) into tundra and the establishment of boreal evergreen needleleaf and mixed forest during the second half of the HTM under a warmer- and wetter-than-before climate, coincident with the occurrence of the highest net primary productivity, cumulative net ecosystem productivity, soil C accumulation and CH4 emissions. These series of ecological and biogeochemical shifts mirrored the solar insolation and subsequent temperature and precipitation patterns during HTM, indicating the importance of climate controls on C dynamics. Our simulated regional estimate of CH4 emission rates from Alaska during the HTM ranged from 3.5 to 6.4 Tg CH4 yr−1 and highest annual NPP of 470 Tg C yr−1, significantly higher than previously reported modern estimates. Our results show that the differences in static vegetation distribution maps used in simulations of different time slices have greater influence on modeled C dynamics than climatic fields within each time slice, highlighting the importance of incorporating vegetation community dynamics and their responses to climatic conditions in long-term biogeochemical modeling.
Attributes of an alluvial river and their relation to water policy and management
Trush, William J.; McBain, Scott M.; Leopold, Luna B.
2000-01-01
Rivers around the world are being regulated by dams to accommodate the needs of a rapidly growing global population. These regulatory efforts usually oppose the natural tendency of rivers to flood, move sediment, and migrate. Although an economic benefit, river regulation has come at unforeseen and unevaluated cumulative ecological costs. Historic and contemporary approaches to remedy environmental losses have largely ignored hydrologic, geomorphic, and biotic processes that form and maintain healthy alluvial river ecosystems. Several commonly known concepts that govern how alluvial channels work have been compiled into a set of “attributes” for alluvial river integrity. These attributes provide a minimum checklist of critical geomorphic and ecological processes derived from field observation and experimentation, a set of hypotheses to chart and evaluate strategies for restoring and preserving alluvial river ecosystems. They can guide how to (i) restore alluvial processes below an existing dam without necessarily resorting to extreme measures such as demolishing one, and (ii) preserve alluvial river integrity below proposed dams. Once altered by dam construction, a regulated alluvial river will never function as before. But a scaled-down morphology could retain much of a river's original integrity if key processes addressed in the attributes are explicitly provided. Although such a restoration strategy is an experiment, it may be the most practical solution for recovering regulated alluvial river ecosystems and the species that inhabit them. Preservation or restoration of the alluvial river attributes is a logical policy direction for river management in the future. PMID:11050220
Analysis of LDPE-ZnO-clay nanocomposites using novel cumulative rheological parameters
NASA Astrophysics Data System (ADS)
Kracalik, Milan
2017-05-01
Polymer nanocomposites exhibit complex rheological behaviour due to physical and also possibly chemical interactions between individual phases. Up to now, rheology of dispersive polymer systems has been usually described by evaluation of viscosity curve (shear thinning phenomenon), storage modulus curve (formation of secondary plateau) or plotting information about dumping behaviour (e.g. Van Gurp-Palmen-plot, comparison of loss factor tan δ). On the contrary to evaluation of damping behaviour, values of cot δ were calculated and called as "storage factor", analogically to loss factor. Then values of storage factor were integrated over specific frequency range and called as "cumulative storage factor". In this contribution, LDPE-ZnO-clay nanocomposites with different dispersion grades (physical networks) have been prepared and characterized by both conventional as well as novel analysis approach. Next to cumulative storage factor, further cumulative rheological parameters like cumulative complex viscosity, cumulative complex modulus or cumulative storage modulus have been introduced.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tallis, Heather, E-mail: htallis@tnc.org; Kennedy, Christina M., E-mail: ckennedy@tnc.org; Ruckelshaus, Mary
Emerging development policies and lending standards call for consideration of ecosystem services when mitigating impacts from development, yet little guidance exists to inform this process. Here we propose a comprehensive framework for advancing both biodiversity and ecosystem service mitigation. We have clarified a means for choosing representative ecosystem service targets alongside biodiversity targets, identified servicesheds as a useful spatial unit for assessing ecosystem service avoidance, impact, and offset options, and discuss methods for consistent calculation of biodiversity and ecosystem service mitigation ratios. We emphasize the need to move away from area- and habitat-based assessment methods for both biodiversity and ecosystemmore » services towards functional assessments at landscape or seascape scales. Such comprehensive assessments more accurately reflect cumulative impacts and variation in environmental quality, social needs and value preferences. The integrated framework builds on the experience of biodiversity mitigation while addressing the unique opportunities and challenges presented by ecosystem service mitigation. These advances contribute to growing potential for economic development planning and execution that will minimize impacts on nature and maximize human wellbeing. - Highlights: • This is the first framework for biodiversity and ecosystem service mitigation. • Functional, landscape scale assessments are ideal for avoidance and offsets. • Servicesheds define the appropriate spatial extent for ecosystem service mitigation. • Mitigation ratios should be calculated consistently and based on standard factors. • Our framework meets the needs of integrated mitigation assessment requirements.« less
Towards answering the "so what" question in marine renewables environmental impact assessment.
NASA Astrophysics Data System (ADS)
Degraer, Steven; Birchenough, Silvana N. R.; Braeckman, Ulrike; Coolen, Joop W. P.; Dannheim, Jennifer; De Mesel, Ilse; Grégoire, Marilaure; Kerckhof, Francis; Lacroix, Geneviève; Lindeboom, Han; Moens, Tom; Soetaert, Karline; Vanaverbeke, Jan; Van Hoey, Gert
2016-04-01
Marine renewable energy (MRE) projects are increasingly occupying the European North-Atlantic coasts and this is clearly observed in the North Sea. Given the expected impacts on the marine environment, each individual project is accompanied by a legally mandatory, environmental monitoring programme. These programmes are focused on the resultant effects on ecosystem component structure (e.g. species composition, numbers and densities) of single industrial projects. To date, there is a tendency to further narrow down to only a selection of ecosystem components (e.g. marine mammals and birds). While a wide knowledge-based understanding of structural impacts on (a selection of) ecosystem components exists, this evidence is largely lacking when undertaking impact assessments at the ecosystem functioning level (e.g. trophic interactions, dispersal and nutrient cycling). This critical knowledge gap compromises a scientifically-underpinned answer to the "so what" question of environmental impacts, i.e. whether the observed impacts are considered to be good or bad, or acceptable or unacceptable. The importance of ecosystem functioning is further acknowledged in the descriptors 4 and 6 of the Marine Strategy Framework Directive (EU MSFD) and is at the heart of a sustainable use and management of our marine resources. There hence is a fundamental need to focus on ecosystem functioning at the spatial scales at which marine ecosystems function when assessing MRE impacts. Here, we make a plea for an increased investment in a large (spatial) scale impact assessment of MRE projects focused on ecosystem functioning. This presentation will cover a selection of examples from North Sea MRE monitoring programmes, where the current knowledge has limited conclusions on the "so what" question. We will demonstrate how an ecosystem functioning-focused approach at an appropriate spatial scale could advance our current understanding, whilst assessing these issues. These examples will cover biogeochemical cycling, food webs and connectivity in a cumulative MRE impact assessment context. This presentation will highlight both the available knowledge base and further elaborate on the knowledge gaps. We will offer guidance on how these knowledge gaps could be further investigated, based on examples taken from the recently started projects FaCE-It, Functional biodiversity in a changing sedimentary environment: implications for biogeochemistry and food webs in a managerial setting (financed by the Belgian Science Policy) and UNDINE, Understanding the influence of man-made structures on the ecosystem functions of the North Sea (financed by INSITE). This presentation will set the scene and offer further thinking on the current issues associated to MRE monitoring, particularly beyond the level of ecological structure and individual industrial projects. The overall message will aid advancing and strengthening a collaborative MRE monitoring, helping scientists, managers and regulators to answer the much needed "so what" question to support environmental assessments. Keywords: offshore wind farms, cumulative effects, spatial upscaling, ecosystem functioning, biogeochemical cycling, food webs Contact author: Steven Degraer, steven.degraer@naturalsciences.be
Global consequences of afforestation and bioenergy cultivation on ecosystem service indicators
NASA Astrophysics Data System (ADS)
Krause, Andreas; Pugh, Thomas A. M.; Bayer, Anita D.; Doelman, Jonathan C.; Humpenöder, Florian; Anthoni, Peter; Olin, Stefan; Bodirsky, Benjamin L.; Popp, Alexander; Stehfest, Elke; Arneth, Almut
2017-11-01
Land management for carbon storage is discussed as being indispensable for climate change mitigation because of its large potential to remove carbon dioxide from the atmosphere, and to avoid further emissions from deforestation. However, the acceptance and feasibility of land-based mitigation projects depends on potential side effects on other important ecosystem functions and their services. Here, we use projections of future land use and land cover for different land-based mitigation options from two land-use models (IMAGE and MAgPIE) and evaluate their effects with a global dynamic vegetation model (LPJ-GUESS). In the land-use models, carbon removal was achieved either via growth of bioenergy crops combined with carbon capture and storage, via avoided deforestation and afforestation, or via a combination of both. We compare these scenarios to a reference scenario without land-based mitigation and analyse the LPJ-GUESS simulations with the aim of assessing synergies and trade-offs across a range of ecosystem service indicators: carbon storage, surface albedo, evapotranspiration, water runoff, crop production, nitrogen loss, and emissions of biogenic volatile organic compounds. In our mitigation simulations cumulative carbon storage by year 2099 ranged between 55 and 89 GtC. Other ecosystem service indicators were influenced heterogeneously both positively and negatively, with large variability across regions and land-use scenarios. Avoided deforestation and afforestation led to an increase in evapotranspiration and enhanced emissions of biogenic volatile organic compounds, and to a decrease in albedo, runoff, and nitrogen loss. Crop production could also decrease in the afforestation scenarios as a result of reduced crop area, especially for MAgPIE land-use patterns, if assumed increases in crop yields cannot be realized. Bioenergy-based climate change mitigation was projected to affect less area globally than in the forest expansion scenarios, and resulted in less pronounced changes in most ecosystem service indicators than forest-based mitigation, but included a possible decrease in nitrogen loss, crop production, and biogenic volatile organic compounds emissions.
Structure, functioning, and cumulative stressors of Mediterranean deep-sea ecosystems
NASA Astrophysics Data System (ADS)
Tecchio, Samuele; Coll, Marta; Sardà, Francisco
2015-06-01
Environmental stressors, such as climate fluctuations, and anthropogenic stressors, such as fishing, are of major concern for the management of deep-sea ecosystems. Deep-water habitats are limited by primary productivity and are mainly dependent on the vertical input of organic matter from the surface. Global change over the latest decades is imparting variations in primary productivity levels across oceans, and thus it has an impact on the amount of organic matter landing on the deep seafloor. In addition, anthropogenic impacts are now reaching the deep ocean. The Mediterranean Sea, the largest enclosed basin on the planet, is not an exception. However, ecosystem-level studies of response to varying food input and anthropogenic stressors on deep-sea ecosystems are still scant. We present here a comparative ecological network analysis of three food webs of the deep Mediterranean Sea, with contrasting trophic structure. After modelling the flows of these food webs with the Ecopath with Ecosim approach, we compared indicators of network structure and functioning. We then developed temporal dynamic simulations varying the organic matter input to evaluate its potential effect. Results show that, following the west-to-east gradient in the Mediterranean Sea of marine snow input, organic matter recycling increases, net production decreases to negative values and trophic organisation is overall reduced. The levels of food-web activity followed the gradient of organic matter availability at the seafloor, confirming that deep-water ecosystems directly depend on marine snow and are therefore influenced by variations of energy input, such as climate-driven changes. In addition, simulations of varying marine snow arrival at the seafloor, combined with the hypothesis of a possible fishery expansion on the lower continental slope in the western basin, evidence that the trawling fishery may pose an impact which could be an order of magnitude stronger than a climate-driven reduction of marine snow.
Scholz, Nathaniel L.; Fleishman, Erica; Brown, Larry; Werner, Inge; Johnson, Michael L.; Brooks, Marjorie L.; Mitchelmore, Carys L.; Schlenk, Daniel
2012-01-01
Pesticides applied on land are commonly transported by runoff or spray drift to aquatic ecosystems, where they are potentially toxic to fishes and other nontarget organisms. Pesticides add to and interact with other stressors of ecosystem processes, including surface-water diversions, losses of spawning and rearing habitats, nonnative species, and harmful algal blooms. Assessing the cumulative effects of pesticides on species or ecological functions has been difficult for historical, legal, conceptual, and practical reasons. To explore these challenges, we examine current-use (modern) pesticides and their potential connections to the abundances of fishes in the San Francisco Estuary (California). Declines in delta smelt (Hypomesus transpacificus), Chinook salmon (Oncorhynchus tshawytscha), and other species have triggered mandatory and expensive management actions in the urbanizing estuary and agriculturally productive Central Valley. Our inferences are transferable to other situations in which toxics may drive changes in ecological status and trends.
Effects of repeated fires on ecosystem C and N stocks along a fire induced forest/grassland gradient
NASA Astrophysics Data System (ADS)
Cheng, Chih-Hsin; Chen, Yung-Sheng; Huang, Yu-Hsuan; Chiou, Chyi-Rong; Lin, Chau-Chih; Menyailo, Oleg V.
2013-03-01
Repeated fires might have different effect on ecosystem carbon storage than a single fire event, but information on repeated fires and their effects on forest ecosystems and carbon storage is scarce. However, changes in climate, vegetation composition, and human activities are expected to make forests more susceptible to fires that recur with relatively high frequency. In this study, the effects of repeated fires on ecosystem carbon and nitrogen stocks were examined along a fire-induced forest/grassland gradient wherein the fire events varied from an unburned forest to repeatedly burned grassland. Results from the study show repeated fires drastically decreased ecosystem carbon and nitrogen stocks along the forest/grassland gradient. The reduction began with the disappearance of living tree biomass, and followed by the loss of soil carbon and nitrogen. Within 4 years of the onset of repeated fires on the unburned forest, the original ecosystem carbon and nitrogen stocks were reduced by 42% and 21%, respectively. Subsequent fires caused cumulative reductions in ecosystem carbon and nitrogen stocks by 68% and 44% from the original ecosystem carbon and nitrogen stocks, respectively. The analyses of carbon budgets calculated by vegetation composition and stable isotopic δ13C values indicate that 84% of forest-derived carbon is lost at grassland, whereas the gain of grass-derived carbon only compensates 18% for this loss. Such significant losses in ecosystem carbon and nitrogen stocks suggest that the effects of repeated fires have substantial impacts on ecosystem and soil carbon and nitrogen cycling.
Ashley E. Van Beusekom; William A. Gould; A. Carolina Monmany; Azad Henareh Khalyani; Maya Quiñones; Stephen J. Fain; Maria José Andrade-Núñez; Grizelle González
2018-01-01
Abstract Assessing the relationships between weather patterns and the likelihood of fire occurrence in the Caribbean has not been as central to climate change research as in temperate regions, due in part to the smaller extent of individual fires. However, the cumulative effect of small frequent fires can shape large landscapes, and fire-prone ecosystems are abundant...
Spatio-temporal trends of drought by forest type in the conterminous United States, 1960-2013
Matthew P. Peters; Louis R. Iverson; Stephen N. Matthews
2014-01-01
Droughts are common in virtually all U.S. forests, but their frequency and intensity vary within forest ecosystems (Hanson and Weltzin 2000). Accounting for the long-term influence of droughts within a region is difficult due to variations in the spatial extent and intensities over a period. Therefore, we created a cumulative drought severity index (CDSI) (Fig. 1) for...
Supporting Risk Assessment: Accounting for Indirect Risk to Ecosystem Components
Mach, Megan E.; Martone, Rebecca G.; Singh, Gerald G.; O, Miriam; Chan, Kai M. A.
2016-01-01
The multi-scalar complexity of social-ecological systems makes it challenging to quantify impacts from human activities on ecosystems, inspiring risk-based approaches to assessments of potential effects of human activities on valued ecosystem components. Risk assessments do not commonly include the risk from indirect effects as mediated via habitat and prey. In this case study from British Columbia, Canada, we illustrate how such “indirect risks” can be incorporated into risk assessments for seventeen ecosystem components. We ask whether (i) the addition of indirect risk changes the at-risk ranking of the seventeen ecosystem components and if (ii) risk scores correlate with trophic prey and habitat linkages in the food web. Even with conservative assumptions about the transfer of impacts or risks from prey species and habitats, the addition of indirect risks in the cumulative risk score changes the ranking of priorities for management. In particular, resident orca, Steller sea lion, and Pacific herring all increase in relative risk, more closely aligning these species with their “at-risk status” designations. Risk assessments are not a replacement for impact assessments, but—by considering the potential for indirect risks as we demonstrate here—they offer a crucial complementary perspective for the management of ecosystems and the organisms within. PMID:27632287
Water use efficiency of China’s terrestrial ecosystems and responses to drought
Liu, Yibo; Xiao, Jingfeng; Ju, Weimin; Zhou, Yanlian; Wang, Shaoqiang; Wu, Xiaocui
2015-01-01
Water use efficiency (WUE) measures the trade-off between carbon gain and water loss of terrestrial ecosystems, and better understanding its dynamics and controlling factors is essential for predicting ecosystem responses to climate change. We assessed the magnitude, spatial patterns, and trends of WUE of China’s terrestrial ecosystems and its responses to drought using a process-based ecosystem model. During the period from 2000 to 2011, the national average annual WUE (net primary productivity (NPP)/evapotranspiration (ET)) of China was 0.79 g C kg−1 H2O. Annual WUE decreased in the southern regions because of the decrease in NPP and the increase in ET and increased in most northern regions mainly because of the increase in NPP. Droughts usually increased annual WUE in Northeast China and central Inner Mongolia but decreased annual WUE in central China. “Turning-points” were observed for southern China where moderate and extreme droughts reduced annual WUE and severe drought slightly increased annual WUE. The cumulative lagged effect of drought on monthly WUE varied by region. Our findings have implications for ecosystem management and climate policy making. WUE is expected to continue to change under future climate change particularly as drought is projected to increase in both frequency and severity. PMID:26347998
Water use efficiency of China's terrestrial ecosystems and responses to drought.
Liu, Yibo; Xiao, Jingfeng; Ju, Weimin; Zhou, Yanlian; Wang, Shaoqiang; Wu, Xiaocui
2015-09-08
Water use efficiency (WUE) measures the trade-off between carbon gain and water loss of terrestrial ecosystems, and better understanding its dynamics and controlling factors is essential for predicting ecosystem responses to climate change. We assessed the magnitude, spatial patterns, and trends of WUE of China's terrestrial ecosystems and its responses to drought using a process-based ecosystem model. During the period from 2000 to 2011, the national average annual WUE (net primary productivity (NPP)/evapotranspiration (ET)) of China was 0.79 g C kg(-1) H2O. Annual WUE decreased in the southern regions because of the decrease in NPP and the increase in ET and increased in most northern regions mainly because of the increase in NPP. Droughts usually increased annual WUE in Northeast China and central Inner Mongolia but decreased annual WUE in central China. "Turning-points" were observed for southern China where moderate and extreme droughts reduced annual WUE and severe drought slightly increased annual WUE. The cumulative lagged effect of drought on monthly WUE varied by region. Our findings have implications for ecosystem management and climate policy making. WUE is expected to continue to change under future climate change particularly as drought is projected to increase in both frequency and severity.
NASA Astrophysics Data System (ADS)
Yeo, I. Y.; Lang, M.; Lee, S.; Huang, C.; Jin, H.; McCarty, G.; Sadeghi, A.
2017-12-01
The wetland ecosystem plays crucial roles in improving hydrological function and ecological integrity for the downstream water and the surrounding landscape. However, changing behaviours and functioning of wetland ecosystems are poorly understood and extremely difficult to characterize. Improved understanding on hydrological behaviours of wetlands, considering their interaction with surrounding landscapes and impacts on downstream waters, is an essential first step toward closing the knowledge gap. We present an integrated wetland-catchment modelling study that capitalizes on recently developed inundation maps and other geospatial data. The aim of the data-model integration is to improve spatial prediction of wetland inundation and evaluate cumulative hydrological benefits at the catchment scale. In this paper, we highlight problems arising from data preparation, parameterization, and process representation in simulating wetlands within a distributed catchment model, and report the recent progress on mapping of wetland dynamics (i.e., inundation) using multiple remotely sensed data. We demonstrate the value of spatially explicit inundation information to develop site-specific wetland parameters and to evaluate model prediction at multi-spatial and temporal scales. This spatial data-model integrated framework is tested using Soil and Water Assessment Tool (SWAT) with improved wetland extension, and applied for an agricultural watershed in the Mid-Atlantic Coastal Plain, USA. This study illustrates necessity of spatially distributed information and a data integrated modelling approach to predict inundation of wetlands and hydrologic function at the local landscape scale, where monitoring and conservation decision making take place.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-15
...: Cumulative Mixtures Risk of Six Selected Phthalates in Support of Summary Information on the Integrated Risk... Workshop on the Cumulative Mixtures Risk of Six Selected Phthalates; Request for Public Comments. SUMMARY...) Review the recommendations for evaluation of the cumulative mixtures risk of phthalates as set forth in...
Guy-Haim, Tamar; Lyons, Devin A; Kotta, Jonne; Ojaveer, Henn; Queirós, Ana M; Chatzinikolaou, Eva; Arvanitidis, Christos; Como, Serena; Magni, Paolo; Blight, Andrew J; Orav-Kotta, Helen; Somerfield, Paul J; Crowe, Tasman P; Rilov, Gil
2018-03-01
Invasive ecosystem engineers (IEE) are potentially one of the most influential types of biological invaders. They are expected to have extensive ecological impacts by altering the physical-chemical structure of ecosystems, thereby changing the rules of existence for a broad range of resident biota. To test the generality of this expectation, we used a global systematic review and meta-analysis to examine IEE effects on the abundance of individual species and communities, biodiversity (using several indices) and ecosystem functions, focusing on marine and estuarine environments. We found that IEE had a significant effect (positive and negative) in most studies testing impacts on individual species, but the overall (cumulative) effect size was small and negative. Many individual studies showed strong IEE effects on community abundance and diversity, but the direction of effects was variable, leading to statistically non-significant overall effects in most categories. In contrast, there was a strong overall effect on most ecosystem functions we examined. IEE negatively affected metabolic functions and primary production, but positively affected nutrient flux, sedimentation and decomposition. We use the results to develop a conceptual model by highlighting pathways whereby IEE impact communities and ecosystem functions, and identify several sources of research bias in the IEE-related invasion literature. Only a few of the studies simultaneously quantified IEE effects on community/diversity and ecosystem functions. Therefore, understanding how IEE may alter biodiversity-ecosystem function relationships should be a primary focus of future studies of invasion biology. Moreover, the clear effects of IEE on ecosystem functions detected in our study suggest that scientists and environmental managers ought to examine how the effects of IEE might be manifested in the services that marine ecosystems provide to humans. © 2017 John Wiley & Sons Ltd.
Contrasting Response of Carbon Fluxes to Winter Warming across Land Cover Types in Southern NH, USA
NASA Astrophysics Data System (ADS)
Sanders-DeMott, R.; Ouimette, A.; Lepine, L. C.; Fogarty, S.; Burakowski, E. A.; Contosta, A.; Ollinger, S. V.; Conte, T.
2017-12-01
Natural and managed ecosystems play a key role in climate through regulation of carbon dioxide, as well as their effects on other greenhouse gases, surface heat fluxes, and albedo. In the northeastern United States, winter air temperatures are rising more rapidly than mean annual temperatures and the depth and duration of seasonal snowpack is decreasing. Although winter fluxes of carbon are small relative to the growing season, there is mounting evidence that biological processes in winter contribute significantly to annual ecosystem carbon budgets and that changes in winter conditions could lead to shifting patterns and magnitudes of seasonal carbon uptake. To determine the response of differing land cover types to variation in winter conditions we used eddy covariance to monitor carbon exchange from a co-located mixed temperate forest and a managed grassland in Durham, NH from 2014-2017, which included an anomalous warm winter (air temperatures 3°C warmer than 14-year mean) with low snowpack in 2016. We examined cumulative winter and spring net ecosystem exchange, as well as the sensitivity of ecosystem respiration to air and soil temperatures in the presence and absence of a deep (>15 cm) snowpack. We found that warm winter temperatures and low snow conditions led to relatively large cumulative losses of carbon from the forest in February/March 2016, while the grassland was a moderate net sink for carbon during the same period. When temperatures were above 0°C, mid-day carbon uptake in the grassland was controlled by the presence or absence of snow cover. Our results suggest that forest carbon losses to the atmosphere in deciduous forests may increase during warm, snow-free winter conditions when vegetation is restricted in winter carbon uptake capacity by phenology. However, non-forested vegetation such as perennial grasses have a greater potential to activate photosynthesis in winter and to take up carbon in the "dormant season," perhaps moderating increasing winter carbon losses due to increasing winter temperatures.
Galic, Nika; Sullivan, Lauren L; Grimm, Volker; Forbes, Valery E
2018-04-01
Ecosystems are exposed to multiple stressors which can compromise functioning and service delivery. These stressors often co-occur and interact in different ways which are not yet fully understood. Here, we applied a population model representing a freshwater amphipod feeding on leaf litter in forested streams. We simulated impacts of hypothetical stressors, individually and in pairwise combinations that target the individuals' feeding, maintenance, growth and reproduction. Impacts were quantified by examining responses at three levels of biological organisation: individual-level body sizes and cumulative reproduction, population-level abundance and biomass and ecosystem-level leaf litter decomposition. Interactive effects of multiple stressors at the individual level were mostly antagonistic, that is, less negative than expected. Most population- and ecosystem-level responses to multiple stressors were stronger than expected from an additive model, that is, synergistic. Our results suggest that across levels of biological organisation responses to multiple stressors are rarely only additive. We suggest methods for efficiently quantifying impacts of multiple stressors at different levels of biological organisation. © 2018 John Wiley & Sons Ltd/CNRS.
NASA Astrophysics Data System (ADS)
Oguz, Temel; Gilbert, Denis
2007-02-01
Functioning of the Black Sea ecosystem has profoundly changed since the early 1970s under cumulative effects of excessive nutrient enrichment, strong cooling/warming, over-exploitation of pelagic fish stocks, and population outbreak of gelatinous carnivores. Applying a set of criteria to the long-term (1960-2000) ecological time-series data, the present study demonstrates that the Black Sea ecosystem was reorganised during this transition phase in different forms of top-down controlled food web structure through successive regime-shifts of distinct ecological properties. The Secchi disc depth, oxic-anoxic interface zone, dissolved oxygen and hydrogen sulphide concentrations also exhibit abrupt transition between their alternate regimes, and indicate tight coupling between the lower trophic food web structure and the biogeochemical pump in terms of regime-shift events. The first shift, in 1973-1974, marks a switch from large predatory fish to small planktivore fish-controlled system, which persisted until 1989 in the form of increasing small pelagic and phytoplankton biomass and decreasing zooplankton biomass. The increase in phytoplankton biomass is further supported by a bottom-up contribution due to the cumulative response to high anthropogenic nutrient load and the concurrent shift of the physical system to the "cold climate regime" following its ˜20-year persistence in the "warm climate regime". The end of the 1980s signifies the depletion of small planktivores and the transition to a gelatinous carnivore-controlled system. By the end of the 1990s, small planktivore populations take over control of the system again. Concomitantly, their top-down pressure when combined with diminishing anthropogenic nutrient load and more limited nutrient supply into the surface waters due to stabilizing effects of relatively warm winter conditions switched the "high production" regime of phytoplankton to its background "low production" regime. The Black Sea regime-shifts appear to be sporadic events forced by strong transient decadal perturbations, and therefore differ from the multi-decadal scale cyclical events observed in pelagic ocean ecosystems under low-frequency climatic forcing. The Black Sea observations illustrate that eutrophication and extreme fishery exploitation can indeed induce hysteresis in large marine ecosystems, when they can exert sufficiently strong forcing onto the system. They further illustrate the link between the disruption of the top predators, proliferation of new predator stocks, and regime-shift events. Examples of these features have been reported for some aquatic ecosystems, but are extremely limited for large marine ecosystems.
Resilience: Concepts and Measures. Chapter 2
NASA Technical Reports Server (NTRS)
Westman, Walter E.
1986-01-01
Inertia, the resistance of an ecosystem property to change under stress, is distinguished from resilience, which refers to the degree, manner. and pace of change or recovery in ecosystem properties following disturbance. In turn, these two terms are differentiated from 'stability'. which is used here to refer to the pattern of natural fluctuation in ecosystem properties in the absence of major exogenous disturbance. Four component attributes of resilience are reviewed in the context of Mediterranean-climate examples. The elasticity component concerns the rate of recovery of an ecosystem property following disturbance; amplitude, the threshold of stress beyond which recovery to the initial state does not occur; hysteresis, the degree to which the pattern of recovery after stress differs from that of deterioration under chronic stress, and malleability the ease with which the ecosystem can become permanently altered. Each ecosystem property will typically reveal a different level of resilience to a given stress and stressor. The degree of recovery should not be expected to be complete in any event, due to sample variability and stochastic events. In cyclicallystable ecosystems, the pattern of recovery should be measured in light of this periodicity, and short-term (within-cycle) recovery distinguished from long-term (between-cycle) recovery. The prediction of resilience properties of ecosystems can be approached through a knowledge of the modular structure of foodwebs, through knowledge of the autecological adaptations of key species to the stressor, or through cumulative experience of the response to disturbance at the community level. At present there is much room for investigation of each of these approaches in Mediterranean-climate ecosystems.
The Maximum Cumulative Ratio (MCR) quantifies the degree to which a single component of a chemical mixture drives the cumulative risk of a receptor.1 This study used the MCR, the Hazard Index (HI) and Hazard Quotient (HQ) to evaluate co-exposures to six phthalates using biomonito...
A systematic approach towards the identification and protection of vulnerable marine ecosystems
Ardron, Jeff A.; Clark, Malcolm R.; Penney, Andrew J.; Hourigan, Thomas F.; Rowden, Ashley A.; Dunstan, Piers K.; Watling, Les; Shank, Timothy M.; Tracey, Di M.; Dunn, Matthew R.; Parker, Steven J.
2014-01-01
The United Nations General Assembly in 2006 and 2009 adopted resolutions that call for the identification and protection of vulnerable marine ecosystems (VMEs) from significant adverse impacts of bottom fishing. While general criteria have been produced, there are no guidelines or protocols that elaborate on the process from initial identification through to the protection of VMEs. Here, based upon an expert review of existing practices, a 10-step framework is proposed: (1) Comparatively assess potential VME indicator taxa and habitats in a region; (2) determine VME thresholds; (3) consider areas already known for their ecological importance; (4) compile information on the distributions of likely VME taxa and habitats, as well as related environmental data; (5) develop predictive distribution models for VME indicator taxa and habitats; (6) compile known or likely fishing impacts; (7) produce a predicted VME naturalness distribution (areas of low cumulative impacts); (8) identify areas of higher value to user groups; (9) conduct management strategy evaluations to produce trade-off scenarios; (10) review and re-iterate, until spatial management scenarios are developed that fulfil international obligations and regional conservation and management objectives. To date, regional progress has been piecemeal and incremental. The proposed 10-step framework combines these various experiences into a systematic approach.
Pesticide Cumulative Risk Assessment: Framework for Screening Analysis
This document provides guidance on how to screen groups of pesticides for cumulative evaluation using a two-step approach: begin with evaluation of available toxicological information and, if necessary, follow up with a risk-based screening approach.
A Framework to Assess the Cumulative Hydrological Impacts of Dams on flow Regime
NASA Astrophysics Data System (ADS)
Wang, Y.; Wang, D.
2016-12-01
In this study we proposed a framework to assess the cumulative impact of dams on hydrological regime, and the impacts of the Three Gorges Dam on flow regime in Yangtze River were investigated with the framework. We reconstructed the unregulated flow series to compare with the regulated flow series in the same period. Eco-surplus and eco-deficit and the Indicators of Hydrologic Alteration parameters were used to examine the hydrological regime change. Among IHA parameters, Wilcoxon signed-rank test and Principal Components Analysis identified the representative indicators of hydrological alterations. Eco-surplus and eco-deficit showed that the reservoir also changed the seasonal regime of the flows in autumn and winter. Annual extreme flows and October flows changes lead to negative ecological implications downstream from the Three Gorges Dam. Ecological operation for the Three Gorges Dam is necessary to mitigate the negative effects on the river ecosystem in the middle reach of Yangtze River. The framework proposed here could be a robust method to assess the cumulative impacts of reservoir operation.
NASA Astrophysics Data System (ADS)
Andersen, Jesper H.; Berzaghi, Fabio; Christensen, Tom; Geertz-Hansen, Ole; Mosbech, Anders; Stock, Andy; Zinglersen, Karl B.; Wisz, Mary S.
2017-01-01
We estimate the potential for cumulative impacts from multiple anthropogenic stressors on fish, sea birds, and marine mammals in the western, southern and south-eastern parts of marine waters around Greenland. The analysis is based on a comprehensive data set representing five human activities including two proxies for climate change, as well as 25 key animal species including commercially important fish and top predators such as sea birds and marine mammals. Anthropogenic stressors are concentrated in two areas: the offshore waters south of Greenland, and especially the western coast from the Qeqertarsuaq (Disko Island) area to the southern tip of Greenland. The latter is also an area of high importance for many key species, thus the potential for cumulative impacts is high along Greenland's west coast. We conclude that this area should be under high scientific scrutiny and conservation attention. Our study is a first attempt and a stepping-stone towards more detailed and accurate estimates of the effects of multiple human stressors on Arctic marine ecosystems.
An evaluation of inexpensive methods for root image acquisition when using rhizotrons.
Mohamed, Awaz; Monnier, Yogan; Mao, Zhun; Lobet, Guillaume; Maeght, Jean-Luc; Ramel, Merlin; Stokes, Alexia
2017-01-01
Belowground processes play an essential role in ecosystem nutrient cycling and the global carbon budget cycle. Quantifying fine root growth is crucial to the understanding of ecosystem structure and function and in predicting how ecosystems respond to climate variability. A better understanding of root system growth is necessary, but choosing the best method of observation is complex, especially in the natural soil environment. Here, we compare five methods of root image acquisition using inexpensive technology that is currently available on the market: flatbed scanner, handheld scanner, manual tracing, a smartphone application scanner and a time-lapse camera. Using the five methods, root elongation rate (RER) was measured for three months, on roots of hybrid walnut ( Juglans nigra × Juglans regia L.) in rhizotrons installed in agroforests. When all methods were compared together, there were no significant differences in relative cumulative root length. However, the time-lapse camera and the manual tracing method significantly overestimated the relative mean diameter of roots compared to the three scanning methods. The smartphone scanning application was found to perform best overall when considering image quality and ease of use in the field. The automatic time-lapse camera was useful for measuring RER over several months without any human intervention. Our results show that inexpensive scanning and automated methods provide correct measurements of root elongation and length (but not diameter when using the time-lapse camera). These methods are capable of detecting fine roots to a diameter of 0.1 mm and can therefore be selected by the user depending on the data required.
NASA Astrophysics Data System (ADS)
Zhu, Renbin; Liu, Yashu; Ma, Erdeng; Sun, Jianjun; Xu, Hua; Sun, Liguang
In coastal Antarctica, freezing and thawing influence many physical, chemical and biological processes for ice-free tundra ecosystems, including the production of greenhouse gases (GHGs). In this study, penguin guanos and ornithogenic soil cores were collected from four penguin colonies and one seal colony in coastal Antarctica, and experimentally subjected to three freezing-thawing cycles (FTCs) under ambient air and under N 2. We investigated the effects of FTCs on the emissions of three GHGs including nitrous oxide (N 2O), carbon dioxide (CO 2) and methane (CH 4). The GHG emission rates were extremely low in frozen penguin guanos or ornithogenic soils. However, there was a fast increase in the emission rates of three GHGs following thawing. During FTCs, cumulative N 2O emissions from ornithogenic soils were greatly higher than those from penguin guanos under ambient air or under N 2. The highest N 2O cumulative emission of 138.24 μg N 2O-N kg -1 was observed from seal colony soils. Cumulative CO 2 and CH 4 emissions from penguin guanos were one to three orders of magnitude higher than those from ornithogenic soils. The highest cumulative CO 2 (433.0 mgCO 2-C kg -1) and CH 4 (2.9 mgCH 4-C kg -1) emissions occurred in emperor penguin guanos. Penguin guano was a stronger emitter for CH 4 and CO 2 while ornithogenic soil was a stronger emitter for N 2O during FTCs. CO 2 and CH 4 fluxes had a correlation with total organic carbon (TOC) and soil/guano moisture (M c) in penguin guanos and ornithogenic soils. The specific CO 2-C production rate (CO 2-C/TOC) indicated that the bioavailability of TOC was markedly larger in penguin guanos than in ornithogenic soils during FTCs. This study showed that FTC-released organic C and N from sea animal excreta may play a significant role in FTC-related GHG emissions, which may account for a large proportion of annual fluxes from tundra ecosystems in coastal Antarctica.
An evaluation paradigm for cumulative impact analysis
NASA Astrophysics Data System (ADS)
Stakhiv, Eugene Z.
1988-09-01
Cumulative impact analysis is examined from a conceptual decision-making perspective, focusing on its implicit and explicit purposes as suggested within the policy and procedures for environmental impact analysis of the National Environmental Policy Act of 1969 (NEPA) and its implementing regulations. In this article it is also linked to different evaluation and decision-making conventions, contrasting a regulatory context with a comprehensive planning framework. The specific problems that make the application of cumulative impact analysis a virtually intractable evaluation requirement are discussed in connection with the federal regulation of wetlands uses. The relatively familiar US Army Corps of Engineers' (the Corps) permit program, in conjunction with the Environmental Protection Agency's (EPA) responsibilities in managing its share of the Section 404 regulatory program requirements, is used throughout as the realistic context for highlighting certain pragmatic evaluation aspects of cumulative impact assessment. To understand the purposes of cumulative impact analysis (CIA), a key distinction must be made between the implied comprehensive and multiobjective evaluation purposes of CIA, promoted through the principles and policies contained in NEPA, and the more commonly conducted and limited assessment of cumulative effects (ACE), which focuses largely on the ecological effects of human actions. Based on current evaluation practices within the Corps' and EPA's permit programs, it is shown that the commonly used screening approach to regulating wetlands uses is not compatible with the purposes of CIA, nor is the environmental impact statement (EIS) an appropriate vehicle for evaluating the variety of objectives and trade-offs needed as part of CIA. A heuristic model that incorporates the basic elements of CIA is developed, including the idea of trade-offs among social, economic, and environmental protection goals carried out within the context of environmental carrying capacity.
Hungate, Bruce A; Dijkstra, Paul; Wu, Zhuoting; Duval, Benjamin D; Day, Frank P; Johnson, Dale W; Megonigal, J Patrick; Brown, Alisha L P; Garland, Jay L
2013-01-01
Summary Rising atmospheric carbon dioxide (CO2) could alter the carbon (C) and nitrogen (N) content of ecosystems, yet the magnitude of these effects are not well known. We examined C and N budgets of a subtropical woodland after 11 yr of exposure to elevated CO2. We used open-top chambers to manipulate CO2 during regrowth after fire, and measured C, N and tracer 15N in ecosystem components throughout the experiment. Elevated CO2 increased plant C and tended to increase plant N but did not significantly increase whole-system C or N. Elevated CO2 increased soil microbial activity and labile soil C, but more slowly cycling soil C pools tended to decline. Recovery of a long-term 15N tracer indicated that CO2 exposure increased N losses and altered N distribution, with no effect on N inputs. Increased plant C accrual was accompanied by higher soil microbial activity and increased C losses from soil, yielding no statistically detectable effect of elevated CO2 on net ecosystem C uptake. These findings challenge the treatment of terrestrial ecosystems responses to elevated CO2 in current biogeochemical models, where the effect of elevated CO2 on ecosystem C balance is described as enhanced photosynthesis and plant growth with decomposition as a first-order response. PMID:23718224
Accounting for ecosystem services in life cycle assessment, Part I: a critical review.
Zhang, Yi; Singh, Shweta; Bakshi, Bhavik R
2010-04-01
If life cycle oriented methods are to encourage sustainable development, they must account for the role of ecosystem goods and services, since these form the basis of planetary activities and human well-being. This article reviews methods that are relevant to accounting for the role of nature and that could be integrated into life cycle oriented approaches. These include methods developed by ecologists for quantifying ecosystem services, by ecological economists for monetary valuation, and life cycle methods such as conventional life cycle assessment, thermodynamic methods for resource accounting such as exergy and emergy analysis, variations of the ecological footprint approach, and human appropriation of net primary productivity. Each approach has its strengths: economic methods are able to quantify the value of cultural services; LCA considers emissions and assesses their impact; emergy accounts for supporting services in terms of cumulative exergy; and ecological footprint is intuitively appealing and considers biocapacity. However, no method is able to consider all the ecosystem services, often due to the desire to aggregate all resources in terms of a single unit. This review shows that comprehensive accounting for ecosystem services in LCA requires greater integration among existing methods, hierarchical schemes for interpreting results via multiple levels of aggregation, and greater understanding of the role of ecosystems in supporting human activities. These present many research opportunities that must be addressed to meet the challenges of sustainability.
Cumulative Poisson Distribution Program
NASA Technical Reports Server (NTRS)
Bowerman, Paul N.; Scheuer, Ernest M.; Nolty, Robert
1990-01-01
Overflow and underflow in sums prevented. Cumulative Poisson Distribution Program, CUMPOIS, one of two computer programs that make calculations involving cumulative Poisson distributions. Both programs, CUMPOIS (NPO-17714) and NEWTPOIS (NPO-17715), used independently of one another. CUMPOIS determines cumulative Poisson distribution, used to evaluate cumulative distribution function (cdf) for gamma distributions with integer shape parameters and cdf for X (sup2) distributions with even degrees of freedom. Used by statisticians and others concerned with probabilities of independent events occurring over specific units of time, area, or volume. Written in C.
Mascorro, Vanessa S; Coops, Nicholas C; Kurz, Werner A; Olguín, Marcela
2015-12-01
Remote sensing products can provide regular and consistent observations of the Earth´s surface to monitor and understand the condition and change of forest ecosystems and to inform estimates of terrestrial carbon dynamics. Yet, challenges remain to select the appropriate satellite data source for ecosystem carbon monitoring. In this study we examine the impacts of three attributes of four remote sensing products derived from Landsat, Landsat-SPOT, and MODIS satellite imagery on estimates of greenhouse gas emissions and removals: (1) the spatial resolution (30 vs. 250 m), (2) the temporal resolution (annual vs. multi-year observations), and (3) the attribution of forest cover changes to disturbance types using supplementary data. With a spatially-explicit version of the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3), we produced annual estimates of carbon fluxes from 2002 to 2010 over a 3.2 million ha forested region in the Yucatan Peninsula, Mexico. The cumulative carbon balance for the 9-year period differed by 30.7 million MgC (112.5 million Mg CO 2e ) among the four remote sensing products used. The cumulative difference between scenarios with and without attribution of disturbance types was over 5 million Mg C for a single Landsat scene. Uncertainty arising from activity data (rates of land-cover changes) can be reduced by, in order of priority, increasing spatial resolution from 250 to 30 m, obtaining annual observations of forest disturbances, and by attributing land-cover changes by disturbance type. Even missing a single year in the land-cover observations can lead to substantial errors in ecosystems with rapid forest regrowth, such as the Yucatan Peninsula.
Song, Guang; Li, Xinrong; Hui, Rong
2017-01-01
Biological soil crusts (BSCs) can improve the stability and health of native plant communities in arid ecosystems. However, it is unknown whether BSCs can also inhibit invasions of exotic vascular plants on stabilized reclaimed sand dunes. To answer this question, we conducted a greenhouse experiment to test the effects of cyanobacteria-dominated BSCs on 1) seed germination and biomass of an exotic grass (Stipa glareosa P. Smirn.), and 2) individual biomass of the exotic S. glareosa growing with two native plants, Eragrostis poaeoides Beauv. and Artemisia capillaris Thunb. Our experiment included three BSC treatments (intact crust, disturbed crust, and bare soil) and five species trials (native E. poaeoides alone, E. poaeoides mixed with exotic S. glareosa, native A. capillaris alone, A. capillaris mixed with exotic S. glareosa, and S. glareosa alone). The results showed that cyanobacteria-dominated crusts can significantly reduce the cumulative percent germination of the exotic grass (P<0.001) and native plants (P<0.001). Maximum cumulative percent germinations of the exotic grass and two native plants were found in bare soil, and minimum in intact crusts. The interaction of crust treatment × species trials on shoot biomass of the two native plants was significant (P<0.05). These results indicate that the presence of BSCs on stabilized sand dunes may reduce the germination of the exotic and two native plants. The effect of reducing exotic and native plant seeds germination would maintain more diverse plant communities and contribute to the formation of clumped vegetation patterns. We conclude that BSCs act as a natural regulator for vegetation patterns and thus promote ecosystem stability and sustainability.
Tamis, Jacqueline E; de Vries, Pepijn; Jongbloed, Ruud H; Lagerveld, Sander; Jak, Robbert G; Karman, Chris C; Van der Wal, Jan Tjalling; Slijkerman, Diana Me; Klok, Chris
2016-10-01
With a foreseen increase in maritime activities, and driven by new policies and conventions aiming at sustainable management of the marine ecosystem, spatial management at sea is of growing importance. Spatial management should ensure that the collective pressures caused by anthropogenic activities on the marine ecosystem are kept within acceptable levels. A multitude of approaches to environmental assessment are available to provide insight for sustainable management, and there is a need for a harmonized and integrated environmental assessment approach that can be used for different purposes and variable levels of detail. This article first provides an overview of the main types of environmental assessments: "environmental impact assessment" (EIA), "strategic environmental assessment" (SEA), "cumulative effect assessment" (CEA), and "environmental (or ecological) risk assessment" (ERA). Addressing the need for a conceptual "umbrella" for the fragmented approaches, a generic framework for environmental assessment is proposed: cumulative effects of offshore activities (CUMULEO). CUMULEO builds on the principle that activities cause pressures that may lead to adverse effects on the ecosystem. Basic elements and variables are defined that can be used consistently throughout sequential decision-making levels and diverse methodological implementations. This enables environmental assessment to start at a high strategic level (i.e., plan and/or program level), resulting in early environmental awareness and subsequently more informed, efficient, and focused project-level assessments, which has clear benefits for both industry and government. Its main strengths are simplicity, transparency, flexibility (allowing the use of both qualitative and quantitative data), and visualization, making it a powerful framework to support discussions with experts, stakeholders, and policymakers. Integr Environ Assess Manag 2016;12:632-642. © 2015 SETAC. © 2015 SETAC.
Li, Xinrong; Hui, Rong
2017-01-01
Biological soil crusts (BSCs) can improve the stability and health of native plant communities in arid ecosystems. However, it is unknown whether BSCs can also inhibit invasions of exotic vascular plants on stabilized reclaimed sand dunes. To answer this question, we conducted a greenhouse experiment to test the effects of cyanobacteria-dominated BSCs on 1) seed germination and biomass of an exotic grass (Stipa glareosa P. Smirn.), and 2) individual biomass of the exotic S. glareosa growing with two native plants, Eragrostis poaeoides Beauv. and Artemisia capillaris Thunb. Our experiment included three BSC treatments (intact crust, disturbed crust, and bare soil) and five species trials (native E. poaeoides alone, E. poaeoides mixed with exotic S. glareosa, native A. capillaris alone, A. capillaris mixed with exotic S. glareosa, and S. glareosa alone). The results showed that cyanobacteria-dominated crusts can significantly reduce the cumulative percent germination of the exotic grass (P<0.001) and native plants (P<0.001). Maximum cumulative percent germinations of the exotic grass and two native plants were found in bare soil, and minimum in intact crusts. The interaction of crust treatment × species trials on shoot biomass of the two native plants was significant (P<0.05). These results indicate that the presence of BSCs on stabilized sand dunes may reduce the germination of the exotic and two native plants. The effect of reducing exotic and native plant seeds germination would maintain more diverse plant communities and contribute to the formation of clumped vegetation patterns. We conclude that BSCs act as a natural regulator for vegetation patterns and thus promote ecosystem stability and sustainability. PMID:28977018
Trawl disturbance on benthic communities: chronic effects and experimental predictions.
Hinz, Hilmar; Prieto, Virginia; Kaiser, Michel J
2009-04-01
Bottom trawling has widespread impacts on benthic communities and habitats. While the direct impacts of trawl disturbances on benthic communities have been extensively studied, the consequences from long-term chronic disturbances are less well understood. The response of benthic macrofauna to chronic otter-trawl disturbance from a Nephrops norvegicus (Norway lobster) fishery was investigated along a gradient of fishing intensity over a muddy fishing ground in the northeastern Irish Sea. Chronic otter trawling had a significant, negative effect on benthic infauna abundance, biomass, and species richness. Benthic epifauna abundance and species richness also showed a significant, negative response, while no such effect was evident for epibenthic biomass. Furthermore, chronic trawl disturbance led to clear changes in community composition of benthic infauna and epifauna. The results presented indicate that otter-trawl impacts are cumulative and can lead to profound changes in benthic communities, which may have far-reaching implications for the integrity of marine food webs. Studies investigating the short-term effects of fishing manipulations previously concluded that otter trawling on muddy substrates had only modest effects on the benthic biota. Hence, the results presented by this study highlight that data from experimental studies can not be readily extrapolated to an ecosystem level and that subtle cumulative effects may only become apparent when fishing disturbances are examined over larger spatial and temporal scales. Furthermore, this study shows that data on chronic effects of bottom trawling on the benthos will be vital in informing the recently advocated move toward an ecosystem approach in fisheries management. As bottom-trawl fisheries are expanding into ever deeper muddy habitats, the results presented here are an important step toward understanding the global ecosystem effects of bottom trawling.
PERSPECTIVE: The tripping points of sea level rise
NASA Astrophysics Data System (ADS)
Hecht, Alan D.
2009-12-01
When President Nixon created the US Environmental Protection Agency (EPA) in 1970 he said the environment must be perceived as a single, interrelated system. We are nowhere close to achieving this vision. Jim Titus and his colleagues [1] highlight one example of where one set of regulations or permits may be in conflict with another and where regulations were crafted in the absence of understanding the cumulative impact of global warming. The issue here is how to deal with the impacts of climate change on sea level and the latter's impact on wetland polices, clean water regulations, and ecosystem services. The Titus paper could also be called `The tripping points of sea level rise'. Titus and his colleagues have looked at the impact of such sea level rise on the east coast of the United States. Adaptive responses include costly large- scale investment in shore protection (e.g. dikes, sand replenishment) and/or ecosystem migration (retreat), where coastal ecosystems move inland. Shore protection is limited by available funds, while ecosystem migrations are limited by available land use. The driving factor is the high probability of sea level rise due to climate change. Estimating sea level rise is difficult because of local land and coastal dynamics including rising or falling land areas. It is estimated that sea level could rise between 8 inches and 2 feet by the end of this century [2]. The extensive data analysis done by Titus et al of current land use is important because, as they observe, `property owners and land use agencies have generally not decided how they will respond to sea level rise, nor have they prepared maps delineating where shore protection and retreat are likely'. This is the first of two `tripping points', namely the need for adaptive planning for a pending environmental challenge that will create economic and environment conflict among land owners, federal and state agencies, and businesses. One way to address this gap in adaptive management, according to Titus et al, is for communities to develop a common vision about which lands will be protected and which lands will yield to the rising sea, similar to the way land use plans identify commercial, residential, agricultural, and conservation lands. The supplementary material in their paper (as well as a related web site suggested by the peer review process of this journal) provides maps that depict the likelihood of shore protection based on existing land use data and the assessment of the local governments. Such maps, they suggest, might be used as a starting point to promote dialogue within communities about which lands should be protected and which lands are allowed to become submerged. A second tripping point relates to conflict between existing environmental laws and their collective ability to respond to the impacts of global warming. For example, property owners are automatically issued permits for construction of hard shore-protection structures (e.g. bulkheads and revetments) without an assessment of their environmental impact. Normally, under the Clean Water Act, the impact of each permit is assessed separately, but there is a special expedited process for activities with no cumulative impact. The Corps of Engineers concluded that shore protection does not have a cumulative impact, and that might be true if shore erosion was rare and stable shores the general rule. But once we recognize that the sea level is rising, then shore erosion becomes the general rule and a cumulative impact is likely. Under the National Environmental Protection Act (NEPA), cumulative impacts have been defined as `the impacts of an activity ``added to other past present and reasonably future actions'' regardless of who takes the other actions'. If the NEPA were actually evoked, it would considerably delay permit approvals and substantially impact the Corps of Engineers' process for issuing permits. The potential impact of sea level rise clearly requires a holistic approach to coastal management in which options for shore protection or retreats are clearly identified and where economic, ecosystem and social impacts can be clearly evaluated. At stake are both the future of wetlands that provide important ecosystem services and the safety and sustainability of our coastal communities. This is a huge challenge requiring adequate data, long-term planning, federal-state cooperation, and integration of environmental laws. The time is at hand to assess a business-as-usual response to sea level rise or to explore a more holistic and integrated approach. President Obama has said: `The threat from climate change is serious, it is urgent, and it is growing. Our generation's response to this challenge will be judged by history, for if we fail to meet it—boldly, swiftly, and together—we risk consigning future generations to an irreversible catastrophe' [3]. Though the President was talking about action to reduce emissions of greenhouse gases, cooperation to address the consequences of rising sea level and changing climate is just as urgent. References [1] Titus J G et al 2009 State and local governments plan for development of most land vulnerable to rising sea level along the US Atlantic coast Environ. Res. Lett. 4 044008 [2] US Global Change Research Program 2009 Global Climate Change Impacts in the United States (June 2009) [3] www.whitehouse.gov/the_press_office/Remarks-by-the-President-at-UN-Secretary-General-Ban-Ki-moons-Climate-Change-Summit/
Historical Reconstruction Reveals Recovery in Hawaiian Coral Reefs
Kittinger, John N.; Pandolfi, John M.; Blodgett, Jonathan H.; Hunt, Terry L.; Jiang, Hong; Maly, Kepā; McClenachan, Loren E.; Schultz, Jennifer K.; Wilcox, Bruce A.
2011-01-01
Coral reef ecosystems are declining worldwide, yet regional differences in the trajectories, timing and extent of degradation highlight the need for in-depth regional case studies to understand the factors that contribute to either ecosystem sustainability or decline. We reconstructed social-ecological interactions in Hawaiian coral reef environments over 700 years using detailed datasets on ecological conditions, proximate anthropogenic stressor regimes and social change. Here we report previously undetected recovery periods in Hawaiian coral reefs, including a historical recovery in the MHI (∼AD 1400–1820) and an ongoing recovery in the NWHI (∼AD 1950–2009+). These recovery periods appear to be attributed to a complex set of changes in underlying social systems, which served to release reefs from direct anthropogenic stressor regimes. Recovery at the ecosystem level is associated with reductions in stressors over long time periods (decades+) and large spatial scales (>103 km2). Our results challenge conventional assumptions and reported findings that human impacts to ecosystems are cumulative and lead only to long-term trajectories of environmental decline. In contrast, recovery periods reveal that human societies have interacted sustainably with coral reef environments over long time periods, and that degraded ecosystems may still retain the adaptive capacity and resilience to recover from human impacts. PMID:21991311
Wyoming Basin Rapid Ecoregional Assessment
Carr, Natasha B.; Means, Robert E.
2013-01-01
The overall goal of the Wyoming Basin Rapid Ecoregional Assessment (REA) is to provide information that supports regional planning and analysis for the management of ecological resources. The REA provides an assessment of baseline ecological conditions, an evaluation of current risks from drivers of ecosystem change (including energy development, fire, and invasive species), and a predictive capacity for evaluating future risks (including climate change). Additionally, the REA may be used for identifying priority areas for conservation or restoration and for assessing cumulative effects of multiple land uses. The Wyoming Basin REA will address Management Questions developed by the Bureau of Land Management and other agency partners for 8 major biomes and 19 species or species assemblages. The maps developed for addressing Management Questions will be integrated into overall maps of landscape-level ecological values and risks. The maps can be used to address the goals of the REA at a number of levels: for individual species, species assemblages, aquatic and terrestrial systems, and for the entire ecoregion. This allows flexibility in how the products of the REA are compiled to inform planning and management actions across a broad range of spatial scales.
NASA Astrophysics Data System (ADS)
Castelletti, A.; Schmitt, R. J. P.; Bizzi, S.; Kondolf, G. M.
2017-12-01
Dams are essential to meet growing water and energy demands. While dams cumulatively impact downstream rivers on network-scales, dam development is mostly based on ad-hoc economic and environmental assessments of single dams. Here, we provide evidence that replacing this ad-hoc approach with early strategic planning of entire dam portfolios can greatly reduce conflicts between economic and environmental objectives of dams. In the Mekong Basin (800,000km2), 123 major dam sites (status-quo: 56 built and under construction) could generate 280,000 GWh/yr of hydropower. Cumulatively, dams risk interrupting the basin's sediment dynamics with severe impacts on livelihoods and eco-systems. To evaluate cumulative impacts and benefits of the ad-hoc planned status-quo portfolio, we combine the CASCADE sediment connectivity model with data on hydropower production and sediment trapping at each dam site. We couple CASCADE to a multi-objective genetic algorithm (BORG) identifying a) portfolios resulting in an optimal trade-off between cumulative sediment trapping and hydropower production and b) an optimal development sequence for each portfolio. We perform this analysis first for the pristine basin (i.e., without pre-existing dams) and then starting from the status-quo portfolio, deriving policy recommendations for which dams should be prioritized in the near future. The status-quo portfolio creates a sub-optimal trade-off between hydropower and sediment trapping, exploiting 50 % of the basin's hydro-electric potential and trapping 60 % of the sediment load. Alternative optimal portfolios could have produced equivalent hydropower for 30 % sediment trapping. Imminent development of mega-dams in the lower basin will increase hydropower production by 20 % but increase sediment trapping to >90 %. In contrast, following an optimal development sequence can still increase hydropower by 30 % with limited additional sediment trapping by prioritizing dams in upper parts of the basin. Our findings argue for reconsidering some imminent dam developments in the Mekong. With nearly 3000 dams awaiting development world-wide, results from the Mekong are of global importance, demonstrating that strategic planning and sequencing of dams is instrumental for sustainable development of dams and hydropower.
Why Veterinary Medical Educators Should Embrace Cumulative Final Exams.
Royal, Kenneth D
The topic of cumulative final examinations often elicits polarizing opinions from veterinary medical educators. While some faculty prefer cumulative finals, there are many who perceive these types of examinations as problematic. Specifically, faculty often cite cumulative examinations are more likely to cause students' greater stress, which may in turn result in negative student evaluations of teaching. Cumulative finals also restrict the number of items one may present to students on most recent material. While these cited disadvantages may have some merit, the advantages of cumulative examinations far exceed the disadvantages. The purpose of this article is to discuss the advantages of cumulative examinations with respect to learning evidence, grade/score validity, fairness issues, and implications for academic policy.
Tharavichtikul, Ekkasit; Meungwong, Pooriwat; Chitapanarux, Taned; Chakrabandhu, Somvilai; Klunklin, Pitchayaponne; Onchan, Wimrak; Wanwilairat, Somsak; Traisathit, Patrinee; Galalae, Razvan; Chitapanarux, Imjai
2014-06-01
To evaluate association between equivalent dose in 2 Gy (EQD2) to rectal point dose and gastrointestinal toxicity from whole pelvic radiotherapy (WPRT) and intracavitary brachytherapy (ICBT) in cervical cancer patients who were evaluated by rectosigmoidoscopy in Faculty of Medicine, Chiang Mai University. Retrospective study was designed for the patients with locally advanced cervical cancer, treated by radical radiotherapy from 2004 to 2009 and were evaluated by rectosigmoidoscopy. The cumulative doses of WPRT and ICBT to the maximally rectal point were calculated to the EQD2 and evaluated the association of toxicities. Thirty-nine patients were evaluated for late rectal toxicity. The mean cumulative dose in term of EQD2 to rectum was 64.2 Gy. Grade 1 toxicities were the most common findings. According to endoscopic exam, the most common toxicities were congested mucosa (36 patients) and telangiectasia (32 patients). In evaluation between rectal dose in EQD2 and toxicities, no association of cumulative rectal dose to rectal toxicity, except the association of cumulative rectal dose in EQD2 >65 Gy to late effects of normal tissue (LENT-SOMA) scale ≥ grade 2 (p = 0.022; odds ratio, 5.312; 95% confidence interval, 1.269-22.244). The cumulative rectal dose in EQD2 >65 Gy have association with ≥ grade 2 LENT-SOMA scale.
Meungwong, Pooriwat; Chitapanarux, Taned; Chakrabandhu, Somvilai; Klunklin, Pitchayaponne; Onchan, Wimrak; Wanwilairat, Somsak; Traisathit, Patrinee; Galalae, Razvan; Chitapanarux, Imjai
2014-01-01
Purpose To evaluate association between equivalent dose in 2 Gy (EQD2) to rectal point dose and gastrointestinal toxicity from whole pelvic radiotherapy (WPRT) and intracavitary brachytherapy (ICBT) in cervical cancer patients who were evaluated by rectosigmoidoscopy in Faculty of Medicine, Chiang Mai University. Materials and Methods Retrospective study was designed for the patients with locally advanced cervical cancer, treated by radical radiotherapy from 2004 to 2009 and were evaluated by rectosigmoidoscopy. The cumulative doses of WPRT and ICBT to the maximally rectal point were calculated to the EQD2 and evaluated the association of toxicities. Results Thirty-nine patients were evaluated for late rectal toxicity. The mean cumulative dose in term of EQD2 to rectum was 64.2 Gy. Grade 1 toxicities were the most common findings. According to endoscopic exam, the most common toxicities were congested mucosa (36 patients) and telangiectasia (32 patients). In evaluation between rectal dose in EQD2 and toxicities, no association of cumulative rectal dose to rectal toxicity, except the association of cumulative rectal dose in EQD2 >65 Gy to late effects of normal tissue (LENT-SOMA) scale ≥ grade 2 (p = 0.022; odds ratio, 5.312; 95% confidence interval, 1.269-22.244). Conclusion The cumulative rectal dose in EQD2 >65 Gy have association with ≥ grade 2 LENT-SOMA scale. PMID:25061573
Prioritizing ecological restoration among sites in multi-stressor landscapes.
Neeson, Thomas M; Smith, Sigrid D P; Allan, J David; McIntyre, Peter B
2016-09-01
Most ecosystems are impacted by multiple local and long-distance stressors, many of which interact in complex ways. We present a framework for prioritizing ecological restoration efforts among sites in multi-stressor landscapes. Using a simple model, we show that both the economic and sociopolitical costs of restoration will typically be lower at sites with a relatively small number of severe problems than at sites with numerous lesser problems. Based on these results, we propose using cumulative stress and evenness of stressor impact as complementary indices that together reflect key challenges of restoring a site to improved condition. To illustrate this approach, we analyze stressor evenness across the world's rivers and the Laurentian Great Lakes. This exploration reveals that evenness and cumulative stress are decoupled, enabling selection of sites where remediating a modest number of high-intensity stressors could substantially reduce cumulative stress. Just as species richness and species evenness are fundamental axes of biological diversity, we argue that cumulative stress and stressor evenness constitute fundamental axes for identifying restoration opportunities in multi-stressor landscapes. Our results highlight opportunities to boost restoration efficiency through strategic use of multi-stressor datasets to identify sites that maximize ecological response per stressor remediated. This prioritization framework can also be expanded to account for the feasibility of remediation and the expected societal benefits of restoration projects. © 2016 by the Ecological Society of America.
Cumulative watershed effects: Then and now
Leslie M. Reid
2001-01-01
Abstract - Cumulative effects are the combined effects of multiple activities, and watershed effects are those which involve processes of water transport. Almost all impacts are influenced by multiple activities, so almost all impacts must be evaluated as cumulative impacts rather than as individual impacts. Existing definitions suggest that to be significant, an...
Indicators of carbon storage in U.S. ecosystems: baseline for terrestrial carbon accounting.
Negra, Christine; Sweedo, Caroline Cremer; Cavender-Bares, Kent; O'Malley, Robin
2008-01-01
Policymakers, program managers, and landowners need information about net terrestrial carbon sequestration in forests, croplands, grasslands, and shrublands to understand the cumulative effects of carbon trading programs, expanding biofuels production, and changing environmental conditions in addition to agricultural and forestry uses. Objective information systems that establish credible baselines and track changes in carbon storage can provide the accountability needed for carbon trading programs to achieve durable carbon sequestration and for biofuels initiatives to reduce net greenhouse gas emissions. A multi-sector stakeholder design process was used to produce a new indicator for the 2008 State of the Nation's Ecosystems report that presents metrics of carbon storage for major ecosystem types, specifically change in the amount of carbon gained or lost over time and the amount of carbon stored per unit area (carbon density). These metrics have been developed for national scale use, but are suitable for adaptation to multiple scales such as individual farm and forest parcels, carbon offset markets and integrated national and international assessments. To acquire the data necessary for a complete understanding of how much, and where, carbon is gained or lost by U.S. ecosystems, expansion and integration of monitoring programs will be required.
Assessing and managing multiple risks in a changing world ...
Roskilde University (Denmark) hosted a November 2015 workshop, Environmental Risk—Assessing and Managing Multiple Risks in a Changing World. This Focus article presents the consensus recommendations of 30 attendees from 9 countries regarding implementation of a common currency (ecosystem services) for holistic environmental risk assessment and management; improvements to risk assessment and management in a complex, human-modified, and changing world; appropriate development of protection goals in a 2-stage process; dealing with societal issues; risk-management information needs; conducting risk assessment of risk management; and development of adaptive and flexible regulatory systems. The authors encourage both cross-disciplinary and interdisciplinary approaches to address their 10 recommendations: 1) adopt ecosystem services as a common currency for risk assessment and management; 2) consider cumulative stressors (chemical and nonchemical) and determine which dominate to best manage and restore ecosystem services; 3) fully integrate risk managers and communities of interest into the risk-assessment process; 4) fully integrate risk assessors and communities of interest into the risk-management process; 5) consider socioeconomics and increased transparency in both risk assessment and risk management; 6) recognize the ethical rights of humans and ecosystems to an adequate level of protection; 7) determine relevant reference conditions and the proper ecological c
Assessing and Managing Multiple Risks in a Changing World ...
Roskilde University hosted a November 2015 workshop on “Environmental Risk – Assessing and Managing Multiple Risks in a Changing World”. Thirty attendees from 9 countries developed consensus recommendations regarding: implementation of a common currency (ecosystem services) for holistic environmental risk assessment and management; improvements to risk assessment and management in a complex, human-modified, and changing world; appropriate development of protection goals in a 2-stage process involving both universal and site-, region-, or problem-specific protection goals; addressing societal issues; risk management information needs; conducting risk assessment of risk management; and development of adaptive and flexible regulatory systems. We encourage both cross- and inter-disciplinary approaches to address 10 recommendations: 1) adopt ecosystem services as a common currency for risk assessment and management; 2) consider cumulative stressors (chemical and non-chemical) and determine which dominate to best manage and restore ecosystem services; 3) fully integrate risk managers and communities of interest into the risk assessment process; 4) fully integrate risk assessors and communities of interest into the risk management process; 5) consider socio-economics and increase transparency in both risk assessment and risk management; 6) recognize the ethical rights of humans and ecosystems to an adequate level of protection; 7) determine relevant reference con
Desertification of rangelands: 4.20
Peters, D. P. C.; Bestelmeyer, B. T.; Havstad, K. M.; Rango, A.; Archer, S. R.; Comrie, A. C.; Gimblett, H. R.; López-Hoffman, L.; Sala, O. E.; Vivoni, E. R.; Brooks, M. L.; Brown, J.; Monger, H. C.; Goldstein, J. H.
2013-01-01
Desertification, the broad-scale conversion of perennial grasslands to dominance by annuals or xerophytic shrubs, has affected drylands globally over the past several centuries. Desertification is a cumulative threat that includes both climatic (e.g., drought) and land-use drivers (e.g., livestock overgrazing, fire). In this chapter, we determine the vulnerability of different ecosystem services to changes in drivers and ecosystem states, with a focus on the American Southwest. We have four objectives: (1) to describe key services in drylands, (2) to identify consequences of desertification to each service, (3) to explore the vulnerability of each service to future state-changes if existing threats intensify and new threats emerge, and (4) to determine threats expected to have the greatest future impact, and to provide potential actions for mitigation. We conclude with recommendations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gelfand, Ilya; Shcherbak, Iurii; Millar, Neville
Differences in soil nitrous oxide (N 2O) fluxes among ecosystems are often difficult to evaluate and predict due to high spatial and temporal variabilities and few direct experimental comparisons. For 20 years, we measured N 2O fluxes in 11 ecosystems in southwest Michigan USA: four annual grain crops (corn–soybean–wheat rotations) managed with conventional, no-till, reduced input, or biologically based/organic inputs; three perennial crops (alfalfa, poplar, and conifers); and four unmanaged ecosystems of different successional age including mature forest. Average N 2O emissions were higher from annual grain and N-fixing cropping systems than from nonleguminous perennial cropping systems and were low across unmanaged ecosystems. Among annual cropping systems full-rotation fluxes were indistinguishable from one another but rotation phase mattered. For example, those systems with cover crops and reduced fertilizer N emitted more N 2O during the corn and soybean phases, but during the wheat phase fluxes were ~40% lower. Likewise, no-till did not differ from conventional tillage over the entire rotation but reduced emissions ~20% in the wheat phase and increased emissions 30–80% in the corn and soybean phases. Greenhouse gas intensity for the annual crops (flux per unit yield) was lowest for soybeans produced under conventional management, while for the 11 other crop 9 management combinations intensities were similar to one another. Among the fertilized systems, emissions ranged from 0.30 to 1.33 kg N 2O-N ha -1 yr -1 and were best predicted by IPCC Tier 1 and DEF emission factor approaches. Annual cumulative fluxes from perennial systems were best explained by soil NOmore » $$-\\atop{3}$$ pools (r 2 = 0.72) but not so for annual crops, where management differences overrode simple correlations. Daily soil N 2O emissions were poorly predicted by any measured variables. Overall, long-term measurements reveal lower fluxes in nonlegume perennial vegetation and, for conservatively fertilized annual crops, the overriding influence of rotation phase on annual fluxes.« less
Gelfand, Ilya; Shcherbak, Iurii; Millar, Neville; ...
2016-08-11
Differences in soil nitrous oxide (N 2O) fluxes among ecosystems are often difficult to evaluate and predict due to high spatial and temporal variabilities and few direct experimental comparisons. For 20 years, we measured N 2O fluxes in 11 ecosystems in southwest Michigan USA: four annual grain crops (corn–soybean–wheat rotations) managed with conventional, no-till, reduced input, or biologically based/organic inputs; three perennial crops (alfalfa, poplar, and conifers); and four unmanaged ecosystems of different successional age including mature forest. Average N 2O emissions were higher from annual grain and N-fixing cropping systems than from nonleguminous perennial cropping systems and were low across unmanaged ecosystems. Among annual cropping systems full-rotation fluxes were indistinguishable from one another but rotation phase mattered. For example, those systems with cover crops and reduced fertilizer N emitted more N 2O during the corn and soybean phases, but during the wheat phase fluxes were ~40% lower. Likewise, no-till did not differ from conventional tillage over the entire rotation but reduced emissions ~20% in the wheat phase and increased emissions 30–80% in the corn and soybean phases. Greenhouse gas intensity for the annual crops (flux per unit yield) was lowest for soybeans produced under conventional management, while for the 11 other crop 9 management combinations intensities were similar to one another. Among the fertilized systems, emissions ranged from 0.30 to 1.33 kg N 2O-N ha -1 yr -1 and were best predicted by IPCC Tier 1 and DEF emission factor approaches. Annual cumulative fluxes from perennial systems were best explained by soil NOmore » $$-\\atop{3}$$ pools (r 2 = 0.72) but not so for annual crops, where management differences overrode simple correlations. Daily soil N 2O emissions were poorly predicted by any measured variables. Overall, long-term measurements reveal lower fluxes in nonlegume perennial vegetation and, for conservatively fertilized annual crops, the overriding influence of rotation phase on annual fluxes.« less
Gelfand, Ilya; Shcherbak, Iurii; Millar, Neville; Kravchenko, Alexandra N; Robertson, G Philip
2016-11-01
Differences in soil nitrous oxide (N 2 O) fluxes among ecosystems are often difficult to evaluate and predict due to high spatial and temporal variabilities and few direct experimental comparisons. For 20 years, we measured N 2 O fluxes in 11 ecosystems in southwest Michigan USA: four annual grain crops (corn-soybean-wheat rotations) managed with conventional, no-till, reduced input, or biologically based/organic inputs; three perennial crops (alfalfa, poplar, and conifers); and four unmanaged ecosystems of different successional age including mature forest. Average N 2 O emissions were higher from annual grain and N-fixing cropping systems than from nonleguminous perennial cropping systems and were low across unmanaged ecosystems. Among annual cropping systems full-rotation fluxes were indistinguishable from one another but rotation phase mattered. For example, those systems with cover crops and reduced fertilizer N emitted more N 2 O during the corn and soybean phases, but during the wheat phase fluxes were ~40% lower. Likewise, no-till did not differ from conventional tillage over the entire rotation but reduced emissions ~20% in the wheat phase and increased emissions 30-80% in the corn and soybean phases. Greenhouse gas intensity for the annual crops (flux per unit yield) was lowest for soybeans produced under conventional management, while for the 11 other crop × management combinations intensities were similar to one another. Among the fertilized systems, emissions ranged from 0.30 to 1.33 kg N 2 O-N ha -1 yr -1 and were best predicted by IPCC Tier 1 and ΔEF emission factor approaches. Annual cumulative fluxes from perennial systems were best explained by soil NO3- pools (r 2 = 0.72) but not so for annual crops, where management differences overrode simple correlations. Daily soil N 2 O emissions were poorly predicted by any measured variables. Overall, long-term measurements reveal lower fluxes in nonlegume perennial vegetation and, for conservatively fertilized annual crops, the overriding influence of rotation phase on annual fluxes. © 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
Dewulf, J; Bösch, M E; De Meester, B; Van der Vorst, G; Van Langenhove, H; Hellweg, S; Huijbregts, M A J
2007-12-15
The objective of the paper is to establish a comprehensive resource-based life cycle impact assessment (LCIA) method which is scientifically sound and that enables to assess all kinds of resources that are deprived from the natural ecosystem, all quantified on one single scale, free of weighting factors. The method is based on the exergy concept. Consistent exergy data on fossils, nuclear and metal ores, minerals, air, water, land occupation, and renewable energy sources were elaborated, with well defined system boundaries. Based on these data, the method quantifies the exergy "taken away" from natural ecosystems, and is thus called the cumulative exergy extraction from the natural environment (CEENE). The acquired data set was coupled with a state-of-the art life cycle inventory database, ecoinvent. In this way, the method is able to quantitatively distinguish eight categories of resources withdrawn from the natural environment: renewable resources, fossil fuels, nuclear energy, metal ores, minerals, water resources, land resources, and atmospheric resources. Third, the CEENE method is illustrated for a number of products that are available in ecoinvent, and results are compared with common resource oriented LCIA methods. The application to the materials in the ecoinvent database showed that fossil resources and land use are of particular importance with regard to the total CEENE score, although the other resource categories may also be significant.
Cumulative effective dose associated with radiography and CT of adolescents with spinal injuries.
Lemburg, Stefan P; Peters, Soeren A; Roggenland, Daniela; Nicolas, Volkmar; Heyer, Christoph M
2010-12-01
The purpose of this study was to analyze the quantity and distribution of cumulative effective doses in diagnostic imaging of adolescents with spinal injuries. At a level 1 trauma center from July 2003 through June 2009, imaging procedures during initial evaluation and hospitalization and after discharge of all patients 10-20 years old with spinal fractures were retrospectively analyzed. The cumulative effective doses for all imaging studies were calculated, and the doses to patients with spinal injuries who had multiple traumatic injuries were compared with the doses to patients with spinal injuries but without multiple injuries. The significance level was set at 5%. Imaging studies of 72 patients (32 with multiple injuries; average age, 17.5 years) entailed a median cumulative effective dose of 18.89 mSv. Patients with multiple injuries had a significantly higher total cumulative effective dose (29.70 versus 10.86 mSv, p < 0.001) mainly owing to the significantly higher CT-related cumulative effective dose to multiple injury patients during the initial evaluation (18.39 versus 2.83 mSv, p < 0.001). Overall, CT accounted for 86% of the total cumulative effective dose. Adolescents with spinal injuries receive a cumulative effective dose equal to that of adult trauma patients and nearly three times that of pediatric trauma patients. Areas of focus in lowering cumulative effective dose should be appropriate initial estimation of trauma severity and careful selection of CT scan parameters.
Cornwall, Christopher E; Eddy, Tyler D
2015-02-01
Understanding ecosystem responses to global and local anthropogenic impacts is paramount to predicting future ecosystem states. We used an ecosystem modeling approach to investigate the independent and cumulative effects of fishing, marine protection, and ocean acidification on a coastal ecosystem. To quantify the effects of ocean acidification at the ecosystem level, we used information from the peer-reviewed literature on the effects of ocean acidification. Using an Ecopath with Ecosim ecosystem model for the Wellington south coast, including the Taputeranga Marine Reserve (MR), New Zealand, we predicted ecosystem responses under 4 scenarios: ocean acidification + fishing; ocean acidification + MR (no fishing); no ocean acidification + fishing; no ocean acidification + MR for the year 2050. Fishing had a larger effect on trophic group biomasses and trophic structure than ocean acidification, whereas the effects of ocean acidification were only large in the absence of fishing. Mortality by fishing had large, negative effects on trophic group biomasses. These effects were similar regardless of the presence of ocean acidification. Ocean acidification was predicted to indirectly benefit certain species in the MR scenario. This was because lobster (Jasus edwardsii) only recovered to 58% of the MR biomass in the ocean acidification + MR scenario, a situation that benefited the trophic groups lobsters prey on. Most trophic groups responded antagonistically to the interactive effects of ocean acidification and marine protection (46%; reduced response); however, many groups responded synergistically (33%; amplified response). Conservation and fisheries management strategies need to account for the reduced recovery potential of some exploited species under ocean acidification, nonadditive interactions of multiple factors, and indirect responses of species to ocean acidification caused by declines in calcareous predators. © 2014 Society for Conservation Biology.
Impacts of climate change on marine organisms and ecosystems.
Brierley, Andrew S; Kingsford, Michael J
2009-07-28
Human activities are releasing gigatonnes of carbon to the Earth's atmosphere annually. Direct consequences of cumulative post-industrial emissions include increasing global temperature, perturbed regional weather patterns, rising sea levels, acidifying oceans, changed nutrient loads and altered ocean circulation. These and other physical consequences are affecting marine biological processes from genes to ecosystems, over scales from rock pools to ocean basins, impacting ecosystem services and threatening human food security. The rates of physical change are unprecedented in some cases. Biological change is likely to be commensurately quick, although the resistance and resilience of organisms and ecosystems is highly variable. Biological changes founded in physiological response manifest as species range-changes, invasions and extinctions, and ecosystem regime shifts. Given the essential roles that oceans play in planetary function and provision of human sustenance, the grand challenge is to intervene before more tipping points are passed and marine ecosystems follow less-buffered terrestrial systems further down a spiral of decline. Although ocean bioengineering may alleviate change, this is not without risk. The principal brake to climate change remains reduced CO(2) emissions that marine scientists and custodians of the marine environment can lobby for and contribute to. This review describes present-day climate change, setting it in context with historical change, considers consequences of climate change for marine biological processes now and in to the future, and discusses contributions that marine systems could play in mitigating the impacts of global climate change.
Cumulative watershed effects: Caspar Creek and beyond
Leslie M. Reid
1998-01-01
Cumulative effects are the combined effects of multiple activities, and watershed effects are those which involve processes of water transport. Almost all impacts are influenced by multiple activities, so almost all impacts must be evaluated as cumulative impacts rather than as individual impacts. Existing definitions suggest that to be significant, an impact must be...
NASA Astrophysics Data System (ADS)
Iacob, Oana; Rowan, John; Brown, Iain; Ellis, Chris
2014-05-01
Climate change is projected to alter river flows and the magnitude/frequency characteristics of floods and droughts. As a result flood risk is expected to increase with environmental, social and economic impacts. Traditionally flood risk management has been heavily relying on engineering measures, however with climate change their capacity to provide protection is expected to decrease. Ecosystem-based adaptation highlights the interdependence of human and natural systems, and the potential to buffer the impacts of climate change by maintaining functioning ecosystems that continue to provide multiple societal benefits. Natural flood management measures have the potential to provide a greater adaptive capacity to negate the impacts of climate change and provide ancillary benefits. To understand the impacts of different NFM measures on ecosystem services a meta-analysis was undertaken. Twenty five studies from across the world were pulled together to assess their effectiveness on reducing the flood risk but also on other ecosystems services as defined by the UK National Ecosystem Assessment, which distinguishes between provisioning, regulating, cultural and supporting services. Four categories of NFM measures were considered: (i) afforestation measures, (ii) drainage and blocking the drains, (iii) wetland restoration and (iv) combined measures. Woodland expansion measures provide significant benefits for flood protection more pronounced for low magnitude events, but also for other services such as carbon sequestration and water quality. These measures however will come at a cost for livestock and crop provisioning services as a result of land use changes. Drainage operations and blocking the drains have mixed impacts on carbon sequestration and water quality depending on soil type, landscape settings and local characteristics. Wetland and floodplain restoration measures have generally a few disbenefits and provide improvements for regulating and supporting services. Mixed measures are expected to have cumulative benefits which are likely to outweigh disbenefits and packages of actions are recommended rather than individual or localised actions for an integrated catchment management approach. NFM measures have the potential to provide significant environmental gains, however the time lags between the moment these measures are set in place until they become effective must be considered especially in flood vulnerable communities where there is already a stakeholders demand to decrease the risk of flooding even for the current level of exposure.
Anderson, Lindsay E; Cree, Alison; Towns, David R; Nelson, Nicola J
2015-01-01
Translocations are an important conservation tool used to restore at-risk species to their historical range. Unavoidable procedures during translocations, such as habitat disturbance, capture, handling, processing, captivity, transport and release to a novel environment, have the potential to be stressful for most species. In this study, we examined acute and chronic stress (through the measurement of the glucocorticoid corticosterone) in a rare reptile (the tuatara, Sphenodon punctatus). We found that: (i) the acute corticosterone response remains elevated during the initial translocation process but is not amplified by cumulative stressors; and (ii) the long-term dynamics of corticosterone secretion are similar in translocated and source populations. Taken together, our results show that translocated tuatara are generally resistant to cumulative acute stressors and show no hormonal sign of chronic stress. Translocation efforts in tuatara afford the potential to reduce extinction risk and restore natural ecosystems.
NASA Astrophysics Data System (ADS)
Cai, Fu; Ming, Huiqing; Mi, Na; Xie, Yanbing; Zhang, Yushu; Li, Rongping
2017-04-01
As root water uptake (RWU) is an important link in the water and heat exchange between plants and ambient air, improving its parameterization is key to enhancing the performance of land surface model simulations. Although different types of RWU functions have been adopted in land surface models, there is no evidence as to which scheme most applicable to maize farmland ecosystems. Based on the 2007-09 data collected at the farmland ecosystem field station in Jinzhou, the RWU function in the Common Land Model (CoLM) was optimized with scheme options in light of factors determining whether roots absorb water from a certain soil layer ( W x ) and whether the baseline cumulative root efficiency required for maximum plant transpiration ( W c ) is reached. The sensibility of the parameters of the optimization scheme was investigated, and then the effects of the optimized RWU function on water and heat flux simulation were evaluated. The results indicate that the model simulation was not sensitive to W x but was significantly impacted by W c . With the original model, soil humidity was somewhat underestimated for precipitation-free days; soil temperature was simulated with obvious interannual and seasonal differences and remarkable underestimations for the maize late-growth stage; and sensible and latent heat fluxes were overestimated and underestimated, respectively, for years with relatively less precipitation, and both were simulated with high accuracy for years with relatively more precipitation. The optimized RWU process resulted in a significant improvement of CoLM's performance in simulating soil humidity, temperature, sensible heat, and latent heat, for dry years. In conclusion, the optimized RWU scheme available for the CoLM model is applicable to the simulation of water and heat flux for maize farmland ecosystems in arid areas.
Approaches to modelling hydrology and ecosystem interactions
NASA Astrophysics Data System (ADS)
Silberstein, Richard P.
2014-05-01
As the pressures of industry, agriculture and mining on groundwater resources increase there is a burgeoning un-met need to be able to capture these multiple, direct and indirect stresses in a formal framework that will enable better assessment of impact scenarios. While there are many catchment hydrological models and there are some models that represent ecological states and change (e.g. FLAMES, Liedloff and Cook, 2007), these have not been linked in any deterministic or substantive way. Without such coupled eco-hydrological models quantitative assessments of impacts from water use intensification on water dependent ecosystems under changing climate are difficult, if not impossible. The concept would include facility for direct and indirect water related stresses that may develop around mining and well operations, climate stresses, such as rainfall and temperature, biological stresses, such as diseases and invasive species, and competition such as encroachment from other competing land uses. Indirect water impacts could be, for example, a change in groundwater conditions has an impact on stream flow regime, and hence aquatic ecosystems. This paper reviews previous work examining models combining ecology and hydrology with a view to developing a conceptual framework linking a biophysically defensable model that combines ecosystem function with hydrology. The objective is to develop a model capable of representing the cumulative impact of multiple stresses on water resources and associated ecosystem function.
Cumulative impact assessment: A case study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Irving, J.S.; Bain, M.B.
The National Environmental Policy Act of 1969 (NEPA) indirectly addressed cumulative impacts. Attempts to include cumulative impacts in environmental impact assessments, however, did not began until the early 1980's. One such effort began when The Federal Energy and Regulatory Commission (FERC) received over 1200 applications for hydroelectric projects in the Pacific Northwest. Federal and State Agencies, Indian tribes and environmental groups realized the potential cumulative effect such development could have on fish and wildfire resources. In response, the FERC developed the Cluster Impact Assessment Procedure (CIAP). The CIAP consisted of public scoping meetings; interactive workshops designed to identify projects withmore » potential for cumulative effects, important resources, available data; and preparation of a NEPA document (EA or EIS). The procedure was modifies to assess the cumulative impacts of fifteen hydroelectric projects in the Salmon River Basin, Idaho. The methodology achieved its basic objective of evaluating the impact of hydroelectric development on fish and wildfire resources. In addition, the use of evaluative techniques to determine project interactions and degrees of impact hindered acceptance of the conclusions. Notwithstanding these problems, the studies provided a basis for decision-makers to incorporate the potential effects of cumulative impacts into the decision-making process. 22 refs., 2 figs., 4 tabs.« less
Ryan, Edmund M; Ogle, Kiona; Peltier, Drew; Walker, Anthony P; De Kauwe, Martin G; Medlyn, Belinda E; Williams, David G; Parton, William; Asao, Shinichi; Guenet, Bertrand; Harper, Anna B; Lu, Xingjie; Luus, Kristina A; Zaehle, Sönke; Shu, Shijie; Werner, Christian; Xia, Jianyang; Pendall, Elise
2017-08-01
Determining whether the terrestrial biosphere will be a source or sink of carbon (C) under a future climate of elevated CO 2 (eCO 2 ) and warming requires accurate quantification of gross primary production (GPP), the largest flux of C in the global C cycle. We evaluated 6 years (2007-2012) of flux-derived GPP data from the Prairie Heating and CO 2 Enrichment (PHACE) experiment, situated in a grassland in Wyoming, USA. The GPP data were used to calibrate a light response model whose basic formulation has been successfully used in a variety of ecosystems. The model was extended by modeling maximum photosynthetic rate (A max ) and light-use efficiency (Q) as functions of soil water, air temperature, vapor pressure deficit, vegetation greenness, and nitrogen at current and antecedent (past) timescales. The model fits the observed GPP well (R 2 = 0.79), which was confirmed by other model performance checks that compared different variants of the model (e.g. with and without antecedent effects). Stimulation of cumulative 6-year GPP by warming (29%, P = 0.02) and eCO 2 (26%, P = 0.07) was primarily driven by enhanced C uptake during spring (129%, P = 0.001) and fall (124%, P = 0.001), respectively, which was consistent across years. Antecedent air temperature (Tair ant ) and vapor pressure deficit (VPD ant ) effects on A max (over the past 3-4 days and 1-3 days, respectively) were the most significant predictors of temporal variability in GPP among most treatments. The importance of VPD ant suggests that atmospheric drought is important for predicting GPP under current and future climate; we highlight the need for experimental studies to identify the mechanisms underlying such antecedent effects. Finally, posterior estimates of cumulative GPP under control and eCO 2 treatments were tested as a benchmark against 12 terrestrial biosphere models (TBMs). The narrow uncertainties of these data-driven GPP estimates suggest that they could be useful semi-independent data streams for validating TBMs. © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Reisinger, A. J.; Woytowitz, E.; Majcher, E.; Rosi, E. J.; Groffman, P.
2017-12-01
Urban streams receive a myriad of chemical inputs from the surrounding landscape due to altered lithology (asphalt, concrete), leaky sewage infrastructure, and other human activities (road salt, fertilizer, industrial wastes, wastewater effluent), potentially leading to multiple chemical stressors occurring simultaneously. To evaluate potential drivers of water chemistry change, we used approximately 20 years of weekly water chemistry monitoring data from streams in the Baltimore Ecosystem Study (BES) to quantify trends of annual loads and flow-weighted concentrations for multiple solutes of interest, including nitrate (NO3-), phosphate (PO43-), total nitrogen (TN), total phosphorus (TP), chloride (Cl-), and sulfate (SO42-) and subsequently examined various gray and green infrastructure characteristics at the watershed scale. For example, we quantified annual volume and duration of reported sanitary sewer overflows (SSO) and cumulative storage volume and area of various best management practices (BMPs). Site- and solute-specific trends differed, but across our monitoring network we found evidence for decreasing annual export for multiple solutes. Additionally, we found that changes in gray- and green-infrastructure characteristics were related to changes in water quality at our most downstream (most urban) monitoring site. For example, annual NO3- loads increased with longer cumulative SSO duration, whereas annual PO43- and TP loads decreased with a cumulative BMP area in the watershed. Further, we used same long-term water chemistry data and multivariate analyses to investigate whether urban streams have unique water chemistry fingerprints representing the multiple chemical stressors at a given site, which could provide insight into sources and impacts of water-quality impairment. These analyses and results illustrate the major role gray and green infrastructure play in influencing water quality in urban environments, and illustrate that focusing on a variety of chemical stressors is necessary to gain a broader understanding of the issues affecting urban water quality.
Spatial characterization of acid rain stress in Canadian Shield lakes
NASA Technical Reports Server (NTRS)
Tanis, Fred J.
1986-01-01
A major concern of the acid rain problem is the cumulative ecosystem damage to lakes and forests. The number of lakes affected in northeastern United States and on the Canadian Shield is thought to be enormous. Seasonal changes in lake transparency are examined relative to annual acidic load. The relationship between variations in lake acidification and ecophysical units is being examined. Finally, the utility of Thematic Mapper (TM) based observations is being used to measure seasonal changes in the optical transparency in acid lakes.
Marine reserves can mitigate and promote adaptation to climate change
Roberts, Callum M.; O’Leary, Bethan C.; McCauley, Douglas J.; Cury, Philippe Maurice; Duarte, Carlos M.; Lubchenco, Jane; Pauly, Daniel; Sáenz-Arroyo, Andrea; Sumaila, Ussif Rashid; Wilson, Rod W.; Worm, Boris; Castilla, Juan Carlos
2017-01-01
Strong decreases in greenhouse gas emissions are required to meet the reduction trajectory resolved within the 2015 Paris Agreement. However, even these decreases will not avert serious stress and damage to life on Earth, and additional steps are needed to boost the resilience of ecosystems, safeguard their wildlife, and protect their capacity to supply vital goods and services. We discuss how well-managed marine reserves may help marine ecosystems and people adapt to five prominent impacts of climate change: acidification, sea-level rise, intensification of storms, shifts in species distribution, and decreased productivity and oxygen availability, as well as their cumulative effects. We explore the role of managed ecosystems in mitigating climate change by promoting carbon sequestration and storage and by buffering against uncertainty in management, environmental fluctuations, directional change, and extreme events. We highlight both strengths and limitations and conclude that marine reserves are a viable low-tech, cost-effective adaptation strategy that would yield multiple cobenefits from local to global scales, improving the outlook for the environment and people into the future. PMID:28584096
Marine reserves can mitigate and promote adaptation to climate change.
Roberts, Callum M; O'Leary, Bethan C; McCauley, Douglas J; Cury, Philippe Maurice; Duarte, Carlos M; Lubchenco, Jane; Pauly, Daniel; Sáenz-Arroyo, Andrea; Sumaila, Ussif Rashid; Wilson, Rod W; Worm, Boris; Castilla, Juan Carlos
2017-06-13
Strong decreases in greenhouse gas emissions are required to meet the reduction trajectory resolved within the 2015 Paris Agreement. However, even these decreases will not avert serious stress and damage to life on Earth, and additional steps are needed to boost the resilience of ecosystems, safeguard their wildlife, and protect their capacity to supply vital goods and services. We discuss how well-managed marine reserves may help marine ecosystems and people adapt to five prominent impacts of climate change: acidification, sea-level rise, intensification of storms, shifts in species distribution, and decreased productivity and oxygen availability, as well as their cumulative effects. We explore the role of managed ecosystems in mitigating climate change by promoting carbon sequestration and storage and by buffering against uncertainty in management, environmental fluctuations, directional change, and extreme events. We highlight both strengths and limitations and conclude that marine reserves are a viable low-tech, cost-effective adaptation strategy that would yield multiple cobenefits from local to global scales, improving the outlook for the environment and people into the future.
EPA held a 2-day workshop on December 8 and 9, 2010 at the Doubletree Hotel Washington DC-Crystal City in Arlington, Viriginia. The goal of this workshop was to evaulate methods of determining cumulative risk associated with exposure to mulitple phthalates for inclusion in the EP...
Systemic solutions for multi-benefit water and environmental management.
Everard, Mark; McInnes, Robert
2013-09-01
The environmental and financial costs of inputs to, and unintended consequences arising from narrow consideration of outputs from, water and environmental management technologies highlight the need for low-input solutions that optimise outcomes across multiple ecosystem services. Case studies examining the inputs and outputs associated with several ecosystem-based water and environmental management technologies reveal a range from those that differ little from conventional electro-mechanical engineering techniques through methods, such as integrated constructed wetlands (ICWs), designed explicitly as low-input systems optimising ecosystem service outcomes. All techniques present opportunities for further optimisation of outputs, and hence for greater cumulative public value. We define 'systemic solutions' as "…low-input technologies using natural processes to optimise benefits across the spectrum of ecosystem services and their beneficiaries". They contribute to sustainable development by averting unintended negative impacts and optimising benefits to all ecosystem service beneficiaries, increasing net economic value. Legacy legislation addressing issues in a fragmented way, associated 'ring-fenced' budgets and established management assumptions represent obstacles to implementing 'systemic solutions'. However, flexible implementation of legacy regulations recognising their primary purpose, rather than slavish adherence to detailed sub-clauses, may achieve greater overall public benefit through optimisation of outcomes across ecosystem services. Systemic solutions are not a panacea if applied merely as 'downstream' fixes, but are part of, and a means to accelerate, broader culture change towards more sustainable practice. This necessarily entails connecting a wider network of interests in the formulation and design of mutually-beneficial systemic solutions, including for example spatial planners, engineers, regulators, managers, farming and other businesses, and researchers working on ways to quantify and optimise delivery of ecosystem services. Copyright © 2013 Elsevier B.V. All rights reserved.
Bryophytes and Organic layers Control Uptake of Airborne Nitrogen in Low-N Environments.
Bähring, Alexandra; Fichtner, Andreas; Friedrich, Uta; von Oheimb, Goddert; Härdtle, Werner
2017-01-01
The effects of atmospheric nitrogen (N) deposition on ecosystem functioning largely depend on the retention of N in different ecosystem compartments, but accumulation and partitioning processes have rarely been quantified in long-term field experiments. In the present study we analysed for the first time decadal-scale flows and allocation patterns of N in a heathland ecosystem that has been subject to airborne N inputs over decades. Using a long-term 15 N tracer experiment, we quantified N retention and flows to and between ecosystem compartments (above-ground/below-ground vascular biomass, moss layer, soil horizons, leachate). After 9 years, about 60% of the added 15 N-tracer remained in the N cycle of the ecosystem. The moss layer proved to be a crucial link between incoming N and its allocation to different ecosystem compartments (in terms of a short-term capture, but long-term release function). However, about 50% of the 15 N captured and released by the moss layer was not compensated for by a corresponding increase in recovery rates in any other compartment, probably due to denitrification losses from the moss layer in the case of water saturation after rain events. The O-horizon proved to be the most important long-term sink for added 15 N, as reflected by an increase in recovery rates from 18 to 40% within 8 years. Less than 2.1% of 15 N were recovered in the podzol-B-horizon, suggesting that only negligible amounts of N were withdrawn from the N cycle of the ecosystem. Moreover, 15 N recovery was low in the dwarf shrub above-ground biomass (<3.9% after 9 years) and in the leachate (about 0.03% within 1 year), indicating still conservative N cycles of the ecosystem, even after decades of N inputs beyond critical load thresholds. The continuous accumulation of reactive forms of airborne N suggests that critical load-estimates need to account for cumulative effects of N additions into ecosystems.
Bryophytes and Organic layers Control Uptake of Airborne Nitrogen in Low-N Environments
Bähring, Alexandra; Fichtner, Andreas; Friedrich, Uta; von Oheimb, Goddert; Härdtle, Werner
2017-01-01
The effects of atmospheric nitrogen (N) deposition on ecosystem functioning largely depend on the retention of N in different ecosystem compartments, but accumulation and partitioning processes have rarely been quantified in long-term field experiments. In the present study we analysed for the first time decadal-scale flows and allocation patterns of N in a heathland ecosystem that has been subject to airborne N inputs over decades. Using a long-term 15N tracer experiment, we quantified N retention and flows to and between ecosystem compartments (above-ground/below-ground vascular biomass, moss layer, soil horizons, leachate). After 9 years, about 60% of the added 15N-tracer remained in the N cycle of the ecosystem. The moss layer proved to be a crucial link between incoming N and its allocation to different ecosystem compartments (in terms of a short-term capture, but long-term release function). However, about 50% of the 15N captured and released by the moss layer was not compensated for by a corresponding increase in recovery rates in any other compartment, probably due to denitrification losses from the moss layer in the case of water saturation after rain events. The O-horizon proved to be the most important long-term sink for added 15N, as reflected by an increase in recovery rates from 18 to 40% within 8 years. Less than 2.1% of 15N were recovered in the podzol-B-horizon, suggesting that only negligible amounts of N were withdrawn from the N cycle of the ecosystem. Moreover, 15N recovery was low in the dwarf shrub above-ground biomass (<3.9% after 9 years) and in the leachate (about 0.03% within 1 year), indicating still conservative N cycles of the ecosystem, even after decades of N inputs beyond critical load thresholds. The continuous accumulation of reactive forms of airborne N suggests that critical load-estimates need to account for cumulative effects of N additions into ecosystems. PMID:29375589
Sustainable oceans and coasts: Lessons learnt from Eastern and Western Africa
NASA Astrophysics Data System (ADS)
Diop, S.; Scheren, P. A.
2016-12-01
Marine and coastal ecosystems in Africa provide valuable cultural (recreational, spiritual), provisioning (such as food, timber and firewood) and regulatory (such as flood protection and climate regulation) services that are not only at the core of coastal ecosystem functioning, but are also an important basis for the economic livelihoods of over 120 million inhabitants living along the continent's coastal zone. However, these valuable ecosystems are being subjected to a range of human pressures, including overfishing and destructive fishing practices, pollution, including excess nutrients (causing eutrophication), loss and degradation of habitats, physical shoreline changes and disturbance of the hydrological regimes of rivers and estuarine systems, aggravated further by the effects of climate change. The effects of these pressures, often acting in cumulative and synergistic manners, readily affect the overall stability of the coastal ecosystems, threatening their resilience over the short- and long-term. This chapter highlights the challenges faced by the coastal states of Eastern and Western Africa in managing their coastal and marine resources for the sustainable benefits of their populations. Current mechanisms for the governance and management of the coastal and marine environment at national to regional scales are reviewed, and their effectiveness appraised, and recommendations for improved management and scientific support are made.
Toward a social-ecological theory of forest macrosystems for improved ecosystem management
Kleindl, William J.; Stoy, Paul C.; Binford, Michael W.; Desai, Ankur R.; Dietze, Michael C.; Schultz, Courtney A.; Starr, Gregory; Staudhammer, Christina; Wood, David J. A.
2018-01-01
The implications of cumulative land-use decisions and shifting climate on forests, require us to integrate our understanding of ecosystems, markets, policy, and resource management into a social-ecological system. Humans play a central role in macrosystem dynamics, which complicates ecological theories that do not explicitly include human interactions. These dynamics also impact ecological services and related markets, which challenges economic theory. Here, we use two forest macroscale management initiatives to develop a theoretical understanding of how management interacts with ecological functions and services at these scales and how the multiple large-scale management goals work either in consort or conflict with other forest functions and services. We suggest that calling upon theories developed for organismal ecology, ecosystem ecology, and ecological economics adds to our understanding of social-ecological macrosystems. To initiate progress, we propose future research questions to add rigor to macrosystem-scale studies: (1) What are the ecosystem functions that operate at macroscales, their necessary structural components, and how do we observe them? (2) How do systems at one scale respond if altered at another scale? (3) How do we both effectively measure these components and interactions, and communicate that information in a meaningful manner for policy and management across different scales?
Han, Lin Wei; Fu, Xiao; Yan, Yan; Wang, Chen Xing; Wu, Gang
2017-05-18
In order to determine the cumulative eco-environmental effect of coal-electricity integration, we selected 29 eco-environmental factors including different development and construction activities of coal-electricity integration, soil, water, atmospheric conditions, biology, landscape, and ecology. Literature survey, expert questionnaire and interview were conducted to analyze the interactive relationships between different factors. The structure and correlations between the eco-environmental factors influenced by coal-electricity integration activities were analyzed using interpretive structural modeling (ISM) and the cumulative eco-environment effect of development and construction activities was determined. A research and evaluation framework for the cumulative eco-environmental effect was introduced in addition to specific evaluation and management needs. The results of this study would provide a theoretical and technical basis for planning and management of coal-electricity integration development activities.
Coates, Peter S; Ricca, Mark A; Prochazka, Brian G; Brooks, Matthew L; Doherty, Kevin E; Kroger, Travis; Blomberg, Erik J; Hagen, Christian A; Casazza, Michael L
2016-10-25
Iconic sagebrush ecosystems of the American West are threatened by larger and more frequent wildfires that can kill sagebrush and facilitate invasion by annual grasses, creating a cycle that alters sagebrush ecosystem recovery post disturbance. Thwarting this accelerated grass-fire cycle is at the forefront of current national conservation efforts, yet its impacts on wildlife populations inhabiting these ecosystems have not been quantified rigorously. Within a Bayesian framework, we modeled 30 y of wildfire and climatic effects on population rates of change of a sagebrush-obligate species, the greater sage-grouse, across the Great Basin of western North America. Importantly, our modeling also accounted for variation in sagebrush recovery time post fire as determined by underlying soil properties that influence ecosystem resilience to disturbance and resistance to invasion. Our results demonstrate that the cumulative loss of sagebrush to direct and indirect effects of wildfire has contributed strongly to declining sage-grouse populations over the past 30 y at large spatial scales. Moreover, long-lasting effects from wildfire nullified pulses of sage-grouse population growth that typically follow years of higher precipitation. If wildfire trends continue unabated, model projections indicate sage-grouse populations will be reduced to 43% of their current numbers over the next three decades. Our results provide a timely example of how altered fire regimes are disrupting recovery of sagebrush ecosystems and leading to substantial declines of a widespread indicator species. Accordingly, we present scenario-based stochastic projections to inform conservation actions that may help offset the adverse effects of wildfire on sage-grouse and other wildlife populations.
Coates, Peter S.; Ricca, Mark; Prochazka, Brian; Brooks, Matthew L.; Doherty, Kevin E.; Kroger, Travis; Blomberg, Erik J.; Hagen, Christian A.; Casazza, Michael L.
2016-01-01
Iconic sagebrush ecosystems of the American West are threatened by larger and more frequent wildfires that can kill sagebrush and facilitate invasion by annual grasses, creating a cycle that alters sagebrush ecosystem recovery post disturbance. Thwarting this accelerated grass–fire cycle is at the forefront of current national conservation efforts, yet its impacts on wildlife populations inhabiting these ecosystems have not been quantified rigorously. Within a Bayesian framework, we modeled 30 y of wildfire and climatic effects on population rates of change of a sagebrush-obligate species, the greater sage-grouse, across the Great Basin of western North America. Importantly, our modeling also accounted for variation in sagebrush recovery time post fire as determined by underlying soil properties that influence ecosystem resilience to disturbance and resistance to invasion. Our results demonstrate that the cumulative loss of sagebrush to direct and indirect effects of wildfire has contributed strongly to declining sage-grouse populations over the past 30 y at large spatial scales. Moreover, long-lasting effects from wildfire nullified pulses of sage-grouse population growth that typically follow years of higher precipitation. If wildfire trends continue unabated, model projections indicate sage-grouse populations will be reduced to 43% of their current numbers over the next three decades. Our results provide a timely example of how altered fire regimes are disrupting recovery of sagebrush ecosystems and leading to substantial declines of a widespread indicator species. Accordingly, we present scenario-based stochastic projections to inform conservation actions that may help offset the adverse effects of wildfire on sage-grouse and other wildlife populations.
Scott-Storey, Kelly
2011-07-01
For women, any one type of abuse rarely occurs in isolation of other types, and a single abusive experience is often the exception rather than the norm. The importance of this concept of the cumulative nature of abuse and its negative impact on health has been well recognized within the empirical literature, however there has been little consensus on what to call this phenomenon or how to study it. For the most part researchers have operated on the premise that it is the sheer number of different types of cumulating abuse experiences that is primarily responsible for worse health outcomes among women. And although this simplistic 'more is worse' approach to conceptualizing and operationalizing cumulative abuse has proven to be a powerful predictor of poorer health, it contradicts growing empirical evidence that suggests not all victimizations are created equal and that some victimizations may have a more deleterious effect on health than others. Embedded in abuse histories are individual and abuse characteristics as well as other life adversities that need to be considered in order to fully understand the spectrum and magnitude of cumulative abuse and its impact on women's health. Furthermore, given the long-term and persistent effects of abuse on health it becomes imperative to not only evaluate recent abusive experiences, but rather all abuse experiences occurring across the lifespan. This review highlights and evaluates the conceptual, operational, and methodological challenges posed by our current methods of studying and understanding the phenomenon of cumulative abuse and suggests that this phenomenon and its relationship to health is much more complex than research is currently portraying. This paper calls for the urgent need for interdisciplinary collaboration in order to more effectively and innovatively study the phenomenon of cumulative abuse.
A 115-year δ15N record of cumulative nitrogen pollution in California serpentine grasslands
NASA Astrophysics Data System (ADS)
Vallano, D.; Zavaleta, E. S.
2010-12-01
Until the 1980s, California’s biodiverse serpentine grasslands were threatened primarily by development and protected by reserve creation. However, nitrogen (N) fertilization due to increasing fossil fuel emissions in the expanding Bay Area is thought to be contributing to rapid, recent invasion of these ecosystems by exotic annual grasses that are displacing rare and endemic serpentine species. Documenting the cumulative effects of N deposition in this ecosystem can direct policy and management actions to mitigate the role of N deposition in its transformation. Natural abundance stable isotopes of N in vegetation have been increasingly used as bio-indicators of N deposition patterns and subsequent changes to plant N cycling and assimilation. However, the long-term record of atmospheric reactive N enrichment and the resulting changes in ecosystem N dynamics have yet to be adequately reconstructed in many ecosystems. Museum archives of vascular plant tissue are valuable sources of materials to reconstruct temporal and spatial isotopic patterns of N inputs to ecosystems. Here, we present N stable isotope data from archived and current specimens of an endemic California serpentine grassland species, leather oak (Quercus durata), since 1895 across the greater San Francisco Bay region. We measured spatial and temporal trends in stable isotope composition (δ15N and δ13C) and concentration (%N and %C) of historical and current samples of leather oak leaves from sites within the Bay Area, impacted by increasing development, and sites northeast of the Bay Area, with significantly lower rates of urbanization and industrialization. Specifically, we sampled dry museum and fresh leaf specimens from serpentine sites within Lake (n=27) and Santa Clara (n=30) counties dating from 1895 to 2010. Leaf δ15N values were stable from 1895 to the 1950s and then decreased strongly throughout the last 50 years as fossil fuel emissions rapidly increased in the Bay Area, indicating that N pollution is being retained in serpentine grassland ecosystems. Leaf δ15N values in the high-deposition region declined at a rate of -0.041‰ yr-1, while leaf δ15N values in the low-deposition region did not show a strong pattern. In both regions, leaf δ13C values declined through time as atmospheric CO2 concentrations increased in response to fossil fuel combustion (the Suess effect). Leaf %N and %C values did not present any clear patterns at sites within or outside of the Bay Area. We conclude that using natural abundance stable isotope values in leaves can indicate variation in N pollution inputs across wide spatial and temporal scales and that archived plant samples can provide valuable baselines against which to assess changes in regional N cycling and subsequent ecological impacts on vegetation.
NASA Astrophysics Data System (ADS)
Maurer, G. E.; Krofcheck, D. J.; Collins, S. L.; Litvak, M. E.
2016-12-01
Recent observational and modeling studies have indicated that semiarid ecosystems are more dynamic contributors to the global carbon budget than once thought. Semiarid carbon fluxes, however, are generally small, with high interannual and spatial variability, which suggests that validating their global significance may depend on examining multiple productivity measures and their associated uncertainties and inconsistencies. We examined ecosystem productivity from eddy covariance (NEE), harvest (NPP), and terrestrial biome models (NEPm) at two very similar grassland sites and one creosote shrubland site in the Sevilleta National Wildlife Refuge of central New Mexico, USA. Our goal was to assess site and methodological correspondence in annual carbon uptake, patterns of interannual variability, and measurement uncertainty. One grassland site was a perennial carbon source losing 30 g C m-2 per year on average, while the other two sites were carbon sources or sinks depending on the year, with average net uptake of 5 and 25 g C m-2 per year at the grassland and shrubland site, respectively. Uncertainty values for cumulative annual NEE overlapped between the three sites in most years. When combined, aboveground and belowground annual NPP measurements were 15% higher than annual NEE values and did not confirm a loss of carbon at any site in any year. Despite differences in mean site carbon balance, year-to-year changes in cumulative annual NEE and NPP were similar at all sites with years 2010 and 2013 being favorable for carbon uptake and 2011 and 2012 being unfavorable at all sites. Modeled NEPm data for a number of nearby grid cells reproduced only a fraction of the observed range in carbon uptake and its interannual variability. These three sites are highly similar in location and climate and multiple carbon flux measurements confirm the high interannual variability in carbon flux. The exact magnitude of these fluxes, however, remains difficult to discern.
He, Dongmei; Ruan, Honghua
2014-01-01
Since the late 1950s, land reclamation from lakes has been a common human disturbance to ecosystems in China. It has greatly diminished the lake area, and altered natural ecological succession. However, little is known about its impact on the carbon (C) cycle. We conducted an experiment to examine the variations of chemical properties of dissolved organic matter (DOM) and C mineralization under four land uses, i.e. coniferous forest (CF), evergreen broadleaf forest (EBF), bamboo forest (BF) and cropland (CL) in a reclaimed land area from Taihu Lake. Soils and lake sediments (LS) were incubated for 360 days in the laboratory and the CO2 evolution from each soil during the incubation was fit to a double exponential model. The DOM was analyzed at the beginning and end of the incubation using UV and fluorescence spectroscopy to understand the relationships between DOM chemistry and C mineralization. The C mineralization in our study was influenced by the land use with different vegetation and management. The greatest cumulative CO2-C emission was observed in BF soil at 0–10 cm depth. The active C pool in EBF at 10–25 cm had longer (62 days) mean residence time (MRT). LS showed the highest cumulative CO2-C and shortest MRT comparing with the terrestrial soils. The carbohydrates in DOM were positively correlated with CO2-C evolution and negatively correlated to phenols in the forest soils. Cropland was consistently an outlier in relationships between DOM chemistry and CO2-evolution, highlighting the unique effects that this land use on soil C cycling, which may be attributed the tillage practices. Our results suggest that C mineralization is closely related to the chemical composition of DOM and sensitive to its variation. Conversion of an aquatic ecosystem into a terrestrial ecosystem may alter the chemical structure of DOM, and then influences soil C mineralization. PMID:24905998
Cumulative Risk and Impact Modeling on Environmental Chemical and Social Stressors.
Huang, Hongtai; Wang, Aolin; Morello-Frosch, Rachel; Lam, Juleen; Sirota, Marina; Padula, Amy; Woodruff, Tracey J
2018-03-01
The goal of this review is to identify cumulative modeling methods used to evaluate combined effects of exposures to environmental chemicals and social stressors. The specific review question is: What are the existing quantitative methods used to examine the cumulative impacts of exposures to environmental chemical and social stressors on health? There has been an increase in literature that evaluates combined effects of exposures to environmental chemicals and social stressors on health using regression models; very few studies applied other data mining and machine learning techniques to this problem. The majority of studies we identified used regression models to evaluate combined effects of multiple environmental and social stressors. With proper study design and appropriate modeling assumptions, additional data mining methods may be useful to examine combined effects of environmental and social stressors.
HUMAN-ECOSYSTEM INTERACTIONS: THE CASE OF MERCURY
Human and ecosystem exposure studies evaluate exposure of sensitive and vulnerable populations. We will discuss how ecosystem exposure modeling studies completed for input into the US Clean Air Mercury Rule (CAMR) to evaluate the response of aquatic ecosystems to changes in mercu...
Human - Ecosystem Interactions: The Case of Mercury
Human and ecosystem exposure studies evaluate exposure of sensitive and vulnerable populations. We will discuss how ecosystem exposure modeling studies completed for input into the US Clean Air Mercury Rule (CAMR) to evaluate the response of aquatic ecosystems to changes in mercu...
Laboratory evaluation of a walleye (Sander vitreus) bioenergetics model
Madenjian, C.P.; Wang, C.; O'Brien, T. P.; Holuszko, M.J.; Ogilvie, L.M.; Stickel, R.G.
2010-01-01
Walleye (Sander vitreus) is an important game fish throughout much of North America. We evaluated the performance of the Wisconsin bioenergetics model for walleye in the laboratory. Walleyes were fed rainbow smelt (Osmerus mordax) in four laboratory tanks during a 126-day experiment. Based on a statistical comparison of bioenergetics model predictions of monthly consumption with the observed monthly consumption, we concluded that the bioenergetics model significantly underestimated food consumption by walleye in the laboratory. The degree of underestimation appeared to depend on the feeding rate. For the tank with the lowest feeding rate (1.4% of walleye body weight per day), the agreement between the bioenergetics model prediction of cumulative consumption over the entire 126-day experiment and the observed cumulative consumption was remarkably close, as the prediction was within 0.1% of the observed cumulative consumption. Feeding rates in the other three tanks ranged from 1.6% to 1.7% of walleye body weight per day, and bioenergetics model predictions of cumulative consumption over the 126-day experiment ranged between 11 and 15% less than the observed cumulative consumption. ?? 2008 Springer Science+Business Media B.V.
Integrating geographically isolated wetlands into land management decisions
Golden, Heather E.; Creed, Irena F.; Ali, Genevieve; Basu, Nandita; Neff, Brian; Rains, Mark C.; McLaughlin, Daniel L.; Alexander, Laurie C.; Ameli, Ali A.; Christensen, Jay R.; Evenson, Grey R.; Jones, Charles N.; Lane, Charles R.; Lang, Megan
2017-01-01
Wetlands across the globe provide extensive ecosystem services. However, many wetlands – especially those surrounded by uplands, often referred to as geographically isolated wetlands (GIWs) – remain poorly protected. Protection and restoration of wetlands frequently requires information on their hydrologic connectivity to other surface waters, and their cumulative watershed‐scale effects. The integration of measurements and models can supply this information. However, the types of measurements and models that should be integrated are dependent on management questions and information compatibility. We summarize the importance of GIWs in watersheds and discuss what wetland connectivity means in both science and management contexts. We then describe the latest tools available to quantify GIW connectivity and explore crucial next steps to enhancing and integrating such tools. These advancements will ensure that appropriate tools are used in GIW decision making and maintaining the important ecosystem services that these wetlands support.
Multiple Stressors and the Functioning of Coral Reefs.
Harborne, Alastair R; Rogers, Alice; Bozec, Yves-Marie; Mumby, Peter J
2017-01-03
Coral reefs provide critical services to coastal communities, and these services rely on ecosystem functions threatened by stressors. By summarizing the threats to the functioning of reefs from fishing, climate change, and decreasing water quality, we highlight that these stressors have multiple, conflicting effects on functionally similar groups of species and their interactions, and that the overall effects are often uncertain because of a lack of data or variability among taxa. The direct effects of stressors on links among functional groups, such as predator-prey interactions, are particularly uncertain. Using qualitative modeling, we demonstrate that this uncertainty of stressor impacts on functional groups (whether they are positive, negative, or neutral) can have significant effects on models of ecosystem stability, and reducing uncertainty is vital for understanding changes to reef functioning. This review also provides guidance for future models of reef functioning, which should include interactions among functional groups and the cumulative effect of stressors.
Multiple Stressors and the Functioning of Coral Reefs
NASA Astrophysics Data System (ADS)
Harborne, Alastair R.; Rogers, Alice; Bozec, Yves-Marie; Mumby, Peter J.
2017-01-01
Coral reefs provide critical services to coastal communities, and these services rely on ecosystem functions threatened by stressors. By summarizing the threats to the functioning of reefs from fishing, climate change, and decreasing water quality, we highlight that these stressors have multiple, conflicting effects on functionally similar groups of species and their interactions, and that the overall effects are often uncertain because of a lack of data or variability among taxa. The direct effects of stressors on links among functional groups, such as predator-prey interactions, are particularly uncertain. Using qualitative modeling, we demonstrate that this uncertainty of stressor impacts on functional groups (whether they are positive, negative, or neutral) can have significant effects on models of ecosystem stability, and reducing uncertainty is vital for understanding changes to reef functioning. This review also provides guidance for future models of reef functioning, which should include interactions among functional groups and the cumulative effect of stressors.
The dynamics of mergers and acquisitions: ancestry as the seminal determinant
Viegas, Eduardo; Cockburn, Stuart P.; Jensen, Henrik J.; West, Geoffrey B.
2014-01-01
Understanding the fundamental mechanisms behind the complex landscape of corporate mergers and acquisitions is of crucial importance to economies across the world. Adapting ideas from the fields of complexity and evolutionary dynamics to analyse business ecosystems, we show here that ancestry, i.e. the cumulative sum of historical mergers across all ancestors, is the key characteristic to company mergers and acquisitions. We verify this by comparing an agent-based model to an extensive range of business data, covering the period from the 1830s to the present day and a range of industries and geographies. This seemingly universal mechanism leads to imbalanced business ecosystems, with the emergence of a few very large, but sluggish ‘too big to fail’ entities, and very small, niche entities, thereby creating a paradigm where a configuration akin to effective oligopoly or monopoly is a likely outcome for free market systems. PMID:25383025
The dynamics of mergers and acquisitions: ancestry as the seminal determinant.
Viegas, Eduardo; Cockburn, Stuart P; Jensen, Henrik J; West, Geoffrey B
2014-11-08
Understanding the fundamental mechanisms behind the complex landscape of corporate mergers and acquisitions is of crucial importance to economies across the world. Adapting ideas from the fields of complexity and evolutionary dynamics to analyse business ecosystems, we show here that ancestry, i.e. the cumulative sum of historical mergers across all ancestors, is the key characteristic to company mergers and acquisitions. We verify this by comparing an agent-based model to an extensive range of business data, covering the period from the 1830s to the present day and a range of industries and geographies. This seemingly universal mechanism leads to imbalanced business ecosystems, with the emergence of a few very large, but sluggish 'too big to fail' entities, and very small, niche entities, thereby creating a paradigm where a configuration akin to effective oligopoly or monopoly is a likely outcome for free market systems.
Reduced greenhouse gas mitigation potential of no-tillage soils through earthworm activity
Lubbers, Ingrid M.; Jan van Groenigen, Kees; Brussaard, Lijbert; van Groenigen, Jan Willem
2015-01-01
Concerns about rising greenhouse gas (GHG) concentrations have spurred the promotion of no-tillage practices as a means to stimulate carbon storage and reduce CO2 emissions in agro-ecosystems. Recent research has ignited debate about the effect of earthworms on the GHG balance of soil. It is unclear how earthworms interact with soil management practices, making long-term predictions on their effect in agro-ecosystems problematic. Here we show, in a unique two-year experiment, that earthworm presence increases the combined cumulative emissions of CO2 and N2O from a simulated no-tillage (NT) system to the same level as a simulated conventional tillage (CT) system. We found no evidence for increased soil C storage in the presence of earthworms. Because NT agriculture stimulates earthworm presence, our results identify a possible biological pathway for the limited potential of no-tillage soils with respect to GHG mitigation. PMID:26337488
USGS: Science to understand and forecast change in coastal ecosystems
Myers, M.
2007-01-01
The multidisciplinary approach of the US Geological Survey (USGS), a principal science agency of the US Department of the Interior (DOI), to address the complex and cumulative impacts of human activities and natural events on the US coastal ecosystems has been considered remarkable for understanding and forecasting the changes. The USGS helps explain geologic, hydrologic, and biologic systems and their connectivity across landscapes and seascapes along the coastline. The USGS coastal science programs effectively address science and information to other scientists, managers, policy makers, and the public. The USGS provides scientific expertise, capabilities, and services to collaborative federal, regional, and state-led efforts, which are in line with the goals of Ocean Action Plan (OAP) and Ocean Research Priorities Plan (ORPP). The organization is a leader in understanding terrestrial and marine environmental hazards such as earthquakes, tsunamis, floods, and landslides and assessing and forecasting coastal impacts using various specialized visualization techniques.
APPROACHES TO ECOSYSTEM AND HUMAN EXPOSURE TO MERCURY FOR SENSITIVE POPULATIONS
Both human and ecosystem exposure studies evaluate exposure of sensitive and vulnerable populations. We will discuss how ecosystem exposure modeling studies completed for input into the US Clean Air Mercury Rule (CAMR) to evaluate the response of aquatic ecosystems to changes in ...
Water Use Efficiency of China's Terrestrial Ecosystems and Responses to Drought
NASA Astrophysics Data System (ADS)
Liu, Y.; Xiao, J.; Ju, W.; Zhou, Y.; Wang, S.; Wu, X.
2015-12-01
Yibo Liu1, 2, Jingfeng Xiao2, Weimin Ju3, Yanlian Zhou4, Shaoqiang Wang5, Xiaocui Wu31 Jiangsu Key Laboratory of Agricultural Meteorology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China, 2Earth Systems Research Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH 03824, USA, 3 International Institute for Earth System Sciences, Nanjing University, Nanjing, 210023, China, 4 School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, 210023, China, 5 Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China Water use efficiency (WUE) measures the trade-off between carbon gain and water loss of terrestrial ecosystems, and better understanding its dynamics and controlling factors is essential for predicting ecosystem responses to climate change. We assessed the magnitude, spatial patterns, and trends of WUE of China's terrestrial ecosystems and its responses to drought using a process-based ecosystem model. During the period from 2000 to 2011, the national average annual WUE (net primary productivity (NPP)/evapotranspiration (ET)) of China was 0.79 g C kg-1 H2O. Annual WUE decreased in the southern regions because of the decrease in NPP and increase in ET and increased in most northern regions mainly because of the increase in NPP. Droughts usually increased annual WUE in Northeast China and central Inner Mongolia but decreased annual WUE in central China. "Turning-points" were observed for southern China where moderate and extreme drought reduced annual WUE and severe drought slightly increased annual WUE. The cumulative lagged effect of drought on monthly WUE varied by region. Our findings have implications for ecosystem management and climate policy making. WUE is expected to continue to change under future climate change particularly as drought is projected to increase in both frequency and severity. Keywords: water use efficiency (WUE), drought, carbon sink, ecosystem model, China
NASA Astrophysics Data System (ADS)
Scott, D.; Burgholzer, R.; Kleiner, J.; Brogan, C. O.; Julson, C.; Withers, E.
2017-12-01
Across the eastern United States, successful management of water resources to satisfy the competing demands for human consumption, industry, agriculture, and ecosystems requires both water quality and water quantity considerations. Over the last 2 decades, low streamflows during dry summers have increased scrutiny on water supply withdrawals. Within Virginia, a statewide hydrologic model provides quantitative assessments on impacts from proposed water withdrawals to downstream river flow. Currently, evaporative losses are only accounted for from the large reservoirs. In this study, we sought to provide a baseline estimate for the cumulative evaporation from impoundments across all of the major river basins in Virginia. Virginia provides an ideal case study for the competing water demands in the mid-Atlantic region given the unique tracking of water withdrawals throughout the river corridor. In the over 73,000 Virginia impoundments, the cumulative annual impoundment evaporation was 706 MGD, or 49% of the permitted water withdrawal. The largest reservoirs (>100 acres) represented over 400 MGD, and 136 MGD for the smaller impoundments (< 5 acres). In regions with high impoundment density, impoundment evaporation tended to be a significant fraction of the total amount of water loss (evaporation + demand), with some areas where impoundment evaporation was greater than human water demand. Seasonally, our results suggest that cumulative impoundment evaporation in some watersheds greatly impacts streamflow during low flow periods. Our results demonstrate that future water supply planning will require not only understanding evaporation within large reservoirs, but also the thousands of small impoundments across the landscape.
Li, Wen-Jie; Zhang, Shi-Huang; Wang, Hui-Min
2011-12-01
Ecosystem services evaluation is a hot topic in current ecosystem management, and has a close link with human beings welfare. This paper summarized the research progress on the evaluation of ecosystem services based on geographic information system (GIS) and remote sensing (RS) technology, which could be reduced to the following three characters, i. e., ecological economics theory is widely applied as a key method in quantifying ecosystem services, GIS and RS technology play a key role in multi-source data acquisition, spatiotemporal analysis, and integrated platform, and ecosystem mechanism model becomes a powerful tool for understanding the relationships between natural phenomena and human activities. Aiming at the present research status and its inadequacies, this paper put forward an "Assembly Line" framework, which was a distributed one with scalable characteristics, and discussed the future development trend of the integration research on ecosystem services evaluation based on GIS and RS technologies.
Aad, G.
2014-11-26
ATLAS measurements of the azimuthal anisotropy in lead–lead collisions at √s NN = 2.76 TeV are shown using a dataset of approximately 7 μb –1 collected at the LHC in 2010. The measurements are performed for charged particles with transverse momenta 0.5 < p T < 20 GeV and in the pseudorapidity range |η| < 2.5. The anisotropy is characterized by the Fourier coefficients, v n, of the charged-particle azimuthal angle distribution for n = 2–4. The Fourier coefficients are evaluated using multi-particle cumulants calculated with the generating function method. Results on the transverse momentum, pseudorapidity and centrality dependence ofmore » the v n coefficients are presented. The elliptic flow, v 2, is obtained from the two-, four-, six- and eight-particle cumulants while higher-order coefficients, v 3 and v 4, are determined with two- and four-particle cumulants. Flow harmonics v n measured with four-particle cumulants are significantly reduced compared to the measurement involving two-particle cumulants. A comparison to vn measurements obtained using different analysis methods and previously reported by the LHC experiments is also shown. Results of measurements of flow fluctuations evaluated with multi-particle cumulants are shown as a function of transverse momentum and the collision centrality. As a result, models of the initial spatial geometry and its fluctuations fail to describe the flow fluctuations measurements.« less
Benefits of mercury controls for the United States.
Giang, Amanda; Selin, Noelle E
2016-01-12
Mercury pollution poses risks for both human and ecosystem health. As a consequence, controlling mercury pollution has become a policy goal on both global and national scales. We developed an assessment method linking global-scale atmospheric chemical transport modeling to regional-scale economic modeling to consistently evaluate the potential benefits to the United States of global (UN Minamata Convention on Mercury) and domestic [Mercury and Air Toxics Standards (MATS)] policies, framed as economic gains from avoiding mercury-related adverse health endpoints. This method attempts to trace the policies-to-impacts path while taking into account uncertainties and knowledge gaps with policy-appropriate bounding assumptions. We project that cumulative lifetime benefits from the Minamata Convention for individuals affected by 2050 are $339 billion (2005 USD), with a range from $1.4 billion to $575 billion in our sensitivity scenarios. Cumulative economy-wide benefits to the United States, realized by 2050, are $104 billion, with a range from $6 million to $171 billion. Projected Minamata benefits are more than twice those projected from the domestic policy. This relative benefit is robust to several uncertainties and variabilities, with the ratio of benefits (Minamata/MATS) ranging from ≈1.4 to 3. However, we find that for those consuming locally caught freshwater fish from the United States, rather than marine and estuarine fish from the global market, benefits are larger from US than global action, suggesting domestic policies are important for protecting these populations. Per megagram of prevented emissions, our domestic policy scenario results in US benefits about an order of magnitude higher than from our global scenario, further highlighting the importance of domestic action.
Field information links permafrost carbon to physical vulnerabilities of thawing
NASA Astrophysics Data System (ADS)
Harden, Jennifer W.; Koven, Charles D.; Ping, Chien-Lu; Hugelius, Gustaf; David McGuire, A.; Camill, Phillip; Jorgenson, Torre; Kuhry, Peter; Michaelson, Gary J.; O'Donnell, Jonathan A.; Schuur, Edward A. G.; Tarnocai, Charles; Johnson, Kristopher; Grosse, Guido
2012-08-01
Deep soil profiles containing permafrost (Gelisols) were characterized for organic carbon (C) and total nitrogen (N) stocks to 3 m depths. Using the Community Climate System Model (CCSM4) we calculate cumulative distributions of active layer thickness (ALT) under current and future climates. The difference in cumulative ALT distributions over time was multiplied by C and N contents of soil horizons in Gelisol suborders to calculate newly thawed C and N. Thawing ranged from 147 PgC with 10 PgN by 2050 (representative concentration pathway RCP scenario 4.5) to 436 PgC with 29 PgN by 2100 (RCP 8.5). Organic horizons that thaw are vulnerable to combustion, and all horizon types are vulnerable to shifts in hydrology and decomposition. The rates and extent of such losses are unknown and can be further constrained by linking field and modelling approaches. These changes have the potential for strong additional loading to our atmosphere, water resources, and ecosystems.
Biodiversity of the Great Barrier Reef—how adequately is it protected?
2018-01-01
Background The Great Barrier Reef (GBR) is the world’s most iconic coral reef ecosystem, recognised internationally as a World Heritage Area of outstanding significance. Safeguarding the biodiversity of this universally important reef is a core legislative objective; however, ongoing cumulative impacts including widespread coral bleaching and other detrimental impacts have heightened conservation concerns for the future of the GBR. Methods Here we review the literature to report on processes threatening species on the GBR, the status of marine biodiversity, and evaluate the extent of species-level monitoring and reporting. We assess how many species are listed as threatened at a global scale and explore whether these same species are protected under national threatened species legislation. We conclude this review by providing future directions for protecting potentially endangered elements of biodiversity within the GBR. Results Most of the threats identified to be harming the diversity of marine life on the GBR over the last two–three decades remain to be effectively addressed and many are worsening. The inherent resilience of this globally significant coral reef ecosystem has been seriously compromised and various elements of the biological diversity for which it is renowned may be at risk of silent extinction. We show at least 136 of the 12,000+ animal species known to occur on the GBR (approximately 20% of the 700 species assessed by the IUCN) occur in elevated categories of threat (Critically Endangered, Endangered or Vulnerable) at a global scale. Despite the wider background level of threat for these 136 species, only 23 of them are listed as threatened under regional or national legislation. Discussion To adequately protect the biodiversity values of the GBR, it may be necessary to conduct further targeted species-level monitoring and reporting to complement ecosystem management approaches. Conducting a vigorous value of information analysis would provide the opportunity to evaluate what new and targeted information is necessary to support dynamic management and to safeguard both species and the ecosystem as a whole. Such an analysis would help decision-makers determine if further comprehensive biodiversity surveys are needed, especially for those species recognised to be facing elevated background levels of threat. If further monitoring is undertaken, it will be important to ensure it aligns with and informs the GBRMPA Outlook five-year reporting schedule. The potential also exists to incorporate new environmental DNA technologies into routine monitoring to deliver high-resolution species data and identify indicator species that are cursors of specific disturbances. Unless more targeted action is taken to safeguard biodiversity, we may fail to pass onto future generations many of the values that comprise what is universally regarded as the world’s most iconic coral reef ecosystem. PMID:29761059
Environmental drivers of Ixodes ricinus abundance in forest fragments of rural European landscapes.
Ehrmann, Steffen; Liira, Jaan; Gärtner, Stefanie; Hansen, Karin; Brunet, Jörg; Cousins, Sara A O; Deconchat, Marc; Decocq, Guillaume; De Frenne, Pieter; De Smedt, Pallieter; Diekmann, Martin; Gallet-Moron, Emilie; Kolb, Annette; Lenoir, Jonathan; Lindgren, Jessica; Naaf, Tobias; Paal, Taavi; Valdés, Alicia; Verheyen, Kris; Wulf, Monika; Scherer-Lorenzen, Michael
2017-09-06
The castor bean tick (Ixodes ricinus) transmits infectious diseases such as Lyme borreliosis, which constitutes an important ecosystem disservice. Despite many local studies, a comprehensive understanding of the key drivers of tick abundance at the continental scale is still lacking. We analyze a large set of environmental factors as potential drivers of I. ricinus abundance. Our multi-scale study was carried out in deciduous forest fragments dispersed within two contrasting rural landscapes of eight regions, along a macroclimatic gradient stretching from southern France to central Sweden and Estonia. We surveyed the abundance of I. ricinus, plant community composition, forest structure and soil properties and compiled data on landscape structure, macroclimate and habitat properties. We used linear mixed models to analyze patterns and derived the relative importance of the significant drivers. Many drivers had, on their own, either a moderate or small explanatory value for the abundance of I. ricinus, but combined they explained a substantial part of variation. This emphasizes the complex ecology of I. ricinus and the relevance of environmental factors for tick abundance. Macroclimate only explained a small fraction of variation, while properties of macro- and microhabitat, which buffer macroclimate, had a considerable impact on tick abundance. The amount of forest and the composition of the surrounding rural landscape were additionally important drivers of tick abundance. Functional (dispersules) and structural (density of tree and shrub layers) properties of the habitat patch played an important role. Various diversity metrics had only a small relative importance. Ontogenetic tick stages showed pronounced differences in their response. The abundance of nymphs and adults is explained by the preceding stage with a positive relationship, indicating a cumulative effect of drivers. Our findings suggest that the ecosystem disservices of tick-borne diseases, via the abundance of ticks, strongly depends on habitat properties and thus on how humans manage ecosystems from the scale of the microhabitat to the landscape. This study stresses the need to further evaluate the interaction between climate change and ecosystem management on I. ricinus abundance.
Can plant phloem properties affect the link between ecosystem assimilation and respiration?
NASA Astrophysics Data System (ADS)
Mencuccini, M.; Hölttä, T.; Sevanto, S.; Nikinmaa, E.
2012-04-01
Phloem transport of carbohydrates in plants under field conditions is currently not well understood. This is largely the result of the lack of techniques suitable for measuring phloem physiological properties continuously under field conditions. This lack of knowledge is currently hampering our efforts to link ecosystem-level processes of carbon fixation, allocation and use, especially belowground. On theoretical grounds, the properties of the transport pathway from canopy to roots must be important in affecting the link between carbon assimilation and respiration, but it is unclear whether their effect is partially or entirely masked by processes occurring in other parts of the ecosystem. One can also predict the characteristic time scales over which these effects should occur and, as consequence, predict whether the transfer of turgor and osmotic signals from the site of carbon assimilation to the sites of carbon use are likely to control respiration. We will present two sources of evidence suggesting that the properties of the phloem transport system may affect processes that are dependent on the supply of carbon substrate, such as root or soil respiration. Firstly, we will summarize the results of a literature survey on soil and ecosystem respiration where the speed of transfer of photosynthetic sugars from the plant canopy to the soil surface was determined. Estimates of the transfer speed could be grouped according to whether the study employed isotopic or canopy soil flux-based techniques. These two groups provided very different estimates of transfer times likely because transport of sucrose molecules, and pressure-concentration waves, in phloem differed. Secondly, we will argue that simultaneous measurements of bark and xylem diameters provide a novel tool to determine the continuous variations of phloem turgor in vivo in the field. We will present a model that interprets these changes in xylem and live bark diameters and present data testing the model predictions for mature trees in the field. At the diurnal scale, the calculated phloem turgor signal related to patterns of photosynthetic activity and inferred phloem loading. At the seasonal scale, phloem turgor showed rapid changes during two droughts and after two rainfall events consistent with physiological predictions of phloem transport. Daily cumulative totals of calculated phloem osmotic concentrations were strongly related to daily cumulative totals of canopy photosynthesis. We propose that this method has potential for continuous field monitoring of tree phloem function.
Probability of stress-corrosion fracture under random loading
NASA Technical Reports Server (NTRS)
Yang, J. N.
1974-01-01
Mathematical formulation is based on cumulative-damage hypothesis and experimentally-determined stress-corrosion characteristics. Under both stationary random loadings, mean value and variance of cumulative damage are obtained. Probability of stress-corrosion fracture is then evaluated, using principle of maximum entropy.
This document provides guidance to OPP scientists for evaluating and estimating the potential human risks associated with such multichemical and multipathway exposures to pesticides. This process is referred to as cumulative risk assessment.
Varolo, Elisa; Zanotelli, Damiano; Montagnani, Leonardo; Tagliavini, Massimo; Zerbe, Stefan
2016-01-01
Current glacier retreat makes vast mountain ranges available for vegetation establishment and growth. As a result, carbon (C) is accumulated in the soil, in a negative feedback to climate change. Little is known about the effective C budget of these new ecosystems and how the presence of different vegetation communities influences CO2 fluxes. On the Matsch glacier forefield (Alps, Italy) we measured over two growing seasons the Net Ecosystem Exchange (NEE) of a typical grassland, dominated by the C3 Festuca halleri All., and a community dominated by the CAM rosettes Sempervivum montanum L. Using transparent and opaque chambers, with air temperature as the driver, we partitioned NEE to calculate Ecosystem Respiration (Reco) and Gross Ecosystem Exchange (GEE). In addition, soil and vegetation samples were collected from the same sites to estimate the Net Ecosystem Carbon Balance (NECB). The two communities showed contrasting GEE but similar Reco patterns, and as a result they were significantly different in NEE during the period measured. The grassland acted as a C sink, with a total cumulated value of -46.4±35.5 g C m-2 NEE, while the plots dominated by the CAM rosettes acted as a source, with 31.9±22.4 g C m-2. In spite of the different NEE, soil analysis did not reveal significant differences in carbon accumulation of the two plant communities (1770±130 for F. halleri and 2080±230 g C m-2 for S. montanum), suggesting that processes often neglected, like lateral flows and winter respiration, can have a similar relevance as NEE in the determination of the Net Ecosystem Carbon Balance.
Estimating Critical Nitrogen Loads for a California Grassland
NASA Astrophysics Data System (ADS)
Weiss, S. B.
2007-12-01
Rigorously established critical nitrogen loads to protect biodiversity can be effective policy tools for addressing the insidious impacts of atmospheric N-deposition on ecosystems. This presentation describes methods for determining critical N-loads to a California grassland ecosystem by careful examination of the continuum from emissions, transport, atmospheric chemistry, deposition, ecosystem response, and impacts on biodiversity. Nutrient-poor soils derived from serpentinite bedrock support diverse native grasslands with dazzling wildflower displays and numerous threatened and endangered species, including the Bay checkerspot butterfly. Under moderate atmospheric N-deposition, these sites are rapidly invaded by introduced nitrophilous annual grasses in the absence of appropriate grazing or other management. Critical loads to this ecosystem have been approached by measurements of atmospheric concentrations of reactive N gases using Ogawa passive samplers and seasonally averaged deposition velocities. A regional-scale pollution gradient was complemented by a very local-scale pollution gradient extending a few hundred meters downwind of a heavily traveled road in a relatively unpolluted area. The local gradient suggests a critical load of 5 kg-N ha-1 a-1 or less. The passive monitor calculations largely agree with deposition calculated with the CMAQ model at 4 km scale. Emissions of NH3 from catalytic converters are the dominant N-source at the roadway site, and are a function of traffic volume and speed. Plant tissue N-content and 15N gradients support the existence of N-deposition gradients. The complexities of more detailed calculations and measurements specific to this ecosystem include seasonal changes in LAI, temporal coincidence of traffic emissions and stomatal conductance, surface moisture, changes in oxidized versus reduced N sources, and annual weather variation. The concept of a "critical cumulative load" may be appropriate over decadal time scales in this ecosystem and other semi-arid systems where N-export is minimal.
Tagliavini, Massimo; Zerbe, Stefan
2016-01-01
Introduction Current glacier retreat makes vast mountain ranges available for vegetation establishment and growth. As a result, carbon (C) is accumulated in the soil, in a negative feedback to climate change. Little is known about the effective C budget of these new ecosystems and how the presence of different vegetation communities influences CO2 fluxes. Methods On the Matsch glacier forefield (Alps, Italy) we measured over two growing seasons the Net Ecosystem Exchange (NEE) of a typical grassland, dominated by the C3 Festuca halleri All., and a community dominated by the CAM rosettes Sempervivum montanum L. Using transparent and opaque chambers, with air temperature as the driver, we partitioned NEE to calculate Ecosystem Respiration (Reco) and Gross Ecosystem Exchange (GEE). In addition, soil and vegetation samples were collected from the same sites to estimate the Net Ecosystem Carbon Balance (NECB). Results The two communities showed contrasting GEE but similar Reco patterns, and as a result they were significantly different in NEE during the period measured. The grassland acted as a C sink, with a total cumulated value of -46.4±35.5 g C m-2 NEE, while the plots dominated by the CAM rosettes acted as a source, with 31.9±22.4 g C m-2. In spite of the different NEE, soil analysis did not reveal significant differences in carbon accumulation of the two plant communities (1770±130 for F. halleri and 2080±230 g C m-2 for S. montanum), suggesting that processes often neglected, like lateral flows and winter respiration, can have a similar relevance as NEE in the determination of the Net Ecosystem Carbon Balance. PMID:28033605
R. R. Ziemer; P. H. Cafferata
1991-01-01
Abstract - Since 1962, the 483-ha North Fork and 424-ha South Fork of Caspar Creek in northwestern California have been used to evaluate the hydrologic impacts of road building and harvesting second-growth redwood/Douglas-fir forests. Three tributaries are serving as untreated controls. In 1985, the study was modified to evaluate the cumulative watershed effects of...
Extreme weather-year sequences have nonadditive effects on environmental nitrogen losses.
Iqbal, Javed; Necpalova, Magdalena; Archontoulis, Sotirios V; Anex, Robert P; Bourguignon, Marie; Herzmann, Daryl; Mitchell, David C; Sawyer, John E; Zhu, Qing; Castellano, Michael J
2018-01-01
The frequency and intensity of extreme weather years, characterized by abnormal precipitation and temperature, are increasing. In isolation, these years have disproportionately large effects on environmental N losses. However, the sequence of extreme weather years (e.g., wet-dry vs. dry-wet) may affect cumulative N losses. We calibrated and validated the DAYCENT ecosystem process model with a comprehensive set of biogeophysical measurements from a corn-soybean rotation managed at three N fertilizer inputs with and without a winter cover crop in Iowa, USA. Our objectives were to determine: (i) how 2-year sequences of extreme weather affect 2-year cumulative N losses across the crop rotation, and (ii) if N fertilizer management and the inclusion of a winter cover crop between corn and soybean mitigate the effect of extreme weather on N losses. Using historical weather (1951-2013), we created nine 2-year scenarios with all possible combinations of the driest ("dry"), wettest ("wet"), and average ("normal") weather years. We analyzed the effects of these scenarios following several consecutive years of relatively normal weather. Compared with the normal-normal 2-year weather scenario, 2-year extreme weather scenarios affected 2-year cumulative NO 3 - leaching (range: -93 to +290%) more than N 2 O emissions (range: -49 to +18%). The 2-year weather scenarios had nonadditive effects on N losses: compared with the normal-normal scenario, the dry-wet sequence decreased 2-year cumulative N 2 O emissions while the wet-dry sequence increased 2-year cumulative N 2 O emissions. Although dry weather decreased NO 3 - leaching and N 2 O emissions in isolation, 2-year cumulative N losses from the wet-dry scenario were greater than the dry-wet scenario. Cover crops reduced the effects of extreme weather on NO 3 - leaching but had a lesser effect on N 2 O emissions. As the frequency of extreme weather is expected to increase, these data suggest that the sequence of interannual weather patterns can be used to develop short-term mitigation strategies that manipulate N fertilizer and crop rotation to maximize crop N uptake while reducing environmental N losses. © 2017 John Wiley & Sons Ltd.
The uncertain climate footprint of wetlands under human pressure
Petrescu, Ana Maria Roxana; Lohila, Annalea; Tuovinen, Juha-Pekka; Baldocchi, Dennis D.; Roulet, Nigel T.; Vesala, Timo; Dolman, Albertus Johannes; Oechel, Walter C.; Marcolla, Barbara; Friborg, Thomas; Rinne, Janne; Matthes, Jaclyn Hatala; Merbold, Lutz; Meijide, Ana; Kiely, Gerard; Sottocornola, Matteo; Sachs, Torsten; Zona, Donatella; Varlagin, Andrej; Lai, Derrick Y. F.; Veenendaal, Elmar; Parmentier, Frans-Jan W.; Skiba, Ute; Lund, Magnus; Hensen, Arjan; van Huissteden, Jacobus; Flanagan, Lawrence B.; Shurpali, Narasinha J.; Grünwald, Thomas; Humphreys, Elyn R.; Jackowicz-Korczyński, Marcin; Aurela, Mika A.; Laurila, Tuomas; Grüning, Carsten; Corradi, Chiara A. R.; Schrier-Uijl, Arina P.; Christensen, Torben R.; Tamstorf, Mikkel P.; Mastepanov, Mikhail; Martikainen, Pertti J.; Verma, Shashi B.; Bernhofer, Christian; Cescatti, Alessandro
2015-01-01
Significant climate risks are associated with a positive carbon–temperature feedback in northern latitude carbon-rich ecosystems, making an accurate analysis of human impacts on the net greenhouse gas balance of wetlands a priority. Here, we provide a coherent assessment of the climate footprint of a network of wetland sites based on simultaneous and quasi-continuous ecosystem observations of CO2 and CH4 fluxes. Experimental areas are located both in natural and in managed wetlands and cover a wide range of climatic regions, ecosystem types, and management practices. Based on direct observations we predict that sustained CH4 emissions in natural ecosystems are in the long term (i.e., several centuries) typically offset by CO2 uptake, although with large spatiotemporal variability. Using a space-for-time analogy across ecological and climatic gradients, we represent the chronosequence from natural to managed conditions to quantify the “cost” of CH4 emissions for the benefit of net carbon sequestration. With a sustained pulse–response radiative forcing model, we found a significant increase in atmospheric forcing due to land management, in particular for wetland converted to cropland. Our results quantify the role of human activities on the climate footprint of northern wetlands and call for development of active mitigation strategies for managed wetlands and new guidelines of the Intergovernmental Panel on Climate Change (IPCC) accounting for both sustained CH4 emissions and cumulative CO2 exchange. PMID:25831506
The uncertain climate footprint of wetlands under human pressure.
Petrescu, Ana Maria Roxana; Lohila, Annalea; Tuovinen, Juha-Pekka; Baldocchi, Dennis D; Desai, Ankur R; Roulet, Nigel T; Vesala, Timo; Dolman, Albertus Johannes; Oechel, Walter C; Marcolla, Barbara; Friborg, Thomas; Rinne, Janne; Matthes, Jaclyn Hatala; Merbold, Lutz; Meijide, Ana; Kiely, Gerard; Sottocornola, Matteo; Sachs, Torsten; Zona, Donatella; Varlagin, Andrej; Lai, Derrick Y F; Veenendaal, Elmar; Parmentier, Frans-Jan W; Skiba, Ute; Lund, Magnus; Hensen, Arjan; van Huissteden, Jacobus; Flanagan, Lawrence B; Shurpali, Narasinha J; Grünwald, Thomas; Humphreys, Elyn R; Jackowicz-Korczyński, Marcin; Aurela, Mika A; Laurila, Tuomas; Grüning, Carsten; Corradi, Chiara A R; Schrier-Uijl, Arina P; Christensen, Torben R; Tamstorf, Mikkel P; Mastepanov, Mikhail; Martikainen, Pertti J; Verma, Shashi B; Bernhofer, Christian; Cescatti, Alessandro
2015-04-14
Significant climate risks are associated with a positive carbon-temperature feedback in northern latitude carbon-rich ecosystems, making an accurate analysis of human impacts on the net greenhouse gas balance of wetlands a priority. Here, we provide a coherent assessment of the climate footprint of a network of wetland sites based on simultaneous and quasi-continuous ecosystem observations of CO2 and CH4 fluxes. Experimental areas are located both in natural and in managed wetlands and cover a wide range of climatic regions, ecosystem types, and management practices. Based on direct observations we predict that sustained CH4 emissions in natural ecosystems are in the long term (i.e., several centuries) typically offset by CO2 uptake, although with large spatiotemporal variability. Using a space-for-time analogy across ecological and climatic gradients, we represent the chronosequence from natural to managed conditions to quantify the "cost" of CH4 emissions for the benefit of net carbon sequestration. With a sustained pulse-response radiative forcing model, we found a significant increase in atmospheric forcing due to land management, in particular for wetland converted to cropland. Our results quantify the role of human activities on the climate footprint of northern wetlands and call for development of active mitigation strategies for managed wetlands and new guidelines of the Intergovernmental Panel on Climate Change (IPCC) accounting for both sustained CH4 emissions and cumulative CO2 exchange.
Greenhouse gas fluxes of a shallow lake in south-central North Dakota, USA
Tangen, Brian; Finocchiaro, Raymond; Gleason, Robert A.; Dahl, Charles F.
2016-01-01
Greenhouse gas (GHG) fluxes of aquatic ecosystems in the northern Great Plains of the U.S. represent a significant data gap. Consequently, a 3-year study was conducted in south-central North Dakota, USA, to provide an initial estimate of GHG fluxes from a large, shallow lake. Mean GHG fluxes were 0.02 g carbon dioxide (CO2) m−2 h−1, 0.0009 g methane (CH4) m−2 h−1, and 0.0005 mg nitrous oxide (N2O) m−2 h−1. Fluxes of CO2 and CH4 displayed temporal and spatial variability which is characteristic of aquatic ecosystems, while fluxes of N2O were consistently low throughout the study. Comparisons between results of this study and published values suggest that mean daily fluxes of CO2, CH4, and N2O fromLong Lakewere low, particularly when compared to the well-studied prairie pothole wetlands of the region. Similarly, cumulative seasonal CH4 fluxes, which ranged from 2.68–7.58 g CH4 m−2, were relatively low compared to other wetland systems of North America. The observed variability among aquatic ecosystems underscores the need for further research.
Integrating geographically isolated wetlands into land ...
Wetlands across the globe provide extensive ecosystem services. However, many wetlands – especially those surrounded by uplands, often referred to as geographically isolated wetlands (GIWs) – remain poorly protected. Protection and restoration of wetlands frequently requires information on their hydrologic connectivity to other surface waters, and their cumulative watershed-scale effects. The integration of measurements and models can supply this information. However, the types of measurements and models that should be integrated are dependent on management questions and information compatibility. We summarize the importance of GIWs in watersheds and discuss what wetland connectivity means in both science and management contexts. We then describe the latest tools available to quantify GIW connectivity and explore crucial next steps to enhancing and integrating such tools. These advancements will ensure that appropriate tools are used in GIW decision making and maintaining the important ecosystem services that these wetlands support. In a nutshell: Wetlands in general receive insufficient protection and this is particularly true for geographically isolated wetlands (GIWs), which are completely surrounded by upland areas GIWs have recently gained policy attention because they provide important ecosystem services, but like most wetlands, their loss and degradation continues Knowledge of the hydrologic connections of GIWs to downstream waters is necessary for th
Emergy evaluations of three benthic ecosystem networks found in Mejillones, Antofagasta and Tongoy Bays, located on the coast of northern Chile, were carried out with the intent of documenting the contributions of these coastal ecosystems to the economy. The productivity of these...
Molaei, Ali; Haghnia, Gholamhosain; Astaraei, Alireza; Rasouli-Sadaghiani, MirHassan; Teresa Ceccherini, Maria; Datta, Rahul
2017-01-01
Oxytetracycline (OTC) and sulfamethoxazole (SMX) are two of most widely used antibiotics in livestock and poultry industry. After consumption of antibiotics, a major portion of these compounds is excreted through the feces and urine of animals. Land application of antibiotic-treated animal wastes has caused increasing concern about their adverse effects on ecosystem health. In this regard, inconsistent results have been reported regarding the effects of antibiotics on soil microbial activities. This study was conducted based on the completely randomized design to the measure microbial biomass carbon, cumulative respiration and iron (III) reduction bioassays. Concentrations of OTC and SMX including 0, 1, 10, 25, 50, and 100 mg/kg were spiked in triplicate to a sandy loam soil and incubated for 21 days at 25°C. Results showed that the effects of OTC and SMX antibiotics on cumulative respiration and microbial biomass carbon were different. SMX antibiotic significantly affected soil microbial biomass carbon and cumulative respiration at different treatments compared to control with increasing incubation time. OTC antibiotic, on the other hand, negatively affected cumulative respiration compared to control treatment throughout the incubation period. Although OTC antibiotic positively affected microbial biomass carbon at day one of incubation, there was no clear trend in microbial biomass carbon between different treatments of this antibiotic after that time period. Nevertheless, sulfamethoxazole and oxytetracycline antibiotics had similar effects on iron (III) reduction such that they considerably affected iron (III) reduction at 1 and 10 mg/kg, and iron (III) reduction was completely inhibited at concentrations above 10 mg/kg. Hence, according to our results, microbial biomass carbon and cumulative respiration experiments are not able alone to exhibit the effect of antibiotics on soil microbial activity, but combination of these two experiments with iron (III) reduction test could well display the effects of sulfamethoxazole (SMX) and oxytetracycline (OTC) antibiotics on soil biochemical activities. PMID:28683144
Assessing cumulative impacts to elk and mule deer in the Salmon River Basin, Idaho
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Neil, T.A.; Witmer, G.W.
1988-01-01
In this paper, we illustrate the method, using the potential for cumulative impacts to elk and mule deer from multiple hydroelectric development in the Salmon River Basin of Idaho. We attempted to incorporate knowledge of elk and mule deer habitat needs into a paradigm to assess cumulative impacts and aid in the regulatory decision making process. Undoubtedly, other methods could be developed based on different needs or constraints, but we offer this technique as a means to further refine cumulative impact assessment. Our approach is divided into three phases: analysis, evaluation, and documentation. 36 refs., 2 figs., 3 tabs.
Keith M. Reynolds
2006-01-01
This paper describes and illustrates the use of the Ecosystem Management Decision Support (EMDS) system for evaluating the U.S. national criteria and indicators for forest ecosystem sustainability at the scale of Resource Planning Act (RPA) regions. The evaluation component of EMDS uses a logic engine to evaluate landscape condition, and the RPA-scale application...
NASA Astrophysics Data System (ADS)
Eriyagama, Nishadi; Smakhtin, Vladimir; Udamulla, Lakshika
2018-06-01
Storage of surface water is widely regarded as a form of insurance against rainfall variability. However, creation of surface storage often endanger the functions of natural ecosystems, and, in turn, ecosystem services that benefit humans. The issues of optimal size, placement and the number of reservoirs in a river basin - which maximizes sustainable benefits from storage - remain subjects for debate. This study examines the above issues through the analysis of a range of reservoir configurations in the Malwatu Oya river basin in the dry zone of Sri Lanka. The study produced multiple surface storage development pathways for the basin under different scenarios of environmental flow (EF) releases and reservoir network configurations. The EF scenarios ranged from zero
to very healthy
releases. It is shown that if the middle ground
between the two extreme EF scenarios is considered, the theoretical maximum safe
yield from surface storage is about 65-70 % of the mean annual runoff (MAR) of the basin. It is also identified that although distribution of reservoirs in the river network reduces the cumulative yield from the basin, this cumulative yield is maximized if the ratio among the storage capacities placed in each sub drainage basin is equivalent to the ratio among their MAR. The study suggests a framework to identify drainage regions having higher surface storage potential, to plan for the right distribution of storage capacity within a river basin, as well as to plan for EF allocations.
Zhong, Shi-Yu; Wu, Qing; Li, Yu; Cheng, Jin-Ping
2012-11-01
Based on the source-sink landscape theory and the principles of ecosystem services, the minimum cumulative resistance (MCR) model was modified, where the urban center construction land was taken as the expansion source, and the contribution rate of ecological land ecosystem services value was considered as the resistance coefficient. With the modified MCR, the urban spatial expansion process of Xintang Town, Guangzhou City was successfully simulated, and, based on the protection of ecological security pattern, the optimum path for reconstructing urban land space was put forward. The simulated urban spatial expansion short path in 1988-2008 was in accordance with the real situation. By the modified MCR, the urban space was divided into four zones of high, higher, medium, and low resistance, with the area of 80.84, 78.90, 24.26, and 61.88 km2, respectively. The expansion path of the urban space was along the route from low to medium and then to high resistance zones successively. The land suitable for eco-protection and construction had an area of 159.74 km2 and 86.14 km2, while the ecological conflict area (17.37 km2) was mainly located in higher and high resistance zones, being 10.38 and 6.99 km2, respectively. The modified MCR could not only effectively reflect the distribution area of urban land use and the conflict relationship between urban construction and ecological protection, but also reasonably judge the best developmental short path for urban spatial expansion.
Cumulative impact assessment: Application of a methodology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Witmer, G.W.; Bain, M.B.; Irving, J.S.
We expanded upon the Federal Energy Regulatory Commission's (FERC) Cluster Impact Assessment Procedure (CIAP) to provide a practical methodology for assessing potential cumulative impacts from multiple hydroelectric projects within a river basin. The objectives in designing the methodology were to allow the evaluation of a large number of combinations of proposed projects and to minimize constraints on the use of ecological knowledge for planning and regulating hydroelectric development at the river basin level. Interactive workshops and evaluative matrices were used to identify preferred development scenarios in the Snohomish (Washington) and Salmon (Idaho) River Basins. Although the methodology achieved its basicmore » objectives, some difficulties were encountered. These revolved around issues of (1) data quality and quantity, (2) alternatives analysis, (3) determination of project interactions, (4) determination of cumulative impact thresholds, and (5) the use of evaluative techniques to express degrees of impact. 8 refs., 1 fig., 2 tabs.« less
Nikolaev, V P
2008-01-01
Theoretical analysis of the risk of decompression illness (DI) during extravehicular activity following the Russian and NASA decompression protocols (D-R and D-US, respectively) was performed. In contrast to the tradition approach to decompression stress evaluation by the factor of tissue supersaturation with nitrogen, our probabilistic theory of decompression safety provides a completely reasoned evaluation and comparison of the levels of hazard of these decompression protocols. According to this theory, the function of cumulative DI risk is equal to the sum of functions of cumulative risk of lesion of all body tissues by gas bubbles and their supersaturation by solute gases. Based on modeling of dynamics of these functions, growth of the DI cumulative risk in the course of D-R and D-US follows essentially similar trajectories within the time-frame of up to 330 minutes. However, further extension of D-US but not D-R raises the risk of DI drastically.
U.S. Geological Survey Science Strategy for the Wyoming Landscape Conservation Initiative
Bowen, Zachary H.; Aldridge, Cameron L.; Anderson, Patrick J.; Chong, Geneva W.; Drummond, Mark A.; Homer, Collin G.; Johnson, Ronald C.; Kauffman, Matthew J.; Knick, Steven T.; Kosovich, John J.; Miller, Kirk A.; Owens, Tom; Shafer, Sarah L.; Sweat, Michael J.
2009-01-01
Southwest Wyoming's wildlife and habitat resources are increasingly affected by energy and urban/exurban development, climate change, and other key drivers of ecosystem change. To ensure that southwest Wyoming's wildlife populations and habitats persist in the face of development and other changes, a consortium of public resource-management agencies proposed the Wyoming Landscape Conservation Initiative (WLCI), the overall goal of which is to implement conservation actions. As the principal agency charged with conducting WLCI science, the U.S. Geological Survey (USGS) has developed a Science Strategy for the WLCI. Workshops were held for all interested parties to identify and refine the most pressing management needs for achieving WLCI goals. Research approaches for addressing those needs include developing conceptual models for understanding ecosystem function, identifying key drivers of change affecting WLCI ecosystems, and conducting scientific monitoring and experimental studies to better understand ecosystems processes, cumulative effects of change, and effectiveness of habitat treatments. The management needs drive an iterative, three-phase framework developed for structuring and growing WLCI science efforts: Phase I entails synthesizing existing information to assess current conditions, determining what is already known about WLCI ecosystems, and providing a foundation for future work; Phase II entails conducting targeted research and monitoring to address gaps in data and knowledge during Phase I; and Phase III entails integrating new knowledge into WLCI activities and coordinating WLCI partners and collaborators. Throughout all three phases, information is managed and made accessible to interested parties and used to guide and improve management and conservation actions, future habitat treatments, best management practices, and other conservation activities.
Cumulative impacts and their resultant cumulative effects have become an important focus of both environemntal regulation and scientific investigation because of their potentially severe consequences. For example, the federal National Environmental Policy Act and the Clean Water...
Stein, Claudia; Hallett, Lauren M; Harpole, W Stanley; Suding, Katharine N
2014-01-01
The concept of ecosystem services--the benefits that nature provides to human's society--has gained increasing attention over the past decade. Increasing global abiotic and biotic change, including species invasions, is threatening the secure delivery of these ecosystem services. Efficient evaluation methods of ecosystem services are urgently needed to improve our ability to determine management strategies and restoration goals in face of these new emerging ecosystems. Considering a range of multiple ecosystem functions may be a useful way to determine such strategies. We tested this framework experimentally in California grasslands, where large shifts in species composition have occurred since the late 1700's. We compared a suite of ecosystem functions within one historic native and two non-native species assemblages under different grazing intensities to address how different species assemblages vary in provisioning, regulatory and supporting ecosystem services. Forage production was reduced in one non-native assemblage (medusahead). Cultural ecosystem services, such as native species diversity, were inherently lower in both non-native assemblages, whereas most other services were maintained across grazing intensities. All systems provided similar ecosystem services under the highest grazing intensity treatment, which simulated unsustainable grazing intensity. We suggest that applying a more comprehensive ecosystem framework that considers multiple ecosystem services to evaluate new emerging ecosystems is a valuable tool to determine management goals and how to intervene in a changing ecosystem.
EPA is evaluating ecosystem restoration and management techniques to ensure they create sustainable solutions for degraded watersheds. ORD NRMRL initiated the Restoration Plus (RePlus) program in 2002 to a) evaluate ecosystem restoration and management options, b) assess the non-...
Ukidwe, Nandan U; Bakshi, Bhavik R
2004-09-15
Incorporation of ecological considerations in decision-making is essential for sustainable development, but is hindered by inadequate appreciation of the role of ecosystems, and lack of scientifically rigorous techniques for including their contribution. This paper develops a novel thermodynamic accounting framework for including the contribution of natural capital via thermodynamic input-output analysis. This framework is applied to the 1992 US economy comprising 91 industry sectors, resulting in delineation of the myriad ways in which sectors of the US economy rely on ecosystem products and services. The contribution of ecosystems is represented via the concept of ecological cumulative exergy consumption (ECEC), which is related to emergy analysis but avoids any of its controversial assumptions and claims. The use of thermodynamics permits representation of all kinds of inputs and outputs in consistent units, facilitating the definition of aggregate metrics. Total ECEC requirement indicates the extent to which each economic sector relies directly and indirectly on ecological inputs. The ECEC/money ratio indicates the relative monetary versus ecological throughputs in each sector, and indicates the relationship between the thermodynamic work needed to produce a product or service and the corresponding economic activity. This ratio is found to decrease along economic supply chains, indicating industries that are higher up in the economic food chain price ecosystem contribution more than the basic infrastructure industries such as mining and manufacturing. The ratio of CEC with and without inclusion of ecosystems indicates the extent to which conventional thermoeconomic analysis underestimates the contribution of ecosystems. Such ratios, made available for the first time, provide unique insight into the importance of natural capital, and are especially useful in hybrid thermodynamic life cycle analysis of industrial systems. The approach, data compiled in this work, and the resulting insight provide a more ecologically conscious tool for environmental decision-making, and has potential applications at micro as well as macro scales.
Assessment of coastal management options by means of multilayered ecosystem models
NASA Astrophysics Data System (ADS)
Nobre, Ana M.; Ferreira, João G.; Nunes, João P.; Yan, Xiaojun; Bricker, Suzanne; Corner, Richard; Groom, Steve; Gu, Haifeng; Hawkins, Anthony J. S.; Hutson, Rory; Lan, Dongzhao; Silva, João D. Lencart e.; Pascoe, Philip; Telfer, Trevor; Zhang, Xuelei; Zhu, Mingyuan
2010-03-01
This paper presents a multilayered ecosystem modelling approach that combines the simulation of the biogeochemistry of a coastal ecosystem with the simulation of the main forcing functions, such as catchment loading and aquaculture activities. This approach was developed as a tool for sustainable management of coastal ecosystems. A key feature is to simulate management scenarios that account for changes in multiple uses and enable assessment of cumulative impacts of coastal activities. The model was applied to a coastal zone in China with large aquaculture production and multiple catchment uses, and where management efforts to improve water quality are under way. Development scenarios designed in conjunction with local managers and aquaculture producers include the reduction of fish cages and treatment of wastewater. Despite the reduction in nutrient loading simulated in three different scenarios, inorganic nutrient concentrations in the bay were predicted to exceed the thresholds for poor quality defined by Chinese seawater quality legislation. For all scenarios there is still a Moderate High to High nutrient loading from the catchment, so further reductions might be enacted, together with additional decreases in fish cage culture. The model predicts that overall, shellfish production decreases by 10%-28% using any of these development scenarios, principally because shellfish growth is being sustained by the substances to be reduced for improvement of water quality. The model outcomes indicate that this may be counteracted by zoning of shellfish aquaculture at the ecosystem level in order to optimize trade-offs between productivity and environmental effects. The present case study exemplifies the value of multilayered ecosystem modelling as a tool for Integrated Coastal Zone Management and for the adoption of ecosystem approaches for marine resource management. This modelling approach can be applied worldwide, and may be particularly useful for the application of coastal management regulation, for instance in the implementation of the European Marine Strategy Framework Directive.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pavlickova, Katarina; Vyskupova, Monika, E-mail: vyskupova@fns.uniba.sk
Cumulative environmental impact assessment deals with the occasional use in practical application of environmental impact assessment process. The main reasons are the difficulty of cumulative impact identification caused by lack of data, inability to measure the intensity and spatial effect of all types of impacts and the uncertainty of their future evolution. This work presents a method proposal to predict cumulative impacts on the basis of landscape vulnerability evaluation. For this purpose, qualitative assessment of landscape ecological stability is conducted and major vulnerability indicators of environmental and socio-economic receptors are specified and valuated. Potential cumulative impacts and the overall impactmore » significance are predicted quantitatively in modified Argonne multiple matrixes while considering the vulnerability of affected landscape receptors and the significance of impacts identified individually. The method was employed in the concrete environmental impact assessment process conducted in Slovakia. The results obtained in this case study reflect that this methodology is simple to apply, valid for all types of impacts and projects, inexpensive and not time-consuming. The objectivity of the partial methods used in this procedure is improved by quantitative landscape ecological stability evaluation, assignment of weights to vulnerability indicators based on the detailed characteristics of affected factors, and grading impact significance. - Highlights: • This paper suggests a method proposal for cumulative impact prediction. • The method includes landscape vulnerability evaluation. • The vulnerability of affected receptors is determined by their sensitivity. • This method can increase the objectivity of impact prediction in the EIA process.« less
NASA Astrophysics Data System (ADS)
Augustin, Juergen; Giebels, Michael; Albiac Borraz, Elisa; Hoffmann, Mathias; Sommer, Michael
2014-05-01
Fen mires, widely distributed in Germany and Northern Europe, contain extreme high amounts of carbon (up to 5000 t C per hectare). For this reason, they play an important role in the global cycle of the greenhouse gases carbon dioxide (CO2) and methane (CH4). Currently more than 95% of all fen mires in central Europe are drained. Therefore, they are assumed to represent extremely strong sources for CO2,accompanied by a fast reduction of the peat carbon stocks. For a number of reasons it is not possible to overcome this problem by restoration measures like flooding at the most drained fen sites. Moreover, there are till now just few and contradictory information about the contribution of alternative land use forms like grassland extensification on the reduction of the CO2 source function of these organic soils. As a contribution to clearing this deficit, we have ongoingly measured the CO2 and CH4 exchange as well as the changes in C stock on a deeply drained fen mire near the village of Paulinenaue from 2007 till 2012. The measurement sites is located within the so-called Rhin-Havelluch, an 80000 ha shallow paludification mire complex in the northwest of Berlin. The investigation included extensively and intensively used meadows (one cut vs. three cuts) on two soil types with different C stocks (Hemic Rheic Histosol vs. Mollic Gleysol). We used transparent chambers for measuring the CO2 flux net ecosystem exchange (difference between gross primary production and ecosystem respiration) and non-transparent chambers for measuring the CO2 flux ecosystem respiration and the CH4 exchange. Determined soil stock changes based on a C budget approach, including cumulated annual net ecosystem exchange, cumulated CH4 exchange, C export by harvest, and C import by fertilization. All current C fluxes were influenced in a complex way by ground-water level, plant development, land use intensity (cut frequency) and current weather conditions. Averaged over the whole investigation time all combinations of land use intensity and soil types acted as strong CO2 sources and showed high soil C losses (up to 1070 g C m-2 yr-1). There was a tendency of lower soil C losses in case of extensive grassland compared to intensive grassland use (820 vs. 1070 g C m-2 yr-1) and grassland at the Gleysol site compared to the Histosol site (538 vs. 946 g C m-2 yr-1). However, the cumulated C fluxes and the soil C losses are subject to a very strong interannual variability. The actual range varied from 245 to 2092 g C m-2 yr-1 in case of the soil C losses. It can be therefore concluded that only long-term measurements (> 3 years) provides reliable information about the C dynamics of drained fen mires. Due to the high interannual variability, there is a high risk to get largely biased results if only short-term measurements will be done.
NASA Astrophysics Data System (ADS)
Revill, Andrew; Sus, Oliver; Williams, Mathew
2013-04-01
Croplands are traditionally managed to maximise the production of food, feed, fibre and bioenergy. Advancements in agricultural technologies, together with land-use change, have approximately doubled World grain harvests over the past 50 years. Cropland ecosystems also play a significant role in the global carbon (C) cycle and, through changes to C storage in response to management activities, they can provide opportunities for climate change mitigation. However, quantifying and understanding the cropland C cycle is complex, due to variable environmental drivers, varied management practices and often highly heterogeneous landscapes. Efforts to upscale processes using simulation models must resolve these challenges. Here we show how data assimilation (DA) approaches can link C cycle modelling to Earth observation (EO) and reduce uncertainty in upscaling. We evaluate a framework for the assimilation of leaf area index (LAI) time series, empirically derived from EO optical and radar sensors, for state-updating a model of crop development and C fluxes. Sensors are selected with fine spatial resolutions (20-50 m) to resolve variability across field sizes typically used in European agriculture. Sequential DA is used to improve the canopy development simulation, which is validated by comparing time-series LAI and net ecosystem exchange (NEE) predictions to independent ground measurements and eddy covariance observations at multiple European cereal crop sites. Significant empirical relationships were established between the LAI ground measurements and the optical reflectance and radar backscatter, which allowed for single LAI calibrations being valid for all the cropland sites for each sensor. The DA of all EO LAI estimates results indicated clear adjustments in LAI and an enhanced representation of daily CO2 exchanges, particularly around the time of peak C uptake. Compared to the simulation without DA, the assimilation of all EO LAI estimates improved the predicted at-harvest cumulative NEE for all cropland sites by an average of 69%. The use of radar sensors, being relatively unaffected by cloud cover and sensitive to the structural properties of the crop, significantly improves the analyses when compared to the combined, and individual, use of the optical LAI estimates. When assimilating the radar derived LAI only, the estimated at-harvest cumulative NEE was improved by 79% when compared to the simulation without DA. Future developments would include the spatial upscaling of the existing model framework and the assimilation of additional state variables, such as soil moisture.
Evaluating the combined adverse effects of multiple stressors upon human health is an imperative component of cumulative risk assessment (CRA)1. In addition to chemical stressors, other non-chemical factors are also considered. For examples, smoking will elevate the risks of havi...
The need for simultaneous evaluation of ecosystem services and land use change
Euliss, Ned H.; Smith, Loren M.; Liu, Shu-Guang; Feng, Min; Mushet, David M.; Auch, Roger F.; Loveland, Thomas R.
2010-01-01
We are living in a period of massive global change. This rate of change may be almost without precedent in geologic history (1). Even the most remote areas of the planet are influenced by human activities. Modern landscapes have been highly modified to accommodate a growing human population that the United Nations has forecast to peak at 9.1 billion by 2050. Over this past century, reliance on services from ecosystems has increased significantly and, over past decades, sustainability of our modern, intensively managed ecosystems has been a topic of serious international concern (1). Numerous papers addressing a particular land-use change effect on specific ecosystem services have recently been published. For example, there is currently great interest in increasing biofuel production to achieve energy inde- pendence goals and recent papers have independently focused attention on impacts of land-use change on single ecosystem services such as carbon sequestration (2) and many others (e.g., water availability, biodiversity, pollination). However, land-use change clearly affects myriad ecosystem services simultaneously. Hence, a broader perspective and context is needed to evaluate and understand interrelated affects on multiple ecosystem services, especially as we strive for the goal of sustainably managing global ecosystems. Similarly, land uses affect ecosystem services synergistically; single land-use evaluations may be misleading because the overall impact on an ecosystem is not evaluated. A more holistic approach would provide a means and framework to characterize how land-use change affects provisioning of goods and services of complete ecosystems.
Climate mitigation: sustainable preferences and cumulative carbon
NASA Astrophysics Data System (ADS)
Buckle, Simon
2010-05-01
We develop a stylized AK growth model with both climate damages to ecosystem goods and services and sustainable preferences that allow trade-offs between present discounted utility and long-run climate damages. The simplicity of the model permits analytical solutions. Concern for the long-term provides a strong driver for mitigation action. One plausible specification of sustainable preferences leads to the result that, for a range of initial parameter values, an optimizing agent would choose a level of cumulative carbon dioxide (CO2) emissions independent of initial production capital endowment and CO2 levels. There is no technological change so, for economies with sufficiently high initial capital and CO2 endowments, optimal mitigation will lead to disinvestment. For lower values of initial capital and/or CO2 levels, positive investment can be optimal, but still within the same overall level of cumulative emissions. One striking aspect of the model is the complexity of possible outcomes, in addition to these optimal solutions. We also identify a resource constrained region and several regions where climate damages exceed resources available for consumption. Other specifications of sustainable preferences are discussed, as is the case of a hard constraint on long-run damages. Scientists are currently highlighting the potential importance of the cumulative carbon emissions concept as a robust yet flexible target for climate policymakers. This paper shows that it also has an ethical interpretation: it embodies an implicit trade off in global welfare between present discounted welfare and long-term climate damages. We hope that further development of the ideas presented here might contribute to the research and policy debate on the critical areas of intra- and intergenerational welfare.
NASA Astrophysics Data System (ADS)
Selkoe, K. A.; Halpern, B. S.; Ebert, C. M.; Franklin, E. C.; Selig, E. R.; Casey, K. S.; Bruno, J.; Toonen, R. J.
2009-09-01
Effective and comprehensive regional-scale marine conservation requires fine-grained data on the spatial patterns of threats and their overlap. To address this need for the Papahānaumokuākea Marine National Monument (Monument) in Hawaii, USA, spatial data on 14 recent anthropogenic threats specific to this region were gathered or created, including alien species, bottom fishing, lobster trap fishing, ship-based pollution, ship strike risks, marine debris, research diving, research equipment installation, research wildlife sacrifice, and several anthropogenic climate change threats i.e., increase in ultraviolet (UV) radiation, seawater acidification, the number of warm ocean temperature anomalies relevant to disease outbreaks and coral bleaching, and sea level rise. These data were combined with habitat maps and expert judgment on the vulnerability of different habitat types in the Monument to estimate spatial patterns of current cumulative impact at 1 ha (0.01 km2) resolution. Cumulative impact was greatest for shallow reef areas and peaked at Maro Reef, where 13 of the 14 threats overlapped in places. Ocean temperature variation associated with disease outbreaks was found to have the highest predicted impact overall, followed closely by other climate-related threats, none of which have easily tractable management solutions at the regional scale. High impact threats most tractable to regional management relate to ship traffic. Sensitivity analyses show that the results are robust to both data availability and quality. Managers can use these maps to (1) inform management and surveillance priorities based on the ranking of threats and their distributions, (2) guide permitting decisions based on cumulative impacts, and (3) choose areas to monitor for climate change effects. Furthermore, this regional analysis can serve as a case study for managers elsewhere interested in assessing and mapping region-specific cumulative human impacts.
Sustainability of utility-scale solar energy: Critical environmental concepts
NASA Astrophysics Data System (ADS)
Hernandez, R. R.; Moore-O'Leary, K. A.; Johnston, D. S.; Abella, S.; Tanner, K.; Swanson, A.; Kreitler, J.; Lovich, J.
2017-12-01
Renewable energy development is an arena where ecological, political, and socioeconomic values collide. Advances in renewable energy will incur steep environmental costs to landscapes in which facilities are constructed and operated. Scientists - including those from academia, industry, and government agencies - have only recently begun to quantify trade-off in this arena, often using ground-mounted, utility-scale solar energy facilities (USSE, ≥ 1 megawatt) as a model. Here, we discuss five critical ecological concepts applicable to the development of more sustainable USSE with benefits over fossil-fuel-generated energy: (1) more sustainable USSE development requires careful evaluation of trade-offs between land, energy, and ecology; (2) species responses to habitat modification by USSE vary; (3) cumulative and large-scale ecological impacts are complex and challenging to mitigate; (4) USSE development affects different types of ecosystems and requires customized design and management strategies; and (5) long-term ecological consequences associated with USSE sites must be carefully considered. These critical concepts provide a framework for reducing adverse environmental impacts, informing policy to establish and address conservation priorities, and improving energy production sustainability.
Sustainability of utility-scale solar energy – critical ecological concepts
Moore-O'Leary, Kara A.; Hernandez, Rebecca R.; Johnston, Dave S.; Abella, Scott R.; Tanner, Karen E.; Swanson, Amanda C.; Kreitler, Jason R.; Lovich, Jeffrey E.
2017-01-01
Renewable energy development is an arena where ecological, political, and socioeconomic values collide. Advances in renewable energy will incur steep environmental costs to landscapes in which facilities are constructed and operated. Scientists – including those from academia, industry, and government agencies – have only recently begun to quantify trade-offs in this arena, often using ground-mounted, utility-scale solar energy facilities (USSE, ≥1 megawatt) as a model. Here, we discuss five critical ecological concepts applicable to the development of more sustainable USSE with benefits over fossil-fuel-generated energy: (1) more sustainable USSE development requires careful evaluation of trade-offs between land, energy, and ecology; (2) species responses to habitat modification by USSE vary; (3) cumulative and large-scale ecological impacts are complex and challenging to mitigate; (4) USSE development affects different types of ecosystems and requires customized design and management strategies; and (5) long-term ecological consequences associated with USSE sites must be carefully considered. These critical concepts provide a framework for reducing adverse environmental impacts, informing policy to establish and address conservation priorities, and improving energy production sustainability.
NASA Astrophysics Data System (ADS)
Dygert, N. J.; Liang, Y.
2017-12-01
Lunar basalts maintain an important record of the composition of the lunar interior. Much of our understanding of the Moon's early evolution comes from studying their petrogenesis. Recent experimental work has advanced our knowledge of major and trace element fractionation during lunar magma ocean (LMO) crystallization [e.g., 1-3], which produced heterogeneous basalt sources in the Moon's mantle. With the new experimental constraints, we can evaluate isotopic and trace element signatures in lunar basalts in unprecedented detail, refining inferences about the Moon's dynamic history. Two petrogenetic models are invoked to explain the compositions of the basalts. The assimilation model argues they formed as primitive melts of early LMO cumulates that assimilated late LMO cumulates as they migrated upward. The cumulate overturn model argues that dense LMO cumulates sank into the lunar interior, producing hybridized sources that melted to form the basalts. Here we compare predicted Ce/Yb and Hf and Nd isotopes of partial melts of LMO cumulates with measured compositions of lunar basalts to evaluate whether they could have formed by end-member petrogenetic models. LMO crystallization models suggest all LMO cumulates have chondrite normalized Ce/Yb <1. Residual liquid from the magma ocean has Ce/Yb 1.5. Many primitive lunar basalts have Ce/Yb>1.5; these could not have formed by assimilation of any LMO cumulate or residual liquid (or KREEP basalt, which has isotopically negative ɛNd and ɛHf). In contrast, basalt REE patterns and isotopes can easily be modeled assuming partial melting of hybridized mantle sources, indicating overturn may be required. A chemical requirement for overturn independently confirms that late LMO cumulates are sufficiently low in viscosity to sink into the lunar interior, as suggested by recent rock deformation experiments [4]. Overturned, low viscosity late LMO cumulates would be relatively stable around the core [5]. High Ce/Yb basalts require that overturned cumulates were mixed back into the overlying mantle by convection within a few hundred Myr. [1] Dygert et al. (2014), GCA 132, 170-186. [2] Sun et al. (2017), GCA 206, 273-295. [3] Lin et al. (2017), EPSL 471, 104-116. [4] Dygert et al. (2016), GRL 43, 10.1002/2015GL066546. [5] Zhang et al. (2017), GRL 44, 10.1002/2017GL073702.
2010-12-01
The Francisella tularensis is one of these and is the causal agent of the tularemia disease. Tularemia is used as the motivating problem to evaluate...PAGES 79 14. SUBJECT TERMS Biosurveillance, Rare Disease, Tularemia , Cumulative Sum, CUSUM 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT...is one of these, and is the causal agent of the tularemia disease. Tularemia is used as the motivating problem to evaluate and compare the
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Bremond, Ariane; Engle, Nathan L.
2014-01-30
Climate change is rapidly undermining terrestrial ecosystem resilience and capacity to continue providing their services to the benefit of humanity and nature. Because of the importance of terrestrial ecosystems to human well-being and supporting services, decision makers throughout the world are busy creating policy responses that secure multiple development and conservation objectives- including that of supporting terrestrial ecosystem resilience in the context of climate change. This article aims to advance analyses on climate policy evaluation and planning in the area of terrestrial ecosystem resilience by discussing adaptation policy options within the ecology-economy-social nexus. The paper evaluates these decisions in themore » realm of terrestrial ecosystem resilience and evaluates the utility of a set of criteria, indicators, and assessment methods, proposed by a new conceptual multi-criteria framework for pro-development climate policy and planning developed by the United Nations Environment Programme. Potential applications of a multicriteria approach to climate policy vis-A -vis terrestrial ecosystems are then explored through two hypothetical case study examples. The paper closes with a brief discussion of the utility of the multi-criteria approach in the context of other climate policy evaluation approaches, considers lessons learned as a result efforts to evaluate climate policy in the realm of terrestrial ecosystems, and reiterates the role of ecosystem resilience in creating sound policies and actions that support the integration of climate change and development goals.« less
Modeling of cumulative ash curve in hard red spring wheat
USDA-ARS?s Scientific Manuscript database
Analysis of cumulative ash curves (CAC) is very important for evaluation of milling quality of wheat and blending different millstreams for specific applications. The aim of this research was to improve analysis of CAC. Five hard red spring wheat genotype composites from two regions were milled on...
Assessing Quality in Higher Education: New Criteria for Evaluating Students' Satisfaction
ERIC Educational Resources Information Center
Zineldin, Mosad; Akdag, Hatice Camgoz; Vasicheva, Valentina
2011-01-01
The aim of this research is to present a new quality assurance model (5Qs) and to examine the major factors affecting students' perception of cumulative satisfaction. The model includes behavioural dimensions of student satisfaction. The factors included in this cumulative summation are technical, functional, infrastructure, interaction and…
EVALUATING CUMULATIVE EFFECTS OF DISTURBANCE ON THE HYDROLOGIC FUNCTION OF BOGS, FENS, AND MIRES
Few quantitative studies have been done on the hydrology of fens, bogs and mires, and consequently any predictions of the cumulative impacts of disturbances on their hydrologic functions is extremely difficult. or example, few data are available on the role of bogs and fens with ...
Climate-dependence of ecosystem services in a nature reserve in northern China
Fang, Jiaohui; Song, Huali; Zhang, Yiran; Li, Yanran
2018-01-01
Evaluation of ecosystem services has become a hotspot in terms of research focus, but uncertainties over appropriate methods remain. Evaluation can be based on the unit price of services (services value method) or the unit price of the area (area value method). The former takes meteorological factors into account, while the latter does not. This study uses Kunyu Mountain Nature Reserve as a study site at which to test the effects of climate on the ecosystem services. Measured data and remote sensing imagery processed in a geographic information system were combined to evaluate gas regulation and soil conservation, and the influence of meteorological factors on ecosystem services. Results were used to analyze the appropriateness of the area value method. Our results show that the value of ecosystem services is significantly affected by meteorological factors, especially precipitation. Use of the area value method (which ignores the impacts of meteorological factors) could considerably impede the accuracy of ecosystem services evaluation. Results were also compared with the valuation obtained using the modified equivalent value factor (MEVF) method, which is a modified area value method that considers changes in meteorological conditions. We found that MEVF still underestimates the value of ecosystem services, although it can reflect to some extent the annual variation in meteorological factors. Our findings contribute to increasing the accuracy of evaluation of ecosystem services. PMID:29438427
Climate-dependence of ecosystem services in a nature reserve in northern China.
Fang, Jiaohui; Song, Huali; Zhang, Yiran; Li, Yanran; Liu, Jian
2018-01-01
Evaluation of ecosystem services has become a hotspot in terms of research focus, but uncertainties over appropriate methods remain. Evaluation can be based on the unit price of services (services value method) or the unit price of the area (area value method). The former takes meteorological factors into account, while the latter does not. This study uses Kunyu Mountain Nature Reserve as a study site at which to test the effects of climate on the ecosystem services. Measured data and remote sensing imagery processed in a geographic information system were combined to evaluate gas regulation and soil conservation, and the influence of meteorological factors on ecosystem services. Results were used to analyze the appropriateness of the area value method. Our results show that the value of ecosystem services is significantly affected by meteorological factors, especially precipitation. Use of the area value method (which ignores the impacts of meteorological factors) could considerably impede the accuracy of ecosystem services evaluation. Results were also compared with the valuation obtained using the modified equivalent value factor (MEVF) method, which is a modified area value method that considers changes in meteorological conditions. We found that MEVF still underestimates the value of ecosystem services, although it can reflect to some extent the annual variation in meteorological factors. Our findings contribute to increasing the accuracy of evaluation of ecosystem services.
The objective of the Office of Research and Development (ORD) ecosystem restoration research strategy is to evaluate the effectiveness of restoration and management practices for achieving desired environmental conditions that protect and enhance ecosystem services for society. T...
Quantitative methods for analysing cumulative effects on fish migration success: a review.
Johnson, J E; Patterson, D A; Martins, E G; Cooke, S J; Hinch, S G
2012-07-01
It is often recognized, but seldom addressed, that a quantitative assessment of the cumulative effects, both additive and non-additive, of multiple stressors on fish survival would provide a more realistic representation of the factors that influence fish migration. This review presents a compilation of analytical methods applied to a well-studied fish migration, a more general review of quantitative multivariable methods, and a synthesis on how to apply new analytical techniques in fish migration studies. A compilation of adult migration papers from Fraser River sockeye salmon Oncorhynchus nerka revealed a limited number of multivariable methods being applied and the sub-optimal reliance on univariable methods for multivariable problems. The literature review of fisheries science, general biology and medicine identified a large number of alternative methods for dealing with cumulative effects, with a limited number of techniques being used in fish migration studies. An evaluation of the different methods revealed that certain classes of multivariable analyses will probably prove useful in future assessments of cumulative effects on fish migration. This overview and evaluation of quantitative methods gathered from the disparate fields should serve as a primer for anyone seeking to quantify cumulative effects on fish migration survival. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.
InfoSequia: the first operational remote sensing-based Drought Monitoring System of Spain
NASA Astrophysics Data System (ADS)
Contreras, Sergio; Hunink, Johannes E.
2016-04-01
We present a satellite-based Drought Monitoring System that provides weekly updates of maps and bulletins with vegetation drought indices over the Iberian Peninsula. The web portal InfoSequía (http://infosequia.es) aims to complement the current Spanish Drought Monitoring System which relies on a hydrological drought index computed at the basin level using data on river flows and water stored in reservoirs. Drought indices computed by InfoSequia are derived from satellite data provided by MODIS sensors (TERRA and AQUA satellites), and report the relative anomaly observed in the Normalized Difference Vegetation Index (NDVI), Land Surface Temperature (LST), and in an additive combination of both. Similar to the U.S. Drought Monitoring System by NOAA, the indices include the Vegetation Condition Index (VCI, relative NDVI anomaly), the Temperature Condition Index (TCI, relative LST anomaly) and the Vegetation Health Index (VHI, relative NDVI-LST anomaly). Relative anomalies are codified into four warning levels, and all of them are provided for short periods of time (8-day windows), or longer periods (e.g. 1 year) in order to capture the cumulative effects of droughts in the state variables. Additionally, InfoSequia quantifies the seasonal trajectories of the cumulative deviation of the observed NDVI in relation with the averaged seasonal trajectory observed over a reference period. Through the weekly bulletins, the Drought Monitoring System InfoSequia aims to provide practical information to stakeholders on the sensitivity and resilience of native ecosystems and rainfed agrosystems during drought periods. Also, the remote sensed indices can be used as drought impact indicator to evaluate the skill of seasonal agricultural drought forecasting systems. InfoSequia is partly funded by the Spanish Ministry of Economy and Competiveness through a Torres-Quevedo grant.
Brain, Richard A; Solomon, Keith R
2009-01-01
This study evaluates the cumulative multifactorial physical and chemical impacts resulting from coca production on amphibian populations in comparison with the potential impacts produced by the herbicide glyphosate (Glyphos), which, mixed with the surfactant Cosmo-Flux, is used in the spray control program for illicit crops in Colombia. Using similar worst-case assumptions for exposure, several other pesticides used for coca production, including mancozeb, lambda cyhalothrin, endosulfan, diazinon, malathion, and chlorpyrifos, were up to 10- to 100-fold more toxic to frogs than the Glyphos-Cosmo-Flux mixture. Comparing hazard quotients based on application rates, several of these compounds demonstrated hazards 3-383 times that of formulated glyphosate. Secondary effects, particularly of insecticides, are also a concern, as these agents selectively target the primary food source of amphibians, which may indirectly impact growth and development. Although the potential chemical impacts by other pesticides are considerable, physical activities associated with coca production, particularly deforestation of primary forests for new coca plots, portend the greatest hazard to amphibian populations. The entire production cycle of cocaine has been linked to ecosystem degradation. The clearing of pristine forests for coca propagation in Colombia is well documented, and some of these regions coincide with those that contain exceptional amphibian biodiversity. This is particularly problematic as coca production encroaches more deeply into more remote areas of tropical rain forest. Transportation of disease, including the chitrid fungus, to these remote regions via human intrusion may also adversely affect amphibian populations. Therefore, the cumulative impacts of coca production, through habitat destruction, application of agrochemicals, and potential transmission of disease, are judged to pose greater risks to amphibian populations in coca-growing regions than the glyphosate spray control program.
Benefits of mercury controls for the United States
Selin, Noelle E.
2016-01-01
Mercury pollution poses risks for both human and ecosystem health. As a consequence, controlling mercury pollution has become a policy goal on both global and national scales. We developed an assessment method linking global-scale atmospheric chemical transport modeling to regional-scale economic modeling to consistently evaluate the potential benefits to the United States of global (UN Minamata Convention on Mercury) and domestic [Mercury and Air Toxics Standards (MATS)] policies, framed as economic gains from avoiding mercury-related adverse health endpoints. This method attempts to trace the policies-to-impacts path while taking into account uncertainties and knowledge gaps with policy-appropriate bounding assumptions. We project that cumulative lifetime benefits from the Minamata Convention for individuals affected by 2050 are $339 billion (2005 USD), with a range from $1.4 billion to $575 billion in our sensitivity scenarios. Cumulative economy-wide benefits to the United States, realized by 2050, are $104 billion, with a range from $6 million to $171 billion. Projected Minamata benefits are more than twice those projected from the domestic policy. This relative benefit is robust to several uncertainties and variabilities, with the ratio of benefits (Minamata/MATS) ranging from ≈1.4 to 3. However, we find that for those consuming locally caught freshwater fish from the United States, rather than marine and estuarine fish from the global market, benefits are larger from US than global action, suggesting domestic policies are important for protecting these populations. Per megagram of prevented emissions, our domestic policy scenario results in US benefits about an order of magnitude higher than from our global scenario, further highlighting the importance of domestic action. PMID:26712021
NASA Astrophysics Data System (ADS)
Wårlind, D.; Smith, B.; Hickler, T.; Arneth, A.
2014-01-01
Recently a considerable amount of effort has been put into quantifying how interactions of the carbon and nitrogen cycle affect future terrestrial carbon sinks. Dynamic vegetation models, representing the nitrogen cycle with varying degree of complexity, have shown diverging constraints of nitrogen dynamics on future carbon sequestration. In this study, we use the dynamic vegetation model LPJ-GUESS to evaluate how population dynamics and resource competition between plant functional types, combined with nitrogen dynamics, have influenced the terrestrial carbon storage in the past and to investigate how terrestrial carbon and nitrogen dynamics might change in the future (1850 to 2100; one exemplary "business-as-usual" climate scenario). Single factor model experiments of CO2 fertilisation and climate change show generally similar directions of the responses of C-N interactions, compared to the C-only version of the model, as documented in previous studies. Under a RCP 8.5 scenario, nitrogen limitation suppresses potential CO2 fertilisation, reducing the cumulative net ecosystem carbon uptake between 1850 and 2100 by 61%, and soil warming-induced increase in nitrogen mineralisation reduces terrestrial carbon loss by 31%. When environmental changes are considered conjointly, carbon sequestration is limited by nitrogen dynamics until present. However, during the 21st century nitrogen dynamics induce a net increase in carbon sequestration, resulting in an overall larger carbon uptake of 17% over the full period. This contradicts earlier model results that showed an 8 to 37% decrease in carbon uptake, questioning the often stated assumption that projections of future terrestrial C dynamics from C-only models are too optimistic.
Climate-Smart Design for Ecosystem Management: A Test Application for Coral Reefs.
West, Jordan M; Courtney, Catherine A; Hamilton, Anna T; Parker, Britt A; Julius, Susan H; Hoffman, Jennie; Koltes, Karen H; MacGowan, Petra
2017-01-01
The interactive and cumulative impacts of climate change on natural resources such as coral reefs present numerous challenges for conservation planning and management. Climate change adaptation is complex due to climate-stressor interactions across multiple spatial and temporal scales. This leaves decision makers worldwide faced with local, regional, and global-scale threats to ecosystem processes and services, occurring over time frames that require both near-term and long-term planning. Thus there is a need for structured approaches to adaptation planning that integrate existing methods for vulnerability assessment with design and evaluation of effective adaptation responses. The Corals and Climate Adaptation Planning project of the U.S. Coral Reef Task Force seeks to develop guidance for improving coral reef management through tailored application of a climate-smart approach. This approach is based on principles from a recently-published guide which provides a framework for adopting forward-looking goals, based on assessing vulnerabilities to climate change and applying a structured process to design effective adaptation strategies. Work presented in this paper includes: (1) examination of the climate-smart management cycle as it relates to coral reefs; (2) a compilation of adaptation strategies for coral reefs drawn from a comprehensive review of the literature; (3) in-depth demonstration of climate-smart design for place-based crafting of robust adaptation actions; and (4) feedback from stakeholders on the perceived usefulness of the approach. We conclude with a discussion of lessons-learned on integrating climate-smart design into real-world management planning processes and a call from stakeholders for an "adaptation design tool" that is now under development.
Space and time scales in human-landscape systems.
Kondolf, G Mathias; Podolak, Kristen
2014-01-01
Exploring spatial and temporal scales provides a way to understand human alteration of landscape processes and human responses to these processes. We address three topics relevant to human-landscape systems: (1) scales of human impacts on geomorphic processes, (2) spatial and temporal scales in river restoration, and (3) time scales of natural disasters and behavioral and institutional responses. Studies showing dramatic recent change in sediment yields from uplands to the ocean via rivers illustrate the increasingly vast spatial extent and quick rate of human landscape change in the last two millennia, but especially in the second half of the twentieth century. Recent river restoration efforts are typically small in spatial and temporal scale compared to the historical human changes to ecosystem processes, but the cumulative effectiveness of multiple small restoration projects in achieving large ecosystem goals has yet to be demonstrated. The mismatch between infrequent natural disasters and individual risk perception, media coverage, and institutional response to natural disasters results in un-preparedness and unsustainable land use and building practices.
Elevated moisture stimulates carbon loss from mineral soils by releasing protected organic matter.
Huang, Wenjuan; Hall, Steven J
2017-11-24
Moisture response functions for soil microbial carbon (C) mineralization remain a critical uncertainty for predicting ecosystem-climate feedbacks. Theory and models posit that C mineralization declines under elevated moisture and associated anaerobic conditions, leading to soil C accumulation. Yet, iron (Fe) reduction potentially releases protected C, providing an under-appreciated mechanism for C destabilization under elevated moisture. Here we incubate Mollisols from ecosystems under C 3 /C 4 plant rotations at moisture levels at and above field capacity over 5 months. Increased moisture and anaerobiosis initially suppress soil C mineralization, consistent with theory. However, after 25 days, elevated moisture stimulates cumulative gaseous C-loss as CO 2 and CH 4 to >150% of the control. Stable C isotopes show that mineralization of older C 3 -derived C released following Fe reduction dominates C losses. Counter to theory, elevated moisture may significantly accelerate C losses from mineral soils over weeks to months-a critical mechanistic deficiency of current Earth system models.
Phthalates and Cumulative Risk Assessment (NAS Final ...
On December 18, 2008, the National Academy of Sciences' National Research Council released a final report, requested and sponsored by the EPA, entitled Phthalates and Cumulative Risk Assessment: The Task Ahead. Risk assessment has become a dominant public policy tool for making choices, based on limited resources, to protect public health and the environment. It has been instrumental to the mission of the U.S. Environmental Protection Agency (EPA) as well as other federal agencies in evaluating public health concerns, informing regulatory and technological decisions, prioritizing research needs and funding, and in developing approaches for cost-benefit analysis. People are exposed to a variety of chemicals throughout their daily lives. To protect public health, regulators use risk assessments to examine the effects of chemical exposures. This book provides guidance for assessing the risk of phthalates, chemicals found in many consumer products that have been shown to affect the development of the male reproductive system of laboratory animals. Because people are exposed to multiple phthalates and other chemicals that affect male reproductive development, a cumulative risk assessment should be conducted that evaluates the combined effects of exposure to all these chemicals. The book suggests an approach for cumulative risk assessment that can serve as a model for evaluating the health risks of other types of chemicals.
Kono, Masashi; Inoue, Tatsuo; Kudo, Masatoshi; Chishina, Hirokazu; Arizumi, Tadaaki; Takita, Masahiro; Kitai, Satoshi; Yada, Norihisa; Hagiwara, Satoru; Minami, Yasunori; Ueshima, Kazuomi; Nishida, Naoshi; Murakami, Takamichi
2014-01-01
The purpose of this study was to evaluate the risk factors for local recurrence with radiofrequency ablation (RFA) for hepatocellular carcinoma (HCC) measuring ≤2 cm. This study involved 234 patients with 274 HCCs measuring ≤2 cm who had undergone RFA as the initial treatment. The mean tumor diameter was 1.478 cm. The median follow-up period was 829 days. We evaluated the post-RFA cumulative local recurrence rate and analyzed the risk factors contributing to clinical outcomes. Cumulative local recurrence rates were 9, 19 and 19% at 1, 2 and 3 years, respectively. Among the 145 cases with a complete safety margin (SM) after RFA, only 4 developed local tumor recurrence and the cumulative rates of local tumor recurrence at 1, 2 and 3 years were 2, 3 and 3%, respectively. Among the 129 cases with incomplete SM, local tumor recurrence developed in 34 and the cumulative rates of local tumor progression at 1, 2 and 3 years were 14, 36 and 36%, respectively. In multivariate analysis, significant risk factors were tumor location (liver surface), irregular gross type and SM <5 mm. Even with HCC measuring ≤2 cm, location and gross type of tumor should be carefully evaluated before RFA is performed.
An Integrated Coral Reef Ecosystem Model to Support Resource Management under a Changing Climate
Weijerman, Mariska; Fulton, Elizabeth A.; Kaplan, Isaac C.; Gorton, Rebecca; Leemans, Rik; Mooij, Wolf M.; Brainard, Russell E.
2015-01-01
Millions of people rely on the ecosystem services provided by coral reefs, but sustaining these benefits requires an understanding of how reefs and their biotic communities are affected by local human-induced disturbances and global climate change. Ecosystem-based management that explicitly considers the indirect and cumulative effects of multiple disturbances has been recommended and adopted in policies in many places around the globe. Ecosystem models give insight into complex reef dynamics and their responses to multiple disturbances and are useful tools to support planning and implementation of ecosystem-based management. We adapted the Atlantis Ecosystem Model to incorporate key dynamics for a coral reef ecosystem around Guam in the tropical western Pacific. We used this model to quantify the effects of predicted climate and ocean changes and current levels of current land-based sources of pollution (LBSP) and fishing. We used the following six ecosystem metrics as indicators of ecosystem state, resilience and harvest potential: 1) ratio of calcifying to non-calcifying benthic groups, 2) trophic level of the community, 3) biomass of apex predators, 4) biomass of herbivorous fishes, 5) total biomass of living groups and 6) the end-to-start ratio of exploited fish groups. Simulation tests of the effects of each of the three drivers separately suggest that by mid-century climate change will have the largest overall effect on this suite of ecosystem metrics due to substantial negative effects on coral cover. The effects of fishing were also important, negatively influencing five out of the six metrics. Moreover, LBSP exacerbates this effect for all metrics but not quite as badly as would be expected under additive assumptions, although the magnitude of the effects of LBSP are sensitive to uncertainty associated with primary productivity. Over longer time spans (i.e., 65 year simulations), climate change impacts have a slight positive interaction with other drivers, generally meaning that declines in ecosystem metrics are not as steep as the sum of individual effects of the drivers. These analyses offer one way to quantify impacts and interactions of particular stressors in an ecosystem context and so provide guidance to managers. For example, the model showed that improving water quality, rather than prohibiting fishing, extended the timescales over which corals can maintain high abundance by at least 5–8 years. This result, in turn, provides more scope for corals to adapt or for resilient species to become established and for local and global management efforts to reduce or reverse stressors. PMID:26672983
An Integrated Coral Reef Ecosystem Model to Support Resource Management under a Changing Climate.
Weijerman, Mariska; Fulton, Elizabeth A; Kaplan, Isaac C; Gorton, Rebecca; Leemans, Rik; Mooij, Wolf M; Brainard, Russell E
2015-01-01
Millions of people rely on the ecosystem services provided by coral reefs, but sustaining these benefits requires an understanding of how reefs and their biotic communities are affected by local human-induced disturbances and global climate change. Ecosystem-based management that explicitly considers the indirect and cumulative effects of multiple disturbances has been recommended and adopted in policies in many places around the globe. Ecosystem models give insight into complex reef dynamics and their responses to multiple disturbances and are useful tools to support planning and implementation of ecosystem-based management. We adapted the Atlantis Ecosystem Model to incorporate key dynamics for a coral reef ecosystem around Guam in the tropical western Pacific. We used this model to quantify the effects of predicted climate and ocean changes and current levels of current land-based sources of pollution (LBSP) and fishing. We used the following six ecosystem metrics as indicators of ecosystem state, resilience and harvest potential: 1) ratio of calcifying to non-calcifying benthic groups, 2) trophic level of the community, 3) biomass of apex predators, 4) biomass of herbivorous fishes, 5) total biomass of living groups and 6) the end-to-start ratio of exploited fish groups. Simulation tests of the effects of each of the three drivers separately suggest that by mid-century climate change will have the largest overall effect on this suite of ecosystem metrics due to substantial negative effects on coral cover. The effects of fishing were also important, negatively influencing five out of the six metrics. Moreover, LBSP exacerbates this effect for all metrics but not quite as badly as would be expected under additive assumptions, although the magnitude of the effects of LBSP are sensitive to uncertainty associated with primary productivity. Over longer time spans (i.e., 65 year simulations), climate change impacts have a slight positive interaction with other drivers, generally meaning that declines in ecosystem metrics are not as steep as the sum of individual effects of the drivers. These analyses offer one way to quantify impacts and interactions of particular stressors in an ecosystem context and so provide guidance to managers. For example, the model showed that improving water quality, rather than prohibiting fishing, extended the timescales over which corals can maintain high abundance by at least 5-8 years. This result, in turn, provides more scope for corals to adapt or for resilient species to become established and for local and global management efforts to reduce or reverse stressors.
NASA Astrophysics Data System (ADS)
Stuart, Jason M.; Anderson, Russell; Lazzarino, Patrick; Kuehn, Kevin A.; Harvey, Omar R.
2018-05-01
Quantifying links between pyOM dynamics, environmental factors and processes is central to predicting ecosystem function and response to future perturbations. In this study, changes in carbon (TC), nitrogen (TN) , pH and relative recalcitrance (R50) for pine- and cordgrass-derived pyOM were measured at 3-6 weeks intervals throughout the first year of burial in the soil. Objectives were to 1) identify key environmental factors and processes driving early-stage pyOM dynamics, and 2) develop quantitative relationships between environmental factors and changes in pyOM properties. The study was conducted in sandy soils of a forested ecosystem in the Longleaf pine range, US with a focus on links between changes in pyOM properties, fire history (FH), cumulative precipitation (Pcum), average temperature (Tavg) and soil residence time (SRT). Pcum, SRT and Tavg were the main factors controlling TC and TN accounting for 77-91% and 64-96% of their respective variability. Fire history, along with Pcum, SRT and Tavg, exhibited significant controlling effects on pyOM, pH and R50 - accounting for 48-91% and 88-93% of respective variability. Volatilization of volatiles and leaching of water-soluble components (in summer) and the sorption of exogenous organic matter (fall through spring) were most plausibly controlling pyOM dynamics in this study. Overall, our results point to climatic and land management factors and physicochemical process as the main drivers of pyOM dynamics in the pine ecosystems of the Southeastern US.
McHale, Michael T; Souther, Jessica; Elkas, John C; Monk, Bradley J; Harrison, Terry A
2007-04-01
To determine the cumulative risk of cervical intraepithelial neoplasia (CIN) 2 or 3 in patients with atypical squamous cells, cannot exclude HSIL (ASC-H). A retrospective analysis was performed to identify patients referred to the dysplasia clinic with ASC-H. Initial evaluation included colposcopy, endocervical curettage, and an ectocervical biopsy, when indicated, in all the patients. A follow-up evaluation was performed at 6 and 12 months. Cumulative histological diagnosis of CIN 2 or 3 at 12 months served as the clinical end point. Two hundred twenty-nine patients with ASC-H and with a mean age of 32.8 years were evaluated. At the time of initial colposcopy, only 10.0% (23/229; 95% CI = 6.5%-15%) of the patients had histological evidence of CIN 2 or 3. The cumulative risk of CIN 2 or 3 was 12.2% (95% CI = 8%-17%). Evaluation of patients with ASC-H with colposcopy does lead to the detection of CIN 2 or 3 but perhaps at a rate lower than previously reported.
NASA Astrophysics Data System (ADS)
Luo, Hanjun; Ouyang, Zhengbiao; Liu, Qiang; Chen, Zhiliang; Lu, Hualan
2017-10-01
Cumulative pulses detection with appropriate cumulative pulses number and threshold has the ability to improve the detection performance of the pulsed laser ranging system with GM-APD. In this paper, based on Poisson statistics and multi-pulses cumulative process, the cumulative detection probabilities and their influence factors are investigated. With the normalized probability distribution of each time bin, the theoretical model of the range accuracy and precision is established, and the factors limiting the range accuracy and precision are discussed. The results show that the cumulative pulses detection can produce higher target detection probability and lower false alarm probability. However, for a heavy noise level and extremely weak echo intensity, the false alarm suppression performance of the cumulative pulses detection deteriorates quickly. The range accuracy and precision is another important parameter evaluating the detection performance, the echo intensity and pulse width are main influence factors on the range accuracy and precision, and higher range accuracy and precision is acquired with stronger echo intensity and narrower echo pulse width, for 5-ns echo pulse width, when the echo intensity is larger than 10, the range accuracy and precision lower than 7.5 cm can be achieved.
James M. Vose; Wayne T. Swank; Barton D. Clinton; Jennifer D. Knoepp; Lloyd W. Swift
1999-01-01
Pine-hardwood ecosystems in the Southern Appalachians are in serious decline due to fire exclusion and insect infestations. Fire has been advanced as a tool to restore these ecosystems, yet there are few studies evaluating overall ecosystem effects. The authorsâ objectives were to evaluate the effects of stand restoration burning on forest floor nitrogen (N) and carbon...
Cumulative risk assessment (CRA) methods promote the use of a conceptual site model (CSM) to apportion exposures and integrate risk from relevant stressors across different species. Integration is important to provide a more complete assessment of risk, but evaluating endpoints a...
Research and cumulative watershed effects
L. M. Reid
1993-01-01
The mandate for land managers to address cumulative watershed effects (CWEs) requires that planners evaluate the potential impacts of their activities on multiple beneficial uses within the context of other coexisting activities in a watershed. Types of CWEs vary with the types of land-use activities and their modes of interaction, but published studies illustrate...
ERIC Educational Resources Information Center
Lewis, Marilyn W.; Cavanagh, Paul K.; Ahn, Grace; Yoshioka, Marianne R.
2008-01-01
Prior history of trauma may sensitize individuals to subsequent trauma, including terrorist attacks. Using a convenience sample of secondary, cross-sectional data, pregnant women were grouped based on lifetime interpersonal violence history. Cumulative risk theory was used to evaluate the association of lifetime interpersonal violence history and…
Vanderduys, Eric Peter; Reside, April E.; Grice, Anthony; Rechetelo, Juliana
2016-01-01
Where threatened biodiversity is adversely affected by development, policies often state that "no net loss" should be the goal and biodiversity offsetting is one mechanism available to achieve this. However, developments are often approved on an ad hoc basis and cumulative impacts are not sufficiently examined. We demonstrate the potential for serious threat to an endangered subspecies when multiple developments are planned. We modelled the distribution of the black-throated finch (Poephila cincta cincta) using bioclimatic data and Queensland's Regional Ecosystem classification. We overlaid granted, extant extractive and exploratory mining tenures within the known and modelled ranges of black-throated finches to examine the level of incipient threat to this subspecies in central Queensland, Australia. Our models indicate that more than half of the remaining P. cincta cincta habitat is currently under extractive or exploratory tenure. Therefore, insufficient habitat exists to offset all potential development so "no net loss" is not possible. This has implications for future conservation of this and similarly distributed species and for resource development planning, especially the use of legislated offsets for biodiversity protection. PMID:26934622
Zainal, Khadija; Al-Madany, Ismail; Al-Sayed, Hashim; Khamis, Abdelqader; Al Shuhaby, Suhad; Al Hisaby, Ali; Elhoussiny, Wisam; Khalaf, Ebtisam
2012-07-01
This article assesses the ecological and economic impacts of land reclamation and dredging through consulting recent environmental impact assessment reports. Geographic features of Bahrain during 1963-2008 are produced using Geographical Information System. Extensive but inexpensive shallow coastal areas and tidal flats have been reclaimed particularly from 1997 to 2007 at a high rate of 21 km(2)/year. Formal records show the increase in the original land mass by the year 2008 to be 91 km(2). An estimated total cumulative loss of major habitats resulting from 10 reclamation projects was around 153.58 km(2). Also much larger scale impacts should be considered resulting from the borrow areas used for the extraction of sand or infill materials. A number of key habitats and species are affected in the vicinity of these projects. The study attempts to assign a monetary value to the marine ecosystem functions. There is a need for efficient coastal zone management to regulate a sustainable use of the marine resources. Copyright © 2012 Elsevier Ltd. All rights reserved.
Gatti, Giulia; Bianchi, Carlo Nike; Parravicini, Valeriano; Rovere, Alessio; Peirano, Andrea; Montefalcone, Monica; Massa, Francesco; Morri, Carla
2015-01-01
Understanding the effects of environmental change on ecosystems requires the identification of baselines that may act as reference conditions. However, the continuous change of these references challenges our ability to define the true natural status of ecosystems. The so-called sliding baseline syndrome can be overcome through the analysis of quantitative time series, which are, however, extremely rare. Here we show how combining historical quantitative data with descriptive ‘naturalistic’ information arranged in a chronological chain allows highlighting long-term trends and can be used to inform present conservation schemes. We analysed the long-term change of a coralligenous reef, a marine habitat endemic to the Mediterranean Sea. The coralligenous assemblages of Mesco Reef (Ligurian Sea, NW Mediterranean) have been studied, although discontinuously, since 1937 thus making available both detailed descriptive information and scanty quantitative data: while the former was useful to understand the natural history of the ecosystem, the analysis of the latter was of paramount importance to provide a formal measure of change over time. Epibenthic assemblages remained comparatively stable until the 1990s, when species replacement, invasion by alien algae, and biotic homogenisation occurred within few years, leading to a new and completely different ecosystem state. The shift experienced by the coralligenous assemblages of Mesco Reef was probably induced by a combination of seawater warming and local human pressures, the latter mainly resulting in increased water turbidity; in turn, cumulative stress may have favoured the establishment of alien species. This study showed that the combined analysis of quantitative and descriptive historical data represent a precious knowledge to understand ecosystem trends over time and provide help to identify baselines for ecological management. PMID:25714413
NASA Astrophysics Data System (ADS)
Wilkman, E.; Zona, D.; Tang, Y.; Gioli, B.; Lipson, D.; Oechel, W. C.
2017-12-01
The response of ecosystem respiration to warming in the Arctic is not well constrained, partly due to the presence of ice-wedge polygons in continuous permafrost areas. These formations lead to substantial variation in vegetation, soil moisture, water table, and active layer depth over the meter scale that can drive respiratory carbon loss. Accurate calculations of in-situ temperature sensitivities (Q10) are vital for the prediction of future Arctic emissions, and while the eddy covariance technique has commonly been used to determine the diurnal and season patterns of net ecosystem exchange (NEE) of CO2, the lack of suitable dark periods in the Arctic summer has limited our ability to estimate and interpret ecosystem respiration. To therefore improve our understanding of and define controls on ecosystem respiration, we directly compared CO2 fluxes measured from automated chambers across the main local polygonised landscape forms (high and low centers, polygon rims, and polygon troughs) to estimates from an adjacent eddy covariance tower. Low-centered polygons and polygon troughs had the greatest cumulative respiration rates, and ecosystem type appeared to be the most important explanatory variable for these rates. Despite the difference in absolute respiration rates, Q10 was surprisingly similar across all microtopographic features, despite contrasting water levels and vegetation types. Conversely, Q10 varied temporally, with higher values during the early and late summer and lower values during the peak growing season. Finally, good agreement was found between chamber and tower based Q10 estimates during the peak growing season. Overall, this study suggests that it is possible to simplify estimates of the temperature sensitivity of respiration across heterogeneous landscapes, but that seasonal changes in Q10 should be incorporated into current and future model simulations.
Assessing and managing multiple risks in a changing world-The Roskilde recommendations.
Selck, Henriette; Adamsen, Peter B; Backhaus, Thomas; Banta, Gary T; Bruce, Peter K H; Burton, G Allen; Butts, Michael B; Boegh, Eva; Clague, John J; Dinh, Khuong V; Doorn, Neelke; Gunnarsson, Jonas S; Hauggaard-Nielsen, Henrik; Hazlerigg, Charles; Hunka, Agnieszka D; Jensen, John; Lin, Yan; Loureiro, Susana; Miraglia, Simona; Munns, Wayne R; Nadim, Farrokh; Palmqvist, Annemette; Rämö, Robert A; Seaby, Lauren P; Syberg, Kristian; Tangaa, Stine R; Thit, Amalie; Windfeld, Ronja; Zalewski, Maciej; Chapman, Peter M
2017-01-01
Roskilde University (Denmark) hosted a November 2015 workshop, Environmental Risk-Assessing and Managing Multiple Risks in a Changing World. This Focus article presents the consensus recommendations of 30 attendees from 9 countries regarding implementation of a common currency (ecosystem services) for holistic environmental risk assessment and management; improvements to risk assessment and management in a complex, human-modified, and changing world; appropriate development of protection goals in a 2-stage process; dealing with societal issues; risk-management information needs; conducting risk assessment of risk management; and development of adaptive and flexible regulatory systems. The authors encourage both cross-disciplinary and interdisciplinary approaches to address their 10 recommendations: 1) adopt ecosystem services as a common currency for risk assessment and management; 2) consider cumulative stressors (chemical and nonchemical) and determine which dominate to best manage and restore ecosystem services; 3) fully integrate risk managers and communities of interest into the risk-assessment process; 4) fully integrate risk assessors and communities of interest into the risk-management process; 5) consider socioeconomics and increased transparency in both risk assessment and risk management; 6) recognize the ethical rights of humans and ecosystems to an adequate level of protection; 7) determine relevant reference conditions and the proper ecological context for assessments in human-modified systems; 8) assess risks and benefits to humans and the ecosystem and consider unintended consequences of management actions; 9) avoid excessive conservatism or possible underprotection resulting from sole reliance on binary, numerical benchmarks; and 10) develop adaptive risk-management and regulatory goals based on ranges of uncertainty. Environ Toxicol Chem 2017;36:7-16. © 2016 SETAC. © 2016 SETAC.
The carbon balance of terrestrial ecosystems in China.
Piao, Shilong; Fang, Jingyun; Ciais, Philippe; Peylin, Philippe; Huang, Yao; Sitch, Stephen; Wang, Tao
2009-04-23
Global terrestrial ecosystems absorbed carbon at a rate of 1-4 Pg yr(-1) during the 1980s and 1990s, offsetting 10-60 per cent of the fossil-fuel emissions. The regional patterns and causes of terrestrial carbon sources and sinks, however, remain uncertain. With increasing scientific and political interest in regional aspects of the global carbon cycle, there is a strong impetus to better understand the carbon balance of China. This is not only because China is the world's most populous country and the largest emitter of fossil-fuel CO(2) into the atmosphere, but also because it has experienced regionally distinct land-use histories and climate trends, which together control the carbon budget of its ecosystems. Here we analyse the current terrestrial carbon balance of China and its driving mechanisms during the 1980s and 1990s using three different methods: biomass and soil carbon inventories extrapolated by satellite greenness measurements, ecosystem models and atmospheric inversions. The three methods produce similar estimates of a net carbon sink in the range of 0.19-0.26 Pg carbon (PgC) per year, which is smaller than that in the conterminous United States but comparable to that in geographic Europe. We find that northeast China is a net source of CO(2) to the atmosphere owing to overharvesting and degradation of forests. By contrast, southern China accounts for more than 65 per cent of the carbon sink, which can be attributed to regional climate change, large-scale plantation programmes active since the 1980s and shrub recovery. Shrub recovery is identified as the most uncertain factor contributing to the carbon sink. Our data and model results together indicate that China's terrestrial ecosystems absorbed 28-37 per cent of its cumulated fossil carbon emissions during the 1980s and 1990s.
Ecosystem variability in the offshore northeastern Chukchi Sea
NASA Astrophysics Data System (ADS)
Blanchard, Arny L.; Day, Robert H.; Gall, Adrian E.; Aerts, Lisanne A. M.; Delarue, Julien; Dobbins, Elizabeth L.; Hopcroft, Russell R.; Questel, Jennifer M.; Weingartner, Thomas J.; Wisdom, Sheyna S.
2017-12-01
Understanding influences of cumulative effects from multiple stressors in marine ecosystems requires an understanding of the sources for and scales of variability. A multidisciplinary ecosystem study in the offshore northeastern Chukchi Sea during 2008-2013 investigated the variability of the study area's two adjacent sub-ecosystems: a pelagic system influenced by interannual and/or seasonal temporal variation at large, oceanographic (regional) scales, and a benthic-associated system more influenced by small-scale spatial variations. Variability in zooplankton communities reflected interannual oceanographic differences in waters advected northward from the Bering Sea, whereas variation in benthic communities was associated with seafloor and bottom-water characteristics. Variations in the planktivorous seabird community were correlated with prey distributions, whereas interaction effects in ANOVA for walruses were related to declines of sea-ice. Long-term shifts in seabird distributions were also related to changes in sea-ice distributions that led to more open water. Although characteristics of the lower trophic-level animals within sub-ecosystems result from oceanographic variations and interactions with seafloor topography, distributions of apex predators were related to sea-ice as a feeding platform (walruses) or to its absence (i.e., open water) for feeding (seabirds). The stability of prey resources appears to be a key factor in mediating predator interactions with other ocean characteristics. Seabirds reliant on highly-variable zooplankton prey show long-term changes as open water increases, whereas walruses taking benthic prey in biomass hotspots respond to sea-ice changes in the short-term. A better understanding of how variability scales up from prey to predators and how prey resource stability (including how critical prey respond to environmental changes over space and time) might be altered by climate and anthropogenic stressors is essential to predicting the future state of both the Chukchi and other arctic systems.
NASA Astrophysics Data System (ADS)
Kaplan, D.; Muñoz-Carpena, R.
2011-02-01
SummaryRestoration of degraded floodplain forests requires a robust understanding of surface water, groundwater, and vadose zone hydrology. Soil moisture is of particular importance for seed germination and seedling survival, but is difficult to monitor and often overlooked in wetland restoration studies. This research hypothesizes that the complex effects of surface water and shallow groundwater on the soil moisture dynamics of floodplain wetlands are spatially complementary. To test this hypothesis, 31 long-term (4-year) hydrological time series were collected in the floodplain of the Loxahatchee River (Florida, USA), where watershed modifications have led to reduced freshwater flow, altered hydroperiod and salinity, and a degraded ecosystem. Dynamic factor analysis (DFA), a time series dimension reduction technique, was applied to model temporal and spatial variation in 12 soil moisture time series as linear combinations of common trends (representing shared, but unexplained, variability) and explanatory variables (selected from 19 additional candidate hydrological time series). The resulting dynamic factor models yielded good predictions of observed soil moisture series (overall coefficient of efficiency = 0.90) by identifying surface water elevation, groundwater elevation, and net recharge (cumulative rainfall-cumulative evapotranspiration) as important explanatory variables. Strong and complementary linear relationships were found between floodplain elevation and surface water effects (slope = 0.72, R2 = 0.86, p < 0.001), and between elevation and groundwater effects (slope = -0.71, R2 = 0.71, p = 0.001), while the effect of net recharge was homogenous across the experimental transect (slope = 0.03, R2 = 0.05, p = 0.242). This study provides a quantitative insight into the spatial structure of groundwater and surface water effects on soil moisture that will be useful for refining monitoring plans and developing ecosystem restoration and management scenarios in degraded coastal floodplains.
Hughes, Kevin A.; Vega, Greta C.; Olalla-Tárraga, Miguel Á.
2017-01-01
Human footprint models allow visualization of human spatial pressure across the globe. Up until now, Antarctica has been omitted from global footprint models, due possibly to the lack of a permanent human population and poor accessibility to necessary datasets. Yet Antarctic ecosystems face increasing cumulative impacts from the expanding tourism industry and national Antarctic operator activities, the management of which could be improved with footprint assessment tools. Moreover, Antarctic ecosystem dynamics could be modelled to incorporate human drivers. Here we present the first model of estimated human footprint across predominantly ice-free areas of Antarctica. To facilitate integration into global models, the Antarctic model was created using methodologies applied elsewhere with land use, density and accessibility features incorporated. Results showed that human pressure is clustered predominantly in the Antarctic Peninsula, southern Victoria Land and several areas of East Antarctica. To demonstrate the practical application of the footprint model, it was used to investigate the potential threat to Antarctica’s avifauna by local human activities. Relative footprint values were recorded for all 204 of Antarctica’s Important Bird Areas (IBAs) identified by BirdLife International and the Scientific Committee on Antarctic Research (SCAR). Results indicated that formal protection of avifauna under the Antarctic Treaty System has been unsystematic and is lacking for penguin and flying bird species in some of the IBAs most vulnerable to human activity and impact. More generally, it is hoped that use of this human footprint model may help Antarctic Treaty Consultative Meeting policy makers in their decision making concerning avifauna protection and other issues including cumulative impacts, environmental monitoring, non-native species and terrestrial area protection. PMID:28085889
Pertierra, Luis R; Hughes, Kevin A; Vega, Greta C; Olalla-Tárraga, Miguel Á
2017-01-01
Human footprint models allow visualization of human spatial pressure across the globe. Up until now, Antarctica has been omitted from global footprint models, due possibly to the lack of a permanent human population and poor accessibility to necessary datasets. Yet Antarctic ecosystems face increasing cumulative impacts from the expanding tourism industry and national Antarctic operator activities, the management of which could be improved with footprint assessment tools. Moreover, Antarctic ecosystem dynamics could be modelled to incorporate human drivers. Here we present the first model of estimated human footprint across predominantly ice-free areas of Antarctica. To facilitate integration into global models, the Antarctic model was created using methodologies applied elsewhere with land use, density and accessibility features incorporated. Results showed that human pressure is clustered predominantly in the Antarctic Peninsula, southern Victoria Land and several areas of East Antarctica. To demonstrate the practical application of the footprint model, it was used to investigate the potential threat to Antarctica's avifauna by local human activities. Relative footprint values were recorded for all 204 of Antarctica's Important Bird Areas (IBAs) identified by BirdLife International and the Scientific Committee on Antarctic Research (SCAR). Results indicated that formal protection of avifauna under the Antarctic Treaty System has been unsystematic and is lacking for penguin and flying bird species in some of the IBAs most vulnerable to human activity and impact. More generally, it is hoped that use of this human footprint model may help Antarctic Treaty Consultative Meeting policy makers in their decision making concerning avifauna protection and other issues including cumulative impacts, environmental monitoring, non-native species and terrestrial area protection.
Operationalizing resilience for adaptive coral reef management under global environmental change
Anthony, Kenneth RN; Marshall, Paul A; Abdulla, Ameer; Beeden, Roger; Bergh, Chris; Black, Ryan; Eakin, C Mark; Game, Edward T; Gooch, Margaret; Graham, Nicholas AJ; Green, Alison; Heron, Scott F; van Hooidonk, Ruben; Knowland, Cheryl; Mangubhai, Sangeeta; Marshall, Nadine; Maynard, Jeffrey A; McGinnity, Peter; McLeod, Elizabeth; Mumby, Peter J; Nyström, Magnus; Obura, David; Oliver, Jamie; Possingham, Hugh P; Pressey, Robert L; Rowlands, Gwilym P; Tamelander, Jerker; Wachenfeld, David; Wear, Stephanie
2015-01-01
Cumulative pressures from global climate and ocean change combined with multiple regional and local-scale stressors pose fundamental challenges to coral reef managers worldwide. Understanding how cumulative stressors affect coral reef vulnerability is critical for successful reef conservation now and in the future. In this review, we present the case that strategically managing for increased ecological resilience (capacity for stress resistance and recovery) can reduce coral reef vulnerability (risk of net decline) up to a point. Specifically, we propose an operational framework for identifying effective management levers to enhance resilience and support management decisions that reduce reef vulnerability. Building on a system understanding of biological and ecological processes that drive resilience of coral reefs in different environmental and socio-economic settings, we present an Adaptive Resilience-Based management (ARBM) framework and suggest a set of guidelines for how and where resilience can be enhanced via management interventions. We argue that press-type stressors (pollution, sedimentation, overfishing, ocean warming and acidification) are key threats to coral reef resilience by affecting processes underpinning resistance and recovery, while pulse-type (acute) stressors (e.g. storms, bleaching events, crown-of-thorns starfish outbreaks) increase the demand for resilience. We apply the framework to a set of example problems for Caribbean and Indo-Pacific reefs. A combined strategy of active risk reduction and resilience support is needed, informed by key management objectives, knowledge of reef ecosystem processes and consideration of environmental and social drivers. As climate change and ocean acidification erode the resilience and increase the vulnerability of coral reefs globally, successful adaptive management of coral reefs will become increasingly difficult. Given limited resources, on-the-ground solutions are likely to focus increasingly on actions that support resilience at finer spatial scales, and that are tightly linked to ecosystem goods and services. PMID:25196132
Bradley, Paul M; Barber, Larry B; Clark, Jimmy M; Duris, Joseph W; Foreman, William T; Furlong, Edward T; Givens, Carrie E; Hubbard, Laura E; Hutchinson, Kasey J; Journey, Celeste A; Keefe, Steffanie H; Kolpin, Dana W
2016-10-15
Pharmaceutical contamination of contiguous groundwater is a substantial concern in wastewater-impacted streams, due to ubiquity in effluent, high aqueous mobility, designed bioactivity, and to effluent-driven hydraulic gradients. Wastewater treatment facility (WWTF) closures are rare environmental remediation events; offering unique insights into contaminant persistence, long-term wastewater impacts, and ecosystem recovery processes. The USGS conducted a combined pre/post-closure groundwater assessment adjacent to an effluent-impacted reach of Fourmile Creek, Ankeny, Iowa, USA. Higher surface-water concentrations, consistent surface-water to groundwater concentration gradients, and sustained groundwater detections tens of meters from the stream bank demonstrated the importance of WWTF effluent as the source of groundwater pharmaceuticals as well as the persistence of these contaminants under effluent-driven, pre-closure conditions. The number of analytes (110 total) detected in surface water decreased from 69 prior to closure down to 8 in the first post-closure sampling event approximately 30 d later, with a corresponding 2 order of magnitude decrease in the cumulative concentration of detected analytes. Post-closure cumulative concentrations of detected analytes were approximately 5 times higher in proximal groundwater than in surface water. About 40% of the 21 contaminants detected in a downstream groundwater transect immediately before WWTF closure exhibited rapid attenuation with estimated half-lives on the order of a few days; however, a comparable number exhibited no consistent attenuation during the year-long post-closure assessment. The results demonstrate the potential for effluent-impacted shallow groundwater systems to accumulate pharmaceutical contaminants and serve as long-term residual sources, further increasing the risk of adverse ecological effects in groundwater and the near-stream ecosystem. Published by Elsevier B.V.
Bradley, Paul M.; Barber, Larry B.; Clark, Jimmy M.; Duris, Joseph W.; Foreman, William T.; Furlong, Edward T.; Givens, Carrie E.; Hubbard, Laura E.; Hutchinson, Kasey J.; Journey, Celeste A.; Keefe, Steffanie H.; Kolpin, Dana W.
2016-01-01
Pharmaceutical contamination of contiguous groundwater is a substantial concern in wastewater-impacted streams, due to ubiquity in effluent, high aqueous mobility, designed bioactivity, and to effluent-driven hydraulic gradients. Wastewater treatment facility (WWTF) closures are rare environmental remediation events; offering unique insights into contaminant persistence, long-term wastewater impacts, and ecosystem recovery processes. The USGS conducted a combined pre/post-closure groundwater assessment adjacent to an effluent-impacted reach of Fourmile Creek, Ankeny, Iowa, USA. Higher surface-water concentrations, consistent surface-water to groundwater concentration gradients, and sustained groundwater detections tens of meters from the stream bank demonstrated the importance of WWTF effluent as the source of groundwater pharmaceuticals as well as the persistence of these contaminants under effluent-driven, pre-closure conditions. The number of analytes (110 total) detected in surface water decreased from 69 prior to closure down to 8 in the first post-closure sampling event approximately 30 d later, with a corresponding 2 order of magnitude decrease in the cumulative concentration of detected analytes. Post-closure cumulative concentrations of detected analytes were approximately 5 times higher in proximal groundwater than in surface water. About 40% of the 21 contaminants detected in a downstream groundwater transect immediately before WWTF closure exhibited rapid attenuation with estimated half-lives on the order of a few days; however, a comparable number exhibited no consistent attenuation during the year-long post-closure assessment. The results demonstrate the potential for effluent-impacted shallow groundwater systems to accumulate pharmaceutical contaminants and serve as long-term residual sources, further increasing the risk of adverse ecological effects in groundwater and the near-stream ecosystem.
McKenzie, Don; Allen, Craig D.
2007-01-01
Warming temperatures across western North America, coupled with increased drought, are expected to exacerbate disturbance regimes, particularly wildfires, insect outbreaks, and invasions of exotic species. Many ecologists and resource managers expect ecosystems to change more rapidly from disturbance effects than from the effects of a changing climate by itself. A particular challenge is to understand the interactions among disturbance regimes; for example, how will massive outbreaks of bark beetles, which kill drought-stressed trees by feeding on cambial tissues, increase the potential for large severe wildfires in a warming climate?Researchers in climatology, ecosystem science, fire and insect ecology, and landscape modeling from across western North America convened in Tucson, Ariz., for a 2 and a half day intensive workshop to identify new research directions in climate change and disturbance ecology. Four work groups focused on different aspects of the response of disturbance regimes to climate change: (1) extreme events and climatic variability (2) the effects of changing disturbance regimes on ecosystems, (3) disturbance interactions and cumulative effects, and (4) developing new landscape disturbance models. The workshop was structured with the analytic hierarchy process, a decision support method for achieving consensus from diverse groups of experts without sacrificing individual contributions.
The human footprint in the west: a large-scale analysis of human impacts
Leu, Matthias
2003-01-01
Background Humans have dramatically altered wildlands in the western United States over the past 100 years by using these lands and the resources they provide. Anthropogenic changes to the landscape, such as urban expansion and development of rural areas, influence the number and kinds of plants and wildlife that remain. In addition, western ecosystems are also affected by roads, powerlines, and other networks and land uses necessary to maintain human populations. The cumulative impacts of human presence and actions on a landscape are called the "human footprint." These impacts may affect plants and wildlife by increasing the number of synanthropic (species that benefit from human activities) bird and mammal predators and facilitating their movements through the landscape or by creating unsuitable habitats. These actions can impact plants and wildlife to such an extent that the persistence of populations or entire species is questionable. For example, greater sage-grouse (Centrocercus urophasianus) once were widespread throughout the Great Basin, but now are a focus of conservation concern because populations have declined for the past three decades across most of their range. At the USGS Forest and Rangeland Ecosystem Science Center, we are developing spatial models to better understand potential influences of the human footprint on shrubland ecosystems and associated wildlife in the western United States.
Influence of management and precipitation on carbon fluxes in greatplains grasslands
Rigge, Matthew B.; Wylie, Bruce K.; Zhang, Li; Boyte, Stephen P.
2013-01-01
Suitable management and sufficient precipitation on grasslands can provide carbon sinks. The net carbon accumulation of a site from the atmosphere, modeled as the Net Ecosystem Productivity (NEP), is a useful means to gauge carbon balance. Previous research has developed methods to integrate flux tower data with satellite biophysical datasets to estimate NEP across large regions. A related method uses the Ecosystem Performance Anomaly (EPA) as a satellite-derived indicator of disturbance intensity (e.g., livestock stocking rate, fire, and insect damage). To better understand the interactions among management, climate, and carbon dynamics, we evaluated the relationship between EPA and NEP data at the 250 m scale for grasslands in the Central Great Plains, USA (ranging from semi-arid to mesic). We also used weekly estimates of NEP to evaluate the phenology of carbon dynamics, classified by EPA (i.e., by level of disturbance impact). Results show that the cumulative carbon balance over these grasslands from 2000 to 2008 was a weak net sink of 13.7 g C m−2 yr−1. Overall, NEP increased with precipitation (R2 = 0.39, P < 0.05) from west to east. Disturbance influenced NEP phenology; however, climate and biophysical conditions were usually more important. The NEP response to disturbance varies by ecoregion, and more generally by grassland type, where the shortgrass prairie NEP is most sensitive to disturbance, the mixed-grass prairie displays a moderate response, and tallgrass prairie is the least impacted by disturbance (as measured by EPA). Sustainable management practices in the tallgrass and mixed-grass prairie may potentially induce a period of average net carbon sink until a new equilibrium soil organic carbon is achieved. In the shortgrass prairie, management should be considered sustainable if carbon stocks are simply maintained. The consideration of site carbon balance adds to the already difficult task of managing grasslands appropriately to site conditions. Results clarify the seasonal and interannual dynamics of NEP, specifically the influence of disturbance and moisture availability.
Fall season atypically warm weather event leads to substantial CH4 loss in Arctic ecosystems?
NASA Astrophysics Data System (ADS)
Zona, Donatella; Moreaux, Virginie; Liljedahl, Anna; Losacco, Salvatore; Murphy, Patrick; Oechel, Walter
2014-05-01
In the last century (during 1875-2008) high-latitudes are warming at a rate of 1.360C century-1, almost 2 times faster than the Northern Hemisphere trend (Bekryaev et al., 2010). This warming has been more intense outside of the summer season, with anomalies of 1.09, 1.59, 1.730C in the fall, winter, and spring season respectively (Bekryaev et al., 2010). This substantial temperature anomalies have the potential to increase the emission of greenhouse gas (CO2 and CH4) fluxes from arctic tundra ecosystems. In particular, CH4 emissions, which are primarily controlled by temperature (in addition to water table), can steeply increase with warming. Despite the potential relevance of CH4 emissions, very few measurements have been performed outside of the growing season across the entire Arctic, due to logistic constrains. Importantly, no flux measurements achieved a temporal and spatial data coverage sufficient to estimate with confidence an annual CH4 emissions from tundra ecosystem in Alaska, and its sensitivity to warming. Fall 2013 was unusually warm in central and northern Alaska. Following a relatively warm summer with dramatically above-average rainfall, the October mean monthly temperatures was the 4th and top warmest in Barrow (1949-2013) and Ivotuk (1998-2013), respectively. As we just upgraded several eddy covariance towers to measure CO2 and CH4 fluxes year-round, the atypical weather conditions of fall 2013 represented a unique chance for testing the sensitivity of CH4 loss to these atypically warm temperatures. All our sites across a latitudinal gradient (from the northern site, Barrow, to the southern site, Ivotuk), presented substantial CH4 loss in the fall. Importantly, in two of these sites (Barrow, Ivotuk) where the fall weather was substantially warmer than the long term trend, fall CH4 emission represented between 44-63% of the June-November cumulative emission. Surprisingly, in the southernmost site (Ivotuk), when the temperature anomaly was the highest, cumulative fall CH4 emission outpaced even the summer emission. This shows the sensitivity of CH4 loss to abnormal conditions, and the importance of fall periods for the annual CH4 budget in these Arctic ecosystems. Bekryaev, R. V., I. V. Polyakov, and V. A. Alexeev. 2010. Role of polar amplification in long-term surface air temperature variations and modern Arctic warming. Journal of Climate 23(14):3888-3906.
Lansing, Amy E.; Plante, Wendy Y.; Beck, Audrey N.
2016-01-01
Despite growing recognition that cumulative adversity (total stressor exposure), including complex trauma, increases the risk for psychopathology and impacts development, assessment strategies lag behind: Trauma-related mental health needs (symptoms, functional impairment, maladaptive coping) are typically assessed in response to only one qualifying Criterion-A event. This is especially problematic for youth at-risk for health and academic disparities who experience cumulative adversity, including non-qualifying events (parental separations) which may produce more impairing symptomatology. Data from 118 delinquent girls demonstrate: 1) an average of 14 adverse Criterion-A and non-Criterion event exposures; 2) serious maladaptive coping strategies (self-injury) directly in response to cumulative adversity; 3) more cumulative adversity-related than worst-event related symptomatology and functional impairment; and 4) comparable symptomatology, but greater functional impairment, in response to non-Criterion events. These data support the evaluation of mental health needs in response to cumulative adversity for optimal identification and tailoring of services in high-risk populations to reduce disparities. PMID:27745922
Lansing, Amy E; Plante, Wendy Y; Beck, Audrey N
2017-05-01
Despite growing recognition that cumulative adversity (total stressor exposure, including complex trauma), increases the risk for psychopathology and impacts development, assessment strategies lag behind: Adversity-related mental health needs (symptoms, functional impairment, maladaptive coping) are typically assessed in response to only one qualifying Criterion-A traumatic event. This is especially problematic for youth at-risk for health and academic disparities who experience cumulative adversity, including non-qualifying events (separation from caregivers) which may produce more impairing symptomatology. Data from 118 delinquent girls demonstrate: (1) an average of 14 adverse Criterion-A and non-Criterion event exposures; (2) serious maladaptive coping strategies (self-injury) directly in response to cumulative adversity; (3) more cumulative adversity-related than worst-event related symptomatology and functional impairment; and (4) comparable symptomatology, but greater functional impairment, in response to non-Criterion events. These data support the evaluation of mental health needs in response to cumulative adversity for optimal identification and tailoring of services in high-risk populations to reduce disparities. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Griepentrog, Marco; Bodé, Samuel; Boudin, Mathieu; Dercon, Gerd; Doetterl, Sebastian; Matulanya, Machibya; Msigwa, Anna; Vermeir, Pieter; Boeckx, Pascal
2017-04-01
Terrestrial ecosystems are strongly influenced by climate change and soils are key compartments of the global carbon (C) cycle in terms of their potential to store or release significant amounts of C. This study is part of the interregional IAEA Technical Cooperation Project ``Assessing the Impact of Climate Change and its Effects on Soil and Water Resources in Polar and Mountainous Regions (INT5153)'' aiming to improve the understanding of climate change impacts on soil organic carbon (SOC) in fragile polar and high mountainous ecosystems at local and global scale for their better management and conservation. The project includes 13 benchmark sites situated around the world. Here we present novel data from altitudinal transects of three different mountain regions (Mount Kilimanjaro, Tanzania; Mount Gongga, China; Cordillera Blanca, Peru). All altitudinal transects cover a wide range of natural ecosystems under different climates and soil geochemistry. Bulk soil samples (four field replicates per ecosystem) were subjected to a combination of aggregate and particle-size fractionation followed by organic C, total nitrogen, stable isotope (13C, 15N) and radiocarbon (14C) analyses of all fractions. Bulk soils were further characterized for their geochemistry (Na, K, Ca, Mg, Al, Fe, Mn, Si, P) and incubated for 63 days to assess greenhouse gas emissions (CO2, CH4, NO, N2O). Further, stable C isotopic signature of CO2 was measured to determine the isotopic signature of soil respiration (using Keeling plots) and to estimate potential respiration sources. The following four ecosystems were sampled at an altitudinal transect on the (wet) southern slopes of Mount Kilimanjaro: savannah (920m), lower montane rain forests with angiosperm trees (2020m), upper montane cloud forest with gymnosperm trees (2680m), subalpine heathlands (3660m). Both forests showed highest C contents followed by subalpine and savannah. The largest part of SOC was found in particulate organic matter followed by microaggregates, except for the subalpine ecosystem which had most SOC stored in microaggregates. Silt and clay fractions stored the smallest fraction of SOC for all ecosystems. Cumulative soil CO2 emissions (normalized to SOC, gCO_2-C kgSOC-1) after 63 days of incubation were highest for savannah (15.2 ± 1.4) followed by subalpine (7.9 ± 0.5), upper forest (6.9 ± 1.0) and lower forest (4.8 ± 0.4). CO2 emissions were negatively correlated with soil C contents, showing that soils with lower C contents loose higher relative amounts of their SOC through soil respiration. Keeling plot intercept is a measure for the isotopic signature of respired CO2 and high offsets between Keeling plot intercepts and the isotopic signature of bulk SOC point towards labile (13C-depleted) SOC fractions as respiration sources. Highest offsets (and thus most labile respiration sources) were observed for savannah followed by subalpine, lower forest and upper forest and these were positively correlated with cumulative CO2 emissions, showing that in savannah soils, which have lowest C contents and respire highest amounts of CO2, mainly labile SOC is used as respiration source. Results from the other two altitudinal transects are currently under investigation and will be presented in conjunction with climatic and geochemical data.
Brain injury and development in preterm infants exposed to fentanyl
McPherson, Christopher; Haslam, Matthew; Pineda, Roberta; Rogers, Cynthia; Neil, Jeffrey J.; Inder, Terrie E.
2015-01-01
Background Fentanyl is commonly utilized in preterm infants. Relatively little is known regarding the neurodevelopmental outcomes of preterm infants exposed to fentanyl. Objective To investigate the association between cumulative fentanyl dose and brain injury and diameters in a cohort of preterm infants Methods Data on demographics, perinatal course, and neonatal course, including total fentanyl exposure prior to term equivalent age, were retrospectively evaluated for 103 infants born at ≤ 30 weeks gestational age who underwent magnetic resonance imaging at term equivalent age (mean gestational age 26.9 ± 1.8 weeks). Magnetic resonance images were evaluated for brain injury and regional brain diameters. Developmental testing was conducted at term equivalent and 2 years of age. Results Seventy-eight infants (76%) received fentanyl (median cumulative dose 3 μg/kg, interquartile range 1 – 441 μg/kg). Cumulative fentanyl dose in the first week of life correlated with the incidence of cerebellar hemorrhage after correction for covariates (OR 2.1, 95% confidence interval 1.1 – 4.1). Cumulative fentanyl dose before term equivalent age correlated with reductions in transverse cerebellar diameter after correction for covariates including the presence of cerebellar hemorrhage (r = 0.461, p = 0.002). No correlation was detected between cumulative fentanyl dose and development at 2 years of age. Conclusions Higher cumulative fentanyl dose in preterm infants correlated with a higher incidence of cerebellar injury and lower cerebellar diameter at term equivalent age. Our findings must be taken with caution, but emphasize the need for future prospective trials examining the risks and benefits of commonly utilized analgesic agents in preterm infants. PMID:26369570
NASA Astrophysics Data System (ADS)
Li, Jingjing; Qin, Zhihao; Li, Wenjuan; Lin, Lu
2008-10-01
A paddy rice ecosystem is a farming system composed of paddy, animals, microbes and other environmental factors in specific time and space, with particular temporal and spatial dynamics. Since paddy rice is a main grain crop to feed above half of population in China, the performance of paddy rice ecosystem is highly concerned to yield level of paddy and food supply safety in China. Therefore, monitoring the performance of paddy rice ecosystem is very important to obtain the required information for evaluation of ecosystem health. In the study we intend to develop an approach to monitor the ecosystem performance spatially and dynamically in a regional scale using MODIS remote sensing data and GIS spatial mapping. On the basis of key factors governing the paddy rice ecosystem, we accordingly develop the following three indicators for the evaluation: Crop growing index (CGI), environmental Index (EI), and pests-diseases index (PDI). Then, we integrated the three indicators into a model with different weight coefficients to calculate Comprehensive ecosystem health index (CEHI) to evaluate the performance and functioning of paddy rice ecosystem in a regional scale. CGI indicates the health status of paddy rice calculated from the normalizing enhanced vegetation Index (EVI) retrieved from MODIS data. EI is estimated from temperature Index (TI) and precipitation Index (PI) indicating heat and water stress on the rice field. PDI reflects the damage brought by pests and diseases, which can be estimated using the information obtained from governmental websites. Applying the approach to Lower Yangtze River Plain, we monitor and evaluate the performance of paddy rice ecosystem in various stages of rice growing period in 2006. The results indicated that the performance of the ecosystem was generally very encouraging. During booting stage and heading and blooming stage, the health level was the highest in Anhui province, which is the main paddy rice producer in the region. During stage of yellow ripeness, Jiangsu province had the lowest level of performance. Yield level of paddy rice in 2006 confirms that the applicability of the proposed approach for a rapid evaluation and monitoring of agricultural ecosystem performance in Lower Yangtze River Plain. As a result, the new approach could supply scientific basis for relevant departments taking policies and measures to make sure stable development of paddy yield.
Modelling impacts of offshore wind farms on trophic web: the Courseulles-sur-Mer case study
NASA Astrophysics Data System (ADS)
Raoux, Aurore; Pezy, Jean-Philippe; Dauvin, Jean-Claude; Tecchio, samuele; Degraer, Steven; Wilhelmsson, Dan; Niquil, Nathalie
2016-04-01
The French government is planning the construction of three offshore wind farms in Normandy. These offshore wind farms will integrate into an ecosystem already subject to a growing number of anthropogenic disturbances such as transportation, fishing, sediment deposit, and sediment extraction. The possible effects of this cumulative stressors on ecosystem functioning are still unknown, but they could impact their resilience, making them susceptible to changes from one stable state to another. Understanding the behaviour of these marine coastal complex systems is essential in order to anticipate potential state changes, and to implement conservation actions in a sustainable manner. Currently, there are no global and integrated studies on the effects of construction and exploitation of offshore wind farms. Moreover, approaches are generally focused on the conservation of some species or groups of species. Here, we develop a holistic and integrated view of ecosystem impacts through the use of trophic webs modelling tools. Trophic models describe the interaction between biological compartments at different trophic levels and are based on the quantification of flow of energy and matter in ecosystems. They allow the application of numerical methods for the characterization of emergent properties of the ecosystem, also called Ecological Network Analysis (ENA). These indices have been proposed as ecosystem health indicators as they have been demonstrated to be sensitive to different impacts on marine ecosystems. We present here in detail the strategy for analysing the potential environmental impacts of the construction of the Courseulles-sur-Mer offshore wind farm (Bay of Seine) such as the reef effect through the use of the Ecopath with Ecosim software. Similar Ecopath simulations will be made in the future on the Le Tréport offshore wind farm site. Results will contribute to a better knowledge of the impacts of the offshore wind farms on ecosystems. They also allow to define recommendations for environmental managers and industry in terms of monitoring the effects of Marine Renewable Energy, not only locally, but also on other sites, national and European levels. Finally, this approach could contribute to a better social acceptability of Marine Renewable Energy projects allowing a holistic vision of all pressures on ecosystems. Keywords: Marine Renewable Energies, trophic model Contact author: Aurore Raoux, UNICAEN, raoux.aurore@gmail.com
Mark E. Fenn; Andrzej Bytnerowicz; Susan L. Schilling
2018-01-01
Measuring the exposure of ecosystems to ecologically relevant pollutants is needed for evaluating ecosystem effects and to identify regions and resources at risk. In California, ozone (O3) and nitrogen (N) pollutants are of greatest concern for ecological effects. "Passive" monitoring methods have been developed to obtain spatially...
Remote sensing for restoration planning: how the big picture can inform stakeholders
Susan Cordell; Erin J. Questad; Gregory P. Asner; Kealoha M. Kinney; Jarrod M. Thaxton; Amanda Uowolo; Sam Brooks; Mark W. Chynoweth
2016-01-01
The use of remote sensing in ecosystem management has transformed how land managers, practitioners, and policymakers evaluate ecosystem loss, gain, and change at multiple spatial and temporal scales. Less developed is the use of these spatial tools for planning, implementing, and evaluating ecosystem restoration projects and especially so in multifunctional...
Toxicologists use dose-response data from both in vivo and in vitro experiments to evaluate the effects of chemical contaminants on organisms. Cumulative risk assessments (CRAs) consider the effects of multiple stressors on multiple endpoints, and utilize environmental exposure ...
Evaluating long-term cumulative hydrologic effects of forest management: a conceptual approach
Robert R. Ziemer
1992-01-01
It is impractical to address experimentally many aspects of cumulative hydrologic effects, since to do so would require studying large watersheds for a century or more. Monte Carlo simulations were conducted using three hypothetical 10,000-ha fifth-order forested watersheds. Most of the physical processes expressed by the model are transferable from temperate to...
Cumulative Incidence of Cancer among HIV-infected Individuals in North America
Silverberg, Michael J.; Lau, Bryan; Achenbach, Chad J.; Jing, Yuezhou; Althoff, Keri N.; D’Souza, Gypsyamber; Engels, Eric A.; Hessol, Nancy; Brooks, John T.; Burchell, Ann N.; Gill, M. John; Goedert, James J.; Hogg, Robert; Horberg, Michael A.; Kirk, Gregory D.; Kitahata, Mari M.; Korthuis, Phillip T.; Mathews, William C.; Mayor, Angel; Modur, Sharada P.; Napravnik, Sonia; Novak, Richard M.; Patel, Pragna; Rachlis, Anita R.; Sterling, Timothy R.; Willig, James H.; Justice, Amy C.; Moore, Richard D.; Dubrow, Robert
2016-01-01
Background Cancer is increasingly common among HIV patients given improved survival. Objective To examine calendar trends in cumulative cancer incidence and hazard rate by HIV status. Design Cohort study Setting North American AIDS Cohort Collaboration on Research and Design during 1996–2009 Patients 86,620 HIV-infected and 196,987 uninfected adults Measurements We estimated cancer-type-specific cumulative incidence by age 75 years by HIV status and calendar era, and examined calendar trends in cumulative incidence and hazard rates. Results Cumulative incidences (%) of cancer by age 75 (HIV+/HIV−) were: Kaposi sarcoma (KS), 4.4/0.01; non-Hodgkin’s lymphoma (NHL), 4.5/0.7; lung, 3.4/2.8; anal, 1.5/0.1; colorectal, 1.0/1.5; liver, 1.1/0.4; Hodgkin lymphoma (HL), 0.9/0.1; melanoma, 0.5/0.6; and oral cavity/pharyngeal, 0.8/0.8. Among HIV-infected subjects, we observed decreasing calendar trends in cumulative incidence and hazard rate for KS and NHL. For anal, colorectal and liver cancers, increasing cumulative incidence, but not hazard rate trends, were due to the decreasing mortality rate trend (−9% per year), allowing greater opportunity to be diagnosed with these cancer types. Despite decreasing hazard rate trends for lung, HL, and melanoma, we did not observe cumulative incidence trends due to the compensating effect of the declining mortality rate on cumulative incidence. Limitations Secular trends in screening, smoking, and viral co-infections were not evaluated. Conclusions Our analytic approach helped disentangle the effects of improved survival and changing cancer-specific hazard rates on cumulative incidence trends among HIV patients. Cumulative cancer incidence by age 75, approximating lifetime risk in HIV patients, may have clinical utility in this population. The high cumulative incidences by age 75 for KS, NHL, and lung cancer supports early and sustained ART and smoking cessation. Primary Funding Source National Institutes of Health PMID:26436616
Liu, Xu-Sheng; Li, Feng; Zhao, Dan; Wang, Bei-Bei
2009-06-01
By using the evaluation approach of ecosystem services (including market value, opportunity cost, restoration cost, and shadow project approaches), and combining with situation investigation, the ecosystem service loss in Mentougou District of Beijing City caused by coal resource exploitation in 1949-2006 was systematically evaluated. In the study area, coal mining mainly induced the cost increase of solid waste disposal and sink reclamation, and the losses in food production, water self-preserving, residents moving, and water and soil resources. The ecosystem service loss caused by the coal mining in 1949-2006 was about 54.3 billion Yuan RMB, approximately 9 times high of its market economic benefit (5.9 billion Yuan RMB). It was very difficult or needed a long time to restore the damaged ecosystem.
[Evaluation of ecosystem service and emergy of Wanshan Waters in Zhuhai, Guangdong Province, China].
Qin, Chuan-xin; Chen, Pi-mao; Zhang, An-kai; Yuan, Hua; Li, Guo-ying; Shu, Li-ming; Zhou, Yan-bo; Li, Xiao-guo
2015-06-01
The method for monetary value and emergy value analysis of ecosystem service was used in this paper to analyze the change in value of marine ecosystem service of Wanshan District, Zhuhai from 2007 to 2012. The result showed that the monetary value and emergy value of marine ecosystem service of Wanshan District, Zhuhai rose to 11512840000 yuan and 1.97 x 10(22) sej from 7721630000 yuan and 1.04 x 10(22) sej, respectively. Both monetary value and emergy value could forecast the change in the value of marine ecosystem service, but they reflected different value structures and ecological energy, which could be used to more objectively evaluate the ecosystem service. Ecological civilization development, as an inherent driving force to impel the development of marine ecosystem service structure, was important for rational exploitation of marine resources and optimization of marine ecosystem service.
NASA Astrophysics Data System (ADS)
Mengistu, S. G.; Tank, S. E.; Olefeldt, D.; Spence, C.; Quinton, W. L.; Dion, N.
2016-12-01
Fire is a natural process that can significantly modify landscapes and ecosystems. In permafrost-affected terrains, fire-induced changes to soils and active layer depths can have important implications for hydrological flow paths and the chemistry of runoff water, and therefore also the health and functioning of recipient aquatic ecosystems. Although the effects of fire on water chemistry have been relatively well studied in non-permafrost affected landscapes, less attention has been given to how fire affects northern aquatic ecosystems, particularly those of the Northwest Territories (NWT), despite an increasing frequency of fire in this region. To address this gap, we make use of a recent large-scale burn that occurred across the discontinuous permafrost landscape of the southern NWT, to explore how fire and variations in landscape characteristics affect water chemistry in this area. The study collected water chemistry samples during the summers of 2015 and 2016 from paired watersheds in the Taiga Shield (Boundary Creek / Baker Creek) and Taiga Plains (Spence Creek / Scotty Creek) ecoregions, in addition to a synoptic survey that measured discharge and water chemistry across a series of 50 watersheds in these two regions. We specifically targeted the Taiga Shield and Plains since differences in soil characteristics between these two regions were expected to lead to differences in how recipient aquatic systems respond to fire. Preliminary results from the paired catchment work show a clear spike in the chemistry of fire-affected watersheds early in the ice-free season, followed by a period when stream water chemistry in burned watersheds declines to a level that is similar to that in the unburned analogs. While average electrical conductivity, Ca, Na, and Hg concentrations were highest in the Plains watersheds, constituents including average TN, TP, Al, DOC, Fe, K, Mg, and Cl appeared to be the highest for the fire-affected Shield watershed. Preliminary results also indicated that watershed characteristics pertinent to landcover and topography are vital controls of biogeochemical processes and their relationships in these subarctic watersheds. The overarching goal of this work is to assess how fire interacts cumulatively with other forms of landscape variation to affect aquatic ecosystems in the southern NWT.
Vidal-Abarca, M R; Santos-Martín, F; Martín-López, B; Sánchez-Montoya, M M; Suárez Alonso, M L
2016-06-01
We explored the capacity of the biological and hydromorphological indices used in the Water Framework Directive (WFD) to assess ecosystem services by evaluating the ecological status of Spanish River Basins. This analysis relies on an exhaustive bibliography review which showed scientific evidence of the interlinkages between some ecosystem services and different hydromorphological and biological elements which have been used as indices in the WFD. Our findings indicate that, of a total of 38 ecosystem services analyzed, biological and hydromorphological indices can fully evaluate four ecosystem services. In addition, 18 ecosystem services can be partly evaluated by some of the analyzed indices, while 11 are not related with the indices. While Riparian Forest Quality was the index that was able to assess the largest number of ecosystem services (N = 12), the two indices of macrophytes offered very poor guarantees. Finally, biological indices related to diatoms and aquatic invertebrates and the Fluvial Habitat Index can be related with 7, 6, and 6 ecosystem services, respectively. Because the WFD indices currently used in Spain are not able to assess most of the ecosystem services analyzed, we suggest that there is potential to develop the second phase of the WFD implementation taking this approach into consideration. The incorporation of the ecosystem services approach into the WFD could provide the framework for assess the impacts of human activities on the quality of fluvial ecosystems and could give insights for water and watershed management in order to guarantee the delivery of multiple ecosystem services.
Cumulative Incidence of Cancer Among Persons With HIV in North America: A Cohort Study.
Silverberg, Michael J; Lau, Bryan; Achenbach, Chad J; Jing, Yuezhou; Althoff, Keri N; D'Souza, Gypsyamber; Engels, Eric A; Hessol, Nancy A; Brooks, John T; Burchell, Ann N; Gill, M John; Goedert, James J; Hogg, Robert; Horberg, Michael A; Kirk, Gregory D; Kitahata, Mari M; Korthuis, Philip T; Mathews, William C; Mayor, Angel; Modur, Sharada P; Napravnik, Sonia; Novak, Richard M; Patel, Pragna; Rachlis, Anita R; Sterling, Timothy R; Willig, James H; Justice, Amy C; Moore, Richard D; Dubrow, Robert
2015-10-06
Cancer is increasingly common among persons with HIV. To examine calendar trends in cumulative cancer incidence and hazard rate by HIV status. Cohort study. North American AIDS Cohort Collaboration on Research and Design during 1996 to 2009. 86 620 persons with HIV and 196 987 uninfected adults. Cancer type-specific cumulative incidence by age 75 years and calendar trends in cumulative incidence and hazard rates, each by HIV status. Cumulative incidences of cancer by age 75 years for persons with and without HIV, respectively, were as follows: Kaposi sarcoma, 4.4% and 0.01%; non-Hodgkin lymphoma, 4.5% and 0.7%; lung cancer, 3.4% and 2.8%; anal cancer, 1.5% and 0.05%; colorectal cancer, 1.0% and 1.5%; liver cancer, 1.1% and 0.4%; Hodgkin lymphoma, 0.9% and 0.09%; melanoma, 0.5% and 0.6%; and oral cavity/pharyngeal cancer, 0.8% and 0.8%. Among persons with HIV, calendar trends in cumulative incidence and hazard rate decreased for Kaposi sarcoma and non-Hodgkin lymphoma. For anal, colorectal, and liver cancer, increasing cumulative incidence, but not hazard rate trends, were due to the decreasing mortality rate trend (-9% per year), allowing greater opportunity to be diagnosed. Despite decreasing hazard rate trends for lung cancer, Hodgkin lymphoma, and melanoma, cumulative incidence trends were not seen because of the compensating effect of the declining mortality rate. Secular trends in screening, smoking, and viral co-infections were not evaluated. Cumulative cancer incidence by age 75 years, approximating lifetime risk in persons with HIV, may have clinical utility in this population. The high cumulative incidences by age 75 years for Kaposi sarcoma, non-Hodgkin lymphoma, and lung cancer support early and sustained antiretroviral therapy and smoking cessation.
Oikonomou, Vera; Dimitrakopoulos, Panayiotis G; Troumbis, Andreas Y
2011-01-01
Nature provides life-support services which do not merely constitute the basis for ecosystem integrity but also benefit human societies. The importance of such multiple outputs is often ignored or underestimated in environmental planning and decision making. The economic valuation of ecosystem functions or services has been widely used to make these benefits economically visible and thus address this deficiency. Alternatively, the relative importance of the components of ecosystem value can be identified and compared by means of multi-criteria evaluation. Hereupon, this article proposes a conceptual framework that couples ecosystem function analysis, multi criteria evaluation and social research methodologies for introducing an ecosystem function-based planning and management approach. The framework consists of five steps providing the structure of a participative decision making process which is then tested and ratified, by applying the discrete multi-criteria method NAIADE, in the Kalloni Natura 2000 site, on Lesbos, Greece. Three scenarios were developed and evaluated with regard to their impacts on the different types of ecosystem functions and the social actors' value judgements. A conflict analysis permitted the better elaboration of the different views, outlining the coalitions formed in the local community and shaping the way towards reaching a consensus.
NASA Astrophysics Data System (ADS)
Oikonomou, Vera; Dimitrakopoulos, Panayiotis G.; Troumbis, Andreas Y.
2011-01-01
Nature provides life-support services which do not merely constitute the basis for ecosystem integrity but also benefit human societies. The importance of such multiple outputs is often ignored or underestimated in environmental planning and decision making. The economic valuation of ecosystem functions or services has been widely used to make these benefits economically visible and thus address this deficiency. Alternatively, the relative importance of the components of ecosystem value can be identified and compared by means of multi-criteria evaluation. Hereupon, this article proposes a conceptual framework that couples ecosystem function analysis, multi criteria evaluation and social research methodologies for introducing an ecosystem function-based planning and management approach. The framework consists of five steps providing the structure of a participative decision making process which is then tested and ratified, by applying the discrete multi-criteria method NAIADE, in the Kalloni Natura 2000 site, on Lesbos, Greece. Three scenarios were developed and evaluated with regard to their impacts on the different types of ecosystem functions and the social actors' value judgements. A conflict analysis permitted the better elaboration of the different views, outlining the coalitions formed in the local community and shaping the way towards reaching a consensus.
Cumulative iron dose and resistance to erythropoietin.
Rosati, A; Tetta, C; Merello, J I; Palomares, I; Perez-Garcia, R; Maduell, F; Canaud, B; Aljama Garcia, P
2015-10-01
Optimizing anemia treatment in hemodialysis (HD) patients remains a priority worldwide as it has significant health and financial implications. Our aim was to evaluate in a large cohort of chronic HD patients in Fresenius Medical Care centers in Spain the value of cumulative iron (Fe) dose monitoring for the management of iron therapy in erythropoiesis-stimulating agent (ESA)-treated patients, and the relationship between cumulative iron dose and risk of hospitalization. Demographic, clinical and laboratory parameters from EuCliD(®) (European Clinical Dialysis Database) on 3,591 patients were recorded including ESA dose (UI/kg/week), erythropoietin resistance index (ERI) [U.I weekly/kg/gr hemoglobin (Hb)] and hospitalizations. Moreover the cumulative Fe dose (mg/kg of bodyweight) administered over the last 2 years was calculated. Univariate and multivariate analyses were performed to identify the main predictors of ESA resistance and risk of hospitalization. Patients belonging to the 4th quartile of ERI were defined as hypo-responders. The 2-year iron cumulative dose was significantly higher in the 4th quartile of ERI. In hypo-responders, 2-year cumulative iron dose was the only iron marker associated with ESA resistance. At case-mix adjusted multivariate analysis, 2-year iron cumulative dose was an independent predictor of hospitalization risk. In ESA-treated patients cumulative Fe dose could be a useful tool to monitor the appropriateness of Fe therapy and to prevent iron overload. To establish whether the associations between cumulative iron dose, ERI and hospitalization risk are causal or attributable to selection bias by indication, clinical trials are necessary.
Extended followup of a cohort of chromium production workers
Lees, Peter St. John; Wang, Jing; Grace O'Leary, Keri
2015-01-01
Background The current study evaluates the mortality of 2,354 workers first employed at a Baltimore chromate production plant between 1950 and 1974. Methods The National Death Index (NDI Plus) was used to determine vital status and cause of death. Cumulative chromium (VI) exposure and nasal and skin irritation were evaluated as risk factors for lung cancer mortality. Results There are 91,186 person‐years of observation and 217 lung cancer deaths. Cumulative chromium (VI) exposure, nasal irritation, nasal perforation, nasal ulceration, and other forms of irritation (e.g., skin irritation) were associated with lung cancer mortality. Conclusion Cumulative chromium (VI) exposure was a risk factor for lung cancer death. Cancer deaths, other than lung cancer, were not significantly elevated. Irritation may be a possible mechanism for chromium (VI)‐induced lung cancer. Am. J. Ind. Med. 58:905–913, 2015. © 2015 The Authors. American Journal of Industrial Medicine Published by Wiley Periodicals, Inc. PMID:26041683
Thermal Remote Sensing and the Thermodynamics of Ecosystem Development
NASA Technical Reports Server (NTRS)
Luvall, Jeffrey C.; Rickman, Doug; Fraser, Roydon F.
2011-01-01
Ecosystems develop structure and function that degrades the quality of the incoming energy more effectively. The ecosystem T and Rn/K* and TRN are excellent candidates for indicators of ecological integrity. The potential for these methods to be used for remote sensed ecosystem classification and ecosystem health/integrity evaluation is apparent
Evaluating theory-based evaluation: information, norms, and adherence.
Jacobs, W Jake; Sisco, Melissa; Hill, Dawn; Malter, Frederic; Figueredo, Aurelio José
2012-08-01
Programmatic social interventions attempt to produce appropriate social-norm-guided behavior in an open environment. A marriage of applicable psychological theory, appropriate program evaluation theory, and outcome of evaluations of specific social interventions assures the acquisition of cumulative theory and the production of successful social interventions--the marriage permits us to advance knowledge by making use of both success and failures. We briefly review well-established principles within the field of program evaluation, well-established processes involved in changing social norms and social-norm adherence, the outcome of several program evaluations focusing on smoking prevention, pro-environmental behavior, and rape prevention and, using the principle of learning from our failures, examine why these programs often do not perform as expected. Finally, we discuss the promise of learning from our collective experiences to develop a cumulative science of program evaluation and to improve the performance of extant and future interventions. Copyright © 2012. Published by Elsevier Ltd.
Kowalkowski, Marc A; Day, Rena S; Du, Xianglin L; Chan, Wenyaw; Chiao, Elizabeth Y
2014-10-01
Research suggests that cumulative measurement of HIV exposure is associated with mortality, AIDS, and AIDS-defining malignancies. However, the relationship between cumulative HIV and non-AIDS-defining malignancies (NADMs) remains unclear. The aim of this study was to evaluate the effect of different HIV measures on NADM hazard among HIV-infected male veterans. We performed a retrospective cohort study using Veterans Affairs HIV Clinical Case Registry data from 1985 to 2010. We analyzed the relationship between HIV exposure (recent HIV RNA, % undetectable HIV RNA, and HIV copy-years viremia) and NADM. To evaluate the effect of HIV, we calculated hazard ratios for 3 common virally associated NADM [ie, hepatocarcinoma (HCC), Hodgkin lymphoma (HL), and squamous cell carcinoma of the anus (SCCA)] in multivariable Cox regression models. Among 31,576 HIV-infected male veterans, 383 HCC, 211 HL, and 373 SCCA cases were identified. In multivariable regression models, cross-sectional HIV measurement was not associated with NADM. However, compared with <20% undetectable HIV, individuals with ≥80% had decreased HL [adjusted hazard ratio (aHR) = 0.62; 95% confidence interval (CI): 0.37 to 1.02] and SCCA (aHR = 0.64; 95% CI: 0.44 to 0.93). Conversely, each log10 increase in HIV copy-years was associated with elevated HL (aHR = 1.22; 95% CI: 1.06 to 1.40) and SCCA (aHR = 1.36; 95% CI: 1.21 to 1.52). Model fit was best with HIV copy-years. Cumulative HIV was not associated with HCC. Cumulative HIV was associated with certain virally associated NADM (ie, HL and SCCA), independent of measured covariates. Findings underline the importance of early treatment initiation and durable medication adherence to reduce cumulative HIV burden. Future research should prioritize how to best apply cumulative HIV measures in screening for these cancers.
CUMPOIS- CUMULATIVE POISSON DISTRIBUTION PROGRAM
NASA Technical Reports Server (NTRS)
Bowerman, P. N.
1994-01-01
The Cumulative Poisson distribution program, CUMPOIS, is one of two programs which make calculations involving cumulative poisson distributions. Both programs, CUMPOIS (NPO-17714) and NEWTPOIS (NPO-17715), can be used independently of one another. CUMPOIS determines the approximate cumulative binomial distribution, evaluates the cumulative distribution function (cdf) for gamma distributions with integer shape parameters, and evaluates the cdf for chi-square distributions with even degrees of freedom. It can be used by statisticians and others concerned with probabilities of independent events occurring over specific units of time, area, or volume. CUMPOIS calculates the probability that n or less events (ie. cumulative) will occur within any unit when the expected number of events is given as lambda. Normally, this probability is calculated by a direct summation, from i=0 to n, of terms involving the exponential function, lambda, and inverse factorials. This approach, however, eventually fails due to underflow for sufficiently large values of n. Additionally, when the exponential term is moved outside of the summation for simplification purposes, there is a risk that the terms remaining within the summation, and the summation itself, will overflow for certain values of i and lambda. CUMPOIS eliminates these possibilities by multiplying an additional exponential factor into the summation terms and the partial sum whenever overflow/underflow situations threaten. The reciprocal of this term is then multiplied into the completed sum giving the cumulative probability. The CUMPOIS program is written in C. It was developed on an IBM AT with a numeric co-processor using Microsoft C 5.0. Because the source code is written using standard C structures and functions, it should compile correctly on most C compilers. The program format is interactive, accepting lambda and n as inputs. It has been implemented under DOS 3.2 and has a memory requirement of 26K. CUMPOIS was developed in 1988.
Wang, Ziyan; Qiu, Quanyi; Wu, Tong; Shao, Guofan
2018-01-01
Intensifying urbanization and rapid population growth in Fujian Province, China, has caused pollution of air and water resources; this has adversely impacted ecosystems and human health. China has recently begun pursuing a massive infrastructure and economic development strategy called the Belt and Road Initiative, which could potentially cause further environmental damage. Evaluations of ecosystem health are therefore a first step towards identifying the potential impacts from the development and planning sustainable development strategies in the Golden Triangle of Southern Fujian. To this end, our study analyzed landscape patterns and evaluated ecosystem health in this region. We used an index system method to develop a pressure–state–response (PSR) model for assessing the region’s ecosystem health. We found that: (1) the landscape type with the greatest area in the study region is cultivated land and there were no areas that were undisturbed by human activity; (2) the overall ecological health of the region is good, but there is distinct variation across the region. This study incorporates the landscape pattern into an evaluation of ecosystem health. Using counties as evaluation units, we provide a general evaluation index for this scale. The methods reported here can be used in complex ecological environments to inform sustainable management decisions. PMID:29671817
Cumulative risk assessment (CRA) methods, which evaluate the risk of multiple adverse outcomes (AOs) from multiple chemicals, promote the use of a conceptual site model (CSM) to integrate risk from relevant stressors. The Adverse Outcome Pathway (AOP) framework can inform these r...
William L. Gaines; Peter H. Singleton; Roger C. Ross
2003-01-01
We conducted a literature review to document the effects of linear recreation routes on focal wildlife species. We identified a variety of interactions between focal species and roads, motorized trails, and nonmotorized trails. We used the available science to develop simple geographic information system-based models to evaluate the cumulative effects of recreational...
Evaluating Cumulative OP Pesticide Body Burden of Children: A National Case Study
Payne-Sturges, Devon; Cohen, Jonathan; Castorina, Rosemary; Axelrad, Daniel A.; Woodruff, Tracey J.
2009-01-01
Biomonitoring is a valuable tool for identifying exposures to chemicals that pose potential harm to human health. However, to date there has been little published on ways to evaluate the relative public health significance of biomonitoring data for different chemicals, and even less on cumulative assessment of multiple chemicals. The objectives of our study are to develop a methodology for a health risk interpretation of biomonitoring data, and to apply it using NHANES 1999–2002 body burden data for organophosphorus (OP) pesticides. OP pesticides present a particularly challenging case given the non-specificity of many metabolites monitored through NHANES. We back-calculate OP pesticide exposures from urinary metabolite data, and compare cumulative dose estimates with available toxicity information for a common mechanism of action (brain cholinesterase inhibition) using data from U.S. EPA. Our results suggest that approximately 40% of children in the United States may have had insufficient margins of exposure (MOEs) for neurological impacts from cumulative exposures to OP pesticides (MOE less than 1,000). Limitations include uncertainty related to assumptions about likely precursor pesticide compounds of the urinary metabolites, sources of exposure, and intra-individual and temporal variability. PMID:19921915
NASA Astrophysics Data System (ADS)
Justman, D.; Rose, K.; Bauer, J. R.; Miller, R., III; Vasylkivska, V.; Romeo, L.
2016-12-01
ArcGIS Online story maps allows users to communicate complex topics with geospatially enabled stories. This story map web application entitled "Evaluating the Mysteries of Seismicity in Oklahoma" has been employed as part of a broader research effort investigating the relationships between spatiotemporal systems and seismicity to understand the recent increase in seismicity by reviewing literature, exploring, and performing analyses on key datasets. It offers information about the unprecedented increase in seismic events since 2008, earthquake history, the risk to the population, physical mechanisms behind earthquakes, natural and anthropogenic earthquake factors, and individual & cumulative spatial extents of these factors. The cumulative spatial extents for natural, anthropogenic, and all combined earthquake factors were determined using the Cumulative Spatial Impact Layers (CSILs) tool developed at the National Energy Technology Laboratory (NETL). Results show positive correlations between the average number of influences (datasets related to individual factors) and the number of earthquakes for every 100 square mile grid cell in Oklahoma, along with interesting spatial correlations for the individual & cumulative spatial extents of these factors when overlaid with earthquake density and a hotspot analysis for earthquake magnitude from 2010 to 2015.
Carroll, Allison J; Carnethon, Mercedes R; Liu, Kiang; Jacobs, David R; Colangelo, Laura A; Stewart, Jesse C; Carr, J Jeffrey; Widome, Rachel; Auer, Reto; Hitsman, Brian
2017-02-01
Evaluate whether smoking exposure and depressive symptoms accumulated over 25 years are synergistically associated with subclinical heart disease, measured by coronary artery calcification (CAC). Participants (baseline: 54.5% women; 51.5% Black; age range = 18-30 years) were followed prospectively from 1985 to 2010 in the Coronary Artery Risk Development in Young Adults (CARDIA) study. Smoking status was queried yearly from Year 0 to Year 25 to compute packyears of smoking exposure. Depressive symptoms were measured on the Center for Epidemiologic Studies Depression (CES-D) scale every 5 years to compute cumulative scores from Year 5 to Year 25. A three-level multinomial logistic regression was used to evaluate the association between cumulative smoking, cumulative depressive symptoms, and their interaction with moderate-risk CAC (score 1-99) and higher-risk CAC (score ≥100) compared with no CAC (score = 0) at Year 25. Models were adjusted for sociodemographic, clinical, and behavioral covariates. Among 3,189 adults, the cumulative Smoking × Depressive Symptoms interaction was not significant for moderate-risk CAC (p = .057), but was significant for higher-risk CAC (p = .001). For adults with a 30-packyear smoking history, average CES-D scores 2, 10, and 16 were, respectively, associated with odds ratios (95% confidence intervals) 3.40 (2.36-4.90), 4.82 (3.03-7.66), and 6.25 (3.31-11.83) for higher-risk CAC (all ps < .05). Cumulative smoking exposure and cumulative depressive symptoms have a synergistic association with subclinical heart disease, where higher lifetime smoking exposure and depressive symptoms are associated with greater odds of CAC. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Hamada, Tsuyoshi; Nakai, Yousuke; Isayama, Hiroyuki; Togawa, Osamu; Kogure, Hirofumi; Kawakubo, Kazumichi; Tsujino, Takeshi; Sasahira, Naoki; Hirano, Kenji; Yamamoto, Natsuyo; Ito, Yukiko; Sasaki, Takashi; Mizuno, Suguru; Toda, Nobuo; Tada, Minoru; Koike, Kazuhiko
2014-03-01
Self-expandable metallic stent (SEMS) placement is widely carried out for distal malignant biliary obstruction, and survival analysis is used to evaluate the cumulative incidences of SEMS dysfunction (e.g. the Kaplan-Meier [KM] method and the log-rank test). However, these statistical methods might be inappropriate in the presence of 'competing risks' (here, death without SEMS dysfunction), which affects the probability of experiencing the event of interest (SEMS dysfunction); that is, SEMS dysfunction can no longer be observed after death. A competing risk analysis has rarely been done in studies on SEMS. We introduced the concept of a competing risk analysis and illustrated its impact on the evaluation of SEMS outcomes using hypothetical and actual data. Our illustrative study included 476 consecutive patients who underwent SEMS placement for unresectable distal malignant biliary obstruction. A significant difference between cumulative incidences of SEMS dysfunction in male and female patients via theKM method (P = 0.044 by the log-rank test) disappeared after applying a competing risk analysis (P = 0.115 by Gray's test). In contrast, although cumulative incidences of SEMS dysfunction via the KM method were similar with and without chemotherapy (P = 0.647 by the log-rank test), cumulative incidence of SEMS dysfunction in the non-chemotherapy group was shown to be significantly lower (P = 0.031 by Gray's test) in a competing risk analysis. Death as a competing risk event needs to be appropriately considered in estimating a cumulative incidence of SEMS dysfunction, otherwise analytical results may be biased. © 2013 The Authors. Digestive Endoscopy © 2013 Japan Gastroenterological Endoscopy Society.
Comparing Effects of Forestland conversion to Tea Farming on Soil Quality Indices
NASA Astrophysics Data System (ADS)
Gholoubi, A.; Emami, H.; Alizadeh, A.; Jones, S. B.
2017-12-01
The effect of land use type on soil function within an ecosystem can be assessed and monitored using soil quality indices. The research examined effects of land use change from natural forest to tea farming (with the same physiography and parent materials) on soil properties in different regions of the Guilan province, northern Iran. Two universally-accepted methods of soil quality evaluation were used to understand soil conditions in these two land uses. Thirty-six soil samples (0 -30 cm) were randomly collected from six sites with 3 replications. The soil quality of forestland and tea farms was determined using the cumulative rating (CR) index and the Cornell Comprehensive Assessment of Soil Health (CASH) scoring functions. Effects of Land use change on soil quality or health were significant (P <0.01) using both methods. In the CR method, a relative weighting factor (RWF) from 1 to 5 was assigned each key soil property. The results of both methods for all regions showed that the forestland use was more sustainable (lower CR and higher CASH score) than tea farm soils. forestland use affected most soil properties and thus their scores in both evaluation methods. Soil organic carbon and pH were the most important indicators reduced by land use change at all locations. There were significant correlations between these indicators and other soil chemical, physical and biological factors affected by changing forestland use.
Salvage logging, ecosystem processes, and biodiversity conservation.
Lindenmayer, D B; Noss, R F
2006-08-01
We summarize the documented and potential impacts of salvage logging--a form of logging that removes trees and other biological material from sites after natural disturbance. Such operations may reduce or eliminate biological legacies, modify rare postdisturbance habitats, influence populations, alter community composition, impair natural vegetation recovery, facilitate the colonization of invasive species, alter soil properties and nutrient levels, increase erosion, modify hydrological regimes and aquatic ecosystems, and alter patterns of landscape heterogeneity These impacts can be assigned to three broad and interrelated effects: (1) altered stand structural complexity; (2) altered ecosystem processes and functions; and (3) altered populations of species and community composition. Some impacts may be different from or additional to the effects of traditional logging that is not preceded by a large natural disturbance because the conditions before, during, and after salvage logging may differ from those that characterize traditional timber harvesting. The potential impacts of salvage logging often have been overlooked, partly because the processes of ecosystem recovery after natural disturbance are still poorly understood and partly because potential cumulative effects of natural and human disturbance have not been well documented. Ecologically informed policies regarding salvage logging are needed prior to major natural disturbances so that when they occur ad hoc and crisis-mode decision making can be avoided. These policies should lead to salvage-exemption zones and limits on the amounts of disturbance-derived biological legacies (e.g., burned trees, logs) that are removed where salvage logging takes place. Finally, we believe new terminology is needed. The word salvage implies that something is being saved or recovered, whereas from an ecological perspective this is rarely the case.
Testing for thresholds of ecosystem collapse in seagrass meadows.
Connell, Sean D; Fernandes, Milena; Burnell, Owen W; Doubleday, Zoë A; Griffin, Kingsley J; Irving, Andrew D; Leung, Jonathan Y S; Owen, Samuel; Russell, Bayden D; Falkenberg, Laura J
2017-10-01
Although the public desire for healthy environments is clear-cut, the science and management of ecosystem health has not been as simple. Ecological systems can be dynamic and can shift abruptly from one ecosystem state to another. Such unpredictable shifts result when ecological thresholds are crossed; that is, small cumulative increases in an environmental stressor drive a much greater change than could be predicted from linear effects, suggesting an unforeseen tipping point is crossed. In coastal waters, broad-scale seagrass loss often occurs as a sudden event associated with human-driven nutrient enrichment (eutrophication). We tested whether the response of seagrass ecosystems to coastal nutrient enrichment is subject to a threshold effect. We exposed seagrass plots to different levels of nutrient enrichment (dissolved inorganic nitrogen) for 10 months and measured net production. Seagrass response exhibited a threshold pattern when nutrient enrichment exceeded moderate levels: there was an abrupt and large shift from positive to negative net leaf production (from approximately 0.04 leaf production to 0.02 leaf loss per day). Epiphyte load also increased as nutrient enrichment increased, which may have driven the shift in leaf production. Inadvertently crossing such thresholds, as can occur through ineffective management of land-derived inputs such as wastewater and stormwater runoff along urbanized coasts, may account for the widely observed sudden loss of seagrass meadows. Identification of tipping points may improve not only adaptive-management monitoring that seeks to avoid threshold effects, but also restoration approaches in systems that have crossed them. © 2017 Society for Conservation Biology.
Transmission fidelity is the key to the build-up of cumulative culture
Lewis, Hannah M.; Laland, Kevin N.
2012-01-01
Many animals have socially transmitted behavioural traditions, but human culture appears unique in that it is cumulative, i.e. human cultural traits increase in diversity and complexity over time. It is often suggested that high-fidelity cultural transmission is necessary for cumulative culture to occur through refinement, a process known as ‘ratcheting’, but this hypothesis has never been formally evaluated. We discuss processes of information transmission and loss of traits from a cognitive viewpoint alongside other cultural processes of novel invention (generation of entirely new traits), modification (refinement of existing traits) and combination (bringing together two established traits to generate a new trait). We develop a simple cultural transmission model that does not assume major evolutionary changes (e.g. in brain architecture) and show that small changes in the fidelity with which information is passed between individuals can lead to cumulative culture. In comparison, modification and combination have a lesser influence on, and novel invention appears unimportant to, the ratcheting process. Our findings support the idea that high-fidelity transmission is the key driver of human cumulative culture, and that progress in cumulative culture depends more on trait combination than novel invention or trait modification. PMID:22734060
Choi, Ji Young; Oh, Kyung Ja
2014-02-01
The purpose of the present study was to identify the mediating effects of emotion regulation on the association between cumulative childhood trauma and behavior problems in sexually abused children in Korea, using structural equation modeling (SEM). Data were collected on 171 children (ages 6-13 years) referred to a public counseling center for sexual abuse in Seoul, Korea. Cumulative childhood traumas were defined on the basis of number of traumas (physical abuse, witnessing domestic violence, neglect, traumatic separation from parent, and sexual abuse) and the severity and duration of traumas. Children were evaluated by their parents on emotion regulation using the Emotion Regulation Checklist and internalizing and externalizing behavior problems using the Korean-Child Behavior Checklist. SEM analyses confirmed the complete mediation model, in which emotion dysregulation fully mediates the relationship between cumulative childhood traumas and internalizing/externalizing behavior problems. These findings indicate that emotion regulation is an important mechanism that can explain the negative effects of cumulative childhood traumas and that there is a need to focus on emotion regulation in sexually abused children exposed to cumulative trauma. Copyright © 2013 Elsevier Ltd. All rights reserved.
Transmission fidelity is the key to the build-up of cumulative culture.
Lewis, Hannah M; Laland, Kevin N
2012-08-05
Many animals have socially transmitted behavioural traditions, but human culture appears unique in that it is cumulative, i.e. human cultural traits increase in diversity and complexity over time. It is often suggested that high-fidelity cultural transmission is necessary for cumulative culture to occur through refinement, a process known as 'ratcheting', but this hypothesis has never been formally evaluated. We discuss processes of information transmission and loss of traits from a cognitive viewpoint alongside other cultural processes of novel invention (generation of entirely new traits), modification (refinement of existing traits) and combination (bringing together two established traits to generate a new trait). We develop a simple cultural transmission model that does not assume major evolutionary changes (e.g. in brain architecture) and show that small changes in the fidelity with which information is passed between individuals can lead to cumulative culture. In comparison, modification and combination have a lesser influence on, and novel invention appears unimportant to, the ratcheting process. Our findings support the idea that high-fidelity transmission is the key driver of human cumulative culture, and that progress in cumulative culture depends more on trait combination than novel invention or trait modification.
Gerald J. Gottfried; Daniel G. Neary; Peter F. Ffolliott
2007-01-01
Many traditional land management activities and supporting research have concentrated on one or two resources, with limited evaluations of interactions among other potential values. An ecosystem approach to land management requires an evaluation of the blend of physical and biological factors needed to assure productive, healthy ecosystems. Ideally, social and economic...
NASA Astrophysics Data System (ADS)
Wårlind, D.; Smith, B.; Hickler, T.; Arneth, A.
2014-11-01
Recently a considerable amount of effort has been put into quantifying how interactions of the carbon and nitrogen cycle affect future terrestrial carbon sinks. Dynamic vegetation models, representing the nitrogen cycle with varying degree of complexity, have shown diverging constraints of nitrogen dynamics on future carbon sequestration. In this study, we use LPJ-GUESS, a dynamic vegetation model employing a detailed individual- and patch-based representation of vegetation dynamics, to evaluate how population dynamics and resource competition between plant functional types, combined with nitrogen dynamics, have influenced the terrestrial carbon storage in the past and to investigate how terrestrial carbon and nitrogen dynamics might change in the future (1850 to 2100; one representative "business-as-usual" climate scenario). Single-factor model experiments of CO2 fertilisation and climate change show generally similar directions of the responses of C-N interactions, compared to the C-only version of the model as documented in previous studies using other global models. Under an RCP 8.5 scenario, nitrogen limitation suppresses potential CO2 fertilisation, reducing the cumulative net ecosystem carbon uptake between 1850 and 2100 by 61%, and soil warming-induced increase in nitrogen mineralisation reduces terrestrial carbon loss by 31%. When environmental changes are considered conjointly, carbon sequestration is limited by nitrogen dynamics up to the present. However, during the 21st century, nitrogen dynamics induce a net increase in carbon sequestration, resulting in an overall larger carbon uptake of 17% over the full period. This contrasts with previous results with other global models that have shown an 8 to 37% decrease in carbon uptake relative to modern baseline conditions. Implications for the plausibility of earlier projections of future terrestrial C dynamics based on C-only models are discussed.
Protected areas mitigate diseases of reef-building corals by reducing damage from fishing.
Lamb, Joleah B; Williamson, David H; Russ, Garry R; Willis, Bette L
2015-09-01
Parks and protected areas have been instrumental in reducing anthropogenic sources of damage in terrestrial and aquatic environments. Pathogen invasion often succeeds physical wounding and injury, yet links between the reduction of damage and the moderation of disease have not been assessed. Here, we examine the utility of no-take marine reserves as tools for mitigating diseases that affect reef-building corals. We found that sites located within reserves had fourfold reductions in coral disease prevalence compared to non-reserve sites (80466 corals surveyed). Of 31 explanatory variables assessed, coral damage and the abundance of derelict fishing line best explained differences in disease assemblages between reserves and non-reserves. Unexpectedly, we recorded significantly higher levels of disease, coral damage, and derelict fishing line in non-reserves with fishing gear restrictions than in those without gear restrictions. Fishers targeting stocks perceived to be less depleted, coupled with enhanced site access from immediately adjacent boat moorings, may explain these unexpected patterns. Significant correlations between the distance from mooring sites and prevalence values for a ciliate disease known to infest wounded tissue (r = -0.65), coral damage (r = -0.64), and the abundance of derelict fishing line (r = -0.85) corroborate this interpretation. This is the first study to link disease with recreational use intensity in a park, emphasizing the need to evaluate the placement of closures and their direct relationship to ecosystem health. Since corals are modular, ecological processes that govern reproductive and competitive fitness are frequently related to colony surface area therefore, even low levels of cumulative tissue loss from progressing diseases pose significant threats to reef coral persistence. Disease mitigation through reductions in physical injury in areas where human activities are concentrated is another mechanism by which protected areas may improve ecosystem resilience in a changing climate.
Predicting the cumulative effect of multiple disturbances on seagrass connectivity.
Grech, Alana; Hanert, Emmanuel; McKenzie, Len; Rasheed, Michael; Thomas, Christopher; Tol, Samantha; Wang, Mingzhu; Waycott, Michelle; Wolter, Jolan; Coles, Rob
2018-03-15
The rate of exchange, or connectivity, among populations effects their ability to recover after disturbance events. However, there is limited information on the extent to which populations are connected or how multiple disturbances affect connectivity, especially in coastal and marine ecosystems. We used network analysis and the outputs of a biophysical model to measure potential functional connectivity and predict the impact of multiple disturbances on seagrasses in the central Great Barrier Reef World Heritage Area (GBRWHA), Australia. The seagrass networks were densely connected, indicating that seagrasses are resilient to the random loss of meadows. Our analysis identified discrete meadows that are important sources of seagrass propagules and that serve as stepping stones connecting various different parts of the network. Several of these meadows were close to urban areas or ports and likely to be at risk from coastal development. Deep water meadows were highly connected to coastal meadows and may function as a refuge, but only for non-foundation species. We evaluated changes to the structure and functioning of the seagrass networks when one or more discrete meadows were removed due to multiple disturbance events. The scale of disturbance required to disconnect the seagrass networks into two or more components was on average >245 km, about half the length of the metapopulation. The densely connected seagrass meadows of the central GBRWHA are not limited by the supply of propagules; therefore, management should focus on improving environmental conditions that support natural seagrass recruitment and recovery processes. Our study provides a new framework for assessing the impact of global change on the connectivity and persistence of coastal and marine ecosystems. Without this knowledge, management actions, including coastal restoration, may prove unnecessary and be unsuccessful. © 2018 John Wiley & Sons Ltd.
Gbondo-Tugbawa, Solomon S; Driscoll, Charles T
2002-11-15
The 1970 and 1990 Amendments of the Clean Air Act (CAAA) have resulted in a decline in acidic deposition in the northeastern United States. Results from the application of a biogeochemical model (PnET-BGC) at the Hubbard Brook Experimental Forest in New Hampshire suggest that, without the implementation of the CAAAs, soil base saturation and soil solution molar Ca/Al ratio would decrease to values below 6% and 1.0, respectively, while S would continue to accumulate in organic matter and adsorbed pools at rates of 2 and 3 kg of S ha(-1) yr(-1), respectively. This scenario of conditions without the CAAAs was projected to result in higher stream concentrations of SO4(2-), NO3-, and Ca2+; monomeric Al; pH below 4.8; and acid-neutralizing capacity (ANC) less than -15 microequiv L(-1). The implementation of the CAAAs has led to a slight improvement in the soil base saturation, while recovery of soil solution Ca/Al cannot be fully assessed because of variability in observed values. Our evaluation of the relative benefits of the 1970 and 1990 CAAAs indicate that although the magnitude of the cumulative decrease in strong acid deposition was greater following the 1970 CAAA as compared to the 1990 CAAA, the extent of ecosystem recovery relative to the changes in acidic deposition suggests that the 1990 CAAA was also beneficial. The slow recovery rates might be the result of a legacy of chemical effects of acidic deposition for the last 150 years and suggests that additional controls in emissions might be required to show significant changes.
Managing for resilience: an information theory-based ...
Ecosystems are complex and multivariate; hence, methods to assess the dynamics of ecosystems should have the capacity to evaluate multiple indicators simultaneously. Most research on identifying leading indicators of regime shifts has focused on univariate methods and simple models which have limited utility when evaluating real ecosystems, particularly because drivers are often unknown. We discuss some common univariate and multivariate approaches for detecting critical transitions in ecosystems and demonstrate their capabilities via case studies. Synthesis and applications. We illustrate the utility of an information theory-based index for assessing ecosystem dynamics. Trends in this index also provide a sentinel of both abrupt and gradual transitions in ecosystems. In response to the need to identify leading indicators of regime shifts in ecosystems, our research compares traditional indicators and Fisher information, an information theory based method, by examining four case study systems. Results demonstrate the utility of methods and offers great promise for quantifying and managing for resilience.
Aggregate Exposure Pathways in Support of Risk Assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Yu-Mei; Leonard, Jeremy A.; Edwards, Stephen
Over time, risk assessment has shifted from establishing relationships between exposure to a single chemical and a resulting adverse health outcome, to evaluation of multiple chemicals and disease outcomes simultaneously. As a result, there is an increasing need to better understand the complex mechanisms that influence risk of chemical and non-chemical stressors, beginning at their source and ending at a biological endpoint relevant to human or ecosystem health risk assessment. Just as the Adverse Outcome Pathway (AOP) framework has emerged as a means of providing insight into mechanism-based toxicity, the exposure science community has seen the recent introduction of themore » Aggregate Exposure Pathway (AEP) framework. AEPs aid in making exposure data applicable to the FAIR (i.e., findable, accessible, interoperable, and reusable) principle, especially by (1) organizing continuous flow of disjointed exposure information;(2) identifying data gaps, to focus resources on acquiring the most relevant data; (3) optimizing use and repurposing of existing exposure data; and (4) facilitating interoperability among predictive models. Herein, we discuss integration of the AOP and AEP frameworks and how such integration can improve confidence in both traditional and cumulative risk assessment approaches.« less
Aggregate Exposure Pathways in Support of Risk Assessment
Tan, Yu-Mei; Leonard, Jeremy A.; Edwards, Stephen; ...
2018-03-29
Over time, risk assessment has shifted from establishing relationships between exposure to a single chemical and a resulting adverse health outcome, to evaluation of multiple chemicals and disease outcomes simultaneously. As a result, there is an increasing need to better understand the complex mechanisms that influence risk of chemical and non-chemical stressors, beginning at their source and ending at a biological endpoint relevant to human or ecosystem health risk assessment. Just as the Adverse Outcome Pathway (AOP) framework has emerged as a means of providing insight into mechanism-based toxicity, the exposure science community has seen the recent introduction of themore » Aggregate Exposure Pathway (AEP) framework. AEPs aid in making exposure data applicable to the FAIR (i.e., findable, accessible, interoperable, and reusable) principle, especially by (1) organizing continuous flow of disjointed exposure information;(2) identifying data gaps, to focus resources on acquiring the most relevant data; (3) optimizing use and repurposing of existing exposure data; and (4) facilitating interoperability among predictive models. Herein, we discuss integration of the AOP and AEP frameworks and how such integration can improve confidence in both traditional and cumulative risk assessment approaches.« less
Liang, Bian Bian; Shi, Pei Ji; Wang, Wei; Tang, Xiao; Zhou, Wen Xia; Jing, Ye
2017-01-01
The Shiyang River Basin is an important ecological area of the Eastern Hexi Corridor, and is one of the most prominent areas of water conflict and ecological environment problems. An assessment of ecosystem quality in the Shiyang River Basin can provide a reference for ecological protection in arid inland basin. Based on the concept of ecosystem quality and the statistical yearbook, remotely sensed and land cover data, an evaluation index was established with consideration of three aspects of ecosystem (i.e., productivity, stability and bearing capacity). Kruskal-Wallis (Φ 2 ) test and entropy method were applied to determine the weights of evaluation index. With the assistance of RS, GIS and SPSS software, a comprehensive evaluation and change analysis of ecosystem quality and corresponding index were conducted for various ecosystem types in the Shiyang River Basin in 2000, 2005, 2010 and 2015. Results showed that the average ecosystem quality of the Shiyang River Basin was 57.76, and presented an obvious decrease with a magnitude of 0.72 per year du-ring 2000-2015. The spatial pattern of ecosystem quality was that the upstream was better than the midstream, and the midstream was superior to the downstream. The mean values of production capacity, stability and carrying capacity of ecosystem were 67.52, 45.37, and 58.53, respectively. Production capacity and stability had increased slightly, while carrying capacity gradually decreased. Considering various ecosystem types, the highest quality was detected for forest ecosystem with average annual value of 78.12, and this ecosystem presented the lowest decreasing magnitude of 0.28 per year; for grassland, farmland and urban ecosystems, the average annual value was 62.45, 58.76 and 50.29, respectively; the quality of wetland ecosystem was the lowest, and suffered the largest decline with an average rate of 0.98 per year.
Dynamical implications of bi-directional resource exchange within a meta-ecosystem.
Messan, Marisabel Rodriguez; Kopp, Darin; Allen, Daniel C; Kang, Yun
2018-05-05
The exchange of resources across ecosystem boundaries can have large impacts on ecosystem structures and functions at local and regional scales. In this article, we develop a simple model to investigate dynamical implications of bi-directional resource exchanges between two local ecosystems in a meta-ecosystem framework. In our model, we assume that (1) Each local ecosystem acts as both a resource donor and recipient, such that one ecosystem donating resources to another results in a cost to the donating system and a benefit to the recipient; and (2) The costs and benefits of the bi-directional resource exchange between two ecosystems are correlated in a nonlinear fashion. Our model could apply to the resource interactions between terrestrial and aquatic ecosystems that are supported by the literature. Our theoretical results show that bi-directional resource exchange between two ecosystems can indeed generate complicated dynamical outcomes, including the coupled ecosystems having amensalistic, antagonistic, competitive, or mutualistic interactions, with multiple alternative stable states depending on the relative costs and benefits. In addition, if the relative cost for resource exchange for an ecosystem is decreased or the relative benefit for resource exchange for an ecosystem is increased, the production of that ecosystem would increase; however, depending on the local environment, the production of the other ecosystem may increase or decrease. We expect that our work, by evaluating the potential outcomes of resource exchange theoretically, can facilitate empirical evaluations and advance the understanding of spatial ecosystem ecology where resource exchanges occur in varied ecosystems through a complicated network. Copyright © 2018 Elsevier Inc. All rights reserved.
Clein, Joy S.; Kwiatkowski, B.L.; McGuire, A.D.; Hobbie, J.E.; Rastetter, E.B.; Melillo, J.M.; Kicklighter, D.W.
2000-01-01
We are developing a process-based modelling approach to investigate how carbon (C) storage of tundra across the entire Arctic will respond to projected climate change. To implement the approach, the processes that are least understood, and thus have the most uncertainty, need to be identified and studied. In this paper, we identified a key uncertainty by comparing the responses of C storage in tussock tundra at one site between the simulations of two models - one a global-scale ecosystem model (Terrestrial Ecosystem Model, TEM) and one a plot-scale ecosystem model (General Ecosystem Model, GEM). The simulations spanned the historical period (1921-94) and the projected period (1995-2100). In the historical period, the model simulations of net primary production (NPP) differed in their sensitivity to variability in climate. However, the long-term changes in C storage were similar in both simulations, because the dynamics of heterotrophic respiration (RH) were similar in both models. In contrast, the responses of C storage in the two model simulations diverged during the projected period. In the GEM simulation for this period, increases in RH tracked increases in NPP, whereas in the TEM simulation increases in RH lagged increases in NPP. We were able to make the long-term C dynamics of the two simulations agree by parameterizing TEM to the fast soil C pools of GEM. We concluded that the differences between the long-term C dynamics of the two simulations lay in modelling the role of the recalcitrant soil C. These differences, which reflect an incomplete understanding of soil processes, lead to quite different projections of the response of pan-Arctic C storage to global change. For example, the reference parameterization of TEM resulted in an estimate of cumulative C storage of 2032 g C m-2 for moist tundra north of 50??N, which was substantially higher than the 463 g C m-2 estimated for a parameterization of fast soil C dynamics. This uncertainty in the depiction of the role of recalcitrant soil C in long-term ecosystem C dynamics resulted from our incomplete understanding of controls over C and N transformations in Arctic soils. Mechanistic studies of these issues are needed to improve our ability to model the response of Arctic ecosystems to global change.
Cumulative risk assessment (CRA) methods promote the use of a conceptual site model (CSM) to apportion exposures and integrate risk from multiple stressors. While CSMs may encompass multiple species, evaluating end points across taxa can be challenging due to data availability an...
Decision-making for ecosystem protection and resource management requires an integrative science and technology applied with a sufficiently comprehensive systems approach. Single media (e.g., air, soil and water) approaches that evaluate aspects of an ecosystem in a stressor-by-...
Bottero, Alessandra; D'Amato, Anthony W.; Palik, Brian J.; Kern, Christel C.; Bradford, John B.; Scherer, Sawyer S.
2017-01-01
Prescribed fire is widely used for ecological restoration and fuel reduction in fire-dependent ecosystems, most of which are also prone to drought. Despite the importance of drought in fire-adapted forests, little is known about cumulative effects of repeated prescribed burning on tree growth and related response to drought. Using dendrochronological data in red pine (Pinus resinosa Ait.)-dominated forests in northern Minnesota, USA, we examined growth responses before and after understory prescribed fires between 1960 and 1970, to assess whether repeated burning influences growth responses of overstory trees and vulnerability of overstory tree growth to drought. We found no difference in tree-level growth vulnerability to drought, expressed as growth resistance, resilience, and recovery, between areas receiving prescribed fire treatments and untreated forests. Annual mortality rates during the period of active burning were also low (less than 2%) in all treatments. These findings indicate that prescribed fire can be effectively integrated into management plans and climate change adaptation strategies for red pine forest ecosystems without significant short- or long-term negative consequences for growth or mortality rates of overstory trees.
Empirically derived guidance for social scientists to influence environmental policy
Brown, Katrina; Crissman, Charles; De Young, Cassandra; Gooch, Margaret; James, Craig; Jessen, Sabine; Johnson, Dave; Marshall, Paul; Wachenfeld, Dave; Wrigley, Damian
2017-01-01
Failure to stem trends of ecological disruption and associated loss of ecosystem services worldwide is partly due to the inadequate integration of the human dimension into environmental decision-making. Decision-makers need knowledge of the human dimension of resource systems and of the social consequences of decision-making if environmental management is to be effective and adaptive. Social scientists have a central role to play, but little guidance exists to help them influence decision-making processes. We distil 348 years of cumulative experience shared by 31 environmental experts across three continents into advice for social scientists seeking to increase their influence in the environmental policy arena. Results focus on the importance of process, engagement, empathy and acumen and reveal the importance of understanding and actively participating in policy processes through co-producing knowledge and building trust. The insights gained during this research might empower a science-driven cultural change in science-policy relations for the routine integration of the human dimension in environmental decision making; ultimately for an improved outlook for earth’s ecosystems and the billions of people that depend on them. PMID:28278238
Lévesque, Lucie M; Dubé, Monique G
2007-09-01
Pipeline crossing construction alters river and stream channels, hence may have detrimental effects on aquatic ecosystems. This review examines the effects of crossing construction on fish and fish habitat in rivers and streams, and recommends an approach to monitoring and assessment of impacts associated with these activities. Pipeline crossing construction is shown to not only compromise the integrity of the physical and chemical nature of fish habitat, but also to affect biological habitat (e.g., benthic invertebrates and invertebrate drift), and fish behavior and physiology. Indicators of effect include: water quality (total suspended solids TSS), physical habitat (substrate particle size, channel morphology), benthic invertebrate community structure and drift (abundance, species composition, diversity, standing crop), and fish behavior and physiology (hierarchy, feeding, respiration rate, loss of equilibrium, blood hematocrit and leukocrit levels, heart rate and stroke volume). The Before-After-Control-Impact (BACI) approach, which is often applied in Environmental Effects Monitoring (EEM), is recommended as a basis for impact assessment, as is consideration of site-specific sensitivities, assessment of significance, and cumulative effects.
The deep human prehistory of global tropical forests and its relevance for modern conservation.
Roberts, Patrick; Hunt, Chris; Arroyo-Kalin, Manuel; Evans, Damian; Boivin, Nicole
2017-08-03
Significant human impacts on tropical forests have been considered the preserve of recent societies, linked to large-scale deforestation, extensive and intensive agriculture, resource mining, livestock grazing and urban settlement. Cumulative archaeological evidence now demonstrates, however, that Homo sapiens has actively manipulated tropical forest ecologies for at least 45,000 years. It is clear that these millennia of impacts need to be taken into account when studying and conserving tropical forest ecosystems today. Nevertheless, archaeology has so far provided only limited practical insight into contemporary human-tropical forest interactions. Here, we review significant archaeological evidence for the impacts of past hunter-gatherers, agriculturalists and urban settlements on global tropical forests. We compare the challenges faced, as well as the solutions adopted, by these groups with those confronting present-day societies, which also rely on tropical forests for a variety of ecosystem services. We emphasize archaeology's importance not only in promoting natural and cultural heritage in tropical forests, but also in taking an active role to inform modern conservation and policy-making.
Two ultraviolet radiation datasets that cover China
NASA Astrophysics Data System (ADS)
Liu, Hui; Hu, Bo; Wang, Yuesi; Liu, Guangren; Tang, Liqin; Ji, Dongsheng; Bai, Yongfei; Bao, Weikai; Chen, Xin; Chen, Yunming; Ding, Weixin; Han, Xiaozeng; He, Fei; Huang, Hui; Huang, Zhenying; Li, Xinrong; Li, Yan; Liu, Wenzhao; Lin, Luxiang; Ouyang, Zhu; Qin, Boqiang; Shen, Weijun; Shen, Yanjun; Su, Hongxin; Song, Changchun; Sun, Bo; Sun, Song; Wang, Anzhi; Wang, Genxu; Wang, Huimin; Wang, Silong; Wang, Youshao; Wei, Wenxue; Xie, Ping; Xie, Zongqiang; Yan, Xiaoyuan; Zeng, Fanjiang; Zhang, Fawei; Zhang, Yangjian; Zhang, Yiping; Zhao, Chengyi; Zhao, Wenzhi; Zhao, Xueyong; Zhou, Guoyi; Zhu, Bo
2017-07-01
Ultraviolet (UV) radiation has significant effects on ecosystems, environments, and human health, as well as atmospheric processes and climate change. Two ultraviolet radiation datasets are described in this paper. One contains hourly observations of UV radiation measured at 40 Chinese Ecosystem Research Network stations from 2005 to 2015. CUV3 broadband radiometers were used to observe the UV radiation, with an accuracy of 5%, which meets the World Meteorology Organization's measurement standards. The extremum method was used to control the quality of the measured datasets. The other dataset contains daily cumulative UV radiation estimates that were calculated using an all-sky estimation model combined with a hybrid model. The reconstructed daily UV radiation data span from 1961 to 2014. The mean absolute bias error and root-mean-square error are smaller than 30% at most stations, and most of the mean bias error values are negative, which indicates underestimation of the UV radiation intensity. These datasets can improve our basic knowledge of the spatial and temporal variations in UV radiation. Additionally, these datasets can be used in studies of potential ozone formation and atmospheric oxidation, as well as simulations of ecological processes.
Syberg, Kristian; Backhaus, Thomas; Banta, Gary; Bruce, Peter; Gustavsson, Mikael; Munns, Wayne R; Rämö, Robert; Selck, Henriette; Gunnarsson, Jonas S
2017-03-01
Growth of human populations and increased human activity, particularly in coastal areas, increase pressure on coastal ecosystems and the ecosystem services (ES) they provide. As a means toward being able to assess the impact of multiple stressors on ES, in the present study we propose an 8-step conceptual approach for assessing effects of chemical mixtures and other stressors on ES in coastal areas: step A, identify the relevant problems and policy aims; step B, identify temporal and spatial boundaries; step C, identify relevant ES; step D, identify relevant stressors (e.g., chemicals); step E, translate impacts into ES units; step F, assess cumulative risk in ES units; step G, rank stressors based on their contribution to adverse effects on ES; and step H, implement regulation and management as appropriate and necessary. Two illustrative case studies (Swedish coastal waters and a coastal lagoon in Costa Rica) are provided; one focuses on chemicals that affect human food supply and the other addresses pesticide runoff and trade-offs among ES. The 2 cases are used to highlight challenges of such risk assessments, including use of standardized versus ES-relevant test species, data completeness, and trade-offs among ES. Lessons learned from the 2 case studies are discussed in relation to environmental risk assessment and management of chemical mixtures. Integr Environ Assess Manag 2017;13:376-386. © 2016 SETAC. © 2016 SETAC.
Element Pool Changes within a Scrub-Oak Ecosystem after 11 Years of Exposure to Elevated CO2
Duval, Benjamin D.; Dijkstra, Paul; Drake, Bert G.; Johnson, Dale W.; Ketterer, Michael E.; Megonigal, J. Patrick; Hungate, Bruce A.
2013-01-01
The effects of elevated CO2 on ecosystem element stocks are equivocal, in part because cumulative effects of CO2 on element pools are difficult to detect. We conducted a complete above and belowground inventory of non-nitrogen macro- and micronutrient stocks in a subtropical woodland exposed to twice-ambient CO2 concentrations for 11 years. We analyzed a suite of nutrient elements and metals important for nutrient cycling in soils to a depth of ∼2 m, in leaves and stems of the dominant oaks, in fine and coarse roots, and in litter. In conjunction with large biomass stimulation, elevated CO2 increased oak stem stocks of Na, Mg, P, K, V, Zn and Mo, and the aboveground pool of K and S. Elevated CO2 increased root pools of most elements, except Zn. CO2-stimulation of plant Ca was larger than the decline in the extractable Ca pool in soils, whereas for other elements, increased plant uptake matched the decline in the extractable pool in soil. We conclude that elevated CO2 caused a net transfer of a subset of nutrients from soil to plants, suggesting that ecosystems with a positive plant growth response under high CO2 will likely cause mobilization of elements from soil pools to plant biomass. PMID:23717607
Monitoring ecosystem restoration at various scales in LAEs can be challenging, frustrating and rewarding. Some of the major ecosystem restoration monitoring occurring in LAEs include: seagrass expansion/contraction; dead zone sizes; oyster reefs; sea turtle nesting; toxic and nu...
Li, Jing Xin; Yang, Li; Yang, Lei; Zhang, Chao; Huo, Zhao Min; Chen, Min Hao; Luan, Xiao Feng
2018-03-01
Quantitative evaluation of ecosystem service is a primary premise for rational resources exploitation and sustainable development. Examining ecosystem services flow provides a scientific method to quantity ecosystem services. We built an assessment indicator system based on land cover/land use under the framework of four types of ecosystem services. The types of ecosystem services flow were reclassified. Using entropy theory, disorder degree and developing trend of indicators and urban ecosystem were quantitatively assessed. Beijing was chosen as the study area, and twenty-four indicators were selected for evaluation. The results showed that the entropy value of Beijing urban ecosystem during 2004 to 2015 was 0.794 and the entropy flow was -0.024, suggesting a large disordered degree and near verge of non-health. The system got maximum values for three times, while the mean annual variation of the system entropy value increased gradually in three periods, indicating that human activities had negative effects on urban ecosystem. Entropy flow reached minimum value in 2007, implying the environmental quality was the best in 2007. The determination coefficient for the fitting function of total permanent population in Beijing and urban ecosystem entropy flow was 0.921, indicating that urban ecosystem health was highly correlated with total permanent population.
Evaluating Theory-Based Evaluation: Information, Norms, and Adherence
ERIC Educational Resources Information Center
Jacobs, W. Jake; Sisco, Melissa; Hill, Dawn; Malter, Frederic; Figueredo, Aurelio Jose
2012-01-01
Programmatic social interventions attempt to produce appropriate social-norm-guided behavior in an open environment. A marriage of applicable psychological theory, appropriate program evaluation theory, and outcome of evaluations of specific social interventions assures the acquisition of cumulative theory and the production of successful social…
Park, Soojin; Park, Sungyong; Park, Young B
2018-02-12
With the emergence of various forms of smart devices and new paradigms such as the Internet of Things (IoT) concept, the IT (Information Technology) service areas are expanding explosively compared to the provision of services by single systems. A new system operation concept that has emerged in accordance with such technical trends is the IT ecosystem. The IT ecosystem can be considered a special type of system of systems in which multiple systems with various degrees of autonomy achieve common goals while adapting to the given environment. The single systems that participate in the IT ecosystem adapt autonomously to the current situation based on collected data from sensors. Furthermore, to maintain the services supported by the whole IT ecosystem sustainably, the configuration of single systems that participate in the IT ecosystem also changes appropriately in accordance with the changed situation. In order to support the IT ecosystem, this paper proposes an architecture framework that supports dynamic configuration changes to achieve the goal of the whole IT ecosystem, while ensuring the autonomy of single systems through the collection of data from sensors so as to recognize the situational context of individual participating systems. For the feasibility evaluation of the proposed framework, a simulated example of an IT ecosystem for unmanned forest management was constructed, and the quantitative evaluation results are discussed in terms of the extent to which the proposed architecture framework can continuously provide sustainable services in response to diverse environmental context changes.
Park, Young B.
2018-01-01
With the emergence of various forms of smart devices and new paradigms such as the Internet of Things (IoT) concept, the IT (Information Technology) service areas are expanding explosively compared to the provision of services by single systems. A new system operation concept that has emerged in accordance with such technical trends is the IT ecosystem. The IT ecosystem can be considered a special type of system of systems in which multiple systems with various degrees of autonomy achieve common goals while adapting to the given environment. The single systems that participate in the IT ecosystem adapt autonomously to the current situation based on collected data from sensors. Furthermore, to maintain the services supported by the whole IT ecosystem sustainably, the configuration of single systems that participate in the IT ecosystem also changes appropriately in accordance with the changed situation. In order to support the IT ecosystem, this paper proposes an architecture framework that supports dynamic configuration changes to achieve the goal of the whole IT ecosystem, while ensuring the autonomy of single systems through the collection of data from sensors so as to recognize the situational context of individual participating systems. For the feasibility evaluation of the proposed framework, a simulated example of an IT ecosystem for unmanned forest management was constructed, and the quantitative evaluation results are discussed in terms of the extent to which the proposed architecture framework can continuously provide sustainable services in response to diverse environmental context changes. PMID:29439540
U.S. EPA Authority to Use Cumulative Risk Assessments in Environmental Decision-Making
Alves, Sarah; Tilghman, Joan; Rosenbaum, Arlene; Payne-Sturges, Devon C.
2012-01-01
Conventionally, in its decision-making, the U.S. EPA has evaluated the effects and risks associated with a single pollutant in a single exposure medium. In reality, people are exposed to mixtures of pollutants or to the same pollutant through a variety of media, including the air, water, and food. It is now more recognized than before that environmental exposure to pollutants occurs via multiple exposure routes and pathways, including inhalation, ingestion, and dermal absorption. Moreover, chemical, biologic, radiologic, physical, and psychologic stressors are all acknowledged as affecting human health. Although many EPA offices attempt to consider cumulative risk assessment and cumulative effects in various ways, there is no Agency-wide policy for considering these risks and the effects of exposure to these risks when making environmental decisions. This article examines how U.S. courts might assess EPA’s general authority and discretion to use cumulative risk assessment as the basis for developing data in support of environmental decision-making, and how courts might assess the validity of a cumulative risk assessment methodology itself. PMID:22829786
A multi-scale metrics approach to forest fragmentation for Strategic Environmental Impact Assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Eunyoung, E-mail: eykim@kei.re.kr; Song, Wonkyong, E-mail: wksong79@gmail.com; Lee, Dongkun, E-mail: dklee7@snu.ac.kr
Forests are becoming severely fragmented as a result of land development. South Korea has responded to changing community concerns about environmental issues. The nation has developed and is extending a broad range of tools for use in environmental management. Although legally mandated environmental compliance requirements in South Korea have been implemented to predict and evaluate the impacts of land-development projects, these legal instruments are often insufficient to assess the subsequent impact of development on the surrounding forests. It is especially difficult to examine impacts on multiple (e.g., regional and local) scales in detail. Forest configuration and size, including forest fragmentationmore » by land development, are considered on a regional scale. Moreover, forest structure and composition, including biodiversity, are considered on a local scale in the Environmental Impact Assessment process. Recently, the government amended the Environmental Impact Assessment Act, including the SEA, EIA, and small-scale EIA, to require an integrated approach. Therefore, the purpose of this study was to establish an impact assessment system that minimizes the impacts of land development using an approach that is integrated across multiple scales. This study focused on forest fragmentation due to residential development and road construction sites in selected Congestion Restraint Zones (CRZs) in the Greater Seoul Area of South Korea. Based on a review of multiple-scale impacts, this paper integrates models that assess the impacts of land development on forest ecosystems. The applicability of the integrated model for assessing impacts on forest ecosystems through the SEIA process is considered. On a regional scale, it is possible to evaluate the location and size of a land-development project by considering aspects of forest fragmentation, such as the stability of the forest structure and the degree of fragmentation. On a local scale, land-development projects should consider the distances at which impacts occur in the vicinity of the forest ecosystem, and these considerations should include the impacts on forest vegetation and bird species. Impacts can be mitigated by considering the distances at which these influences occur. In particular, this paper presents an integrated environmental impact assessment system to be applied in the SEIA process. The integrated assessment system permits the assessment of the cumulative impacts of land development on multiple scales. -- Highlights: • The model is to assess the impact of forest fragmentation across multiple scales. • The paper suggests the type of forest fragmentation on a regional scale. • The type can be used to evaluate the location and size of a land development. • The paper shows the influence distance of land development on a local scale. • The distance can be used to mitigate the impact at an EIA process.« less
Spatial characterization of acid rain stress in Canadian Shield lakes
NASA Technical Reports Server (NTRS)
Tanis, Fred J.
1986-01-01
The acidification of lake waters from airborne pollutants is of continental proportions both in North America and Europe. A major concern of the acid rain problem is the cumulative ecosystem damage to lakes and forest. The number of lakes affected in northeastern United States and on the Canadian Shield is though to be enormous. The principle objective is to examine how seasonal changes in lake water transparency are related to annual acidic load. Further, the relationship between variations in lake acidification and ecophysical units is being examined. Finally, the utility of Thematic Mapper (TM) based observations to measure seasonal changes in the optical transparency in acid lakes is being investigated.
Evaluation on island ecological vulnerability and its spatial heterogeneity.
Chi, Yuan; Shi, Honghua; Wang, Yuanyuan; Guo, Zhen; Wang, Enkang
2017-12-15
The evaluation on island ecological vulnerability (IEV) can help reveal the comprehensive characteristics of the island ecosystem and provide reference for controlling human activities on islands. An IEV evaluation model which reflects the land-sea dual features, natural and anthropogenic attributes, and spatial heterogeneity of the island ecosystem was established, and the southern islands of Miaodao Archipelago in North China were taken as the study area. The IEV, its spatial heterogeneity, and its sensitivities to the evaluation elements were analyzed. Results indicated that the IEV was in status of mild vulnerability in the archipelago scale, and population pressure, ecosystem productivity, environmental quality, landscape pattern, and economic development were the sensitive elements. The IEV showed significant spatial heterogeneities both in land and surrounding waters sub-ecosystems. Construction scale control, optimization of development allocation, improvement of exploitation methods, and reasonable ecological construction are important measures to control the IEV. Copyright © 2017 Elsevier Ltd. All rights reserved.
Stephen N. Matthews; Louis R. Iverson; Matthew P. Peters; Anantha M. Prasad
2018-01-01
The maps and tables presented here represent potential variability of projected climate change across the conterminous United States during three 30-year periods in this century and emphasizes the importance of evaluating multiple signals of change across large spatial domains. Maps of growing degree days, plant hardiness zones, heat zones, and cumulative drought...
ERIC Educational Resources Information Center
Carvajal, Jorge; Skorupski, William P.
2010-01-01
This study is an evaluation of the behavior of the Liu-Agresti estimator of the cumulative common odds ratio when identifying differential item functioning (DIF) with polytomously scored test items using small samples. The Liu-Agresti estimator has been proposed by Penfield and Algina as a promising approach for the study of polytomous DIF but no…
Available fuel dynamics in nine contrasting forest ecosystems in North America
Soung-Ryoul Ryu; Jiquan Chen; Thomas R. Crow; Sari C. Saunders
2004-01-01
Available fuel and its dynamics, both of which affect fire behavior in forest ecosystems, are direct products of ecosystem production, decomposition, and disturbances. Using published ecosystem models and equations, we developed a simulation model to evaluate the effects of dynamics of aboveground net primary production (ANPP), carbon allocation, residual slash,...
Evaluating the effects of ecosystem management: a case study in a Missouri Ozark forest
Wendy K. Gram; Victoria L. Sork; Robert J. Marquis; Rochelle B. Renken; Richard L. Clawson; et. al.
2002-01-01
Many federal and state management agencies have shifted from commodity-based management systems to multiple resource-based management systems that emphasize sustainable ecosystem management. Long-term sustainability of ecosystem functions and processes is at the core of ecosystem management, but a blueprint for assessing sustainability under different management...
Ecological issues related to N deposition to natural ecosystems: research needs
Mary Beth Adams
2003-01-01
There has and continues to be concern about the effects of elevated nitrogen (N) deposition on natural ecosystems. In this paper, research on natural ecosystems, including wetlands, heathlands, grasslands, steppe, naturally regenerated forests and deserts, is evaluated to determine what is known about nitrogen cycling in these ecosystems, the effects of elevated...
A meta-analysis of coastal wetland ecosystem services in Liaoning Province, China
NASA Astrophysics Data System (ADS)
Sun, Baodi; Cui, Lijuan; Li, Wei; Kang, Xiaoming; Pan, Xu; Lei, Yinru
2018-01-01
Wetlands are impacted by economic and political initiatives, and their ecosystem services are attracting increasing public attention. It is crucial that management decisions for wetland ecosystem services quantify the economic value of the ecosystem services. In this paper, we aimed to estimate a monetary value for coastal wetland ecosystem services in Liaoning Province, China. We selected 433 observations from 85 previous coastal wetland economic evaluations (mostly in China) including detailed spatial and economic characteristics in each wetland, then used a meta-analysis scale transfer method to calculate the total value of coastal wetland ecosystem services in Liaoning Province. Our results demonstrated that, on average, the ecosystem services provided by seven different coastal wetland types were worth US40,648 per ha per year, and the total value was 28,990,439,041 in 2013. Shallow marine waters accounted for the largest proportion (83.97%). Variables with a significant positive effect on the ecosystem service values included GDP per capita, population density, distance from the wetland to the city center and the year of evaluation, while wetland size and latitude had negative relationships.
Probability of stress-corrosion fracture under random loading.
NASA Technical Reports Server (NTRS)
Yang, J.-N.
1972-01-01
A method is developed for predicting the probability of stress-corrosion fracture of structures under random loadings. The formulation is based on the cumulative damage hypothesis and the experimentally determined stress-corrosion characteristics. Under both stationary and nonstationary random loadings, the mean value and the variance of the cumulative damage are obtained. The probability of stress-corrosion fracture is then evaluated using the principle of maximum entropy. It is shown that, under stationary random loadings, the standard deviation of the cumulative damage increases in proportion to the square root of time, while the coefficient of variation (dispersion) decreases in inversed proportion to the square root of time. Numerical examples are worked out to illustrate the general results.
NASA Astrophysics Data System (ADS)
Xiang, Shao-Hua; Wen, Wei; Zhao, Yu-Jing; Song, Ke-Hui
2018-04-01
We study the properties of the cumulants of multimode boson operators and introduce the phase-averaged quadrature cumulants as the measure of the non-Gaussianity of multimode quantum states. Using this measure, we investigate the non-Gaussianity of two classes of two-mode non-Gaussian states: photon-number entangled states and entangled coherent states traveling in a bosonic memory quantum channel. We show that such a channel can skew the distribution of two-mode quadrature variables, giving rise to a strongly non-Gaussian correlation. In addition, we provide a criterion to determine whether the distributions of these states are super- or sub-Gaussian.
Holon, Florian; Mouquet, Nicolas; Boissery, Pierre; Bouchoucha, Marc; Delaruelle, Gwenaelle; Tribot, Anne-Sophie; Deter, Julie
2015-01-01
Ecosystem services provided by oceans and seas support most human needs but are threatened by human activities. Despite existing maps illustrating human impacts on marine ecosystems, information remains either large-scale but rough and insufficient for stakeholders (1 km² grid, lack of data along the coast) or fine-scale but fragmentary and heterogeneous in methodology. The objectives of this study are to map and quantify the main pressures exerted on near-coast marine ecosystems, at a large spatial scale though in fine and relevant resolution for managers (one pixel = 20 x 20 m). It focuses on the French Mediterranean coast (1,700 km of coastline including Corsica) at a depth of 0 to 80 m. After completing and homogenizing data presently available under GIS on the bathymetry and anthropogenic pressures but also on the seabed nature and ecosystem vulnerability, we provide a fine modeling of the extent and impacts of 10 anthropogenic pressures on marine habitats. The considered pressures are man-made coastline, boat anchoring, aquaculture, urban effluents, industrial effluents, urbanization, agriculture, coastline erosion, coastal population and fishing. A 1:10 000 continuous habitat map is provided considering 11 habitat classes. The marine bottom is mostly covered by three habitats: infralittoral soft bottom, Posidonia oceanica meadows and circalittoral soft bottom. Around two thirds of the bottoms are found within medium and medium high cumulative impact categories. Seagrass meadows are the most impacted habitats. The most important pressures (in area and intensity) are urbanization, coastal population, coastal erosion and man-made coastline. We also identified areas in need of a special management interest. This work should contribute to prioritize environmental needs, as well as enhance the development of indicators for the assessment of the ecological status of coastal systems. It could also help better apply and coordinate management measures at a relevant scale for biodiversity conservation. PMID:26266542
Nitrogen deposition and sensitive ecosystems: a case study from the San Francisco Bay Area
NASA Astrophysics Data System (ADS)
Weiss, S. B.
2001-12-01
Nitrogen deposition from urban smog can greatly affect local ecosystems. This paper examines a complex situation in the Santa Clara Valley, CA where N-deposition from existing, new, and proposed developments threatens an ecosystem supporting numerous rare, threatened, and endangered species. Grasslands on nutrient-poor serpentinitic soils are being invaded by nutrient-demanding introduced annual grasses, driven by dry N-deposition of about 10 kg ha-1 yr-1. These grass invasions threaten the native biodiversity of the serpentinitic grasslands, including the federally-protected Bay checkerspot butterfly. Additional NOx and NH3 sources planned for the region include a 600 MW natural gas fired power plant, industrial parks that may eventually draw 20,000 to 50,000 additional cars per day, 25,000 housing units, and associated highway improvements. Ongoing mitigation proposals include purchase and long-term management of hundreds of hectares of habitat. The situation is a model for understanding N-deposition from a scientific and policy viewpoint. Fundamental biogeochemical questions include: 1) What are the relative contributions of NOx and NH3 to increased N-deposition? NH3 slip from power plant NOx scrubbers can release more reactive nitrogen than is removed as NOx, and modern automobiles release NH3 in addition to NOx. 2) How are N-emissions transported, chemically modified, and deposited on the local ecosystems, and are these processes adequately captured in regulatory models? How do point sources differ from line sources such as a heavily traveled freeway? 3) What are the effects of chronic N-deposition on the ecosystem, and is there a critical load or a steady cumulative effect? 4) What are the effects of management such as fire, grazing, mowing on N-cycling and plant composition? Policy issues include: 1) What are the incremental impacts of individual projects relative to high background deposition, 2) What margin of safety should be built into modeling and impact assessment? and 3) What are the most effective mitigation options?
Holon, Florian; Mouquet, Nicolas; Boissery, Pierre; Bouchoucha, Marc; Delaruelle, Gwenaelle; Tribot, Anne-Sophie; Deter, Julie
2015-01-01
Ecosystem services provided by oceans and seas support most human needs but are threatened by human activities. Despite existing maps illustrating human impacts on marine ecosystems, information remains either large-scale but rough and insufficient for stakeholders (1 km² grid, lack of data along the coast) or fine-scale but fragmentary and heterogeneous in methodology. The objectives of this study are to map and quantify the main pressures exerted on near-coast marine ecosystems, at a large spatial scale though in fine and relevant resolution for managers (one pixel = 20 x 20 m). It focuses on the French Mediterranean coast (1,700 km of coastline including Corsica) at a depth of 0 to 80 m. After completing and homogenizing data presently available under GIS on the bathymetry and anthropogenic pressures but also on the seabed nature and ecosystem vulnerability, we provide a fine modeling of the extent and impacts of 10 anthropogenic pressures on marine habitats. The considered pressures are man-made coastline, boat anchoring, aquaculture, urban effluents, industrial effluents, urbanization, agriculture, coastline erosion, coastal population and fishing. A 1:10 000 continuous habitat map is provided considering 11 habitat classes. The marine bottom is mostly covered by three habitats: infralittoral soft bottom, Posidonia oceanica meadows and circalittoral soft bottom. Around two thirds of the bottoms are found within medium and medium high cumulative impact categories. Seagrass meadows are the most impacted habitats. The most important pressures (in area and intensity) are urbanization, coastal population, coastal erosion and man-made coastline. We also identified areas in need of a special management interest. This work should contribute to prioritize environmental needs, as well as enhance the development of indicators for the assessment of the ecological status of coastal systems. It could also help better apply and coordinate management measures at a relevant scale for biodiversity conservation.
43 CFR 10005.13 - Geographic and ecological context for the plan.
Code of Federal Regulations, 2014 CFR
2014-10-01
... evaluated, from a state-wide perspective and that, within the state, an ecosystem-based approach is appropriate. There is no one correct way to define an ecosystem or to approach ecosystem planning. The...
43 CFR 10005.13 - Geographic and ecological context for the plan.
Code of Federal Regulations, 2012 CFR
2012-10-01
... evaluated, from a state-wide perspective and that, within the state, an ecosystem-based approach is appropriate. There is no one correct way to define an ecosystem or to approach ecosystem planning. The...
43 CFR 10005.13 - Geographic and ecological context for the plan.
Code of Federal Regulations, 2013 CFR
2013-10-01
... evaluated, from a state-wide perspective and that, within the state, an ecosystem-based approach is appropriate. There is no one correct way to define an ecosystem or to approach ecosystem planning. The...
Law, Martin; Ma, Wang-Kei; Lau, Damian; Chan, Eva; Yip, Lawrance; Lam, Wendy
2016-03-01
To quantitatively evaluate the cumulative effective dose and associated cancer risk for scoliotic patients undergoing repetitive full spine radiography during their diagnosis and follow up periods. Organ absorbed doses of full spine exposed scoliotic patients at different age were computer simulated with the use of PCXMC software. Gender specific effective dose was then calculated with the ICRP-103 approach. Values of lifetime attributable cancer risk for patients exposed at different age were calculated for both patient genders and for Asian and Western population. Mathematical fitting for effective dose and for lifetime attributable cancer risk, as function of exposed age, was analytically obtained to quantitatively estimate patient cumulated effective dose and cancer risk. The cumulative effective dose of full spine radiography with posteroanterior and lateral projection for patients exposed annually at age between 5 and 30 years using digital radiography system was calculated as 15mSv. The corresponding cumulative lifetime attributable cancer risk for Asian and Western population was calculated as 0.08-0.17%. Female scoliotic patients would be at a statistically significant higher cumulated cancer risk than male patients under the same full spine radiography protocol. We demonstrate the use of computer simulation and analytic formula to quantitatively obtain the cumulated effective dose and cancer risk at any age of exposure, both of which are valuable information to medical personnel and patients' parents concern about radiation safety in repetitive full spine radiography. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Children of Misfortune: Early Adversity and Cumulative Inequality in Perceived Life Trajectories1
Schafer, Markus H.; Ferraro, Kenneth F.; Mustillo, Sarah A.
2011-01-01
Adversity early in life may alter pathways of aging, but what interpretive processes can soften the blow of early insults? Drawing from cumulative inequality theory, the authors analyze trajectories of life evaluations and then consider whether early adversity offsets favorable expectations for the future. Results reveal that early adversity contributes to more negative views of the past but rising expectations for the future. Early adversity also has enduring effects on life evaluations, offsetting the influence of buoyant expectations. The findings draw attention to the limits of human agency under the constraints of early adversity—a process described as biographical structuration. PMID:21648247
Morita, K; Uchiyama, Y; Tominaga, S
1987-06-01
In order to evaluate the treatment results of radiotherapy it is important to estimate the degree of complications of the surrounding normal tissues as well as the frequency of tumor control. In this report, the cumulative incidence rate of the late radiation injuries of the normal tissues was calculated using the modified actuarial method (Cutler-Ederer's method) or Kaplan-Meier's method, which is usually applied to the calculation of the survival rate. By the use of this method of calculation, an accurate cumulative incidence rate over time can be easily obtained and applied to the statistical evaluation of the late radiation injuries.
Evaluation of Environmental Quality Productive Ecosystem Guayas (Ecuador).
NASA Astrophysics Data System (ADS)
Pozo, Wilson; Pardo, Francisco; Sanfeliu, Teófilo; Carrera, Gloria; Jordan, Manuel; Bech, Jaume; Roca, Núria
2015-04-01
Natural resources are deteriorating very rapidly in the Gulf of Guayaquil and the area of influence in the Guayas Basin due to human activity. Specific problems are generated by the mismanagement of the aquaculture industry affecting the traditional agricultural sectors: rice, banana, sugarcane, cocoa, coffee, and soya also studied, and by human and industrial settlements. The development of industrial activities such as aquaculture (shrimp building for shrimp farming in ponds) and agriculture, have increasingly contributed to the generation of waste, degrading and potentially toxic elements in high concentrations, which can have adverse effects on organisms in the ecosystems, in the health of the population and damage the ecological and environmental balance. The productive Guayas ecosystem, consists of three interrelated ecosystems, the Gulf of Guayaquil, the Guayas River estuary and the Guayas Basin buffer. The objective of this study was to evaluate the environmental quality of the productive Guayas ecosystem (Ecuador), through operational and specific objectives: 1) Draw up the transition coastal zone in the Gulf of Guayaquil, 2) Set temporal spatial variability of soil salinity in wetlands rice, Lower Guayas Basin, 3) evaluate the heavy metals in wetland rice in the Lower Basin of Guayas. The physical and chemical parameters of the soils have been studied. These are indicators of environmental quality. The multivariate statistical method showed the relations of similarities and dissimilarities between variables and parameter studies as stable. Moreover, the boundaries of coastal transition areas, temporal spatial variability of soil salinity and heavy metals in rice cultivation in the Lower Basin of Guayas were researched. The sequential studies included and discussed represent a broad framework of fundamental issues that has been valued as a basic component of the productive Guayas ecosystem. They are determinants of the environmental quality of the Guayas productive ecosystem. Keyword: Evaluation, Environmental Quality, Productive Ecosystem
Assuring Quality in Education Evaluation.
ERIC Educational Resources Information Center
Trochim, William M. K.; Visco, Ronald J.
1986-01-01
A number of quality assurance educational evaluation methods are illustrated. Evaluation data obtained from the Providence, Rhode Island, school district are used. The methods are: (1) from auditing, internal control; (2) from accounting, double bookkeeping; and (3) from industrial quality control, acceptance sampling and cumulative percentage…
Titus, Benjamin M; Daly, Marymegan; Exton, Dan A
2015-01-01
Contact between humans and the marine environment is increasing, but the capacity of communities to adapt to human presence remains largely unknown. The popularization of SCUBA diving has added a new dimension to human impacts in aquatic systems and, although individual-level impacts have been identified, cumulative effects on ecosystem function and community-wide responses are unclear. In principle, habituation may mitigate the consequences of human presence on the biology of an individual and allow the quick resumption of its ecological roles, but this has not been documented in aquatic systems. Here, we investigate the short-term impact of human presence and the long-term habituation potential of reef-fish communities to recreational SCUBA divers by studying symbiotic cleaning interactions on coral reefs with differing levels of historical contact with divers. We show that incidences of human contact result in a smaller decline in ecosystem function and more rapid resumption of baseline services on a reef in Utila, Honduras that has heavy historical levels of SCUBA diver presence, compared to an un-dived reef site in the Cayos Cochinos Marine Protected Area (CCMPA). Nonetheless, despite the generally smaller change in ecosystem function and decades of regular contact with divers, cleaning behavior is suppressed by >50% at Utila when divers are present. We hypothesize that community-wide habituation of reef fish is not fully achievable and may be biologically restricted to only partial habituation. Differential responses to human presence impacts the interpretation and execution of behavioral research where SCUBA is the predominant means of data collection, and provides an important rationale for future research investigating the interplay between human presence, ecosystem function, and community structure on coral reefs.
From science to policy; A road map for a sustainable resource management in Turkey's marine EEZs
NASA Astrophysics Data System (ADS)
Gazihan, A.; Salihoglu, B.; Akoglu, E.; Oguz, T.
2016-02-01
This study provides a scientific base for Ecosystem Based Fisheries Management (EBFM) decisions for Turkey's exclusive economic zones in the Black Sea, the Marmara Sea, the Aegean Sea and the Mediterranean Sea. For this aim, an interdisciplinary holistic approach is employed to explore the linkages and feedbacks between changing national societal and economic needs, managerial decisions, environmental pressures and the health of regional marine ecosystems through derived socioeconomic and ecological indicators from statistical and field data as well as Ecopath with Ecosim (EwE) model results. Results quantified the level of human induced pressures driven by increasing societal and economic demands due to human population increase, national economic crises and corresponded governmental subsidies. Cumulative effects of these pressures together with changing climatic conditions deteriorated the marine resources and, as a consequence, limited the socio-economic services provided by ecosystems (e.g. nation-wide decreases in weight (-47%) and value (-37%) of landings, economic profitability (-61%) and per capita fish consumption (-29%) over the last decade). Even though the pressures increased correspondingly in all the marine regions, their consequences in the regional marine ecosystems realized differently. Observed trends in socioeconomic and ecologic indicators and past and future model scenario simulations done by Ecopath with Ecosim (EwE) model provided region-specific optimum EBFM options. Research results were synthesized specific to each responsible stakeholder groups and communicated by means of regional stakeholder meetings, project web-side, social and national media and scientific platforms. Present study is expected to increase the stakeholders' awareness for sustainable, responsible resource co-management and will be integrated into decision-making processes and serve as a model case study. This is a contribution funded by TUBITAK (113Y040 DEKOYON Project).
Using ecosystem engineers as tools in habitat restoration and rewilding: beaver and wetlands.
Law, Alan; Gaywood, Martin J; Jones, Kevin C; Ramsay, Paul; Willby, Nigel J
2017-12-15
Potential for habitat restoration is increasingly used as an argument for reintroducing ecosystem engineers. Beaver have well known effects on hydromorphology through dam construction, but their scope to restore wetland biodiversity in areas degraded by agriculture is largely inferred. Our study presents the first formal monitoring of a planned beaver-assisted restoration, focussing on changes in vegetation over 12years within an agriculturally-degraded fen following beaver release, based on repeated sampling of fixed plots. Effects are compared to ungrazed exclosures which allowed the wider influence of waterlogging to be separated from disturbance through tree felling and herbivory. After 12years of beaver presence mean plant species richness had increased on average by 46% per plot, whilst the cumulative number of species recorded increased on average by 148%. Heterogeneity, measured by dissimilarity of plot composition, increased on average by 71%. Plants associated with high moisture and light conditions increased significantly in coverage, whereas species indicative of high nitrogen decreased. Areas exposed to both grazing and waterlogging generally showed the most pronounced change in composition, with effects of grazing seemingly additive, but secondary, to those of waterlogging. Our study illustrates that a well-known ecosystem engineer, the beaver, can with time transform agricultural land into a comparatively species-rich and heterogeneous wetland environment, thus meeting common restoration objectives. This offers a passive but innovative solution to the problems of wetland habitat loss that complements the value of beavers for water or sediment storage and flow attenuation. The role of larger herbivores has been significantly overlooked in our understanding of freshwater ecosystem function; the use of such species may yet emerge as the missing ingredient in successful restoration. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Baxter, C.; Rowan, J. S.; McKenzie, B. M.; Neilson, R.
2013-04-01
Soil is a key asset of natural capital, providing a myriad of goods and ecosystem services that sustain life through regulating, supporting and provisioning roles, delivered by chemical, physical and biological processes. One of the greatest threats to soil is accelerated erosion, which raises a natural process to unsustainable levels, and has downstream consequences (e.g. economic, environmental and social). Global intensification of agroecosystems is a major cause of soil erosion which, in light of predicted population growth and increased demand for food security, will continue or increase. Elevated erosion and transport is common in agroecosystems and presents a multi-disciplinary problem with direct physical impacts (e.g. soil loss), other less tangible impacts (e.g. loss of ecosystem productivity), and indirect downstream effects that necessitate an integrated approach to effectively address the problem. Climate is also likely to increase susceptibility of soil to erosion. Beyond physical response, the consequences of erosion on soil biota have hitherto been ignored, yet biota play a fundamental role in ecosystem service provision. To our knowledge few studies have addressed the gap between erosion and consequent impacts on soil biota. Transport and redistribution of soil biota by erosion is poorly understood, as is the concomitant impact on biodiversity and ability of soil to deliver the necessary range of ecosystem services to maintain function. To investigate impacts of erosion on soil biota a two-fold research approach is suggested. Physical processes involved in redistribution should be characterised and rates of transport and redistribution quantified. Similarly, cumulative and long-term impacts of biota erosion should be considered. Understanding these fundamental aspects will provide a basis upon which mitigation strategies can be considered.
Gross primary production controls the subsequent winter CO2 exchange in a boreal peatland.
Zhao, Junbin; Peichl, Matthias; Öquist, Mats; Nilsson, Mats B
2016-12-01
In high-latitude regions, carbon dioxide (CO 2 ) emissions during the winter represent an important component of the annual ecosystem carbon budget; however, the mechanisms that control the winter CO 2 emissions are currently not well understood. It has been suggested that substrate availability from soil labile carbon pools is a main driver of winter CO 2 emissions. In ecosystems that are dominated by annual herbaceous plants, much of the biomass produced during the summer is likely to contribute to the soil labile carbon pool through litter fall and root senescence in the autumn. Thus, the summer carbon uptake in the ecosystem may have a significant influence on the subsequent winter CO 2 emissions. To test this hypothesis, we conducted a plot-scale shading experiment in a boreal peatland to reduce the gross primary production (GPP) during the growing season. At the growing season peak, vascular plant biomass in the shaded plots was half that in the control plots. During the subsequent winter, the mean CO 2 emission rates were 21% lower in the shaded plots than in the control plots. In addition, long-term (2001-2012) eddy covariance data from the same site showed a strong correlation between the GPP (particularly the late summer and autumn GPP) and the subsequent winter net ecosystem CO 2 exchange (NEE). In contrast, abiotic factors during the winter could not explain the interannual variation in the cumulative winter NEE. Our study demonstrates the presence of a cross-seasonal link between the growing season biotic processes and winter CO 2 emissions, which has important implications for predicting winter CO 2 emission dynamics in response to future climate change. © 2016 John Wiley & Sons Ltd.
Innovation and the growth of human population.
Weinberger, V P; Quiñinao, C; Marquet, P A
2017-12-05
Biodiversity is sustained by and is essential to the services that ecosystems provide. Different species would use these services in different ways, or adaptive strategies, which are sustained in time by continuous innovations. Using this framework, we postulate a model for a biological species ( Homo sapiens ) in a finite world where innovations, aimed at increasing the flux of ecosystem services (a measure of habitat quality), increase with population size, and have positive effects on the generation of new innovations (positive feedback) as well as costs in terms of negatively affecting the provision of ecosystem services. We applied this model to human populations, where technological innovations are driven by cumulative cultural evolution. Our model shows that depending on the net impact of a technology on the provision of ecosystem services ( θ ), and the strength of technological feedback ( ξ ), different regimes can result. Among them, the human population can fill the entire planet while maximizing their well-being, but not exhaust ecosystem services. However, this outcome requires positive or green technologies that increase the provision of ecosystem services with few negative externalities or environmental costs, and that have a strong positive feedback in generating new technologies of the same kind. If the feedback is small, then the technological stock can collapse together with the human population. Scenarios where technological innovations generate net negative impacts may be associated with a limited technological stock as well as a limited human population at equilibrium and the potential for collapse. The only way to fill the planet with humans under this scenario of negative technologies is by reducing the technological stock to a minimum. Otherwise, the only feasible equilibrium is associated with population collapse. Our model points out that technological innovations per se may not help humans to grow and dominate the planet. Instead, different possibilities unfold for our future depending on their impact on the environment and on further innovation.This article is part of the themed issue 'Process and pattern in innovations from cells to societies'. © 2017 The Author(s).
Using benefit indicators to evaluate ecosystem services resulting from restoration
Ecological restoration can reestablish ecosystem services that provide valuable social and environmental benefits. Final ecosystem goods and services (FEGS) are the goods and services that directly benefit people. Explicitly identifying the people who benefit and characterizing w...
Determining the Ecosystem Services Important for Urban Landscapes
Urban ecosystems present special considerations and challenges in researching and evaluating ecosystem functions and services. A case study of nitrate retention and loss in forested, urban wetlands illustrates these challenges. Water table dynamics, in situ nitrogen cy...
A Screening Method for Assessing Cumulative Impacts
Alexeeff, George V.; Faust, John B.; August, Laura Meehan; Milanes, Carmen; Randles, Karen; Zeise, Lauren; Denton, Joan
2012-01-01
The California Environmental Protection Agency (Cal/EPA) Environmental Justice Action Plan calls for guidelines for evaluating “cumulative impacts.” As a first step toward such guidelines, a screening methodology for assessing cumulative impacts in communities was developed. The method, presented here, is based on the working definition of cumulative impacts adopted by Cal/EPA [1]: “Cumulative impacts means exposures, public health or environmental effects from the combined emissions and discharges in a geographic area, including environmental pollution from all sources, whether single or multi-media, routinely, accidentally, or otherwise released. Impacts will take into account sensitive populations and socio-economic factors, where applicable and to the extent data are available.” The screening methodology is built on this definition as well as current scientific understanding of environmental pollution and its adverse impacts on health, including the influence of both intrinsic, biological factors and non-intrinsic socioeconomic factors in mediating the effects of pollutant exposures. It addresses disparities in the distribution of pollution and health outcomes. The methodology provides a science-based tool to screen places for relative cumulative impacts, incorporating both the pollution burden on a community- including exposures to pollutants, their public health and environmental effects- and community characteristics, specifically sensitivity and socioeconomic factors. The screening methodology provides relative rankings to distinguish more highly impacted communities from less impacted ones. It may also help identify which factors are the greatest contributors to a community’s cumulative impact. It is not designed to provide quantitative estimates of community-level health impacts. A pilot screening analysis is presented here to illustrate the application of this methodology. Once guidelines are adopted, the methodology can serve as a screening tool to help Cal/EPA programs prioritize their activities and target those communities with the greatest cumulative impacts. PMID:22470315
Wang, Jun; Yan, Shen-Chun; Yu, Li; Zhang, Ya-Nan
2014-04-01
Land consolidation, as one of the major driving forces for the changes of land use/cover, has significant impacts on landscape patterns, ecological functions, and ecosystem services. In this paper, a land consolidation project conducted in Da'an City, Jinlin Province, China, was selected to evaluate the ecosystem service values before and after land consolidation at three spatial scales, i. e., village, town, and county. The results indicated that the land consolidation with the goal to increase the area of cultivated land might cause the decrease of the saline and alkaline land, grassland, and wetland. In addition, land consolidation resulted in the reduction of the total ecosystem service values at varying degree at the three scales. Compared to the pre-consolidation status, the total post-consolidation ecosystem service values at the village, town and county scales were 7.96, 843.01 and 1205.86 million yuan, and reduced by 10.5%, 14.2% and 33.1%, respectively. Based on the evaluation of ecosystem service value, strategies of landscape ecological design were discussed to improve the ecological functions and to provide the guidance for the sustainable development of land consolidation.
Wills, Christopher; Harms, Kyle E.; Wiegand, Thorsten; Punchi-Manage, Ruwan; Gilbert, Gregory S.; Erickson, David; Kress, W. John; Hubbell, Stephen P.; Gunatilleke, C. V. Savitri; Gunatilleke, I. A. U. Nimal
2016-01-01
Studies of forest dynamics plots (FDPs) have revealed a variety of negative density-dependent (NDD) demographic interactions, especially among conspecific trees. These interactions can affect growth rate, recruitment and mortality, and they play a central role in the maintenance of species diversity in these complex ecosystems. Here we use an equal area annulus (EAA) point-pattern method to comprehensively analyze data from two tropical FDPs, Barro Colorado Island in Panama and Sinharaja in Sri Lanka. We show that these NDD interactions also influence the continued evolutionary diversification of even distantly related tree species in these FDPs. We examine the details of a wide range of these interactions between individual trees and the trees that surround them. All these interactions, and their cumulative effects, are strongest among conspecific focal and surrounding tree species in both FDPs. They diminish in magnitude with increasing phylogenetic distance between heterospecific focal and surrounding trees, but do not disappear or change the pattern of their dependence on size, density, frequency or physical distance even among the most distantly related trees. The phylogenetic persistence of all these effects provides evidence that interactions between tree species that share an ecosystem may continue to promote adaptive divergence even after the species’ gene pools have become separated. Adaptive divergence among taxa would operate in stark contrast to an alternative possibility that has previously been suggested, that distantly related species with dispersal-limited distributions and confronted with unpredictable neighbors will tend to converge on common strategies of resource use. In addition, we have also uncovered a positive density-dependent effect: growth rates of large trees are boosted in the presence of a smaller basal area of surrounding trees. We also show that many of the NDD interactions switch sign rapidly as focal trees grow in size, and that their cumulative effect can strongly influence the distributions and species composition of the trees that surround the focal trees during the focal trees’ lifetimes. PMID:27305092
Cumulative stress restricts niche filling potential of habitat-forming kelps in a future climate.
King, Nathan G; Wilcockson, David C; Webster, Richard; Smale, Dan A; Hoelters, Laura S; Moore, Pippa J
2018-02-01
Climate change is driving range contractions and local population extinctions across the globe. When this affects ecosystem engineers the vacant niches left behind are likely to alter the wider ecosystem unless a similar species can fulfil them.Here, we explore the stress physiology of two coexisting kelps undergoing opposing range shifts in the Northeast Atlantic and discuss what differences in stress physiology may mean for future niche filling.We used chlorophyll florescence ( F v /F m ) and differentiation of the heat shock response (HSR) to determine the capacity of the expanding kelp , Laminaria ochroleuca , to move into the higher shore position of the retreating kelp, Laminaria digitata . We applied both single and consecutive exposures to immersed and emersed high and low temperature treatments, replicating low tide exposures experienced in summer and winter.No interspecific differences in HSR were observed which was surprising given the species' different biogeographic distributions. However, chlorophyll florescence revealed clear differences between species with L. ochroleuca better equipped to tolerate high immersed temperatures but showed little capacity to tolerate frosts or high emersion temperatures.Many patterns observed were only apparent after consecutive exposures. Such cumulative effects have largely been overlooked in tolerance experiments on intertidal organisms despite being more representative of the stress experienced in natural habitats. We therefore suggest future experiments incorporate consecutive stress into their design.Climate change is predicted to result in fewer ground frosts and increased summer temperatures. Therefore, L. ochroleuca may be released from its summer cold limit in winter but still be prevented from moving up the shore due to desiccation in the summer. Laminaria ochroleuca will, however, likely be able to move into tidal pools. Therefore, only partial niche filling by L. ochroleuca will be possible in this system as climate change advances. A plain language summary is available for this article.
Operationalizing resilience for adaptive coral reef management under global environmental change.
Anthony, Kenneth R N; Marshall, Paul A; Abdulla, Ameer; Beeden, Roger; Bergh, Chris; Black, Ryan; Eakin, C Mark; Game, Edward T; Gooch, Margaret; Graham, Nicholas A J; Green, Alison; Heron, Scott F; van Hooidonk, Ruben; Knowland, Cheryl; Mangubhai, Sangeeta; Marshall, Nadine; Maynard, Jeffrey A; McGinnity, Peter; McLeod, Elizabeth; Mumby, Peter J; Nyström, Magnus; Obura, David; Oliver, Jamie; Possingham, Hugh P; Pressey, Robert L; Rowlands, Gwilym P; Tamelander, Jerker; Wachenfeld, David; Wear, Stephanie
2015-01-01
Cumulative pressures from global climate and ocean change combined with multiple regional and local-scale stressors pose fundamental challenges to coral reef managers worldwide. Understanding how cumulative stressors affect coral reef vulnerability is critical for successful reef conservation now and in the future. In this review, we present the case that strategically managing for increased ecological resilience (capacity for stress resistance and recovery) can reduce coral reef vulnerability (risk of net decline) up to a point. Specifically, we propose an operational framework for identifying effective management levers to enhance resilience and support management decisions that reduce reef vulnerability. Building on a system understanding of biological and ecological processes that drive resilience of coral reefs in different environmental and socio-economic settings, we present an Adaptive Resilience-Based management (ARBM) framework and suggest a set of guidelines for how and where resilience can be enhanced via management interventions. We argue that press-type stressors (pollution, sedimentation, overfishing, ocean warming and acidification) are key threats to coral reef resilience by affecting processes underpinning resistance and recovery, while pulse-type (acute) stressors (e.g. storms, bleaching events, crown-of-thorns starfish outbreaks) increase the demand for resilience. We apply the framework to a set of example problems for Caribbean and Indo-Pacific reefs. A combined strategy of active risk reduction and resilience support is needed, informed by key management objectives, knowledge of reef ecosystem processes and consideration of environmental and social drivers. As climate change and ocean acidification erode the resilience and increase the vulnerability of coral reefs globally, successful adaptive management of coral reefs will become increasingly difficult. Given limited resources, on-the-ground solutions are likely to focus increasingly on actions that support resilience at finer spatial scales, and that are tightly linked to ecosystem goods and services. © 2014 John Wiley & Sons Ltd.
Wills, Christopher; Harms, Kyle E; Wiegand, Thorsten; Punchi-Manage, Ruwan; Gilbert, Gregory S; Erickson, David; Kress, W John; Hubbell, Stephen P; Gunatilleke, C V Savitri; Gunatilleke, I A U Nimal
2016-01-01
Studies of forest dynamics plots (FDPs) have revealed a variety of negative density-dependent (NDD) demographic interactions, especially among conspecific trees. These interactions can affect growth rate, recruitment and mortality, and they play a central role in the maintenance of species diversity in these complex ecosystems. Here we use an equal area annulus (EAA) point-pattern method to comprehensively analyze data from two tropical FDPs, Barro Colorado Island in Panama and Sinharaja in Sri Lanka. We show that these NDD interactions also influence the continued evolutionary diversification of even distantly related tree species in these FDPs. We examine the details of a wide range of these interactions between individual trees and the trees that surround them. All these interactions, and their cumulative effects, are strongest among conspecific focal and surrounding tree species in both FDPs. They diminish in magnitude with increasing phylogenetic distance between heterospecific focal and surrounding trees, but do not disappear or change the pattern of their dependence on size, density, frequency or physical distance even among the most distantly related trees. The phylogenetic persistence of all these effects provides evidence that interactions between tree species that share an ecosystem may continue to promote adaptive divergence even after the species' gene pools have become separated. Adaptive divergence among taxa would operate in stark contrast to an alternative possibility that has previously been suggested, that distantly related species with dispersal-limited distributions and confronted with unpredictable neighbors will tend to converge on common strategies of resource use. In addition, we have also uncovered a positive density-dependent effect: growth rates of large trees are boosted in the presence of a smaller basal area of surrounding trees. We also show that many of the NDD interactions switch sign rapidly as focal trees grow in size, and that their cumulative effect can strongly influence the distributions and species composition of the trees that surround the focal trees during the focal trees' lifetimes.
NASA Astrophysics Data System (ADS)
Zona, Donatella; Haynes, Katherine; Deutschman, Douglas; Bryant, Emma; McEwing, Katherine; Davidson, Scott; Oechel, Walter
2015-04-01
Large uncertainties still exist on the response of tundra C emissions to future climate due, in part, to the lack of understanding of the interactive effects of potentially controlling variables on C emissions from Arctic ecosystems. In this study we subjected 48 soil cores (without active vegetation) from dominant arctic wetland vegetation types, to a laboratory manipulation of elevated atmospheric CO2, elevated temperature, and altered water table, representing current and future conditions in the Arctic for two growing seasons. To our knowledge this experiment comprised the most extensively replicated manipulation of intact soil cores in the Arctic. The hydrological status of the soil was the most dominant control on both soil CO2 and CH4 emissions. Despite higher soil CO2 emission occurring in the drier plots, substantial CO2 respiration occurred under flooded conditions, suggesting significant anaerobic respirations in these arctic tundra ecosystems. Importantly, a critical control on soil CO2 and CH4 fluxes was the original vascular plant cover. The dissolved organic carbon (DOC) concentration was correlated with cumulative CH4 emissions but not with cumulative CO2 suggesting C quality influenced CH4 production but not soil CO2 emissions. An interactive effect between increased temperature and elevated CO2 on soil CO2 emissions suggested a potential shift of the soils microbial community towards more efficient soil organic matter degraders with warming and elevated CO2. Methane emissions did not decrease over the course of the experiment, even with no input from vegetation. This result indicated that CH4 emissions are not carbon limited in these C rich soils. Overall CH4 emissions represented about 49% of the sum of total C (C-CO2 + C-CH4) emission in the wet treatments, and 15% in the dry treatments, representing a dominant component of the overall C balance from arctic soils.
Narayanaswamy, Bhavani E.
2013-01-01
The recently completed European Census of Marine Life, conducted within the framework of the global Census of Marine Life programme (2000–2010), markedly enhanced our understanding of marine biodiversity in European Seas, its importance within ecological systems, and the implications for human use. Here we undertake a synthesis of present knowledge of biodiversity in European Seas and identify remaining challenges that prevent sustainable management of marine biodiversity in one of the most exploited continents of the globe. Our analysis demonstrates that changes in faunal standing stock with depth depends on the size of the fauna, with macrofaunal abundance only declining with increasing water depth below 1000 m, whilst there was no obvious decrease in meiofauna with increasing depth. Species richness was highly variable for both deep water macro- and meio- fauna along latitudinal and longitudinal gradients. Nematode biodiversity decreased from the Atlantic into the Mediterranean whilst latitudinal related biodiversity patterns were similar for both faunal groups investigated, suggesting that the same environmental drivers were influencing the fauna. While climate change and habitat degradation are the most frequently implicated stressors affecting biodiversity throughout European Seas, quantitative understanding, both at individual and cumulative/synergistic level, of their influences are often lacking. Full identification and quantification of species, in even a single marine habitat, remains a distant goal, as we lack integrated data-sets to quantify these. While the importance of safeguarding marine biodiversity is recognised by policy makers, the lack of advanced understanding of species diversity and of a full survey of any single habitat raises huge challenges in quantifying change, and facilitating/prioritising habitat/ecosystem protection. Our study highlights a pressing requirement for more complete biodiversity surveys to be undertaken within contrasting habitats, together with investigations in biodiversity-ecosystem functioning links and identification of separate and synergistic/cumulative human-induced impacts on biodiversity. PMID:23527045
Indirect Effects and Potential Cumulative Impacts of Dredging in an Urbanized Estuary
NASA Astrophysics Data System (ADS)
Sommerfield, C. K.; Chen, J.; Ralston, D. K.; Geyer, W. R.
2016-02-01
For over two centuries, the Delaware River and Bay estuary has supported one of the most economically important ports in the United States. To accommodate ships of ever-increasing size, the 165-km axial shipping channel has been deepened to over twice the natural depth of the estuary. While it is known that the channel has modified tides and sedimentation patterns in the estuary, unknown are the impacts on the ecosystem as a whole. A concern is the influence of channelization on sediment movement to the tidal wetland coast, which is eroding at rates on the order of meters per year. Tidal wetlands frame the entire estuary and provide vital ecosystem services ranging from recreation to carbon sequestration. To identify shifts in baseline conditions, we are performing a retrospective analysis of estuarine dynamics using historical bathymetry, numerical modeling, and observational studies. The period of interest extends from 1848 (50 years prior to channel construction) to present. During this period the channel was progressively deepened from its natural depth of 5.5 m to the current depth of 14 m. Preliminary modeling results support independent evidence that the salt intrusion and zone of rapid sediment deposition migrated several 10s of kilometers up-estuary as an indirect effect of deepening. Ironically, the locus of intense deposition now falls squarely within the Wilmington-Philadelphia port complex; river sediment that initially settles in this area is removed by maintenance dredging before it can disperse seaward. Sediment budgetary analysis indicates that the mass of sediment dredged from the upper estuary on average exceeds the mass of the new sediment supplied from the drainage basin. Hence, a probable cumulative impact of dredging is a reduction in sediment delivery to the lower estuary and fringing wetlands. Connections among the shipping channel, wave-tide interactions, and marsh edge erosion are a topic of ongoing modeling and observational research.
Narayanaswamy, Bhavani E; Coll, Marta; Danovaro, Roberto; Davidson, Keith; Ojaveer, Henn; Renaud, Paul E
2013-01-01
The recently completed European Census of Marine Life, conducted within the framework of the global Census of Marine Life programme (2000-2010), markedly enhanced our understanding of marine biodiversity in European Seas, its importance within ecological systems, and the implications for human use. Here we undertake a synthesis of present knowledge of biodiversity in European Seas and identify remaining challenges that prevent sustainable management of marine biodiversity in one of the most exploited continents of the globe. Our analysis demonstrates that changes in faunal standing stock with depth depends on the size of the fauna, with macrofaunal abundance only declining with increasing water depth below 1000 m, whilst there was no obvious decrease in meiofauna with increasing depth. Species richness was highly variable for both deep water macro- and meio- fauna along latitudinal and longitudinal gradients. Nematode biodiversity decreased from the Atlantic into the Mediterranean whilst latitudinal related biodiversity patterns were similar for both faunal groups investigated, suggesting that the same environmental drivers were influencing the fauna. While climate change and habitat degradation are the most frequently implicated stressors affecting biodiversity throughout European Seas, quantitative understanding, both at individual and cumulative/synergistic level, of their influences are often lacking. Full identification and quantification of species, in even a single marine habitat, remains a distant goal, as we lack integrated data-sets to quantify these. While the importance of safeguarding marine biodiversity is recognised by policy makers, the lack of advanced understanding of species diversity and of a full survey of any single habitat raises huge challenges in quantifying change, and facilitating/prioritising habitat/ecosystem protection. Our study highlights a pressing requirement for more complete biodiversity surveys to be undertaken within contrasting habitats, together with investigations in biodiversity-ecosystem functioning links and identification of separate and synergistic/cumulative human-induced impacts on biodiversity.
[Evaluation of ecosystem resilience in the regions across Qinghai-Tibet railway based on GIS].
Gao, Jiang-bo; Zhao, Zhi-qiang; Li, Shuang-cheng
2008-11-01
Based on GIS technique and the methods of mean-squared deviation weight decision and catastrophe progression, a more clear definition and associated evaluation for ecosystem resilience were given, with a case study in the regions across Qinghai-Tibet railway by using the indices of plant community coverage, species diversity, and biomass. It was shown that the areas with high ecosystem resilience were mainly located in the Qilian Mountain meadow grassland, Huangshui Valley needle-leaved and deciduous broad-leaved forest, and south Tanggula Mountain kobresia swamp meadow, while those with the lowest resilience were in the central part of Qaidam Basin, and the Kunlun Mountains. Most areas in the regions had higher or medium ecosystem resilience, with a trend of that in the south of Kunlun Mountains, the resilience in the north of the railway was lower, while in the east of Qaidam Basin (especially in the Qinghai Lake area), the resilience was lower in the south than in the north of the railway. Through the evaluation of ecosystem resilience, the key issues in the process of ecological resilience could be found, and corresponding effective measures would be pointed out to manage alpine ecosystems. Moreover, combining with the evaluation of vulnerability, scientific basis for regional development could be provided to avoid or mitigate the negative effects of human activities on eco-environment.
McGuire, A David; Genet, Hélène; Lyu, Zhou; Pastick, Neal; Stackpoole, Sarah; Birdsey, Richard; D'Amore, David; He, Yujie; Rupp, T Scott; Striegl, Robert; Wylie, Bruce K; Zhou, Xiaoping; Zhuang, Qianlai; Zhu, Zhiliang
2018-06-20
We summarize the results of a recent interagency assessment of land carbon dynamics in Alaska, in which carbon dynamics were estimated for all major terrestrial and aquatic ecosystems for the historical period (1950-2009) and a projection period (2010-2099). Between 1950 and 2009, upland and wetland (i.e., terrestrial) ecosystems of the State gained 0.4 Tg C yr -1 (0.1% of net primary production, NPP), resulting in a cumulative greenhouse gas radiative forcing of 1.68 x 10 -3 W m -2 . The change in carbon storage is spatially variable with the region of the Northwest Boreal Landscape Conservation Cooperative (LCC) losing carbon because of fire disturbance. The combined carbon transport via various pathways through inland aquatic ecosystems of Alaska was estimated to be 41.3 Tg C yr -1 (17% of terrestrial NPP). During the projection period (2010-2099), carbon storage of terrestrial ecosystems of Alaska was projected to increase (22.5 to 70.0 Tg C yr -1 ), primarily because of NPP increases of 10 to 30% associated with responses to rising atmospheric CO 2 , increased nitrogen cycling, and longer growing seasons. Although carbon emissions to the atmosphere from wildfire and wetland CH 4 were projected to increase for all of the climate projections, the increases in NPP more than compensated for those losses at the statewide level. Carbon dynamics of terrestrial ecosystems continue to warm the climate for four of the six future projections, and cool the climate for only one of the projections. The attribution analyses we conducted indicated that the response of NPP in terrestrial ecosystems to rising atmospheric CO 2 (~5% per 100 ppmv CO 2 ) saturates as CO 2 increases (between approximately +150 and +450 ppmv among projections). This response, along with the expectation that permafrost thaw would be much greater and release large quantities of permafrost carbon after 2100, suggests that projected carbon gains in terrestrial ecosystems of Alaska may not be sustained. From a national perspective, inclusion of all of Alaska in greenhouse gas inventory reports would ensure better accounting of the overall greenhouse gas balance of the nation, and provide a foundation for considering mitigation activities in areas that are accessible enough to support substantive deployment. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
A carbon balance model for the great dismal swamp ecosystem
Sleeter, Rachel; Sleeter, Benjamin M.; Williams, Brianna; Hogan, Dianna; Hawbaker, Todd J.; Zhu, Zhiliang
2017-01-01
BackgroundCarbon storage potential has become an important consideration for land management and planning in the United States. The ability to assess ecosystem carbon balance can help land managers understand the benefits and tradeoffs between different management strategies. This paper demonstrates an application of the Land Use and Carbon Scenario Simulator (LUCAS) model developed for local-scale land management at the Great Dismal Swamp National Wildlife Refuge. We estimate the net ecosystem carbon balance by considering past ecosystem disturbances resulting from storm damage, fire, and land management actions including hydrologic inundation, vegetation clearing, and replanting.ResultsWe modeled the annual ecosystem carbon stock and flow rates for the 30-year historic time period of 1985–2015, using age-structured forest growth curves and known data for disturbance events and management activities. The 30-year total net ecosystem production was estimated to be a net sink of 0.97 Tg C. When a hurricane and six historic fire events were considered in the simulation, the Great Dismal Swamp became a net source of 0.89 Tg C. The cumulative above and below-ground carbon loss estimated from the South One and Lateral West fire events totaled 1.70 Tg C, while management activities removed an additional 0.01 Tg C. The carbon loss in below-ground biomass alone totaled 1.38 Tg C, with the balance (0.31 Tg C) coming from above-ground biomass and detritus.ConclusionsNatural disturbances substantially impact net ecosystem carbon balance in the Great Dismal Swamp. Through alternative management actions such as re-wetting, below-ground biomass loss may have been avoided, resulting in the added carbon storage capacity of 1.38 Tg. Based on two model assumptions used to simulate the peat system, (a burn scar totaling 70 cm in depth, and the soil carbon accumulation rate of 0.36 t C/ha−1/year−1 for Atlantic white cedar), the total soil carbon loss from the South One and Lateral West fires would take approximately 1740 years to re-amass. Due to the impractical time horizon this presents for land managers, this particular loss is considered permanent. Going forward, the baseline carbon stock and flow parameters presented here will be used as reference conditions to model future scenarios of land management and disturbance.
A carbon balance model for the great dismal swamp ecosystem.
Sleeter, Rachel; Sleeter, Benjamin M; Williams, Brianna; Hogan, Dianna; Hawbaker, Todd; Zhu, Zhiliang
2017-12-01
Carbon storage potential has become an important consideration for land management and planning in the United States. The ability to assess ecosystem carbon balance can help land managers understand the benefits and tradeoffs between different management strategies. This paper demonstrates an application of the Land Use and Carbon Scenario Simulator (LUCAS) model developed for local-scale land management at the Great Dismal Swamp National Wildlife Refuge. We estimate the net ecosystem carbon balance by considering past ecosystem disturbances resulting from storm damage, fire, and land management actions including hydrologic inundation, vegetation clearing, and replanting. We modeled the annual ecosystem carbon stock and flow rates for the 30-year historic time period of 1985-2015, using age-structured forest growth curves and known data for disturbance events and management activities. The 30-year total net ecosystem production was estimated to be a net sink of 0.97 Tg C. When a hurricane and six historic fire events were considered in the simulation, the Great Dismal Swamp became a net source of 0.89 Tg C. The cumulative above and below-ground carbon loss estimated from the South One and Lateral West fire events totaled 1.70 Tg C, while management activities removed an additional 0.01 Tg C. The carbon loss in below-ground biomass alone totaled 1.38 Tg C, with the balance (0.31 Tg C) coming from above-ground biomass and detritus. Natural disturbances substantially impact net ecosystem carbon balance in the Great Dismal Swamp. Through alternative management actions such as re-wetting, below-ground biomass loss may have been avoided, resulting in the added carbon storage capacity of 1.38 Tg. Based on two model assumptions used to simulate the peat system, (a burn scar totaling 70 cm in depth, and the soil carbon accumulation rate of 0.36 t C/ha -1 /year -1 for Atlantic white cedar), the total soil carbon loss from the South One and Lateral West fires would take approximately 1740 years to re-amass. Due to the impractical time horizon this presents for land managers, this particular loss is considered permanent. Going forward, the baseline carbon stock and flow parameters presented here will be used as reference conditions to model future scenarios of land management and disturbance.
Ghribi, D; Zouari, N; Jaoua, S
2005-01-01
The present work aimed to increase yields of delta-endotoxin production through adaptation of Bacillus thuringiensis cells to heat shock and sodium chloride and to investigate their involvements in bioinsecticides production improvement. Growing B. thuringiensis cells were heat treated after different incubation times to study the response of the adaptative surviving cells in terms of delta-endotoxin synthesis. Similarly, adaptation of B. thuringiensis cells to sodium chloride was investigated. Adaptation to combined stressors was also evaluated. When applied separately in the glucose-based medium, 20-min heat treatment of 6-h-old cultures and addition of 7 g l(-1) NaCl at the beginning of the incubation gave respectively 38 and 27% delta-endotoxin production improvements. Heat shock improved toxin synthesis yields, while NaCl addition improved delta-endotoxin production by increasing the spore titres without significant effect on toxin synthesis yields. Cumulative improvements (66%) were obtained by combination of the two stressors at the conditions previously established for each one. Interestingly, when the similar approach was conducted by using the large scale production medium based on gruel and fish meal, 17, 8 and 29% delta-endotoxin production improvements were respectively, obtained with heat shock, NaCl and combined stressors. Heat treatment of vegetative B. thuringiensis cells and NaCl addition to the culture media improved bioinsecticides production. Heat treatment increased toxin synthesis yields, while addition of NaCl increased biomass production yields. Cumulative improvements of 66 and 29% were obtained in glucose and economic production media, respectively. Overproduction of bioinsecticides by B. thuringiensis could be obtained by the combination of heat treatment of vegetative cells and addition of NaCl to the culture medium. This should contribute to a significant reduction of the cost of B. thuringiensis bioinsecticides production and utilization, and also manage for higher toxin content in the bioinsecticides, which is very interesting from a practical point of view because fewer spores would be disseminated into the ecosystem.
NASA Astrophysics Data System (ADS)
Deitch, M.; Kondolf, G. M.; Merenlender, A.; Cover, M. R.
2006-12-01
We used digitized aerial photographs on a geographical information system, historical stream flow records, and water rights records to model the effects of existing, pending, and future small reservoirs on stream flow on six tributaries to the Russian River in Sonoma County. Institutions governing whether these reservoirs can operate as constructed, and as proposed, has important implications for efforts to meet human and ecological water needs in the California wine country. Beginning in 1992, state agencies rewrote the policies governing how wine grape growers meet water needs to offer protections to endangered species and public trust values. These changes caused a shift in water management institutions: wine grape growers could no longer rely on surface water appropriations to meet growing water needs for new vineyards, and instead turned to other types of water rights that placed different (and potentially more severe) pressures on aquatic ecosystems. Despite growing controversy over the ecological impacts of existing and pending surface water appropriations (primarily small onstream and offstream reservoirs) on environmental flows necessary to support endangered anadromous salmonids, no analysis has been conducted to evaluate the impacts of existing small reservoirs, pending proposed reservoirs, or future reservoirs on local or catchment-scale stream flow. Our stream flow models indicated that existing and pending small reservoirs can eliminate flow immediately downstream of small reservoirs at the onset of the rainy season (when adult salmonids begin to migrate upstream to spawn); but the cumulative effect of several small reservoirs on stream reaches suitable for spawning is dampened by the spatial distribution of small reservoirs in a drainage network. The temporal extant of local flow effects is variable; most recent and pending onstream reservoirs can impair flows late into the rainy season, but their cumulative effects on downstream flows are less because they are located on ephemeral streams far in river headwaters.
NASA Astrophysics Data System (ADS)
Yu, Yongxiang; Tao, Hui; Jia, Hongtao; Zhao, Chengyi
2017-06-01
The denitrification-decomposition (DNDC) model is a useful tool for integrating the effects of agricultural practices and climate change on soil nitrous oxide (N2O) emissions from agricultural ecosystems. In this study, the DNDC model was evaluated against observations and used to simulate the effect of plastic mulching on soil N2O emissions and crop growth. The DNDC model performed well in simulating temporal variations in N2O emissions and plant growth during the observation period, although it slightly underestimated the cumulative N2O emissions, and was able to simulate the effects of plastic mulching on N2O emissions and crop yield. Both the observations and simulations demonstrated that the application of plastic film increased cumulative N2O emissions and cotton lint yield compared with the non-mulched treatment. The sensitivity test showed that the N2O emissions and lint yield were sensitive to changes in climate and management practices, and the application of plastic film made the N2O emissions and lint yield less sensitive to changes in temperature and irrigation. Although the simulations showed that the beneficial impacts of plastic mulching on N2O emissions were not gained under high fertilizer and irrigation scenarios, our simulations suggest that the application of plastic film effectively reduced soil N2O emissions while promoting yields under suitable fertilizer rates and irrigation. Compared with the baseline scenario, future climate change significantly increased N2O emissions by 15-17% without significantly influencing the lint yields in the non-mulched treatment; in the mulched treatment, climate change significantly promoted the lint yield by 5-6% and significantly reduced N2O emissions by 14% in the RCP4.5 and RCP8.5 scenarios. Overall, our results demonstrate that the application of plastic film is an efficient way to address increased N2O emissions and simultaneously enhance crop yield in the future.
NASA Astrophysics Data System (ADS)
Meijide, A.; Hassler, E.; Corre, M. D.; June, T.; Sabajo, C.; Veldkamp, E.; Knohl, A.
2015-12-01
Global increasing demand of palm oil is leading to the expansion of oil palm plantations, particularly in SE Asia, which in Sumatran lowlands has resulted in a 21% forest area loss. Large photosynthesis rates are expected for oil palms, due to their high growth and yield production. However, there is very limited information on their effect on carbon dioxide (CO2) fluxes and their sink or source strength at ecosystem scale. For methane (CH4) fluxes, research has mainly focused in oil palm plantations located on peatlands, but no information is available at ecosystem level from plantations on mineral soils. With the aim of studying CO2 fluxes during the non-productive and productive phases of oil palm cultivation, an eddy covariance (EC) tower was installed in a 2 year old oil palm plantation, where it was measuring for 8 months, and was subsequently moved to a 12 year old plantation, both in the province of Jambi, Sumatra. The EC system consisted of a Licor 7500A and an ultrasonic Metek anemometer, operating at 10 Hz, installed on a 7m and 22m tower respectively. In the 12 year old plantation, the tower was also equipped with a Los Gatos FGGA-24EP, to assess CH4 fluxes. Chamber measurements were also carried out to obtain information on respiration and CH4 fluxes from the soil. Radiation was the major driver controlling net carbon uptake, while soil moisture did not play a significant role. Average net ecosystem exchange in the hours of the day with higher radiation for the whole measurement period was 10 μmol m-2 s-1 for the 2 year old plantation and -22 μmol m-2 s-1 in the 12 year old. The analysis of the cumulative fluxes show that the non-productive plantation was a carbon source of around 636 g CO2 m-2 during the 8 months of measurements, while in the productive period, it acted as a strong carbon sink (-794 g CO2 m-2 yr-1). Methane uptake was observed in the soil in both plantations and also for the whole ecosystem in the 12 year old one, but its contributions to the global greenhouse gas budget was very limited in relation to that of CO2. These results reveal the strong contrast between young non-productive and mature productive oil palm plantations, thus highlighting the need of evaluating all stages of development of oil palm plantations when assessing their carbon balance at regional scale.
Schröder, Winfried; Nickel, Stefan; Jenssen, Martin; Riediger, Jan
2015-07-15
A methodology for mapping ecosystems and their potential development under climate change and atmospheric nitrogen deposition was developed using examples from Germany. The methodology integrated data on vegetation, soil, climate change and atmospheric nitrogen deposition. These data were used to classify ecosystem types regarding six ecological functions and interrelated structures. Respective data covering 1961-1990 were used for reference. The assessment of functional and structural integrity relies on comparing a current or future state with an ecosystem type-specific reference. While current functions and structures of ecosystems were quantified by measurements, potential future developments were projected by geochemical soil modelling and data from a regional climate change model. The ecosystem types referenced the potential natural vegetation and were mapped using data on current tree species coverage and land use. In this manner, current ecosystem types were derived, which were related to data on elevation, soil texture, and climate for the years 1961-1990. These relations were quantified by Classification and Regression Trees, which were used to map the spatial patterns of ecosystem type clusters for 1961-1990. The climate data for these years were subsequently replaced by the results of a regional climate model for 1991-2010, 2011-2040, and 2041-2070. For each of these periods, one map of ecosystem type clusters was produced and evaluated with regard to the development of areal coverage of ecosystem type clusters over time. This evaluation of the structural aspects of ecological integrity at the national level was added by projecting potential future values of indicators for ecological functions at the site level by using the Very Simple Dynamic soil modelling technique based on climate data and two scenarios of nitrogen deposition as input. The results were compared to the reference and enabled an evaluation of site-specific ecosystem changes over time which proved to be both, positive and negative. Copyright © 2015 Elsevier B.V. All rights reserved.
Early Restoration PEIS Public Meeting | NOAA Gulf Spill Restoration
, or PEIS, to evaluate the potential environmental effects of types of early restoration actions, as Early Restoration Plan. The PEIS also will evaluate the cumulative effects of early restoration. We are
Weijerman, Mariska; Fulton, Elizabeth A; Brainard, Russell E
2016-01-01
Ecosystem modelling is increasingly used to explore ecosystem-level effects of changing environmental conditions and management actions. For coral reefs there has been increasing interest in recent decades in the use of ecosystem models for evaluating the effects of fishing and the efficacy of marine protected areas. However, ecosystem models that integrate physical forcings, biogeochemical and ecological dynamics, and human induced perturbations are still underdeveloped. We applied an ecosystem model (Atlantis) to the coral reef ecosystem of Guam using a suite of management scenarios prioritized in consultation with local resource managers to review the effects of each scenario on performance measures related to the ecosystem, the reef-fish fishery (e.g., fish landings) and coral habitat. Comparing tradeoffs across the selected scenarios showed that each scenario performed best for at least one of the selected performance indicators. The integrated 'full regulation' scenario outperformed other scenarios with four out of the six performance metrics at the cost of reef-fish landings. This model application quantifies the socio-ecological costs and benefits of alternative management scenarios. When the effects of climate change were taken into account, several scenarios performed equally well, but none prevented a collapse in coral biomass over the next few decades assuming a business-as-usual greenhouse gas emissions scenario.
Vavias, S; Alexopoulos, A; Plessas, S; Stefanis, C; Voidarou, C; Stavropoulou, E; Bezirtzoglou, E
2011-12-01
The aim of the present study was to evaluate the microbial ecosystem of cultivated soils along the Evros river in NE Greece. Evros river together with its derivative rivers constitute the capital source of life and sustainable development of the area. Along this riverside watery ecosystem systematic agro-cultures were developed such as wheat, corn and vegetable cultures. The evaluation of the ecosystem microbial charge was conducted in both axes which are the watery ecosystem and the riverside cultivated soil area. Considerable discrimination of water quality was observed when considering chemical and microbiological parameters of the Evros river ecosystem. Ardas river possesses a better water quality than Evros and Erythropotamos, which is mainly due to the higher quantities that these two rivers accumulate from industrial, farming and urban residues leading to higher degree of pollution. An increased microbial pollution was recorded in two of the three rivers monitored and a direct relation in microbial and chemical charging between water and cultivated-soil ecosystems was observed. The protection of these ecosystems with appropriate cultivated practices and control of human and animal activities will define the homeostasis of the environmental area. Copyright © 2011 Elsevier Ltd. All rights reserved.
Weijerman, Mariska; Fulton, Elizabeth A.; Brainard, Russell E.
2016-01-01
Ecosystem modelling is increasingly used to explore ecosystem-level effects of changing environmental conditions and management actions. For coral reefs there has been increasing interest in recent decades in the use of ecosystem models for evaluating the effects of fishing and the efficacy of marine protected areas. However, ecosystem models that integrate physical forcings, biogeochemical and ecological dynamics, and human induced perturbations are still underdeveloped. We applied an ecosystem model (Atlantis) to the coral reef ecosystem of Guam using a suite of management scenarios prioritized in consultation with local resource managers to review the effects of each scenario on performance measures related to the ecosystem, the reef-fish fishery (e.g., fish landings) and coral habitat. Comparing tradeoffs across the selected scenarios showed that each scenario performed best for at least one of the selected performance indicators. The integrated ‘full regulation’ scenario outperformed other scenarios with four out of the six performance metrics at the cost of reef-fish landings. This model application quantifies the socio-ecological costs and benefits of alternative management scenarios. When the effects of climate change were taken into account, several scenarios performed equally well, but none prevented a collapse in coral biomass over the next few decades assuming a business-as-usual greenhouse gas emissions scenario. PMID:27023183
Linda B. Phillips; Andrew J. Hansen; Curtis H. Flather
2008-01-01
Ecosystem energy has been shown to be a strong correlate with biological diversity at continental scales. Early efforts to characterize this association used the normalized difference vegetation index (NDVI) to represent ecosystem energy. While this spectral vegetation index covaries with measures of ecosystem energy such as net primary production, the covariation is...
Plant resource history effects on contemporary microbial processes
NASA Astrophysics Data System (ADS)
Bradford, Mark
2010-05-01
Background/Questions/Methods Soil microbial communities play a pivotal role in providing ecosystem services, given that they are key drivers of biogeochemical processes such as carbon and nitrogen cycling. As species-rich communities, made-up of populations with short generation times, it is commonly assumed that there is a high degree of functional redundancy within soil communities with respect to broad-physiological processes, such as organic carbon decomposition. This assumption underlies the majority of terrestrial ecosystem models, where relationships between processes and controlling factors are parameterized using statistical relationships generated from measurements across space. However, microbial communities display biogeographic patterns, even at fine scales and it is possible that these patterns extend to influence their function. I first present experiments that combine common garden and reciprocal transplant approaches to test whether microbial communities sourced from distinct habitats across the contiguous United States exhibit functional similarity (i.e. redundancy) or dissimilarity in common environments. The environments are experimental microcosms composed of leaf litters differing markedly in recalcitrance. Following inoculation with the microbial communities, decomposition rates are followed across 300 days. Next, using a similar experimental microcosm design, I present experiments that test whether a common resource history might cause communities, which are initially dissimilar, to converge functionally. Distinct microbial communities are introduced into a fresh litter environment every 100 days for 300 days total. Finally, I present an experiment to test whether functional convergence (either partial or complete) is associated with a reduction in function in alternate environments (essentially a functional ‘trade-off'). In this last experiment decomposition rates are measured for 100 days in alternate environments following 300 days of successive exposure to a single litter type. Results/Conclusions I show in the first experiment that rates of carbon dioxide production from litter decomposition are strongly dependent on the microbial inoculum, with differences in the microbial community alone accounting for substantial (up to 85%) variation in total carbon mineralized. Communities that share a common history with a given foliar litter exhibit higher decomposition rates when compared to communities foreign to that habitat, suggestive of local adaptation. In the second experiment, decomposition rates (measured as cumulative carbon dioxide values per 100-day run) converge partially in the second 100-day run, and cumulative values for all six inocula increase toward the highest values observed in the initial 100-day run. Convergence continues but at a reduced rate in the third 100-day run; yet increases in function appear to asymptote. The increasing similarity in cumulative values between inocula, observed in the successive 100-day runs, is consistent with partial functional convergence of communities exposed to a common environment. In the final experiment, microbial inocula crossed to an alternate environment (e.g. those communities maintained in a grass environment then inoculated into a hardwood litter environment) results in cumulative values in the alternate environments that are approximately half those observed for communities inoculated into the same environment. Collectively, our results suggest that the implicit assumption in ecosystem models (i.e. microbial communities in the same environment are functionally equivalent) is incorrect. The increasing similarity across time in function in common environments of inocula sourced from different resource habitats shows the potential for function to converge. Yet this convergence is only partial and is associated with "apparent' trade-offs in the ability to decompose substrates from the original environments from which the inocula were sourced. To predict accurately how biogeochemical processes will respond to global change may require consideration of the community composition and/or adaptation of microbial communities to past resource environments and the consequences of their (partial) adaptation to new ones.
Pitcher, Tony J.
2005-01-01
‘Back-to-the-future’ (BTF) is an integrative approach to a restoration ecology of the oceans that attempts to solve the fisheries crisis. To this end, it harnesses the latest understanding of ecosystem processes, developments in whole ecosystem simulation modelling, and insight into the human dimension of fisheries management. BTF includes new methods for describing past ecosystems, designing fisheries that meet criteria for sustainability and responsibility, and evaluating the costs and benefits of fisheries in restored ecosystems. Evaluation of alternative policy choices, involving trade-offs between conservation and economic values, employs a range of economic, social and ecological measures. Automated searches maximize values of objective functions, and the methodology includes analyses of model parameter uncertainty. Participatory workshops attempt to maximize compliance by fostering a sense of ownership among all stakeholders. Some challenges that have still to be met include improving methods for quantitatively describing the past, reducing uncertainty in ecosystem simulation techniques and in making policy choices robust against climate change. Critical issues include whether past ecosystems make viable policy goals, and whether desirable goals may be reached from today’s ecosystem. Examples from case studies in British Columbia, Newfoundland and elsewhere are presented. PMID:15713591
Ecosystem overfishing in the ocean.
Coll, Marta; Libralato, Simone; Tudela, Sergi; Palomera, Isabel; Pranovi, Fabio
2008-01-01
Fisheries catches represent a net export of mass and energy that can no longer be used by trophic levels higher than those fished. Thus, exploitation implies a depletion of secondary production of higher trophic levels (here the production of mass and energy by herbivores and carnivores in the ecosystem) due to the removal of prey. The depletion of secondary production due to the export of biomass and energy through catches was recently formulated as a proxy for evaluating the ecosystem impacts of fishing-i.e., the level of ecosystem overfishing. Here we evaluate the historical and current risk of ecosystem overfishing at a global scale by quantifying the depletion of secondary production using the best available fisheries and ecological data (i.e., catch and primary production). Our results highlight an increasing trend in the number of unsustainable fisheries (i.e., an increase in the risk of ecosystem overfishing) from the 1950s to the 2000s, and illustrate the worldwide geographic expansion of overfishing. These results enable to assess when and where fishing became unsustainable at the ecosystem level. At present, total catch per capita from Large Marine Ecosystems is at least twice the value estimated to ensure fishing at moderate sustainable levels.
Ecosystem Overfishing in the Ocean
Tudela, Sergi; Palomera, Isabel; Pranovi, Fabio
2008-01-01
Fisheries catches represent a net export of mass and energy that can no longer be used by trophic levels higher than those fished. Thus, exploitation implies a depletion of secondary production of higher trophic levels (here the production of mass and energy by herbivores and carnivores in the ecosystem) due to the removal of prey. The depletion of secondary production due to the export of biomass and energy through catches was recently formulated as a proxy for evaluating the ecosystem impacts of fishing–i.e., the level of ecosystem overfishing. Here we evaluate the historical and current risk of ecosystem overfishing at a global scale by quantifying the depletion of secondary production using the best available fisheries and ecological data (i.e., catch and primary production). Our results highlight an increasing trend in the number of unsustainable fisheries (i.e., an increase in the risk of ecosystem overfishing) from the 1950s to the 2000s, and illustrate the worldwide geographic expansion of overfishing. These results enable to assess when and where fishing became unsustainable at the ecosystem level. At present, total catch per capita from Large Marine Ecosystems is at least twice the value estimated to ensure fishing at moderate sustainable levels. PMID:19066624
Effects of land use intensification on fish assemblages in Mediterranean climate streams.
Matono, P; Sousa, D; Ilhéu, M
2013-11-01
Southern Portugal is experiencing a rapid change in land use due to the spread of intensive farming systems, namely olive production systems, which can cause strong negative environmental impacts and affect the ecological integrity of aquatic ecosystems. This study aimed to identify the main environmental disturbances related with olive grove intensification on Mediterranean-climate streams in southern Portugal, and to evaluate their effects on fish assemblage structure and integrity. Twenty-six stream sites within the direct influence of traditional, intensive, and hyper-intensive olive groves were sampled. Human-induced disturbances were analyzed along the olive grove intensity gradient. The integrity of fish assemblages was evaluated by comparison with an independent set of least disturbed reference sites, considering metrics and guilds, based on multivariate analyses. Along the gradient of olive grove intensification, the study observed overall increases in human disturbance variables and physicochemical parameters, especially organic/nutrient enrichment, sediment load, and riparian degradation. Animal load measured the impact of livestock production. This variable showed an opposite pattern, since traditional olive groves are often combined with high livestock production and are used as grazing pasture by the cattle, unlike more intensive olive groves. Stream sites influenced by olive groves were dominated by non-native and tolerant fish species, while reference sites presented higher fish richness, density and were mainly occupied by native and intolerant species. Fish assemblage structure in olive grove sites was significantly different from the reference set, although significant differences between olive grove types were not observed. Bray-Curtis similarities between olive grove sites and references showed a decreasing trend in fish assemblage integrity along the olive grove intensification gradient. Olive production, even in traditional groves, led to multiple in-stream disturbances, whose cumulative effects promoted the loss of biota integrity. The impacts of low intensity traditional olive groves on aquatic ecosystems can be much greater when they are coupled with livestock production. This paper recommends best practices to reduce negative impacts of olive production on streams, contributing to guide policy decision-makers in agricultural and water management.
Zaharia, Carmen
2012-07-01
The paper analyses the environment pollution state in different case studies of economic activities (i.e. co-generation electric and thermal power production, iron profile manufacturing, cement processing, waste landfilling, and wood furniture manufacturing), evaluating mainly the environmental cumulative impacts (e.g. cumulative impact against the health of the environment and different life forms). The status of the environment (air, water resources, soil, and noise) is analysed with respect to discharges such as gaseous discharges in the air, final effluents discharged in natural receiving basins or sewerage system, and discharges onto the soil together with the principal pollutants expressed by different environmental indicators corresponding to each specific productive activity. The alternative methodology of global pollution index (I (GP)*) for quantification of environmental impacts is applied. Environmental data analysis permits the identification of potential impact, prediction of significant impact, and evaluation of cumulative impact on a commensurate scale by evaluation scores (ES(i)) for discharge quality, and global effect to the environment pollution state by calculation of the global pollution index (I (GP)*). The I (GP)* values for each productive unit (i.e. 1.664-2.414) correspond to an 'environment modified by industrial/economic activity within admissible limits, having potential of generating discomfort effects'. The evaluation results are significant in view of future development of each productive unit and sustain the economic production in terms of environment protection with respect to a preventive environment protection scheme and continuous measures of pollution control.
Huang, Xiaowei; Zhang, Yanling; Meng, Long; Abbott, Derek; Qian, Ming; Wong, Kelvin K L; Zheng, Rongqing; Zheng, Hairong; Niu, Lili
2017-01-01
Carotid plaque echogenicity is associated with the risk of cardiovascular events. Gray-scale median (GSM) of the ultrasound image of carotid plaques has been widely used as an objective method for evaluation of plaque echogenicity in patients with atherosclerosis. We proposed a computer-aided method to evaluate plaque echogenicity and compared its efficiency with GSM. One hundred and twenty-five carotid plaques (43 echo-rich, 35 intermediate, 47 echolucent) were collected from 72 patients in this study. The cumulative probability distribution curves were obtained based on statistics of the pixels in the gray-level images of plaques. The area under the cumulative probability distribution curve (AUCPDC) was calculated as its integral value to evaluate plaque echogenicity. The classification accuracy for three types of plaques is 78.4% (kappa value, κ = 0.673), when the AUCPDC is used for classifier training, whereas GSM is 64.8% (κ = 0.460). The receiver operating characteristic curves were produced to test the effectiveness of AUCPDC and GSM for the identification of echolucent plaques. The area under the curve (AUC) was 0.817 when AUCPDC was used for training the classifier, which is higher than that achieved using GSM (AUC = 0.746). Compared with GSM, the AUCPDC showed a borderline association with coronary heart disease (Spearman r = 0.234, p = 0.050). Our experimental results suggest that AUCPDC analysis is a promising method for evaluation of plaque echogenicity and predicting cardiovascular events in patients with plaques.
Senterre, Thibault; Rigo, Jacques
2012-02-01
To evaluate the influence of gestational age (GA) on cumulative nutritional deficit and postnatal growth in extremely preterm (EPT) infants after optimizing nutritional protocol as recently recommended. A prospective, nonrandomized, observational study in extremely preterm (EPT, <28 weeks) and very preterm (VPT, 28-30 weeks) infants. Eighty-four infants were included (BW: 978 ± 156 g, GA: 27.8 ± 1.3 weeks). Cumulative nutritional deficit increased during first week of life to -290 ± 84 and -285 ± 117 kcal/kg and -4.2 ± 3.1 and -4.8 ± 3.9 g/kg of protein in EPT and VPT groups, respectively. After 6 weeks, only cumulative energy deficit in EPT group remained significant (p < 0.05) even when 96% of theoretical energy intakes were provided. Weight z score decreased during first 3 days in average with initial weight loss, and then, the z score increased during the first 6 weeks of life in the majority (75%) of infants. Cumulative protein deficit during the first week of life was the major determinant of the postnatal growth during the first 6 weeks of life. Cumulative nutritional deficit may be drastically reduced in both EPT and VPT infants after optimizing nutritional policy during the first weeks of life, and the postnatal growth restriction could even be prevented. © 2011 The Author(s)/Acta Paediatrica © 2011 Foundation Acta Paediatrica.
A Simplified Decision Support Approach for Evaluating Wetlands Ecosystem Services
We will be presenting a simplified approach to evaluating ecosystem services provided by freshwater wetlands restoration. Our approach is based on an existing functional assessment approach developed by Golet and Miller for the State of Rhode Island, and modified by Miller for ap...
Carbon Offset Forestry: Forecasting Ecosystem Effects (COFFEE) Project Implementation Plan
COFFEE will evaluate the environmental impacts of implementing various COF practices by using the amount of total ecosystem C (TEC) sequestered in forests as the integrative response metric. These evaluations will be done for current-climate and future-climate scenarios and will...
Lafrenaye-Dugas, Anne-Julie; Godbout, Natacha; Hébert, Martine
2018-03-05
While it is documented that clients consulting in sex therapy tend to report high rates of childhood interpersonal traumas (e.g., physical, psychological and sexual abuse), which are associated to insecure attachment and poorer therapeutic alliance, the interrelations of these variables have not yet been evaluated in this specific population. This study examined the associations between attachment, cumulative trauma and therapeutic alliance in 278 sex therapy patients who filled out self-report questionnaires. Results revealed that avoidant attachment acted as a moderator between cumulative trauma and the agreement on tasks dimension of therapeutic alliance. Results suggests the relevance for sex therapists to investigate past traumas and current attachment representations to guide interventions and optimize treatment benefits.
Külahci, Fatih; Sen, Zekâi
2009-09-15
The classical solid/liquid distribution coefficient, K(d), for radionuclides in water-sediment systems is dependent on many parameters such as flow, geology, pH, acidity, alkalinity, total hardness, radioactivity concentration, etc. in a region. Considerations of all these effects require a regional analysis with an effective methodology, which has been based on the concept of the cumulative semivariogram concept in this paper. Although classical K(d) calculations are punctual and cannot represent regional pattern, in this paper a regional calculation methodology is suggested through the use of Absolute Point Cumulative SemiVariogram (APCSV) technique. The application of the methodology is presented for (137)Cs and (90)Sr measurements at a set of points in Keban Dam reservoir, Turkey.
Twelve invasive plant taxa in U.S. western riparian ecosystems
Assessments of stream ecosystems often include an evaluation of riparian condition; a key stressor in riparian ecosystems is the presence of invasive plants. We analyzed the distribution of 12 invasive taxa (common burdock [Arctium minus], giant reed [Arundo donax], cheatgrass [B...
Managing for resilience: an information theory-based approach to assessing ecosystems
Ecosystems are complex and multivariate; hence, methods to assess the dynamics of ecosystems should have the capacity to evaluate multiple indicators simultaneously. Most research on identifying leading indicators of regime shifts has focused on univariate methods and simple mod...
Boivin, Nicole L.; Zeder, Melinda A.; Fuller, Dorian Q.; Crowther, Alison; Larson, Greger; Erlandson, Jon M.; Denham, Tim; Petraglia, Michael D.
2016-01-01
The exhibition of increasingly intensive and complex niche construction behaviors through time is a key feature of human evolution, culminating in the advanced capacity for ecosystem engineering exhibited by Homo sapiens. A crucial outcome of such behaviors has been the dramatic reshaping of the global biosphere, a transformation whose early origins are increasingly apparent from cumulative archaeological and paleoecological datasets. Such data suggest that, by the Late Pleistocene, humans had begun to engage in activities that have led to alterations in the distributions of a vast array of species across most, if not all, taxonomic groups. Changes to biodiversity have included extinctions, extirpations, and shifts in species composition, diversity, and community structure. We outline key examples of these changes, highlighting findings from the study of new datasets, like ancient DNA (aDNA), stable isotopes, and microfossils, as well as the application of new statistical and computational methods to datasets that have accumulated significantly in recent decades. We focus on four major phases that witnessed broad anthropogenic alterations to biodiversity—the Late Pleistocene global human expansion, the Neolithic spread of agriculture, the era of island colonization, and the emergence of early urbanized societies and commercial networks. Archaeological evidence documents millennia of anthropogenic transformations that have created novel ecosystems around the world. This record has implications for ecological and evolutionary research, conservation strategies, and the maintenance of ecosystem services, pointing to a significant need for broader cross-disciplinary engagement between archaeology and the biological and environmental sciences. PMID:27274046
Boivin, Nicole L; Zeder, Melinda A; Fuller, Dorian Q; Crowther, Alison; Larson, Greger; Erlandson, Jon M; Denham, Tim; Petraglia, Michael D
2016-06-07
The exhibition of increasingly intensive and complex niche construction behaviors through time is a key feature of human evolution, culminating in the advanced capacity for ecosystem engineering exhibited by Homo sapiens A crucial outcome of such behaviors has been the dramatic reshaping of the global biosphere, a transformation whose early origins are increasingly apparent from cumulative archaeological and paleoecological datasets. Such data suggest that, by the Late Pleistocene, humans had begun to engage in activities that have led to alterations in the distributions of a vast array of species across most, if not all, taxonomic groups. Changes to biodiversity have included extinctions, extirpations, and shifts in species composition, diversity, and community structure. We outline key examples of these changes, highlighting findings from the study of new datasets, like ancient DNA (aDNA), stable isotopes, and microfossils, as well as the application of new statistical and computational methods to datasets that have accumulated significantly in recent decades. We focus on four major phases that witnessed broad anthropogenic alterations to biodiversity-the Late Pleistocene global human expansion, the Neolithic spread of agriculture, the era of island colonization, and the emergence of early urbanized societies and commercial networks. Archaeological evidence documents millennia of anthropogenic transformations that have created novel ecosystems around the world. This record has implications for ecological and evolutionary research, conservation strategies, and the maintenance of ecosystem services, pointing to a significant need for broader cross-disciplinary engagement between archaeology and the biological and environmental sciences.
Colnot, Thomas; Dekant, Wolfgang
2017-02-01
The European Food Safety Authority (EFSA) is developing approaches to cumulative risk assessment of pesticides by assigning individual pesticides to cumulative assessment groups (CAGs). For assignment to CAGs, EFSA recommended to rely on adverse effects on the specific target system. Contractors to EFSA have proposed to allocate individual pesticides into CAGs relying on NOAELs for effects on target organs. This manuscript evaluates the assignments by applying EFSAs criteria to the CAGs "Toxicity to the nervous system" and "Toxicity to the thyroid hormone system (gland or hormones)". Assignment to the CAG "Toxicity to the nervous system" based, for example, on neurochemical effects like choline esterase inhibition is well supported, whereas assignment to the CAG "Toxicity to the thyroid hormone system (gland or hormones)" has been based in the examined case studies on non-reproducible effects seen in single studies or on observations that are not adverse. Therefore, a more detailed effects evaluation is required to assign a pesticide to a CAG for a target organ where many confounders regarding effects are present. Relative potency factors in cumulative risk assessment should be based on benchmark doses from studies in one species with identical study design and human relevance of effects on specific target organs should be analyzed to define minimal margins of exposure. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Vallotton, Nathalie; Price, Paul S
2016-05-17
This paper uses the maximum cumulative ratio (MCR) as part of a tiered approach to evaluate and prioritize the risk of acute ecological effects from combined exposures to the plant protection products (PPPs) measured in 3 099 surface water samples taken from across the United States. Assessments of the reported mixtures performed on a substance-by-substance approach and using a Tier One cumulative assessment based on the lowest acute ecotoxicity benchmark gave the same findings for 92.3% of the mixtures. These mixtures either did not indicate a potential risk for acute effects or included one or more individual PPPs that had concentrations in excess of their benchmarks. A Tier Two assessment using a trophic level approach was applied to evaluate the remaining 7.7% of the mixtures. This assessment reduced the number of mixtures of concern by eliminating the combination of endpoint from multiple trophic levels, identified invertebrates and nonvascular plants as the most susceptible nontarget organisms, and indicated that a only a very limited number of PPPs drove the potential concerns. The combination of the measures of cumulative risk and the MCR enabled the identification of a small subset of mixtures where a potential risk would be missed in substance-by-substance assessments.
Dahmen, Levka; Krummenauer, Frank
2016-11-01
Background | The »Clinical Trials Academy for Junior Researchers« is a strategic funding instrument of the German Research Foundation (GRF). In clinical research, this program responds to an increasing lack of qualified clinician scientists. Application for participation in the workshop is based on a self-proposed academy project; participants can furthermore apply for a GRF grant to implement this academy project. This evaluation should quantify publication and third-party-funding profiles after participation in one of the previous GRF junior researchers workshops on clinical trials. Methods | Participants of all four GRF workshops were addressed by a standardized questionnaire to consider the project related number of publications and the cumulative impact factor, as well as the cumulative project-related consequential third-party-funding. Results | 64 of 92 former participants took part in the survey. From 41 implemented projects, 32 were granted with initial financial support by the GRF. 27 publications with a cumulative impact factor of 130 impact factor points (IP) were published by 13 authors. Of the 21 persons who submitted a grant application for subsequent third-party-funding a cumulative total grant volume of 5 223 000 € was reported by 13 participants. Conclusion | Although only 13 out of 64 participants reported impact publications or third-party-funding, respectively, these junior researchers' output can be considered encouraging. © Georg Thieme Verlag KG Stuttgart · New York.
Influence of voice focus on tongue movement in speech.
Bressmann, Tim; de Boer, Gillian; Marino, Viviane Cristina de Castro; Fabron, Eliana Maria Gradim; Berti, Larissa Cristina
2017-01-01
The present study evaluated global aspects of lingual movement during sentence production with backward and forward voice focus. Nine female participants read a sentence with a variety of consonants in a normal condition and with backward and forward voice focus. Midsagittal tongue movement was recorded with ultrasound. Tongue height over time at an anterior, a central, and a posterior measurement angle was measured. The outcome measures were speech rate, cumulative distance travelled, and average movement speed of the tongue. There were no differences in speech rate between the different conditions. The cumulative distance travelled by the tongue and the average speed indicated that the posterior tongue travelled a smaller cumulative distance and at a slower speed in the forward focus condition. The central tongue moved a larger cumulative distance and at a higher speed in the backward focus condition. The study offers first insights on how tongue movement is affected by different voice focus settings and illustrates the plasticity of tongue movement in speech.
Cumulative trauma, PTSD and dissociation among Ethiopian refugees in Israel.
Finklestein, Michal; Solomon, Zahava
2009-01-01
The aim of this study was to examine the exposure of Ethiopian refugees to pre-, peri- and post-migration stressful events and their implications for both posttraumatic stress disorder (PTSD) and dissociation. A random sample (N = 478) of three groups of refugees took part in the research ("Moses" immigrants, 1984, n = 165; "Solomon" immigrants, 1991, n = 169; "Family Reunification" immigrants, 1995, n = 144). Exposure to stressful events and posttraumatic symptoms were assessed via the Harvard Trauma Questionnaire (HTQ). Post-migration difficulties were assessed via the Post Migration Living Difficulties (PMLD) scale. Dissociation was evaluated using the Dissociation Experience Scale (DES). Significant differences were found among the groups in the rates of PTSD (27%, 15%, and 26%, respectively), but no differences were found in dissociation. A significant relationship was found between PTSD symptoms and cumulative trauma among the three groups, but no such relationship was found between dissociation and cumulative trauma. The differences among the groups were discussed in light of the unique characteristics of cumulative trauma, PTSD and dissociation among Ethiopian refugees.
Smith, David; Snyder, Craig D.; Hitt, Nathaniel P.; Young, John A.; Faulkner, Stephen P.
2012-01-01
Shale gas development may involve trade-offs between energy development and benefits provided by natural ecosystems. However, current best management practices (BMPs) focus on mitigating localized ecological degradation. We review evidence for cumulative effects of natural gas development on brook trout (Salvelinus fontinalis) and conclude that BMPs should account for potential watershed-scale effects in addition to localized influences. The challenge is to develop BMPs in the face of uncertainty in the predicted response of brook trout to landscape-scale disturbance caused by gas extraction. We propose a decision-analysis approach to formulating BMPs in the specific case of relatively undisturbed watersheds where there is consensus to maintain brook trout populations during gas development. The decision analysis was informed by existing empirical models that describe brook trout occupancy responses to landscape disturbance and set bounds on the uncertainty in the predicted responses to shale gas development. The decision analysis showed that a high efficiency of gas development (e.g., 1 well pad per square mile and 7 acres per pad) was critical to achieving a win-win solution characterized by maintaining brook trout and maximizing extraction of available gas. This finding was invariant to uncertainty in predicted response of brook trout to watershed-level disturbance. However, as the efficiency of gas development decreased, the optimal BMP depended on the predicted response, and there was considerable potential value in discriminating among predictive models through adaptive management or research. The proposed decision-analysis framework provides an opportunity to anticipate the cumulative effects of shale gas development, account for uncertainty, and inform management decisions at the appropriate spatial scales.
Numerical modeling of nanodrug distribution in tumors with heterogeneous vasculature.
Chou, Cheng-Ying; Chang, Wan-I; Horng, Tzyy-Leng; Lin, Win-Li
2017-01-01
The distribution and accumulation of nanoparticle dosage in a tumor are important in evaluating the effectiveness of cancer treatment. The cell survival rate can quantify the therapeutic effect, and the survival rates after multiple treatments are helpful to evaluate the efficacy of a chemotherapy plan. We developed a mathematical tumor model based on the governing equations describing the fluid flow and particle transport to investigate the drug transportation in a tumor and computed the resulting cumulative concentrations. The cell survival rate was calculated based on the cumulative concentration. The model was applied to a subcutaneous tumor with heterogeneous vascular distributions. Various sized dextrans and doxorubicin were respectively chosen as the nanodrug carrier and the traditional chemotherapeutic agent for comparison. The results showed that: 1) the largest nanoparticle drug in the current simulations yielded the highest cumulative concentration in the well vascular region, but second lowest in the surrounding normal tissues, which implies it has the best therapeutic effect to tumor and at the same time little harmful to normal tissue; 2) on the contrary, molecular chemotherapeutic agent produced the second lowest cumulative concentration in the well vascular tumor region, but highest in the surrounding normal tissue; 3) all drugs have very small cumulative concentrations in the tumor necrotic region, where drug transport is solely through diffusion. This might mean that it is hard to kill tumor stem cells hiding in it. The current model indicated that the effectiveness of the anti-tumor drug delivery was determined by the interplay of the vascular density and nanoparticle size, which governs the drug transport properties. The use of nanoparticles as anti-tumor drug carriers is generally a better choice than molecular chemotherapeutic agent because of its high treatment efficiency on tumor cells and less damage to normal tissues.
The Association Between the Use of Zolpidem and the Risk of Alzheimer's Disease Among Older People.
Cheng, Hui-Ting; Lin, Fang-Ju; Erickson, Steven R; Hong, Jin-Liern; Wu, Chung-Hsuen
2017-11-01
To evaluate the association between zolpidem use and the risk of Alzheimer's disease among older people. A retrospective cohort study using data from 2001 to 2011 from the National Health Insurance Research Database. Taiwan. A total of 6,922 patients aged 65 years or older enrolled from January 2002 to December 2004 (the enrollment period). Zolpidem users were identified as patients who used zolpidem during the enrollment period. The index date was the date of the first zolpidem prescription. Dosage of zolpidem use was defined using cumulative defined daily dose (cDDD) based on the cumulative dosage that patients took within one year after the index date (grouped as: less than 28, 28-90, 91-180, and more than 180 cDDD). The occurrence of Alzheimer's disease was defined as the time period from the end of one year after the index date to the date of the Alzheimer's disease diagnosis. The propensity score was used to adjust the measured confounders of Alzheimer's disease. Cox proportional hazards models were used to evaluate the association between zolpidem use and the incidence of Alzheimer's disease. Zolpidem users with a high cumulative dose (>180 cDDD) in the first year after initiation had a significantly greater risk of Alzheimer's disease than non-zolpidem users (HR = 2.97, 95% CI = 1.61-5.49) and low cumulative dose (<28 cDDD) users (HR = 4.18, 95% CI = 1.77-9.86). We found the use of a high cumulative dose of zolpidem was associated with an increased risk of Alzheimer's disease among older people living in Taiwan. It is advised to use caution when considering long-term use of zolpidem in older patients. © 2017, Copyright the Authors Journal compilation © 2017, The American Geriatrics Society.
Ruder, Avima M.; Succop, Paul; Waters, Martha A.
2015-01-01
Although polychlorinated biphenyls (PCBs) have been banned in many countries for more than three decades, exposures to PCBs continue to be of concern due to their long half-lives and carcinogenic effects. In National Institute for Occupational Safety and Health studies, we are using semiquantitative plant-specific job exposure matrices (JEMs) to estimate historical PCB exposures for workers (n=24,865) exposed to PCBs from 1938 to 1978 at three capacitor manufacturing plants. A subcohort of these workers (n=410) employed in two of these plants had serum PCB concentrations measured at up to four times between 1976 and 1989. Our objectives were to evaluate the strength of association between an individual worker’s measured serum PCB levels and the same worker’s cumulative exposure estimated through 1977 with the (1) JEM and (2) duration of employment, and to calculate the explained variance the JEM provides for serum PCB levels using (3) simple linear regression. Consistent strong and statistically significant associations were observed between the cumulative exposures estimated with the JEM and serum PCB concentrations for all years. The strength of association between duration of employment and serum PCBs was good for highly chlorinated (Aroclor 1254/HPCB) but not less chlorinated (Aroclor 1242/LPCB) PCBs. In the simple regression models, cumulative occupational exposure estimated using the JEMs explained 14–24 % of the variance of the Aroclor 1242/LPCB and 22–39 % for Aroclor 1254/HPCB serum concentrations. We regard the cumulative exposure estimated with the JEM as a better estimate of PCB body burdens than serum concentrations quantified as Aroclor 1242/LPCB and Aroclor 1254/HPCB. PMID:23475397
2010-01-01
Background The objective of this study was to investigate whether the 13C-phenylalanine breath test could be useful for the evaluation of hepatic function in elderly volunteers and patients with chronic hepatitis B and liver cirrhosis. Methods L-[1-13C] phenylalanine was administered orally at a dose of 100 mg to 55 elderly patients with liver cirrhosis, 30 patients with chronic hepatitis B and 38 elderly healthy subjects. The breath test was performed at 8 different time points (0, 10, 20, 30, 45, 60, 90, 120 min) to obtain the values of Delta over baseline, percentage 13CO2 exhalation rate and cumulative excretion (Cum). The relationships of the cumulative excretion with the 13C-%dose/h and blood biochemical parameters were investigated. Results The 13C-%dose/h at 20 min and 30 min combined with the cumulative excretion at 60 min and 120 min correlated with hepatic function tests, serum albumin, hemoglobin, platelet and Child-Pugh score. Prothrombin time, total and direct bilirubin were significantly increased, while serum albumin, hemoglobin and platelet, the cumulative excretion at 60 min and 120 min values decreased by degrees of intensity of the disease in Child-Pugh A, B, and C patients (P < 0.01). Conclusions The 13C-phenylalanine breath test can be used as a non-invasive assay to evaluate hepatic function in elderly patients with liver cirrhosis. The 13C-%dose/h at 20 min, at 30 min and cumulative excretion at 60 min may be the key value for determination at a single time-point. 13C-phenylalanine breath test is safe and helpful in distinguishing different stages of hepatic dysfunction for elderly cirrhosis patients. PMID:20459849
Smith, Joseph M.; Wells, Sarah P.; Mather, Martha E.; Muth, Robert M.
2014-01-01
When researchers and managers initiate sampling on a new stream or river system, they do not know how effective each gear type is and whether their sampling effort is adequate. Although the types and amount of gear may be different for other studies, systems, and research questions, the five-step process described here for making sampling decisions and evaluating sampling efficiency can be applied widely to any system to restore, manage, and conserve aquatic ecosystems. It is believed that incorporating this gear-evaluation process into a wide variety of studies and ecosystems will increase rigour within and across aquatic biodiversity studies.
The Utility of Well-being Metrics for Evaluating Ecosystem Services
The natural environment provides a multitude of goods and services that benefit people. These benefits are realized not only in the economic value of ecosystems, but in their intrinsic value as well. This ecosystem-human relationship is clearly evident in communities that reside ...
Background: Surface waters provide invaluable ecosystem services, including drinking water, food, waste water disposal, and recreation. The nature and frequency of recreational contact with surface waters is a critical consideration in evaluating benefits to human well-being (e.g...
Several approaches are available for evaluating adverse effects in near coastal ecosystems. These range from performing toxicity tests with individual organisms on water column and sediment samples to conducting macrofaunal compositional analyses on pelagic and benthic communiti...
Grimm, Nancy B.; Groffman, Peter M; Staudinger, Michelle D.; Tallis, Heather
2016-01-01
The third United States National Climate Assessment emphasized an evaluation of not just the impacts of climate change on species and ecosystems, but also the impacts of climate change on the benefits that people derive from nature, known as ecosystem services. The ecosystems, biodiversity, and ecosystem services component of the assessment largely drew upon the findings of a transdisciplinary workshop aimed at developing technical input for the assessment, involving participants from diverse sectors. A small author team distilled and synthesized this and hundreds of other technical input to develop the key findings of the assessment. The process of developing and ranking key findings hinged on identifying impacts that had particular, demonstrable effects on the U.S. public via changes in national ecosystem services. Findings showed that ecosystem services are threatened by the impacts of climate change on water supplies, species distributions and phenology, as well as multiple assaults on ecosystem integrity that, when compounded by climate change, reduce the capacity of ecosystems to buffer against extreme events. As ecosystems change, such benefits as water sustainability and protection from storms that are afforded by intact ecosystems are projected to decline across the continent due to climate change. An ongoing, sustained assessment that focuses on the co-production of actionable climate science will allow scientists from a range of disciplines to ascertain the capability of their forecasting models to project environmental and ecological change and link it to ecosystem services; additionally, an iterative process of evaluation, development of management strategies, monitoring, and reevaluation will increase the applicability and usability of the science by the U.S. public.
Study on the techniques of valuation of ecosystem services based on remote sensing in Anxin County
NASA Astrophysics Data System (ADS)
Wang, Hongyan; Li, Zengyuan; Gao, Zhihai; Wang, Bengyu; Bai, Lina; Wu, Junjun; Sun, Bin; Wang, Zhibo
2014-05-01
The farmland ecosystem is an important component of terrestrial ecosystems and has a fundamental role in the human life. The wetland is an unique and versatile ecological system. It is important for rational development and sustainable utilization of farmland and wetland resources to study on the measurement of valuation of farmland and wetland ecosystem services. It also has important significance for improving productivity. With the rapid development of remote sensing technology, it has become a powerful tool for evaluation of the value of ecosystem services. The land cover types in Anxin County mainly was farmland and wetland, the indicator system for ecosystem services valuation was brought up based on the remote sensing data of high spatial resolution ratio(Landsat-5 TM data and SPOT-5 data), the technology system for measurement of ecosystem services value was established. The study results show that the total ecosystem services value in 2009 in Anxin was 4.216 billion yuan, and the unit area value was between 8489 yuan/hm2 and 329535 yuan/hm2. The value of natural resources, water conservation value in farmland ecosystem and eco-tourism value in wetland ecosystem were higher than the other, total of the three values reached 2.858 billion yuan, and the percentage of the total ecosystem services values in Anxin was 67.79%. Through the statistics in the nine towns and three villages of Anxin County, the juantou town has the highest services value, reached 0.736 billion yuan. Scientific and comprehensive evaluation of the ecosystem services can conducive to promoting the understanding of the importance of the ecosystem. The research results had significance to ensure the sustainable use of wetland resources and the guidance of ecological construction in Anxin County.
Electric and Plug-In Hybrid Electric Vehicle Publications | Transportation
, Kandler Smith, and Kevin Walkowicz. (2016) Medium-Duty Plug-in Electric Delivery Truck Fleet Evaluation . (2014) Smith Newton Electric Delivery Trucks Smith Newton Vehicle Performance Evaluation (Gen 1 ), Cumulative Report: November 2011-June 2014. Adam Ragatz. (2014) Smith Newton Vehicle Performance Evaluation
[Ecosystem services supply and consumption and their relationships with human well-being].
Wang, Da-Shang; Zheng, Hua; Ouyang, Zhi-Yun
2013-06-01
Sustainable ecosystem services supply is the basis of regional sustainable development, and human beings can satisfy and improve their well-being through ecosystem services consumption. To understand the relationships between ecosystem services supply and consumption and human well-being is of vital importance for coordinating the relationships between the conservation of ecosystem services and the improvement of human well-being. This paper summarized the diversity, complexity, and regionality of ecosystem services supply, the diversity and indispensability of ecosystem services consumption, and the multi-dimension, regionality, and various evaluation indices of human well-being, analyzed the uncertainty and multi-scale correlations between ecosystem services supply and consumption, and elaborated the feedback and asynchronous relationships between ecosystem services and human well-being. Some further research directions for the relationships between ecosystem services supply and consumption and human well-being were recommended.
Kang, Haijun; Seely, Brad; Wang, Guangyu; Innes, John; Zheng, Dexiang; Chen, Pingliu; Wang, Tongli; Li, Qinglin
2016-07-01
Chinese fir (Cunninghamia lanceolata) is not only a valuable timber species, but also plays an important role in the provision of ecosystem services. Forest management decisions to increase the production of fiber for economic gain may have negative impacts on the long-term flow of ecosystem services from forest resources. Such tradeoffs should be taken into account to fulfill the requirements of sustainable forest management. Here we employed an established, ecosystem-based, stand-level model (FORECAST) in combination with a simplified harvest-scheduling model to evaluate the potential tradeoffs among indicators of provisional, regulating and supporting ecosystem services in a Chinese-fir-dominated landscape located in Fujian Province as a case study. Indicators included: merchantable volume harvested, biomass harvested, ecosystem carbon storage, CO2 fixation, O2 released, biomass nitrogen content, pollutant absorption, and soil fertility. A series of alternative management scenarios, representing different combinations of rotation length and harvest intensity, were simulated to facilitate the analysis. Results from the analysis were summarized in the form of a decision matrix designed to provide a method for forest managers to evaluate management alternatives and tradeoffs in the context of key indicators of ecosystem services. The scenario analysis suggests that there are considerable tradeoffs in terms of ecosystem services associated with stand and landscape-level management decisions. Longer rotations and increased retention tended to favor regulating and supporting services while the opposite was true for provisional services. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Fang, F. J.
2017-12-01
Reconciling observations at fundamentally different scales is central in understanding the global carbon cycle. This study investigates a model-based melding of forest inventory data, remote-sensing data and micrometeorological-station data ("flux towers" estimating forest heat, CO2 and H2O fluxes). The individual tree-based model FORCCHN was used to evaluate the tree DBH increment and forest carbon fluxes. These are the first simultaneous simulations of the forest carbon budgets from flux towers and individual-tree growth estimates of forest carbon budgets using the continuous forest inventory data — under circumstances in which both predictions can be tested. Along with the global implications of such findings, this also improves the capacity for forest sustainable management and the comprehensive understanding of forest ecosystems. In forest ecology, diameter at breast height (DBH) of a tree significantly determines an individual tree's cross-sectional sapwood area, its biomass and carbon storage. Evaluation the annual DBH increment (ΔDBH) of an individual tree is central to understanding tree growth and forest ecology. Ecosystem Carbon flux is a consequence of key ecosystem processes in the forest-ecosystem carbon cycle, Gross and Net Primary Production (GPP and NPP, respectively) and Net Ecosystem Respiration (NEP). All of these closely relate with tree DBH changes and tree death. Despite advances in evaluating forest carbon fluxes with flux towers and forest inventories for individual tree ΔDBH, few current ecological models can simultaneously quantify and predict the tree ΔDBH and forest carbon flux.
Effects of climate change on ecological disturbance in the Northern Rockies Region [Chapter 8
Loehman, Rachel A.; Bentz, Barbara J.; DeNitto, Gregg A.; Keane, Robert E.; Manning, Mary E.; Duncan, Jacob P.; Egan, Joel M.; Jackson, Marcus B.; Kegley, Sandra; Lockman, I. Blakey; Pearson, Dean E.; Powell, James A.; Shelly, Steve; Steed, Brytten E.; Zambino, Paul J.
2018-01-01
This chapter describes the ecology of important disturbance regimes in the Forest Service, U.S. Department of Agriculture (USFS) Northern Region and the Greater Yellowstone Area, hereafter called the Northern Rockies region, and potential shifts in these regimes as a consequence of observed and projected climate change. The term disturbance regime describes the general temporal and spatial characteristics of a disturbance agent - insect, disease, fire, weather, even human activity - and the effects of that agent on the landscape (table 8.1). More specifically, a disturbance regime is the cumulative effect of multiple disturbance events over space and time (Keane 2013). Disturbances disrupt an ecosystem, community, or population structure and change elements of the biological environment, physical environment, or both (White and Pickett 1985). The resulting shifting mosaic of diverse ecological patterns and structures in turn affects future patterns of disturbance, in a reciprocal, linked relationship that shapes the fundamental character of landscapes and ecosystems. Disturbance creates and maintains biological diversity in the form of shifting, heterogeneous mosaics of diverse communities and habitats across a landscape (McKinney and Drake 1998), and biodiversity is generally highest when disturbance is neither too rare nor too frequent on the landscape (Grime 1973).
Idiosyncratic Responses of High Arctic Plants to Changing Snow Regimes
Rumpf, Sabine B.; Semenchuk, Philipp R.; Dullinger, Stefan; Cooper, Elisabeth J.
2014-01-01
The Arctic is one of the ecosystems most affected by climate change; in particular, winter temperatures and precipitation are predicted to increase with consequent changes to snow cover depth and duration. Whether the snow-free period will be shortened or prolonged depends on the extent and temporal patterns of the temperature and precipitation rise; resulting changes will likely affect plant growth with cascading effects throughout the ecosystem. We experimentally manipulated snow regimes using snow fences and shoveling and assessed aboveground size of eight common high arctic plant species weekly throughout the summer. We demonstrated that plant growth responded to snow regime, and that air temperature sum during the snow free period was the best predictor for plant size. The majority of our studied species showed periodic growth; increases in plant size stopped after certain cumulative temperatures were obtained. Plants in early snow-free treatments without additional spring warming were smaller than controls. Response to deeper snow with later melt-out varied between species and categorizing responses by growth forms or habitat associations did not reveal generic trends. We therefore stress the importance of examining responses at the species level, since generalized predictions of aboveground growth responses to changing snow regimes cannot be made. PMID:24523859
Idiosyncratic responses of high Arctic plants to changing snow regimes.
Rumpf, Sabine B; Semenchuk, Philipp R; Dullinger, Stefan; Cooper, Elisabeth J
2014-01-01
The Arctic is one of the ecosystems most affected by climate change; in particular, winter temperatures and precipitation are predicted to increase with consequent changes to snow cover depth and duration. Whether the snow-free period will be shortened or prolonged depends on the extent and temporal patterns of the temperature and precipitation rise; resulting changes will likely affect plant growth with cascading effects throughout the ecosystem. We experimentally manipulated snow regimes using snow fences and shoveling and assessed aboveground size of eight common high arctic plant species weekly throughout the summer. We demonstrated that plant growth responded to snow regime, and that air temperature sum during the snow free period was the best predictor for plant size. The majority of our studied species showed periodic growth; increases in plant size stopped after certain cumulative temperatures were obtained. Plants in early snow-free treatments without additional spring warming were smaller than controls. Response to deeper snow with later melt-out varied between species and categorizing responses by growth forms or habitat associations did not reveal generic trends. We therefore stress the importance of examining responses at the species level, since generalized predictions of aboveground growth responses to changing snow regimes cannot be made.
Global Patterns in Human Consumption of Net Primary Production
NASA Technical Reports Server (NTRS)
Imhoff, Marc L.; Bounoua, Lahouari; Ricketts, Taylor; Loucks, Colby; Harriss, Robert; Lawrence William T.
2004-01-01
The human population and its consumption profoundly affect the Earth's ecosystems. A particularly compelling measure of humanity's cumulative impact is the fraction of the planet's net primary production that we appropriate for our Net primary production-the net amount of solar energy converted to plant organic matter through photosynthesis-can be measured in units of elemental carbon and represents the primary food energy source for the world's ecosystems. Human appropriation of net primary production, apart from leaving less for other species to use, alters the composition of the atmosphere, levels of biodiversity, flows within food webs and the provision of important primary production required by humans and compare it to the total amount generated on the landscape. We then derive a spatial ba!mce sheet of net primary production supply and demand for the world. We show that human appropriation of net primary production varies spatially from almost zero to many times the local primary production. These analyses reveal the uneven footprint of human consumption and related environmental impacts, indicate the degree to which human populations depend on net primary production "imports" and suggest policy options for slowing future growth of human appropriation of net primary production.
Ecologically sustainable chemical recommendations for agricultural pest control?
Thomson, Linda J; Hoffmann, Ary A
2007-12-01
Effective pest control remains an essential part of food production, and it is provided both by chemicals and by natural enemies within agricultural ecosystems. These methods of control are often in conflict because of the negative impact of chemicals on natural enemies. There are already well-established approaches such as those provided by the International Organization for Biological and Integrated Control-Pesticides and Beneficial Organisms for testing, collecting, and publishing information on responses of natural enemies to chemicals based on laboratory responses of specific organisms; however, these tests do not assess the cumulative impact of chemical inputs across an entire season or consider impacts on the complex communities of natural enemies that can provide effective pest control on a farm. Here, we explore the potential of different approaches for assessing the impact of chemicals on agricultural ecosystems and we propose a simple metric for sustainable chemical use on farms that minimizes overall impact on beneficial groups. We suggest ways in which the effectiveness of metrics can be extended to include persistence and habitat features. Such metrics can assist farmers in developing targets for sustainable chemical use as demonstrated in the viticultural industry.
Bonanno, Giuseppe
2013-10-01
Nitrogen emissions were assessed by using mosses as bioindicators in a densely inhabited area affected by mud volcanoes. Such volcanoes, locally called Salinelle, are phenomena that occur around Mt. Etna (Sicily, Italy), and are interpreted as the surface outflow of a hydrothermal system located below Mt. Etna, which releases sedimentary fluids (hydrocarbons and Na-Cl brines) along with magmatic gases (mainly CO2 and He). To date, N emissions from such mud volcanoes have been only quantitatively assessed, and no biomonitoring campaigns are reported about the cumulative effects of these emissions. This study analyzed N concentrations in moss, water and soil samples, collected in a 4-year monitoring campaign. The bryophyte Bryum argenteum, a species widely adopted in surveys of atmospheric pollution, was used as a biological indicator. N concentrations in biomonitors showed relatively low values in the study sites. However, the results of this study suggest that N emissions from Salinelle may have an impact on surrounding ecosystems because N values in moss and water showed a significant correlation. N oxides, in particular, contribute to acidification of ecosystems, thus multitemporal biomonitoring is recommended, especially in those areas where N emitting sources are anthropogenic and natural.
Evaluation of marginal failures of dental composite restorations by acoustic emission analysis.
Gu, Ja-Uk; Choi, Nak-Sam
2013-01-01
In this study, a nondestructive method based on acoustic emission (AE) analysis was developed to evaluate the marginal failure states of dental composite restorations. Three types of ring-shaped substrates, which were modeled after a Class I cavity, were prepared from polymethyl methacrylate, stainless steel, and human molar teeth. A bonding agent and a composite resin were applied to the ring-shaped substrates and cured by light exposure. At each time-interval measurement, the tooth substrate presented a higher number of AE hits than polymethyl methacrylate and steel substrates. Marginal disintegration estimations derived from cumulative AE hits and cumulative AE energy parameters showed that a signification portion of marginal gap formation was already realized within 1 min at the initial light-curing stage. Estimation based on cumulative AE energy gave a higher level of marginal failure than that based on AE hits. It was concluded that the AE analysis method developed in this study was a viable approach in predicting the clinical survival of dental composite restorations efficiently within a short test period.
Levin, Myron J.; Tyring, Stephen K.; Spruance, Spotswood L.
2014-01-01
Historically, the primary target for research and treatment of recurrent herpes simplex labialis (HSL) has been limited to inhibiting herpes simplex virus (HSV) replication. Antiviral monotherapy, however, has proven only marginally effective in curtailing the duration and severity of recurrent lesions. Recently, the role of inflammation in the progression and resolution of recurrences has been identified as an additional target. This was evaluated in a randomized study comparing combination topical 5% acyclovir-1% hydrocortisone cream (AHC) with 5% acyclovir alone (AC; in the AHC vehicle) and the vehicle. The efficacy of each topical therapy was evaluated for cumulative lesion size—a novel composite efficacy endpoint incorporating episode duration, lesion area, and proportion of nonulcerative lesions. In that study, cumulative lesion area was significantly decreased with AHC compared with AC (25% decrease; P < 0.05) and the vehicle (50% decrease; P < 0.0001). As research continues in this arena, cumulative lesion area should be included as a measure of efficacy in clinical trials of recurrent HSL therapies. PMID:24342632
NASA Astrophysics Data System (ADS)
Liu, Y.; Weisberg, R. H.
2017-12-01
The Lagrangian separation distance between the endpoints of simulated and observed drifter trajectories is often used to assess the performance of numerical particle trajectory models. However, the separation distance fails to indicate relative model performance in weak and strong current regions, such as a continental shelf and its adjacent deep ocean. A skill score is proposed based on the cumulative Lagrangian separation distances normalized by the associated cumulative trajectory lengths. The new metrics correctly indicates the relative performance of the Global HYCOM in simulating the strong currents of the Gulf of Mexico Loop Current and the weaker currents of the West Florida Shelf in the eastern Gulf of Mexico. In contrast, the Lagrangian separation distance alone gives a misleading result. Also, the observed drifter position series can be used to reinitialize the trajectory model and evaluate its performance along the observed trajectory, not just at the drifter end position. The proposed dimensionless skill score is particularly useful when the number of drifter trajectories is limited and neither a conventional Eulerian-based velocity nor a Lagrangian-based probability density function may be estimated.
Proceedings of a Coastal and Marine Spatial Planning Workshop for the Western United States
Thorsteinson, Lyman; Hirsch, Derrick; Helweg, David; Dhanju, Amardeep; Barmenski, Joan; Ferrero, Richard
2011-01-01
Recent scientific and ocean policy assessments demonstrate that a fundamental change in our current management system is required to achieve the long-term health of our ocean, coasts, and Great Lakes in order to sustain the services and benefits they provide to society. The present (2011) species- and sector-centric way we manage these ecosystems cannot account properly for cumulative effects, sustaining multiple ecosystem services, and holistically and explicitly evaluating the tradeoffs associated with proposed alternative and multiple human uses. A transition to an ecosystem-based approach to management and conservation of coastal and marine resources is needed. Competing uses and activities such as commerce, recreation, cultural practices, energy development, conservation, and national security are increasing pressure for new and expanded resource usage in coastal marine ecosystems. Current management efforts use a sector-by-sector approach that mostly focuses on a limited range of tools and outcomes [for example, oil and gas leases, fishery management plans, and Marine Protected Areas (MPAs)]. A comprehensive, ecosystem-based, and proactive approach to planning and managing these uses and activities is needed. Further, scientific understanding and information are essential to achieve an integrated decision-making process that includes knowledge of ecosystem services, existing and possible future conditions, and potential consequences of natural and anthropogenic events. Because no single government agency has executive authority for coastal or ocean resources, conflicting objectives around competing uses abound. In recent years, regional- and state-level initiatives in Coastal and Marine Spatial Planning (CMSP) have emerged to coordinate management activities. In some respects, the components and steps of the overall CMSP process are similar to how existing ocean resources are regulated and managed. For example, the Bureau of Ocean Energy Management Regulation and Enforcement (BOEMRE) uses spatial planning exercises in State Renewable Energy Task Force meetings to identify competing and conflicting ocean uses, and to delineate areas suitable for renewable energy development. Similarly terrestrial areas such as in national parks and national wildlife refuges managed by the Department of the Interior (DOI) prepare management plans for preservation and restoration of species and habitats of concern, some of which are protected by law. The analogy to CMSP is clear - multiple users and multiple expectations, resulting in the requirement to establish spatial plans for management of different resources and different ecosystem services. A two-day workshop on December 1-2, 2010, was convened for DOI representatives and several key non-DOI participants with roles in CMSP as a step toward clarifying national perspectives and consequences of the National Ocean Policy for the West (appendix 1). Discussions helped to develop an understanding of CMSP from the federal perspective and to identify regional priorities. An overarching theme was to promote a better understanding of current and future science needs. The workshop format included briefings by key Federal agencies on their understanding of the national focus followed by discussion of regional issues, including the needs for scientific information and coordination. The workshop also explored potential science contributions by Federal agencies and others; utilizing current capabilities, data, and information systems; and provided a foundation for possible future regional workshops focusing in turn on the West Coast Region (California, Oregon, and Washington), Pacific Islands (sometimes referred to as Oceania) and Alaska. Participants were asked to share information in the following areas, recognizing that the purpose would be to learn more about the national perspective (see appendixes 2-4): Explore how the Western U.S. (Alaska, Pacific Islands, and West Coast Region) migh
Huntzinger, D. N.; Michalak, A. M.; Schwalm, C.; ...
2017-07-06
Terrestrial ecosystems play a vital role in regulating the accumulation of carbon (C) in the atmosphere. Understanding the factors controlling land C uptake is critical for reducing uncertainties in projections of future climate. The relative importance of changing climate, rising atmospheric CO 2, and other factors, however, remains unclear despite decades of research. Here, we use an ensemble of land models to show that models disagree on the primary driver of cumulative C uptake for 85% of vegetated land area. Disagreement is largest in model sensitivity to rising atmospheric CO 2 which shows almost twice the variability in cumulative landmore » uptake since 1901 (1 s.d. of 212.8 PgC vs. 138.5 PgC, respectively). We find that variability in CO 2 and temperature sensitivity is attributable, in part, to their compensatory effects on C uptake, whereby comparable estimates of C uptake can arise by invoking different sensitivities to key environmental conditions. Conversely, divergent estimates of C uptake can occur despite being based on the same environmental sensitivities. Together, these findings imply an important limitation to the predictability of C cycling and climate under unprecedented environmental conditions. We suggest that the carbon modeling community prioritize a probabilistic multi-model approach to generate more robust C cycle projections.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huntzinger, D. N.; Michalak, A. M.; Schwalm, C.
2017-07-06
Terrestrial ecosystems play a vital role in regulating the accumulation of carbon (C) in the atmosphere. Understanding the factors controlling land C uptake is critical for reducing uncertainties in projections of future climate. The relative importance of changing climate, rising atmospheric CO2, and other factors, however, remains unclear despite decades of research. Here, we use an ensemble of land models to show that models disagree on the primary driver of cumulative C uptake for 85% of vegetated land area. Disagreement is largest in model sensitivity to rising atmospheric CO2 which shows almost twice the variability in cumulative land uptake sincemore » 1901 (1 s.d. of 212.8 PgC vs. 138.5 PgC, respectively). We find that variability in CO2 and temperature sensitivity is attributable, in part, to their compensatory effects on C uptake, whereby comparable estimates of C uptake can arise by invoking different sensitivities to key environmental conditions. Conversely, divergent estimates of C uptake can occur despite being based on the same environmental sensitivities. Together, these findings imply an important limitation to the predictability of C cycling and climate under unprecedented environmental conditions. We suggest that the carbon modeling community prioritize a probabilistic multi-model approach to generate more robust C cycle projections.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huntzinger, D. N.; Michalak, A. M.; Schwalm, C.
Terrestrial ecosystems play a vital role in regulating the accumulation of carbon (C) in the atmosphere. Understanding the factors controlling land C uptake is critical for reducing uncertainties in projections of future climate. The relative importance of changing climate, rising atmospheric CO 2, and other factors, however, remains unclear despite decades of research. Here, we use an ensemble of land models to show that models disagree on the primary driver of cumulative C uptake for 85% of vegetated land area. Disagreement is largest in model sensitivity to rising atmospheric CO 2 which shows almost twice the variability in cumulative landmore » uptake since 1901 (1 s.d. of 212.8 PgC vs. 138.5 PgC, respectively). We find that variability in CO 2 and temperature sensitivity is attributable, in part, to their compensatory effects on C uptake, whereby comparable estimates of C uptake can arise by invoking different sensitivities to key environmental conditions. Conversely, divergent estimates of C uptake can occur despite being based on the same environmental sensitivities. Together, these findings imply an important limitation to the predictability of C cycling and climate under unprecedented environmental conditions. We suggest that the carbon modeling community prioritize a probabilistic multi-model approach to generate more robust C cycle projections.« less
Integrating wetland connectivity into models for watershed ...
Geographically isolated wetlands (GIW), or wetlands embedded in uplands, exist along a spatial and temporal hydrologic connectivity continuum to downstream waters. Via these connections and disconnections, GIWs provide numerous hydrological, biogeochemical, and biological functions linked to human health and watershed-scale ecosystem services. Often, a clear demonstration of these functions and the individual and cumulative effects of GIWs on downstream waters is required for their protection or restoration. Measurements alone are typically too resource intensive to do this. In this presentation, we discuss the use of various modeling approaches to quantify the hydrologic connectivity of GIWs and their associated watershed-scale cumulative effects. Our goal is to improve the science behind understanding the functions and connectivity of GIWs via models that are complemented with various types of novel data. We synthesize what is meant by GIW connectivity and its broad significance to science and decision-making. We further discuss case studies that provide insights to diverse modeling approaches, with varying levels of complexity, for how to estimate GIW connectivity and associated watershed-scale impacts to hydrology. We finally provide insights to the key opportunities and priorities for integrating GIW connectivity into the next generation of models. Geographically isolated wetlands (GIW), or wetlands embedded in uplands, exist along a spatial and temporal h
Schaefer, Adam M.; Bossart, Gregory D.; Mazzoil, Marilyn; Fair, Patricia A.; Reif, John S.
2011-01-01
Opportunistic pathogens related to degradation in water quality are of concern to both wildlife and public health. The objective of this study was to identify spatial, temporal, and environmental risk factors for E. coli colonization among Atlantic bottlenose dolphins (Tursiops truncatus) inhabiting the Indian River Lagoon (IRL), FL between 2003 and 2007. Age, gender, capture location, coastal human population density, proximity of sewage treatment plants, number of septic tanks, cumulative precipitation 48 hrs and 30 days prior to capture, salinity, and water temperature were analyzed as potential risk factors. Highest E. coli colonization rates occurred in the northern segments of the IRL. The risk of E. coli colonization was the highest among the youngest individuals, in counties with the highest cumulative rainfall 48 hrs and in counties with the highest number of septic systems during the year of capture. The prevalence of colonization was the highest during 2004, a year during which multiple hurricanes hit the coast of Florida. Septic tanks, in combination with weather-related events suggest a possible pathway for introduction of fecal coliforms into estuarine ecosystems. The ability of E. coli and related bacteria to act as primary pathogens or cause opportunistic infections adds importance of these findings. PMID:21977048
Schaefer, Adam M; Bossart, Gregory D; Mazzoil, Marilyn; Fair, Patricia A; Reif, John S
2011-01-01
Opportunistic pathogens related to degradation in water quality are of concern to both wildlife and public health. The objective of this study was to identify spatial, temporal, and environmental risk factors for E. coli colonization among Atlantic bottlenose dolphins (Tursiops truncatus) inhabiting the Indian River Lagoon (IRL), FL between 2003 and 2007. Age, gender, capture location, coastal human population density, proximity of sewage treatment plants, number of septic tanks, cumulative precipitation 48 hrs and 30 days prior to capture, salinity, and water temperature were analyzed as potential risk factors. Highest E. coli colonization rates occurred in the northern segments of the IRL. The risk of E. coli colonization was the highest among the youngest individuals, in counties with the highest cumulative rainfall 48 hrs and in counties with the highest number of septic systems during the year of capture. The prevalence of colonization was the highest during 2004, a year during which multiple hurricanes hit the coast of Florida. Septic tanks, in combination with weather-related events suggest a possible pathway for introduction of fecal coliforms into estuarine ecosystems. The ability of E. coli and related bacteria to act as primary pathogens or cause opportunistic infections adds importance of these findings.
Heusinger, Jannik; Weber, Stephan
2017-12-31
The CO 2 surface-atmosphere exchange of an unirrigated, extensive green roof in Berlin, Germany was measured by means of the eddy covariance method over a full annual cycle. The present analysis focusses on the cumulative green roof net ecosystem exchange of CO 2 (NEE), on its seasonal variation and on green roof physiological characteristics by applying a canopy (A-g s ) model. The green roof was a carbon sink with an annual cumulative NEE of -313gCO 2 m -2 year - 1 , equivalent to -85gCm -2 year - 1 . Three established CO 2 flux gap-filling methods were applied to estimate NEE and to study the performance during different meteorological situations. A best estimate NEE time series was established, which chooses the gap filling method with the highest performance. During dry periods daytime carbon uptake was shown to decline linearly with substrate moisture below a threshold of 0.05m 3 m -3 , whereas night-time respiration was unaffected by substrate moisture variation. The roof turned into a temporary C source during dry conditions in summer 2015. We conclude that the carbon uptake of the present green roof can be optimized when substrate moisture is kept above 0.05m 3 m -3 . Copyright © 2017 Elsevier B.V. All rights reserved.
ESIP: Boldly going towards ESIP 2.0 and your phone
The Gulf of Maine Council’s EcoSystem Indicator Partnership (ESIP) was formed in 2006 to evaluate changes in the health of the Gulf of Maine ecosystems through the use of indicators. ESIP’s initial approach to indicator development focused on seven ecosystem themes, w...
SIMULATION MODEL FOR WATERSHED MANAGEMENT PLANNING. VOLUME 1. MODEL THEORY AND FORMULATION
Evaluation of nonpoint source pollution problems requires an understanding of the behavioral response to an ecosystem to the impacts of land use activities on individual components of that ecosystem. By analyzing basic ecosystem processes and impacts of land use activities on spe...
Decision support systems for ecosystem management: An evaluation of existing systems
H. Todd Mowrer; Klaus Barber; Joe Campbell; Nick Crookston; Cathy Dahms; John Day; Jim Laacke; Jim Merzenich; Steve Mighton; Mike Rauscher; Rick Sojda; Joyce Thompson; Peter Trenchi; Mark Twery
1997-01-01
This report evaluated 24 computer-aided decision support systems (DSS) that can support management decision-making in forest ecosystems. It compares the scope of each system, spatial capabilities, computational methods, development status, input and output requirements, user support availability, and system performance. Questionnaire responses from the DSS developers (...
Chen, Xiaoyan; Gao, Huiwang; Yao, Xiaohong; Chen, Zhenhua; Fang, Hongda; Ye, Shufeng
2013-01-01
Marine ecosystem is a complex nonlinear system. However, ecosystem health assessment conventionally builds on a linear superposition of changes in ecosystem components and probably fails to evaluate nonlinear interactions among various components. To better reflect the intrinsic interactions and their impacts on ecosystem health, an ecosystem coordination index, defined as the matching level of ecosystem structure/services, is proposed and incorporated into the ecosystem health index for a systematic diagnosis in the Pearl River Estuary, China. The analysis results show that the ecosystem health index over the last three decades decreased from 0.91 to 0.50, indicating deteriorating from healthy to unhealthy status. The health index is 3–16% lower than that calculated using the common method without considering ecosystem coordination. Ecosystem health degradation in the Pearl River Estuary manifested as significant decreases in structure/services and somewhat mismatching among them. Overall, the introduction of coordination in ecosystem health assessment could improve the understanding of the mechanism of marine ecosystem change and facilitate effective restoration of ecosystem health. PMID:23894670