System and method for evaluating a wire conductor
Panozzo, Edward; Parish, Harold
2013-10-22
A method of evaluating an electrically conductive wire segment having an insulated intermediate portion and non-insulated ends includes passing the insulated portion of the wire segment through an electrically conductive brush. According to the method, an electrical potential is established on the brush by a power source. The method also includes determining a value of electrical current that is conducted through the wire segment by the brush when the potential is established on the brush. The method additionally includes comparing the value of electrical current conducted through the wire segment with a predetermined current value to thereby evaluate the wire segment. A system for evaluating an electrically conductive wire segment is also disclosed.
2011-06-01
technologies, including high temperature thermal insulation and thermal to electric power conversion, have been evaluated, and a preliminary design...support technologies, including high temperature thermal insulation and thermal to electric power conversion, have been evaluated, and a preliminary...vacuum gap with low emissivity surfaces on either side as the first insulating layer.11 D. Electrical Energy Conversion There are a wide variety
Dry and wet arc track propagation resistance testing
NASA Technical Reports Server (NTRS)
Beach, Rex
1995-01-01
The wet arc-propagation resistance test for wire insulation provides an assessment of the ability of an insulation to prevent damage in an electrical environment. Results of an arc-propagation test may vary slightly due to the method of arc initiation; therefore a standard test method must be selected to evaluate the general arc-propagation resistance characteristics of an insulation. This test method initiates an arc by dripping salt water over pre-damaged wires which creates a conductive path between the wires. The power supply, test current, circuit resistances, and other variables are optimized for testing 20 guage wires. The use of other wire sizes may require modifications to the test variables. The dry arc-propagation resistance test for wire insulation also provides an assessment of the ability of an insulation to prevent damage in an electrical arc environment. In service, electrical arcs may originate form a variety of factors including insulation deterioration, faulty installation, and chafing. Here too, a standard test method must be selected to evaluate the general arc-propagation resistance characteristics of an insulation. This test method initiates an arc with a vibrating blade. The test also evaluates the ability of the insulation to prevent further arc-propagation when the electrical arc is re-energized.
NASA Technical Reports Server (NTRS)
Bowler, Nicola; Kessler, Michael R.; Li, Li; Hondred, Peter R.; Chen, Tianming
2012-01-01
Polymers have been widely used as wiring electrical insulation materials in space/air-craft. The dielectric properties of insulation polymers can change over time, however, due to various aging processes such as exposure to heat, humidity and mechanical stress. Therefore, the study of polymers used in electrical insulation of wiring is important to the aerospace industry due to potential loss of life and aircraft in the event of an electrical fire caused by breakdown of wiring insulation. Part of this research is focused on studying the mechanisms of various environmental aging process of the polymers used in electrical wiring insulation and the ways in which their dielectric properties change as the material is subject to the aging processes. The other part of the project is to determine the feasibility of a new capacitive nondestructive testing method to indicate degradation in the wiring insulation, by measuring its permittivity.
Alternator insulation evaluation tests
NASA Technical Reports Server (NTRS)
Penn, W. B.; Schaefer, R. F.; Balke, R. L.
1972-01-01
Tests were conducted to predict the remaining electrical insulation life of a 60 KW homopolar inductor alternator following completion of NASA turbo-alternator endurance tests for SNAP-8 space electrical power systems application. The insulation quality was established for two alternators following completion of these tests. A step-temperature aging test procedure was developed for insulation life prediction and applied to one of the two alternators. Armature winding insulation life of over 80,000 hours for an average winding temperature of 248 degrees C was predicted using the developed procedure.
Electrical Insulation Fire Characteristics : Volume 2. Toxicity.
DOT National Transportation Integrated Search
1978-12-01
The purpose of this research was to determine the relative inhalation toxicity of the thermal degradation products or gaseous pyrolysis of selected types of electrical wiring insulations. The specific materials to be evaluated were supplied by the Bo...
Development and analysis of insulation constructions for aerospace wiring applications
NASA Astrophysics Data System (ADS)
Slenski, George A.; Woodford, Lynn M.
1993-03-01
The Wright Laboratory Materials Directorate at WPAFB, Ohio recently completed a research and development program under contract with the McDonnell Douglas Aerospace Company, St. Louis, Missouri. Program objectives were to develop wire insulation performance requirements, evaluate candidate insulations, and prepare preliminary specification sheets on the most promising candidates. Aircraft wiring continues to be a high maintenance item and a major contributor to electrically-related aircraft mishaps. Mishap data on aircraft show that chafing of insulation is the most common mode of wire failure. Improved wiring constructions are expected to increase aircraft performance and decrease costs by reducing maintenance actions. In the laboratory program, new insulation constructions were identified that had overall improved performance in evaluation tests when compared to currently available MIL-W-81381 and MIL-W-22759 wiring. These insulations are principally aromatic polyimide and crosslinked ethylene tetrafluoroethylene (ETFE), respectively. Candidate insulations identified in preliminary specification sheets were principally fluoropolymers with a polyimide inner layer. Examples of insulation properties evaluated included flammability, high temperature mechanical and electrical performance, fluid immersion, and susceptibility to arc propagation under applied power chafing conditions. Potential next generation wire insulation materials are also reviewed.
Analysis and comparison of magnetic sheet insulation tests
NASA Astrophysics Data System (ADS)
Marion-Péra, M. C.; Kedous-Lebouc, A.; Cornut, B.; Brissonneau, P.
1994-05-01
Magnetic circuits of electrical machines are divided into coated sheets in order to limit eddy currents. The surface insulation resistance of magnetic sheets is difficult to evaluate because it depends on parameters like pressure and covers a wide range of values. Two methods of measuring insulation resistance are analyzed: the standardized 'Franklin device' and a tester developed by British Steel Electrical. Their main drawback is poor local repeatability. The Franklin method allows better quality control of industrial process because it measures only one insulating layer at a time. It also gives more accurate images of the distribution of possible defects. Nevertheless, both methods lead to similar classifications of insulation efficiency.
Effects of carbon/graphite fiber contamination on high voltage electrical insulation
NASA Technical Reports Server (NTRS)
Garrity, T.; Eichler, C.
1980-01-01
The contamination mechanics and resulting failure modes of high voltage electrical insulation due to carbon/graphite fibers were examined. The high voltage insulation vulnerability to carbon/graphite fiber induced failure was evaluated using a contamination system which consisted of a fiber chopper, dispersal chamber, a contamination chamber, and air ducts and suction blower. Tests were conducted to evaluate the effects of fiber length, weathering, and wetness on the insulator's resistance to carbon/graphite fibers. The ability of nuclear, fossil, and hydro power generating stations to maintain normal power generation when the surrounding environment is contaminated by an accidental carbon fiber release was investigated. The vulnerability assessment included only the power plant generating equipment and its associated controls, instrumentation, and auxiliary and support systems.
NASA Astrophysics Data System (ADS)
Arshad; Nekahi, A.; McMeekin, S. G.; Farzaneh, M.
2016-09-01
Electrical field distribution along the insulator surface is considered one of the important parameters for the performance evaluation of outdoor insulators. In this paper numerical simulations were carried out to investigate the electric field and potential distribution along silicone rubber insulators under various polluted and dry band conditions. Simulations were performed using commercially available simulation package Comsol Multiphysics based on the finite element method. Various pollution severity levels were simulated by changing the conductivity of pollution layer. Dry bands of 2 cm width were inserted at the high voltage end, ground end, middle part, shed, sheath, and at the junction of shed and sheath to investigate the effect of dry band location and width on electric field and potential distribution. Partial pollution conditions were simulated by applying pollution layer on the top and bottom surface respectively. It was observed from the simulation results that electric field intensity was higher at the metal electrode ends and at the junction of dry bands. Simulation results showed that potential distribution is nonlinear in the case of clean and partially polluted insulator and linear for uniform pollution layer. Dry band formation effect both potential and electric field distribution. Power dissipated along the insulator surface and the resultant heat generation was also studied. The results of this study could be useful in the selection of polymeric insulators for contaminated environments.
30 CFR 27.36 - Test for adequacy of electrical insulation and clearances.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Test for adequacy of electrical insulation and clearances. 27.36 Section 27.36 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS Test Requirements § 27.36...
30 CFR 27.36 - Test for adequacy of electrical insulation and clearances.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Test for adequacy of electrical insulation and clearances. 27.36 Section 27.36 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS Test Requirements § 27.36...
Evaluation of Less-Flammable Insulation Fluids and Fire-Prevention Guidance for Transformers
NASA Astrophysics Data System (ADS)
Yamagishi, Akira; Sugawa, Osami
This paper concerns the definition and evaluation of less-flammable of insulation fluids for transformers. In particular it focuses on the ISO5660 cone calorimeter method, which is widely used as an evaluation method for the less-flammable of solids, and proposes that such method is also valid for quantitative evaluation of the less-flammable of insulating fluids. Quantifying the combustion characteristics of insulation fluids and analyzing the causes of fires can be said to be the first step toward implementing appropriate safety measures that will render electric utility equipment more fire retardant or fireproof in the future.
NASA Astrophysics Data System (ADS)
Buică, G.; Beiu, C.; Antonov, A.; Dobra, R.; Păsculescu, D.
2017-06-01
The protecting electrical equipment in use are subject to various factors generated by the use, maintenance, storage and working environment, which may change the characteristics of protection against electric shock. The study presents the results of research on the behaviour over time of protective characteristics of insulating covers of material of work equipment in use, in order to determine the type and periodicity of safety tests. There were tested and evaluated safety equipment with plastic and insulating rubber covers used in operations of verifying functionality, safety and maintenance of machinery used in manufacturing industries and specific services from electric, energy and food sector.
NASA Technical Reports Server (NTRS)
Miller, Sandi G.; Becker, Kathleen; Williams, Tiffany S.; Scheiman, Daniel A.; McCorkle, Linda S.; Heimann, Paula J.; Ring, Andrew; Woodworth, Andrew
2017-01-01
Achieving NASAs aggressive fuel burn and emission reduction for N-plus-3 aircraft will require hybrid electric propulsion system in which electric motors driven by either power generated from turbine or energy storage system will power the fan for propulsion. Motors designed for hybrid electric aircraft are expected to operate at medium to high voltages over long durations in a high altitude service environment. Such conditions have driven research toward the development of wire insulation with improved mechanical strength, thermal stability and increased breakdown voltage. The silicone class of materials has been considered for electric wire insulation due to its inherent thermal stability, dielectric strength and mechanical integrity. This paper evaluates the dependence of these properties on the cure conditions of a polydimethyl-siloxane (PDMS) elastomer; where both cure temperature and base-to-catalyst ratio were varied. The PDMS elastomer was evaluated as a bulk material and an impregnation matrix within a lightweight glass veil support. The E-glass support was selected for mechanical stiffness and dielectric strength. This work has shown a correlation between cure conditions and material physical properties. Tensile strength increased with cure temperature whereas breakdown voltage tended to be independent of process variations. The results will be used to direct material formulation based on specific insulation requirements.
NASA Astrophysics Data System (ADS)
Clayton, N.; Crouchen, M.; Evans, D.; Gung, C.-Y.; Su, M.; Devred, A.; Piccin, R.
2017-12-01
The high voltage (HV) insulation on the ITER magnet feeder superconducting busbars and current leads will be prepared from S-glass fabric, pre-impregnated with an epoxy resin, which is interleaved with polyimide film and wrapped onto the components and cured during feeder manufacture. The insulation architecture consists of nine half-lapped layers of glass/Kapton, which is then enveloped in a ground-screen, and two further half-lapped layers of glass pre-preg for mechanical protection. The integrity of the HV insulation is critical in order to inhibit electrical arcs within the feeders. The insulation over the entire length of the HV components (bus bar, current leads and joints) must provide a level of voltage isolation of 30 kV. In operation, the insulation on ITER busbars will be subjected to high mechanical loads, arising from Lorentz forces, and in addition will be subjected to fretting erosion against stainless steel clamps, as the pulsed nature of some magnets results in longitudinal movement of the busbar. This work was aimed at assessing the wear on, and the changes in, the electrical properties of the insulation when subjected to typical ITER operating conditions. High voltage tests demonstrated that the electrical isolation of the insulation was intact after the fretting test.
New Techniques to Evaluate the Incendiary Behavior of Insulators
NASA Technical Reports Server (NTRS)
Buhler, Charles; Calle, Carlos; Clements, Sid; Trigwell, Steve; Ritz, Mindy
2008-01-01
New techniques for evaluating the incendiary behavior of insulators is presented. The onset of incendive brush discharges in air is evaluated using standard spark probe techniques for the case simulating approaches of an electrically grounded sphere to a charged insulator in the presence of a flammable atmosphere. However, this standard technique is unsuitable for the case of brush discharges that may occur during the charging-separation process for two insulator materials. We present experimental techniques to evaluate this hazard in the presence of a flammable atmosphere which is ideally suited to measure the incendiary nature of micro-discharges upon separation, a measurement never before performed. Other measurement techniques unique to this study include; surface potential measurements of insulators before, during and after contact and separation, as well as methods to verify fieldmeter calibrations using a charge insulator surface opposed to standard high voltage plates. Key words: Kapton polyimide film, incendiary discharges, brush discharges, contact and frictional electrification, ignition hazards, insulators, contact angle, surface potential measurements.
NASA Astrophysics Data System (ADS)
Buică, G.; Antonov, A. E.; Beiu, C.; Dobra, R.; Risteiu, M.
2018-06-01
Rigid electrical insulating materials are used in the manufacture of work equipment with electric safety function, being mainly intended for use in the energy sector. The paper presents the results of the research on the identification of the technical and safety requirements for rigid electrical insulating materials that are part of the electrical insulating work equipment. The paper aims to show the behaviour of rigid electrical insulating materials under the influence of mechanical risk factors, in order to check the functionality and to ensure the safety function for the entire life time. There were tested rigid electrical insulating equipment designed to be used as safety means in electrical power stations and overhead power lines.
30 CFR 18.25 - Combustible gases from insulating material.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction... enclosures where the materials are subjected to destructive electrical action. (b) Parts coated or...
Sialons as high temperature insulators
NASA Technical Reports Server (NTRS)
Phillips, W. M.; Kuo, Y. S.
1978-01-01
Sialons were evaluated for application as high temperature electrical insulators in contact with molybdenum and tungsten components in hard vacuum applications. Both D.C. and variable frequency A.C. resistivity data indicate the sialons to have electrical resistivity similar to common oxide in the 1000 C or higher range. Metallographic evaluations indicate good bonding of the type 15R ALN polytype to molybdenum and tungsten. The beta prime or modified silicon nitride phase was unacceptable in terms of vacuum stability. Additives effect on electrical resistivity. Similar resistivity decreases were produced by additions of molybdenum or tungsten to form cermets. The use of hot pressing at 1800 C with ALN, Al2 O3 and Si3N4 starting powders produced a better product than did a combination of SiO2 and AIN staring powders. It was indicated that sialons will be suitable insulators in the 1600K range in contact with molybdenum or tungsten if they are produced as a pure ceramic and subsequently bonded to the metal components at temperatures in the 1600K range.
Jamaludin, Farah Adilah; Ab-Kadir, Mohd Zainal Abidin; Izadi, Mahdi; Azis, Norhafiz; Jasni, Jasronita; Abd-Rahman, Muhammad Syahmi
2017-01-01
Located near the equator, Malaysia is a country with one of the highest lightning densities in the world. Lightning contributes to 70% of the power outages in Malaysia and affects power equipment, automated network systems, causes data losses and monetary losses in the nation. Therefore, consideration of insulator evaluation under lightning impulses can be crucial to evaluate and attempt to overcome this issue. This paper presents a new approach to increase the electrical performance of polymer insulators using a Room Temperature Vulcanisation (RTV) coating. The evaluation involves three different settings of polymer insulator, namely uncoated, RTV type 1, and RTV type 2 upper surface coatings. All the insulators were tested under three different conditions as dry, clean wet and salty under different impulse polarities using the even-rising test method. The voltage breakdown for each test was recorded. From the experiment, it was found that the effectiveness of the RTV coating application became apparent when tested under salty or polluted conditions. It increased the voltage withstand capabilities of the polymer insulator up to 50% from the basic uncoated insulator. Under dry and clean conditions, the RTV coating provided just a slight increase of the breakdown voltage. The increase in voltage breakdown capability decreased the probability of surface discharge and dry band arcing that could cause degradation of the polymeric material housing. The RTV type 1 coating was found to be more effective when performing under a lightning impulse. The findings might help the utility companies improve the performance of their insulators in order to increase power system reliability.
Jamaludin, Farah Adilah; Ab-Kadir, Mohd Zainal Abidin; Izadi, Mahdi; Azis, Norhafiz; Jasni, Jasronita; Abd-Rahman, Muhammad Syahmi
2017-01-01
Located near the equator, Malaysia is a country with one of the highest lightning densities in the world. Lightning contributes to 70% of the power outages in Malaysia and affects power equipment, automated network systems, causes data losses and monetary losses in the nation. Therefore, consideration of insulator evaluation under lightning impulses can be crucial to evaluate and attempt to overcome this issue. This paper presents a new approach to increase the electrical performance of polymer insulators using a Room Temperature Vulcanisation (RTV) coating. The evaluation involves three different settings of polymer insulator, namely uncoated, RTV type 1, and RTV type 2 upper surface coatings. All the insulators were tested under three different conditions as dry, clean wet and salty under different impulse polarities using the even-rising test method. The voltage breakdown for each test was recorded. From the experiment, it was found that the effectiveness of the RTV coating application became apparent when tested under salty or polluted conditions. It increased the voltage withstand capabilities of the polymer insulator up to 50% from the basic uncoated insulator. Under dry and clean conditions, the RTV coating provided just a slight increase of the breakdown voltage. The increase in voltage breakdown capability decreased the probability of surface discharge and dry band arcing that could cause degradation of the polymeric material housing. The RTV type 1 coating was found to be more effective when performing under a lightning impulse. The findings might help the utility companies improve the performance of their insulators in order to increase power system reliability. PMID:29136025
The mechanical stability of polyimide films at high pH
NASA Technical Reports Server (NTRS)
Croall, Catharine I.; St.clair, Terry L.
1990-01-01
Polyimide insulated electrical wire has been widely used in the aerospace industry in commercial, military, and to a lesser degree, general aviation aircraft since the early 1970s. Wiring failures linked to insulation damage have drawn much attention in the media and concerns have developed regarding the long term stability and safety of polyimide insulated electrical wire. The mechanical durability and chemical stability of polyimide insulated wire are affected by hydrolysis, notch propagation, wet and dry arc tracking, topcoat flaking, and degradation due to high pH fluids. Several polyimides were selected for evaluation for resistance to degradation by various aqueous alkaline solutions. The polyimides under evaluation include commercially available films such as KAPTON (tradename), APICAL (tradename), LARC-TPI, and UPILEX (tradename) R and S, as well as a number of experimental films prepared at NASA-Langley. Material properties investigated include viscosity, solubility, moisture absorption, glass transition temperature, dielectric constant, and mechanical properties before and after exposure to various conditions.
30 CFR 18.60 - Detailed inspection of components.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Inspections and Tests § 18.60 Detailed inspection of components. An inspection of each electrical component shall... design and construction. (e) Examination for adequacy of electrical insulation and clearances between...
Program for the development of high temperature electrical materials and components
NASA Technical Reports Server (NTRS)
Neff, W. S.; Lowry, L. R.
1972-01-01
Evaluation of high temperature, space-vacuum performance of selected electrical materials and components, high temperature capacitor development, and evaluation, construction, and endurance testing of compression sealed pyrolytic boron nitride slot insulation are described. The first subject above covered the aging evaluation of electrical devices constructed from selected electrical materials. Individual materials performances were also evaluated and reported. The second subject included study of methods of improving electrical performance of pyrolytic boron nitride capacitors. The third portion was conducted to evaluate the thermal and electrical performance of pyrolytic boron nitride as stator slot liner material under varied temperature and compressive loading. Conclusions and recommendations are presented.
NASA Astrophysics Data System (ADS)
Xu, Jin
2017-12-01
When an electric field is applied on a topological insulator, not only the electric field is generated, but also the magnetic field is generated, vice versa. I designed topological insulator and superconductor bi-layer magnetic cloak, derived the electric field and magnetic field inside and outside the topological insulator and superconductor sphere. Simulation and calculation results show that the applied magnetic field is screened by the topological insulator and superconductor bi-layer, and the electric field is generated in the cloaked region.
Hot wire needle probe for thermal conductivity detection
Condie, Keith Glenn; Rempe, Joy Lynn; Knudson, Darrell lee; Daw, Joshua Earl; Wilkins, Steven Curtis; Fox, Brandon S.; Heng, Ban
2015-11-10
An apparatus comprising a needle probe comprising a sheath, a heating element, a temperature sensor, and electrical insulation that allows thermal conductivity to be measured in extreme environments, such as in high-temperature irradiation testing. The heating element is contained within the sheath and is electrically conductive. In an embodiment, the heating element is a wire capable of being joule heated when an electrical current is applied. The temperature sensor is contained within the sheath, electrically insulated from the heating element and the sheath. The electrical insulation electrically insulates the sheath, heating element and temperature sensor. The electrical insulation fills the sheath having electrical resistance capable of preventing electrical conduction between the sheath, heating element, and temperature sensor. The control system is connected to the heating element and the temperature sensor.
30 CFR 77.503 - Electric conductors; capacity and insulation.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Electric conductors; capacity and insulation... UNDERGROUND COAL MINES Electrical Equipment-General § 77.503 Electric conductors; capacity and insulation. Electric conductors shall be sufficient in size and have adequate current carrying capacity and be of such...
30 CFR 77.503 - Electric conductors; capacity and insulation.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electric conductors; capacity and insulation... UNDERGROUND COAL MINES Electrical Equipment-General § 77.503 Electric conductors; capacity and insulation. Electric conductors shall be sufficient in size and have adequate current carrying capacity and be of such...
Development of design allowables data for adhesives for attaching reusable surface insulation
NASA Technical Reports Server (NTRS)
Owen, H. P.; Carroll, M. T.
1972-01-01
Results are presented from tests to establish design allowables data for the following room temperature vulcanizing (RTV) silicone rubber based adhesives: (1) General Electric's RTV-560; (2) Dow Corning's 93-046; and (3) Martin Marietta's SLA-561. These adhesives are being evaluated for attaching reusable surface insulation to space shuttle structure.
Electric Field Distribution in High Voltage Power Modules Using Finite Element Simulations
NASA Astrophysics Data System (ADS)
Wang, Zhao; Liu, Yaoning
2018-03-01
With the development of the high voltage insulated gate bipolar transistor (IGBT) power module, it leads to serious problems concerning the electric field insulation. The electric field capabilities of the silicone gels used in the power module encapsulation directly affect the module insulation. Some solutions have been developed to optimize the electric field and reliability. In this letter, the finite element simulation was used to analyze and localize the maximum electric field position; solutions were proposed to improve the module insulation. It’s demonstrated that BaTiO3 silicone composite is a promising insulation material for high voltage power device.
30 CFR 75.513 - Electric conductor; capacity and insulation.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Electric conductor; capacity and insulation. 75.513 Section 75.513 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL... § 75.513 Electric conductor; capacity and insulation. [Statutory Provision] All electric conductors...
30 CFR 75.513 - Electric conductor; capacity and insulation.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electric conductor; capacity and insulation. 75.513 Section 75.513 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL... § 75.513 Electric conductor; capacity and insulation. [Statutory Provision] All electric conductors...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Z. X.; Huang, C. J.; Li, L. F.
2014-01-27
In a Tokamak fusion reactor device like ITER, insulation materials for superconducting magnets are usually fabricated by a vacuum pressure impregnation (VPI) process. Thus these insulation materials must exhibit low viscosity, long working life as well as good radiation resistance. Previous studies have indicated that cyanate ester (CE) blended with epoxy has an excellent resistance against neutron irradiation which is expected to be a candidate insulation material for a fusion magnet. In this work, the rheological behavior of a CE/epoxy (CE/EP) blend containing 40% CE was investigated with non-isothermal and isothermal viscosity experiments. Furthermore, the cryogenic mechanical and electrical propertiesmore » of the composite were evaluated in terms of interlaminar shear strength and electrical breakdown strength. The results showed that CE/epoxy blend had a very low viscosity and an exceptionally long processing life of about 4 days at 60 °C.« less
Recent Progress in Electrical Insulation Techniques for HTS Power Apparatus
NASA Astrophysics Data System (ADS)
Hayakawa, Naoki; Kojima, Hiroki; Hanai, Masahiro; Okubo, Hitoshi
This paper describes the electrical insulation techniques at cryogenic temperatures, i.e. Cryodielectrics, for HTS power apparatus, e.g. HTS power transmission cables, transformers, fault current limiters and SMES. Breakdown and partial discharge characteristics are discussed for different electrical insulation configurations of LN2, sub-cooled LN2, solid, vacuum and their composite insulation systems. Dynamic and static insulation performances with and without taking account of quench in HTS materials are also introduced.
Self-Healable Electrical Insulation for High Voltage Applications
NASA Technical Reports Server (NTRS)
Williams, Tiffany S.
2017-01-01
Polymeric aircraft electrical insulation normally degrades by partial discharge with increasing voltage, which causes excessive localized Joule heating in the material and ultimately leads to dielectric failure of the insulator through thermal breakdown. Developing self-healing insulation could be a viable option to mitigate permanent mechanical degradation, thus increasing the longevity of the insulation. Instead of relying on catalyst and monomer-filled microcapsules to crack, flow, and cure at the damaged sites described in well-published mechanisms, establishment of ionic crosslinks could allow for multiple healing events to occur with the added benefit of achieving full recovery strength under certain thermal environments. This could be possible if the operating temperature of the insulator is the same as or close to the temperature where ionic crosslinks are formed. Surlyn, a commercial material with ionic crosslinks, was investigated as a candidate self-healing insulator based off prior demonstrations of self-healing behavior. Thin films of varying thicknesses were investigated and the effects of thickness on the dielectric strength were evaluated and compared to representative polymer insulators. The effects of thermal conditioning on the recovery strength and healing were observed as a function of time following dielectric breakdown. Moisture absorption was also studied to determine if moisture absorption rates in Surlyn were lower than that of common polyimides.
Electrical wire insulation and electromagnetic coil
Bich, George J.; Gupta, Tapan K.
1984-01-01
An electromagnetic coil for high temperature and high radiation application in which glass is used to insulate the electrical wire. A process for applying the insulation to the wire is disclosed which results in improved insulation properties.
Semi-flexible gas-insulated transmission line using electric field stress shields
Cookson, Alan H.; Dale, Steinar J.; Bolin, Philip C.
1982-12-28
A gas-insulated transmission line includes an outer sheath, an inner conductor, an insulating gas electrically insulating the inner conductor from the outer sheath, and insulating supports insulatably supporting the inner conductor within the outer sheath. The inner conductor is provided with flexibility by use of main conductor sections which are joined together through a conductor hub section and flexible flexing elements. Stress shields are provided to control the electric field at the locations of the conductor hub sections where the insulating supports are contacting the inner conductor. The flexing elements and the stress shields may also be utilized in connection with a plug and socket arrangement for providing electrical connection between main conductor sections.
Falabella, Steven; Meyer, Glenn A; Tang, Vincent; Guethlein, Gary
2014-06-10
A two-phase mixed media insulator having a dielectric fluid filling the interstices between macro-sized dielectric beads packed into a confined volume, so that the packed dielectric beads inhibit electro-hydrodynamically driven current flows of the dielectric liquid and thereby increase the resistivity and breakdown strength of the two-phase insulator over the dielectric liquid alone. In addition, an electrical apparatus incorporates the two-phase mixed media insulator to insulate between electrical components of different electrical potentials. And a method of electrically insulating between electrical components of different electrical potentials fills a confined volume between the electrical components with the two-phase dielectric composite, so that the macro dielectric beads are packed in the confined volume and interstices formed between the macro dielectric beads are filled with the dielectric liquid.
An experimental investigation of electric flashover across solid insulators in vacuum
NASA Technical Reports Server (NTRS)
Vonbaeyer, H. C.
1984-01-01
The insulation of high voltage conductors often employs solid insulators for many applications. In such applications, an unexpected electric flashover may occur along the insulator surface. Under conditions of high vacuum, the flashover voltage across the insulator is observed to be lower compared with that of the same electrode separation without an insulator. The reason for such an extreme reduction of flashover voltage is not well understood. Several models based on the secondary electron emission, were proposed to explain the onset of the surface flashover. The starting point and the developing velocity of the surface flashover were determined. An intensified image converter camera was used to observe the initial stage of electrical flashover along the insulator surface parallel to the electric field. Several different insulator materials were used as test pieces to determine the effect of the dielectric constant on the flashover voltage characteristics.
The Development and Application of Simulative Insulation Resistance Tester
NASA Astrophysics Data System (ADS)
Jia, Yan; Chai, Ziqi; Wang, Bo; Ma, Hao
2018-02-01
The insulation state determines the performance and insulation life of electrical equipment, so it has to be judged in a timely and accurate manner. Insulation resistance test, as the simplest and most basic test of high voltage electric tests, can measure the insulation resistance and absorption ratio which are effective criterion of part or whole damp or dirty, breakdown, severe overheating aging and other insulation defects. It means that the electrical test personnel need to be familiar with the principle of insulation resistance test, and able to operate the insulation resistance tester correctly. At present, like the insulation resistance test, most of electrical tests are trained by physical devices with the real high voltage. Although this allows the students to truly experience the test process and notes on security, it also has certain limitations in terms of safety and test efficiency, especially for a large number of new staves needing induction training every year. This paper presents a new kind of electrical test training system based on the simulative device of dielectric loss measurement and simulative electrical testing devices. It can not only overcome the defects of current training methods, but also provide other advantages in economical efficiency and scalability. That makes it possible for the system to be allied in widespread.
Cryogenic electrical properties of irradiated cyanate ester/epoxy insulation for fusion magnets
NASA Astrophysics Data System (ADS)
Li, X.; Wu, Z. X.; Li, J.; Xu, D.; Liu, H. M.; Huang, R. J.; Li, L. F.
2017-12-01
The insulation materials used in high field fusion magnets require excellent mechanical properties, high electrical breakdown strength, good thermal conductivity and high radiation tolerance. Previous investigations showed that cyanate ester/epoxy (CE/EP) insulation material, a candidate insulation for fusion magnets, can maintain good mechanical performance at cryogenic temperature after 10 MGy irradiation and has a much longer pot life than traditional epoxy insulation material. In order to quantify the electrical properties of the CE/EP insulation material at low temperature, a cryogenic electrical property testing system cooled by a G-M cryocooler was developed for this study. An insulation material with 40% cyanate ester and 60% epoxy was subjected to 60Co γ-ray irradiation in air at ambient temperature with a dose rate of 300 Gy/min, and total doses of 1 MGy, 5 MGy and 10 MGy. The electrical breakdown strength of this CE/EP insulation material was measured before and after irradiation. The results show that cryogenic temperature has a positive effect on the electrical breakdown strength of this composite, while the influence of 60Co γ-ray irradiation is not obvious at 6.1 K.
Ultra High Voltage Propellant Isolators and Insulators for JIMO Ion Thrusters
NASA Technical Reports Server (NTRS)
Banks, Bruce A.; Gaier, James R.; Hung, Ching-Cheh; Walters, Patty A.; Sechkar, Ed; Panko, Scott; Kamiotis, Christina A.
2004-01-01
Within NASA's Project Prometheus, high specific impulse ion thrusters for electric propulsion of spacecraft for the proposed Jupiter Icy Moon Orbiter (JIMO) mission to three of Jupiter's moons: Callisto, Ganymede and Europa will require high voltage operation to meet mission propulsion. The anticipated approx.6,500 volt net ion energy will require electrical insulation and propellant isolation which must exceed that used successfully by the NASA Solar Electric Propulsion Technology Readiness (NSTAR) Deep Space 1 mission thruster by a factor of approx.6. Xenon propellant isolator prototypes that operate at near one atmosphere and prototypes that operate at low pressures (<100 Torr) have been designed and are being tested for suitability to the JIMO mission requirements. Propellant isolators must be durable to Paschen breakdown, sputter contamination, high temperature, and high voltage while operating for factors longer duration than for the Deep Space 1 Mission. Insulators used to mount the thrusters as well as those needed to support the ion optics have also been designed and are under evaluation. Isolator and insulator concepts, design issues, design guidelines, fabrication considerations and performance issues are presented. The objective of the investigation was to identify candidate isolators and insulators that are sufficiently robust to perform durably and reliably during the proposed JIMO mission.
30 CFR 18.35 - Portable (trailing) cables and cords.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction... used to conduct electrical energy to face equipment shall conform to the following: (1) Have each conductor of a current-carrying capacity consistent with the Insulated Power Cable Engineers Association...
30 CFR 18.35 - Portable (trailing) cables and cords.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction... used to conduct electrical energy to face equipment shall conform to the following: (1) Have each conductor of a current-carrying capacity consistent with the Insulated Power Cable Engineers Association...
30 CFR 18.35 - Portable (trailing) cables and cords.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction... used to conduct electrical energy to face equipment shall conform to the following: (1) Have each conductor of a current-carrying capacity consistent with the Insulated Power Cable Engineers Association...
30 CFR 18.35 - Portable (trailing) cables and cords.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction... used to conduct electrical energy to face equipment shall conform to the following: (1) Have each conductor of a current-carrying capacity consistent with the Insulated Power Cable Engineers Association...
Semi-flexible gas-insulated transmission line using electric field stress shields
Cookson, A.H.; Dale, S.J.; Bolin, P.C.
1982-12-28
A gas-insulated transmission line includes an outer sheath, an inner conductor, an insulating gas electrically insulating the inner conductor from the outer sheath, and insulating supports insulatably supporting the inner conductor within the outer sheath. The inner conductor is provided with flexibility by use of main conductor sections which are joined together through a conductor hub section and flexible flexing elements. Stress shields are provided to control the electric field at the locations of the conductor hub sections where the insulating supports are contacting the inner conductor. The flexing elements and the stress shields may also be utilized in connection with a plug and socket arrangement for providing electrical connection between main conductor sections. 10 figs.
NASA Astrophysics Data System (ADS)
Dobra, R.; Pasculescu, D.; Marc, G.; Risteiu, M.; Antonov, A.
2017-06-01
Insulation resistance measurement is one of the most important tests required by standards and regulations in terms of electrical safety. Why these tests are is to prevent possible accidents caused by electric shock, damage to equipment or outbreak of fire in normal operating conditions of electrical cables. The insulation resistance experiment refers to the testing of electrical cable insulation, which has a measured resistance that must be below the imposed regulations. Using a microcontroller system data regarding the insulation resistance of the power cables is acquired and with SCADA software the test results are displayed.
49 CFR 173.189 - Batteries containing sodium or cells containing sodium.
Code of Federal Regulations, 2013 CFR
2013-10-01
... providing complete electrical insulation of battery terminals or other external electrical connectors. Battery terminals or other electrical connectors penetrating the heat insulation fitted in battery casings must be provided with thermal insulation sufficient to prevent the temperature of the exposed surfaces...
49 CFR 173.189 - Batteries containing sodium or cells containing sodium.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., such as by providing complete electrical insulation of battery terminals or other external electrical connectors. Battery terminals or other electrical connectors penetrating the heat insulation fitted in battery casings must be provided with thermal insulation sufficient to prevent the temperature of the...
49 CFR 173.189 - Batteries containing sodium or cells containing sodium.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., such as by providing complete electrical insulation of battery terminals or other external electrical connectors. Battery terminals or other electrical connectors penetrating the heat insulation fitted in battery casings must be provided with thermal insulation sufficient to prevent the temperature of the...
49 CFR 173.189 - Batteries containing sodium or cells containing sodium.
Code of Federal Regulations, 2014 CFR
2014-10-01
... providing complete electrical insulation of battery terminals or other external electrical connectors. Battery terminals or other electrical connectors penetrating the heat insulation fitted in battery casings must be provided with thermal insulation sufficient to prevent the temperature of the exposed surfaces...
Goldfuss, G.T.
1975-09-16
This invention relates to a device for sensing the level of a liquid while preventing the deposition and accumulation of materials on the exterior surfaces thereof. Two dissimilar metal wires are enclosed within an electrical insulating material, the wires being joined together at one end to form a thermocouple junction outside the insulating material. Heating means is disposed within the electrical insulating material and maintains the device at a temperature substantially greater than that of the environment surrounding the device, the heating means being electrically insulated from the two dissimilar thermocouple wires. In addition, a metal sheath surrounds and contacts both the electrical insulating material and the thermocouple junction. Electrical connections are provided for connecting the heating means with a power source and for connecting the thermocouple wires with a device for sensing the electrical potential across the thermocouple junction. (auth)
Physical properties of Ce-TZP at cryogenic temperature
NASA Astrophysics Data System (ADS)
Han, Y. M.; Chen, Z.; Zhou, M.; Huang, R. J.; Huang, C. J.; Li, L. F.
2014-01-01
Electrical insulators, which are used to insulate cryogenic supply lines and conductor windings, are critical units in superconducting TOKAMAK magnets. Electrical insulators used in superconducting magnets fall into axial and radial insulators. These insulators can be made from glass ribbon epoxy densification and have been used in the Experiment Advanced Superconducting Tokamak (EAST). The properties of Ce-TZP can satisfy the requirement of electrical insulators. In this paper, thermal conductivity, mechanical properties and coefficient of thermal expansion of Ce-TZP have been investigated at cryogenic temperatures. Results indicate that the Ce-TZP shows better properties than epoxy and it demonstrates that the Ce-TZP can be used as insulation material in superconducting magnets.
46 CFR 111.60-21 - Cable insulation tests.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Cable insulation tests. 111.60-21 Section 111.60-21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... electric power and lighting and associated equipment must be checked for proper insulation resistance to...
46 CFR 111.60-21 - Cable insulation tests.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Cable insulation tests. 111.60-21 Section 111.60-21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... electric power and lighting and associated equipment must be checked for proper insulation resistance to...
46 CFR 111.60-21 - Cable insulation tests.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Cable insulation tests. 111.60-21 Section 111.60-21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... electric power and lighting and associated equipment must be checked for proper insulation resistance to...
46 CFR 111.60-21 - Cable insulation tests.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Cable insulation tests. 111.60-21 Section 111.60-21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... electric power and lighting and associated equipment must be checked for proper insulation resistance to...
46 CFR 111.60-21 - Cable insulation tests.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Cable insulation tests. 111.60-21 Section 111.60-21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... electric power and lighting and associated equipment must be checked for proper insulation resistance to...
Method of fabricating high-density hermetic electrical feedthroughs using insulated wire bundles
Shah, Kedar G.; Benett, William J.; Pannu, Satinderpall S.
2016-05-10
A method of fabricating electrical feedthroughs coats of a plurality of electrically conductive wires with an electrically insulating material and bundles the coated wires together in a substantially parallel arrangement. The bundled coated wires are secured to each other by joining the electrically insulating material of adjacent wires together to form a monolithic block which is then cut transverse to the wires to produce a block section having opposing first and second sides with a plurality of electrically conductive feedthroughs extending between them.
Traeholt, Chresten [Frederiksberg, DK; Willen, Dag [Klagshamn, SE; Roden, Mark [Newnan, GA; Tolbert, Jerry C [Carrollton, GA; Lindsay, David [Carrollton, GA; Fisher, Paul W [Heiskell, TN; Nielsen, Carsten Thidemann [Jaegerspris, DK
2014-01-07
This invention relates to a termination unit comprising an end-section of a cable. The end section of the cable defines a central longitudinal axis and comprising end-parts of N electrical phases, an end-part of a neutral conductor and a surrounding thermally insulation envelope adapted to comprising a cooling fluid. The end-parts of the N electrical phases and the end-part of the neutral conductor each comprising at least one electrical conductor and being arranged in the cable concentrically around a core former with a phase 1 located relatively innermost, and phase N relatively outermost in the cable, phase N being surrounded by the neutral conductor, electrical insulation being arrange between neighboring electrical phases and between phase N and the neutral conductor, and wherein the end-parts of the neutral conductor and the electrical phases each comprise a contacting surface electrically connected to at least one branch current lead to provide an electrical connection: The contacting surfaces each having a longitudinal extension, and being located sequentially along the longitudinal extension of the end-section of the cable. The branch current leads being individually insulated from said thermally insulation envelope by individual electrical insulators.
Ceramic electrical insulation for electrical coils, transformers, and magnets
Rice, John A.; Hazelton, Craig S.; Fabian, Paul E.
2002-01-01
A high temperature electrical insulation is described, which is suitable for electrical windings for any number of applications. The inventive insulation comprises a cured preceramic polymer resin, which is preferably a polysiloxane resin. A method for insulating electrical windings, which are intended for use in high temperature environments, such as superconductors and the like, advantageously comprises the steps of, first, applying a preceramic polymer layer to a conductor core, to function as an insulation layer, and second, curing the preceramic polymer layer. The conductor core preferably comprises a metallic wire, which may be wound into a coil. In the preferred method, the applying step comprises a step of wrapping the conductor core with a sleeve or tape of glass or ceramic fabric which has been impregnated by a preceramic polymer resin. The inventive insulation system allows conducting coils and magnets to be fabricated using existing processing equipment, and maximizes the mechanical and thermal performance at both elevated and cryogenic temperatures. It also permits co-processing of the wire and the insulation to increase production efficiencies and reduce overall costs, while still remarkably enhancing performance.
NASA Astrophysics Data System (ADS)
Morita, Yukinori; Mori, Takahiro; Migita, Shinji; Mizubayashi, Wataru; Tanabe, Akihito; Fukuda, Koichi; Matsukawa, Takashi; Endo, Kazuhiko; O'uchi, Shin-ichi; Liu, Yongxun; Masahara, Meishoku; Ota, Hiroyuki
2014-12-01
The performance of parallel electric field tunnel field-effect transistors (TFETs), in which band-to-band tunneling (BTBT) was initiated in-line to the gate electric field was evaluated. The TFET was fabricated by inserting an epitaxially-grown parallel-plate tunnel capacitor between heavily doped source wells and gate insulators. Analysis using a distributed-element circuit model indicated there should be a limit of the drain current caused by the self-voltage-drop effect in the ultrathin channel layer.
2018-01-01
Partial discharges (PD) measurement provides valuable information for the condition assessment of the insulation status of high-voltage (HV) electrical installations. During the last three decades, several PD sensors and measuring techniques have been developed to perform accurate diagnostics when PD measurements are carried out on-site and on-line. For utilities, the most attractive characteristics of on-line measurements are that once the sensors are installed in the grid, the electrical service is uninterrupted and that electrical systems are tested in real operating conditions. In medium-voltage (MV) and HV installations, one of the critical points where an insulation defect can occur is inside metal-clad switchgears (including the cable terminals connected to them). Thus, this kind of equipment is increasingly being monitored to carry out proper maintenance based on their condition. This paper presents a study concerning the application of different electromagnetic measuring techniques (compliant with IEC 62478 and IEC 60270 standards), together with the use of suitable sensors, which enable the evaluation of the insulation condition mainly in MV switchgears. The main scope is to give a general overview about appropriate types of electromagnetic measuring methods and sensors to be applied, while considering the level of detail and accuracy in the diagnosis and the particular fail-save requirements of the electrical installations where the switchgears are located. PMID:29495601
An application area of C60: Overall improvement of insulating oil's electrical performance
NASA Astrophysics Data System (ADS)
Sun, Potao; Sima, Wenxia; Chen, Jiaqi; Zhang, Dingfei; Jiang, Xiongwei; Chen, Qiulin
2018-04-01
We prepared nano-C60 based insulating oil, which has the potential to overcome the application barriers of nanomodified insulating oil. We find that nano-C60 based insulating oil has an excellent stability. Its electrical performance increases by 17.9%, 9.3%, and 8.3% for AC and positive/negative lightning impulse voltage, respectively. We believe that C60 molecules have a strong capacity to absorb electrons and can capture photons in a streamer, which may weaken photoionization in the streamer and thereby improve the electrical performance of insulating oil.
All diamond self-aligned thin film transistor
Gerbi, Jennifer [Champaign, IL
2008-07-01
A substantially all diamond transistor with an electrically insulating substrate, an electrically conductive diamond layer on the substrate, and a source and a drain contact on the electrically conductive diamond layer. An electrically insulating diamond layer is in contact with the electrically conductive diamond layer, and a gate contact is on the electrically insulating diamond layer. The diamond layers may be homoepitaxial, polycrystalline, nanocrystalline or ultrananocrystalline in various combinations.A method of making a substantially all diamond self-aligned gate transistor is disclosed in which seeding and patterning can be avoided or minimized, if desired.
30 CFR 57.12008 - Insulation and fittings for power wires and cables.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Insulation and fittings for power wires and... NONMETAL MINES Electricity Surface and Underground § 57.12008 Insulation and fittings for power wires and cables. Power wires and cables shall be insulated adequately where they pass into or out of electrical...
30 CFR 57.12008 - Insulation and fittings for power wires and cables.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Insulation and fittings for power wires and... NONMETAL MINES Electricity Surface and Underground § 57.12008 Insulation and fittings for power wires and cables. Power wires and cables shall be insulated adequately where they pass into or out of electrical...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-23
..., personal protective equipment, insulating and shielding materials, and insulated tools for working on or...] Electrical Protective Equipment Standard and the Electric Power Generation, Transmission, and Distribution... the information collection requirements specified in its standards on Electrical Protective Equipment...
High power density capacitor and method of fabrication
Tuncer, Enis
2012-11-20
A ductile preform for making a drawn capacitor includes a plurality of electrically insulating, ductile insulator plates and a plurality of electrically conductive, ductile capacitor plates. Each insulator plate is stacked vertically on a respective capacitor plate and each capacitor plate is stacked on a corresponding insulator plate in alignment with only one edge so that other edges are not in alignment and so that each insulator plate extends beyond the other edges. One or more electrically insulating, ductile spacers are disposed in horizontal alignment with each capacitor plate along the other edges and the pattern is repeated so that alternating capacitor plates are stacked on alternating opposite edges of the insulator plates. A final insulator plate is positioned at an extremity of the preform. The preform may then be drawn to fuse the components and decrease the dimensions of the preform that are perpendicular to the direction of the draw.
Conformally encapsulated multi-electrode arrays with seamless insulation
Tabada, Phillipe J.; Shah, Kedar G.; Tolosa, Vanessa; Pannu, Satinderall S.; Tooker, Angela; Delima, Terri; Sheth, Heeral; Felix, Sarah
2016-11-22
Thin-film multi-electrode arrays (MEA) having one or more electrically conductive beams conformally encapsulated in a seamless block of electrically insulating material, and methods of fabricating such MEAs using reproducible, microfabrication processes. One or more electrically conductive traces are formed on scaffold material that is subsequently removed to suspend the traces over a substrate by support portions of the trace beam in contact with the substrate. By encapsulating the suspended traces, either individually or together, with a single continuous layer of an electrically insulating material, a seamless block of electrically insulating material is formed that conforms to the shape of the trace beam structure, including any trace backings which provide suspension support. Electrical contacts, electrodes, or leads of the traces are exposed from the encapsulated trace beam structure by removing the substrate.
Carbon nanotube nanoelectrode arrays
Ren, Zhifeng; Lin, Yuehe; Yantasee, Wassana; Liu, Guodong; Lu, Fang; Tu, Yi
2008-11-18
The present invention relates to microelectode arrays (MEAs), and more particularly to carbon nanotube nanoelectrode arrays (CNT-NEAs) for chemical and biological sensing, and methods of use. A nanoelectrode array includes a carbon nanotube material comprising an array of substantially linear carbon nanotubes each having a proximal end and a distal end, the proximal end of the carbon nanotubes are attached to a catalyst substrate material so as to form the array with a pre-determined site density, wherein the carbon nanotubes are aligned with respect to one another within the array; an electrically insulating layer on the surface of the carbon nanotube material, whereby the distal end of the carbon nanotubes extend beyond the electrically insulating layer; a second adhesive electrically insulating layer on the surface of the electrically insulating layer, whereby the distal end of the carbon nanotubes extend beyond the second adhesive electrically insulating layer; and a metal wire attached to the catalyst substrate material.
DC breakdown characteristics of silicone polymer composites for HVDC insulator applications
NASA Astrophysics Data System (ADS)
Han, Byung-Jo; Seo, In-Jin; Seong, Jae-Kyu; Hwang, Young-Ho; Yang, Hai-Won
2015-11-01
Critical components for HVDC transmission systems are polymer insulators, which have stricter requirements that are more difficult to achieve compared to those of HVAC insulators. In this study, we investigated the optimal design of HVDC polymer insulators by using a DC electric field analysis and experiments. The physical properties of the polymer specimens were analyzed to develop an optimal HVDC polymer material, and four polymer specimens were prepared for DC breakdown experiments. Single and reverse polarity breakdown tests were conducted to analyze the effect of temperature on the breakdown strength of the polymer. In addition, electric fields were analyzed via simulations, in which a small-scale polymer insulator model was applied to prevent dielectric breakdown due to electric field concentration, with four DC operating conditions taken into consideration. The experimental results show that the electrical breakdown strength and the electric field distribution exhibit significant differences in relation to different DC polarity transition procedures.
Dielectrophoretic systems without embedded electrodes
Cummings, Eric B [Livermore, CA; Singh, Anup K [San Francisco, CA
2006-03-21
Method and apparatus for dielectrophoretic separation of particles in a fluid based using array of insulating structures arranged in a fluid flow channel. By utilizing an array of insulating structures, a spatially inhomogeneous electric field is created without the use of the embedded electrodes conventionally employed for dielectrophoretic separations. Moreover, by using these insulating structures a steady applied electric field has been shown to provide for dielectrophoresis in contrast to the conventional use of an alternating electric field. In a uniform array of posts, dielectrophoretic effects have been produced flows having significant pressure-driven and electrokinetic transport. Above a threshold applied electric field, filaments of concentrated and rarefied particles appear in the flow as a result of dielectrophoresis. Above a higher threshold applied voltage, dielectrophoresis produces zones of highly concentrated and immobilized particles. These patterns are strongly influenced by the angle of the array of insulating structures with respect to the mean applied electric field and the shape of the insulating structures.
Reaction and Protection of Electrical Wire Insulators in Atomic-oxygen Environments
NASA Technical Reports Server (NTRS)
Hung, Ching-Cheh; Cantrell, Gidget
1994-01-01
Atomic-oxygen erosion on spacecraft in low Earth orbit is an issue which is becoming increasingly important because of the growing number of spacecraft that will fly in the orbits which have high concentrations of atomic oxygen. In this investigation, the atomic-oxygen durability of three types of electrical wire insulation (carbon-based, fluoropolymer, and polysiloxane elastomer) were evaluated. These insulation materials were exposed to thermal-energy atomic oxygen, which was obtained by RF excitation of air at a pressure of 11-20 Pa. The effects of atomic-oxygen exposure on insulation materials indicate that all carbon-based materials erode at about the same rate as polyamide Kapton and, therefore, are not atomic-oxygen durable. However, the durability of fluoropolymers needs to be evaluated on a case by case basis because the erosion rates of fluoropolymers vary widely. For example, experimental data suggest the formation of atomic fluorine during atomic-oxygen amorphous-fluorocarbon reactions. Dimethyl polysiloxanes (silicone) do not lose mass during atomic-oxygen exposure, but develop silica surfaces which are under tension and frequently crack as a result of loss of methyl groups. However, if the silicone sample surfaces were properly pretreated to provide a certain roughness, atomic oxygen exposure resulted in a sturdy, non-cracked atomic-oxygen durable SiO2 layer. Since the surface does not crack during such silicone-atomic oxygen reaction, the crack-induced contamination by silicone can be reduced or completely stopped. Therefore, with proper pretreatment, silicone can be either a wire insulation material or a coating on wire insulation materials to provide atomic-oxygen durability.
Technique eliminates high voltage arcing at electrode-insulator contact area
NASA Technical Reports Server (NTRS)
Mealy, G.
1967-01-01
Coating the electrode-insulator contact area with silver epoxy conductive paint and forcing the electrode and insulator tightly together into a permanent connection, eliminates electrical arcing in high-voltage electrodes supplying electrical power to vacuum facilities.
NASA Astrophysics Data System (ADS)
Walukow, Stephy B.; Manjang, Salama; Zainuddin, Zahir; Samman, Faizal Arya
2018-03-01
This research is to analyze design of ceramic and polymer 150 kV insulators for the tropical area. The use of an insulator certainly requires an electric field. The leakage current and breakdown voltage this happens the contaminant on the surface of the insulator. This type of contaminant can be rain, dust, salt air, extreme weather (much in tropical climates), industrial pollutants and cracks on the surface resulting in collisions. The method used in this research is magnetic field and electric field isolator using Quicfield software. To get the test results variation ranges 20 kV, 70 kV and 150 kV. Side effects of magnetic and electric fields around the insulator. The simulation results show the accumulated contaminants on the surface. Planning should be done in insulator insulator on unstable insulator. Thus, the approach using this commercially available software can be applied to. Therefore, the development of further simulations on the different types of composite insulators used on.
NASA Astrophysics Data System (ADS)
Wu, Zhixiong; Huang, Rongjin; Huang, ChuanJun; Yang, Yanfang; Huang, Xiongyi; Li, Laifeng
2017-12-01
The Glass-fiber reinforced plastic (GFRP) fabricated by the vacuum bag process was selected as the high voltage electrical insulation and mechanical support for the superconducting joints and the current leads for the ITER Feeder system. To evaluate the cryogenic mechanical properties of the GFRP, the mechanical properties such as the short beam strength (SBS), the tensile strength and the fatigue fracture strength after 30,000 cycles, were measured at 77K in this study. The results demonstrated that the GFRP met the design requirements of ITER.
Ardila-Rey, Jorge Alfredo; Montaña, Johny; de Castro, Bruno Albuquerque; Schurch, Roger; Covolan Ulson, José Alfredo; Muhammad-Sukki, Firdaus; Bani, Nurul Aini
2018-03-29
Partial discharges (PDs) are one of the most important classes of ageing processes that occur within electrical insulation. PD detection is a standardized technique to qualify the state of the insulation in electric assets such as machines and power cables. Generally, the classical phase-resolved partial discharge (PRPD) patterns are used to perform the identification of the type of PD source when they are related to a specific degradation process and when the electrical noise level is low compared to the magnitudes of the PD signals. However, in practical applications such as measurements carried out in the field or in industrial environments, several PD sources and large noise signals are usually present simultaneously. In this study, three different inductive sensors have been used to evaluate and compare their performance in the detection and separation of multiple PD sources by applying the chromatic technique to each of the measured signals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Homce, G.T.; Thalimer, J.R.
1996-05-01
Most electric motor predictive maintenance methods have drawbacks that limit their effectiveness in the mining environment. The US Bureau of Miens (USBM) is developing an alternative approach to detect winding insulation breakdown in advance of complete motor failure. In order to evaluate the analysis algorithms necessary for this approach, the USBM has designed and installed a system to monitor 120 electric motors in a coal preparation plant. The computer-based experimental system continuously gathers, stores, and analyzes electrical parameters for each motor. The results are then correlated to data from conventional motor-maintenance methods and in-service failures to determine if the analysismore » algorithms can detect signs of insulation deterioration and impending failure. This paper explains the on-line testing approach used in this research, and describes monitoring system design and implementation. At this writing data analysis is underway, but conclusive results are not yet available.« less
Forming Refractory Insulation On Copper Wire
NASA Technical Reports Server (NTRS)
Setlock, J.; Roberts, G.
1995-01-01
Alternative insulating process forms flexible coat of uncured refractory insulating material on copper wire. Coated wire formed into coil or other complex shape. Wire-coating apparatus forms "green" coat on copper wire. After wire coiled, heating converts "green" coat to refractory electrical insulator. When cured to final brittle form, insulating material withstands temperatures above melting temperature of wire. Process used to make coils for motors, solenoids, and other electrical devices to be operated at high temperatures.
Lee, Jae-Kyu; Choi, Duck-Kyun
2012-07-01
Low temperature processing for fabrication of transistor backplane is a cost effective solution while fabrication on a flexible substrate offers a new opportunity in display business. Combination of both merits is evaluated in this investigation. In this study, the ZnO thin film transistor on a flexible Polyethersulphone (PES) substrate is fabricated using RF magnetron sputtering. Since the selection and design of compatible gate insulator is another important issue to improve the electrical properties of ZnO TFT, we have evaluated three gate insulator candidates; SiO2, SiNx and SiO2/SiNx. The SiO2 passivation on both sides of PES substrate prior to the deposition of ZnO layer was effective to enhance the mechanical and thermal stability. Among the fabricated devices, ZnO TFT employing SiNx/SiO2 stacked gate exhibited the best performance. The device parameters of interest are extracted and the on/off current ratio, field effect mobility, threshold voltage and subthreshold swing are 10(7), 22 cm2/Vs, 1.7 V and 0.4 V/decade, respectively.
Breakdown characteristics of SF6/N2 in severely non-uniform electric fields at low temperatures
NASA Astrophysics Data System (ADS)
Wang, Y.; Gao, Z. W.; Li, G. X.; Zhu, X. C.; Yu, C. L.; Liang, J. Q.; Li, L.
2018-01-01
SF6 has good electrical insulating properties, which is widely used as an insulating medium of GIS, GIL and other electrical equipment. However, the reliability of electrical equipments´ insulated gas is greatly challenged in cold areas, since SF6 more readily liquefies. To solve the problem, SF6 can be mixed with N2 to maintain the insulating properties, and reduce its liquefaction temperature. Such practice has certain application prospect. In this paper, a breakdown experimental platform was built to study the insulating property of SF6/N2 at low temperature, wherein the temperature of the platform can be adjusted. A severely non-uniform electric field was generated by a rod-plate electrode. The breakdown characteristics of SF6/N2 with different mixing proportions at low pressures and low temperatures were measured. The result showed that the mixed gas was not liquefied within the temperature range. Temperature had insignificant influence on the insulating property thereof. The result in the paper has certain guiding significance for applying SF6/N2 mixed gas in high latitude areas.
Electric Field and Current Density Performance Analysis of Sf6, C4f8 and CO2 Gases As An Insulation
NASA Astrophysics Data System (ADS)
Mazli, Ahmad Danial Ahmad; Jamail, Nor Akmal Mohd; Azlin Othman, Nordiana
2017-08-01
SF6 gases are not only widely used as an insulating component in electric power industry but also as an arc extinguishing performance in high voltage (HV) gas-insulated circuit breaker (GCB). SF6 gases is generally used in the production of semiconductor materials and devices. Though these gasses is widely used in many application, the presences of temperature hotspot in the insulations may affect the insulation characteristics particularly electric field and current density. Therefore, it is important to determine the relationship between electric field and current density of gasses used in the insulator in the presence of hotspot. In this paper, three types of gases in particular Sulphur Hexafluoride (SF6), Octafluorocylobutane (C4F8), and Carbon Dioxide (CO2) was used in the insulator for gas insulation with the presence of two hotspots. These two hotspost were detected by referring the rising temperature in the insulator which are 1000 and 2000 Kelvin temperature for hotspot 1 and hotspot 2, respectively. From the simulation results, it can be concluded that Sulphur Hexafluoride (SF6) is the best choice for gas insulation since it had the lowest current density and electric field compared to Octafluorocylobutane (C4F8), and Carbon Dioxide (CO2). It is observed that the maximum current density and electric field for SF6 during normal condition are 358.94 × 103 V/m and 0.643 × 109 A/m2, respectively. Meanwhile, during temperature rising at hotspot 1 and hotspot 2, SF6 also had lowest current density and electric field compared to the other gasses where the results for Emax and Jmax at hotspot 1 are 322.34 × 103 V/m and 1.934 × 109 A/m2, respectively; While, Emax and Jmax at hotspot 2 are 259.77× 103 V/m and 2.824 × 109 A/m2. The results of this analysis can be used to find the best choices of gas that can be used in the insulator.
A real-time insulation detection method for battery packs used in electric vehicles
NASA Astrophysics Data System (ADS)
Tian, Jiaqiang; Wang, Yujie; Yang, Duo; Zhang, Xu; Chen, Zonghai
2018-05-01
Due to the energy crisis and environmental pollution, electric vehicles have become more and more popular. Compared to traditional fuel vehicles, the electric vehicles are integrated with more high-voltage components, which have potential security risks of insulation. The insulation resistance between the chassis and the direct current bus of the battery pack is easily affected by factors such as temperature, humidity and vibration. In order to ensure the safe and reliable operation of the electric vehicles, it is necessary to detect the insulation resistance of the battery pack. This paper proposes an insulation detection scheme based on low-frequency signal injection method. Considering the insulation detector which can be easily affected by noises, the algorithm based on Kalman filter is proposed. Moreover, the battery pack is always in the states of charging and discharging during driving, which will lead to frequent changes in the voltage of the battery pack and affect the estimation accuracy of insulation detector. Therefore the recursive least squares algorithm is adopted to solve the problem that the detection results of insulation detector mutate with the voltage of the battery pack. The performance of the proposed method is verified by dynamic and static experiments.
Evaluation of Radiation Belt Space Weather Forecasts for Internal Charging Analyses
NASA Technical Reports Server (NTRS)
Minow, Joseph I.; Coffey, Victoria N.; Jun, Insoo; Garrett, Henry B.
2007-01-01
A variety of static electron radiation belt models, space weather prediction tools, and energetic electron datasets are used by spacecraft designers and operations support personnel as internal charging code inputs to evaluate electrostatic discharge risks in space systems due to exposure to relativistic electron environments. Evaluating the environment inputs is often accomplished by comparing whether the data set or forecast tool reliability predicts measured electron flux (or fluence over a given period) for some chosen period. While this technique is useful as a model metric, it does not provide the information necessary to evaluate whether short term deviances of the predicted flux is important in the charging evaluations. In this paper, we use a 1-D internal charging model to compute electric fields generated in insulating materials as a function of time when exposed to relativistic electrons in the Earth's magnetosphere. The resulting fields are assumed to represent the "true" electric fields and are compared with electric field values computed from relativistic electron environments derived from a variety of space environment and forecast tools. Deviances in predicted fields compared to the "true" fields which depend on insulator charging time constants will be evaluated as a potential metric for determining the importance of predicted and measured relativistic electron flux deviations over a range of time scales.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shoup, R.W.; Long, F.; Martin, T.H.
Sandia is developing PBFA-Z, a 20-MA driver for z-pinch experiments by replacing the water lines, insulator stack, and MITLs on PBFA II with new hardware. The design of the vacuum insulator stack was dictated by the drive voltage, the electric field stress and grading requirements, the water line and MITL interface requirements, and the machine operations and maintenance requirements. The insulator stack will consist of four separate modules, each of a different design because of different voltage drive and hardware interface requirements. The shape of the components in each module, i.e., grading rings, insulator rings, flux excluders, anode and cathodemore » conductors, and the design of the water line and MITL interfaces, were optimized by using the electrostatic analysis codes, ELECTRO and JASON. The time dependent performance of the insulator stack was evaluated using IVORY, a 2-D PIC code. This paper will describe the insulator stack design and present the results of the ELECTRO and IVORY analyses.« less
Crossover from Incoherent to Coherent Phonon Scattering in Epitaxial Oxide Superlattices
2013-12-08
function of interface density. We do so by synthesizing superlattices of electrically insulating perovskite oxides 1. REPORT DATE (DD-MM-YYYY) 4. TITLE...synthesizing superlattices of electrically insulating perovskite oxides and systematically varying the interface density, with unit-cell precision, using two...a function of interface density. Wedo so by synthesizing superlattices of electrically insulating perovskite oxides and systematically varying the
Development of electrically insulating coatings for service in a lithium environment
NASA Astrophysics Data System (ADS)
Natesan, K.; Uz, M.; Wieder, S.
2000-12-01
Several experiments were conducted to develop electrically insulating CaO coatings on a V-4Cr-4Ti alloy for application in a Li environment. The coatings were developed by vapor-phase transport external to Li, and also in situ in a Li-Ca environment at elevated temperature. In the vapor-phase study, several geometrical arrangements were examined to obtain a uniform coating of Ca on the specimens, which were typically coupons measuring 5 to 10 × 5 × 1 mm 3. After Ca deposition from the vapor phase, the specimens were oxidized in a high-purity argon environment at 600°C to convert the deposited metal into oxide. The specimens exhibited insulating characteristics after this oxidation step. Several promising coated specimens were then exposed to high-purity Li at 500°C for 48-68 h to determine coating integrity. Microstructural characteristics of the coatings were evaluated by scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) analysis. Electrical resistances of the coatings were measured by a two-probe method between room temperature and 700°C before and after exposure to Li.
Insulation detection of electric vehicle batteries
NASA Astrophysics Data System (ADS)
Dai, Qiqi; Zhu, Zhongwen; Huang, Denggao; Du, Mingxing; Wei, Kexin
2018-06-01
In this paper, an electric vehicle insulation detection method with single side switching fixed resistance is designed, and the hardware and software design of the system are given. The experiment proves that the insulation detection system can detect the insulation resistance in a wide range of resistance values, and accurately report the fault level. This system can effectively monitor the insulation fault between the car body and the high voltage line and avoid the passengers from being injured.
NASA Astrophysics Data System (ADS)
Dobra, R.; Pasculescu, D.; Risteiu, M.; Buica, G.; Jevremović, V.
2017-06-01
This paper describe some possibilities to minimize voltages switching-off risks from the mining power networks, in case of insulated resistance faults by using a predictive diagnose method. The cables from the neutral insulated power networks (underground mining) are designed to provide a flexible electrical connection between portable or mobile equipment and a point of supply, including main feeder cable for continuous miners, pump cable, and power supply cable. An electronic protection for insulated resistance of mining power cables can be made using this predictive strategy. The main role of electronic relays for insulation resistance degradation of the electrical power cables, from neutral insulated power networks, is to provide a permanent measurement of the insulated resistance between phases and ground, in order to switch-off voltage when the resistance value is below a standard value. The automat system of protection is able to signalize the failure and the human operator will be early informed about the switch-off power and will have time to take proper measures to fix the failure. This logic for fast and automat switch-off voltage without aprioristic announcement is suitable for the electrical installations, realizing so a protection against fires and explosion. It is presented an algorithm and an anticipative relay for insulated resistance control from three-phase low voltage installations with insulated neutral connection.
Gas insulated transmission line having low inductance intercalated sheath
Cookson, Alan H.
1978-01-01
A gas insulated transmission line including an outer sheath, an inner conductor disposed within the outer sheath, and an insulating gas between the inner conductor and the outer sheath. The outer sheath comprises an insulating tube having first and second ends, and having interior and exterior surfaces. A first electrically conducting foil is secured to the interior surface of the insulating tube, is spirally wound from one tube end to the second tube end, and has a plurality of overlapping turns. A second electrically conducting foil is secured to the exterior surface of the insulating tube, and is spirally wound in the opposite direction from the first electrically conducting foil. By winding the foils in opposite directions, the inductances within the intercalated sheath will cancel each other out.
Aluminum nitride insulating films for MOSFET devices
NASA Technical Reports Server (NTRS)
Lewicki, G. W.; Maserjian, J.
1972-01-01
Application of aluminum nitrides as electrical insulator for electric capacitors is discussed. Electrical properties of aluminum nitrides are analyzed and specific use with field effect transistors is defined. Operational limits of field effect transistors are developed.
Electrochemical removal of material from metallic work
Csakvary, Tibor; Fromson, Robert E.
1980-05-13
Deburring, polishing, surface forming and the like are carried out by electrochemical machining with conformable electrode means including an electrically conducting and an insulating web. The surface of the work to be processed is covered by a deformable electrically insulating web or cloth which is perforated and conforms with the work. The web is covered by a deformable perforated electrically conducting screen electrode which also conforms with, and is insulated from, the work by the insulating web. An electrolyte is conducted through the electrode and insulating web and along the work through a perforated elastic member which engages the electrode under pressure pressing the electrode and web against the work. High current under low voltage is conducted betwen the electrode and work through the insulator, removing material from the work. Under the pressure of the elastic member, the electrode and insulator continue to conform with the work and the spacing between the electrode and work is maintained constant.
Electrically insulating films deposited on V-4%Cr-4%Ti by reactive CVD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, J.H.
1998-04-01
In the design of liquid-metal blankets for magnetic fusion reactors, corrosion resistance of structural materials and the magnetohydrodynamic forces and their influence on thermal hydraulics and corrosion are major concerns. Electrically insulating CaO films deposited on V-4%Cr-4%Ti exhibit high-ohmic insulator behavior even though a small amount of vanadium from the alloy become incorporated into the film. However, when vanadium concentration in the film is > 15 wt.%, the film becomes conductive. When the vanadium concentration is high in localized areas, a calcium vanadate phase that exhibits semiconductor behavior can form. The objective of this study is to evaluate electrically insulatingmore » films that were deposited on V-4%Cr-4%Ti by a reactive chemical vapor deposition (CVD) method. To this end, CaO and Ca-V-O coatings were produced on vanadium alloys by CVD and by a metallic-vapor process to investigate the electrical resistance of the coatings. The authors found that the Ca-V-O films exhibited insulator behavior when the ratio of calcium concentration to vanadium concentration R in the film > 0.9, and semiconductor or conductor behavior when R < 0.8. However, in some cases, semiconductor behavior was observed when CaO-coated samples with R > 0.98 were exposed in liquid lithium. Based on these studies, they conclude that semiconductor behavior occurs if a conductive calcium vanadate phase is present in localized regions in the CaO coating.« less
Park, J.H.
1998-06-23
A method for fabricating an electrically insulating coating on a surface is disclosed comprising coating the surface with a metal, and reacting the metal coated surface with a nonmetal so as to create a film on the metal-coated surface. Alternatively, the invention provides for a method for producing a noncorrosive, electrically insulating coating on a surface saturated with a nonmetal comprising supplying a molten fluid, dissolving a metal in the molten fluid to create a mixture, and contacting the mixture with the saturated surface. Lastly, the invention provides an electrically insulative coating comprising an underlying structural substrate coated with an oxide or nitride compound. 2 figs.
Analysis of thermal characteristics of electrical wiring for load groups in cattle barns.
Kim, Doo Hyun; Yoo, Sang-Ok; Kim, Sung Chul; Hwang, Dong Kyu
2015-01-01
The purpose of the current study is to analyze the thermal characteristics of electrical wirings depending on the number of operating load by connecting four types of electrical wirings that are selected by surveying the conditions for the electric fans, automatic waterers and halogen warm lamps that were installed in cattle barns in different years. The conditions of 64 cattle barns were surveyed and an experimental test was conducted at a cattle barn. The condition-survey covered inappropriate design, construction and misuse of electrical facility, including electrical wiring mostly used, and the mode of load current was evaluated. The survey showed that the mode of load current increased as the installation year of the fans, waterers and halogen lamps became older. Accordingly, the cattle barn manager needed to increase the capacity of the circuit breaker, which promoted the degradation of insulation of the electrical wires' sheath and increased possibility for electrical fires in the long-run. The test showed that the saturation temperature of the wire insulated sheath increased depending on the installation year of the load groups, in case of VCTFK and VFF electric wires, therefore, requiring their careful usage in the cattle barns.
Analysis of thermal characteristics of electrical wiring for load groups in cattle barns
KIM, Doo Hyun; YOO, Sang-Ok; KIM, Sung Chul; HWANG, Dong Kyu
2015-01-01
The purpose of the current study is to analyze the thermal characteristics of electrical wirings depending on the number of operating load by connecting four types of electrical wirings that are selected by surveying the conditions for the electric fans, automatic waterers and halogen warm lamps that were installed in cattle barns in different years. The conditions of 64 cattle barns were surveyed and an experimental test was conducted at a cattle barn. The condition-survey covered inappropriate design, construction and misuse of electrical facility, including electrical wiring mostly used, and the mode of load current was evaluated. The survey showed that the mode of load current increased as the installation year of the fans, waterers and halogen lamps became older. Accordingly, the cattle barn manager needed to increase the capacity of the circuit breaker, which promoted the degradation of insulation of the electrical wires’ sheath and increased possibility for electrical fires in the long-run. The test showed that the saturation temperature of the wire insulated sheath increased depending on the installation year of the load groups, in case of VCTFK and VFF electric wires, therefore, requiring their careful usage in the cattle barns. PMID:26118855
Le Bras, David; Strømme, Maria; Mihranyan, Albert
2015-05-07
Cellulose is one of the oldest electrically insulating materials used in oil-filled high-power transformers and cables. However, reports on the dielectric properties of nanocellulose for electrical insulator applications are scarce. The aim of this study was to characterize the dielectric properties of two nanocellulose types from wood, viz., nanofibrillated cellulose (NFC), and algae, viz., Cladophora cellulose, for electrical insulator applications. The cellulose materials were characterized with X-ray diffraction, nitrogen gas and moisture sorption isotherms, helium pycnometry, mechanical testing, and dielectric spectroscopy at various relative humidities. The algae nanocellulose sample was more crystalline and had a lower moisture sorption capacity at low and moderate relative humidities, compared to NFC. On the other hand, it was much more porous, which resulted in lower strength and higher dielectric loss than for NFC. It is concluded that the solid-state properties of nanocellulose may have a substantial impact on the dielectric properties of electrical insulator applications.
Code of Federal Regulations, 2012 CFR
2012-07-01
... wires not insulated from one another, suitable for carrying an electric current. Electric Cable. An assembly of one or more insulated conductors of electric current under a common or integral jacket. A cable... the primary electric current or power is transmitted. Signaling Cable. A fiber optic cable, or a cable...
Code of Federal Regulations, 2014 CFR
2014-07-01
... wires not insulated from one another, suitable for carrying an electric current. Electric Cable. An assembly of one or more insulated conductors of electric current under a common or integral jacket. A cable... the primary electric current or power is transmitted. Signaling Cable. A fiber optic cable, or a cable...
Code of Federal Regulations, 2013 CFR
2013-07-01
... wires not insulated from one another, suitable for carrying an electric current. Electric Cable. An assembly of one or more insulated conductors of electric current under a common or integral jacket. A cable... the primary electric current or power is transmitted. Signaling Cable. A fiber optic cable, or a cable...
Polymer materials and component evaluation in acidic-radiation environments
NASA Astrophysics Data System (ADS)
Celina, M.; Gillen, K. T.; Malone, G. M.; Clough, R. L.; Nelson, W. H.
2001-07-01
Polymeric materials used for cable/wire insulation, electrical connectors, O-rings, seals, and in critical components such as motors, level switches and resistive thermo-devices were evaluated under accelerated degradation conditions in combined radiation-oxidative elevated-temperature acidic-vapor (nitric/oxalic) environments relevant to conditions in isotope processing facilities. Experiments included the assessment of individual materials such as PEEK, polyimides, polyolefin based cable insulation, EPDM rubbers, various epoxy systems, commercial caulking materials as well as some functional testing of components. We discuss how to conduct laboratory experiments to simulate such complex hostile environments, describe some degradation effects encountered, and evaluate the impact on appropriate material and component selection.
Side-by-Side Testing of Water Heating Systems: Results from the 2013–2014 Evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colon, Carlos
2017-07-01
The Florida Solar Energy Center (FSEC) completed a fourth year-long evaluation on residential hot water heating systems in a laboratory environment (east central Florida, hot-humid climate). The evaluation studied the performance of five hot water systems (HWS) plus a reference baseline system for each fuel, (i.e., electric and natural gas). Electric HWS consisted of two residential electric heat pump water heaters (HPWHs, 60 and 80 gallons), a solar thermal system using a polymer absorber (glazed) collector with 80-gallon storage and a duplicate 50-gallon standard electric water heater with added cap and wrap insulation. Baseline performance data were collected from amore » standard 50-gallon electric water heater of minimum code efficiency to compare energy savings. Similarly, a standard 40-gallon upright vented natural gas water heater served as baseline for the natural gas fuel category. The latter, having a larger jacket diameter [18 in., with an energy factor (EF) of 0.62] with increased insulation, replaced a former baseline (17 in. diameter, EF = 0.59) that served during three previous testing rotations (2009–2013). A high-efficiency, condensing natural gas hybrid water heater with 27-gallon buffered tank was also tested and compared against the gas baseline. All systems underwent testing simultaneously side-by-side under the criteria specified elsewhere in this report.« less
Side-by-Side Testing of Water Heating Systems: Results from the 2013–2014 Evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colon, Carlos
The Florida Solar Energy Center (FSEC) completed a fourth year-long evaluation on residential hot water heating systems in a laboratory environment (east central Florida, hot-humid climate). The evaluation studied the performance of five hot water systems (HWS) plus a reference baseline system for each fuel, (i.e., electric and natural gas). Electric HWS consisted of two residential electric heat pump water heaters (HPWHs, 60 and 80 gallons), a solar thermal system using a polymer absorber (glazed) collector with 80-gallon storage and a duplicate 50-gallon standard electric water heater with added cap and wrap insulation. Baseline performance data were collected from amore » standard 50-gallon electric water heater of minimum code efficiency to compare energy savings. Similarly, a standard 40-gallon upright vented natural gas water heater served as baseline for the natural gas fuel category. The latter, having a larger jacket diameter [18 in., with an energy factor (EF) of 0.62] with increased insulation, replaced a former baseline (17 in. diameter, EF = 0.59) that served during three previous testing rotations (2009–2013). A high-efficiency, condensing natural gas hybrid water heater with 27-gallon buffered tank was also tested and compared against the gas baseline. All systems underwent testing simultaneously side-by-side under the criteria specified elsewhere in this report.« less
NASA Technical Reports Server (NTRS)
1982-01-01
The basic test methods of aging and deterioration mechanisms of electrical insulating materials are discussed. A comprehensive test system developed to study the degradation process is described. This system is completely checked, and calibrated with a few insulating material samples.
Etude de l'isolation hybride en vue de son application dans les transformateurs de puissance
NASA Astrophysics Data System (ADS)
Kassi, Koutoua Simon
For nearly a century the conventional insulation (oil / cellulose complex) was the type of insulation used in the power transformers and most electrical power equipments. But the cellulose paper, the solid part of this insulation has many weaknesses. Indeed, the aging of cellulose paper in power transformers is accelerated by moisture, oxygen, metal catalysts, temperature, etc.). The risk of failures is thereby increased. Another major weakness of cellulose paper is its inability to protect the electrical transformer windings against the harmful effects of corrosive sulfur. Given all the weaknesses of cellulose paper, several studies have been conducted to evaluate the performance of aramid paper, which has better thermal properties. The aramid paper is currently used as high temperature insulation, combined with high fire point oils (synthetic and vegetable oils), mainly in electric traction transformers. The hybrid solid insulation is associated with mineral oil or with high fire point oils; it finds application in transformers of fixed and mobile substations. Manufacturing technology is controlled by manufacturers but operators of electrical networks do not have baseline data (standards) as diagnostic tools, allowing them to monitor the health/condition of the isolation in this new type of transformer. The overall objective of this research was to study the hybrid insulation and to demonstrate its potential use in power transformers. This overall objective has been subdivided into three specific objectives, namely: (i) improving the diagnostic of the condition of solid hybrid insulation and conventional solid insulation; (ii) diagnosing the condition of oils sampled from hybrid, high temperature and conventional insulation and finally (iii) investigating the ability of aramid paper and cellulose paper to protect the copper (electrical windings) against harmful effects of corrosive sulfur. In order to achieve these objectives, thermal accelerated aging were conducted in laboratory : • according to ASTM D1934 (American Society for Testing and Materials), four different type of insulation samples were considered, namely the oil impregnated hybrid insulation, oil impregnated cellulose insulation, oil impregnated high temperature insulation and paperless oil samples. Following the aging procedure, a local overheating (thermal fault) was applied on the paper sample using an experimental setup designed in our laboratory (first and second specific objectives). • according to the IEC (International Electrotechnical Commission)-62535, for mineral, synthetic, vegetable and silicones oils (third specific objective). The degree of polymerization by viscosimetry and the determination of the carbon oxides by dissolved gas analysis (DGA) were determined to assess the condition of the paper in conventional insulation compared to that of the hybrid insulation. Our results indicate that cellulose paper in the hybrid insulation is less degraded when compared to the conventional insulation. Since the life of a transformer is directly related to the solid insulation, these results suggest that hybrid transformer insulation has a higher life than conventional ones. Subsequently, a very good correlation between amounts of oxides of carbon and degree of polymerization was established. This relationship might help improving the accuracy when interpreting the results of the DGA for transformers (first specific objective). Regarding the second specific objective, we used four physicochemical diagnosis techniques (dissolved decay products 'DDP', Turbidity, interfacial tension (IFT) and water content) to assess comparatively the quality of oils sampled from the four types of insulation. According to our results, the oil of the hybrid insulation indicated better quality at a certain stage of aging and especially after the application of thermal stress on the solid insulation. For the third specific objective, a qualitative study followed by a quantitative ones provided the following results: aramid paper better protects copper against corrosive sulfur in mineral oil; synthetic ester oils are not corrosive; the vegetable oil is not corrosive but in the presence of cellulose paper, a degree of corrosiveness is observed and the aramid paper promotes formation of corrosive sulfur in silicone oils. Based on the obtained results, the feasibility of using hybrid insulation in power transformers is possible. Keywords : power transformer; hybrid insulation; high temperature insulation; conventional insulation; sub-stations; aramid paper; cellulose paper; degree of polymerization; dissolved gases analysis (DGA); mineral oils; vegetable oils; synthetic oils; corrosive sulfur.
Cost of a recall of a single-center experience managing the Riata defibrillator lead.
Hussain, Sarah; Moorman, Liza; Moorman, J Randall; DiMarco, John P; Malhotra, Rohit; Darby, Andrew; Bilchick, Kenneth; Mangrum, J Michael; Ferguson, John D; Mason, Pamela K
2015-01-15
Riata and Riata ST defibrillator leads (St. Jude Medical, Sylmar, California) were recalled in 2011 due to increased risk of insulation failure leading to externalized cables. Fluoroscopic screening can identify insulation failure, although the relation between mechanical failure and electrical failure is unclear. At the time of the recall, the University of Virginia developed a screening program, including fluoroscopic evaluation, education sessions, device interrogation, and remote monitoring for patients with this defibrillator lead. The aim of this study was to review the outcomes of the screening program, including costs, which were absorbed by our institution. Costs were calculated using Medicare reimbursement estimates. Forty-eight patients participated in the screening program. At initial screening, 31% were found to have evidence of insulation failure but electrical function was normal in all leads. The cost of this program was $35,358.72. The cost per diagnosis of mechanical lead failure was $2,357.25. During 2 years of follow-up, 1 patient experienced Riata lead electrical failure without fluoroscopic evidence of insulation failure. Patients were more likely to have a lead revision if there was evidence of insulation failure. Lead revisions occurred at the time of generator change in 88% of patients with insulation failure but in only 14% of patients with a fluoroscopically normal lead (p = 0.04). The cost of recall-related defibrillator lead revisions was $81,704.55. In conclusion, our Riata screening program added expense without clear benefit to patients. In fact, patients may have been put at more risk by undergoing defibrillator lead revisions based solely on the results of the fluoroscopic screening. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kislyakov, M. A.; Chernov, V. A.; Maksimkin, V. L.; Bozhin, Yu. M.
2017-12-01
The article deals with modern methods of monitoring the state and predicting the life of electric machines. In 50% of the cases of failure in the performance of electric machines is associated with insulation damage. As promising, nondestructive methods of control, methods based on the investigation of the processes of polarization occurring in insulating materials are proposed. To improve the accuracy of determining the state of insulation, a multiparametric approach is considered, which is a basis for the development of an expert system for estimating the state of health.
Influences of Electrification and Salt on Hydrophobicity of Sample Surface in Dynamic Drop Test
NASA Astrophysics Data System (ADS)
Shiibara, Daiki; Arata, Yoshihiro; Haji, Kenichi; Miyake, Takuma; Sakoda, Tatsuya; Otsubo, Masahisa
Studies on the development of deterioration/ performance evaluation method for outdoor electric insulation of polymer materials are pushed forward now in the International Council on Large Electric Systems (CIGRE). The small scale test method (Dynamic drop test; DDT) which could evaluate disappearance characteristics of hydrophobicity easily was suggested. This test is to evaluate resistance of a sample to loss of hydrophobicity due to moisture and simultaneous electric stress. As factors for deterioration of hydrophobicity on a sample in DDT, various factors such as electrical influence, physical influence by water droplets and so on were considered. In this study, we investigated two kinds of factors (electrification and salt) affecting deterioration of hydrophobicity on the surface of a silicone rubber until ignition of continuous electrical discharge in DDT.
Component for thermoelectric generator
Purdy, David L.
1977-01-01
In a thermoelectric generator, a component comprises a ceramic insulator, having over limited areas thereof, each area corresponding to a terminal end of thermoelectric wires, a coating of a first metal which adheres to the insulator, and an electrical thermoelectric junction including a second metal which wets said first metal and adheres to said terminal ends but does not wet said insulator, and a cloth composed of electrically insulating threads interlaced with thermoelectric wires.
High-voltage electrical apparatus utilizing an insulating gas of sulfur hexafluoride and helium
Wootton, Roy E.
1980-01-01
High-voltage electrical apparatus includes an outer housing at low potential, an inner electrode disposed within the outer housing at high potential with respect thereto, and support means for insulatably supporting the inner electrode within the outer housing. Conducting particles contaminate the interior of the outer housing, and an insulating gas electrically insulates the inner electrode from the outer housing even in the presence of the conducting particles. The insulating gas is comprised of sulfur hexafluoride at a partial pressure of from about 2.9 to about 3.4 atmospheres absolute, and helium at a partial pressure from about 1.1 to about 11.4 atmospheres absolute. The sulfur hexafluoride comprises between 20 and 65 volume percent of the insulating gas.
On the optical evaluation of the EL2 deep level concentration in semi-insulating GaAs
NASA Technical Reports Server (NTRS)
Walukiewicz, W.; Lagowski, J.; Gatos, H. C.
1983-01-01
A practical procedure for the evaluation of the Fermi energy in semi-insulating (SI)GaAs from electrical measurements is presented. This procedure makes it possible to reliably extend the determination of the major deep level (EL2) concentration, by near-infrared absorption measurements, to SIGaAs. Employing this procedure, it is shown that the EL2 concentration in Czochralski-grown GaAs increases monotonically with increasing As/Ga ratio (throughout the conversion from SI n type to semiconducting p-type crystals) rather than abruptly as previously proposed.
Partial discharge detection and analysis in low pressure environments
NASA Astrophysics Data System (ADS)
Liu, Xin
Typical aerospace vehicles (aircraft and spacecraft) experience a wide range of operating pressures during ascending and returning to earth. Compared to the sea-level atmospheric pressure (760 Torr), the pressure at about 60 km altitude is 2 Torr. The performance of the electric power system components of the aerospace vehicles must remain reliable even under such sub-atmospheric operating conditions. It is well known that the dielectric strength of gaseous insulators, while the electrode arrangement remains unchanged, is pressure dependent. Therefore, characterization of the performance and behavior of the electrical insulation in flight vehicles in low-pressure environments is extremely important. Partial discharge testing is one of the practical methods for evaluating the integrity of electrical insulation in aerospace vehicles. This dissertation describes partial discharge (PD) measurements performed mainly with 60 Hz ac energization in air, argon and helium, for pressures between 2 and 760 Torr. Two main electrode arrangements were used. One was a needle-plane electrode arrangement with a Teflon insulating barrier. The other one was a twisted pair of insulated conductors taken from a standard aircraft wiring harness. The measurement results are presented in terms of typical PD current pulse waveforms and waveform analysis for both main electrode arrangements. The evaluation criteria are the waveform polarity, magnitude, shape, rise time, and phase angle (temporal location) relative to the source voltage. Two-variable histograms and statistical averages of the PD parameters are presented. The PD physical mechanisms are analyzed. For PD pattern recognition, both statistical methods (such as discharge parameter dot pattern representation, discharge parameter phase distribution, statistical operator calculations, and PD fingerprint development) and wavelet transform applications are investigated. The main conclusions of the dissertation include: (1) The PD current pulse waveforms are dependent on the pressure. (2) The rise time of the waveform is another effective PD current pulse characteristic indicator. (3) PD fingerprint patterns that are already available for atmospheric pressure (760 Torr) conditions are inadequate for the evaluation of PD pulses at low pressures. (4) Various wavelet transform techniques can be used effectively for PD pulse signal denoising purposes, and for PD pulse waveform transient feature recognition.
Depositing bulk or micro-scale electrodes
Shah, Kedar G.; Pannu, Satinderpall S.; Tolosa, Vanessa; Tooker, Angela C.; Sheth, Heeral J.; Felix, Sarah H.; Delima, Terri L.
2016-11-01
Thicker electrodes are provided on microelectronic device using thermo-compression bonding. A thin-film electrical conducting layer forms electrical conduits and bulk depositing provides an electrode layer on the thin-film electrical conducting layer. An insulating polymer layer encapsulates the electrically thin-film electrical conducting layer and the electrode layer. Some of the insulating layer is removed to expose the electrode layer.
Determination of life for a polyimide-epoxy alternator insulation system
NASA Technical Reports Server (NTRS)
Penn, W. B.; Schaefer, R. F.; Balke, R. L.
1974-01-01
Tests were conducted to predict remaining electrical insulation life of a polyimide epoxy insulated 60 KW, 208 volt homopolar inductor alternator, following completion of 23,130 hours of turbo-alternator endurance tests. The sectioned armature winding of this alternator stator was used as means to evaluate and measure end-life at several aging temperatures for development of an Arrhenius plot. A one-half life rate of 11.3 C was established from these data with a predicted remaining life of 60,000 hours at an armature winding temperature of 248 C and a total life, including endurance test time, of 61,645 hours.
NASA Astrophysics Data System (ADS)
Kikunaga, Kazuya; Terasaki, Nao
2018-04-01
A new method of evaluating electrical conductivity in a structural material such as carbon fiber reinforced plastic (CFRP) using surface potential is proposed. After the CFRP was charged by corona discharge, the surface potential distribution was measured by scanning a vibrating linear array sensor along the object surface with a high spatial resolution over a short duration. A correlation between the weave pattern of the CFRP and the surface potential distribution was observed. This result indicates that it is possible to evaluate the electrical conductivity of a material comprising conducting and insulating regions.
Micro-fabricated integrated coil and magnetic circuit and method of manufacturing thereof
Mihailovich, Robert E.; Papavasiliou, Alex P.; Mehrotra, Vivek; Stupar, Philip A.; Borwick, III, Robert L.; Ganguli, Rahul; DeNatale, Jeffrey F.
2017-03-28
A micro-fabricated electromagnetic device is provided for on-circuit integration. The electromagnetic device includes a core. The core has a plurality of electrically insulating layers positioned alternatingly between a plurality of magnetic layers to collectively form a continuous laminate having alternating magnetic and electrically insulating layers. The electromagnetic device includes a coil embedded in openings of the semiconductor substrate. An insulating material is positioned in the cavity and between the coil and an inner surface of the core. A method of manufacturing the electromagnetic device includes providing a semiconductor substrate having openings formed therein. Windings of a coil are electroplated and embedded in the openings. The insulating material is coated on or around an exposed surface of the coil. Alternating magnetic layers and electrically insulating layers may be micro-fabricated and electroplated as a single and substantially continuous segment on or around the insulating material.
Devitt, Brian Meldan; Baker, Joseph F; Fitzgerald, Eilis; McCarthy, Conor
2010-01-01
A case of injury to the third web space of the right hand of a rugby player, as a result of buddy strapping with electrical insulating tape of the little and ring finger, is presented. A deep laceration of the web space and distal palmar fascia resulted, necessitating wound exploration and repair. This case highlights the danger of using electrical insulating tape as a means to buddy strap fingers. PMID:22736733
Polymer Coating of Carbon Nanotube Fibers for Electric Microcables
Alvarez, Noe T.; Ochmann, Timothy; Kienzle, Nicholas; Ruff, Brad; Haase, Mark R.; Hopkins, Tracy; Pixley, Sarah; Mast, David; Schulz, Mark J.; Shanov, Vesselin
2014-01-01
Carbon nanotubes (CNTs) are considered the most promising candidates to replace Cu and Al in a large number of electrical, mechanical and thermal applications. Although most CNT industrial applications require macro and micro size CNT fiber assemblies, several techniques to make conducting CNT fibers, threads, yarns and ropes have been reported to this day, and improvement of their electrical and mechanical conductivity continues. Some electrical applications of these CNT conducting fibers require an insulating layer for electrical insulation and protection against mechanical tearing. Ideally, a flexible insulator such as hydrogenated nitrile butadiene rubber (HNBR) on the CNT fiber can allow fabrication of CNT coils that can be assembled into lightweight, corrosion resistant electrical motors and transformers. HNBR is a largely used commercial polymer that unlike other cable-coating polymers such as polyvinyl chloride (PVC), it provides unique continuous and uniform coating on the CNT fibers. The polymer coated/insulated CNT fibers have a 26.54 μm average diameter—which is approximately four times the diameter of a red blood cell—is produced by a simple dip-coating process. Our results confirm that HNBR in solution creates a few microns uniform insulation and mechanical protection over a CNT fiber that is used as the electrically conducting core. PMID:28344254
Polymer Coating of Carbon Nanotube Fibers for Electric Microcables.
Alvarez, Noe T; Ochmann, Timothy; Kienzle, Nicholas; Ruff, Brad; Haase, Mark R; Hopkins, Tracy; Pixley, Sarah; Mast, David; Schulz, Mark J; Shanov, Vesselin
2014-11-04
Carbon nanotubes (CNTs) are considered the most promising candidates to replace Cu and Al in a large number of electrical, mechanical and thermal applications. Although most CNT industrial applications require macro and micro size CNT fiber assemblies, several techniques to make conducting CNT fibers, threads, yarns and ropes have been reported to this day, and improvement of their electrical and mechanical conductivity continues. Some electrical applications of these CNT conducting fibers require an insulating layer for electrical insulation and protection against mechanical tearing. Ideally, a flexible insulator such as hydrogenated nitrile butadiene rubber (HNBR) on the CNT fiber can allow fabrication of CNT coils that can be assembled into lightweight, corrosion resistant electrical motors and transformers. HNBR is a largely used commercial polymer that unlike other cable-coating polymers such as polyvinyl chloride (PVC), it provides unique continuous and uniform coating on the CNT fibers. The polymer coated/insulated CNT fibers have a 26.54 μm average diameter-which is approximately four times the diameter of a red blood cell-is produced by a simple dip-coating process. Our results confirm that HNBR in solution creates a few microns uniform insulation and mechanical protection over a CNT fiber that is used as the electrically conducting core.
Element for use in an inductive coupler for downhole drilling components
Hall, David R.; Hall, Jr., H. Tracy; Pixton, David S.; Dahlgren, Scott; Fox, Joe; Sneddon, Cameron
2006-08-29
The present invention includes an element for use in an inductive coupler in a downhole component. The element includes a plurality of ductile, generally U-shaped leaves that are electrically conductive. The leaves are less than about 0.0625" thick and are separated by an electrically insulating material. These leaves are aligned so as to form a generally circular trough. The invention also includes an inductive coupler for use in downhole components, the inductive coupler including an annular housing having a recess with a magnetically conductive, electrically insulating (MCEI) element disposed in the recess. The MCEI element includes a plurality of segments where each segment further includes a plurality of ductile, generally U-shaped electrically conductive leaves. Each leaf is less than about 0.0625" thick and separated from the otherwise adjacent leaves by electrically insulating material. The segments and leaves are aligned so as to form a generally circular trough. The inductive coupler further includes an insulated conductor disposed within the generally circular trough. A polymer fills spaces between otherwise adjacent segments, the annular housing, insulated conductor, and further fills the circular trough.
Ardila-Rey, Jorge Alfredo; Montaña, Johny; Schurch, Roger; Covolan Ulson, José Alfredo; Bani, Nurul Aini
2018-01-01
Partial discharges (PDs) are one of the most important classes of ageing processes that occur within electrical insulation. PD detection is a standardized technique to qualify the state of the insulation in electric assets such as machines and power cables. Generally, the classical phase-resolved partial discharge (PRPD) patterns are used to perform the identification of the type of PD source when they are related to a specific degradation process and when the electrical noise level is low compared to the magnitudes of the PD signals. However, in practical applications such as measurements carried out in the field or in industrial environments, several PD sources and large noise signals are usually present simultaneously. In this study, three different inductive sensors have been used to evaluate and compare their performance in the detection and separation of multiple PD sources by applying the chromatic technique to each of the measured signals. PMID:29596337
Morsy, M A; Shwehdi, M H
2006-03-01
Electron spin resonance (ESR) study is carried out to characterize thermal endurance of insulating materials used in power cable industry. The presented work provides ESR investigation and evaluation of widely used cable insulation materials, namely polyvinyl chloride (PVC) and cross-linked polyethylene (XLPE). The results confirm the fact that PVC is rapidly degrades than XLPE. The study also indicates that colorants and cable's manufacturing processes enhance the thermal resistance of the PVC. It also verifies the powerfulness and the importance of the ESR-testing of insulation materials compared to other tests assumed by International Electrotechnical Commission (IEC) Standard 216-procedure, e.g. weight loss (WL), electric strength (ES) or tensile strength (TS). The estimated thermal endurance parameters by ESR-method show that the other standard methods overestimate these parameters and produce less accurate thermal life time curves of cable insulation materials.
Flexible gas insulated transmission line having regions of reduced electric field
Cookson, Alan H.; Fischer, William H.; Yoon, Kue H.; Meyer, Jeffry R.
1983-01-01
A gas insulated transmission line having radially flexible field control means for reducing the electric field along the periphery of the inner conductor at predetermined locations wherein the support insulators are located. The radially flexible field control means of the invention includes several structural variations of the inner conductor, wherein careful controlling of the length to depth of surface depressions produces regions of reduced electric field. Several embodiments of the invention dispose a flexible connector at the predetermined location along the inner conductor where the surface depressions that control the reduced electric field are located.
A Method to have Multi-Layer Thermal Insulation Provide Damage Detection
NASA Technical Reports Server (NTRS)
Woodward, Stanley E.; Taylor, Bryant D.; Jones, Thomas W.; Shams, Qamar A.; Lyons, Frankel; Henderson, Donald
2007-01-01
Design and testing of a multi-layer thermal insulation system that also provides debris and micrometeorite damage detection is presented. One layer of the insulation is designed as an array of passive open-circuit electrically conductive spiral trace sensors. The sensors are a new class of sensors that are electrically open-circuits that have no electrical connections thereby eliminating one cause of failure to circuits. The sensors are powered using external oscillating magnetic fields. Once electrically active, they produce their own harmonic magnetic fields. The responding field frequency changes if any sensor is damaged. When the sensors are used together in close proximity, the inductive coupling between sensors provides a means of telemetry. The spiral trace design using reflective electrically conductive material provides sufficient area coverage for the sensor array to serves as a layer of thermal insulation. The other insulation layers are designed to allow the sensor s magnetic field to permeate the insulation layers while having total reflective surface area to reduce thermal energy transfer. Results of characterizing individual sensors and the sensor array s response to punctures are presented. Results of hypervelocity impact testing using projectiles of 1-3.6 millimeter diameter having speeds ranging from 6.7-7.1 kilometers per second are also presented.
Electrochemical cell with powdered electrically insulative material as a separator
Mathers, James P.; Olszanski, Theodore W.; Boquist, Carl W.
1978-01-01
A secondary electrochemical cell includes electrodes separated by a layer of electrically insulative powder. The powder includes refractory materials selected from the oxides and nitrides of metals and metaloids. The powdered refractory material, blended with electrolyte particles, can be compacted in layers with electrode materials to form an integral electrode structure or separately assembled into the cell. The assembled cell is heated to operating temperature leaving porous layers of electrically insulative, refractory particles, containing molten electrolyte between the electrodes.
Method of preparing a powdered, electrically insulative separator for use in an electrochemical cell
Cooper, Tom O.; Miller, William E.
1978-01-01
A secondary electrochemical cell includes electrodes separated by a layer of electrically insulative powder. The powder includes refractory materials selected from the oxides and nitrides of metals and metaloids. The powdered refractory material, blended with electrolyte particles, is compacted as layers onto an electrode to form an integral electrode structure and assembled into the cell. The assembled cell is heated to its operating temperature leaving porous layers of electrically insulative, refractory particles, containing molten electrolyte between the electrodes.
Tokarz, Richard D.
1982-01-01
A high temperature sensor includes a pair of electrical conductors separated by a mass of electrical insulating material. The insulating material has a measurable resistivity within the sensor that changes in relation to the temperature of the insulating material within a high temperature range (1,000 to 2,000 K.). When required, the sensor can be encased within a ceramic protective coating.
Mechanism of the free charge carrier generation in the dielectric breakdown
NASA Astrophysics Data System (ADS)
Rahim, N. A. A.; Ranom, R.; Zainuddin, H.
2017-12-01
Many studies have been conducted to investigate the effect of environmental, mechanical and electrical stresses on insulator. However, studies on physical process of discharge phenomenon, leading to the breakdown of the insulator surface are lacking and difficult to comprehend. Therefore, this paper analysed charge carrier generation mechanism that can cause free charge carrier generation, leading toward surface discharge development. Besides, this paper developed a model of surface discharge based on the charge generation mechanism on the outdoor insulator. Nernst’s Planck theory was used in order to model the behaviour of the charge carriers while Poisson’s equation was used to determine the distribution of electric field on insulator surface. In the modelling of surface discharge on the outdoor insulator, electric field dependent molecular ionization was used as the charge generation mechanism. A mathematical model of the surface discharge was solved using method of line technique (MOL). The result from the mathematical model showed that the behaviour of net space charge density was correlated with the electric field distribution.
System and method for sub-sea cable termination
Chen, Qin; Yin, Weijun; Zhang, Lili
2016-04-05
An electrical connector includes a first cable termination chamber configured to receive a first power cable having at least a first conductor sheathed at least in part by a first insulating layer and a first insulation screen layer. Also, the electrical connector includes a first non-linear resistive layer configured to be coupled to a portion of the first conductor unsheathed by at least the first insulation screen layer and configured to control a direct current electric field generated in the first cable termination chamber. In addition, the electrical connector includes a first deflector configured to be coupled to the first power cable and control an alternating current electric field generated in the first cable termination chamber.
Treeing phenomenon of thermoplastic polyethylene blends for recyclable cable insulation materials
NASA Astrophysics Data System (ADS)
Li, Lunzhi; Zhang, Kai; Zhong, Lisheng; Gao, Jinghui; Xu, Man; Chen, Guanghui; Fu, Mingli
2017-02-01
Owing to its good recyclability and low processing energy consumption, non-crosslinked polyethylene blends (e.g. LLDPE-HDPE blends) are considered as one of potential environmental-friendly substitutions for crosslinked polyethylene (XLPE) as cable insulation material. Although extensive work has been performed for measuring the basic dielectric properties, there is a lack of the investigations on the aging properties for such a material system, which hinders the evaluation of reliability and lifetime of the material for cable insulation. In this paper, we study the electric aging phenomenon of 0.7LLDPE-0.3HDPE blending material by investigating the treeing behavior, and its comparison with XLPE and LLDPE. Treeing tests show that the 0.7LLDPE-0.3HDPE blends have lower probability for treeing as well as smaller treeing dimensions. Further thermal analysis and microstructure study results suggest that the blends exhibit larger proportion of thick lamellae and higher crystallinity with homogeneously-distributed amorphous region, which is responsible for good anti-treeing performance. Our finding provides the evidence that the 0.7LLDPE-0.3HDPE blends exhibits better electric-aging-retardance properties than XLPE, which may result in a potential application for cable insulation.
Application of Ultrasonic Guided Waves for Evaluating Aging Wire Insulation
NASA Technical Reports Server (NTRS)
Anastasi, Robert F.; Madaras, Eric I.
2005-01-01
Aging wiring has become a critical issue to the aerospace and aircraft industries due to Shuttle and aircraft incidents. The problem is that over time the insulation on wire becomes brittle and cracks. This exposes the underlying conductive wire to the potential for short circuits and fire. Popular methods of monitoring aging wire problems focuses on applying electrical sensing techniques that are sensitive to the conductor's condition, but not very sensitive to the wire insulation's condition. Measurement of wire insulation stiffness and ultrasonic properties by ultrasonic guided waves is being examined. Experimental measurements showed that the lowest order extensional mode could be sensitive to stiffness changes in the wire insulation. To test this theory conventional wire samples were heat damaged in an oven, in a range of heating conditions. The samples were 12, 16, and 20 gauge and the heat damage introduced material changes in the wire insulation that made the originally flexible insulation brittle and darker in color. Results showed that extensional mode phase velocity increased for the samples that were exposed to heat for longer duration.
Electrical insulator assembly with oxygen permeation barrier
Van Der Beck, R.R.; Bond, J.A.
1994-03-29
A high-voltage electrical insulator for electrically insulating a thermoelectric module in a spacecraft from a niobium-1% zirconium alloy wall of a heat exchanger filled with liquid lithium while providing good thermal conductivity between the heat exchanger and the thermoelectric module. The insulator has a single crystal alumina layer (SxAl[sub 2]O[sub 3], sapphire) with a niobium foil layer bonded thereto on the surface of the alumina crystal facing the heat exchanger wall, and a molybdenum layer bonded to the niobium layer to act as an oxygen permeation barrier to preclude the oxygen depleting effects of the lithium from causing undesirable niobium-aluminum intermetallic layers near the alumina-niobium interface. 3 figures.
NASA Astrophysics Data System (ADS)
Taylor, Gabriel James
The failure of electrical cables exposed to severe thermal fire conditions are a safety concern for operating commercial nuclear power plants (NPPs). The Nuclear Regulatory Commission (NRC) has promoted the use of risk-informed and performance-based methods for fire protection which resulted in a need to develop realistic methods to quantify the risk of fire to NPP safety. Recent electrical cable testing has been conducted to provide empirical data on the failure modes and likelihood of fire-induced damage. This thesis evaluated numerous aspects of the data. Circuit characteristics affecting fire-induced electrical cable failure modes have been evaluated. In addition, thermal failure temperatures corresponding to cable functional failures have been evaluated to develop realistic single point thermal failure thresholds and probability distributions for specific cable insulation types. Finally, the data was used to evaluate the prediction capabilities of a one-dimension conductive heat transfer model used to predict cable failure.
The mechanical properties of polyimide films after exposure to high pH
NASA Technical Reports Server (NTRS)
Croall, Catharine I.; St.clair, Terry L.
1992-01-01
Wiring failures linked to insulation damage have drawn much attention in the aerospace industry and concerns have developed regarding the stability and safety of polyimide insulated electrical wire. Several polyimides were selected for evaluation for resistance to degradation by various aqueous alkaline solutions. The polyimides under evaluation include commercially available films such as Kapton (tk), Apical (tk), LaRC(tk)-TPI, and Upilex(tk)R and S, as well as a number of experimental films prepared by NASA Langley. Thermally imidized films were studied for their retention of mechanical properties after exposure to high pH solutions under stressed conditions.
Vinegar, Harold J.; Sandberg, Chester Ledlie
2010-11-09
A heating system for a subsurface formation is described. The heating system includes a first heater, a second heater, and a third heater placed in an opening in the subsurface formation. Each heater includes: an electrical conductor; an insulation layer at least partially surrounding the electrical conductor; and an electrically conductive sheath at least partially surrounding the insulation layer. The electrical conductor is electrically coupled to the sheath at a lower end portion of the heater. The lower end portion is the portion of the heater distal from a surface of the opening. The first heater, the second heater, and the third heater are electrically coupled at the lower end portions of the heaters. The first heater, the second heater, and the third heater are configured to be electrically coupled in a three-phase wye configuration.
NASA Astrophysics Data System (ADS)
Zhang, J. W.; Zhou, T. C.; Wang, J. X.; Yang, X. F.; Zhu, F.; Tian, L. M.; Liu, R. T.
2017-10-01
As an insulating dielectric, polyimide is favorable for the application of optoelectronics, electrical insulation system in electric power industry, insulating, and packaging materials in space aircraft, due to its excellent thermal, mechanical and electrical insulating stability. The charge storage profile of such insulating dielectric is utmost important to its application, when it is exposed to electron irradiation, high voltage corona discharge or other treatments. These treatments could induce changes in physical and chemical properties of treated samples. To investigate the charge storage mechanism of the insulating dielectrics after high-voltage corona discharge, the relaxation processes responsible for corona charged polyimide films under different poling conditions were analyzed by the Thermally Stimulated Discharge Currents method (TSDC). In the results of thermal relaxation process, the appearance of various peaks in TSDC spectra provided a deep insight into the molecular status in the dielectric material and reflected stored space charge relaxation process in the insulating polymers after corona discharge treatments. Furthermore, the different space charge distribution status under various poling temperature and different discharge voltage level were also investigated, which could partly reflect the influence of the ambiance condition on the functional dielectrics after corona poling.
Not Available
1981-01-29
A high temperature sensor is described which includes a pair of electrical conductors separated by a mass of electrical insulating material. The insulating material has a measurable resistivity within the sensor that changes in relation to the temperature of the insulating material within a high temperature range (1000 to 2000/sup 0/K). When required, the sensor can be encased within a ceramic protective coating.
Downhole data transmission system
Hall, David R.; Hall, Jr., H. Tracy; Pixton, David S; Dahlgren, Scott; Fox, Joe
2006-06-20
A system for transmitting data through a string of downhole components. In one aspect, the system includes first and second magnetically conductive, electrically insulating elements at both ends of the component. Each element includes a first U-shaped trough with a bottom, first and second sides and an opening between the two sides. Electrically conducting coils are located in each trough. An electrical conductor connects the coils in each component. In operation, a varying current applied to a first coil in one component generates a varying magnetic field in the first magnetically conductive, electrically insulating element, which varying magnetic field is conducted to and thereby produces a varying magnetic field in the second magnetically conductive, electrically insulating element of a connected component, which magnetic field thereby generates a varying electrical current in the second coil in the connected component.
Downhole Data Transmission System
Hall, David R.; Hall, Jr., H. Tracy; Pixton, David; Dahlgren, Scott; Fox, Joe
2003-12-30
A system for transmitting data through a string of downhole components. In one aspect, the system includes first and second magnetically conductive, electrically insulating elements at both ends of the component. Each element includes a first U-shaped trough with a bottom, first and second sides and an opening between the two sides. Electrically conducting coils are located in each trough. An electrical conductor connects the coils in each component. In operation, a varying current applied to a first coil in one component generates a varying magnetic field in the first magnetically conductive, electrically insulating element, which varying magnetic field is conducted to and thereby produces a varying magnetic field in the second magnetically conductive, electrically insulating element of a connected component, which magnetic field thereby generates a varying electrical current in the second coil in the connected component.
Campbell, Jeremy B [Torrance, CA; Newson, Steve [Redondo Beach, CA
2011-11-15
A power module assembly of the type suitable for deployment in a vehicular power inverter, wherein the power inverter has a grounded chassis, is provided. The power module assembly comprises a conductive base layer electrically coupled to the chassis, an insulating layer disposed on the conductive base layer, a first conductive node disposed on the insulating layer, a second conductive node disposed on the insulating layer, wherein the first and second conductive nodes are electrically isolated from each other. The power module assembly also comprises a first capacitor having a first electrode electrically connected to the conductive base layer, and a second electrode electrically connected to the first conductive node, and further comprises a second capacitor having a first electrode electrically connected to the conductive base layer, and a second electrode electrically connected to the second conductive node.
High pressure electrical insulated feed thru connector
Oeschger, Joseph E.; Berkeland, James E.
1979-11-13
A feed-thru type hermetic electrical connector including at least one connector pin feeding through an insulator block within the metallic body of the connector shell. A compression stop arrangement coaxially disposed about the insulator body is brazed to the shell, and the shoulder on the insulator block bears against this top in a compression mode, the high pressure or internal connector being at the opposite end of the shell. Seals between the pin and an internal bore at the high pressure end of the insulator block and between the insulator block and the metallic shell at the high pressure end are hermetically brazed in place, the first of these also functioning to transfer the axial compressive load without permitting appreciable shear action between the pin and insulator block.
Polyimide/Glass Composite High-Temperature Insulation
NASA Technical Reports Server (NTRS)
Pater, Ruth H.; Vasquez, Peter; Chatlin, Richard L.; Smith, Donald L.; Skalski, Thomas J.; Johnson, Gary S.; Chu, Sang-Hyon
2009-01-01
Lightweight composites of RP46 polyimide and glass fibers have been found to be useful as extraordinarily fire-resistant electrical-insulation materials. RP46 is a polyimide of the polymerization of monomeric reactants (PMR) type, developed by NASA Langley Research Center. RP46 has properties that make it attractive for use in electrical insulation at high temperatures. These properties include high-temperature resistance, low relative permittivity, low dissipation factor, outstanding mechanical properties, and excellent resistance to moisture and chemicals. Moreover, RP46 contains no halogen or other toxic materials and when burned it does not produce toxic fume or gaseous materials. The U. S. Navy has been seeking lightweight, high-temperature-resistant electrical-insulation materials in a program directed toward reducing fire hazards and weights in ship electrical systems. To satisfy the requirements of this program, an electrical-insulation material must withstand a 3-hour gas-flame test at 1,600 F (about 871 C). Prior to the development reported here, RP46 was rated for use at temperatures from -150 to +700 F (about -101 to 371 C), and no polymeric product - not even RP46 - was expected to withstand the Navy 3-hour gas-flame test.
NASA Astrophysics Data System (ADS)
Benallou, Amina; Hadri, Baghdad; Martinez-Vega, Juan; El Islam Boukortt, Nour
2018-04-01
The effect of percolation threshold on the behaviour of electrical conductivity at high electric field of insulating polymers has been briefly investigated in literature. Sometimes the dead ends links are not taken into account in the study of the electric field effect on the electrical properties. In this work, we present a theoretical framework and Monte Carlo simulation of the behaviour of the electric conductivity at high electric field based on the percolation theory using the traps energies levels which are distributed according to distribution law (uniform, Gaussian, and power-law). When a solid insulating material is subjected to a high electric field, and during trapping mechanism the dead ends of traps affect with decreasing the electric conductivity according to the traps energies levels, the correlation length of the clusters, the length of the dead ends, and the concentration of the accessible positions for the electrons. A reasonably good agreement is obtained between simulation results and the theoretical framework.
An Apparatus for Monitoring the Health of Electrical Cables
NASA Technical Reports Server (NTRS)
Pai, Devdas M.; Tatum, Paul; Pace, Rachel
2004-01-01
As with most elements of infrastructure, electrical wiring is innocuous; usually hidden away and unnoticed until it fails. Failure of infrastructure, however, sometimes leads to serious health and safety hazards. Electrical wiring fails when the polymeric (usually rubber) insulation material that sheathes the conductor gets embrittled with age from exposure to pressure, temperature or radiation cycling or when the insulation gets removed by the chafing of wires against each other. Miles of such wiring can be found in typical aircraft, with significant lengths of the wiring immersed in aviation fuel - a recipe for an explosion if a spark were to occur. Diagnosing the health of wiring is thus an important aspect of monitoring the health of aging aircraft. Stress wave propagation through wiring affords a quick and non-invasive method for health monitoring. The extent to which a stress wave propagating through the cable core gets attenuated depends on the condition of the surrounding insulation. When the insulation is in good condition - supple and pliable, there is more damping or attenuation of the waveform. As the insulation gets embrittled and cracked, the attenuation is likely to reduce and the waveform of the propagating stress wave is likely to change. The monitoring of these changes provides a potential tool to evaluate wiring or cabling in service that is not accessible for visual inspection. This experiment has been designed for use in an introductory mechanical or materials engineering instrumentation lab. Initial setup (after procuring all the materials) should take the lab instructor about 4 hours. A single measurement can be initiated and saved to disk in less than 3 minutes, allowing for all the students in a typical lab section to take their own data rather than share a single set of data for the entire class.
Flux pumping for non-insulated and metal-insulated HTS coils
NASA Astrophysics Data System (ADS)
Ma, Jun; Geng, Jianzhao; Coombs, T. A.
2018-01-01
High-temperature superconducting (HTS) coils wound from coated conductors without turn-to-turn insulation (non-insulated (NI) coils) have been proven with excellent electrical and thermal performances. However, the slow charging of NI coils has been a long-lasting problem. In this work, we explore using a transformer-rectifier HTS flux pump to charge an NI coil and a metal-insulated coil. The charging performance comparison is made between different coils. Comprehensive study is done to thoroughly understand the electrical-magnetic transience in charging these coils. We will show that the low-voltage high-current flux pump is especially suitable for charging NI coils with very low characteristic resistance.
Hall, David R [Provo, UT; Fox, Joe [Spanish Fork, UT
2008-01-15
A transmission system in a downhole component comprises a data transmission element in both ends of the downhole component. Each data transmission element houses an electrically conducting coil in a MCEI circular trough. An electrical conductor connects both the transmission elements. The electrical conductor comprises at least three electrically conductive elements insulated from each other. In the preferred embodiment the electrical conductor comprises an electrically conducting outer shield, an electrically conducting inner shield and an electrical conducting core. In some embodiments of the present invention, the electrical conductor comprises an electrically insulating jacket. In other embodiments, the electrical conductor comprises a pair of twisted wires. In some embodiments, the electrical conductor comprises semi-conductive material.
Quantum spin liquids and the metal-insulator transition in doped semiconductors.
Potter, Andrew C; Barkeshli, Maissam; McGreevy, John; Senthil, T
2012-08-17
We describe a new possible route to the metal-insulator transition in doped semiconductors such as Si:P or Si:B. We explore the possibility that the loss of metallic transport occurs through Mott localization of electrons into a quantum spin liquid state with diffusive charge neutral "spinon" excitations. Such a quantum spin liquid state can appear as an intermediate phase between the metal and the Anderson-Mott insulator. An immediate testable consequence is the presence of metallic thermal conductivity at low temperature in the electrical insulator near the metal-insulator transition. Further, we show that though the transition is second order, the zero temperature residual electrical conductivity will jump as the transition is approached from the metallic side. However, the electrical conductivity will have a nonmonotonic temperature dependence that may complicate the extrapolation to zero temperature. Signatures in other experiments and some comparisons with existing data are made.
Data transmission element for downhole drilling components
Hall, David R.; Hall, Jr., H. Tracy; Pixton, David S.; Dahlgren, Scott; Fox, Joe; Sneddon, Cameron; Briscoe, Michael
2006-01-31
A robust data transmission element for transmitting information between downhole components, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The data transmission element components include a generally U-shaped annular housing, a generally U-shaped magnetically conductive, electrically insulating element such as ferrite, and an insulated conductor. Features on the magnetically conducting, electrically insulating element and the annular housing create a pocket when assembled. The data transmission element is filled with a polymer to retain the components within the annular housing by filling the pocket with the polymer. The polymer can bond with the annular housing and the insulated conductor but preferably not the magnetically conductive, electrically insulating element. A data transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe.
Semi-flexible gas-insulated transmission line using sandwiched discs for intermittent flexing joints
Kommineni, P.R.
1983-02-15
A gas-insulated transmission line includes an outer sheath, an inner conductor, an insulating gas electrically insulating the inner conductor from the outer sheath, and insulating supports insulatably supporting the inner conductor within the outer sheath. The inner conductor is provided with flexibility by the use of main conductor sections which are joined together through a conductor hub section and flexible flexing elements. Stress shields are provided to control the electric field at the locations of the conductor hub sections where the insulating supports are contacting the inner conductor. The flexing elements are formed by sandwiching together, by fusing, a pair of thin hollow discs which are fixedly secured to both the main conductor sections and the conductor hub section. 4 figs.
Power module assembly with reduced inductance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, Terence G.; Stancu, Constantin C.; Jaksic, Marko
A power module assembly has a plurality of electrically conducting layers, including a first layer and a third layer. One or more electrically insulating layers are operatively connected to each of the plurality of electrically conducting layers. The electrically insulating layers include a second layer positioned between and configured to electrically isolate the first and the third layers. The first layer is configured to carry a first current flowing in a first direction. The third layer is configured to carry a second current flowing in a second direction opposite to the first direction, thereby reducing an inductance of the assembly.more » The electrically insulating layers may include a fourth layer positioned between and configured to electrically isolate the third layer and a fifth layer. The assembly results in a combined substrate and heat sink structure. The assembly eliminates the requirements for connections between separate substrate and heat sink structures.« less
NASA Astrophysics Data System (ADS)
Okabe, Shigemitsu; Tsuboi, Toshihiro; Takami, Jun
The power-frequency withstand voltage tests are regulated on electric power equipment in JEC by evaluating the lifetime reliability with a Weibull distribution function. The evaluation method is still controversial in terms of consideration of a plural number of faults and some alternative methods were proposed on this subject. The present paper first discusses the physical meanings of the various kinds of evaluating methods and secondly examines their effects on the power-frequency withstand voltage tests. Further, an appropriate method is investigated for an oil-filled transformer and a gas insulated switchgear with taking notice of dielectric breakdown or partial discharge mechanism under various insulating material and structure conditions and the tentative conclusion gives that the conventional method would be most pertinent under the present conditions.
Electrical insulator assembly with oxygen permeation barrier
Van Der Beck, Roland R.; Bond, James A.
1994-01-01
A high-voltage electrical insulator (21) for electrically insulating a thermoelectric module (17) in a spacecraft from a niobium-1% zirconium alloy wall (11) of a heat exchanger (13) filled with liquid lithium (16) while providing good thermal conductivity between the heat exchanger and the thermoelectric module. The insulator (21) has a single crystal alumina layer (SxAl.sub.2 O.sub.3, sapphire) with a niobium foil layer (32) bonded thereto on the surface of the alumina crystal (26) facing the heat exchanger wall (11), and a molybdenum layer (31) bonded to the niobium layer (32) to act as an oxygen permeation barrier to preclude the oxygen depleting effects of the lithium from causing undesirable niobium-aluminum intermetallic layers near the alumina-niobium interface.
NASA Astrophysics Data System (ADS)
Zhang, Shuai; Li, Qi; Hu, Jun; Zhang, Bo; He, Jinliang
2018-04-01
Electrical degradation of insulating polymers at electrode interfaces is an essential factor in determining long-term reliability. A critical challenge is that the exact mechanism of degradation is not fully understood, either experimentally or theoretically, due to the inherent complex processes. Consequently, in this study, we investigate electroluminescence (EL) at the interface of an electrode and insulator, and determine the relationship between EL and electrical degradation. Using a tip-plate electrode structure, the unique features of EL under a highly divergent field are investigated. The voltage type (alternating or direct current), the polymer matrix, and the time of pressing are also investigated separately. A study of EL from insulators under a divergent field is provided, and the relationship between EL spectra and degradation is discussed. It is shown that EL spectra under a divergent field have unique characteristics compared with EL spectra from polymer films under a uniform field and the most obvious one is the UV emission. The results obtained in the current investigation bring us a step closer to understanding the process of electrical degradation and provide a potential way to diagnose insulator defects.
Large Enhancement of Thermal Conductivity and Lorenz Number in Topological Insulator Thin Films.
Luo, Zhe; Tian, Jifa; Huang, Shouyuan; Srinivasan, Mithun; Maassen, Jesse; Chen, Yong P; Xu, Xianfan
2018-02-27
Topological insulators (TI) have attracted extensive research effort due to their insulating bulk states but conducting surface states. However, investigation and understanding of thermal transport in topological insulators, particularly the effect of surface states, are lacking. In this work, we studied thickness-dependent in-plane thermal and electrical conductivity of Bi 2 Te 2 Se TI thin films. A large enhancement in both thermal and electrical conductivity was observed for films with thicknesses below 20 nm, which is attributed to the surface states and bulk-insulating nature of these films. Moreover, a surface Lorenz number much larger than the Sommerfeld value was found. Systematic transport measurements indicated that the Fermi surface is located near the charge neutrality point (CNP) when the film thickness is below 20 nm. Possible reasons for the large Lorenz number include electrical and thermal current decoupling in the surface state Dirac fluid, and bipolar diffusion transport. A simple computational model indicates that the surface states and bipolar diffusion indeed can lead to enhanced electrical and thermal transport and a large Lorenz number.
Liu, Ming; Zhang, Xiang
2018-01-23
This disclosure provides systems, methods, and apparatus related to catalytic devices. In one aspect, a device includes a substrate, an electrically insulating layer disposed on the substrate, a layer of material disposed on the electrically insulating layer, and a catalyst disposed on the layer of material. The substrate comprises an electrically conductive material. The substrate and the layer of material are electrically coupled to one another and configured to have a voltage applied across them.
Effects Of Radiation On Insulators
NASA Technical Reports Server (NTRS)
Bouquet, Frank L.
1988-01-01
Report presents data on responses of electrically insulating thermosetting and thermoplastic polymers to radiation. Lowest-threshold-dose (LTD) levels and 25-percent-change levels presented for such properties as tensile strength and electrical resistivity. Data on radiation-induced outgassing also given.
Cong, G W; Matsukawa, T; Chiba, T; Tadokoro, H; Yanagihara, M; Ohno, M; Kawashima, H; Kuwatsuka, H; Igarashi, Y; Masahara, M; Ishikawa, H
2013-03-25
n-channel body-tied partially depleted metal-oxide-semiconductor field-effect transistors (MOSFETs) were fabricated for large current applications on a silicon-on-insulator wafer with photonics-oriented specifications. The MOSFET can drive an electrical current as large as 20 mA. We monolithically integrated this MOSFET with a 2 × 2 Mach-Zehnder interferometer optical switch having thermo-optic phase shifters. The static and dynamic performances of the integrated device are experimentally evaluated.
Insulation Requirements of High-Voltage Power Systems in Future Spacecraft
NASA Technical Reports Server (NTRS)
Qureshi, A. Haq; Dayton, James A., Jr.
1995-01-01
The scope, size, and capability of the nation's space-based activities are limited by the level of electrical power available. Long-term projections show that there will be an increasing demand for electrical power in future spacecraft programs. The level of power that can be generated, conditioned, transmitted, and used will have to be considerably increased to satisfy these needs, and increased power levels will require that transmission voltages also be increased to minimize weight and resistive losses. At these projected voltages, power systems will not operate satisfactorily without the proper electrical insulation. Open or encapsulated power supplies are currently used to keep the volume and weight of space power systems low and to protect them from natural and induced environmental hazards. Circuits with open packaging are free to attain the pressure of the outer environment, whereas encapsulated circuits are imbedded in insulating materials, which are usually solids, but could be liquids or gases. Up to now, solid insulation has usually been chosen for space power systems. If the use of solid insulation is continued, when voltages increase, the amount of insulation for encapsulation also will have to increase. This increased insulation will increase weight and reduce system reliability. Therefore, non-solid insulation media must be examined to satisfy future spacecraft power and voltage demands. In this report, we assess the suitability of liquid, space vacuum, and gas insulation for space power systems.
... are insulated like pieces of electrical wire. This insulation protects them and also allows their signals to move faster along the axon. Without this insulation, signals from the brain might never reach the ...
49 CFR 236.752 - Joint, rail, insulated.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Joint, rail, insulated. 236.752 Section 236.752 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Joint, rail, insulated. A joint in which electrical insulation is provided between adjoining rails. ...
Semi-flexible gas-insulated transmission line using protection tube in conductor plug-in joint
Kommineni, P.R.
1983-01-25
A gas-insulated transmission line includes an outer sheath, an inner conductor, an insulating gas electrically insulating the inner conductor from the outer sheath, and insulating supports insulatably supporting the inner conductor within the outer sheath. The inner conductor is provided with flexibility by main conductor sections which are joined together through a conductor hub section and flexible flexing elements. Stress shields are provided to control the electric field at the locations of the conductor hub sections where the insulating supports are contacting the inner conductor. A plug and socket arrangement is utilized for joining adjacent sections of the inner conductor, and a protection tube is utilized inside the hollow plug to maintain proper alignment of the joint when the transmission line is bent. 3 figs.
Semi-flexible gas-insulated transmission line using protection tube in conductor plug-in joint
Kommineni, Prasad R.
1983-01-25
A gas-insulated transmission line includes an outer sheath, an inner conductor, an insulating gas electrically insulating the inner conductor from the outer sheath, and insulating supports insulatably supporting the inner conductor within the outer sheath. The inner conductor is provided with flexibility by main conductor sections which are joined together through a conductor hub section and flexible flexing elements. Stress shields are provided to control the electric field at the locations of the conductor hub sections where the insulating supports are contacting the inner conductor. A plug and socket arrangement is utilized for joining adjacent sections of the inner conductor, and a protection tube is utilized inside the hollow plug to maintain proper alignment of the joint when the transmission line is bent.
Method for electrically isolating an electrically conductive member from another such member
Tsang, K.L.; Chen, Y.
1984-02-09
The invention relates to methods for electrically isolating a first electrically conductive member from another such member by means of an electrically insulating medium. In accordance with the invention, the insulating medium is provided in the form of MgO which contains a dopant selected from lithium, copper, cobalt, sodium, silver, gold and hydrogen. The dopant is present in the MgO in an amount effective to suppress dielectric breakdown of the MgO, even at elevated temperatures and in the presence of electrical fields.
Pourrahimi, Amir Masoud; Olsson, Richard T; Hedenqvist, Mikael S
2018-01-01
Recent progress in the development of polyethylene/metal-oxide nanocomposites for extruded high-voltage direct-current (HVDC) cables with ultrahigh electric insulation properties is presented. This is a promising technology with the potential of raising the upper voltage limit in today's underground/submarine cables, based on pristine polyethylene, to levels where the loss of energy during electric power transmission becomes low enough to ensure intercontinental electric power transmission. The development of HVDC insulating materials together with the impact of the interface between the particles and the polymer on the nanocomposites electric properties are shown. Important parameters from the atomic to the microlevel, such as interfacial chemistry, interfacial area, and degree of particle dispersion/aggregation, are discussed. This work is placed in perspective with important work by others, and suggested mechanisms for improved insulation using nanoparticles, such as increased charge trap density, adsorption of impurities/ions, and induced particle dipole moments are considered. The effects of the nanoparticles and of their interfacial structures on the mechanical properties and the implications of cavitation on the electric properties are also discussed. Although the main interest in improving the properties of insulating polymers has been on the use of nanoparticles, leading to nanodielectrics, it is pointed out here that larger microscopic hierarchical metal-oxide particles with high surface porosity also impart good insulation properties. The impact of the type of particle and its inherent properties (purity and conductivity) on the nanocomposite dielectric and insulating properties are also discussed based on data obtained by a newly developed technique to directly observe the charge distribution on a nanometer scale in the nanocomposite. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Zhigao; Zhang, Xinghai; Wang, Fangqiang; Lan, Xinsheng; Zhou, Yiqian
2016-01-01
In order to analyze the cracking and aging reason of the silicone rubber current transformer (CT) insulation bushing used for 8 years from a 500 kV alternating current substation, characteristics including Fourier transform infrared (FTIR) spectroscopy, mechanical properties analysis, hardness, and thermo gravimetric analysis have been carried out. The FTIR results indicated that the external surface of the silicone rubber CT insulation bushing suffered from more serious aging than the internal part, fracture of side chain Si-C bond was much more than the backbone. Mechanical properties and thermal stability results illustrated that the main aging reasons were the breakage of side chain Si-C bond and the excessive cross-linking reaction of the backbone. This study can provide valuable basis for evaluating degradation mechanism and aging state of the silicone rubber insulation bushing in electric power field.
Phase-field model of insulator-to-metal transition in VO2 under an electric field
NASA Astrophysics Data System (ADS)
Shi, Yin; Chen, Long-Qing
2018-05-01
The roles of an electric field and electronic doping in insulator-to-metal transitions are still not well understood. Here we formulated a phase-field model of insulator-to-metal transitions by taking into account both structural and electronic instabilities as well as free electrons and holes in VO2, a strongly correlated transition-metal oxide. Our phase-field simulations demonstrate that in a VO2 slab under a uniform electric field, an abrupt universal resistive transition occurs inside the supercooling region, in sharp contrast to the conventional Landau-Zener smooth electric breakdown. We also show that hole doping may decouple the structural and electronic phase transitions in VO2, leading to a metastable metallic monoclinic phase which could be stabilized through a geometrical confinement and the size effect. This work provides a general mesoscale thermodynamic framework for understanding the influences of electric field, electronic doping, and stress and strain on insulator-to-metal transitions and the corresponding mesoscale domain structure evolution in VO2 and related strongly correlated systems.
NASA Astrophysics Data System (ADS)
Ebisawa, Yoshihito; Yamada, Shin; Mori, Shigekazu; Ikeda, Masami
This paper describes breakdown characteristics of an oil-pressboard insulation system to a superposition voltage of AC and DC voltages. Although AC electric field is decided by the ratio of the relative permittivity of a pressboard and insulating oil, DC electric field is decided by ratio α of volume resistivities. From the measurement in this study, 13—78 and 1.8—5.7 are obtained as the volume resistivity ratios α at temperature of 30°C and 80°C, respectively. The breakdown voltages against AC, DC, and those superposition voltages are surveyed to insulation models. In normal temperature, the breakdown voltage to the superposition voltage of AC and DC is determined by AC electric field applied to the oil duct. Since the α becomes as low as 2-3 at temperature of 80°C, AC and DC voltages almost equally contribute to the electric field of the oil duct as a result. That is, it became clear that superposed DC voltage boosts the electric field across oil ducts at operating high temperature.
Chern structure in the Bose-insulating phase of Sr2RuO4 nanofilms
NASA Astrophysics Data System (ADS)
Nobukane, Hiroyoshi; Matsuyama, Toyoki; Tanda, Satoshi
2017-01-01
The quantum anomaly that breaks the symmetry, for example the parity and the chirality, in the quantization leads to a physical quantity with a topological Chern invariant. We report the observation of a Chern structure in the Bose-insulating phase of Sr2RuO4 nanofilms by employing electric transport. We observed the superconductor-to-insulator transition by reducing the thickness of Sr2RuO4 single crystals. The appearance of a gap structure in the insulating phase implies local superconductivity. Fractional quantized conductance was observed without an external magnetic field. We found an anomalous induced voltage with temperature and thickness dependence, and the induced voltage exhibited switching behavior when we applied a magnetic field. We suggest that there was fractional magnetic-field-induced electric polarization in the interlayer. These anomalous results are related to topological invariance. The fractional axion angle Θ = π/6 was determined by observing the topological magneto-electric effect in the Bose-insulating phase of Sr2RuO4 nanofilms.
Kwon, Jeong Hyun; Park, Junhong; Lee, Myung Keun; Park, Jeong Woo; Jeon, Yongmin; Shin, Jeong Bin; Nam, Minwoo; Kim, Choong-Ki; Choi, Yang-Kyu; Choi, Kyung Cheol
2018-05-09
The lack of reliable, transparent, and flexible electrodes and insulators for applications in thin-film transistors (TFTs) makes it difficult to commercialize transparent, flexible TFTs (TF-TFTs). More specifically, conventional high process temperatures and the brittleness of these elements have been hurdles in developing flexible substrates vulnerable to heat. Here, we propose electrode and insulator fabrication techniques considering process temperature, transmittance, flexibility, and environmental stability. A transparent and flexible indium tin oxide (ITO)/Ag/ITO (IAI) electrode and an Al 2 O 3 /MgO (AM)-laminated insulator were optimized at the low temperature of 70 °C for the fabrication of TF-TFTs on a polyethylene terephthalate (PET) substrate. The optimized IAI electrode with a sheet resistance of 7 Ω/sq exhibited the luminous transmittance of 85.17% and maintained its electrical conductivity after exposure to damp heat conditions because of an environmentally stable ITO capping layer. In addition, the electrical conductivity of IAI was maintained after 10 000 bending cycles with a tensile strain of 3% because of the ductile Ag film. In the metal/insulator/metal structure, the insulating and mechanical properties of the optimized AM-laminated film deposited at 70 °C were significantly improved because of the highly dense nanolaminate system, compared to those of the Al 2 O 3 film deposited at 70 °C. In addition, the amorphous indium-gallium-zinc oxide (a-IGZO) was used as the active channel for TF-TFTs because of its excellent chemical stability. In the environmental stability test, the ITO, a-IGZO, and AM-laminated films showed the excellent environmental stability. Therefore, our IGZO-based TFT with IAI electrodes and the 70 °C AM-laminated insulator was fabricated to evaluate robustness, transparency, flexibility, and process temperature, resulting in transfer characteristics comparable to those of an IGZO-based TFT with a 150 °C Al 2 O 3 insulator.
7 CFR 1436.6 - Eligible storage or handling equipment.
Code of Federal Regulations, 2012 CFR
2012-01-01
... eligible facility loan commodity, such as cleaners, moisture testers, and heat detectors; (4) Electrical... moisture testers, and heat detectors; (vii) Electrical equipment, including labor and materials for..., but are not limited to, the following: An insulated cement slab floor, insulation for walls and...
7 CFR 1436.6 - Eligible storage or handling equipment.
Code of Federal Regulations, 2014 CFR
2014-01-01
... eligible facility loan commodity, such as cleaners, moisture testers, and heat detectors; (4) Electrical... moisture testers, and heat detectors; (vii) Electrical equipment, including labor and materials for..., but are not limited to, the following: An insulated cement slab floor, insulation for walls and...
7 CFR 1436.6 - Eligible storage or handling equipment.
Code of Federal Regulations, 2013 CFR
2013-01-01
... eligible facility loan commodity, such as cleaners, moisture testers, and heat detectors; (4) Electrical... moisture testers, and heat detectors; (vii) Electrical equipment, including labor and materials for..., but are not limited to, the following: An insulated cement slab floor, insulation for walls and...
Domain wall in a quantum anomalous Hall insulator as a magnetoelectric piston
NASA Astrophysics Data System (ADS)
Upadhyaya, Pramey; Tserkovnyak, Yaroslav
2016-07-01
We theoretically study the magnetoelectric coupling in a quantum anomalous Hall insulator state induced by interfacing a dynamic magnetization texture to a topological insulator. In particular, we propose that the quantum anomalous Hall insulator with a magnetic configuration of a domain wall, when contacted by electrical reservoirs, acts as a magnetoelectric piston. A moving domain wall pumps charge current between electrical leads in a closed circuit, while applying an electrical bias induces reciprocal domain-wall motion. This pistonlike action is enabled by a finite reflection of charge carriers via chiral modes imprinted by the domain wall. Moreover, we find that, when compared with the recently discovered spin-orbit torque-induced domain-wall motion in heavy metals, the reflection coefficient plays the role of an effective spin-Hall angle governing the efficiency of the proposed electrical control of domain walls. Quantitatively, this effective spin-Hall angle is found to approach a universal value of 2, providing an efficient scheme to reconfigure the domain-wall chiral interconnects for possible memory and logic applications.
A Novel Method for Measuring Electrical Conductivity of High Insulating Oil Using Charge Decay
NASA Astrophysics Data System (ADS)
Wang, Z. Q.; Qi, P.; Wang, D. S.; Wang, Y. D.; Zhou, W.
2016-05-01
For the high insulating oil, it is difficult to measure the conductivity precisely using voltammetry method. A high-precision measurementis proposed for measuring bulk electrical conductivity of high insulating oils (about 10-9--10-15S/m) using charge decay. The oil is insulated and charged firstly, and then grounded fully. During the experimental procedure, charge decay is observed to show an exponential law according to "Ohm" theory. The data of time dependence of charge density is automatically recorded using an ADAS and a computer. Relaxation time constant is fitted from the data using Gnuplot software. The electrical conductivity is calculated using relaxation time constant and dielectric permittivity. Charge density is substituted by electric potential, considering charge density is difficult to measure. The conductivity of five kinds of oils is measured. Using this method, the conductivity of diesel oil is easily measured to beas low as 0.961 pS/m, as shown in Fig. 5.
Electrically floating, near vertical incidence, skywave antenna
Anderson, Allen A.; Kaser, Timothy G.; Tremblay, Paul A.; Mays, Belva L.
2014-07-08
An Electrically Floating, Near Vertical Incidence, Skywave (NVIS) Antenna comprising an antenna element, a floating ground element, and a grounding element. At least part of said floating ground element is positioned between said antenna element and said grounding element. The antenna is separated from the floating ground element and the grounding element by one or more electrical insulators. The floating ground element is separated from said antenna and said grounding element by one or more electrical insulators.
49 CFR 173.189 - Batteries containing sodium or cells containing sodium.
Code of Federal Regulations, 2010 CFR
2010-10-01
... the heat insulation fitted in battery casings must be provided with thermal insulation sufficient to... preventing external short circuits, such as by providing complete electrical insulation of battery terminals...
Hot-blade stripper for polyester insulation on FCC
NASA Technical Reports Server (NTRS)
Angele, W.; Chambers, C. M.
1971-01-01
Stripper incorporates a blade which is electrically heated to a controlled temperature. Heated blade softens and strips insulation from cable while paper ribbon removes insulation material and keeps blade clean for next operation.
Hermetically sealed electrical feedthrough for high temperature secondary cells
Knoedler, R.; Nelson, P.A.; Shimotake, H.; Battles, J.E.
1983-07-26
A passthrough seal is disclosed for electrically isolating the terminal in a lithium/metal sulfide cell from the structural cell housing. The seal has spaced upper and lower insulator rings fitted snuggly between the terminal and an annularly disposed upstanding wall, and outwardly of a powdered insulator also confined between the upstanding wall and terminal. The adjacent surfaces of the upper insulator ring and the respective upstanding wall and terminal are conically tapered, diverging in the axial direction away from the cell interior, and a sealing ring is located between each pair of the adjacent surfaces. The components are sized so that upon appropriate movement of the upper insulator ring toward the lower insulator ring the powdered insulator and sealing rings are each compressed to a high degree. This compacts the powdered insulator thereby rendering the same highly impervious and moreover fuses the sealing rings to and between the adjacent surfaces. The upper and lower insulator rings might be formed of beryllium oxide and/or alumina, the powdered insulator might be formed of boron nitride, and the sealing rings might be formed of aluminum.
Hermetically sealed electrical feedthrough for high temperature secondary cells
Knoedler, Reinhard; Nelson, Paul A.; Shimotake, Hiroshi; Battles, James E.
1985-01-01
A passthrough seal is disclosed for electrically isolating the terminal in a lithium/metal sulfide cell from the structural cell housing. The seal has spaced upper and lower insulator rings fitted snuggly between the terminal and an annularly disposed upstanding wall, and outwardly of a powdered insulator also confined between the upstanding wall and terminal. The adjacent surfaces of the upper insulator ring and the respective upstanding wall and terminal are conically tapered, diverging in the axial direction away from the cell interior, and a sealing ring is located between each pair of the adjacent surfaces. The components are sized so that upon appropriate movement of the upper insulator ring toward the lower insulator ring the powdered insulator and sealing rings are each compressed to a high degree. This compacts the powdered insulator thereby rendering the same highly impervious and moreover fuses the sealing rings to and between the adjacent surfaces. The upper and lower insulator rings might be formed of beryllium oxide and/or alumina, the powdered insulator might be formed of boron nitride, and the sealing rings might be formed of aluminum.
New Materials for the Repair of Polyimide Electrical Wire Insulation
NASA Technical Reports Server (NTRS)
2008-01-01
Two viable polyimide backbone materials have been identified that will allow the repair of polyimide electrical wire insulation found on the Space Shuttle and other aging aircraft. This identification is the outcome of ongoing efforts to assess the viability of using such polyimides and polyimide precursors (polyamic acids [PAAs]) as repair materials for aging polyimide electrical wire insulation. These repair materials were selected because they match the chemical makeup of the underlying wire insulation as closely as possible. This similarity allows for maximum compatibility, coupled with the outstanding physical properties of polyimides. The two polyimide backbone materials allow the polymer to be extremely flexible and to melt at low temperatures. A polymer chain end capping group that allows the polymer to crosslink into a nonflowable repair upon curing at around 200 C was also identified.
Resistive foil edge grading for accelerator and other high voltage structures
Caporaso, George J.; Sampayan, Stephen F.; Sanders, David M.
2014-06-10
In a structure or device having a pair of electrical conductors separated by an insulator across which a voltage is placed, resistive layers are formed around the conductors to force the electric potential within the insulator to distribute more uniformly so as to decrease or eliminate electric field enhancement at the conductor edges. This is done by utilizing the properties of resistive layers to allow the voltage on the electrode to diffuse outwards, reducing the field stress at the conductor edge. Preferably, the resistive layer has a tapered resistivity, with a lower resistivity adjacent to the conductor and a higher resistivity away from the conductor. Generally, a resistive path across the insulator is provided, preferably by providing a resistive region in the bulk of the insulator, with the resistive layer extending over the resistive region.
Electrically insulated MLI and thermal anchor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamiya, Koji; Furukawa, Masato; Murakami, Haruyuki
2014-01-29
The thermal shield of JT-60SA is kept at 80 K and will use the multilayer insulation (MLI) to reduce radiation heat load to the superconducting coils at 4.4 K from the cryostat at 300 K. Due to plasma pulse operation, the MLI is affected by eddy current in toroidal direction. The MLI is designed to suppress the current by electrically insulating every 20 degree in the toroidal direction by covering the MLI with polyimide films. In this paper, two kinds of designs for the MLI system are proposed, focusing on a way to overlap the layers. A boil-off calorimeter methodmore » and temperature measurement has been performed to determine the thermal performance of the MLI system. The design of the electrical insulated thermal anchor between the toroidal field (TF) coil and the thermal shield is also explained.« less
Nuclear radiation problems, unmanned thermionic reactor ion propulsion spacecraft
NASA Technical Reports Server (NTRS)
Mondt, J. F.; Sawyer, C. D.; Nakashima, A.
1972-01-01
A nuclear thermionic reactor as the electric power source for an electric propulsion spacecraft introduces a nuclear radiation environment that affects the spacecraft configuration, the use and location of electrical insulators and the science experiments. The spacecraft is conceptually configured to minimize the nuclear shield weight by: (1) a large length to diameter spacecraft; (2) eliminating piping penetrations through the shield; and (3) using the mercury propellant as gamma shield. Since the alumina material is damaged by the high nuclear radiation environment in the reactor it is desirable to locate the alumina insulator outside the reflector or develop a more radiation resistant insulator.
Electrode assembly for a fluidized bed apparatus
Schora, Jr., Frank C.; Matthews, Charles W.; Knowlton, Ted M.
1976-11-23
An electrode assembly comprising a high voltage electrode having a generally cylindrical shape and being electrically connected to a high voltage source, where the cylinder walls may be open to flow of fluids and solids; an electrically grounded support electrode supporting said high voltage electrode by an electrically insulating support where both of the electrically grounded and electrically insulating support may be hollow; and an electrically grounded liner electrode arranged concentrically around both the high voltage and support electrodes. This assembly is specifically adapted for use in a fluidized bed chemical reactor as an improved heating means therefor.
77 FR 36146 - Airworthiness Directives; Airbus Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-18
... airplanes to the applicability. We are issuing this AD to prevent degradation of the electrical insulation... could cause the level sensor to heat above acceptable limits, possibly resulting in a fuel tank... connector sleeves materials fitted to the MTI units. Degradation of the electrical insulation sleeves of the...
76 FR 68671 - Airworthiness Directives; Airbus Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-07
... incorrect connector sleeves materials fitted to the MTI units. Degradation of the electrical insulation... condition, if not corrected, could cause the level sensor to heat above acceptable limits, possibly.... Degradation of the electrical insulation sleeves of the Low- level indication lamps on the MTI of the flight...
NASA Astrophysics Data System (ADS)
Damianos, D.; Vitrant, G.; Lei, M.; Changala, J.; Kaminski-Cachopo, A.; Blanc-Pelissier, D.; Cristoloveanu, S.; Ionica, I.
2018-05-01
In this work, we investigate Second Harmonic Generation (SHG) as a non-destructive characterization method for Silicon-On-Insulator (SOI) materials. For thick SOI stacks, the SHG signal is related to the thickness variations of the different layers. However, in thin SOI films, the comparison between measurements and optical modeling suggests a supplementary SHG contribution attributed to the electric fields at the SiO2/Si interfaces. The impact of the electric field at each interface of the SOI on the SHG is assessed. The SHG technique can be used to evaluate interfacial electric fields and consequently interface charge density in SOI materials.
Study of curved glass photovoltaic module and module electrical isolation design requirements
NASA Technical Reports Server (NTRS)
1980-01-01
The design of a 1.2 by 2.4 m curved glass superstrate and support clip assembly is presented, along with the results of finite element computer analysis and a glass industry survey conducted to assess the technical and economic feasibility of the concept. Installed costs for four curved glass module array configurations are estimated and compared with cost previously reported for comparable flat glass module configurations. Electrical properties of candidate module encapsulation systems are evaluated along with present industry practice for the design and testing of electrical insulation systems. Electric design requirements for module encapsulation systems are also discussed.
Study of curved glass photovoltaic module and module electrical isolation design requirements
NASA Astrophysics Data System (ADS)
1980-06-01
The design of a 1.2 by 2.4 m curved glass superstrate and support clip assembly is presented, along with the results of finite element computer analysis and a glass industry survey conducted to assess the technical and economic feasibility of the concept. Installed costs for four curved glass module array configurations are estimated and compared with cost previously reported for comparable flat glass module configurations. Electrical properties of candidate module encapsulation systems are evaluated along with present industry practice for the design and testing of electrical insulation systems. Electric design requirements for module encapsulation systems are also discussed.
Park, Jaewon; Kim, Hyun Soo; Han, Arum
2009-01-01
A poly(dimethylsiloxane) (PDMS) patterning method based on a photoresist lift-off technique to make an electrical insulation layer with selective openings is presented. The method enables creating PDMS patterns with small features and various thicknesses without any limitation in the designs and without the need for complicated processes or expensive equipments. Patterned PDMS layers were created by spin-coating liquid phase PDMS on top of a substrate having sacrificial photoresist patterns, followed by a photoresist lift-off process. The thickness of the patterned PDMS layers could be accurately controlled (6.5–24 µm) by adjusting processing parameters such as PDMS spin-coating speeds, PDMS dilution ratios, and sacrificial photoresist thicknesses. PDMS features as small as 15 µm were successfully patterned and the effects of each processing parameter on the final patterns were investigated. Electrical resistance tests between adjacent electrodes with and without the insulation layer showed that the patterned PDMS layer functions properly as an electrical insulation layer. Biocompatibility of the patterned PDMS layer was confirmed by culturing primary neuron cells on top of the layer for up to two weeks. An extensive neuronal network was successfully formed, showing that this PDMS patterning method can be applied to various biosensing microdevices. The utility of this fabrication method was further demonstrated by successfully creating a patterned electrical insulation layer on flexible substrates containing multi-electrode arrays. PMID:19946385
Alternative High-Performance Motors with Non-Rare Earth Materials, Final Publishable Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galioto, Steven; Johnson, Francis
Electric drive systems, which include electric machines and power electronics, are a key enabling technology for advanced vehicle propulsion systems that reduce the petroleum dependence of the transportation sector. To have significant effect, electric drive technologies must be economical in terms of cost, weight, and size while meeting performance and reliability expectations. The goal of the project is to develop traction motors that reduce or eliminate the use of rare-earth materials and meet the DoE specifications for such a traction motor. This is accomplished by evaluating and developing multiple motor topologies in conjunction with advanced materials. Eight non-permanent magnet motormore » topologies and two reduced or non-rare earth motor topologies are analyzed and compared using a common set of requirements. Five of the motors are built and tested to validate the analysis. This paper provides a detailed quantitative comparison of the different machine topologies that reduce or eliminate rare-earth materials. Conclusions are drawn from the analysis and test data to show the tradeoffs related to selecting each of the motor topologies with the hope of providing practicing engineers and researchers in the field enough guidelines for choosing the “optimum” machine topology that suits their applications and set of performance requirements. Four materials technologies were investigated for their ability to enable a reduced rare earth electric motor. Two of the technologies were soft magnetic materials, one was a non-rare-earth containing permanent magnet technology, and the last was an insulation material. These processing and performance of these materials were first demonstrated in small coupons. The coupon tests justified proceeding to larger scale processing for two of the materials technologies: 1) a dual-phase soft magnetic material for use in rotor laminates and 2) a high temperature insulation material for use as a slot liner in the stator. The dual phase soft magnetic material was produced at a scale sufficient to build and test a sub-scale motor prototype. The high temperature insulation material was first evaluated in a series of “statorettes” before being demonstrated in the stator of one of the full-scale motor prototypes. Testing of the dual phase material revealed issues with process variability in larger production volumes that are being addressed in a subsequent project. The performance of the high-temperature slot liner insulation was demonstrated during the operation of a full-scale prototype. Furthermore, the insulation material was shown to survive aging tests of 2000 hours and 280 °C and 800 hours at 300 °C. This program provides analysis and data to accelerate the introduction of hybrid electric vehicles into the U.S. road vehicle fleet and bring the added benefits of reduced fuel consumption and environmental impacts« less
High Voltage Hybrid Electric Propulsion - Multilayered Functional Insulation System (MFIS) NASA-GRC
NASA Technical Reports Server (NTRS)
Lizcano, M.
2017-01-01
High power transmission cables pose a key challenge in future Hybrid Electric Propulsion Aircraft. The challenge arises in developing safe transmission lines that can withstand the unique environment found in aircraft while providing megawatts of power. High voltage AC, variable frequency cables do not currently exist and present particular electrical insulation challenges since electrical arcing and high heating are more prevalent at higher voltages and frequencies. Identifying and developing materials that maintain their dielectric properties at high voltage and frequencies is crucial.
Method of forming electrical pathways in indium-tin-oxide coatings
Haynes, T.E.
1996-12-03
An electrical device includes a substrate having an ITO coating thereon, a portion of which is conductive and defines at least one electrical pathway, and the balance of the ITO being insulative. The device is made by the following general steps: a. providing a substrate having a conductive ITO coating on at least one surface thereof; b. rendering a preselected portion of the coating of conductive ITO insulative, leaving the remaining portion of conductive ITO as at least one electrical pathway. 8 figs.
Method of forming electrical pathways in indium-tin-oxide coatings
Haynes, T.E.
1997-03-04
An electrical device includes a substrate having an ITO coating thereon, a portion of which is conductive and defines at least one electrical pathway, the balance of the ITO being insulative. The device is made by the following general steps: (a) providing a substrate having a conductive ITO coating on at least one surface thereof; (b) rendering a preselected portion of the coating of conductive ITO insulative, leaving the remaining portion of conductive ITO as at least one electrical pathway. 8 figs.
Method of forming electrical pathways in indium-tin-oxide coatings
Haynes, Tony E.
1996-01-01
An electrical device includes a substrate having an ITO coating thereon, a portion of which is conductive and defines at least one electrical pathway, and the balance of the ITO being insulative. The device is made by the following general steps: a. providing a substrate having a conductive ITO coating on at least one surface thereof; b. rendering a preselected portion of the coating of conductive ITO insulative, leaving the remaining portion of conductive ITO as at least one electrical pathway.
Method of forming electrical pathways in indium-tin-oxide coatings
Haynes, Tony E.
1997-01-01
An electrical device includes a substrate having an ITO coating thereon, a portion of which is conductive and defines at least one electrical pathway, and the balance of the ITO being insulative. The device is made by the following general steps: a. providing a substrate having a conductive ITO coating on at least one surface thereof; b. rendering a preselected portion of the coating of conductive ITO insulative, leaving the remaining portion of conductive ITO as at least one electrical pathway.
WATER STABILITY OF FILLED ELASTOMERS,
ELECTRICAL INSULATION, *BUTYL RUBBER , ELASTOMERS, STABILITY, STABILITY, HYDROLYSIS, CURING AGENTS, ADDITIVES, WATER, ABSORPTION, THICKNESS, ELECTRICAL RESISTANCE, LEAKAGE(ELECTRICAL), DIFFUSION, TALC, ELECTRIC CABLES.
Low-Melt Poly(Amic Acids) and Polyimides and Their Uses
NASA Technical Reports Server (NTRS)
Parrish, Clyde F. (Inventor); Jolley, Scott T. (Inventor); Gibson, Tracy L. (Inventor); Williams, Martha K. (Inventor); Parks, Steven L. (Inventor)
2014-01-01
Provided are low-melt polyimides and poly(amic acids) (PAAs) for use in repair of electrical wire insulation, flat or ribbon wire harnesses, and flat surfaces comprised of high-performance polymers such as inflatables or solar panels applications. Also provided are methods and devices for repair of electrical insulation.
Low-Melt Poly(amic Acids) and Polyimides and Their Uses
NASA Technical Reports Server (NTRS)
Jolley, Scott T. (Inventor); Gibson, Tracy L. (Inventor); Williams, Martha K. (Inventor); Parrish, Clyde F. (Inventor); Parks, Steven L. (Inventor)
2015-01-01
Provided are low-melt polyimides and poly(amic acids) (PAAs) for use in repair of electrical wire insulation, flat or ribbon wire harnesses, and flat surfaces comprised of high-performance polymers such as inflatables or solar panels applications. Also provided are methods and devices for repair of electrical insulation.
Hydrogen plasma tests of some insulating coating systems for the nuclear rocket thrust chamber
NASA Technical Reports Server (NTRS)
Current, A. N.; Grisaffe, S. J.; Wycoff, K. C.
1972-01-01
Several plasma-sprayed and slurry-coated insulating coating systems were evaluated for structural stability in a low-pressure hot hydrogen environment at a maximum heat flux of 19.6 million watts/sq meter. The heat was provided by an electric-arc plasma generator. The coating systems consisted of a number of thin layers of metal oxides and/or metals. The materials included molybdenum, nichrome, tungsten, alumina, zirconia, and chromia. The study indicates potential usefulness in this environment for some coatings, and points up the need for improved coating application techniques.
Spahn, O.B.; Lear, K.L.
1998-03-10
The semiconductor structure comprises a plurality of semiconductor layers formed on a substrate including at least one layer of a III-V compound semiconductor alloy comprising aluminum (Al) and antimony (Sb), with at least a part of the AlSb-alloy layer being chemically converted by an oxidation process to form superposed electrically insulating and electrically conducting portions. The electrically insulating portion formed from the AlSb-alloy layer comprises an oxide of aluminum (e.g., Al{sub 2}O{sub 3}), while the electrically conducting portion comprises Sb. A lateral oxidation process allows formation of the superposed insulating and conducting portions below monocrystalline semiconductor layers for forming many different types of semiconductor structures having particular utility for optoelectronic devices such as light-emitting diodes, edge-emitting lasers, vertical-cavity surface-emitting lasers, photodetectors and optical modulators (waveguide and surface normal), and for electronic devices such as heterojunction bipolar transistors, field-effect transistors and quantum-effect devices. The invention is expected to be particularly useful for forming light-emitting devices for use in the 1.3--1.6 {mu}m wavelength range, with the AlSb-alloy layer acting to define an active region of the device and to effectively channel an electrical current therein for efficient light generation. 10 figs.
Spahn, Olga B.; Lear, Kevin L.
1998-01-01
A semiconductor structure. The semiconductor structure comprises a plurality of semiconductor layers formed on a substrate including at least one layer of a III-V compound semiconductor alloy comprising aluminum (Al) and antimony (Sb), with at least a part of the AlSb-alloy layer being chemically converted by an oxidation process to form superposed electrically insulating and electrically conducting portions. The electrically insulating portion formed from the AlSb-alloy layer comprises an oxide of aluminum (e.g. Al.sub.2 O.sub.3), while the electrically conducting portion comprises Sb. A lateral oxidation process allows formation of the superposed insulating and conducting portions below monocrystalline semiconductor layers for forming many different types of semiconductor structures having particular utility for optoelectronic devices such as light-emitting diodes, edge-emitting lasers, vertical-cavity surface-emitting lasers, photodetectors and optical modulators (waveguide and surface normal), and for electronic devices such as heterojunction bipolar transistors, field-effect transistors and quantum-effect devices. The invention is expected to be particularly useful for forming light-emitting devices for use in the 1.3-1.6 .mu.m wavelength range, with the AlSb-alloy layer acting to define an active region of the device and to effectively channel an electrical current therein for efficient light generation.
Improved insulator layer for MIS devices
NASA Technical Reports Server (NTRS)
Miller, W. E.
1980-01-01
Insulating layer of supersonic conductor such as LaF sub 3 has been shown able to impart improved electrical properties to photoconductive detectors and promises to improve other metal/insulator/semiconductor (MIS) devices, e.g., MOSFET and integrated circuits.
Electric polarization switching in an atomically thin binary rock salt structure
NASA Astrophysics Data System (ADS)
Martinez-Castro, Jose; Piantek, Marten; Schubert, Sonja; Persson, Mats; Serrate, David; Hirjibehedin, Cyrus F.
2018-01-01
Inducing and controlling electric dipoles is hindered in the ultrathin limit by the finite screening length of surface charges at metal-insulator junctions1-3, although this effect can be circumvented by specially designed interfaces4. Heterostructures of insulating materials hold great promise, as confirmed by perovskite oxide superlattices with compositional substitution to artificially break the structural inversion symmetry5-8. Bringing this concept to the ultrathin limit would substantially broaden the range of materials and functionalities that could be exploited in novel nanoscale device designs. Here, we report that non-zero electric polarization can be induced and reversed in a hysteretic manner in bilayers made of ultrathin insulators whose electric polarization cannot be switched individually. In particular, we explore the interface between ionic rock salt alkali halides such as NaCl or KBr and polar insulating Cu2N terminating bulk copper. The strong compositional asymmetry between the polar Cu2N and the vacuum gap breaks inversion symmetry in the alkali halide layer, inducing out-of-plane dipoles that are stabilized in one orientation (self-poling). The dipole orientation can be reversed by a critical electric field, producing sharp switching of the tunnel current passing through the junction.
Rabie, Mohamed; Franck, Christian M
2018-01-16
Gases for electrical insulation are essential for the operation of electric power equipment. This Review gives a brief history of gaseous insulation that involved the emergence of the most potent industrial greenhouse gas known today, namely sulfur hexafluoride. SF 6 paved the way to space-saving equipment for the transmission and distribution of electrical energy. Its ever-rising usage in the electrical grid also played a decisive role in the continuous increase of atmospheric SF 6 abundance over the last decades. This Review broadly covers the environmental concerns related to SF 6 emissions and assesses the latest generation of eco-friendly replacement gases. They offer great potential for reducing greenhouse gas emissions from electrical equipment but at the same time involve technical trade-offs. The rumors of one or the other being superior seem premature, in particular because of the lack of dielectric, environmental, and chemical information for these relatively novel compounds and their dissociation products during operation.
Electrical insulation system for the shell-vacuum vessel and poloidal field gap in the ZTH machine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reass, W.A.; Ballard, E.O.
1989-01-01
The electrical insulation systems for the ZTH machine have many unusual design problems. The poloidal field gap insulation must be capable of conforming to poloidal and toroidal contours, provide a 25 kV hold off, and sufficiently adhere to the epoxy back fill between the overlapping conductors. The shell-vacuum vessel system will use stretchable and flexible insulation along with protective hats, boots and sleeves. The shell-vacuum vessel system must be able to withstand a 12.5 kV pulse with provision for thermal insulation to limit the effects of the 300{degrees}C vacuum vessel during operation and bakeout. Methodology required to provide the electricalmore » protection along with testing data and material characteristics will be presented. 7 figs.« less
Joule heating effects on particle immobilization in insulator-based dielectrophoretic devices.
Gallo-Villanueva, Roberto C; Sano, Michael B; Lapizco-Encinas, Blanca H; Davalos, Rafael V
2014-02-01
In this work, the temperature effects due to Joule heating obtained by application of a direct current electric potential were investigated for a microchannel with cylindrical insulating posts employed for insulator-based dielectrophoresis. The conductivity of the suspending medium, the local electric field, and the gradient of the squared electric field, which directly affect the magnitude of the dielectrophoretic force exerted on particles, were computationally simulated employing COMSOL Multiphysics. It was observed that a temperature gradient is formed along the microchannel, which redistributes the conductivity of the suspending medium leading to an increase of the dielectrophoretic force toward the inlet of the channel while decreasing toward the outlet. Experimental results are in good agreement with simulations on the particle-trapping zones anticipated. This study demonstrates the importance of considering Joule heating effects when designing insulator-based dielectrophoresis systems. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Jing, Ziang; Li, Changming; Zhao, Hong; Zhang, Guiling; Han, Baozhong
2016-01-01
The doping effect of graphene nanoplatelets (GNPs) on electrical insulation properties of polyethylene (PE) was studied by combining experimental and theoretical methods. The electric conduction properties and trap characteristics were tested for pure PE and PE/GNPs composites by using a direct measurement method and a thermal stimulated current (TSC) method. It was found that doping smaller GNPs is more beneficial to decrease the conductivity of PE/GNPs. The PE/GNPs composite with smaller size GNPs mainly introduces deep energy traps, while with increasing GNPs size, besides deep energy traps, shallow energy traps are also introduced. These results were also confirmed by density functional theory (DFT) and the non-equilibrium Green’s function (NEGF) method calculations. Therefore, doping small size GNPs is favorable for trapping charge carriers and enhancing insulation ability, which is suggested as an effective strategy in exploring powerful insulation materials. PMID:28773802
30 CFR 56.12008 - Insulation and fittings for power wires and cables.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Insulation and fittings for power wires and... MINES Electricity § 56.12008 Insulation and fittings for power wires and cables. Power wires and cables... insulated wires, other than cables, pass through metal frames, the holes shall be substantially bushed with...
30 CFR 56.12008 - Insulation and fittings for power wires and cables.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Insulation and fittings for power wires and... MINES Electricity § 56.12008 Insulation and fittings for power wires and cables. Power wires and cables... insulated wires, other than cables, pass through metal frames, the holes shall be substantially bushed with...
Transpiration cooled electrodes and insulators for MHD generators
Hoover, Jr., Delmer Q.
1981-01-01
Systems for cooling the inner duct walls in a magnetohydrodynamic (MHD) generator. The inner face components, adjacent the plasma, are formed of a porous material known as a transpiration material. Selected cooling gases are transpired through the duct walls, including electrically insulating and electrode segments, and into the plasma. A wide variety of structural materials and coolant gases at selected temperatures and pressures can be utilized and the gases can be drawn from the generation system compressor, the surrounding environment, and combustion and seed treatment products otherwise discharged, among many other sources. The conduits conducting the cooling gas are electrically insulated through low pressure bushings and connectors so as to electrically isolate the generator duct from the ground.
Specular Andreev reflection in thin films of topological insulators
NASA Astrophysics Data System (ADS)
Majidi, Leyla; Asgari, Reza
2016-05-01
We theoretically reveal the possibility of specular Andreev reflection in a thin film topological insulator normal-superconductor (N/S) junction in the presence of a gate electric field. The probability of specular Andreev reflection increases with the electric field, and electron-hole conversion with unit efficiency happens in a wide experimentally accessible range of the electric field. We show that perfect specular Andreev reflection can occur for all angles of incidence with a particular excitation energy value. In addition, we find that the thermal conductance of the structure displays exponential dependence on the temperature. Our results reveal the potential of the proposed topological insulator thin-film-based N/S structure for the realization of intraband specular Andreev reflection.
Surface Breakdown Characteristics of Silicone Oil for Electric Power Apparatus
NASA Astrophysics Data System (ADS)
Wada, Junichi; Nakajima, Akitoshi; Miyahara, Hideyuki; Takuma, Tadasu; Okabe, Shigemitu; Kohtoh, Masanori; Yanabu, Satoru
This paper describes the surface breakdown characteristics of the silicone oil which has the possibility of the application to innovative switchgear as an insulating medium. At the first step, we have experimentally studied on the impulse breakdown characteristics of the configuration with a triple-junction where a solid insulator is in contact with the electrode. The test configurations consist of solid material (Nomex and pressboard) and liquid insulation oil (silicone and mineral oil). We have discussed the experimental results based on the maximal electric field at a triple-junction. As the second step, we have studied the configuration which may improve the surface breakdown characteristics by lowering the electric field near the triple-junction.
Electrical aging markers for EPR-based low-voltage cable insulation wiring of nuclear power plants
NASA Astrophysics Data System (ADS)
Verardi, L.; Fabiani, D.; Montanari, G. C.
2014-01-01
This paper presents results of electrical property measurements on EPR-based insulations of low-voltage power cables used in nuclear power plants. The specimens underwent accelerated aging through the simultaneous application of high temperature and gamma-radiation. Mechanical properties and the dielectric response at different frequencies were investigated. Results showed significant variation of the electrical and mechanical properties of aged cables at low frequencies, i.e. lower than 10-2 Hz. In particular, the real and imaginary parts of permittivity increase with aging time, accumulated dose and stress levels applied showing good correlation with elongation at break, which decreases as a function of extent of insulation aging.
Choi, Y H; Song, J B; Yang, D G; Kim, Y G; Hahn, S; Lee, H G
2016-10-01
This paper presents our recent progress on core technology development for a megawatt-class superconducting wind turbine generator supported by the international collaborative R&D program of the Korea Institute of Energy Technology Evaluation and Planning. To outperform the current high-temperature-superconducting (HTS) magnet technology in the wind turbine industry, a novel no-insulation winding technique was first proposed to develop the second-generation HTS racetrack coil for rotating applications. Here, we briefly report our recent studies on no-insulation (NI) winding technique for GdBCO coated conductor racetrack coils in the following areas: (1) Charging-discharging characteristics of no-insulation GdBCO racetrack coils with respect to external pressures applied to straight sections; (2) thermal and electrical stabilities of no-insulation GdBCO racetrack coils encapsulated with various impregnating materials; (3) quench behaviors of no-insulation racetrack coils wound with GdBCO conductor possessing various lamination layers; (4) electromagnetic characteristics of no-insulation GdBCO racetrack coils under time-varying field conditions. Test results confirmed that this novel NI winding technique was highly promising. It could provide development of a compact, mechanically dense, and self-protecting GdBCO magnet for use in real-world superconducting wind turbine generators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shoup, R.W.; Long, F.; Martin, T.H.
Sandia has developed PBFA-Z, a 20-MA driver for z-pinch experiments by replacing the water lines, insulator stack. and MITLs on PBFA II with hardware of a new design. The PBFA-Z accelerator was designed to deliver 20 MA to a 15-mg z-pinch load in 100 ns. The accelerator was modeled using circuit codes to determine the time-dependent voltage and current waveforms at the input and output of the water lines, the insulator stack, and the MITLs. The design of the vacuum insulator stack was dictated by the drive voltage, the electric field stress and grading requirements, the water line and MITLmore » interface requirements, and the machine operations and maintenance requirements. The insulator stack consists of four separate modules, each of a different design because of different voltage drive and hardware interface requirements. The shape of the components in each module, i.e., grading rings, insulator rings, flux excluders, anode and cathode conductors, and the design of the water line and MITL interfaces, were optimized by using the electrostatic analysis codes, ELECTRO and JASON. The time-dependent performance of the insulator stacks was evaluated using IVORY, a 2-D PIC code. This paper will describe the insulator stack design, present the results of the ELECTRO and IVORY analyses, and show the results of the stack measurements.« less
NASA Astrophysics Data System (ADS)
Choi, Y. H.; Song, J. B.; Yang, D. G.; Kim, Y. G.; Hahn, S.; Lee, H. G.
2016-10-01
This paper presents our recent progress on core technology development for a megawatt-class superconducting wind turbine generator supported by the international collaborative R&D program of the Korea Institute of Energy Technology Evaluation and Planning. To outperform the current high-temperature-superconducting (HTS) magnet technology in the wind turbine industry, a novel no-insulation winding technique was first proposed to develop the second-generation HTS racetrack coil for rotating applications. Here, we briefly report our recent studies on no-insulation (NI) winding technique for GdBCO coated conductor racetrack coils in the following areas: (1) Charging-discharging characteristics of no-insulation GdBCO racetrack coils with respect to external pressures applied to straight sections; (2) thermal and electrical stabilities of no-insulation GdBCO racetrack coils encapsulated with various impregnating materials; (3) quench behaviors of no-insulation racetrack coils wound with GdBCO conductor possessing various lamination layers; (4) electromagnetic characteristics of no-insulation GdBCO racetrack coils under time-varying field conditions. Test results confirmed that this novel NI winding technique was highly promising. It could provide development of a compact, mechanically dense, and self-protecting GdBCO magnet for use in real-world superconducting wind turbine generators.
Surface Charge Effects on the Electro-Orientation of Insulating Nanotubes in Aqueous Electrolytes
NASA Astrophysics Data System (ADS)
Cetindag, Semih; Tiwari, Bishnu; Zhang, Dongyan; Yap, Yoke Khin; Kim, Sangil; Shan, Jerry W.
2017-11-01
While the alignment of electrically conductive nanowires and nanotubes by electric fields in liquid solution has been well studied, much less is known about the electro-orientation of insulating 1D particles, such as boron-nitride nanotubes (BNNTs). Here, we demonstrate for the first time the electro-orientation of individual insulating BNNTs in aqueous KCl solutions under AC fields. Comparison to theory indicates that the observed frequency response is not related to the crossover for Maxwell-Wagner interfacial polarization. Instead, the cross-over frequency in the low-frequency regime scales as the square root of solution conductivity, indicating that alignment is associated with the formation and motion of an electrical double layer (EDL), much like induced-charge electro-osmosis for a conducting particle. However, the mechanism for the formation of the EDL is presumably different for insulating particles like BNNTs as compared to conductors. By varying the surface charge of the particle by changing pH, we show that the alignment rate increases with increasing surface charge, and is likely a result of counter-ion migration and EDL polarization under the influence of applied electric field. Thus, particle surface charge (large Dukhin number) is believed to play a vital role in the electro-orientation of insulating particles in aqueous solutions. NSF CBET-1604931 and NSF DMR-1261910.
Development of a qualification standard for adhesives used in hybrid microcircuits
NASA Technical Reports Server (NTRS)
Licari, J. J.; Weigand, B. L.; Soykin, C. A.
1981-01-01
Improved qualification standards and test procedures for adhesives used in microelectronic packaging are developed. The test methods in specification for the Selection and Use of Organic Adhesives in Hybrid Microcircuits are reevaluated versus industry and government requirements. Four electrically insulative and four electrically conductive adhesives used in the assembly of hybrid microcircuits are selected to evaluate the proposed revised test methods. An estimate of the cost to perform qualification testing of an adhesive to the requirements of the revised specification is also prepared.
1988-03-01
Polyimides as Planarizing and Insulative Coatings 2-21 III. Experimental Procedure, Equipment, and Materials 3-1 Wet Orientation Dependent Etching Study 3...1 Die Bond Adhesives Study .3-7 Fabrication of Samples for Electrical Testing 3-21 Evaluation of the Final Samples 3-45 IV. Experimental Results and...Discussion .. 4-1 We :ientation Dependent Etching Study Results 4-1 Die Attach Adhesives Study Results 4-21 Fabrication of Samples for Electrical
Capacitive charge generation apparatus and method for testing circuits
Cole, E.I. Jr.; Peterson, K.A.; Barton, D.L.
1998-07-14
An electron beam apparatus and method for testing a circuit are disclosed. The electron beam apparatus comprises an electron beam incident on an outer surface of an insulating layer overlying one or more electrical conductors of the circuit for generating a time varying or alternating current electrical potential on the surface; and a measurement unit connected to the circuit for measuring an electrical signal capacitively coupled to the electrical conductors to identify and map a conduction state of each of the electrical conductors, with or without an electrical bias signal being applied to the circuit. The electron beam apparatus can further include a secondary electron detector for forming a secondary electron image for registration with a map of the conduction state of the electrical conductors. The apparatus and method are useful for failure analysis or qualification testing to determine the presence of any open-circuits or short-circuits, and to verify the continuity or integrity of electrical conductors buried below an insulating layer thickness of 1-100 {micro}m or more without damaging or breaking down the insulating layer. The types of electrical circuits that can be tested include integrated circuits, multi-chip modules, printed circuit boards and flexible printed circuits. 7 figs.
Capacitive charge generation apparatus and method for testing circuits
Cole, Jr., Edward I.; Peterson, Kenneth A.; Barton, Daniel L.
1998-01-01
An electron beam apparatus and method for testing a circuit. The electron beam apparatus comprises an electron beam incident on an outer surface of an insulating layer overlying one or more electrical conductors of the circuit for generating a time varying or alternating current electrical potential on the surface; and a measurement unit connected to the circuit for measuring an electrical signal capacitively coupled to the electrical conductors to identify and map a conduction state of each of the electrical conductors, with or without an electrical bias signal being applied to the circuit. The electron beam apparatus can further include a secondary electron detector for forming a secondary electron image for registration with a map of the conduction state of the electrical conductors. The apparatus and method are useful for failure analysis or qualification testing to determine the presence of any open-circuits or short-circuits, and to verify the continuity or integrity of electrical conductors buried below an insulating layer thickness of 1-100 .mu.m or more without damaging or breaking down the insulating layer. The types of electrical circuits that can be tested include integrated circuits, multi-chip modules, printed circuit boards and flexible printed circuits.
Radiation Resistant Electrical Insulation Materials for Nuclear Reactors: Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duckworth, Robert C.; Aytug, Tolga; Paranthaman, M. Parans
The instrument and control cables in future nuclear reactors will be exposed to temperatures, dose rates, and accumulated doses exceeding those originally anticipated for the 40-year operational life of the nuclear power plant fleet. The use of nanocomposite dielectrics as insulating material for such cables has been considered a route to performance improvement. In this project, nanoparticles were developed and successfully included in three separate material systems [cross-linked polyvinyl alcohol (PVA/XLPVA), cross-linked polyethylene (PE/XLPE), and polyimide (PI)], and the chemical, electrical, and mechanical performance of each was analyzed as a function of environmental exposure and composition. Improvements were found inmore » each material system; however, refinement of each processing pathway is needed, and the consequences of these refinements in the context of thermal, radiation, and moisture exposures should be evaluated before transferring knowledge to industry.« less
Effects of thermal and electrical stressing on the breakdown behavior of space wiring
NASA Technical Reports Server (NTRS)
Hammoud, Ahmad; Stavnes, Mark; Suthar, Jayant; Laghari, Javaid
1995-01-01
Several failures in the electrical wiring systems of many aircraft and space vehicles have been attributed to arc tracking and damaged insulation. In some instances, these failures proved to be very costly as they have led to the loss of many aircraft and imperilment of space missions. Efforts are currently underway to develop lightweight, reliable, and arc track resistant wiring for aerospace applications. In this work, six wiring constructions were evaluated in terms of their breakdown behavior as a function of temperature. These hybrid constructions employed insulation consisting of Kapton, Teflon, and cross-linked Tefzel. The properties investigated included the 400 Hz AC dielectric strength at ambient and 200 C, and the lifetime at high temperature with an applied bias of 40, 60, and 80% of breakdown voltage level. The results obtained are discussed, and conclusions are made concerning the suitability of the wiring constructions investigated for aerospace applications.
Effects of thermal and electrical stressing on the breakdown behavior of space wiring
NASA Astrophysics Data System (ADS)
Hammoud, Ahmad; Stavnes, Mark; Suthar, Jayant; Laghari, Javaid
1995-06-01
Several failures in the electrical wiring systems of many aircraft and space vehicles have been attributed to arc tracking and damaged insulation. In some instances, these failures proved to be very costly as they have led to the loss of many aircraft and imperilment of space missions. Efforts are currently underway to develop lightweight, reliable, and arc track resistant wiring for aerospace applications. In this work, six wiring constructions were evaluated in terms of their breakdown behavior as a function of temperature. These hybrid constructions employed insulation consisting of Kapton, Teflon, and cross-linked Tefzel. The properties investigated included the 400 Hz AC dielectric strength at ambient and 200 C, and the lifetime at high temperature with an applied bias of 40, 60, and 80% of breakdown voltage level. The results obtained are discussed, and conclusions are made concerning the suitability of the wiring constructions investigated for aerospace applications.
Chern structure in the Bose-insulating phase of Sr2RuO4 nanofilms
Nobukane, Hiroyoshi; Matsuyama, Toyoki; Tanda, Satoshi
2017-01-01
The quantum anomaly that breaks the symmetry, for example the parity and the chirality, in the quantization leads to a physical quantity with a topological Chern invariant. We report the observation of a Chern structure in the Bose-insulating phase of Sr2RuO4 nanofilms by employing electric transport. We observed the superconductor-to-insulator transition by reducing the thickness of Sr2RuO4 single crystals. The appearance of a gap structure in the insulating phase implies local superconductivity. Fractional quantized conductance was observed without an external magnetic field. We found an anomalous induced voltage with temperature and thickness dependence, and the induced voltage exhibited switching behavior when we applied a magnetic field. We suggest that there was fractional magnetic-field-induced electric polarization in the interlayer. These anomalous results are related to topological invariance. The fractional axion angle Θ = π/6 was determined by observing the topological magneto-electric effect in the Bose-insulating phase of Sr2RuO4 nanofilms. PMID:28112269
A Classroom Activity for Teaching Electric Polarization of Insulators and Conductors
ERIC Educational Resources Information Center
Deligkaris, Christos
2018-01-01
The phenomenon of electric polarization is crucial to student understanding of forces exerted between charged objects and insulators or conductors, the process of charging by induction, and the behavior of electroscopes near charged objects. In addition, polarization allows for microscopic-level models of everyday-life macroscopic-level phenomena.…
Hoffheins, Barbara S.; Lauf, Robert J.
1995-01-01
A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors.
Hoffheins, B.S.; Lauf, R.J.
1995-09-19
A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors. 8 figs.
Integrated Electrical Wire Insulation Repair System
NASA Technical Reports Server (NTRS)
Williams, Martha; Jolley, Scott; Gibson, Tracy; Parks, Steven
2013-01-01
An integrated system tool will allow a technician to easily and quickly repair damaged high-performance electrical wire insulation in the field. Low-melt polyimides have been developed that can be processed into thin films that work well in the repair of damaged polyimide or fluoropolymer insulated electrical wiring. Such thin films can be used in wire insulation repairs by affixing a film of this low-melt polyimide to the damaged wire, and heating the film to effect melting, flow, and cure of the film. The resulting repair is robust, lightweight, and small in volume. The heating of this repair film is accomplished with the use of a common electrical soldering tool that has been modified with a special head or tip that can accommodate the size of wire being repaired. This repair method can furthermore be simplified for the repair technician by providing replaceable or disposable soldering tool heads that have repair film already "loaded" and ready for use. The soldering tool heating device can also be equipped with a battery power supply that will allow its use in areas where plug-in current is not available
NASA Astrophysics Data System (ADS)
Crosse, J. A.
2017-02-01
Topological insulators subject to a time-reversal-symmetry-breaking perturbation are predicted to display a magneto-electric effect that causes the electric and magnetic induction fields to mix at the material’s surface. This effect induces polarization rotations of between ≈1-10 mrad per interface in an incident plane-polarized electromagnetic wave normal to a multilayered structure. Here we show, theoretically and numerically, that by using a waveguide geometry with a topological insulator guide layer and magneto-dielectric cladding it is possible to achieve rotations of ≈100 mrad and generate an elliptical polarization with only a three-layered structure. This geometry is beneficial, not only as a way to enhance the magneto-electric effect, rendering it easier to observe, but also as a method for controlling the polarization of electromagnetic radiation.
Electrical conductivity of rigid polyurethane foam at high temperature
NASA Astrophysics Data System (ADS)
Johnson, R. T., Jr.
1982-08-01
The electrical conductivity of rigid polyurethane foam, used for electronic encapsulation, was measured during thermal decomposition to 3400 C. At higher temperatures the conductance continues to increase. With pressure loaded electrical leads, sample softening results in eventual contact between electrodes which produces electrical shorting. Air and nitrogen environments show no significant dependence of the conductivity on the atmosphere over the temperature range. The insulating characteristics of polyurethane foam below approx. 2700 C are similar to those for silicone based materials used for electronic case housings and are better than those for phenolics. At higher temperatures (greater than or equal to 2700 C) the phenolics appear to be better insulators to approx. 5000 C and the silicones to approx. 6000 C. It is concluded that the Sylgard 184/GMB encapsulant is a significantly better insulator at high temperature than the rigid polyurethane foam.
7 CFR 1755.870 - RUS specification for terminating cables.
Code of Federal Regulations, 2012 CFR
2012-01-01
... of conductor insulation deformation or adhesion between conductors, caused by adverse heat transfer... x Overall Percent Difference in Average x Failures Insulation Compression: Control Heat Age..., Standard Specification for Forced-Convection Laboratory Ovens for Electrical Insulation; ASTM D 2633-82...
7 CFR 1755.870 - RUS specification for terminating cables.
Code of Federal Regulations, 2013 CFR
2013-01-01
... of conductor insulation deformation or adhesion between conductors, caused by adverse heat transfer... x Overall Percent Difference in Average x Failures Insulation Compression: Control Heat Age..., Standard Specification for Forced-Convection Laboratory Ovens for Electrical Insulation; ASTM D 2633-82...
7 CFR 1755.870 - RUS specification for terminating cables.
Code of Federal Regulations, 2014 CFR
2014-01-01
... of conductor insulation deformation or adhesion between conductors, caused by adverse heat transfer... x Overall Percent Difference in Average x Failures Insulation Compression: Control Heat Age..., Standard Specification for Forced-Convection Laboratory Ovens for Electrical Insulation; ASTM D 2633-82...
Method of fabricating high-density hermetic electrical feedthroughs
Shah, Kedar G.; Pannu, Satinderpall S.; Delima, Terri L.
2015-06-02
A method of fabricating electrical feedthroughs selectively removes substrate material from a first side of an electrically conductive substrate (e.g. a bio-compatible metal) to form an array of electrically conductive posts in a substrate cavity. An electrically insulating material (e.g. a bio-compatible sealing glass) is then flowed to fill the substrate cavity and surround each post, and solidified. The solidified insulating material is then exposed from an opposite second side of the substrate so that each post is electrically isolated from each other as well as the bulk substrate. In this manner a hermetic electrically conductive feedthrough construction is formed having an array of electrical feedthroughs extending between the first and second sides of the substrate from which it was formed.
He, Hao; Zhang, Qixing; Tu, Ran; Zhao, Luyao; Liu, Jia; Zhang, Yongming
2016-12-15
The dripping behavior of the molten thermoplastic insulation of copper wire, induced by flame spread under overload currents, was investigated for a better understanding of energized electrical wire fires. Three types of sample wire, with the same polyethylene insulation thickness and different core diameters, were used in this study. First, overload current effects on the transient one-dimensional wire temperature profile were predicted using simplified theoretical analysis; the heating process and equilibrium temperature were obtained. Second, experiments on the melting characteristics were conducted in a laboratory environment, including drop formation and frequency, falling speed, and combustion on the steel base. Third, a relationship between molten mass loss and volume variation was proposed to evaluate the dripping time and frequency. A strong current was a prerequisite for the wire dripping behavior and the averaged dripping frequency was found to be proportional to the square of the current based on the theoretical and experimental results. Finally, the influence of dripping behavior on the flame propagation along the energized electrical wire was discussed. The flame width, bright flame height and flame spreading velocity presented different behaviors. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zunger, Alex; Zhang, Xiuwen; Abdalla, Leonardo; Liu, Qihang
Currently known topological insulators (TIs) are limited to narrow gap compounds incorporating heavy elements, thus severely limiting the material pool available for such applications. We show how a heterovalent superlattice made of common semiconductor building blocks can transform its non-TI components into a topological heterostructure. The heterovalent nature of such interfaces sets up, in the absence of interfacial atomic exchange, a natural internal electric field that along with the quantum confinement leads to band inversion, transforming these semiconductors into a topological phase while also forming a giant Rashba spin splitting. We demonstrate this paradigm of designing TIs from ordinary semiconductors via first-principle calculations on III-V/II-VI superlattice InSb/CdTe. We illustrate the relationship between the interfacial stability and the topological transition, finding a ``window of opportunity'' where both conditions can be optimized. This work illustrates the general principles of co-evaluation of TI functionality with thermodynamic stability as a route of identifying realistic combination of common insulators that could produce topological heterostructures. This work was supported by Basic Energy Science, MSE division (Grant DE-FG02-13ER46959).
Electrical short circuit and current overload tests on aircraft wiring
NASA Technical Reports Server (NTRS)
Cahill, Patricia
1995-01-01
The findings of electrical short circuit and current overload tests performed on commercial aircraft wiring are presented. A series of bench-scale tests were conducted to evaluate circuit breaker response to overcurrent and to determine if the wire showed any visible signs of thermal degradation due to overcurrent. Three types of wire used in commercial aircraft were evaluated: MIL-W-22759/34 (150 C rated), MIL-W-81381/12 (200 C rated), and BMS 1360 (260 C rated). A second series of tests evaluated circuit breaker response to short circuits and ticking faults. These tests were also meant to determine if the three test wires behaved differently under these conditions and if a short circuit or ticking fault could start a fire. It is concluded that circuit breakers provided reliable overcurrent protection. Circuit breakers may not protect wire from ticking faults but can protect wire from direct shorts. These tests indicated that the appearance of a wire subjected to a current that totally degrades the insulation looks identical to a wire subjected to a fire; however the 'fire exposed' conductor was more brittle than the conductor degraded by overcurrent. Preliminary testing indicates that direct short circuits are not likely to start a fire. Preliminary testing indicated that direct short circuits do not erode insulation and conductor to the extent that ticking faults did. Circuit breakers may not safeguard against the ignition of flammable materials by ticking faults. The flammability of materials near ticking faults is far more important than the rating of the wire insulation material.
Fischer, William H.; Cookson, Alan H.; Yoon, Kue H.
1984-04-10
A particle trap to outer elongated conductor or sheath contact for gas-insulated transmission lines. The particle trap to outer sheath contact of the invention is applicable to gas-insulated transmission lines having either corrugated or non-corrugated outer sheaths. The contact of the invention includes an electrical contact disposed on a lever arm which in turn is rotatably disposed on the particle trap and biased in a direction to maintain contact between the electrical contact and the outer sheath.
NASA Technical Reports Server (NTRS)
Amos, D. J.
1977-01-01
An analytical evaluation was conducted to determine quantitatively the improvement potential in cycle efficiency and cost of electricity made possible by the introduction of thermal barrier coatings to power generation combustion turbine systems. The thermal barrier system, a metallic bond coat and yttria stabilized zirconia outer layer applied by plasma spray techniques, acts as a heat insulator to provide substantial metal temperature reductions below that of the exposed thermal barrier surface. The study results show the thermal barrier to be a potentially attractive means for improving performance and reducing cost of electricity for the simple, recuperated, and combined cycles evaluated.
NASA Astrophysics Data System (ADS)
Malecha, Ziemowit; Lubryka, Eliza
2017-11-01
The numerical model of thin layers, characterized by a defined wrapping pattern can be a crucial element of many computational problems related to engineering and science. A motivating example is found in multilayer electrical insulation, which is an important component of superconducting magnets and other cryogenic installations. The wrapping pattern of the insulation can significantly affect heat transport and the performance of the considered instruments. The major objective of this study is to develop the numerical boundary conditions (BC) needed to model the wrapping pattern of thin insulation. An example of the practical application of the proposed BC includes the heat transfer of Rutherford NbTi cables immersed in super-fluid helium (He II) across thin layers of electrical insulation. The proposed BC and a mathematical model of heat transfer in He II are implemented in the open source CFD toolbox OpenFOAM. The implemented mathematical model and the BC are compared in the experiments. The study confirms that the thermal resistance of electrical insulation can be lowered by implementing the proper wrapping pattern. The proposed BC can be useful in the study of new patterns for wrapping schemes. The work has been supported by statutory funds from Polish Ministry for Science and Higher Education for the year of 2017.
A LINE POLE 20, DETAIL OF ORIGINAL GLASS PINTYPE INSULATORS ...
A LINE POLE 20, DETAIL OF ORIGINAL GLASS PIN-TYPE INSULATORS AND INTACT COMMUNICATION LINE CROSS ARM WITH TWO GLASS INSULATORS. VIEW TO NORTHWEST. - Mystic Lake Hydroelectric Facility, Electric Transmission A Line, Along West Rosebud Creek, Fishtail, Stillwater County, MT
A LINE POLE 75, DETAIL OF ORIGINAL GLASS PINTYPE INSULATORS ...
A LINE POLE 75, DETAIL OF ORIGINAL GLASS PIN-TYPE INSULATORS AND INTACT COMMUNICATION LINE CROSS ARM WITH ONE GLASS INSULATOR. VIEW TO SOUTHWEST. - Mystic Lake Hydroelectric Facility, Electric Transmission A Line, Along West Rosebud Creek, Fishtail, Stillwater County, MT
Study of SF6 gas decomposition products based on spectroscopy technology
NASA Astrophysics Data System (ADS)
Cai, Ji-xing; Na, Yan-xiang; Ni, Wei-yuan; Li, Guo-wei; Feng, Ke-cheng; Song, Gui-cai
2011-08-01
With the rapid development of power industry, the number of SF6 electrical equipment are increasing, it has gradually replaced the traditional insulating oil material as insulation and arc media in the high-voltage electrical equipment. Pure SF6 gas has excellent insulating properties and arc characteristics; however, under the effect of the strong arc, SF6 gas will decompose and generate toxic substances, then corroding electrical equipment, thereby affecting the insulation and arc ability of electrical equipment. If excessive levels of impurities in the gas that will seriously affect the mechanical properties, breaking performance and electrical performance of electrical equipment, it will cause many serious consequences, even threaten the safe operation of the grid. This paper main analyzes the basic properties of SF6 gas and the basic situation of decomposition in the discharge conditions, in order to simulate the actual high-voltage electrical equipment, designed and produced a simulation device that can simulate the decomposition of SF6 gas under a high voltage discharge, and using fourier transform infrared spectroscopy to analyze the sample that produced by the simulation device. The result show that the main discharge decomposition product is SO2F2 (sulfuryl fluoride), the substance can react with water and generate corrosive H2SO4(sulfuric acid) and HF (hydrogen fluoride), also found that the increase in the number with the discharge, SO2F2concentration levels are on the rise. Therefore, the material can be used as one of the main characteristic gases to determine the SF6 electrical equipment failure, and to monitor their concentration levels.
Crosse, J. A.
2017-01-01
Topological insulators subject to a time-reversal-symmetry-breaking perturbation are predicted to display a magneto-electric effect that causes the electric and magnetic induction fields to mix at the material’s surface. This effect induces polarization rotations of between ≈1–10 mrad per interface in an incident plane-polarized electromagnetic wave normal to a multilayered structure. Here we show, theoretically and numerically, that by using a waveguide geometry with a topological insulator guide layer and magneto-dielectric cladding it is possible to achieve rotations of ≈100 mrad and generate an elliptical polarization with only a three-layered structure. This geometry is beneficial, not only as a way to enhance the magneto-electric effect, rendering it easier to observe, but also as a method for controlling the polarization of electromagnetic radiation. PMID:28220875
High voltage design structure for high temperature superconducting device
Tekletsadik, Kasegn D [Rexford, NY
2008-05-20
In accordance with the present invention, modular corona shields are employed in a HTS device to reduce the electric field surrounding the HTS device. In a exemplary embodiment a fault current limiter module in the insulation region of a cryogenic cooling system has at least one fault current limiter set which employs a first corona shield disposed along the top portion of the fault current limiter set and is electrically coupled to the fault current limiter set. A second corona shield is disposed along the bottom portion of the fault current limiter set and is electrically coupled to the fault current limiter set. An insulation barrier is disposed within the insulation region along at least one side of the fault current limiter set. The first corona shield and the second corona shield act together to reduce the electric field surrounding the fault limiter set when voltage is applied to the fault limiter set.
Magnon Spin Hall Magnetoresistance of a Gapped Quantum Paramagnet.
Ulloa, Camilo; Duine, R A
2018-04-27
Motivated by recent experimental work, we consider spin transport between a normal metal and a gapped quantum paramagnet. We model the latter as the magnonic Mott-insulating phase of an easy-plane ferromagnetic insulator. We evaluate the spin current mediated by the interface exchange coupling between the ferromagnet and the adjacent normal metal. For the strongly interacting magnons that we consider, this spin current gives rise to a spin Hall magnetoresistance that strongly depends on the magnitude of the magnetic field, rather than its direction. This Letter may motivate electrical detection of the phases of quantum magnets and the incorporation of such materials into spintronic devices.
Magnon Spin Hall Magnetoresistance of a Gapped Quantum Paramagnet
NASA Astrophysics Data System (ADS)
Ulloa, Camilo; Duine, R. A.
2018-04-01
Motivated by recent experimental work, we consider spin transport between a normal metal and a gapped quantum paramagnet. We model the latter as the magnonic Mott-insulating phase of an easy-plane ferromagnetic insulator. We evaluate the spin current mediated by the interface exchange coupling between the ferromagnet and the adjacent normal metal. For the strongly interacting magnons that we consider, this spin current gives rise to a spin Hall magnetoresistance that strongly depends on the magnitude of the magnetic field, rather than its direction. This Letter may motivate electrical detection of the phases of quantum magnets and the incorporation of such materials into spintronic devices.
Tool for cutting insulation from electrical cables
Harless, Charles E.; Taylor, Ward G.
1978-01-01
This invention is an efficient hand tool for precisely slitting the sheath of insulation on an electrical cable--e.g., a cable two inches in diameter--in a manner facilitating subsequent peeling or stripping of the insulation. The tool includes a rigid frame which is slidably fitted on an end section of the cable. The frame carries a rigidly affixed handle and an opposed, elongated blade-and-handle assembly. The blade-and-handle assembly is pivotally supported by a bracket which is slidably mounted on the frame for movement toward and away from the cable, thus providing an adjustment for the depth of cut. The blade-and-handle assembly is mountable to the bracket in two pivotable positions. With the assembly mounted in the first position, the tool is turned about the cable to slit the insulation circumferentially. With the assembly mounted in the second position, the tool is drawn along the cable to slit the insulation axially. When cut both circumferentially and axially, the insulation can easily be peeled from the cable.
Deep Charging Evaluation of Satellite Power and Communication System Components
NASA Technical Reports Server (NTRS)
Schneider, T. A.; Vaughn, J. A.; Chu, B.; Wong, F.; Gardiner, G.; Wright, K. H.; Phillips, B.
2016-01-01
Deep charging, in contrast to surface charging, focuses on electron penetration deep into insulating materials applied over conductors. A classic example of this scenario is an insulated wire. Deep charging can pose a threat to material integrity, and to sensitive electronics, when it gives rise to an electrostatic discharge or arc. With the advent of Electric Orbit Raising, which requires spiraling through Earth's radiation belts, satellites are subjected to high energy electron environments which they normally would not encounter. Beyond Earth orbit, missions to Jupiter and Saturn face deep charging concerns due to the high energy radiation environments. While predictions can be made about charging in insulating materials, it is difficult to extend those predictions to complicated geometries, such as the case of an insulating coating around a small wire, or a non-uniform silicone grouting on a bus bar. Therefore, to conclusively determine the susceptibility of a system to arcs from deep charging, experimental investigations must be carried out. This paper will describe the evaluation carried out by NASA's Marshall Space Flight Center on subscale flight-like samples developed by Space Systems/Loral, LLC. Specifically, deep charging evaluations of solar array wire coupons, a photovoltaic cell coupon, and a coaxial microwave transmission cable, will be discussed. The results of each evaluation will be benchmarked against control sample tests, as well as typical power system levels, to show no significant deep charging threat existed for this set of samples under the conditions tested.
Apparatus for improving performance of electrical insulating structures
Wilson, Michael J.; Goerz, David A.
2004-08-31
Removing the electrical field from the internal volume of high-voltage structures; e.g., bushings, connectors, capacitors, and cables. The electrical field is removed from inherently weak regions of the interconnect, such as between the center conductor and the solid dielectric, and places it in the primary insulation. This is accomplished by providing a conductive surface on the inside surface of the principal solid dielectric insulator surrounding the center conductor and connects the center conductor to this conductive surface. The advantage of removing the electric fields from the weaker dielectric region to a stronger area improves reliability, increases component life and operating levels, reduces noise and losses, and allows for a smaller compact design. This electric field control approach is currently possible on many existing products at a modest cost. Several techniques are available to provide the level of electric field control needed. Choosing the optimum technique depends on material, size, and surface accessibility. The simplest deposition method uses a standard electroless plating technique, but other metalization techniques include vapor and energetic deposition, plasma spraying, conductive painting, and other controlled coating methods.
Apparatus for improving performance of electrical insulating structures
Wilson, Michael J.; Goerz, David A.
2002-01-01
Removing the electrical field from the internal volume of high-voltage structures; e.g., bushings, connectors, capacitors, and cables. The electrical field is removed from inherently weak regions of the interconnect, such as between the center conductor and the solid dielectric, and places it in the primary insulation. This is accomplished by providing a conductive surface on the inside surface of the principal solid dielectric insulator surrounding the center conductor and connects the center conductor to this conductive surface. The advantage of removing the electric fields from the weaker dielectric region to a stronger area improves reliability, increases component life and operating levels, reduces noise and losses, and allows for a smaller compact design. This electric field control approach is currently possible on many existing products at a modest cost. Several techniques are available to provide the level of electric field control needed. Choosing the optimum technique depends on material, size, and surface accessibility. The simplest deposition method uses a standard electroless plating technique, but other metalization techniques include vapor and energetic deposition, plasma spraying, conductive painting, and other controlled coating methods.
Method for improving performance of highly stressed electrical insulating structures
Wilson, Michael J.; Goerz, David A.
2002-01-01
Removing the electrical field from the internal volume of high-voltage structures; e.g., bushings, connectors, capacitors, and cables. The electrical field is removed from inherently weak regions of the interconnect, such as between the center conductor and the solid dielectric, and places it in the primary insulation. This is accomplished by providing a conductive surface on the inside surface of the principal solid dielectric insulator surrounding the center conductor and connects the center conductor to this conductive surface. The advantage of removing the electric fields from the weaker dielectric region to a stronger area improves reliability, increases component life and operating levels, reduces noise and losses, and allows for a smaller compact design. This electric field control approach is currently possible on many existing products at a modest cost. Several techniques are available to provide the level of electric field control needed. Choosing the optimum technique depends on material, size, and surface accessibility. The simplest deposition method uses a standard electroless plating technique, but other metalization techniques include vapor and energetic deposition, plasma spraying, conductive painting, and other controlled coating methods.
Determining Remaining Useful Life of Aging Cables in Nuclear Power Plants – Interim Study FY13
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simmons, Kevin L.; Fifield, Leonard S.; Westman, Matthew P.
2013-09-27
The most important criterion for cable performance is its ability to withstand a design-basis accident. With nearly 1000 km of power, control, instrumentation, and other cables typically found in an NPP, it would be a significant undertaking to inspect all of the cables. Degradation of the cable jacket, electrical insulation, and other cable components is a key issue that is likely to affect the ability of the currently installed cables to operate safely and reliably for another 20 to 40 years beyond the initial operating life. The development of one or more nondestructive evaluation (NDE) techniques and supporting models thatmore » could assist in determining the remaining life expectancy of cables or their current degradation state would be of significant interest. The ability to nondestructively determine material and electrical properties of cable jackets and insulation without disturbing the cables or connections has been deemed essential. Currently, the only technique accepted by industry to measure cable elasticity (the gold standard for determining cable insulation degradation) is the indentation measurement. All other NDE techniques are used to find flaws in the cable and do not provide information to determine the current health or life expectancy. There is no single NDE technique that can satisfy all of the requirements needed for making a life-expectancy determination, but a wide range of methods have been evaluated for use in NPPs as part of a continuous evaluation program. The commonly used methods are indentation and visual inspection, but these are only suitable for easily accessible cables. Several NDE methodologies using electrical techniques are in use today for flaw detection but there are none that can predict the life of a cable. There are, however, several physical and chemical ptoperty changes in cable insulation as a result of thermal and radiation damage. In principle, these properties may be targets for advanced NDE methods to provide early warning of aging and degradation. Examples of such key indicators include changes in chemical structure, mechanical modulus, and dielectric permittivity. While some of these indicators are the basis of currently used technologies, there is a need to increase the volume of cable that may be inspected with a single measurement, and if possible, to develop techniques for in-situ inspection (i.e., while the cable is in operation). This is the focus of the present report.« less
Design principles for HgTe based topological insulator devices
NASA Astrophysics Data System (ADS)
Sengupta, Parijat; Kubis, Tillmann; Tan, Yaohua; Povolotskyi, Michael; Klimeck, Gerhard
2013-07-01
The topological insulator properties of CdTe/HgTe/CdTe quantum wells are theoretically studied. The CdTe/HgTe/CdTe quantum well behaves as a topological insulator beyond a critical well width dimension. It is shown that if the barrier (CdTe) and well-region (HgTe) are altered by replacing them with the alloy CdxHg1-xTe of various stoichiometries, the critical width can be changed. The critical quantum well width is shown to depend on temperature, applied stress, growth directions, and external electric fields. Based on these results, a novel device concept is proposed that allows to switch between a normal semiconducting and topological insulator state through application of moderate external electric fields.
NASA Astrophysics Data System (ADS)
Kim, Do-Kyung; Lee, Gyu-Jeong; Lee, Jae-Hyun; Kim, Min-Hoi; Bae, Jin-Hyuk
2018-05-01
We suggest a viable surface control method to improve the electrical properties of organic nonvolatile memory transistors. For viable surface control, the surface of the ferroelectric insulator in the memory field-effect transistors was modified using a smooth-contact-curing process. For the modification of the ferroelectric polymer, during the curing of the ferroelectric insulators, the smooth surface of a soft elastomer contacts intimately with the ferroelectric surface. This smooth-contact-curing process reduced the surface roughness of the ferroelectric insulator without degrading its ferroelectric properties. The reduced roughness of the ferroelectric insulator increases the mobility of the organic field-effect transistor by approximately eight times, which results in a high memory on–off ratio and a low-voltage reading operation.
Causes of Cracking of Ignition Cable
NASA Technical Reports Server (NTRS)
Silsbee, F B
1921-01-01
The experiments described here show that the cracking at sharp bends, observed in the insulation of internal combustion engine high tension ignition wires after service, is due to a chemical attack upon the rubber by the ozone produced by the electric discharge that takes place at the surface of the cable. This cracking does not occur if the insulating material is not under tension, or if the cable is surrounded by some medium other than air. But it does occur even if the insulation is not subjected to electric stress, provided that the atmosphere near the cable contains ozone. The extent of this cracking varies greatly with the insulating material used. The cracking can be materially reduced by using braided cable and by avoiding sharp bends.
Efficient thermoelectric device
NASA Technical Reports Server (NTRS)
Ila, Daryush (Inventor)
2010-01-01
A high efficiency thermo electric device comprising a multi nanolayer structure of alternating insulator and insulator/metal material that is irradiated across the plane of the layer structure with ionizing radiation. The ionizing radiation produces nanocrystals in the layered structure that increase the electrical conductivity and decrease the thermal conductivity thereby increasing the thermoelectric figure of merit. Figures of merit as high as 2.5 have been achieved using layers of co-deposited gold and silicon dioxide interspersed with layers of silicon dioxide. The gold to silicon dioxide ratio was 0.04. 5 MeV silicon ions were used to irradiate the structure. Other metals and insulators may be substituted. Other ionizing radiation sources may be used. The structure tolerates a wide range of metal to insulator ratio.
Properties of radiation stable insulation composites for fusion magnet
NASA Astrophysics Data System (ADS)
Wu, Zhixiong; Huang, Rongjin; Huang, Chuanjun; Li, Laifeng
2017-09-01
High field superconducting magnets made of Nb3Al will be a suitable candidate for future fusion device which can provide magnetic field over 15T without critical current degradation caused by strain. The higher magnetic field and the larger current will produce a huge electromagnetic force. Therefore, it is necessary to develop high strength cryogenic structural materials and electrical insulation materials with excellent performance. On the other hand, superconducting magnets in fusion devices will experience significant nuclear radiation exposure during service. While typical structural materials like stainless steel and titanium have proven their ability to withstand these conditions, electrical insulation materials used in these coils have not fared as well. In fact, recent investigations have shown that electrical insulation breakdown is a limiting factor in the performance of high field magnets. The insulation materials used in the high field fusion magnets should be characterized by excellent mechanical properties, high radiation resistivity and good thermal conductivity. To meet these objectives, we designed various insulation materials based on epoxy resins and cyanate ester resins and investigated their processing characteristic and mechanical properties before and after irradiation at low temperature. In this paper, the recent progress of the radiation stable insulation composites for high field fusion magnet is presented. The materials have been irradiated by 60Co γ-ray irradiation in air at ambient temperature with a dose rate of 300 Gy/min. The total doses of 1 MGy, 5 MGy and 10 MGy were selected to the test specimens.
Study on micro-water measurement method based on SF6 insulation equipment in high altitude area
NASA Astrophysics Data System (ADS)
Zhang, Han; Liu, Yajin; Yan, Jun; Liu, Zhijian; Yan, Yongfei
2018-06-01
Moisture content is an important indicator of the insulation and arc extinguishing performance of SF6 insulated electrical equipment. The research shows that moisture measurements are strongly influenced by altitude pressures and the different order of pressure correction and temperature correction calculation, different calculation results will result. Therefore, in this paper, we studies the pressure and temperature environment based on moisture test of SF6 gas insulated equipment in power industry. Firstly, the PVT characteristics of pure SF6 gas and water vapor were analyzed and put forward the necessity of pressure correction, then combined the Pitzer-Veli equation of SF6 gas and Water Pitzer-Veli equation to fit PVT equation of state of SF6-H20 that suitable for electric power industry and deduced the Correction Formula of Moisture Measurement in SF6 Gas. Finally, through experiments, completion of the calibration formula optimization and verification SF6 electrical equipment on, proof of the applicability and effectiveness of the correction formula.
LONG TERM OPERATION ISSUES FOR ELECTRICAL CABLE SYSTEMS IN NUCLEAR POWER PLANTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fifield, Dr Leonard S; Duckworth, Robert C; Glass III, Dr. Samuel W.
Nuclear power plants contain hundreds of kilometers of electrical cables including cables used for power, for instrumentation, and for control. It is essential that safety-related cable systems continue to perform following a design-basis event. Wholesale replacement of electrical cables in existing plants facing licensing period renewal is both impractical and cost-prohibitive. It is therefore important to understand the long term aging of cable materials to have confidence that aged cables will perform when needed. It is equally important in support of cable aging management to develop methods to evaluate the health of installed cables and inform selective cable replacement decisions.more » The most common insulation materials for electrical cables in nuclear power plants are cross-linked polyethylene and ethylene-propylene rubber. The mechanical properties of these materials degrade over time in the presence of environmental stresses including heat, gamma irradiation, and moisture. Mechanical degradation of cable insulation beyond a certain threshold is unacceptable because it can lead to insulation cracking, exposure of energized conductors, arcing and burning or loss of the ability of the cable system to function during a design-basis accident. While thermal-, radiation-, and moisture-related degradation of polymer insulation materials has been extensively studied over the last few decades, questions remain regarding the long-term performance of cable materials in nuclear plant-specific environments. Identified knowledge gaps include an understanding of the temperature-dependence of activation energies for thermal damage and an understanding of the synergistic effects of radiation and thermal stress on polymer degradation. Many of the outstanding questions in the aging behavior of cable materials relate to the necessity of predicting long-term field degradation using accelerated aging results from the laboratory. Materials degrade faster under more extreme conditions, but extension of behavior to long term degradation under more mild conditions, such as those experienced by most installed cables in nuclear power plants, is complicated by the fact that different degradation mechanisms may be involved in extreme and mild scenarios. The discrepancy in predicted results from short term, more extreme exposure and actual results from longer term, more mild exposures can be counter intuitive. For instance, due to the attenuation of oxidation penetration in material samples rapidly aged through exposure to high temperatures, the bulk of the samples may be artificially protected from thermal aging. In another example, simultaneous exposure of cable insulation material to heat and radiation may actually lead to less damage at higher temperatures than may be observed at lower temperatures. The Light Water Reactor Sustainability program of the United States (US) Department of Energy Office (DOE) of Nuclear Energy is funding research to increase the predictive understanding of electrical cable material aging and degradation in existing nuclear power plants in support of continued safe operation of plants beyond their initial license periods. This research includes the evaluation and development of methods to assess installed cable condition.« less
16 CFR 1404.1 - Scope, application, and effective date.
Code of Federal Regulations, 2010 CFR
2010-01-01
... electrical light fixture or where cellulose insulation is installed too close to the exhaust flues from heat... REGULATIONS CELLULOSE INSULATION § 1404.1 Scope, application, and effective date. (a) Scope. This part 1404 establishes a requirement for manufacturers, including importers, of cellulose insulation to notify (1...
7 CFR 1755.860 - RUS specification for filled buried wires.
Code of Federal Regulations, 2012 CFR
2012-01-01
... sufficient heat barrier to prevent visible evidence of conductor insulation deformation or adhesion between... Insulations and Jackets for Telecommunications Wire and Cable; ASTM D 4566-90, Standard Test Methods for Electrical Performance Properties of Insulations and Jackets for Telecommunications Wire and Cable; ASTM D...
16 CFR 1404.1 - Scope, application, and effective date.
Code of Federal Regulations, 2014 CFR
2014-01-01
... electrical light fixture or where cellulose insulation is installed too close to the exhaust flues from heat... REGULATIONS CELLULOSE INSULATION § 1404.1 Scope, application, and effective date. (a) Scope. This part 1404 establishes a requirement for manufacturers, including importers, of cellulose insulation to notify (1...
16 CFR 1404.1 - Scope, application, and effective date.
Code of Federal Regulations, 2012 CFR
2012-01-01
... electrical light fixture or where cellulose insulation is installed too close to the exhaust flues from heat... REGULATIONS CELLULOSE INSULATION § 1404.1 Scope, application, and effective date. (a) Scope. This part 1404 establishes a requirement for manufacturers, including importers, of cellulose insulation to notify (1...
16 CFR 1404.1 - Scope, application, and effective date.
Code of Federal Regulations, 2011 CFR
2011-01-01
... electrical light fixture or where cellulose insulation is installed too close to the exhaust flues from heat... REGULATIONS CELLULOSE INSULATION § 1404.1 Scope, application, and effective date. (a) Scope. This part 1404 establishes a requirement for manufacturers, including importers, of cellulose insulation to notify (1...
7 CFR 1755.860 - RUS specification for filled buried wires.
Code of Federal Regulations, 2014 CFR
2014-01-01
... sufficient heat barrier to prevent visible evidence of conductor insulation deformation or adhesion between... Insulations and Jackets for Telecommunications Wire and Cable; ASTM D 4566-90, Standard Test Methods for Electrical Performance Properties of Insulations and Jackets for Telecommunications Wire and Cable; ASTM D...
7 CFR 1755.860 - RUS specification for filled buried wires.
Code of Federal Regulations, 2013 CFR
2013-01-01
... sufficient heat barrier to prevent visible evidence of conductor insulation deformation or adhesion between... Insulations and Jackets for Telecommunications Wire and Cable; ASTM D 4566-90, Standard Test Methods for Electrical Performance Properties of Insulations and Jackets for Telecommunications Wire and Cable; ASTM D...
Wire Stripper Holds Insulation Debris
NASA Technical Reports Server (NTRS)
Cook, Allen D.; Morris, Henry S.; Bauer, Laverne
1994-01-01
Attachment to standard wire-stripping tool catches bits of insulation as they are removed from electrical wire and retains them for proper disposal. Prevents insulation particles from falling at random, contaminating electronic equipment and soiling workspace. Commercial tool modified by attaching small collection box to one of the jaws.
NASA Astrophysics Data System (ADS)
Park, Yong Min; Kim, Byeong Hee; Seo, Young Ho
2016-06-01
This paper presents a selective aluminum anodization technique for the fabrication of microstructures covered by nanoscale dome structures. It is possible to fabricate bulging microstructures, utilizing the different growth rates of anodic aluminum oxide in non-uniform electric fields, because the growth rate of anodic aluminum oxide depends on the intensity of electric field, or current density. After anodizing under a non-uniform electric field, bulging microstructures covered by nanostructures were fabricated by removing the residual aluminum layer. The non-uniform electric field induced by insulative micropatterns was estimated by computational simulations and verified experimentally. Utilizing computational simulations, the intensity profile of the electric field was calculated according to the ratio of height and width of the insulative micropatterns. To compare computational simulation results and experimental results, insulative micropatterns were fabricated using SU-8 photoresist. The results verified that the shape of the bottom topology of anodic alumina was strongly dependent on the intensity profile of the applied electric field, or current density. The one-step fabrication of nanostructure-covered microstructures can be applied to various fields, such as nano-biochip and nano-optics, owing to its simplicity and cost effectiveness.
Electric field control in DC cable test termination by nano silicone rubber composite
NASA Astrophysics Data System (ADS)
Song, Shu-Wei; Li, Zhongyuan; Zhao, Hong; Zhang, Peihong; Han, Baozhong; Fu, Mingli; Hou, Shuai
2017-07-01
The electric field distributions in high voltage direct current cable termination are investigated with silicone rubber nanocomposite being the electric stress control insulator. The nanocomposite is composed of silicone rubber, nanoscale carbon black and graphitic carbon. The experimental results show that the physical parameters of the nanocomposite, such as thermal activation energy and nonlinearity-relevant coefficient, can be manipulated by varying the proportion of the nanoscale fillers. The numerical simulation shows that safe electric field distribution calls for certain parametric region of the thermal activation energy and nonlinearity-relevant coefficient. Outside the safe parametric region, local maximum of electric field strength around the stress cone appears in the termination insulator, enhancing the breakdown of the cable termination. In the presence of the temperature gradient, thermal activation energy and nonlinearity-relevant coefficient work as complementary factors to produce a reasonable electric field distribution. The field maximum in the termination insulator show complicate variation in the transient processes. The stationary field distribution favors the increase of the nonlinearity-relevant coefficient; for the transient field distribution in the process of negative lighting impulse, however, an optimized value of the nonlinearity-relevant coefficient is necessary to equalize the electric field in the termination.
Corrugated outer sheath gas-insulated transmission line
Kemeny, George A.; Cookson, Alan H.
1981-01-01
A gas-insulated transmission line includes two transmission line sections each of which are formed of a corrugated outer housing enclosing an inner high-voltage conductor disposed therein, with insulating support means supporting the inner conductor within the outer housing and an insulating gas providing electrical insulation therebetween. The outer housings in each section have smooth end sections at the longitudinal ends thereof which are joined together by joining means which provide for a sealing fixed joint.
Particle trap with dielectric barrier for use in gas insulated transmission lines
Dale, Steinar J.
1982-01-01
A gas-insulated transmission line includes an outer sheath, an inner conductor within the outer sheath, insulating supports supporting the inner conductor within the outer sheath, and an insulating gas electrically insulating the inner conductor from the outer sheath. An apertured particle trapping electrode is disposed within the outer sheath, and the electrode has a pair of dielectric members secured at each longitudinal end thereof, with the dielectric members extending outwardly from the apertured electrode.
Ishizaki, Toshitaka; Nakano, Hideyuki; Tajima, Shin; Takahashi, Naoko
2016-01-01
A thin, insulating layer with high electrical resistivity is vital to achieving high performance of powder magnetic cores. Using layer-by-layer deposition of silica nanosheets or colloidal silica over insulating layers composed of strontium phosphate and boron oxide, we succeeded in fabricating insulating layers with high electrical resistivity on iron powder particles, which were subsequently used to prepare toroidal cores. The compact density of these cores decreased after coating with colloidal silica due to the substantial increase in the volume, causing the magnetic flux density to deteriorate. Coating with silica nanosheets, on the other hand, resulted in a higher electrical resistivity and a good balance between high magnetic flux density and low iron loss due to the thinner silica layers. Transmission electron microscopy images showed that the thickness of the colloidal silica coating was about 700 nm, while that of the silica nanosheet coating was 30 nm. There was one drawback to using silica nanosheets, namely a deterioration in the core mechanical strength. Nevertheless, the silica nanosheet coating resulted in nanoscale-thick silica layers that are favorable for enhancing the electrical resistivity. PMID:28336835
Aging of XLPE cable insulation under combined electrical and mechanical stresses
DOE Office of Scientific and Technical Information (OSTI.GOV)
David, E.; Parpal, J.L.; Crine, J.P.
1996-12-31
Extruded crosslinked polyethylene (XLPE) insulation is widely used in high-voltage cables since it presents such attractive features as excellent dielectric properties and good thermomechanical behavior. However, its performance is affected by long-term degradation when it is subjected to the various thermal, mechanical and environmental stresses occurring in service in combination with electrical stress. The synergetic effect of superposed electrical and other stresses remains to be fully clarified. In particular, a fairly high level of mechanical stresses can be present in the insulation volume, originating from residual internal stresses created during the cooling process in the fabrication, external forces when cablesmore » are bent sharply, or thermomechanical stresses caused by differential thermal expansion between the conductor and the insulating material. In order to investigate the influence of the superposition of mechanical and electrical stresses, various measurements were conducted on XLPE and LDPE specimens in tip-plane and plane-plane geometries. Experimental data of time-to-breakdown, breakdown field and tree length are presented as a function of the magnitude of the stresses. In all cases, superposition of the mechanical stress was found to reduce the dielectric strength of the material.« less
Electron penetration of spacecraft thermal insulation
NASA Technical Reports Server (NTRS)
Powers, W. L.; Adams, B. F.; Inouye, G. T.
1981-01-01
The external thermal blanket with 13 mils of polyethylene which has the known range and stopping power as a function of electron energy is investiated. The most recent omnidirectional peak Jovian electron flux at 5 Jupiter radii is applied, the electron current penetrating the thermal blanket is calculated and allowed to impinge on a typical 20 mil polyethylene insulator surrounding a wire. The radiation dose rate to the insulator is then calculated and the electrical conductivity found. The results demonstrate that the increased electronic mobility is sufficient to keep the maximum induced electric field two orders of magnitude below the critical breakdown strength.
1991-04-01
SEALS - _------ OIL LEVEL STAINLESS STEEL INDICATOR EXPANSION CHAMBER MULTIPLE COMPRESSION GASKET SPRINGS CONDUCTOR RO) UPPER PORCELAIN_ OIL...GENERATED WAVEFORM) FIELD Electric (E) 40 kV/m 50 kV/m 10 kV/m STRENGTH ( FREE SPACE) Magnetic(M) 300 A/m 1000 A/m 300 A/m Rise time 20-500 ns 10 ns 10 ns...Laboratory Interaction Note IN435, 1983. 4. P. R_ Barnes, "The Axial Current Induced on an Infinitely Long, Perfectly Conducting, Circular Cylinder in Free
Electric-field driven insulator-metal transition and tunable magnetoresistance in ZnO thin film
NASA Astrophysics Data System (ADS)
Zhang, Le; Chen, Shanshan; Chen, Xiangyang; Ye, Zhizhen; Zhu, Liping
2018-04-01
Electrical control of the multistate phase in semiconductors offers the promise of nonvolatile functionality in the future semiconductor spintronics. Here, by applying an external electric field, we have observed a gate-induced insulator-metal transition (MIT) with the temperature dependence of resistivity in ZnO thin films. Due to a high-density carrier accumulation, we have shown the ability to inverse change magnetoresistance in ZnO by ionic liquid gating from 10% to -2.5%. The evolution of photoluminescence under gate voltage was also consistent with the MIT, which is due to the reduction of dislocation. Our in-situ gate-controlled photoluminescence, insulator-metal transition, and the conversion of magnetoresistance open up opportunities in searching for quantum materials and ZnO based photoelectric devices.
Insulation assembly for electric machine
Rhoads, Frederick W.; Titmuss, David F.; Parish, Harold; Campbell, John D.
2013-10-15
An insulation assembly is provided that includes a generally annularly-shaped main body and at least two spaced-apart fingers extending radially inwards from the main body. The spaced-apart fingers define a gap between the fingers. A slot liner may be inserted within the gap. The main body may include a plurality of circumferentially distributed segments. Each one of the plurality of segments may be operatively connected to another of the plurality of segments to form the continuous main body. The slot liner may be formed as a single extruded piece defining a plurality of cavities. A plurality of conductors (extendable from the stator assembly) may be axially inserted within a respective one of the plurality of cavities. The insulation assembly electrically isolates the conductors in the electric motor from the stator stack and from other conductors.
NASA Technical Reports Server (NTRS)
Lundquist, Ray A.; Leidecker, Henning
1998-01-01
The allowable operating currents of electrical wiring when used in the space vacuum environment is predominantly determined by the maximum operating temperature of the wire insulation. For Kapton insulated wire this value is 200 C. Guidelines provided in the Goddard Space Flight Center (GSFC) Preferred Parts List (PPL) limit the operating current of wire within vacuum to ensure the maximum insulation temperature is not exceeded. For 20 AWG wire, these operating parameters are: 3.7 amps per wire, bundle of 15 or more wires, 70 C environment, and vacuum of 10(exp -5) torr or less. To determine the behavior and temperature of electrical wire at different operating conditions, a thermal vacuum test was performed on a representative electrical harness of the Hubble Space Telescope (HST) power distribution system. This paper describes the test and the results.
14 CFR Appendix F to Part 23 - Test Procedure
Code of Federal Regulations, 2012 CFR
2012-01-01
... flame propagation characteristics of thermal/acoustic insulation when exposed to both a radiant heat... test. Radiant heat source means an electric or air propane panel. Thermal/acoustic insulation means a... insulation and in small parts, materials must be tested either as a section cut from a fabricated part as...
30 CFR 77.513 - Insulating mats at power switches.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Insulating mats at power switches. 77.513... COAL MINES Electrical Equipment-General § 77.513 Insulating mats at power switches. Dry wooden... switchboards and power-control switches where shock hazards exist. However, metal plates on which a person...
30 CFR 77.513 - Insulating mats at power switches.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Insulating mats at power switches. 77.513... COAL MINES Electrical Equipment-General § 77.513 Insulating mats at power switches. Dry wooden... switchboards and power-control switches where shock hazards exist. However, metal plates on which a person...
30 CFR 77.513 - Insulating mats at power switches.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Insulating mats at power switches. 77.513... COAL MINES Electrical Equipment-General § 77.513 Insulating mats at power switches. Dry wooden... switchboards and power-control switches where shock hazards exist. However, metal plates on which a person...
30 CFR 77.513 - Insulating mats at power switches.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Insulating mats at power switches. 77.513... COAL MINES Electrical Equipment-General § 77.513 Insulating mats at power switches. Dry wooden... switchboards and power-control switches where shock hazards exist. However, metal plates on which a person...
30 CFR 77.513 - Insulating mats at power switches.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Insulating mats at power switches. 77.513... COAL MINES Electrical Equipment-General § 77.513 Insulating mats at power switches. Dry wooden... switchboards and power-control switches where shock hazards exist. However, metal plates on which a person...
Dielectrophoresis device and method having insulating ridges for manipulating particles
Cummings, Eric B [Livermore, CA; Fiechtner, Gregory J [Livermore, CA
2008-03-25
Embodiments of the present invention provide methods and devices for manipulating particles using dielectrophoresis. Insulating ridges and valleys are used to generate a spatially non-uniform electrical field. Particles may be concentrated, separated, or captured during bulk fluid flow in a channel having insulating ridges and valleys.
Enhancement of Electrical Conductivity in Multicomponent Nanocomposites.
NASA Astrophysics Data System (ADS)
Ni, Xiaojuan; Hui, Chao; Su, Ninghai; Liu, Feng
To date, very limited theoretical or numerical analyses have been carried out to understand the electrical percolation properties in multicomponent nanocomposite systems. In this work, a disk-stick percolation model was developed to investigate the electrical percolation behavior of an electrically insulating matrix reinforced with one-dimensional (1D) and two-dimensional (2D) conductors via Monte Carlo simulation. The effective electrical conductivity was evaluated through Kirchhoff's current law by transforming it into an equivalent resistor network. The percolation threshold, equivalent resistance and conductivity were obtained from the distribution of nodal voltages by solving a system of linear equations with Gaussian elimination method. The effects of size, aspect ratio, relative concentration and contact patterns of 1D/2D inclusions on conductivity performance were examined. Our model is able to predict the electrical percolation threshold and evaluate the conductivity for hybrid systems with multiple components. The results suggest that carbon-based nanocomposites can have a high potential for applications where favorable electrical properties and low specific weight are required. We acknowledge the financial support from DOE-BES (No. DE-FG02-04ER46148).
CMUTs with high-K atomic layer deposition dielectric material insulation layer.
Xu, Toby; Tekes, Coskun; Degertekin, F
2014-12-01
Use of high-κ dielectric, atomic layer deposition (ALD) materials as an insulation layer material for capacitive micromachined ultrasonic transducers (CMUTs) is investigated. The effect of insulation layer material and thickness on CMUT performance is evaluated using a simple parallel plate model. The model shows that both high dielectric constant and the electrical breakdown strength are important for the dielectric material, and significant performance improvement can be achieved, especially as the vacuum gap thickness is reduced. In particular, ALD hafnium oxide (HfO2) is evaluated and used as an improvement over plasma-enhanced chemical vapor deposition (PECVD) silicon nitride (Six)Ny)) for CMUTs fabricated by a low-temperature, complementary metal oxide semiconductor transistor-compatible, sacrificial release method. Relevant properties of ALD HfO2) such as dielectric constant and breakdown strength are characterized to further guide CMUT design. Experiments are performed on parallel fabricated test CMUTs with 50-nm gap and 16.5-MHz center frequency to measure and compare pressure output and receive sensitivity for 200-nm PECVD Six)Ny) and 100-nm HfO2) insulation layers. Results for this particular design show a 6-dB improvement in receiver output with the collapse voltage reduced by one-half; while in transmit mode, half the input voltage is needed to achieve the same maximum output pressure.
Nonmetallic materials handbook. Volume 1: Epoxy materials
NASA Technical Reports Server (NTRS)
Podlaseck, S. E.
1979-01-01
Thermochemical and other properties data is presented for the following types of epoxy materials: adhesives, coatings finishes, inks, electrical insulation, encapsulants, sealants, composite laminates, tapes, and thermal insulators.
Effect of γ-irradiation on the optical and electrical properties of fiber reinforced composites
NASA Astrophysics Data System (ADS)
Anwar, Ahmad; Elfiky, Dalia; Ramadan, Ahmed M.; Hassan, G. M.
2017-05-01
The effect of gamma irradiation on the optical and electrical properties of the reinforced fiber polymeric based materials became an important issue. Fiberglass/epoxy and Kevlar fiber/epoxy were selected as investigated samples manufactured with hand lay-up without autoclave curing technique. The selected technique is simple and low cost while being rarely used in space materials production. The electric conductivity and dielectric constant for those samples were measured with increasing the gamma radiation dose. Moreover, the absorptivity, band gap and color change were determined. Fourier transform infrared (FTIR) was performed to each of the material's constituent to evaluate the change in the investigated materials due to radiation exposure dose. In this study, the change of electrical properties for both investigated materials showed a slight variation of the test parameters with respect to the gamma dose increase; this variation is placed in the insulators rang. The tested samples showed an insulator stable behavior during the test period. The change of optical properties for both composite specimens showed the maximum absorptivity at the gamma dose 750 kGy. These materials are suitable for structure materials and thermal control for orbital life less than 7 years. In addition, the transparency of epoxy matrix was degraded. However, there is no color change for either Kevlar fiber or fiberglass.
Hermetic electronics package with dual-sided electrical feedthrough configuration
Shah, Kedar G.; Pannu, Satinderpall S.
2016-11-22
A hermetic electronics package includes a metal case with opposing first and second open ends, with each end connected to a first feedthrough construction and a second feedthrough construction. Each feedthrough contruction has an electrically insulating substrate and an array of electrically conductive feedthroughs extending therethrough, with the electrically insulating substrates connected to the opposing first and second open ends, respectively, of the metal case so as to form a hermetically sealed enclosure. A set of electronic components are located within the hermetically sealed enclosure and are operably connected to the feedthroughs of the first and second feedthrough constructions so as to electrically communicate outside the package from opposite sides of the package.
Jacobson, Craig; DeJonghe, Lutgard C.; Lu, Chun
2010-10-19
A novel electrochemical cell which may be a solid oxide fuel cell (SOFC) is disclosed where the cathodes (144, 140) may be exposed to the air and open to the ambient atmosphere without further housing. Current collector (145) extends through a first cathode on one side of a unit and over the unit through the cathode on the other side of the unit and is in electrical contact via lead (146) with housing unit (122 and 124). Electrical insulator (170) prevents electrical contact between two units. Fuel inlet manifold (134) allows fuel to communicate with internal space (138) between the anodes (154 and 156). Electrically insulating members (164 and 166) prevent the current collector from being in electrical contact with the anode.
The Application of Surface Potential Test on Hand-making Insulation for Generator Stator End-winding
NASA Astrophysics Data System (ADS)
Lu, Zhu-mao; Liu, Qing; Wang, Tian-zheng; Bai, Lu; Li, Yan-peng
2017-05-01
This paper presents the advantage of surface potential test on hand-making insulation for generator stator end-winding insulation detection, compared with DC or AC withstand voltage test, also details the test principle, connection method and test notes. And through the case, surface potential test on hand-making insulation proved effective for insulation quality detection after generator stator end-winding maintenance, and the experimental data is useful and reliable for the electrical equipment operation and maintenance in the power plant.
Particle trap with dielectric barrier for use in gas insulated transmission lines
Dale, S.J.
1982-06-15
A gas-insulated transmission line includes an outer sheath, an inner conductor within the outer sheath, insulating supports supporting the inner conductor within the outer sheath, and an insulating gas electrically insulating the inner conductor from the outer sheath. An apertured particle trapping electrode is disposed within the outer sheath, and the electrode has a pair of dielectric members secured at each longitudinal end thereof, with the dielectric members extending outwardly from the apertured electrode. 7 figs.
NASA Technical Reports Server (NTRS)
Stringer, E. J.
1977-01-01
Connection can be made without removing insulation, and connector case insulates splice. Device can be made in various sizes and saves time, especially when working on prototype boards with several interconnecting test leads.
Plated lamination structures for integrated magnetic devices
Webb, Bucknell C.
2014-06-17
Semiconductor integrated magnetic devices such as inductors, transformers, etc., having laminated magnetic-insulator stack structures are provided, wherein the laminated magnetic-insulator stack structures are formed using electroplating techniques. For example, an integrated laminated magnetic device includes a multilayer stack structure having alternating magnetic and insulating layers formed on a substrate, wherein each magnetic layer in the multilayer stack structure is separated from another magnetic layer in the multilayer stack structure by an insulating layer, and a local shorting structure to electrically connect each magnetic layer in the multilayer stack structure to an underlying magnetic layer in the multilayer stack structure to facilitate electroplating of the magnetic layers using an underlying conductive layer (magnetic or seed layer) in the stack as an electrical cathode/anode for each electroplated magnetic layer in the stack structure.
NASA Astrophysics Data System (ADS)
Clayton, N.; Crouchen, M.; Devred, A.; Evans, D.; Gung, C.-Y.; Lathwell, I.
2017-04-01
It is planned that the high voltage electrical insulation on the ITER feeder busbars will consist of interleaved layers of epoxy resin pre-impregnated glass tapes ('pre-preg') and polyimide. In addition to its electrical insulation function, the busbar insulation must have adequate mechanical properties to sustain the loads imposed on it during ITER magnet operation. This paper reports an investigation into suitable materials to manufacture the high voltage insulation for the ITER superconducting busbars and pipework. An R&D programme was undertaken in order to identify suitable pre-preg and polyimide materials from a range of suppliers. Pre-preg materials were obtained from 3 suppliers and used with Kapton HN, to make mouldings using the desired insulation architecture. Two main processing routes for pre-pregs have been investigated, namely vacuum bag processing (out of autoclave processing) and processing using a material with a high coefficient of thermal expansion (silicone rubber), to apply the compaction pressure on the insulation. Insulation should have adequate mechanical properties to cope with the stresses induced by the operating environment and a low void content necessary in a high voltage application. The quality of the mouldings was assessed by mechanical testing at 77 K and by the measurement of the void content.
NASA Astrophysics Data System (ADS)
Ajiki, Kohji; Morimoto, Hiroaki; Shimokawa, Fumiyuki; Sakai, Shinya; Sasaki, Kazuomi; Sato, Ryogo
Contact wires used in feeding system for electric railroad are insulated by insulators. However, insulation of an insulator sometimes breaks down by surface dirt of an insulator and contact with a bird. The insulator breakdown derives a ground fault in feeding system. Ground fault will cause a human electric shock and a destruction of low voltage electric equipment. In order to prevent the damage by ground fault, an S-type horn has been applicable as equipped on insulators of negative feeder and protective wire until present. However, a concrete pole breaks down at the time of the ground fault because a spark-over voltage of the S-type horn is higher than a breakdown voltage of a concrete pole. Farther, the S-type horn installed in the steel tube pole does not discharge a case, because the earth resistance of a steel tube pole is very small. We assumed that we could solve these troubles by changing the power frequency spark-over voltage of the S-type horn from 12kV to 3kV. Accordingly, we developed an attachment gap that should be used to change the power frequency spark-over voltage of the S-type horn from 12kV to 3kV. The attachment gap consists of a gas gap arrester and a zinc oxide element. By the dynamic current test and the artificial ground fault test, we confirmed that the attachment gap in the S-type horn could prevent a trouble at the time of the ground fault.
Electrically insulating thermal nano-oils using 2D fillers.
Taha-Tijerina, Jaime; Narayanan, Tharangattu N; Gao, Guanhui; Rohde, Matthew; Tsentalovich, Dmitri A; Pasquali, Matteo; Ajayan, Pulickel M
2012-02-28
Different nanoscale fillers have been used to create composite fluids for applications such as thermal management. The ever increasing thermal loads in applications now require advanced operational fluids, for example, high thermal conductivity dielectric oils in transformers. These oils require excellent filler dispersion, high thermal conduction, but also electrical insulation. Such thermal oils that conform to this thermal/electrical requirement, and yet remain in highly suspended stable state, have not yet been synthesized. We report here the synthesis and characterization of stable high thermal conductivity Newtonian nanofluids using exfoliated layers of hexagonal boron nitride in oil without compromising its electrically insulating property. Two-dimensional nanosheets of hexagonal boron nitride are liquid exfoliated in isopropyl alcohol and redispersed in mineral oil, used as standard transformer oil, forming stable nanosuspensions with high shelf life. A high electrical resistivity, even higher than that of the base oil, is maintained for the nano-oil containing small weight fraction of the filler (0.01 wt %), whereas the thermal conductivity was enhanced. The low dissipation factor and high pour point for this nano-oil suggests several applications in thermal management.
NASA Astrophysics Data System (ADS)
Kubo, Toshiharu; Freedsman, Joseph J.; Iwata, Yasuhiro; Egawa, Takashi
2014-04-01
Al2O3 deposited by atomic layer deposition (ALD) was used as an insulator in metal-insulator-semiconductor (MIS) structures for GaN-based MIS-devices. As the oxygen precursors for the ALD process, water (H2O), ozone (O3), and both H2O and O3 were used. The chemical characteristics of the ALD-Al2O3 surfaces were investigated by x-ray photoelectron spectroscopy. After fabrication of MIS-diodes and MIS-high-electron-mobility transistors (MIS-HEMTs) with the ALD-Al2O3, their electrical properties were evaluated by current-voltage (I-V) and capacitance-voltage (C-V) measurements. The threshold voltage of the C-V curves for MIS-diodes indicated that the fixed charge in the Al2O3 layer is decreased when using both H2O and O3 as the oxygen precursors. Furthermore, MIS-HEMTs with the H2O + O3-based Al2O3 showed good dc I-V characteristics without post-deposition annealing of the ALD-Al2O3, and the drain leakage current in the off-state region was suppressed by seven orders of magnitude.
Fairchild, Dana M [Armour, SD
2010-03-02
The bird guard provides a device to protect electrical insulators comprising a central shaft; a clamp attached to an end of the shaft to secure the device to a transmission tower; a top and bottom cover to shield transmission tower insulators; and bearings to allow the guard to rotate in order to frighten birds away from the insulators.
30 CFR 56.12008 - Insulation and fittings for power wires and cables.
Code of Federal Regulations, 2014 CFR
2014-07-01
... MINES Electricity § 56.12008 Insulation and fittings for power wires and cables. Power wires and cables... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Insulation and fittings for power wires and cables. 56.12008 Section 56.12008 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF...
30 CFR 57.12008 - Insulation and fittings for power wires and cables.
Code of Federal Regulations, 2014 CFR
2014-07-01
... cables. Power wires and cables shall be insulated adequately where they pass into or out of electrical... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Insulation and fittings for power wires and cables. 57.12008 Section 57.12008 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF...
30 CFR 56.12008 - Insulation and fittings for power wires and cables.
Code of Federal Regulations, 2013 CFR
2013-07-01
... MINES Electricity § 56.12008 Insulation and fittings for power wires and cables. Power wires and cables... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Insulation and fittings for power wires and cables. 56.12008 Section 56.12008 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF...
30 CFR 56.12008 - Insulation and fittings for power wires and cables.
Code of Federal Regulations, 2012 CFR
2012-07-01
... MINES Electricity § 56.12008 Insulation and fittings for power wires and cables. Power wires and cables... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Insulation and fittings for power wires and cables. 56.12008 Section 56.12008 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF...
30 CFR 57.12008 - Insulation and fittings for power wires and cables.
Code of Federal Regulations, 2013 CFR
2013-07-01
... cables. Power wires and cables shall be insulated adequately where they pass into or out of electrical... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Insulation and fittings for power wires and cables. 57.12008 Section 57.12008 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF...
30 CFR 57.12008 - Insulation and fittings for power wires and cables.
Code of Federal Regulations, 2012 CFR
2012-07-01
... cables. Power wires and cables shall be insulated adequately where they pass into or out of electrical... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Insulation and fittings for power wires and cables. 57.12008 Section 57.12008 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF...
Code of Federal Regulations, 2012 CFR
2012-07-01
... simultaneously and perform virtually the same duty; (f) Each ungrounded conductor must have insulation compatible with the impressed voltage. Insulation materials must be resistant to deterioration from engine heat... damaging wires, cables, or conduits by cutting or abrasion. The insulation of the cables within a battery...
Code of Federal Regulations, 2014 CFR
2014-07-01
... simultaneously and perform virtually the same duty; (f) Each ungrounded conductor must have insulation compatible with the impressed voltage. Insulation materials must be resistant to deterioration from engine heat... damaging wires, cables, or conduits by cutting or abrasion. The insulation of the cables within a battery...
14 CFR Appendix F to Part 23 - Test Procedure
Code of Federal Regulations, 2011 CFR
2011-01-01
... materials used in electrical wire and cable insulation and in small parts, materials must be tested either... wire and cable insulation, the wire and cable specimens must be the same size as used in the airplane... specification (make and size) must be tested. The specimen of wire or cable (including insulation) must be...
Code of Federal Regulations, 2013 CFR
2013-07-01
... simultaneously and perform virtually the same duty; (f) Each ungrounded conductor must have insulation compatible with the impressed voltage. Insulation materials must be resistant to deterioration from engine heat... damaging wires, cables, or conduits by cutting or abrasion. The insulation of the cables within a battery...
7 CFR 1728.204 - Electric standards and specifications for materials and construction.
Code of Federal Regulations, 2014 CFR
2014-01-01
... application where additional insulation is desired. (1) The cable may be used in single-phase, two (V)-phase... polyethylene (TR-XLPE) insulation compound containing an additive, a polymer modification filler, which helps... shield shall have a nominal operating temperature equal to, or higher than, that of the insulation. (e...
7 CFR 1728.204 - Electric standards and specifications for materials and construction.
Code of Federal Regulations, 2013 CFR
2013-01-01
... application where additional insulation is desired. (1) The cable may be used in single-phase, two (V)-phase... polyethylene (TR-XLPE) insulation compound containing an additive, a polymer modification filler, which helps... shield shall have a nominal operating temperature equal to, or higher than, that of the insulation. (e...
Code of Federal Regulations, 2011 CFR
2011-07-01
... simultaneously and perform virtually the same duty; (f) Each ungrounded conductor must have insulation compatible with the impressed voltage. Insulation materials must be resistant to deterioration from engine heat... damaging wires, cables, or conduits by cutting or abrasion. The insulation of the cables within a battery...
76 FR 23846 - Virginia Electric Power Company, LLC, North Anna Power Station, Unit No. 1; Exemption
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-28
... to the oil soaking fibrous insulation. Inadequately designed oil collection systems and oil leaking onto RCP piping insulation was identified as a cause. The licensee's April 23, 2010, letter proposes to... also prevent oil from collecting on three sections of fiberglass cloth covered Tempmat insulation under...
Exfoliated BN shell-based high-frequency magnetic core-shell materials.
Zhang, Wei; Patel, Ketan; Ren, Shenqiang
2017-09-14
The miniaturization of electric machines demands high frequency magnetic materials with large magnetic-flux density and low energy loss to achieve a decreased dimension of high rotational speed motors. Herein, we report a solution-processed high frequency magnetic composite (containing a nanometal FeCo core and a boron nitride (BN) shell) that simultaneously exhibits high electrical resistivity and magnetic permeability. The frequency dependent complex initial permeability and the mechanical robustness of nanocomposites are intensely dependent on the content of BN insulating phase. The results shown here suggest that insulating magnetic nanocomposites have potential for application in next-generation high-frequency electric machines with large electrical resistivity and permeability.
Tomaszewski, Michał; Ruszczak, Bogdan; Michalski, Paweł
2018-06-01
Electrical insulators are elements of power lines that require periodical diagnostics. Due to their location on the components of high-voltage power lines, their imaging can be cumbersome and time-consuming, especially under varying lighting conditions. Insulator diagnostics with the use of visual methods may require localizing insulators in the scene. Studies focused on insulator localization in the scene apply a number of methods, including: texture analysis, MRF (Markov Random Field), Gabor filters or GLCM (Gray Level Co-Occurrence Matrix) [1], [2]. Some methods, e.g. those which localize insulators based on colour analysis [3], rely on object and scene illumination, which is why the images from the dataset are taken under varying lighting conditions. The dataset may also be used to compare the effectiveness of different methods of localizing insulators in images. This article presents high-resolution images depicting a long rod electrical insulator under varying lighting conditions and against different backgrounds: crops, forest and grass. The dataset contains images with visible laser spots (generated by a device emitting light at the wavelength of 532 nm) and images without such spots, as well as complementary data concerning the illumination level and insulator position in the scene, the number of registered laser spots, and their coordinates in the image. The laser spots may be used to support object-localizing algorithms, while the images without spots may serve as a source of information for those algorithms which do not need spots to localize an insulator.
Dielectric and Insulating Technology 2005 : Reviews & Forecasts
NASA Astrophysics Data System (ADS)
Okamoto, Tatsuki
This article reports the state-of-art of TC-DEI ( Technical Committee of Dielectrics and Electrical Insulation of IEEJ) activites. The activiteis are basically based on the activites of 8-10 investigation committees under TC-DEI. Recent activites were categorized into three functions in this article and remarkable activity or trend for each category is mentioned as was done in the article of 2003. Thoese are activities on asset management (AI application and insulation diagnosis), activities on new insulating and functional materials (Nano composite) and activities on new insulation technology for power tansmission (high Tc superconducting cable insulation).
Dielectric and Insulating Technology 2006 : Review & Forecast
NASA Astrophysics Data System (ADS)
Okamoto, Tatsuki
This article reports the state-of-art of TC-DEI ( Technical Committee of Dielectrics and Electrical Insulation of IEEJ) activites. The activiteis are basically based on the activites of 8-10 investigation committees under TC-DEI. Recent activites were categorized into three functions in this article and remarkable activity or trend for each category is mentioned as was seen in the articles of 2005. Those are activities on asset management (AI application and insulation diagnosis), activities on new insulating and functional materials (Nano composite) and activities on new insulation technology for power tansmission (high Tc superconducting cable insulation).
NASA Technical Reports Server (NTRS)
Lundquist, Ray A.; Leidecker, Henning
1999-01-01
The allowable operating currents of electrical wiring when used in the space vacuum environment is predominantly determined by the maximum operating temperature of the wire insulation. For Kapton insulated wire this value is 200 degree C. Guidelines provided in the Goddard Space Flight Center (GSFC) Preferred Parts List (PPL) limit the operating current of wire within vacuum to ensure the maximum insulation temperature is not exceeded. For 20 AWG wire, these operating parameters are: (1) 3.7 amps per wire (2) bundle of 15 or more wires (3) 70 C environment (4) vacuum of 10(exp -5) torr or less To determine the behavior and temperature of electrical wire at different operating conditions, a thermal vacuum test was performed on a representative electrical harness of the Hubble Space Telescope (HST) power distribution system. This paper describes the test and the results.
NASA Technical Reports Server (NTRS)
Lundquist, Ray A.; Leidecker, Henning
1998-01-01
The allowable operating currents of electrical wiring when used in the space vacuum environment is predominantly determined by the maximum operating temperature of the wire insulation. For Kapton insulated wire this value is 200 C. Guidelines provided in the Goddard Space Flight Center (GSFC) Preferred Parts List (PPL) limit the operating current of wire within vacuum to ensure the maximum insulation temperature is not exceeded. For 20 AWG wire, these operating parameters are: (1) 3.7 amps per wire; (2) bundle of 15 or more wires; (3) 70 C environment: and (4) vacuum of 10(exp -5) torr or less. To determine the behavior and temperature of electrical wire at different operating conditions, a thermal vacuum test was performed on a representative electrical harness of the Hubble Space Telescope (HST) power distribution system. This paper describes the test and the results.
Joule heating effects on particle immobilization in insulator-based dielectrophoretic devices
Gallo-Villanueva, Roberto C.; Sano, Michael B.; Lapizco-Encinas, Blanca H.; Davalos, Rafael V.
2014-01-01
In this work, the temperature effects due to Joule heating obtained by application of a DC electric potential were investigated for a microchannel with cylindrical insulating posts employed for insulator based dielectrophoresis (iDEP). The conductivity of the suspending medium, the local electric field, and the gradient of the squared electric field, which directly affect the magnitude of the dielectrophoretic force exerted on particles, were computationally simulated employing COMSOL Multiphysics. It was observed that a temperature gradient is formed along the microchannel which redistributes the conductivity of the suspending medium leading to an increase of the dielectrophoretic force towards the inlet of the channel while decreasing towards the outlet. Experimental results are in good agreement with simulations on the particle trapping zones anticipated. This study demonstrates the importance of considering Joule heating effects when designing iDEP systems. PMID:24002905
Electrical switching in cadmium boracite single crystals
NASA Technical Reports Server (NTRS)
Takahashi, T.; Yamada, O.
1981-01-01
Cadmium boracite single crystals at high temperatures ( 300 C) were found to exhibit a reversible electric field-induced transition between a highly insulative and a conductive state. The switching threshold is smaller than a few volts for an electrode spacing of a few tenth of a millimeter corresponding to an electric field of 100 to 1000 V/cm. This is much smaller than the dielectric break-down field for an insulator such as boracite. The insulative state reappears after voltage removal. A pulse technique revealed two different types of switching. Unstable switching occurs when the pulse voltage slightly exceeds the switching threshold and is characterized by a pre-switching delay and also a residual current after voltage pulse removal. A stable type of switching occurs when the voltage becomes sufficiently high. Possible device applications of this switching phenomenon are discussed.
Electrical contact structures for solid oxide electrolyte fuel cell
Isenberg, Arnold O.
1984-01-01
An improved electrical output connection means is provided for a high temperature solid oxide electrolyte type fuel cell generator. The electrical connection of the fuel cell electrodes to the electrical output bus, which is brought through the generator housing to be connected to an electrical load line maintains a highly uniform temperature distribution. The electrical connection means includes an electrode bus which is spaced parallel to the output bus with a plurality of symmetrically spaced transversely extending conductors extending between the electrode bus and the output bus, with thermal insulation means provided about the transverse conductors between the spaced apart buses. Single or plural stages of the insulated transversely extending conductors can be provided within the high temperatures regions of the fuel cell generator to provide highly homogeneous temperature distribution over the contacting surfaces.
Electrical bushing for a superconductor element
Mirebeau, Pierre; Lallouet, Nicolas; Delplace, Sebastien; Lapierre, Regis
2010-05-04
The invention relates to an electrical bushing serving to make a connection at ambient temperature to a superconductor element situated in an enclosure at cryogenic temperature. The electrical bushing passes successively through an enclosure at intermediate temperature between ambient temperature and cryogenic temperature, and an enclosure at ambient temperature, and it comprises a central electrical conductor surrounded by an electrically insulating sheath. According to the invention, an electrically conductive screen connected to ground potential surrounds the insulating sheath over a section that extends from the end of the bushing that is in contact with the enclosure at cryogenic temperature at least as far as the junction between the enclosure at intermediate temperature and the enclosure at ambient temperature. The invention is more particularly applicable to making a connection to a superconductor cable.
NASA requirements and applications environments for electrical power wiring
NASA Technical Reports Server (NTRS)
Stavnes, Mark W.; Hammoud, Ahmad N.
1992-01-01
Serious problems can occur from insulation failures in the wiring harnesses of aerospace vehicles. In most recorded incidents, the failures have been identified to be the result of arc tracking, the propagation of an arc along wiring bundles through degradation of insulation. Propagation of the arc can lead to the loss of the entire wiring harness and the functions which it supports. While an extensive database of testing for arc track resistant wire insulations has been developed for aircraft applications, the counterpart requirements for spacecraft are very limited. The electrical, thermal, mechanical, chemical, and operational requirements for specification and testing of candidate wiring systems for spacecraft applications is presented.
NASA Astrophysics Data System (ADS)
Sakai, Shigeki; Zhang, Wei; Takahashi, Mitsue
2017-04-01
In metal-ferroelectric-insulator-semiconductor gate stacks of ferroelectric-gate field effect transistors (FeFETs), it is impossible to directly obtain curves of polarization versus electric field (P f-E f) in the ferroelectric layer. The P f-E f behavior is not simple, i.e. the P f-E f curves are hysteretic and nonlinear, and the hysteresis curve width depends on the electric field scan amplitude. Unless the P f-E f relation is known, the field E f strength cannot be solved when the voltage is applied between the gate meal and the semiconductor substrate, and thus P f-E f cannot be obtained after all. In this paper, the method for disclosing the relationships among the polarization peak-to-peak amplitude (2P mm_av), the electric field peak-to-peak amplitude (2E mm_av), and the memory window (E w) in units of the electric field is presented. To get P mm_av versus E mm_av, FeFETs with different ferroelectric-layer thicknesses should be prepared. Knowing such essential physical parameters is helpful and in many cases enough to quantitatively understand the behavior of FeFETs. The method is applied to three groups. The first one consists of SrBi2Ta2O9-based FeFETs. The second and third ones consist of Ca x Sr1-x Bi2Ta2O9-based FeFETs made by two kinds of annealing. The method can clearly differentiate the characters of the three groups. By applying the method, ferroelectric relationships among P mm_av, E mm_av, and E w are well classified in the three groups according to the difference of the material kinds and the annealing conditions. The method also evaluates equivalent oxide thickness (EOT) of a dual layer of a deposited high-k insulator and a thermally-grown SiO2-like interfacial layer (IL). The IL thickness calculated by the method is consistent with cross-sectional image of the FeFETs observed by a transmission electron microscope. The method successfully discloses individual characteristics of the ferroelectric and the insulator layers hidden in the gate stack of a FeFET.
HAREM: high aspect ratio etching and metallization for microsystems fabrication
NASA Astrophysics Data System (ADS)
Sarajlic, Edin; Yamahata, Christophe; Cordero, Mauricio; Collard, Dominique; Fujita, Hiroyuki
2008-07-01
We report a simple bulk micromachining method for the fabrication of high aspect ratio monocrystalline silicon MEMS (microelectromechanical systems) in a standard silicon wafer. We call this two-mask microfabrication process high aspect ratio etching and metallization or HAREM: it combines double-side etching and metallization to create suspended micromechanical structures with electrically 'insulating walls' on their backside. The insulating walls ensure a proper electrical insulation between the different actuation and sensing elements situated on either fixed or movable parts of the device. To demonstrate the high potential of this simple microfabrication method, we have designed and characterized electrostatically actuated microtweezers that integrate a differential capacitive sensor. The prototype showed an electrical insulation better than 1 GΩ between the different elements of the device. Furthermore, using a lock-in amplifier circuit, we could measure the position of the moving probe with few nanometers resolution for a displacement range of about 3 µm. This work was presented in part at the 21st IEEE MEMS Conference (Tucson, AZ, USA, 13-17 January, 2008) (doi:10.1109/MEMSYS.2008.4443656).
The Breakdown Characteristics of the Silicone Oil for Electric Power Apparatus
NASA Astrophysics Data System (ADS)
Yoshida, Hisashi; Yanabu, Satoru
The basic breakdown characteristics of the silicone oil as an insulating medium was studied with aim of realization of electric power apparatus which may be considered to be SF6 free and flame-retarding. As the first step, the impulse breakdown characteristics was measured with three kinds of electrodes whose electric field distributions differed. The breakdown characteristics in silicone oil was explained in relation to stressed oil volume (SOV) and the breakdown stress. At the second step the surface breakdown characteristic for impulse voltage was measured with two kinds of insulators which was set to between plane electrodes. The surface breakdown characteristic for impulse voltage was explained in relation to the ratio of the relative permittivity of oil and insulator. And on the third step, the breakdown characteristics of oil gap after interrupting small capacitive current was studied. In this experiment, the disconnecting switch to interrupt capacitive current was simulated by oil gap after interrupting impulse current, and to measure breakdown characteristics the high impulse voltage was subsequently applied. The breakdown stress in silicone oil after application of impulse current was discussed for insulation recovery characteristics.
Evaluating Embedded Heater Bonding for Composites
NASA Astrophysics Data System (ADS)
Carte, Casey
Out-of-autoclave bonding of high-strength carbon-fiber composites structures can reduce costs associated with autoclaves. Nevertheless, a concern is whether out-of-autoclave bonding results in a loss of delamination toughness. The main contribution of this paper is to comparatively evaluate the delamination toughness of adhesively bonded composite parts using carbon fiber embedded heaters and those bonded in an autoclave. Carbon Fiber Reinforced Polymer (CFRP) adherends were bonded by passing an electrical current through a layer of carbon fiber prepreg embedded at the bondline between two electrically insulating thin film adhesives. The delamination toughness was evaluated under mode I dominated loading conditions using a modified single cantilever beam test. Experimental results show that the delamination toughness of specimens bonded using a carbon fiber embedded heater was comparable to that of samples bonded in an autoclave.
Non-ferromagnetic overburden casing
Vinegar, Harold J.; Harris, Christopher Kelvin; Mason, Stanley Leroy
2010-09-14
Systems, methods, and heaters for treating a subsurface formation are described herein. At least one system for electrically insulating an overburden portion of a heater wellbore is described. The system may include a heater wellbore located in a subsurface formation and an electrically insulating casing located in the overburden portion of the heater wellbore. The casing may include at least one non-ferromagnetic material such that ferromagnetic effects are inhibited in the casing.
NASA Technical Reports Server (NTRS)
Robinson, Paul A., Jr.
1988-01-01
Charged-particle probe compact and consumes little power. Proposed modification enables metal oxide/semiconductor field-effect transistor (MOSFET) to act as detector of static electric charges or energetic charged particles. Thickened gate insulation acts as control structure. During measurements metal gate allowed to "float" to potential of charge accumulated in insulation. Stack of modified MOSFET'S constitutes detector of energetic charged particles. Each gate "floats" to potential induced by charged-particle beam penetrating its layer.
NASA Astrophysics Data System (ADS)
Strychalski, M.; Chorowski, M.; Polinski, J.
2014-05-01
Future accelerator magnets will be exposed to heat loads that exceed even by an order of magnitude presently observed heat fluxes transferred to superconducting magnet coils. To avoid the resistive transition of the superconducting cables, the efficiency of heat transfer between the magnet structure and the helium must be significantly increased. This can be achieved through the use of novel concepts of the cable’s electrical insulation wrapping, characterized by an enhanced permeability to helium while retaining sufficient electrical resistivity. This paper presents measurement results of the heat transfer through Rutherford NbTi cable samples immersed in a He II bath and subjected to the pressure loads simulating the counteracting of the Lorentz forces observed in powered magnets. The Rutherford cable samples that were tested used different electrical insulation wrapping schemes, including the scheme that is presently used and the proposed scheme for future LHC magnets. A new porous polyimide cable insulation with enhanced helium permeability was proposed in order to improve the evacuation of heat form the NbTi coil to He II bath. These tests were performed in a dedicated Claudet-type cryostat in pressurized He II at 1.9 K and 1 bar.
Hirose, H
1997-01-01
This paper proposes a new treatment for electrical insulation degradation. Some types of insulation which have been used under various circumstances are considered to degrade at various rates in accordance with their stress circumstances. The cross-linked polyethylene (XLPE) insulated cables inspected by major Japanese electric companies clearly indicate such phenomena. By assuming that the inspected specimen is sampled from one of the clustered groups, a mixed degradation model can be constructed. Since the degradation of the insulation under common circumstances is considered to follow a Weibull distribution, a mixture model and a Weibull power law can be combined. This is called The mixture Weibull power law model. By using the maximum likelihood estimation for the newly proposed model to Japanese 22 and 33 kV insulation class cables, they are clustered into a certain number of groups by using the AIC and the generalized likelihood ratio test method. The reliability of the cables at specified years are assessed.
Mechanical and electric characteristics of vacuum impregnated no-insulation HTS coil
NASA Astrophysics Data System (ADS)
Park, Heecheol; Kim, A.-rong; Kim, Seokho; Park, Minwon; Kim, Kwangmin; Park, Taejun
2014-09-01
For the conduction cooling application, epoxy impregnation is inevitable to enhance the thermal conduction. However, there have been several research results on the delamination problem with coated conductor and the main cause of the delamination is related with the different thermal contraction between epoxy, the insulation layer and the weak conductor. To avoid this problem, the amount of epoxy and insulation layer between conductors should be minimized or removed. Therefore, no insulation (NI) winding method and impregnation after dry winding can be considered to solve the problem. The NI coil winding method is very attractive due to high mechanical/thermal stability for the special purpose of DC magnets by removing the insulation layer. In this paper, the NI coil winding method and vacuum impregnation are applied to a HTS coil to avoid the delamination problem and enhance the mechanical/thermal stability for the conduction cooling application. Through the charging/discharging operation, electric/thermal characteristics are investigated at 77 K and 30 K.
Characterization of XLPE cable insulation by dynamic mechanical thermal analyzer (DMTA)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parpal, J.L.; Guddemi, C.; Lamarre, L.
1996-12-31
Polymeric insulated cables and accessories are becoming widely used at voltages over 120 kV, even up to 500 kV. Although high electrical stress presents the greatest challenge, some attention should be given to the fact that the polymeric insulation is also subjected to mechanical stress which can affect the electrical performance of the high-voltage cable system. Thus, the mechanical response to an ac stress induced by oscillating electrostatic forces could be an important factor with regard to long-term degradation of polymeric insulation. This paper presents preliminary mechanical relaxation measurements on XLPE and LDPE specimens taken from unaged transmission type cables.more » Dynamic mechanical relaxation showing radial profiles of the mechanical loss tangent and tensile modulus E{prime} are presented in a temperature range of 40 to 120 C.« less
Insulation defects in Riata implantable cardioverter-defibrillator leads.
Sato, Akinori; Chinushi, Masaomi; Iijima, Kenichi; Izumi, Daisuke; Furushima, Hiroshi
2012-01-01
The structures composing implantable cardioverter-defibrillator (ICD) leads have become more complicated and thinner with technological advances. Silicon insulation defects with and without clinically manifested electrical abnormalities have been reported in Riata leads (St. Jude Medical). The aim of this study was to assess the incidence and clinical implications of insulation defects in Riata leads implanted at our hospital. The subjects included 10 consecutive patients who received 8-French Riata ICD leads with dual-coil conductors (model 1580 or 1581) between 2006 and 2010 at our hospital. Operative records, chest X-rays and interrogation data were reviewed. In all cases, Atlas+ (St. Jude Medical) was used as an ICD generator and the Riata leads were implanted transvenously and fixed to the right ventricular apex. During a mean follow-up period of 52±9 (36-70) months, chest X-rays revealed insulation defects in Riata leads and conductor wires projecting from the bodies of the Riata leads in two of 10 (20%) patients. One of the patients received inappropriate ICD therapies due to T-wave oversensing based on attenuation of R waves and augmentation of T waves 41 months after implantation. In the other patient, an insulation defect without any clinically manifested electrical troubles was detected 50 months after implantation. Riata leads have a high incidence of insulation defects, which may be occasionally accompanied by inappropriate ICD discharges. For patients with Riata leads, careful observation of any changes in the lead-electrical measurements and a routine chest X-ray follow-up are necessary.
Rectenna that converts infrared radiation to electrical energy
Davids, Paul; Peters, David W.
2016-09-06
Technologies pertaining to converting infrared (IR) radiation to DC energy are described herein. In a general embodiment, a rectenna comprises a conductive layer. A thin insulator layer is formed on the conductive layer, and a nanoantenna is formed on the thin insulator layer. The thin insulator layer acts as a tunnel junction of a tunnel diode.
USAF/WL robust 300 C wire insulation system program status
NASA Technical Reports Server (NTRS)
Wong, Wing
1995-01-01
The objective of this program is to identify, develop, and demonstrate an optimum wire insulation system capable of continuous operation at 300 C which possesses a combination of superior electrical (AC or DC), mechanical, and physical properties over Kapton derived insulations described in MIL-W-81381 and those hybrid materials commonly known as TKT constructions.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-27
... inner wall and insulation blankets). This proposed AD results from reports of heat damage to the inner... insulation blankets and heat transfer through the upper compression pad area and the fireseal bracket support... upper and lower inner wall insulation blankets, measuring the electrical conductivity on the aluminum...
High temperature liquid level sensor
Tokarz, Richard D.
1983-01-01
A length of metal sheathed metal oxide cable is perforated to permit liquid access to the insulation about a pair of conductors spaced close to one another. Changes in resistance across the conductors will be a function of liquid level, since the wetted insulation will have greater electrical conductivity than that of the dry insulation above the liquid elevation.
The Shock and Vibration Digest. Volume 18, Number 11
1986-11-01
instantaneous clearances for various conductor loadings and weather conditions. Composite insulators are now more widely used. They consists...ter under gunfire. However, their electrical and mechanical behaviors are mote complicated than those of analogous porcelain insulators because...mechanical considerations by discussing recent research papets. Tensile tests on composite insulators have shown that short-term tensile
USAF/WL robust 300 C wire insulation system program status
NASA Astrophysics Data System (ADS)
Wong, Wing
1995-11-01
The objective of this program is to identify, develop, and demonstrate an optimum wire insulation system capable of continuous operation at 300 C which possesses a combination of superior electrical (AC or DC), mechanical, and physical properties over Kapton derived insulations described in MIL-W-81381 and those hybrid materials commonly known as TKT constructions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Mingda; Song, Qichen; Zhao, Weiwei
The possible realization of dissipationless chiral edge current in a topological insulator/magnetic insulator heterostructure is based on the condition that the magnetic proximity exchange coupling at the interface is dominated by the Dirac surface states of the topological insulator. We report a polarized neutron reflectometry observation of Dirac-electron-mediated magnetic proximity effect in a bulk-insulating topological insulator (Bi 0.2Sb 0.8) 2Te 3/magnetic insulator EuS heterostructure. We are able to maximize the proximity-induced magnetism by applying an electrical back gate to tune the Fermi level of topological insulator to be close to the Dirac point. A phenomenological model based on diamagnetic screeningmore » is developed to explain the suppressed proximity-induced magnetism at high carrier density. Our work paves the way to utilize the magnetic proximity effect at the topological insulator/magnetic insulator heterointerface for low-power spintronic applications.« less
Li, Mingda; Song, Qichen; Zhao, Weiwei; ...
2017-11-01
The possible realization of dissipationless chiral edge current in a topological insulator/magnetic insulator heterostructure is based on the condition that the magnetic proximity exchange coupling at the interface is dominated by the Dirac surface states of the topological insulator. We report a polarized neutron reflectometry observation of Dirac-electron-mediated magnetic proximity effect in a bulk-insulating topological insulator (Bi 0.2Sb 0.8) 2Te 3/magnetic insulator EuS heterostructure. We are able to maximize the proximity-induced magnetism by applying an electrical back gate to tune the Fermi level of topological insulator to be close to the Dirac point. A phenomenological model based on diamagnetic screeningmore » is developed to explain the suppressed proximity-induced magnetism at high carrier density. Our work paves the way to utilize the magnetic proximity effect at the topological insulator/magnetic insulator heterointerface for low-power spintronic applications.« less
30 CFR 57.12011 - High-potential electrical conductors.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-potential electrical conductors. 57.12011... Electricity Surface and Underground § 57.12011 High-potential electrical conductors. High-potential electrical conductors shall be covered, insulated, or placed to prevent contact with low potential conductors. ...
30 CFR 57.12004 - Electrical conductors.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Electrical conductors. 57.12004 Section 57... Surface and Underground § 57.12004 Electrical conductors. Electrical conductors shall be of a sufficient... operations will not damage the insulating materials. Electrical conductors exposed to mechanical damage shall...
30 CFR 57.12011 - High-potential electrical conductors.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false High-potential electrical conductors. 57.12011... Electricity Surface and Underground § 57.12011 High-potential electrical conductors. High-potential electrical conductors shall be covered, insulated, or placed to prevent contact with low potential conductors. ...
30 CFR 57.12004 - Electrical conductors.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Electrical conductors. 57.12004 Section 57... Surface and Underground § 57.12004 Electrical conductors. Electrical conductors shall be of a sufficient... operations will not damage the insulating materials. Electrical conductors exposed to mechanical damage shall...
30 CFR 57.12004 - Electrical conductors.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Electrical conductors. 57.12004 Section 57... Surface and Underground § 57.12004 Electrical conductors. Electrical conductors shall be of a sufficient... operations will not damage the insulating materials. Electrical conductors exposed to mechanical damage shall...
NASA Astrophysics Data System (ADS)
Hossain, I.; Jiang, J.; Matras, M.; Trociewitz, U. P.; Lu, J.; Kametani, F.; Larbalestier, D.; Hellstrom, E.
2017-12-01
In order to develop a high current density in coils, Bi-2212 wires must be electrically discrete in tight winding packs. It is vital to use an insulating layer that is thin, fulfils the dielectric requirements, and can survive the heat treatment whose maximum temperature reaches 890 °C in oxygen. A thin (20-30 µm) ceramic coating could be better as the insulating layer compared to alumino-silicate braided fiber insulation, which is about 150 μm thick and reacts with the Ag sheathed Bi-2212 wire during heat treatment. At present, TiO2 seems to be the most viable ceramic material for such a thin insulation because it is chemically compatible with Ag and Bi-2212 and its sintering temperature is lower than the maximum temperature used for the Bi-2212 heat treatment. However, recent tests of a large Bi-2212 coil insulated only with TiO2 showed severe electrical shorting between the wires after over pressure heat treatment (OPHT). The origin of the shorting was frequent silver protrusions into the porous TiO2 layer that electrically connected adjacent Bi-2212 wires. To understand the mechanism of this unexpected behaviour, we investigated the effect of sheath material and hydrostatic pressure on Ag protrusions. We found that Ag protrusions occur only when TiO2-insulated Ag-0.2%Mg sheathed wire (Ag(Mg) wire) undergoes OPHT at 50 bar. No Ag protrusions were observed when the TiO2-insulated Ag(Mg) wire was processed at 1 bar. The TiO2-insulated wires sheathed with pure Ag that underwent 50 bar OPHT were also free from Ag protrusions. A key finding is that the Ag protrusions from the Ag(Mg) sheath actually contain no MgO, suggesting that local depletion of MgO facilitates local, heterogeneous deformation of the sheath under hydrostatic overpressure. Our study also suggests that predensifying the Ag(Mg) wire before insulating it with TiO2 and doing the final OPHT can potentially limit Ag protrusions.
Electric-field-driven phase transition in vanadium dioxide
NASA Astrophysics Data System (ADS)
Wu, B.; Zimmers, A.; Aubin, H.; Ghosh, R.; Liu, Y.; Lopez, R.
2011-12-01
We report on local probe measurements of current-voltage and electrostatic force-voltage characteristics of electric-field-induced insulator to metal transition in VO2 thin film. In conducting AFM mode, switching from the insulating to metallic state occurs for electric-field threshold E˜6.5×107Vm-1 at 300K. Upon lifting the tip above the sample surface, we find that the transition can also be observed through a change in electrostatic force and in tunneling current. In this noncontact regime, the transition is characterized by random telegraphic noise. These results show that electric field alone is sufficient to induce the transition; however, the electronic current provides a positive feedback effect that amplifies the phenomena.
Design of load-to-failure tests of high-voltage insulation breaks for ITER's cryogenic network
NASA Astrophysics Data System (ADS)
Langeslag, S. A. E.; Rodriguez Castro, E.; Aviles Santillana, I.; Sgobba, S.; Foussat, A.
2015-12-01
The development of new generation superconducting magnets for fusion research, such as the ITER experiment, is largely based on coils wound with so-called cable-in-conduit conductors. The concept of the cable-in-conduit conductor is based on a direct cooling principle, by supercritical helium, flowing through the central region of the conductor, in close contact with the superconducting strands. Consequently, a direct connection exists between the electrically grounded helium coolant supply line and the highly energised magnet windings. Various insulated regions, constructed out of high-voltage insulation breaks, are put in place to isolate sectors with different electrical potential. In addition to high voltages and significant internal helium pressure, the insulation breaks will experience various mechanical forces resulting from differential thermal contraction phenomena and electro-magnetic loads. Special test equipment was designed, prepared and employed to assess the mechanical reliability of the insulation breaks. A binary test setup is proposed, where mechanical failure is assumed when leak rate of gaseous helium exceeds 10-9·Pa·m3/s. The test consists of a load-to-failure insulation break charging, in tension, while immersed in liquid nitrogen at the temperature of 77 K. Leak tightness during the test is monitored by measuring the leak rate of the gaseous helium, directly surrounding the insulation break, with respect to the existing vacuum inside the insulation break. The experimental setup is proven effective, and various insulation breaks performed beyond expectations.
Engineering Design Handbook. Dielectric Embedding of Electrical or Electronic Components
1979-04-06
its excellent electrical properties are maintained at elevated temperatures. Even when the insulation is exposed to a direct flame, it burns to a...machine by one operator; these molds are generally equipped with insulated handles to prevent personal in- jury from burns . In electronic embedment...Excellent for large volume runs; tooling is minimal. Pres- ence of a shell or housing as- sures no exposed components, as can occur in casting. Some
A brief survey of radiation effects on polymer dielectrics
NASA Technical Reports Server (NTRS)
Laghari, Javaid R.; Hammoud, Ahmad N.
1990-01-01
Future space power needs are extrapolated to be at least three to four orders of magnitude more than is currently available. This long-term reliable power will be required on missions such as the Space Station, Pathfinder, Space Plane, and high-powered satellites, and for defense. Electrical insulation and dielectrics are the key electrical materials needed to support these power systems, where a single-point system failure could prove catastrophic or even fatal for the whole mission. Therefore, the impact of radiation, an environmental stress, on the properties and performance of insulation and dielectrics must be understood. The influence of radiation on polymer dielectrics, the insulating materials most commonly used for power transmission and storage, is reviewed. The effects of the type of radiation, dose, rate, and total exposure on the key electrical, mechanical, and physical properties of polymer dielectrics are described and explained.
Uchida, K; Xiao, J; Adachi, H; Ohe, J; Takahashi, S; Ieda, J; Ota, T; Kajiwara, Y; Umezawa, H; Kawai, H; Bauer, G E W; Maekawa, S; Saitoh, E
2010-11-01
Thermoelectric generation is an essential function in future energy-saving technologies. However, it has so far been an exclusive feature of electric conductors, a situation which limits its application; conduction electrons are often problematic in the thermal design of devices. Here we report electric voltage generation from heat flowing in an insulator. We reveal that, despite the absence of conduction electrons, the magnetic insulator LaY(2)Fe(5)O(12) can convert a heat flow into a spin voltage. Attached Pt films can then transform this spin voltage into an electric voltage as a result of the inverse spin Hall effect. The experimental results require us to introduce a thermally activated interface spin exchange between LaY(2)Fe(5)O(12) and Pt. Our findings extend the range of potential materials for thermoelectric applications and provide a crucial piece of information for understanding the physics of the spin Seebeck effect.
DC conductivity of a suspension of insulating particles with internal rotation
NASA Astrophysics Data System (ADS)
Pannacci, N.; Lemaire, E.; Lobry, L.
2009-04-01
We analyse the consequences of Quincke rotation on the conductivity of a suspension. Quincke rotation refers to the spontaneous rotation of insulating particles dispersed in a slightly conducting liquid and subject to a high DC electric field: above a critical field, each particle rotates continuously around itself with an axis pointing in any direction perpendicular to the DC field. When the suspension is subject to an electric field lower than the threshold one, the presence of insulating particles in the host liquid decreases the bulk conductivity since the particles form obstacles to ion migration. But for electric fields higher than the critical one, the particles rotate and facilitate ion migration: the effective conductivity of the suspension is increased. We provide a theoretical analysis of the impact of Quincke rotation on the apparent conductivity of a suspension and we present experimental results obtained with a suspension of PMMA particles dispersed in weakly conducting liquids.
Processing of Al2O3/SrTiO3/PDMS Composites With Low Dielectric Loss
NASA Astrophysics Data System (ADS)
Yao, J. L.; Guo, M. J.; Qi, Y. B.; Zhu, H. X.; Yi, R. Y.; Gao, L.
2018-05-01
Polydimethylsiloxane (PDMS) is widely used in the electrical and electronic industries due to its excellent electrical insulation and biocompatible characteristics. However, the dielectric constant of pure PDMS is very low which restricts its applications. Herein, we report a series of PDMS/Al2O3/strontium titanate (ST) composites with high dielectric constant and low loss prepared by a simple experimental method. The composites exhibit high dielectric constant (relative dielectric constant is 4) after the composites are coated with insulated Al2O3 particles, and the dielectric constant gets further improved for composites with ST particles (dielectric constant reaches 15.5); a lower dielectric loss (tanδ= 0.05) is also found at the same time which makes co-filler composites suitable for electrical insulation products, and makes the experimental method more interesting in modern teaching.
Advanced concepts for transformers pressboard dielectric constant and mechanical strength
NASA Astrophysics Data System (ADS)
1982-03-01
Of the numerous electrical considerations in a material, the value of the dielectric constant serves as an important criterion in designing proper insulation systems. Ways to reduce the dielectric constant of solid (fibrous) insulating materials were investigated. A literature search was made on cellulosic and synthetic fibers and also additives which offered the potential for dielectric constant reduction of the solid insulation. Sample board structures were produced in the laboratory and tested for electrical, mechanical and chemical characteristics. Electrical tests determined the suitability of the material at transformer test and operating conditions. The mechanical tests established the physical characteristics of the modified board structures. Chemical tests checked the conductivity of the aqueous extract, acidity, and ash content. Further, compatibility with transformer oil and some aging tests were performed. An actual computer transformer design was made based on one of the modified board structures and the reduction in core steel and transformer losses were shown.
Antifuse with a single silicon-rich silicon nitride insulating layer
Habermehl, Scott D.; Apodaca, Roger T.
2013-01-22
An antifuse is disclosed which has an electrically-insulating region sandwiched between two electrodes. The electrically-insulating region has a single layer of a non-hydrogenated silicon-rich (i.e. non-stoichiometric) silicon nitride SiN.sub.X with a nitrogen content X which is generally in the range of 0
Electricity remains a serious workplace hazard.
Proctor, Laura; Kuchibotla, Srin
2013-08-01
Anyone who works in an industrial environment or is employed in the utility, mass transit, industrial goods manufacturing, or telecommunications industry - as well as many others - may be at risk for electrocution. Electric shock costs workers' lives and results in painful and debilitating injuries every year. Lockout/tagout procedures protect against electrocution, as do rubber insulating gloves, which must be worn any time workers are exposed to energized parts operating at 50 volts or higher. Some newer styles of rubber insulating gloves not only protect against electric shock, but also offer the dexterity and flexibility workers need for hours of comfortable wear.
CMUTs with High-K Atomic Layer Deposition Dielectric Material Insulation Layer
Xu, Toby; Tekes, Coskun; Degertekin, F. Levent
2014-01-01
Use of high-κ dielectric, atomic layer deposition (ALD) materials as an insulation layer material for capacitive micromachined ultrasonic transducers (CMUTs) is investigated. The effect of insulation layer material and thickness on CMUT performance is evaluated using a simple parallel plate model. The model shows that both high dielectric constant and the electrical breakdown strength are important for the dielectric material, and significant performance improvement can be achieved, especially as the vacuum gap thickness is reduced. In particular, ALD hafnium oxide (HfO2) is evaluated and used as an improvement over plasma-enhanced chemical vapor deposition (PECVD) silicon nitride (SixNy) for CMUTs fabricated by a low-temperature, complementary metal oxide semiconductor transistor-compatible, sacrificial release method. Relevant properties of ALD HfO2 such as dielectric constant and breakdown strength are characterized to further guide CMUT design. Experiments are performed on parallel fabricated test CMUTs with 50-nm gap and 16.5-MHz center frequency to measure and compare pressure output and receive sensitivity for 200-nm PECVD SixNy and 100-nm HfO2 insulation layers. Results for this particular design show a 6-dB improvement in receiver output with the collapse voltage reduced by one-half; while in transmit mode, half the input voltage is needed to achieve the same maximum output pressure. PMID:25474786
Scaling for quantum tunneling current in nano- and subnano-scale plasmonic junctions.
Zhang, Peng
2015-05-19
When two conductors are separated by a sufficiently thin insulator, electrical current can flow between them by quantum tunneling. This paper presents a self-consistent model of tunneling current in a nano- and subnano-meter metal-insulator-metal plasmonic junction, by including the effects of space charge and exchange correlation potential. It is found that the J-V curve of the junction may be divided into three regimes: direct tunneling, field emission, and space-charge-limited regime. In general, the space charge inside the insulator reduces current transfer across the junction, whereas the exchange-correlation potential promotes current transfer. It is shown that these effects may modify the current density by orders of magnitude from the widely used Simmons' formula, which is only accurate for a limited parameter space (insulator thickness > 1 nm and barrier height > 3 eV) in the direct tunneling regime. The proposed self-consistent model may provide a more accurate evaluation of the tunneling current in the other regimes. The effects of anode emission and material properties (i.e. work function of the electrodes, electron affinity and permittivity of the insulator) are examined in detail in various regimes. Our simple model and the general scaling for tunneling current may provide insights to new regimes of quantum plasmonics.
Scaling for quantum tunneling current in nano- and subnano-scale plasmonic junctions
Zhang, Peng
2015-01-01
When two conductors are separated by a sufficiently thin insulator, electrical current can flow between them by quantum tunneling. This paper presents a self-consistent model of tunneling current in a nano- and subnano-meter metal-insulator-metal plasmonic junction, by including the effects of space charge and exchange correlation potential. It is found that the J-V curve of the junction may be divided into three regimes: direct tunneling, field emission, and space-charge-limited regime. In general, the space charge inside the insulator reduces current transfer across the junction, whereas the exchange-correlation potential promotes current transfer. It is shown that these effects may modify the current density by orders of magnitude from the widely used Simmons’ formula, which is only accurate for a limited parameter space (insulator thickness > 1 nm and barrier height > 3 eV) in the direct tunneling regime. The proposed self-consistent model may provide a more accurate evaluation of the tunneling current in the other regimes. The effects of anode emission and material properties (i.e. work function of the electrodes, electron affinity and permittivity of the insulator) are examined in detail in various regimes. Our simple model and the general scaling for tunneling current may provide insights to new regimes of quantum plasmonics. PMID:25988951
Guthrie, Robin J.; Katz, Murray; Schroll, Craig R.
1991-04-23
The end plates (16) of a fuel cell stack (12) are formed of a thin membrane. Pressure plates (20) exert compressive load through insulation layers (22, 26) to the membrane. Electrical contact between the end plates (16) and electrodes (50, 58) is maintained without deleterious making and breaking of electrical contacts during thermal transients. The thin end plate (16) under compressive load will not distort with a temperature difference across its thickness. Pressure plate (20) experiences a low thermal transient because it is insulated from the cell. The impact on the end plate of any slight deflection created in the pressure plate by temperature difference is minimized by the resilient pressure pad, in the form of insulation, therebetween.
Bolton, Richard D.; MacArthur, Duncan W.
1996-01-01
An electrostatic detector for atmospheric radon or other weak sources of alpha radiation. In one embodiment, nested enclosures are insulated from one another, open at the top, and have a high voltage pin inside and insulated from the inside enclosure. An electric field is produced between the pin and the inside enclosure. Air ions produced by collision with alpha particles inside the decay volume defined by the inside enclosure are attracted to the pin and the inner enclosure. With low alpha concentrations, individual alpha events can be measured to indicate the presence of radon or other alpha radiation. In another embodiment, an electrical field is produced between parallel plates which are insulated from a single decay cavity enclosure.
Bolton, R.D.; MacArthur, D.W.
1996-08-27
An electrostatic detector is disclosed for atmospheric radon or other weak sources of alpha radiation. In one embodiment, nested enclosures are insulated from one another, open at the top, and have a high voltage pin inside and insulated from the inside enclosure. An electric field is produced between the pin and the inside enclosure. Air ions produced by collision with alpha particles inside the decay volume defined by the inside enclosure are attracted to the pin and the inner enclosure. With low alpha concentrations, individual alpha events can be measured to indicate the presence of radon or other alpha radiation. In another embodiment, an electrical field is produced between parallel plates which are insulated from a single decay cavity enclosure. 6 figs.
Characteristics of corona impulses from insulated wires subjected to high ac voltages
NASA Technical Reports Server (NTRS)
Doreswamy, C. V.; Crowell, C. S.
1976-01-01
Corona discharges arise due to ionization of air or gas subject to high electric fields. The free electrons and ions contained in these discharges interact with molecules of insulating materials, resulting in chemical changes and destroying the electrical insulating properties. The paper describes some results of measurements aimed at determining corona pulse waveforms, their repetition rate, and amplitude distribution during various randomly-sampled identical time periods of a 60-Hz high-voltage wave. Described are properties of positive and negative corona impulses generated from typical conductors at various test high voltages. A possible method for calculating the energies, densities, and electromagnetic interferences by making use of these results is suggested.
NASA Astrophysics Data System (ADS)
Sima, Wenxia; Jiang, Xiongwei; Peng, Qingjun; Sun, Potao
2018-05-01
Electrical breakdown is an important physical phenomenon in electrical equipment and electronic devices. Many related models and theories of electrical breakdown have been proposed. However, a widely recognized understanding on the following phenomenon is still lacking: impulse breakdown strength which varies with waveform parameters, decrease in the breakdown strength of AC voltage with increasing frequency, and higher impulse breakdown strength than that of AC. In this work, an improved model of activation energy absorption for different electrical breakdowns in semi-crystalline insulating polymers is proposed based on the Harmonic oscillator model. Simulation and experimental results show that, the energy of trapped charges obtained from AC stress is higher than that of impulse voltage, and the absorbed activation energy increases with the increase in the electric field frequency. Meanwhile, the frequency-dependent relative dielectric constant ε r and dielectric loss tanδ also affect the absorption of activation energy. The absorbed activation energy and modified trap level synergistically determine the breakdown strength. The mechanism analysis of breakdown strength under various voltage waveforms is consistent with the experimental results. Therefore, the proposed model of activation energy absorption in the present work may provide a new possible method for analyzing and explaining the breakdown phenomenon in semi-crystalline insulating polymers.
NASA Astrophysics Data System (ADS)
Hu, Yougen; Zhao, Tao; Wu, Xiaolin; Lai, Maobai; Jiang, Chengming; Sun, Rong
2011-11-01
Thermal energy storage plays an important role in heat management because of the demand for developed energy conservation, and has applications in diverse areas, from buildings to textiles and clothings. In this study, we aimed to improve thermal characteristics of polyurethane rigid foams that have been widely used for thermal insulation in electrical water heaters. Through this work, paraffin waxes with melting point of 55~65°C act as phase change materials. Then the phase change materials were incorporated into the polyurethane foams at certain ratio. The polyurethane/phase change composite materials used as insulation layers in electrical water heaters performed the enthalpy value of 5~15 J/g. Energy efficiency of the electrical water heaters was tested according to the National Standard of China GB 21519-2008. Results show that 24 h energy consumption of the electrical water heaters manufactured by traditional polyurethane rigid foams and polyurethane/phase change material composites was 1.0612 kWh and 0.9833 kWh, respectively. The results further show that the energy-saving rate is 7.36%. These proved that polyurethane/phase change composite materials can be designed as thermal insulators equipped with electrical water heaters and have a significant effect on energy conservation.
NASA Astrophysics Data System (ADS)
Hu, Yougen; Zhao, Tao; Wu, Xiaolin; Lai, Maobai; Jiang, Chengming; Sun, Rong
2012-04-01
Thermal energy storage plays an important role in heat management because of the demand for developed energy conservation, and has applications in diverse areas, from buildings to textiles and clothings. In this study, we aimed to improve thermal characteristics of polyurethane rigid foams that have been widely used for thermal insulation in electrical water heaters. Through this work, paraffin waxes with melting point of 55~65°C act as phase change materials. Then the phase change materials were incorporated into the polyurethane foams at certain ratio. The polyurethane/phase change composite materials used as insulation layers in electrical water heaters performed the enthalpy value of 5~15 J/g. Energy efficiency of the electrical water heaters was tested according to the National Standard of China GB 21519-2008. Results show that 24 h energy consumption of the electrical water heaters manufactured by traditional polyurethane rigid foams and polyurethane/phase change material composites was 1.0612 kWh and 0.9833 kWh, respectively. The results further show that the energy-saving rate is 7.36%. These proved that polyurethane/phase change composite materials can be designed as thermal insulators equipped with electrical water heaters and have a significant effect on energy conservation.
Izzati, Wan Akmal; Arief, Yanuar Z; Adzis, Zuraimy; Shafanizam, Mohd
2014-01-01
Polymer nanocomposites have recently been attracting attention among researchers in electrical insulating applications from energy storage to power delivery. However, partial discharge has always been a predecessor to major faults and problems in this field. In addition, there is a lot more to explore, as neither the partial discharge characteristic in nanocomposites nor their electrical properties are clearly understood. By adding a small amount of weight percentage (wt%) of nanofillers, the physical, mechanical, and electrical properties of polymers can be greatly enhanced. For instance, nanofillers in nanocomposites such as silica (SiO2), alumina (Al2O3) and titania (TiO2) play a big role in providing a good approach to increasing the dielectric breakdown strength and partial discharge resistance of nanocomposites. Such polymer nanocomposites will be reviewed thoroughly in this paper, with the different experimental and analytical techniques used in previous studies. This paper also provides an academic review about partial discharge in polymer nanocomposites used as electrical insulating material from previous research, covering aspects of preparation, characteristics of the nanocomposite based on experimental works, application in power systems, methods and techniques of experiment and analysis, and future trends.
Duncan, D.B.
1992-12-29
The present invention provides a heat-resistant electrical insulator adapted for joining laser housing portions, which insulator comprises: an annulus; a channel in the annulus traversing the circumference and length of the housing; at least two ports, each communicating with the channel and an outer surface of the housing; and an attachment for securely attaching each end of the annulus to a laser housing member. 3 figs.
NASA Technical Reports Server (NTRS)
Linley, Larry
1994-01-01
The objectives of these projects include the following: validate method used to screen wire insulation with arc tracking characteristics; determine damage resistance to arc as a function of source voltage and insulation thickness; investigate propagation characteristics of Kapton at low voltages; and investigate pyrolytic properties of polyimide insulated (Kapton) wire for low voltage (less than 35 VDC) applications. Supporting diagrams and tables are presented.
Duncan, David B.
1992-01-01
The present invention provides a heat-resistant electrical insulator adapted for joining laser housing portions, which insulator comprises: an annulus; a channel in the annulus traversing the circumference and length of the housing; at least two ports, each communicating with the channel and an outer surface of the housing; and an attachment for securely attaching each end of the annulus to a laser housing member.
Non-volatile resistive switching in the Mott insulator (V1-xCrx)2O3
NASA Astrophysics Data System (ADS)
Querré, M.; Tranchant, J.; Corraze, B.; Cordier, S.; Bouquet, V.; Députier, S.; Guilloux-Viry, M.; Besland, M.-P.; Janod, E.; Cario, L.
2018-05-01
The discovery of non-volatile resistive switching in Mott insulators related to an electric-field-induced insulator to metal transition (IMT) has paved the way for their use in a new type of non-volatile memories, the Mott memories. While most of the previous studies were dedicated to uncover the resistive switching mechanism and explore the memory potential of chalcogenide Mott insulators, we present here a comprehensive study of resistive switching in the canonical oxide Mott insulator (V1-xCrx)2O3. Our work demonstrates that this compound undergoes a non-volatile resistive switching under electric field. This resistive switching is induced by a Mott transition at the local scale which creates metallic domains closely related to existing phases of the temperature-pressure phase diagram of (V1-xCrx)2O3. Our work demonstrates also reversible resistive switching in (V1-xCrx)2O3 crystals and thin film devices. Preliminary performances obtained on 880 nm thick layers with 500 nm electrodes show the strong potential of Mott memories based on the Mott insulator (V1-xCrx)2O3.
NASA Astrophysics Data System (ADS)
Jamail, Nor Akmal Mohd; Piah, Mohamed Afendi Mohamed; Muhamad, Nor Asiah
2012-09-01
Nondestructive and time domain dielectric measurement techniques such as polarization and depolarization current (PDC) measurements have recently been widely used as a potential tool for determining high-voltage insulation conditions by analyzing the insulation conductivity. The variation in the conductivity of an insulator was found to depend on several parameters: the difference between the polarization and depolarization currents, geometric capacitance, and the relative permittivity of the insulation material. In this paper the conductivities of different types of oil-paper insulation material are presented. The insulation conductivities of several types of electrical apparatus were simulated using MATLAB. Conductivity insulation was found to be high at high polarizations and at the lowest depolarization current. It was also found to increase with increasing relative permittivity as well as with decreasing geometric capacitance of the insulating material.
Investigation of Re-X glass ceramic for acceleration insulating columns
NASA Astrophysics Data System (ADS)
Faltens, A.; Rosenblum, S.
1985-05-01
In an induction linac the accelerating voltage appears along a voltage-graded vacuum insulator column which is a performance limiting and major cost component. Re-X glass ceramic insulators have the long-sought properties of allowing cast-in gradient electrodes, good breakdown characteristics, and compatibility with high vacuum systems. Re-X is a glass ceramic developed by General Electric for use in the manufacture of electrical apparatus, such as vacuum arc interrupters. We have examined vacuum outgassing behavior and voltage breakdown in vacuum and find excellent performance. The housings are in the shape of tubes with type 430 stainless steel terminations. Due to a matched coefficient of thermal expansion between metal and insulator, no vacuum leaks have resulted from any welding operation. The components should be relatively inexpensive to manufacture in large sizes and appear to be a very attractive accelerator column. We are planning to use a standard GE housing in our MBE-4 induction linac.
Radiation-hard electrical coil and method for its fabrication
Grieggs, R.J.; Blake, R.D.; Gac, F.D.
1982-06-29
A radiation-hard insulated electrical coil and method for making the same are disclosed. In accordance with the method, a conductor, preferably copper, is wrapped with an aluminum strip and then tightly wound into a coil. The aluminum-wrapped coil is then annealed to relax the conductor in the coiled configuration. The annealed coil is then immersed in an alkaline solution to dissolve the aluminum strip, leaving the bare conductor in a coiled configuration with all of the windings closely packed yet uniformly spaced from one another. The coil is then insulated with a refractory insulating material. In the preferred embodiment, the coil is insulated by coating it with a vitreous enamel and subsequently potting the enamelled coil in a castable ceramic concrete. The resulting coil is substantially insensitive to radiation and may be operated continuously in high radiation environments for long periods of time.
Kale, Akshay; Song, Le; Lu, Xinyu; Yu, Liandong; Hu, Guoqing; Xuan, Xiangchun
2018-03-01
Insulator-based dielectrophoresis (iDEP) exploits in-channel hurdles and posts etc. to create electric field gradients for various particle manipulations. However, the presence of such insulating structures also amplifies the Joule heating in the fluid around themselves, leading to both temperature gradients and electrothermal flow. These Joule heating effects have been previously demonstrated to weaken the dielectrophoretic focusing and trapping of microscale and nanoscale particles. We find that the electrothermal flow vortices are able to entrain submicron particles for a localized enrichment near the insulating tips of a ratchet microchannel. This increase in particle concentration is reasonably predicted by a full-scale numerical simulation of the mass transport along with the coupled charge, heat and fluid transport. Our model also predicts the electric current and flow pattern in the fluid with a good agreement with the experimental observations. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Ahmadi-Majlan, Kamyar; Chen, Tongjie; Lim, Zheng Hui; Conlin, Patrick; Hensley, Ricky; Chrysler, Matthew; Su, Dong; Chen, Hanghui; Kumah, Divine P.; Ngai, Joseph H.
2018-05-01
We present electrical and structural characterization of epitaxial LaTiO3/SrTiO3 heterostructures integrated directly on Si(100). By reducing the thicknesses of the heterostructures, an enhancement in carrier-carrier scattering is observed in the Fermi liquid behavior, followed by a metal to insulator transition in the electrical transport. The insulating behavior is described by activated transport, and its onset occurs near an occupation of 1 electron per Ti site within the SrTiO3, providing evidence for a Mott driven transition. We also discuss the role that structure and gradients in strain could play in enhancing the carrier density. The manipulation of Mott metal-insulator behavior in oxides grown directly on Si opens the pathway to harnessing strongly correlated phenomena in device technologies.
Photocapacitive image converter
NASA Technical Reports Server (NTRS)
Miller, W. E.; Sher, A.; Tsuo, Y. H. (Inventor)
1982-01-01
An apparatus for converting a radiant energy image into corresponding electrical signals including an image converter is described. The image converter includes a substrate of semiconductor material, an insulating layer on the front surface of the substrate, and an electrical contact on the back surface of the substrate. A first series of parallel transparent conductive stripes is on the insulating layer with a processing circuit connected to each of the conductive stripes for detecting the modulated voltages generated thereon. In a first embodiment of the invention, a modulated light stripe perpendicular to the conductive stripes scans the image converter. In a second embodiment a second insulating layer is deposited over the conductive stripes and a second series of parallel transparent conductive stripes perpendicular to the first series is on the second insulating layer. A different frequency current signal is applied to each of the second series of conductive stripes and a modulated image is applied to the image converter.
Effect of thermal insulation on the electrical characteristics of NbOx threshold switches
NASA Astrophysics Data System (ADS)
Wang, Ziwen; Kumar, Suhas; Wong, H.-S. Philip; Nishi, Yoshio
2018-02-01
Threshold switches based on niobium oxide (NbOx) are promising candidates as bidirectional selector devices in crossbar memory arrays and building blocks for neuromorphic computing. Here, it is experimentally demonstrated that the electrical characteristics of NbOx threshold switches can be tuned by engineering the thermal insulation. Increasing the thermal insulation by ˜10× is shown to produce ˜7× reduction in threshold current and ˜45% reduction in threshold voltage. The reduced threshold voltage leads to ˜5× reduction in half-selection leakage, which highlights the effectiveness of reducing half-selection leakage of NbOx selectors by engineering the thermal insulation. A thermal feedback model based on Poole-Frenkel conduction in NbOx can explain the experimental results very well, which also serves as a piece of strong evidence supporting the validity of the Poole-Frenkel based mechanism in NbOx threshold switches.
Explosion resistant insulator and method of making same
Meyer, Jeffry R.; Billings, Jr., John S.; Spindle, Harvey E.; Hofmann, Charles F.
1983-01-01
An electrical insulator assembly and method of manufacturing same, having a generally cylindrical or conical body portion formed of a breakable cast solid insulation system and a reinforcing member having a corrugated configuration and formed of a web or mesh type reinforcing fabric. When the breakable body member has been broken, the corrugated configured reinforcing web member provides a path of escape for pressurized insulating fluid while limiting the movement of body member fragments in the direction of escape of the pressurized fluid.
Effects of Electrical Insulation Breakdown Voltage And Partial Discharge
NASA Astrophysics Data System (ADS)
Bahrim, F. S.; Rahman, N. F. A.; Haris, H. C. M.; Salim, N. A.
2018-03-01
During the last few decades, development of new materials using composite materials has been of much interest. The Cross-linked Polyethylene (XLPE) which is insulated power cables has been widely used. This paper describes the theoretical analysis, fundamental experiments and application experiments for the XLPE cable insulation. The composite that has been tested is a commercial XLPE and Polypropylene with 30% fiber glass. The results of breakdown strength and partial discharge (PD) behavior described the insulating performance of the composite.
Electron gas at the interface between two antiferromagnetic insulating manganites
NASA Astrophysics Data System (ADS)
Calderón, M. J.; Salafranca, J.; Brey, L.
2008-07-01
We study theoretically the magnetic and electric properties of the interface between two antiferromagnetic and insulating manganites: La0.5Ca0.5MnO3 , a strong correlated insulator, and CaMnO3 , a band insulator. We find that a ferromagnetic and metallic electron gas is formed at the interface between the two layers. We confirm the metallic character of the interface by calculating the in-plane conductance. The possibility of increasing the electron-gas density by selective doping is also discussed.
Electrical insulating liquid: A review
NASA Astrophysics Data System (ADS)
Mahanta, Deba Kumar; Laskar, Shakuntala
Insulating liquid plays an important role for the life span of the transformer. Petroleum-based mineral oil has become dominant insulating liquid of transformer for more than a century for its excellent dielectric and cooling properties. However, the usage of petroleum-based mineral oil, derived from a nonrenewable energy source, has affected the environment for its nonbiodegradability property. Therefore, researchers direct their attention to renewable and biodegradable alternatives. Palm fatty acid ester, coconut oil, sunflower oil, etc. are considered as alternatives to replace mineral oil as transformer insulation liquid. This paper gives an extensive review of different liquid insulating materials used in a transformer. Characterization of different liquids as an insulating material has been discussed. An attempt has been made to classify different insulating liquids-based on different properties.
Vertically aligned gas-insulated transmission line having particle traps at the inner conductor
Dale, Steinar J.
1984-01-01
Gas insulated electrical apparatus having first and second conductors separated by an insulating support within an insulating gas environment, and particle traps disposed along the surface of the high potential conductor for trapping and inactivating foreign particles which may be present within the insulating gas medium. Several embodiments of the invention were developed which are particularly suited for vertically aligned gas insulated transmission lines. The particle traps are grooves or cavities formed into the walls of the tubular inner conductor, without extending into the hollow portion of the conductor. In other embodiments, the traps are appendages or insert flanges extending from the inner conductor, with the insulator supports contacting the appendages instead of the inner conductor.
30 CFR 77.1914 - Electrical equipment.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electrical equipment. 77.1914 Section 77.1914... Shaft Sinking § 77.1914 Electrical equipment. (a) Electric equipment employed below the collar of a.... (b) The insulation of all electric conductors employed below the collar of any slope or shaft during...
30 CFR 77.1914 - Electrical equipment.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Electrical equipment. 77.1914 Section 77.1914... Shaft Sinking § 77.1914 Electrical equipment. (a) Electric equipment employed below the collar of a.... (b) The insulation of all electric conductors employed below the collar of any slope or shaft during...
30 CFR 77.1914 - Electrical equipment.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Electrical equipment. 77.1914 Section 77.1914... Shaft Sinking § 77.1914 Electrical equipment. (a) Electric equipment employed below the collar of a.... (b) The insulation of all electric conductors employed below the collar of any slope or shaft during...
30 CFR 77.1914 - Electrical equipment.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Electrical equipment. 77.1914 Section 77.1914... Shaft Sinking § 77.1914 Electrical equipment. (a) Electric equipment employed below the collar of a.... (b) The insulation of all electric conductors employed below the collar of any slope or shaft during...
30 CFR 77.1914 - Electrical equipment.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Electrical equipment. 77.1914 Section 77.1914... Shaft Sinking § 77.1914 Electrical equipment. (a) Electric equipment employed below the collar of a.... (b) The insulation of all electric conductors employed below the collar of any slope or shaft during...
Electrical connector composite housing and method of making same
Silva, Frank A.
1979-01-01
A sleeve-like insert of conductive elastomeric material of a type which serves as an internal shield in electrical connectors for connecting high voltage cables has an end portion folded upon itself, the enfolded portion being substantially permanently retained in its desired position by allowing insulative elastomeric material to fill apertures in the end portion and become bonded thereto in a void free manner, during molding of an insulating outer sleeve-like jacket about the insert.
Modification of electrical properties of topological insulators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Peter Anand
Ion implantation or deposition can be used to modify the bulk electrical properties of topological insulators. More particularly, ion implantation or deposition can be used to compensate for the non-zero bulk conductivity due to extrinsic charge carriers. The direct implantation of deposition/annealing of dopants allows better control over carrier concentrations for the purposes of achieving low bulk conductivity. Ion implantation or deposition enables the fabrication of inhomogeneously doped structures, enabling new types of device designs.
High temperature electrical conductivity of rigid polyurethane foam
NASA Astrophysics Data System (ADS)
Johnson, R. T., Jr.
1984-03-01
The temperature dependence of the electrical conductivity of three rigid polyurethane foams prepared using different formulations was measured to approx. 320 C. The materials exhibit similar conductivity characteristics, showing a pronounced increase in conductivity with increasing temperature. The insulating characteristics to approx. 200 C are better than that for phenolic materials (glass fabric reinforced), and are similar to those for silicone materials (glass microsphere reinforced). At higher temperatures (500 to 600 C), the phenolics and silicones are better insulators.
NASA Technical Reports Server (NTRS)
Frederickson, A. R.; Mullen, E. G.; Brautigam, D. H.; Kerns, K. J.
1992-01-01
The Internal Discharge Monitor (IDM) was designed to observe electrical pulses from common electrical insulators in space service. The sixteen insulator samples included twelve planar printed circuit boards and four cables. The samples were fully enclosed, mutually isolated, and space radiation penetrated 0.02 cm of aluminum before striking the samples. Pulsing began on the seventh orbit, the maximum pulse rate occurred on the seventeenth orbit when 13 pulses occurred, and the pulses slowly diminished to about one per 3 orbits six months later. After 8 months, the radiation belts abruptly increased and the pulse rates attained a new high. These pulse rates were in agreement with laboratory experience on shorter time scales. Several of the samples never pulsed. If the pulses were not confined within IDM, the physical processes could spread to become a full spacecraft anomaly. The IDM results indicate the rate at which small insulator pulses occur. Small pulses are the seeds of larger satellite electrical anomalies. The pulse rates are compared with space radiation intensities, L shell location, and spectral distributions from the radiation spectrometers on the Combined Release and Radiation Effects Satellite.
30 CFR 56.12010 - Isolation or insulation of communication conductors.
Code of Federal Regulations, 2011 CFR
2011-07-01
... conductors. 56.12010 Section 56.12010 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... MINES Electricity § 56.12010 Isolation or insulation of communication conductors. Telephone and low... energized power conductors or any other power source. ...
30 CFR 56.12010 - Isolation or insulation of communication conductors.
Code of Federal Regulations, 2010 CFR
2010-07-01
... conductors. 56.12010 Section 56.12010 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... MINES Electricity § 56.12010 Isolation or insulation of communication conductors. Telephone and low... energized power conductors or any other power source. ...
Environmental Aging of Polymer-Nano Composites and Release of Carbon Nanotube
Epoxies are widely used in various applications, including coatings, electronics insulations, and waterproofing applications due to their excellent properties such as good adhesion, electrical insulation, and heat resistance along with the strong mechanical property. Currently, n...
49 CFR 229.81 - Emergency pole; shoe insulation.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Emergency pole; shoe insulation. 229.81 Section 229.81 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Electrical...
40 CFR 98.300 - Definition of the source category.
Code of Federal Regulations, 2011 CFR
2011-07-01
... insulated with or containing sulfur hexafluoride (SF6) or perfluorocarbons (PFCs) used within an electric...-pressure and hermetically sealed-pressure switchgear and gas-insulated lines containing SF6 or PFCs. (4...) Other containers of SF6 or PFC. ...
40 CFR 98.300 - Definition of the source category.
Code of Federal Regulations, 2014 CFR
2014-07-01
... insulated with or containing sulfur hexafluoride (SF6) or perfluorocarbons (PFCs) used within an electric...-pressure and hermetically sealed-pressure switchgear and gas-insulated lines containing SF6 or PFCs. (4...) Other containers of SF6 or PFC. ...
40 CFR 98.300 - Definition of the source category.
Code of Federal Regulations, 2013 CFR
2013-07-01
... insulated with or containing sulfur hexafluoride (SF6) or perfluorocarbons (PFCs) used within an electric...-pressure and hermetically sealed-pressure switchgear and gas-insulated lines containing SF6 or PFCs. (4...) Other containers of SF6 or PFC. ...
40 CFR 98.300 - Definition of the source category.
Code of Federal Regulations, 2012 CFR
2012-07-01
... insulated with or containing sulfur hexafluoride (SF6) or perfluorocarbons (PFCs) used within an electric...-pressure and hermetically sealed-pressure switchgear and gas-insulated lines containing SF6 or PFCs. (4...) Other containers of SF6 or PFC. ...
NASA Astrophysics Data System (ADS)
Yasuoka, Takanori; Kato, Tomohiro; Kato, Katsumi; Okubo, Hitoshi
Electrode conditioning is very important technique for improvement of the insulation performance of vacuum circuit breakers (VCBs). This paper discusses the spark conditioning mechanism under non-uniform electric field focused on the pre-breakdown current. We quantitatively evaluated the spark conditioning effect by analyzing the pre-breakdown current based on Fowler-Nordheim equation. As a result, field enhancement factor β decreased with the increasing in breakdown voltage in the beginning of conditioning process, and finally β was saturated with the saturation of breakdown voltage. In addition, in case of non-uniform field, we found that β on high voltage rod electrode after conditioning varied according to the electric field strength on the rod electrode.
NASA Astrophysics Data System (ADS)
Li, L.; Chen, M. Y.; Zhu, X. C.; Gao, Z. W.; Zhang, H. D.; Li, G. X.; Zhang, J.; Yu, C. L.; Feng, Y. M.
2018-01-01
The breakdown characteristics of oil-paper insulation in AC, DC and compound field at different temperatures were studied. The breakdown mechanism of oil-paper insulation at different temperatures and in AC and DC electric fields was analyzed. The breakdown characteristic mechanisms of the oil-paper insulation in the compound field at different temperatures were obtained: the dielectric strength of oil-paper compound insulation is changed gradually from dependence on oil dielectric strength to dependence on paperboard dielectric strength at low temperature. The dielectric strength of oil-paper compound insulation is always related to the oil dielectric strength closely at high temperature with decrease of AC content.
On effective holographic Mott insulators
NASA Astrophysics Data System (ADS)
Baggioli, Matteo; Pujolàs, Oriol
2016-12-01
We present a class of holographic models that behave effectively as prototypes of Mott insulators — materials where electron-electron interactions dominate transport phenomena. The main ingredient in the gravity dual is that the gauge-field dynamics contains self-interactions by way of a particular type of non-linear electrodynamics. The electrical response in these models exhibits typical features of Mott-like states: i) the low-temperature DC conductivity is unboundedly low; ii) metal-insulator transitions appear by varying various parameters; iii) for large enough self-interaction strength, the conductivity can even decrease with increasing doping (density of carriers) — which appears as a sharp manifestation of `traffic-jam'-like behaviour; iv) the insulating state becomes very unstable towards superconductivity at large enough doping. We exhibit some of the properties of the resulting insulator-superconductor transition, which is sensitive to the momentum dissipation rate in a specific way. These models imply a clear and generic correlation between Mott behaviour and significant effects in the nonlinear electrical response. We compute the nonlinear current-voltage curve in our model and find that indeed at large voltage the conductivity is largely reduced.
Electronic-Power-Transformer Design Guide
NASA Technical Reports Server (NTRS)
Schwarze, G. E.; Lagadinos, J. C.; Ahearn, J. F.
1983-01-01
Compilation of information on design procedures, electrical properties, and fabrication. Guide provides information on design procedures; magnetic and insulating material electrical properties; impregnating, encapsulating and processing techniques.
Workshop on multifactor aging mechanisms and models
NASA Astrophysics Data System (ADS)
Agarwal, V. K.
1992-10-01
There have been considerable efforts to understand the aging and failure mechanisms of insulation in electrical systems. However, progress has been slow because of the complex nature of the subject particularly when dealing with multiple stresses e.g. electrical, thermal, mechanical, radiation, humidity and other environmental factors. When an insulating material is exposed to just one stress factor e.g. electric field, one must devise test(s) which are not only economically efficient and practical but which take into account the nature of electric field (ac, dc and pulsed), duration and level or field strength, and field configurations. Any additional stress factor(s) make the matrix of measurements and the understanding of resulting degradation processes more complex, time consuming and expensive.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-12
... assemblies in the ECS with burned Boeing Material Specification (BMS) 8-39 polyurethane foam insulation. This... duct assemblies in the ECS wrapped with BMS 8-39 polyurethane foam insulation, a material of which the... electrical arc from igniting the BMS 8-39 polyurethane foam insulation on the duct assemblies of the ECS...
NASA Astrophysics Data System (ADS)
Hattori, Junichi; Fukuda, Koichi; Ikegami, Tsutomu; Ota, Hiroyuki; Migita, Shinji; Asai, Hidehiro; Toriumi, Akira
2018-04-01
We study the effects of fringing electric fields on the behavior of negative-capacitance (NC) field-effect transistors (FETs) with a silicon-on-insulator body and a gate stack consisting of an oxide film, an internal metal film, a ferroelectric film, and a gate electrode using our own device simulator that can properly handle the complicated relationship between the polarization and the electric field in ferroelectric materials. The behaviors of such NC FETs and the corresponding metal-oxide-semiconductor (MOS) FETs are simulated and compared with each other to evaluate the effects of the NC of the ferroelectric film. Then, the fringing field effects are evaluated by comparing the NC effects in NC FETs with and without gate spacers. The fringing field between the gate stack, especially the internal metal film, and the source/drain region induces more charges at the interface of the film with the ferroelectric film. Accordingly, the function of the NC to modulate the gate voltage and the resulting function to improve the subthreshold swing are enhanced. We also investigate the relationships of these fringing field effects to the drain voltage and four design parameters of NC FETs, i.e., gate length, gate spacer permittivity, internal metal film thickness, and oxide film thickness.
The effects of γ-ray on charging behaviour using polyimide
NASA Astrophysics Data System (ADS)
Qin, Sichen; Tu, Youping; Tan, Tian; Wang, Shaohe; Yuan, Zhikang; Wang, Cong; Li, Laifeng; Wu, Zhixiong
2018-06-01
Insulation material is a key component of electrical equipment in satellites; its electrical properties determine the reliability and lifetime of the whole satellite. High-energy radioactive rays in space affect the molecular structure of the polymeric insulating materials. Under the action of plasma, high energy particles, along with the magnetic fields experienced in orbits, electric charges get injected into and trapped by the insulating material creating distortions in the electric field and even electrostatic discharges. Polyimides have been widely used for insulation in spacecraft. Choosing Co-60 gamma ray with irradiation doses of 1 MGy and 5 MGy to simulate the radiation environment of space, we investigated the effect of radiation on charging behaviour. The thermal stimulated current (TSC) from a high electric field over a wide range of temperatures was measured from which the activation energy was calculated. These results for the two sources show that the percentage increase in total charge was 133.3% and 119.4%. The γ, β 3, and α charge peaks of specimens after an irradiation dose of 1 MGy rose. In comparison, the β 2 peak of the 5 MGy-dosed specimens was enhanced. Also, there is almost no change in the γ, β 3, and α peaks. To understand the mechanism behind the TSC changes, the resulting physicochemical characteristics of an irradiated specimen were observed employing various analyses of chemical characteristics (x-ray photoelectron spectroscopy, differential scanning calorimetry and x-ray diffraction). Compared with the non-dosed specimen, the relative content of C–N and the glass transition temperature of the 1 MGy sample decreased, and the crystallinity increased, thus increasing the γ and α peak intensities. Compared with the 1 MGy sample, only the glass transition temperature had risen, thereby enhancing the β peak intensity. With the foregoing, a theoretical base for the selection and modification of insulation materials for spacecraft is provided.
Groenland, A W; Wolters, R A M; Kovalgin, A Y; Schmitz, J
2011-09-01
In this work, metal-insulator-metal (MIM) and metal-insulator-silicon (MIS) capacitors are studied using titanium nitride (TiN) as the electrode material. The effect of structural defects on the electrical properties on MIS and MIM capacitors is studied for various electrode configurations. In the MIM capacitors the bottom electrode is a patterned 100 nm TiN layer (called BE type 1), deposited via sputtering, while MIS capacitors have a flat bottom electrode (called BE type 2-silicon substrate). A high quality 50-100 nm thick SiO2 layer, made by inductively-coupled plasma CVD at 150 degrees C, is deposited as a dielectric on top of both types of bottom electrodes. BE type 1 (MIM) capacitors have a varying from low to high concentration of structural defects in the SiO2 layer. BE type 2 (MIS) capacitors have a low concentration of structural defects and are used as a reference. Two sets of each capacitor design are fabricated with the TiN top electrode deposited either via physical vapour deposition (PVD, i.e., sputtering) or atomic layer deposition (ALD). The MIM and MIS capacitors are electrically characterized in terms of the leakage current at an electric field of 0.1 MV/cm (I leak) and for different structural defect concentrations. It is shown that the structural defects only show up in the electrical characteristics of BE type 1 capacitors with an ALD TiN-based top electrode. This is due to the excellent step coverage of the ALD process. This work clearly demonstrates the sensitivity to process-induced structural defects, when ALD is used as a step in process integration of conductors on insulation materials.
Preparation and electrical properties of oil-based magnetic fluids
NASA Astrophysics Data System (ADS)
Sartoratto, P. P. C.; Neto, A. V. S.; Lima, E. C. D.; Rodrigues de Sá, A. L. C.; Morais, P. C.
2005-05-01
This paper describes an improvement in the preparation of magnetic fluids for electrical transformers. The samples are based on surface-coated maghemite nanoparticles dispersed in transformer insulating oil. Colloidal stability at 90°C was higher for oleate-grafted maghemite-based magnetic fluid, whereas decanoate and dodecanoate-grafted samples were very unstable. Electrical properties were evaluated for samples containing 0.80%-0.0040% maghemite volume fractions. Relative permittivity varied from 8.8 to 2.1 and the minimum value of the loss factor was 12% for the most diluted sample. The resistivity falls in the range of 0.7-2.5×1010Ωm, whereas the ac dielectric strength varied from 70to79kV. These physical characteristics reveal remarkable step forward in the properties of the magnetic fluid samples and may result in better operation of electrical transformers.
Lauf, Robert J.; Hoffheins, Barbara S.; Fleming, Pamela H.
1994-01-01
A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed.
Lauf, R.J.; Hoffheins, B.S.; Fleming, P.H.
1994-11-22
A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed. 6 figs.
NASA Astrophysics Data System (ADS)
Qi, Jingshan; Li, Xiao; Qian, Xiaofeng
2016-06-01
Electrically controlled band gap and topological electronic states are important for the next-generation topological quantum devices. In this letter, we study the electric field control of band gap and topological phase transitions in multilayer germanane. We find that although the monolayer and multilayer germananes are normal insulators, a vertical electric field can significantly reduce the band gap of multilayer germananes owing to the giant Stark effect. The decrease of band gap eventually leads to band inversion, transforming them into topological insulators with nontrivial Z2 invariant. The electrically controlled topological phase transition in multilayer germananes provides a potential route to manipulate topologically protected edge states and design topological quantum devices. This strategy should be generally applicable to a broad range of materials, including other two-dimensional materials and ultrathin films with controlled growth.
Grisham, Larry R
2013-12-17
The present invention provides systems and methods for the magnetic insulation of accelerator electrodes in electrostatic accelerators. Advantageously, the systems and methods of the present invention improve the practically obtainable performance of these electrostatic accelerators by addressing, among other things, voltage holding problems and conditioning issues. The problems and issues are addressed by flowing electric currents along these accelerator electrodes to produce magnetic fields that envelope the accelerator electrodes and their support structures, so as to prevent very low energy electrons from leaving the surfaces of the accelerator electrodes and subsequently picking up energy from the surrounding electric field. In various applications, this magnetic insulation must only produce modest gains in voltage holding capability to represent a significant achievement.
Electric-field-driven phase transition in vanadium dioxide
NASA Astrophysics Data System (ADS)
Wu, B.; Zimmers, A.; Aubin, H.; Gosh, R.; Liu, Y.; Lopez, R.
2011-03-01
In recent years, various strongly correlated materials have shown sharp switching from insulator to metallic state in their I(V) transport curves. Determining if this is purely an out of equilibrium phenomena (due to the strong electric field applied throughout the sample) or simply a Joule heating issue is still an open question. To address this issue, we have first measured local I(V) curves in vanadium dioxide (VO2) Mott insulator at various temperatures using a conducting AFM setup and determined the voltage threshold of the insulator to metal switching. By lifting the tip above the surface (> 35 nm) , wehavethenmeasuredthepurelyelectrostaticforcebetweenthetipandsamplesurfaceasthevoltagebetweenthesetwowasincreased . Inaverynarrowtemperaturerange (below 360 K) , atipheightrange (below 60 nm) andavoltageappliedrange (above 8 V) , weobservedswitchingintheelectrostaticforce (telegraphicnoisevs . timeandvs . voltage) . ThispurelyelectricfieldeffectshowsthattheswitchingphenomenonisstillpresentevenwithoutJouleheatinginVO 2 .
Bechtold, Dieter; Bartke, Dietrich; Kramer, Peter; Kretzschmar, Reiner; Vollbert, Jurgen
1999-01-01
The invention relates to a rechargeable lithium-ion cell, a method for its manufacture, and its application. The cell is distinguished by the fact that it has a metallic housing (21) which is electrically insulated internally by two half shells (15), which cover electrode plates (8) and main output tabs (7) and are composed of a non-conductive material, where the metallic housing is electrically insulated externally by means of an insulation coating. The cell also has a bursting membrane (4) which, in its normal position, is located above the electrolyte level of the cell (1). In addition, the cell has a twisting protection (6) which extends over the entire surface of the cover (2) and provides centering and assembly functions for the electrode package, which comprises the electrode plates (8).
Contaminant trap for gas-insulated apparatus
Adcock, James L.; Pace, Marshall O.; Christophorou, Loucas G.
1984-01-01
A contaminant trap for a gas-insulated electrical conductor is provided. A resinous dielectric body such as Kel-F wax, grease or other sticky polymeric or oligomeric compound is disposed on the inside wall of the outer housing for the conductor. The resinous body is sufficiently sticky at ambient temperatures to immobilize contaminant particles in the insulating gas on the exposed surfaces thereof. An electric resistance heating element is disposed in the resinous body to selectively raise the temperature of the resinous body to a molten state so that the contaminant particles collected on the surface of the body sink into the body so that the surface of the resinous body is renewed to a particle-less condition and, when cooled, returns to a sticky collecting surface.
Insulator-based DEP with impedance measurements for analyte detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davalos, Rafael V.; Simmons, Blake A.; Crocker, Robert W.
2010-03-16
Disclosed herein are microfluidic devices for assaying at least one analyte specie in a sample comprising at least one analyte concentration area in a microchannel having insulating structures on or in at least one wall of the microchannel which provide a nonuniform electric field in the presence of an electric field provided by off-chip electrodes; and a pair of passivated sensing electrodes for impedance detection in a detection area. Also disclosed are assay methods and methods of making.
Electrical transport of spin-polarized carriers in disordered ultrathin films.
Hernandez, L M; Bhattacharya, A; Parendo, Kevin A; Goldman, A M
2003-09-19
Slow, nonexponential relaxation of electrical transport accompanied by memory effects has been induced in quench-condensed ultrathin amorphous Bi films by the application of a parallel magnetic field. This behavior, which is very similar to space-charge limited current flow, is found in extremely thin films well on the insulating side of the thickness-tuned superconductor-insulator transition. It may be the signature of a collective state that forms when the carriers are spin polarized at low temperatures and in high magnetic fields.
NASA Astrophysics Data System (ADS)
Adelsberger, Kathleen
Energy is the basis for modern life. All modern technology from a simple coffee maker to massive industrial facilities is powered by energy. While the demand for energy is increasing, our planet is suffering from the consequences of using fossil fuels to generate electricity. Therefore, the world is looking at clean energy and solar power to minimize this effect on our environment. However, saving energy is extremely important even for clean energy. The more we save the less we have to generate. Heat retention in buildings is one step towards achieving passive heating. Therefore, efforts are made to prevent heat from escaping buildings through the glass during cold nights. Movable insulation is a way to increase the insulation value of the glass to reduce heat loss towards the outdoor. This thesis examines the performance of the aerogel-filled polycarbonate movable panels in the Ecohawks building, a building located on the west campus of The University of Kansas. Onsite tests were performed using air and surface temperature sensors to determine the effectiveness of the system. Computer simulations were run by Therm 7.2 simulation software to explore alternative design options. A cost analysis was also performed to evaluate the feasibility of utilizing movable insulation to reduce the heating bills during winter. Results showed that sealed movable insulation reduces heat loss through the glazing by 67.5%. Replacing aerogel with XPS panels reduces this percentage to 64.3%. However, it reduces the cost of the insulation material by 98%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duff, W.S.; Loef, G.O.G.
1981-03-01
Operation of CSU Solar House I during the heating season of 1978-1979 and during the 1979 cooling season was based on the use of systems comprising an experimental evacuated tubular solar collector, a non-freezing aqueous collection medium, heat exchange to an insulated conventional vertical cylindrical storage tank and to a built-up rectangular insulated storage tank, heating of circulating air by solar heated water and by electric auxiliary in an off-peak heat storage unit, space cooling by lithium bromide absorption chiller, and service water heating by solar exchange and electric auxiliary. Automatic system control and automatic data acquisition and computation aremore » provided. This system is compared with others evaluated in CSU Solar Houses I, II and III, and with computer predictions based on mathematical models. Of the 69,513 MJ total energy requirement for space heating and hot water during a record cold winter, solar provided 33,281 MJ equivalent to 48 percent. Thirty percent of the incident solar energy was collected and 29 percent was delivered and used for heating and hot water. Of 33,320 MJ required for cooling and hot water during the summer, 79 percent or 26,202 MJ were supplied by solar. Thirty-five percent of the incident solar energy was collected and 26 percent was used for hot water and cooling in the summer. Although not as efficient as the Corning evacuated tube collector previously used, the Philips experimental collector provides solar heating and cooling with minimum operational problems. Improved performance, particularly for cooling, resulted from the use of a very well-insulated heat storage tank. Day time (on-peak) electric auxiliary heating was completely avoided by use of off-peak electric heat storage. A well-designed and operated solar heating and cooling system provided 56 percent of the total energy requirements for heating, cooling, and hot water.« less
NASA Astrophysics Data System (ADS)
Singh Mehta, Niraj; Sahu, Praveen Kumar; Ershad, Md; Saxena, Vipul; Pyare, Ram; Ranjan Majhi, Manas
2018-01-01
In the present study, the effect of ZrO2 on the sintering, strength and dielectric behavior of electrical ceramic porcelain insulator with substituting alumina content by zirconia (in weight percentage from 0% to 30%) is investigated. The different composition of samples containing different zirconia (ZrO2) contents of 0, 10, 20, and 30 wt% are prepared using the uniaxial pressure technique applying 160 MPa pressure. Further, the prepared samples are also analyzed for sintering temperatures (1350 °C), and effects are observed on mechanical and electric properties of porcelain insulator. Different characterizations such as Dilatometer, x-ray diffraction, scanning electron microscopy and differential thermal analysis/thermo gravimetric analysis were used to evaluate the thermal, phase detection, micro structural and weight loss changes by increasing concentration of ZrO2 on base porcelain composition. At 1350 °C, for the composition having 20 wt% ZrO2 with 10 wt% alumina, the maximum density was observed 2.81 g cm-3 with a porosity of 2.23%. The highest tensile strength of 41 ± 3 MPa is observed for the same sample composition. The minimum value of thermal expansion coefficient is found to be in the range of 10-6 for the sample with 30 wt% ZrO2 content sintered at 1350 °C compared to other prepared samples. Similarly, the highest dielectric value (5.1-4.4) having dielectric loss (0.08-0.12) is achieved for the sample with 30 wt% ZrO2 content sintered at 1350 °C in the frequency range of 4-20 GHz at room temperature. According to the mechanical properties, the composition having 20 wt% ZrO2 on base ceramic porcelain composition has enormous potential to serve as a high strength refractory material. For dielectric properties, the composition having 30 wt% ZrO2 is more suitable for the electrical application.
Defect design of insulation systems for photovoltaic modules
NASA Technical Reports Server (NTRS)
Mon, G. R.
1981-01-01
A defect-design approach to sizing electrical insulation systems for terrestrial photovoltaic modules is presented. It consists of gathering voltage-breakdown statistics on various thicknesses of candidate insulation films where, for a designated voltage, module failure probabilities for enumerated thickness and number-of-layer film combinations are calculated. Cost analysis then selects the most economical insulation system. A manufacturing yield problem is solved to exemplify the technique. Results for unaged Mylar suggest using fewer layers of thicker films. Defect design incorporates effects of flaws in optimal insulation system selection, and obviates choosing a tolerable failure rate, since the optimization process accomplishes that. Exposure to weathering and voltage stress reduces the voltage-withstanding capability of module insulation films. Defect design, applied to aged polyester films, promises to yield reliable, cost-optimal insulation systems.
Evaluating electrically insulating films deposited on V-4% Cr-4% Ti by reactive CVD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, J.H.; Cho, W.D.
1997-04-01
Previous CaO coatings on V-4%Cr-4%Ti exhibited high-ohmic insulator behavior even though a small amount of vanadium from the alloy was incorporated in the coating. However, when the vanadium concentration in the coatings is > 15 wt%, the coating becomes conductive. When the vanadium concentration is high in localized areas, a calcium vanadate phase that exhibits semiconductor behavior can form. To explore this situation, CaO and Ca-V-O coatings were produced on vanadium alloys by chemical vapor deposition (CVD) and by a metallic-vapor process to investigate the electrical resistance of the coatings. Initially, the vanadium alloy specimens were either charged with oxygenmore » in argon that contained trace levels of oxygen, or oxidized for 1.5-3 h in a 1% CO-CO{sub 2} gas mixture or in air to form vanadium oxide at 625-650{degrees}C. Most of the specimens were exposed to calcium vapor at 800-850{degrees}C. Initial and final weights were obtained to monitor each step, and surveillance samples were removed for examination by optical and scanning electron microscopy and electron-energy-dispersive and X-ray diffraction analysis; the electrical resistivity was also measured. The authors found that Ca-V-O films exhibited insulator behavior when the ratio of calcium concentration to vanadium concentration R in the film was > 0.9, and semiconductor or conductor behavior for R < 0.8. However, in some cases, semiconductor behavior was observed when CaO-coated samples with R > 0.98 were exposed in liquid lithium. Based on these studies, the authors conclude that semiconductor behavior occurs if a conductive calcium vanadate phase is present in localized regions in the CaO coating.« less
The sensing mechanism of N-doped SWCNTs toward SF6 decomposition products: A first-principle study
NASA Astrophysics Data System (ADS)
Gui, Yingang; Tang, Chao; Zhou, Qu; Xu, Lingna; Zhao, Zhongyong; Zhang, Xiaoxing
2018-05-01
In order to monitor the insulation status of SF6-insulated equipment on-line, SOF2 and SO2F2, two typical decomposition products of SF6 under electric discharge condition, are chosen as the target gases to evaluate the type and severity of discharge. In this work, single N atom doping method is adopted to improve the gas sensitivity of single wall carbon nanotubes to SOF2 and SO2F2. Single and double gas molecules adsorptions are considered to completely analyze the adsorption properties of N-doped single wall carbon nanotubes. Calculation results show that N atom doping enhances the surface activity of carbon nanotubes. When gas molecules physically adsorbed on N-doped single wall carbon nanotubes, the weak interaction between gas molecules and N-doped single wall carbon nanotubes nearly not changes the electrical property according to analysis of the density of states and molecular orbitals. While the chemisorption between gas molecules and N-doped single wall carbon nanotubes distinctly decreases the conductivity of adsorption system.
Production of durable expanded perlite microspheres in a Vertical Electrical Furnace
NASA Astrophysics Data System (ADS)
Panagiotis, M.; Angelopoulos, P.; Taxiarchou, M.; Paspaliaris, I.
2016-04-01
Expanded perlite constitutes one of the most competitive insulating materials that is widely used in construction and manufacturing industry due to its unique properties combination; it is white, natural, lightweight, chemically inert, and exhibits superior insulating properties (thermal and acoustic) and fire resistance. Conventionally, perlite expansion is performed in vertical gas-fired furnaces; the conventional perlite expansion process has certain disadvantages which affect expanded products quality, thus limiting their performance and range of applications. In order to overcome the drawbacks of the conventional expansion technique, a new perlite expansion process has been designed based on a vertical electrical furnace (VEF). In the current study, fine perlite samples (-150 μm) from Milos Island, Greece, were expansed in the novel VEF and a conventional gas-fired furnace with the aim to evaluate and compare the main physical properties of the expanded products. The novel expanded perlite particles were characterised by superior properties, namely increased compression strength, competitive water and oil absorption capability, size homogeneity, spherical shape and decreased surface porosity in comparison to conventionally expanded samples.
Boron nitride nanotubes and nanosheets.
Golberg, Dmitri; Bando, Yoshio; Huang, Yang; Terao, Takeshi; Mitome, Masanori; Tang, Chengchun; Zhi, Chunyi
2010-06-22
Hexagonal boron nitride (h-BN) is a layered material with a graphite-like structure in which planar networks of BN hexagons are regularly stacked. As the structural analogue of a carbon nanotube (CNT), a BN nanotube (BNNT) was first predicted in 1994; since then, it has become one of the most intriguing non-carbon nanotubes. Compared with metallic or semiconducting CNTs, a BNNT is an electrical insulator with a band gap of ca. 5 eV, basically independent of tube geometry. In addition, BNNTs possess a high chemical stability, excellent mechanical properties, and high thermal conductivity. The same advantages are likely applicable to a graphene analogue-a monatomic layer of a hexagonal BN. Such unique properties make BN nanotubes and nanosheets a promising nanomaterial in a variety of potential fields such as optoelectronic nanodevices, functional composites, hydrogen accumulators, electrically insulating substrates perfectly matching the CNT, and graphene lattices. This review gives an introduction to the rich BN nanotube/nanosheet field, including the latest achievements in the synthesis, structural analyses, and property evaluations, and presents the purpose and significance of this direction in the light of the general nanotube/nanosheet developments.
Wavelet transform processing applied to partial discharge evaluation
NASA Astrophysics Data System (ADS)
Macedo, E. C. T.; Araújo, D. B.; da Costa, E. G.; Freire, R. C. S.; Lopes, W. T. A.; Torres, I. S. M.; de Souza Neto, J. M. R.; Bhatti, S. A.; Glover, I. A.
2012-05-01
Partial Discharge (PD) is characterized by high frequency current pulses that occur in high voltage (HV) electrical equipments originated from gas ionization process when damaged insulation is submitted to high values of electric field [1]. PD monitoring is a useful method of assessing the aging degree of the insulation, manufacturing defects or chemical/mechanical damage. Many sources of noise (e.g. radio transmissions, commutator noise from rotating machines, power electronics switching circuits, corona discharge, etc.) can directly affect the PD estimation. Among the many mathematical techniques that can be applied to de-noise PD signals, the wavelet transform is one of the most powerful. It can simultaneously supply information about the pulse occurrence, time and pulse spectrum, and also de-noise in-field measured PD signals. In this paper is described the application of wavelet transform in the suppression of the main types of noise that can affect the observation and analysis of PD signals in high voltage apparatus. In addition, is presented a study that indicates the appropriated mother-wavelet for this application based on the cross-correlation factor.
NASA Astrophysics Data System (ADS)
Zhang, Xiaoxing; Li, Yi; Chen, Dachang; Xiao, Song; Tian, Shuangshuang; Tang, Ju; Wang, Dibo
2018-03-01
SF6 is extensively used in electrical applications because of its excellent insulation and arc extinguishing performance, but its strong greenhouse effect has negative impact on the atmosphere. The excellent performance of C3F7CN in greenhouse effect, insulation ability, safety, and thermal stability has been demonstrated, indicating that this compound can replace SF6 in electrical applications. However, little information is available on the compatibility of C3F7CN with metals, such as copper and aluminum, in devices. Material compatibility between new gas mixtures and materials used in Gas Insulated Switchgear (GIS) should be investigated to determine the long-term behavior of materials. In this paper, dissociative adsorption of C3F7CN on Cu (1 1 1) and Al (1 1 1) surfaces were analyzed based on density functional theory. Adsorption energy, charge transfer, density of states, and electron density difference of interaction between C3F7CN and two metals were analyzed. It was found that the adsorption energy of C3F7CN adsorbed on Cu (1 1 1) and Al (1 1 1) is both below 0.8 eV. This value indicates that the interaction between them is not very strong. In addition, the dissociation reaction path of gas molecules after adsorption requires certain activation energy. Therefore, C3F7CN and copper or aluminum have certain compatibility and the compatibility of C3F7CN with aluminum is better than that of copper. Related results provide a reference for predicting the aging mechanism of equipment and the selection or modification of major materials for equipment.
Shipley, Gabriel A.; Awe, Thomas James; Hutsel, Brian Thomas; ...
2018-05-03
We present Auto-magnetizing (AutoMag) liners [Slutz et al., Phys. Plasmas 24, 012704 (2017)] are designed to generate up to 100 T of axial magnetic field in the fuel for Magnetized Liner Inertial Fusion [Slutz et al., Phys. Plasmas 17, 056303 (2010)] without the need for external field coils. AutoMag liners (cylindrical tubes) are composed of discrete metallic helical conduction paths separated by electrically insulating material. Initially, helical current in the AutoMag liner produces internal axial magnetic field during a long (100 to 300 ns) current prepulse with an average current rise rate dI/dt=5 kA/ns. After the cold fuel is magnetized,more » a rapidly rising current (200 kA/ns) generates a calculated electric field of 64 MV/m between the helices. Such field is sufficient to force dielectric breakdown of the insulating material after which liner current is reoriented from helical to predominantly axial which ceases the AutoMag axial magnetic field production mechanism and the z-pinch liner implodes. Proof of concept experiments have been executed on the Mykonos linear transformer driver to measure the axial field produced by a variety of AutoMag liners and to evaluate what physical processes drive dielectric breakdown. Lastly, a range of field strengths have been generated in various cm-scale liners in agreement with magnetic transient simulations including a measured field above 90 T at I = 350 kA. By varying the helical pitch angle, insulator material, and insulator geometry, favorable liner designs have been identified for which breakdown occurs under predictable and reproducible field conditions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shipley, Gabriel A.; Awe, Thomas James; Hutsel, Brian Thomas
We present Auto-magnetizing (AutoMag) liners [Slutz et al., Phys. Plasmas 24, 012704 (2017)] are designed to generate up to 100 T of axial magnetic field in the fuel for Magnetized Liner Inertial Fusion [Slutz et al., Phys. Plasmas 17, 056303 (2010)] without the need for external field coils. AutoMag liners (cylindrical tubes) are composed of discrete metallic helical conduction paths separated by electrically insulating material. Initially, helical current in the AutoMag liner produces internal axial magnetic field during a long (100 to 300 ns) current prepulse with an average current rise rate dI/dt=5 kA/ns. After the cold fuel is magnetized,more » a rapidly rising current (200 kA/ns) generates a calculated electric field of 64 MV/m between the helices. Such field is sufficient to force dielectric breakdown of the insulating material after which liner current is reoriented from helical to predominantly axial which ceases the AutoMag axial magnetic field production mechanism and the z-pinch liner implodes. Proof of concept experiments have been executed on the Mykonos linear transformer driver to measure the axial field produced by a variety of AutoMag liners and to evaluate what physical processes drive dielectric breakdown. Lastly, a range of field strengths have been generated in various cm-scale liners in agreement with magnetic transient simulations including a measured field above 90 T at I = 350 kA. By varying the helical pitch angle, insulator material, and insulator geometry, favorable liner designs have been identified for which breakdown occurs under predictable and reproducible field conditions.« less
NASA Astrophysics Data System (ADS)
Shipley, G. A.; Awe, T. J.; Hutsel, B. T.; Slutz, S. A.; Lamppa, D. C.; Greenly, J. B.; Hutchinson, T. M.
2018-05-01
Auto-magnetizing (AutoMag) liners [Slutz et al., Phys. Plasmas 24, 012704 (2017)] are designed to generate up to 100 T of axial magnetic field in the fuel for Magnetized Liner Inertial Fusion [Slutz et al., Phys. Plasmas 17, 056303 (2010)] without the need for external field coils. AutoMag liners (cylindrical tubes) are composed of discrete metallic helical conduction paths separated by electrically insulating material. Initially, helical current in the AutoMag liner produces internal axial magnetic field during a long (100 to 300 ns) current prepulse with an average current rise rate d I / d t = 5 k A / n s . After the cold fuel is magnetized, a rapidly rising current ( 200 k A / n s ) generates a calculated electric field of 64 M V / m between the helices. Such field is sufficient to force dielectric breakdown of the insulating material after which liner current is reoriented from helical to predominantly axial which ceases the AutoMag axial magnetic field production mechanism and the z-pinch liner implodes. Proof of concept experiments have been executed on the Mykonos linear transformer driver to measure the axial field produced by a variety of AutoMag liners and to evaluate what physical processes drive dielectric breakdown. A range of field strengths have been generated in various cm-scale liners in agreement with magnetic transient simulations including a measured field above 90 T at I = 350 kA. By varying the helical pitch angle, insulator material, and insulator geometry, favorable liner designs have been identified for which breakdown occurs under predictable and reproducible field conditions.
NASA Astrophysics Data System (ADS)
Sosnowski, M.; Eager, G. S., Jr.
1983-06-01
Threshold voltage of oil-impregnated paper insulated cables are investigaed. Experimental work was done on model cables specially manufactured for this project. The cables were impregnated with mineral and with synthetic oils. Standard impulse breakdown voltage tests and impulse voltage breakdown tests with dc prestressing were performed at room temperature and at 1000C. The most important result is the finding of very high level of threshold voltage stress for oil-impregnated paper insulated cables. This threshold voltage is approximately 1.5 times higher than the threshold voltage or crosslinked polyethylene insulated cables.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS CELLULOSE INSULATION... can occur where cellulose insulation is improperly installed too close to the sides or over the top of recessed electrical light fixtures, or installed too close to the exhaust flues from heat producing devices...
Code of Federal Regulations, 2010 CFR
2010-01-01
... Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS CELLULOSE INSULATION... can occur where cellulose insulation is improperly installed too close to the sides or over the top of recessed electrical light fixtures, or installed too close to the exhaust flues from heat producing devices...
Code of Federal Regulations, 2014 CFR
2014-01-01
... Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS CELLULOSE INSULATION... can occur where cellulose insulation is improperly installed too close to the sides or over the top of recessed electrical light fixtures, or installed too close to the exhaust flues from heat producing devices...
Code of Federal Regulations, 2012 CFR
2012-01-01
... Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS CELLULOSE INSULATION... can occur where cellulose insulation is improperly installed too close to the sides or over the top of recessed electrical light fixtures, or installed too close to the exhaust flues from heat producing devices...
Battery cell thermal-conductive coating increases efficiency
NASA Technical Reports Server (NTRS)
Doyle, H. M.
1973-01-01
Thin coating of high-temperature epoxy resin provides necessary electrical insulation, as well as good thermal conductivity between battery cells. Insulation increases efficiency of nickel-cadmium battery, as it would any multicell battery assembly in which cell-to-cell thermal balance is critical.
49 CFR 229.83 - Insulation or grounding of metal parts.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Insulation or grounding of metal parts. 229.83 Section 229.83 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Electrical...
Fully synthetic taped insulation cables
Forsyth, Eric B.; Muller, Albert C.
1984-01-01
A high voltage oil-impregnated electrical cable with fully polymer taped insulation operable to 765 kV. Biaxially oriented, specially processed, polyethylene, polybutene or polypropylene tape with an embossed pattern is wound in multiple layers over a conductive core with a permeable screen around the insulation. Conventional oil which closely matches the dielectric constant of the tape is used, and the cable can be impregnated after field installation because of its excellent impregnation characteristics.
Robust 300 C wire insulation system
NASA Technical Reports Server (NTRS)
Nairus, John G.
1994-01-01
The objective of this program is to identify, develop, and demonstrate an optimum wire insulation system that is capable of continuous operation at 300 C. The system is to possess a combination of superior electrical (AC or DC), mechanical, and physical properties over the KAPTON (trademark) derived insulations described in MIL-W-81381 and those hybrid constructions identified in Air Force contract F33615-89-C-5606, commonly known as TKT constructions.
Development of radiation resistant electrical cable insulations
NASA Technical Reports Server (NTRS)
Lee, B. S.; Soo, P.; Mackenzie, D. R.
1994-01-01
Two new polyethylene cable insulations have been formulated for nuclear applications and have been tested under gamma radiation. Both insulations are based on low density polyethylene, one with PbO and the other with Sb2O3 as additives. The test results show that the concept of using inorganic antioxidants to retard radiation initiated oxidation (RIO) is viable. PbO is more effective than Sb2O3 in minimizing RIO.
Waveguide embedded plasmon laser with multiplexing and electrical modulation
Ma, Ren-min; Zhang, Xiang
2017-08-29
This disclosure provides systems, methods, and apparatus related to nanometer scale lasers. In one aspect, a device includes a substrate, a line of metal disposed on the substrate, an insulating material disposed on the line of metal, and a line of semiconductor material disposed on the substrate and the insulating material. The line of semiconductor material overlaying the line of metal, disposed on the insulating material, forms a plasmonic cavity.
On the use of doped polyethylene as an insulating material for HVDC cables
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khalil, M.S.
1996-12-31
The merits of HVDC cables with polymeric insulation are well recognized. However, the development of such cables is still hampered due to the problems resulting from the complicated dependence of the electrical conductivity of the polymer on the temperature and the dc electric field and the effects of space charge accumulation in this material. Different methods have been suggested to solve these problems yet none of these methods seem to give a conclusive solution. The present report provides, firstly a critical review of the previous works reported in the literature concerning the development of HVDC cables with polymeric insulation. Differentmore » aspects of those works are examined and discussed. Secondly, an account is given on an investigation using low density polyethylene (LDPE) doped with an inorganic additive as a candidate insulating material for HVDC cables. Preliminary results from measurements of dc breakdown strength and insulation resistivity of both the undoped and the doped materials are presented. It is shown that the incorporation of an inorganic additive into LDPE has improved the performance of the doped material under polarity reversal dc conditions at room temperature. Moreover, the dependency of the insulation resistivity on temperature for the doped material appears to be beneficially modified.« less
A quantized microwave quadrupole insulator with topologically protected corner states
NASA Astrophysics Data System (ADS)
Peterson, Christopher W.; Benalcazar, Wladimir A.; Hughes, Taylor L.; Bahl, Gaurav
2018-03-01
The theory of electric polarization in crystals defines the dipole moment of an insulator in terms of a Berry phase (geometric phase) associated with its electronic ground state. This concept not only solves the long-standing puzzle of how to calculate dipole moments in crystals, but also explains topological band structures in insulators and superconductors, including the quantum anomalous Hall insulator and the quantum spin Hall insulator, as well as quantized adiabatic pumping processes. A recent theoretical study has extended the Berry phase framework to also account for higher electric multipole moments, revealing the existence of higher-order topological phases that have not previously been observed. Here we demonstrate experimentally a member of this predicted class of materials—a quantized quadrupole topological insulator—produced using a gigahertz-frequency reconfigurable microwave circuit. We confirm the non-trivial topological phase using spectroscopic measurements and by identifying corner states that result from the bulk topology. In addition, we test the critical prediction that these corner states are protected by the topology of the bulk, and are not due to surface artefacts, by deforming the edges of the crystal lattice from the topological to the trivial regime. Our results provide conclusive evidence of a unique form of robustness against disorder and deformation, which is characteristic of higher-order topological insulators.
29 CFR 1915.132 - Portable electric tools.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 29 Labor 7 2013-07-01 2013-07-01 false Portable electric tools. 1915.132 Section 1915.132 Labor... § 1915.132 Portable electric tools. The provisions of this section shall apply to ship repairing... frames of portable electric tools and appliances, except double insulated tools approved by Underwriters...
29 CFR 1915.132 - Portable electric tools.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 29 Labor 7 2012-07-01 2012-07-01 false Portable electric tools. 1915.132 Section 1915.132 Labor... § 1915.132 Portable electric tools. The provisions of this section shall apply to ship repairing... frames of portable electric tools and appliances, except double insulated tools approved by Underwriters...
29 CFR 1915.132 - Portable electric tools.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 29 Labor 7 2014-07-01 2014-07-01 false Portable electric tools. 1915.132 Section 1915.132 Labor... § 1915.132 Portable electric tools. The provisions of this section shall apply to ship repairing... frames of portable electric tools and appliances, except double insulated tools approved by Underwriters...
29 CFR 1915.132 - Portable electric tools.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 29 Labor 7 2011-07-01 2011-07-01 false Portable electric tools. 1915.132 Section 1915.132 Labor... § 1915.132 Portable electric tools. The provisions of this section shall apply to ship repairing... frames of portable electric tools and appliances, except double insulated tools approved by Underwriters...
29 CFR 1915.132 - Portable electric tools.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 29 Labor 7 2010-07-01 2010-07-01 false Portable electric tools. 1915.132 Section 1915.132 Labor... § 1915.132 Portable electric tools. The provisions of this section shall apply to ship repairing... frames of portable electric tools and appliances, except double insulated tools approved by Underwriters...
Izzati, Wan Akmal; Adzis, Zuraimy; Shafanizam, Mohd
2014-01-01
Polymer nanocomposites have recently been attracting attention among researchers in electrical insulating applications from energy storage to power delivery. However, partial discharge has always been a predecessor to major faults and problems in this field. In addition, there is a lot more to explore, as neither the partial discharge characteristic in nanocomposites nor their electrical properties are clearly understood. By adding a small amount of weight percentage (wt%) of nanofillers, the physical, mechanical, and electrical properties of polymers can be greatly enhanced. For instance, nanofillers in nanocomposites such as silica (SiO2), alumina (Al2O3) and titania (TiO2) play a big role in providing a good approach to increasing the dielectric breakdown strength and partial discharge resistance of nanocomposites. Such polymer nanocomposites will be reviewed thoroughly in this paper, with the different experimental and analytical techniques used in previous studies. This paper also provides an academic review about partial discharge in polymer nanocomposites used as electrical insulating material from previous research, covering aspects of preparation, characteristics of the nanocomposite based on experimental works, application in power systems, methods and techniques of experiment and analysis, and future trends. PMID:24558326
Crunteanu, Aurelian; Givernaud, Julien; Leroy, Jonathan; Mardivirin, David; Champeaux, Corinne; Orlianges, Jean-Christophe; Catherinot, Alain; Blondy, Pierre
2010-12-01
Vanadium dioxide is an intensively studied material that undergoes a temperature-induced metal-insulator phase transition accompanied by a large change in electrical resistivity. Electrical switches based on this material show promising properties in terms of speed and broadband operation. The exploration of the failure behavior and reliability of such devices is very important in view of their integration in practical electronic circuits. We performed systematic lifetime investigations of two-terminal switches based on the electrical activation of the metal-insulator transition in VO 2 thin films. The devices were integrated in coplanar microwave waveguides (CPWs) in series configuration. We detected the evolution of a 10 GHz microwave signal transmitted through the CPW, modulated by the activation of the VO 2 switches in both voltage- and current-controlled modes. We demonstrated enhanced lifetime operation of current-controlled VO 2 -based switching (more than 260 million cycles without failure) compared with the voltage-activated mode (breakdown at around 16 million activation cycles). The evolution of the electrical self-oscillations of a VO 2 -based switch induced in the current-operated mode is a subtle indicator of the material properties modification and can be used to monitor its behavior under various external stresses in sensor applications.
MHD Electrode and wall constructions
Way, Stewart; Lempert, Joseph
1984-01-01
Electrode and wall constructions for the walls of a channel transmitting the hot plasma in a magnetohydrodynamic generator. The electrodes and walls are made of a plurality of similar modules which are spaced from one another along the channel. The electrodes can be metallic or ceramic, and each module includes one or more electrodes which are exposed to the plasma and a metallic cooling bar which is spaced from the plasma and which has passages through which a cooling fluid flows to remove heat transmitted from the electrode to the cooling bar. Each electrode module is spaced from and electrically insulated from each adjacent module while interconnected by the cooling fluid which serially flows among selected modules. A wall module includes an electrically insulating ceramic body exposed to the plasma and affixed, preferably by mechanical clips or by brazing, to a metallic cooling bar spaced from the plasma and having cooling fluid passages. Each wall module is, similar to the electrode modules, electrically insulated from the adjacent modules and serially interconnected to other modules by the cooling fluid.
Understanding the Percolation Characteristics of Nonlinear Composite Dielectrics
Yang, Xiao; Hu, Jun; Chen, Shuiming; He, Jinliang
2016-01-01
Nonlinear composite dielectrics can function as smart materials for stress control and field grading in all fields of electrical insulations. The percolation process is a significant issue of composite dielectrics. However, the classic percolation theory mainly deals with traditional composites in which the electrical parameters of both insulation matrix and conducting fillers are independent of the applied electric field. This paper measured the nonlinear V-I characteristics of ZnO microvaristors/silicone rubber composites with several filler concentrations around an estimated percolation threshold. For the comparison with the experiment, a new microstructural model is proposed to simulate the nonlinear conducting behavior of the composite dielectrics modified by metal oxide fillers, which is based on the Voronoi network and considers the breakdown feature of the insulation matrix for near percolated composites. Through both experiment and simulation, the interior conducting mechanism and percolation process of the nonlinear composites were presented and a specific percolation threshold was determined as 33%. This work has provided a solution to better understand the characteristics of nonlinear composite dielectrics. PMID:27476998
From organized high throughput data to phenomenological theory: The example of dielectric breakdown
NASA Astrophysics Data System (ADS)
Kim, Chiho; Pilania, Ghanshyam; Ramprasad, Rampi
Understanding the behavior (and failure) of dielectric insulators experiencing extreme electric fields is critical to the operation of present and emerging electrical and electronic devices. Despite its importance, the development of a predictive theory of dielectric breakdown has remained a challenge, owing to the complex multiscale nature of this process. Here, we focus on the intrinsic dielectric breakdown field of insulators--the theoretical limit of breakdown determined purely by the chemistry of the material, i.e., the elements the material is composed of, the atomic-level structure, and the bonding. Starting from a benchmark dataset (generated from laborious first principles computations) of the intrinsic dielectric breakdown field of a variety of model insulators, simple predictive phenomenological models of dielectric breakdown are distilled using advanced statistical or machine learning schemes, revealing key correlations and analytical relationships between the breakdown field and easily accessible material properties. The models are shown to be general, and can hence guide the screening and systematic identification of high electric field tolerant materials.
Understanding the Percolation Characteristics of Nonlinear Composite Dielectrics
NASA Astrophysics Data System (ADS)
Yang, Xiao; Hu, Jun; Chen, Shuiming; He, Jinliang
2016-08-01
Nonlinear composite dielectrics can function as smart materials for stress control and field grading in all fields of electrical insulations. The percolation process is a significant issue of composite dielectrics. However, the classic percolation theory mainly deals with traditional composites in which the electrical parameters of both insulation matrix and conducting fillers are independent of the applied electric field. This paper measured the nonlinear V-I characteristics of ZnO microvaristors/silicone rubber composites with several filler concentrations around an estimated percolation threshold. For the comparison with the experiment, a new microstructural model is proposed to simulate the nonlinear conducting behavior of the composite dielectrics modified by metal oxide fillers, which is based on the Voronoi network and considers the breakdown feature of the insulation matrix for near percolated composites. Through both experiment and simulation, the interior conducting mechanism and percolation process of the nonlinear composites were presented and a specific percolation threshold was determined as 33%. This work has provided a solution to better understand the characteristics of nonlinear composite dielectrics.
NASA Astrophysics Data System (ADS)
García, H.; González, M. B.; Mallol, M. M.; Castán, H.; Dueñas, S.; Campabadal, F.; Acero, M. C.; Sambuco Salomone, L.; Faigón, A.
2018-04-01
The γ-radiation effects on the electrical characteristics of metal-insulator-semiconductor capacitors based on HfO2, and on the resistive switching characteristics of the structures have been studied. The HfO2 was grown directly on silicon substrates by atomic layer deposition. Some of the capacitors were submitted to a γ ray irradiation using three different doses (16 kGy, 96 kGy and 386 kGy). We studied the electrical characteristics in the pristine state of the capacitors. The radiation increased the interfacial state densities at the insulator/semiconductor interface, and the slow traps inside the insulator near the interface. However, the leakage current is not increased by the irradiation, and the conduction mechanism is Poole-Frenkel for all the samples. The switching characteristics were also studied, and no significant differences were obtained in the performance of the devices after having been irradiated, indicating that the fabricated capacitors present good radiation hardness for its use as a RS element.
Energy and cost analysis of residential refrigerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoskins, R.A.; Hirst, E.
1977-01-01
A detailed computer model is developed to calculate energy flows and electricity use for residential refrigerators. Model equations are derived from applications of the first law of thermodynamics, analysis of manufacturers' literature, and related studies. The model is used to evaluate the energy (and associated initial cost) impacts of alternative designs to reduce refrigerator energy use. Model results show that 56 percent of the total heat gain in a typical 0.45 m/sup 3/ (16 ft/sup 3/) top-freezer refrigerator is due to conduction through cabinet walls and doors. The remaining 44 percent is from door openings, heaters, fans, food, gasket areamore » infiltration, and miscellaneous heat sources. Operation of the compressor to remove this heat and maintain the refrigerated spaces at constant temperatures accounts for 70 percent of the unit's electricity use. The remainder is for operation of heaters and fans. Several energy-saving design changes are examined using the energy model. These changes are: increased insulation thickness, improved insulation conductivity, removal of fan from cooled area, use of anti-sweat heater switch, improved compressor efficiency, increased condenser and evaporator surface areas, and elimination of the frost-free feature. Application of all these changes would reduce refrigerator electricity use 71 percent and increase initial cost 5 percent. Implementing all these changes except for elimination of the frost-free feature would reduce electricity use 52 percent and increase initial cost 19 percent. These results show that there are large opportunities for reducing refrigerator electricity use with only slight initial cost increases.« less
Code of Federal Regulations, 2013 CFR
2013-01-01
... electric system, e.g., a substation transformer, heat exchanger or a transmission structure. Force account... which is combined with equipment to form an electric system, e.g., poles, insulators, or conductors...
Code of Federal Regulations, 2014 CFR
2014-01-01
... electric system, e.g., a substation transformer, heat exchanger or a transmission structure. Force account... which is combined with equipment to form an electric system, e.g., poles, insulators, or conductors...
Code of Federal Regulations, 2010 CFR
2010-01-01
... electric system, e.g., a substation transformer, heat exchanger or a transmission structure. Force account... which is combined with equipment to form an electric system, e.g., poles, insulators, or conductors...
Code of Federal Regulations, 2012 CFR
2012-01-01
... electric system, e.g., a substation transformer, heat exchanger or a transmission structure. Force account... which is combined with equipment to form an electric system, e.g., poles, insulators, or conductors...
Code of Federal Regulations, 2011 CFR
2011-01-01
... electric system, e.g., a substation transformer, heat exchanger or a transmission structure. Force account... which is combined with equipment to form an electric system, e.g., poles, insulators, or conductors...
77 FR 43382 - Millstone Power Station, Unit 2; Exemption
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-24
... sources consisting primarily of fire retardant cable insulation and limited floor based combustibles. The... smoke detectors. The licensee stated that the smoke and heat detection systems were designed and... insulation and that potential ignition sources for these areas includes electrical faults. The licensee...
7 CFR 1436.6 - Eligible storage or handling equipment.
Code of Federal Regulations, 2010 CFR
2010-01-01
... stored eligible facility loan commodity, such as cleaners, moisture testers, and heat detectors; (4... moisture testers, and heat detectors; (vii) Electrical equipment, including labor and materials for..., but are not limited to, the following: An insulated cement slab floor, insulation for walls and...
77 FR 20511 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-05
... heat damage to the inner wall of the thrust reversers, which could result in separation of adjacent... the upper and lower inner wall insulation blankets, measuring the electrical conductivity on the..., doing various concurrent actions (including replacing the inner wall blanket insulation, installing...
7 CFR 1436.6 - Eligible storage or handling equipment.
Code of Federal Regulations, 2011 CFR
2011-01-01
... stored eligible facility loan commodity, such as cleaners, moisture testers, and heat detectors; (4... moisture testers, and heat detectors; (vii) Electrical equipment, including labor and materials for..., but are not limited to, the following: An insulated cement slab floor, insulation for walls and...
Electrostatically screened, voltage-controlled electrostatic chuck
Klebanoff, Leonard Elliott
2001-01-01
Employing an electrostatically screened, voltage-controlled electrostatic chuck particularly suited for holding wafers and masks in sub-atmospheric operations will significantly reduce the likelihood of contaminant deposition on the substrates. The electrostatic chuck includes (1) an insulator block having a outer perimeter and a planar surface adapted to support the substrate and comprising at least one electrode (typically a pair of electrodes that are embedded in the insulator block), (2) a source of voltage that is connected to the at least one electrode, (3) a support base to which the insulator block is attached, and (4) a primary electrostatic shield ring member that is positioned around the outer perimeter of the insulator block. The electrostatic chuck permits control of the voltage of the lithographic substrate; in addition, it provides electrostatic shielding of the stray electric fields issuing from the sides of the electrostatic chuck. The shielding effectively prevents electric fields from wrapping around to the upper or front surface of the substrate, thereby eliminating electrostatic particle deposition.
NASA Astrophysics Data System (ADS)
Jaouad, A.; Aimez, V.; Aktik, Ç.; Bellatreche, K.; Souifi, A.
2004-05-01
Metal-insulator-semiconductor (MIS) capacitors were fabricated on n-GaAs(100) substrate using (NH4)2S surface passivation and low-frequency plasma-enhanced chemical vapor deposited silicon nitride as gate insulators. The electrical properties of the fabricated MIS capacitors were analyzed using high-frequency capacitance-voltage and conductance-voltage measurements. The high concentration of hydrogen present during low-frequency plasma deposition of silicon nitride enhances the passivation of GaAs surface, leading to the unpinning of the Fermi level and to a good modulation of the surface potential by gate voltage. The electrical properties of the insulator-semiconductor interface are improved after annealing at 450 °C for 60 s, as a significant reduction of the interface fixed charges and of the interface states density is put into evidence. The minimum interface states density was found to be about 3×1011 cm-2 eV-1, as estimated by the Terman method. .
NASA Astrophysics Data System (ADS)
Utegulov, B. B.
2018-02-01
In the work the study of the developed method was carried out for reliability by analyzing the error in indirect determination of the insulation parameters in an asymmetric network with an isolated neutral voltage above 1000 V. The conducted studies of the random relative mean square errors show that the accuracy of indirect measurements in the developed method can be effectively regulated not only by selecting a capacitive additional conductivity, which are connected between phases of the electrical network and the ground, but also by the selection of measuring instruments according to the accuracy class. When choosing meters with accuracy class of 0.5 with the correct selection of capacitive additional conductivity that are connected between the phases of the electrical network and the ground, the errors in measuring the insulation parameters will not exceed 10%.
NASA Astrophysics Data System (ADS)
Seo, In-jin; Choi, Won; Seong, Jae-gyu; Lee, Bang-wook; Koo, Ja-yoon
2014-08-01
It has been reported that the insulation design under DC stress is considered as one of the critical factors in determining the performance of high-voltage direct current (HVDC) superconducting cable. Therefore, it is fundamentally necessary to investigate the DC breakdown characteristics of the composite insulation system consisting of liquid nitrogen (LN2)/polypropylene-laminated-paper (PPLP). In particular, the insulation characteristics under DC polarity reversal condition should be verified to understand the polarity effect of the DC voltage considering the unexpected incidents taking place at line-commutated-converters (LCC) under service at a DC power grid. In this study, to examine the variation of DC electric field strength, the step voltage and polarity reversal breakdown tests are performed under DC stress. Also, we investigate the electric field distributions in a butt gap of the LN2/PPLP condition considering the DC polarity reversal by using simulation software.
NASA Technical Reports Server (NTRS)
Bever, R. S.
1984-01-01
Nondestructive high voltage test techniques (mostly electrical methods) are studied to prevent total or catastrophic breakdown of insulation systems under applied high voltage in space. Emphasis is on the phenomenon of partial breakdown or partial discharge (P.D.) as a symptom of insulation quality, notably partial discharge testing under D.C. applied voltage. Many of the electronic parts and high voltage instruments in space experience D.C. applied stress in service, and application of A.C. voltage to any portion thereof would be prohibited. Suggestions include: investigation of the ramp test method for D.C. partial discharge measurements; testing of actual flight-type insulation specimen; perfect plotting resin samples with controlled defects for test; several types of plotting resins and recommendations of the better ones from the electrical characteristics; thermal and elastic properties are also considered; testing of commercial capaciters; and approximate acceptance/rejection/rerating criteria for sample test elements for space use, based on D.C. partial discharge.
NASA Astrophysics Data System (ADS)
Zhao, Liang; Su, Jian Cang; Li, Rui; Zeng, Bo; Cheng, Jie; Zheng, Lei; Yu, Bin Xiong; Wu, Xiao Long; Zhang, Xi Bo; Pan, Ya Feng
2015-04-01
The critical pulse width (τc) is a pulse width at which the surface flashover threshold (Ef) is equal to the bulk breakdown threshold (EBD) for liquid-polymer composite insulation systems, which is discovered by Zhao et al. [Annual Report Conference on Electrical Insulation and Dielectric Phenomena (IEEE Dielectrics and Electrical Insulation Society, Shenzhen, China, 2013), Vol. 2, pp. 854-857]. In this paper, the mechanism of τc is interpreted in perspective of the threshold and the time delay (td) of surface flashover and bulk breakdown, respectively. It is found that two changes appear as the pulse width decreases which are responsible for the existence of τc: (1) EBD is lower than Ef; (2) td of bulk breakdown is shorter than td of surface flashover. In addition, factors which have influences on τc are investigated, such as the dielectric type, the insulation length, the dielectric thickness, the dielectrics configuration, the pulse number, and the liquid purity. These influences of factors are generalized as three types if τc is expected to increase: (1) factors causing EBD to decrease, such as increasing the pulse number or employing a dielectric of lower EBD; (2) factors causing Ef to increase, such as complicating the insulator's configuration or increasing the liquid purity; (3) factors causing EBD and Ef to increase together, but Ef increases faster than EBD, such as decreasing the dielectric thickness or the insulation length. With the data in references, all the three cases are verified experimentally. In the end, a general method based on τc for solid insulation design is presented and the significance of τc on solid insulation design and on solid demolition are discussed.
Cheng, Yehong; Zhou, Shanbao; Hu, Ping; Zhao, Guangdong; Li, Yongxia; Zhang, Xinghong; Han, Wenbo
2017-05-03
Graphene aerogels with high surface areas, ultra-low densities and thermal conductivities have been prepared to exploit their wide applications from pollution adsorption to energy storage, supercapacitor, and thermal insulation. However, the low mechanical properties, poor thermal stability and electric conductivity restrict these aerogels' applications. In this paper, we prepared mechanically strong graphene aerogels with large BET surface areas, low thermal conductivities, high thermal stability and electric conductivities via hydrothermal reduction and supercritical ethanol drying. Annealing at 1500 °C resulted in slightly increased thermal conductivity and further improvement in mechanical properties, oxidation temperature and electric conductivity of the graphene aerogel. The large BET surface areas, together with strong mechanical properties, low thermal conductivities, high thermal stability and electrical conductivities made these graphene aerogels feasible candidates for use in a number of fields covering from batteries to sensors, electrodes, lightweight conductor and insulation materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, Jingshan, E-mail: qijingshan@jsnu.edu.cn, E-mail: feng@tamu.edu; Li, Xiao; Qian, Xiaofeng, E-mail: qijingshan@jsnu.edu.cn, E-mail: feng@tamu.edu
2016-06-20
Electrically controlled band gap and topological electronic states are important for the next-generation topological quantum devices. In this letter, we study the electric field control of band gap and topological phase transitions in multilayer germanane. We find that although the monolayer and multilayer germananes are normal insulators, a vertical electric field can significantly reduce the band gap of multilayer germananes owing to the giant Stark effect. The decrease of band gap eventually leads to band inversion, transforming them into topological insulators with nontrivial Z{sub 2} invariant. The electrically controlled topological phase transition in multilayer germananes provides a potential route tomore » manipulate topologically protected edge states and design topological quantum devices. This strategy should be generally applicable to a broad range of materials, including other two-dimensional materials and ultrathin films with controlled growth.« less
49 CFR 192.461 - External corrosion control: Protective coating.
Code of Federal Regulations, 2013 CFR
2013-10-01
... to effectively resist underfilm migration of moisture; (3) Be sufficiently ductile to resist cracking... is an electrically insulating type must also have low moisture absorption and high electrical...
NASA Technical Reports Server (NTRS)
Green, Chris; Greenwell, Chris; Brusse, jay; Krus, Dennis; Leidecker, Henning
2009-01-01
During system level testing intermittent and permanent open circuit failures of mated, crimp removable, electrical contact pairs were experienced. The root cause of the failures was determined to be low (but not zero) contact forces applied by the socket contact tines against the engaging pin. The low contact force reduces the effectiveness of the wiping action of the socket tines against the pin. The observed failure mode may be produced when insufficient wiping during mate, demate and small relative movement in use allows for the accumulation of debris or insulating films that electrically separate the contact pair. The investigation identified at least three manufacturing process control problems associated with the socket contacts that enabled shipment of contacts susceptible to developing low contact forces: (1) Improper heat treatment of the socket tines resulting in plastic rather than elastic behavior; (2) Overly thinned socket tines at their base resulting in reduced pin retention forces; (3) insufficient screening tests to identify parts susceptible to the aforementioned failure mechanisms. The results from an extensive screening program of socket contacts utilizing the industry standard contact separation force test procedures are described herein. The investigation shows this method to be capable of identifying initially weak sockets. However, sockets whose contact retention forces may degrade during use may not be screened out by pin retention testing alone. Further investigations are required to correlate low contact retention forces with increased electrical contact resistance in the presence of insulating films that may accumulate in the use environment.
14 CFR 25.1713 - Fire protection: EWIS.
Code of Federal Regulations, 2010 CFR
2010-01-01
... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Electrical Wiring Interconnection Systems (EWIS) § 25.1713... used during emergency procedures must be fire resistant. (c) Insulation on electrical wire and electrical cable, and materials used to provide additional protection for the wire and cable, installed in...
Shang, Nanqiang; Chen, Qingguo; Wei, Xinzhe
2018-01-01
The conductivity mismatch in the composite insulation of high voltage direct current (HVDC) cable accessories causes electric field distribution distortion and even insulation breakdown. Therefore, a liquid silicone rubber (LSR) filled with SiC nanoparticles is prepared for the insulation of cable accessories. The micro-morphology of the SiC/LSR nanocomposites is observed by scanning electron microscopy, and their trap parameters are characterized using thermal stimulated current (TSC) tests. Moreover, the dielectric properties of SiC/LSR nanocomposites with different SiC concentrations are tested. The results show that the 3 wt % SiC/LSR sample has the best nonlinear conductivity, more than one order of magnitude higher than that of pure LSR with improved temperature and nonlinear conductivity coefficients. The relative permittivity increased 0.2 and dielectric loss factor increased 0.003, while its breakdown strength decreased 5 kV/mm compared to those of pure LSR. Moreover, the TSC results indicate the introduction of SiC nanoparticles reduced the trap level and trap density. Furthermore, the SiC nanoparticles filling significantly increased the sensitivity of LSR to electric field stress and temperature changes, enhancing the conductivity and electric field distribution within the HVDC cable accessories, thus improving the reliability of the HVDC cable accessories. PMID:29518054
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mekni, Omar, E-mail: omarmekni-lmop@yahoo.fr; Arifa, Hakim; Askri, Besma
2014-09-14
Usually, the trapping phenomenon in insulating materials is studied by injecting charges using a Scanning Electron Microscope. In this work, we use the dielectric spectroscopy technique for showing a correlation between the dielectric properties and the trapping-charging ability of insulating materials. The evolution of the complex permittivity (real and imaginary parts) as a function of frequency and temperature reveals different types of relaxation according to the trapping ability of the material. We found that the space charge relaxation at low frequencies affects the real part of the complex permittivity ε{sup ´} and the dissipation factor Tan(δ). We prove that themore » evolution of the imaginary part of the complex permittivity against temperature ε{sup ′′}=f(T) reflects the phenomenon of charge trapping and detrapping as well as trapped charge evolution Q{sub p}(T). We also use the electric modulus formalism to better identify the space charge relaxation. The investigation of trapping or conductive nature of insulating materials was mainly made by studying the activation energy and conductivity. The conduction and trapping parameters are determined using the Correlated Barrier Hopping (CBH) model in order to confirm the relation between electrical properties and charge trapping ability.« less
Shang, Nanqiang; Chen, Qingguo; Wei, Xinzhe
2018-03-08
The conductivity mismatch in the composite insulation of high voltage direct current (HVDC) cable accessories causes electric field distribution distortion and even insulation breakdown. Therefore, a liquid silicone rubber (LSR) filled with SiC nanoparticles is prepared for the insulation of cable accessories. The micro-morphology of the SiC/LSR nanocomposites is observed by scanning electron microscopy, and their trap parameters are characterized using thermal stimulated current (TSC) tests. Moreover, the dielectric properties of SiC/LSR nanocomposites with different SiC concentrations are tested. The results show that the 3 wt % SiC/LSR sample has the best nonlinear conductivity, more than one order of magnitude higher than that of pure LSR with improved temperature and nonlinear conductivity coefficients. The relative permittivity increased 0.2 and dielectric loss factor increased 0.003, while its breakdown strength decreased 5 kV/mm compared to those of pure LSR. Moreover, the TSC results indicate the introduction of SiC nanoparticles reduced the trap level and trap density. Furthermore, the SiC nanoparticles filling significantly increased the sensitivity of LSR to electric field stress and temperature changes, enhancing the conductivity and electric field distribution within the HVDC cable accessories, thus improving the reliability of the HVDC cable accessories.
NASA Astrophysics Data System (ADS)
Chang, Cheng-Yi; Pan, Fu-Ming; Lin, Jian-Siang; Yu, Tung-Yuan; Li, Yi-Ming; Chen, Chieh-Yang
2016-12-01
We fabricated amorphous selenium (a-Se) photodetectors with a lateral metal-insulator-semiconductor-insulator-metal (MISIM) device structure. Thermal aluminum oxide, plasma-enhanced chemical vapor deposited silicon nitride, and thermal atomic layer deposited (ALD) aluminum oxide and hafnium oxide (ALD-HfO2) were used as the electron and hole blocking layers of the MISIM photodetectors for dark current suppression. A reduction in the dark current by three orders of magnitude can be achieved at electric fields between 10 and 30 V/μm. The effective dark current suppression is primarily ascribed to electric field lowering in the dielectric layers as a result of charge trapping in deep levels. Photogenerated carriers in the a-Se layer can be transported across the blocking layers to the Al electrodes via Fowler-Nordheim tunneling because a high electric field develops in the ultrathin dielectric layers under illumination. Since the a-Se MISIM photodetectors have a very low dark current without significant degradation in the photoresponse, the signal contrast is greatly improved. The MISIM photodetector with the ALD-HfO2 blocking layer has an optimal signal contrast more than 500 times the contrast of the photodetector without a blocking layer at 15 V/μm.
A flexible Li-ion battery with design towards electrodes electrical insulation
NASA Astrophysics Data System (ADS)
Vieira, E. M. F.; Ribeiro, J. F.; Sousa, R.; Correia, J. H.; Goncalves, L. M.
2016-08-01
The application of micro electromechanical systems (MEMS) technology in several consumer electronics leads to the development of micro/nano power sources with high power and MEMS integration possibility. This work presents the fabrication of a flexible solid-state Li-ion battery (LIB) (~2.1 μm thick) with a design towards electrodes electrical insulation, using conventional, low cost and compatible MEMS fabrication processes. Kapton® substrate provides flexibility to the battery. E-beam deposited 300 nm thick Ge anode was coupled with LiCoO2/LiPON (cathode/solid-state electrolyte) in a battery system. LiCoO2 and LiPON films were deposited by RF-sputtering with a power source of 120 W and 100 W, respectively. LiCoO2 film was annealed at 400 °C after deposition. The new design includes Si3N4 and LiPO thin-films, providing electrode electrical insulation and a battery chemical stability safeguard, respectively. Microstructure and battery performance were investigated by scanning electron microscopy, electric resistivity and electrochemical measurements (open circuit potential, charge/discharge cycles and electrochemical impedance spectroscopy). A rechargeable thin-film and lightweight flexible LIB using MEMS processing compatible materials and techniques is reported.
The electro-mechanical effect from charge dynamics on polymeric insulation lifetime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alghamdi, H., E-mail: haalghamdi@nu.edu.sa; Faculty of Engineering, Najran University, Najran, P.O.Box 1988; Chen, G.
For polymeric material used as electrical insulation, the presence of space charges could be the consequence of material degradations that are thermally activated but increased by the application of an electric field. The dynamics of space charge, therefore, can be potentially used to characterize the material. In this direction, a new aging model in which parameters have clear physical meanings has been developed and applied to the material to extrapolate the lifetime. The kinetic equation has been established based on charge trapping and detrapping of the injected charge from the electrodes. The local electromechanical energy stored in the region surroundingmore » the trap is able to reduce the trap-depth with a value related to the electric field. At a level where the internal electric field exceeds the detrapping field in the material, an electron can be efficiently detrapped and the released energy from detrapping process can cause a weak bond or chain scission i.e. material degradation. The model has been applied to the electro-thermally aged low density polyethylene film samples, showing well fitted result, as well as interesting relationships between parameter estimates and insulation morphology.« less
NASA Astrophysics Data System (ADS)
Kurihara, Takashi; Takahashi, Toshihiro; Mizutani, Yoshinobu; Suzuki, Hiroshi; Okamoto, Tatsuki; Ogura, Nobuyuki; Iwamoto, Kazuyoshi; Kitagawa, Setsuo
Three types of resin-coated papers were investigated; kraft papers and heat-resistant kraft papers partially covered with epoxy resin, and a kraft paper covered with phenol resin; those were laminated to certain thickness. They were thermally degraded at 120°C for 240 to 1320 hours, and their mechanical characteristics such as tensile strength and average polymerization degree were measured. As a result, it was found that the tensile strength of the first and second resin-coated papers was larger than that of the pressboard, but the tensile strength of the third one was smaller. As the effect of the heating time, it was found that the tensile strength of the first resin-coated paper decreased down to that of pressboards after 500 hours of heating time while those of the second and third ones almost retained the initial values after 1320 hours of the heating time. Then, electrical breakdown characteristics of composite insulation systems with a resin-coated paper and insulation oil were investigated. In the system, an oil-filled gap was artificially introduced between a resin-coated paper and a plane electrode to induce partial discharges (PDs) at the same location. PDs occurred before breakdowns and it was found that their PD inception electric field strength was almost as high as that of the pressboard and the effect of the heating time was negligible. It was also found that the electrical breakdown field strength has similar characteristics to those of the PD inception field strength; negligible effects of the type of resin-coated papers and the heating time. Electrical breakdown occurred at the oil-filled gap and the edge of a high voltage electrode.
Electrical conduction of a XLPE nanocomposite
NASA Astrophysics Data System (ADS)
Park, Yong-Jun; Sim, Jae-Yong; Lim, Kee-Joe; Nam, Jin-Ho; Park, Wan-Gi
2014-07-01
The resistivity, breakdown strength, and formation of space charges are very important factors for insulation design of HVDC cable. It is known that a nano-sized metal-oxide inorganic filler reduces the formation of space charges in the polymer nanocomposite. Electrical conduction of cross-linked polyethylene(XLPE) nanocomposite insulating material is investigated in this paper. The conduction currents of two kinds of XLPE nanocomposites and XLPE without nano-filler were measured at temperature of 303 ~ 363 K under the applied electric fields of 10 ~ 50 kV/mm. The current of the nanocomposite specimen is smaller than that of XLPE specimen without nano-filler. The conduction mechanism may be explained in terms of Schottky emission and multi-core model.
NASA Astrophysics Data System (ADS)
Rathi, Servin; Park, Jin-Hyung; Lee, In-yeal; Baik, Jeong Min; Yi, Kyung Soo; Kim, Gil-Ho
2014-07-01
We studied insulator-metal transitions in VO2 nanobeams for both abrupt and gradual changes in applied electric fields. Based on the observations, the Poole-Frenkel effect explained the abrupt transition, while the gradual case is found to be dominated by the Joule heating phenomenon. We also carried out power model and finite element method based simulations which supported the Joule heating phenomena for gradual transition. An in-principle demonstration of the Poole-Frenkel effect, performed using a square voltage pulse of 1 µs duration, further confirms the proposed insulator-metal transition mechanism with a switching time in the order of 100 ns. Finally, conductivity variations introduced via rapid thermal annealing at various temperatures validate the roles of both Joule heating and Poole-Frenkel mechanisms in the transitions.
Study on Ferroelectric Thick Film Insulator Sleeve On Plasma Focus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sylvester, Gustavo; Silva, Patricio; Moreno, Jose
The effect of ferroelectric lead germanate Pb5Ge3O11 (PGO) thick film in the alumina insulator sleeve of the 400 Joule Mather-type plasma focus device, PF-400J is studied. The breakdown phase along the insulator is fundamental for the formation of a homogeneous and symmetric current sheath, that is essential for a good plasma pinching, high neutron yield and X-ray emissions. For over several hundreds of electrical discharges, the films show good mechanical and electric performance. From the beginning the operating system is highly reproducible, shot to shot, with a clear definition of the plasma pinch on the axis of discharge. The grademore » of influence of the electron emission from the ferroelectric is experimentally studied.« less
A study of electric transmission lines for use on the lunar surface
NASA Technical Reports Server (NTRS)
Gaustad, Krista L.; Gordon, Lloyd B.; Weber, Jennifer R.
1994-01-01
The sources for electrical power on a lunar base are said to include solar/chemical, nuclear (static conversion), and nuclear (dynamic conversion). The transmission of power via transmission lines is more practical than power beaming or superconducting because of its low cost and reliable, proven technology. Transmission lines must have minimum mass, maximum efficiency, and the ability to operate reliably in the lunar environment. The transmission line design includes conductor material, insulator material, conductor geometry, conductor configuration, line location, waveform, phase selection, and frequency. This presentation oulines the design. Liquid and gaseous dielectrics are undesirable for long term use in the lunar vacuum due to a high probability of loss. Thus, insulation for high voltage transmission line will most likely be solid dielectric or vacuum insulation.
Technical Achievements in Communist China’s Electrical Equipment Industry
1960-09-15
products has also been , developed, including long rod type insulating porcelains and a new series of line porcelains . In 1958, oil sockets for 330...is now aimed at the creation of high intensity, high insulating , and small-size high-tension porcelain products. During the past 10 years, our...of lead-covered oil-immersed paper- insulated cables of 55 kilovolts and less, rubber-sheathed cables of 6,000 volts and less, and aluminum core